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ABSTRACT
Networked graphs are defined in this paper as a small syn-
tactic extension of named graphs in RDF. They allow for the
definition of a graph by explicitly listing triples as well as by
SPARQL queries on one or multiple other graphs. By this
extension it becomes possible to define a graph including a
view onto other graphs and to define the meaning of a set of
graphs by the way they reference each other. The semantics
of networked graphs is defined by their mapping into logic
programs. The expressiveness and computational complex-
ity of networked graphs, varying by the set of constraints
imposed on the underlying SPARQL queries, is investigated.
We demonstrate the capabilities of networked graphs by a
simple use case.

1. INTRODUCTION
The Resource Description Framework (RDF) is a language

for representing semantic information in the World Wide
Web (cf. [18]). Being such a language it allows for refer-
encing of the described resources leading to networking of
resource descriptions.

RDF does not allow for referencing and reusing of RDF
graphs. It is not possible to describe how data in one graph
is re-used in another graph. The only connection from one
graph A to another graph B is by using an URI in graph A
that links to some URI the definition of which happens to
be found in graph B1. Thereby, RDF does not allow for the
circumscription of the interest that a publisher of graph A
takes in the data found in graph B.

A mechanism that will allow such circumscribing within
RDF graphs may provide many valuable possibilities, such
as:

1. reuse of RDF graphs enabling the dynamic copying of
contents from one graph to the other;

2. viewing RDF graphs in a way that is defined by an-
other RDF graph;

3. dynamic networking of RDF graphs. RDF graphs will
constitute dataspaces that do not only sit next to each
other, but the meaning they describe will come from
their dynamic networking.

The interested reader may note that analogous mecha-
nisms of focusing into Web documents that are viewed by
people have existed for long: they are the XPath descrip-
tions, the stylesheet languages like XSLT, the notions of

1The semantics of rdfs:seeAlso is very weak.

frames and pagelets. We think it is very natural and use-
ful to transfer some of the concepts that are useful for data
viewed and understood by humans to corresponding mech-
anisms for the data part of the Web that is supposed to be
viewed and understood by computers.

This paper is about such reusing, viewing and dynamic
networking of RDF graphs. For this purpose, we combine
two recent advancements in the RDF domain, i.e. named
graphs as described in [5] and the query language SPARQL
[21]. We come up with a small, but powerful syntactic ex-
tension of RDF that we call networked RDF graphs. We
investigate its semantics by a mapping to logic programs
and show its benefits with a simple use case.

In the following, we start with a description of this use
case. We introduce the foundations on which we build in
Section 3. We define the abstract structure of networked
RDF graphs in Section 4. In Section 5, we describe their se-
mantics by a mapping into logic programs. Then, we explore
the computational complexity of the model in section 6. We
describe a first implementation and related work in sections
7 and 8.

2. USE CASE
Our running example in this paper is defined by a simple

use case on maintaining information at an academic institu-
tion in a completely decentralized fashion and on publishing
this data in the Semantic Web.2

Our university consists of departments (e.g. ‘Department
of computer science’) that have different institutes (e.g. ‘IFI
– Institute for computer science’) and each institute has one
or several labs (e.g. ‘ISWeb – Information Systems and Se-
mantic Web’, or ‘AGAS – Active Vision Lab’). Once net-
worked graphs are established, each lab will maintain and
publish its membership site in an RDF graph using differ-
ent technical platforms (and maybe even different ontolo-
gies). Every lab has researchers, e.g. Steffen and Simon are
researchers at ISWeb and Richard is a researcher at ISWeb,
but also at AGAS. Saqib is also a researcher at ISWeb, but
he is an extern receiving his salary from another organiza-
tion. Hence, Steffen and Richard are employees of IFI, but
Saqib is not. The administrative staff who is not assigned to
a particular lab, e.g. Ute, is still a member of the institute,
IFI.

One objective of this use case is the maintenance of em-
ployment and research relationships in graphs specific to

2The reader may note that structurally similar use cases
exist in E-learning (cf. [4]) or in semantic multimedia anno-
tation.
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each group (e.g. ISWebGraph for ISWeb). Another objective
is to consolidate this information dynamically at other levels
of granularity, e.g. at the level of IFI or at the department or
university levels. Hence, the graph describing employments
with the institute (IFIGraph) should not copy information,
as this would be quickly outdated. It should rather refer
to the appropriate statements provided by the labs in their
corresponding graphs as well as add new relationships (e.g.
about Ute).

3. FOUNDATIONS
In this section, we briefly describe some of the foundations

based on which we define networked graphs.

3.1 RDF
RDF is a graph based knowledge representation language.

The nodes in a graph are URIRefs, blank nodes or literals.
Arcs between the nodes represent their relationships. The
arcs are labeled with URIRefs, representing the property
that holds between the two nodes. We simplify the RDF
graph model (cf. [18]) here slightly in order to come up with
a more concise formal characterization:

Definition 1. Let U be the set of URIRefs, L the set of
RDF Literals and B the set of Blank Nodes as defined in
[18]. U , L and B are pairwise disjoint. Let R = U ∪L∪B.
A statement is a triple in R × U × R. If S = (s, p, o) is a
statement, s is called the subject, p the predicate and o the
object of S.

Definition 2. A graph G is a set of statements. For
every two graphs G1 and G2 the sets of blank nodes used in
G1 and in G2 are disjoint.

[18] defines a model theoretic semantics for RDF graphs
based on inference rules which allow to derive new state-
ments from a given RDF graph. They include, for example,
transitivity of class membership. We refer the reader to [18]
for a detailed description of RDF, which includes a definition
of RDF and the RDF Schema language RDFS.

Parts of the ISWebGraph can be represented in RDF and
noted in N3 as follows:

Example 1.

{ u:Steffen u:worksAt u:ISWeb.
u:Simon u:worksAt u:ISWeb.
u:Saqib u:worksAt u:ISWeb.
u:Saqib u:status u:externalResearcher.
u:Richard u:worksAt u:ISWeb. }

3.2 Named Graphs
While the RDF recommendation does not allow refering

to RDF graphs, named graphs introduced in [5] offer means
to group a set of statements together into a graph and to
refer to this graph using a URIRef. This way information
about the graph can be expressed in RDF using its name as
a subject or object:

Definition 3. A named graph is a pair (n, G) of a
URIRef n and an RDF graph G.

In our use case we refer to the graph of the institute of
computer science by u:IFIGraph, to the graph of the ad-
ministration by u:IFIAdminGraph and to the graph of the
ISWeb lab by u:ISWebGraph. In N3, graphs are named by
prepending them with a name, for example:

Example 2.

u:IFIGraph { u:Steffen u:worksAt u:IFI.
[...]
u:Richard u:worksAt u:IFI.
u:ISWeb u:workingGroupOf u:IFI. }

u:IFIAdminGraph { u:Ute u:worksAt u:IFI. [...]}

u:ISWebGraph { u:Steffen u:worksAt u:ISWeb.
[...]
u:Richard u:worksAt u:ISWeb. }

In addition, [5] contains a vocabulary to describe relation-
ships between graphs like subGraphOf, but no machinery to
detect or exploit such relationships — which is done in this
paper.

3.3 SPARQL
SPARQL is a query language for RDF based on graph

pattern matching, which is defined in [21]. In this paper
we are only interested in SPARQL CONSTRUCT queries.
A SPARQL CONSTRUCT query matches a graph pattern
against one or more input graphs. The resulting variable
bindings are embedded into a template description in or-
der to generate new RDF data. In this paper we will use a
normalised and restricted subset of SPARQL, which can ex-
press all SPARQL CONSTRUCT queries3. While [21] offers
various ways to write complex graph patterns, we assume all
complex patterns to be expressed as sequences of patterns
of single statements.

Definition 4. A SPARQL CONSTRUCT query has the
form

CONSTRUCT <CONSTRUCT pattern>

[FROM NAMED <graph>]+

WHERE <WHERE pattern>

where <CONSTRUCT pattern> is a graph pattern and <WHERE

pattern> is a filtered graph pattern as defined in definitions
18 and 17.

Definitions 17 and 18 can be found in appendix A.
A query is evaluated by matching the WHERE pattern

against the graphs declared using FROM NAMED and com-
puting bindings for the variables used in the WHERE pat-
tern. The filters in the WHERE pattern are applied to ev-
ery computed binding. If any filter returns false or error,
the binding will not be used. A filter returns error, if it
is invoked on parameters of the wrong type, or one of its
parameters is error. In the following, two aspects of error
handling in filters will be important: ! error results in error
and the BOUND filter is the only filter, which may derive a
return value other than error from an unbound variable as
a parameter.

The CONSTRUCT pattern may only use variables intro-
duced by the WHERE pattern4. The result of a query is
3We do not allow to define the default graph using the
“FROM” declaration. We will assume the default graph
to be a Networked Graph, which can be referred to using its
name and “FROM NAMED”. Such a Networked Graph can
be easily derived from a FROM NAMED declaration.
4In fact, arbitrary variables can be used, but only if all vari-
ables in a statement in the CONSTRUCT pattern have been
bound in the WHERE pattern, this statement will be in-
cluded in the result. Thus newly introduced variables in the
CONSTRUCT pattern would not contribute to the result.
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obtained by substituting all possible variable bindings for
the variables in the CONSTRUCT pattern and building the
union of these graphs.

4. NETWORKED GRAPHS
We now list requirements for an extension of the RDF

toolset resulting from the use case. We define this extension,
named Networked Graphs, and describe a language to define
Networked Graphs.

4.1 Requirements
From the use case we derive the following requirements:
Nesting of named graphs. We need to import all state-

ments from one graph to another one in order to allow for
easy structuring of RDF data. In the use case all admin-
istrative personnel shall be described in one graph IFIAd-
minGraph, which is to be included in the institute’s graph
IFIGraph.

Views on RDF graphs. Views allow for reuse of parts
of RDF data in different contexts. The IFIGraph shall only
include those parts of the ISWebGraph, which do not describe
external researchers.

In a semantic web setting, which can hardly be controlled,
circular view definitions must be possible, as they can not
be avoided.

Exchange of graph definitions. For the IFIGraph, only
a description of how to derive its content from other graphs
shall be stored, not its materialisation.

Compatibility with earlier RDF extensions. The
machinery for easy formulation of RDF graphs shall be pre-
served and extended instead of being replaced.

Referencing of graphs. Referencing of graphs is a nec-
cessary prerequisite for defining views and imports.

4.2 Abstract Syntax
The last requirement can already be fulfilled using named

graphs, so we base the definition of Networked Graphs on
named graphs and extend them by a view mechanism.

Definition 5. A Networked Graph is either
a) a named graph g = (n, G), or
b) a quadruple g = (n, G, [g1..gn] , v),
where n is a URIRef called the name of the Networked

Graph, G is a graph, [g1, ..., gn] is a list of Networked Graphs
and v is a mapping from a list of Networked Graphs to an
RDF graph called the view definition of g.

We define a function deref to access the contents of a
Networked Graph given the Networked Graph definition it-
self or its name. deref carries out dereferencing of Net-
worked Graphs as a logical operation, i.e. given a Net-
worked Graph compute its content. This logical operation
is opposed to dereferencing as an addressing operation, i.e.
given a URIRef, download the corresponding file, because in
contrast to named graphs, Networked Graphs are not nec-
cessarily explicitly listed in a single file. In Section 5 we will
describe, how deref can be computed for a set of Networked
Graphs.

Definition 6. Let g = (n, G, [g1 . . . gn] , v) or g = (n, G)
be a Networked Graph.

Then deref is an overloaded function mapping from net-
worked graphs and names of networked graphs into a set of
statements, i.e. a graph:

deref(g) =


G, if g is a named graph
G ∪ v(g1, ..., gn) else.

deref(n) =


G, if g is a named graph
G ∪ v(g1, ..., gn) else.

An example from our use case could be as follows:

Example 3. Let ISWebGraph and IFIAdminGraph be Net-
worked Graphs. Then IFIGraph is a Networked Graph:

IFIGraph = (u:IFIGraph,
{u:ISWeb u:workingGroupOf u:IFI.,
u:IFI u:belongsTo u:CSDepartment.},
[ISWebGraph, IFIAdminGraph], v), with

v(ISWebGraph, IFIAdminGraph) =
v2(ISWebGraph)∪deref(IFIAdminGraph) and

v2(ISWebGraph) = {u:Steffen u:worksAt u:IFI.

[...] u:Richard u:worksAt u:IFI. },

For reasons of simplicity, we will use the name of a Net-
worked Graph interchangably with the Networked Graph
itself. From the context it will be clear, whether the name
or the Networked Graph is meant.

4.3 An RDF Language Extension for
Networked Graphs

Apart from the name, we can write the complete defini-
tion of a Networked Graph in one SPARQL CONSTRUCT
query, including all statements in G into the CONSTRUCT
pattern, naming the list of Networked Graphs using FROM
NAMED and encoding v in the WHERE and CONSTRUCT
patterns. For example 3 we would have:

Example 4.

CONSTRUCT {
u:ISWeb u:workingGroupOf u:IFI.
u:IFI u:belongsTo u:CSDepartment.
?s ?p ?o. ?person u:worksAt u:IFI. }

FROM NAMED u:ISWebGraph FROM NAMED u:IFIAdminGraph
WHERE { GRAPH u:IFIAdminGraph {?s ?p ?o.}.

UNION GRAPH u:ISWebGraph {?person u:worksAt u:ISWeb}. }

Encoding RDF graphs in SPARQL construct queries, how-
ever, is not convenient. In order to be upwards compati-
ble with named graphs, we use an encoding for Networked
Graphs which is based on named graphs.

Definition 7. A Networked Graph c=(n,G,[c1,...,cn],v)
is encoded in a named graph with name n. The contents
of G are explicitly included in this named graph. The view
definition is included in statements of the form:
n g:definedBy <query>.5

where <query> is a literal containing a CONSTRUCT
query. The datatype of <query> is g:query

We call such a statement a view definition statement.
We call the object literal of a view definition statement

a subquery of the Networked Graph definition. The view
definition is the union of the subqueries.

We use a special datatype for literals containing subqueries
in order to recognise subqueries for the translation to logic
programs described in chapter 5. Using a special datatype

5As namespace for the Net-
worked Graph vocabulary we propose
http://isweb.uni-koblenz.de/ontologies/2006/11/ng#
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for queries is neccessary in order to discover query literals,
even though they are not contained in a definedBy state-
ment. Some Networked Graph could match such a literal
in its view definition and compose a definedBy statement
from it, which in turn must be included when computing
the Networked Graph’s content.

Resulting from this syntax, existing machinery for work-
ing with named graphs can be used for serialisation and
exchange of Networked Graphs. Additionally, a non Net-
worked Graph aware repository can still interpret the ex-
plicit statements in a Networked Graph, providing upwards
compatibility.

We define a shorthand notation for a common subquery:
The predicate g:contains is used as a shorthand for defin-
ing complete inclusion of all statements from the object
graph of the statement into the subject graph. For example
u:IFIGraph g:contains u:IFIAdminGraph. is a shorthand
notation for u:IFIGraph g:definedBy "CONSTRUCT {?s ?p

?o.} FROM NAMED u:IFIAdminGraph WHERE GRAPH

u:IFIAdminGraph {?s ?p ?o.}".
The following Networked Graph collects information re-

quired by the institute in our use case into the IFIGraph,
refined from example 4 to importing only non-external re-
searchers:

Example 5.

u:IFIGraph {
u:ISWeb u:workingGroupOf u:IFI.
[...]
u:IFIGraph g:contains u:IFIAdminGraph.
u:IFIGraph g:definedBy

"CONSTRUCT { ?person u:worksAt u:IFI. }
FROM NAMED u:ISWebGraph
WHERE {

GRAPH u:ISWebGraph {?person u:worksAt u:ISWeb.}.
OPTIONAL {

GRAPH u:ISWebGraph {?person u:status ?x.}.
FILTER (?x = u:externalResearcher). } .

FILTER (NOT BOUND(?x))."}. }

definedBy statements are intended to carry two mean-
ings. First, there is the extensional meaning that the
definedBy statements exists. Second, there is its intended
intensional meaning, i.e. the evaluation of the view it de-
fines. The second meaning will only be incurred if the graph
in which a definedBy statement occurs (intensionally or ex-
tensionally) is identical with the subject of this statement.

To have a syntax exclusively based on RDF we could use
an RDF vocabulary for expressing queries like the one pro-
posed in [12], but that is out of scope of this paper.

5. SEMANTICS
Basically, the Networked Graph semantics is an exten-

sion of the SPARQL semantics to include nested and recur-
sive queries. A Networked Graph, which contains only one
statement describing a non-recursive query, maps directly
to a SPARQL query. We define the semantics of Networked
Graphs through a mapping of a set of SPARQL queries to
a normal logic program. This also provides a logic trans-
lation of SPARQL. We apply the well founded semantics
by Gelder et al. [26] to this program in order to deal with
non-monotony in circular Networked Graph definitions.

5.1 Well Founded Semantics
The well founded semantics assigns a unique model to

every normal logic program P using a three valued logic.
A well founded model assigns to every atom a truth value
of true, false or unknown. Atoms with an unknown truth
values are those which do neither hold nor can be easily as-
sumed not to hold. The model assigned to P under the well
founded semantics is the minimal model of all such three val-
ued models that fulfil P (cf. [26] for a detailed introduction
of the well founded semantics).

As a result, we still have a unique model for programs,
where two valued semantics would run into alternating fixed
points or multiple models. This property will be very helpful
for circular Networked Graph definitions.

Other possibilities to assign a semantics to Networked
Graphs like stable model or first order semantics exist. The
latter, however, will not coincide nicely with negation in
SPARQL in the case of recursive Networked Graph defini-
tions and the former does not determine a single, unique
model without further constraints.

5.2 Filtering Statements with Negation
SPARQL focuses on filtering statements based on the avail-

ability of other statements. The following example query
searches for all researchers of ISWeb who also happen to be
external Researchers:

Example 6.

CONSTRUCT {?p u:worksAt u:IFI.} FROM NAMED u:ISWebGraph
WHERE {

GRAPH u:ISWebGraph {?p u:worksAt u:ISWeb.}.
GRAPH u:ISWebGraph {?q u:status u:externalResearcher.}.
FILTER (?p = ?q). }.

The negation of such a kind of filter expression as used
in example 6 cannot be used to select one statement based
on the absence of another statement. Therefore, selecting
all researchers of ISWeb who are not external researchers
needs a rather involved check whether some optional variable
remains unbound as shown in the following example.

Example 7.

CONSTRUCT {?p u:worksAt u:IFI.} FROM NAMED u:ISWebGraph
WHERE {

GRAPH u:ISWebGraph {?p u:worksAt u:ISWeb.}.
OPTIONAL { GRAPH u:ISWebGraph {?p u:status ?s.}.

FILTER (?s = u:externalResearcher). }.
FILTER (! BOUND(?s)). }

This consideration can be summarized as follows.

Definition 8. A SPARQL query uses BOUND negation,
if the following pattern occurs in the WHERE pattern:

<patternx> OPTIONAL { <pattern> }.

<patterny> FILTER (! BOUND(?t)). <patternz>

where in angle brackets we have filtered graph patterns
and ?t is a variable introduced by <pattern>. <patternx>,
<patterny> and <patternz> are parts of the query, which
surround the BOUND negation.

Based on this definition we conclude:

Proposition 1. Using BOUND negation in a filter is the
only way to select statements in SPARQL based on the ab-
sence of other statements.

6
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Proof: Negation in SPARQL can not be expressed in
graph patterns. However, in the presence of OPTIONAL
graph patterns, some variables may be left unbound. Hence
we can model negation by failure to search for non-existent
statements: We need to formulate a filtered graph pattern
matching the statements, which shall not exist, and then
apply a FILTER to one or more of the variables introduced
by this pattern. This filter needs to check whether the vari-
able is unbound. This construct models negation by failure
in SPARQL.

Apart from the bound filter, all filters will return an error,
when invoked on an unbound variable. As ! error = error,
we can never obtain a true filter result from such a filter
expression. Hence it will either trivially fail, or, if it is part
of a disjunction, it will be irrelevant for the result. The truth
value of error || A can only be error or true, only depending
on the value of A. �

Note that also in the presence of UNION some variables
from one of the subpatterns of the UNION expression may
be left unbound. In contrast to OPTIONAL patterns, this
does not mean we failed to bind these variables, but that the
query evaluation bound the variables in the other branch of
the UNION.

5.3 Mapping to Logic Program
For the following translation from SPARQL to a logic pro-

gram we assume the RDF/S extensions of all graphs to be
materialised. We do not cover the RDF/S semantics here.
It can be included by combining our work with the entail-
ment rules in [18]. We briefly describe in appendix C how
to modify our translation in definition 14 to also capture
RDF/S semantics. Please note that when including RDF/S
semantics, the results regarding computational complexity
need to be revised to account for the complexity of RDFS
inferencing.

We start to define the translation of SPARQL queries with
a definition of a translation for filter expressions. We will
use the following normal form for filter expressions:

Definition 9. A filter expression is in conjunctive nor-
mal form, if it is a conjunction of disjunctions of filter lit-
erals as defined in definition 17.

Example 8. Let Fi(i ∈ {1..n}), Gj(j ∈ {1..m}) be filter
literals. Then the following filter expression is in conjunctive
normal form:

FILTER((F1||...||Fn)&&(G1||...||Gm))

Analogously to boolean formulas every filter expression
can be translated into conjunctive normal form.

Lemma 1. Every filter expression can be translated into
an equivalent conjunctive normal form.

Normalization can be achieved comparable to normaliza-
tion of boolean formulas by exploiting double negation, dis-
tribution and DeMorgan’s laws. A proof that these laws
hold can be found in appendix B.

Now we describe how to translate SPARQL queries into
logic programs. First we define some auxiliary functions and
data structures.

Definition 10.

(1) Let c be a statement pattern
(2) Let A, B, P be filtered graph patterns.
(3) Let C be a graph pattern.
(4) Let X, Y be filter expressions.
(5) Let x, y, z be resources.
(6) Let u, v, w be variables of a logic program.
(7) Let g and r be names of Networked Graphs6.
(8) Let ext be a mapping from a Networked Graph to its
graph component, G.
(9) Let s, p, o be mappings from a statement to its subject,
predicate and object.
(10) Let varsInt be a mapping from a filtered graph pattern
to the set of variables introduced by this pattern.
(11) Let resources be a mapping from a SPARQL expression
to the set of resources used in this expression.
(12) Let literals be a mapping from a SPARQL expression
to the set of literals used in this expression.
(13) Let variables be a mapping from a SPARQL expression
to the set of variables used in this expression.
(14) Let filters be a mapping from a SPARQL expression to
the set of filter operators used in this expression.

Example 9. Let g be IFIGraph and A the following part
of the construct pattern in example 5:

GRAPH u:ISWebGraph {?person u:status ?x.}.
FILTER (?x = u:externalResearcher).

Then
ext(g) = {

u:ISWeb u:workingGroupOf u:IFI.

[...]

u:IFIGraph g:contains u:IFIAdminGraph.

u:IFIGraph g:definedBy "CONSTRUCT [...]" },
but u:Steffen u:worksAt u:ISWeb /∈ ext(g).
varsInt(A) = {?x}, opposed to
variables(A) = {?person, ?x}.
resources(A) = {u:IFIGraph, g:contains,

u:IFIAdminGraph., g:definedBy}.
filters(A) = {” = ”}.

We will use a mapping function m which is a mapping
from SPARQL expressions to parts of a logic program. We
will successively extend m until we can translate all SPARQL
CONSTRUCT queries. We start with the translation of fil-
ter expressions:

Definition 11. A filter expression X in conjunctive nor-
mal form is translated into a part of a logic program as fol-
lows:

1. Define a set of constants Const and
a bijection res : resources(X)↔Const.

2. Define a set of variables Var and
a bijection var: variables(X)↔Var.

3. Define a set of predicates F and
a bijection f : filters(X)↔ F . Map the BOUND filter
operator to the predicate bound.

4. Let m = res ∪ var ∪ f .

6r is the name of the graph resulting from a query, which is
usually unknown. When the query is used in a definedBy
statement, the name of the graph is known upfront.

7
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5. Translate filter definitions
op(a1, ..., ai) to m(op)(m(a1), ..., m(ao)).

6. Translate filter definitions
!(op(a1, ..., ai)) to ¬m(op)(m(a1), ..., m(ao)).

7. Translate the locial connectives X||Y to (m(X)∨m(Y ))
and X&&Y to (m(X) ∧m(Y )).

Example 10. The filter expressions in example 7 trans-
late to eq(s, externalResearcher) and ¬bound(s), assuming
w is given as follows:

w(”=”) = eq.
w(”BOUND”) = bound.
w(”u:externalResearcher”) = externalResearcher.
w(”?s”) = s.

During this translation we have simplified the filter ex-
pression such that the third possible return value error is
no longer used. This is possible, as filter expressions which
evaluate to error are treated as if they evaluate to false in
SPARQL:

Lemma 2. Filter expressions in conjunctive normal form
are evaluated equally in SPARQL and in first order logic
after translation according to definition 11.

A proof can be derived easily from the truth tables for
logical connectives given in [21], see appendix B.

Theorem 1. The translation of filter expressions is sound
and complete.

Proof: Soundness follows directly from proposition 2
and the fact that in two valued logic the mapping in defi-
nition 11 is purely syntactical. To prove completeness, con-
sider that we can translate every filter expression, because
definition 11 provides a mapping for every constructor from
definition 17, and proposition 1 holds. �

The filter translation is used in translating SPARQL con-
struct queries.

Definition 12. An arbitrary SPARQL CONSTRUCT
query Q can be translated to a first order predicate logic pro-
gram P as follows:

1. Let m′ be defined like m in definition 11, except that
V ar, Const and F are derived from Q and the state-
ments of all graphs in the dataset of Q.

2. Let m be given by the union of m′ and the mapping
rules described in table 1.

3. Translate all filter expressions of Q into conjunctive
normal form.

4. For every blank node creation in the CONSTRUCT
pattern, introduce a new skolem function fi and add to
m the tuple (bc, fi(u, ..., w)) where bc is the SPARQL
expression introducing the new blank node and u, .., w
are the variables in the translation of the CONSTRUCT
pattern.

5. Compute P = m(Q).

6. Apply Lloyd-Topor transformation7 to P.

Table 1: Mapping from SPARQL to a logic program

SPARQL Syntax FOL Syntax

m(CONSTRUCT {C}
h
∀c ∈ C : “t(m(r), m(s(c)),

WHERE P) m(p(c)), m(o(c))← m(P )”ˆ
∀v ∈ variables(c) :

“, bound(m(v))”
˜i

“bound(x)← ¬isNull(x) ”
“isNull(null)←”
“t(u, u, m(g : uses), v)
← t(u, u, m(g : uses), w),

t(w, w, m(g : uses), v)”
m(FROM NAMED g)

ˆ
∀c ∈ ext(g) : “t(m(g), m(s(c)),

m(p(c)), m(o(c)))←′′˜
“t(m(r), m(r), m(g : uses), m(g))

←”
m({P}) “(m(P ))”
m(GRAPH g {x y z.}.) “t(m(g), m(x), m(y), m(z))”
m(A. B.) “((m(A)), (m(B))”
m(A UNION B) “(((m(A)) ”ˆ

∀v ∈ varsInt(B)\
varsInt(A) :

“, isNull(m(v))”
˜
)

“ ∨ ((m(B))”ˆ
∀v ∈ varsInt(A)\

varsInt(B) :
“, isNull(m(v))”

˜
))

m(A OPTIONAL B) “(m(A), (m(B)∨ˆ
∀v ∈ varsInt(B) :

“isNull(m(v)),”
˜
)

if A uses BOUND negation
“¬m(B))”, else “true)”

m(FILTER X) see definition 17
Expressions are evaluated as follows:

1. Evaluate the mapping m for all constants and
(quantified) variable bindings into strings.

2. Evaluate [...]-expressions to concatenate the
evaluations it contains into strings.

3. Concatenate all resulting strings.

Now we extend the translation to sets of Networked Graphs
which use each other in their view definitions.

Definition 13. We say a Networked Graph r uses an-
other Networked Graph g, written uses(r,g), if

a) g occurs in a FROM NAMED declaration in some
query defining r, or

b) some Networked Graph used by r uses g.
An interdependence set V is a set of Networked Graphs

where V contains all Networked Graphs in the transitive clo-
sure of the uses relation for every Networked Graph in V .

A Networked Graph in an interdependence set can only
be dereferenced at the same time as, or after all Networked
Graphs it depends on are dereferenced. Hence, we translate
all queries used in all Networked Graphs in an interdepen-

7cf. [14] Or the more efficient version as presented in [9]
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dence set into a single logic program for evaluation. Please
note that a named graph can be dereferenced immediately.

Definition 14. An interdependece set V is translated to
a corresponding logic program P as follows:

Let m be defined as in definition 12, except that Const,
V ar and F are derived from all Networked Graphs and all
queries in view definition statements in V . For every lit-
eral q of type g:query in Q =

S
∀g∈V

literals(g), translate the

query contained in q into a logic program P ′ as defined in
definition 12. In every rule t(g, s, p, o)← T in P ′, add to T
an atom t(g, g, w(definedBy), w(q)).8 If o has the datatype
g:query, add o to Q.9 Add P ′ to P .

Example 5 will result in the following program (before ap-
plication of Lloyd-Topor transformation), assuming a literal
mapping of resource and variable names:

Example 11.
t(IFIGraph, ISWeb, workingGroupOf, IFI) ←
...
t(g, s, p, o) ← t(IFIAdminGraph, s, p, o),

t(g, g, definedBy, ”CONSTRUCT ...”)
t(g, person, worksAt, IFI)

← t(ISWebGraph, person, worksAt, ISWeb),
((t(ISWebGraph, person, status, s),
eq(s, externalResearcher)) ∨ isNull(s)),
¬ bound(s),
t(g, g, definedBy, ”CONSTRUCT ...”)

bound(x) ← ¬ isNull(x)
isNull(null) ←
t(u, u, uses, v) ← t(u, u, uses, w), t(w, w, uses, u)
t(IFIGraph, IFIGraph, uses, ISWebGraph)←
t(IFIGraph, IFIGraph, uses, IFIAdminGraph)←

The set of true t(g, s, p, o) atoms determines the true state-
ments s p o. of the Networked Graph with the name g.
Having determined the true statements we need to translate
them back to RDF:

Definition 15. Let m−1 be the inverse of the mapping
res ∪ var, P a program resulting from the translation of an
interdependece set V and g the name of a Networked Graph
in V .

deref(g) is the set of statements m−1(s) m−1(s) m−1(s).

obtained from the bindings computed for the goal
← t(m(g), s, p, o) from program P .

5.4 Properties of the Semantic Model of Net-
worked Graphs

Now we discuss possible limitations of the expressive power
of view definitions and interesting properties of the resulting
fragments of Networked Graphs. We will also show, why the
well founded semantics is useful for Networked Graphs.

5.4.1 Alternating Fix Points
We have introduced the well founded semantics very briefly.

To understand why we have chosen the well founded se-
mantics, please consider the circular view definition below:

8This makes sure, that a query is only used for comput-
ing a named context g, if g contains the query in its view
definition.
9Here the creation of g:definedBy statements in CON-
STRUCT patterns is handled.

A person is considered a man if he is not a woman and a
woman if she is not a man. In two valued logic ex:g1 could
alternate between {ex:joe a ex:person.} and {ex:joe a

ex:person. ex:joe a ex:man.}. The resulting logic pro-
gram has two stable models. The well founded semantics
solves this problem by assigning an unknown truth value to
the statement {ex:joe a ex:man.}.

Example 12.

ex:g1 {
ex:joe a ex:person.
ex:g1 g:definedBy

"CONSTRUCT {?p a ex:man.} FROM NAMED ex:g2
WHERE { GRAPH g2 {?p a ex:person.

OPTIONAL {?p2 a ex:woman. FILTER (?p2 = ?p).}.
FILTER (! BOUND(?p2)).}." . } }

ex:g2 {
ex:g2 g:definedBy

"CONSTRUCT {?p a ex:woman. ?p a ex:person}
FROM NAMED ex:g1
WHERE { GRAPH g1 {?p a ex:person.

OPTIONAL {?p2 a ex:man. FILTER (?p2 = ?p).}.
FILTER (! BOUND(?p2)).}." . } }

5.4.2 Value Creation
Recursive SPARQL views with blank node creation in the

CONSTRUCT pattern can lead to infinite models as shown
below for a very simple view resulting in an infinite set of
statements in graph ex:g3 . To avoid this, we forbid the cre-
ation of blank nodes in CONSTRUCT patterns of view def-
initions. Please notice that the use of existing blank nodes,
bound in the WHERE pattern, is safe.

ex:g3 {
ex:joe a ex:person.
ex:g3 g:definedBy

"CONSTRUCT {?p ex:parent [a ex:person].
?p a ex:person.} FROM NAMED ex:g3

WHERE { GRAPH ex:g3 {?p a ex:person.}.}" . }

We argue that in many cases, including the use case pre-
sented here, this restriction does not limit the usability of
Networked Graphs. This limitation corresponds to similar
restrictions in the relational calculus and in DL-safe rules
[17].

In the remainder of this paper we only consider Networked
Graphs without value creation. When considering value cre-
ation the complexity results need to be adjusted to datalog
with function symbols.

5.4.3 Monotonic Networked Graphs
Using the result from proposition 1, we can introduce a

limitation to the view definition language which results in
Monotonic Networked Graphs, by forbidding BOUND nega-
tion.

The reader may notice, that we do not completely forbid
the use of negation, as it is still possible in other filter expres-
sions. The mapping of the monotonic subset of Networked
Graphs to logic programs results in stratified programs. We
will consider the consequences in section 6.

Definition 16. A view definition is called monotonic if
it does not use BOUND negation.

Lemma 3. Let P be a normal program
resulting from an interdependence set including only mono-
tonic view definitions. Then P is stratified.

9
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Proof: Stratification of P is only hindered by the nega-
tive dependence of t on itself resulting from the translation
rule for OPTIONAL patterns. The mapping of OPTIONAL
patterns, for example m(B)∨(¬m(B)∧isNull(m(v))), must
include ¬m(B) to make sure that v is only bound to null,
if B does not match the dataset. This is important to cor-
rectly handle BOUND negation.10 If no BOUND negation
is used, ¬m(B) is not produced. Then P can be stratified.
�

5.4.4 Non-Recursive Networked Graphs
Another possible limitation is to forbid (direct or indi-

rect) recursion in view definitions. Then the program can
be made non-recursive. A non-recursive program only con-
sists of predicates which occur only in the heads of rules in
their own stratum [7].

Lemma 4. Let P be a normal program resulting
from an interdependence set including only non-recursive
view definitions. Then P can be rewritten to be non-recursive.

Proof: Translate P into a program P ′ by 1) introducing
a new 3-ary predicate tn for every networked graph n such
that tn(s, p, o) iff t(n, s, p, o) in P and 2) substituting every
t(n, s, p, o) in P by tn(s, p, o). Filter predicates are non-
recursive. Now we can assign a level mapping to the ti,
starting bottom-up from named graphs and following the
uses relations backwards, such that the index in the head
of a rule is always higher than in the body. Hence, P ′ is
non-recursive. �
As non recursive view definitions correspond to sets of
SPARQL queries, which do not influence each other, this
result means we can express SPARQL without value cre-
ation in Datalog without function symbols.

6. COMPLEXITY
We now investigate the data complexity of Networked

Graph evaluation. The data complexity is defined as the
complexity of computing a model for a variable extensional
knowledge base given a fixed query. Data complexity is of
particular interest, as usually the query is short compared
to the knowledge base and translations of Networked Graph
definitions are fixed, because all query literals are known in
advance.

6.1 General Networked Graphs
First, we discuss how much the translation to a logic pro-

gram adds to the overall complexity:

Lemma 5. The length of the logic program resulting from
the translation in definitions 12 and 14 is in

O(|G| +
P
|C||2l||W |), where |G| is the number of state-

ments in the graphs declared using FROM NAMED and for
every query in the interdependence set’s Networked Graph
definitions, |C| is the number of statement patterns in the

10Without ¬m(B), v could be bound to null, even though
binding the variables in m(B) is possible. Hence, we would
generate an additional binding. If no BOUND negation is
used this does not matter, because the rules binding vari-
ables to null are not used to infer true statements, as all
rules contain a subgoal bound(v) for every variable v used in
the head of the rule.

CONSTRUCT pattern, l is the maximum level of nestings
of OPTIONAL and UNION patterns, and |W | is the length
of the WHERE pattern.

Proof: The mapping of FROM NAMED adds exactly
one fact for every statement in the graph declared using
FROM NAMED. Every query is translated into a single rule
of a logic program. Hence we have a number of clauses cor-
responding to the number of queries used in the view defi-
nitions. Each of these rules is then transformed into a set
of normal clauses using Lloyd Topor transformation. First,
for every atom in the head of a clause, an separate clause is
generated. This results in |C| clauses. Then for every logical
OR in the body of a clause, Lloyd Topor transformation re-
sults in two new clauses. As logical ORs are only introduced
by mappings of UNION and OPTIONAL patterns, this step
generates at most |2l| clauses. Qualified graph patterns and
filter expressions map to a number of literals of the logic
program wich is equal to the number of qualified statement
patterns in the qualified graph pattern or the length of the
filter expression respectively. Unbound OPTIONAL pat-
terns are replaced by a list of isNull atoms for the unbound
variables, if any. This list has at most three times the length
the OPTIONAL graph pattern. Thus the overall length of
the resulting clauses is bound by 3|W |. �

With some simple optimisation, however, we can do bet-
ter:

Lemma 6. The translation of interdependence sets to logic
programs can be optimised to have complexity in O(|G| +
|C||W |).

Proof: For every two rules resulting from Lloyd-Topor
transformation of a UNION or OPTIONAL pattern we can
remove one rule:

A rule binding a variable to null, which is used in the
CONSTRUCT statement pattern trivially fails, as it con-
tains the subgoals bound(x) and isNull(x) for some variable
x.

Else, if a BOUND filter is applied to a variable introduced
in a nested OPTIONAL of UNION pattern, we can add an
atom bound(x) for every optional variable x to the body
of the rule binding the optional variables. Now one of the
two rules under consideration is trivially false, as it contains
isNull(x) and bound(x) or bound(x) and ¬bound(x).

Else, we only need to consider the rule which does not bind
the optional variables. The alternative rule is irrelevant,
because

1. we can never derive a return value of “true” from a
filter on an unbound variable or

2. if no filter is applied to an optional variable, the OP-
TIONAL pattern can not not influence the result.

�
As we consider the data complexity here, we can conclude

that the translation of non-query statements contributes lin-
early in the size of the input graphs.

The data complexity of computing the well founded se-
mantics of a given function free normal logic program is
known to be polynomial. Whether computing the well
founded semantics in linear time is possible is still open.
However, algorithms are known, which are O(|P ||A|) where
|P | is the the overall length of the program P , i.e. sum of
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the number of literals of all program clauses and |A| is the
number of atoms used in P (cf. [1], [7]).

Theorem 2. The data complexity of Networked Graph
computation without value creation in the general case is
quadratic in the size of the Networked Graphs used in the
interdependence set.

Proof: This theorem directly follows from [1], the fact
that |A| ≤ |P | and lemma 6. �

6.2 Monotonic Networked Graphs
Similarly for monotonic Networked Graphs we can con-

clude:

Theorem 3. The data complexity of Monotonic Networked
Graph computation without value creation is linear in the
size of the Networked Graphs used in the interdependence
set.

Proof: The data complexity of computing the minimal
model for a stratified normal program with recursion is lin-
ear in the length of the program [1], resulting from the linear
complexity of Horn programs [11]. Lemma 3 shows that the
program resulting from the translation of monotonic net-
worked graphs is stratified and, as above, the translation
contributes linearly to the data complexity. �

6.3 Non-Recursive Networked Graphs
Non-recursive Networked Graphs directly correspond to

SPARQL queries.

Theorem 4. The data complexity of Monotonic Networked
Graph computation without value creation is LOGSPACE in
the size of the Networked Graphs used in the interdependence
set.

Proof: This theorem directly follows from lemma 4
and LOGSPACE complexity for non-recursive datalog with
negation (cf. [7]). �
In this case we also have LOGSPACE complete combined
complexity (cf. [7]) for non-recursive datalog with negation.
This result corresponds to results by Perez et al. [19].

7. IMPLEMENTATION
We have implemented a SAIL supporting general Net-

worked Graphs without value creation for the Sesame 2.0
RDF repository11. A SAIL is a Storage And Inference Layer,
a stackable module in Sesame for either storing RDF, for ex-
ample in a relational database, or doing inferencing. In the
latter case, infered statements can be added to an underlying
SAIL for materialised storage or be infered on demand. The
Networked GraphSAIL reuses the Sesame API to a large ex-
tent and only exploits the XSB Prolog engine for evaluating
the generated normal programs. We use Sesame Contexts
(corresponding to named graphs) of an underlying SAIL for
storing statements. View definitions are parsed into an in-
ternal query model using the Sesame SPARQL parser. Then
the rules of the logic program are generated, while the facts
(the t predicate and filter predicates) are evaluated as Java
Messages, i.e. on the Java side using the usual Sesame meth-
ods.

11http://isweb.uni-koblenz.de/Research/NetworkedGraphs.

Using this architecture, we do not need to translate large
amounts of facts, and we can use Sesame mechanisms for in-
troducing new filters or adding different kinds of inferencing,
for example RDFS.

For the future, we also plan to distribute computations of
Networked Graphs to different SPARQL endpoints, allowing
for a true networking of RDF graphs.

8. RELATED WORK

Semantics of RDF and SPARQL. de Bruijn et al. provide
a mapping of RDF and OWL to first order predicate logic
and prove this mapping equal to normative RDF [8]. Based
on this mapping they can formulate goals corresponding to
simple SPARQL graph pattern matching. Translation of
filter expressions and of optional patterns is not discussed.

Perez et al. provide a formal semantics of a core fragment
SPARQL [19]. Similar to our mapping, they map blank
nodes to variables and ignore the RDF/S vocabulary. Their
semantics does not include queries to multiple graphs, a cru-
cial fragment for our purposes. In future work it will be in-
teresting to investigate the relation between their semantics
ond our logic mapping.

Rules. Networked Graphs allow to use SPARQL to formu-
late rules. The Semantic Web Rule Language SWRL [13]
combines OWL with Horn rules. The resulting combined
language is very expressive and allows to formulate undecid-
able problems. Therefore a subset, DL-safe rules (c.f. [16])
has been proposed. SWRL allows to infer new statements
from a given graph, but not to have a different view on this
graph. Both of this is possible with Networked Graphs.

Polleres and Schindlauer propose to map SPARQL queries
to Datalog. Their approach most probably will be very sim-
ilar to our mapping, but does not provide SPARQL based
views. At the time of writing of this paper only a poster
abstract is available [20].

Grouping RDF Statements. RDF reification [18] can be
used to make statements about RDF statements. A resource
is created which has three properties refering to the subject,
predicate and object of the reified statement. This resource
can then be subject or object of statements. RDF reification
has been criticized much because of its weak semantics. Par-
ticularly we can not infer that the reified statement exists.
Additionally, reification leads to very large graphs: Every
statement requires additional three statements to reify it
and at least one statement to describe it.

Various approaches have been proposed to automatically
decompose RDF graphs into small meaningfull parts, for ex-
ample RDF molecules [10], minimum self contained graphs
[25] and concise bounded descriptions [23]. However, these
approaches do not claim to select pieses of an RDF graph
which are meaningful for an application, for example in our
use case all information about a single researcher. While
automatically computing a sensible subgraph is impossible
in the general case, at the time of creation of an RDF graph
it is usually very easy for a user or a tool to describe a set
of statements as belonging together.

Named graphs were mainly developed for trust ensurance
and signing of RDF graphs. For these applications, one
must only assure that a graph contains exactly the signed
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information. In this paper we show how Networked Graph
descriptions can be stored in named graphs, allowing for
reuse of the infrastructure for named graphs. Using named
graphs, enforcing for example graph inclusion is not possible:
u:IFIGraph cannot automatically include all statements of
u:IFIAdminGraph. We extend the static named graphs with
a more dynamic view mechanism, but can still harness the
existing work and infrastructure for named graphs.

Context. Stoermer et al. use named graphs plus semantic
extensions of RDF to implement a system using modal logic
for statements in RDF graphs [24]. The RDF semantics is
extended such that statements are only true in the context
of a graph called a context. Between these graphs compat-
ibility relations can be defined and infered. They are then
used for reasoning. For example if context A extends con-
text B we can query context A instead of B to get a more
complete answer. However, contexts do not allow for the
reuse of RDF data, for example by importing statements.
They focus on describing relationships among graphs and
using them for reasoning.

Sintek and Decker present TRIPLE [22]. Triple allows to
formulate models12 containing rules describing the seman-
tics of some knowledge representation language and knowl-
edge bases. Models can be parametrised with other models,
such that for example RDFS semantics can be applied to
some knowledge base by parametrising the rdf model with
the knowledge base. This mechanism also allows to apply
arbitrary first-order rules. Sintek and Decker express part of
the RDF/S semantics in TRIPLE, while Networked Graphs
are built upon named graphs and the upcoming standard
SPARQL and thus are upward compatible to the existing
semantic web infrastructure.

C-OWL [2] is an extension of the web ontology language
OWL with local contexts. These contexts are connected
with bridge rules allowing for translation from one context
to another. However, C-OWL aims at translations between
local contexts, not at reuse of RDF data. Thus C-OWL can
not be applied to the use case introduced here.

Chein et al. describe nesting of conceptual graphs in [6].
They provide an extension of conceptual graphs to express
complex knowledge, where statements may be the object of
other statements. Semantic graphs can be mapped to first
order logic. Nested graphs can not be used for compos-
ing more complex graphs. The knowledge represented in a
nested graph is pertinent to this graph and not available in
the surrounding graph. The objective of this extension is to
express quoting of the nested statements.

Views. Volz et al. [27] as well as Magkanaraki et al. [15]
propose views for RDF. They can be used to define ”virtual”
classes, properties and instances based on graph patterns.
They employ the RDFS semantics to ensure that neccessary
class relations are also included in the view. The purpose
is to provide a view to a graph using a different ontology
rather than defining graph contents based on other graphs.
These classical views are not oriented towards the networked
structure of the semantic web. Reuse and exchange of views

12The term model is misleading here, because it should not
to be understood in the sense of a logical model. A more
appropriate term would be context.

across the borders of single RDF repositories is not easily
possible.

9. CONCLUSION
We have introduced Networked Graphs as a means for

describing RDF graphs that are partially derived from other
graphs using SPARQL queries. Thus, we have fulfilled the
requirements derived from our running use case — which is
just one of the many cases that will benefit from dynamic
networking between RDF graphs.

As a new paradigm Networked Graphs raise new issues as
regards the details as well as the broad vision of dynamically
networking graphs.

With regard to the details, the precise semantics of
SPARQL constitutes a moving target and we will have to
investigate the relation between our semantics for SPARQL
and proposals like [19] more closely. Also, there will be
further issues about reasoning on relationships among Net-
worked Graphs based on Networked Graph definitions when
SPARQL queries are defined in RDF itself.

With regard to the broad vision, Networked Graphs pro-
vide a new paradigm for information integration. In this
paper, we have defined a Networked Graph by combining
a closed world semantics with a kind of Global-as-view ap-
proach for integrating information from other graphs. On
the other hand there can also be scenarios, where each re-
searcher defines her affiliation and the graph about lab mem-
bership is updated according to her view definition of the
IFIGraph in a kind of Local-as-view approach. We conjec-
ture that such an approach may require new machinery, in-
cluding parameters for graph names in queries as well as
trust relationships for updates on the view definition of the
IFIGraph.
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APPENDIX
A. SPARQL DEFINITION

In the following the fragment of SPARQL used in this
paper is defined. We start with the definition of filter ex-
pressions.

Definition 17. A filter expression consists of the key-
word ”FILTER” followed by a filter definition.

Let V be a set of variables. Let x, y ∈ R ∪ V and F, G be
filter definitions.

A filter definition is inductively defined as follows:
(1) (x = y), (x! = y), (x < y), (x <= y), (x > y),

(x >= y) are filter definitions, called filter atoms.
(2) func(x, ..., y) is a filter definition, if func identifies a

filter function as defined in [21, chapter 11]. func(x, ..., y)
is a filter atom.

(3) (!F ), (F&&G), (F ||G) are filter definitions.
=, ! =, ..., >=, !, &&, ||, func are called filter operators.
Let H be a filter atom. Then H and !H are filter literals.

We will also write filter operators in prenex form, for ex-
ample != (x,y) instead of x != y.

Example 13.

FILTER ((?x = "abc") &&

(!(BOUND(?b))) &&

http://example.org/somefilter(?x, ?y))

13



Networked RDF Graphs, Fachbereich Informatik, Nr. 3/2007

is a filter expression. (?x = "abc") applies rule (1),
http://example.org/somefilter(?x, ?y) applies rule (2)
and the whole filter expression is formed by applying rule to
form a filter definition(3) and adding the word FILTER.

Filter expressions are used in filtered SPARQL patterns
to filter bindings resulting from matching a graph pattern:

Definition 18. Let V be a set of variables.
(1) A statement pattern is a triple (R∪V )×(U∪V )×(R∪V ).
(2) A graph pattern is a sequence of statement patterns.
(3) A qualified statement pattern is the keyword GRAPH
followed by a URIref or a variable denoting a graph and a
statement pattern in curly brackets.
(4) A qualified graph pattern is a sequence of qualified state-
ment patterns.
(5) A filtered graph pattern is either

a) a sequence containing one or more qualified graph
patterns zero or more filter expressions and zero or
more filtered graph patterns or
b) an OPTIONAL graph pattern or
c) a UNION graph pattern.

Filtered graph patterns are grouped in curly brackets.
(6) An OPTIONAL graph pattern is two filtered graph pat-
terns connected by the keyword OPTIONAL.
(7) A UNION graph pattern is two filtered graph patterns
connected by the key word UNION.
(8) All of the above are SPARQL expressions.

Example 14.

{GRAPH u:IFIGraph {u:IFIGraph a ng:Graph.}

GRAPH u:IFIGraph {u:IFIGraph g:contains ?x.}

FILTER (?x = u:IFIAdminGraph).

} UNION {

GRAPH u:ISWebGraph {u:Steffen u:worksAt u:ISWeb.}

}

is a UNION graph pattern consisting of a filtered graph
pattern and a qualified statement pattern. It is also a SPARQL
expression and a filtered graph pattern.
u:IFIGraph g:contains ?x.

is a statement pattern.

In this paper we use the following vocabulary:

Definition 19. Let x, y be filtered graph patterns. We
say x is a subpattern of y, if x occurs in y.

Example 15.

GRAPH u:ISWebGraph {u:Steffen u:worksAt u:ISWeb.}

is a subpattern of the UNION graph pattern in example
14.

Definition 20. We say a filtered graph pattern x intro-
duces a variable v, if v does not occur in qualified statement
patterns outside x and v is not introduced by some subpat-
tern of x.

Example 16.
In example 14, the following SPARQL expression intro-

duces the variable ?x:

{GRAPH u:IFIGraph {u:IFIGraph a ng:Graph.}

GRAPH u:IFIGraph {u:IFIGraph g:contains ?x.}

FILTER (?x = u:IFIAdminGraph).}

To evaluate a query, the WHERE pattern is matched
against the graphs declared using FROM NAMED, com-
puting all possible variable bindings. A qualified statement
pattern succeeds, producing bindings for variable compo-
nents of the pattern, if the graph named in the pattern
contains a statement matching the subject, predicate and
object of the pattern. We say a filtered graph pattern suc-
ceeds, if it produces bindings for all variables it introduces.
An OPTIONAL graph pattern succeeds even if no suitable
bindings can be computed for its right subpattern. In this
case the variables introduced by the right subpattern are
left unbound and only the bindings of the left subpattern
are computed. A UNION pattern succeeds, if one of its sub-
patterns succeeds. The UNION pattern uses the bindings of
the succeeding subpattern. If some filter expression instanti-
ated with the bindings computed within the corresponding
filtered graph pattern returns false or an error, the corre-
sponding binding fails. A filter expression returns an error,
if it is invoked with parameters of a wrong type or with a
parameter returning an error. The only filter accepting un-
bound variables as parameters is the BOUND filter, which
returns true, if a variable is bound and false else. Please
refer to [21] regarding the behaviour of logical connectives
in the presence of errors.

B. NORMALISATION OF FILTER EXPRES-
SIONS

The proof of lemma 1 is analogous to the proof that ar-
bitrary boolean formulas can be translated into disjunctive
normal form (cf. [3])13.

Lemma 1. Every filter expression can be translated into
conjunctive normal form.

Proof: We show that the double negative law, the dis-
tributive law and DeMorgan’s law hold in the presence of
the error return value for filters. Evaluation of logical con-
nectives in SPARQL filters is defined in [21].

Double Negative Law
As we can see below, the double negative law holds.

A ¬¬A
t t
f f
e e

Distributive Law
As we can see from the following truth tables, the dis-

tributive law holds. Only extensions to two valued logics
are shown and wlg. we leave out symmetric cases for B and
C.

13The translation described in [3] results in an equal formula,
which can be exponentially longer than the input formula.
Please note that there exist other translations, only pre-
serving satisfiability instead of equality, which are of linear
complexity and would suffice here. However, the neccessary
basics are the same as proved here.

14
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A B C A∨ (A ∨B)∧ A∧ (A ∧B)∨
(B ∧ C) (A ∨ C) (B ∨ C) (A ∧ C)

t f e t t e e
t t e t t t t
f t e e e f f
f f e f f f f
e t e e e e e
e f e e e e e

DeMorgan’s Law
As we can see from the following truth tables, DeMorgan’s

law holds. Again, only extensions to two valued logics are
shown and wlg. we leave out symmetric cases.

A B ¬(A ∨B) ¬A ∧ ¬B ¬(A ∧B) ¬A ∨ ¬B
t e f f e e
f e e e t t
e e e e e e

�
Evaluation of normalised filter expressions
Now we prove lemma 2.

Lemma 2. Filter expressions in conjunctive normal form
are evaluated equally in SPARQL and in first order logic
after translation according to definition 11.

Without limiting generality we consider a filter expression
F = (A∨B)∧C only consisting of one conjunction and one
disjunction. Obviously it is in disjunctive normal form. We
can construct any filter expression in concunctive normal
form from expressions of this structure by replacing A or
B with arbitrary disjunctions and C with another formula
of this structure. Only extensions to two valued logics are
shown and symmetries for A and B are left out.

A B C F in SPARQL F in FOL
t f e e f
t t e e f
f t e e f
f f e f f
e t e e f
e f e e f
e e e e f
e t t t t
e f t e f
e e t e f
e t f f f
e f f f f
e e f f f

As error is treated like false in the end result of a filter
evaluation, proposition 2 holds. �

C. INCLUDING RDF/S SEMANTICS
RDF/S semantics can be included to the logic program P

as follows:

• Add a rule t(g, g, rdf : type, ng : graph) ← t(g, s, p, o)
to P

• For every axiomatic RDF and RDFS triple s p o. as
defined in [18] add a rule
t(g, s, p, o) ← t(g, g, rdf : type, ng : graph) to P (As

there are infinitely many rdf: n, n∈ IN , we only add
rules for those axiomatic statements containing some
rdf: n to P , which are used in some Networked Graph
in the dependence set. Hence, formally we do not cover
the complete RDFS semantics. The result, however, is
the same.)

• When mapping literals to constants, add facts isLit-
eral(x), isWellTypedLiteral(x), isPlainLiteral(x) with the
obvious meaning where appropriate.

• Add a translation of the production rules given in chap-
ter 7 of [18] to the program, extended to (graph, sub-
ject, predicate, object) quadruples.

When RDF/S semantics is included we need to reconsider
the complexity of the resulting logic program.
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