UNIVERSITAT
KOBLENZ - LANDAU

Institut fur Informatik = k3 3 Informatik

Hybrid Multiagent Systems with Timed
Synchronization- Specification and Model
Checking

Ulrich Furbach
Jan Murray
Falk Schmidsberger
Frieder Stolzenburg

Nr. 14/2007

Arbeitsberichte aus dem
Fachbereich Informatik

Universitat Koblenz-Landau « Campus Koblenz = Universitatsstralle 1 « 56070 Koblenz
Telefon +49 261 287-0 « http://www.uni-koblenz.de

Die Arbeitsberichte aus dem Fachbereich Informatik dienen der Darstellung
vorlaufiger Ergebnisse, die in der Regel noch fur spatere Verdoffentlichungen
Uberarbeitet werden. Die Autoren sind deshalb fir kritische Hinweise dankbar. Alle
Rechte vorbehalten, insbesondere die der Ubersetzung, des Nachdruckes, des
Vortrags, der Entnahme von Abbildungen und Tabellen — auch bei nur
auszugsweiser Verwertung.

The “Arbeitsberichte aus dem Fachbereich Informatik* comprise preliminary results
which will usually be revised for subsequent publication. Critical comments are
appreciated by the authors. All rights reserved. No part of this report may be
reproduced by any means or translated.

Arbeitsberichte des Fachbereichs Informatik

ISSN (Print): 1864-0346
ISSN (Online): 1864-0850

Herausgeber / Edited by:

Der Dekan:
Prof. Dr. Paulus

Die Professoren des Fachbereichs:

Prof. Dr. Batori, Jun.-Prof. Dr. Beckert, Prof. Dr. Burkhardt, Prof. Dr. Diller, Prof. Dr.
Ebert, Prof. Dr. Furbach, Prof. Dr. Grimm, Prof. Dr. Hampe, Prof. Dr. Harbusch,
Jun.-Prof. Dr. Hass, Prof. Dr. Krause, Prof. Dr. Lautenbach, Prof. Dr. Miller, Prof. Dr.
Oppermann, Prof. Dr. Paulus, Prof. Dr. Priese, Prof. Dr. Rosendahl, Prof. Dr.
Schubert, Prof. Dr. Staab, Prof. Dr. Steigner, Prof. Dr. Troitzsch, Prof. Dr. von
Kortzfleisch, Prof. Dr. Walsh, Prof. Dr. Wimmer, Prof. Dr. Zobel

Kontaktdaten der Verfasser

Ulrich Furbach, Jan Murray, Falk Schmidsberger, Frieder Stolzenburg

Institut fur Informatik

Fachbereich Informatik

Universitat Koblenz-Landau

Universitatsstralle 1

D-56070 Koblenz

EMail: uli@uni-koblenz.de, murray@uni-koblenz.de, fschmidsberger@hs-harz.de,
fstolzenburg@hs-harz.de

mailto:uli@uni-koblenz.de
mailto:fschmidsberger@hs-harz.de

Hybrid Multiagent Systems with Timed Synchronization — Specification and Model Checking,
Fachbereich Informatik, Nr. 14/2007

Hybrid Multiagent Systems with Timed
Synchronization —
Specification and Model Checking

Ulrich Furbach?, Jan Murrayl, Falk Schmidsbergerz, and Frieder Stolzenburg2

! Universitit Koblenz-Landau, Artificial Intelligence Research Group, D-56070 Koblenz
{uli,murray}@uni-koblenz.de
2 Hochschule Harz, Automation and Computer Sciences Department
D-38855 Wernigerode, { £schmidsberger, fstolzenburg}@hs-harz.de

Abstract. This paper shows how multiagent systems can be modeled by a com-
bination of UML statecharts and hybrid automata. This allows formal system
specification on different levels of abstraction on the one hand, and expressing
real-time system behavior with continuous variables on the other hand. It is not
only shown how multi-robot systems can be modeled by a combination of hybrid
automata and hierarchical state machines, but also how model checking tech-
niques for hybrid automata can be applied. An enhanced synchronization concept
is introduced that allows synchronization taking time and avoids state explosion
to a certain extent.

1 Multiagent Systems

Specifying behaviors for (physical) multiagent systems and multi-robot systems is a so-
phisticated and demanding task. Due to the high complexity of the interactions among
agents and the dynamics of the environment the need for precise modeling arises. Since
the behavior of agents usually can be understood as driven by external events and in-
ternal states, an obvious way of modeling multiagent systems is by state transition
diagrams. Hierarchical state transition diagrams like statecharts are particularly well
suited as they allow the specification of behaviors on different levels of abstraction [6].
They can directly be used as executable specifications for programming multiagent sys-
tems [1].

One important aspect of physical agents and robots is that they interact with a (pos-
sibly simulated) physical environment. Such interactions typically consist of continuous
actions (e.g. the movement of a robot) and perceptions like the power status of a battery.
Classical state transition diagrams are not well suited for modeling this kind of interac-
tions, as the transitions between states are discrete. However, continuous extensions to
these formalisms have been proposed, e.g. hybrid automata [4].

Especially for agents employed in safety critical environments, e.g. in rescue sce-
narios, behavior specification has to be done very carefully in order to avoid side effects
that may result in unwanted behaviors or even have disastrous consequences. One ap-
proach to realizing the required clarity of a specification is the use of formal design
methods. Fortunately many state transition diagram dialects like hybrid automata are

Hybrid Multiagent Systems with Timed Synchronization — Specification and Model Checking,
Fachbereich Informatik, Nr. 14/2007

equipped with a formal semantics that makes them accessible to formal validation of
the modeled behavior. Thus it becomes possible to (semi-)automatically prove desirable
features and the absence of unwanted properties in the specified behaviors, e.g. with the
help of model checking methods.

2 Hybrid Hierarchical State Machines

In this chapter we present the combination of two concepts: hierarchical statecharts and
hybrid automata. As a running example we use a scenario from the RoboCup Rescue
Simulation League, which is shortly described in the following subsection.

2.1 Rescue Scenario

In the RoboCup Rescue Simulation League [13], a large scale disaster is simulated. The
simulator models part of a city after an earthquake. Buildings may be collapsed or on
fire, and roads are partially or completely blocked. In this scenario, a team of hetero-
geneous agents consisting of police forces, ambulance teams, a fire brigade, and their
respective headquarters is deployed. The agents have two main tasks, namely finding
and rescuing buried civilians and extinguishing fires. An auxiliary task is clearing of
buried roads, so agents can move smoothly. As their abilities enable each type of agent
to solve only one kind of task (e.g. fire brigades cannot clear roads or rescue civilians),
the need for coordination and synchronization among agents is obvious.

Consider the following simple scenario. If a fire breaks out somewhere, a fire
brigade agent is ordered by its headquarters to extinguish the fire. The fire brigade
moves to the fire and begins to put it out. If the agent runs out of water it has to refill
its tank at a supply station and return to the fire to fulfill its task. Once the fire is extin-
guished, the fire brigade agent is idle again. An additional task the agent has to execute
is to report any injured civilians it discovers. Part of this scenario is modeled in Fig. 1
with the help of a hierarchical hybrid automaton [7]. In addition to the fire brigade agent
the model should include a fire station, fire and civilians as part of the environment; all
this will be explained in the next section (cf. Fig. 2).

States are represented as rectangles with rounded corners and can be structured
hierarchically. The specification of the fire brigade is a simple hierarchical chart (see
Fig. 1), consisting of the main control structure (FirebrigadeMain) and a rescue sub
system (FirebrigadeRSS) which are supposed to run in parallel. The latter just records
the detected civilians, which are not modeled in Fig. 1 (for this, see the sub-state Civil-
ians in Fig. 2). FirebrigadeMain consists of five sub states corresponding to movements
(move2fire, move2supply), extinguishing (extinguish), refilling the tank (refill) and an
idle state (idle). The agent can report the discovered civilians when it is in its idle state.
Details from this figure will be explained in the course of this section; it should be ob-
vious already in this stage, that even in this simple case with few components and a
deterministic environment it is difficult to see if the agent behaves correctly. Important
questions like

— Does the fire brigade try to extinguish without water?

Hybrid Multiagent Systems with Timed Synchronization — Specification and Model Checking,
Fachbereich Informatik, Nr. 14/2007

FirebrigadeAgeni
1 1 i 7
(FirebrigadeMai wLevel = wiMax N\ neededw > 0/

. fil .
m2stime =0 P m2ftime’ = tSuppl.
> i: wLevel < wiMax fi i
f: wLevel = rFill

wLevel = wiMax N\ neededw = 0

wLevel = wiMax

Aneededw = 0 \
Aciv =0 Y PR
| true /m2ftime’ =3 fn0v2ef2.ﬁr o
it m2stime > 0 emeraenc =iz m2ftime >
f: m2stime = —1 J gency f: m2ftime = —1
reported Y —
civ>0/

civ' = civ—1 neededw = 0 AwLevel > 0

(extinguis
it wLevel >0

f: wLéyel = —rExt
neededw = —rExt

wLevel = 0/m2stime’ = tSupply m2ftime =0

FirebrigadeRSS

help
true /civ' = civ+1

Fig. 1. A simple fire brigade agent.

— Will every discovered civilian (and only those) be reported eventually?

depend on the interaction of all components and cannot be answered without an analysis
of the whole system.

2.2 State Hierarchies and Transitions

Let us now define the notation used so far more formally. Statecharts are a part of the
unified modeling language UML [9, 10] and a well accepted means to specify dynamic
behavior of software systems. The main concept for statecharts is a state, which corre-
sponds to an activity or behavior of a robot agent. They can be described in a rigorously
formal manner [1, 11], allowing flexible specification, implementation and analysis of
multiagent systems [1, 6, 12] which is required for robot behavior engineering and mod-
eling and simulating complex robots.

Definition 1 (basic components). The basic components of a state machine are the
following disjoint sets:

S: a finite set of states, which is partitioned into three disjoint sets: S simple’ Scomp
and Sconc — called simple, composite and concurrent states, containing one des-
ignated start state sg € Scomp USconc, and

X: a finite set of (real-numbered) variables.

Hybrid Multiagent Systems with Timed Synchronization — Specification and Model Checking,
Fachbereich Informatik, Nr. 14/2007

In our running example, idle, extinguish or listen are simple states, and Firebri-
gadeAgent is a concurrent state and FirebrigadeMain and FirebrigadeRSS are compos-
ite states, called regions in this case, which are separated by a dashed line. m2ftime and
wLevel are examples for real valued variables.

In statecharts, states are connected via transitions in T C S x S, indicating that an
agent in the first state will enter the second state. Transitions are drawn as arrows labeled
with jump conditions over the variables in X together with actions. For example, the
transition from idle to itself is labeled with civ > 0/civ' = civ — 1, with the meaning:
if the value of civ is greater 0, the action civ’ = civ — 1 is executed while performing
the transition, i.e., the number of civilians, that are found but not reported, is decreased
in this case. The label reported at the same transition is used for synchronizing the
transition with another automaton working in parallel, namely the one for Firestation
(see Fig. 2). It is only legal for the combined system if both automata take the transition
labeled reported at the same time. See [4] for details. In principle, the explicit use of
events and actions as in UML statecharts is not needed, as both can be expressed with
the help of variables. For example the occurrence of an external event can be represented
by changing the value of the corresponding variable from O to 1.

Since hybrid automata are similar to statecharts, it makes sense to combine the ad-
vantages of both models. Statecharts have the clear advantage of allowing hierarchical
specification on several levels of abstraction, while hybrid automata enable the intro-
duction of continuous variables and flow conditions. This extension of statecharts is
done by the subsequent definition. Hybrid automata are widely used for the specifica-
tion of embedded systems. By reachability analyses, diagnosis tasks can be solved. We
will come back to this in Sect. 4.

Definition 2 (jump conditions, flows and invariants). In addition to the variables in
X, we introduce new variables x (first derivatives during continuous change) and x'
(values at the conclusion of discrete change) for each x € X, calling the corresponding
variable sets X and X', respectively. Then, each transition in T may be labeled by a
jump condition, that is a predicate whose free variables are from X UX'. In addition,
each state s € S is labeled with a flow condition (f:), whose free variables are from
XUX, and an invariant (i:), whose free variables are from X. Flow conditions may be
empty and hence omitted, if nothing changes continously in the respective state.

In our example we use the dotted variable wLevel to denote the change of the wa-
ter level in the state refill. A transition from this state to the state moveZfire is per-
formed, if the water level reached the maximum (wLevel = wliMax) and water is needed
(neededw > 0). During the transition the action m2ftime’ = tSupply is executed.

We will restrict our attention to linear conditions, i.e. linear equalities and inequal-
ities among either ordinary variables in XU X' or their first derivatives X, because only
then an exact reachability analysis (needed for model checking) is feasible [2,4]. Let us
now have a closer look at states. Following the lines of [9, 10], we define the hierarchical
structure of statecharts as follows.

Definition 3 (state hierarchy). Each state s is associated with zero, one or more initial
states ou(s): a simple state has zero, a composite state exactly one, and a concurrent
state more than one initial state. Furthermore, each state s € S\{so} belongs to exactly

Hybrid Multiagent Systems with Timed Synchronization — Specification and Model Checking,
Fachbereich Informatik, Nr. 14/2007

Rescuescenario
Fire J _ M

(no fire) 1
boom = 3 /neededw’ = 120 neededw =0
®——i: hoom <3 / » i: neededw > 0

p0om =0 piom — 1 o fiboom =0

e burn
i: true

emergency
t reported

irebrigadeAgen ’

- J

A

Fig. 2. A simple scenario from the RoboCup rescue simulation. The state FirebrigadeAgent cor-
responds to the one shown in Fig. 1. The icon ©O-O hints at the hidden sub states.

one state B(s) different from s. It must hold B(s) € Scomp U Sconc- If B(s) € Sconc,
then s € Scomp, which implies that a concurrent state must not be directly contained
in another concurrent state, as they could be merged into a single concurrent state in
this case. s is called region of B(s) then and may have a cardinality greater than one,
which is expressed by a cardinality marker in the upper right corner of a region;, if the
cardinality is one, the marker may be omitted. We assume that transitions keep to the
hierarchy, i.e., if sTs' holds, then B(s) = B(s').

In Fig. 1 we see that the start state sq is FirebrigadeAgent, a concurrent state. It
represents the multiagent system, consisting of an agent FirebrigadeMain and Fire-
brigadeRSS. Both all realized as regions, which are separated by dashed lines (in the
case of heterogenous agents), and each has cardinality one. The entire rescue scenario,
which we will also use for model checking later on is depicted in Fig. 2; besides the
fire brigade we additionally have concurrent regions with states for Fire, Civilians and
Firestation.

2.3 State Trees and Configurations

The function 3 (see Def. 3) naturally induces a state tree with s as root. This is shown
for the running example in Fig. 3. Here, regions with cardinality greater than one must
be treated as multiple composite states, which are distinguished by different indices.
However, while processing, each region or composite state of the state machine contains
only one active state. These states also form a tree, called configuration. A configuration
of the given state machine, is indicated by the thick lines in Fig. 3.

Hybrid Multiagent Systems with Timed Synchronization — Specification and Model Checking,
Fachbereich Informatik, Nr. 14/2007

FirebrigadeAgent
|

| |
FirebrigadeMain FirebrigadeRSS
|
N |

idle move2fire extinguish move2supply refill listen

Fig. 3. State hierarchy and configuration tree (thick lines).

Definition 4 (configuration). A configuration c is a rooted tree of states, where the
root node is the topmost initial state of the overall state machine. Whenever a state s is
an immediate predecessor of s' in c, it must hold B(s') = s.

A configuration must be completed by applying the following procedure recursively
as long as possible to leaf nodes: if there is a leaf node in c labeled with a state s, then
introduce all o(s) as immediate successors of s.

3 Synchronization and Cooperation

The overall performance of programmed multiagent systems heavily depends on how
cooperative agents behave. Cooperation and coordination of agents can be achieved by
synchronization. Hence, it is essential to implement synchronization effectively. Syn-
chronization means that several actions must start or happen at the same time. In the
rescue scenario (see Sect. 2), transition labels serve as triggers for synchronization in
the formalism of hybrid automata, e.g., if an injured civilian cries for help, then the
listening fire fighter hears this. However, if more complicated coordination and coop-
eration among agents has to be expressed, then this simple concept of synchronization
may not suffice, because it may take non-zero time. In the following, we will therefore
introduce an enhanced concept of synchronization (see [8]), which we motivate with an
example from the robotic soccer domain.

3.1 An Example of Coordination in Robotic Soccer

Since (robotic) soccer is a team sport, cooperation of agents is essential. Clearly, it is
not a good idea that all players try to get the ball at the same time. At best, exactly one
player goes to the ball, while the others try to position themselves as good as possible
on the pitch.

Fig. 4 shows the statechart for two players trying a coordinated behavior of going
to the ball. To realize this behavior, the positions of two players (p1, p2), the ball (bR),
a (stationary) opponent (PQ) and the opponent goal (POG) are modeled. The positions
are described as two-dimensional vectors v = (i) Components are accessed via the
point notation, e.g. v.x. Constant names start with capital letters, variables with lower
case letters.

There are variables for the global, real ball position bR (initially (28)), the local
ball position b measured by each player, global positions of the players 1 and 2 (initial
values p1 = (), p2 = (_%,)), the local position of the player p and his teammate pT

Hybrid Multiagent Systems with Timed Synchronization — Specification and Model Checking,
Fachbereich Informatik, Nr. 14/2007

soccer

teamplay

L]t

player

?

FO03- Field.x > p.x
Allp—PO|| > FO3 - Field.y

free

?

FO03-Field.x > p.x

walk

i (

Allp—PO|| > F03- Field.y

Al|lp—pT|| > F02- Field.y

A|lp—pT|| > F02- Field.y)

f:p=F01-(POG - PO
+F02-(p—pT))

=

FO03- Field.x > p.x
Allp—PO|| > F03 - Field.y

i: FO3-Fieldx > p.x

Allp —PO|| > FO3 - Field.y
Allp—pT|| > F02- Field.y

Allp—pT| > F02- Field.y)
i

[lp—bl| < HpT—blli%Hp—bH > [|pT —b|

iz [[p—b|| > DHB A [[p—b|| < [[pT —b]|
f:p=FO0l-(p—b)

iz [[p—b|| > [[pT—b]|
gotoBall

} llp=bll < DHB

gotoWithBall

iz FO3-Field.x > p.x
Allp—PO|| > FO3- Field.y
Al|lp —pT|| > F02- Field.y
Alp.y| < FO2-Field.y

—(F03- Field.x > p.x
A|lp—PO|| > F03- Field.y
Allp—pT|| > FO2- Field.y
Al|p.y| < FO2-Field.y)

I

\F03 - Field.x > p.x
A|lp —PO|| > F03 - Field.y
A|lp—pT|| > F02- Field.y
A |p.y| < FO2-Field.y

lostBall I llp—b|| > DHB

!

walk N
! .
[pT +~POJ| > FO3 - Field.y | |i: ~(F03- Field.x > p.x A |p.y| < FO2- Field.y
KickToTeammate) i £ 03 - Fieldx > pT.x A|lp—PO|| > FO3 - Field.y
- 1A|lp—pT|| > F02-Field.y Allp—pT|| > FO2- Field.y)
1: true "‘ |
i oo f: p.=FOL-(Fieldx—PO.x+F02-(p.x— pT.x))
| I I Ap.y=FO0l-(—F04-p.y+py—PO.y
| Lo +F02- (p.y—pT.y))
| | | . AbDR=p
' 1||p—PO|| > FO3- Field.y
|AFO03 - Field.x > p.x - =

1A|p.y| < FO2- Field.y i: |[p—b|| < DHB

‘ A=(FO03 - Field.x > pT.x

‘ Al[pT —PO|| > FO3 - Field.y
! Allp—pT|| > F02- Field.y)

I A=(FO03 - Field.x > p.x
|

|

|

|

I

|
kickToGoal '
is true ~

Allp—PO|| > F03 - Field.y
Alp.y| < FO2-Field.y)

I
I
I
|
1 1
i
I
|
|
|

f: |[bR —b|| < ME

T
it Field.x > |bR.x| A Field.y > |bR.y|
Field.x < |bR.x|V Field.y < |bR.y| L,m

Fig. 4. Robotic soccer example.

Hybrid Multiagent Systems with Timed Synchronization — Specification and Model Checking,
Fachbereich Informatik, Nr. 14/2007

and some constants for the global position of the (stationary) opponent PO = (113%),

and the opponent goal POG = (F ie(l)d'x), where Field denotes the field size. The field
reaches from —Field to +Field. Further there is the measurement error ME = 2 of
the players, the range within a player has the ball DHB = 5 and some scale factors
F01 =0.1, F02 = 0.5, F03 = 0.3, and F04 = 0.6. To access a local value, the path
over the states to the value is used. For instance, the local position of player 1 is
soccer.teamplay.playerl.p with the initial value p1 and the local position of his team-
mate is soccer.teamplay.player1.pT with the initial value p2. The composite state soccer
contains the concurrent state feamplay as initial state and the simple state fail. There is
only one transition from feamplay to fail, and fail can only entered, if the invariant of
teamplay is false and the guard of the transition is true. In this case, the ball has to be out
of the bounds of the field. Note that the synchronization variable ball and the invariant
beside it belongs to feamplay.

The behavior of the two players is modeled in the regions player inside of teamplay,
which is a concurrent state with two regions: one for each of the two players. But since
both players obey in principle the same specification, i.e., we have a homogeneous agent
system (expressed by a cardinality marker in the upper right corner). The initial state
of player is free (running freely) with the following behavior. The player moves to an
optimal position related to POG, PO and pT (state walk). If he is in an optimal position,
he waits for the ball passed from the teammate (state stand). Otherwise he moves on.
If the player is closer to the ball than his teammate, his state is changing from free to
gotoBall. The flow condition inside gotoBall is modeling the movement of the player to
reach the ball position. If his teammate becomes now closer to the ball, the player will
fall back to the state free. Otherwise, if his distance to the ball becomes less than DHB,
his state changes to gotoWithBall.

Inside gotoWithBall, the following behavior is modeled. The player dribbles the ball
to an optimal position related to PO, pT and the center in front of the opponent goal
(state walk). If he is in an optimal position, he waits (state stand) with the ball to pass to
the teammate or to kick to the goal, otherwise he moves on. There are 3 transitions out
of gotoWithBall. If the distance to the ball becomes greater than DHB, the player loses
the ball (state lostBall) and changes further to free. If p, PO and pT are optimal for a
pass, the player will kick the ball to his teammate (state kickToTeamMate) and changes
to free.If p and PO are optimal in front of the opponent goal, the player will kick the
ball to the opponent goal (state kickToGoal) and afterwards he changes to free. The flow
conditions of the last three states are omitted for a better clarity of the figure.

In this example, coordination is really important. In contrast to simple synchroniza-
tion mechanisms, coordination may take some time. The time between deciding to go
to the ball and actually reaching it will be almost always greater than zero. Thus, we
must be able to distinguish between the allocation and the occupation of a resource (e.g.
the ball) in our specification formalism. In addition, since coordination may take some
time, we associate the new synchronization method with states and not with transitions.
All this is comprised in the concept of timed synchronization introduced next.

Hybrid Multiagent Systems with Timed Synchronization — Specification and Model Checking,
Fachbereich Informatik, Nr. 14/2007

3.2 Timed Synchronization

Usually the so-called synchrony hypothesis is adopted for state machines, assuming that
the system is infinitely faster than the environment and thus the response to an external
stimulus (event) is always generated in the same step that the stimulus is introduced.
However in practice, synchronization and coordination of actions cannot be done in
zero time. In UML 1.5 [9], synchronization is present, but assumed to take zero time. In
UML 2.0 [10], there does not seem to be a special synchronization mechanism available
any longer except by join and fork transitions. Hence, it seems to be really worthwhile
considering synchronization and coordination in more detail. For this, we will introduce
synchronization points which are associated with states, i.e. activities that last a certain
time, and not with transitions (as in UML 1.5), because the transition from one state to
another takes zero time according to the synchrony hypothesis.

Definition 5 (synchronization points). A synchronization point (represented as oval)
allows the coordinated treatment of common resources. It can be identified by special
synchronization variables x € Xsynch C X with a given maximal capacity C(x) > 0.
Each such point may be connected with several states. We distinguish two relations:
Ry CSx Xsynch and R_ C Xsynch x S, both represented by dashed arrows in the
respective direction. Further, each connection in R1 UR_ is annotated with a number

mwith 0 <m < C(x).

As just said, according to the previous definition, synchronization is connected to
states and not to transitions as in UML 1.5. In consequence, it is now possible that
synchronization may take some time as desired. The process of synchronization starts
when a state s connected to a synchronization variable x is entered, and it ends only
after some time when s is exited. Therefore, we distinguish the allocation of (added or
subtracted) resources and their (later) actual occupation by additional variables x; and
x_ (used during the allocation phase) in each synchronization point. Hence, for each

X € Xsynch’ x4 and x_ must be added to X.

In the following, we write o"(s) or "(s) for the n-fold application of a or 3 to
s, especially a”(s) = B°(s) = s. Let us now have a closer look at variables. Variables
x € X may be declared locally in a certain state y(x) € S. A variable x € X is valid in
all states s € S with " (s) = y(x) for some n > 0, unless another variable with the same
name overwrites it locally. All synchronization variables and their relatives are global in
principle. Nevertheless, we associate synchronization points identified by the variable
x with the state y(x) where it is declared; y(x) must be a concurrent state in this case.
Therefore we assume, that for all states s connected to x, i.e. sRyx or xR_s, it must
hold B"(s) = y(x) for some n > 0, and all 5" between s and Y(x) in the state tree must be
composite states.

Definition 6 (transition types). Let x be a synchronization variable introduced at Y(x)
and s be a state connected with x. Then, s1Ts, is called incoming transition for s iff
o (s2) = s for some n > 0. It is called initializing, if it is an incoming transition with
o (s2) = y(x) for some n > 0. 51 Ts; is called an outgoing transition for s iff s; = " (s)
for some n > 0, where s1 occurs in the actual configuration tree and x is valid in s. It

Hybrid Multiagent Systems with Timed Synchronization — Specification and Model Checking,
Fachbereich Informatik, Nr. 14/2007

is called successful, if it is an outgoing transition with s = s1 and not marked with a
crossed box X, otherwise, it is called failed.

Note that outgoing transitions cannot be characterized statically by the state hierar-
chy, but by the actual configuration tree. For the ease of presentation, we assume that
there is a special start transition leading to so, annotated with a given initial condition
of the whole state machine. For this, an artificial new start state may be introduced.

Definition 7 (synchronization constraints). Synchronization points impose additional
constraints to the transitions that are incident with states s, the synchronization vari-
ables x are connected to.

1. If sR. x with annotation m, then
(a) x+xy+m<C(x) and ¥/, = x; +m are added to all not initializing incoming
transitions,
(b) X' =0,x_ =0,x_ =0 are added to all initializing incoming transitions,
(c) X', =x; —mis added to all outgoing transitions, and
(d) X' = x+m is added to all successful outgoing transitions supplementarily.
2. If xR_s with annotation m, then
(a) x— (x_ +m) >0 and X = x_ +m are added to all not initializing incoming
transitions,
(b) X' =0,/ =0,x_ =0 are added to all initializing incoming transitions,
(c) X' =x_ —mis added to all outgoing transitions, and
(d) X =x—mis added to all successful outgoing transitions supplementarily.

In Fig. 4, coordination is achieved by the synchronization variable ball. It has ca-
pacity 1, because obviously there is only one ball in a soccer game, and is introduced in
the concurrent state teamplay, i.e. Y(ball) = teamplay. The gotoBall state is positively
connected to it, while the states kickToGoal, kickloTeammate, and lostBall are nega-
tively connected to it. This means, that the ball resource is allocated during the gotoBall
activity and deallocated after a kick. Concerning the gotoBall state, the transition anno-
tated with ||p —b|| < ||pT —b|| is an incoming transition. The transition marked with
[|p —b|| < DHB is successfully outgoing, while the transition marked with a crossed
box is failed. Since the state gotoBall directly belongs to the region player, there are no
other (indirect) incoming or outgoing transitions.

3.3 Operation of Hybrid State Machines

The state machine starts with the initial configuration, that is the completed topmost
initial state of the overall state machine. In addition, an initial condition must be given,
that is a predicate with free variables from X U X. The current situation of the multia-
gent system can be characterized by a pair (c,v) where c is a configuration and v is a
valuation, i.e. a mapping v : X UX — IR. The initial situation at time ¢ = 0 is a situation
(¢,v) where c is the initial configuration and v satisfies the initial condition.

The behavior of a hybrid state machine can now be described by continuous and
discrete state changes. Let (c,v) be the current situation, and S(c) be the set of states
occurring in the configuration tree c. As long as the conjunction of the invariants of all

10

Hybrid Multiagent Systems with Timed Synchronization — Specification and Model Checking,
Fachbereich Informatik, Nr. 14/2007

s € S(c) hold, the multiagent system evolves according to the conjunction of the flow
conditions associated with all states s € S(c); we call this continuous change. Whenever
after some time T (chosen minimally) the invariants of one or more states do not hold
any longer, then (and only then) a discrete state change takes place, called micro-step:

Definition 8 (micro-step). A micro-step from one configuration c of a state machine to
a configuration ¢’ by means of a transition sTs' with some jump condition in the current
situation (written ¢ — ') is possible iff:

1. c contains a node labeled with s whose invariant does not hold any longer,

2. the jump condition of the given transition holds in the actual situation (c,v),

3. c is identical with c except that s together with its subtree in c is replaced by the
completion of s', and

4. the variables in X' are set according to the jump condition.

We assume, that hybrid state machines are deterministic automata, i.e., for each
state s, the jump conditions of all transitions outgoing from s are pairwise inconsistent
with each other. Nevertheless it might happen, that after some time T several invariants
begin not to hold at the same time, then several micro-steps are performed in parallel
for all respective states (called macro-step then). Conflicts may arise, if invariants of
states on one and the same path in the configuration tree are involved. In this case, the
conflict must be solved. Here, outer transitions may be preferred over inner ones. The
advantage of this procedure is that the agents are more reactive. In UML statecharts
inner transitions have priority over outer transitions, while this is the other way round
in [3]. State transitions are triggered by the invariants.

4 Model Checking

As we already mentioned, hybrid automata are equipped with a formal semantics, which
makes it possible to apply formal methods in order to prove certain properties of the
specified systems, e.g. by model checking. However, in the context of hybrid automata
the term model checking usually refers to reachability testing, i.e. the question whether
some (unwanted) state is reachable from the initial configuration of the specified sys-
tem. To this end, all states that can be reached by a discrete transition or evolving the
continuous variables according to a flow condition are repeatedly added to the current
configuration until a fixpoint R is reached. Then it can be tested, if unwanted states are
reachable simply by intersecting the sets of reachable and unwanted states.

4.1 Examples with Standard Model Checkers

For the behavior specification shown in Figs. 1 and 2 we conducted several experiments
with the standard model checkers HYTECH [5] and PHAVer [2]. Both model checkers
are implemented for the analysis of linear hybrid automata. They take textual repre-
sentations of hybrid automata like the one in Fig. 5 as input and perform reachability
tests on the state space of the resulting product automaton. This is usually done by first

11

Hybrid Multiagent Systems with Timed Synchronization — Specification and Model Checking,
Fachbereich Informatik, Nr. 14/2007

automaton Civilian
synclabs: help;
initially injured & w = -10;
loc injured:
while w<=0 wait {}

I R SR SR

when w=0 sync help do {w’ = -10} goto injured;
end
8 init_reach := reach forward from init endreach;
9 ext_error := loc[FirebrigadeMain] = extinguish & wLevel < 0;

10 if not empty (init_reach & ext_error)
11 then prints "Error: Tank empty!";
12 endif;

Fig. 5. HYTECH code for the civilian automaton from Fig. 2 (1l. 1-7) and analysis commands.

computing all states reachable from the initial configuration, and then checking the re-
sulting set for the needed properties. In the remainder of this section, we present some
exemplary model checking tasks for the rescue scenario.

Is it possible to extinguish the fire? When the state of the automaton modeling the fire
changes from no fire to burning, the variable neededw stores the amount of water needed
for putting out the fire (neededw = 120 in the beginning). When the fire is put out, i.e.
neededw = 0, the automaton enters the state put out. Thus the fire can be extinguished
iff there is a reachable configuration ¢, Where fire is in the state put out. It is easy to see
from the specification, that this is indeed the case, as neededw is only decreased after
the initial setting, and so the transition from burning to put out is eventually forced.

With the help of HYTECH’s trace generation ability it is quite easy to solve the
additional task of comparing different strategies, e.g. for refilling the water tanks. To
this end, traces to ¢,y generated using the different strategies are compared. A shorter
trace (w.r.t. time units, not discrete transitions) corresponds to a faster solving of the
extinguishing task.

Does the agent try to extinguish with an empty water tank? The fact that the fire-
brigade agent tries to put out the fire without water corresponds to the simple state
extinguish being active while wLevel < 0. Note that we must not test for wLevel < 0,
because the state extinguish is only left when the water level is zero, thus including a
check for equality leads to false results.

Figure 5 shows how to check this property with HYTECH. The set of reachable
states is collected in the variable init_reach (l. 8), and ext_error is assigned the
set of illegal states (I. 9), i.e. all states where extinguish is active and the water level
is below zero. Lines 10-12 finally show the actual test. If the intersection of reachable
and illegal states in not empty (1. 10), an error message is printed (1. 11).

Does the agent report all discovered civilians? This question contains two properties
to be checked: (a) all discovered civilians are reported eventually and (b) the agent
does not report more civilians than he found. The discovery of a civilian is modeled
by increasing the value of the variable civ by one. For each reported civilian one is
subtracted from civ. From this it follows, that (b) holds iff no configuration is reachable,
where civ < 0. To show (a) one has to ensure that from all configurations with civ > 0
a configuration with civ = 0 will be reached eventually. Testing these properties with

12

Hybrid Multiagent Systems with Timed Synchronization — Specification and Model Checking,
Fachbereich Informatik, Nr. 14/2007

HYTECH reveals that (b) holds in the specification, i.e., for all reachable states we have
civ > 0.

However, the analysis also yields that (a) does not hold. As we stated earlier, the
fire fighter agent should report civilans when he is in the idle state. But as the invariant
in this state (true) is never violated, the agent is not forced to take the self transition
labeled reported, which corresponds to reporting a civilian. Thus, there is a legal run of
the system, where no civilian is reported at all.

Concerning the robotic soccer example (Fig. 4), there are several questions, which
can be answered with or without model checking. First of all, it is clear that because
of the synchronization variable ball at most one agent will go to the ball. This can be
seen by a careful inspection of the specification. However, the question whether always
at least one agent goes to the ball, cannot be answered that easily. Therefore this is
worthwhile to be model checked. This is ongoing work.

4.2 Effective Transformation of Multiagent Specifications

The original hybrid automata allow neither hierarchies nor concurrency. Hence, in or-
der to be able to use standard hybrid model checkers, hierarchical hybrid automata
as stated in this paper have to be flattened. For this, as states of the simple (flat) hy-
brid automaton we take the configurations ¢ with invariants and flow conditions taken
as the conjunction of the respective conditions in the states in S(c). Thus, we define
flow(c) = Nes(c) flow(s) and invariant(c) = Neg(c) invariant (s), respectively, for
each configuration c. The transitions between configurations of the flat automaton can
be defined as follows: there is a transition between ¢ and ¢’ iff a micro- or macro-step is
possible. This means, there exist one or more transitions s Ts'l, eoyspTsh, form>1in
the original automaton, annotated with the jump conditions jumpy,..., jump,,, respec-
tively, such that ¢ — ¢’. Then, we simply annotate the transition from c to ¢’ in the flat
automaton with the conjunction jumpi A--- A jumpy,.

A problem during the transformation process is that some of the constraints, e.g. in-
variants, lead to heavily non-linear (in)equations, e.g. ||p —b|| > DHB. This cannot be
dealt with standard model checkers for at least two reasons: they can neither deal practi-
cally nor even theoretically with them because of the appalling computational complex-
ity. Therefore, the above-stated condition has to be reformulated. The Euclidean dis-
tance can be approximated by the Manhattan distance: |p.x — b.x| + |p.y — b.y| > DHB.

It should be remarked that synchronization points help us to reduce complexity. In
order to see this, let us consider a multiple composite state with cardinality m containing
k (simple) states. One of them, say s, is connected to a synchronization point with
capacity C. Then there are in principle k™ different configurations, i.e. exponentially
many. Since at most C agents can be in s, only ZZC:() (’?) (k— 1)~ configurations have
to be considered. This is polynomial for k = 2.

5 Conclusions

In this paper we demonstrated the use of hybrid hierarchical state machines for the
specification of multiagent systems. We presented two application scenarios from the

13

Hybrid Multiagent Systems with Timed Synchronization — Specification and Model Checking,

Fachbereich Informatik, Nr. 14/2007

RoboCup, one from the rescue simulation and one from robotic soccer, and we demon-
strated that state-of-the-art model checkers for hybrid automata can be used for proving
properties of the specified systems. Model checking, i.e. reachability analysis helps us
finding out possible paths, which could help in the pre-computation of multiagent sys-
tem implementations. This point will be subject of future work.

References

13.

. Toshiaki Arai and Frieder Stolzenburg. Multiagent systems specification by UML statecharts

aiming at intelligent manufacturing. In Proceedings of 1st International Joint Conference on
Autonomous Agents & Multi-Agent Systems, pages 11-18. ACM Press, 2002.

. Goran Frehse. PHAVer: Algorithmic verification of hybrid systems past HyTech. In Manfred

Morari and Lothar Thiele, editors, Hybrid Systems: Computation and Control, 8th Interna-
tional Workshop, Proceedings, LNCS 3414, pages 258-273. Springer, 2005.

. David Harel and Amnon Naamad. The STATEMATE semantics of statecharts. ACM Trans-

actions on Software Engineering and Methodology, 5(4):293-333, 1996.

. Thomas Henzinger. The theory of hybrid automata. In Proceedings of the 11th Annual

Symposium on Logic in Computer Science, pages 278-292. IEEE Computer Society Press,
1996.

. Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HyTech: The Next Generation.

In IEEE Real-Time Systems Symposium, pages 56—65, 1995.

. Jan Murray. Specifying agent behaviors with UML statecharts and StatEdit. In Daniel Polani

et al., editors, RoboCup 2003: Robot Soccer World Cup VII, LNAI 3020, pages 145-156.
Springer, 2004.

. Jan Murray and Frieder Stolzenburg. Hybrid state machines with timed synchronization

for multi-robot system specification. In Carlos Bento et al., editors, Proceedings of 12th
Portuguese Conference on Artificial Intelligence, pages 236-241. IEEE Inc, 2005.

. Jan Murray, Frieder Stolzenburg, and Toshiaki Arai. Hybrid state machines with timed syn-

chronization for multi-robot system specification. K1, 3/06:45-50, 2006.

. Object Management Group, Inc. UML Specification, Version 1.5, March 2003.
10.
1.

Object Management Group, Inc. UML 2.0 Superstructure Specification, October 2004.

A. Pnueli and M. Shalev. What is in a step: On the semantics of statecharts. In T. Ito
and A. R. Meyer, editors, International Conference on Theoretical Aspects of Computer
Software, LNCS 526, pages 244-264. Springer, 1991.

. Frieder Stolzenburg and Toshiaki Arai. From the specification of multiagent systems by

statecharts to their formal analysis by model checking: Towards safety-critical applications.
In Michael Schillo et al., editors, Proceedings of 1st German Conference on Multiagent
System Technologies, LNAI 2831, pages 131-143. Springer, 2003.

Satoshi Tadokoro et al. The RoboCup-Rescue project: A robotic approach to the disaster
mitigation problem. In Proceedings of IEEE International Conference on Robotics and Au-
tomation (ICRA 2000), pages 4089-4104, 2000.

14

Bisher erschienen

Arbeitsberichte aus dem Fachbereich Informatik
(http://www.uni-koblenz.de/fb4/publikationen/arbeitsberichte)

Ulrich Furbach, Jan Murray, Falk Schmidsberger, Frieder Stolzenburg: Hybrid Multiagent
Systems with Timed Synchronization-Specification and Model Checking, Arbeitsberichte aus
dem Fachbereich Informatik 14/2007

Bjorn Pelzer, Christoph Wernhard: System Description:“E-KRHyper*, Arbeitsberichte aus dem
Fachbereich Informatik, 13/2007

Ulrich Furbach, Peter Baumgartner, Bjorn Pelzer: Hyper Tableaux with Equality,
Arbeitsberichte aus dem Fachbereich Informatik, 12/2007

Ulrich Furbach, Markus Maron, Kevin Read: Location based Informationsystems,
Arbeitsberichte aus dem Fachbereich Informatik, 11/2007

Philipp Schaer, Marco Thum: State-of-the-Art: Interaktion in erweiterten Realitaten,
Arbeitsberichte aus dem Fachbereich Informatik, 10/2007

Ulrich Furbach, Claudia Obermaier: Applications of Automated Reasoning, Arbeitsberichte
aus dem Fachbereich Informatik, 9/2007

Jargen Ebert, Kerstin Falkowski: A First Proposal for an Overall Structure of an Enhanced
Reality Framework, Arbeitsberichte aus dem Fachbereich Informatik, 8/2007

Lutz Priese, Frank Schmitt, Paul Lemke: Automatische See-Through Kalibrierung,
Arbeitsberichte aus dem Fachbereich Informatik, 7/2007

Rudiger Grimm, Robert Krimmer, Nils Mei3ner, Kai Reinhard, Melanie Volkamer, Marcel
Weinand, Jorg Helbach: Security Requirements for Non-political Internet Voting,
Arbeitsberichte aus dem Fachbereich Informatik, 6/2007

Daniel Bildhauer, Volker Riediger, Hannes Schwarz, Sascha Strauf3, ,grUML — Eine UML-
basierte Modellierungssprache fir T-Graphen®, Arbeitsberichte aus dem Fachbereich
Informatik, 5/2007

Richard Arndt, Steffen Staab, Raphaél Troncy, Lynda Hardman: Adding Formal Semantics to
MPEG-7: Designing a Well Founded Multimedia Ontology for the Web, Arbeitsberichte aus
dem Fachbereich Informatik, 4/2007

Simon Schenk, Steffen Staab: Networked RDF Graphs, Arbeitsberichte aus dem Fachbereich
Informatik, 3/2007

Rudiger Grimm, Helge Hundacker, Anastasia Meletiadou: Anwendungsbeispiele flr
Kryptographie, Arbeitsberichte aus dem Fachbereich Informatik, 2/2007

Anastasia Meletiadou, J. Felix Hampe: Begriffsbestimmung und erwartete Trends im IT-Risk-
Management, Arbeitsberichte aus dem Fachbereich Informatik, 1/2007

, Gelbe Reihe®
(http://www.uni-koblenz.de/fb4/publikationen/gelbereihe)

Lutz Priese: Some Examples of Semi-rational and Non-semi-rational DAG Languages.
Extended Version, Fachberichte Informatik 3-2006

Kurt Lautenbach, Stephan Philippi, and Alexander Pinl: Bayesian Networks and Petri Nets,
Fachberichte Informatik 2-2006

Rainer Gimnich and Andreas Winter: Workshop Software-Reengineering und Services,
Fachberichte Informatik 1-2006

http://www.uni-koblenz.de/fb4/publikationen/arbeitsberichte

Kurt Lautenbach and Alexander Pinl: Probability Propagation in Petri Nets, Fachberichte
Informatik 16-2005

Rainer Gimnich, Uwe Kaiser, and Andreas Winter: 2. Workshop "Reengineering Prozesse" —
Software Migration, Fachberichte Informatik 15-2005

Jan Murray, Frieder Stolzenburg, and Toshiaki Arai: Hybrid State Machines with Timed
Synchronization for Multi-Robot System Specification, Fachberichte Informatik 14-2005

Reinhold Letz: FTP 2005 — Fifth International Workshop on First-Order Theorem Proving,
Fachberichte Informatik 13-2005

Bernhard Beckert: TABLEAUX 2005 — Position Papers and Tutorial Descriptions,
Fachberichte Informatik 12-2005

Dietrich Paulus and Detlev Droege: Mixed-reality as a challenge to image understanding and
artificial intelligence, Fachberichte Informatik 11-2005

Jurgen Sauer: 19. Workshop Planen, Scheduling und Konfigurieren / Entwerfen, Fachberichte
Informatik 10-2005

Pascal Hitzler, Carsten Lutz, and Gerd Stumme: Foundational Aspects of Ontologies,
Fachberichte Informatik 9-2005

Joachim Baumeister and Dietmar Seipel: Knowledge Engineering and Software Engineering,
Fachberichte Informatik 8-2005

Benno Stein and Sven Meier zu Eil3en: Proceedings of the Second International Workshop on
Text-Based Information Retrieval, Fachberichte Informatik 7-2005

Andreas Winter and Jirgen Ebert: Metamodel-driven Service Interoperability, Fachberichte
Informatik 6-2005

Joschka Boedecker, Norbert Michael Mayer, Masaki Ogino, Rodrigo da Silva Guerra,
Masaaki Kikuchi, and Minoru Asada: Getting closer: How Simulation and Humanoid League
can benefit from each other, Fachberichte Informatik 5-2005

Torsten Gipp and Jurgen Ebert: Web Engineering does profit from a Functional Approach,
Fachberichte Informatik 4-2005

Oliver Obst, Anita Maas, and Joschka Boedecker: HTN Planning for Flexible Coordination Of
Multiagent Team Behavior, Fachberichte Informatik 3-2005

Andreas von Hessling, Thomas Kleemann, and Alex Sinner: Semantic User Profiles and their
Applications in a Mobile Environment, Fachberichte Informatik 2-2005

Heni Ben Amor and Achim Rettinger: Intelligent Exploration for Genetic Algorithms —
Using Self-Organizing Maps in Evolutionary Computation, Fachberichte Informatik 1-2005

http://www.uni-koblenz.de/%7Eag-pn/html/mitarbeiter/mitarbeiter.html
http://www.uni-koblenz.de/%7Eag-pn/html/mitarbeiter/apinl.html
http://www.uni-koblenz.de/%7Ewinter/
http://www.uni-koblenz.de/%7Emurray/
http://fstolzenburg.hs-harz.de/
http://www.uni-koblenz.de/%7Ebeckert/
http://www.uni-koblenz.de/FB4/Institutes/ICV/AGPaulus/Members/paulus
http://www.uni-koblenz.de/%7Edroege/
http://www.uni-koblenz.de/%7Ewinter/
http://www.uni-koblenz.de/%7Eebert/
http://www.uni-koblenz.de/%7Ejboedeck/
http://www.er.ams.eng.osaka-u.ac.jp/user/asada/asada.html
http://www.uni-koblenz.de/%7Etgi/
http://www.uni-koblenz.de/%7Eebert/
http://www.uni-koblenz.de/%7Efruit/
http://www.uni-koblenz.de/%7Emaas/
http://www.uni-koblenz.de/%7Ejboedeck/
http://www.cc.gatech.edu/grads/a/avh/
http://www.uni-koblenz.de/%7Etomkl/
http://www.uni-koblenz.de/%7Esinner/
http://www.uni-koblenz.de/%7Eamor/
http://www.uni-koblenz.de/%7Eachim/

	plakatform_inf
	Foliennummer 1

	Impressum
	ab14_07-hybrid_MAS
	Bisher erschienen
	Bisher erschienen

