UNIVERSITAT | —
KOBLENZ - LANDAU S e S

Institut fr Informatik T B 1 Informatik

Tableaux Between Proving, Projection and
Compilation

Christoph Wernhard

Nr. 18/2007

Arbeitsberichte aus dem
Fachbereich Informatik

Universitat Koblenz-Landau « Campus Koblenz = Universitatsstralle 1 « 56070 Koblenz
Telefon +49 261 287-0 « http://www.uni-koblenz.de

Die Arbeitsberichte aus dem Fachbereich Informatik dienen der Darstellung
vorlaufiger Ergebnisse, die in der Regel noch fur spatere Verdoffentlichungen
Uberarbeitet werden. Die Autoren sind deshalb fir kritische Hinweise dankbar. Alle
Rechte vorbehalten, insbesondere die der Ubersetzung, des Nachdruckes, des
Vortrags, der Entnahme von Abbildungen und Tabellen — auch bei nur
auszugsweiser Verwertung.

The “Arbeitsberichte aus dem Fachbereich Informatik“comprise preliminary results
which will usually be revised for subsequent publication. Critical comments are
appreciated by the authors. All rights reserved. No part of this report may be
reproduced by any means or translated.

Arbeitsberichte des Fachbereichs Informatik

ISSN (Print): 1864-0346
ISSN (Online): 1864-0850

Herausgeber / Edited by:

Der Dekan:
Prof. Dr. Paulus

Die Professoren des Fachbereichs:

Prof. Dr. Batori, Jun.-Prof. Dr. Beckert, Prof. Dr. Burkhardt, Prof. Dr. Diller, Prof. Dr.
Ebert, Prof. Dr. Furbach, Prof. Dr. Grimm, Prof. Dr. Hampe, Prof. Dr. Harbusch,
Jun.-Prof. Dr. Hass, Prof. Dr. Krause, Prof. Dr. Lautenbach, Prof. Dr. Miller, Prof. Dr.
Oppermann, Prof. Dr. Paulus, Prof. Dr. Priese, Prof. Dr. Rosendahl, Prof. Dr.
Schubert, Prof. Dr. Staab, Prof. Dr. Steigner, Prof. Dr. Troitzsch, Prof. Dr. von
Kortzfleisch, Prof. Dr. Walsh, Prof. Dr. Wimmer, Prof. Dr. Z6bel

Kontaktdaten der Verfasser

Christoph Wernhard
Institut fUr Informatik

Fachbereich Informatik
Universitat Koblenz-Landau
UniversitatsstralRe 1

D-56070 Koblenz

EMail: wernhard@uni-koblenz.de

Tableau Between Proving, Projection and Compilation, Fachbereich Informatik, Nr. 18/2007

Tableaux Between
Proving, Projection and Compilation

Christoph Wernhard

Institut fiir Informatik, Universitat Koblenz-Landau, D-56070 Koblenz, Germany,
wernhard@uni-koblenz.de

Abstract. Generalized methods for automated theorem proving can be
used to compute formula transformations such as projection elimination
and knowledge compilation. We present a framework based on clausal
tableaux suited for such tasks. These tableaux are characterized inde-
pendently of particular construction methods, but important features of
empirically successful methods are taken into account, especially depen-
dency directed backjumping and branch local operation. As an instance
of that framework an adaption of DPLL is described. We show that
knowledge compilation methods can be essentially improved by weaving
projection elimination partially into the compilation phase.

1 Introduction

Projection elimination can be used to compute for a given formula and a set
of atoms a formula which is equivalent to the first one, as far as the atoms in
the given set are concerned, but does not express anything about other atoms.
Projection elimination has applications in various areas of knowledge represen-
tation [11,18,16,6,17,25,20]. Many of the automated deduction systems that
have recently been successful in applications are based on tableau methods. This
includes SAT-solvers, description logic reasoners as well as systems that compute
models or answer sets. Our aim is to employ such techniques to the computation
of projection elimination and to knowledge compilation tasks which are closely
related. We develop a notion of tableaux suited for such tasks. It is is inde-
pendent of the method used for tableau construction, but important features of
empirically successful methods are taken into account. This includes the possi-
bility of destructive tableau modification, as required for dependency directed
backjumping. Another feature is the proceeding with a single branch in memory
which can be utilized to store the overall compilation result offline or to pass
parts of the overall result to a client application as soon as they are computed.
The tableau framework can be instantiated by an adaption of the Davis Put-
nam Logemann Loveland procedure (DPLL) [9] for projection elimination and
knowledge compilation. Some applications of knowledge compilation also involve
projection elimination [6]. We show that for those applications the efficiency of
the compilation procedure can be essentially improved by weaving projection
elimination partially into the compilation process, instead of performing projec-
tion elimination just on the compilation result.

Tableau Between Proving, Projection and Compilation, Fachbereich Informatik, Nr. 18/2007

2 Notation and Preliminaries

2.1 Basic Notions

We consider propositional formulas in negation normal form, constructed from
literals over a denumerable set of atoms and the truth value constants T and
1 with A and V as binary operators. We write the positive (negative) literal
with atom A as A (—A), and also, in contexts where the positive literal should
be distinguished from the atom, as +A (—A). The complement of a literal L is
written as L. If S is a set of literals then S is set of complements of the members
of S and S is the set of all literals not in S. In certain contexts we call a set of
literals a literal scope.

An interpretation is a set of literals containing for each atom A exactly one
of +A or —A. It represents the truth value assignment that maps the atoms of
its positive (negative) members to T (L). An interpretation I is a model of the
formula F, in symbols I | F, if and only if F is true under the truth value
assignment represented by I. A formula Fj entails a formula F5, in symbols
Fy E F>, if and only if for all interpretations I it holds that if I = F; then
I E F5. Two formulas F and F; are equivalent, in symbols Fy = Fy, if and only
if F1 ': F2 and F2 ': Fl.

Unless specified otherwise, variables I, F', L, A and S, also with sub- and su-
perscripts, range over interpretations, formulas, literals, atoms and literal scopes
respectively.

2.2 Essential Literal Signature

We use three variations of the notion of signature of a formula F: A(F) is the
set of atoms in F. L(F) is the set of literals in F. Lg(F), the essential literal
signature of F', is the unique smallest set of literals from which an equivalent
to F' can be constructed. Lg(F') can be defined in a semantical way as the set
of literals L for which there exists an interpretation I such that I | F and
(I —{L})U{L} }£ F. Sec e.g. [17] for properties and examples (L¢ corresponds
to DepLit there). A related notion for clausal first order formulas (but just for
atoms instead of literals) has been introduced in [25].

2.3 Projection and Forgetting for Literal Scopes

The syntax of formulas can be extended by an operator project which takes a
formula and a specifier of a literal scope as arguments. (We however continue
to use formula as specified in Sect. 2.1 and mention explicitly when the project
operator is allowed.) Intuitively, project(F,.S), the projection of formula F' onto
literal scope S is a formula which is equivalent to I relative to the literals in 5,
but does not express anything about other literals. Accordingly, the semantics
of project operator can be defined as follows:

Definition 1 (Projection) For all formulas F' (which may contain the project
operator), literal scopes S and interpretations I it holds that

Tableau Between Proving, Projection and Compilation, Fachbereich Informatik, Nr. 18/2007

I = project(F, S) if and only if
there exists an interpretation I’ such that
I'=EFandI'NSCI.

In some contexts not the set of literals about which knowledge is retained,
but its complement, the set of literals about which knowledge is “forgotten” is
in the focus of interest. Thus it is convenient to introduce an additional operator
for that, forget(F,.S), the forgetting in F about S, that can be defined in terms
of projection as

forget(F, S) & project(F, S).

A specialization of projection onto literal scopes is projection onto atom
scopes, sets of atoms, or equivalently onto sets of literals S such that S = S. A
definition of projection onto atom scopes for clausal first order logic was given
in [25]. For propositional logic, the forgetting in a formula F' about a set of atoms
{p1, ..., pn } corresponds to existential Boolean quantification: forget(F, {p1,...,n})
is equivalent to dp;....dp, F, where in case of the quantification the symbols
Pp1, ..., pn are considered as Boolean variables instead of atoms.

Forgetting about literal scopes has been described previously in [17]. Our
Definition 1 corresponds to the characterization of Proposition 15 in that work.
In Sect. 8.1 we will discuss further related works and concepts.

Example 1 (Projection/Forgetting)

forget((—p VvV @) A (g V1), {+¢,—q}) =-pVr
forget((mpV @) A (g V1), {—g}) =(-pV @) A(=pVr).
forget(p A ¢, {+q}) = p.
forget(p V ¢, {+q}) = T.

Entailment and equivalence relative to a scope are convenient notions defined
for formulas Fi, F> (which may contain the project operator) and literal or atom
scopes S as follows:

Fy Eg F> if and only if project(Fy,.S) = project(F», S);
F) =g F5 if and only if project(Fy,S) = project(Fs, S).

2.4 Properties of Projection

It can be shown that for all formulas of propositional logic extended by the
project operator there exists an equivalent formula without that operator. We
call the computation of such equivalents projection elimination, analogously to
quantifier elimination. The following properties hold for all formulas F|, Fy, F5
(which may contain the project) operator, and literal scopes S.

A central property of projection that underlies applications of projection
elimination in knowledge representation is that the projection of a knowledge
base onto S can be used to answer queries in S:

Tableau Between Proving, Projection and Compilation, Fachbereich Informatik, Nr. 18/2007

F, = F» if and only if project(Fy, Lg(F2)) | Fo.
Projection is independent of the syntactic structure of its formula argument:
If Fy = F, then project(Fy, S) = project(F3, S).
The essential literal signature of a projection is a subset of its scope:
Le(project(F,S)) C S.

Since we have characterized projection in Definition 1 just semantically, no analo-
gous statement can be made for the syntactic literal signature and it is permitted
that a formula obtained as result of projection elimination does contain literals
not in the scope of the projection. For scopes S such that S =S (i.e. that cor-
respond to atom scopes), this differentiation can be neglected, since if neither
+A nor —A are in the essential literal signature of a formula, then all occur-
rences of A can be eliminated by substitution with a truth value constant. The
algorithms for projection elimination that we consider later on include syntactic
elimination of literals not in the projection scope, also for literal scopes that do
not correspond to atom scopes.
Eliminating projection to () can be used to decide satisfiability:

F is satisfiable if and only if project(F,0) = T.

2.5 Elimination of Projection by Expansion

Define F[A\W] as formula F' with atom A substituted by W € {T, L}. If F' is
a formula then B
forget(F,{L}) = F[AA\W]V (LA F), (i)

where A is the atom of L and W = T (L) if L is positive (negative). Since
forget(F,{L} U S) = forget(forget(F, {L}), S), rewriting of subformulas with the
project and forget operator according to equivalence (i) provides an algorithm
for projection elimination.

If S is an atom scope, projection elimination can of course be based on
equivalence (i), but also more compactly on the following equivalence:

forget(F, {A}) = FIA\T]V F[A\L]. (i)

Equivalences (i) and (ii) can be used to show that — conversely to the outline
in Sect. 2.3 — projection onto literal scopes can be defined in terms of projection
onto atom scopes:

forget(F, {+A}) =
F[A\T]V(mAAF) =
forget(F' AN A, {A}) V(mAANF).

Tableau Between Proving, Projection and Compilation, Fachbereich Informatik, Nr. 18/2007

2.6 Projection Elimination by Resolution

If Fis a formula in tautology-free! conjunctive normal form then a refine-
ment of the expansion method can be used to eliminate the forget operator
in forget(F,{A}). It works as follows: Return the union of the set of all non-
tautological binary resolvents of clauses in F' upon literals with atom A with the
set of clauses in F' that do not contain a literal with atom A. To eliminate the
forgetting of a literal, also the clauses of F' which contain its complement have
to be included in the result. Iterated over A(F) (along with simplifications) the
method for atom scopes is the original Davis Putnam procedure [10]. SCAN [11]
and replace-by-resolvents [25] lift this method to first order clauses.

2.7 Simplifications Preserving Equivalence Relative to a Scope

Restricted to certain special cases, the resolution method to eliminate projection
onto atom scopes properly reduces the number of clauses. The method is then a
formula simplification, which preserves equivalence relative to atom scopes not
containing literals upon which resolvents are built. Examples of these special
cases are the well known purity and ISOL [3] simplifications, where atoms of
literals to resolve upon occur only in a single polarity or in each polarity only
once. The variation of the resolution method for literal forgetting can be used
for formula simplifications that preserve equivalence relative to literal scopes.

2.8 Projection Elimination and Linklessness

The following equivalences are not hard to verify from the definition of project:

project(Fy V Fy, S) = project(F, S) V project(F5, S), (iii)
project(L,S) =L if L is a literal in S, (iv)
project(L,S) =T if L is a literal not in S. (v)

Equivalences (iii) — (iv) suggest to perform projection elimination in linear
time by pushing the project operation inward until only literals appear as argu-
ment formulas, which are either retained according to (iv) or substituted by T
according to (v). However, an equivalence for the conjunction operator is still
missing.

The analogy to equivalence (iii) for conjunction does not hold unrestricted.
We now show that it holds when certain preconditions are met. This is the basis
for applying tableau methods to projection elimination, since they can be used
to compute formulas meeting these preconditions.

Definition 2 (Linkless) If F, Fy, F» are formulas and S is a literal scope then
(i) Fy and F, are linkless outside S if and only if

L(F)NL(F,) € SN

! No clause contains a literal and its complement.

Tableau Between Proving, Projection and Compilation, Fachbereich Informatik, Nr. 18/2007

(ii) F} and Fy are essentially linkless outside S if and only if

—_~—

Le(F)NLe(Fy) CSNS;

(iii) F is linkless outside S if and only if for all subformulas of F' which have
the form £} A F5 it holds that F; and Fy are linkless outside S.

(iv) F is linkless inside S if and only if it is linkless outside S;
(v) F is fully linkless, or just linkless, if and only if F' is linkless outside §.

If Fy and Fy are linkless outside .S, then they clearly are also essentially link-
less outside S. Iy and Fy are linkless outside S — the ternary relation underlying

linkless inside — is equivalent to L(F}) N E/(—Z\TJ} Nn(Su 5) = 0.

Theorem 1 (Conjoining Projections) For all formulas Fy, F» and literal scopes
S such that Fy and F5 are essentially linkless outside S it holds that

project(F1, S) A project(F», S) = project(F A Fy, S).

The right to left direction of this equivalence follows easily from the definition
of projection. A proof of the left to right direction can be found in the appendix.

From equivalences (iii) — (iv) and Theorem 1 follows that projection elimi-
nation can be performed in linear time on linkless formulas by just substituting
literals not in the scope with T:

Theorem 2 If F' is a formula that is linkless inside a literal scope S then
forget(F, S) = F[S\T]

where F[S\T] is F with all literals that are in S substituted by T.

3 A Tableau Framework for Projection Elimination and
Knowledge Compilation

3.1 An Integrating View on Projection Elimination, Compilation
and Deciding Satisfiability

We consider tableau methods that compute for a given formula F' and two literal
scopes S; and S, a formula F’ such that

1. F’ is linkless outside S,
2. F' Eg, F, and
3. F=F.

Such a method can be applied to various tasks:

Tableau Between Proving, Projection and Compilation, Fachbereich Informatik, Nr. 18/2007

Projection elimination. The project operator in project(F’,S;) can be elimi-
nated in linear time by substitution with T according to Theorem 2. Since
project(F’, S,) = project(F, S,), if the same literal scope S is used as S; as
well as S, then the computation of F’ followed by substitution of literals not
in S with T is a method to eliminate the project operator in project(F,.S).

Compilation to an equivalent linkless outside a given literal scope. Let S; be
the given literal scope and S, be the set of all literals. F’ is then linkless
outside S; and equivalent to F'.

Compilation to a fully linkless equivalent. This is an instance of the previous
case where S; is the empty set.

Deciding satisfiability. Let S; be the set of all literals. Eliminating the project
operator in project(F”,S;) in linear time according to Theorem 2 (along with
further well-known simplifications that eliminate truth value constants as
proper subformulas) yields either T or L. S, can be any set of literals,
including the empty set. F' is then satisfiable if and only if the simplified F’
is T.

3.2 Fwd-Tableaux and Leafy Formulas

We are interested in algorithms that are based on theorem proving methods with
clausal tableaux and (considered as a special case of them) semantic trees. We use
a tableau data structure called fwd-tableau, short for tableau with forward labels,
which extends the standard notion of clausal tableau in two respects relevant for
computing formula transformations:

— Forward labels. Aside from the labeling by a literal, a fwd-tableau node has

a second label, the forward label, which is a formula. Intuitively the forward
label represents a part of the computation problem which is associated with
the node while being in the focus of computation and remains to be solved
(i.e. will possibly be solved at a future “forward” point in time). For comput-
ing formula transformations the forward labels of leaf nodes at the terminal
state of a computation can be included into the output.

And-nodes. Along with nodes in the standard sense for clausal tableaux,
fwd-tableaux can contain nodes of a second type, called a-nodes, short for
and-nodes. A fwd-tableau can then be considered as an and-or tree. And-
nodes have been introduced to DPLL-based model counters [1], where they
make it possible just to multiply the numbers of models counted for subfor-
mulas which are independent from each other in a certain way. And-nodes
have subsequently been used in a compiler to DNNF (decomposable negation
normal form) which is based on such a model counter [14].

Definition 3 (Fwd-Tableau) An fwd-tableau (short for forward labeled tab-
leau) is an ordered tree with three node labeling functions: If N is a node in an
fwd-tableau then

Tableau Between Proving, Projection and Compilation, Fachbereich Informatik, Nr. 18/2007

— its literal label, in symbols Ly, is a literal or the truth value constant T.
— its forward label, in symbols Fy, is a formula, and

— if N is a non-leaf node, then it is either an o-node (short for or-node) or
a-node (short for and-node). A leaf node is neither an o-node nor an a-node.

Unless especially noted, we only consider fwd-tableaux with a finite number
of nodes.

Similar to a clausal tableau, a fwd-tableau can be considered as representa-
tion of a formula. For transformation tasks, a mapping of tableaux to formulas
is convenient, which differs from the standard way, in that the forward labels
of the leaf nodes are also included. The formula associated in this way with a
fwd-tableau is called its leafy formula.

Definition 4 (Leafy Formula)

(i) If N is a node in a fwd-tableau then the leafy formula of N, in symbols
leafy(NN), is a formula defined as: If N is a leaf node then

leafy(N) & Ly A Fy;
if NV is an o-node whose children are Ny, ..., N,, then

leafy(N) < Ly A \/ leafy(N;);

1€l..n

if NV is an a-node whose children are Ny, ..., N,, then

leafy(N) & Ly A /\ leafy(NN;).

1€l.n

(ii) If T is a fwd-tableau then the leafy formula of T, in symbols leafy(T), is
the leafy formula of the root node of T'.

We now consider methods for projection elimination and knowledge compi-
lation which work by constructing a fwd-tableau whose leafy formula satisfies
the three conditions of Sect. 3.1 in the role of F”.

We do no commit to a particular tableau construction method, but instead
present a set of constraints on fwd-tableau that essentially relate children and
parent nodes and can be verified as invariants for a concrete calculus by showing
that they are preserved by its rules.

This framework can be instantiated by variants of tableau calculi which in-
clude refinements important for practical success, such as space efficiency by
working on a single branch at a time and dependency directed backtracking.
In Sect. 5 we outline this for a variant of DPLL. Examples for the concepts
introduced in this section are shown in Sect. 7.

10

Tableau Between Proving, Projection and Compilation, Fachbereich Informatik, Nr. 18/2007

3.3 Notation for Branches
Definition 5 (Root, Branch) If T is a fwd-tableau and N is a node in T then:
(i) root(T") denotes the root of T'.

(ii) The branch in T to N, in symbols By, is the sequence of nodes defined
as:
By ¥ N;...N,
where Ny = root(T), N, = N and for all N;, N;y1, i € 1.n — 1, N; is the parent
of N;11. For the symbolic notation “By” it is assumed that T is clear from the
context.

(iii) We overload notation for branches: If By = Nj...N,, is the branch in T
to N, then By is also used to denote the formula defined as:

By % Ly, A...ALy,.
(iv) A branch of T is a branch in T to a leaf node.

3.4 Ensuring Linklessness of the Leafy Formula

A constraint, linklessness-preserving, and a property, PB-L, for determining that
the construction of branch of a tableau is complete are defined such that if T'
is a fwd-tableau that is linklessness-preserving for a literal scope S and all leaf
nodes of T satisfy PB-Lg then

leafy(T') is linkless outside S.

Definition 6 (Linklessness-Preserving) A fwd-tableau is called linklessness-
preserving for a literal scope S if and only if

(i) if N is an a-node in the fwd-tableau whose children are Ny, ..., N,, then
for all 7,5 € 1..n such that ¢ # j it holds that

(Ln, N Fn;) and (Ln; N Fn;) are linkless outside S,

(ii) if N is a node in the fwd-tableau which has an a-node as ancestor and
N’ is a child of N then

L(Lyx' AFy') C L(FN)U(SNS).

Linklessness-preserving is a constraint which is parameterized with a literal
scope S. Nodes of a fwd-tableau without a-nodes trivially satisfy this constraint.
The first condition of linklessness-preserving states that the literal and forward
labels of different children of an a-node are pairwise linkless outside S. The
second condition ensures that the literal signature of literal labels and forward
labels of nodes below such a child is a subset of that of the child’s forward label.
This implies that also the leafy formulas of different children of an a-node are
pairwise linkless outside S. The condition of Definition 6.ii does not constrain
the literal signature of forward labels and literal labels with respect to literals
in SN S, thus if S is the set of all literals then it is trivially satisfied.

11

Tableau Between Proving, Projection and Compilation, Fachbereich Informatik, Nr. 18/2007

10

Definition 7 (Branch Completeness Property PB-L) If N is a node in a
fwd-tableau and S is a literal scope then N satisfies the property PB-Lg if and
only if

(BN A Fy) is linkless outside S.

PB-L is a property that applies to a node and is parameterized with a literal
scope. Since it is used as criterion for determining that the construction of branch
of a tableau is complete it is called a branch completeness property.

3.5 Ensuring that the Leafy Formula Entails the Source Relative to
a Scope

A constraint on fwd-tableaux, upward-preserving, which is parameterized with a
literal scope, is defined, such that if T" is a fwd-tableau that is upward-preserving
for a literal scope S then

leafy(T) ’:S Froot(T)~

Definition 8 (Upward-Preserving) A fwd-tableau is called upward-preserving
for a literal scope S if and only if for all nodes N in the fwd-tableau whose chil-
dren are Ny, ..., N, it holds that

(i) if N is an o-node then
\/ (Bn, A project(F;,,S)) = project(Ey, S),

i€l.n
(ii) if N is an a-node then

/\ (Bn, A project(Fy,, S)) E project(Fy, S).

i€l..n

3.6 Ensuring that the Leafy Formula is Entailed by the Source

Two constraints on fwd-tableaux, extensional and branch implied forward labels,
are defined, such that if T" is a fwd-tableau such that

— T is extensional,
- Lroot(T) =T, and
— T has branch implied forward labels

then
Froot(T) ': leafy(T)‘

Definition 9 (Extensional) A fwd-tableau T is called extensional if and only
if for all nodes N in the fwd-tableau whose children are Ny, ..., N,, it holds that

(i) if N is an o-node then

Froot(T) /\BN): \/ LNiy

i€l..n

12

Tableau Between Proving, Projection and Compilation, Fachbereich Informatik, Nr. 18/2007

11
(ii) if N is an a-node then

Froot(T) /\BN }: /\ LNi-

i€l..n

Definition 10 (Branch Implied Forward Labels) A fwd-tableau is said to
have branch implied forward labels if and only if for all nodes N, N’ in the tableau
such that N’ is a child of N it holds that

Fn N By ':FN/.

The extensional constraint only affects the literal labels of the tableau in
relation to the forward label of the root of the tableau. As we will see in below,
many familiar tableau methods for theorem proving construct tableaux which
have the extensional property for the input formula.

The second property, branch implied forward labels, constrains the forward
label of nodes such that they have to be implied by the branch to the node
and the forward label of the parent node. Also many familiar tableau methods
construct tableaux with this property. This is particularly straightforward to see
for variants of the DPLL method for propositional logic where the forward label
Fyn of anode N is considered as obtained from the forward label of the parent
node by substituting all atoms that appear in By with truth values according
to their polarity in By.

The property of having branch implied forward labels entails the following
similar property, which relates the formula label of a node to that of the tableau
root instead of its parent: If IV is a node in a fwd-tableau T with branch implied
forward labels then

Froot(T) A By ': Fy.

Construction of Extensional Fwd-Tableaux. It is easy to see, that many of
the familiar rules for the construction of clausal tableaux to show unsatisfiabil-
ity of an input formula preserve the extensional property for the input formula.
Examples include attaching to a leaf node a “cut” (two children with comple-
mentary literal labels), a clause from the input formula (for each literal in the
clause a child labeled with that literal), or a single child that has been inferred
by unit propagation from the input formula and the branch to the leaf node.

We specify abstract tableau construction operations, Extension, A-Extension
and Truncation, which preserve the extensional property: If T, T’ are fwd-tab-
leaux, T is extensional and T’ is obtained from T by applying an Extension,
A-Ezxtension or Truncation step then

T’ is extensional.

In Definition 11 we make use of operational metaphors and describe tableau
construction operations as tree modifications. These operations can obviously be
understood declaratively as specifications of mappings between fwd-tableaux.

13

Tableau Between Proving, Projection and Compilation, Fachbereich Informatik, Nr. 18/2007

12

Definition 11 (Extension and Truncation) A fwd-tableau 7" is obtained
from a fwd-tableau T by

(i) Extension if and only if T” is obtained from T by labeling a leaf node N
in T as an o-node and attaching children Ny,...,N,, n > 1, to N such that

Froot(r) N BN = \/ Ly;;

i€l.n

(ii) A-Extension for if and only if 7" is obtained from T by labeling a leaf
node N in T as an a-node and attaching children Ny, ..., N,, n > 1, to N such
that

Froot(T) /\BN): /\ LNi§

i€l..n

(iii) Truncation, if and only if 7" is obtained from T by removing all children
from some o-node (this node is then no longer labeled as o-node).

A concrete method then can be shown to construct extensional tableaux by
proving that each of its rules performs instances of these abstract operations. It
is easy to see that the familiar rules mentioned above are instances of Fxten-
sion. Truncation can be used to model tableau construction techniques which
involve destructive manipulation of the tableau under construction and seem
essential for practical success. Especially certain kinds of dependency directed
backtracking can be understood as a Truncation step followed by an Extension
step. The A-Eztension operation is included mainly to allow handling of a-nodes
analogously to o-nodes. If all a-nodes have children with literal label T, which
seems to be appropriate for the envisioned applications of a-nodes, the condition
of Definition 11.ii is trivially satisfied.

In the specification of rule preconditions it can be convenient to refer to the
“local” forward label of a leaf node instead of “globally” to the forward label of
the root node. The specification of the Fxtension operation refers to the forward
label of the root node. For fwd-tableaux with branch implied formula labels also
operations which instead refer to the forward label of a leaf node are instances
of Extension. It can be shown that if T is a fwd-tableau with branch implied
forward labels and T” is obtained from T by labeling a leaf node N in T' as an
o-node and attaching children Ny, ..., N,, n > 1, to N such that

By A Fn): \/ LNi;

i€l.n

then 7" is obtained from T by Extension.

3.7 Tableaux for Projection Elimination and Compilation

The following theorem combines the constraints defined in Sect. 3.4 — 3.6 to
show that if a fwd-tableau satisfies them, then the leafy formula of the fwd-tab-
leau satisfies the three conditions of Sect. 3.1. Thus, a method that constructs

14

Tableau Between Proving, Projection and Compilation, Fachbereich Informatik, Nr. 18/2007

13

a tableau satisfying the constraints of Sect. 3.4 — 3.6 can be used for tasks such
as projection elimination and knowledge compilation.

Theorem 3 (Tableaux for Projection Elimination and Compilation) If
F is a formula, S}, S, are literal scopes and T is a fwd-tableau such that

T is linklessness-preserving for Sy,
all leaf nodes of T' satisfy PB-Lg,,
T is upward-preserving for Sy,

Froot(T)):Su F7
T is extensional,

Lroot(T) =T,
T has branch implied forward labels,

F ': Froot(T)
then

0O N D G oo~

1. leafy(T) is linkless outside Sy,
2. leafy(T) =g, F, and
3. F = leafy(T).

With respect to a tableau construction method, conditions 4., 6. and 8. typ-
ically concern the initialization phase: For a given input formula F' and speci-
fication of a literal scope S, an initial tableau consisting of a single root node
with literal label T and a forward label that satisfies 4. and 6. complies with
the framework. The remaining conditions with exception of 2., i.e. conditions
1., 3., 5., and 7., are typically invariants of the method, holding in all stages
of the tableau construction. Condition 2. indicates when the construction of a
branch is complete. Additional tools to ensure condition 5. are provided with
the abstract operations Ezxtension and Truncation.

4 Weaving Projection Elimination and Compilation

The projection to a subsignature that is relevant for an application can be an
important means to compensate for the size blow-up in knowledge compilation.
For example in the application of knowledge compilation to diagnosis described
in [6], a given formula is compiled into an equivalent to a projection of it. Since
the elimination of projection is a linear operation in knowledge compilation tar-
get formats such as DNNF and fully linkless formulas, procedures that perform
compilation into an equivalent to a projection are often described as compiling
into an equivalent followed by projection elimination [6,21]. This involves con-
struction of an intermediate formula in the compilation target format that is
equivalent to the input formula. When however the efficiency of the compila-
tion procedure is taken into consideration, this construction of an intermediate
equivalent can be an unnecessary step, whose avoidance by weaving projection
elimination partially into the compilation procedure effects essential savings in
time and space requirements.

15

Tableau Between Proving, Projection and Compilation, Fachbereich Informatik, Nr. 18/2007

14

We show this by giving a family of classes of formulas, disjoin-formulas, for
which polynomial time methods exist that perform compilation into a linkless
equivalent to a projection and, on the other hand, the size of an equivalent
compilation target is not polynomially bounded under the assumption NP ¢
P/poly, which is considered as very likely in complexity theory.?

Definition 12 (Disjoin-Formula) The disjoin-formula over a formula F =
Cy A ... A Cy in conjunctive normal form and a ground atom A, such that A ¢
A(F), in symbols Fg, is following formula, which is also in conjunctive normal
form:

(C1VA) AN (C,VA).

Theorem 4 (Weaving Projection into Compilation) Call an algorithm that
computes for all formulas F and literal scopes S an equivalent to project(F,S)
that does not contain the project operator and is fully linkless a project-compile-
algorithm.

If A is a ground atom and F} is the class of disjoin-formulas upon A then

1. there exists a project-compile-algorithm PC1 and a polynomial p1 such that
for all formulas F € F} and representations® of literal scopes S such that
+A ¢ S it holds that

PCy(F,S) requires time < pi(|F|+1S]),

2. unless NP C P/poly for all project-compile-algorithms PCs that construct
a fully linkless equivalent to their input formula as an intermediate data
structure and for all polynomials py there exists a formula F' € F'} such that

PCy(F,S) requires space > pa(|F)).

An example for PC, that justifies item (1.) of Theorem 4, is an algorithm
that checks whether its input formula F' is a disjoin-formula over some atom
A € A(F) such that +A4 ¢ S and returns T if this is the case, and otherwise
calls an arbitrary project-compile-algorithm on F' and S.

Item (2.) of Theorem 4 follows since clausal entailment for arbitrary formulas
in conjunctive normal form can be encoded into clausal entailment for disjoin-
formulas. Clausal entailment is a linear operation for formulas which are fully

2 P/poly is a non-uniform complexity class. Its relationship to knowledge compilation
has been brought to attention by Kautz and Selman [15]. Cadoli et al. have general-
ized their results in [5]. Details and further references can be found in that work in
the context of Theorem 6 which has the assumption NP Z P/poly as a precondition.
Failure of this assumption would imply the collapse of the polynomial hierarchy.
Our proof of Theorem 4 is based on that theorem, as actually are many complexity
results about knowledge compilation formats [8].

3 As argument of an algorithm, a symbol denoting a literal scope stands for a re-
presentation of the literal scope. It is quietly assumed that such representations of
finite sets allow to decide membership in time polynomial to their cardinality.

16

Tableau Between Proving, Projection and Compilation, Fachbereich Informatik, Nr. 18/2007

15

linkless. From Theorem 6 in [5] then follows that, unless NP C P/poly, the size of
the linkless equivalent constructed by algorithms PCy can not be polynomially
bounded by the size of the input formula, the disjoin formula F'.

In practice disjoin-formulas are not expected to be important as global inputs
to reasoning tasks, but it is quite plausible that they (or other types of formulas
that allow efficient elimination of projection) are constructed during reasoning.

5 A Variant of DPLL for Projection Elimination and
Knowledge Compilation

We outline a variant of the DPLL calculus, called DPLL-Fwd, as an exemplary
instance of the tableau framework for projection elimination and knowledge com-
pilation that has been described in Sect. 3.

Along with the input formula, DPLL-Fwd takes representations of literal
scopes S; and S,,, corresponding to the conditions of Sect. 3.1 and also The-
orem 3, as parameters. DPLL-Fwd constructs a fwd-tableau of a special form,
corresponding to a semantic tree: An o-node has at most two children and the
literal labels of an o-node with two children are complementary.

Only a single branch of the tableau under construction is required to be
explicitly represented in memory at any point of time. We call it the active branch
and its leaf node the active leaf. Since the space required by a single branch is
polynomially bounded by the size of the input formula, DPLL-Fwd operates in
polynomial space, although the overall size of the constructed tableau is not
polynomially bounded.

Decide is a rule of DPLL-Fwd that effects that the active leaf is labeled as an
o-node and gets two children labeled with complementary literals, corresponding
to an atomic cut. The left child becomes the new active leaf. The splitting atom,
i. e. the atom of the literal labels of the two new nodes, must not already appear in
a literal label on the active branch. Thus the constructed tableau is regular and a
branch never contains complementary literal labels. The splitting atom A must
satisfy a further condition that is complementary to the branch completeness
property PB-Lg, and intuitively means at least one of the literals +A4 or —A
is not in S; (is “to forget” for projection elimination) and (By A Fx) has a
conjunctive subformula such that +A occurs in one of the conjuncts and —A in
the other:

+A ¢ SN 5’; and 4
(Bn A Fy) is not linkless inside {+A}.

For standard DPLL algorithms (see for example [23]), the forward label of
a node N can be considered as the input formula with each atom that appears
as literal label in By substituted with T or 1, depending on whether it is
positively or negatively in By. In such a method the forward label of a node
is just implicitly represented by the input formula and the branch to the node.

4 This condition holds for —A if and only if it holds for +A.

17

Tableau Between Proving, Projection and Compilation, Fachbereich Informatik, Nr. 18/2007

16

DPLL-Fwd permits more freedom in the computation of forward labels. In accord
with the upward-preserving condition, the forward label of a new node can be
computed from the forward label of its parent by substituting the atom of the
literal label of the new node with T or L and then performing simplifications
which just preserve equivalence relative to Sy, as for example those shown in
Sect. 2.7. In this way DPLL-Fwd realizes a form of weaving projection elimination
into compilation, as discussed in Sect. 4.

Disconnect is the rule of DPLL-Fwd which effects creation of and-nodes. It
expresses as a rule a dynamic problem decomposition as developed by Bayardo
and Pehousek [1] for DPLL-based model counting and used by Huang and Dar-
wiche for DNNF compilation [14]. For model counting and DNNF compilation
the components not only have to be pairwise linkless, but are required to have
pairwise disjoint atom bases. Disconnect is applicable if the forward label of the
active leaf Fiy is equal modulo associativity and commutativity of the A oper-
ator to a propositional formula Fy A ... A F,, for some n > 1 such that for all
4,7 € 1.n, @ # j, it holds that F; and F} are linkless outside S;. It effects that
the active leaf is labeled as an a-node and gets a child for each of the conjuncts
F; with T as literal label and F; (possibly further simplified) as forward label.
The leftmost of the new children becomes the new active leaf.

Next is a rule that effects backtracking by assigning the next leaf node in
a depth-first left-to-right ordering as active leaf. Its precondition is that the
active branch is “completely constructed”, which means that it satisfies the
PBg, condition.

Backjump is a rule that effects a more efficient backtracking than Next in the
case where the forward label of the tableau root conjoined with just fragments of
the active path entails L. Backjump is based on the specification of backjumping
for Abstract DPLL [22,23], which formally models the main technique used in
modern DPLL-based SAT solvers [2, 24, 26] for backtracking in conjunction with
the generation of context related unit lemmas. An application of Backjump can be
modeled as Truncation followed by Extension. This modeling allows to conclude
that Backjump preserves the extensional property and thus can be safely included
into methods that construct extensional tableaux.

For theorem proving or model computation tasks backjumping is commonly
applied with respect to a branch in which siblings to the right represent possi-
bilities to explore in future computation and siblings to the left are either not
present or can be ignored since they correspond to parts of the problem that
already have been solved. For transformation tasks this is different. Although
siblings to the left might correspond to already transformed parts of the input
formula, a backjumping step can effect that these are deleted and an improved
transformation is computed with the unit lemmas made available by backjump-
ing.

True-Up is a rule that, like the application of simplifications in the compu-
tation of forward labels, realizes a form of weaving projection elimination into
compilation. It if applicable if the active leaf is the child of an o-node, has a lit-
eral label that is not in S, and its forward label is T. It effects that the parent

18

Tableau Between Proving, Projection and Compilation, Fachbereich Informatik, Nr. 18/2007

17

of the active leaf gets T assigned as forward label, gets all its children removed
(it is no longer an o-node then) and is assigned as the new active leaf. (Related
preconditions apply in the case where the active leaf is the child of an a-node).

True-Up preserves equivalence relative to S, of the leafy formula of the parent
of the active node. If the literal label of the parent of the active node is, like
the active node, not in S, then an application of True-Up can trigger another
one. For empty S,, in this way, if a model has been found — indicated by the
forward label of the active node being T — the True-Up rule can be repeatedly
applied until the fwd-tableau consists of just a single node with T as literal
as well as forward label. This single-node tableau indicates satisfiability of the
input formula. Thus the method terminates “inherently” after finding the first
model: It has not to be hindered “from the outside”, from backtracking and
searching for alternative models. If the active node is a child of an o-node and
has a sibling to its left, then True-Up can effect, similar to Backjump, that a part
of the tableau under construction is thrown away.

We now sketch how termination of DPLL-Fwd can be shown. The length of
branches constructed by DPLL-Fwd is finitely bounded, which follows from the
regularity property, and, since children of a-nodes have the literal label T which
is not subjected to the regularity condition, from a restriction on the forward
labels along a branch. The following definition specifies a mapping from branches
to strings and an ordering relation on these strings. Termination of DPLL-Fwd
then follows since for all its rules it can be shown that the string associated
with the active branch before rule application is strictly greater in terms of the
ordering relation than the string associated with the active branch afterward.

Definition 13 (Ordering Branches by Outdegree Strings)

(i) If B = Nj...N,, is a branch of an ordered tree then the outdegree-right
string of B, is a sequence of pairs (01,71)....{(0,, T) such that

0; is the number of children of N;, if i € 1..n — 1,

r; is the number of children of N; to the right of Ny, 1, ifi € 1.n — 1,
onis 0if Fy, =TT,

o, is the symbol w if Fy, # T,

7y, is 0.

(ii) If By, B2 are branches of ordered trees then By >, Bs holds if and only if
the outdegree-right string of By is lexicographically greater than outdegree-right
string of By, where the elements of By and By are compared lexicographically,
and the components of these elements by are compared by numerical value,
considering the symbol w greater than any number.

6 Polynomial Space and Piecemeal Output

As notes in Sect. 5, DPLL-Fwd operates with a working data structure that
is polynomially bounded by the size of the input formula, although the size

19

Tableau Between Proving, Projection and Compilation, Fachbereich Informatik, Nr. 18/2007

18

of the output, the constructed tableau, is not polynomially bounded. Thus at
any point of time only a piece of the tableau under construction has to be
explicitly represented in memory, while the remaining piece can be considered
as offline. While the polynomial space requirements are clearly beneficial for
theorem proving tasks in which a yes/no answer is computed, they can also be
utilized for formula transformation tasks. To this end we investigate variants
of DPLL-Fwd which output pieces of their overall output as soon as they are
computed, and thus fully operate in polynomial space. Such algorithms can be
employed in applications in which output pieces by themselves are useful, can
be piped to another program or in which it is expected that the first few output
pieces provide a solution. Output pieces can for example be piped to a theorem
prover: if an overall output formula F is equivalent to the disjunction of output
pieces then a theorem G follows from F' if and only if G follows from each of the
pieces.

DPLL-Fwd (without the Disconnect rule) can be run in a way such that when-
ever Next is applied to a state with active leaf N the formula (By A Fi) is
returned as an output piece. Finally, (By A Fy) for the active leaf N of the
terminal state is returned as the last output piece. The overall output is the
disjunction of those pieces.

For tableau construction methods that do not involve destructive operations
such as backjumping, the combination of output pieces which each correspond to
a branch of the final tableau is trivially equal to the final tableau. For methods
that include destructive operations extra effort is required to show that none
of the output pieces are “wrong” and no essential output piece is “missing” at
termination. It may be acceptable that output pieces may become redundant in
the presence of output pieces delivered at a later point of time. It can be shown
for DPLL-Fwd without the Disconnect rule but with Backjump that the overall
output formula satisfies the three conditions of Sect. 3.1 in the role of F”.

7 Examples

Example 2 (Fwd-Tableau and Leafy Formula) Consider the fwd-tableau
in Fig. 1. Nodes are identified by numbers. For all nodes N in the tableau Ly
and Fpy are shown, F framed in boxes. For leaf nodes the boxes are bold
to emphasize that they are constituents of the leafy formula. Node 1 is an a-
node, which is indicated by the arc connecting its outgoing edges. Let T be this
fwd-tableau. Its leafy formula is shown in Fig. 2.

Example 3 (Linklessness-Preserving) Consider the fwd-tableau in Fig. 3.
Node 1 is the only a-node. Its two children, nodes 2 and 3, have T as literal
label. The forward label of 2 and that of 3 are fully linkless, hence also linkless
outside S = {p, —p, ¢, ~q}, implying the condition of Definition 6.i of linklessness-
preserving. The condition of Definition 6.ii of follows since all literals appearing
in literal and forward labels of the children of 3 also appear in the forward label
of 3.

20

Tableau Between Proving, Projection and Compilation, Fachbereich Informatik, Nr. 18/2007

19

Tl (pvr) A
(pv—qvs)a
(-pvgvi) A
(cpvu) A
(mgvv) A
(=r vw) 1
Tl-rvw |2 Tlvr) A
(pv—=qvs)a
((pvagvit) a
(tpvu) A
(mq vv) 3
pl(gvt) & -plr A
u (mq v s)
(—g vv) 4 (=g v) 5
qglun gt A
v 6 U 7
Fig.1. A Fwd-Tableau
leafy(T) = T A
(T A (=r Vw)A

(T A
(A g A (unov)V
(g A (t A w))))V
(=p A (r A ((mg V s) A

(=g vV v))))-

Fig. 2. Leafy Formula of the Fwd-Tableau in Fig. 1

21

Tableau Between Proving, Projection and Compilation, Fachbereich Informatik, Nr. 18/2007

20

Tl (pvr) A
(pv—gvs)a
(-pvgvit) a
(tpvu) A
(mgvv) A
(—r vw) 1

Tl -rvw |2 T|l(pvr)

N
PV gvVS) A
N
N

—p v u)
—q v) 3
pl| (Evo)a -plr 5’
u 4’

Fig. 3. A Fwd-Tableau for Forgetting About S = {p, -p, ¢, q}
For a legend see Example 2

Example 4 (Branch Completeness Property PB-Lg) Consider the fwd-tableau
in Fig. 3. Let S = {p, p, ¢, —q}. Node 3 does not satisfy PB-Lg, since F5 con-
tains for example p and —p in different clauses. Node 4’ satisfies PB-Lg since

p A ((tVwv) Au) is clearly linkless outside S.

Example 5 (Upward-Preserving for the Set of All Literals) The fwd-tab-
leau in Fig. 1 is upward-preserving for the set of all literals. Since for all formulas
F it holds that project(F, all-literals) = F', the project operator in the conditions
for upward-preserving can be dropped. Consider for example node 4. By = p. F}
and Fj are the boxed formulas at nodes 4 and 3 respectively. It is easy to see,
that

p A F4 ': F3.

As a second example, consider node 1, an a-node. By = T. Fy is just the last
clause of Fy, F3 is the conjunction of the other clauses of Fj. It is easy to see
that

Fy AN F5 = Fy.

Example 6 (Upward-Preserving for an Atom Scope) Let S be defined as
{p, —p,q, ~q}. S represents an atom scope, since S = S. The fwd-tableau in Fig. 3
is upward-preserving for S. We show exemplarily that the condition of Defini-
tion 8.1 of the definition of upward-preserving is satisfied for node 4’ in relation
to 3, i.e. it holds that:

p A project(Fy, S) |= project(F3, S). (vi)

22

Tableau Between Proving, Projection and Compilation, Fachbereich Informatik, Nr. 18/2007

21

Nodes 1 to 3 are the same as in Fig. 1. In Example 5 we have seen that for
the tableau of Fig. 1 it holds that

p/\F4 ':Fg (Vll)

Fy in Fig. 3 can be considered as being obtained from Fj by applying the ISOL
simplification (see Sect. 2.7) upon g. Thus

project(Fy, S) = project(Fy, S). (viii)
Statements (vii) and (viii) imply statement (vi), which can be shown as follows:
(1) project(p A Fyu, S) = project(Fs, S).
(2) project(p, S) A project(Fy, S) = project(F3, S).
(3) p A project(Fy, S) = project(Fs, S).
(1) follows from (vii). (2) follows from (1) and Theorem 1, since p and Fy are

linkless outside S. (3) follows from (2) and since p |= project(p, S). (vi) follows
from (3) and (viii).

Example 7 (Upward-Preserving for a Literal Scope) The fwd-tableau in
Fig. 4 is identical to the fwd-tableau in Fig. 3, except for node 4”. It is upward-
preserving for {—p, =q}, a scope that contains p and ¢ just positively.

T -rvw 2

Fig. 4. A Fwd-Tableau for Forgetting About S = {-p, ~q}
For a legend see Example 2

23

Tableau Between Proving, Projection and Compilation, Fachbereich Informatik, Nr. 18/2007

22

Example 8 (Branch Implied Forward Labels) It is easy to verify that the
fwd-tableaux in Fig. 3 has branch implied forward labels. An example instanti-
ation of the condition of Definition 10 where N is an o-node is F5 Ap = Fy. An
example where N is an a-node is F| | F3.

Example 9 (Extensional) It is easy to see that the fwd-tableau in Fig. 3 is
extensional: O-nodes have two children with complementary ground literals as
literal labels. Their disjunction is a tautology, such that the condition of Defini-
tion 9.1 of extensional is trivially satisfied. Also the condition of Definition 9.ii
is trivially satisfied since children of a-nodes have T as literal label.

8 Related Work

8.1 Projection/Forgetting

The term forgetting has been coined in [18], where it is defined for first order logic
by means of agreement conditions on first order structures. Related operations
for propositional logic have been investigated in the context of local computation
[16]. The term projection seems to appear first in [6]. Forgetting of literals is
defined in [17], where also many properties and applications of projection are
shown. The interplay of literal projection and conjunction stated in our Theo-
rem 1 is in [17] only shown for the rudimentary special where the conjuncts are
conjunctions of literals.

A characterization of projection that applies to clausal first order logic with
a Herbrand semantics has been given in [25]. In first order logic, computation
of the forgetting about all ground atoms with a given predicate corresponds
to elimination of an existential second order quantifier over that predicate. An
algorithm for this and applications are described in [11].

Projection is related to the model theoretic concept of interpolation [13]: If
F'is a propositional formula and S an atom scope then the result of eliminating
the projection operator in project(F, S) followed by substituting all atoms not in
S with e.g. T is a uniform interpolant for F' with respect to S.

8.2 DNNF Compilation

In [7,14] adaptions of DPLL for knowledge compilation are presented. For our
tableau framework we adopted two features of the DPLL-based DNNF compil-
ers: the independent processing of conjuncts, corresponding to and-nodes, as in
DPLL-based model counters [1] and the use of dependency directed backtracking
to delete already constructed tableau parts. The method in [7] is described by
means of pseudocode, similar to a SAT solver, with calls to auxiliary procedures
that construct the output formula.

We use linkless negation normal form as a basis, in contrast to DNNF, since
the linkless form is more general and also allows projection elimination in linear
time. See [21] for a comparison of linkless form with DNNF.

24

Tableau Between Proving, Projection and Compilation, Fachbereich Informatik, Nr. 18/2007

23

Although in [6] it is shown that projection elimination is an important op-
eration in the context of knowledge compilation, the methods described in [6,
7,14] do not incorporate projection elimination into the compilation process, as
suggested in our Sect. 4. Compilation to a formula which is not fully in DNNF,
but decomposable outside a set of atoms S might be considered as a first step
towards the integration of projection elimination into knowledge compilation,
since it allows linear projection elimination onto atom scopes that are supersets
of S. This concept is defined in [6] (called decomposable except on atoms), but
the above relationship to projection elimination is not stated or utilized.

The methods in [7, 14] always apply DPLL exhaustively, i. e. a branch is only
completely constructed if it either falsifies or implies the input formula. Our
framework also permits weaker branch completeness conditions. Copies of the
input formulas which are simplified with respect to a branch (but not necessarily
yielding a truth value constant) are then included in the result.

Features described in [7,14] that are not covered by our framework are
caching, non-tree representations of formulas and consideration of atom order-
ings. The systems have been implemented and experiments have shown their
practical usefulness.

8.3 Knowledge Compilation with Tableau Methods

In [21] DNNF is compared to formulas which are fully linkless. A compilation
method called semantic factoring is investigated that works by applying the
Shannon expansion to subformulas. The construction of a regular clausal tableau
is shown as a second compilation method, based on the observation that a fully
developed regular clausal tableau for a given formula represents an equivalent in
DNNF. A notion of projection onto atom scopes is defined by means of substi-
tution in a syntactic way that only applies to fully linkless formulas.

In [12] a procedure for equivalence preserving compilation into a form called
factored negation normal form is described. This method is tableau-based, re-
lated to DPLL and works in polynomial space in the sense that only a single
polynomial working branch has to be kept in memory while the rest of the
tableau is considered offline. It seems however that this method lacks the fea-
ture that conjuncts meeting certain preconditions are compiled independently,
which is achieved for semantic factoring by applying the Shannon expansion
to subformulas and for DPLL-like methods by means of and-nodes. Inclusion
of projection elimination into the compilation process is not considered in [21]
and [12].

8.4 DPLL-Based Boolean Quantifier Elimination

A variant of DPLL for the elimination of Boolean quantifiers (which in proposi-
tional logic is the same as projection elimination for an atom scope) is described
n [19]. It can be considered as incorporating projection elimination into the
compilation process, but it just constructs formulas in clausal form, while our
approach permits weaker restrictions, such as DNNF, linkless formulas, or also

25

Tableau Between Proving, Projection and Compilation, Fachbereich Informatik, Nr. 18/2007

24

unrestricted outputs which are obtained from requiring linklessness outside the
scope of the projection as an internal intermediate format. The system by McMil-
lan is tied to the Tseitin definitional encoding of the input formula and essentially
depends on storing complements of generated implicants, thus it does not has a
polynomially bounded working data structure.

In [20] it is shown that the use of interpolants extracted from proofs can be
used to approximate the costly operation of projection elimination in certain
applications of symbolic model checking.

9 Conclusion

We have specified abstract requirements for generalized proving procedures em-
ployed in formula transformation tasks such as the computation of projection
and knowledge compilation. We defined an extension of clausal tableaux suited
for such tasks. The abstract requirements were related with an interplay of struc-
tural and semantical properties of these tableaux.

As an example instance of this framework an adaption of DPLL for for-
mula transformation tasks that is specified by means of tableau rules has been
outlined. It covers refinements which indicate success in practice. Yet by being
declarative and embedded into the tableau framework it provides an accessible
basis for further refinements, variations and comparisons to related techniques.

We outlined issues of utilizing tableau methods which work in polynomial
space for formula transformation tasks with exponential output size.

Our framework shows the interplay of projection elimination and certain
types of knowledge compilation. Actually projection elimination can be an im-
portant operation for knowledge compilation: the projection to an application
relevant subsignature is a means to compensate somewhat for the size blow-up
due to compilation. We have shown that the current practice of applying the pro-
jection operation to compilation results can be essentially improved by weaving
projection into the compilation process.

A main issue for future work is the application of our framework to other
languages which are important in knowledge representation and have tableau-
based processing techniques. This includes classical first order logic, modal and
description logics and languages with non-classical semantics such as minimal
model semantics which is used for first order model generation [4]. As sketched in
[25], projection can be applied to express dependency relationships between con-
cepts and to control the vocabulary of answers. To use this in practice, projection
elimination tasks have to be performed embedded within other computations.
Investigation how these computations as a whole can be performed efficiently is
another issue for future work.

References

1. R. J. Bayardo and J. D. Pehoushek. Counting models using connected components.
In Proceedings of the Seventeenth National Conference on Artificial Intelligence

26

Tableau Between Proving, Projection and Compilation, Fachbereich Informatik, Nr. 18/2007

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

25

and Twelfth Conference on Innovative Applications of Artificial Intelligence, pages
157-162. AAAT Press / The MIT Press, 2000.

R. J. Bayardo and R. C. Schrag. Using CSP look-back techniques to solve real-
world sat instances. In Proceedings AAAI-97, pages 203-208, 1997.

W. Bibel. Deduktion — Automatisierung der Logik. Oldenbourg, Miinchen, 1992.
F. Bry and A. H. Yahya. Positive unit hyperresolution tableaux and their applica-
tion to minimal model generation. Journal of Automated Reasoning, 25(1):35-82,
2000.

M. Cadoli, F. M. Donini, and M. Schaerf. Is intractability of nonmonotonic rea-
soning a real drawback? Artificial Intelligence, 88(1-2):215-251, 1996.

A. Darwiche. Decomposable negation normal form. Journal of the ACM, 48(4):608—
647, 2001.

A. Darwiche. New advances in compiling CNF to decomposable negation normal
form. In R. L. de Mantaras and L. Saitta, editors, Proceedings of the 16th Eureopean
Conference on Artificial Intelligence (ECAI 2004), pages 328-332. I0S Press, 2004.
A. Darwiche and P. Marquis. A knowledge compilation map. Journal of Artificial
Intelligence Research, 17:229-264, 2002.

M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.
Communications of the ACM, 5(7), 1962.

M. Davis and H. Putnam. A computing procedure for quantification theory. JACM,
7(3):201-215, 1960.

D. Gabbay and H. J. Ohlbach. Quantifier elimination in second-order predicate
logic. In B. Nebel, C. Rich, and W. Swartout, editors, Proceedings of the third In-
ternational Conference on Principles of Knowledge Representation and Reasoning
(KR’92), pages 425-435, San Mateo, California, 1992. Morgan Kaufmann.

R. Hahnle, N. V. Murray, and E. Rosenthal. Normal forms for knowledge com-
pilation. In M.-S. Hacid, Z. W. Ras, and S. Tsumoto, editors, Foundations of
Intelligent Systems (ISMIS’05), volume 3488 of LNAI, pages 304-313. Springer,
2005.

E. Hoogland. Definability and Interpolation — Model-theoretic Investigations. PhD
thesis, University of Amsterdam, Amsterdam, 2001.

J. Huang and A. Darwiche. DPLL with a trace: From SAT to knowledge compi-
lation. In L. P. Kaelbling and A. Saffiotti, editors, IJCAI-05, Proceedings of the
Nineteenth International Joint Conference on Artificial Intelligence, pages 156—
162. Professional Book Center, 2005.

H. A. Kautz and B. Selman. Forming concepts for fast inference. In Proceedings
AAAI-92, pages 786-793, San Jose, California, 1992.

J. Kohlas, R. Haenni, and S. Moral. Propositional information systems. Journal
of Logic and Computation, 9(5):651-681, 1999.

J. Lang, P. Liberatore, and P. Marquis. Propositional independence — formula-
variable independence and forgetting. Journal of Artificial Intelligence Research,
18:391-443, 2003.

F. Lin and R. Reiter. Forget It! In R. Greiner and D. Subramanian, editors,
Working Notes, AAAI Fall Symposium on Relevance, pages 154159, Menlo Park,
California, 1994. American Association for Artificial Intelligence.

K. L. McMillan. Applying sat methods in unbounded symbolic model checking. In
E. Brinksma and K. G. Larsen, editors, Computer Aided Verification — 14th Inter-
national Conference, CAV 2002, volume 2404 of LNCS, pages 250—264. Springer,
2002.

27

Tableau Between Proving, Projection and Compilation, Fachbereich Informatik, Nr. 18/2007

26

20.

21.

22.

23.

24.

25.

26.

K. L. McMillan. Applications of craig interpolants in model checking. In N. Halb-
wachs and L. Zuck, editors, Tools and Algorithms for the Construction and Analysis
of Systems — 11th International Conference, TACAS 2005, volume 3440 of LNCS,
pages 1-12. Springer, 2005.

N. V. Murray and E. Rosenthal. Tableaux, path dissolution and decomposable
negation normal form for knowledge compilation. In Proceedings TABLEAUX
2003, volume 2796 of LNAI, pages 165-180. Springer, 2003.

R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Abstract DPLL and Abstract DPLL
modulo theories. In F. Baader and A. Voronkov, editors, Logic Programming and
Automated Reasoning — 11th International Conference, LPAR 200/, volume 3452
of LNAI pages 36-50. Springer, 2005.

R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo Theo-
ries: from an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T).
Journal of the ACM, 53(6):937-977, Nov. 2006.

J. P. M. Silva and K. A. Sakallah. GRASP — a new search algorithm for sat-
isfiability. In Proceedings of the 1996 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD ’96), pages 220-227. IEEE Computer Society,
1996.

C. Wernhard. Semantic knowledge partitioning. In J. J. Alferes and J. Leite,
editors, Logics in Artificial Intelligence — 9th FEuropean Conference, JELIA 04,
volume 3229 of LNAI, pages 552—-564. Springer, 2004.

L. Zhang and S. Malik. The quest for efficient boolean satisfiability solvers. In
A. Voronkov, editor, Automated Deduction — CADE-18, volume 2392 of LNAI,
pages 295-313. Springer, 2002.

28

Tableau Between Proving, Projection and Compilation, Fachbereich Informatik, Nr. 18/2007

27

Appendix

Proof of Theorem 1. We show that if F}, F5 are formulas and S is a literal
scope then

if F7 and F5 are essentially linkless outside S then
project(F1, S) A project(F», S) |= project(Fy A Fy, S).

We use the following additional notation: If I is an interpretation, A an atom,
L a literal and S a set of literals then

— I.A is defined as the literal with atom A which is contained in I;
= I[L]= (I = {L}) U{L}
- IS]E¥ (I-S)USs.

We present the proof in a formal style, where justifications follow the num-
bered lines that show proof steps in symbolic form.

(1) Fy and F; are linkless outside S.
I |= project(Fy, S).

I |= project(F3, S).

J1 E Fi.

JiNnSClI.

Jy = .

JonSCI.

Ji = .

Jy E Fs.

JNnSCI.

Ji = Jb.

J| |E Fi A Fs.

I |= project(Fy A F3, S).

= e e~ o~ o~ o~~~ —~
W N OO0~ Uik WIN

A,_\/.\
—_— — D Do DD DO

—~

Assume (1) and let I be an interpretation such that (2) and (3) hold. Let
J1, JJ2 be interpretations satisfying (4) — (7). The existence of such interpreta-
tions follows from (2) and (3) respectively with the definition of project. In the
following we show the construction of interpretations J; and Jj that satisfy (8),
(9), (10) and are actually equal, which is expressed by (11). (12) follows from
(11), (9) and (8). (13), which concludes the proof, follows from (12) and (10)
with the definition of project.

(14) If JxA 75 JyA and 1
JX.A ¢ [,g(Fx) and
(Jx.Aeﬁg(Fy) or Jx.A#I.A) 3
then
T At Ty A 4
else
Jhe A gy A 5

For all X,Y € {1,2} with X # Y let J% be the interpretation such that (14)
holds for all ground atoms A.

29

Tableau Between Proving, Projection and Compilation, Fachbereich Informatik, Nr. 18/2007

28

Subproof of (8) and (9). Let M & {J;.A | J|.A = m} Then J| = Ji[M].
If Ais a ground atom such that Jj.A = J1.A, the condition of line 2 in (14)
for X = 1 must be true, thus J;.A ¢ Lg(F1). Hence M N Lg(Fy) = (. (8) then
follows from (4) and the fact that for all interpretations I, formulas F' and literal
scopes S it holds that

if I =Fand SNLg(F) =0 then I[S] = F.

(9) follows by the same arguments with subscripts 1 and 2 switched.

Subproof of (10). For all ground atoms A it holds that if J{.A # J;.A then the

condition of line 1 in (14) for X = 1 must be true, hence J;.A = j;.z/él, hence
J{.A = Jy.A. Thus J| C J; U Js. (10) then follows from (5) and (7).

Subproof of (11). For all ground atoms A it holds that if J;.A = J3.A then
the condition of line 1 in (14) fails for X = 1 as well as for X = 2, hence
JA=J.A=Jy. A= J}.A.

Otherwise J;1.A # J2.A. We show that in this case the condition of (14) (i.e.
lines 1-3) is satisfied exactly in one of the cases of X =1 or X = 2. This implies
(11): Assume lines 1-3 of (14) are satisfied for X = 1 but not for X = 2. From

(14) then follows for X = 1 that Jj.A = Ji.A = Jy.A and for X = 2 that
J5y. A = Jy.A. Thus J{.A = J5.A. The same argument also applies to switched
subscripts 1 and 2.

(15) Ji.A# Jo.A.
(16) J1.A ¢ (SNS).
(17) If J,.A € Le(Fy) then J1.A ¢ Le(Fy).

Assume (15). (16) follows from (15), (5) and (7). (17) from (16) and (1).

(18) cond(1,2,A) iff
(19) J1.A ¢ Le(Fy) and (J,.A € Le(Fy) or Ji.A#1.A) iff
(20) (J1.A € Le(Fy) and Jy.A ¢ Le(Fy)) or

(JlA#IA and J1A¢£5(F1)) iff
(21) J1.A€ Le(Fy) or (J1.A#T.Aand Ji.A¢ Le(Fy)) iff
2) JyA€ Le(Fy)or (Jo.A=1.Aand Jo.A ¢ Lo(Fy)) iff
3) -—cond(2,1,A).

Define cond(X,Y, A) as abbreviation for the condition of (14) under the as-
sumption (15), e.g.

cond(1,2,A) & J,.A ¢ Le(F)) and (J1.A#T.A or J1.A € Le(F)).

For all ground atoms A it holds that (18) — (23) are equivalent to each other:
Equivalence of (19) to (18) follows by unfolding cond. (20) is logically equivalent
to (19). Equivalence of (21) to (20) follows from (17). (22) is equivalent to (21)

30

Tableau Between Proving, Projection and Compilation, Fachbereich Informatik, Nr. 18/2007

29

e

since by (15) J1.A = Jo.A. (23) is equivalent to (22) by folding into cond. Thus
we have shown that under assumption (15) (and the initial assumptions (1) —
(3)) the condition of (14) is satisfied exactly in one of the cases of X =1 or
X = 2, which implies (11).

O

31

Bisher erschienen

Arbeitsberichte aus dem Fachbereich Informatik
(http://www.uni-koblenz.de/fb4/publikationen/arbeitsberichte)

Christoph Wernhard: Tableaux Between Proving, Projection and Compilation, Arbeitsberichte
aus dem Fachbereich Informatik 18/2007

Ulrich Furbach, Claudia Obermaier: Knowledge Compilation for Description Logics,
Arbeitsberichte aus dem Fachbereich Informatik 17/2007

Fernando Silva Parreiras, Steffen Staab, Andreas Winter: TwoUse: Integrating UML Models
and OWL Ontologies, Arbeitsberichte aus dem Fachbereich Informatik 16/2007

Rudiger Grimm, Anastasia Meletiadou: Rollenbasierte Zugriffskontrolle (RBAC) im
Gesundheitswesen, Arbeitsberichte aud dem Fachbereich Informatik 15/2007

Ulrich Furbach, Jan Murray, Falk Schmidsberger, Frieder Stolzenburg: Hybrid Multiagent
Systems with Timed Synchronization-Specification and Model Checking, Arbeitsberichte aus
dem Fachbereich Informatik 14/2007

Bjorn Pelzer, Christoph Wernhard: System Description:“E-KRHyper*, Arbeitsberichte aus dem
Fachbereich Informatik, 13/2007

Ulrich Furbach, Peter Baumgartner, Bjorn Pelzer: Hyper Tableaux with Equality,
Arbeitsberichte aus dem Fachbereich Informatik, 12/2007

Ulrich Furbach, Markus Maron, Kevin Read: Location based Informationsystems,
Arbeitsberichte aus dem Fachbereich Informatik, 11/2007

Philipp Schaer, Marco Thum: State-of-the-Art: Interaktion in erweiterten Realitaten,
Arbeitsberichte aus dem Fachbereich Informatik, 10/2007

Ulrich Furbach, Claudia Obermaier: Applications of Automated Reasoning, Arbeitsberichte
aus dem Fachbereich Informatik, 9/2007

Jurgen Ebert, Kerstin Falkowski: A First Proposal for an Overall Structure of an Enhanced
Reality Framework, Arbeitsberichte aus dem Fachbereich Informatik, 8/2007

Lutz Priese, Frank Schmitt, Paul Lemke: Automatische See-Through Kalibrierung,
Arbeitsberichte aus dem Fachbereich Informatik, 7/2007

Rudiger Grimm, Robert Krimmer, Nils Mei3ner, Kai Reinhard, Melanie Volkamer, Marcel
Weinand, Jorg Helbach: Security Requirements for Non-political Internet Voting,
Arbeitsberichte aus dem Fachbereich Informatik, 6/2007

Daniel Bildhauer, Volker Riediger, Hannes Schwarz, Sascha Strauf3, ,grUML — Eine UML-
basierte Modellierungssprache fiir T-Graphen“, Arbeitsberichte aus dem Fachbereich
Informatik, 5/2007

Richard Arndt, Steffen Staab, Raphaél Troncy, Lynda Hardman: Adding Formal Semantics to
MPEG-7: Designing a Well Founded Multimedia Ontology for the Web, Arbeitsberichte aus
dem Fachbereich Informatik, 4/2007

Simon Schenk, Steffen Staab: Networked RDF Graphs, Arbeitsberichte aus dem Fachbereich
Informatik, 3/2007

Rudiger Grimm, Helge Hundacker, Anastasia Meletiadou: Anwendungsbeispiele fiir
Kryptographie, Arbeitsberichte aus dem Fachbereich Informatik, 2/2007

Anastasia Meletiadou, J. Felix Hampe: Begriffsbestimmung und erwartete Trends im IT-Risk-
Management, Arbeitsberichte aus dem Fachbereich Informatik, 1/2007

http://www.uni-koblenz.de/fb4/publikationen/arbeitsberichte

, Gelbe Reihe®
(http://www.uni-koblenz.de/fb4/publikationen/gelbereihe)

Lutz Priese: Some Examples of Semi-rational and Non-semi-rational DAG Languages.
Extended Version, Fachberichte Informatik 3-2006

Kurt Lautenbach, Stephan Philippi, and Alexander Pinl: Bayesian Networks and Petri Nets,
Fachberichte Informatik 2-2006

Rainer Gimnich and Andreas Winter: Workshop Software-Reengineering und Services,
Fachberichte Informatik 1-2006

Kurt Lautenbach and Alexander Pinl: Probability Propagation in Petri Nets, Fachberichte
Informatik 16-2005

Rainer Gimnich, Uwe Kaiser, and Andreas Winter: 2. Workshop "Reengineering Prozesse" —
Software Migration, Fachberichte Informatik 15-2005

Jan Murray, Frieder Stolzenburg, and Toshiaki Arai: Hybrid State Machines with Timed
Synchronization for Multi-Robot System Specification, Fachberichte Informatik 14-2005

Reinhold Letz: FTP 2005 — Fifth International Workshop on First-Order Theorem Proving,
Fachberichte Informatik 13-2005

Bernhard Beckert: TABLEAUX 2005 — Position Papers and Tutorial Descriptions,
Fachberichte Informatik 12-2005

Dietrich Paulus and Detlev Droege: Mixed-reality as a challenge to image understanding and
artificial intelligence, Fachberichte Informatik 11-2005

Jirgen Sauer: 19. Workshop Planen, Scheduling und Konfigurieren / Entwerfen, Fachberichte
Informatik 10-2005

Pascal Hitzler, Carsten Lutz, and Gerd Stumme: Foundational Aspects of Ontologies,
Fachberichte Informatik 9-2005

Joachim Baumeister and Dietmar Seipel: Knowledge Engineering and Software Engineering,
Fachberichte Informatik 8-2005

Benno Stein and Sven Meier zu Ei3en: Proceedings of the Second International Workshop on
Text-Based Information Retrieval, Fachberichte Informatik 7-2005

Andreas Winter and Jurgen Ebert: Metamodel-driven Service Interoperability, Fachberichte
Informatik 6-2005

Joschka Boedecker, Norbert Michael Mayer, Masaki Ogino, Rodrigo da Silva Guerra,
Masaaki Kikuchi, and Minoru Asada: Getting closer: How Simulation and Humanoid League
can benefit from each other, Fachberichte Informatik 5-2005

Torsten Gipp and Jirgen Ebert: Web Engineering does profit from a Functional Approach,
Fachberichte Informatik 4-2005

Oliver Obst, Anita Maas, and Joschka Boedecker: HTN Planning for Flexible Coordination Of
Multiagent Team Behavior, Fachberichte Informatik 3-2005

Andreas von Hessling, Thomas Kleemann, and Alex Sinner: Semantic User Profiles and their
Applications in a Mobile Environment, Fachberichte Informatik 2-2005

Heni Ben Amor and Achim Rettinger: Intelligent Exploration for Genetic Algorithms —
Using Self-Organizing Maps in Evolutionary Computation, Fachberichte Informatik 1-2005

http://www.uni-koblenz.de/%7Eag-pn/html/mitarbeiter/mitarbeiter.html
http://www.uni-koblenz.de/%7Eag-pn/html/mitarbeiter/apinl.html
http://www.uni-koblenz.de/%7Ewinter/
http://www.uni-koblenz.de/%7Emurray/
http://fstolzenburg.hs-harz.de/
http://www.uni-koblenz.de/%7Ebeckert/
http://www.uni-koblenz.de/FB4/Institutes/ICV/AGPaulus/Members/paulus
http://www.uni-koblenz.de/%7Edroege/
http://www.uni-koblenz.de/%7Ewinter/
http://www.uni-koblenz.de/%7Eebert/
http://www.uni-koblenz.de/%7Ejboedeck/
http://www.er.ams.eng.osaka-u.ac.jp/user/asada/asada.html
http://www.uni-koblenz.de/%7Etgi/
http://www.uni-koblenz.de/%7Eebert/
http://www.uni-koblenz.de/%7Efruit/
http://www.uni-koblenz.de/%7Emaas/
http://www.uni-koblenz.de/%7Ejboedeck/
http://www.cc.gatech.edu/grads/a/avh/
http://www.uni-koblenz.de/%7Etomkl/
http://www.uni-koblenz.de/%7Esinner/
http://www.uni-koblenz.de/%7Eamor/
http://www.uni-koblenz.de/%7Eachim/

	plakatform_inf
	Foliennummer 1

	Impressum
	wernhard
	Bisher erschienen
	Bisher erschienen

