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Abstract This thesis focuses on gaining linguistic insights into textual discussions on a
word level. It was of special interest to distinguish messages that constructively contribute
to a discussion from those that are detrimental to them. Thereby, we wanted to determine
whether “I”- and “You”-messages are indicators for either of the two discussion styles.
These messages are nowadays often used in guidelines for successful communication.
Although their effects have been successfully evaluated multiple times, a large-scale
analysis has never been conducted. Thus, we used Wikipedia Articles for Deletion
(short: AfD) discussions together with the records of blocked users and developed a fully
automated creation of an annotated data set. In this data set, messages were labelled
either constructive or disruptive. We applied binary classifiers to the data to determine
characteristic words for both discussion styles. Thereby, we also investigated whether
function words like pronouns and conjunctions play an important role in distinguishing the
two. We found that “You”-messages were a strong indicator for disruptive messages which
matches their attributed effects on communication. However, we found “I”-messages
to be indicative for disruptive messages as well which is contrary to their attributed
effects. The importance of function words could neither be confirmed nor refuted. Other
characteristic words for either communication style were not found. Yet, the results
suggest that a different model might represent disruptive and constructive messages in
textual discussions better.

Zusammenfassung Diese Arbeit beschäftigt sich damit, linguistische Erkenntnisse auf
Wortebene über schriftlichen Diskussionen zu gewinnen. Die Unterscheidung zwischen
Botschaften, welche sich förderlich auf Diskussionen auswirken und jene, welche diese
unterbrechen, spielte dabei eine besondere Rolle. Hierbei lag ein Schwerpunkt darauf, zu
ermitteln, ob Ich- und Du-Botschaften charakteristisch für die beiden Kommunikation-
sarten sind. Diese Botschaften sind über Jahre hinweg zu Empfehlungen für erfolgreiche
Kommunikation avanciert. Ihre zugeschriebene Wirkung wurde zwar mehrfach bestätigt,
jedoch geschah dies stets in kleineren Studien. Deshalb wurde in dieser Arbeit mithilfe
der Löschdiskussionen der englischen Wikipedia und der Liste gesperrter Nutzer eine
vollautomatische Erstellung eines annotierten Datensatzes entwickelt. Dabei wurden
Diskussionsbotschaften entweder als förderlich oder schädlich für einen konstruktiven
Diskussionsverlauf markiert. Dieser Datensatz wurde anschließend im Rahmen einer
binären Klassifikation verwendet, um charakteristische Worte für die beiden Kommunika-
tionsarten zu bestimmen. Es wurde zudem untersucht, ob anhand von Synsemantika
(auch bekannt als Funktionswörter) wie Pronomen oder Konjunktionen eine Entscheidung
über die Kommunikationsart einer Botschaft getroffen werden kann. Du-Botschaften
wurden, übereinstimmend mit ihrer zugeschriebenen negativen Auswirkung auf Kommu-
nikation, als schädlich in den durchgeführten Untersuchungen identifiziert. Entgegen der
zugeschriebenen positiven Auswirkung von Ich-Botschaften, wurde bei diesen ebenfalls
eine schädlich Wirkung festgestellt. Eine klare Aussage über die Relevanz von Synse-
mantika konnte anhand der Ergebnisse nicht getroffen werden. Weitere charakteristische
Worte konnten nicht festgestellt werden. Die Ergebnisse deuten darauf hin, dass ein
anderes Modell textliche Diskussionen potentiell besser abbilden könnte.
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5.1.2. Näıve Bayes Classifier . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1.3. Language Model Classifier . . . . . . . . . . . . . . . . . . . . . . . 23

5.2. Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3. Deciding on a Timeframe . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.4. Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6. Test Setup 31
6.1. Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2. Test Setup and the Sliding Window Approach . . . . . . . . . . . . . . . . 32
6.3. Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7. Results 35
7.1. Independent Posts Approach . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.2. Sliding Window Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.3. Analysis of the Oldest Articles for Deletion Discussions . . . . . . . . . . 44

8. Design Decisions, Potential Errors and Improvements 48
8.1. Difficulty of Building an Annotated Data Set . . . . . . . . . . . . . . . . 48
8.2. Difficulty of Preprocessing Posts . . . . . . . . . . . . . . . . . . . . . . . 50

ii



8.3. Difficulty of Creating Comparable Results . . . . . . . . . . . . . . . . . . 52

9. Conclusion 54

A. Omitted Data and Graphics from the Test Results 56
A.1. Effects of Different Timeframes on Classifier Performance . . . . . . . . . 56
A.2. Independent Posts Approach . . . . . . . . . . . . . . . . . . . . . . . . . 57
A.3. Sliding Window Approach Using Linear Sampling . . . . . . . . . . . . . . 59
A.4. Oldest Articles for Deletion Discussions . . . . . . . . . . . . . . . . . . . 61
A.5. Sliding Window Approach Using Stratified Sampling . . . . . . . . . . . . 63

iii



1. Motivation

Already in the 1960s, Thomas Gordon [19] coined the term “I”-messages while working
as a psychologist with parents and their children. An “I”-message is described as an
honest and direct message that expresses the sender’s feelings. Its name is derived from
them mostly having the first-person singular as subject. Furthermore, “I”-messages
are characterised as being non-judgemental and thus e.g. suited for conflict resolution
[12]. The concept became famous through Gordon’s influential work introducing the
Parent Effectiveness Training (short: P.E.T.) [21]. It describes an approach for parents
communicating with their children for teaching them to solve their problems independently.
Gordon [21] analogously calls messages with the second-person singular as subject “You”-
messages. He attributes the opposite characteristics of “I”-messages to them, stating
that they convey strong criticism. Gordon [20] later transferred these concepts onto
leadership and reported many successful experiences from real-world applications. The
general idea of “I”- and “You”-messages became widely used as recommendation for
successful communication, even outside of leadership and teaching.

“I” and “you” are themselves function words, which is a set of common words that
contribute little to the content of a sentence from a semantical perspective [8]. These
include among others articles, prepositions, conjunctions, auxiliary verbs and other
pronouns. However, Chung and Pennebaker [8] showed that function words, especially
pronouns, can encode emotions and information that are not explicitly articulated in the
text.

The role of function words in discussions has not yet been analysed. To our knowledge,
the presumed effects of “I”- and “You”-messages have never been evaluated in a big
scale on discussions as well. For these reasons, we wanted to analyse a great number of
discussions for determining whether these concepts or certain words indicate “good” or
“bad” communication. Mehrabian [32] found out that while communicating feelings and
attitudes, the actual content merely makes 7% of the complete impression on the receiver
of the message. The rest is shared by the tone of voice and gestures. To ensure that the
analysed communication is only affected by the message contents, we considered purely
textual discussions.

Due to the amount of available data, we used Articles for Deletion discussions (short:
AfD discussions) for constructing a model. These are pages featuring textual discussions
between Wikipedia users that determine whether an article should be deleted for reasons
such as irrelevance or wrong information. Hereafter, messages in these discussions will be
called posts. “Good” communication will be called constructive in this context. It can be
described as positively affecting the collaborative process, e.g. by enriching the current
discussion. Likewise, “bad” communication will be called disruptive. It is characterised by
being highly detrimental to the collaboration process like posts that harass or attack other
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users. In the context of AfD discussions, disruptive communication does not describe
posts created with the intention to harm Wikipedia. Instead, disruptive messages should
form an exception to authors otherwise trying to improve Wikipedia. To determine
constructive and disruptive posts, we referred to a Wikipedia document containing records
about users being (temporarily) blocked from editing due to misbehaviour. Thus, the
task at hand was reduced to a binary classification problem and a gold standard based
evaluation was conducted. Considering single posts, the dependent variable was whether
such a post would lead to its author being blocked or not. As this yielded unsatisfying
results, we additionally conducted tests in which the contents from a subset of the user’s
post history were considered.

We expected the results to broaden our understanding of which words are heavy
indicators for messages in textual discussions being either constructive or disruptive.
Of special interest were “I”- and “You”-messages and function words. Assuming that
textual discussions in general and AfD discussions are comparable, the following research
questions were derived:

RQ1: Do disruptive messages in textual discussions contain more “You”-messages than
constructive ones? And likewise,

RQ2: Do constructive messages in textual discussions contain more “I”-messages than
disruptive ones?

RQ3: Is solely considering function words sufficient for determining whether a message is
constructive or rather detrimental to a textual discussion?

RQ4: Which other words are typical for constructive and which for disruptive messages
in textual discussions?

Such knowledge could be used to encourage friendly collaboration and fight cyber-
bullying: When users use too many words that are common for disruptive messages,
they could be asked whether they really intends to send the message. This could make
them reconsider their wording which could otherwise be offending and detrimental to the
ongoing discussion. In the context of the Google Science Fair 2014, a young researcher
conducted a comparable study with encouraging results for adolescents to rethink sending
offending messages [44]. Nevertheless, it is unclear, how effective such an approach would
be for the mostly adult users of Wikipedia. Answers to these research questions could
also be used to analyse AfD discussions on Wikipedia and alarm administrators when
they should interfere to calm down a heated discussion.

Our results suggest that disruptive messages indeed contain more “You”-messages and
thus support RQ1. However, the opposite, as questioned by RQ2, did not hold true for
“I”-messages in our classifications. When only considering function words, the classifiers
performed close to random guessing. This is possibly related to the full text classifiers’
mediocre performance. Therefore, RQ3 cannot be answered although one of the tests
returned surprisingly good results for function words classification. Inspecting typical
words for disruptive and constructive messages did not return valuable results to answer
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RQ4. Instead, these words are mostly specific to Wikipedia and AfD discussions. The
results thus suggest that another model might be more suitable for analysing the language
used in textual discussions than AfD discussions and the records of blocked users.

Chapter 2 introduces the concepts of “I”- and “You”-messages and function words
in more detail, explaining their effects on and their role in communication. Related
work, in which conflicts and disputes in textual discussions were analysed, is presented in
Chapter 3. Moreover, approaches to detect vandalism on Wikipedia are shown. Chapter 4
presents the data we chose to build our model on, and the preprocessing steps that
were needed to do so. Our fully automatic approach of building an annotated data set
is explained in Chapter 5. In this chapter, we also introduce our classifiers and the
metrics used in the later evaluation. Furthermore, characteristics of the newly created
data set are studied. Chapter 6 describes the test setup with its goals and the chosen
model validation. The results of our tests are given in Chapter 7. Chapter 8 illustrates
assumptions and design decisions that we made and how they could have impacted the
results. Finally, Chapter 9 concludes this thesis and the research questions are answered.
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2. Psychological Concepts

This chapter focuses on the psychological backgrounds to this thesis. The sections further
explain the concepts of “I”- and “You”-messages as well as function words. In both
sections, studies are summarised which motivated us to inspect their impact within
our model of textual discussions. Moreover, first details are given about how the AfD
discussions will be tested for “I”- and “You”-messages and function words. Furthermore,
it will be explained how their application to our model affects the research questions
established in the first section.

2.1. “I”- and “You”-Messages

Gordon’s conflict prevention and resolution recommendations do not solely focus on “I”-
and “You”-messages. Instead, he highlights that his concept is based on two more skills
besides these messages. The first skill is conflict resolution based on mutual agreement
of both parties such that none of the parties feel to have “lost” the conflict [19, 20].
Active listening is described as a third important skill [19]. It advises one party to repeat
the understood emotions and content of the other party’s messages to ensure that both
parties understand each other. Gordon recommends to refrain from using “You”-messages
and instead use “I”-messages. The latter consist of three parts [20]:

1. A description of the intolerable behaviour of another party,

2. one’s feelings towards this behaviour, and

3. the effect this behaviour has or will have on one’s life.

The message should not be blameful. It should allow the listener to understand the
speaker’s feelings and the potential impact that the listener’s actions may have on the
speaker in general as well as on the speaker’s well-being in particular.

A meta-evaluation by Müller et al. [34] confirmed many claimed positive effects of
Gordon’s training, especially for older children up to the age of twelve. Gordon [20]
also highlighted successful experiences for applications in leadership. It indicates that
Gordon’s concept can also positively influence the communication and problem-solving
between adults. Over time, the communication concept often got reduced to “I”- and
“You”-messages and claimed to be an effective tool for general communication as well [45].
The messages were even further simplified so that the term “I”-messages was then no
longer used for messages expressing behaviour, feelings and effects. Instead, they are
nowadays mostly identified by containing the pronoun “I” while describing one’s feelings
towards someone else’s behaviour. Yet still, studies e.g. by Kubany et al. [27] showed a
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positive effect of the use of “I”- over “You”-messages. Further studies showed similar
traits simply by inspecting the use of the pronouns “I” and “you”. Weintraub [53]
noted that angrier people tended to use “you” more frequently. A study on marital
interactions saw “you” correlated with negative and “I” with positive effects on problem
discussions [48]. Another study by Slatcher et al. [49] showed a positive effect of the more
frequent use of “I” over “you” in couples’ conversations on their relationship stability.
However, the found correlations were less apparent.

All in all, many studies support the positive and negative effects of “I”- and “You”-
messages and their simplified adaption. However, these studies are restricted to small
group sizes or little text corpora. Hence, we want to determine whether we find evidence
supporting Gordon’s concept in AfD discussions. Creating an elaborate model to capture
“I”- and “You”-messages would be out of this master thesis’ scope due to its potential
complexity. Instead, we reduce this task to counting of occurrences of the pronouns “I”
and “you” similar to other research [e.g. 8, 48, 49]. The first two research questions can
then be adapted to our model as follows: RQ1 poses the question whether disruptive
posts contain the word “you” more frequently than constructive ones. Vice versa, RQ2
asks whether constructive posts contain the word “I” more frequently than disruptive
ones.

2.2. Function Words

Function words span pronouns, articles, prepositions, conjunctions, and auxiliary words [8].
A common approach for analysing function words, as well as extracting implicitly encoded
information from text in general, is counting words, which are believed to be connected
e.g. with certain emotions. Pennebaker et al. [40] developed the frequently used program
Linguistic Inquiry and Word Count (short: LIWC ). It analyses text by counting words
that it has internally mapped against emotions, content and function word categories.
For example, words like “love” and “nice” can indicate positive emotions [41]. The leisure
content category is associated with words such as “cook” and “movie” [41].

By conducting multiple studies using LIWC and investigating studies of other re-
searchers, Chung and Pennebaker [8] found function words to encode different information.
For example, Newman et al. [36] found that lying people were using function words
measurably differently than truth-speaking people. Among other characteristics, liars
were likelier to use fewer first-person singular pronouns and fewer exclusive words such
as “but” or “except”. A more frequent use of the pronoun “I” was also associated with
higher blood pressure [8] as well as depression [8, 11]. Summarising three different studies,
Chung and Pennebaker [8] found the use of pronouns to be an even better indicator for
depression than the appearance of negative emotion words. Analogously, Chung and
Pennebaker [8] attributed the frequent use of third person pronouns such as “she” and
“they” positive effects on a person’s well-being. By inspecting dialogues, the authors
further found that people of lower status use the word “I” more frequently. Thus the
relationship between two communicating parties may be subtly encoded. Most studies of
Chung and Pennebaker [8] analysed English text of US-American participants. However,
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when comparing results with English text that was translated from Japanese they found
differences in the pronoun use and concluded that there are cultural differences in their
use.

In sum, a person’s use of function words and especially pronouns may unknowingly
encode interesting information. In particular, “I” and “you” have been shown to correlate
with the absence or existence of disputes. Due to the presumed effects of “I” and “you”
and the broad range of information function words seem to encode, we hope to gain
further insights and potentially detect new correlations. To our knowledge, no efforts
have yet been made to determine whether connections between function words as a whole
and constructive or disruptive communication in textual discussions exist. Therefore,
we decided to not only do full text classification but classification exclusively respecting
function words as well. The later classification may then give answers to RQ3, which
asked if function words alone contain sufficient information to deduce whether a message
is constructive or disruptive. As LIWC is a commercial software, we did not apply it to
the AfD discussions. Nevertheless, results of studies conducted with LIWC highlight the
importance of function words.
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3. Related Work

In this chapter, research is presented that has already been carried out on conflicts
on Wikipedia, Wikipedia discussions and textual discussions in general. Furthermore,
information on research on vandalism detection is given, which is related to our work.

Vandalism is defined by a Wikipedia policy [W36] as the act of wilfully editing existing
or creating new pages with the goal to harm Wikipedia. The policy highlights that,
independent of the quality, any edits made with the intention to improve Wikipedia are
not to be understood as vandalism. Therefore, articles that are obviously vandalism are
not part of AfD discussions [W18]. Instead, they may be immediately deleted [W23].
This thesis aims to determine the impact of words in serious discussions that have the
goal of reaching consensus. Hence, there is no interest in vandalism to us but only in
posts made in good faith. We suspect the AfD discussions to attract few vandals because
vandalising these pages causes relatively little harm to Wikipedia considering that not
many people view them. Although limited, our experiences while working with these
discussions support this assumption as we rarely saw any instances of vandalism. So,
despite vandalism also being detrimental to rational and objective discussions, it differs
from our goals to analyse good-faith discussions.

If not specified otherwise, the word user hereafter describes anyone who visits Wikipedia
either for gathering information or for any form of contribution. A contribution is
any active interaction made with Wikipedia such as writing articles, participating in
discussions, reverting changes and the like. The word glseditor will be used to refer to
the subset of users that contribute to Wikipedia, e.g. by writing articles or participating
in discussions.

3.1. Conflicts and Disputes

This section presents research done on textual conflicts and discussions. The researchers’
intentions varied from analyses to gain insights about the communication culture of users
to the detection of disputes.

Our interest is to textually analyse posts to determine which ones no longer objectively
address the relevance of an article and instead interrupt the discussion e.g. by containing
personal attacks against other users. Yasseri et al. [56] on the other hand set out to detect
and analyse conflicts during the collaborative editing process on the article itself. They
have processed Wikipedia to detect collaboration conflicts called editorial wars (short:
Edit wars). Edit wars are characterised by groups sharing different opinions trying to
enforce their opinion in an article. Discussions related to the collaboration of an article
happen on their respective talk pages. A talk page is a separate page dedicated solely
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to the discussion of its associated article [W35]. The conflicts analysed by Yasseri et al.
[56] take place on articles as well as their talk pages. The authors moreover set out to
separate edit wars from pure vandalism and focus on serious discussions in good faith
like we do as well. Edit wars are often accompanied by vandalism and reversions of the
article to older revisions.

Deletion discussions end within a few weeks after a consensus was formed [W25]. Edit
wars however often span longer or even an indefinite time. Yasseri et al. [56] distinguish
three types of such conflicts. The first is when the war ends and a consensus is reached.
A second type is identified by the authors as reoccurring phases of temporary consensus
where a consensus seems to be reached multiple times but will always be broken up by
another edit war phase. The last type is never-ending wars, which the authors identified
to be typical for highly controversial topics such as the Liancourt Rocks [W13] that both
Japan and Korea claim as their land. Yasseri et al. [56] did not find a correlation between
the edit frequency of articles and conflicts.

To a reasonable extent, the length of the article’s talk pages was an indicator for
conflicts. However, the authors found it to be true for the English but not e.g. the
Hungarian Wikipedia. Therefore, their approach to reliably detect conflicts in articles
instead considers the number of editors E contributing to an article and a measure
based on reversions [51]. Equation 3.1 shows the formula to calculate their controversy
measurement M with the assumption that a high number of editors active in a discussion
is an indicator for an edit war. Nd

i is the number of edits of the disputed article by the
editor d of revision i. Revision i was reverted by the editor r of revision j for whom
likewise N r

j is the number of their edits. Although not captured by this formula, Sumi

et al. [51] restrict the pairs (Nd
i , N

r
j ) to those of mutual reversions. That is, the editor

of revision i and j must both have reverted at least one revision of the other editor
at some point. Thus, single direction reversions which are often a result of restoring a
vandalised article to a prior state, are not weighted. Mutual reversions with at least one
participant having vandalised the article contribute little weight due to considering only
the minimum of each revision pair. The reason for this is that vandalism likely leads to
an editor being blocked and thus they may no longer participate in a discussion for some
timeframe [W21]. Conversely, conflicts between long-term editors are heavily weighted as
the authors assume that such create more controversy.

M = E ·
∑

(Nd
i ,N

r
j )<max

min(Nd
i , N

r
j ) (3.1)

Ignoring the highest pair of mutual reversions prevents two heavily—perhaps even
personally—fighting editors from skewing the result. Yasseri et al. [57] were able to
successfully apply this measure to ten different language editions of Wikipedia—including
such diverse languages as English, Arabic and Czech. They found the three most
controversial categories to be politics, countries such as geographical locations or cities
and religion.

While Yasseri et al. [56] detected and analysed the characteristics of conflicts in articles,
Laniado et al. [29] set out to investigate editor interaction on article talk pages. For
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every talk page, they built a tree with the article page as root and discussion comments
as children. Replies to comments were treated as children to their original comment.
Inspecting the height of the trees as well as the amount of nodes, Laniado et al. [29]
determined extensively discussed categories. These categories are comparable to those
found by Yasseri et al. [57] although Laniado et al. [29] only analysed the English edition
of Wikipedia. Yet, as they chose different categories, Laniado et al. [29] additionally
found philosophical and law related articles to attract lengthy discussions on their talk
pages. In regard to the trees of such pages, this means that they contain many leaves
with high depth. Furthermore, they found that editors, who reply to many others, mostly
replied to inexperienced editors. Users who received many replies from others, frequently
engaged in discussions with others. This analysis is restricted to a social networking level
of interacting editors. In contrast, the goal of this thesis is the investigation on a content
level instead of learning about the general Wikipedia communication culture.

Hassan et al. [23] developed a classifier to determine the attitude of Usenet users in
threaded online discussions towards each other. They distinguish between positive and
negative attitude. Among others, the first includes agreement and praise, whereas the
negative attitude includes disagreement or insults. Their task therefore differs from ours
in that we distinguish in disruptive posts and constructive ones. That is, insults often
indicate disruptive posts. Yet, we regard disagreement as legitimate part of discussions
and hence classify such posts as constructive as long as they do not contain personal
attacks or similar. Hassan et al. [23] analyse data replies to other users extracted
from various Usenet discussion groups. They constructed a graph from the words of
each sentence in which they link words semantically related to each other or related by
statistical co-occurrence. It is used to build Markov models, which are stochastic models.
Those are used in a support vector machine (short: SVM) which achieves an F1 score of
80.2% and an accuracy of 80.3%. Both are evaluation metrics which are introduced in
more detail in Section 5.2. The performance is notably better than our results.

Wang and Cardie [52] built a binary classifier for online dispute detection on Wikipedia
talk pages. They performed a sentiment analysis on a sentence level and determined
disputes according to the relation of positive to negative sentiments. Different to our
approach, Wang and Cardie [52] predicted whether there is a dispute or not for whole
discussions instead of single posts. The authors compiled a text corpus for testing
by talk pages that are tagged with labels indicating disputes such as “DISPUTED”. For
non-disputed data, they referred to the absence of such tags on talk pages. Training
took place on the Authority and Alignment in Wikipedia Discussions (short: AAWD) [3]
corpus. The corpus consists of 365 discussions from talk pages that have been manually
annotated by two or more annotators each. Relevant for the classifier developed by
Wang and Cardie [52] are the alignment moves annotated by Bender et al. [3]. These are
labels on a sentence level that categorise whether they express agreement or disagreement
towards one or more other participants of the discussion. Besides the sentiment analysis,
Bender et al. [3] also considered information about the discussion in total. Among others,
their classifier additionally respected the length of replies, the number of editors active
in the discussion and the topical category this discussion takes place in. Bender et al.
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[3] note that arguments lead to longer answers. Similar to Sumi et al. [51], they argue
that the participation of more editors in a discussion increases the likelihood of a dispute
appearing. The authors furthermore made their classifier respect the category of the
article being discussed as they argue that topics like politics or religion are likely to
attract disputes. They used an SVM as classifier that respected all these features and
returned an F1 score of 78.25% and an accuracy of 80.00%.

3.2. Vandalism Detection

Software tools that aid editors and especially administrators in detecting and remov-
ing vandalism play an important role in countering deliberate attempts of damaging
Wikipedia [15]. Thus, developing algorithms that can accurately detect vandalism is
an active field of research with manifold approaches of which a few are subsequently
presented. Vandalism in posts is similar to disruptive posts in that both are detrimental
to discussions. Yet, we assume good faith in what we call disruptive posts, whereas van-
dalism aims at wilfully harming Wikipedia. The presented vandalism detection solutions
textually analyse individual posts’ contents like in our approach. However, most also
consider additional features such as metadata or structural information to improve their
predictions.

Chin et al. [7] employ a bigram language model on article text to detect vandalism
independent of any contributors. Their language model returns various measurements and
statistics such as a post’s number of words or perplexity, a commonly used measurement
for evaluating language models. These are then classified by an SVM, logistic regression
or decision trees. Instead of using a big data set, the authors tested this approach only on
two of the most vandalised articles. They found decision trees to perform best. Moreover,
Chin et al. [7] found little overlap in the vandalism detected by the SVM and logistic
regression. Thus, they conclude that combined methods could further improve their
vandalism detection approach.

Harpalani et al. [22] use trigram language models together with other features including
the use of words from colloquial and vulgar language as well as objectiveness measurements.
However, the authors saw the biggest prediction improvements when considering features
based on a probabilistic context free grammar (short: PCFG). PCFGs are grammars
whose rules are assigned a probability derived from the frequency of the rules being used
in the training data [5]. Similar to a language model, Harpalani et al. [22] used a PCFG
to detect a common writing style of vandals.

Adler et al. [2] on the other hand built a classifier respecting multiple features including
a trust/reputation model of users. It calculates reputations per user and per country. The
later is determined by the contributor’s IP-address. Contribution metadata is another
feature that the classifier by Adler et al. [2] respects. Among others, it considers the
comment length and the time since the last edit. Extraordinarily short or long comments
as well as frequently edited articles are an indication for vandalism [2, 54]. Another
feature is the analysis of the contributed text for a high amount of uppercase letters,
which vandals use for their posts to gain attention [33, 43]. The authors also considered
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language features, namely the use of pronouns and words indicating biased contributions
such as superlatives or bad style, e.g. colloquial language. Their motivation however is
not based on the psychological effects of “I”- and “You”-messages but on their indication
for non-objective contributions. This is rational considering that their focus was to detect
vandalism on article pages where objective information should be compiled. As article
pages provide contents that are of interest for the majority of people visiting Wikipedia,
these are the main goal for vandals to gain attention and create great harm to Wikipedia.
Therefore, current vandalism detection algorithms often focus on vandalism of article
pages, whereas this thesis concentrates on discussions in which good-faith editors display
misbehaviour. Nonetheless, the related topic of vandalism detection shows that there
are many different features of Wikipedia contributions which successful classifiers may
consider.

In conclusion, Wikipedia is actively used for discussion and interaction with other
editors. The communication and interaction can remain peacefully constructive even over
longer times. But there are also disputes of varying lengths of which some halt productive
collaboration. In an effort to ensure good article quality and a minimum amount of
article relevance, AfD discussions are intended as a tool for such peacefully constructive
discussions. Nevertheless, some also transform into misbehaviour and are of particular
interest to us. These incidents are per policy not vandalism as they are mostly based
upon good-faith contributions that drift into personal attacks or harassment. Existing
research on textual discussions and especially on Wikipedia discussions either focuses on
the discussion as a whole or distinguishes between agreement and disagreement. In this
thesis, however, we regard disagreement as a natural part of discussions and focus on
linguistic characteristics of messages that are detrimental to collaborative processes due to
e.g. verbally attacking other editors. Therefore, we solely consider text written by editors
whereas other approaches often additionally or exclusively use structural approaches and
other features. For example, networks were built from posts or edit and reply frequency
were evaluated in previous research. To the best of our knowledge, this thesis marks the
first efforts to evaluate textual discussions in a large scale for determining characteristics
of language that indicate disruptive posts. Likewise, evaluations for the effect of “I”-
and “You”-messages and function words in this setting were yet missing. The following
chapters explain our approach from data preparation over test setups to results.
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4. Data Extraction and Preprocessing

We processed the Wikipedia data dumps from the second of June 20151 which were the
most recent at that time. They include all Wikipedia pages as well as the complete
Wikipedia log, which documents actions including account creation, article deletion,
blocking of users [W7]. Relevant for this thesis are the documented blocks. Hence, we
filtered the log accordingly. Hereafter, the filtered log will be referred to as block log
as it is done on Wikipedia as well [W1]. 326, 538 AfD discussion pages and 3, 332, 551
registered occurrences of editors being blocked were found in the data dumps. The
following Sections 4.1 and 4.4 go into detail about data properties of the AfD discussions
and blocks respectively. Moreover, they describe our approaches and design decisions for
preprocessing the data.

4.1. Articles for Deletion Discussions

AfDs are Wikipedia pages, which are used to discuss whether an article should be deleted.
Many arguments revolve around whether an article fulfills the relevancy criteria [W29]
of Wikipedia or not. That is, articles that are not deemed sufficiently relevant by
the Wikipedia community will be deleted. Discussions often become heated due to
disagreement between the two user groups called inclusionists and deletionists [W17].
Most of the time, an editor cannot be labelled as belonging to only one of the two groups
but leaning towards one in certain topics. The inclusionists argue that most articles are
worth keeping, i.e. should not be deleted, as long as they are relevant to a few people [W4].
This stance is motivated by the idea that contrary to a printed encyclopedia, the cost for
one more article is negligible. Deletionists on the other hand argue that an article must
be interesting to many people for fulfilling the relevancy standards of Wikipedia and
can thus be kept [W4]. As a result, AfD discussions provide a great amount of human
discussions featuring disagreement.

The procedure of an AfD discussion is as follows [W18]. If an article potentially fails
to meet Wikipedia’s quality standards, it may be nominated for deletion. However, if
an article clearly validates Wikipedia’s rules, e.g. contains copyright infringement or
was unambiguously invented, it can be flagged for immediate deletion [W24]. An AfD
nomination is normally done together with a short text describing why the article should
be deleted according to the nominator. A dedicated AfD discussion page must then
be created with the article’s title as its title preceded by “Wikipedia:Articles for

deletion/”. Other editors may use it to discuss the quality of the article and to express
their opinion about what should happen with the article in question. Besides keeping

1https://dumps.wikimedia.org/enwiki/20150602/ – last accessed 13 July 2015, 15:20
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or deleting the article, editors may also recommend actions such as merging it with
another article. Usually, the AfD discussion pages are actively used for seven days to
reach consensus on what action to take. Editors can only articulate recommendations,
meaning that their statements are not votes and the discussions are not resolved by a
majority decision. An administrator will consider all user-made recommendations and
determine at their own discretion the most rational action that conforms to the Wikipedia
policies. According to the guideline, the deciding administrator should not take part in
the discussion and should not be involved in the discussed topic to prevent bias as much
as possible. Nevertheless, it is not guaranteed that these guidelines are complied with by
all participants.

4.2. Identifying and Isolating Posts

This section describes how individual posts by editors are obtained. The Wikipedia
data dumps contain streamable, compressed archives of all pages together with all their
revisions. There are no separate dumps that only contain AfD discussions. The pages
and revisions are encoded as XML-files and AfD discussions are regular Wikipedia pages
whose title starts with “Wikipedia:Articles for deletion/”. Hence, we filtered the
approximately 98 Gigabytes of archives according to the pages’ title. We excluded
summary pages which embedded old AfD discussions for documentation purposes. This
was done to prevent duplicate data. The result was 29 Gigabytes of AfD discussions
stored in uncompressed XML-files.

The data dumps do not include article modification histories. I.e. instead of computing
and storing the differences between two revisions, every Wikipedia article revision consists
of the complete text in this revision. Yet, for analysing editor posts on AfD discussions, it
is crucial to separate them from the others. There are guidelines and recommendations for
editors on how to communicate on discussion pages so that each editor’s contribution can
be clearly distinguished [W11, W31]. However, both guidelines and recommendations
are not being enforced and are not always adhered to. Furthermore, Wikipedia pages
are frequently being reverted to an earlier revision due to vandalism. Reverting editors
inevitably introduce a lot of changes in the text which should not be attributed to them as
they did not author the content. Likewise, if editors move text—e.g. a sentence—written
by another editor to another place in the revision text, they should not be credited
for this text. Thus, determining what text an editor introduced in some revision is a
non-trivial task that must take all prior revisions into account.

Flöck and Rodchenko [14] addressed this problem by developing the algorithm WikiWho
which associates words from a Wikipedia page revision with an editor that it assumes to
be its author. The authors created a gold standard from Wikipedia articles which was
then used for an evaluation in which their algorithm achieved a 95% precision. In so
doing, WikiWho performed 10% better in this evaluation than the prior state-of-the-art
algorithm by De Alfaro and Shavlovsky [10] while also executing faster [14]. Hence, we
chose WikiWho for attributing authorship of words in revisions when extracting user
posts. We only considered the contributions by registered users. This is motivated by
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the fact that anonymous users are only distinguished by their IP address, which is not a
unique identifier. A later presented approach merges posts by the same editor for the
analysis and thus requires each post’s author to be uniquely identifyable. Moreover,
anonymous Wikipedia editors are likelier to vandalise pages than registered editors [25].

4.3. Removing Non-Linguistic and Automatically Generated
Contents from Posts

After single posts have been extracted and those by anonymous users have been filtered,
their contents have to be processed before they can be used in our later analysis. The
purpose of this processing is to remove non-linguistic content like symbols as well as
content that was not created by the post’s author. Subsequently, we describe our removal
of markup, templates and signatures.

As we are interested in determining which words negatively affect a constructive,
objective collaboration, we want to ignore any forms of markup. Wikipedia allows the
use of a subset of elements from the HyperText Markup Language in version 5 (short:
HTML5 ) [W6] as well as Cascading Style Sheets (short: CSS ) for formatting page
contents [W5]. HTML element tags and attributes are removed, yet their contents are
kept. CSS rules embedded in HTML attributes are therewith removed as well.

Wikipedia also supports a dedicated markup language called wikitext [W16]. Wikitext
enables editors to format their text e.g. by using lists, making text bold or adding
hyperlinks [W12]. It is converted to and rendered as HTML when a page containing
this markup is viewed in a Web browser [W16]. Therefore, after determining an editor’s
contribution to a discussion, it must be processed to only contain words. The meaning
of markup such as italics or bold is not standardised. Hence, for reasons of simplicity,
we refrain from allowing the formatting to influence the weights of their affected words.
However, it could be considered to e.g. attribute higher importance to a word in bold
formatting and lesser to a struck through word in future work.

Näıvely removing all non-alphabetical symbols is insufficient for example in the context
of marked up external hyperlinks. Hyperlinks are surrounded by square brackets like
“[http://ddg.gg]”. External links require one square bracket each, whereas Wikipedia
internal links require two. Depending on the implementation, the removal of non-
alphabetical symbols would result in one or more words being attributed to the editor as
intentionally used in their style of communication. I.e. in this example it could falsely be
assumed that an editor wrote the words “http”, “ddg” and “gg”. Especially URIs with
long paths or query strings would add many words and thus, we ignore URIs marked up
as links. Wikitext furthermore offers editors to provide a text for a hyperlink by using a
vertical bar symbol “|”. The text is shown instead of its URI when viewing the page
e.g. “[http://ddg.gg|only show this text]”. While we ignore the URI, as it is most
likely beyond the control of the editors, any describing text can be freely chosen by them
and will be taken into account in our setup.

After manually inspecting many AfD discussions, it became clear that links are often
used to refer to internal Wikipedia pages like articles or policy pages. Linking to policy
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pages is frequently done to draw another editor’s attention to why their behaviour might be
inappropriate for the ongoing discussion. These links are in the form of “[[Wikipedia:No
personal attacks]]” and “[[WP:NPA]]”. They can contain a hyperlink text similar
to external links. We process internal Wikipedia links differently than external ones.
The internal links beginning with “Wikipedia:” or “WP:” are retained and symbols
including spaces removed. Thus, they will appear as one word to the classifiers, yet
can be distinguished from regular communication contents. For example, “[[WP:NPA]]”
would become “WPNPA”. If there is a link text, it will be ignored as long as it is not
different to the actual link.

Wikipedia templates [W9] also require special processing. They are used to easily
insert commonly used text into pages such as page headers that describe the current
state of an AfD discussion. As their contents have most likely been written by editors
other than the editors who embed one or more of these in their posts, they should not be
considered in our analysis. Templates can be included via transclusion [W10]. This is
done by using two braces before and after the template name. For example, the “Like”
template can be included by inserting the text “{{Like}}”. The template’s content will
replace the template code “{{Like}}” when the page is rendered but the source code of
the page will still show the template code. These templates are quite easy to detect and
are removed during our content processing steps.

However, templates can also be substituted [W8]. The referred template’s content
is then inserted in its most recent revision into the source code of the page. For
example, the “Like” template is substituted by adding “{{subst:Like}}” to the page.
Most AfD-specific templates are to be substituted [cf. W18, W33]. The task to detect
substituted templates is thus non-trivial: All revisions of every template existing prior
to the creation of the page in question would have to be matched against the full text
of all AfD discussion revisions. That is, a template detection would have to be applied
before the WikiWho algorithm, because WikiWho does not guarantee to reconstruct
revisions correctly. The algorithm moreover discards any spaces. We refrained from
implementing an algorithm which would detect any substituted templates due to the
associated computational overhead. Beyond that, most templates are rarely used or
even substituted in AfD discussions in our experience. This is because templates are
mainly embedded in other spaces than in AfD discussions such as the user or article
space; cf. the list of Wikipedia templates [W3]. Nonetheless, there are a few templates
built to be used in AfD discussions [W2]. They are mainly used to open such a discussion
or state that it has been finished together with its outcome. As they are a recurring
part of AfD discussions, we have implemented a rudimentary detection and removal of
these templates. Due to the complexity of this task, attempts to automatically build
detection mechanisms from the revisions of all AfD templates without heavily impacting
the performance failed. Instead, we identified the most commonly used templates in AfD
discussions posts by grouping identical posts and counting them. Thereafter, we built
regular expressions to match and remove frequently used AfD templates in posts.

As per guideline [W31], many editors append a signature to their posts. There is
also a bot called SineBot [W14] dedicated to adding signatures for editors who forgot
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to add or purposely left out their signature. Posts by this bot alongside with other
posts by registered editors whose user names ends in “Bot” are ignored because we
are interested only in human communication. This action follows the naming scheme
described in the Wikipedia user name policy [W34]. Signatures should be removed for
two reasons. First, they can be customised by registered users and thereby introduce new
words to their posts, which could influence the results. Second, customised signatures
as well as signatures in general can be used to identify authors. However, classifiers
should not learn to detect editors and decide upon their behaviour but make predictions
only on the actual discussion contents. Consequently, we match and remove all regular
signatures as well as many customised ones. Due to the vast possibilities of customising
signatures using wikitext, HTML and CSS, we settled for a removal of many but not all
customised signatures. This design decision and its potential effects are further discussed
in chapter 8.

Performing the removal of automatically generated and non-linguistic contents after
applying the WikiWho algorithm was performance motivated: Without identifying single
contributions first, the removal would have had to be done on the most recent and all
previous contributions for each revision.

4.4. Preprocessing of blocks

Besides extracting and preprocessing the posts of AfD discussions, similar has to be done
for the information about blocked users retrieved from the block log. At first, all blocks
issued on anonymous users were removed as these are distinguished only by their IP
address which is not unique. This is done analogously to our post removal by anonymous
editors. Without this precaution, multiple people could issue edits from the same IP
address, with some being constructive and others disruptive. As a result of the filtering,
the number of blocks was reduced from 3, 332, 551 to 821, 074.

Per block, the block log contains a timestamp, the blocked user name, the user name
of the administrator issuing the block together with the administrator’s internal user ID,
and a comment. As we ignore anonymous editors, the user names are unique. Hence,
it is not a problem that an internal ID for blocked users is missing. Each comment
should legitimise its associated block. We use these comments to determine whether a
block is relevant for our analysis. The comment can be freely chosen by the blocking
administrator or even left blank. Therefore, some comments are more helpful than others
when trying to determine which blocks are of interest. For example, comments such as
“personal attacks” or “harassment” are the result of disruptive contributions in which
an editor must have verbally attacked another user. Conversely, “Willy” as a reason
cannot be understood without a context. Here, the comment refers to the user “Willy on
Wheels” who is claimed to have created more than a thousand accounts for the purpose
of vandalising Wikipedia pages [W15]. Judging from the block log alone, these claims
seem realistic.

There are two options to determine which blocks should be considered based on their
comments. One is a whitelisting approach, where only blocks are extracted that match
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a set of words which are indicative for preceded disruptive contributions. The other
option is to blacklist words that indicate prior misbehaviour unrelated to an editor’s
style of communication. For whitelisting, we considered the words “personal attacks”,
“harassment”, “vandalism”, “hating” and “legal threats”. We included “vandalism” as
vandalism has disturbing effects on discussions and is thus more similar to disruptive
than to constructive posts. As the comments are freely chosen texts by administrators,
they may incorrectly claim a disruptive post to be vandalism because on first sight, both
might look similar and may result in a block. Wikipedia shortcuts [W30] were also
considered. These are internal links that in this case link to the respective policies. For
example the policy explaining that personal attacks should be avoided and may lead
to blocks [W28] is abbreviated using the shortcuts “WP:NPA” and “WP:PERSONAL”.
Even with additionally respecting word stems such as “vandal” or “harass”, the whitelist
approach resulted in merely 16.548 blocks issued on registered Wikipedia editors. The
number does not take into account that some of the editors will not have been active in
an AfD discussion at all. Therefore, even fewer data on blocked editors would be available.
Furthermore, it disregards more freely worded and context-sensitive comments such as
“being a dick after being blocked for the same thing”, where “the same thing”
refers to an earlier block issued due to “attacks, incivility” by the same administrator on
the same editor.

For the blacklisting approach, only those blocks were removed which were unlikely
to be issued because of a disruptive communication style by humans. Blocks whose
legitimation comment contained the word “bot” were removed as our interest lies in human
communication and not e.g. in bots malfunctioning. Naturally, blocks that were issued
only for testing purposes were also ignored. Sometimes editors want to force themselves to
take a break off contributing to Wikipedia and hence request being blocked [W20]. As the
motivation behind such a block is unlikely to be related to disruptive editing, we ignore it
as well. Blocks that were issued due to the contents being spam or advertisements were
also ignored. We do not aim to build spam detection but instead we are interested in
the used language that indicates misbehaviour such as personal attacks or legal threats.
All blocks of editors that concerned copyright infringement have been removed. This
was done, because these claims cannot be automatically detected without matching the
contributions against a great amount of external data sources. Moreover, the detection of
copyright infringement is not the goal of this thesis. Finally, we discarded the blocking of
editors associated with not citing any or solely untrustworthy sources. This misbehaviour
must have happened on actual article pages which we do not consider and thus a certain
style of communication on AfD pages cannot be derived from it. The blacklisting approach
returned 800, 737 blocks and also yielded better results for all classifiers.

We determined 746, 349 registered editors that have been blocked at least once according
to the block log with respect to our previously described criteria. On the other hand,
25, 743, 749 registered users [W38] have never been blocked. In other words, merely
2.82% of all registered Wikipedia users have been blocked at least once. But of the
25, 743, 749 users, there are also users who registered an account but have never been
active. However, considering all 111, 759 editors who have been active in at least one
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AfD discussion, 16, 314 or 14.6% of all AfD participants have been blocked at some time.
Therefore, the AfD discussions offer a large pool of human textual discussions that partly
created enough arousal for an administrator to intervene and block an editor.
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5. Building an Annotated Data Set

For learning and testing classifiers, we need an annotated data set. That is, we need posts
that are labelled as disruptive or constructive. However, none of the entries in the block
log is associated with a user contribution. Thus, it is unclear, what contribution led to a
block being issued. Moreover, such a data set did not yet exist for AfD discussions. The
existing annotated data set AAWD [3] was built from general Wikipedia talk pages. It
contains merely 3000 additions of text and was annotated using data from 2008. However,
to prevent overfitting we were interested in a bigger data set. It is also unclear, whether
the language of discussions has changed within the years and thus, whether annotations
from 2008 still represent current discussion styles. At least when considering the oldest
AfD discussions, we found that our classifiers perform notably different as later presented
in Section 7.3. Moreover, regarding the grading scale by Landis and Koch [28], the
annotators only showed “moderate agreement” with a Cohen’s kappa coefficient of 0.50.
In addition, only agreement and disagreement were labelled. A subset of what Bender
et al. [3] identified as disagreement, matches our definition of disruptive posts. Therefore,
we decided against using AAWD.

Manually annotating posts was not an option, because it would have only been feasible
with a small subset of data. Yet, we were interested in gathering information from the
analysis of large-scale textual discussions. We assumed that disruptive behaviour must
have preceded a block. In this chapter, we describe how we generated an annotated data
set of constructive and disruptive posts with this assumption in mind.

Assuming that either all or only the last n posts by editors before they were blocked led
to said block, may result in false predictions. For example, there could exist a scenario
in which formerly constructive editors took a longer break from editing and then were
blocked due to their new contributions. As they were not blocked for their old posts, it
is unlikely that these had been disruptive. Yet, the old posts could then be classified
as such in our data set. Therefore, we chose to assume that the posts made by editors
shortly before they blocked were the cause of it. This raises the question: How much
time should be considered before and up to a block, in which we assume posts by the
blocked authors to be disruptive? Hereafter, we call this timespan a timeframe.

For every post, we calculated the time between the creation of this post and the next
time its author was blocked. Posts whose authors were never blocked afterwards, were
considered to have been constructive regardless of any applied timeframe. This data was
then used to run tests using different timeframes and compare the performance of our
full text classifiers. The classifiers are described in more detail in Section 5.1. In the then
ensuing section, the metrics we chose for evaluating classifier performance throughout
this thesis are presented. Successively, the test setup and results for determining the best
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timeframe are shown. Finally, some analysis is done on the newly generated annotated
data set without the use of classifiers but by inspecting the term occurence frequencies.

5.1. Classifiers

For choosing a timeframe and for our later analyses, we decided to use a support vector
machine (short: SVM), a näıve Bayes (short: NB) classifier and a language model (short:
LM) classifier. Regarding the NB classifier and support vector machine, two commonly
used classifiers have been selected. SVMs are known to be well-suited for text classification
and to perform better than NB classifiers [24, 55] in this context. Therefore, we expected
to see similar performance differences for our corpus. The language model classifier was
chosen because it fits our analysis well in which we want to better understand language
used in discussions. Both, the LM and the NB classifier, are probabilistic models. They
are the same when considering their simplest implementations [cf. e.g. 31, 39]. Therefore,
we expected them to perform at least comparably to each other. Yet, our LM classifier
does not consider words independently like an NB classifier but instead uses a small
history of words. Due to inspecting words in a local context, we suspected that an LM
classifier may also outperform an NB classifier. However, the results, as later presented
in chapter 7, show that the NB classifier performs better than the LM classifier. The
SVM on the other hand did indeed outperform the other classifiers.

After preprocessing, the posts containing English words, markup, numbers, punctuation
marks and other symbols had been reduced to words separated by one space symbol each.
We declare the set of terms as the vocabulary V := {t1, t2, . . . , tn}. In this sense, posts
are elements of the set of sequences S := V ∗ constructable from all terms. A particular
post will be denoted as sequence s = (w1w2 . . . wm) with a word wi ∈ V . Thereby, it is
possible for wi = wj with i 6= j, i.e. a post can contain multiple occurrences of the same
term. The set of sequences on which the classifiers are learnt will be referred to as SL and
the one on which the classifiers are tested as ST . Thus, it holds that SL ⊂ S and ST ⊂ S
with the possibility of there being an overlap between SL and ST . Such an overlap is
likely for typical AfD discussion posts such as “delete as per nom”, which expresses
that the author agrees with the proposed deletion and the reason given by the creator of
this AfD discussion. The vocabularies containing the unique terms from the sequences
on which the classifiers are learnt and tested are denoted as VL and VT respectively.

The SVM and the NB classifier were both given each post as a term frequency-inverse
document frequency (short: tf-idf ) feature vector. A high tf-idf value indicates an
extraordinarily high presence of a term within a post (term frequency) compared to its
appearance in the complete corpus (document frequency). When a term appears in many
posts, its document frequency is high. Using the inverse ensures that the tf-idf value
shrinks consequently to penalise common terms like conjunctions that do not represent
a post’s content well. This allows retaining stop words in posts, which are essential for
the function word analysis, while reducing their otherwise heavy impact. In small tests,
we found little difference between the performance of either using a tf-idf or a tf feature
vector. In the context of RQ4, we decided to use a tf-idf feature vector for finding terms
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other than function words that are characteristic for disruptive or constructive messages.
This did not interfere with determining the effects of function words, as required by RQ3,
because separate classifications that solely considered function words were done as well.

Given the great amount of posts to analyse, the feature vectors for the SVM and NB
classifiers have a high dimensionality while being sparse. Thus, we applied stemming
e.g. to reduce conjugated verbs to their word stem. In many different classification
tasks, very short words like one letter words or stop words are being pruned to reduce
the vector size. We refrain from doing so to ensure that the effect of function words,
which include stop words and are often very short such as “I” or “a”, can be studied.
RapidMiner’s snowball stemmer was used for the task of stemming as its result were
slightly better than the Porter and equal to the Lovins stemmer which are also included in
RapidMiner. The following sections present the general concepts of our chosen classifiers
individually together with some design choices we made. We used RapidMiner1 Studio
5.3, a software frequently used for machine learning and data mining tasks, for our
SVM and NB classifications. The LM classification process was developed using the
Generalized Language Model Toolkit2.

5.1.1. Support Vector Machine

Support vector machines [9] are supervised learning models for solving binary classification
tasks. They treat elements of a class—in our case each represented by a tf-idf feature
vector—as points in a high-dimensional space. Using training data, an SVM tries to
calculate the optimal hyperplane h for separating the points of both classes as shown in
Figure 5.1. A hyperplane is optimal when it maximises the margin between the elements
of each class closest to the hyperplane. Only the three circled elements in the left plot of
Figure 5.1 determine the margins and as a consequence thereof the hyperplane. Thus,
they are called support vectors.

In many cases, the elements of the two classes are not linearly separable without errors.
Then, a soft margin hyperplane can be used that tolerates a minimal amount of errors.
This is shown in the right plot of Figure 5.1. In cases where the data is not linearly
separable as depicted in the left plot of Figure 5.2, Cortes and Vapnik [9] propose the
transformation of the vectors into higher features spaces. The right plot of Figure 5.2
illustrates this by using a mapping function φ. Instead of transforming all points into a
higher feature space, kernel functions are used. They can calculate a dot product of two
points in a higher dimensional space as needed for determining the hyperplane as well
as for the actual nonlinear classification. The interested reader may refer to Cortes and
Vapnik [9]. Our classifier uses a dot kernel k(u, v) = u · v, say the inner product of u and
v. Due to limited time for this thesis, other kernels were not tested.

1https://rapidminer.com/ – last accessed 22 January 2016, 15:30
2https://github.com/renepickhardt/generalized-language-modeling-toolkit/tree/cebbff8 –
last accessed 22 January 2016, 15:30
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Figure 5.1.: Two elements of different classes are separated by an optimal hyperplane h
as the margins (dashed lines) are maximised. Circled elements are support
vectors. In the right plot, the use of a soft margin allows tolerating an
error, indicated by the black arrow.

Figure 5.2.: The left plot shows a dataset of two classes which are not linearly separable
in a one-dimensional space. In the right plot, the data has been transformed
into a two-dimensional space by using a mapping function φ : R→ R2, x 7→
(x, x2). The classes can thus be separated by a hyperplane h.
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5.1.2. Näıve Bayes Classifier

A näıve Bayes classifier is a probabilistic classifier. We use a multinomial NB classifier in
this thesis. Such a classifier is a unigram model, meaning that it determines probabilities
for words individually instead of considering their usage context [31]. Equation 5.1 shows
the general concept of a multinomial NB classifier [cf. e.g. 31] using tf-idf weights [46].

γNB (s ∈ ST ) = arg max
k∈{0,1}

(
P (Ck) ·

∏
w∈s

P (w | Ck)tf-idf(w)

)
(5.1)

The classifier is applied to a specific post s from the testing data with C := {0, 1} being
the prediction classes where 1 indicates a post that led to a block and 0 one that did
not. Essentially, one classifier is learnt per class and their predictions for s are compared
against each other. The argmax operator returns the class of which the words in s had
the highest probability to belong to. P (Ck) is the general probability for any sequence
to belong to class Ck. Using balanced data, the probability is p = 0.5.

A zero probability would result in the whole product becoming zero. Due to the
sparsity of the feature vector, zero probabilities are likely. Laplace smoothing solves this
problem by adding 1 to the denominator and the number of unique words in the training
data |VL| to the nominator [4]:

P̂Laplace (w | Ck)tf(w,s) =
tf
(
w, SLCk

)
+ 1∑

v∈VL

(
tf
(
v, SLCk

)
+ 1
) (5.2)

For illustration purposes, Equation 5.2 uses term frequency instead of tf-idf for explaining
an estimation of P (w | Ck) using Laplace smoothing. SLCk

is the set of learnt sequences
of class Ck. The term frequency tf(x, SLCk

) is the summed up occurrence frequency
of the term x in all sequences of SLCk

. In this estimation, the term frequency of w is
set into relation to that of the learnt terms v ∈ VL while adding 1 to prevent a result
of zero [26]. With big enough training data, the addition’s effect on the estimated
probabilities becomes negligible. Another option would be Lidstone smoothing which
is a generalisation of Laplace smoothing using any value instead of just 1. However,
using Lidstone smoothing for the NB classifier was not an already available option in
RapidMiner.

5.1.3. Language Model Classifier

The third classifier uses the 4-gram language model with modified Kneser-Ney smoothing
introduced as generalised language model by Pickhardt et al. [42]. An n-gram language
model estimates a probability for a sequence. It does so by analysing each word’s
probability given the local history of the last n− 1 successive words prior to the current
word. It is therefore a probabilistic model. The decision to only consider n words of
a sequence follows a Markov assumption so that full sequences’ probabilities are only
approximated and thus computational efforts are reduced. Simultaneously, it is a necessity
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as it is impossible to have learned all potential sequences. A trivial language model will
therefore calculate a sequence’s probability by calculating the conditional probabilities of
the words wi ∈ s as shown in Equation 5.3.

P (s ∈ ST ) =

|s|∏
i=1

P (wi | wi−n+1 . . . wi−1) (5.3)

Such a trivial implementation however would result in zero probabilities for unseen
terms. Likewise, the confidence of estimations on rare terms would be low. Both cases are
likely to occur, considering that human languages follow Zipf’s law and thus most words
in a text corpus appear only a few times [35]. To overcome the problems introduced by
data sparsity, smoothing techniques are applied. The language model applied to the AfD
discussions uses a modified Kneser-Ney smoothing to solve this task. Essentially, the
smoothing interpolates higher order with lower order models; using relationally growing
discounts for n-grams that occur more frequently. The interested reader may refer to
Chen and Goodman [6].

Pickhardt et al. [42] embodied another concept called skip n-grams. Besides the
interpolation with lower order models as is done in modified Kneser-Ney smoothing,
wildcards are applied to n-grams. A 3-gram model would thus determine P (w3 | w1w2)
by not only interpolating with P (w3 | w2) and P (w3) but also with P (w3 | w1 ) where
the “ ” symbol indicates a wildcard. This reduces data sparsity problems for higher order
models and hence allows a language model to learn relations between words which are
not successive [18]. For example, if a 3-gram model would be learnt on the sentences “I
love you” and “I like you”, skip n-grams would enable it detecting a relation between
“I” and “you” separated by a single word. The model thus learns a context and would
calculate a higher probability for the previously unseen sentence “I envy you” than a
model that does not use skip n-grams.

Similar to the approach of the multinomial NB classifier, we train two separate language
models. One is learnt on posts that led to a block and another on posts that did not.
The class prediction of a statement s is then made by determining the better performing
model for it. To evaluate the performance, we use the perplexity eH with H as given
in Equation 5.4 where P̂GLM is the generalised language model by Pickhardt et al. [42].
Perplexity [16] is a common metric for evaluating language models with lower values
indicating a better model.

H (s ∈ ST ) =
−
∑|s|

i=1 log
(
P̂GLM (s)

)
|s|

(5.4)

5.2. Evaluation Metrics

Accuracy, precision, recall, area under the curve (short: AUC) and F score were chosen
as evaluation metrics. They are commonly used for binary and text classification
evaluation [50]. This section introduces these metrics and explains how they will be
utilised in our classification evaluations.
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Accuracy is the ratio of correct predictions compared to the number of all predictions.
It is the only of our chosen metrics that incorporates the correct prediction of both
disruptive and constructive posts. The others can be calculated for positive predictions—
posts that led to a block—as well as negative predictions which are posts that did not lead
to a block. This thesis’ focus is the detection of disruptive posts for determining the effects
that function words and “I”- and “You”-messages have on this task as well as other terms.
Thus, the positive predictions are of special interest. Positive precision is the probability
that a post, which has been predicted to be disruptive, truly was disruptive. The negative
equivalent is often also called false omission rate and is calculated analogously.

Positive recall is the probability that given a disruptive post, it is predicted as such.
Negative recall is also called fall-out and is calculated as the probability that given a
constructive post, it is predicted as such.

In accordance with our goals, a high positive precision is more important than a high
positive recall for discovering language characteristics. That is, a classifier might predict
fewer disruptive posts but these predictions would then be correct more often. Therefore,
characteristic terms of disruptive posts can rather be retrieved from a classifier with high
prediction.

A high precision or recall can easily be achieved by a bad classifier: If a classifier only
predicts a single disruptive post but does so correctly, it will achieve a positive precision
of 100%. Likewise, if a classifier predicts every post to be disruptive, it will achieve a
positive precision of 100%. However, these two perfect values negatively influence each
other and cannot coexist when a classifier uses this näıve approach. To capture this, the
F score can be used as it incorporates both values. We use the commonly utilised F1
score which is the harmonic mean of precision and recall:

F1 =
2 · precision · recall

precision + recall
(5.5)

Consequently, there is a positive and a negative F1 score.

The AUC is the area under the receiver operating characteristics (short: ROC) graph.
This graph’s x-axis contains the false positives rate whereas the y-axis contains the true
positives rate. All points are sorted by prediction confidence from highest to lowest.
Whereas the other metrics are highly affected by the class distribution, ROC curves are
insensitive to heavily skewed distributions. Naturally, when balancing the data, this
benefit becomes irrelevant. The AUC describes a classifier’s ability to correctly predict
disruptive posts while ignoring any constructive posts. Theoretically, one could also
plot false negatives on the x-axis and true negatives on the y-axis. However, this is
uncommon and not in our interest. Therefore, we do not distinguish between a positive
and a negative AUC. The interested reader may refer to Fawcett [13] for an extensive
description of both ROC and AUC.

Determining the performance of the classifiers with different timeframes is done on
balanced data. Likewise, all later tests but one are executed on balanced data as well.
Thus, accuracy will be used as metrics for the overall performance of classifiers. As for
judging the performance of classifying disruptive posts, the positive F1 score is of special
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interest. Similarly, the AUC will give information about the performance of disruptive
post classification in terms of prediction confidence.

5.3. Deciding on a Timeframe

For constructing an annotated data set, a timeframe must be chosen. Multiple tests were
run using our classifiers on data with different timeframes. The arithmetic mean of their
performances was evaluated to ascertain the best timeframe length. As the classifiers run
for multiple hours and as there are many testable timeframes, our testing was limited to
a few timeframes. In this section, we explain which timeframes were chosen to be tested
and which of these led to the best overall performance.

To not overfit the data and thus to allow detecting general communication patterns, we
were looking for timeframes in which at least 10, 000 blocks were issued on editors who
contributed to an AfD discussion at least once. Consequently, the lowest timeframe was
set to 13 hours in which there were 10, 067 such blocks. We inspected the last post an
editor had made in an AfD discussion before they were blocked with respect to the post’s
temporal distance to said block. Figure 5.3 shows how a growing timeframe increases the
number of these last posts which would be considered disruptive. The number of posts
quickly rises in the beginning with its growth speed decreasing. This suggests that editors
who disruptively act in AfD discussions are blocked soon after their last disruptive posts.
According to the corresponding Wikipedia policy [W21], blocks should only be issued to
ensure a productive and disruption-free environment. As such, they should not be used
for punishing misbehaviour of users and thereby should not be issued on old posts which
no longer affect active discussions. Thus, the longer the considered time between the last
post by an editor in an AfD discussion and their block, the likelier it is for the block to
be related to a contribution elsewhere on Wikipedia. AfD discussions should typically be
closed after seven days [W18]. Therefore, 6 days was chosen as our longest timeframe
for testing, so that an AfD discussion would still be active and benefit from an editor
being blocked. The other timeframes were decided to be 1, 1.5, 2, 2.5, 3, 4 and 5 days
long following the assumption that longer timeframes will eventually lead to worse data
quality.

Within a timeframe of 13 hours, only 0.70% of all posts are disruptive. A classifier
that would always predict a contribution to be constructive would yield a good overall
performance. Thus, the data was balanced to prevent this effect. As a consequence
thereof, the amount of data a classifier has to process is reduced immensely which makes
the process faster. Otherwise, the unbalanced data would have to be sampled to a feasible
subset. Due to the then small amount of disruptive posts, these would likely have been
overfitted.

To make the results between different timeframes more comparable, the classifiers were
always learnt on the same sample size. With longer timeframes, the number of assumed
disruptive posts increases at the cost of the amount of constructive posts. Therefore,
all available disruptive posts for the timeframe of 13 hours were used and for later
timeframes, the same amount was randomly sampled.
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Figure 5.3.: Number of last posts in an AfD discussion prior to their authors being
blocked within a given timeframe in days. The left graph shows the first
seven days of the right graph in more detail.

Figure 5.4.: This stacked line plot shows the average performance of the classifiers
with the various timeframes. The values are the arithmetic mean of the
results from the SVM, NB classifier and LM classifier. All are given as
percentages.
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As can be seen in Figure 5.4, the timeframe of 1 day returned the best results overall.
The figure shows how the values for all metrics peak at the 1 day timeframe and worsen the
longer the timeframe becomes. All specific values used to generate the plot in Figure 5.4
can be found in Table A.1 together with precision and recall values. The positive precision
value is the only one which was not the highest using a 1 day timeframe. It was 49.81%
for 13 hours and 49.29% for 1 day. Nevertheless, this is negligible considering that the 1
day timeframe resulted in the greatest positive F1 score and accuracy. Thus, successive
tests were performed using 1 day as timeframe length.

Due to the missing link between contributions and blocks, we made the assumption
that posts shortly before a block were disruptive. However, there are scenarios where
this assumption is false. This problem will be discussed in chapter 8.

5.4. Data Analysis

Besides through classification, the data was also manually inspected. For this, all AfD
discussions have been separated into single posts, which have been preprocessed, e.g. by
removing wikitext markup. All posts have been labelled as either being disruptive or
constructive according to the 1 day timeframe.

First, the average length of disruptive and constructive posts was compared. The
length was defined as the number of words a post contained. We considered all posts
labelled disruptive within the 1 day timeframe and randomly sampled the same number
of constructive posts. Here, we only discuss concrete values of a single subset of all
available posts because of performance reasons. Analysing and then plotting the length
of 3, 467, 402 posts was not an option. Nonetheless, we repeated this test with different
samples and found similar results. In general, for every data set we found the average
post length always to be significantly longer for disruptive posts. The average disruptive
post is 23.80% longer than a constructive one. That is, the average disruptive post
contains 41 words, whereas the average constructive post only contains 31. However,
with the medians being 17 and 15 respectively, the data is heavily skewed, i.e. it contains
multiple outlier posts with many words. The box plot in Figure 5.5 illustrates this.

In general, shorter posts seem to be less disruptive than longer ones. An explanation
could be that many short posts solely state to keep, merge or delete the article. They
often lack an explanation why the article should be kept, merged or deleted. Such a
post is an unfounded expression of one’s opinion about the quality and relevance of an
article. Naturally, this alone is no reason for being blocked. Personal attacks and similar
disruptive comments can also be made using few words but the data suggests that such
posts are likelier to be verbose.

Table 5.1 shows how often certain terms appeared in the disruptive or constructive
posts in relation to all other words of the posts. All 3, 467, 402 posts have been considered
for these values. Common swear words like “fucking”, “fuck” and “shit” are hardly used
in disruptive posts. With only 6.39‰ of disruptive posts containing any of the three
swear words, the few posts that do, contain the terms multiple times. However, when
they are used, they are quite expressive. For example, the term “shit” is 9.43 times
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Figure 5.5.: This log-scaled box plot shows the differences in lengths of posts which
were assumed to have led to a block and those which were not. It illustrates
that both data sets are skewed and have outliers consisting of many words.
In spite of that, disruptive posts contain more words on average.

likelier to appear in a disruptive than in a constructive post. In sum, with these swear
words alone, a small recall but a high precision could potentially be achieved. Hence,
a collection of swear words would be unlikely to suffice for identifying many disruptive
posts.

The use of “I”- and “You”-messages can also be investigated without using a classifier.
As initially stated, correctly detecting these messages is out of the scope of this thesis.
Instead, terms indicative of “I”- and “You”-messages can be counted like “I”, “you”
but also “myself”, “yourself” and others. The relation of word usage in disruptive to
constructive posts is a less stark contrast for these terms as can be seen in Table 5.1.
However, they are a lot more frequently used: 36.60% of all disruptive and 26.89% of
all constructive posts contain at least one of the terms “I” and “you”. Additionally
considering the terms “me”, “my”, “your”, “myself” and “yourself” increases this to
40.13% and 29.37% respectively. 43.93% of all disruptive and 32.11% of all constructive
posts contain at least two of the terms. Therefore, if these terms and especially “I” and
“you” were strong indicators for constructiveness or disruptiveness, they would improve
the recall noticeably.

In accordance with the assumed effect of “I”- and “You”-messages, “I” appears
significantly more often in constructive than in disruptive posts. Likewise, “you” appears
more than twice as often in disruptive posts. Surprisingly, the terms “me”, “my” and
“myself” appear more frequently in disruptive posts although they are rather typical for
“I”-messages. A possible explanation could be that AfD discussions benefit from objective
posts. These three terms, however, are often used in a subjective context to express the
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term share of words from
disruptive posts (‰)

share of words from
constructive posts (‰)

fucking 0.06 0.00

fuck 0.06 0.01

shit 0.09 0.01

i 6.40 10.70

you 10.64 4.52

me 2.43 1.20

my 3.00 1.68

your 3.05 1.25

myself 0.22 0.13

yourself 0.20 0.10

Table 5.1.: The table shows how commonly a term appears in disruptive or constructive
posts. A bold font indicates that the term appears more frequently in that
class.

author’s personal feelings or thoughts. When they are expressed towards another editor,
they can be framed as a personal attack, which would make them disruptive.

The relation of the occurrence frequency of “I” to “you” also seems to be expressive.
That is, a constructive post contains on average 2.37 times more “I” than “you”. Disrup-
tive ones on the other hand have an average relation of 0.60, i.e. “you” appears nearly
twice as often as “I” in a disruptive post.

On average, there is a significantly higher use of the term “I” in constructive posts as
questioned in RQ1 and the opposite holds true for RQ2. Thus, the results of this simple
data analysis support the research questions when exclusively considering the terms “I”
and “you” as indicators for “I”- and “You”-messages. Interestingly, other terms that
are also likely to encode “I”- and “You”-messages are not in favour of RQ1. The results
of the later classifications will not be able to support RQ1 especially in regard to the
use of the term “I”. RQ4 raised the question which other terms are characteristic for
constructive or disruptive messages. This analysis implies that swear words are a strong
indicator for disruptive messages although they are only rarely used.
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6. Test Setup

This chapter describes the tests and their analysis. The first section introduces the goals
of the later tests. It is thereby explained how our analysis could answer the research
questions. Section 6.2 describes how the tests were conducted in general. Furthermore,
our own approach is introduced which allows the analysis of a short history of an editor’s
posts. As the results in Section 7.2 show, the classifiers perform mostly worse with this
approach. Finally, Section 6.3 describes our model validation and how the annotated
data set was sampled for the tests.

6.1. Goals

The motivation of this thesis was to study the effects of function words as well as “I”-
and “You”-messages on the disruptive character of messages in textual discussions. For
this, we employed the classifiers presented in Section 5.1 on AfD discussions as our
model. In respect to function words, this means comparing the performance of full text
classifiers against that of classifiers only considering function words. RQ3 raised the
question whether function words suffice for distinguishing disruptive and constructive
messages. If the differences between the function words and full text classifiers were
negligible, this question would be answered in the affirmative. This would also be the
case, if the function words classifiers performed notably worse but still significantly better
than a random classifier. Naturally, little difference in the classifiers’ performances can
only answer the question when the full text classifiers already vastly outperformed a
random classifier.

We have not developed elaborate measures to detect “I”- and “You”-messages due
to the complexity of this task. Instead, as these concepts are frequently reduced to the
usage of “I” and “you”, we solely inspect the impact of these terms on the classifiers. If
the concept of “I”- and “You”-messages would hold true on AfD discussions, “I” would
appear among the most important features indicating that a post did not lead to a block.
This complies to RQ2. Likewise, “you” would be among the most important features
which indicate a disruptive post, which complies to RQ1. It will be evaluated on the SVM
and NB classifier but not on the LM classifier as it returns metrics for n-grams instead
of single terms. But more importantly, the LM classifier did not perform significantly
better than a random classifier. To determine other terms, which are characteristic for
either disruptive or constructive posts and thus to potentially answer RQ4, the heaviest
weighted features of the SVM and NB classifier are inspected.
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6.2. Test Setup and the Sliding Window Approach

After having chosen a timeframe of 1 day and preprocessing the data, a new balanced
annotated data set was sampled from the annotated data set created, containing all
21, 213 disruptive posts and equally many, randomly sampled constructive posts. The
corpus used for determining the best performing timeframe was not reused as it contained
only a subset of elements from both classes. At first, all three classifiers were applied
to the full text. In a second run, the classifiers only considered function words. We
relied on the list of function words for the English language compiled by Leah Gilner and
Franc Morales1. It includes pronouns (e.g. “I”, “you”), prepositions (e.g. “for”, “at”),
conjunctions (e.g. “but”, “and”), auxiliary verbs (e.g. “can”, “will”), determiners (e.g.
“her”, “his”) and quantifiers (e.g. “some”, “none”).

In addition to those classifications that consider posts individually, tests have been
made which consider parts of an editor’s post history. Subsequently, the later approach
will be called sliding window and the original one independent posts approach. In this
approach, posts by the same author made shortly after each other are merged into a
single new post. A merged post is compiled from posts where the oldest and newest ones
are not further apart than 1 day. We call this timespan a window, which slides over posts
and creates the longest merged post using every post as the oldest one once. The time
difference of 1 day is identical to our previously determined best performing timeframe
because it yielded the best results in the earlier tests using isolated posts. Tests with
different window sizes could not be conducted due to the limited scope of this thesis.

The process of merging an editor’s posts into a short history of their posts is depicted
in Figure 6.1 and can be described as follows: All posts are separated by editor and sorted
chronologically, starting with the oldest. The first post of an editor is grouped together
with all posts which they authored within 1 day afterwards in a single window. Thus, the
time difference between the oldest and newest post in this window is not greater than 1
day. They are then merged keeping their chronological order. Subsequently, the window
is shifted to start at the second oldest post and the process is repeated until all posts are
processed. Therefore, single posts may appear in multiple merged posts. As a result, the
average post becomes longer while the total number of constructive and disruptive posts
in test and training data remains the same. In the example given in Figure 6.1, the post
with content “C” will appear three times in the final data set.

If a post was made within the timeframe of 1 day before the author was blocked,
it is assumed to have led to this block. In the example, a block must have happened
at or after 2.5 days but before 3 days. Every window containing such a post will also
be regarded as having led to a block. Regarding the example, the merged posts with
contents “CD”, “DE” and “E” will be considered as disruptive. Therefore, the number
of posts identified to be disruptive may increase and the number of constructive ones
may decrease analogously. The original data set in Figure 6.1 contained two disruptive
posts and the one created by our sliding window approach contains three. Likewise, the
original annotated data set created from the Wikipedia dumps contained 179 times more

1http://www.sequencepublishing.com/academic.html – last accessed 10 October 2015, 22:00
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Figure 6.1.: The graphic shows the sliding window algorithm throughout six iterations
together with the merged posts that it outputs. Posts are represented by a
square with the letter symbolising its content. All posts are assumed to
be authored by the same editor. The grey rectangle depicts the current
window. A disruptive post is indicated as dark grey square with its content
in white font. The window size and timeframe are both set to be 1 day.

constructive than disruptive posts. The data set built with the sliding window approach
reduces this, so that there are approximately 162 times more constructive than disruptive
posts. Thus, there are still sufficient constructive posts for creating a balanced data
set. To have the results somewhat comparable, the same sample size was chosen to be
identical to the independent posts approach.

Assuming that blocking has an educational effect, editors might change their behaviour
and make only constructive posts afterwards. The algorithm respects this potential
change in tone: A window will only slide over a disruptive post when the chronologically
next post belongs to the same block. Hence, if a merged post is considered disruptive, at
least its chronologically newest post must have been disruptive as well. If the window
cannot grow anymore due to a disruptive post being followed by a constructive one or a
disruptive post from another block, the algorithm will continue as if this disruptive post
was the last post within the 1 day timeframe. Therefore, increasingly shorter windows
will be created until the window only spans the last disruptive post. Figure 6.1 illustrates
this behaviour in iterations 3 to 5. Afterwards, a new window will be constructed starting
at the first post chronologically following this disruptive post. In the example given, this
is the post with content “F”.
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Just like the independent posts tests, the sliding window approach was evaluated once
using full text classifications and a second time using function word classifications. All
tests were evaluated using the metrics presented in Section 5.2.

6.3. Model Validation

All classifiers are learnt and tested using a 10-fold cross-validation. In this validation,
the data is being partitioned into ten parts. The classifier is learnt on nine of them
and tested on the left out tenth. Thus, training and evaluation data are separate. The
process is repeated ten times, so that every partition has been the test corpus once.

We implemented the cross-validation of the LM classifier so that the set of constructive
posts and the set of disruptive posts were linearly partitioned. Thereby, we ensured
that the data sets which the classifier was learnt and tested on were always balanced.
Regarding the SVM and NB classifier, we used stratified sampling for the independent
posts approach. This was done to ensure that the training and testing data was balanced
in every cross-validation iteration. Different to linear sampling, the data is randomly
partitioned while ensuring a balanced class distribution. Therefore, the posts used for
training and testing of all three classifiers are identical but the partitioning differs between
the LM classifier and the two other classifiers implemented in RapidMiner. RapidMiner’s
implementation of linear sampling is less suitable for the input data as it would result in
a class imbalance for every partition.

However, tests using the sliding window approach were performed using linear sampling
for the SVM and NB classifiers. Partitions featuring unbalanced class distributions had
to be accepted because the sliding window approach allows posts to appear in multiple
merged posts. As stratified sampling creates partitions from randomly selected data,
merged posts could appear in the test set that contain posts which were already in the
training set. Problems related to the differences in cross-validation are discussed in
Section 8.3.
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7. Results

In this chapter, the results of our classifiers throughout the various tests are shown.
Concrete performance values can be found in Appendix A. For an easier visualisation, the
AUC values have been transformed to percentages in all following charts. As decided upon
earlier, posts made up to 1 day before a block of their author were considered disruptive
for all tests. For less cluttered charts, the names of the metrics have been abbreviated.
A plus symbol (+) indicates a performance metric calculated for disruptive and a minus
symbol (−) for constructive posts, e.g. positive recall will be labelled “Recall+”.

The first two sections present the results of the independent posts and the sliding
window approach. After that, the results of applying the independent posts approach
to the oldest AfD discussions are shown. This data led to eminently improved results,
different to all other tested data sets. For all classifications, the differences in performance
of full text and function words classification are illustrated. Moreover, terms which are
characteristic for disruptive and constructive posts are discussed.

7.1. Independent Posts Approach

All values used to generate the charts in this section are given in Table A.2. Figure 7.1
shows the performance of the three classifiers considering all words. Overall, the support
vector machine performs best, the näıve Bayes classifier ranks second and the language
model ranks last. The SVM is outperformed only in negative recall by the NB classifier.
However, due to lower negative precision, the NB classifier results in a worse negative F1
score than the SVM. The SVM is significantly better in positive recall and AUC, whereas
the NB classifier and the LM classifier repeatedly perform similarly. When looking at the
positive and negative F1 scores, it can be seen that all classifiers are better in predicting
constructive posts than disruptive ones. It was expected that the SVM would outperform
the NB classifier. Yet, we imagined that the language model would perform better. All
in all, the three classifiers perform hardly well enough to draw reliable conclusions from
the results. F1, AUC and accuracy scores of about 80% and above would be needed.

The full text classifiers perform significantly better than their function words equivalents.
Except for negative recall of the SVM and LM classifier as well as the AUC for the NB
and LM classifiers, all metrics indicate a worse performance when solely considering
function words as visible in Figure 7.2. A decline was expected because the amount of
information in a post was massively reduced. Around 59.56% of words in a post have
been ignored in the function words classifications. The SVM’s performance changes the
most whereas the LM classifier’s performance remains similar. Nevertheless, the LM
classifiers’ performances cannot be used to answer RQ3 regarding the importance of
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Figure 7.1.: The performance of the full text SVM, NB and LM classifiers using the
independent posts approach.

function words. The reason for this is that the full text classification’s performance is
already too similar to that of a random binary classifier that alternates its predictions
with p = 0.5 independent of any input. This is visualised in Figure 7.3, which shows the
performance differences between the full text and function words LM classifier side by
side in relation to such a random classifier. The function words classifier achieved an
accuracy of merely 55.73%.

Figure 7.4 contains the five most characteristic terms for constructive and disruptive
posts each. The terms were retrieved by extracting the highest and lowest weighted
terms according to the full text SVM as it performed the best. Seven out of these ten
terms are specific to Wikipedia and AfD discussions. This indicates that the SVM’s
results are probably not representative for textual discussions in general. “Fancruft”
is a Wikipedia term for contents that are only of interest for a small number of avid
fans [W27]. “Nom” is short for “nomination” and often used in posts such as “delete as

per nom” to express agreement towards the deletion nomination. “Wikipedia:Deletion
review” is detected as a single term due to our preprocessing step that converts internal
Wikipedia links appropriately. Deletion reviews offer Wikipedia users to appeal article
deletions if they believe that the deletion was unrightful by Wikipedia standards [W26].
“Small” often appears as an HTML element to markup contents in a smaller font size.
At this point, it is unclear why many of these elements have not been removed in the
data preprocessing steps. “Redirect” and “keep” are both potential outcomes for the
discussed article.

Editors recommending to “keep” an article express that in their opinion the article’s
quality and relevance are both sufficient and that the article should not be deleted. One
explanation for this term being ranked the highest could be that it may be used in
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Figure 7.2.: This figure shows the difference in performance between the function words
classifiers and their full text equivalents. Positive percentages show a
performance improvement over the full text classifier and negative ones
a decline. For example, if a classifier considering all words achieved 50%
AUC and that considering function words 70%, the function words classifier
performed 20% better overall.

contexts where an editor was involved in creating the article and will subjectively defend
it. Some editors even create new accounts to act as different editors who argue to keep
the article as well. Such accounts are called sock puppets on Wikipedia and are highly
likely to be blocked once detected [W32]. Besides, manual inspection indicated that
disruptive posts containing “keep” often also contained personal attacks. The SVM
seems to have optimised for a frequently appearing term, with it being contained by
22.75% of all disruptive and 19.90% of all constructive posts in this data set. On the
other hand, the highest weighted swear word “fuck” appears in 0.77% to 0.05% of the
posts respectively. In relation to each other, “fuck” appears much likelier in disruptive
than in constructive posts than “keep” does. Yet, it was only ranked 17th place.

The results support RQ1 in that “You”-messages seem to be commonly used in
disruptive posts. “You” and “your” both appear in the top five of most characteristic
terms for disruptive posts. “I” ranks 62nd. For comparison, “I” is the 36, 201st heaviest
weighted term identifying constructive posts. Regarding these results, “I” is thus not
typical for constructive posts which was speculated by RQ2.

As can be seen in Figure 7.5, the SVM yielded the best results when considering only
function words. Consequently, we inspected the ten heaviest weighted stemmed terms.
They are shown in Figure 7.6. It is difficult to speculate why the function words have
been weighted as they are. However, “you” and “your” both being part of the top five
terms most characteristic for disruptive posts in this data set indicates support for RQ1.
The two terms are common parts of “You”-messages. Moreover, “you” is by far the most
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Figure 7.3.: This bar chart shows performance metrics in relation to the performance
of a random classifier with p = 0.5 for both classes. Depicted is the full
text LM classifier in contrast to the function words LM classifier. Values
below 0% indicate a performance worse than a random classifier, whereas
values above 0% mark a better performance. The percentages refer to the
overall performance, meaning that 50% equates to a perfect result.

Figure 7.4.: The top five lowest and highest weighted stemmed terms of the full text
SVM. Positive weighted terms are characteristic for disruptive and negative
weighted for constructive posts. The penultimate word was formatted to
contain a colon and a space for better readability.
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Figure 7.5.: The performance of the SVM, NB and LM classifiers using the independent
posts approach while only respecting function words.

Figure 7.6.: The top five lowest and highest weighted stemmed terms of the function
words SVM. Positive weighted terms are characteristic for disruptive and
negative weighted for constructive posts.
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characteristic term for disruptive posts among all considered 162 function words. In
contrast, RQ2 questioned whether “I”-messages would typically be used in constructive
messages but “I” was the fourth highest positively weighted term. Hence, RQ2 seems to
be negated.

Nonetheless, it is important to take account of the performances when drawing con-
clusions from the observed results. The function words SVM achieved merely 58.34%
accuracy. Thus, RQ1 being supported and RQ2 being negated should be interpreted as a
tendency. Also, the nature of AfD discussions might generally favour objective posts and
thus bias how “I”- and “You”-messages are perceived. With an accuracy of only 67.73%,
the SVM performs significantly better than a random classifier. Yet, its results are not
good enough for answering the research questions with certainty. Thus, although “you”
and “your” are in the top five of terms characteristic for disruptive posts, RQ1 cannot be
safely answered. The same holds true for “I” being identified as typical term contained
in disruptive posts, which would negate RQ2. However, both amplify the trends seen in
the function words classification. We found no support for function words being sufficient
for making good predictions about whether a message is constructive or disruptive as
was asked by RQ3. RQ4 addressed whether there are other characteristic terms. No
answer can be given that would be applicable to general textual discussions as other
terms identified as being characteristic for either of the classes were related to Wikipedia
and AfD discussions.

7.2. Sliding Window Approach

Classifying posts independent of each other implies that only the posts within the 1 day
timeframe were of disruptive nature. This might not always be the case and the results
of that approach were not satisfying either. Thus, the sliding window approach was
tested as well. It increased the number of posts in our data set that were assumed to be
disruptive.

The number of constructive and disruptive posts was increased compared to the
independent posts classifications. This is conditioned by the sliding window algorithm
which regards all merged posts containing a blocked post as disruptive. As this approach
considers an editor’s post history, the data is different and the approach was evaluated on
newly sampled data. However, multiple runs of classifications using both the independent
posts as well as the sliding window approach showed that the results always remained
similar. All values used to generate the charts in this section are given in Table A.3.

Figure 7.7 shows the performance of the classifiers using the sliding window approach.
As RapidMiner was unable to calculate the AUC, it had to be left out. When inspecting
the accuracy, it becomes clear that the performance of all three classifiers has worsened.
The SVM was the formerly best performing classifier but has turned into the worst
performing. Again, the NB classifier performs slightly better than the LM classifier. With
the independent posts approach, the LM classifier was significantly better in predicting
constructive posts as expressed by the F1 scores. This tendency was amplified in the
sliding window approach as its positive F1 score is now 22.03% and its negative 66.61%.
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Figure 7.7.: The performance of the full text SVM, NB and LM classifiers using our
sliding window approach.

As all classifiers performed similar to or worse than a random classifier, the difference
in performance between the full text and function words classification is less distinctive.
Surprisingly, the NB classifier forms an exception as all its values improved. Figure 7.8
shows this improvement. With an accuracy of 60.70%, it performed only slightly worse
than the full text NB classifier using the independent posts approach which achieved
61.60%. With a positive F1 score of 64.08% and a negative of 56.61%, it predicted
disruptive better than the full text NB classifier of the first approach. The latter had
positive and negative F1 scores of 52.49% and 67.78% respectively.

Consequently, we extracted the terms most characteristic for constructive and disruptive
posts from the function words NB classifier. Figure 7.9 shows the five function words
most typical for constructive posts. All these terms have in common that they appear
infrequently in the analysed posts. We decided to only depict five terms as the following
appear similarly meaningless. On the other hand, the terms indicating disruptive posts
are quite expressive. They are given in Figure 7.10. Inspecting the data showed that “anti”
was mostly used in contexts of strong disagreement. Moreover, it was used in political and
religious topics such as “anti-Serbian”, “anti-Muslim” and “anti-Semitic”. These topics
are known to be prone to controversial discussions on Wikipedia [57], which themselves
often lead to blocks. “Against” and “anti” have synonymous meanings and suggest
that disagreement and disruptive posts are potentially related. As was asked in RQ1,
“You”-messages seem to be an indicator for disruptive posts. “Yourself”, “you” and “your”
are all likely to be used in “You”-messages and belong to the six function words most
characteristic for disruptive posts. Similarly, “myself”, “me” and “my” are likely part of
“I”-messages. Them being identified to be among the strongest indicators for disruptive
posts suggests that RQ2 must be negated. “I” appears as 38th most characteristic term
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Figure 7.8.: This bar chart shows the performance of the full text NB classifier in
contrast to it only factoring in function words when using the sliding
window approach. It is set in comparison to the performance of a random
classifier with p = 0.5. 0% expresses equal performance. The percentages
refer to the overall performance, meaning that 50% equates to a perfect
result.

for disruptive posts. In total, 162 function words were considered. Regarding the terms
from Figure 7.9, it seemed as if their occurrence frequency substantially implied their
ranking. This, however, is not true as becomes clear when inspecting the occurrence
frequencies of “dare” and “you” for example. “dare”, ranking second most characteristic
term for disruptive posts, appears merely 93 times in the analysed posts. Conversely,
“you” appears 49, 997 times and ranks fifth most characteristic term for disruptive posts.

In summary, we saw the sliding window approach perform worse than the independent
posts approach. Due to the full text classifiers performing similar to a random classifier,
a presentation of characteristic stemmed terms for disruptive and constructive posts was
skipped. Despite the low accuracy of 60.70%, the NB classifier yielded better results
when considering function words exclusively than when considering all words in a post.
We count this as relatively strong support for RQ3 that function words can indeed play
an important role in distinguishing constructive and disruptive posts. The observed
effects of “I”- and “You”-messages in the independent posts approach were also visible in
the function words NB classification. Therefore, our presumptions are reinforced that
RQ1 could be affirmed and RQ2 negated. As asked in RQ4, the list of most influential
function words for disruptive posts hinted that terms expressing opposition could be an
indicator for determining whether a post is disruptive.
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Figure 7.9.: This chart shows a relation of positive probability divided by negative
probability for a stemmed term. A low relational probability indicates
a term characteristic for constructive posts. Shown are the terms most
characteristic for constructive posts according to the results of the function
words NB classifier using the sliding window approach.

Figure 7.10.: This chart shows a relation of positive probability divided by negative
probability for a stemmed term. A high relational probability indicates
a term characteristic for disruptive posts. Shown are the terms most
characteristic for disruptive posts according to the results of the function
words NB classifier using the sliding window approach.
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7.3. Analysis of the Oldest Articles for Deletion Discussions

Although we only present the data of a single run each, all tests have been executed
multiple times with newly sampled data sets. This confirmed that the observed perfor-
mances were not the result of a sampling bias. The results always remained comparable
but for one exception. When operating on a data set chronologically sampled from
the earliest AfD discussions, we found that the classifiers yielded significantly improved
performance. Chronologically sampling data from more recent AfD discussions could not
reproduce these results. Instead, newer chronologically sampled data was comparable to
the performance of our randomly sampled classifications as presented in the previous
Sections 7.1 and 7.2. However, due to the amount of existing data, we were not able
to test all possible partitions. All values used to generate the charts in this section are
given in Table A.4.

As before, all available disruptive posts were considered. Instead of randomly sampling
the same number n of constructive posts like in earlier approaches, we used the first n
constructive posts in chronological order starting with the oldest. The performance of all
classifiers improved using the independent posts approach, cf. Figure 7.11.

Figure 7.11.: The darker coloured bars show the performance of the independent posts
approach using the full text classifiers taken from Figure 7.1. When
the analysed data is chronologically sampled from the oldest posts, the
performance improves as indicated by the lighter coloured bars. To
prevent the chart from becoming unclear, precision and recall have been
left out.

Similar to the results observed when using randomly sampled data, the SVM performed
best and the language model worst. The SVM using the independent posts approach
scored an accuracy of 79.12% and an AUC of 0.890. Moreover, it achieved a positive
precision of 87.20% and a negative of 73.93%. Therefore, the highest and lowest weighted
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Figure 7.12.: The top five lowest and highest weighted stemmed terms of the full text
SVM using the independent posts approach on the chronologically first
19, 237 posts. Positive weighted terms are characteristic for disruptive
and negative weighted for constructive posts.

terms are likely to be characteristic for constructive and disruptive posts in the context
of this special data set. These words are shown in Figure 7.12. Again, most words are
specific to AfD discussions. “Per” is another term appearing in the frequently used phrase
“delete per nom”. “Sourc” is a word stem from words such as “source” and is commonly
found in posts which highlight that the article in question is lacking trustworthy sources.
“Strong” is often used in combination with “keep” or “delete” by editors to express strong
belief that the article under discussion should be kept or deleted.

“Oct” is short for October. “Utc” is frequently found in Wikipedia signatures as
abbreviation for coordinated universal time [cf. W31]. Although AfD discussions are
imaginable in which editors talked about the month October or the coordinated universal
time, it is likelier that both words are leftovers from customised signatures. Manual
data inspection confirms this assumption. This would then indicate that our attempts
to remove user signatures were insufficient for one or multiple users. As a result, the
classifier might not have been learnt on the used language itself but has learnt implicit
clues that identify one or more disruptive or constructive users. This could partly be a
reason why the classifiers yielded notably better results with this data set.

“Vaniti” is a stemmed term derived from the word “vanity”. On Wikipedia, vanity
was a term to describe contributions that are not of general interest but are made for the
purpose of self-promotion [W37]. The term was used 36, 830 times until autumn 2004,
when it got replaced by the broader behavioural guideline “conflict of interest” [W22].
This guideline covers the potential bias that contributions may contain when their author
is in any way related to its content. The term “vanity” never appeared again after 2004.

The heaviest weighted stemmed term indicating constructive posts is “delet”. Derived
from the verb “delete”, it is commonly used by editors to advise for deletion of an article.
It could be speculated that words stemmed to “delet” are mostly used in posts that
neutrally express to remove an article. Manual inspection supports this presumption
as authors of disruptive posts typically advocate to keep an article. However, “per”
being the most characteristic stemmed term for disruptive posts contradicts this as it
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mostly appears in the phrase “delete as per nom”. The term “you” is again in the
top five of highest weighted words, which indicate disruptive communication. Thus, the
associated RQ1 is further supported. The term “I” is the 64th most representative term
for disruptive posts. Considering that this data set contained 34, 627 terms, the term is
clearly still not typical for constructive posts. As a result thereof, RQ2 is again negated.

When only considering function words, the performance decreases significantly. Fig-
ure 7.13 shows the performance of all classifiers. It is slightly better than that of the
independent posts approach with randomly sampled data. The overall performance
according to accuracy and AUC is again best for the SVM. Figure 7.14 shows the heaviest
weighted stemmed terms from the function words SVM. Although the SVM has the
lowest positive F1 score, it has the highest positive precision. Therefore, it predicted only
few disruptive posts but when it did, it was correct 76.21% of the time. Interestingly, the
absolute values of the positive weights is much higher than that of the negative weights.
“You”, “your” and “I” appear in the five highest weighted terms indicating disruptive
posts. As before, this supports “You”-messages being typically used in disruptive posts
(RQ1) but negates the use of “I”-messages in constructive posts (RQ2).

In essence, all classifiers perform notably better when analysing the oldest AfD dis-
cussions. This is probably due to terms that uniquely appear in this data set like
“vanity” as well as not fully removed customised signatures. The results suggest that the
signatures belonged to highly active, constructively contributing editors. Nevertheless,
“you” has been identified as fourth highest weighted term indicating disruptive posts
when considering all words. Together with the term “your”, it appeared again among the
highest weighted terms characteristic for disruptive posts when only considering function
words. RQ1 thus gained further support. The term “I” reappeared among the same
terms. Again, RQ2 would have to be negated.
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Figure 7.13.: The performance of the function words SVM, NB and LM classifications
using the independent posts approach on the chronologically first 19, 237
posts.

Figure 7.14.: The top five lowest and highest weighted stemmed terms of the function
words SVM using the independent posts approach on the chronologically
first 19, 237 posts. Positive weighted terms are characteristic for disruptive
and negative weighted terms for constructive posts.
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8. Design Decisions, Potential Errors and
Improvements

Multiple assumptions had to be made throughout this thesis, which could have noticeably
influenced the results. This chapter focuses on these systematic errors and design decisions.
When possible, it is discussed how they could have influenced the results or how the
associated errors could be resolved. Although we put a lot of effort into all steps, the
amount and extent of problems potentially impacting the classifications illustrate that
the data is not well-suited for the analysis of textual discussions on a word-level.

8.1. Difficulty of Building an Annotated Data Set

A great difficulty was to build an annotated data set by determining which posts may
have or have not led to a block. This problem is rooted in the ambiguous information
given about issued blocks. Blocks are not associated with any contribution or page. Thus,
it is unclear which posts can be labelled disruptive and which ones constructive. The
block log even contains cases where the blocking was unrelated to any contribution. For
example, an administrator noted in a block log comment that receiving legal threats via
email made him issue this very block.

All posts within a fixed timeframe prior to their author being blocked were considered
to be disruptive. We determined the best performing timeframe which still contains a
great amount of data. However, this cannot ensure that all contributions within the
timeframe prior to a block have actually made the administrator act. For example, it
is possible that an editor was simultaneously active in multiple AfD discussions before
being blocked. In some AfD discussions, they may have been contributing constructively,
while they lost their temper in others. Hence, the posts from all their active discussions
shortly before their block would wrongfully be labelled disruptive although this is only
true for some of them. Our approach cannot detect this behaviour which reduces the
correctness of our annotated data set.

Moreover, it is hard to determine relevant blocks based on a free text comment alone
while ensuring that the amount of data is not too much reduced. Therefore, the earlier
presented blacklisting approach was chosen as a compromise. However, there are reasons
for blocks which do not allow to draw conclusions about the blocked editor’s post contents.
Sock puppetry [W32] was given 109, 042 times as a reason for blocking a registered editor.
Thus, 13.62% of blocks on registered editors have been issued due to editors acting as
different people, e.g. by creating new accounts or by borrowing the accounts of friends.
The contents of posts by sock puppets vary from aggressive comments containing verbal
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Figure 8.1.: Number of last posts in an AfD discussion and on any Wikipedia page
prior to their authors being blocked within a given timeframe in days. Only
registered editors who were active in AfD discussions were considered. The
left graph shows the first seven days of the right graph in more detail.

attacks to reserved and seemingly objective input. Considering the later, the intention of
these posts is to influence others and change their minds while concealing that multiple
contributions have been made by the same person disguised as different editors. Their
posts should therefore be classified as constructive from a word-level perspective. Yet,
when the sock puppets are identified as such, they will be blocked. Regardless of choosing
to ignore or consider blocks made due to sock puppets, there will be posts falsely labelled.
Future work building a model from similar data should therefore dismiss posts by editors
who have at some point been identified as a sock puppet.

It is unclear whether blocks are a good indicator for disruptive communication. They
are often only used as ultima ratio in discussions when it is believed that the discussion
would benefit from them [W21]. This may frequently not be the case as AfD discussions
are mostly only active for seven days before a decision is made [W18]. Additionally,
one of Wikipedia’s behavioural guideline advises users to always assume contributions
to be made in good faith unless there is hard evidence against it [W19]. Figure 8.1
visualises the time difference between the last post of a registered editor and them being
blocked when only considering posts made in AfD discussions compared to those made
on any Wikipedia page. Only registered editors were considered who created at least
one post in an AfD discussion. Blocks were filtered using the blacklisting approach
presented in Section 4.4. The total number of posts is higher when considering posts
from all Wikipedia pages because 7, 363 registered editors have already been blocked
once or multiple times before they ever contributed to an AfD discussion. As can be
seen from Figure 8.1, the curve that considered all Wikipedia pages grows much faster.
This indicates that many registered editors, who have been active in at least one AfD
discussion, have been blocked due to misbehaviour outside of these discussions.

A solution could be to use an annotated data set that was compiled by humans. To
our knowledge, there does not exist one for AfD discussions yet. Furthermore, the task is
non-trivial as it is located on a post-level without any context. This became especially
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clear, when we randomly picked thirty posts and asked four people to classify them.
The test cannot be seen as a serious user study but serves as mere impression on the
difficulty of the task. This difficulty is expressed in a Fleiss’ kappa of 0.18. While only
considering two classes (predicting a post to lead to a block or not within 1 day), the low
value implies that there was poor agreement among the participants. Moreover, with an
average accuracy of 55%, we saw the participants performing worse than the software
classifiers in our independent posts approach.

8.2. Difficulty of Preprocessing Posts

This section summarises the difficulties associated with identifying and processing posts.
It also shows problems which we had to ignore due to the limited scope of this thesis.

The first discussed difficulty is the identification of posts. Although there are recom-
mendations on how to highlight one’s posts within a Wikipedia discussion, these are not
always adhered to. Moreover, editors may move or correct text by others or restore older
revisions due to vandalism. Both further complicate this task and thus, calculating the
differences between one revision and its previous one does not suffice. This problem was
solved by using WikiWho, which is the current baseline for this task. Nonetheless, it is
still possible that some words do not get attributed to the correct author. We also saw
two instances where multiple posts had been identified by WikiWho as one.

It was important to remove non-linguistic and machine generated contents to ensure
that only human communication is part of the analysis. With the removal of the wikitext
markup, potential stressing of words e.g. via bold font or italics was also removed. We
accepted this loss in information as there are no standardised semantics for the use of
wikitext markup. Although extending an existing solution for wikitext removal, some
fragments still remained. That is for one due to the complexity of wikitext, which
also allows the use of HTML and CSS. Likewise, it is related to many posts containing
erroneous HTML syntax as well as not containing well-formed HTML. This problem
is potentially amplified by errors made by the WikiWho algorithm. For example, let
us assume a post contained an italic emphasis “<i>this</i> is great”. If WikiWho
wrongfully associated the first less-than sign to a different post, the wikitext removal
would no longer detect an element opening tag. As a result, the word “i” would be
added twice although it should not be added at all. This is because a closing tag is
only removed together with its matching opening tag. Manual inspection showed mostly
satisfying results but it has not been systematically evaluated.

To remove content that was automatically generated by algorithms of Wikipedia,
signatures and templates had to be detected. Transcluded templates were easily removed
but detecting substituted templates is a difficult task. We were able to remove the
templates most commonly used in AfD discussions. Templates which were infrequently
embedded in AfD discussions are still present in the data which was used for analysis.
Due to them being seldom used, their effect should be negligible. If, however, they share
many words, their singular effects could add up and influence the results.
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Figure 8.2.: The graph shows the number of total posts made by the number of most
active registered editors.

Signatures were removed using simple regular expressions. Yet, they do not match
all customised signatures. Ortega et al. [37] have shown that approximately 10% of all
Wikipedia editors make 90% of all contributions. Similarly, in AfD discussions around
11.51% of registered editors have made 90% of all posts. Figure 8.2 illustrates the effect
which a few registered editors have on the number of posts. A fictitious user called “Steve”
might decide to modify his signature to contain “I am Steve”. If this signature is not
fully removed in the preprocessing step and if Steve is a heavily active editor, he can
influence the results noticeably. Following this example, if Steve makes many constructive
posts, the term “I” might be identified as important feature for constructive posts.
Moreover, the classifiers would learn to identify editors instead of language characteristics.

It can be assumed that signatures are mostly customised by very active editors because
of multiple reasons. First, not everyone may be aware of the possibility to customise
one’s signature and more complex customisation requires knowledge in wikitext, HTML
and CSS. Very active users are thus likelier to be aware of such extended features of
Wikipedia and likewise to be more proficient in Wikipedia’s own markup. Second,
very active users are probably also more interested in customised signatures for being
noted and recognised. Hence, the incomplete signature removal can impact the word
distribution. The full text SVM classification using the independent posts approach with
the oldest AfD discussions illustrated this. It identified the two terms oct and utc among
the top five most characteristic stemmed terms for disruptive posts. These are assumed
to be parts of signatures that have not been fully removed. Manual inspection of posts
extracted from more recent AfD discussions also showed that some parts of signatures
from highly active registered editors remained.

51



The further removal of the most common symbols including dashes, periods, commas,
and brackets may have impacted our analysis. It was a necessity to exclusively analyse
a post’s words and to not overcomplicate the task. However, e.g. emotions in text
expressed using smilies such as “:)” are lost. The use of smilies can be ambiguous
and is culturally dependant [38]. Additionally, they can be used in ways where they
contradict the actual content of the message e.g. as part of personal attacks like “you
are an idiot :)”. “Netspeak” is also not considered as it is an unstandardised Internet
slang. For example, the abbreviated “b4” instead of “‘before’” will be reduced to “b”
throughout our preprocessing steps. Smilies and “netspeak” are both more prevalently
used with messaging services that have a maximum message length to save characters and
to communicate emotions. AfD discussions, however, focus on objective collaboration
instead of expressing emotions and feelings. Less than 0.40% of all considered posts,
including customised signatures and links, contained “:)” or “:-)” before their removal.
Therefore, we assume that ignoring smilies has not heavily affected the classification
performance.

Due to its complexity, no efforts were made to detect irony or sarcasm. Not only
is detecting sarcasm in written text a difficult task for algorithms [cf. e.g. 30, 47] but
also for humans [cf. e.g. 1, 17]. Heavy use of sarcasm could have influenced the results
as the messages would seem constructive on a word-level but can be disruptive from a
semantical perspective.

All words were transformed to lowercase in order to analyse the occurrence of terms
while disregarding their capitalisation. Therefore, the first word of a sentence—usually
starting with a capital first letter—will not be different from when it had appeared in
the middle of the sentence. Words that are written in all capital letters are frequently
perceived on the Internet as shouting and its author to being angry. This information is
lost as is the differentiation between homographs of different capitalisation. Homographs
are words which are spelled identically but have different meanings. For example, “Dick”
is a diminutive for the name Richard and will be grouped together with a slang word for
the male genitalia which is often used as an insult. Nevertheless, we argue that these
cases only form rare exceptions.

To exclusively analyse human communication, posts by users whose name ended in
“Bot” were ignored. Posts by bots that do not follow the naming scheme for bots will
still be left in the analysed data. However, we estimate these chances low as bots
for organisational tasks abide by the naming convention. Additionally, bots built for
vandalism purposes are assumed to be unlikely to operate on AfD discussions as the
harm done to Wikipedia is less visible there than on regular articles.

8.3. Difficulty of Creating Comparable Results

As mentioned earlier, the classifiers use different implementations of the 10-fold cross-
validation. Overall, they consider all given posts for training and testing. However, the
partitioning between our own implementation and that of RapidMiner differs. Therefore,
the SVM and NB classifier are comparable with each other but not fully with the
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Figure 8.3.: This bar chart shows the performance of the full text SVM in contrast to
it only factoring in function words. The classifier used the sliding window
approach with stratified sampling. Thus, it erroneously performed well.
The values are in relation to a random classifier with 0% expressing equal
performance. Table A.5 contains the values which were used to generate
this chart as well as the results of the NB classifier. The percentages refer
to the overall performance, meaning that 50% equates to a perfect result.

LM classifier. Although very likely, it can hence not be said that a language model
classifier does indeed fit the task of distinguishing constructive and disruptive posts in
AfD discussions less.

Due to different sampling, the sliding window and independent posts approaches as
used by the SVM and NB classifier are not fully comparable either. With the independent
posts approach, we use stratified sampling as it is most similar to the sampling used
for the LM classifier. However, this was not an option for the sliding window approach
or else the classifiers could potentially be tested on data they were partly learnt on.
Figure 8.3 visualises the performance of an SVM using the sliding window approach
with stratified sampling. It is set in comparison to a random classifier with p = 0.5 for
each class. Due to this sampling, the SVM performs better than a random classifier
in all metrics. As a result thereof, the tests using the sliding window approach were
carried out using linear sampling. Hence, the training and testing phases of the sliding
window approach used unbalanced data. Five iterations were run with a relation of 4
disruptive to 5 constructive posts. Consequently, the other five were run with a relation
of 5 disruptive to 4 constructive posts. We estimate the impact of it on the results to be
small but it must be considered when comparing the results.

Although related, the goal of this thesis was not to determine the best performing
classifier. Instead, the classifiers were used as a tool for analysing the data and thereby the
usage of words in constructive and disruptive posts. Therefore, in spite of the classifiers
not being fully comparable, they were still suited for this task.
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9. Conclusion

In this thesis, we set out to analyse the language used in textual discussions on a word-
level, especially in regard to disruptive messages. We chose to conduct the analysis using
Wikipedia AfD discussions because they provide a great amount of textual discussions.
Moreover, they feature sufficiently many instances of disruptive messages to perform a
large-scale analysis. The effects of “I”- and “You”-messages and function words were of
special interest. Using the block log, we built a model that was evaluated using binary
classifiers. Thereby, we extracted terms typical for disruptive and constructive posts.

It must be noted that the subsequent answers to the research questions are based on
mediocre classification results. Nonetheless, we conducted different tests with different
data samples and repeatedly saw similar results. Therefore, we concluded that the
questions could be answered. The answers should not be interpreted as definite but
rather as a strong tendency.

That is not only due to the classifiers’ performances but also because it is unclear
how well results from the analysis of AfD discussions can be applied to general textual
discussions. Inspecting the heaviest weighted terms mostly showed terms specific to
Wikipedia. It is possible that AfD discussions favour objective posts. Thus, the probability
for “I”- and “You”-messages being classified as disruptive because of their subjective
nature would increase. Furthermore, we identified several difficulties such as the removal
of customised signatures and transcluded templates. In sum, they might have impacted
the results notably. Finally, a different model might be better at capturing constructive
and disruptive textual messages. Our solution for a fully automated creation of an
annotated data set by using blocks might be unsuitable for the nature of AfD discussions.
All things considered, we can now answer the research questions as follows:

RQ1: Do disruptive messages in textual discussions contain more “You”-messages than
constructive ones?

Yes. Throughout all tests, terms that we deemed characteristic for “You”-messages
appeared in the top five of terms typical for disruptive posts. Despite the unsatisfying
performances of the classifiers, the classifiers determined “you” to be more likely to
appear in disruptive posts than over 30, 000 other terms. The results are in accordance
with the occurrence frequency of “you” in the complete available data as was shown in
Section 5.4.
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RQ2: Do constructive messages in textual discussions contain more “I”-messages than
disruptive ones?

Probably not. The term “I” was found to be characteristic for disruptive posts in all
tests. It was not as highly ranked in the lists of terms typical for disruptive posts as
“you” was. Still, “I” was clearly never a typical term for constructive posts throughout
the tests. This is in contradiction to the observations made in Section 5.4. In this section,
we saw the term “I” appearing a lot more frequently in constructive than in disruptive
posts. One possible explanation could be that there might be a few constructive posts
which contained the term “I” many times whereas a great number of disruptive posts
contained it only once or twice.

RQ3: Is solely considering function words sufficient for determining whether a message is
constructive or rather detrimental to a textual discussion?

Maybe. Due to the already mediocre performance of the full text classifiers, the function
words classifiers often performed similar to or worse than a random classifier with p = 0.5
for both classes. However, the NB classifier using the sliding window approach performed
better when only factoring in function words. Consequently, the question can currently
neither be affirmed nor negated.

RQ4: Which other words are typical for constructive and which for disruptive messages
in textual discussions?

The results make it difficult to answer this question as the most influential terms were
mostly specific to AfD discussions or Wikipedia in general. Results from the tests
conducted using the oldest AfD discussions suggest that terms expressing opposition and
thus disagreement like “anti” and “against” could be characteristic for disruptive posts.
Deducing from the results of discussion analysis from related work, terms associated with
controversial topics such as religion could indicate disruptive posts as well. Yet, such
words were not evident from our results.

Future work should consider building a new model, e.g. by using manually annotated
data. It should also take the language used in AfD discussions into account which is
different from that used in general textual discussions. Hence, data from more generic
discussions on Wikipedia or a completely different data source could be used instead.
This could then bring new insights into the terms characteristic for constructive and
disruptive messages in textual discussions as well as the correctness of our results.
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A. Omitted Data and Graphics from the
Test Results

A.1. Effects of Different Timeframes on Classifier Performance

time recall+ recall− precision+ precision− F1+ F1− accuracy AUC

13 hours 49.81 75.35 66.68 60.26 56.8 66.87 62.58 0.551

1 day 49.29 76.63 67.83 60.27 56.93 67.42 62.96 0.562

1.5 days 47.45 76.03 66.46 59.22 55.18 66.52 61.74 0.542

2 days 48.14 75.0 65.85 59.24 55.38 66.11 61.57 0.542

2.5 days 46.57 75.77 65.88 58.72 54.35 66.09 61.17 0.536

3 days 46.49 74.04 64.33 58.12 53.71 65.03 60.26 0.529

4 days 45.35 74.03 63.72 57.59 52.76 64.7 59.69 0.521

5 days 45.13 74.51 64.07 57.64 52.72 64.92 59.82 0.522

6 days 42.95 74.6 63.02 56.7 50.85 64.35 58.77 0.512

Table A.1.: This table shows the average performance of the classifiers with the various
timeframes. The values are the arithmetic mean of the classifiers’ results.
These are an SVM, a NB classifier and an LM classifier. A bold font high-
lights the best result considering this metric. The plus and minus symbols
indicate whether the performance metric was calculated for disruptive (+)
or constructive contributions (−).
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A.2. Independent Posts Approach

Classifier Recall+ Recall− Precision+ Precision− F1+ F1− Accuracy AUC

SVM 59.91 75.56 71.03 65.33 65.00 70.07 67.73 0.750

SVM (FW) 31.11 85.58 68.33 55.40 42.75 67.26 58.34 0.620

NB 42.42 80.78 68.82 58.38 52.49 67.78 61.60 0.390

NB (FW) 26.04 85.43 64.12 53.60 37.04 65.87 55.73 0.600

LM 44.56 72.35 61.71 56.61 51.75 63.52 58.45 0.518

LM (FW) 44.28 67.34 57.55 54.72 50.05 60.38 55.81 0.542

Table A.2.: This table shows the performance of the SVM, NB and LM classifiers
using the independent posts approach. Function words classifications are
marked with “FW”. All others were full text classifications. The plus and
minus symbols indicate whether the performance metric was calculated for
disruptive (+) or constructive contributions (−).
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Figure A.1.: This bar chart shows the performance of the full text SVM in contrast
to it only factoring in function words when using the independent posts
approach. It is set into relation to the performance of a random classifier
with 0% expressing equal performance. The percentages refer to the overall
performance, meaning that 50% equates to a perfect result. Table A.2
contains the visualised values.

Figure A.2.: This bar chart shows the performance of the full text NB classifier in
contrast to it only factoring in function words when using the independent
posts approach. It is set into relation to the performance of a random
classifier with 0% expressing equal performance. The percentages refer
to the overall performance, meaning that 50% equates to a perfect result.
Table A.2 contains the visualised values.
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A.3. Sliding Window Approach Using Linear Sampling

Classifier Recall+ Recall− Precision+ Precision− F1+ F1− Accuracy AUC

SVM 20.97 65.39 37.73 45.28 26.96 53.51 43.18 —

SVM (FW) 29.63 37.92 32.31 35.01 30.91 36.41 33.77 —

NB 64.14 46.39 54.47 56.40 58.91 50.91 55.26 —

NB (FW) 70.11 51.28 59.00 63.18 64.08 56.61 60.70 —

LM 13.21 93.26 66.23 51.80 22.03 66.61 53.24 0.497

LM (FW) 4.69 96.88 60.05 50.41 8.70 66.31 50.78 0.559

Table A.3.: This table shows the performance of the SVM, NB and LM classifiers using
the sliding window approach with linear sampling. RapidMiner did not
return AUC values for the SVM and NB classifier, so they had to be left
out. Function words classifications are marked with “FW”. All others
were full text classifications. The plus and minus symbols indicate whether
the performance metric was calculated for disruptive (+) or constructive
contributions (−).

Figure A.3.: The performance of the full text SVM, NB and LM classifiers using the
sliding window approach and linear sampling. The visualised values can
be found in Table A.3.
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Figure A.4.: This bar chart shows the performance of the full text SVM in contrast to it
only factoring in function words when using the sliding window approach
and linear sampling. It is set into relation to the performance of a random
classifier with 0% expressing equal performance. The percentages refer
to the overall performance, meaning that 50% equates to a perfect result.
Table A.2 contains the visualised values.

Figure A.5.: This bar chart shows the performance of the full text LM classifier in
contrast to it only factoring in function words when using the sliding
window approach and linear sampling. It is set into relation to the
performance of a random classifier with 0% expressing equal performance.
The percentages refer to the overall performance, meaning that 50%
equates to a perfect result. Table A.2 contains the visualised values.
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A.4. Oldest Articles for Deletion Discussions

Classifier Recall+ Recall− Precision+ Precision− F1+ F1− Accuracy AUC

SVM 68.26 89.98 87.20 73.93 76.58 81.17 79.12 0.890

SVM (FW) 29.86 90.68 76.21 56.39 42.91 69.54 60.27 0.660

NB 49.10 90.44 83.70 63.99 61.89 74.95 69.77 0.470

NB (FW) 37.30 82.43 67.98 56.80 48.17 67.26 59.86 0.630

LM 52.04 81.08 73.33 62.83 60.88 70.80 66.56 0.541

LM (FW) 50.08 68.04 61.04 57.68 55.02 62.43 59.06 0.582

Table A.4.: This table shows the performance of the SVM, NB and LM classifiers using
the independent posts approach on the oldest AfD discussions. Function
words classifications are marked with “FW”. All others were full text clas-
sifications. The plus and minus symbols indicate whether the performance
metric was calculated for disruptive (+) or constructive contributions (−).

Figure A.6.: This bar chart shows the performance of the full text LM classifier in
contrast to it only factoring in function words when using the independent
posts approach on the oldest AfD discussions. It is set into relation to the
performance of a random classifier with 0% expressing equal performance.
The percentages refer to the overall performance, meaning that 50%
equates to a perfect result. Table A.2 contains the visualised values.
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Figure A.7.: This bar chart shows the performance of the full text SVM in contrast
to it only factoring in function words when using the independent posts
approach on the oldest AfD discussions. It is set into relation to the
performance of a random classifier with 0% expressing equal performance.
The percentages refer to the overall performance, meaning that 50%
equates to a perfect result. Table A.2 contains the visualised values.

Figure A.8.: This bar chart shows the performance of the full text NB classifier in
contrast to it only factoring in function words when using the independent
posts approach on the oldest AfD discussions. It is set into relation to the
performance of a random classifier with 0% expressing equal performance.
The percentages refer to the overall performance, meaning that 50%
equates to a perfect result. Table A.2 contains the visualised values.
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A.5. Sliding Window Approach Using Stratified Sampling

Classifier Recall+ Recall− Precision+ Precision− F1+ F1− Accuracy AUC

SVM 88.96 84.60 85.25 88.46 87.07 86.49 86.78 0.950

SVM (FW) 78.73 50.75 61.52 70.47 69.07 59.01 64.74 0.710

NB 69.57 93.43 91.37 75.43 78.99 83.47 81.50 0.670

NB (FW) 42.27 79.33 67.16 57.88 51.88 66.93 60.80 0.670

Table A.5.: This table shows the performance of the SVM and NB classifier using
the sliding window approach with stratified sampling. Function words
classifications are marked with “FW”. All others were full text classifications.
The plus and minus symbols indicate whether the performance metric was
calculated for disruptive (+) or constructive contributions (−).
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