
On the Construction of Optimal Paths from Flows and the
Analysis of Evacuation Scenarios

by

Jan Peter Ohst
from Ludwigshafen am Rhein, Germany

Accepted Dissertation thesis for the partial fulfilment of the requirements for a

Doctor of Natural Sciences

Fachbereich 3: Mathematik/Naturwissenschaften

Universität Koblenz-Landau

Reviewer:

Prof. Dr. Stefan Ruzika

Prof. Dr. Stephan Westphal

Examiner:

Prof. Dr. Wolfgang Imhof

Prof. Dr. Stefan Ruzika

Prof. Dr. Thomas Götz

Date of the oral examination: 22. December 2015

Abstract

In Part I: The flow-decomposition problem, we introduce and discuss the
flow-decomposition problem. Given a flow F , this problem consists of decomposing
the flow into a set of paths optimizing specific properties of those paths. We
introduce different types of decompositions, such as integer decompositions and α-
decompositions, and provide two formulations of the set of feasible decompositions.
We show that the problem of minimizing the longest path in a decomposition
is NP-hard, even for fractional solutions. Then we develop an algorithm based
on column generation which is able to solve the problem. Tight upper bounds
on the optimal objective value help to improve the performance. To find upper
bounds on the optimal solution for the shortest longest path problem, we develop
several heuristics and analyze their quality. On pearl graphs we prove a constant
approximation ratio of 2 and 3 respectively for all heuristics. A numerical study
on random pearl graphs shows that the solutions generated by the heuristics are
usually much better than this worst-case bound.

In Part II: Construction and analysis of evacuation models using flows
over time, we consider two optimization models in the context of evacuation
planning. The first model is a parameter-based quickest flow model with time-
dependent supply values. We give a detailed description of the network construction
and of how different scenarios are modeled by scenario parameters. In a second
step we analyze the effect of the scenario parameters on the evacuation time.
Understanding how the different parameters influence the evacuation time allows
us to provide better advice for evacuation planning and allows us to predict
evacuation times without solving additional optimization problems. To understand
the effect of the time-dependent supply values, we consider the quickest path
problem with time-dependent supply values and provide a solution algorithm. The
results from this consideration are generalized to approximate the behavior of the
evacuation times in the context of quickest flow problems.
The second model we consider is a path-based model for evacuation in the presence
of a dynamic cost function. We discuss the challenges of this model and provide
ideas for how to approach the problem from different angles. We relate the problem
to the flow-decomposition problem and consider the computation of evacuation
paths with dynamic costs for large capacities. For the latter method we provide
heuristics to find paths and compare them to the optimal solutions by applying the
methods to two evacuation scenarios. An analysis shows that the paths generated
by the heuristic yield close to optimal solutions and in addition have several
desirable properties for evacuation paths which are not given for the optimal
solution.

Zusammenfassung

In Part I: The flow-decomposition problem führen wir das Flusszerlegungs-
problem ein. Gegeben ein Fluss F , besteht dieses Problem darin den Fluss in eine
Menge von Wegen zu zerlegen, sodass die Eigenschaften dieser Wege optimiert
werden. Wir untersuchen verschiedene Arten von Zerlegungen und entwickeln zwei
Formulierungen um die Menge der zulässigen Zerlegungen zu beschreiben. Wir
zeigen, dass die Minimierung des längsten Weges einer Zerlegung (SLP) NP-schwer
ist, sogar für das fraktionale Problem auf Perlengraphen. Wir entwickeln einen
Algorithmus, der auf Spaltengenerierung basiert und in der Lage ist, das Problem
optimal zu lösen. Scharfe obere Schranken für den optimalen Zielfunktionswert
helfen die Performance des Algorithmus zu verbessern. Um solche oberen Schranken
für SLP zu finden, führen wir verschiedene Heuristiken ein und analysieren deren
Qualität. Für Perlengraphen beweisen wir, dass alle Heuristiken eine konstante
Approximationsgüte von 2 bzw. 3 liefern. Eine numerische Untersuchung auf
zufälligen Perlengraphen zeigt, dass die von den Heuristiken gelieferten Lösungen
in der Regel deutlich besser sind als die bewiesene worst-case Schranke.

In Part II: Construction and analysis of evacuation models using flows
over time betrachten wir zwei Optimierungsmodelle im Rahmen der Evakuierungs-
planung. Das erste Modell ist ein parameterbasiertes Quickest-Flow-Modell mit
zeitabhängigen Supply. Wir beschreiben die Konstrution eines Netzwerk und dis-
kutieren, wie verschiedenen Szenarien durch Szenarioparameter modelliert werden.
Dann analysieren wir den Effekt der Szenarioparameter auf die Evakuierungszeit.
Das Verständnis dieses Effekts ermöglicht es uns bessere Entscheidungshilfen für
die Evakuierung zu liefern und Evakuierungszeiten ohne die Lösung zusätzlicher
Optimierungsprobleme vorherzusagen. Um die Wirkung des zeitabhängigen Sup-
ply zu verstehen, betrachten wir das Quickest-Path-Problem mit zeitabhängigem
Supply und entwickeln einen Lösungsalgorithmus. Die Ergebnisse werden dann
auf das Quickest-Flow-Problem verallgemeinert, um das Verhalten der Evakuie-
rungszeiten zu approximieren. Das zweite betrachtete Modell ist ein wegbasiertes
Evakuierungsmodell mit dynamischer Kostenfunktion. Wir diskutieren auftreten-
de Herausforderungen und liefern Lösungsideen für verschiedene Teilprobleme.
Wir setzen das Problem in Bezug zum Flusszerlegungsproblem und berechnen
Evakuierungswege mit dynamischen Kosten für große Kantenkapazitäten. Für die
letztgenannte Methode entwickeln wir Heuristiken, welche wir mit der optimalen
Lösung vergleichen. Eine Analyse zeigt, dass die heuristisch gefundenen Wege
nah an die optimale Lösung herankommen und dass diese Wege viele bei der
Evakuierung wünschenswerte Eigenschaften haben, welche die optimalen Wege
nicht haben.

Acknowledgments

First and foremost, I want to thank my supervisor Stefan Ruzika who awoke my
interest for traffic-flow models and evacuation planning, and who gave me the
opportunity to conduct research in this area. I am very grateful for his advice and
continuous support during my studies.

I also want to thank Simone Göttlich and Sebastian Kühn, for their collaborative
contributions to our joint research project.

Furthermore, I thank all my co-workers, both from the “AG Optimization” at the
technical university of Kaiserslautern and from the mathematical institute of the
university Koblenz-Landau who all contributed to create a joyful and productive
atmosphere not only during working hours but also at various social events. I want
to express special thanks to Thomas Werth, David Willems, Carolin Torchiani,
Michael Helmling, Pascal Halfmann and Florian Gensheimer, who all shared an
office with me at some point in time and who where all willing to answer questions
and to engage in fruitful discussions at any time.

I thank Michael Helmling, Marc Goerigk, Tina Trillitzsch, Florian Grässle, and
Carolin Torchiani for proofreading my thesis. Especially Carolin read many early
drafts of my thesis and provided helpful feedback and suggestions.

Last but not least I want to thank my family and friends for their endless support
and for providing refreshing diversions from the world of mathematics.

Contents

1. Introduction 1

2. Preliminaries 5
2.1. Linear programming . 5
2.2. Concepts from graph theory and network optimization 12
2.3. Graphs and flows over time . 16
2.4. Multi-objective optimization . 22

I. The flow-decomposition problem 25

3. Problem structure and theoretical analysis 29
3.1. The set of flow-decompositions . 30
3.2. Previous and related work . 38
3.3. Flow-decomposition minimizing the longest path (SLP) 41
3.4. Solving SLP . 51
3.5. Decomposition problems and their applications 62
3.6. Conclusion . 66

4. Approximation algorithms for SLP 69
4.1. FPTAS . 70
4.2. Local search . 70
4.3. Matching paths . 75
4.4. Scheduling with restrictions . 82
4.5. Computational results on pearl graphs 85
4.6. Conclusion . 86

Contents

II. Construction and analysis of evacuation models using
flows over time 87

5. Evacuation of a nuclear power plant - A flow over time model 91
5.1. Generating a network over time 94
5.2. Simplifying the network . 100
5.3. Generating time-dependent supply values 102
5.4. Quickest path with time-dependent supply values 107
5.5. Conclusion . 112

6. Evacuation of a nuclear power plant critical zone - Data analysis 115
6.1. Analysis of evacuation times . 116
6.2. Allocation to target regions . 129
6.3. Usage of roads . 130
6.4. Conclusion . 134

7. Evacuation including a dynamic cost function 135
7.1. Computing optimal evacuation paths 135
7.2. Computational study . 143
7.3. Conclusion . 154

A. Additional data and figures for chapters 5 and 6 167

1. Introduction

Life is not free of risk and occasionally accidents or dangerous situations occur.
In order to minimize the endangerment of the population in the vicinity of an
event, it becomes necessary to evacuate the surrounding as quickly as possible.
Understanding the geography of the area and the evacuation dynamics is crucial
for the effectiveness of the evacuation and can save many lives in case of an
emergency.

Mathematical models for the evacuation process contribute to the understanding
of the situation at hand. Even though the models cannot fully represent the real
situation they allow for an identification of key features and critical structures that
have to be accounted for. Evacuation models are usually divided into microscopic
and macroscopic models.

Microscopic models are based on the description of individual evacuees and their
interaction while moving out of the danger zone. Most of the models are based on
simulations and can be classified as cellular automata models [KHK11, PRM15,
Tia+14], social-force models [JPT14, ZIK11], or agent based models [BK14, NF12].

Macroscopic models usually simplify the interaction of individuals and consider
the evacuees as a homogeneous group. Flows on networks are a common model for
this, both using continuous time approaches [LW55, AP89, CGP05] and discrete
times [BDK93, Gal58, CFS82]. The advantage of a macroscopic approach is that it
allows for fast numeric simulations and the optimization of the evacuation process,
leading to provable lower bound for e. g. the evacuation time.

Network flows over time, such as the quickest flow [BDK93] and earliest arrival
flow [Gal58] are well studied and are often used to compute evacuation times for
evacuation scenarios. However, these models leave important questions unanswered
such as:

• Which paths should be used by the evacuees?

• How can different scenarios be parameterized?

• How does changing the scenario change the optimal evacuation times?

• What is the impact of external influences on the evacuation?

1

Chapter 1. Introduction

These questions are tackled in this thesis, which is divided into two parts. The
first part deals with the problem of decomposing a given flow into paths in an
optimal way, the second part deals with the construction and analysis of scenario-
based evacuation models and a model for evacuation under consideration of a cost
function.

Outline of this thesis

In part I of this thesis (chapters 3 and 4) we consider the flow-decomposition
problem. In many applications a flow, providing the amount of flow sent along the
edges, is a satisfying solution. But, sometimes (e. g. for the planing of evacuation
routes) it is important to know which paths are used by individual units of flow.
Computing a decomposition of the flow into paths answers this question, but
usually a decomposition is not unique. The flow-decomposition problem considers
how to find the best possible decomposition of a flow which is a problem that has
been discussed only sparsely in literature so far.

In chapter 3 of this thesis we introduce the general flow-decomposition problem
and develop a description of the set of feasible flow-decompositions. We analyze
the structure of this set and elaborate on the difference between integer and
fractional decompositions. Then, we consider one explicit objective function for
the flow-decomposition problem which is minimizing the length of the longest
path in a decomposition. We show that the problem is NP-hard and present a
solution algorithm based on column generation.

In chapter 4 we present and test approximation algorithms to find decompositions,
minimizing the longest path. They are used to quickly determine tight upper
bounds on the optimal value and provide good starting solutions for the exact
algorithm of chapter 3. All heuristics are applied to series-parallel graphs, and for
pearl graphs we show a constant approximation ratio for all algorithms.

In part II of this thesis (chapters 5, 6, and 7) we consider evacuation models
using flows over time. The details of model construction are often omitted in
literature, but are important to understand and analyze model solutions. We give
a detail description of the construction of a model based on various scenarios and
perform an analysis of the data. In addition we consider the impact an additional
cost function has on the model.

In chapter 5 we present in detail how a network flow model can be constructed
from real world data by using the 20 km zone around the nuclear power plant
in Philippsburg as an example scenario. We discuss how to select and simplify
the road data and how different scenarios can be represented in the model using
a set of parameters. We also include time-dependent departure times, which are

2

not part of the standard model. To understand the effect of the time-dependent
departure times on the problem, we consider the quickest path problem with
time-dependent departure times. For this problem we modify existing algorithms
for the quickest path problem to provide a solution algorithm.

In chapter 6 we analyze the data obtained by solving the model created in chapter
5 for different scenario parameters. We generalize the explicit formula for the
evacuation time given for the quickest path problem (with and without delayed
departure times) to get a functional description of the behavior of evacuation
times when changing the model parameters. This helps us to assess the evacuation
scenario and to make predictions on evacuation times for scenario parameters not
considered during the optimization. To round out the analysis, we examine the
allocation of flow to target regions and the traffic load on the edges.

In chapter 7 we add a time-dependent cost function to the evacuation model.
This changes the model substantially. Now, minimizing the overall cost value
for all evacuees is only a secondary goal, while minimizing the cost value for
individual units of flow becomes more important. We give an overview on the
changes and challenges that arise by this conceptual difference and formulate a
first model for the problem. We then suggest different extensions of the model in
order to compute evacuation paths with certain properties. We develop first ideas
for solution strategies and apply them to a real world scenario. This scenario is
the evacuation of a chemical plant assuming an expanding hazardous gas as the
source for the cost function.

Credits

The network creation described in chapter 5 was based on preliminary work by
Florian Seipp who was also available for helpful discussions on that matter.

The case study performed in chapter 7 was done in collaboration with Sebastian
Kühn and Simone Göttlich who provided the numerical data for the hazard and
the mapping to a cost function on the network.

Last but not least I want to thank Stiftung Rheinland-Pfalz für Innovation, Project
EvaC, FKZ 989 and the Ministerium des Innern, für Sport und Infrastruktur,
Rheinland-Pfalz, grant "Katastrophenschutzplanung für kerntechnische Anlagen"
for funding of my work.

3

2. Preliminaries

In this chapter we give a short overview of the mathematical methods and structures
used throughout this thesis. The main goal is not to give a complete introduction
to the respective topics, but to introduce the notation used in the following
chapters and to provide references for further reading. We cover three major
topics, which are linear programming, especially column generation, network
optimization, especially series-parallel graphs and flows over time, and multi-
objective optimization.

2.1. Linear programming

Many optimization problems can be formulated as a linear program consisting of a
set of linear (in-)equalities, describing the set of feasible solution vectors X ⊂ Rn,
and a linear objective function.

Definition 2.1 (linear program in standard form): Let c ∈ Rn be a cost
vector, A ∈ Rm×n a constraint matrix, and b ∈ Rm a coefficient vector. A linear
program in standard form is given by a feasibility set or feasibility polyhedron

X =
{
x ∈ Rn

+ : Ax = b
}
,

and a linear objective function ψ = min cTx. It is denoted by

min
x∈X

cTx.

We call x ∈ Rn a feasible solution if it is contained in X. If X is empty the
program is infeasible, if X is non-empty, but there exists no minimum for cTx for
x ∈ X, the program is unboundend.

Remark 2.2. Depending on the literature the standard form can also be intro-
duced as a maximization problem. The general methods presented apply to both
definitions of the standard form, with some signs adjusted. M

Remark 2.3. Any linear problem, given by a set of (in-)equalities and potentially
sign-unconstrained variables, can be transformed into a problem in standard form. M

5

Chapter 2. Preliminaries

2.1.1. The simplex algorithm

The most commonly used method to find a feasible solution x minimizing the
objective function is the simplex algorithm. In the following we discuss the basic
concepts of this method, omitting several details and proofs (e. g. finding starting
solutions, cycling of the algorithm, duality, etc.). For a more detailed introduction
on linear programming we refer to text books such as [HK00, MG07].

The simplex algorithm in its most basic form requires a linear problem in standard
form (cf. def. 2.1). The idea is to consider only a specific kind of solutions, that
are the basic feasible solutions, corresponding to the vertices of the feasibility
polyhedron, and find an optimal solution of the problem among them.

Definition 2.4 (basic feasible solution): A basic feasible solution x ∈ X is a
feasible solution for which there exists a subset of the indices B ⊂ {1, 2, . . . , n} of
cardinality m, with an arbitrary but fixed order, such that

• the square matrix AB, given by the columns A·,i of A for which i ∈ B, is
nonsingular,

• xi = 0 for all i /∈ B.

The set B is called a basis of the linear program, and AB is called the corresponding
basic matrix.

In the following we use a representation of the linear program induced by a basis
B. The solution vector x is split into a vector xB ∈ Rm of basic variables and
a vector xN ∈ Rn−m of non-basic variables. Here xB contains all xi for which
i is in B, ordered in the same way as the indices in B, and xN contains the
remaining variables xi for which i is not in B, in an arbitrary but fixed order.
Analogously to the basic matrix the non-basic matrix AN consists of the columns
of A corresponding to the non-basic variables, ordered in the same way as in xN .

The set of feasible solutions w.r.t. B can be rewritten as

X =
{

(xB, xN) ∈ Rm × Rn−m : ABxB + ANxN = b
}
.

Splitting the cost vector into a basic and non-basic component the objective
function in this notation becomes

z = cTBxB + cTNxN . (2.1)

Since AB is a nonsingular matrix the value of xB, for any given xN , can be
computed by

xB = A−1
B b− A−1

B ANxN . (2.2)

6

2.1. Linear programming

Using this in equation (2.1) yields

z = cTB(A−1
B b− A−1

B ANxN) + cTNxN = cTBA
−1
B b+ (cN − cTBA−1

B AN)TxN . (2.3)

For a basic feasible solution corresponding to basis B, all entries of xN are zero,
and we get

xB = A−1
B · b and z = cTBA

−1
B b. (2.4)

Theorem 2.5 (Fundamental theorem of linear programming):
Consider a linear program in standard form. If there is a feasible solution x (with
Ax = b) and the objective value cTx is bounded from below, then there exists an
optimal basic feasible solution.

Proof: See e.g. [HK00] 2

Algorithm 1 Simplex algorithm
Require: LP in standard form, basis B with basic feasible solution (xB, xN).
1: while TRUE do
2: cR ←

(
c− cTBA−1

B A
)

// Reduced cost vector
3: Ã← A−1

B A // Current simplex matrix
4: b̃← A−1

B b // Current right-hand-side
5: if cRj ≥ 0 ∀j ∈ {1, . . . , n} then
6: return (xB, xN) // Solution is optimal
7: else
8: Choose j with cRj < 0 // Fix pivot column
9: end if
10: if Ãi,j ≤ 0 ∀i ∈ {1, . . . ,m} then
11: return Unbounded
12: else
13: r ← mini∈{1,...,m}{ b̃i

Ãi,j
: Ãi,j > 0} // Fix pivot row

14: Substitute r by j in the basis B
15: Pivot with Ar,j // Find new basis
16: Update cR, Ã, and b̃
17: end if
18: end while

By the fundamental theorem (thm. 2.5) it is sufficient to consider only basic
feasible solutions in order to find an optimal solution for a linear program in
standard form. The simplex algorithm (see algorithm 1) is built to find such a
solution. In the following we give a short outline of the methods used by the
algorithm:

7

Chapter 2. Preliminaries

For a given starting basic feasible solution the algorithm checks whether this
solution is optimal, and, in case it is not, performs a pivot step, leading to a basic
feasible solution with better objective value. This process is repeated until either
an optimal solution is found or it can be decided that the problem is unbounded.

To determine if a given basic feasible solution (xB, xN) is optimal, we consider the
objective value given by equation (2.3). For the current basic feasible solution
all entries of xN are zero. If we want to change the solution, we have to increase
at least one of the non-basic variables (say xs, s /∈ B) to a value ε > 0. By
equation (2.3) this causes a change in the objective value by (cs− cBA−1

B (AN)s) · ε.
So increasing the value of the variable xs only improves the objective value if
(cs − (cBA−1

B AN)s) is negative.

This motivates the definition of the reduced cost vector given by

cR = c− cBA−1
B A. (2.5)

Lemma 2.6 (reduced cost optimality condition): Given a linear program
in standard form, a basis B, and a basic feasible solution (xB, xN). The solution
(xB, xN) is optimal if the reduced cost vector given by equation (2.5) has only
non-negative entries.

Proof (sketch): By the previous reasoning the objective value cannot be improve
if all entries in cR are positive and hence it is optimal. 2

If, for a given basis, there exists a variable xs with negative associated reduced
costs we aim to increase xs as much as possible to obtain a better objective value.
If there is no bound for xs it can be chosen arbitrarily large and the linear program
is unbounded. Otherwise, to determine the largest possible value for xs, we use
the minimum ratio rule

δ = min
i∈{1,...,m}


(
A−1
B b

)
i(

A−1
B (AN)·,s

)
i

:
(
A−1
B (AN)·,s

)
i
> 0

 . (2.6)

Setting xs to δ changes the current basic variables according to equation (2.2).
The ratio rule ensures that after increasing xs the entries in xB remain positive
and hence that the new solution is feasible. Let r be the index for which the
ratio test is minimal. After increasing xs the value of xr is reduced to 0, hence
the number of non-zero entries in x remains the same. Since the new solution
is feasible and has at most m entries larger than 0, it is again a basic feasible
solution. The new basis is a basis where the index r is substituted by index s.

Since we obtain a basic feasible solution with a better objective value after each
pivot step, it can be shown that an optimal solution of the linear program can be

8

2.1. Linear programming

found by iteratively pivoting the solution, until all reduced costs are nonnegative.
Remark 2.7. It is possible that there exists a basis for which some xi have a value
of 0, even though they are basic variables. Such a problem is called degenerated. If
the problem is degenerated it is possible that the value δ, obtained from the ratio
test, is 0 during an iteration, and hence the objective value does not improve in
an iteration. In this case, we have to make sure that the simplex algorithm does
not get stuck in an infinite loop, cycling through a set of degenerated solutions
without ever improving the objective value. This is ensured by applying additional
pivot rules such as Bland’s rule [Bla77]. M

Remark 2.8. In the worst case the simplex method traverses all basic feasible
solutions to find an optimal one. This number can be exponentially large, hence the
simplex algorithm has, in theory, an exponential worst-case complexity. However,
in most practical instances the performance of the simplex algorithm is very good
and it is nevertheless used to solve linear programs. There are also other methods,
with polynomial complexity, to solve linear programs, for example the ellipsoid
method [GLS81] or Karmarkars algorithm [Kar84]. M

Equation (2.3) also allows us to compute a lower bound on the optimal objective
function, if the sum of all variables is bounded from above.
Lemma 2.9: Consider a linear program in standard form with an optimal basic
feasible solution x∗ with respect to the basis B∗ and objective value z∗. Let B be
a second basis and x = (xB, xN) the corresponding basic feasible solution. Let cR
be the reduced cost vector computed for the basis B and let cmin be the smallest
value of reduced costs for this basis. Furthermore, let κ ≥ ∑i∈[n] xi be an upper
bound on the sum of all variables for every feasible solution. Then we get

cTBxB + κ · cmin ≤ z∗.
Proof: According to equation (2.2) we rewrite the optimal solution x∗ with respect
to basis B as

x∗B = A−1
B b− A−1

B ANx
∗
N , (2.7)

and the objective value becomes

z∗ = cTB(A−1
B b− A−1

B ANx
∗
N) + cTNx

∗
N . (2.8)

The variables in x∗N are not necessarily zero since B may not be the optimal basis.
If x is optimal cmin is 0 since the basic variables have reduced costs of zero and all
other reduced cost are at least 0. If x is not optimal there is at least one negative
entry in the reduced cost vector and hence cmin is negative. The vector of basic
variables xB of solution x is given by A−1

B b so we get

z∗ = cTBxB + (cN − cBA−1
B AN)Tx∗N ≥ cTBxB + cmin

∑
i∈N

x∗i ≥ cTBxB + κcmin (2.9)
2

9

Chapter 2. Preliminaries

2.1.2. Revised simplex and column generation

For many linear programs the number of variables (n) is significantly larger than
the number of constraints (m). Hence, the number of non-basic variables (n−m)
for every basic feasible solution is very large. In the standard simplex method we
keep track of all information by updating the complete matrix A−1

B AN ∈ Rm×(n−m)

and cost vector cR ∈ Rn in every iteration. However, to perform a pivot step,
only the basic matrix AB and one column of A−1

B AN with negative reduced costs
are required. If we have an efficient way to find a variable with negative reduced
costs (or to conclude that there is none) without knowing the complete matrix
A−1
B AN and cR, there is no need to keep track of the matrix A−1

B AN in every pivot
iteration. Instead we compute the required pivot column on demand from the
basic matrix. The problem of finding a column with negative reduced costs is
called a pricing problem, which can often be solved by a secondary optimization
problem. There are two similar approaches that utilize this.

Revised simplex

From the fundamental theorem of linear programming we know that there is an
optimal basic feasible solution which can be represented solely by the basic matrix
AB and the vector b (cf. equation 2.4). For the revised simplex a pricing problem
is used to find, for a given basic feasible solution, a non-basic variable xj, j ∈ N ,
with negative reduced costs (or to decide that none exists). If there is an xj it
is sufficient to consider only the column of the matrix A−1

B AN corresponding to
this variable for a pivot. We can proceed with the determination of the pivot
row, using the minimum ratio test, as done in the regular simplex algorithm (see
[HK00] for details).

This method reduces the number of stored variables (since only AB has to be
stored), but we now have to solve a pricing problem to check optimality. The lines
shown in algorithm 2 replace lines 2 to 9 in algorithm 1.

Algorithm 2 Revised simplex modifications
(cRj , A.,j)← solve pricing // Find column with negative costs
if cRj > 0 then
return (xB, xN) // Pricing finds no negative reduced costs

// Optimality reached
else
Ã ·, j = A−1

B A ·, j // Represent A ·, j w.r.t. basis B
end if

// Proceed with selection of pivot row.

10

2.1. Linear programming

Column generation

A similar approach to the revised simplex is pursued by the method of column
generation [Bar+98, DW60] (cf. algorithm 3). Here we consider a master problem
which corresponds to the original problem, but keep only a subset {xi : i ∈ S} of
the variables {xi : i ∈ {1, . . . , n}}. This smaller problem is solved up to optimality,
and after this the reduced costs of the remaining variables are considered by
solving a pricing problem. If there are no variables with negative reduced costs
the solution is optimal for the original problem. Otherwise, the set of variables in
the master problem is expanded by additional variables, found by the pricing, to
improve the objective value. By repeatedly adding new variables with negative
reduced costs and re-optimization the optimal solution for the original problem is
obtained.

Algorithm 3 Column generation
Require: Linear program (LP) in standard form, Subset of variables S ⊂
{1, . . . , n}.

1: while TRUE do
2: (xSB, xSN)← Solve LP to optimality w.r.t. S
3: S ′ ← Solve pricing problem
4: // Find variables that improve current solution
5: if S ′ = ∅ then
6: return (xSB, xSN) // Optimal solution for LP found
7: else
8: S ← S ∪ S ′ // Update set of considered variables
9: end if
10: end while

2.1.3. Integer programs

In many cases the variables of an optimization problem are required to assume
integral values. These additional requirements, in general, increase the complexity
of the problem, and the simplex algorithm cannot be used to obtain feasible
solutions, since not every basic feasible solution is integral, and rounding an
optimal fractional solution to the closest feasible integer solution does not provide
an optimal integer solution.

Solution strategies for integer problems often involve branch and bound strategies
that restrict the search space for optimal solutions by the use of bounds. Solving
the problem as a linear problem without integrality constraints, the so called linear
relaxation, yields such a lower bound (for minimization problems) on the optimal
integral objective value. Another solution method is to improve the description of

11

Chapter 2. Preliminaries

the feasible set by adding additional constraints, to ensure that all basic feasible
solutions become integral. Those constrains have to be constructed in such a way
that no integral solution is cutt off. For a detailed introduction to the topic of
integer programming we refer to literature such as [NW88].

2.2. Concepts from graph theory and network
optimization

In this section we discuss several concepts from graph theory and network op-
timization. Besides basic concepts we focus on series-parallel graphs and flows
over time. As before this primarily serves as an introduction of the notation
used throughout the thesis. For a detailed introduction of basic concepts see for
example [AMO93, KN09], for series-parallel graphs see [HT86] and for flows over
time see [Sku09].

2.2.1. Basic Notation

In the following we introduce frequently used concepts, notations, and terminology
from network optimization. This is meant as a reference for later use and not as
a rigorous mathematical definition, so some details might be omitted. For the
mathematically exact definitions we refer to one of the various text books such as
[AMO93, KN09].

Graph
A graph G = (V,E) is given by a set of vertices V and a set of edges E
connecting them. In this thesis, we usually assume that G is a directed graph
(i.e. every edge can only be traversed in a predefined direction) unless stated
otherwise.

If we want to modify the set of vertices or edges we use the notations G− v
and G− e respectively denoting the sub-graph of G where vertex v (and all
edges starting or ending at v) or edge e is removed.
Remark 2.10 (Different terminology). In literature different terminologies
are used, depending on the field of research: Edges are also referred to as
arcs or links, vertices are referred to as nodes or joints. If a graph has special
parameters assigned (e. g. designated sources and sinks, capacities, etc.), it
is also called a network.

Edges
An edge of the graph G is denoted by a tuple of vertices e = (v, w) that are

12

2.2. Concepts from graph theory and network optimization

connected by this edge. The edge has a direction determined by the order
of the tuple. For an edge given by e = (v, w) we denote the start vertex by
α(e) = v and the end vertex by ω(e) = w.

For every vertex v ∈ V the sets of edges leaving and entering it respectively,
are denoted by

δ+(v) = {e ∈ E : α(e) = v} and
δ−(v) = {e ∈ E : ω(e) = v}.

Paths
Let s, d ∈ V be two designated vertices of the graph G. An s-d path is given
by an alternating sequence of vertices and edges starting at the vertex s and
ending at vertex d. A path is called a cycle if s = d holds. The set of all s-d
paths in a graph is denoted by Ps,d. Given two sets S and D of vertices we
denote by PS,D the set of all s-d paths with s ∈ S, d ∈ D.

• Given a path P = (s, e1, v1, . . . , vi, . . . , vj, . . . , en, d), we denote by
P |vi,vj = (vi, ei . . . , ej−1, vj) the sub-path of P leading from vi to vj.

• Given a (cost)function c : E → R assigning values to the edges, we
denote by c(P) = ∑

e∈P c(e) the (cost) value of the path P .

• Given a (capacity)function u : E → R assigning values to the edges we
denote by u(P) = mine∈P u(e) the (capacity-)bottleneck of P .

Often a path is represented only by a sequence of the edges or vertices used,
omitting the other. Since in later scenarios we allow for parallel edges only
a representation by a sequence of edges is used for a unique representation
of a path.

Flows
Let G be a graph with a capacity function u : E → Q and cost function
c : E → Q. Let S,D ⊂ V be two disjoint subsets of the vertices of G. A
flow F on the graph G is given by a function F : E → Q assigning a flow
value F (e) to every edge satisfying the flow conservation constraints∑

e∈δ−(v)
F (e)−

∑
e∈δ+(v)

F (e) = 0 for all v ∈ V \{S,D} and (2.10)

∑
d∈D

∑
e∈δ−(d)

F (e) =
∑
s∈S

∑
e∈δ+(s)

F (e), (2.11)

as well as the capacity constraints

0 ≤ F (e) ≤ u(e) for all e ∈ E. (2.12)

13

Chapter 2. Preliminaries

The excess of flow F at a vertex is defined as

b(v) =
∑

e∈δ−(v)
F (e)−

∑
e∈δ+(v)

F (e). (2.13)

The value of the flow F is given by

val(F) =
∑
d∈D

b(d),

the cost of F is
c(F) =

∑
e∈E

c(e) · F (e).

If the excess b(v) is given in advanced for all v ∈ V a flow is also called
b-flow. In this case the flow value is fixed and equation 2.13 (for every v ∈ V)
becomes a constraint for a feasible flow.

Every vertex for which the excess is

• negative is considered a source of the flow. The set S is the set of all
sources. For a source the absolute value of the excess is also called
the supply value of that vertex (we use the same notation b(s) for the
supply value even though it has the opposite sign of the excess).

• positive is considered a sink of the flow. The set D is the set of all sinks.
For a sink the excess is also called the demand value of that vertex.

• zero is considered an intermediate vertex.

2.2.2. Series-parallel and pearl graphs

Several network problems are easier on graphs with a certain structure. For
series-parallel graphs and pearl graphs many algorithms can be implemented more
efficiently utilizing the graph structure (see e.g. [TNS82, HT86, He91, KW04]).
The same holds true for the problems we consider, and hence we introduce the
structure of series-parallel graphs and pearl graphs.

Series-parallel graphs

Definition 2.11: A (two-terminal) series-parallel graph G = (V,E) is a directed
graph with one source s and one sink d that can be defined recursively by the
following rules:

14

2.2. Concepts from graph theory and network optimization

◦

parallel series

d

(a) Parallel and series composition of two
edges.

S

P e4

e1 S

e2 e3

e2 e3

e1

e4

e2 e3

e1

e2 e3

(b) Construction tree for a series-parallel
graph with four edges.

Figure 2.1.: Series-parallel graphs.

1. K2 (i.e. a single edge e = (s, d) connecting the vertices s and d) is a series-
parallel graph.

2. Let G1 and G2 be two series-parallel graphs. Then the graph G obtained by
one of the following operations (illustrated in figure 2.1(a)) is series-parallel
as well:

Parallel composition (G = G1 ◦P G2)

Merge the source nodes s1 of G1 and s2 of G2 to a new source s of G.

Merge the sink nodes d1 of G1 and d2 of G2 to a new sink d of G.

Series composition (G = G1 ◦S G2)

Merge the sink d1 of G1 with the source s2 of G2 to a new vertex v.

Identify the source s1 of G1 with the source s of G.

Identify the sink d2 of G2 with the sink d of G.

Due to the recursive definition of a series-parallel graph, any such graph can be
described by a sequence of series and parallel compositions starting from graphs
of type K2.

This construction can be represented by a binary rooted tree called the construction
tree. Figure 2.1(b) shows an example of such a tree. The leaf nodes of the tree
correspond to the edges of the graph (represented by a graph K2) and we call
them nodes of type e. All other vertices are associated with graphs that are either
a series or parallel composition of the two graphs associated with the child nodes.
If the two graphs are composed in series, we call the vertex of type S otherwise it
is said to be a vertex of type P . The graph corresponding to the root node is the

15

Chapter 2. Preliminaries

graph represented by the construction tree. To check whether a given graph is
series-parallel and to generate a construction tree, we can use methods presented
e.g. by He and Yesha [HY87] and Eppstein [Epp92].

Remark 2.12. Note that, in general, the order of the compositions can be chosen
in different ways, to obtain the same graph. Hence, the construction tree is not
unique. M

Pearl graphs

An even simpler structure than series-parallel graphs are pearl graphs.

Definition 2.13: A pearl graph is an series-parallel graph where no node of type
P in the construction tree has a child node of type S.

Figure 2.2.: Pearl graph with different pearl sizes.

A pearl graph can be represented by a sequence of topologically sorted vertices
vi, i ∈ {1, . . . , |V |}, where there are only edges e = (vi, vi+1) between adjacent
vertices. Parallel edges are allowed in this context, such that the number of edges
between each node can be arbitrary, as shown in figure 2.2. The vertex v0 is the
source node of the graph and v|V | is the sink node.

The sub-graph of a pearl graph consisting of two adjacent vertices vi and vi+1
and all edges between them is referred to as the i-th pearl of the graph, and the
number of edges contained in this sub-graph is called the size of the i-th pearl.

2.3. Graphs and flows over time

In addition to the usual network flow model (cf. section 2.2.1), we use a flow model
which takes into account a time component (cf. e. g. [Sku09, Aro89]). To emphasize
the difference between such models and those without a time component, we call
the former static flows and the latter flows over time. The corresponding networks
on which the flow has to be computed are called static network and network over
time.

Remark 2.14. In literature the term dynamic network is often used as synonym
for a network over time. However, a dynamic network also denotes a network

16

2.3. Graphs and flows over time

which changes over time, both in edge parameters and the network structure
itself. To avoid confusion, we use the term flow over time in this thesis. When we
consider networks with parameters that change over time we specify this by calling
the network a network over time with dynamic edge parameters. Even though
changing the edge capacities to zero can be used to model structural network
changes over time we do not focus on this and assume that the network structure
is constant over time. M

Definition 2.15 (Flow over time): Let G = (V,E) be a graph with capacity
functions u : E → Q for the edges and w : V → Q for the vertices. Let τ : E → N
be a function of travel times. Let S,D ⊂ V be the set of sources and sinks
respectively. An assignment of values F (e, t) for all e ∈ E and t ∈ Z and F (v, t)
for all v ∈ V and t ∈ Z is called a (feasible) flow over time with static parameters,
if it fulfills the constraints

F (v, t)− F (v, t− 1) = b(v, t) ∀ v ∈ V \{S,D},∀ t ∈ Z (2.14a)
∑
t∈Z

∑
d∈D

b(d, t)−
∑
s∈S

b(s, t)
 = 0 (2.14b)

0 ≤ F (e, t) ≤ ue ∀ e ∈ E,∀ t ∈ Z (2.14c)
0 ≤ F (v, t) ≤ wv ∀ v ∈ V, ∀ t ∈ Z. (2.14d)

In the same way as for static flows we define the excess of node v at time t as

b(v, t) =
∑

e∈δ−(v)
F (e, t− τ(e))−

∑
e∈δ+(v)

F (e, t), (2.15)

given by the flow arriving and leaving vertex v at time t along all edges. The flow
values F (v, t) for the vertices represent flow waiting at a vertex for one time step.

• The flow has time horizon T ∈ N, if F (e, t) = 0 for all edges e ∈ E and
time steps t /∈ [0, T − τ(e)] and F (v, t) = 0 for all vertices and time steps
t /∈ [0, T − 1]. This means that we only have to consider time steps in the
interval [0, T] and can omit the values F (e, t) and F (v, t) for all other time
steps.

• A flow is called waiting free if F (v, t) = 0 for all time steps t ∈ Z and all
v ∈ V .

• The value of the flow is the amount of flow arriving at all sinks over all time
steps, i. e.

val(F) =
∑
t∈Z

∑
d∈D

b(d, t).

Equations (2.14a) and (2.14b) ensure flow conservation over time, where not only
the amount of flow matters but also the time at which it arrives. We allow flow

17

Chapter 2. Preliminaries

values for vertices as well, enabling flow to wait at a vertex to use an edge at
a later time. Equations (2.14c) and (2.14d) impose capacity constraints on the
edges and vertices. The capacity of an edge in this model does not restrict the
total amount of flow that can accumulate on the edge, but the amount of flow
that can enter the edge per time step. The vertex capacities constrain the amount
of flow that can be stored at the vertices at any time respectively.

Remark 2.16. The model of flows over time considers time in the form of dimen-
sionless, discrete time steps t ∈ Z. We require that the travel times τ ∈ N are
integral, in order to match the time steps. To convert the physical times to discrete
time steps, we specify a time discretization ∆t, defining the time that elapses
between two time steps t and (t+ 1). The time elapsed between time step 0 and t
is then computed as t̃ = t ·∆t.

There are also methods that adjust the flow over time model to handle continuous
times [FT98, AP89, AP94]. M

For networks with static parameters many flow problems over time can be solved
efficiently [FF58, BDK93, RSX91]. Here we review several of those problems and
solution-methods that are used throughout this thesis, as well as a general method
to transform a network over time into a static network, which can also handle
time-dependent parameters.

2.3.1. Time-expanded network

One general method to include a time component into a static model was introduced
by Ford and Fulkerson [FF62] in 1962. In this method the network over time
is considered explicitly at every time step t ∈ {0, . . . , T} in an auxiliary graph
called the time-expanded network (TEN). This new graph increases in size by the
factor T , but can be treated as a static graph. A feasible static flow in the TEN
corresponds to a feasible flow over time in the original network.

Definition 2.17 (Time-expanded network): Let G = (V,E) be a network
over time with capacity functions u : E → Q for the edges and w : V → Q for
the vertices. Let τ : E → N be the function of travel times. The time-expanded
network (TEN) of G with time horizon T is defined as GT = (VT , ET ∪WT) where

VT = {vt : v ∈ V, t ∈ {0, . . . , T}} (2.16a)
ET =

{
(vt, wt+τ(e)) : e = (v, w) ∈ E, t ∈ {0, . . . , T − τ(e)}

}
(2.16b)

WT = {(vt, vt+1) : v ∈ V, t ∈ {0, . . . , T − 1}} . (2.16c)

18

2.3. Graphs and flows over time

The capacities uT (e) of the edges are chosen as

uT (e) = u(u,v) ∀ e = (ut, vt+τ(u,v)) ∈ ET (2.16d)
uT (e) = wv ∀ e = (vt, vt+1) ∈ WT . (2.16e)

The time-expanded network contains (T + 1) copies of every vertex v which
represent this vertex at all possible time steps (cf. figure 2.3). In this way, flow
starting on an edge e = (u, v) at time step t1 can be distinguished from flow
starting on this edge at time step t2. In the TEN the former flow uses edge
(ut1 , vt1+τ(e)) and the latter uses edge (ut2 , vt2+τ(e)). By connecting a time copy ut
with vt+τ(e) for the edge e = (u, v) at time step t, we ensure that flow using this
edge arrives at v at the correct time. The edges in WT are called holdover edges
and model the possibility to wait at a vertex for one time step. The static flow
conservation constraints in the TEN correspond to the flow over time conservation
constraints of the problem we expanded. Hence, if we interpret a static flow Fs
in GT as a flow over time in G by setting F (e = u, v, t) = Fs(ut, vt+τ(e)) and
F (v, t) = Fs(vt, vt+1), this flow is a feasible flow over time.

The advantage of this method is that we can use static flow algorithms on the
time expanded network to solve flow over time problems. Furthermore, since every
time step is represented explicitly in the TEN, we can us this method to handle
parameters that vary deterministically over time.

G:

s

v

w

d5

3

1

2

3

GT, T = 5:

s0

v0

w0

d0

s1

v1

w1

d1

s2

v2

w2

d2

s3

v3

w3

d3

s4

v4

w4

d4

s5

v5

w5

d5

Figure 2.3.: Time-expanded network of a small network with time horizon T = 5.

2.3.2. Maximum flows over time

The goal of the maximum flow over time problem is to find a flow over time which
maximizes the flow arriving at all sinks within a given time interval [0, T].
Definition 2.18 (Maximum flow over time): Let G = (V,E) be a network
over time with capacity functions u : E → Q for the edges and w : V → Q for

19

Chapter 2. Preliminaries

the vertices. Let τ : E → N be the function of the travel times. The maximum
flow over time problem is to find a feasible flow over time F with time horizon T
maximizing the objective function

val(F) =
∑
t≤T

∑
d∈D

b(d, t). (2.17)

The time-expanded network can be used to find a maximum dynamic flow by
maximizing the flow arriving at all time copies of the sinks in the TEN. However,
the number of vertices and edges in the TEN scales with the time horizon T ,
and hence solving a maximum flow problem for the TEN yields only a pseudo-
polynomial algorithm for the problem over time.

There is also a polynomial time algorithm [FF58] for the maximum flow over time
problem: This algorithm repeats flow on a set of optimal paths as long as possible
and because of this structure the resulting flow is called a temporally repeated
flow (TRF). To obtain such paths (for one source and one sink), an auxiliary
edge from the sink to the source is added to the network over time, with a travel
time of −(T + 1). Then a minimum-cost circulation with respect to the travel
times is computed, where the network is treated like a static network. To convert
this circulation to a flow over time, the auxiliary edge is removed such that the
circulation becomes a static s-d flow Fstatic. This flow is decomposed into a set of
path P and flow is sent along those paths within the time interval [0, T − τ(P)]
ensuring that the flow arrives before time step T . The flow value that arrives at
the sink for the temporally repeated flow F generated by Fstatic is (cf. [Sku09])

val(F) = T · val(Fstatic)−
∑
e∈E

τ(e)Fstatic(e). (2.18)

2.3.3. The quickest flow problem

A problem especially relevant in an evacuation context is the quickest flow problem
[BDK93].

Definition 2.19 (Quickest flow): Let G = (V,E) be a network over time with
capacity functions u : E → Q for the edges and w : V → Q for the vertices. Let
τ : E → N be the function of the travel times. Let S,D ⊂ V be the set of sources
and sinks respectively. Furthermore, let B ∈ N be the required flow value. The
quickest flow problem (QFP) is to find a flow over time F of value val(F) = B
minimizing the latest arrival time of flow at a sink i.e. minimize

T (F) = max {t : F (e, (t− τ(e))) 6= 0 for some edge e with ω(e) ∈ D} . (2.19)

20

2.3. Graphs and flows over time

This problem can be solved using the time-expanded network by introducing turn
style costs, as proposed in [CFS82]. We introduce a super-sink D and connect
all time copies of the sinks dt, (d ∈ D, t ∈ {0, . . . , T}) to the super-sink with
edges of infinite capacity. The turn style costs ct of those edges are defined as
ct((dt, D)) = t. The turn style costs of all other edges are set to 0. Jarvis and
Ratliff [JR82] show that a flow in the TEN minimizing those turn style costs gives
not only a quickest flow but also a flow maximizing the arrival of flow at the sink
up to any time step which is known as an earliest arrival flow first introduced by
Gale [Gal58].

Burkard, Dlaska, and Klinz [BDK93] propose a more efficient algorithm to solve
the quickest flow problem, not using the time-expanded network. This algorithm
is based on the idea of temporally repeated flows introduced in section 2.3.2. They
show that the time needed by a quickest flow to send B units of flow to the sinks
is exactly the smallest possible time horizon for which a maximum flow over time
can send an amount of at least B units of flow to the sinks. By a binary search
procedure this time can be found by a sequence of maximum flow computations.
This flow however is not longer an earliest arrival flow.

2.3.4. The quickest path problem

A similar problem to the quickest flow problem is the quickest path problem first
introduced by Chen and Chin [CC90], where a quickest flow using only one path
is requested.

Definition 2.20 (Quickest path problem): Let G = (V,E) be a network over
time with capacity function u : E → Q. Let τ : E → N be the function of the
travel times. Let s be a single source and d be a single sink. Let B be the supply
value that has to reach the sink. The Quickest Path Problem (QPP) is to find a
feasible s-d-path P minimizing the time T (P) this path needs to send B units of
flow to the sink. This is given by

T (P) =
∑
e∈P

τ(e) +
⌈

B

maxe∈P ue

⌉
= τ(P) +

⌈
B

u(P)

⌉
− 1 (2.20)

and consists of the travel time along the path and the minimal number of times
the path has to be used to send the required flow value of B to the sink.

Remark 2.21. The usual objective function for the quickest path problem in
literature is given by min τ(P) +

⌈
B

u(P)

⌉
. However, to obtain the time at which the

last unit of flow arrives at the sink we have to subtract 1 from this value. Since
the first time the path is used is at time step t = 0 the last units of flow leave the
source at time step

⌈
B

u(P)

⌉
−1 and arrive at the sink at time step τ(P)+

⌈
B

u(P)

⌉
−1. M

21

Chapter 2. Preliminaries

In this setting, feasibility in terms of capacity restrictions is not a problem. Instead,
the goal is to balance the travel time and the capacity bottleneck of the path
[CC90, RSX91]. In a wider sense the quickest path problem can be interpreted as
a minsum-maxmin bi-criteria path problem, [MD97, PCC06] minimizing the sum
of travel times (Ψ1 = ∑

e∈P τ(e)) while maximizing the minimum capacity of the
paths (Ψ2 = mine∈P u(e)). It has been shown [MD97] that for any supply value B
the quickest path is an efficient path (see section 2.4 for a definition of efficient) of
this problem.

To find a quickest path, all efficient paths are computed by iteratively deleting
edges with high capacities [Mar84]. From this set the best path for a given supply
value B is selected.

2.4. Multi-objective optimization

In some optimization problems more than one objective function is considered
at the same time. This requires a new concept of optimality and leads to the
field of multi-criteria optimization. In this section we give a short introduction
to the optimality concept for multi-criteria problems. More details and solution
approaches to multi-objective problems are found e. g. in [Ehr05].

Definition 2.22 (Multiple objective optimization problem): Let X ⊂ Rn

be a set of feasible solutions for an optimization problem. Let fi : Rn → R, 1 ≤
i ≤ p be a set of p objective functions. Then a multiple objective optimization
problem is given by

"min" f(x) = (f1(x), . . . , fp(x))T (2.21)
s. t. x ∈ X

Since we consider a vector valued objective function it is not clear what "min"
means in this context. To compare two solutions, we use the component-wise
order given by the following definition.

Definition 2.23: For y1 and y2 ∈ Rp, p ≥ 2 we write

y1 5 y2 :⇔ y1
i ≤ y2

i for all i = 1, . . . p, (2.22)
y1 ≤ y2 :⇔ y1 5 y2 and y1 6= y2, (2.23)
y1 < y2 :⇔ y1

i < y2
i for all i = 1, . . . p. (2.24)

Note that, according to definition 2.23, there can be vectors y1 and y2 ∈ Rp, p ≥ 2
for which neither y1 ≤ y2 nor y2 ≤ y1 holds. Hence, if there is no order of

22

2.4. Multi-objective optimization

importance given there can be a whole set of solutions that can be considered
to be optimal and it cannot be mathematically decided which one is best. Only
if y1 < y2 or y1 ≤ y2 holds we can clearly decide that y1 is better than y2 since
the objective value of every component of y1 is smaller (or at most as large for
y1 ≤ y2) as the corresponding component of y2. We say that y1 strictly dominates
y2 if y1 < y2 holds. If y1 ≤ y2 holds we say that y1 weakly dominates y2.

Definition 2.24 (Efficiency and non-dominance): Consider a multiple ob-
jective optimization problem with objective "min" f(x) = (f1(x), . . . , fp(x))T . A
solution vector x ∈ X is called efficient if there exists no vector x̃ 6= x ∈ X such
that f(x̃) ≤ f(x)). If x is efficient we call its image f(x) non-dominated. The set
off all efficient solutions is denoted by

XE = {x ∈ X : @ x̃ ∈ X s. t. f(x̃) ≤ f(x)}

The efficient set XE contains all solutions that are optimal with respect to the
"min" objective of equation (2.21). None of the efficient solutions can be improved
in any objective value without worsening at least one other objective function.

23

Part I.

The flow-decomposition problem

25

Does the walker choose the path, or the path
the walker?

Garth Nix, Sabriel

3. Problem structure and
theoretical analysis

Network flows are a useful tool to model many real world problems, such as
vehicle routing [TV01, BHM04], routing in computer and communication networks
[PM04], traffic assignment [Pap90], and evacuation planning [HT02]. Most of
the time, flows are represented by a flow function F , as introduced in section
2.2, assigning flow values to the edges. This representation is sufficient for most
problems but gives no explicit information on the paths used by the flow. To access
this information, a decomposition of the flow into paths is required. However,
figure 3.1 shows that the choice of the decomposition is in general not unique. The
two decompositions shown are both feasible but have different properties. Both
the number of paths used in the decomposition and the number of edges in the
longest path disagree.

s d

1

2

1 1

2

1
s d

1

2

1 1

2

1

s d

1

1 1

1 1

1 1

1

Figure 3.1.: Different decompositions (right) of the same s-d-flow (left) with dif-
ferent properties (length of longest path, number of paths). The edge
labels correspond to the flow values on those edges.

The number of possible decompositions can become very large and their properties
are usually very different, so a natural question arises:

What is the best decomposition and how can it be found?

29

Chapter 3. Problem structure and theoretical analysis

In this chapter we understand the task of decomposing a flow into paths as an
optimization problem over the set of feasible decompositions. We give a polyhedral
description of the feasible set and analyze its properties. Then, for the problem of
minimizing the longest path of a decomposition, a solution algorithm, based on
column generation techniques is presented.

3.1. The set of flow-decompositions

Finding a flow-decomposition of a flow F is a problem formulated for a graph G.
Since the paths of a decomposition of F can only use edges which are used by the
flow, we restrict the decomposition problem to a special type of graph induced by
the flow F .

Definition 3.1 (Flow-graph): Given a flow F : E → Q+ of value val(F) on a
graph G = (V,E), let S ⊂ V be the set of sources and D ⊂ V the set of sinks. The
flow-graph GF = (V ′, E ′) is defined as the sub-graph of G induced by the edges
e ∈ E with F (e) > 0. Furthermore, we define a capacity function u : E ′ → Q on
GF via u(e) = F (e).

Using the flow-graph we work on a graph which only contains the vital information
for the decomposition. Moreover, a flow-graph has an additional property induced
by the properties of the flow F :

Since F satisfies the flow-conservation constraints, it holds in GF that∑
e∈δ−(v)

u(e) =
∑

e∈δ+(v)
u(e) ∀v /∈ S ∪ D.

Remark 3.2. We assume in the following that any vertex v ∈ GF\S ∪ D has in-
and out-degree at least 2. Otherwise the decomposition at that vertex would be
unique and hence the graph can be simplified by combining the in- and outgoing
edge to one new edge with adjusted parameters. M

Definition 3.3 ((Flow-)decomposition): Let F be a feasible flow on a graph
G = (V,E). Let S be the set of sources and D be the set of sinks of the
flow F . Let GF = (V ′, E ′) be the corresponding flow-graph. A tuple D =
(P , C) of finite (multi-) sets P = {(P1, val(P1)), . . . , (Pn, val(Pn))} and C =
{(C1, val(C1)), . . . , (Cm, val(Cm))} is called a decomposition of the flow F into
paths P and cycles C if

(a) Pi is a simple s-d-path in GF (with s ∈ S, d ∈ D) for all i ∈ {1, . . . , n},

(b) Cj is a simple cycle in GF for all j ∈ {1, . . . ,m},

30

3.1. The set of flow-decompositions

(c) val(Pi) > 0, val(Cj) > 0 for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}

(we call val(Pi) and val(Cj) the flow values of paths Pi and cycles Cj).

(d) ∑
i:e∈Pi

val(Pi) + ∑
j:e∈Cj

val(Cj) = u(e) for all e ∈ E ′.

The decomposition D is called

• integer decomposition if val(Pi) ∈ N for all i ∈ {1, . . . , n} and val(Cj) ∈ N
for all j ∈ {1, . . . ,m}.

• α-decomposition if all flow values are of value α, for some α ∈ Q+.

If D is a 1-decomposition, we also call it a unit decomposition. If we want to
stress that fractional values are allowed for val(Pi) and val(Cj), the term fractional
decomposition is used.

We denote the set of all decompositions of a flow F by PF and the set of all
α-decompositions by Pα

F . Usually it is clear which flow F is considered, so F is
omitted to simplify notation. For convenience we also use the formulation P ∈ P
where P denotes the path given by the first element of the tuple (P, val(P)) ∈ P .
The same formulation C ∈ C is used for cycles.

Remark 3.4 (Number of paths and cycles). The number of paths in a decomposi-
tion is not fixed. Since it is possible that some P ∈ P and C ∈ C are identical,
there is in general no upper bound on the number of paths and cycles that can
be contained in a decomposition. Even if the problem is restricted by demanding
that all paths P and cycles C have to be different, a decompositions can contain
an exponential number of paths (in terms of the number of edges |E| of GF).

On the other hand every edge in GF has to be contained in at least one path.
Hence, there is a lower bound on the number of paths and cycles given by the
maximum in- or out-degree of all vertices.

For an α-decomposition the number of paths is constant and given by

|P | = val(F)
α

. (3.1)

M

Remark 3.5. For a decomposition into two paths we conclude by remark 3.2 and
3.4 that every vertex which is not a source or sink has in- and out-degree precisely
2. In this case a graph with only one source and sink always reduces to a pearl
graph with 2 edges in each pearl. M

Example 3.6: Figure 3.2 shows a pearl graph with N = 3 pearls and each pearl
contains 2 parallel edges with unit capacity. In total there are 2N different paths

31

Chapter 3. Problem structure and theoretical analysis

val(F) = 2

e1

e2

e3

e4

e5

e6

Figure 3.2.: Decomposition problem on a pearl graph with unit capacities and
flow value val(F) = 2.

from the source to the sink. Assigning a flow value of 1
2N−1 to each of those

paths, gives a feasible decomposition with an exponential number of paths. A unit
decomposition on the same graph contains exactly two paths where each edge is
contained in exactly one of the paths. Such a decomposition is given by the paths
P1 = (e1, e3, e5) and P2 = (e2, e4, e6). The set of cycles in this case is empty. We
write D = ({(P1, 1), (P2, 1)}, ∅).

Lemma 3.7: Let D = (P , C) be a decomposition of the flow F with flow values
val(P) ∈ Q for all P ∈ P and val(C) ∈ Q for all C ∈ C. Then there exists an
α-decomposition D′ = (P ′, C ′) (for some α ∈ Q), which only uses paths P ′ ∈ P
and cycles C ′ ∈ C that are contained in the decomposition D (but with value α).

Proof: First note that by multiplying with the least common multiple of the
denominators the problem can be transformed into an equivalent problem with
integral flow values.

Taking integral flow values as starting point, we choose α as the greatest common
divisor of all flow values. Each tuple (P, val(P)) ∈ P in the decomposition can
be split into val(P)

α
tuples (P, α) without changing the flow. The same holds true

for all tuples (C, val(C)) ∈ C and hence we have constructed an α-decomposition
using only paths and cycles contained in the decomposition D. 2

3.1.1. Polyhedral formulation of the set of decompositions

In this section we describe the set of decompositions of a flow F , by a set of
linear equations defining a feasibility polyhedron. We give two formulations, one
based on the edges of GF and one based on the paths in GF . For simplicity
we only consider acyclic graphs with one source and one sink. By introducing
a super-source and super-sink the formulation of the set can be generalized to
multiple sources and sinks, cycles can be included into the model as a special kind
of paths.

32

3.1. The set of flow-decompositions

Edge-based formulation

We first describe the set of α-decompositions (α ∈ Q+) and introduce binary
variables xe,P deciding whether edge e ∈ E is contained in the path P ∈ P or not.
Later on we deal with (general) decompositions by adding variables for the flow
values sent along the paths.

For an α-decompositions the flow value a path P contributes to the total flow on
edge e is given by α · xe,P . Since the number of paths in this case is determined
by |P| = val(F)

α
, we require |E| · |P| variables, and the set of α-decompositions

Pα can be parametrized by the set x ∈ B|E|·|P | of binary variables satisfying the
constraints

α·
∑
P∈P

xe,P = u(e) ∀ e ∈ E (3.2a)∑
e∈δ+(v)

xe,P =
∑

e∈δ−(v)
xe,P ∀ P ∈ P ; ∀ v ∈ V \{s, d} (3.2b)

∑
e∈δ+(s)

xe,P = 1 ∀ P ∈ P (3.2c)

∑
e∈δ−(d)

xe,P = 1 ∀ P ∈ P . (3.2d)

Constraints (3.2a) ensure that every edge is used up to its full capacity, and
hence, that the sum of all flow values on the paths corresponds to the total
flow F .

Constraints (3.2b) ensure flow conservation at every vertex for every path P .

Constraints (3.2c) and (3.2d) make sure that every path leaves the source
and enters the sink on exactly one edge. Together with the flow conservation
(3.2b) and the binary restriction those constraints also ensure that we get in
fact s-d-paths.

Now we consider arbitrary flow values of the paths in the decomposition. We
have to include additional variables valP representing the flow value on paths P .
We cannot use the variables xe,P to model this since only if all xe,P are binary
constraints (3.2c) and (3.2d) guarantee that we get s-d-paths. The flow value of
path P on edge e is now given by valP ·xe,P , which results in a nonlinear constraint
substituting constraint (3.2a). This however can be linearized by introducing
additional auxiliary variables he,P as e.g. presented in [Kal12]. Those variables
are restricted by constraints in such a way that their value corresponds exactly to
he,P = valP ·xe,P (cf. constraints (3.3e),(3.3f) and (3.3g)).

In contrast to α-decompositions, the number of paths in a general decomposition

33

Chapter 3. Problem structure and theoretical analysis

is not known beforehand. However, in order to define the feasibility polyhedron,
it is necessary to fix the number of variables xe,P . Therefore we introduce a cutoff
Γ ∈ N to restrict the maximum number of paths used in any decomposition.

We represent the set of all decompositions using at most Γ paths by the set of all
(x, h, val) ∈ B|E|·Γ × R|E|·Γ≥0 × RΓ

≥0 satisfying the constraints∑
P∈P

he,P = u(e) ∀ e ∈ E (3.3a)∑
e∈δ+(v)

xe,P =
∑

e∈δ−(v)
xe,P ∀ P ∈ P ; ∀ v ∈ V \{s, d} (3.3b)

∑
e∈δ+(s)

xe,P = 1 ∀ P ∈ P (3.3c)

∑
e∈δ−(d)

xe,P = 1 ∀ P ∈ P (3.3d)

he,P ≤M · xe,P ∀ e ∈ E, ∀ P ∈ P (3.3e)
he,P ≥ valP −(1− xe,P) ·M ∀ e ∈ E, ∀ P ∈ P (3.3f)
he,P ≤ valP ∀ e ∈ E, ∀ P ∈ P . (3.3g)

Constraints (3.3b), (3.3c), and (3.3d) remain the same as the constraints (3.2b),
(3.2c), and (3.2d). In equation (3.3a) the flow value α is substituted by the
flow value valP of the paths. This is modeled by the auxiliary variables he,P .
Constraints (3.3e),(3.3f) and (3.3g) ensure that the auxiliary variables assume the
right values.

Remark 3.8. The value of M has to be chosen in such a way that it provides an
upper bound on the variable hi,j without restricting the problem. Since hi,j cannot
be larger than the total flow value in any solution, we choose M = val(F). M

Path-based formulation

Instead of considering an edge-based formulation of the problem, we now introduce
a path based parametrization of the set of decompositions. Such a formulation is
often used to apply column generation techniques on a network problem [DSD84,
DDS92, MZ00].

Let GF = (V,E) be a flow-graph with one source s and one sink d. Let Ps,d
be the set of all simple s-d-paths in GF . For each path P ∈ Ps,d, let xP ∈ R≥0
represent the value of flow sent along path P . Then the set of decompositions of

34

3.1. The set of flow-decompositions

F is represented by

P =

x ∈ R|Ps,d|≥0 :
∑

P∈Ps,d:
e∈P

xP = u(e) ∀ e ∈ E

 . (3.4)

In the following we identify a path P ∈ Ps,d with its incidence vector P ∈ B|E|,
where Pi = 1 if edge ei is contained in path P and 0 otherwise. Using this notation
we rewrite the set 3.4 in matrix formulation

P =

x ∈ R|Ps,d|≥0 :

P1 . . . P|Ps,d|

 ·


x1
...

x|Ps,d|

 =


u(e1)
...

u(e|E|)


 . (3.5)

Remark 3.9. Since we generate a variable for every possible path, it is not necessary
to introduce a cutoff in this formulation. However, the number of variables is
exponentially large in the input size of the graph GF (one variable for each possible
s-d-path). It is not possible to state the complete problem explicitly in an efficient
way. M

Remark 3.10. Parametrizing the set of α-decompositions, we can only decide which
paths are selected, but their flow values are predefined. Hence to parametrize the
set of α-decompositions, we restrict the values of xj to binary values and rescale
the right hand side by the inverse of the flow value sent along the paths (i.e. 1

α
). M

3.1.2. Constructing decompositions

Even though the set of decompositions is in general very large, there is a straight
forward way to compute a flow-decomposition.
Lemma 3.11: [Krumke and Noltemeier [KN09] (theorem 9.56)] Every flow can
be decomposed into at most |E|+ |V | paths and cycles (whereof at most |E| are
cycles).

The proof of lemma 3.11 is constructive and leads to algorithm 4 computing a flow-
decomposition. The algorithm can easily be modified to generate α-decompositions
by choosing δ = α in line 11 and 16 in every iteration. If there is only a single
source and a single sink we get a decomposition into at most |E| paths and cycles.

Remark 3.12. Note that there exist decompositions using more than |E| + |V |
paths. Lemma 3.11 only tells us that there is at least one decomposition with at
most |E|+ |V | paths and cycles. M

35

Chapter 3. Problem structure and theoretical analysis

Algorithm 4 Construct flow-decomposition [KN09]
Require: Flow F : E → Q+
Ensure: Flow-decomposition of F
1: P ← ∅
2: C ← ∅
3: while ∃ v ∈ S do
4: P ← {}, tmp← v
5: repeat
6: find e ∈ E with F (e) > 0 and α(e) = tmp
7: tmp← ω(e)
8: P ← P ∪ e
9: until tmp ∈ D or a Cycle C is closed
10: if tmp ∈ D then
11: δ ← maximum flow that can be sent along P
12: P ← P ∪ (P, δ)
13: F ← decrease F (e) by δ for e ∈ P
14: end if
15: if cycle C is closed then
16: δ ← maximum flow that can be sent along C
17: C ← C ∪ (C, δ)
18: F ← decrease F (e) by δ for e ∈ C
19: end if
20: end while
21: return P , C

By lemma 3.11 every flow has at least one decomposition, and the set of decompo-
sitions is never empty. For the edge-based formulation 3.3, we need a cutoff Γ of
at least |E|+ |V | to guarantee this. For α-decompositions we derive:

Lemma 3.13: There exists an α-decomposition of a flow F if and only if all
capacities in GF are multiples of α.

Proof: ⇒ Let D be an α-decomposition of F . All paths and cycles in this
decomposition using an edge e ∈ E contribute with value α, and the flow value
adds up to

u(e) =
∑

P∈P:e∈P
val(P) +

∑
C∈C:e∈C

val(C) = α ·
(∑
P∈P:e∈P

1 +
∑

C∈C:e∈C
1
)
.

⇐ Assume that all capacities are multiples of α. Choosing δ = α in an iteration
of algorithm 4 leads to a path (or cycle) with flow value α. After decreasing the
flow values of the corresponding edges by α, the remaining flow on all edges is

36

3.1. The set of flow-decompositions

still a multiple of α. Hence, choosing δ = α in every iteration of algorithm 4 is
possible, and the resulting decomposition is an α-decomposition. 2

Corollary 3.14: If all capacities in GF are integral, there exists at least one unit
decomposition of F .

3.1.3. Neighborhood

P2|s,v

P1|s,v

P2|v,d

P1|v,d

v
REWIRE

P ′2|s,v

P ′1|s,v

P ′1|v,d

P ′2|v,d

v

Figure 3.3.: Rewiring to paths at vertex v.

Given a flow-decomposition it is possible to construct a new decomposition by
rewiring two paths, as shown in figure 3.3. This operation can be used to define a
notion of adjacency of decompositions which allows to set up a neighborhood.

Definition 3.15 (adjacency): Let F be a flow without cycles, a single source
s, and a single sink d. Two α-decompositions (P , ∅) and (P ′, ∅) of F are called
adjacent if they can be transformed into one another by the following rewire
action:

• Choose P1 ∈ P and P2 ∈ P which intersect at some vertex v ∈ GF\{s, d}.

• Substitute P1 and P2 by:

P ′1 = P1|s,v + P2|v,d,

P ′2 = P2|s,v + P1|v,d.

We write (P ′1, P ′2) = REWIRE(P1, P2, v) to denote the resulting paths of a rewire
action.

Remark 3.16. It is easy to see that rewiring P1 and P2 at vertex v yields again an
α-decomposition. M

Lemma 3.17: Let F be a flow without cycles, a single source s, and a single sink
d. The set of α-decompositions of F is connected with respect to the neighborhood
given by definition 3.15. This means that for any two decompositions (P , ∅) and
(Q, ∅) there exists a series of rewire actions that transforms one into the other.

37

Chapter 3. Problem structure and theoretical analysis

Proof: Let P and Q be the set of paths of two different α-decompositions of the
flow F . Since the two decompositions are not identical there exists at least one
path (w.l.o.g. Q1) that is not contained in P. Let P1 ∈ P be a path that shares
the longest common sequence of edges from the source with Q1, and let v be the
first vertex after which P1 and Q1 differ. Let eq be the edge which Q1 uses to
leave v. By construction eq is not contained in P1.

Let P2 be a path in P that contains eq and is not contained in Q. Such a path
has to exist: If all paths in P using eq were contained in Q, then, together with
Q1 /∈ P there are more paths using eq in Q than in P. This contradicts the
assumption that both P and Q are α-decompositions of the same flow F .

By rewiring P1 and P2 at v, we get a new α-decomposition, in which P ′1 shares at
least one more edge with Q1 than P1 did. Furthermore, since P2 is not in Q, no
path that is already contained in both sets is changed. By iteratively performing
such rewire actions for P1, we get P1 = Q1 in a finite number of steps, and the
number of paths contained in both P and Q has increased. Since |P| = |Q| <∞
we finish in finitely many steps with P = Q. 2

Lemma 3.18: Let F be a flow without cycles, a single source s, and a single sink
d. Let D = (P , ∅) and D′ = (Q, ∅) be two α-decompositions of the flow F . The
maximum number of rewire actions needed to transform D into D′ is bounded by

val(F)
α

· |V | .

Proof: From the proof of lemma 3.17, we derive that the the maximum number
of rewire actions necessary to transform a path P of the decomposition D into a
path of the decomposition D′ is bounded by the number of edges |EP | = |VP − 1|
in this path. Those are at most |V | rewire actions for each path. In the worst case
all val(F)

α
paths of the decomposition D need to be changed, so the claim follows.2

Remark 3.19. To define a neighborhood for decompositions with arbitrary flow
values, we need to add a split- and merge-operation allowing to merge two identical
path into one, with the combined flow value, or to split a path into two identical
paths, with values val1 and val2. M

3.2. Previous and related work

The problem of optimal flow-decomposition has, up to our knowledge, been stud-
ied very rarely in literature and only for specific problems. In an unpublished
manuscript, Hendel and Kubiak [HK] discuss the problem of finding a decompo-
sition minimizing the length of the longest path. They show that the problem

38

3.2. Previous and related work

is NP-hard for integer flow values and discuss the polynomial representation of
decompositions in order to show membership in NP in the first place (for some
cases). Finally, they provide an FPTAS to approximate the problem in polynomial
time.

Vatinlen et al. [Vat+08] and Hartman et al. [Har+12] consider the problem of
finding a decomposition minimizing the number of paths used. The problem is
identified to be NP-hard as well [Vat+08]. Moreover, it is shown that the problem
is hard to approximate even if the flow assumes only 3 different values [Har+12].
Vatinlen et al. [Vat+08] provide some easy bounds on the minimal number of
paths and show in an example that, against intuition, removing cycles can increase
the number of paths needed. They introduce the concept of saturating paths, (i.e.
paths with a value that exhaust the complete available capacity on at least one
edge contained in the path) to propose a heuristic for the problem.

3.2.1. Related problems

Several problems can be linked to the decomposition problem either because they
tackle similar questions or because they have a similar problem structure. In
the following some of these problems are presented, and similarities to as well as
differences from the decomposition problem are pointed out.

Constrained flow problems

Instead of decomposing a given flow to minimize some property of the paths, the
objective of a constrained flow problem is to find an optimal flow which has a
decomposition that satisfies some additional constraints.

In the length-bounded flow problem [Bai+06, Gur+03], a maximum flow is
computed that admits a decomposition in which no path has a cost value larger
than a given bound. This provides a natural upper bound for the most expensive
path in a decomposition. Hence, this problem is closely related to the problem of
finding a decomposition minimizing the cost of the paths.

In a similar way the unsplittable flow problem [Kle96] and k-splittable flow problem
[BKS02, MS04] are related to the problem of minimizing the number of paths
in a decomposition. In those problems a maximum flow is computed which uses
at most one path (or k paths respectively), and hence an upper bound for the
number of paths used in a decomposition is induced.

The main difference between constrained flow problems and the decomposition
problem is that in the latter the flow is given and cannot be changed, while in the

39

Chapter 3. Problem structure and theoretical analysis

former we can choose the edges used by the flow to maximize the flow value.

Graph-decomposition

In literature another type of decomposition problem for graphs is found. In the
graph-decomposition problem [Hei93, AHA13] a partition of a graph into sub-graphs
F1, . . . ,Ft is required. If all those sub-graphs need to be paths, a solution is called
a path decomposition. In contrast to the decompositions considered in this chapter
there is no designated source or sink, and there are no capacities considered.
Instead, the graph is decomposed into paths with arbitrary start and end points
such that each edge is contained in exactly one path.

Machine scheduling

Instead of assigning jobs to machines the decomposition problem can be interpreted
as assigning edges to paths. Hence, the problem is also related to scheduling
problems [Pin12]. Hendel and Kubiak [HK] argue in their manuscript that the
problem of decomposing a flow of value 2 into two paths minimizing the costs can
be reduced to the two machine scheduling problem P2||Cmax.

In a more general context, the decomposition problem corresponds to a scheduling
problem where the network structure imposes additional constraints. We have to
ensure that all edges that are assigned to a path form indeed a path. This leads to
mutual exclusion constraints [BJW93] (two parallel edges cannot be in the same
path) and logical constraints [MSS04] (for any vertex an outgoing edge can be
assigned to a path if and only if an ingoing edge is assigned as well).

Multi-commodity flows

Another problem with a structure similar to the decomposition problem is the
multi-commodity flow problem [Hu63, Oka83]. Here several commodities of flow,
with proper source and sink vertices, have to be routed through one network,
sharing the same capacities. A flow-decomposition can be interpreted as a multi-
commodity flow where every commodity can only use one path. However, in the
multi-commodity flow problem, the number of commodities, and hence the number
of paths, is part of the problem formulation, while in the decomposition problem
the number of paths is unknown beforehand. Furthermore, as for the constraint
flow problem, we choose the edges used by the flow. In addition the objective
function of a multi-commodity flow usually optimizes global quantities such as the
total cost of the flow, while the decomposition problem focuses on the individual
properties of the paths.

40

3.3. Flow-decomposition minimizing the longest path (SLP)

3.3. Flow-decomposition minimizing the longest
path (SLP)

We now consider a specific decomposition problem, which is minimizing the cost
of the longest path in the decomposition. Analogously to [HK] we refer to this
problem as the shortest longest path problem (SLP).

0

5

0

5

0

10

0

5

0

5

0

10

Figure 3.4.: A small example of SLP. The edges have unit capacity and the edge
costs are given by the labels. The left graph contains one path with
cost 20 and one with cost 0. The right graph contains two paths with
cost 10 each.

Example 3.20: Consider the planning of an evacuation taking a toxic spill into
account. In this scenario the main focus is to get the evacuees out of the region
in question, minimizing the exposure to the toxic substance. Using a minimum-
cost flow algorithm (cf. e.g. [AMO93]), a flow of evacuees can be obtained that
minimizes the total exposure of all evacuees to the toxic substance. However, this
solution does not provide information on the exposure of single individuals during
the evacuation. In fact, using an arbitrary decomposition of the obtained flow,
it is possible that some evacuees are exposed to the toxic for a very long time,
while others are not exposed at all (thus minimizing the sum of the exposure of
all evacuees). Figure 3.4 illustrates this in a qualitative example. Here the longest
path in the two decompositions changes, while the total costs of the flow remain
the same.

Assuming that a minor exposure is far more harmless than a major one, this means
that some evacuees are sacrificed to save others in the first case. This situation is
not tolerable for an evacuation plan, and hence the goal is to find a decomposition
of the flow which minimizes the maximal exposure (or cost) of the longest path. M

Definition 3.21 (SLP-decomposition): Let GF = (V,E) be a flow-graph. Let
S ⊂ V be the set of sources and D ⊂ V the set of sinks. Let c : E → Q+
be a positive cost function for the edges. The cost of a path P is given by
c(P) = ∑

e∈P c(e) and by P we denote the set of decompositions of F .

41

Chapter 3. Problem structure and theoretical analysis

1, 5

2, 1

2, 5

1, 1
2, 1

1, 1

Figure 3.5.: Example showing that cycles cannot be removed in advance when
solving SLP. Edge labels (u, c) show capacity and cost.

Then the shortest longest path problem (SLP) is defined as

min max
P∈P ∪ C

c(P) (3.6)

s.t.

D = (P , C) ∈ P

If D is required to be integral the problem is called integral SLP. Otherwise, if we
want to stress that fractional values are possible, the problem is called fractional
SLP.

Remark 3.22. Unless stated otherwise, in the following we only consider acyclic
flow-graphs with one source and one sink. It is obvious that in this case the set C
of cycles will be empty and can be omitted. We hence write D = P instead of
(P , ∅) for a decomposition. M

Remark 3.23. If we assume that F is a minimum-cost flow on a graph with positive
weights, we can assume that GF is acyclic (otherwise omitting cycles, which have
positive cost, reduces the cost of the flow), and it falls into the class of graphs
considered here. M

Remark 3.24. If the flow-graph contains cycles, the methods presented in the
following have to be adjusted. Removing all cycles in an optimal way in a first
step to obtain an acyclic graph is not possible as shown in figure 3.5. Here the
optimal decomposition of the flow-graph containing a cycle consists of two paths,
one with flow value 2 and cost 7 and one of flow value 1 and cost 7. Removing the
cycle (which has cost 2) results in a flow-graph, in which the only possible (unit-)
decomposition contains 3 paths, whereof the longest one has costs of 10. Vatinlen
et al. [Vat+08] use the same example to show that it is not possible to remove
cycles in advance when minimizing the number of paths in a decomposition. M

42

3.3. Flow-decomposition minimizing the longest path (SLP)

3.3.1. Properties of SLP

In this section we explore the properties of SLP, to get a better understanding
of the problem structure. We show that the problem is NP-hard, even on pearl
graphs with two edges in each pearl. In addition we provide bounds on the optimal
objective value.

Complexity

In [HK] the complexity of SLP is discussed in great detail. We review those
results and extend them by showing that SLP is NP-hard, even when considering
fractional decompositions. Furthermore, we show that the fractional SLP is always
contained in NP in contrast to the integral SLP, which can only be shown to be
in NP if either the cost or the flow value is polynomially bounded.

Theorem 3.25 (Hendel and Kubiak [HK]): If the flow value of F is poly-
nomially bounded or the number of different cost values of all paths in GF is
polynomially bounded, the integral SLP is in NP. It is conjectured that the general
integral SLP is not in NP.

Proof: Since the number of paths in a decomposition can be exponentially large the
certificate P = {(P, val(P))} can only be used to verify a solution in polynomial
time if the number of paths is polynomially bounded. For integer decompositions
this is true if the flow value F is polynomially bounded.

A second certificate for SLP is provided by a set

{(Λ1, b1), ..., (Λk, bk)|
∑
i

bi = F (e)} for each edge e ∈ E.

Here bi represents the number of paths in the decomposition using edge e with
current costs of c(P |s,α(e)) = Λi. This certificate does not depend on the flow
value of F since several paths with the same cost value are combined. Checking
the values Λi for all edges entering the sink, we can extract the length of the
longest path. However, the number k of elements in each of the sets has to be
polynomially bounded in order to ensure a polynomial size of the certificate. If
the number of possible cost values of any path in GF is polynomially bounded this
holds true. One way to ensure this is to ensure that all edge costs are polynomially
bounded. 2

Theorem 3.26 (Hendel and Kubiak [HK]): The integral SLP with flow value
2 is NP-hard in the weak sense.

Proof: The hardness is shown by a reduction of the 2-partition problem [GJ02],
which is given as follows:

43

Chapter 3. Problem structure and theoretical analysis

0

s(a1)

0

s(a2)

. . .

0

s(am)

Figure 3.6.: Instance of SLP used to solve the 2-partition problem. The graph
is a pearl graph consisting of m pearls with size 2. Edges have unit
capacities and the labels show the edge costs.

INSTANCE: Given a set A of m elements, an integer B ∈ Z+, and a size function
s : A→ Z such that ∑a∈A s(a) = 2B.

QUESTION: Can A be partitioned into 2 disjoint sets S1 and S2 such that∑
ai∈S1 s(ai) = B?

Consider the SLP instance shown in figure 3.6 with unit capacities on each edge.
The graph consists of m pearls with 2 edges in each pearl. One of the edges in
the i-th pearl has cost s(ai) and the other one has cost 0. Assume that we have a
YES answer of 2-partition, then there is a YES answer for SLP (i.e. there is a
decomposition into two paths such that the most expensive path has cost at most
B). This is constructed by assigning to P1 the nonzero cost edges corresponding
to the elements in S1 and the zero cost edges otherwise. Setting val(P1) to 1 the
path P2 is uniquely determined and both paths have cost of B.

On the other hand assume we have a YES answer for SLP using 2 path. This is
only possible if both paths have cost exactly B. Now we construct the sets S1
from P1 and S2 from P2 by including ai in S1 if P1 uses the edge with cost s(ai)
and in S2 otherwise. The elements in both sets sum up to B by construction, so
this provides a YES answer for 2-partition. 2

Theorem 3.27 (Hendel and Kubiak [HK]): The integral SLP is NP-hard in
the strong sense even with unit cost.

Proof: The result is shown by a reduction of 3-PARTITION similar to the proof
of theorem 3.26. 2

The proofs given in [HK] only apply to integer decompositions, since only for
those decompositions it is possible to directly construct a solution of the partition
problem from an SLP solution. A decomposition of the flow from figure 3.6
into more than two paths (with fractional values) cannot be transformed into a

44

3.3. Flow-decomposition minimizing the longest path (SLP)

solution of the partitioning problem. To prove NP-hardness also for fractional
decompositions, we use the following results:
Lemma 3.28: Let GF be a pearl graph with unit capacities and two parallel edges
in each pearl. Let P1 and P2 be the paths of an optimal integer decomposition.
Furthermore, let {Ri}i∈{1...k} be the paths of an arbitrary fractional decomposition.
Then none of the Ri can have cost c(P2) < c(Ri) < c(P1).

Proof: Assume that there is an Ri with c(P2) < c(Ri) < c(P1). Then consider the
integer decomposition with the paths P ′1 = Ri and P ′2 which uses all edges not
used in P ′1. By construction the cost of P ′1 is smaller than the cost of P1. Since
the total cost of any unit decomposition is the same, we derive for the cost of P ′2:

c(P1) + c(P2) = c(P ′1) + c(P ′2)⇒ c(P ′2) = c(P1) + c(P2)− c(P ′1).

Using the assumption that c(P2) is less than c(Ri) and P ′1 = Ri, we get

c(P ′2) = c(P1) + c(P2)− c(Ri) < c(P1) + c(P ′1)− c(P ′1) = c(P1).

Hence, P ′1 and P ′2 form a better decomposition than P1 and P2 which contradicts
optimality. 2

Theorem 3.29: Let GF be a flow-graph with unit capacities and flow value 2.
Then we have

OPTF = OPTI ,

where OPTI is the optimal objective value of the integral SLP and OPTF is the
optimal objective value of the fractional SLP.

Proof: By remark 3.5 and since we exclude cyclic graphs, we assume without loss
of generality that GF is a pearl graph. Assume that P1 and P2 are the paths of
an optimal integer solution. If c(P1) = c(P2), the integral solution corresponds to
the lower bound of the problem (by lemma 3.36). This bound holds for both the
integral and fractional solution (by lemma 3.33), so no fractional solution can be
better.

So assume that c(P1) is strictly larger than c(P2). By lemma 3.7, there ex-
ists an optimal α-decomposition for the fractional SLP. Assume that {Ri|i ∈
{1, . . . , val(F)=2

α
}} are the paths of this α-decomposition. Furthermore, assume

that the objective value of the α-decomposition is better than the optimal objective
value of the integral SLP.

In this case all Ri have lower costs than P1, and by lemma 3.28 it even holds that
all Ri have costs at most c(P2). Comparing the costs, we get

2
α∑
i=1

c(Ri) ≤
2
α
· c(P2) < 2

α
· c(P1) + c(P2)

2 = 2
α
· c(F)

2 = 1
α
· c(F).

45

Chapter 3. Problem structure and theoretical analysis

This is a contradiction since it also holds that

c(F) =
∑
e∈E

u(e) · c(e) =
2
α∑
i=1

val(Ri) · c(Ri) = α ·
2
α∑
i=1

c(Ri).

Due to this contradiction it holds for at least one Ri that c(Ri) ≥ c(P1). Since
the optimal integral solution is feasible for the fractional problem, this proves the
claim. 2

Corollary 3.30: The fractional SLP is NP-hard in the weak sense, even on pearl
graphs with two pearls.

Proof: We know from theorem 3.26 that the integral SLP is NP-hard on pearl
graphs with two edges in each pearl. By theorem 3.29 the fractional and integral
optimal value coincide on that type of networks and hence the integral SLP can
be reduced to the fractional SLP. 2

Remark 3.31. This result has been shown in a similar way in [Bai+06]. Therein
it is shown (on a pearl graph with flow value 2) that, if there exists a fractional
solution with optimal value c(F)

val(F) , there is also an integral solution with this
objective value. Theorem 3.29 is a generalization of this result. M

Integrality

Baier et al. [Bai+06] discuss the gap between integral and fractional optimal
solutions of the length bounded path problem. A similar argumentation holds true
for SLP. Even though theorem 3.29 shows that for a flow value of 2 the fractional
and integral objective values coincide, this does not hold true for the general case.

Since the set of integral decompositions is contained in the set of all decompositions,
we conclude that

OPTF ≤ OPTI ,

where OPTI is the optimal objective value for the integral SLP and OPTF is the
optimal objective value of the fractional SLP.

Example 3.32: Figure 3.7 shows that there are instances of SLP for which
OPTF < OPTI holds, even for unit capacity edges and series parallel graphs. To
distinguish the parallel edges in figure 3.7, an index is assigned. The index 1
denotes the upper edge and the index 2 denotes the lower edge of the two parallel
edges between the vertices.

46

3.3. Flow-decomposition minimizing the longest path (SLP)

A
B

C
D E

F10
15

1
1

10
15

20
1

10
5

10
1

10
1

Figure 3.7.: Flow graph with unit capacities and edge labels corresponding to their
costs. The optimal fractional decomposition has a better objective
value than the optimal integral decomposition.

An optimal integer decomposition has value c(P2) = 35 and uses the paths

P1 = ((A,B)1, (B,C)2, (C,F)1) c(P1) = 30,
P2 = ((A,B)2, (B,C)1, (C,F)2) c(P2) = 35,
P3 = ((A,C)1, (C,D)1, (D,E)2, (E,F)2) c(P3) = 23,
P4 = ((A,C)2, (C,D)2, (D,E)1, (E,F)1) c(P4) = 22.

This objective value can be improved by a fractional solution with flow value 1
2 on

all paths. The paths of this solution are

P ′1 = ((A,B)2, (B,C)2(C,D)2, (D,E)2, (E,F)2) c(P ′1) = 33,
P ′2 = ((A,B)2, (B,C)1, (C,F)1) c(P ′2) = 30,
P ′3 = ((A,B)1, (B,C)2, (C,F)1) c(P ′3) = 30,
P ′4 = ((A,B)1, (B,C)1, (C,F)2) c(P ′4) = 30,
P ′5 = ((A,C)1, (C,D)1, (D,E)1, (E,F)2) c(P ′5) = 32,
P ′6 = ((A,C)1, (C,D)1, (D,E)2, (E,F)1) c(P ′6) = 32,
P ′7 = ((A,C)2, (C,D)2, (D,E)1, (E,F)1) c(P ′7) = 22,
P ′8 = ((A,C)2, (C,F)2) c(P ′8) = 11.

The objective value resulting from this decomposition is c(P ′1) = 33, which is
better than the objective value of the optimal integral solution. M

Bounds

To prove that SLP is NP-hard, we used a lower bound for the objective value to
determine that a given solution is optimal. In this section we prove this bound
and additional lower bounds on the optimal objective value, which are both valid
for the fractional and integral problem. Those bounds can be used to determine

47

Chapter 3. Problem structure and theoretical analysis

optimality and to estimate the quality of heuristic solutions presented in chapter 4.
For the special structure of pearl graphs, it is possible to find a very tight upper
bound on the optimal objective value as well. On this type of graphs we obtain
the best estimate for the objective value.

Lemma 3.33: Let GF = (V,E) be a flow-graph for the flow F . Let OPT be the
objective value of an optimal (fractional) decomposition of F . Then

OPT ≥
∑
e∈E c(e) · u(e)

val(F) = c(F)
val(F) . (3.7)

Proof: Consider an optimal decompositionD with objective value OPT. By lemma
3.7 there exists an α-decomposition D′ with the same objective value for some
α > 0. This decomposition consists of exactly val(F)

α
paths with costs c(Pi) ≤ OPT

and every edge is used in exactly u(e)
α

of the paths. So

c(F) =
∑
e∈E

c(e) · u(e) = α
∑
P∈D′

c(P) ≤ α
val(F)
α

·OPT

⇒ OPT ≥
∑
e∈E c(e) · u(e)

val(F) = c(F)
val(F) . 2

Remark 3.34. Since the capacities in the flow-graph correspond to the flow values,
c(F) is the total cost value of the flow F . So, roughly speaking, the optimal
decomposition is at least as expensive as the average cost per unit of the flow F. M

Corollary 3.35: Let C̄ = c(F)
val(F) be the average cost per unit of flow. Let SPk

be a k-th shortest path in the flow-graph GF (not necessarily the k-th shortest
path of a decomposition). Let furthermore k ∈ N be chosen such that c(SPk) ≥ C̄
holds for the first time, i. e. all (k − 1) shorter paths have costs less than C̄. Then
it holds

OPT ≥ c(SPk). (3.8)

Proof: Assume the claim is wrong and we have OPT < c(SPk). This means there
is a decomposition of the flow that contains a path P 6= SPk with c(P) = OPT.
Using lemma 3.33 we get

C̄ ≤ OPT = c(P) < c(SPk).

This contradicts the assumption that SPk is the shortest path whose cost is at
least C̄. 2

Lemma 3.36: Let GF be a flow-graph. Then the lower bound c(F)
val(F) is assumed

if and only if there is a decomposition D in which all paths have the same costs
(i.e. c(P) = c(F)

val(F) ∀ P ∈ P).

48

3.3. Flow-decomposition minimizing the longest path (SLP)

Proof: Again, by lemma 3.7, it is sufficient to consider α-decompositions.

⇒ Assume that we are given an α-decomposition D with objective value OPT =
c(F)

val(F) and that there is at least one path P with c(P) < OPT.

We use the same estimate as in the proof of lemma 3.33, but this time we get a
strict inequality, since P has strictly lower costs than OPT.:

c(F) = α
∑
P ′∈D

c(P ′) < α
val(F)
α

·OPT = val(F) · c(F)
val(F) = c(F).

This contradiction completes the proof.

⇐ Assume that all paths in a decomposition D have cost c(F)
val(F) . By lemma 3.33

this solution is optimal and the lower bound is attained. 2

Corollary 3.37: In any decomposition D = P of the flow F there exists a path
P ∈ P with c(P) ≤ c(F)

val(F) ≤ OPT. If a decomposition D contains a path with cost
larger than c(F)

val(F) , there exists at least one path P ∈ P with c(P) < c(F)
val(F) ≤ OPT.

Lemma 3.38: Let GF be a flow-graph. The optimal objective value OPT of SLP
is bounded by c(e) ≤ OPT for every edge e ∈ E of the flow-graph.

Proof: Let e ∈ E be an edge of GF . Let D be an optimal decomposition for SLP.
The flow F uses edge e, hence there exists at least one path P ∈ P that contains
e. Since all edge costs are positive, we get

c(e) ≤ c(P) ≤ OPT . 2

If the graph GF is a pearl graph, we can use the special structure of this type of
graphs to derive an upper bound on the optimal objective value.

Lemma 3.39: On pearl graphs the optimal value of an α-decomposition of the
flow F is located between

c(F)
val(F) ≤ OPT ≤ c(F)

val(F) + ∆

where ∆ is the maximum difference of the edge costs in a pearl.

Proof: The first inequality is given by lemma 3.33.

Let P1 be the most expensive path of an optimal α-decomposition D with cost
c(P1) = OPT. Let Pmin be the path with the lowest costs in this decomposition.
By lemma 3.33 it holds c(Pmin) ≤ c(F)

val(F) .

49

Chapter 3. Problem structure and theoretical analysis

In a pearl graph all paths contain exactly one edge from every pearl. Let ei,i+1
denote the edge path P1 uses in the i-th pearl of the graph, and let fi,i+1 be the
edge path Pmin uses in the same pearl. Since P1 has a larger cost than Pmin, there
has to be at least one pearl i in which c(ei,i+1) ≥ c(fi,i+1) holds. Otherwise P1
would use cheaper edges than Pmin in every pearl and hence could not be more
expensive. Replacing ei,i+1 in P1 by fi,i+1 and replacing fi,i+1 in Pmin by ei,i+1
gives again an α-decomposition D′ of F . In this new decomposition the cost of P1
is decreased by c(ei,i+1)− c(fi,i+1) ≥ 0 while the cost of Pmin increase by the same
value. Since the decomposition D is optimal, swapping ei,i+1 with fi,i+1 cannot
improve the objective value and we get

OPT = c(P1) ≤ c(Pmin) + c(ei,i+1)− c(fi,i+1)

≤ c(F)
val(F) + c(ei,i+1)− c(fi,i+1) ≤ c(F)

val(F) + ∆. 2

Rescaling of parameters

Lemma 3.40: Let D be a decomposition of the flow F which is optimal for
SLP with respect to the cost function c : E → R≥0. Then D is also an optimal
decomposition for SLP with respect to the cost function c′, where the costs of all
edges e ∈ GF are scaled by a factor λ ∈ Q>0 (i.e. c′(e) = λ · c(e) ∀ e ∈ E).
Proof: Let D be an optimal decomposition with respect to the cost function c and
objective value OPT. This decomposition has the objective value λ ·OPT with
respect to c′. Assume there is a better decomposition D′ for this problem. Since
all costs contain the factor λ, the objective value of D′ is λ · OPT′ < λ · OPT.
With respect to c the decomposition D′ has objective value OPT′ < OPT, which
contradicts optimality of D. 2

Lemma 3.41: Let D be a decomposition of the flow F which is optimal for SLP.
Let λ ∈ Q>0 be a scaling factor. Let F ′ be the flow where all flow values of F are
scaled by λ (i.e. F ′(e) = λ ·F (e) ∀ e ∈ E). Then F ′ has an optimal decomposition
with the same objective value.
Proof: Let P be the set of paths in the decomposition D. Consider the decom-
position D′ with the path set P ′ = {(P, λ val(P))|P ∈ P}. Since D and D′ use
the same paths they have the same objective value. We have to show that D′ is a
decomposition of F ′ and that D′ is optimal.

Claim 1: D′ is a decomposition of the flow F ′:

The only part of definition 3.3 we have to check is (d):∑
P∈P ′:e∈P

λ val(P) = F ′(e) for all e ∈ E.

50

3.4. Solving SLP

Since D is a decomposition of F we conclude∑
P∈P:e∈P

val(P) = F (e) for all e ∈ E

⇒ λ
∑

P∈P ′:e∈P
val(P) = λF (e) for all e ∈ E

⇒
∑

P∈P ′:e∈P
λ val(P) = F ′(e) for all e ∈ E.

Claim 2: D′ is an optimal decomposition of the flow F ′:

Let OPT be the objective value of D. The decomposition D′ of F ′ uses the same
paths and hence has the same objective value. Assume there is a decomposition
K ′ of the flow F ′ with a better objective value OPT′. Scaling this solution by 1

λ

gives a decomposition K of the flow F with objective value OPT′ < OPT. This
contradicts optimality of D. 2

Corollary 3.42: Let D be an α-decomposition of the flow F which is optimal
for SLP. Let λ ∈ Q>0 be a scaling factor. Let F ′ be a flow where all flow values of
F are scaled by λ. Then F ′ has an optimal (λ · α)-decomposition with the same
objective value as D.

Remark 3.43. Lemma 3.41 does not hold for integral decompositions since scaling
the decomposition K might not yield an integral decomposition. For example
rescaling the flow values of the flow shown in figure 3.7 by λ = 2 improves the
objective value of the integral decomposition since rescaling the optimal fractional
decomposition now yields an integral decomposition. M
3.4. Solving SLP

In this section we use the structural information from section 3.1.1 to formulate
two optimization problems solving SLP. We use both the edge-based formulation
and the path-based formulation of the feasible set to obtain a solution algorithm.

3.4.1. Solving SLP in the edge-based formulation

Let GF be a flow-graph with one source s and one sink d. The representation of
the set of decompositions given by equation (3.2) for α-decompositions and by
(3.3) for decompositions with at most Γ paths respectively can easily be extended
to a mixed integer program solving SLP.

51

Chapter 3. Problem structure and theoretical analysis

min z
s.t.∑

e∈E
xe,P · c(e) ≤ z ∀P ∈ P (3.9a)

and∑
P∈P

α · xe,P = u(e) ∀ e ∈ E (3.2a)∑
e∈δ+(v)

xe,P =
∑

e∈δ−(v)
xe,P ∀ P ∈ P ∀ v ∈ V \{s, d} (3.2b)

∑
e∈δ+(s)

xe,P = 1 ∀ P ∈ P (3.2c)

∑
e∈δ−(d)

xe,P = 1 ∀ P ∈ P . (3.2d)

or
(3.3a)-(3.3g)

z ∈ R (3.9b)
xe,P ∈ B ∀ e ∈ E;∀ P ∈ P (3.9c)

To model the min-max-objective (i. e. minimizing the longest path), we introduce
one additional variable z, which is minimized. Due to the constraints (3.9a) z has
to be larger than the costs of all paths in the decomposition. Hence, z is minimal if
the most expensive path in the decomposition is minimal. We use a (linear) solver
to solve both the integral and the fractional SLP. However, no further structural
information on the problem is used in this formulation and hence the performance
of the optimization can be improved significantly.

Linear relaxation

A common method to compute lower bounds for integer programs is to consider a
linear relaxation, removing the integrality constraints. In problem 3.9 the binary
variables are crucial in constraints (3.9a) and (3.2a). We now argue that the LP-
relaxation of problem 3.9 for finding α-decompositions (constraints (3.2a)-(3.2d))
cannot be used to get a better bound on the optimal objective value than the
bound already known from lemma 3.33.

The costs of the edges used in the most expensive path determine the objective
value regardless of the amount of flow sent along this path. This is ensured by

52

3.4. Solving SLP

the use of binary values xi,j such that every edge in constraints (3.9a) either
contributes with its full costs or with value 0. In constraint (3.2a) the binary
variables ensure not only flow conservation, but also that the number of ingoing
and outgoing edges coincide and hence together with (3.2c) and (3.2d) that paths
are generated. By relaxing (3.9) to xi,j ∈ [0, 1], we loose those properties. A
solution of the LP-relaxation is now a decompositions of F into s-d-flows of value
α instead of paths. Furthermore, since (3.9a) now depends on the flow value on
the edges, the objective function is no longer represented properly. In fact, in the
formulation as given in (3.9), one feasible solution is a decomposition of F into
val(F)
α

times itself with flow values of α · u(e)
val(F) (i. e. xe,P = u(e)

val(F)) on the edges. The
objective value of this solution is given by c(F)

val(F) , which is exactly the lower bound
derived in lemma 3.33. Hence, to obtain a better bound additional constraints
have to included in the model.

For the general decomposition problem (constraints (3.3a)-(3.3g)) the relaxation
of the binary condition also destroys the one-to-one correspondence between the
variables hi,j and xi,j · valj. To make sure that the hi,j still have some meaning,
it is useful to postulate the flow conservation conditions not only for the xi,j but
also for the hi,j.

3.4.2. Solving the general SLP in the path-based formulation

Instead of solving the mixed integer program (3.9), we now consider an optimization
technique based on the path-based formulation (3.5) of the feasible set.

To extend the formulation of the set of decompositions to an instance of SLP, we
need to find a description of the objective function. Since fractional solutions of
the feasible set can be parametrized by continuous variables, we want to avoid
turning the problem into an integer program by adding integer variables.

Again we encounter the problem of describing the objective function min cTx in
terms of the variables x in such a way that the result does not depend on the flow
value xi of the most expensive path but only on the path cost c(Pi). To do this,
we introduce an indicator function, depending on a value B ∈ Q:

ΦB(x) =
∑

Pj∈Ps,d
ĉ(Pj) · xj, (3.10)

where the cost function ĉ : Ps,d → R is given by

ĉ(P) =

c(P) if c(P) > B,
0 else.

(3.11)

53

Chapter 3. Problem structure and theoretical analysis

Given the value B this function can be used to decide whether there exists a
flow-decomposition with objective value less than B or not.

Lemma 3.44: Given a flow-graph GF = (V,E), a cost function c : E → R≥0 and
a bound B ∈ Q. The indicator-problem (IND(B))

min ΦB(x)
s.t.P1 . . . P|Ps,d|

 ·


x1
...

x|Ps,d|

 =


u(e1)
...

u(e|E|)

 (3.12)

x ∈ R|Ps,d|≥0

with respect to the indicator function given by (3.10) has objective value 0 if and
only if GF has a decomposition where each path has cost at most B.

Proof: Let x∗ be an optimal solution of (3.12). Since x∗ satisfies the conditions
of equation (3.12), it describes a flow-decomposition. If ΦB(x∗) = 0, all paths Pj
with ĉ(Pj) > 0 have x∗j = 0. Hence, x∗ does not use any path with cost larger
than B. On the other hand, if ΦB(x∗) is strictly positive, at least one path, that
is used has cost larger than B. Since x∗ is optimal, this means that there is no
decomposition using only paths with cost at most B. 2

Remark 3.45. The constraints of (3.12) are the same constraints as derived in
(3.5). Hence, the indicator problem (3.12) not only decides whether there exists a
decomposition with cost of at most B but also provides such a decomposition if it
exists. M
We use the indicator function ΦB to develop algorithm 5 which solves SLP if an
initial lower bound LB and upper bound UB on the optimal objective value are
provided.

Remark 3.46. For fractional cost values the optimal objective value can be frac-
tional and we have to use fractional values for B. However, due to lemma 3.40 the
edges costs c(e) ∈ Q can be rescaled such that all cost values are integral. In this
case the objective value is integral and only values B ∈ N have to be considered
to find the optimal solution. M

Algorithm 5 uses a binary search procedure over the possible objective values
LB ≤ B ≤ UB checking, whether there exists a decomposition with objective
value at most B or not. If such a decomposition exists the upper bound is improved,

54

3.4. Solving SLP

Algorithm 5 SLP (path-based)
Require: Acyclic flow-graph GF with c(e) ∈ N, lower bound LB, and upper

bound UB for objective value of SLP on GF

Ensure: Optimal SLP decomposition x∗ of F
1: while LB 6= UB do
2: B ← LB + dUB+LB

2 e
3: xI ← solve IND(B) (3.12)
4: if ΦB(xI) > 0 then
5: LB← B + 1
6: else
7: UB← B
8: x∗ ← xI
9: end if
10: end while
11: return x∗

otherwise the lower bound is improved. The algorithm terminates when the lower
and upper bound coincide. The objective value is given by the largest value B for
which there exists a solution of (3.12) with objective value 0; the corresponding
flow-decomposition x∗ is returned as output of the algorithm. Lemma 3.44 ensures
correctness of algorithm 5.

Remark 3.47. An initial lower bound LB = c(F)
val(F) can be obtained from lemma 3.33.

An initial upper bound can be generated by computing an arbitrary decomposition
of the flow F (e. g. by using algorithm 4). M

Problem (3.12) is a continuous linear programing formulation which is used to
determine an optimal fractional decomposition for SLP. Using our knowledge on
linear programming we restrict the number of paths in an optimal solution:

Corollary 3.48 ((cf. [Bai+06] Thm. 4.1)): For an arbitrary flow F there ex-
ists an optimal (fractional-)decomposition of SLP using at most |E| paths.

Proof: Problem (3.12) has |E| constraints and hence every basic solution has
at most |E| non-zero variables. Since every variable corresponds to a path, we
conclude that every basic solution, and hence at least one optimal solution (cf.
theorem 2.5), uses at most |E| paths. 2

With this bound on the number of paths in an optimal fractional decomposition
we conclude:

Corollary 3.49: The decision version of the fractional SLP is always contained
in NP and hence the fractional SLP is in NP-complete.

55

Chapter 3. Problem structure and theoretical analysis

Corollary 3.50: In the edge-based formulation of SLP (3.3) the cutoff Γ = |E|
can be used to solve SLP to optimality, without cutting off the optimal solution.

Remark 3.51. Corollary 3.48 and corollary 3.49 do not apply to the integral
SLP. As shown by Hendel and Kubiak [HK] the number of paths in an integral
decomposition can be exponentially large in the input size. This also means that
there are flow-graphs in which an optimal fractional decomposition uses fewer
paths than an optimal integer decomposition. M

Solving the indicator problem IND(B)

The indicator problem, which is solved in line 3 of algorithm 5, has an exponential
number of variables. Hence, it is, in general, not even possible to state the complete
problem explicitly in an efficient way. To avoid stating the complete problem, we
use column generation methods and consider only a small subset of variables at a
time, trying to find an optimal solution in this subset (cf. section 2.1.2). To check
if a solution found for a subset is optimal, or to find a new variable to be included
in the subset, we have to solve a pricing problem.

Given a basic feasible solution x of problem (3.12), the reduced cost of variable xj
is given by c̄(Pj) = ĉ(Pj)− πPj, where π are the dual variables corresponding to
the current solution x of the problem.

By using the incidence vector representation of the path Pj we rewrite c(Pj) as

c(Pj) =
∑
ei∈Pj

c(ei) =


c(e1)
...

c(e|E|)


T

· Pj.

If c(Pj) ≥ B holds, the reduced cost of the variable xj is

c̄(Pj) =


c(e1)
...

c(e|E|)


T

· Pj − πPj =


c(e1)− π1

...
c(e|E|)− π|E|


T

· Pj. (3.13)

The reduced cost c̄(Pj) can hence be interpreted as the cost of path Pj in GF with
respect to a new cost function given by

c̃(ei) = c(ei)− πi. (3.14)

If c(Pj) < B holds, the reduced costs of xj are given by c̄j = −πPj. This can again

56

3.4. Solving SLP

be seen as the cost of the path Pj with respect to a cost function, namely

c̃′(ei) = −πi. (3.15)

To find a variable with associated negative reduced cost or to determine that such
a variable does not exist, we have to solve two pricing problems.

The first one is a shortest path problem with respect to the cost function c̃:

min
P∈Ps,d

(c̃(P)). (3.16)

The second one is a resource constrained shortest path problem with respect to
the cost function c̃′ and resource function c:

min
P∈Ps,d

(c̃′(P)) (3.17)

s.t. c(P) ≤ B.

Lemma 3.52: Let x be a basic feasible solution of the indicator problem (3.12)
for the basis B. Let π = cBA

−1
B be the dual variables. By solving the two problems

(3.16) and (3.17), we can decide that x is optimal or find a column of the constraint
matrix of problem (3.12) with negative reduced cost, which can be used to improve
the objective value.

Proof: First note that for all paths P ∈ Ps,d the costs c̃(P) are at most c̃′(P) since
the cost function c has only positive values.

Let Pj be an optimal path for the shortest path problem (3.16). If c̃(Pj) is
negative we immediately get that c̃′(Pj) is negative. Hence, no matter whether
c(Pj) < B holds or not, we have found a path with negative reduced costs. The
corresponding incidence vector gives a column of the constraint matrix. Otherwise,
since c̃(Pj) ≥ 0 is minimal, we conclude that there is no path with negative costs
w.r.t. c̃ (there might however be a path with negative cost w.r.t. c̃′).

Let Pj′ be the the optimal solution of the resource constraint shortest path problem
(3.17). Since Pj′ satisfies the resource constraint, the reduced cost for this path
is given by c̄(Pj) = c̃′(Pj′). So if c̃′(Pj′) < 0 holds, we have found a path with
negative reduced cost. If c̃′(Pj′) ≥ 0, we use the optimality of P ′j to conclude that
there exists no path with c(P) ≤ B and negative reduced cost. In combination
with the fact that no path has negative costs with respect to c̃, we conclude that
there is no path with negative reduced costs and hence that the current solution
x is optimal. 2

57

Chapter 3. Problem structure and theoretical analysis

Remark 3.53. The signs of the values of the entries in π are unconstrained. Hence,
the cost functions c̃ and c̃′ can have both positive and negative edge costs. When
computing the shortest path, we have to choose an algorithm that can handle
negative costs. M

Due to lemma 3.52 the two problems (3.16) and (3.17) can be used to check the
reduced cost optimality condition while solving the indicator problem. In algorithm
6 this procedure is stated in detail. If the optimality condition is not satisfied the
solution of either (3.16) or (3.17) provides a new column of the constraint matrix,
given by the incidence vector corresponding to the path Pj or P ′j respectively. The
corresponding variable xj can be pivoted into the basis to improve the objective
value.

Algorithm 6 Revised simplex for IND(B)
Require: Basic feasible solution x of IND(B) (3.12).
Ensure: Optimal basic feasible solution x∗ of IND(B) (3.12)
1: while True do
2: update dual variables π w.r.t. x
3: P ← solution of pricing problem (3.16)
4: z ← c̃(P)
5: if z < 0 then
6: x← pivot column for path P into basis
7: else
8: P ′ ← solve pricing problem (3.17)
9: z ← c̃′(P ′)
10: if z < 0 then
11: x← pivot column for path P ′ into basis
12: else
13: return optimal solution x∗ = x
14: end if
15: end if
16: end while

3.4.3. Towards an implementation of the path-based
algorithm for SLP

In this section we discuss several methods that can be used for an efficient
implementation of algorithm 5. We show how the initial lower and upper bounds
of algorithm 5 can be improved and how the resource constrained shortest path
problem can be solved. Furthermore, we comment on the degeneracy of the

58

3.4. Solving SLP

decomposition problem and on how a starting basic feasible solution can be
constructed.

Improved bounds for the SLP algorithm

The performance of algorithm 5 strongly depends on the initial choice of the
lower and upper bounds. Usually the initial lower bound from lemma 3.33 cannot
be improved without effort. However, the upper bound found by algorithm 4 is
very weak in most cases. In chapter 4 we discuss several heuristics to compute a
starting decomposition providing a considerably better upper bound.

In each iteration of algorithm 5, the indicator problem returns a flow-decomposition
x∗ which provides an additional upper bound B′ on the objective value, given by
the most expensive path. If this bound is lower than the current upper bound,
we can use B′ to improve the bound. If we constitute that ΦB(x∗) > 0, we can
possibly improve both the lower and the upper bound in the same iteration. If
we get ΦB(x∗) = 0, we get a better bound by setting UB = min(B,B′). This is
particularly useful if the upper bound is weak.

A starting basic feasible solution for the indicator problem

The revised simplex algorithm (algorithm 6) requires a basic feasible solution as a
starting solution each time it is used to solve the indicator problem.

When called for the first time we use the paths P ∈ P of the decomposition
computed to find an initial upper bound as starting solution. This solution usually
uses less than |E| paths, which is the size of a basic solution, and has to be
expanded. For this we add additional auxiliary columns of unit vectors. The costs
of the corresponding auxiliary variables is chosen as a large value M . Since the
paths from the set P satisfy all constraints on their own the value of the auxiliary
variables is set to 0 even though they are contained in the basis, leading to a
degenerated problem. If M is large enough, no solution generated during the
optimization will use one of those variables with a value greater than 0 such that
we can simply remove the auxiliary columns to get an optimal solution.

Since between the iterations of algorithm 5 only the objective function of the
indicator problem 3.12 changes, for subsequent iterations, it is possible to use the
optimal basic feasible solution of the previous iteration as a starting solution for
algorithm 6.

59

Chapter 3. Problem structure and theoretical analysis

Removing degeneracy

Often a flow-decomposition uses significantly less paths than the size of the basis
|E|. Hence, most basic solutions of (3.12) are degenerated and contain basic
variables of value 0 (cf. remark 2.7). Dealing with degenerated problems is a
well studied task (see e. g. [GDL14] for an overview). One popular method to
avoid too many iterations in a degenerated point of the simplex is to resolve the
degeneracy by slightly disturbing the right hand side of the problem by random
values [RO88]. The optimization is continued for the disturbed problem until
the degenerated point is left. At this point we return to the original problem
and continue optimization from the new basic feasible solution found during the
iterations of the modified problem.

Remark 3.54. A degenerated master problem is a common problem when using
column generation. Hence, methods to deal with degeneracy specifically in the
context of column generation have been developed [DGL14]. M

Solving the resource constraint shortest path problem

There are many ways [BC89, PC98, ID05, Has92, NQ82] to solve or approximate
the resource constraint shortest path problem (3.17). One method is to consider
the problem as a bi-objective shortest path problem [NQ82]. Here, we have to
find an efficient path P with minimal cost c̃(P) for which the point (c̃(P), c(P))
dominates the point (0,B). Many algorithms suggested for this problem are
based on labeling strategies and become simpler in case of acyclic graphs using
a topological sorting. Since the underlying graph does not change during the
algorithm this sorting has to be computed only once. To restrict the search space,
efficient dominance checks (cf. [KLP75]) have to be made to reduce the number
of different labels at each vertex.

To solve the pricing problem (3.17) it is sufficient to find any path that has a
negative objective value and satisfies the resource constraint. Hence, we can
terminate the algorithm early if a solution dominating the point (0,B) has been
found.

Including lower bounds in the indicator problem

In algorithm 5 we only need to know if the optimal objective value of the indicator
problem 3.12 is positive or not. If we find a positive lower bound on the objective
value of the indicator problem, we can stop the algorithm concluding that there is
no solution with objective value 0.

60

3.4. Solving SLP

One such bound is given by lemma 2.9:

cTBxB + κ · cmin ≤ z∗.

For the problem at hand we use

κ = val(F) ≥
∑
i∈Ps,d

xi

as upper bound on the sum of all variables.

3.4.4. Computational results solving SLP

In this section we present small-scale computational results to demonstrate the
potential of the algorithms developed in this chapter. To compare algorithm
5 with the solution of a mixed integer program (MIP), we randomly generate
series-parallel flow graphs with different number of edges and compute an optimal
SLP-decomposition using both algorithm 5 and a commercial solver (i.e. Gurobi
[Gur14]) for the mixed integer program (MIP) given by equation (3.9). For
algorithm 5 we use the modifications described in section 3.4.3 yielding an average
reduction of computation times by 15% compared with the simplest form of the
algorithm. We consider graphs with up to 300 edges, unit capacities, and the
edge costs are chosen as random integers in the interval [1, 100]. The maximum
computation time is set to 30 min (1800 seconds). Figure 3.8 shows the computation
times and table 3.1 shows numeric values for selected instances. In table 3.1 we
see that the number of edges or the flow value val(F) alone is not sufficient to
characterize the complexity of the problem. Frequently instances are generated
which are solved quickly, even though they contain more edges and have a higher
flow value than instance which require a lot more computation time. For this
reason we used the computation time of the MIP as a measure for the problem
complexity in figure 3.8, to allow for a clear presentation of the data.

Edges Flow Alg. 5 MIP Edges Flow Alg. 5 MIP
12 3 0.04 0.02 150 22 24.2 16.5
46 8 0.72 10.18 194 22 356.9 1800.0
55 7 3.83 1.87 194 25 106.7 36.8
100 14 17.95 1800.00 216 22 173.7 634.0
108 20 2.78 3.60 268 32 270.4 469.3
131 19 23.79 1800.00 294 3 1273.4 1800.00

Table 3.1.: Selected computation times measured in seconds. The time limit for
computation is 1800 s.

61

Chapter 3. Problem structure and theoretical analysis

10−2

10−1

100

101

102

103

Complexity

Ru
nt
im

e
[s]

Algorithm 5
MIP

Figure 3.8.: Comparison of computation times. Complexity of an instance is mea-
sured by the computational time of the integer program. Computation
times were cut off at 1800 s.

For small instances solving the mixed integer program outperforms algorithm 5,
but even for some of the moderate instances, containing between 100 and 200
edges, the integer program fails to compute an optimal solution within the time
limit of 30 min, while algorithm 5 finds an optimal solution in approximately 6
minutes (in the worst case). For instances with up to 300 edges the MIP reaches
the time limit for more and more instances while algorithm 5 solves all of them
within the time limit.

3.5. Decomposition problems and their applications

We have already seen one application of a decomposition problem motivated by
minimizing the maximal exposure to a toxic substance in example 3.20, leading
to an instance of SLP. In this section we discuss additional applications and
modifications of SLP as well as decomposition problems with other objective
functions. We also introduce a two phase problem, which includes finding a
flow that has a good decomposition as a first phase. Finally, we discuss how
decomposition problems can be used in the context of flows over time.

3.5.1. Other decomposition problems

So far we focused on the SLP decomposition problem, but the formulation of the set
of decompositions derived in section 3.1 can also be used to model decompositions

62

3.5. Decomposition problems and their applications

problems with different objectives.

For SLP only the longest path is considered in the objective function, while the
path lengths of the remaining paths are neglected. A natural extension of SLP is to
ensure that all paths are decomposed as good as possible leading to the lexicographic
shortest longest path problem Lex-SLP. Here we interpret the costs of all paths
of a decomposition as a vector of path-costs, sorted by decreasing values (such
that the costs of the longest path are represented by the first component). When
comparing two decompositions we compare those cost vectors lexicographically
starting with the first component and our goal is to find the decomposition with
lexicographically smallest cost vector.

Remark 3.55. The number of paths in two decompositions might differ. In this
case additional components of value 0 are appended to the cost vector of the
decomposition with fewer paths until both cost vectors have the same size. By
doing this we are able to lexicographically compare decompositions with different
numbers of paths. M

Instead of minimizing the longest path, it is also possible to maximize the shortest
path leading to a decomposition problem (LSP) very similar to SLP. The two
problems can also be combined by minimizing the difference of the and longest
and shortest path of a decomposition.

Remark 3.56. The value c(F)
val(F) is a bound on the optimal solution of both prob-

lems. M

The SLP can also be extended to a multi-objective problem involving more than
one cost function. In this case, we have to determine how to compare different
decompositions in this context. An alternative use of multiple cost functions for
α-decompositions is to give every unit of flow its personal cost function. For a
decomposition into k paths this results in k cost functions, and a solution consists
not only of the flow-decomposition but also of an assignment of the different cost
functions to those paths (i. e. an assignment of distinguishable units of flow to the
paths).

Beside the path lengths also other properties of the decomposition can be optimized.
We already mentioned the problem of minimizing the number of paths [Vat+08].
This objective can be modified in various ways such as minimizing the number of
paths traversing a specific edge, minimizing the number of cycles in a decomposition,
or minimizing the maximum number of intersection points between any two paths.

Remark 3.57. We have to keep in mind that not every decomposition problem is
useful since several network properties, such as the amount of flow sent or the total
costs, are independent of the decomposition. In addition not every decomposition
problem needs to be computationally hard. M

63

Chapter 3. Problem structure and theoretical analysis

3.5.2. Network flows with a good decomposition

The decomposition problem introduced in this chapter decomposes a predefined
flow into paths. It is assumed that this flow was obtained by some previous
computation (such as a minimum-cost flow) and cannot be changed. However,
when considering flow-decompositions the possibilities of optimization start at an
earlier point. Not every flow can be decomposed into paths equally well such that
one could ask to find a network flow which has the best possible decomposition.

Finding a good flow for SLP

To find a flow for SLP, with given flow value val(F), that has the best possible
decomposition, we use the algorithms provided for length-bounded flows. In this
problem a bound B ∈ Q is given and we compute a maximum flow which can
be decomposed into paths with a cost value of at most B. By a binary search
over the bound B, we find the value B∗ for which the flow value of a maximum
length-bounded flow exceeds (or is equal to) val(F) for the first time. This flow is
one of the flows sending a flow value of val(F) that have the best decomposition
for SLP.

Remark 3.58. If the flow value obtained by this procedure has a larger flow value
than val(F), we reduce the flow on the most expensive paths until the total flow
value becomes val(F). Since for every bound less than B∗ the flow value is less
than val(F), this procedure does not reduce the objective value of an SLP problem
for the flow. M

On pearl graphs the above method is not necessary. We show that it is in this
case sufficient to compute a minimum-cost flow to get the flow with the best SLP
decomposition.

Lemma 3.59: Let G be a pearl graph with edge costs c : E → Q+ with source v1
and sink v|V |. Let Fval denote the set of all flows in G with flow value val, and let
SLP(F) denote the objective value of the SLP problem solved on the flow-graph
GF for a flow F ∈ Fval.

Let F ∗ ∈ Fval be a minimum-cost flow (w.r.t. c) in G with flow value val. Then
F ∗ is optimal for

min
F∈Fval

SLP(F). (3.18)

Proof: Let F̃ ∈ Fval be a flow which is optimal for problem 3.18, and which has
lowest possible cost.

64

3.5. Decomposition problems and their applications

Assume F̃ is not a minimum-cost flow. Then there exists a pearl in which an edge
ẽ is used by F̃ even though the capacity of a cheaper edge e is not exhausted.
Assume that the additional value of flow that could be sent along e instead of ẽ is
given by σ, and let F ′ be the flow which sends this additional flow along e instead
of ẽ. The flow F ′ has lower cost than F̃ .

Let P̃ be an optimal SLP decomposition of F̃ . Consider the set Pẽ of all paths
using edge ẽ. By choosing paths from Pẽ with total flow value of σ (since we can
split a path into two identical paths with lower flow values, this is always possible)
and by replacing edge ẽ by edge e on those paths, we obtain a decomposition for
the flow F ′. Since the cost of edge e is lower than the cost of edge ẽ, the objective
value SLP(F ′) is at most as large as SLP(F̃). This contradicts the assumption
that F̃ has lowest possible cost.

So assume F̃ is a minimum-cost flow. If F̃ and F ∗ do not coincide, they can only
differ by edges with identical costs. Since the above reasoning is valid for equality
we show that SLP(F ∗) is at most as large as SLP(F̃). 2

3.5.3. Decompositions and flows over time

Regarding the evacuation problems considered in part II, we examine the use
of flow-decompositions in combination with flows over time (cf. 2.3), especially
quickest flow problems.

In section 2.3 two methods were presented to compute a quickest flow. The first
method is to compute a minimum-cost flow on the time-expanded network with
respect to the turn style costs. Using SLP to minimize the longest path with
respect to those costs does not improve the solution. Since the turn style costs are
zero on all edges not leading to the super-sink the costs of any path ending at the
super-sink are given solely by the costs of a single edge. Since the total flow on
all those edges is fixed, the arrival times of the flow are predefined and cannot be
change via flow-decomposition. The objective value of SLP is given by the most
expensive edge of the flow and is identical for all decompositions. Since by [JR82]
the quickest flow obtained by using the turn style costs is also an earliest arrival
flow, it is not surprising that a flow-decomposition cannot improve the arrival
times of the flow.

A second method to find a quickest flow is to compute maximum flows over time
until we find the time horizon T for which the required amount of flow can be sent
to the sink for the first time. The maximum flow with respect to this time horizon
is a quickest flow. To find a maximum flow for a given time horizon, we compute
temporally repeated flows (TRF), which is done in polynomial time as suggested
by Ford Jr and Fulkerson [FF58]. To obtain such a flow, an additional edge from

65

Chapter 3. Problem structure and theoretical analysis

the sink to the source is added to the network with a travel time −(T + 1). Then
a minimum-cost circulation with respect to the travel times is computed in the
static network. To convert this circulation to a flow over time, the additional edge
is removed and the circulation becomes an s-d flow. This flow is decomposed into
paths P (usually in an arbitrary way) and a flow value of val(P) is sent repeatedly
along each path P ∈ P within the time interval [0, T − τ(P)]. The quickest flow
obtained by this procedure is not necessarily an earliest arrival flow (see [Gal58]),
and the arrival and departure times of the individual units of flow depends on the
decomposition of the circulation. The total amount of flow that is sent within
the time interval T however does not change for different decompositions. By
maximizing the length of the shortest path (LSP) the last departure time of a
unit of flow at the source can be minimized which means the source is emptied as
fast as possible for any TRF obtained from the given s-d-flow.

Remark 3.60. If the minimum-cost circulation is not unique we can obtain different
s-d-paths for the decomposition problem which might have different objective
values. Hence, to find the overall best temporally repeated flow for which the last
unit of flow leaves the source as fast as possible, we have to make sure to choose
the right circulation. M

3.6. Conclusion

Up to now the flow-decomposition problem has been rarely discussed in literature,
and if so only for explicit instances. In this chapter we formulated the decomposi-
tion problem in its general form, providing two descriptions of the set of feasible
decompositions, one based on the edges of the graph and one based on the paths
used.

We analyzed the structure of those sets and used this information to solve the
shortest longest path problem (SLP) on acyclic flow-graphs, by using column
generation. The algorithm was tested numerically yielding a clear improvement
over an integer programming implementation. Especially tight lower and upper
bounds proved to be crucial for a fast computation.

In addition to a solution algorithm we reviewed and refined the results on com-
plexity for SLP. We were able to show that the fractional version of SLP is in
NP-complete while the membership in NP remains unclear for the integral problem.

We observed in the computational study that the complexity of the decomposition
problem (on series-parallel graphs) cannot be characterized by the number of
edges or the total flow value (cf. section 3.4.4). It remains an open question which
network structures are responsible for making the problem hard to solve and if
the knowledge of those structures can be exploited to obtain faster algorithms.

66

3.6. Conclusion

So far only basic methods of column generation were used to solve SLP. However,
column generation is a well studied and widely spread method [DL05] with various
applications. Many improvements have been developed over the years, such as
to include valid dual inequalities to ensure a faster convergence of the master
problem, as for example suggested for the cutting stock problem [Val05, GI14].

67

4. Approximation algorithms for
SLP

We have seen in section 3.4 that it is important to have tight upper bounds to
solve SLP efficiently. In this chapter we develop and discuss several approximation
algorithms determining such upper bounds by computing a decomposition of the
flow F . We only consider α-decompositions since in this case we can focus on the
construction of the paths and do not have to worry about the flow value that is
sent along them. To generate good decompositions with arbitrary flow values, not
only the paths have to be determined but also the flow values sent along them.

For simplicity we assume that all edges of GF have capacity α. If this is not
the case we split any edge with larger capacity into multiple parallel edges with
capacity α. In addition we rescale the flow values using lemma 3.41 to restrict the
problem to unit decompositions on graphs with unit capacities. As in the previous
chapter, we assume acyclic graphs and write D = P for a decomposition.

To determine the quality of a heuristic, we consider its approximation ratio given
by the worst-case ratio of the heuristic objective value and the optimal objective
value considering all instances of SLP. For arbitrary graphs we give the following
simple estimate of the approximation ratio:

Lemma 4.1: Let F be a flow on an acyclic graph and GF be the corresponding
flow-graph. Let umin be the lowest capacity of the edges in GF . Any decomposition
of F is a val(F)

umin
-approximation of SLP.

Proof: Lemma 3.33 gives a lower bound on the optimal objective value OPT of
SLP, which is

OPT ≥
∑
e∈E c(e) · u(e)

val(F) ≥ umin
∑
e∈E c(e)

val(F) .

On the other hand, the most expensive path Pmax of any decomposition can use
at most all edges of the flow-graph GF and has cost c(Pmax) ≤ ∑e∈E c(e).

Hence, the approximation ratio is bounded by

c(Pmax)
OPT ≤ val(F)

umin
.

2

69

Chapter 4. Approximation algorithms for SLP

4.1. FPTAS

Beside complexity results, Hendel and Kubiak [HK] provide a pseudo-polynomial
dynamic programming algorithm for SLP, assuming unit capacities. Initially a
topological sorting of the vertices of the flow-graph GF is computed. In order
of this sorting, for each vertex l, the sub-graph of GF induced by the edge set
|El| = {e ∈ E : α(e) ≤ l and ω(e) ≤ l} ∪ {e ∈ E : α(e) = l} is considered. For
each of those sub-graphs a set Pl of all possible decompositions is computed, by
appending the outgoing edges of vertex l to the paths P ∈ P entering vertex l in
any possible permutation for every decomposition P ∈ Pl−1.

The maximum cost value of any path that can occur during the computation is
bounded by the cost of the longest possible path ∆ and hence the maximal number
of states the algorithm has to consider is bounded by |V | ·∆k, where k = val(F).
This algorithm is transformed into a FPTAS by using trimming-the-state-space-
techniques [IK75, Woe00]. This results in an algorithm with approximation ratio
1 + ε and complexity kk·nk+1

εk
.

4.2. Local search

Even though the stated FPTAS approximates the decomposition problem for
arbitrary values ε > 0 in polynomial time, the algorithm is very time consuming
and not suitable for a fast approximation of SLP. An alternative approximation
uses the notation of adjacency introduced in definition 3.15. Since the set of
decompositions is connected with respect to the neighborhood (cf. lemma 3.17)
we apply a local search procedure to approximate SLP, leading to algorithm 7.

Starting with an initial decomposition P0, we test if a rewire action, as defined
in 3.15, improves the solution. This means that the cost value cmax of one of the
most expensive paths in P0 is reduced without increasing the costs of another
path above cmax. If this is the case, we apply the rewire action and check again for
the resulting decomposition P1. If the solution cannot be improved, the algorithm
terminates and returns the current decomposition.

Since the objective value of SLP is bounded from below and since the cost of one
of the most expensive paths decreases in each iteration (except the last one), the
algorithm terminates after finitely many steps.

Remark 4.2. If the most expensive path is unique, a rewire action improves the
objective value. If there is more than one path, a rewire action decreases the
number of expensive paths. M

70

4.2. Local search

Algorithm 7 SLP heuristic (local search)
Require: Acyclic flow-graph GF with unit capacities, unit decomposition P of F
Ensure: Unit decomposition of F
1: P ′ ← P
2: improve ← True
3: while True do
4: P1 ← most expensive path of P ′
5: for v ∈ P1 do
6: for Pi ∈ P do
7: P ′1, P

′
i ← REWIRE(P1,Pi, v)

8: if c(P ′1) < c(P1) and c(P ′i) < c(P1) then
9: P ′ ← (P ′\{P1, Pi}) ∪ {P ′1, P ′i}

10: goto 3
11: end if
12: end for
13: end for
14: return P ′
15: end while

Theorem 4.3: On pearl graphs algorithm 7 provides a 2-approximation for SLP.

Pmin|s,v

P1|s,v

Pmin|v,d

P1|v,d

v
REWIRE

Figure 4.1.: Rewiring at node v.

Proof: Let P1 be the most expensive path that was considered when the local
search terminated with the decomposition P. This means in particular that the
solution cannot be improved by any rewire action involving path P1.

Let Pmin ∈ P be the path with the lowest cost. From corollary 3.37 we know that
the cost of Pmin is at most OPT and hence the cost of every sub-path of Pmin as
well. In a pearl graph P1 and Pmin intersect at every vertex v ∈ GF .

We distinguish three cases:

Case 1:

• There exists a vertex v, such that c(P1|s,v) ≤ OPT and

71

Chapter 4. Approximation algorithms for SLP

• c(P1|s,v) + c(Pmin|v,d) ≥ c(Pmin|s,v) + c(P1|v,d).

Since a rewire action at v does not improve the objective value, at least one of the
new paths (the more expensive one) has cost c(P1) or higher. We conclude that

c(P1) ≤ c(P1|s,v) + c(Pmin|v,d) ≤ 2 ·OPT .

Case 2:

• There exists a vertex w such that c(P1|w,d) ≤ OPT and

• c(Pmin|s,w) + c(P1|w,d) ≥ c(P1|s,w) + c(Pmin|w,d).

Using the same line of reasoning, we conclude c(P1) ≤ 2 OPT.

Case 3:

• There exist two adjacent vertices vi and vi+1 with

c(P1|s,vi) + c(Pmin|vi,d) ≥ c(Pmin|s,vi) + c(P1|vi,d) and

c(Pmin|s,vi+1) + c(P1|vi+1,d) ≥ c(P1|s,vi+1) + c(Pmin|vi+1,d).

We denote by e1 ∈ P1 the edge P1 used in the pearl induced by vi and vi+1 and by
emin the corresponding edge in Pmin. Like before, using the above conditions, we
get for rewiring at vi and vi+1 the two inequalities

c(P1) ≤ c(P1|s,vi) + c(Pmin|vi,d) and
c(P1) ≤ c(Pmin|s,vi+1) + c(P1|vi+1,d)

Combining the two we obtain

2 · c(P1) ≤ c(P1|s,vi) + c(P1|vi+1,d) + c(Pmin|s,vi+1) + c(Pmin|vi,d).

Merging the sub-paths of P1 and Pmin we conclude

2 · c(P1) ≤ c(P1)− c(e1) + c(Pmin) + c(emin)
⇒ c(P1) ≤ c(Pmin) + c(emin)− c(e1) ≤ 2 ·OPT .

In the last step we use lemma 3.38 and corollary 3.37 to obtain bounds for c(emin)
and c(Pmin).

We now show that for any decomposition of F there exists at least one of the
vertices v, w, vi used in the cases 1 to 3, which completes the proof:

Consider the vertex v2 adjacent to the source. Here P1|s, v2 consists of only
one edge. Since this edge has to be contained in a path, by lemma 3.38 we

72

4.2. Local search

.

0
1...
1

1
0...
0

M

0...
0

M pearls M pearls

M edges
per pearl

Figure 4.2.: Local search provides a 2 approximation on pearl graphs with unit
capacities. The depicted graph consists of 2M + 1 pearls and a pearl
size of M . The edge costs are given by the labels.

have c(P1|s, v2) ≤ OPT . Either v2 satisfies the condition of case 1 or it holds
c(P1|s,v2) + c(Pmin|v2,d) < c(Pmin|s,v2) + c(P1|v2,d).

In the latter case either c(P1|s,vi) + c(Pmin|vi,d) < c(Pmin|s,vi) + c(P1|vi,d) holds
for all vi ∈ V or there exists a vertex vi+1 with c(P1|s,vi+1) + c(Pmin|vi+1,d) ≥
c(Pmin|s,vi+1) + c(P1|vi+1,d) which together with vi satisfies the condition of case 3.

If c(P1|s,vi) + c(Pmin|vi,d) < c(Pmin|s,vi) + c(P1|vi,d) holds for all v ∈ V , consider the
second to last vertex vn−1 adjacent to the sink. In this case P |vn−1,d consists of
only one edge, and hence we have c(P |vn−1,d) ≤ OPT and the condition of case 2
is satisfied. 2

Lemma 4.4: The bound of theorem 4.3 is sharp.

Proof: The graph in figure 4.2 shows that the bound is sharp. The graph has
unit capacities and the edge costs are given by the labels in the figure. Each
pearl contains M edges and there are (2M + 1) pearls, whereof the first M pearls
contain (M − 1) edges with cost 1 and one edge with cost 0, the next M pearls
contain (M − 1) edges with cost 0 and one edge with cost 1, and the last pearl
contains one edge with cost M and (M − 1) edges with cost 0.

Consider the decomposition induced by the illustrated ordering of the edges in
each pearl. This decomposition has objective value 2M , given by the topmost
path, and it is easy to check that it cannot be improved by a rewire action.

The optimal decomposition uses the same sub-paths on the first M pearls yielding
one sub-path with cost 0 and M − 1 sub-paths with cost M . For the next M
pearls each of the M paths, gets assigned one edge of cost 1 in one of the next
M pearls and edges with cost 0 in all other pearls. Up to this point we have
constructed (M − 1) paths with cost (M + 1) and one path with cost 1. Assigning
the edge of cost M to the path of cost 1, we get a decomposition with objective
value (M + 1), which is optimal by lemma 3.33. The approximation ratio is given

73

Chapter 4. Approximation algorithms for SLP

P2|s,vi

P1|s,vi

e2

e1

P2|vi+1,d

P1|vi+1,d

vi vi+1

SWAP

Figure 4.3.: Swap in the i-th pearl.

by
ALG
OPT = 2M

M + 1 2

and approaches 2 with increasing M .

4.2.1. Approximation on pearl graphs

Considering the graph from figure 4.2, it seems reasonable to adapt the concept of
neighborhood on pearl graphs in such a way that, instead of a rewire action, two
single edges can be swapped as shown in figure 4.3.

Definition 4.5 (adjacency on pearl graphs): Let GF be a pearl graph. Two
α-decompositions P and P ′ of the flow F are called adjacent if they can be
transformed into one another by the following swap action:

• Choose P1, P2 ∈ P .

• Choose a pearl i ∈ {0, . . . , |V − 1|} starting at vertex vi. Denote the edge
used by P1 on this pearl as e1 and the edge used by P2 as e2.

• Substitute P1 and P2 by:

P ′1 = (P1|s,vi + e2 + P1|vi+1,d),

P ′2 = (P2|s,vi + e1 + P2|vi+1,d).

Lemma 4.6: The approximation ratio of the local search algorithm, with respect
to the neighborhood defined in 4.5 is

ALG

OPT ≤ 1 + ∆
OPT ≤ 2,

where ∆ is the maximum difference of edge costs in a pearl.

Proof: This proof uses the same line of argument as the proof of lemma 3.39. Let
P1 be the most expensive path of a decomposition generated by the local search

74

4.3. Matching paths

of algorithm 7 with respect to the neighborhood of definition 4.5, for which the
algorithm terminated. If c(P1) = OPT holds, there is nothing to show.

So assume that c(P1) > OPT. Let Pmin be the path with the lowest costs in the
decomposition. From corollary 3.37 we know that c(Pmin) < OPT. Since c(P1)
is larger than c(Pmin), there is at least one pearl in which c(e1) > c(emin) holds,
where e1 and emin are the edges the paths P1 and Pmin use on this pearl.

Since the algorithm terminated, swapping those two edges does not improve the
objective function. Hence, we get

ALG = c(P1) ≤ c(Pmin) + c(e1)− c(emin) < OPT +c(e1)− c(emin) ≤ OPT +∆.

Since ∆ is at most as large as the cost of the most expensive edge it holds, by
lemma 3.38, that ∆ ≤ OPT and hence the bound of 2 follows. 2

Even though swapping at every vertex seems to be a power full tool, there exist
instances where a local search with respect to the neighborhood defined by 4.5
does not lead to optimality:

In figure 4.4 the edges have unit capacity and the costs are given by the labels.
Consider the decomposition 4.4(a) induced by the ordering of the edges in each
pearl. The cost of the upper path is given by c(P1) = 4 and the cost of the lower
path is c(P2) = 2. The maximum difference of costs in a pearl is ∆ = 2 and no
swapping operation of two edges yields a decomposition with a better objective
value than 4. However, there exists a decomposition (4.4(b)) which has cost 3 on
both paths. Due to lemma 3.33 this decomposition is optimal.

0

1

2

0

0

1

2

0

(a) Solution cannot be improved by swap-
ping.

0

1

2

0

0

1

2

0

(b) Optimal solution.

Figure 4.4.: Example that swapping edges does not always lead to an optimal
solution. The edges have unit capacity and the edge costs are given
by the labels.

4.3. Matching paths

Another method to find a good decomposition of a flow F is to construct the
paths stepwise from scratch. Following a topological sorting on acyclic graphs, we

75

Chapter 4. Approximation algorithms for SLP

iteratively expand existing paths by adding new edges (see algorithm 8):
Let P(v) be the set of (sub-)paths entering a vertex v. We add the edges leaving
v to the paths P ∈ P(v) by appending the cheapest edges to the most expensive
paths in P(v) and vice versa.

This procedure is similar to the method used in the FPTAS described in section
4.1, but instead of appending all possible permutations of the edges to the existing
paths, we consider only one. In this way we construct only one set of paths for
every vertex, which reduces complexity. The motivation for choosing exactly this
permutation is given by lemma 4.7.

Lemma 4.7: Let a1 ≥ a2 ≥ . . . ≥ an ∈ R and b1 ≤ b2 ≤ . . . ≤ bn ∈ R be two
ordered sequences of values. Let π : {1, . . . , n} → {1, . . . , n} be a permutation of
the indices. Then

max
i∈{1,...,n}

(ai + bi) ≤ max
i∈{1,...,n}

(
ai + bπ(i)

)
.

Proof: Let aj + bj = maxi∈{1,...,n} (ai + bi).

First assume that π(j) ≥ j holds. Then we get

max
i∈{1,...,n}

(
ai + bπ(i)

)
≥ aj + bπ(j) ≥ aj + bj.

Now assume that π(j) < j. Then there exists an index l ∈ {1, . . . , n} with l < j
and π(l) ≥ j and hence

max
i∈{1,...,n}

(
ai + bπ(i)

)
≥ al + bπ(l) ≥ aj + bj.

If such an l did not exists, we would have that π(l) < j for all l < j. In this case
π restricted to the values less than j is a permutation of the indices less than j,
and it holds π−1(l) < j for all l < j . By assumption it also holds that π(j) < j,
so we get π−1(π(j)) < j which is a contradiction. 2

Corollary 4.8: The matching algorithm 8 is optimal for pearl graphs with two
pearls and arbitrary pearl sizes.

The approximation ratio of algorithm 8 can be arbitrarily bad, even on series
parallel graphs. This is shown by the graph in figure 4.5. At every vertex with out-
degree 2N the edges with cost 0 mask the following cost M edges. The algorithm
is misled to place the cost 0 edges, and by doing so also the cost M edges, into the
most expensive paths constructed so far. The resulting decomposition contains 2
paths with cost N ·M . The remaining 2N − 2 paths have cost of N . The optimal

76

4.3. Matching paths

Algorithm 8 SLP heuristic (matching paths)
Require: Acyclic flow-graph GF with unit capacities.
Ensure: Unit decomposition of F .
1: V = {v1 . . . , v|V |} ← compute top-sort of GF

2: for v ∈ V do
3: P(v)← ∅ // Paths leading from s to vertex v
4: end for
5: for e ∈ δ+(v1) do
6: P(ω(e))← P(ω(e)) ∪ {e}
7: end for
8: for i ∈ {2, . . . , |V |} do
9: {P1, . . . , Pn} ← sort paths in P(vi) by decreasing cost
10: {e1, . . . , en} ← sort edges in δ+(vi) by increasing cost
11: for j ∈ {1, . . . , n} do
12: P(ω(ej))← P(ω(ej)) ∪ {Pj ∪ ej}
13: end for
14: end for
15: return P(v|V |)

decomposition is constructed by placing one edge with cost M and N − 1 edges
with cost 1 in every path and has an objective value of M +N − 1.

However, for the simpler case of pearl graphs, we get a constant approximation
ratio:
Theorem 4.9: On pearl graphs algorithm 8 provides a 2-approximation for SLP.

For the proof we use the following lemma:
Lemma 4.10: Let a1 ≥ a2 ≥ . . . ≥ an ∈ R and b1 ≤ b2 ≤ . . . ≤ bn ∈ R. It holds
that

max
i∈{1,...,n}

(ai + bi)− min
i∈{1,...,n}

(ai + bi) ≤ max{bn − b1, a1 − an}.

Proof: Choose the indices j, j′ ∈ {1, . . . , n} such that maxi∈{1,...,n}(ai+bi) = aj+bj
and mini∈{1,...,n}(ai + bi) = aj′ + bj′ . We have to consider two cases.

Case 1: If j ≤ j′, it holds that aj ≥ aj′ and bj ≤ bj′ . We get

aj + bj − aj′ − bj′ ≤ aj − aj′ ≤ a1 − an ≤ max{bn − b1, a1 − an}.

Case 2: If j > j′, it holds that aj ≤ aj′ and bj ≥ bj′ . We get

aj + bj − aj′ − bj′ ≤ bj − bj′ ≤ bn − b1 ≤ max{bn − b1, a1 − an}. 2

77

Chapter 4. Approximation algorithms for SLP

0
0

1

1

M
M

...
0

0
(2N − 2)
edges

2 edges
0

0

1

1

M
M

0

0

N copies

. . .

Figure 4.5.: Example that algorithm 8 can give a decomposition with bad objective
value. The edge costs are given by the labels. Algorithm 8 yields a
longest path of length N ·M while the longest path in an optimal
decomposition has length M +N − 1.

Corollary 4.11: Let GF be a pearl graph. Let P be a decomposition generated
by algorithm 8. Let vi ∈ V be the start vertex of the edges in the i-th pearl. Let
P|vi+1 = {P |s,vi+1 : P ∈ P} be the restriction of the decomposition P up to the
i-th pearl (note that vertex vi+1 is located at the end of the i-th pearl). Let Pmax
be the most expensive path in P|vi+1 and Pmin the cheapest path. It holds that

∆ = c(Pmax)− c(Pmin) ≤ max
e∈E

c(e)−min
e∈E

c(e) ∀ vi ∈ V \v|V | (4.1)

Proof: We prove the statement by induction over the pearl index i.

i = 1: For i = 1 the paths in P|v2 contain only one edge each and inequality 4.1
immediately follows.

i→ i+ 1: Assume inequality 4.1 holds true up to the i-th pearl. Consider the
paths contained in P|vi+2 . Those paths are constructed by appending the edges ej
of the (i+ 1)-th pearl to the paths Pj of P|vi+1 according to the matching strategy,
given by line 12 of algorithm 8 (i. e. Qj = Pj + ej).

Let Qmax be the most expensive path in P|vi+2 and Qmin the cheapest path. By
lemma 4.10 (with aj = c(Pj) an bj = c(ej)) it holds that either

c(Qmax)− c(Qmin) ≤ max
e∈δ+(vi+1)

c(e)− min
e∈δ+(vi+1)

c(e) or (4.2)

c(Qmax)− c(Qmin) ≤ max
P∈P|vi+1

c(P)− min
P∈P|vi+1

c(P). (4.3)

In the first case, inequality 4.1 immediately follows. In the latter case, we apply the
induction hypothesis (with maxP∈P|vi+1

c(P) = Pmax and minP∈P|vi+1
c(P) = Pmin)

to complete the proof. 2

78

4.3. Matching paths

Proof (Proof of theorem 4.9): Let P1 be the most expensive path of a decomposi-
tion generated by algorithm 8 and Pmin the cheapest one.

From corollary 4.11 we get (when considering the (|V |− 1)-th pearl) the inequality
c(P1)− c(Pmin) < maxe∈E c(e)−mine∈E c(e). This is rewritten as

c(P1) ≤ max
e∈E

c(e)−min
e∈E

c(e) + c(Pmin) (4.4)

≤ max
e∈E

c(e) + c(Pmin) ≤ 2 OPT . (4.5)

Using corollary 3.36 and lemma 3.38 we show that algorithm 8 yields a 2-
approximation for SLP. 2

Lemma 4.12: The bound of theorem 4.9 is sharp.

Proof: Consider the graph shown in figure 4.6. The graphs consists of M · (M − 1)
pearls containing one edge with cost 1 and M − 1 edges with cost 0. This is
followed by one pearl containing one edge with cost M and M − 1 edges with cost
0.

After processing the M · (M − 1)-th pearl, algorithm 8 yields M paths with cost
M − 1. In the last iteration the edge with cost M is assigned to one of those
paths and the resulting decomposition has objective value 2M − 1. The optimal
decomposition generates, up to the M · (M − 1)-th pearl, M − 1 paths with cost
M and one path with cost 0. In the last step the edge with cost M is assigned to
the cost 0 path generating a decomposition with objective value M . We get

ALG
OPT = 2M − 1

M
−−−−→
M→∞

2 2

. . .

1
0...
0

1
0...
0

M

0...
0

M · (M − 1) copies

M edges
per pearl

Figure 4.6.: Example showing that the bound of 2 for the matching algorithm on
pearl graphs is sharp. The graph shown consists of 2M pearl with M
edges in each pearl. The edge costs are given by the labels. Algorithm
8 computes a decomposition with objective value 2M − 1 while the
optimal objective value is M .

79

Chapter 4. Approximation algorithms for SLP

4.3.1. Improvements of the matching heuristic for
series-parallel graphs

Figure 4.5 clearly exposes the weakness of algorithm 8. If an expensive edge is
masked by a cheap edge, the algorithm picks the cheap edge for an expensive
path and is afterwards forced to place an expensive edge in the same path. For
series-parallel graphs this problem can be mitigated by exploiting the graph
structure. Instead of following a topological sorting of the vertices, we construct
flow-decompositions for sub-graphs of GF and combine them by following a
construction tree of the series-parallel graph. Using this procedure, an expensive
edge, which is masked by a cheap edge, is detected when the sub-graph in which it
is contained is processed. In the following iterations the algorithm is aware of the
expensive edge and accounts for this during the following iterations. The rules
how to proceed when coupling two sub-graphs, either in parallel or in series, are
shown in algorithm 9 (using the notation introduced in section 2.2.2), which is an
adjustment of algorithm 8 for series-parallel graphs. If two graphs are coupled in
parallel, the set of paths in the decompositions of the two sub-graphs are joint to
a set of paths for the coupled graph. If the two sub-graphs are coupled in series
the most expensive paths in the decomposition of the first sub-graph are attached
to the cheapest path in the decomposition of the second sub-graph and vice versa.
This is the same idea as in algorithm 8.

Applying the modified algorithm to the graph in figure 4.5 illustrates its advantage.
The algorithm first computes a decomposition for each of the N sub-graphs that
are coupled in series. For each of the sub-graphs, we get 2 paths of cost M and
(N − 2) paths of cost 1. Following the rules for serial coupling, the modified
algorithm computes an optimal decomposition of the flow shown.
Remark 4.13. The construction tree of a series-parallel graph is not unique and,
for pearl graphs, there is always a construction tree for which algorithm 8 and 9
are identical. Hence, the adjusted algorithm provides a 2-approximation on pearl
graphs as well. M

Even tough the adjusted algorithm 9 mitigates some problems of algorithm 8,
there is no constant approximation ratio for algorithm 9 for series-parallel graphs
which are not pearl graphs:

Consider the flow-graph Gi (i ∈ N>0) shown in figure 4.7, constructed from the
flow-graph Gi−1 by adding M · ki pearls (ki ∈ N) and increasing the flow value
to val(F) = fi = fi−1 + ki. Assume that the construction tree is built in such
a way that, in the last step, the two sub-graphs left and right of vertex vi are
coupled in series. Furthermore, assume that the same holds true for all graphs Gj

(j < i ∈ N>0), which are constructed in the same way. We choose G0 as the graph
from figure 4.6 with f0 = M .

80

4.3. Matching paths

Algorithm 9 SLP heuristic (matching paths, SP graph)
Require: Series-parallel graph GF with unit capacities.
Ensure: Unit decomposition of F .
Calculate a construction tree T of G
for v ∈ TV do
P(v) = ∅ // Decomposition of the graph associated with v

end for
T ′ ← T
while T ′ 6= ∅ do
v ← leaf vertex of T
if type(v)= E then
P(v)← {e}

end if
if type(v)= P then
u,w ← child vertices of v in T // Parallel coupling of paths
P(v)← P(u) ∪ P(w)

end if
if type(v) = S then
u,w ← child vertices of v in T // Series coupling of paths
{P1, . . . , Pn} ← paths of P(u) sorted by decreasing cost
{Q1, . . . , Qn} ← paths of P(w) sorted by increasing cost
{P(v)← {Pk +Qk}k=1...n}

end if
T ′ ← T ′ − v

end while
vr ← root vertex of T
return P(vr)

Claim 1: The optimal objective value of SLP for the flow corresponding to the
flow-graph Gi is given by M , for all i ∈ N, and ki ∈ N.

We show this claim by induction over i:

The flow-graph G0 can be decomposed into f0 = M paths of cost M as shown in
the proof of lemma 4.12.

Assume Gi−1 can be decomposed into fi−1 paths of cost M , then Gi can be
decomposed into fi = fi−1 + ki paths of cost M : The left hand side of Gi,
containing Gi−1, can be decomposed into fi−1 paths of cost M and ki paths of
cost 0. The right hand side can be decomposed into ki paths of cost M and fi−1
paths of cost 0. Matching those paths gives a decomposition in which all paths
have cost M . By lemma 3.33 this decomposition is optimal for SLP.

81

Chapter 4. Approximation algorithms for SLP

Claim 2: Assume ki is chosen in such a way that (ki ·M) is a multiple of fi−1 + ki.
Then the decomposition of Gi computed by algorithm 9 has objective value
ai = ai−1 + ki·M

fi−1+ki , for all i ∈ N.

Due to the assumed construction order, the algorithm first processes Gi−1 with
objective value ai−1. A parallel composition with the ki edges of cost 0 does not
change this objective value. The right hand side of vertex vi is decomposed into
fi paths with costs ki·M

fi−1+ki each. After performing the serial coupling at vertex vi
according to algorithm 9, the most expensive path has cost ai−1 + ki·M

fi−1+ki .

Choose M = 2 and ki = 2i. By construction we have fi = ∑i
j=1 kj + M = 2i+1

(using ∑i
j=1 2j = 2i+1 − 2). With the previous calculation we conclude that

ai = ai−1 + 2i·2
2i+1 = ai−1 + 1 > ai−1. By increasing i, the objective value obtained

from algorithm 9 increases, while the optimal objective values remains M . So even
if no edge cost is larger than 2, there is no constant bound on the approximation
ratio of algorithm 9.

vi

. . .0

0

Gi−1 1
0

0

1
0

0

M · ki pearls

fi−1 + ki
edges

Figure 4.7.: The depicted graph Gi is constructed from the graph Gi−1 as shown.
Edge labels show the cost of the edges. The flow value fi−1 of Gi−1
is increased by ki ∈ N units of flow, and M · ki additional pearls are
added. The optimal objective value of Gi is M for any i ∈ N. The
objective value obtained from algorithm 9 increases for increasing
index i.

4.4. Scheduling with restrictions

The last heuristic described in this section is inspired by methods used for schedul-
ing problems. Here, to minimize the make-span of a schedule for m machines,
the longest processing time first (LPT) rule (see e.g. [Pin12]) is often used to
approximate the make-span with a ratio of 4

3−
1

3m . All jobs are sorted by decreasing
processing time, and every time a machine finishes a job, the next job in the list
is assigned to that machine.

82

4.4. Scheduling with restrictions

We have already stated that the integral decomposition problem with val(F) = 2
corresponds to a 2 processor scheduling problem. Now the LPT heuristic is adapted
for SLP, where every path corresponds to a machine and every edge corresponds
to a job.

Algorithm 10 SLP heuristic (restricted scheduling)
Require: Flow-graph GF with unit capacities.
Ensure: Unit decomposition of F .
1: E ← sort edges by descending cost
2: for all j ∈ {1, . . . , val(F)} do
3: Pj = {}
4: end for
5: for e ∈ E do
6: add e to the current cheapest feasible path Pj
7: end for
8: return

{
P1, . . . , Pval(F)

}

In the decomposition problem, LPT translates to sorting all edges by decreasing
cost and add them to the path which has currently the lowest costs (see algo-
rithm 10). In contrast to the scheduling problem, in the decomposition problem
an edge cannot be added to an arbitrary path without loosing the path structure.
Hence, additional restrictions apply to ensure edges are only placed in feasible
paths.

On pearl graphs it is easy to see how those restrictions have to look like. In
this case, an edge can only be added to a path if no edge from the same pearl is
already contained in this path. For more complex graph structures more and more
constraints have to be applied to guarantee the path properties. For series-parallel
graphs for example we need the previous constraint and the additional constraint
that in the final solution the same paths that enter any vertex are also the paths
that leave this vertex. For general graphs finding additional constraints becomes
even more complicated.

The graph shown in figure 4.8 shows that the additional restrictions, even on pearl
graphs, invalidate the bound on the approximation ratio for LPT:

Assume the cost M edges are processed in the order given by the indices. Fur-
thermore, assume that we use a tie breaking rule that puts an edge in the path
with the lowest index if there are multiple paths with lowest cost. In this case,
algorithm 10 cannot place the edge of cost M6 in the path P3, which has the lowest
cost at this time, since the algorithm already placed the edge with cost M3 in P3.
Instead M6 is placed in path P1 yielding an objective value of 3M . The optimal
decomposition is given by the ordering of the edges in each pearl and has objective

83

Chapter 4. Approximation algorithms for SLP

M1

M4

0
M2

0
M5

0

M3
M6

P1 M1 M5 M6

P2 M2 M4

P3 M3

Figure 4.8.: Example where algorithm 10 yields an objective value larger than
the bound given for LPT. The edge labels show the costs, where
M1 = M2 = . . . = M6 = M . For the cost M edges the processing
order is given by the index.

value 2M . In this example the approximation ratio is 3
2 which is larger than the

ratio for a scheduling problem on three machines using the LPT rule (that is 11
9).

Theorem 4.14: On pearl graphs the restricted scheduling heuristic provides at
least a 3-approximation.

Proof: Let Pmax be the most expensive path in the decomposition generated by
the heuristic. Let Pmin be the cheapest path with c(Pmin) ≤ OPT. Consider the
last edge e1 that was added to Pmax during the algorithm:

In the easiest case, Pmax was the cheapest path when e1 was considered. This means
especially that the path was cheaper than Pmin, and we have c(Pmax)− c(e1) ≤
c(Pmin) ≤ OPT. The optimal cost value cannot be larger than c(e1) (lemma 3.38),
hence we get c(Pmax) ≤ 2 OPT.

Otherwise e1 was added to Pmax even though Pmin was cheaper at this point. This
happened because Pmin already contained a parallel edge ẽ1. Due to the sorting
we know that its cost is at least equal to c(e1). Now consider the second to last
edge e2 that was added to path Pmax. Again either Pmax was cheaper than Pmin at
this point (i.e. c(Pmax)− c(e1)− c(e2) ≤ Pmin) or Pmin contains a more expensive
edge ẽ2 in the same pearl. We continue this procedure until the first case occurs.
Let ek be the edge that was added to Pmax. Then we know

c(Pmax)−
k∑
i=1

c(ei) ≤ c(Pmin).

By the choice of k, there is a more expensive edge ẽi in Pmin for all edges ei
(i ≤ k − 1), and we get

k−1∑
i=1

c(ei) ≤
k−1∑
i=1

c(ẽi) ≤ c(Pmin).

84

4.5. Computational results on pearl graphs

2 4 6 8

1

1.01

1.02

1.03

Pearl size

A
LG

O
P

T

21 pearls

10 20 30
1

1.05

1.1

1.15

Number of pearls

Pearl size 6

Local search Matching heuristic Scheduling

Figure 4.9.: Comparison of heuristics on pearl graphs. Error bars are given by the
standard deviation of multiple runs with random cost.

In total this yields

c(Pmax) ≤ 2 · c(Pmin) + c(ek) ≤ 3 ·OPT . 2

4.5. Computational results on pearl graphs

In this section we apply the heuristics introduced in this chapter to pearl graphs.
We randomly generated pearl graphs of different sizes (with unit capacities). The
number of pearls n and the pearl size k determine the size of the graphs, the costs
are chosen uniformly at random as integers in the interval [1, 100].

We apply the local search (algorithm 7) with the swap-neighborhood given by
definition 4.5, the matching path heuristic (algorithm 9), and the scheduling with
restrictions heuristic (algorithm 10) and compare the approximation quality of
the resulting decompositions for different numbers of pearls and pearl sizes by
computing the optimal decomposition using methods from chapter 3. For every
pair of parameters, we generate 20 instances with different edge costs, and we
average over the results.

Figure 4.9 shows the approximation quality for different numbers of pearls and
different pearl sizes. The local search heuristic performs best for all problem
instances, while the scheduling outperforms the matching heuristic. The proven
worst-case bound for all three heuristics (cf. theorems 4.3, 4.9, and 4.14) are signif-

85

Chapter 4. Approximation algorithms for SLP

icantly larger than the obtained values. We also observe that the approximation
ratio of each heuristic approaches 1 when increasing the number of pearls but not
when increasing the pearl size.

4.6. Conclusion

In this chapter we studied approximation algorithms for the shortest longest path
problem. The FPTAS introduced by Hendel and Kubiak [HK] approximates
the problem up to a ratio of 1 + ε for any ε > 0. However, the complexity of
the FPTAS is still very high. Hence, we introduce three additional methods to
compute decompositions, one based on local search, one modifying the idea of the
FPTAS by using only the most promising pairing of paths at any vertex, and one
based on scheduling methods.

For all three methods we were able to show a constant approximation ratio on
pearl graphs. For the local search and the modified FPTAS this bound is 2 for
the scheduling based model a constant bound of 3 was shown. An adjustment of
the neighborhood on pearl graphs improved the local search to an approximation
ratio of 1 + ∆

OPT , where ∆ is the largest cost difference of edges in one pearl.

A numerical study showed that the performance of the algorithms on random pearl
graphs, with uniformly distributed cost values, is much better than the expected
worst case bounds. The scheduling with restrictions (algorithm 10) yielded better
results than the matching algorithm 9 even though we proved a worse bound.
This suggests that the bound shown in theorem 4.14 is not sharp and is likely to
be improved. Even though this heuristic seems the most promising one on pearl
graphs it remains an open question how it can be efficiently extended to more
complex graph types and if the approximation quality remains equally good.

86

Part II.

Construction and analysis of
evacuation models using flows over

time

87

No one saves us but ourselves. No one can and
no one may. We ourselves must walk the path.

Gautama Buddha, Sayings Of Buddha

5. Evacuation of a nuclear power
plant critical zone - A flow over
time model

Despite high security standards, the effect of a major incident in a nuclear power
plant can be devastating, not only for the facility itself but for the surrounding
area as well. Hence, it is vital to evaluate the evacuation situation in the vicinity of
the power plant in case of an emergency. The German Commission on Radiological
Protection suggests to make preparations for the evacuation of a 5 km central zone
and a 20 km middle zone around the nuclear power plant in a first step [SSK14].
The central zone is to be cleared completely within 6 hours, the middle zone is to
be evacuated within 24 hours.

Modeling the evacuation process by mathematical methods offers the possibility
to learn about the practical admissibility and feasibility of such a recommendation.
Moreover, a mathematical model can provide further valuable insights into the
evacuation process.

As described by Lindell [Lin00] the evacuation during a nuclear power plant
emergency is a complex procedure involving various interdependent processes and
decisions. This includes warning the population [MP00, RS91], the response of
the population to the warning [LP92, RS89, Joh85, JZ86], and the clearance of
the evacuation zone.

For the last step of the evacuation process, Southworth [Sou91] summarizes in
a survey paper several factors that need to be considered when constructing
evacuation models. The response to the warning plays an important role, leading
to delayed departure times described by mobilization time curves [FW04, RS89],
but also the exact choice of the evacuation zone and the choice of model parameters
are important.

From a mathematical point of view, there are several concepts to model an
evacuation process ranging from microscopic models [EOI92, KHK11, PRM15,
BK14] to macroscopic models [CGP05, BDK93, Gal58]. A survey of methods,
focusing on the macroscopic models is given by Hamacher and Tjandra [HT02].

91

Chapter 5. Evacuation of a nuclear power plant - A flow over time model

Describing model creation in detail is a step often omitted in literature concerning
evacuation scenarios, even though the details are crucial to understand how the
results have to be interpreted in the real-world.

In this chapter we choose to model the evacuation process as a quickest flow (cf.
section 2.3.3) and give a detailed overview on how to construct the model. Most of
the methods we use are not specific to power plant evacuation and can be used in a
similar way for other evacuation scenarios. Our model is a macroscopic approach,
using discrete time steps, for which we make several optimistic assumptions
such as a uniform speed of all evacuees, travel speeds independent of the flow
density, no individual route selections, and no congestion or road blockages. Those
assumptions simplify the model in such a way that it can be solved to optimality,
and that the real evacuation times are guaranteed to be larger than the model
results. Hence, we obtain provable lower bounds on the real evacuation time.

The model is extended by introducing time-dependent supply values, to account
for delayed departure of evacuees. The same modification of the departure times
is also considered for the quickest path problem which leads to the quickest path
problem with time-dependent supply values (QPTDS). For this problem we provide
an algorithm to solve it to optimality.

92

central zone

middle zone

Figure 5.1.: The two innermost evacuation zones for the nuclear power plant in
Philippsburg, Germany. The light orange shaded region shows the
middle zone (20 km) around Philippsburg, the darker region shows
the central zone (5 km). The black line highlights the river Rhein
subdividing the evacuation zone into two sections.

93

Chapter 5. Evacuation of a nuclear power plant - A flow over time model

5.1. Generating a network over time

The Rhine river subdivides the middle zone of the evacuation area, both in
a geographical and in an administrative manner (cf. figure 5.1). This natural
partitioning suggests also a decomposition of the region of interest into two areas
which are handled separately. We concentrate on the part of the middle zone
located in the federal state of Rhineland-Palatinate, inhabited by around 273,000
persons. For an initial model we consider only one type of road users and assume
that the complete region is evacuated only using private transport.

To model the 20 km region as quickest flow problem, a network, in terms of roads
and junctions, has to be built, and proper parameters, such as capacities and travel
times have to be specified. In the remainder of this section, we give a detailed
insight into the network creation.

5.1.1. Mapping the roads to a network

Figure 5.2.: Using zone boundaries (black) can lead to false identification of sinks.
The A 61 seems to lead to the two sinks marked on the map. However,
the highway reenters the evacuation zone and provides no feasible
sinks.

The map data used to describe the road network of the evacuation zone is the

94

5.1. Generating a network over time

Rhineland-Palatinate road network, provided by Open Street Map (OSM)1. This
data is already organized in a network like structure and contains, among others,
coordinates of the roads as well as additional information such as their type, speed
limit, and number of lanes. Every road is represented by two anti-parallel edges
in our model, one for each travel direction. If a road is marked as a one way road,
we include only one edge in the correct direction.

Since it is not necessary to represent the complete Rhineland-Palatinate dataset as
road network, we have to specify a zone boundary describing the 20 km middle zone
around the power plant. Using an exact disc of 20 km radius as boundary implies
practical difficulties since cities located close to the boundary of the zone are cut
into two pieces. It is not acceptable to evacuate only half a city, so it has to be
ensured that the distance between the cities and the zone boundary is sufficiently
large. This is done by extending the evacuation zone to the administrative
boundaries of the cities within the middle zone. However, those boundaries often
have unexpected (nonconvex) shapes which can result in false identification of
safety points as shown in figure 5.2. Hence, it is necessary to manually adjust the
boundary to avoid undesired effects.

5.1.2. Sources, sinks and demands

Beside the vertices and edges of the network, sources and sinks have to be specified,
as well as their supply and demand values, respectively. We assume that an evacuee
crossing the evacuation zone boundary has reached safety and requires no further
notice in the following. Thus, all vertices which are located outside the evacuation
zone but have at least one incoming edge from inside the zone are chosen as sinks.
The demand for the individual sinks is not specified exactly. Instead we allow for
an arbitrary allocation to the sinks by adding a super-sink with a demand value
corresponding to the total amount of flow leaving all sources. In this way, we not
only obtain evacuation times by solving the model but also an optimal allocation
of flow to the sinks.

All vertices corresponding to (parts of) cities within the middle zone are consid-
ered sources. To specify their supply values, we use the population data of the
cities, provided by the Aufsichts- und Dienstleistungsdirektion (ADD) Rhineland-
Palatinate2, Germany. We introduce the people factor (PF) as a model parameter,
which is interpreted as the average number of persons per car. This parameter
determines the supply value (in units of cars) of any source s ∈ S. Let b(s) denote
the supply of vertex s and P (s) the population of the city represented by s. The

1www.openstreetmap.org
2www.add.rlp.de

95

Chapter 5. Evacuation of a nuclear power plant - A flow over time model

supply value of source s ∈ S is given by

b(s) =
⌈
P (s)
PF

⌉
. (5.1)

Remark 5.1. Since the supply is measured in units of cars, we have to ensure that
the computed values are integral. Rounding up in equation (5.1) ensures that the
number of cars is large enough to provide a seat for every person, possibly leaving
one car with fewer than PF passengers. M

By changing the parameter PF, we model different flow densities in the graph.
Large values of PF lead to low supply values since fewer cars are needed, and
the traffic volume in the network decreases. Small values of PF correspond to a
large number of cars and increase the amount of flow that has to be evacuated.
Matching the data for available cars with the population data, we approximate an
average people factor of 2.5, assuming that the complete population is evacuated
by car. This coincides with the findings stated in chapter 5 of [Rog+90], which
give a similar estimate of persons per car.

Remark 5.2. The people factor can also be seen as a general scaling parameter,
used to vary the number of people at the sources. Hence, people factors larger
than 5 are also reasonable. M

5.1.3. Travel times and capacities of edges

To obtain a complete formulation of a quickest flow problem (cf. section 2.3.3),
we need to provide travel times for all edges as well as inflow capacities. Since
the network model can only handle discrete time steps, we have to distinguish
between the physical parameters (τ̂ and û), which have a dimension and may
not be integral, and the discrete model parameters (τ and u), which have to
be integral to be valid. In this section we discuss how to obtain the physical
parameters from the available data and how they are converted into the discrete
model parameters using a time discretization ∆t. Table 5.1 gives an overview of
the required parameters and of the relation between the physical values and the
model parameters.

Travel times

The length L(e) of an edge is calculated from the geographical distance of the
corresponding start and end vertex. The speed limit of the roads, contained in
the OSM-data, is used to determine the maximum possible speed on an edge

96

5.1. Generating a network over time

Name Physical param. Phys. unit Model param. Conversion
Travel time τ̂ s τ b τ̂∆tc
Capacity (cars) û 1

s u d∆t · ûe
Time interval t̂2 − t̂1 s t2 − t1 d t̂2∆te − b

t̂1
∆tc

Table 5.1.: Important model parameters and their conversion from physical values
to dimensionless model parameters, using a time discretization of ∆t
for one time step.

vmax(e). If no limit is given in the data, we assume a speed limit of vmax = 130km
h
.

To represent different travel speeds, we use the maximum speed on the edges as
a reference point to choose the actual travel speed during the evacuation. We
therefor introduce the speed factor (SF) as a second model parameter beside the
people factor PF. This parameter is interpreted as a percentage of the maximum
allowed speed, so the actual travel speed is v(e) = SF · vmax(e). The travel time
of an edge e ∈ E is then computed from its length and travel speed as

τ̂(e) = L(e)
v(e) = L(e)

SF · vmax(e) ∈ R>0 . (5.2)

Remark 5.3. We only use one parameter SF to keep the model simple. This
parameter is globally applied to the edges changing all travel speeds at once. By
using additional parameters it is possible to change the travel speed on each edge
individually. M
Capacities

Capacities for the flow over time model are given as flow value per time interval
(cf. section 2.3) and hence have an intrinsic time component attached to them.
The number of cars, and by that the units of flow that can enter an edge during a
given time interval, depends on the size of the road (mainly determined by the
number of lanes) as well as on the average travel speed of traffic on the road. This
latter dependency is discussed and measured for example in [DB95] and [Wu00].
We use the values given by Wu [Wu00], shown in figure 5.3, to determine the edge
capacities. Note that the inflow capacity is not monotonically increasing with
increasing speed but has a maximum at approximately 80km

h
.

Depending on the travel speed v(e) we determine the capacity per lane û(e)
l(e) from

the data, and if the travel speed does not correspond to a data point, we use linear
interpolation to compute the required value. To obtain the edge capacity û(e), we
then multiply by the number of lanes l(e) of the corresponding road.

97

Chapter 5. Evacuation of a nuclear power plant - A flow over time model

0 20 40 60 80 100 120 140
0

1,000

2,000

3,000

4,000

Travel speed [km/h]

C
ap

ac
ity

[1
/h

]

Figure 5.3.: Edge capacity depending on the travel speed (data from [Wu00]).
Between the data points we interpolate linearly.

Remark 5.4. Even though our choice of the capacity depends on the travel speed,
the model does not include density dependent travel times. Only if an edge
capacity is completely exhausted, the travel speed v = SF · vmax corresponds to
the travel speed that is expected due to the traffic density, given by the inflow rate
of the edge. If the capacity is not completely used, the traffic density decreases,
but the travel speed does not change, even though it should increase or decrease
due to the new value. M

Time discretization

The travel times τ̂ and capacities û, which are computed in the previous sections,
are physical parameters based on the continuous time t̂. For the network model
we use a time discretization ∆t, determining the length of a discrete time step, to
transform the physical parameters to discrete model parameters τ and u, based
on discrete time steps t ∈ N:

τ(e) =
⌊
τ̂(e)
∆t

⌋
(5.3)

u(e) = dû(e) ·∆te. (5.4)

Since the flow over time model requires integral parameters, we have to round
during the conversion. The model already uses optimistic assumptions and is
designed to obtain lower bounds on evacuation times. To maintain this property, we
ensure that rounding the capacities and travel times only decreases the evacuation

98

5.1. Generating a network over time

2 4 6 8 10 12 14 16 18 20
500

1,000

1,500

2,000

Time discretization ∆t [s]

R
ou

nd
in
g
er
ro
r
R
τ

+
R
u

Figure 5.4.: Joint rounding errors in dependency of the time discretization ∆t for
SF=0.45 and PF=2.5. In this scenario we chose ∆t = 5 s.

time. For this reason travel times are rounded down such that the cars travel
faster, while capacities are rounded up allowing more cars on the roads.

By rounding to integral values, we introduce rounding errors for both parameters
given by

Rτ =
∑
e∈E

∣∣∣∣∣τ(e)− τ̂(e)
∆t

∣∣∣∣∣ and (5.5)

Ru =
∑
e∈E
|u(e)− û(e) ·∆t| . (5.6)

In both Rτ and Ru the time discretization ∆t appears, but with converse effects.
Hence, decreasing ∆t increases the accuracy of the travel times, while the accuracy
of the capacities decreases. To find a suitable time discretization, we have to
balance those competing effects. Depending on the choice of the speed factor SF
and people factor PF, we choose the time discretization such that the combined
rounding error Rτ + Ru of travel time and capacity is minimized. Figure 5.4
illustrates this choice for one fixed pair of SF and PF.

Remark 5.5. The choice of ∆t also depends on other factors: Decreasing ∆t
increases the number of time steps required to model a time interval of fixed
length. This results in an increase of the model size and hence in computation
time. Depending on the efficiency of the used algorithms, this restricts the smallest
possible time discretization ∆t for which the model can be solved in reasonable
time. In addition, the resulting evacuation time is measured in time steps and
cannot be more accurate than ∆t. Depending on the desired accuracy and the
time scale of the evacuation, this restricts the choice of ∆t as well. M

99

Chapter 5. Evacuation of a nuclear power plant - A flow over time model

(a) (b)

Figure 5.5.: (a):Road network obtained from the OSM data. (b): The same dataset
after applying simplification techniques.

5.2. Simplifying the network

The road network extracted from the OSM-data contains a high level of detail,
which makes it impossible to compute optimal evacuation plans in reasonable
time. To improve performance, we simplify the data, reducing the size of the
network while maintaining a sufficient level of accuracy. In the following, we
discuss several techniques (also found in [HG14]), to reduce the model size and
the loss in accuracy generated by applying them. Figure 5.5 illustrates, on a
small section of the network, how the model size is reduced by applying those
simplifications. The simplified graph for the complete evacuation zone, used for
the quickest flow computations, is shown in figure A.1 in the appendix.

5.2.1. Neglecting small roads

Due to the relatively large size of the evacuation zone compared to the city size,
it is reasonable to represent cities within the zone by a single source vertex in
the graph (larger cities are represented by a few vertices). This allows to neglect
all smaller roads in the cities. Since these roads are rarely used in emergencies,
and since the population data used is on a city level only, the loss of accuracy is
justifiable when taking the gain in terms of performance into account. A more
detailed representation of the city roads would only be useful if the geographical
distribution of evacuees was given in more detail.

Remark 5.6. After removing the smaller roads we have to ensure that the remaining
road network is still connected. Usually at least one major road passes through
any city and we place the vertex representing this city onto this road. Otherwise
we keep some smaller roads, connecting the cities to the rest of the network. M

100

5.2. Simplifying the network

v u w

⇓

v w

(a)

⇓

w

v

v

(b)

Figure 5.6.: Simplifications by deleting intermediated vertices (a) and dead ends
(b).

5.2.2. Removing road curvature and dead ends

A large part of the data contained in the OSM files is used to plot a geographically
detailed road map of the region. For this purpose most roads are divided into small
road segments to approximate the curvature as accurately as possible. However,
the information on curvature is not required for a network based evacuation model.
To remove the additional information, without changing the results of the quickest
flow algorithm, we use several aggregation techniques summarized in the following.
This reduces the network size to 7% of the original size.

Subsequent edges, corresponding to road segments where no routing choices can
be made, are replaced by a single edge (cf. figure 5.6(a)). An adjustment of
the parameters ensures that no relevant information is lost and the optimization
results remain the same. Such road segments can be found by identifying vertices
u in the network that have exactly two neighboring vertices v and w. If u is
neither a source nor sink, we combine the segments and add the edge (v, w) to
the graph, if both edges (v, u) and (u,w) exist. In the same way we add the edge
(w, v) if (w, u) and (u,w) are in the graph. The vertex u (and all attached edges)
is then removed from the graph. When combining two edges e and f to a single
edge e′, the length and travel time of the new edge is chosen as the sum of the
corresponding parameters for e and f . The travel speed on e′ is given by the
average speed on the edges e and f and the capacity is chosen as the capacity
bottleneck (i.e. the lower of the capacities of e and f).

In addition, dead ends are removed from the network (cf. figure 5.6(b)). These
are vertices that are connected to only one other vertex and that are neither
sources nor sinks. When traveling to a dead end vertex w using the edge (v, w)
the only option to reach one of the sinks is to return to vertex v. Since the model
allows waiting at a vertex it is always possible to remain at vertex v instead of
traveling to w and return. Hence, removing the dead end does not change the

101

Chapter 5. Evacuation of a nuclear power plant - A flow over time model

(a) (b)

Figure 5.7.: Roundabouts (a) and skewed crossroads (b) result in vertices clustered
close together. Merging those clusters to a single vertex results in
only a small change in the model data.

results obtained by the model.

Remark 5.7. By deleting dead ends potentially additional vertices with exactly 2
neighbors are generated. Hence, an additional simplification step of combining
adjacent edges can be useful after removing dead ends. M

5.2.3. Merging vertices

Merging clusters of vertices, i.e. vertices that are geographically close to each
other, also reduces the model size, but in contrast to the previous method this
process entails a loss of information. Typically vertex clusters appear in the
data for roundabouts or skewed crossroads as shown in figure 5.7. The choice
of the maximum distance dmax for which two vertices are considered to be in
the same cluster determines the reduction in the model size, but also the loss in
accuracy. For the road network at hand, we found a distance of 50 m suitable to
provide a good ratio between simplification and loss of accuracy. Compared to
the evacuation radius of 20 km, this length, and hence the average error made
by merging two vertices, is less than 2.5 h. The total number of clusters merged
for dmax = 50 m is reasonable small to justify that the inaccuracy induced by
the simplification affects the computed results only marginally. Reapplying the
simplifications from section 5.2.2 after merging clusters with dmax = 50 m provides
an additional reduction of the network size by approximately 50%.

5.3. Generating time-dependent supply values

During a large-scale evacuation it is unlikely that, when the order for evacuation
is given, the complete population is prepared for departure immediately. In reality,

102

5.3. Generating time-dependent supply values

the departure times vary in a wide range where some people leave very early and
some people need a much longer time until departure. This behavior is modeled
by a mobilization time curve which specifies the fraction of evacuees ready for
departure up to any point in time. The exact shape of the mobilization time
curve depends on a lot of factors such as the cause of evacuation, risk perception,
and several social factors (see e.g. [Joh85, JZ86]) which cannot be captured by a
formula. The overall consensus is that mobilization time curves follow a sigmoidal
function [Sou91]. The curves are usually classified into “quick”, “medium”, and
“slow” curves, depending on the response times of the evacuees.

To include time-dependent departure times into our model, we add a delay to all
units of flow, resulting in time-dependent supply values b(s, t) for every source
s ∈ S. To model different classes of mobilization time curves, we introduce a third
model parameter, regulating the time span over which flow arrives. The delay
time Λ represents the last time for which flow becomes available at any source (i.e.
where the mobilization time curve reaches 1). In terms of discrete time steps, we
use the corresponding discrete parameter λ = b Λ

∆tc.

The values b(s, t) have to be chosen as integer values for discrete time steps. If a
continuous mobilization time curve Φ̂(t̂) is given, using physical times, the values
have to be converted to discrete time steps, resulting in

b(s, t) =
⌊
b(s)

∫ t·∆t

(t−1)·∆t
Φ̂(t̂) dt̂

⌋
. (5.7)

If a discrete mobilization time curve Φ(t) is given, the discretization of time
already took place when generating this function. Hence, we directly get the
time-dependent supply values using

b∗(s, t) = bb(s) · (Φ(t)− Φ(t− 1))c. (5.8)

Once more, we have to ensure integrality of the parameters by rounding. Over a
time period of T time steps, the total amount of flow available at a source s is
given by db(s) ·Φ(T)e (or db(s) · Φ̂(T ·∆t)e respectively). Assuming all people are
evacuated (i.e. Φ(T) = 1), this amount of flow is the total flow b(s).

By rounding down the supply value at every time step t in equation (5.7) and
(5.8), we ensure that the total amount of flow ∑

t b(s, t) available over all time steps
is lower than the total supply b(s). The missing δd = b(s) −∑t b(s, t) units are
added back into the model after computing b(s, t) for all time steps by increasing
the supply b(s, t̄) of the time step corresponding to the expected delay time t̄ ·∆t.

Remark 5.8. The value b(s, t) represents the additional flow that becomes available
at time t. The available flow A(s, t) at source s after time step t (assuming a flow

103

Chapter 5. Evacuation of a nuclear power plant - A flow over time model

F) is
A(s, t) = A(s, t− 1) + b(s, t)−

∑
e∈δ+(s)

Fe(t). (5.9)

This is the difference of the total flow which becomes available up to time step t
and the flow that has already left the source. M

Example 5.9: As an example for a discrete mobilization time curve Φ(t), t ∈
{1, . . . , T}, consider the cumulative distribution function of a binomial distribution
over λ ∈ N time steps

Φ(t) =
t∑

t′=0

(
λ

t′

)
· pt′(1− p)λ−t′ for 0 ≤ t ≤ λ. (5.10)

0 10 20 30 40 50 600

0.2

0.4

0.6

0.8

1

t̂ [min]

M
ob

ili
za
tio

n
tim

e
cu
rv
e

Φ
(t̂

)

∆t = 10 min, λ = 6
∆t = 5 min, λ = 12
∆t = 2 min, λ = 30

Figure 5.8.: Discrete mobilization time curve given by equation (5.10) with Λ =
60 min and different time discretizations ∆t. Without adjustments,
the qualitative behavior of the curve changes drastically for different
discretizations ∆t.

Using a discrete mobilization time curve has the negative side effect that it yields
different results for different time discretizations ∆t, even when adjusting λ (cf.
figure 5.8). The reason is that the mobilization time curve itself has already been
discretized using some fixed time discretization ∆t∗, which might be different from
the discretization ∆t used for the rest of the model.

To obtain a valid model, the choice of the time discretization ∆t may only affect
the accuracy of the mobilization time curve but must not change the qualitative

104

5.3. Generating time-dependent supply values

t

t̂∗i−1 t̂∗i

t̂k−1 t̂k

(a) t̂∗
i−1 < t̂k−1 < t̂k ≤ t̂∗

i

t

t̂∗i−1 t̂∗i

t̂kt̂k−1

(b) t̂k−1 ≤ t̂∗
i and t̂k > t̂∗

i

t

t̂∗i−1 t̂∗i

t̂kt̂k−1

(c) t̂k−1 ≤ t̂∗
i−1 and t̂k > (t̂∗

i−1)

Figure 5.9.: Intervals for a finer discretization ∆t < ∆t∗. Black intervals (bold)
represent the discretization with respect to ∆t∗, blue intervals (thin)
represent the discretization with respect to ∆t.

behavior. Hence, we have to make sure that the time discretization ∆t∗ of the
mobilization time curve is adjusted to the discretization ∆t, used for the rest of
the model.

Let b∗(s, t) be the supply values computed for the time discretization ∆t∗, which
we want to express with respect to the discretization ∆t. From now on, for a
shorter notation, we denote the time corresponding to the time step i, with respect
to ∆t∗, by t̂∗i = i ·∆t∗ and the time corresponding to time step k, with respect to
∆t, by t̂k = k ·∆t.

Due to the different length of the time intervals, there is no one-to-one correspon-
dence between the time steps of both discretizations. Hence, to obtain the supply
value at time step k, we use a linear interpolation of b∗(v, t) in the time intervals
[t̂∗i−1, t̂

∗
i] containing t̂k.

When computing the supply for a given time discretization ∆t, two possible cases
have to be considered:

Case 1 (∆t∗ > ∆t):

As shown in figure 5.9, ∆t provides a finer resolution of the problem than ∆t∗ and
there are more time steps k with respect to ∆t than time steps i with respect to
∆t∗. If a time interval

[
t̂k−1, t̂k

]
is completely contained in an interval [t̂∗i−1, t̂

∗
i], as

shown in figure 5.9(a), the supply b(v, k) of time step k is given by

b(v, k) = ∆t
∆t∗ · b

∗(v, i). (5.11)

105

Chapter 5. Evacuation of a nuclear power plant - A flow over time model

t

t̂k−1 t̂k

t̂∗i′ t̂∗i t̂∗i′′

Figure 5.10.: Intervals for a finer discretization ∆t > ∆t∗. Black intervals (bold)
represent the discretization with respect to ∆t∗, blue intervals (thin)
represent the discretization with respect to ∆t.

If either t̂k−1 ≤ t̂∗i−1 (fig. 5.9(b)) or t̂k > t̂∗i (fig. 5.9(c)) holds, two different intervals
with respect to ∆t∗ have to be used when computing b(v, k). In this case, we get

b(v, k) = t̂k − t̂∗i−1
∆t∗ · b∗(v, i) + t̂∗i−1 − t̂k−1

∆t∗ b∗(v, i− 1) (5.12)

or

b(v, k) = t̂k−1 − t̂∗i
∆t∗ · b∗(v, i) + t̂∗i − t̂k

∆t∗ · b
∗(v, i+ 1) (5.13)

respectively.

Case 2 (∆t < ∆t∗):

In the second case, ∆t∗ yields a finer discretization than ∆t and has more values
available than actually needed, as shown in figure 5.10. Here we choose

b(v, k) =
∑

t̂∗i∈[t̂k−1,t̂k]
b(v, i) + t̂∗i′ − t̂k−1

∆t∗ · b(v, i′) + t̂k − t̂∗i′′−1
∆t∗ · b(v, i′′), (5.14)

where i′ is the first time step for which t̂∗i′ > t̂k−1 holds and where i′′ is the first
time step for which t̂∗i′′ > t̂k holds.

Figure 5.11 shows the same distribution as figure 5.8, but the supply values
are adjusted to the time discretization ∆t∗ = 5 min of the mobilization time
curve. Except for rounding inaccuracies, the adjustment procedure generates
time-dependent supply values independent of the choice of ∆t. M

To model the time-dependent supply values in our scenario, we use the mobilization
time curve generated from a binomial distribution (equation (5.8)) with p = 0.5
to compute the supply values. We use ∆t∗ = 5 min as time discretization of the
mobilization time curve.

This is one of the simplest distributions possible to describe a discrete mobilization
time curve with a sigmoidal shape. For a first analysis, this function is sufficient,
but there are certainly more advanced models to generate discrete mobilization

106

5.4. Quickest path with time-dependent supply values

0 10 20 30 40 50 600

0.2

0.4

0.6

0.8

1

t̂ [min]

M
ob

ili
za
tio

n
tim

e
cu
rv
e

Φ
(t̂

)

∆t = 10 min
∆t = 5 min
∆t = 2 min

Figure 5.11.: Mobilzation time curve for Λ = 60 min calculated for ∆t∗ = 5 min
and adjusted to different time discretizations ∆t.

time curves. One popular method is to use logistic regression discussed e.g. in
[FW04], another would be to use measured data [RS89].
Remark 5.10. Instead of using deterministic supply values computed by equation
(5.7) or equation (5.8), it is also possible to use a stochastic model, randomly
assigning delays to every unit of flow according to some probability distribution. M
5.4. Quickest path with time-dependent supply

values

After including time-dependent supply values in the model, we now consider the
quickest path problem in this context. This leads to the quickest path problem
with time-dependent departure times (QPTDS), which has not been discussed
in literature so far. We introduce the problem mathematically and perform a
theoretical analysis leading to a solution algorithm.

The theoretical results from this section provide valuable insights on the effect of
time-dependent supply values in evacuation scenarios which are utilized in chapter
6 to estimate the effect on other flow over time problems.
Definition 5.11 (Quickest path with time-dependent supply):
Let G = (V,E) be a network over time with capacity function u : E → N for the

107

Chapter 5. Evacuation of a nuclear power plant - A flow over time model

edges, a source s, and a sink d. Let τ : E → N be the function of the travel times.
Furthermore, let b(t) ∈ N be the time-dependent supply for times t ∈ {0, . . . , T},
given by a mobilization time curve Φ(t). Let B be the total supply that has to be
sent to the sink.

The Quickest path problem with time-dependent supply (QPTDS) is to find an
s-d-path over time P minimizing the latest arrival time of a unit of flow at the
sink, given by

T (P) = λ+
⌈
B′(λ, u(P))

u(P)

⌉
+ τ(P). (5.15)

Here λ is the last time step for which b(t) > 0 holds and B′(λ, u(P)) is the amount
of flow still at the source at the end of this time step, when using path P (sending
as much flow as possible). The travel time of path P is denoted by τ(P) and the
capacity bottleneck by u(P).

As in the quickest path problem, the total time required to send all flow to the
sink is determined by the last unit of flow leaving the source. This cannot happen
before time step λ and, if at this time there is still flow at the source, the path
has to be used over dB

′(λ,u(P))
u(P) e additional time steps, to clear the source.

The objective function of QPTDS is very similar to the objective function of the
common quickest path problem (cf. section 2.3.4). However, the supply value
B′(λ, u(P)) of QPTDS, which has to be sent to the sink, is now a function of the
capacity bottleneck of the path P , which determines how much flow has left the
source up to time step λ.

For any time step t and path P , the minimum flow remaining at the source
B′(t, u(P)) is implicitly given (cf. equation (5.9) for the available flow at time step
t) by

B′(t, u(P)) = max {0;B′ (t− 1, u(P)) + b(t)− u(P)} . (5.16)

Remark 5.12. Note that B′(t, u(P)) is the amount of flow left at the source after
time step t. If all flow B is available at time step 0 it holds that B′(0, u(P)) =
B − u(P). Using this in equation (5.15), yields the same time shift as in equation
(2.20) (cf. remark 2.21). M

To understand the behavior of the objective function (5.15), consider the following
examples:

Example 5.13: Assume a heaviside step function (cf. figure 5.12(a)) as mobiliza-
tion time curve, which changes from 0 to 1 at time step λ ≥ 0 (i.e. the total supply
B arrives at time step λ). It is easy to see that this corresponds to a regular
quickest path problem where the total time to clear the sink is increased by λ.
This can also be seen in the objective function (5.15): Regardless of the capacity

108

5.4. Quickest path with time-dependent supply values

λ

0

0.5

1

Time step t

M
ob

ili
za
tio

n
tim

e
cu
rv
e

Φ
(t

)

(a) Heaviside MTC

λ

0.5

1

Time step t
(b) Linear MTC

Figure 5.12.: Two discrete mobilization time curves.

u(P) of the used path, we have B′(λ, u(P)) = B − u(P). By remark 5.12, this is
exactly the objective function of the quickest path problem plus an additional λ.

Example 5.14: Assume a linear mobilization time curve in the interval [0, λ]
(cf. figure 5.12(b)) with a slope of γ. This means that at every time step in the
interval {0, . . . , λ} the same amount of flow (i. e. the value of γ) becomes available.
The total supply that is sent to the sink is B = (λ+ 1) · γ. The remaining flow at
the source (eq. (5.16)), after using path P for one time step, is B′ is given by

B′(t = 0, u(P)) = max{0 + γ − u(P), 0}.

This is 0 if γ is less than u(P) and γ − u(P) otherwise. Iterating over time we get

B′(λ, u(P)) = (λ+ 1) ·max {γ − u(P), 0}

If the capacity u(P) of a path is at least γ, all flow that becomes available at time
step t immediately leaves the source. In this case the remaining flow B′(λ, u(P))
is 0 and the travel time of the units of flow departing at time step λ determines
the total time required. Equation (5.15) in this case becomes

T (P) = λ+ τ(P).

If, on the other hand, u(P) is less than γ only u(P) units of flow leave the source
at every time step, and the remaining flow piles up at the source. In this case the
solution P for QPTDS corresponds to the solution of the quickest path problem.

This can also be seen in the objective function (5.15) which becomes the quickest

109

Chapter 5. Evacuation of a nuclear power plant - A flow over time model

path objective function (using that B = (λ+ 1)γ):

T (P) = λ+
⌈

(λ+ 1)(γ − u(P))
u(P)

⌉
+ τ(P) =

⌈
B

u(P)

⌉
− 1 + τ(P).

M

Note that if γ is 1 on a network with integer capacities, u(P) ≥ γ always holds. In
this special case the shortest path, with respect to the travel times, is the optimal
path for QPTDS regardless of the supply value B.

Lemma 5.15: Let B′(λ, u(P)) be the flow remaining at the source after time
step λ when using a path P with capacity bottleneck u(P). The function B′(λ,u(P))

u(P)
is monotonically decreasing in u(P).

Proof: Let u1 = u(P1) and u2 = u(P2) be the capacity bottlenecks of two paths
P1 and P2 with u1 > u2. By induction over the time steps, we can conclude that
for every time step t ∈ {0, . . . , λ} the value B′(t, u1) is not larger than B′(t, u2).
Hence, we get

B′(t, u1) ≤ B′(t, u2)⇒ B′(λ, u1)
u1

≤ B′(λ, u2)
u2

. 2

For the quickest path problem without time-dependent supply, an optimal path
can be found by solving a minsum-maxmin bicriterial path problem [MD97] (cf.
section 2.3.4), with respect to the two objective functions ψ1 and ψ2 given by

ψ1 : max (u(P)) = max
(

min
e∈P

u(e)
)

and (5.17)

ψ2 : min (τ(P)) = min
(∑
e∈P

τ(P)
)
. (5.18)

From all efficient solutions of this problem the one with the best objective value,
with respect to the quickest path problem, is chosen as solution.

Due to lemma 5.15 a similar method can be used to solve QPTDS:

Lemma 5.16: There exists an optimal path for QPTDS which is an efficient path
with respect to the biobjective path problem optimizing ψ1 (5.17) and ψ2 (5.18).

Proof: Let P̃ be an optimal path for QPTDS. If P̃ is an efficient path, there is
nothing to show. So assume there is a paths P for which the point (u(P), τ(P)) is
non-dominated and dominates the point

(
u(P̃), τ(P̃)

)
. If P is optimal for QPTDS

as well, there is again nothing to show so let P be a non-optimal path for QPTDS.

110

5.4. Quickest path with time-dependent supply values

1

2

3

4

(4,4) (3,4)

(2,3)

(1,3) (4,1)

u(P) τ(P) QP QPTDS

P1 = (1, 2, 4) 4 7 8 11

P2 = (1, 2, 3, 4) 1 10 14 14

P3 = (1, 3, 4) 3 6 7 10

P4 = (1, 3, 2, 4) 1 5 9 9

Figure 5.13.: Example of a QPTDS for a graph with 4 paths. Edge labels are
(τ(e), u(e)). The table shows capacity bottlenecks and travel times
of all simple paths in the graph as well as the times required for the
quickest path QP and QPTDS.

Since (u(P), τ(P)) dominates (u(P̃), τ(P̃)), the two inequalities τ(P) ≤ τ(P̃) and
u(P) ≥ u(P̃) hold, where at least one inequality is strict. Both paths P̃ and P
are feasible solutions for QPTDS and by lemma 5.15 it holds that

B′(λ, u(P))
u(P) ≤ B′(λ, u(P̃))

u(P̃)
.

So both the travel time of path P and the number of times it has to used are
at least as good as the values of path P̃ . Since P̃ is optimal this means that
T (P) = T (P̃), which contradicts the assumption that P is not optimal. 2

Corollary 5.17: The algorithm of Martins and Dos Santos [MD97], solving a
minsum-maxmin bicriterial path problem to find a quickest path (cf. section 2.3.4),
can be adapted for QPTDS by choosing the path optimizing equation (5.15) among
all efficient paths.

Lemma 5.18: Let bmax = maxt∈{0,...,T} b(t) be the maximum amount of flow
arriving at any time step. From all efficient paths P with respect to the objective
functions ψ1 and ψ2 and with u(P) ≥ bmax only the path with the smallest travel
time can be optimal for QPTDS.

Proof: For all paths with u(P) ≥ bmax the remaining flow at time step λ is zero.
Hence, the objective value for all those paths is given by λ+ τ(P), which does not
depend on the capacity bottleneck of P . Only the path with minimal τ(P) is a
candidate for the optimal solution of QPTDS. 2

111

Chapter 5. Evacuation of a nuclear power plant - A flow over time model

5 6 7 8 9 10

1

2

3

4

Optimal for QP

Optimal for QPTDS

P1

P2

P3

P4

Travel time τ(P)

C
ap

ac
ity

bo
tt
le
ne
ck
u

(P
)

Figure 5.14.: Objective values of Ψ1 and Ψ2 plotted against each other. Optimal
paths for QP and QPDTS lead both to non-dominated points.

Example 5.19: Consider the network shown in figure 5.13 (s = v1, B = 4) and
the mobilization time curve of example 5.14 with γ = 1 and λ = 4. The graph
contains exactly 4 simple s-d-paths. The path P3 is optimal for the quickest path
problem. If flow arrives over time the high capacity of this path cannot be used
and the shorter path P4 becomes optimal. In figure 5.14 we see that both optimal
solutions are efficient paths. The path P2 is not efficient and is never an optimal
solution neither of the quickest path nor the QPTDS problem. Due to lemma 5.18
the efficient paths P1 and P3 cannot be optimal for QPTDS for any B.

5.5. Conclusion

In this chapter we built a quickest flow model for the evacuation of the 20 km
middle zone around a nuclear power plant. In the process, general modeling
challenges, such as the choice of the region and the computation of network
parameters were discussed. The methods we introduced are also applicable to
generate network models for other regional evacuations.

Using model parameters (people factor, speed factor, and delay time) allows us
to use the same network to consider different evacuation scenarios of the same
area. This includes different traffic volumes, different travel speeds, and delayed
departure times, but can be easily extended by additional parameters. One such
extension could be to add parameters describing the usability of the roads such
that road blockages and failures are included in the model.

Another extension of the model is to include additional means of transport for

112

5.5. Conclusion

evacuation, such as public buses. In this case different types of optimization
problems have to be solved, and the solutions for all means of transport have to
be combined to an overall evacuation plan.

By introducing the delay time Λ, we extended the quickest flow model by adding a
time-dependent supply. For the related quickest path problem with time-dependent
supply, we were able to adjust existing algorithms to efficiently find optimal paths.
This does not only solve the quickest path problem with time-dependent supply
values but also allows us to get insights on the effect of time-dependent supply
values on the objective value. These insights will be generalized in chapter 6 to
analyze the effect of the time-dependent parameters on the quickest flow problem.

113

6. Evacuation of a nuclear power
plant critical zone - Data analysis

Building a network model is only the first step towards understanding an evacuation
scenario. The model has to be solved and the computed data need to be analyzed
to obtain insights into the evacuation situation.

In this chapter we analyze the data obtained from computing quickest flows for
the model from chapter 5 for a set Ω of 225 different scenarios. Each scenario is
determined by a combination of the three parameters people factor (PF), speed
factor (SF), and delay time (Λ), introduced in chapter 5. Figure 6.1 shows which
parameters where chosen and combined to obtain the 225 scenarios. The data
presented in this chapter represent only a selection of the full data set computed.
The full data set of this analysis is found in the appendix of [Ham+14]. The
complete set of evacuation times is also appended to this thesis in table A.1.

For each scenario a linear programing formulation of the quickest flow problem (cf.
section 2.3.3) is solved using Gurobi [Gur14]. To account for the time-dependent
departure times, we use a time-expanded network formulation.

Remark 6.1. There are several publications (e. g. [MP04, Tja03]) which discuss
general ways to handle flow over time problems with dynamic parameters in a more
efficient way. However, using the time-expanded network proved to be sufficient
to obtain results in reasonable time for our model. M

In the first section of this chapter, we analyze the evacuation times of the computed
flows. Afterwards we analyze the allocation of flow to the sinks of the network
and study which roads are used most during evacuation.

Remark 6.2. At this point we note once more that the evacuation times computed
by the network flow model provide lower bounds on the evacuation time and do
not represent the real times needed in an emergency. The analysis in this section
has to be understood in this regard. M

115

Chapter 6. Evacuation of a nuclear power plant critical zone - Data analysis

Quickest flow computation

SF PFΛ

[5, 3, 2.5, 2, 1.5]

[1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.45, 0.4,
0.35, 0.3, 0.25, 0.2, 0.15, 0.1, 0.05]

[0 h, 1 h, 2 h]

Figure 6.1.: Parameter values considered for the analysis.

6.1. Analysis of evacuation times

The evacuation time of a flow is given by the time step at which the last unit of
flow arrives at one of the sinks. For the model parameters considered in this study
the evacuation times range between 30 minutes (PF = 5, SF = 1,Λ = 0 h) and 20
hours (PF = 1.5, SF = 0.05,Λ = 2 h), which indicates that the model parameters
have a large impact on the evacuation times.

In this section we analyze the relation between the evacuation times and the model
parameters and develop a functional description which explains this dependence.
This description allows us to understand the influence of the different model
parameters on the evacuation time and to estimate evacuation times for parameters
for which no quickest flow has been computed. We start with the case of delay
time Λ = 0 h and then we extend the description to delay times larger than 0.

6.1.1. Evacuation without delay time (Λ = 0 h)

Observations from the data

Figure 6.2 shows the change of evacuation times for Λ = 0 h and selected people
and speed factors. The data for the other parameters show a similar behavior.

In figure 6.2(a) the change of the evacuation times for constant people factor and
changing speed factor are shown. The evacuation time seems to increase linearly
with the inverse of the speed factor as long as SF is small. When the speed factor

116

6.1. Analysis of evacuation times

0 2 4 6 8 10 12 14 16 18 20 22
0

500

1,000

Inverse speed factor 1
SF

Ev
ac
ua

tio
n
tim

e
(m

in
)

PF = 5.0
PF = 2.0
PF = 1.5

(a)

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0

200

400

600

Inverse people factor 1
PF

Ev
ac
ua

tio
n
tim

e
(m

in
)

SF = 1.0
SF = 0.2
SF = 0.1

(b)

Figure 6.2.: Evacuation times for (a): Fixed people factor and changing speed
factor and (b): Fixed speed factor and changing people factor.

increases, this behavior changes and at some point the evacuation time even begins
to increase again. Regardless of the people factor, we observe a change in the
linear relation at a speed factor of 0.2 (1

SF
= 5).

Keeping the speed factor constant and changing the people factor (6.2(b)) a linear
relation between evacuation time and inverse people factor is observed, within the
entire parameter region that was considered. For different speed factors the slope
of the liner relation changes.

Functional description of evacuation times

Our goal is to describe the behavior of the evacuation times by a formula depending
on the model parameters. To figure out how the model parameters affect the

117

Chapter 6. Evacuation of a nuclear power plant critical zone - Data analysis

evacuation time, we start with two models in which an explicit formula for the
evacuation time is available. A general functional description of the evacuation
time has to be consistent with those examples and has to include them as special
cases.

Example 6.3 (Quickest paths problem): Consider the quickest path problem
(cf. section 2.3.4) with source s and supply B = b(s). The last unit of flow leaving
the source s, choosing path P , determines the evacuation time given by

T (P) + 1 =
⌈
b(s)
u(P)

⌉
+
∑
e∈P

τ(e),

where u(P) is the capacity bottleneck of the path P . M

Example 6.4 (Single-source quickest flow): Consider a quickest flow with a
single source s and supply B = b(s). The single-source quickest flow problem
is solved by computing a sequence of maximum flows over time for different
time horizons until the time horizon T is found, for which the flow value of the
maximum flow is at least b(s) for the first time. To find a maximum flow over
time, temporally repeated flows (cf. section 2.3.3) can be used. For a static flow
Fstatic, which is repeated over time, and a time horizon T ∈ N the flow value of
the flow over time F is given by equation (2.18):

val(F) = T · val(Fstatic)−
∑
e∈E

τ(e)Fstatic(e).

For simplicity, assume that for the time horizon T of the quickest flow val(F) ≥ b(s)
holds with equality. In this case the duration of the quickest flow is computed by
rearranging equation (2.18), obtaining

T = b(s)
val(Fstatic)

+
∑
e∈E

Fstatic(e)
val(Fstatic)

τ(e).
M

Now we aim at giving a functional description for the evacuation time which
generalizes the two examples above. In both examples the evacuation time is
composed of two terms. One term Tv, depending on the travel times τ(e) of
the edges and one term TW depending on the supply value b(s) and the largest
amount of flow leaving the source at any time step (u(P) for the quickest path
and val(Fstatic) for the quickest flow). Hence, we use a similar approach for the
general functional description and assume:

T = TW + Tv. (6.1)

118

6.1. Analysis of evacuation times

Analogously to the interpretation in the quickest path problem we interpret TW
as waiting time, spent waiting at vertices due to capacity restrictions, and Tv as
travel time, spent traveling along the edges.

In example 6.3 and 6.4 the travel time contains a sum of edge travel times. Hence,
for the general case, we assume that the travel time is given by

Tv =
∑
e∈E

αe · τ(e), (6.2)

where αe ∈ R are coefficients, which we cannot specify further. They possibly
depend on the network parameters such as the capacity u(e), the travel times τ(e),
and the supply values b(s) and hence on the people factor PF and speed factor SF.

The waiting time in both examples is given by a quotient of the supply value b(s)
and the largest amount of flow, leaving the source at any time step.

For more than one source, we generalize the supply value to

B =
∑
s∈S

βs · b(s). (6.3)

The values βs ∈ R are, similar to the values αe, unknown coefficients which might
depend on the network parameters.

The maximum flow leaving the sources is generalized to the (maximum) outflow
per time step U . For the quickest path problem, U is given by the capacity of the
path used, for the quickest flow problem U is given by the flow value of the static
flow which is repeated over time. Hence, we assume that the maximum outflow
per time step depends on both the capacities and travel times of the edges (i. e.
U = U(τ, u)).

Combining the generalized supply value and the outflow per time step, the waiting
time is given by

TW = B

U
=
∑
s∈S βs · b(s)
U(τ, u) . (6.4)

Adding the waiting and travel time, we get a generalized functional description of
the evacuation time given by

T = TW + Tv =
∑
s∈S βs · b(s)

U(τ(e), u(e)) +
∑
e∈E

αe · τ(e). (6.5)

This formulation is consistent with examples 6.3 and 6.4. In both cases there is
a set of parameters such that equation (6.5) correctly determines the evacuation
time.

119

Chapter 6. Evacuation of a nuclear power plant critical zone - Data analysis

Validation with the computed data

Now we compare our functional description of the evacuation times with the
behavior of computed data, in order to validate it. Equation (6.5) describes the
evacuation time in terms of the network parameters b(s), τ , and u. To compare
the results with the computed data, we have to reformulate the equation to give a
functional description in terms of the model parameters PF and SF.

First, consider the travel time Tv, given by equation (6.2), which depends linearly
on the travel time of the edges. Equation (5.2) provides the relation between
speed factor SF and the travel times τ(e), and we get

Tv =
∑
e∈E

αe · τ(e) =
∑
e∈E

αe ·
(

L(e)
SF · vmax(e)

)
= 1

SF
∑
e∈E

(
αe

L(e)
vmax(e)

)
= A

SF, (6.6)

where L(e) are the lengths of the edges, and A is a parameter summarizing the
weighted sum over the edge lengths for simplicity.

To represent the waiting time TW in terms of PF and SF, we have to understand
how the supply B and the maximum outflow per time step U(τ, u) depend on
those parameters. We assumed (equation (6.3)) that B is a linear function of the
supply values of all sources. Those are determined by equation (5.1), using the
people factor PF and the population P (s) at the sources s ∈ S. Hence, we get

B =
∑
s∈S

βs · b(s) =
∑
s∈S

βs ·
P (s)
PF = A′

PF. (6.7)

As before, for simplicity, parameter A′ replaces the weighted sum over the popula-
tion values.

The maximum outflow per time step U , depends on the network topology and the
edge parameters τ(e) and u(e), which depend on the speed factor but not on the
people factor. We have no information on the network topology, but we derive
that U = U(SF) is a function of the speed factor and is independent of the people
factor.

The total evacuation time, depending on the people factor and speed factor, is
given by

T = TW + Tv = A′

PF · U(SF) + A

SF. (6.8)

Remark 6.5. Note that equation (6.8) describes the evacuation time in terms of
discrete time steps. The evacuation times shown in figure 6.2 (and in all following
figures) are given as continuous times for an easier interpretation. Since the two
representations differ only by a constant time discretization ∆t we can nevertheless

120

6.1. Analysis of evacuation times

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2 ·10−2

Speed factor SF

U
(S
F)

(a
rb
.u
.)

0

20

40

60

u
(e

)

Figure 6.3.: Fitting the maximum outflow per time step U(SF) from the slopes of
figure 6.2(b). Error bars are given by the confidence interval from the
fit. The gray curve shows the average capacity u(e) of all edges (right
scale).

compare equation (6.8) with the computed evacuation times. M

To compare the behavior of the computed evacuation times with the behavior
of the evacuation times described by equation (6.8), we assume that parameters
A and A′ are independent of PF and SF. In this case, the equation accurately
describes the linear dependency of the evacuation time on the inverse of the people
factor observed in figure 6.2(b), confirming our functional description.

Now we determine the maximum outflow per time step from the data. Since
both the travel time Tv and the maximum outflow per time step in our functional
description are independent of the people factor, the slope of the linear function in
figure 6.2(b) is proportional to the inverse of the maximum outflow per time step
U(SF) (cf. equation (6.8)). Hence, by determining the slopes for different speed
factors, we can determine the relation between U(SF) and SF. This is shown in
figure 6.3, where the error bars are given by the confidence interval obtained from
the linear fit.

The maximum outflow per time step decreases for high speed factors, similar
to the edge capacities (cf. figure 5.3). This suggests a strong relation between
the maximum outflow per time step U and the edge capacities u(e), as already
expected from examples 6.3 and 6.4. Figure 6.3 illustrates this once more by
showing the relation of the average edge capacities in the network (gray curve)
and the speed factor.

Approximating U(SF) by a linear function (U(SF) = α · SF) in the range of

121

Chapter 6. Evacuation of a nuclear power plant critical zone - Data analysis

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2
·10−2

Speed factor SF

U
(S
F)

(a
rb
.u
.)

Figure 6.4.: Liner approximation of U(SF) in the regions SF ∈ [0, 0.2] (red) and
SF ∈ [0.2, 0.6](green).

SF ∈ [0, 0.2] and SF ∈ [0.2, 0.6] (see figure 6.4), with two different slopes, both the
waiting time and the travel time become proportional to the inverse of the speed
factor. In those two parameter regions the evacuation time is a linear function
of 1

SF , as observed in figure 6.2(a). The change of slopes at SF = 0.2, which we
observed in figure 6.2(a), can be explained by the shape of U(SF) as well. Since
the slope of U(SF) is steeper for speed factors larger than 0.2, the increase of
the evacuation time for speed factors less than 0.2 becomes even stronger than
expected from the evacuation times obtained for speed factors between 0.2 and
0.6. When SF approaches 1.0, the average edge capacities as well as the maximum
outflow per time step start to decrease. This explains the renewed increase of the
evacuation times in this region which was observed in figure 6.2(a).

This analysis shows that equation (6.8) accurately describes the relation between
evacuation times and model parameters. If enough data are available to fit
the unknown parameters (U(SF), A, A′), we can use equation 6.8 to estimate
evacuation times also for other people factors PF and speed factors SF.

6.1.2. Evacuation with delay time (Λ > 0 h)

Observations from the data

Now we discuss how the results from section 6.1.1 change when adding a delay
time Λ > 0. Figure 6.5 and figure 6.6 show the evacuation times for different delay
times and changing people factor and speed factor. We observe an increase of the
evacuation times for larger delay times. This increase however is not constant, but

122

6.1. Analysis of evacuation times

1 2 3 4 5 6 7 8 9 10

200

400

600

Inverse speed factor 1
SF

Ev
ac
ua

tio
n
tim

e
(m

in
) PF = 1.5

1 2 3 4 5 6 7 8 9 10

100

200

300

Inverse speed factor 1
SF

Ev
ac
ua

tio
n
tim

e
(m

in
) PF = 3

Λ = 0 h; Λ = 1 h; Λ = 2 h

Figure 6.5.: Evacuation times for fixed people factors and different width of the
mobilization time curve.

qualitative differences emerge compared to the case of instantaneous departure.

Figure 6.5 shows the evacuation times in dependency of the speed factor for
different delay times and two people factors. The linear relation between speed
factor and evacuation time, which we observed for low speed factors and no delay
time (cf. figure 6.2(a)), is still present in both cases. For the smaller of the two
people factors, the evacuation times with delay differ from the times without delay
only for large speed factors. For lower speed factors the delay times coincide. For
the larger of the illustrated people factors the same behavior is observed for the
delay time Λ = 1h, while for Λ = 2 h a constant shift emerges for low speed factors.
For both people factors, we observe that the differences in the evacuation times
for different delay times are largest for a speed factor around 0.6− 0.8 (1

SF
≈ 1.5).

Figure 6.6 shows the evacuation times in dependency of the people factor for the
three delay times and two fixed speed factors. For the lower speed factor, the

123

Chapter 6. Evacuation of a nuclear power plant critical zone - Data analysis

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

100

150

200

Inverse people factor 1
PF

Ev
ac
ua

tio
n
tim

e
(m

in
) SF = 0.3

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

50

100

150

Inverse people factor 1
PF

Ev
ac
ua

tio
n
tim

e
(m

in
) SF = 0.7

Λ = 0 h; Λ = 1 h; Λ = 2 h

Figure 6.6.: Evacuation times for fixed speed factors and different width of the
mobilization time curve.

linear relation between the evacuation time and the inverse of the people factor
(observed in figure 6.2(b) for Λ = 0h) is only present for small people factors,
while for larger people factors the effect of the people factor on the evacuation
time decreases up to a point where the evacuation time is nearly independent
of the people factor. For the higher speed factor the same effect is observed, in
a stronger form. For a delay time of Λ = 2 h and speed factor SF = 0.7, the
evacuation time becomes completely independent of the people factor. We also
observe that the additional delay caused by the different delay times is largest for
large people factors. For decreasing people factors, the additional delay decreases
until it vanishes completely (observed for SF = 0.3, Λ = 1 h) or becomes a
constant offset (observed for SF = 0.3 and Λ = 2 h and SF = 0.7 and Λ = 1 h).

124

6.1. Analysis of evacuation times

Description of the evacuation times

To get an idea of how to include the delay time into the functional description
given by equation (6.5), we consider the quickest path with time-dependent delay.
For this problem the evacuation time is given by equation (5.15):

T (P) = λ+
⌈
B′(λ, u(P))

u(P)

⌉
+ τ(P).

This suggests to add an additional delay time TD to equation 6.8 given by

TD = λ.

Furthermore, the supply value at the sources has to be adjusted. In analogy to
the generalized supply B (cf. eq. (6.3)), we introduce the generalized supply at
time step t as

B(t) =
∑
s∈S

βs · b(s, t).

Using this, representation of B(t) and substituting the capacity bottleneck u(P) of
the path by the maximum outflow per time step U (as done in the generalization
of the quickest path), we generalize equation (5.16) for the flow remaining at the
source after time step t to

B′(t, U) = max (0, B′(t− 1, U) +B(t)− U) . (6.9)

If we assume that the travel time Tv remains unchanged by the delay, we get

T = λ+ B′(λ, U)
U(τ, u) +

∑
e∈E

αe · τ(e), (6.10)

as functional description for the evacuation time including the delay time.

Like for the functional description of the evacuation times without delay we now
have to analyze how the remaining flow B′(λ, U) behaves when changing the
parameters PF, SF, and Λ.

We start by transferring the extreme cases considered in example 5.14 for the
quickest path problem and assume a similar behavior for the general case:

If the supply B(t) is less than the maximum outflow per time step U , for all time
steps, the remaining flow B′(t, U) at any time step t is 0. This especially implies

125

Chapter 6. Evacuation of a nuclear power plant critical zone - Data analysis

that B′(λ, U) is 0 and no waiting is required. The evacuation time becomes

T = λ+ Tv = λ+ A

SF
. (6.11)

On the other hand, if U is lower than B(t) for all time steps, we assume that
a flow value of U leaves the sources at every time step and that the remaining
flow B′(t, U) still increases. At time step λ the remaining flow is assumed to be
B′(λ, U) = B − λU . In this case, the evacuation time is

T = λ+ B′

U
+ Tv = λ+ B − λU

U
+ Tv

= B

U
+ Tv = A′

PF · U(SF) + A

SF, (6.12)

which is the same as the evacuation time without delay from equation 6.8.

Between those two extreme cases, we cannot make a statement on the evacuation
time since we cannot predict the remaining flow B′(λ, u). However, we assume
that there is some sort of smooth transition from equation (6.11) to equation
(6.12) when the ratio between B(t) and the maximum outflow per time step U
changes. Depending on the ratio either equation (6.11) or equation (6.12) is better
suited to describe the evacuation time.

If U increases, compared to B(t), more flow can leave the sources and equation
(6.11) is a better functional description for the evacuation time. If B(t) increases
compared to U , more and more flow remains at the sources and equation (6.12)
is a better functional description. So now we have to discuss how the model
parameters affect the ratio between U and B(t).

For the mobilization time curve in our model (given by the binomial distribution
from equation (5.10)), increasing Λ (and hence λ) decreases the amount of flow
B(t) that arrives at the sources at each time step since the same amount of flow
now arrives within more time steps. The maximum outflow per time step is a
function of the speed factor only and is independent of the delay time. Hence,
increasing Λ leads to evacuation times described by equation (6.11).

Changing the people factor also affects the amount of flow B(t) but not the
maximum outflow per time step. Increasing the people factor decreases the total
supply in the network (cf. eq. (5.1)), and hence the supply B(t) at any time step
as well. Also in this case the evacuation time is better described by equation
(6.11).

The speed factor has no effect on the supply values, but changes the maximum
outflow per time step (cf. figure 6.3). For a speed factor of 0.7 and 0.8 the
maximum outflow per time step U is maximal, and hence we expect the evacuation

126

6.1. Analysis of evacuation times

time to be better described by equation (6.12) for those speed factors.

Validation with the model data

With the data shown in the figures 6.6 and 6.5, we now verify that the assumptions
we made above lead to a proper functional description of the computed evacuation
times.

For small speed factors, small people factors, and small delay times we assumed
that the evacuation time is approximately given by equation (6.12), which does
not depend on the delay time Λ. The same holds true for the computed data,
which can be observed for example in figure 6.5 where we see that for Λ = 1 h the
evacuation times coincide with the times for Λ = 0 h for small speed factors.

On the other hand, for speed factors around 0.7, high people factors and a large
delay time Λ we assume that the evacuation time is approximately given by
equation (6.11). In this case the waiting time disappears and (6.11) does not
depend on the people factor. This effect can be observed in the data as well, e. g.
in figure 6.6 where the evacuation time is independent of the people factor for
λ = 2 h.

We conclude that we obtain an accurate functional description of the evacuation
time by applying the same methods of generalization as in section 6.1.1 to the
objective function of the quickest path with time-dependent supply problem
QPTDS. The formulas for the evacuation times in the extreme cases of QPTDS
(see example 5.13 and 5.14) translate into a functional description of the evacuation
times for the general problem. In between we get only a tendency towards one of
the two cases by considering the model parameters.

6.1.3. Recommendations for evacuation planners

Table A.1 summarizes all evacuation times computed for the 225 scenarios. Figures
A.2,A.3,and A.4 in the appendix visualize the evacuation times in heat map
diagrams. Even for a delay time of 2 hours the required evacuation time goal
of at most 24 hours for the middle zone, given by the German Commission of
Radiological Protection, can be theoretically achieved.

From the computed scenarios we not only derive the relation between the evacuation
time and the model parameters, but we also extract specific recommendations for
the actual evacuation process:

We know from section 6.1.1 that the evacuation time increases with the inverse of
the speed factor, so we expect a large increase when the speed factor gets close

127

Chapter 6. Evacuation of a nuclear power plant critical zone - Data analysis

00.51
0

200

400

600

800

Speed factor SF

Ev
ac
ua

tio
n
tim

e
(m

in
) PF = 2.5

2345

100

150

200

People factor PF

SF = 0.3

Λ = 0 h; Λ = 1 h; Λ = 2 h

Figure 6.7.: Evacuation times for a fixed people factor (PF=2.5, left) and fixed
speed factor (SF=0.3, right)

to 0. Assuming that there is no delay in departure times, the computed data
show that the speed factor should ideally be kept above 0.3 to avoid the large
increase in evacuation times (figure 6.7(left)). Since most of the roads used during
the evacuation have a maximum speed of 100-130km

h
, this means that an average

travel speed of at least 30-40km
h

should be maintained as long as possible.

From section 6.1.1 we moreover know that the evacuation time scales with the
inverse of the people factor factor, divided by the maximum outflow per time step.
Hence we conclude that the impact of the people factor on evacuation time is
lowest for a speed factor between 0.7 and 0.8, since the maximum outflow per time
step is largest in this region. For low speed factors the influence increases such
that in this case ensuring a high people factor improves evacuation times by a lot.

Taking into account the delay of evacuees, we derived that for low speed factors the
evacuation time does not change, compared to the case of instantaneous departure
(figure 6.7(left)). In this case, ensuring a low delay of evacuees is not as effective as
increasing the speed factor, in order to decrease the evacuation time. Furthermore,
we derived that increasing the people factor improves the evacuation time only
up to a given point, from where on the evacuation time becomes independent of
the people factor (figure 6.7(right)). For the recommended speed factor of at least
0.3, this means that encouraging a people factor larger than 2.5 only marginally
improves evacuation time.

128

6.2. Allocation to target regions

PF = 2.5, SF = 0.5

21.6 %

South west

21.2 %

West

20.9 %
North west

36.3 %

North

Figure 6.8.: Allocation of flow to the different evacuation regions (shown in figure
A.5) for one scenario (PF=2.5, SF=0.5).

6.2. Allocation to target regions

Beside evacuation times, the allocation of flow to the available sinks is an important
characteristic of the evacuation process. This helps to estimate the traffic load at
the zone boundary and to plan the location of shelters or the further transport of
evacuees. Considering the scale of the evacuation zone, we do not consider each
sink separately, but we partition the 43 sinks into 4 target regions, based on their
location (shown in figure A.5 in the appendix).

From a geographic perspective, we expect the northern region to be the most
important direction for the evacuation since several large cities such as Schifferstadt
and Speyer are located very close to this target region. The allocation shown in
figure 6.8, for one set of parameters, confirms this expectation: Most flow is sent
to the northern region, while the remaining flow is assigned equally to the other
regions. We also observe that the allocation depends on the model parameters.
Figure 6.9 shows how the allocation changes when varying the people factor and
speed factor for instantaneous departure (i. e. Λ = 0 h). Even though the northern
region remains the prominent target there is a decrease of the flow sent to this
region for increasing speed factor and, to a smaller extend, for decreasing people
factor. For the south-western region a similar behavior is observed: For a speed
factor of 1.0, the flow sent to this region is notably lower than the flow sent to the

129

Chapter 6. Evacuation of a nuclear power plant critical zone - Data analysis

other sinks while for low speed factor the amount is as high as the flow sent to the
western and north-western region. For the latter two regions a converse effect is
observed such that the amount of flow increases for increasing speed factors and
decreasing people factor.

To explain this behavior, we consider the evacuation time for the individual units
of flow. As for the total evacuation time in section 6.1, we split this time into
two components, one for traveling to the target sink (Tv) and one for waiting at
vertices if the edges are congested (TW).

Now consider two possible paths P1 and P2 for a unit of flow, P1 being a path to
the closest sink, and P2 a path to a sink farther away. The time required to reach
the first sink is T 1 = T 1

v + T 1
W , the time to reach the second sink is T 2 = T 2

v + T 2
W .

We assume that P1 is a faster path to safety than P2 and hence the travel time
T1 is lower than T2. Without capacity restrictions there is no waiting time T 1

W

and the path P1 is always preferred to path P2. However, low capacities cause
congestions leading to increased waiting times. Since P1 is the favored path most
flow is sent along it and so congestion, and with it the waiting time T 1

W , increases.
The path P2 becomes more attractive than P1 if T 1

W > T 2
v −T 1

v + T 2
W holds, which

means that the waiting time on path P1 becomes larger than the waiting time on
path P2 plus the time loss when traveling along P2 instead of P1.

If the amount of flow in the network increases (i.e. the people factor decreases),
more congestion emerges. If the speed factor increases the relative time loss
T 2
v − T 1

v ∝ 1
SF between the two paths decreases. In both cases it becomes more

likely that the path P2 is more attractive than path P1. For our scenario this
means that sinks farther away are chosen more often for low people factors and
high speed factors. The effect is strongest for the large sources since the large
supply values are affected most by the capacity restrictions.

This explains the observed changes in the allocation of flow to the sinks for
changing model parameters. The largest sources are close to the south-western
and northern region with alternative routes leading to sinks in the western and
north-western region. Hence, the latter two regions become more interesting for
low people factors and high speed factors as observed in figure 6.9.

6.3. Usage of roads

To ensure a smooth evacuation, congestion on the roads has to be avoided to best
effect. In this section, we predict which roads are prone to high traffic densities
and should be under special surveillance. To do this, we design a measure for
the edges, describing the traffic load, based on the available data. We aim for a

130

6.3. Usage of roads

00.20.40.60.81

0.2

0.3

0.4

Speed factor SF

pe
rc
en
ta
ge

of
flo

w

PF = 2.5

2345
0.2

0.25

0.3

0.35

People factor PF

SF = 0.5

north; north–west; west; sout–west

Figure 6.9.: Allocation of flow to the sinks (for Λ = 0) when changing the speed
factor (left) and the people factor (right).

characterization of the edges based on their position in the network but not on
the specific scenario parameters.

Definition 6.6: Let Ω be the set of all considered scenarios (i.e. each possible
combination of PF,SF, and Λ). And let FΩ be a set of flows associated with those
scenarios, such that there is exactly one flow Fω ∈ FΩ for each scenario ω ∈ Ω.
Then, for every edge e ∈ E, the (relative) traffic load ρω(e) in scenario ω is given
by

ρω(e) =
∑∞
t=0 Fω(e, t)
u(e) . (6.13)

Remark 6.7. Due to their size larger roads can handle higher flow values that
would cause congestion on roads with a lower capacity. To avoid this bias, we
consider the relative traffic load normalized by the edge capacities. M

When using the quickest flows computed for our scenarios as the set FΩ, we observe
that several edges tend to have a high load in almost every scenario, while others
are hardly used. This observation motivates the definition of an edge measure η(e),
which determines the importance of each edge e during the evacuation, regardless
of the scenario parameters.

Definition 6.8: Let ω ∈ Ω be a scenario and let Fω be the flow associated with
this scenario. Then we define the set TOPk(ω) as the set of the k edges with the
highest traffic load ρω(e):

TOPk(ω) = {e ∈ E : |{f ∈ E : ρω(f) > ρω(e)}| < k}.

131

Chapter 6. Evacuation of a nuclear power plant critical zone - Data analysis

Definition 6.9: For each edge e ∈ E let Ωk
e = {ω ∈ Ω : e ∈ TOPk(ω)} be the set

of all scenarios in which edge e is one of the k edges with the highest load. Then
we define the value

η(e) = |Ω
k
e |
|Ω| ,

as a measure of the significance of edge e ∈ E during an evacuation.

Remark 6.10. Note that the measure we defined depends on the set FΩ. The
quickest flows we computed for the set FΩ might not be unique and will, most
likely, not represent the real flow of evacuees. However, since we consider all model
parameters at once when determining the importance of the edges we cover a wide
range of possible scenarios and hence expect to obtain a good indicator for the
real situation. M

In figure 6.10 the parameters η(e) are shown for the flows we computed by solving
the quickest flow problem and k = 100. For a better overview, we only show
5 classes of significance η1, . . . η5. Depending on the value η(e) each edge it is
assigned to on of the classes:

e ∈



η1 if η(e) ∈ [1, 0.75)
η2 if η(e) ∈ [0.75, 0.5)
η3 if η(e) ∈ [0.5, 0.25)
η4 if η(e) ∈ [0.25, 0)
η5 if η(e) = 0.

(6.14)

The analysis shows that, regardless of the choice of the parameters, the main
traffic roads, such as the highways B 9, B 39, and B272, carry the highest load
during an evacuation. The sections of those roads close to the boundary of the
evacuation zone are particularly critical since here flow from different sources
merges, in order to continue to the sinks. We also observe that several roads close
to the highly populated areas in the evacuation zone have a high relative traffic
load since their capacities are usually not designed to handle the huge amount of
flow during an evacuation.

132

6.3. Usage of roads

Figure 6.10.: Road usage, independent of the scenario using the classification of
equation (6.14).

133

Chapter 6. Evacuation of a nuclear power plant critical zone - Data analysis

6.4. Conclusion

In this chapter, we analyzed the data obtained from solving the evacuation model
of the 20 km zone of the power plant in Philippsburg, Germany (see chapter 5).

We were able to provide a functional description which correctly represents the
qualitative relation between the evacuation time and the model parameters (PF,
SF, and Λ). The description was validated against the available data of evacuation
times and enables us to provide estimates on evacuation times for scenarios not
covered by the parameter selection during computation.

Additional analysis of the data revealed the favored targets during an evacuation
and the effect of the model parameters on them. Furthermore, we identified critical
roads for which high flow densities have to be expected.

Even though we considered only a model for the evacuation, the results of this
chapter allow us to get a better understanding of the evacuation situation and
to make recommendations for evacuation planing. Knowing the favored target
regions and how the allocation changes for different model parameters allows for a
better planing of shelters and further transport. Knowing the expected load on
the roads improves the deployment of forces to regulate traffic. Knowing the effect
of the model parameters on the evacuation time helps to assess which parameters
have priority when applying regulating measures to improve evacuation times (e.g.
by increasing the speed, encouraging to have more people in a car, or ensuring
lower delay times).

The time-dependent supply values which we included into the model showed
interesting effects on the evacuation times: In some cases a delay has no effect on
the evacuation times, while in other cases the evacuation time becomes independent
of the people factor. By generalizing the quickest path problem QPTDS from
section 5.4, we were able to understand and quantify those effects. Having a better
understanding of the time delay is a first step to answer the question if a selective
regulation of delays (e.g. by informing some cities before others) can be used as a
tool to avoid congestions and hence to improve evacuation times.

The model used to compute data for our analysis is designed to determine lower
bounds on the evacuation times, by making very optimistic assumptions. This
approach can be complemented by microscopic simulations, based on the computed
results, to transfer the solutions to a more realistic environment [Ham+11, Kne+11].
By doing this, we obtain more realistic estimate of the evacuation times but we
loose the lower bound property. An open question in this regard is whether the
relation between model parameters and evacuation time found in this chapter are
preserved and can be found for the simulation results as well.

134

7. Evacuation including a dynamic
cost function

For many evacuation problems the evacuation time is only one of several objective
functions to be considered. Often external circumstances (e.g. exposure to toxic
substances or dangerous areas), modeled by an additional cost function, have to
be considered during the evacuation process. For this, we have to solve a flow over
time model with a cost function. However, a minimum-cost flow over time is not
sufficient since it does not capture costs of the individual evacuees.

In this chapter we introduce an optimization model based on individual evacuation
paths. The focus is not to give an extensive mathematical analysis of the problem,
but we want to highlight different facets and challenges of a path based model. We
give first ideas how to overcome those challenges and provide two easy heuristics
to obtain evacuation paths. Those heuristics are then applied to an explicit
evacuation scenario during the expansion of a hazardous gas.

7.1. Computing optimal evacuation paths

Including a dynamic cost function into a flow over time problem shifts the focus
from minimizing the evacuation time to other objectives concerning the cost
function. Our goal is to minimize the costs, but we are not interested in the total
cost for all evacuees. Instead we minimize the cost value every single person is
exposed to, so we require a solution that provides a path for every evacuee (or
group of evacuees).

Definition 7.1 (Evacuation-route problem): Let G = (V,E) be a network
over time with a set of sources S, and a set of sinks D. Let u(e) : E → N be a
capacity function, and τ(e) : E → N a function of travel times. Let b(s) ∈ N be
the supply values for the sources s ∈ S. Let c(e, t) : E × Z→ Q+ be a dynamic
cost function that provides a cost value for every edge at every time step. Let T
be the time horizon for the problem. We assume that c(e, t) = 0 for all t < 0 and
all t > T .

The evacuation-route problem is to find set P of s-d-paths (s ∈ S, d ∈ D)

135

Chapter 7. Evacuation including a dynamic cost function

P1, . . . , PB (B = ∑
s∈S b(s)), minimizing the highest path cost

max
b∈{1,...,B}

c(Pb) = max
b∈{1,...,B}

∑
e∈Pb

c(e, τ(Pb|s,α(e))). (7.1)

Here τ(Pb|s,α(e)) denotes the travel time on the path P from s to the vertex α(e);
this is the time at which edge e is used.
A set of B paths is feasible if for every source s ∈ S exactly b(s) paths start in s,
and if all paths can be combined to a feasible flow over time in G when sending
one unit of flow along them. This means for every edge e ∈ E and every time step
t ∈ T at most u(e) paths use edge e at time t.

Remark 7.2. Since we consider a problem over time waiting at vertices might be
a feasible option. We model this by adding a self-loop with unit travel time at
every vertex at which waiting is possible. In this way the dynamic cost function
for those loops provides the cost for waiting. M

Lemma 7.3: The evacuation-route problem is NP-hard even on pearl graphs
with unit capacities, one source, and one sink.

Proof: We show the lemma by a reduction of the path decomposition problem
which we proved to be NP-hard on pearl graphs with unit capacities in theorem
3.26. Consider a flow F on a flow graph G that is a pearl graph with unit capacity,
two edges in each pearl, and edge costs c : E → Q+. We now construct an instance
of the evacuation-route problem which can be used to solve the decomposition
problem. For this we use a network over time H which contains the same edges
as G and has unit capacities. We set τ(e) = 0 and c(e, t = 0) = c(e) for all edges
e ∈ E. We set the time horizon to T = 0 and the waiting cost at all vertices to
infinity. For the demand we choose b(s) = 2. Solving the evacuation-path problem
on H yields two paths over time P T

1 and P T
2 that do not wait at vertices and hence

use all edges at time step t = 0. The two paths optimize maxb∈{1,2}
∑
e∈PT

b
c(e, 0).

Since the graph G is a flow graph all edges are used to full capacity when sending
b(s) units of flow. By removing the time component, the two paths can easily
be transformed into paths P1 and P2 with cost identical to the cost of P T

1 and
P T

2 . Those two paths form a decomposition of the flow F and, since they have
the same cost than the paths over time, this decomposition minimizes the length
of the longest path. Hence, P1 and P2 form a flow decomposition of the flow F
minimizing the length of the longest path. 2

Remark 7.4. We can choose the supply b(s) of the sources in such a way that one
unit of flow corresponds to one evacuee. In this case the evacuation-route-problem
yields exactly one path for every evacuee. M

The evacuation-route problem is closely related to several other problems. One of
them is the minimum cost unsplittable flow problem [Kle96, Sku02] where different

136

7.1. Computing optimal evacuation paths

commodities (i. e. evacuees) have to be routed along single path, minimizing the
total cost. However, the goal of the unsplittable flow problem is to minimize the
overall cost and not the individual costs of the paths.

Another related problem is the length bounded flow problem [Bai+06] where a
flow has to be found that admits a decomposition where no path has cost larger
than some bound. However, in this case the objective function is to maximize the
flow value and the decomposition into paths is only a constraint for the problem.

Finally the evacuation-route problem is strongly related to the flow-decomposition
problem introduced in part I of this thesis. If a flow is given this problem can be
used to compute the required paths. However, determining the flow that admits
an optimal decomposition is not trivial.

7.1.1. Finding evacuation routes

In this section we present two approaches to the evacuation path problem. We do
not give a formal solution strategy, but we present relevant methods and ideas,
and discuss their advantages and drawbacks.

The flow-based approach first comptues a flow, which then is decomposed into
paths. The path-based approach focuses on directly computing a set of path, such
that they yield a feasible solution.

Flow-based approach

The flow-based approach for the evacuation-path problem consists of two steps.
The first step is to compute a flow F on the network G that sends b(s) units of
flow to the sinks for every source s ∈ S. The second step is to decompose this
flow into paths, minimizing the cost of the most expensive path.

Computing the set of paths by decomposing a flow ensures feasibility of the
paths in an easy way. However, it is not straight forward how the best flow for
decomposition can be found. Finding an optimal decomposition of the flow F
such that the resulting paths minimize equation (7.1) leads to an instance of the
shortest longest path problem (SLP). This problem is discussed in part I of this
thesis, where we, among other things, show that it is NP-hard.

It is also not obvious how to compute a flow that has the best decomposition in
the first step of the approach. One idea is to use a minimum-cost flow over time

137

Chapter 7. Evacuation including a dynamic cost function

F [Orl84, FS03], minimizing the overall cost of all units of flow

T∑
t=0

∑
e∈E

c(e, t) · F (e, t).

Computing such a flow is a well studied task, which has been shown to be NP-hard
[KW04] for constant cost. The time dependency of the cost function provides an
additional challenge [CSW01, MP04].
Remark 7.5. Note that in the time-dependent case the input size of the cost
function scales with the number of time steps T . Hence, from a theoretical point
of view the time-expanded network in this case has polynomial size in the input
size of the problem and a shortest path problem on the time-expanded network
can be solved in polynomial time. M

How the cost objective changes the resulting flow, compared to a quickest flow
model, has been discussed in [Küh10, Ohs10]. Therein the two objectives mini-
mizing the evacuation time and minimizing the dynamic cost are considered, at
first separately and then combined in a bi-objective context.

However, the minimum-cost flow is not necessarily the flow with the best decom-
position. Using a series of length bounded flow computations (cf. section 3.5.2)
can be used to find such a flow, but at high computational cost.

Path-based approach

A way to avoid the flow-decomposition problem is to compute paths from the
beginning. In this case the key problem is the shortest path over time problem
(w.r.t. the dynamic cost function c) which has to be solved for every unit of flow:

min
P∈Psb,D

c(P). (7.2)

Here sb denotes the source at which the unit of flow starts.

Several efficient algorithms have been proposed to find a shortest path with
respect to a dynamic cost function, where most assume that the cost function
is proportional to the travel time and fulfills FIFO constraints [Dre69, OR90].
For a more general scenario Ziliaskopoulos and Mahmassani [ZM93] propose
an algorithm, based on a Dijkstra type label setting strategy. The worst case
complexity of this algorithm to find all pair shortest paths is given as O(|V |3T 2),
where T is the time horizon of the problem.

Minimizing the cost of each path separately ensures that equation (7.1) is optimized.
However, the interaction of the units of flow is completely neglected in this approach,

138

7.1. Computing optimal evacuation paths

such that we cannot guarantee feasibility when combining the paths to a flow.
Hence, this approach is only applicable if the edge capacities are large compared
to the flow value such that feasibility is not a problem. Otherwise the shortest
path problem has to be modified to account for the remaining units of flow.

Remark 7.6. In the flow over time context we can transform a set of path to a
feasible solution, by adding waiting times. If for some time step t more than u(e)
paths use the same edge e we delay some units of flow by one or more time steps
until the edge e can be used. However, this changes the time at which the edges
are used and hence the cost value of the paths. M

Remark 7.7. In this section we assume that the start time of every unit of flow is
t = 0. The model can be extended by including different start times td for the
different units of flow. This can either be used to model delayed departure times
(similar to the model introduced in chapter 5) or to model different departure
times due to some out flow capacity (for example if all edge capacities are identical
we know how many units of flow leave the source at any given time). In this case
the cost function we minimize is c(P, td) = ∑

e∈Pb c(e, td + τ(Pb|s,α(e))). M

7.1.2. Additional requirements for the paths solving the
evacuation-route problem

If we want to implement the paths obtained for the evacuation-route problem as
real-world evacuation routes we have to impose additional requirements on the
paths. It is preferable that there is only one evacuation route for every source,
and that the routes are easy to follow (i. e. do not contain cycles).

In this section we show that an optimal solution of the evacuation-route problem
does not meet those requirements and present some ideas how the problem can be
modified to ensure those properties.

Generating single evacuation paths

Having one evacuation route for every evacuee might yield an optimal solution for
the evacuation route problem, however those paths can be different for every unit
of flow. For an implementation as evacuation paths providing a single path for
every source is much more desirable.

Remark 7.8. Here a “single path” means a single static path, for which we ignore
all information on times and consider only the sequence of edges that are traversed.
From a flow over time view two paths using the same edges but at different times
are considered different. M

139

Chapter 7. Evacuation including a dynamic cost function

a b d

c

[1, 1, 1, 1, 1] [5, 15, 4, 1, 1]

[1, 1, 1, 1, 96] [4, 4, 4, 4, 4]

Figure 7.1.: Consider the depicted graph where all edges have unit travel time
and where the edge labels show the dynamic cost for 5 time steps.
We assume that waiting at any vertex has cost 5 at all time steps.
The shortest path over time is P1 = (a, b, c, b, d) with cost c(P1) = 4.
This path contains a cycle over time and it is the only path over
time with this objective value. Replacing the cycle (b, c, b) by waiting
at b for the same time we get the path P2 = (a, b, b, b, d) with cost
c(P2) = 12. The shortest path not containing any cycles over time is
P3 = (a, b, c, d) with c(P3) = 6.

Even when using the path-based approach, we get different static paths for different
start times. In order to obtain a single path that can be used at several time steps,
we suggest to use concepts from robust optimization [ABV09]. In this setting each
possible start time determines a scenario to be considered. Let T be a set of
scenarios given by the possible start times at which a path should be used and let
s ∈ S be the source of the path. Then we look for a path which has the lowest
cost for the worst possible scenario i. e.

min
P∈Ps,D

max
t∈T

c(P, t).

Remark 7.9. A robust formulation to find a shortest path over time is given by a
modification of the time-expanded network:

Let T = {t1, . . . , tn} be the set of possible start times that determine the scenarios.
Let e = (u, v)t be an edge in the time-expanded network, representing edge (u, v)
at time step t. We assign the cost vector (c(e, t + t1), . . . , c(e, t + tn)) to edge e
where each component represents the edge cost for one of the start times ti ∈ T .

Solving a robust shortest path problem on this graph (e. g. using methods from
[YY98]) yields a path over time which is optimal (in the same senses as the robust
shortest path) for the set of departure times T . M

Generating acyclic evacuation routes

An evacuation route should not contain cycles over time (i.e. (sub-)paths that
repeat a vertex that was already visited at an earlier time), since it seems inefficient

140

7.1. Computing optimal evacuation paths

and unreasonable to the evacuees. For a static shortest path problem with positive
edge cost (or a static minimum-cost flow problem with positive edge cost), it has
been shown that there is at least one optimal solution not containing a cycle. This
is not true for the problem over time with dynamic path costs as shown in figure
7.1.

Solving flow over time problems in the time-expanded network often yields solutions
that contain cycles over time, since they are not detected as cycles in the expanded
network. For a solution of the quickest flow problem cycles can be removed when
allowing waiting at vertices. Instead of using a cycle over time for a duration of
τ time steps, flow can wait at a vertex for the same duration without changing
the objective value. Removing all cycles in such a way can either be done in a
post processing step or the time-expanded network can be modified in such a way
that waiting at a vertex is favored over using cycles [Knö14]. For minimizing a
(dynamic) cost function this technique cannot be applied. Waiting at a vertex
usually results in a different cost value than traveling along the cycle over time
such that, in some cases, it is in fact better to use a cycle over time instead of
waiting (see figure 7.1).

Nevertheless, we usually want to avoid cycles over time for an evacuation route.
Since removing cycles from the optimal solution is not possible, we have to
specifically exclude them during the optimization by adding additional constraints.

7.1.3. Easy heuristics for the path-based approach to the
evacuation-route problem

In the following we neglect the capacities of the network and consider the path-
based approach to solve the evacuation-route problem. This means, we want to
find shortest paths for all sources to the sink and assume that it is alway possible
to combine the paths to a flow. For every source s ∈ S we have to solve a shortest
path problem with time-dependent cost values

min
P∈Ps,D

c(P). (7.3)

Solving this problem scales with the number of time steps considered [ZM93].
Hence, we consider two straight forward heuristics to find paths in a faster way.
Those heuristics are build in such a way that they yield solutions without cycles.

141

Chapter 7. Evacuation including a dynamic cost function

a b d

c

5 26

100 20

Figure 7.2.: This figure shows the same graph as in figure 7.1 where the dynamic
edge costs are replaced by the aggregated cost function (7.4). The
path minimizing the aggregated cost function PA = (a, b, d) does not
use edge (b, c) even though it could be used at low cost. The dynamic
cost of this path are c(PA) = 16. The optimal path minimizing the
dynamic costs has cost 4 and the optimal path without cycles has
cost 6 (see figure 7.1).

Aggregated cost function

One way to deal with the dynamic cost is to introduce an aggregated cost function

c̄(e) =
T∑
t=0

c(e, t) ∀ e ∈ E. (7.4)

This function removes the time component while it remains possible to distinguish
between edges with high and low cost:

If the aggregated costs of an edge are 0, the dynamic costs at every time step are
0 as well. The edge is favored both when using the aggregated and dynamic cost
function. If an edge has high dynamic costs for every time step, the aggregated
costs of this edge are high as well and the edge is avoided for both cost functions.

To find a path for a source s ∈ S, we compute a shortest path with respect to the
aggregated cost function and solve the problem

min
P∈Ps,D

∑
e∈P

c̄(e). (7.5)

Removing the time component reduces the problem of finding optimal evacuation
paths to a shortest path problem (w.r.t. the cost c̄) in the static version of the
graph G. Since the aggregated costs are nonnegative the path is acyclic.

Using the aggregated cost function might lead to wrong estimates of the cost,
causing a solution to avoid edges which are used in an optimal solution for the
dynamic costs:

Example 7.10: Consider the graph from figure 7.1 using the aggregated cost

142

7.2. Computational study

values as shown in figure 7.2. Here the aggregated cost of edge e = (b, c) is large
since the dynamic cost function at the last time step is large. Hence, this edge is
not used and the path PA = (a, b, d) is chosen. The dynamic cost optimal solutions
(with and without cycles over time) use edge e at a point where it has very low
cost, yielding a better solution. M

Best solution of a set of candidates

For a given path P , it is easy to evaluate the dynamic costs function c(P). Hence,
if we know a small enough set Φ of candidate solutions, explicit enumeration can
be used to determine the best solution in this set

min
P∈Φ

c(P), (7.6)

The challenge is to determine the set Φ efficiently such that it is not too large yet
contains a good solution for the dynamic cost problem.

For a graph with multiple sinks d ∈ D, we suggest the set of quickest paths to all
sinks as a the set of possible solutions:

Φ = P∗s,D = {P ∈ Ps,d : d ∈ D, P is quickest path}. (7.7)

The problem is reinterpreted as finding the sink d ∈ D for which the quickest path
leading there has the lowest dynamic cost value.
Remark 7.11. Since we neglect capacities for the evacuation route problem, we
also neglect them for the quickest path problem. In this case finding the quickest
path corresponds to finding the shortest path with respect to the travel times. M
The advantage of using the set Φ is not only that it is easily computed, it also
includes the time component into the model, which has been neglected so far.
Furthermore, quickest paths seem reasonable to the evacuees (especially if the cost
function cannot be perceived visually), and since all travel times are positive, the
paths in the set Φ are acyclic.

7.2. Computational study

Now we apply the heuristics to deal with the dynamic cost function (suggested in
section 7.1.3) to a set of explicit scenarios. We compute paths using the aggregated
cost function (see (7.5)) and the set P∗s,D of candidate solutions (see (7.6)) and
compare the results with the optimal solution of equation (7.3) and the quickest
path, to study the quality of the heuristics.

143

Chapter 7. Evacuation including a dynamic cost function

7.2.1. Setup

We consider the scenario of a one time release of a toxic substance which spreads
over the network. Four scenarios are considered, using a combination of two
different networks and two wind directions, influencing the spread of the hazard.
For every scenario 500 instances with different travel times are generated. For this
we perturb each edge travel time by a random percentage up to 10%.

Networks

(a) (b)

Figure 7.3.: Grid graph (a) and chemical plant network (b) used for the computa-
tional study. Sinks are marked green (circles) and the origin of the
hazard is marked red (square).

The first network we consider is a grid graph (400 vertices), shown in figure 7.3(a),
with sinks located in two of the corners. The vertices are placed equidistantly and
the scale of the network is chosen in such a way that the geographical distance of
two corner points is approximately the same as the size of the second, real world

144

7.2. Computational study

network. The origin of the hazard is chosen as the vertex farthest away from both
sink vertices.

The second network is a road network of a chemical plant obtained from open
street map data (338 vertices), shown in figure 7.3(b). The sinks are located at
the exit points of the plant and the origin of the hazard is chosen as an arbitrary
vertex roughly located in the center of the network.
Remark 7.12. The edge parameters for both networks are determined in the same
way as described in section 5.1, for a speed factor SF = 1.0 and a maximum speed
of 1.4m

s
for pedestrians. As time discretization we chose ∆t = 60 s. Since we

neglect capacities a people factor is not required. M

Dynamic cost function

The dynamic cost function for the edges is generated by mapping the spread
of a hazardous gas onto the network. We assume a one time release of the
hazard (at time step t = 0) in one source vertex, and model the spread by an
advection-diffusion equation in R2 (neglecting the height):

∂tw − κ∆w + u · ∇w = 0. (7.8)

Here w : R2 × R≥0 → R is a function describing the concentration of the hazard
at all points in R2 and for all times t ∈ R≥0. The parameter κ > 0 is a diffusion
constant, describing the expansion of the hazard, and u = (ux, uy)T ∈ R2 gives a
wind vector field influencing the movement of the hazard in the plane. For our
study we use two wind vector fields uW and uN . The first models wind in western
direction with a speed of 3m

s
, the second models wind in northern direction with

the same speed.

Equation (7.8) is solved numerically (see [Küh14, Sto11] for details). To obtain a
dynamic cost function c : E × Z → Q+ for the edges, the hazard concentration
is mapped onto the network using the geographical position of the edges. This
mapping method is presented in detail in [Goe+11, Küh14].

Optimization problems for path computation

We define the exposure value of a path P as

R(P) =
∑
e∈P

c(e, τ(P |s,α(e))). (7.9)

This corresponds to the dynamic costs c(P) of the path and represents the real
exposure to the hazard. All solutions are compared with respect to this value.

145

Chapter 7. Evacuation including a dynamic cost function

We compute paths for the two heuristics from section 7.1.3, the optimal path and
the quickest path. This leads to the following four optimization problems:

Dynamic cost path (DCP): ψD(s) = min
P∈Ps,D

R(P) (7.10a)

Aggregated cost path (ACP): ψA(s) = min
P∈Ps,D

∑
e∈P

c̄(e) (7.10b)

Best sink quickest path (BSQP): ψB(s) = min
P∈P∗s,D

R(P) (7.10c)

Quickest path (QP): ψQ(s) = min
P∈Ps,D

∑
e∈P

τ(e). (7.10d)

The dynamic cost path (DCP) for source s ∈ S (7.10a) minimizes the dynamic
cost function. This path is a path with the lowest possible exposure value.

The aggregated cost path (ACP) for source s ∈ S (7.10b) is a shortest path
accounting for the dynamic costs using the aggregated cost function (7.4).

The best sink quickest path (BSQP) for source s ∈ S (7.10c) is the path with the
lowest exposure value among the set of candidates from equation (7.7), containing
the quickest paths to all sinks (P∗s,D).

Finally, the quickest path (QP) for source s ∈ S (7.10d) is the path which has
the shortest travel time to reach the closest sink. This solution does not account
for the hazard at all, and we expect that it has the highest exposure value of the
paths considered here.

Let s ∈ S be a source in the network. To simplify the notation in the following,
we denote the optimal path for (DCP) by PD(s), the optimal path for (ACP) by
PA(s), the optimal path for (BSQP) by PB(s), and the otimal path for (QP) by
PQ(s). If there are multiple paths with the same objective value we choose the
path Pγ(s), γ ∈ {D,A,B,Q} with the lowest travel time, if the paths are still tied
we use one of them at random.

Our goal is to compare the quality of those paths with respect to the exposure
value (7.9). For this we use

Rγ(s) = R(Pγ(s)), γ ∈ {D,A,B,Q}

as a notation for the exposure values of the different paths.

For every combination of network and wind vector field we compute the paths
Pγ(v), γ ∈ {D,A,B,Q} for every vertex v ∈ V in the network. We do this for all
500 instances of randomly perturbed travel times and average the obtained results.

146

7.2. Computational study

Scenario Average computation time (s)
(DCP) (ACP) (BSQP) (QP)

Grid graph, wind W 58.72 4.95 4.55 4.45
Chem. plant, wind W 10.37 2.97 2.92 2.76

Table 7.1.: Average computation times for westward wind. For wind in northern
direction we get similar results.

This gives us a set of average exposure values R̄D(s), R̄A(s), R̄B(s), and R̄Q(s)
for every combination of network and wind vector field.

7.2.2. Comparing computation times

Table 7.1 shows the average time required to compute optimal paths for the
four objective functions. As expected using the objective function for (ACP)
and (BSQP) largely improves the computational time, compared with the time-
dependent problem (DCP).

Only the dynamic cost problem (DCP) uses a network over time for optimization
and scales with the number of time steps considered. All other objectives in
equation (7.10) reduce to shortest path computations on a static version of the
network and are computed much faster.

Remark 7.13. For our purpose we use a shortest path computation in the time-
expanded network instead of the algorithm from [ZM93], to find a path for the
dynamic problem (DCP). Hence, the computation times shown in table 7.1 can
potentially be improved. However, the algorithm of [ZM93] scales with the number
of time steps like the time-expended network. Hence, we expect a time advantage
of the heuristics over the improved algorithm for large values of T as well. M

7.2.3. Comparing exposure values

The paths obtained by optimizing (ACP) and (BSQP) are heuristic solutions, and
can be extremely good for some sources while failing completely for many others.
Hence, we do not compare individual paths but use a more general measure to
characterize the quality of the heuristics instead. We evaluate the performance of
a method for all sources in the scenario (given by the network and wind vector
field) using the cumulative frequency of exposure values. For a threshold value
c ∈ R+ this is given by

Fγ(c) = |{s ∈ V : R̄γ(s) ≤ c}|
|V |

, γ ∈ {D,A,B,Q}. (7.11)

147

Chapter 7. Evacuation including a dynamic cost function

0 10 20 30 400.9

0.92

0.94

0.96

0.98

1

Cost c (arb. u.)

F
γ
(c

)

Westward wind

0 5 10 150.9

0.92

0.94

0.96

0.98

1

Cost c (arb. u.)

Northward wind

Dynamic costs
Aggregated costs
Best sink quickest path
Quickest path

Figure 7.4.: Exposure values for both wind directions on the grid graph.

This function determines, for each scenario, the relative number of vertices for
which the average exposure value (from the 500 instances with varied travel times)
of the evacuation paths is less than a given value c.

By construction, Fγ(c) is an increasing function with values between 0 and 1.
The shape of the curve gives information on the quality of the heuristics. If the
curve Fγ(c) approaches 1 quickly a lot of paths have low exposure values, which
indicates a good method. The value at which the curve reaches 1 provides the
highest exposure value obtained for any solution path and characterizes the worst
case performance of the method.

Exposure values for the grid graph

Figure 7.4 shows the cumulative frequency plots for the grid graph and both wind
directions.

Since the hazard never covers the entire network, for westward wind approximately
30% of the vertices are outside of the danger zone. For those vertices the exposure
value is zero for all paths considered. Even the quickest path, not accounting for
the hazard, yields no exposure. This results in an offset which is of no interest in

148

7.2. Computational study

the following. For northward wind the number of safe vertices increases to 80%.

By construction the curve FD(c), for the dynamic cost paths (DCP), yields the
lowest possible exposure value for every vertex and hence none of the other curves
can be located above it. The quickest path (QP) does not account for the hazard
at all and we expect it to give the lowest values for the cumulative frequency,
for both wind directions (even though there is no mathematical reason why the
exposure value of the path (ACP) is lower than the value of path (QP)).

The curve FA(c), for the aggregated cost paths (ACP), is almost identical to the
curve FD(c), regardless of the wind direction. Even though the objective function
(7.10b) only approximates the exposure value this is enough to generate paths
that avoid the hazard efficiently for the grid graph.

For the best sink quickest paths (BSQP) the curve FB(c) shows different behaviors
for the two wind directions. For westward wind the curve is very similar to the
quickest path curve, for northward wind the curve is closer to the optimal curve,
but not as close as the curve FA(c).

The grid graph has only two sinks such that the set P∗s,D contains only two paths.
For westward wind both of the sinks are located in the critical region where the
hazard is headed. Hence, switching from the quickest path sink to the other sink
most of the time yields no improvement of the path cost, and the best sink quickest
path (BSQP) coincides with the quickest path (QP). For this wind direction the
curves FQ(c) and FB(c) are almost identical.

For wind in northern direction this changes: In this case the southern sink becomes
more attractive as evacuation target since the hazard moves away from this location,
and for many vertices changing the evacuation target proves to be useful. In this
case the curve FB(c) gives a notable improvement over the curve FQ(c).

Exposure values for the chemical plant network

Figure 7.5 shows the cumulative frequency plot of exposure values for the chemical
plant network and the two wind directions.

Again, we have an offset since 47% of all sources are safe for wind in western
direction and 77% are safe for wind in northern direction. As expected, choosing
the quickest path is a bad choice in the chemical plant scenario as well. Especially
for westward wind the worst case exposure value of the quickest path is a lot higher
compared with the worst case values obtained for the other objectives. Since many
sinks are located in the critical region of the network, many quickest path move
through the dangerous area and have a high exposure value.

Choosing the best sink quickest path in this scenario performs nearly as good as

149

Chapter 7. Evacuation including a dynamic cost function

0 2 4 6 8 100.92

0.94

0.96

0.98

1

Cost c (arb. u.)

F
(c

)

Westward wind

0 1 2 3 4 50.9

0.92

0.94

0.96

0.98

1

Cost c (arb. u.)

Northward wind

Dynamic costs
Aggregated costs
Best sink quickest path
Quickest path

Figure 7.5.: Exposure values for both wind directions on the chemical plant net-
work.

choosing the dynamic cost function, while using the aggregated cost value only
results in a smaller improvement of the quickest path solution.

In this scenario the number of sinks is larger than for the grid graph, and there
are sinks outside of the critical region for both wind directions. The best sink
quickest path considers the dynamic cost function on a smaller set of possible
solutions, while the aggregated cost path considers all paths, but neglects the time
component. Keeping the time component is especially crucial for vertices located
in the critical region, where the aggregated cost function yields high cost on edges
that could be used safely during the relevant time steps. The path (ACP) avoids
these edges while the path (BSQP) detects that the edges on the quickest path
can be used without exposure to the hazard (cf. example 7.10).

Results of the comparison

For a cost function given by the spread of a hazardous gas both heuristics considered
yield paths with better dynamic cost than the quickest paths. Most of the time
the heuristics even provide close to optimal paths. The method of using the
best sink quickest paths only yields good results if there are enough sinks with

150

7.2. Computational study

different positions compared to the hazard. The aggregated cost function yields
good results but fails occasionally, especially for vertices that are in the critical
region but are not affected by the hazard at time t = 0.

7.2.4. Practicability of paths as evacuation routes

After discussing the quality of the different heuristics in terms of the exposure
values of the resulting paths, we now have a closer look at some individual paths and
their practicability as evacuation routes with respect to the properties discussed
in section 7.1.2.

Acyclic evacuation routes

Figure 7.6 shows the paths (DCP), (ACP), (BSQP), and (QP), for one source,
on a section of the chemical plant network for westward wind and for one set of
travel times. In this scenario all four paths choose different targets for evacuation.
While the quickest path chooses a sink in wind direction the aggregated cost path
and the best sink quickest path choose safer sinks in the northern and southern
part of the network. The dynamic cost path (DCP) leads directly through the
critical region, utilizing the fact that we have a one time release of the hazard.
The path uses a cycle over time (vertices with black border) while the hazard
moves over the edges. When the flow starts to move towards the sink the edges
can be used safely.

The optimal dynamic path in figure 7.6 is not suitable as evacuation route since
it is very unintuitive and the quality of the path depends heavily on the travel
times. Substituting the cycle by waiting at a vertex leads to a solution where
the flow waits at a vertex close to the source for a long time. For this path
small perturbations in the travel times are enough to cause a huge impact on the
exposure value since edges in the critical region might be used at the wrong time.

The source vertex shown in figure 7.6 is not the only one for which the dynamic
cost path (DCP) shows this properties. Hence, in general, the dynamic cost
shortest paths are only useful to provide lower bounds on the exposure value, but
are not suitable to be implemented as evacuation routes.

The paths (ACP) and (BSQP) found by the heuristics do not contain cycles (by
construction) and can be directly implemented as evacuation paths. However,
they are not optimal and might have a higher than necessary exposure value.

151

Chapter 7. Evacuation including a dynamic cost function

Wind

Figure 7.6.: Paths resulting from the objective functions in equation (7.10) in the
chemical plant network (westward wind) for one source vertex (black
star). The gray shade represents an approximation of the area that is
contaminated by the hazard (aggregated over time). The color of the
paths are chosen as follows: Green (diamond): DCP; Red (square):
ACP; Orange (triangle): BSQP; blue (circle): QP. The DCP path
avoids the hazard by traveling north (vertices marked with black
border), until the hazard passed, and then south again to the sink.

Using the same path at different times

The time at which a path is used for evacuation is crucial to determine the exposure
value. In our analysis all paths are determined assuming the path is used at time
step t = 0. We now examine how the exposure values change when using the same
path at different times.

Figure 7.7 shows the change of exposure values for different start times for two
exemplary paths in the chemical plant network with westward wind. For both
paths the exposure value increases when the hazard approaches the source and
decreases again after the hazard passed.

The dynamic cost optimal solution (DCP) is built in such a way that it is optimal

152

7.2. Computational study

0 10 20 30
0

0.2

0.4

0.6

0.8

Start time

c
(P
,t

)
(a
rb
.
u.
)

0 10 20 30
0

0.5

1

1.5

Start time

Dynamic costs (DCP)
Aggregated costs (ACP)
Best sink quickest path (BSQP)

Figure 7.7.: Evolution of path costs over time. For two paths in the chemical plant
network and westward wind. The costs of (ACP) show the lowest
increase for larger start times.

for start time t = 0 and has the lowest exposure value in this case. However, for
larger changes in the start time the exposure value increases such that, very soon,
the path (ACP), minimizing the aggregated cost function, has a lower exposure
value than (DCP).

Lemma 7.14: Let c : E × Z be a dynamic cost function for all edges at all time
steps within the time horizon T . If an edge e is used at a time step t not in the
time horizon (i.e. t < 0 or t > T) we set the edge costs c(e, t) to 0. Let P be a
simple s-d path for which the time needed to travel along P is less than T . Let
T = {t : t ∈ [−T, T]} be the set of possible start times.

Then the aggregated cost c̄(P) of path P is proportional to the cost of the path
averaged over all possible start times t ∈ T .

Proof: Let e be an arbitrary edge in the path P . For any starting time t ∈ T this
edge is used at time step t+ τ(P |s,α(e)) , which is the start time plus the travel
time required to reach the start vertex of the edge from the source. Since the
travel time along the path P is at most T , the edge e is used before time step 0
for the start time t = −T . For start time t = T the edge is used at time step T
or later. Hence, for every time step t ∈ {0, . . . , T} there is exactly one start time
t′ ∈ T such that edge e is used at time t (i. e. t′ = t− τ(P |s,α(e))). So averaging

153

Chapter 7. Evacuation including a dynamic cost function

the path costs of P over all t ∈ T yields

c(P) = 1
2T + 1

T∑
t′=−T

∑
e∈P

c(e, t′ + τ(P |s, α(e)))

= 1
2T + 1

∑
e∈P

T∑
t=0

c(e, t) = 1
2T + 1

∑
e∈P

c̄(e). 2

By lemma 7.14 minimizing the aggregated cost function minimizes the average
costs for all scenarios with start times in [−T, T], while the other paths only
optimize for a single start time (t = 0) and do not account for other times at all.
Hence, (ACP) is the best path (from the possibilities in equation (7.10)) when
allowing large changes in the departure times, since it considers all start times
during optimization.

A known result from robust optimization [ABV09] is that minimizing the average
cost of k scenarios provides a k-approximation of the optimal solution. The
aggregated cost function considers (2T + 1) scenarios so the path (ACP) gives
at least a (2T + 1)-approximation of the optimal robust solution. However, the
interval [−T, T] for possible starting times is very large and will usually contain
much more starting times than considered in any robust optimization scenario
in this context. Especially the negative start times are not practical for a real
scenario. Hence, the aggregated cost path might not be the best path for the
robust problem.

7.3. Conclusion

In this chapter we considered the evacuation-route problem which is an evacuation
problem on a network over time with a dynamic cost function focusing on individual
paths. The goal is to find a set of evacuation paths minimizing the cost of the
most expensive one.

We presented two approaches to tackle this problem, one based on flows and
one based on paths, and discussed their advantages and drawbacks. The flow-
based approach ensures feasibility but requires the solution of flow-decomposition
problems (studied in part I of this thesis). The path-based approach does not
require a flow-decomposition, but it is challenging to obtain feasible solutions. Only
for large edge capacities the latter approach can be used without modifications,
since in this case feasibility is guaranteed.

To be applicable as evacuation routes for a real world scenario, the paths computed
for the evacuation-route problem have to fulfill additional requirements beside

154

7.3. Conclusion

feasibility. In this chapter we discussed two: One is that paths should not contain
cycles. The other one is that every source should have only one path for evacuation.
We showed that an optimal solution of the evacuation-route problem does not
necessarily meet those requirements and we suggested ideas how to compute paths
that do meet them.

In the second half of the chapter, we focused on the path-based approach, ignoring
edge capacities. We introduced two solution heuristics to avoid the dynamic
component of the cost function and to quickly obtain paths. One uses an aggregated
cost function the other one reduces the solution space that has to be searched. To
analyze the quality of the heuristics, we considered explicit evacuation scenarios
in which the cost function is given by a spread of a hazardous gas. We verified
that both heuristics yield better solutions than the quickest path solution (which
does not account for the cost function at all). Compared with the dynamic cost
shortest path, which we considered to be the optimal solution for our scenario, we
obtained similar cost values for the heuristic solutions. Furthermore, the heuristics
yield acyclic paths and when using the aggregated cost function the path costs
are more robust against changes in the start time. Hence, the heuristic paths are
more appropriate to be implemented in a real world evacuation than the optimal
path.

Due to the conceptual and computational complexity of the problem, the analysis
conducted in this chapter remains rather superficial and leaves open many questions.
We discussed several facets of the problem and worked out problems and solution
ideas for further research.

155

Bibliography

[AMO93] R. Ahuja, T. Magnanti, and J. Orlin. Network Flows: Theory, Algo-
rithms, and Applications. Prentice Hall, 1993.

[ABV09] H. Aissi, C. Bazgan, and D. Vanderpooten. “Min–max and min–max
regret versions of combinatorial optimization problems: A survey”. In:
European journal of operational research 197.2 (2009), pp. 427–438.

[AP89] E. Anderson and A. Philpott. “A continuous-time network simplex
algorithm”. In: Networks 19.4 (1989), pp. 395–425.

[AP94] E. Anderson and A. Philpott. “Optimisation of flows in networks over
time”. In: Probability, statistics and optimisation (1994), pp. 369–382.

[Aro89] J. E. Aronson. “A survey of dynamic network flows”. In: Annals of
Operations Research 20.1 (1989), pp. 1–66.

[AHA13] S. Arumugam, I. Hamid, and V. Abraham. “Decomposition of Graphs
into Paths and Cycles”. In: Journal of Discrete Mathematics 2013
(2013).

[BKS02] G. Baier, E. Köhler, and M. Skutella. “On the k-splittable flow prob-
lem”. In: Algorithms—ESA 2002. Springer, 2002, pp. 101–113.

[Bai+06] G. Baier et al. “Length-bounded cuts and flows”. In: Automata, lan-
guages and programming. Springer, 2006, pp. 679–690.

[BHM04] R. Baldacci, E. Hadjiconstantinou, and A. Mingozzi. “An exact al-
gorithm for the capacitated vehicle routing problem based on a two-
commodity network flow formulation”. In: Operations Research 52.5
(2004), pp. 723–738.

[Bar+98] C. Barnhart et al. “Branch-and-price: Column generation for solving
huge integer programs”. In: Operations research 46.3 (1998), pp. 316–
329.

[BK14] A. L. Bazzan and F. Klügl. “A review on agent-based technology for
traffic and transportation”. In: The Knowledge Engineering Review
29.03 (2014), pp. 375–403.

[BC89] J. E. Beasley and N. Christofides. “An algorithm for the resource
constrained shortest path problem”. In: Networks 19.4 (1989), pp. 379–
394.

157

Bibliography

[Bla77] R. G. Bland. “New finite pivoting rules for the simplex method”. In:
Mathematics of Operations Research 2.2 (1977), pp. 103–107.

[BJW93] H. L. Bodlaender, K. Jansen, and G. J. Woeginger. “Scheduling
with incompatible jobs”. In: Graph-Theoretic Concepts in Computer
Science. Springer. 1993, pp. 37–49.

[BDK93] R. E. Burkard, K. Dlaska, and B. Klinz. “The quickest flow problem”.
In: Zeitschrift für Operations Research 37.1 (1993), pp. 31–58.

[CSW01] X. Cai, D. Sha, and C. K. Wong. “Time-varying minimum cost flow
problems”. In: European Journal of Operational Research 131.2 (2001),
pp. 352–374.

[CFS82] L. G. Chalmet, R. L. Francis, and P. B. Saunders. “Network models
for building evacuation”. In: Fire Technology 18.1 (1982), pp. 90–113.

[CC90] Y. L. Chen and Y. H. Chin. “The quickest path problem”. In: Com-
puters & Operations Research 17.2 (1990), pp. 153–161.

[CGP05] G. Coclite, M. Garavello, and B. Piccoli. “Traffic Flow on a Road
Network”. In: SIAM Journal on Mathematical Analysis 36.6 (2005),
pp. 1862–1886. doi: 10.1137/S0036141004402683. url: http://
link.aip.org/link/?SJM/36/1862/1.

[DW60] G. B. Dantzig and P. Wolfe. “Decomposition principle for linear
programs”. In: Operations research 8.1 (1960), pp. 101–111.

[DB95] J. Del Castillo and F. Benitez. “On the functional form of the speed-
density relationship—I: general theory”. In: Transportation Research
Part B: Methodological 29.5 (1995), pp. 373–389.

[DDS92] M. Desrochers, J. Desrosiers, and M. Solomon. “A new optimization
algorithm for the vehicle routing problem with time windows”. In:
Operations research 40.2 (1992), pp. 342–354.

[DGL14] J. Desrosiers, J. B. Gauthier, and M. E. Lübbecke. “Row-reduced
column generation for degenerate master problems”. In: European
Journal of Operational Research 236.2 (2014), pp. 453–460.

[DL05] J. Desrosiers and M. E. Lübbecke. A primer in column generation.
Springer, 2005.

[DSD84] J. Desrosiers, F. Soumis, and M. Desrochers. “Routing with time
windows by column generation”. In: Networks 14.4 (1984), pp. 545–
565.

[Dre69] S. E. Dreyfus. “An appraisal of some shortest-path algorithms”. In:
Operations research 17.3 (1969), pp. 395–412.

158

http://dx.doi.org/10.1137/S0036141004402683
http://link.aip.org/link/?SJM/36/1862/1
http://link.aip.org/link/?SJM/36/1862/1

Bibliography

[EOI92] M. Ebihara, A. Ohtsuki, and H. Iwaki. “A model for simulating
human behavior during emergency evacuation based on classificatory
reasoning and certainty value handling”. In: Computer-Aided Civil
and Infrastructure Engineering 7.1 (1992), pp. 63–71.

[Ehr05] M. Ehrgott. Multicriteria Optimization. Second. Springer Berlin /
Heidelberg, 2005.

[Epp92] D. Eppstein. “Parallel recognition of series-parallel graphs”. In: Infor-
mation and Computation 98.1 (1992), pp. 41–55.

[FS03] L. Fleischer and M. Skutella. “Minimum cost flows over time without
intermediate storage”. In: Proceedings of the fourteenth annual ACM-
SIAM symposium on Discrete algorithms. Society for Industrial and
Applied Mathematics. 2003, pp. 66–75.

[FT98] L. Fleischer and É. Tardos. “Efficient continuous-time dynamic net-
work flow algorithms”. In: Operations Research Letters 23.3-5 (1998),
pp. 71–80. issn: 0167-6377.

[FF58] L. R. Ford Jr and D. R. Fulkerson. “Constructing maximal dynamic
flows from static flows”. In: Operations research 6.3 (1958), pp. 419–
433.

[FF62] L. R. Ford and D. R. Fulkerson. Flows in networks. Princeton Prince-
ton University Press, 1962.

[FW04] H. Fu and C. G. Wilmot. “Sequential logit dynamic travel demand
model for hurricane evacuation”. In: Transportation Research Record:
Journal of the Transportation Research Board 1882.1 (2004), pp. 19–
26.

[Gal58] D. Gale. Transient flows in networks. Tech. rep. DTIC Document,
1958.

[GJ02] M. R. Garey and D. S. Johnson. Computers and intractability. Vol. 29.
wh freeman, 2002.

[GDL14] J. B. Gauthier, J. Desrosiers, and M. E. Lübbecke. “Tools for primal
degenerate linear programs”. In: EURO Journal on Transportation
and Logistics.(In press.) (2014).

[Goe+11] S. Goettlich et al. “Evacuation dynamics influenced by spreading haz-
ardous material”. In: Networks and Heterogeneous Media 6.3 (2011),
pp. 443–464.

[GLS81] M. Grötschel, L. Lovász, and A. Schrijver. “The ellipsoid method and
its consequences in combinatorial optimization”. In: Combinatorica
1.2 (1981), pp. 169–197.

[GI14] T. Gschwind and S. Irnich. Dual inequalities for stabilized column
generation revisited. Tech. rep. 2014.

159

Bibliography

[Gur14] I. Gurobi Optimization. Gurobi Optimizer Reference Manual. 2014.
url: http://www.gurobi.com.

[Gur+03] V. Guruswami et al. “Near-optimal hardness results and approxi-
mation algorithms for edge-disjoint paths and related problems”. In:
Journal of Computer and System Sciences 67.3 (2003), pp. 473–496.

[Ham+11] H. W. Hamacher et al. “A sandwich approach for evacuation time
bounds”. In: Pedestrian and Evacuation Dynamics. Springer, 2011,
pp. 503–513.

[Ham+14] H. W. Hamacher et al. Report on the research project „Unterstützung
bei der Katastrophenschutzplanung für kerntechnische Anlagen: Eva-
kuierungsplanung“. 2014.

[HG14] H. W. Hamacher and B. Grün. “Von Straßenkarten bis zur Evakuierung
von Städten!” In: Zukunftsperspektiven des Operations Research. Springer,
2014, pp. 203–226.

[HK00] H. Hamacher and K. Klamroth. Linear and Network Optimization
Problems - Lineare und Netzwerk Optimierungsprobleme. Vieweg,
Braunschweig, 2000.

[HT02] H. Hamacher and S. Tjandra. “Mathematical modelling of evacuation
problems–a state of the art”. In: Pedestrian and Evacuation Dynamics.
Ed. by M. Schreckenberger and S. Sharma. Springer, Berlin, 2002,
pp. 227–266.

[Har+12] T. Hartman et al. “How to split a flow?” In: INFOCOM, 2012 Pro-
ceedings IEEE. IEEE. 2012, pp. 828–836.

[HT86] R. Hassin and A. Tamir. “Efficient algorithms for optimization and
selection on series-parallel graphs”. In: SIAM Journal on Algebraic
Discrete Methods 7.3 (1986), pp. 379–389.

[Has92] R. Hassin. “Approximation schemes for the restricted shortest path
problem”. In: Mathematics of Operations Research 17.1 (1992), pp. 36–
42.

[He91] X. He. “Efficient parallel algorithms for series parallel graphs”. In:
Journal of Algorithms 12.3 (1991), pp. 409–430.

[HY87] X. He and Y. Yesha. “Parallel recognition and decomposition of two
terminal series parallel graphs”. In: Information and Computation
75.1 (1987), pp. 15–38.

[Hei93] K. Heinrich. “Path decomposition”. In: Le Matematiche 47.2 (1993),
pp. 241–258.

[HK] Y. Hendel and W. Kubiak. Decomposition of flow into paths to mini-
mize their length. url: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.87.3760&rep=rep1&type=pdf.

160

http://www.gurobi.com
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.87.3760&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.87.3760&rep=rep1&type=pdf

Bibliography

[Hu63] T. C. Hu. “Multi-commodity network flows”. In: Operations research
11.3 (1963), pp. 344–360.

[IK75] O. H. Ibarra and C. E. Kim. “Fast approximation algorithms for
the knapsack and sum of subset problems”. In: Journal of the ACM
(JACM) 22.4 (1975), pp. 463–468.

[ID05] S. Irnich and G. Desaulniers. Shortest path problems with resource
constraints. Springer, 2005.

[JR82] J. J. Jarvis and H. D. Ratliff. “Note—some equivalent objectives
for dynamic network flow problems”. In: Management Science 28.1
(1982), pp. 106–109.

[JPT14] F. Johansson, A. Peterson, and A. Tapani. “Local performance mea-
sures of pedestrian traffic”. In: Public Transport 6.1-2 (2014), pp. 159–
183.

[Joh85] J. H. Johnson Jr. “A model of evacuation–decision making in a nuclear
reactor emergency”. In: Geographical Review (1985), pp. 405–418.

[JZ86] J. H. Johnson Jr and D. J. Zeigler. “Modelling evacuation behavior
during the Three Mile Island reactor crisis”. In: Socio-Economic
Planning Sciences 20.3 (1986), pp. 165–171.

[Kal12] J. Kallrath. Gemischt-ganzzahlige Optimierung: Modellierung in der
Praxis. Springer, 2012.

[Kar84] N. Karmarkar. “A new polynomial-time algorithm for linear program-
ming”. In: Proceedings of the sixteenth annual ACM symposium on
Theory of computing. ACM. 1984, pp. 302–311.

[Kle96] J. M. Kleinberg. “Single-source unsplittable flow”. In: Foundations of
Computer Science, 1996. Proceedings., 37th Annual Symposium on.
IEEE. 1996, pp. 68–77.

[KW04] B. Klinz and G. J. Woeginger. “Minimum-cost dynamic flows: The
series-parallel case”. In: Networks 43.3 (2004), pp. 153–162.

[Kne+11] A. Kneidl et al. “Bidirectional coupling of macroscopic and microscopic
approaches for pedestrian behavior prediction”. In: Pedestrian and
Evacuation Dynamics. Springer, 2011, pp. 459–470.

[Knö14] D. Knöll. “Konstruktion optimaler dynamischer Flüsse ohne statische
Kreise”. MA thesis. Universität Koblenz–Landau, Oct. 2014.

[KHK11] G. Köster, D. Hartmann, and W. Klein. “Microscopic pedestrian
simulations: From passenger exchange times to regional evacuation”.
In: Operations Research Proceedings 2010. Springer, 2011, pp. 571–
576.

161

Bibliography

[KN09] S. O. Krumke and H. Noltemeier. Graphentheoretische Konzepte und
Algorithmen. Springer-Verlag, 2009.

[Küh10] S. Kühn. “Evacuation Dynamics (Part 2): Continuous Aspects”. Diplo-
marbeit. Technische Universität Kaiserslautern, Oct. 2010.

[Küh14] S. Kühn. “Continuous traffic flow models and their applications”.
PhD thesis. TU Kaiserslautern, 2014.

[KLP75] H.-T. Kung, F. Luccio, and F. P. Preparata. “On finding the maxima
of a set of vectors”. In: J. ACM 22.4 (1975), pp. 469–476.

[LW55] M. J. Lighthill and G. B. Whitham. “On Kinematic Waves. II. A
Theory of Traffic Flow on Long Crowded Roads”. In: Royal Society
of London Proceedings Series A 229 (May 1955), pp. 317–345.

[Lin00] M. K. Lindell. “An overview of protective action decision-making for
a nuclear power plant emergency”. In: Journal of hazardous materials
75.2 (2000), pp. 113–129.

[LP92] M. K. Lindell and R. W. Perry. Behavioral foundations of community
emergency planning. Hemisphere Publishing Corp, 1992.

[MS04] M. Martens and M. Skutella. “Flows on few paths: Algorithms and
lower bounds”. In: Algorithms–ESA 2004. Springer, 2004, pp. 520–531.

[Mar84] E. Q. V. Martins. “On a special class of bicriterion path problems”.
In: European Journal of Operational Research 17.1 (1984), pp. 85–94.

[MD97] E. Q. V. Martins and J. L. E. Dos Santos. “An algorithm for the
quickest path problem”. In: Operations Research Letters 20.4 (1997),
pp. 195–198.

[MG07] J. Matoušek and B. Gärtner. Understanding and using linear pro-
gramming. Vol. 168. Springer, 2007.

[MZ00] K. Mehlhorn and M. Ziegelmann. “Resource constrained shortest
paths”. In: Algorithms-ESA 2000. Springer, 2000, pp. 326–337.

[MP00] D. S. Mileti and L. Peek. “The social psychology of public response to
warnings of a nuclear power plant accident”. In: Journal of Hazardous
Materials 75.2 (2000), pp. 181–194.

[MP04] E. Miller-Hooks and S. S. Patterson. “On solving quickest time prob-
lems in time-dependent, dynamic networks”. In: Journal of Mathe-
matical Modelling and Algorithms 3.1 (2004), pp. 39–71.

[MSS04] R. H. Möhring, M. Skutella, and F. Stork. “Scheduling with AND/OR
precedence constraints”. In: SIAM Journal on Computing 33.2 (2004),
pp. 393–415.

162

Bibliography

[NF12] K. Nagel and G. Flötteröd. “Agent-based traffic assignment: Going
from trips to behavioural travelers”. In: Travel Behaviour Research
in an Evolving World–Selected papers from the 12th international
conference on travel behaviour research. 2012, pp. 261–294.

[NQ82] J. C. Namorado Climaco and E. Queiros Vieira Martins. “A bicrite-
rion shortest path algorithm”. In: European Journal of Operational
Research 11.4 (1982), pp. 399–404.

[NW88] G. L. Nemhauser and L. A. Wolsey. Integer and combinatorial opti-
mization. Vol. 18. Wiley New York, 1988.

[Ohs10] J. P. Ohst. “Evacuation Dynamics (Part 1): Discrete Aspects”. Diplo-
marbeit. Technische Universität Kaiserslautern, Oct. 2010.

[Oka83] H. Okamura. “Multicommodity flows in graphs”. In: Discrete Applied
Mathematics 6.1 (1983), pp. 55–62.

[OR90] A. Orda and R. Rom. “Shortest-path and minimum-delay algorithms
in networks with time-dependent edge-length”. In: Journal of the
ACM (JACM) 37.3 (1990), pp. 607–625.

[Orl84] J. B. Orlin. “Minimum convex cost dynamic network flows”. In:
Mathematics of Operations Research 9.2 (1984), pp. 190–207.

[PRM15] G. Pandey, K. R. Rao, and D. Mohan. “A Review of Cellular Automata
Model for Heterogeneous Traffic Conditions”. In: Traffic and Granular
Flow’13. Springer, 2015, pp. 471–478.

[Pap90] M. Papageorgiou. “Dynamic modeling, assignment, and route guidance
in traffic networks”. In: Transportation Research Part B: Methodolog-
ical 24.6 (1990), pp. 471–495.

[PCC06] M. M. Pascoal, M. E. V. Captivo, and J. C. Clımaco. “A comprehen-
sive survey on the quickest path problem”. In: Annals of Operations
Research 147.1 (2006), pp. 5–21.

[Pin12] M. L. Pinedo. Scheduling: theory, algorithms, and systems. Springer,
2012.

[PM04] M. Pióro and D. Medhi. Routing, flow, and capacity design in com-
munication and computer networks. Elsevier, 2004.

[SSK14] Planning areas for emergency response near nuclear power plants.
Strahlenschutzkommission. Feb. 2014. url: %7Bhttp://www.ssk.de/
SharedDocs/Beratungsergebnisse_PDF/2014/Planungsgebiete_
e.pdf?__blob=publicationFile%7D.

[PC98] W. B. Powell and Z.-L. Chen. “A generalized threshold algorithm for
the shortest path problem with time windows”. In: DIMACS Series
in Discrete Mathematics and Theoretical Computer Science 40 (1998),
pp. 303–318.

163

%7Bhttp://www.ssk.de/SharedDocs/Beratungsergebnisse_PDF/2014/Planungsgebiete_e.pdf?__blob=publicationFile%7D
%7Bhttp://www.ssk.de/SharedDocs/Beratungsergebnisse_PDF/2014/Planungsgebiete_e.pdf?__blob=publicationFile%7D
%7Bhttp://www.ssk.de/SharedDocs/Beratungsergebnisse_PDF/2014/Planungsgebiete_e.pdf?__blob=publicationFile%7D

Bibliography

[RS89] G. O. Rogers and J. H. Sorensen. “Warning and response in two
hazardous materials transportation accidents in the US”. In: Journal
of Hazardous Materials 22.1 (1989), pp. 57–74.

[RS91] G. O. Rogers and J. H. Sorensen. Diffusion of emergency warning:
comparing empirical and simulation results. Springer, 1991.

[Rog+90] G. O. Rogers et al. Evaluating protective actions for chemical agent
emergencies. Federal Emergency Management Agency, 1990.

[RSX91] J. B. Rosen, S.-Z. Sun, and G.-L. Xue. “Algorithms for the quickest
path problem and the enumeration of quickest paths”. In: Computers
& Operations Research 18.6 (1991), pp. 579–584.

[RO88] D. M. Ryan and M. R. Osborne. “On the solution of highly degenerate
linear programmes”. In: Mathematical Programming 41.1-3 (1988),
pp. 385–392.

[Sku02] M. Skutella. “Approximating the single source unsplittable min-cost
flow problem”. In: Mathematical Programming 91.3 (2002), pp. 493–
514.

[Sku09] M. Skutella. “An introduction to network flows over time”. In: Re-
search Trends in Combinatorial Optimization. Springer, 2009, pp. 451–
482.

[Sou91] F. Southworth. “Regional Evacuation Modeling: A State-of-the-Art
Review”. In: ORNL/TAM-11740. Oak Ridge National Laboratory,
Energy Division, Oak Ridge, TN, 1991.

[Sto11] J. M. Stockie. “The mathematics of atmospheric dispersion modeling”.
In: Siam Review 53.2 (2011), pp. 349–372.

[TNS82] K. Takamizawa, T. Nishizeki, and N. Saito. “Linear-time computabil-
ity of combinatorial problems on series-parallel graphs”. In: Journal
of the ACM (JACM) 29.3 (1982), pp. 623–641.

[Tia+14] J. Tian et al. “Cellular Automaton Model with Non-hypothetical
Congested Steady State Reproducing the Three-Phase Traffic Flow
Theory”. In: Cellular Automata. Springer, 2014, pp. 610–619.

[Tja03] S. A. Tjandra. “Dynamic network optimization with application to
the evacuation problem”. PhD thesis. Technische Universität Kaiser-
slautern, 2003.

[TV01] P. Toth and D. Vigo. The vehicle routing problem. Society for Indus-
trial and Applied Mathematics, 2001.

[Val05] J. M. Valério de Carvalho. “Using extra dual cuts to accelerate col-
umn generation”. In: INFORMS Journal on Computing 17.2 (2005),
pp. 175–182.

164

Bibliography

[Vat+08] B. Vatinlen et al. “Simple bounds and greedy algorithms for decom-
posing a flow into a minimal set of paths”. In: European Journal of
Operational Research 185.3 (2008), pp. 1390–1401.

[Woe00] G. J. Woeginger. “When does a dynamic programming formulation
guarantee the existence of a fully polynomial time approximation
scheme (FPTAS)?” In: INFORMS Journal on Computing 12.1 (2000),
pp. 57–74.

[Wu00] N. Wu. “Verkehr auf Schnellstrassen im Fundamentaldiagramm-Ein
neues Modell und seine Anwendungen”. In: Straßenverkehrstechnik
44.8 (2000).

[YY98] G. Yu and J. Yang. “On the Robust Shortest Path Problem”. In:
Computers & Operations Research 25.6 (1998), pp. 457–468.

[ZIK11] F. Zanlungo, T. Ikeda, and T. Kanda. “Social force model with ex-
plicit collision prediction”. In: EPL (Europhysics Letters) 93.6 (2011),
p. 68005.

[ZM93] A. K. Ziliaskopoulos and H. S. Mahmassani. “Time-dependent, shortest-
path algorithm for real-time intelligent vehicle highway system appli-
cations”. In: Transportation research record (1993), pp. 94–94.

165

A. Additional data and figures for
chapters 5 and 6

PF SF Λ (min) Eva. (min)
5 1 0 33.75
5 0.9 0 32.78
5 0.8 0 32.50
5 0.7 0 33.50
5 0.6 0 36.47
5 0.5 0 43.07
5 0.45 0 47.37
5 0.4 0 53.00
5 0.35 0 59.55
5 0.3 0 70.70
5 0.25 0 86.10
5 0.2 0 112.00
5 0.15 0 150.67
5 0.1 0 230.33
5 0.05 0 460.85
3 1 0 47.85
3 0.9 0 45.62
3 0.8 0 44.50
3 0.7 0 44.75
3 0.6 0 47.40
3 0.5 0 56.13
3 0.45 0 61.25
3 0.4 0 68.10
3 0.35 0 78.00
3 0.3 0 93.10
3 0.25 0 115.50
3 0.2 0 161.50
3 0.15 0 215.33
3 0.1 0 323.67

PF SF Λ (min) Evac. (min)
3 0.05 0 633.10
2.5 1 0 54.90
2.5 0.9 0 52.03
2.5 0.8 0 50.50
2.5 0.7 0 50.42
2.5 0.6 0 53.00
2.5 0.5 0 62.67
2.5 0.45 0 68.48
2.5 0.4 0 78.10
2.5 0.35 0 88.05
2.5 0.3 0 108.27
2.5 0.25 0 134.63
2.5 0.2 0 188.75
2.5 0.15 0 251.67
2.5 0.1 0 378.33
2.5 0.05 0 739.70
2 1 0 65.40
2 0.9 0 61.60
2 0.8 0 59.50
2 0.7 0 59.00
2 0.6 0 63.13
2 0.5 0 75.60
2 0.45 0 82.83
2 0.4 0 94.50
2 0.35 0 106.50
2 0.3 0 131.37
2 0.25 0 163.33
2 0.2 0 229.75
2 0.15 0 306.33
2 0.1 0 460.33

167

Appendix A. Additional data and figures for chapters 5 and 6

PF SF Λ (min) Evac. (min)
2 0.05 0 899.60
1.5 1 0 83.10
1.5 0.9 0 77.70
1.5 0.8 0 74.50
1.5 0.7 0 75.58
1.5 0.6 0 81.40
1.5 0.5 0 97.47
1.5 0.45 0 106.75
1.5 0.4 0 121.90
1.5 0.35 0 137.25
1.5 0.3 0 169.63
1.5 0.25 0 211.17
1.5 0.2 0 298.25
1.5 0.15 0 397.67
1.5 0.1 0 597.00
1.5 0.05 0 1166.10
5 1 60 69.60
5 0.9 60 70.12
5 0.8 60 71.50
5 0.7 60 73.33
5 0.6 60 76.33
5 0.5 60 80.40
5 0.45 60 83.07
5 0.4 60 87.00
5 0.35 60 91.05
5 0.3 60 97.30
5 0.25 60 106.17
5 0.2 60 124.00
5 0.15 60 161.67
5 0.1 60 239.67
5 0.05 60 468.00
3 1 60 69.60
3 0.9 60 70.12
3 0.8 60 71.50
3 0.7 60 73.33
3 0.6 60 76.33
3 0.5 60 80.40
3 0.45 60 83.07

PF SF Λ (min) Evac. (min)
3 0.4 60 87.00
3 0.35 60 91.05
3 0.3 60 104.77
3 0.25 60 125.53
3 0.2 60 161.50
3 0.15 60 215.33
3 0.1 60 323.67
3 0.05 60 637.00
2.5 1 60 70.65
2.5 0.9 60 71.75
2.5 0.8 60 73.20
2.5 0.7 60 75.42
2.5 0.6 60 78.13
2.5 0.5 60 81.47
2.5 0.45 60 84.12
2.5 0.4 60 89.10
2.5 0.35 60 98.70
2.5 0.3 60 117.13
2.5 0.25 60 134.63
2.5 0.2 60 188.75
2.5 0.15 60 251.67
2.5 0.1 60 378.33
2.5 0.05 60 743.60
2 1 60 78.15
2 0.9 60 74.67
2 0.8 60 73.20
2 0.7 60 75.42
2 0.6 60 78.13
2 0.5 60 86.00
2 0.45 60 92.75
2 0.4 60 103.90
2 0.35 60 115.20
2 0.3 60 131.37
2 0.25 60 163.33
2 0.2 60 229.75
2 0.15 60 306.33
2 0.1 60 460.33
2 0.05 60 902.85

168

PF SF Λ (min) Evac. (min)
1.5 1 60 94.35
1.5 0.9 60 89.25
1.5 0.8 60 86.40
1.5 0.7 60 85.92
1.5 0.6 60 91.27
1.5 0.5 60 106.40
1.5 0.45 60 115.27
1.5 0.4 60 130.00
1.5 0.35 60 145.05
1.5 0.3 60 169.63
1.5 0.25 60 211.17
1.5 0.2 60 298.25
1.5 0.15 60 397.67
1.5 0.1 60 597.00
1.5 0.05 60 1169.35
5 1 120 110.70
5 0.9 120 111.88
5 0.8 120 113.30
5 0.7 120 115.50
5 0.6 120 118.20
5 0.5 120 121.60
5 0.45 120 124.25
5 0.4 120 127.30
5 0.35 120 131.10
5 0.3 120 137.43
5 0.25 120 146.30
5 0.2 120 158.25
5 0.15 120 186.33
5 0.1 120 263.67
5 0.05 120 491.40
3 1 120 114.75
3 0.9 120 115.27
3 0.8 120 116.60
3 0.7 120 118.42
3 0.6 120 121.33
3 0.5 120 125.47
3 0.45 120 128.10
3 0.4 120 132.00

PF SF Λ (min) Evac. (min)
3 0.35 120 136.05
3 0.3 120 142.33
3 0.25 120 151.20
3 0.2 120 192.50
3 0.15 120 244.67
3 0.1 120 351.00
3 0.05 120 658.45
2.5 1 120 114.75
2.5 0.9 120 115.27
2.5 0.8 120 116.60
2.5 0.7 120 118.42
2.5 0.6 120 121.33
2.5 0.5 120 125.47
2.5 0.45 120 128.10
2.5 0.4 120 132.00
2.5 0.35 120 136.05
2.5 0.3 120 142.33
2.5 0.25 120 166.37
2.5 0.2 120 218.75
2.5 0.15 120 280.33
2.5 0.1 120 405.00
2.5 0.05 120 763.75
2 1 120 114.75
2 0.9 120 115.27
2 0.8 120 116.60
2 0.7 120 118.42
2 0.6 120 121.33
2 0.5 120 125.47
2 0.45 120 128.10
2 0.4 120 132.00
2 0.35 120 139.95
2 0.3 120 163.10
2 0.25 120 194.13
2 0.2 120 229.75
2 0.15 120 306.33
2 0.1 120 460.33
2 0.05 120 899.60
1.5 1 120 119.55

169

Appendix A. Additional data and figures for chapters 5 and 6

PF SF Λ (min) Evac. (min)
1.5 0.9 120 115.27
1.5 0.8 120 116.60
1.5 0.7 120 118.42
1.5 0.6 120 121.33
1.5 0.5 120 131.07
1.5 0.45 120 139.77
1.5 0.4 120 153.90
1.5 0.35 120 168.60
1.5 0.3 120 200.20
1.5 0.25 120 211.17
1.5 0.2 120 298.25
1.5 0.15 120 397.67
1.5 0.1 120 597.00
1.5 0.05 120 1188.85

Table A.1.: Evacuation times for the 225
scenarios considered for this
thesis.

170

Figure A.1.: Network of the 20 km evacuation zone. Sources are marked red sinks
are marked green.

171

Appendix A. Additional data and figures for chapters 5 and 6

Figure A.2.: Heat map of evacuation times for immediate departure

Figure A.3.: Heat map of evacuation times for Λ = 1h

172

Figure A.4.: Heat map of evacuation times for Λ = 2h

173

Appendix A. Additional data and figures for chapters 5 and 6

Figure A.5.: Partitioning the sinks into evacuation zones.

174

Curriculum Vitae

Jan Peter Ohst

Personal Information

Date of Birth December 23, 1984

Place of Birth Ludwigshafen am Rhein, Germany

Education

since 01/2012 Research assistant,
Department of Mathematics, University of Koblenz-Landau

07/2011–01/2012 Research assistant,
Department of Mathematics, University of Kaiserslautern

01/2011–06/2011 Scientific assistant,
IceLab, Umeå University (Sweden)

10/2010 Diploma in Mathematics with S.Ruzika
Diploma Thesis: Evacuation Dynamics (Part one): Discrete
Aspects

02/2010 Diploma in Physics with S. Eggert
Diploma Thesis: Interacting quantum wires with inhomoge-
neous parameters

04/2004 – 10/2010 Studies in Mathematics and Physics
University of Kaiserslautern (Germany)

03/2004 Abitur at Theodor-Heuss-Gymnasium,
Ludwigshafen am Rhein (Germany)

1995 – 03/2004 High school, Theodor-Heuss-Gymnasium,
Ludwigshafen am Rhein (Germany)

Wissenschaftlicher und
beruflicher Werdegang

Jan Peter Ohst

Persönliche Daten

Geburtstag 23. Dezember 1984

Geburtsort Ludwigshafen am Rhein, Deutschland

Ausbildung

seit 01/2012 Wissenschaftlicher Mitarbeiter,
Fachbereich 3, Universität Koblenz-Landau

07/2011–01/2012 Wissenschaftlicher Mitarbeiter,
Fachbereich Mathematik, Universität Kaiserslautern

01/2011–06/2011 Scientific assistant,
IceLab, Umeå University (Sweden)

10/2010 Diplom in Mathematik bei S.Ruzika
Diplomarbeit: Evacuation Dynamics (Part one): Discrete
Aspects

02/2010 Diplom in Physik bei S. Eggert
Diplomarbeit: Interacting quantum wires with inhomogeneous
parameters

04/2004 – 10/2010 Studium der Phyisk und Mathematik
Universität Kaiserslautern

03/2004 Abitur am Theodor-Heuss-Gymnasium,
Ludwigshafen am Rhein

1995 – 03/2004 Gymnasium, Theodor-Heuss-Gymnasium,
Ludwigshafen am Rhein

	Introduction
	Preliminaries
	Linear programming
	Concepts from graph theory and network optimization
	Graphs and flows over time
	Multi-objective optimization

	The flow-decomposition problem
	Problem structure and theoretical analysis
	The set of flow-decompositions
	Previous and related work
	Flow-decomposition minimizing the longest path (SLP)
	Solving SLP
	Decomposition problems and their applications
	Conclusion

	Approximation algorithms for SLP
	FPTAS
	Local search
	Matching paths
	Scheduling with restrictions
	Computational results on pearl graphs
	Conclusion

	Construction and analysis of evacuation models using flows over time
	Evacuation of a nuclear power plant - A flow over time model
	Generating a network over time
	Simplifying the network
	Generating time-dependent supply values
	Quickest path with time-dependent supply values
	Conclusion

	Evacuation of a nuclear power plant critical zone - Data analysis
	Analysis of evacuation times
	Allocation to target regions
	Usage of roads
	Conclusion

	Evacuation including a dynamic cost function
	Computing optimal evacuation paths
	Computational study
	Conclusion

	Additional data and figures for chapters 5 and 6

