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Probability Propagation Nets
Kurt Lautenbach, Alexander Pinl∗

Abstract—A class of high level Petri nets, called ”probability
propagation nets”, is introduced which is particularly useful
for modeling probability and evidence propagation. These nets
themselves are well suited to represent the probabilistic Horn
abduction, whereas specific foldings of them will be used for
representing the flows of probabilities and likelihoods in Bayesian
networks.

Index Terms—Bayes procedures, Horn clauses, Petri nets,
Probability, Propagation, Stochastic logic.

I. INTRODUCTION

THIS paper deals with the propagation of probabilities in
Petri nets (PNs). That means, first of all, it is a paper

about PNs and their ability to represent the dynamic in logical-
probabilistic structures.

By far most of the papers about PNs and probabilities are
about transitions whose duration is governed by a probability
distribution. In contrast to that, we will introduce a class
of PNs, called ”Probability Propagation Nets” (PPNs), for
developing transparent and well structured models in which
probabilities are propagated, for example as decision aids or
degrees of risk.

We will try out the modeling power of our approach
by means of the probabilistic Horn abduction [1]–[3] and
Bayesian networks (BNs) [4]. In doing so, we will avoid
to give the impression that we are going to improve these
approaches. However, using PNs means to work with one of
the most famous modeling tools. So the outcome might have
positive facets. We think, for example, that our approach is
very transparent and structured in a ”natural” way. Moreover,
PNs for propagating probabilities can be combined or mixed
with other types of PNs, for example with representations of
biological, medical or technical systems. We think, that this is
a very important aspect for the development of tools.

Different from some existing approaches on combining BNs
and PNs (e.g. [5], [6]), we introduce step by step new PNs
that are particularly well suited for our intentions: they are
transparent and structured.

First, we modify the p/t-nets for representing logical in-
ference [7] by inscribing tokens and arcs with probabilities.
These nets, the PPNs, allow to represent stochastic inference
and probabilistic Horn abduction.

Second, foldings of these nets reduce the net structure and
allow the representation of BNs. Fortunately, the inscriptions
and the firing rule remain clear.

In spite of the considerable complexity, the PNs are of man-
ageable size. A particular advantage is that all the propagation
processes are represented by t-invariants (because of the 0-
reproducibility of the propagations) and that the t-invariants
can be calculated in the underlying p/t-nets.

∗ A. Pinl is supported by the DFG under grant LA 1042/7-2.

Our paper is organized as follows. Section II comprises
that part of PN theory which is needed for the subsequent
sections. In section III PPNs are introduced on the basis of a
PN representation of Horn formulas. The probabilistic Horn
abduction is used to exemplify the modeling power of PPNs.
Section IV addresses higher PPNs as foldings of PPNs. Here,
BNs are used to demonstrate the modeling ability. This is
continued in section V by means of popular examples. Section
VI and an appendix conclude the paper.

II. PRELIMINARIES

Definition 1 1) A place/transition net (p/t-net) is a quadru-
ple N = (S, T, F,W ) where

(a) S and T are finite, non empty, and disjoint sets. S
is the set of places (in the figures represented by
circles). T is the set of transitions (in the figures
represented by boxes).

(b) F ⊆ (S × T ) ∪ (T × S) is the set of directed arcs.
(c) W : F → N \ {0} assigns a weight to every arc. In

case of W : F → {1}, we will write N = (S, T, F )
as an abridgment.

2) The preset (postset) of a node x ∈ S ∪ T is defined as
·x = {y ∈ S ∪ T | (y, x) ∈ F} (x· = {y ∈ S ∪ T |
(x, y) ∈ F}).
The preset (postset) of a set H ⊆ S∪T is ·H =

⋃
x∈H ·x

(H· =
⋃

x∈H x·).
For all x ∈ S ∪ T it is assumed that |·x| + |x·| ≥ 1
holds; i.e. there are no isolated nodes.

3) A place p (transition t) is shared iff |·p| ≥ 2 or |p·| ≥ 2
(|·t| ≥ 2 or |t·| ≥ 2).

4) A place p is an input (output) boundary place iff ·p = ∅
(p· = ∅).

5) A transition t is an input (output) boundary transition iff
·t = ∅ (t· = ∅).

Definition 2 Let N = (S, T, F,W ) be a p/t-net.

1) A marking of N is a mapping M : S → N. M(p)
indicates the number of tokens on p under M . p ∈ S is
marked by M iff M(p) ≥ 1. H ⊆ S is marked by M iff
at least one place p ∈ H is marked by M . Otherwise p
and H are unmarked, respectively.

2) A transition t ∈ T is enabled by M , in symbols M [t〉,
iff

∀p ∈ ·t : M(p) ≥ W ((p, t)).

3) If M [t〉, the transition t may fire or occur, thus leading
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to a new marking M ′, in symbols M [t〉M ′, with

M ′(p) :=
M(p)−W ((p, t)) if p ∈ ·t \ t·
M(p) + W ((t, p)) if p ∈ t· \ ·t
M(p)−W ((p, t)) + W ((t, p)) if p ∈ ·t ∩ t·
M(p) otherwise

for all p ∈ S.
4) The set of all markings reachable from a marking M0,

in symbols [M0〉, is the smallest set such that

M0 ∈ [M0〉
M ∈ [M0〉 ∧M [t〉M ′ ⇒ M ′ ∈ [M0〉.

[M0〉 is also called the set of follower markings of M0.
5) σ = t1 . . . tn is a firing sequence or occurrence sequence

for transitions t1, . . . , tn ∈ T iff there exist markings
M0,M1, . . . ,Mn such that

M0[t1〉M1[t2〉 . . . [tn〉Mn holds;

in short M0[σ〉Mn. M0[σ〉 denotes that σ starts from
M0. The firing count σ̄(t) of t in σ indicates how often
t occurs in σ. The (column) vector of firing counts is
denoted by σ̄.

6) The pair (N ,M0) for some marking M0 of N is a p/t-
system or a marked p/t-net. M0 is the initial marking.

7) A marking M ∈ [M0〉 is reproducible iff there exists a
marking M ′ ∈ [M〉,M ′ 6= M s.t. M ∈ [M ′〉.

8) Moreover, the p-column-vector 0 stands for the empty
marking. A p/t-net is 0-reproducing iff there exists a
firing sequence ϕ such that 0[ϕ〉0. A transition t is 0-
firable iff t can be enabled by some follower marking of
0.

Definition 3 Let N = (S, T, F,W ) be a p/t-net;
1) N is pure iff 6 ∃(x, y) ∈ (S × T ) ∪ (T × S) : (x, y) ∈

F ∧ (y, x) ∈ F .
2) A place vector (|S|-vector) is a column vector υ : S → Z

indexed by S.
3) A transition vector (|T |-vector) is a column vector ω :

T → Z indexed by T .
4) The incidence matrix of N is a matrix [N ] : S×T → Z

indexed by S and T such that

[N ](p, t) =
−W ((p, t)) if p ∈ ·t \ t·
W ((t, p)) if p ∈ t· \ ·t
−W ((p, t)) + W ((t, p)) if p ∈ ·t ∩ t·
0 otherwise.

υt and At are the transposes of a vector υ and a matrix A,
respectively. The columns of [N ] are |S|-vectors, the rows of
[N ] are transposes of |T |-vectors. Markings are representable
as |S|-vectors, firing count vectors as |T |-vectors.

Definition 4 Let I be a place vector and J a transition vector
of N = (S, T, F,W ).

1) I is a place invariant (p-invariant) iff I 6= 0 and It ·
[N ] = 0t

2) J is a transition invariant (t-invariant) iff J 6= 0 and
[N ] · J = 0

3) ‖I‖ = {p ∈ S | I(p) 6= 0} and ‖J‖ = {t ∈ T | J(t) 6=
0} are the supports of I and J , respectively.

4) A p-invariant I (t-invariant J) is
• non-negative iff ∀p ∈ S : I(p) ≥ 0 (∀t ∈ T : J(t) ≥

0)
• positive iff ∀p ∈ S : I(p) > 0 (∀t ∈ T : J(t) > 0)
• minimal iff I (J) is non-negative

and 6 ∃ p-invariant I ′ : ‖I ′‖  ‖I‖ (6 ∃ t-invariant
J ′ : ‖J ′‖  ‖J‖)
and the greatest common divisor of all entries of I
(J) is 1.

5) The net representation NI = (SI , TI , FI ,WI) of a p-
invariant I is defined by

SI := ‖I‖
TI := ·SI ∪ SI·
FI := F ∩ ((SI × TI) ∪ (TI × SI))

WI is the restriction of W to FI .

6) The net representation NJ = (SJ , TJ , FJ ,WJ) of a t-
invariant J is defined by

TJ := ‖J‖
SJ := ·TJ ∪ TJ·
FJ := F ∩ ((SJ × TJ) ∪ (TJ × SJ))

WJ is the restriction of W to FJ .

7) N is covered by a p-invariant I (t-invariant J) iff ∀p ∈
S : I(p) 6= 0 (∀t ∈ T : J(t) 6= 0).

Proposition 1 Let (N ,M0) be a p/t-system, I a p-invariant;
then

∀M ∈ [M0〉 : It ·M = It ·M0.

Proposition 2 Let (N ,M0) be a p/t-system, M1 ∈ [M0〉
a follower marking of M0, and σ a firing sequence that
reproduces M1 : M1[σ〉M1; then the firing count vector σ̄
of σ is a t-invariant.

Definition 5 Let N = (S, T, F,W ) be a p/t-net, M0 a
marking of N , and r ≥ 0 a |T |-vector; r is realizable in
(N ,M0) iff there exists a firing sequence σ with M0[σ〉 and
σ̄ = r.

Proposition 3 Let N = (S, T, F,W ) be a p/t-net, M1 and
M2 markings of N , and σ a firing sequence s.t. M1[σ〉M2;
then the linear relation

M1 + [N ]σ̄ = M2 holds.

In the above linear relation, the state equation, the order of
transition firings is lost.
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Definition 6 (Natural Multiset) Let A be a non-empty set;
• m : A → N is a natural multiset over A;
• M(A) is the set of all natural multisets over A.

III. PROBABILITY PROPAGATION NETS

In this section, we introduce probability propagation
nets (PPNs) which are a ”probabilistic extension” of
place/transition nets representing logical formulas (see [7],
[8]). Starting with the canonical net representation of Horn
formulas in conjunctive normal form, we enrich these formulas
by probabilities as in probabilistic Horn abduction [1]–[3].
After that, we introduce an appropriate extension of the
canonical (Petri) net representation modeling Horn formulas.
The resulting PNs are called ”probability propagation nets”.

The transformation of a logical Horn formula into the
canonical net representation is detailedly described in [7]. In
order to give a short summary and to introduce the relevant
terms, we stick to an example.

Definition 7 Let τ = ¬a1 ∨ · · · ∨ ¬am ∨ b1 ∨ · · · ∨ bn be a
clause;
in set notation: τ = ¬A ∪B for ¬A = {¬a1, . . . ,¬am} and
B = {b1, . . . , bn};
• τ is a fact clause iff ¬A = ∅,
• τ is a goal clause iff B = ∅,
• τ is a rule clause iff ¬A 6= ∅ ∧B 6= ∅,
• τ is a Horn clause iff |B| ≤ 1.
Let α be a conjunction of clauses, i.e. α is a conjunctive

normal form (CNF) formula;
• A(α) denotes the set of atoms of α,
• C(α) denotes the set of clauses of α,
• F(α) denotes the set of fact clauses of α,
• G(α) denotes the set of goal clauses of α,
• R(α) := C(α) \ (F(α) ∪ G(α)) denotes the set of rule

clauses of α;
α is a Horn formula iff its clauses are Horn clauses.

Definition 8 (Canonical Net Representation) Let α be a
CNF -formula and let Nα = (Sα, Tα, Fα) be a p/t-net;
Nα is the canonical p/t-net representation of α iff
• Sα = A(α) (set of atoms of α) and Tα = C(α) (set of

clauses of α)
• for all τ = ¬a1 ∨ · · · ∨ ¬am ∨ b1 ∨ · · · ∨ bn ∈ C(α),

where {a1, . . . , am, b1, . . . , bn} ⊆ A(α), Fα is deter-
mined by
·τ = {a1, . . . , am}, τ· = {b1, . . . , bn}, i.e. the atoms
a1, . . . , am which are negated in the clause τ are the
input places, the non-negated atoms b1, . . . , bn are the
output places of the transition τ .

The transition τ is called fact (goal, rule) transition iff the
clause τ is a fact (goal, rule) clause.

Remark 1
In non-canonical p/t-net representations, Sα contains negated
atoms (see [7]).

TABLE I
HORN CLAUSES OF EXAMPLE 1

1 ¬nolo ∨ ¬igno ∨ acno
2 ¬nolo ∨ ¬igir ∨ acno
3 ¬nolo ∨ ¬igno ∨ acde
4 ¬nolo ∨ ¬igir ∨ acde
5 ¬lo ∨ ¬igno ∨ acno
6 ¬lo ∨ ¬igir ∨ acno
7 ¬lo ∨ ¬igno ∨ acde
8 ¬lo ∨ ¬igir ∨ acde
9 ¬nolo ∨ owof

10 ¬lo ∨ owof
11 ¬nolo ∨ owon
12 ¬lo ∨ owon


R(α)

13 igno
14 igir
15 nolo
16 lo

}
F(α)

17 ¬acno
18 ¬acde
19 ¬owof
20 ¬owon

}
G(α)

Theorem 1 Let α be a Horn formula and let Nα =
(Sα, Tα, Fα) be its canonical p/t-representation; then the fol-
lowing statements are equivalent:
(1) α is contradictory.
(2) Nα is 0-reproducing.
(3) Nα has a t-invariant R ≥ 0 with R(g) > 0 for some goal

transition g.
(4) In Nα a goal transition g is 0-firable.
(5) In Nα there exists a set Y of reverse paths from a goal

transition to fact transitions such that with any transition
t of a path of Y its incidenting places p ∈ ·t ∪ t· are
nodes of a path of Y , too.

Proof: See [7].

Example 1 (cf. [3])
Let α be the Horn formula that is the conjunction of the clauses
given in Table I where the atoms are lo (lack of oil), nolo (no
lack of oil), igir (ignition irregular), igno (ignition normal),
owon (oil warning lamp on), owof (oil warning lamp off),
acde (acceleration delayed), and acno (acceleration normal).

Fig. 1 shows the canonical net representation Nα of α (see
Definition 8).

Definition 9 Let α be a Horn formula, let H ⊆ F(α) be
a set of fact clauses called the ”assumable hypotheses”, let
be E ⊆ H, R ⊆ R(α) ∪ (F(α) \ E), let ε =

∧
ϕ∈E ϕ,

% =
∧

κ∈R κ be the corresponding Horn formulas, let γ =
¬g1 ∨ · · · ∨ ¬gm, γ ∈ G(α) be a goal clause; then ε is an
explanation (diagnosis) of ¬γ = g1 ∧ · · · ∧ gm iff

• ¬γ = g1∧· · ·∧gm is a logical consequence of ε∧% and
• ε ∧ % is not contradictory.

Remark 2
A minimal t-invariant of Nα has only one goal transition g,
because α is a Horn formula.

Example 2
The t-invariants of Nα (see Fig. 1 and Table II) are 0-
reproducing, which can easily be verified by simulation. There
are four t-invariants passing through t18 = ¬acde (for which
I(t18) > 0 holds), namely I5, I6, I7, I8.

According to theorem 1 ((3), (2), (1)), in the net representa-
tion of all these t-invariants (regarded as single canonical net

3
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Fig. 1. Nα of Example 1

TABLE II
T-INVARIANTS OF Nα (EXAMPLE 1)

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
t13

igno
t14
igir

t15
nolo

t16
lo

t17
¬acno

t18
¬acde

t19
¬owof

t20
¬owon

I1 1 1 1 1
I2 1 1 1 1
I3 1 1 1 1
I4 1 1 1 1
I5 1 1 1 1
I6 1 1 1 1
I7 1 1 1 1
I8 1 1 1 1
I9 1 1 1
I10 1 1 1
I11 1 1 1
I12 1 1 1

representations), acde is a logical consequence of the other
clauses. For example I7:

γ7 = t18 = ¬acde

ε7 = {t16, t14} = {lo, igir} = lo ∧ igir

%7 = t8 = ¬lo ∨ ¬igir ∨ acde = lo ∧ igir → acde

so, ¬γ7 = acde is a logical consequence of ε7 ∧ %7.
Moreover, ε7∧%7 is not contradictory since in its canonical

net representation t18 is missing such that the empty marking
0 is not reproducible (see theorem 1). So ε7 is an explanation
of ¬γ7 = acde.

Alltogether,

ε5 = {lo, igno} = lo ∧ igno

ε6 = {nolo, igno} = nolo ∧ igno

ε7 = {lo, igir} = lo ∧ igir

ε8 = {nolo, igir} = nolo ∧ igir

are the explanations of acde.

Definition 10 Let α be a Horn formula and Pα : C(α) →
[0, 1] a real function, called a probability function of α;

let H ⊆ F(α) be a set of fact clauses; let {D1, . . . , Dn} be
a partition of H (i.e. Di ∩Dj = ∅ for i 6= j,

⋃n
i=1 Di = H)

where for all Di, 1 ≤ i ≤ n,
∑

ϕ∈Di
Pα(ϕ) = 1;

then the sets D1, . . . , Dn are called disjoint classes;
let be Pα(γ) := 1 for all goal clauses γ ∈ G(α), let be

E ⊆ H , R ⊆ R(α) ∪ F(α), γ ∈ G(α) and let ε =
∧

ϕ∈E ϕ,
% =

∧
κ∈R κ be the corresponding Horn formulas, where ε is

an explanation (diagnosis) of ¬γ.
The probability of ε is given by Pα(ε∧ %). The problem to

find explanations is the probabilistic Horn abduction (PHA).
Let furthermore I be a t-invariant of the canonical net repre-

sentation Nα of α such that I performs the 0-reproduction, in-
duced by ε∧%∧γ being contradictory; then

∏
t∈‖I‖\{γ} Pα(t)

equals the probabilities of ε and of ¬γ w.r.t. I .

Remark 3
The atoms of α are now to be interpreted as random variables.
The atoms of the fact clauses in a disjoint class D form
together with Pα a finite probability space.

Remark 4
For interpreting the probability function Pα, let τ = ¬a1 ∨
· · · ∨ ¬am ∨ b be a Horn clause of α where ¬A =
{¬a1, . . . ,¬am}, B = {b}:
• if τ is a fact clause (τ ∈ F(α),¬A = ∅, B 6= ∅), Pα(τ)

is the prior probability P (b) of b,

4
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TABLE III
PROBABILITY FUNCTION Pα OF EXAMPLE 3

transition t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20
Pα 1.0 0.4 0.0 0.6 0.2 0.0 0.8 1.0 1.0 0.0 0.0 1.0 0.9 0.1 0.6 0.4 1.0 1.0 1.0 1.0

Disjoint class D1 D1 D2 D2

• if τ is a rule clause (τ ∈ R(α),¬A 6= ∅, B 6= ∅), Pα(τ)
is the conditional probability P (b | a1, . . . , am) of b given
a1, . . . , am,

• if τ is a goal clause (τ ∈ G(α),¬A 6= ∅, B = ∅), the
value of Pα(τ) is not relevant for any calculation;
from a logical point of view, the value 0 is justified
because every 0-reproduction is an indirect proof and
results in a contradiction; the value 1 (see Definition 10)
is a very handy compromise.

Example 3 (see Examples 1 and 2)
The probability function Pα with two disjoint classes is shown
in Table III. We want to calculate the probabilities of acde and
its explanations. There are four t-invariants passing through
t18 = ¬acde: {Ii | 1 ≤ i ≤ 12, Ii(t18) 6= 0} = {I5, I6, I7, I8}
(see Table II). The explanations of acde are εi = ‖Ii‖ ∩
F(α) for 5 ≤ i ≤ 8:

ε5 = {lo, igno} = lo ∧ igno

ε6 = {nolo, igno} = nolo ∧ igno

ε7 = {lo, igir} = lo ∧ igir

ε8 = {nolo, igir} = nolo ∧ igir

In simple cases like this one, or if it is not necessary to watch
the simulation of the (net representation of the) t-invariants,
we calculate immediately:

P (εi) =
∏

t∈‖Ii‖ Pα(t)
(Please note that for the goal transitions Pα(t) = 1.0 holds.)

P (ε5) = 0.9 · 0.4 · 0.8 · 1.0 = 0.288 (max.)
P (ε6) = 0.9 · 0.6 · 0.0 · 1.0 = 0.0
P (ε7) = 0.1 · 0.4 · 1 · 1.0 = 0.04
P (ε8) = 0.1 · 0.6 · 0.6 · 1.0 = 0.036

P (acde) sums up to 0.364. In case of simulating the four
t-invariants, transition t18 (acceleration delayed) would fire for
ad = 0.288, 0, 0.04, and 0.036.

In order to combine the probability aspects with the propa-
gation abilities of PNs, we introduce a new class of nets in two
steps. Fig. 2(a) shows the net representation of t-invariant I5.
For the calculation of P (ε5) it would be convenient to have
the following sequence of markings:

1) M with M(lo) = M(igno) = M(acde) = ∅ (empty
marking)

2) M ′(lo) = (P (lo)) = (Pα(t16)) = (0.4);
M ′(igno) = (P (igno)) = (Pα(t13)) = (0.9);
M ′(acde) = ∅ after one subsequent firing of t16 and
t13

3) M ′′(lo) = M ′′(igno) = ∅
M ′′(acde) = (P (ε5)) = (P (lo)·P (igno)·P (acde | lo∧
igno)) = (0.4 ·0.9 ·Pα(t7)) = (0.4 ·0.9 ·0.8) = (0.288)
after one subsequent firing of t7

(a) (b)

Fig. 2. Invariant I5 of Example 4

(a) (b) (c)

Fig. 3. Arc Label Function Types for a PPN (see Definition 11)

4) M ′′′ = M (empty marking) after one subsequent firing
of t18.

To get all that in accordance with the notation of a suitable
higher level PN (predicate/transition net notation in this case)
we have to complete the net as shown in Fig. 2(b).

Definition 11 (Probability Propagation Net, PPN) Let α
be a Horn formula and τ = ¬a1 ∨ · · · ∨ ¬am ∨ b a Horn
clause of α with ¬A = {¬a1, . . . ,¬am}, B = {b};
PNα = (Sα, Tα, Fα, Pα, Lα) is a probability propagation net
(PPN) for α iff
• Nα = (Sα, Tα, Fα) is the canonical net representation of

α,
• Pα is a probability function for α,
• Lα is an arc label function for α where for τ the following

holds:
– if τ is a fact clause (τ ∈ F(α),¬A = ∅, B 6= ∅),

Lα(τ, b) = (Pα(τ)), (τ, b) ∈ Fα (see Fig. 3(a))
– if τ is a rule clause (τ ∈ R(α),¬A 6= ∅, B 6= ∅),

Lα(ai, τ) = (ξi) for 1 ≤ i ≤ m
Lα(τ, b) = (ξ1 · · · ξm · Pα(τ))

5
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where the ξi are variables ranging over [0, 1] (see
Fig. 3(b))

– if τ is a goal clause (τ ∈ G(α),¬A 6= ∅, B = ∅)
Lα(ai, τ) = (ξi) for 1 ≤ i ≤ m (see Fig. 3(c)).

Definition 12 (PPN Marking) Let α be a Horn formula and
PNα = (Sα, Tα, Fα, Pα, Lα) a PPN for α; let W be a finite
subset of [0, 1], and let (W ) := {(w) | w ∈ W} be the
corresponding set of 1-tuples; let be τ ∈ Tα with ·τ =
{s1, . . . , sm}, τ· = {sm+1} (i.e. τ = ¬s1∨· · ·∨¬sm∨sm+1);
then M : Sα →M((W )) is a marking of PNα ;

τ is enabled by M for {(w1), . . . , (wm)} iff (w1) ∈
M(s1), . . . , (wm) ∈ M(sm),

the follower marking M ′ of M after one firing of τ for
{(w1), . . . , (wm)} is given by

M ′(s1) = M(s1)− (w1),
...

M ′(sm) = M(sm)− (wm),
M ′(sm+1) = M(sm+1) + (w1 · w2 . . . wm · Pα(τ));

if (ξ1), . . . , (ξm) are the arc labels of (s1, τ), . . . , (sm, τ) ∈
Fα, we may write

M ′(s1) = M(s1)− (ξ1), . . . ,M ′(sm) = M(sm)− (ξm),
M ′(sm+1) = M(sm+1) + (ξ1 . . . ξm · Pα(τ)),

if the ξi are bound by the corresponding wi, 1 ≤ i ≤ m.

Example 4 (see Example 3)
The net PNα of Fig. 4 is the PPN that combines the net Nα of
Fig. 1 and the probabilities of Table III.

The probabilities of Example 3 will now be calculated by
simulating the t-invariants I5, I6, I7, I8. For example, simulat-
ing I5 yields the maximal probability P (ε5) = 0.288. Firing
t13 and t16 yields tuples (0.9) and (0.4) on places igno and
lo, respectively. Firing t7 takes away these tuples and puts the
tuple (0.4 · 0.9 · 0.8) = (0.288) on place acde, from where it
is taken away by t18 — such completing the reproduction of
the empty marking by simulating I5.

A major problem, the ”loopiness”, arises from the fact that
the conjunction operator ∧ is idempotent (a ∧ a = a), but
the corresponding product of probabilities is not idempotent
in general:

P (a) · P (a)

{
= P (a) if P (a) = 1 or P (a) = 0
6= P (a) else

The following example shows a case of loopiness and a
method to get over that difficulty.

Example 5 (see Example 4)
We want to calculate the probability of acde∧owon. For that,
we modify the PPN of Fig. 4 in several steps:
• transitions (goal clauses) t18 = ¬acde and t20 = ¬owon

are unified to one transition (goal clause) t20 = ¬acde∨
¬owon = ¬(acde ∧ owon);

Fig. 5. PNα
′ of Example 5

TABLE IV
T-INVARIANTS OF PNα

′ (EXAMPLE 5)

t5 t7 t8 t12
t13

igno
t14
igir

t16
lo

t20
¬owon

I2 1 1 1 2 1
I3 1 1 1 2 1

• the transitions t19 = ¬owof and t17 = ¬acno are
omitted because they are not needed any more; as a con-
sequence, also t9, t10, t1, t2, t5, t6 are no longer needed.

• all t-invariants with transitions t, where Pα(t) = 0, are
omitted: t11, t3;

• t15 and t4 are omitted because the only t-invariant they
belong to contains a factual contradiction: t16 (lack of
oil) and t15 (no lack of oil).

The result is the PPN PNα
′ shown in Fig. 5. From a

structural point of view, this net is well suited for solving
our problem because its set of t-invariants (see Table IV) is
reduced to the relevant ones. From a probabilistic point of
view, we first of all have to note that the net is loopy. On the
other hand, the net is optimal to apply Pearls’s conditioning
method [4]. In contrast to his technique to cut the loops, we
do not need to cut the net because of the t-invariant structure
that forces to fire t16 twice in both t-invariants (see Table IV).
This, in principle, leads to a double effect of (lo) when t20 fires
(via owon and via acde). For Lα(t16, lo) = (P (t16)) = (1.0),
however, this effect is neutralized. So, by simulating or simply
multiplying the probabilities, we get for the t-invariants the
following temporary values:

I1 :Pα(t16)2 · Pα(t14) · Pα(t12) · Pα(t8) · Pα(t20) = 0.1

I2 :Pα(t16)2 · Pα(t13) · Pα(t12) · Pα(t7) · Pα(t20) = 0.72

Finally, both values have to be multiplied by the weight 0.4
which is the original value of Pα(t16):

P (acde ∧ owon) = 0.04 w.r.t. I1

P (acde ∧ owon) = 0.288 w.r.t. I2

6
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Fig. 4. PNα of Example 4

Example 6 (see Examples 3 and 4)

Fig. 6. FPNα of Example 6

These values are also the probabilities for the two explana-
tions:

ε1 : {lo, igir} = lo ∧ igir, P (ε1) = 0.04
ε2 : {lo, igno} = lo ∧ igno, P (ε2) = 0.288.

Finally, P (acde ∧ owon) = 0.04 + 0.288 = 0.328.

For the representation of BNs, foldings of PPNs are appro-
priate. Since we do not need the formal definition, we will be
content with an example.

The higher PPN FPNα shown in Fig. 6 is a folding of the
PPN PNα depicted in Fig. 4. The variable mapping of the
folding is shown in Table V. Let’s assume that the initial
marking M0 is the empty marking. After firing of tlo and tii,

TABLE V
VARIABLE MAPPING OF THE FOLDED NET

PNα FPNα

lo, nolo lo
igir, igno ii

owon, owof owon
acde, acno ad

t16, t15 tlo
t14, t13 tii
t20, t19 towon

t18, t17 tad

t1, . . . , t8 tr1
t9, . . . , t12 tr2

the marking changed into M1 with

M1(p) =


(0.4, 0.6) if p = lo

(0.1, 0.9) if p = ii

∅ else

If tr1 fires lo and ii are cleared and ad = (lo×ii)·
(

1.0 0.0
0.8 0.2
0.6 0.4
0.0 1.0

)
is put on acde;

(lo× ii) = ((0.4, 0.6)× (0.1, 0.9)) = (0.04, 0.36, 0.06, 0.54)

ad = (0.04, 0.36, 0.06, 0.54) ·
(

1.0 0.0
0.8 0.2
0.6 0.4
0.0 1.0

)
=

(
0.04

+0.288
+0.036
+0.0

0.0
+0.072
+0.024
+0.54

)
= (0.364, 0.636)

= (P (acde), P (¬acde)) = (P (acde), P (acno))

(see Example 3).

�

As it is common use in PN theory that foldings of nets of a
certain net class are called higher nets, foldings of PPNs are
called higher PPNs.

7
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IV. BAYESIAN NETWORKS AND HIGHER PROBABILITY
PROPAGATION NETS

In this section, we will show how BNs can be represented
by higher PPNs. It will turn out that the structure of BNs is a
bit meager for modeling directed flows of values (probabilities
and likelihoods). Likelihoods are conditional probabilities in
a certain interpretation. Let S be a symptom (manifestation)
and D be a diagnosis (hypothesis). Then P (D | S) is a
”diagnostic” probability, P (S | D) is a ”causal” probability.
Bayes’ rule combines both probabilities:

P (D | S) =
P (S | D) · P (D)

P (S)

In case of several conceivable diagnoses Di, 1 ≤ i ≤ n, P (S |
Di) is a measure of how probable it is that Di causes S. So,
P (S | Di) is a degree of confirmation that Di is the cause for
S which is called the ”likelihood of Di given S”.

Definition 13 (Bayesian Network) Let B = (R,E) be a
directed acyclic graph with the set R of nodes and the set
E of edges; let for every r ∈ R par(r) be the set of parent
nodes of r;
B is a Bayesian Network (BN) iff R equals a set of random

variables and to every r ∈ R the table P (r | par(r)) of
conditional probabilities is assigned. P (r | par(r)) indicates
the prior probabilities of r if par(r) = ∅.

Definition 14 Let A = (a1, . . . , an), B = (b1, . . . , bn) be
non-negative real vectors;

A ◦B := (a1 · b1, a2 · b2, . . . , an · bn)
A×B := (a1 · b1, . . . , a1 · bn, a2 · b1, . . . ,

a2 · bn, . . . , an · b1, . . . , an · bn)

We will introduce the Petri net representation of BNs by
means of examples. The Petri nets are absolutely transparent
and reveal the respective situation of algorithms and belief
propagation (see [4], [9]).

The following example is a shortened version of the scenario
of Example 6.

Example 7
The directed acyclic graph together with the probabilities
assigned to the nodes in Fig. 7 is a BN B. Furthermore, it
is noted that messages π (probabilities) and λ (likelihoods)
flow in both directions via the edges from node to node.

Fig. 8 shows the Petri net representation PB of the BN
B. In order to initialize the net, the transitions πlo and πii

fire, thus putting the tuples (0.4, 0.6) and (0.1, 0.9) on places
lo and ii, respectively. P (lo) = 0.4, P (¬lo) = 0.6, P (ii) =
0.1, P (¬ii) = 0.9 reflect our current feeling about the pos-
sibility that lack of oil or irregular ignition happens. Based
on these values, the probability of delayed acceleration can
be calculated (exactly as in Example 6) by firing of transition

Fig. 7. B of Example 7

Fig. 8. PB of Example 7

TABLE VI
THE FUNCTIONS OF PB

f1
ad ' P (ad | lo, ii) =

ad
lo ii 1 0
1 1 1.0 0.0
1 0 0.8 0.2
0 1 0.6 0.4
0 0 0.0 1.0

f2
ad ' P ii←lo,ad(ad | lo, ii) =

ii
lo ad 1 0
1 1 1.0 0.8
1 0 0.0 0.2
0 1 0.6 0.0
0 0 0.4 1.0

f3
ad ' P lo←ii,ad(ad | lo, ii) =

lo
ii ad 1 0
1 1 1.0 0.6
1 0 0.0 0.4
0 1 0.8 0.0
0 0 0.2 1.0

f1
ad:

π(ad) = (πad(lo)× πad(ii)) ·
(

1.0 0.0
0.8 0.2
0.6 0.4
0.0 1.0

)
= ((0.4, 0.6)× (0.1, 0.9)) ·

(
1.0 0.0
0.8 0.2
0.6 0.4
0.0 1.0

)
= (0.364, 0.636)

8
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The functions belonging to the respective transitions are shown
in Table VI. In the conditional probability table P (ad | lo, ii),
ad is a function of lo and ii. P ii←lo,ad(ad | lo, ii) is the
re-sorted table P (ad | lo, ii) such that now ii is written as
a function of lo and ad. In all tables 0.8 for example is the
value for ad = 1, lo = 1, ii = 0.

To complete the initialization, by firing of πlo, λad, f
2
ad we

get

λ(ii) = λad(ii) = (πad(lo)× λ(ad)) ·
(

1.0 0.8
0.0 0.2
0.6 0.0
0.4 1.0

)
= ((0.4, 0.6)× (1.0, 1.0)) ·

(
1.0 0.8
0.0 0.2
0.6 0.0
0.4 1.0

)
= (1.0, 1.0).

Similarly:

λ(lo) = λad(lo) = (πad(ii)× λ(ad)) ·
(

1.0 0.6
0.0 0.4
0.8 0.0
0.2 1.0

)
= ((0.1, 0.9)× (1.0, 1.0)) ·

(
1.0 0.6
0.0 0.4
0.8 0.0
0.2 1.0

)
= (1.0, 1.0).

The likelihood λ(ad) = (1.0, 1.0) and, as a consequence,
λ(lo) = λ(ii) = (1.0, 1.0) indicate that there is no reason or
evidence to re-asses π(ad), π(lo), π(ii). So, our initial beliefs
are

BEL(lo) := α(λ(lo) ◦ π(lo)) = π(lo) = (0.4, 0.6)
BEL(ii) := α(λ(ii) ◦ π(ii)) = π(ii) = (0.1, 0.9)

BEL(ad) := α(λ(ad) ◦ π(ad)) = π(ad) = (0.364, 0.636).

Next, we assume the acceleration to be really delayed as a
new evidence. So, we set λ(ad) = (1.0, 0.0) which results in

BEL(ad) = α(λ(ad) ◦ π(ad))
= α((1.0, 0.0) ◦ (0.364, 0.636))
= α(0.364, 0.0) = (1.0, 0.0)

with the normalizing constant α. As further consequences, the
beliefs of lo and ii change. Firing of π(lo), λ(ad), f2

ad leads
to

λ(ii) = λad(ii) = (π(lo)× λ(ad)) ·
(

1.0 0.8
0.0 0.2
0.6 0.0
0.4 1.0

)
= ((0.4, 0.6)× (1.0, 0.0)) ·

(
1.0 0.8
0.0 0.2
0.6 0.0
0.4 1.0

)
= (0.76, 0.32)

Firing of π(ii), λ(ad), f3
ad leads to

λ(lo) = λad(lo) = (π(ii)× λ(ad)) ·
(

1.0 0.6
0.0 0.4
0.8 0.0
0.2 1.0

)
= ((0.1, 0.9)× (1.0, 0.0)) ·

(
1.0 0.6
0.0 0.4
0.8 0.0
0.2 1.0

)
= (0.82, 0.06).

Then the beliefs of lo and ii are

BEL(lo) = α(λ(lo) ◦ π(lo))
= α((0.82, 0.06) ◦ (0.4, 0.6))
= α(0.328, 0.036) = (0.845, 0.155)

BEL(ii) = α(λ(ii) ◦ π(ii))
= α((0.76, 0.32) ◦ (0.1, 0.9))
= α(0.076, 0.288) = (0.209, 0.791)

In contrast to the initial beliefs, we now strongly believe in a
lack of oil (0.845 > 0.4) and a little less in a normal ignition
(0.791 < 0.9).

Lastly, we assume (after an inspection) that there is defi-
nitely no lack of oil. So, in addition to λ(ad) = (1.0, 0.0)
we set π(lo) = (0.0, 1.0). Thus, the new belief of lo is
BEL(lo) = (0.0, 1.0), and the belief of ii changes:

λ(ii) = λad(ii) = (π(lo)× λ(ad)) ·
(

1.0 0.8
0.0 0.2
0.6 0.0
0.4 1.0

)
= ((0.0, 1.0)× (1.0, 0.0)) ·

(
1.0 0.8
0.0 0.2
0.6 0.0
0.4 1.0

)
= (0.6, 0.0).

BEL(ii) = α(λ(ii) ◦ π(ii)) = α((0.6, 0.0) ◦ (0.1, 0.9))
= α(0.06, 0.0) = (1.0, 0.0).

If lack of oil is not the reason for the delayed acceleration,
we have to believe in an irregular ignition.

In Example 2 we found four explanations of a delayed
acceleration:

ε5 = lo ∧ ¬ii, ε6 = ¬lo ∧ ¬ii,

ε7 = lo ∧ ii, ε8 = ¬lo ∧ ii.

ε5 is the most probable explanation with P (ε5) = 0.288. Since
the numbers of explanations (like the t-invariants) might grow
exponentially, the calculation of all explanations and their
probabilities and then looking for the most probable one is
obviously no reasonable approach. Much better is a modifi-
cation of the Petri net approach shown in Example 8. Instead
of using the usual matrix product (A ·B)ik =

∑n
j=1 aij · bjk

(sum-product rule), we will use (A • B)ik = max{aij · bjk |
j = 1, . . . , n} (max-product rule; see [4], [9]).

Example 8 (see Example 7)
We start off with the assumption that the acceleration is
delayed, i.e. λ(ad) = (1.0, 0.0) and BEL(ad) = (1.0, 0.0).
Firing of πlo and λad puts the tuples (0.4, 0.6) and (1.0, 0.0)
on places lo and ad, respectively. Firing of f2

ad takes them
away and puts the following tuple on place ii:

λ(ii) = λad(ii) = (π(lo)× λ(ad)) •
(

1.0 0.8
0.0 0.2
0.6 0.0
0.4 1.0

)
= ((0.4, 0.6)× (1.0, 0.0)) •

(
1.0 0.8
0.0 0.2
0.6 0.0
0.4 1.0

)
= (max{0.4, 0.0, 0.36},max{0.32, 0.0})
= (0.4, 0.32).

9
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Correspondingly, firing of πii, λad, f
3
ad leads to the following

tuple on place lo:

λ(lo) = λad(lo) = (π(ii)× λ(ad)) •
(

1.0 0.6
0.0 0.4
0.8 0.0
0.2 1.0

)
= ((0.1, 0.9)× (1.0, 0.0)) •

(
1.0 0.6
0.0 0.4
0.8 0.0
0.2 1.0

)
= (max{0.1, 0.0, 0.72},max{0.06, 0.0})
= (0.72, 0.06).

The corresponding beliefs are:

BEL(lo) = α(λ(lo) ◦ π(lo))
= α((0.72, 0.06) ◦ (0.4, 0.6))
= α(0.288, 0.036)
= (0.889, 0.111)

BEL(ii) = α(λ(ii) ◦ π(ii))
= α((0.4, 0.32) ◦ (0.1, 0.9))
= α(0.04, 0.288)
= (0.122, 0.878)

The most probable explanation given BEL(ad) = (1.0, 0.0)
is lo ∧ ¬ii (or lo ∧ igno in the notation of Example 2).

V. TRANSLATING BAYESIAN NETWORKS INTO HIGHER
PROBABILITY PROPAGATION NETS

In this section, we will continue with representing BNs
by PNs. In the previous examples we have shown the way
higher PPNs work and that they generate the proper values.
The next examples are to show that higher PPNs also satisfy
the propagation formulas of BNs. We will show that only
by means of these examples because the equivalence of the
propagation in both approaches is easy to recognize. A formal
proof would not be harder, but would also not facilitate the
understanding of the equivalence.

We would like to point out that the explicit concept of a
situation (marking) in PPNs is a helpful completion to the
implicit concept of a situation in BNs.

In essence, there are two structural elements in BNs which
are shown in Fig. 9. Fig. 9(a) indicates the probabilistic
dependence of Y given X1, . . . , Xn. So, the probability of Y
is defined as P (Y | X1, . . . , Xn). Case n = 1 can be found
in Example 9, cases n = 1 and n = 2 in Example 10.

There are transitions in the PPNs which are closely related
to these conditional probabilities. f1

Y ' P (Y | X1, , . . . Xn)
indicates f1

Y to be the transition that calculates P (Y |
X1, . . . , Xn). The superscript 1 points to a conditional prob-
ability. Missing superscripts denote prior probabilities. Super-
scripts ≥ 2 point to (generalized) transposes of the prob-
ability tables (see Tables VIII and XI). For example f3

A

is the transition that belongs to the transpose of (f1
A ')

P (A | BC) where C is written as depending on A and B,
in symbols PC←AB(A | BC), (e.g. the value belonging to
A = 2, B = 1, C = 2 is equal to 0.1 in both tables). For
n = 1 the transposes coincide with the normal transpose of

(a) (b)

Fig. 9. Basic Structures in Bayesian Networks

TABLE VII
RANDOM VARIABLES OF EXAMPLE 9

a1 spouse is cheating
a2 spouse is not cheating
b1 spouse dines with another
b2 spouse does not dine with another
c1 spouse is reported seen dining with another
c2 spouse is not reported seen dining with another
d1 strange man/lady calls on the phone
d2 no strange man/lady calls on the phone

a matrix (see Table XI). Example 10 is to shed light on this
substructure and its PN representation.

The transitions in the PPNs representing structure elements
according to Fig. 9(b) cause a component-wise multiplication
of vectors with equal length. Let the vectors representing
X, Y1, . . . , Yn have length m; then the transition m1

X trans-
forms the vectors λX(Y1), . . . , λX(Yn) into

λ(X) = λX(Y1) ◦ · · · ◦ λX(Yn)

=
( n∏
i=1

(λX(Yi))1, . . . ,
n∏

i=1

(λX(Yi))m

)
(see Definition 14). m1

x is the only transition that causes
a product of only λ-factors. Superscripts ≥ 2 belong to
mixtures of λ- and π-factors. Example 9 is to throw light
on this structural element (with n = m = 2) and its PN
representation.

The next two examples are borrowed from [9] as well as
the definitions, propagation formulas and statements we will
apply in the sequel. They all are collected in the appendix.

Example 9 (Cheating spouse)
The scenario consists of a spouse and a strange man/lady.
It has to be reported that spouse might be cheating. As
a consequence, there are four important random variables:
spouse is cheating (A), spouse dines with another (B), spouse
is reported seen dining with another (C), strange man/lady
calls on the phone (D).

The BN with prior and conditional probabilities is shown in
Fig. 10. The random variables A,B,C, D have two attributes
(–1 and –2 meaning ”yes” and ”no”) which are listed in Table
VII.

The functions belonging to the respective transitions are
shown in Table VIII. As stated above, the structure of BNs
is a bit meager and the actual steps of probability propagation
are ”hidden” in the algorithms. In contrast to that, the PN
representation detailedly shows the probability propagation,
and the algorithms are distributed over the net such that
each transition’s share is of manageable size. In spite of the

10
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TABLE VIII
TRANSITION FUNCTIONS OF EXAMPLE 9

fA ' P (A) =
A
1 2

0.1 0.9

f1
B ' P (B | A) =

B
A 1 2
1 0.7 0.3
2 0.2 0.8

f1
C ' P (C | B) =

C
B 1 2
1 0.4 0.6
2 0.001 0.999

f1
D ' P (D | A) =

D
A 1 2
1 0.8 0.2
2 0.4 0.6

f2
B ' P A←B(B | A) =

A
B 1 2
1 0.7 0.2
2 0.3 0.8

f2
C ' P B←C(C | B) =

B
C 1 2
1 0.4 0.001
2 0.6 0.999

f2
D ' P A←D(D | A) =

A
D 1 2
1 0.8 0.4
2 0.2 0.6

Fig. 10. B of Example 9

exactness of the PN representation, one might consider the
size of the net a disadvantage. On the other hand, the size of
the PPNs might indicate that BNs are indeed a little under-
structured. Moreover, the specific structure of PPNs causes
an absolutely appropriate partition into propagation processes.
The minimal t-invariants (precisely their net representations)
describe exactly the paths of probabilities and likelihoods. The
t-invariants need not to be calculated on the higher level. It
is sufficient to calculate them on the ”black” net (i.e. the
underlying place/transition net without arc labels).

The PN representation of the BN in Fig. 10 is shown in
Fig. 11. The three minimal t-invariants are shown in Table IX,
their net representations in Fig. 12–14. Due to lack of space,
the rules for calculating the output tuples of the transitions
are missing but they are specified in the net representations of
all t-invariants (Fig. 12,13,14). The three minimal t-invariants
in vector form are given in Table IX. The t-invariants as

Fig. 11. PB of Example 9

Fig. 12. λ(A)-t-invariant of PB

solutions of a homogeneous linear equation system result in
net representations in which markings are reproducible. In our
case, the PNs are cycle-free and have a transition boundary.
This implies the reproducibility of the empty marking by every
t-invariant as a flow of tuples from input to output boundary.
Fortunately, these flows describe exactly the flow of λ- and
π-messages. So, the net representations of t-invariants are a
framework for the propagation of λ- and π-tuples. We will
show that by explaining how the PNs work and refer at each
step to the corresponding definitions, lemmas, and propagation
formulas of [9] which we collected in the appendix.

11
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TABLE IX
T-INVARIANTS OF PB (SEE EXAMPLE 9)

πA λA πC λC πD λD f1
B f2

B f1
C f2

C f1
D f2

D m1
A m2

A m3
A

λ(A) 1 1 1 1 1 1 1
π(C) 1 1 1 1 1 1 1
π(D) 1 1 1 1 1 1 1

Fig. 13. π(C)-t-invariant of PB

Fig. 14. π(D)-t-invariant of PB

In the initialization phase, we first set all λ-tuples to
(1.0, 1.0) (initialization rule (1), see Appendix, section B), thus
expressing that we have no external evidence concerning the
random variables. Next, we set π(A) = P (A) = (0.1, 0.9)

(initialization rule (2)), thus preparing the propagation of
P (a1) = 0.1, P (a2) = 0.9 as a π-message. Finally, we
have to calculate P (C) and P (D). For that we will use
the π(C)- and π(D)-t-invariant (Fig. 13 and 14). In Fig.
13, the boundary transitions πA and λD are enabled because
they have no input places. When firing, πA puts the tuple
π(A) = (0.1, 0.9) on place A (initialization rule (2)), λD puts
λ(D) = (1.0, 1.0) on place D (initialization rule (1)). Now,
transition f2

D is enabled and removes (1.0, 1.0) from place D
and puts λD(A) = λ(D) · ( 0.8 0.4

0.2 0.6 ) = (1.0, 1.0) on place A
(operative formulas (1), (3), see Appendix, section A). (The
boundary transitions πA and λD are permanently enabled. But
for reproducing the empty marking they have to fire only once.
See Table IX where their entries are 1 in the corresponding
row.)

The next transition to fire is m2
A. It takes π(A) = (0.1, 0.9)

and λD(A) = (1.0, 1.0) from the respective places A and puts
πB(A) = π(A) ◦ λD(A) = (0.1, 0.9) on place A (Definition
16, see Appendix, section C).

(When a tuple is removed from a place X , that does not
mean that the values of the tuple are no longer valid for X .
It simply says that they have been used and that they can be
re-generated any time.)

Next, the transitions f1
B , f1

C , πC are enabled and fire in that
sequence. By firing of f1

B the tuple (0.1, 0.9) is taken from
A, and the tuple π(B) = (0.1, 0.9) · ( 0.7 0.3

0.2 0.8 ) = (0.25, 0.75) is
put on B (operative formula (4)). This tuple is taken away by
firing of f1

C and the tuple π(C) = (0.25, 0.75)·( 0.4 0.6
0.001 0.999 ) =

(0.10075, 0.89925) is put on C (operative formula (4)) from
where it is removed by transition πC , thus completing the
reproduction of the empty marking.

The probabilities P (B) and P (C) are calculated as follows:

P (B) = α (λ(B) ◦ π(B)) = α ((1.0, 1.0) ◦ (0.25, 0.75))
= (0.25, 0.75)

P (C) = α (λ(C) ◦ π(C))
= α ((1.0, 1.0) ◦ (0.10075, 0.89925))
= (0.10075, 0.89925) (operative formula (5)).

Similarly P (D) = (0.44, 0.56) is calculated on the basis of
the π(D)-invariant (Fig. 14).

Now, we assume that B is instantiated: λ(B) = (1.0, 0.0)
which means that spouse dines with another. The consequence
for the PNs in Fig. 12–14 is quite simple: the variable arc
labels λC(B) and π(B) are replaced by the constant tuple
(1.0, 0.0). That means whatever the input values enabling f1

B

and f2
C are, both transitions put (1.0, 0.0) on their respective

output places B (operative formulas (2), (3)).
The changes of the probabilities are as follows:

12
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• In Fig. 12:

λD(A) = (1.0, 1.0) as before;
λB(A) = λ(B) · ( 0.7 0.2

0.3 0.8 ) = (1.0, 0.0) · ( 0.7 0.2
0.3 0.8 )

= (0.7, 0.2) by firing of f2
B ;

λ(A) = λB(A) ◦ λD(A) = (0.7, 0.2) ◦ (1.0, 1.0)
= (0.7, 0.2).

P (A) = α (π(A) ◦ λ(A)) = α ((0.1, 0.9) ◦ (0.7, 0.2))
= α(0.07, 0.18) = (0.28, 0.72) for α = 1

0.25

• In Fig. 13: f1
B puts the tuple (1.0,1.0) on place B; then

f1
C is enabled and puts

π(C) = (1.0, 0.0) · ( 0.4 0.6
0.001 0.999 )

= (0.4, 0.6) on place C;
P (C) = α (λ(C) ◦ π(C)) = α ((1.0, 1.0) ◦ (0.4, 0.6))

= (0.4, 0.6)

• In Fig. 14: λB(A) = (0.7, 0.2) (see above). Fir-
ing of m3

A puts πD(A) = α (π(A) ◦ λB(A)) =
α ((0.1, 0.9) ◦ (0.7, 0.2)) = (0.28, 0.72) on place A; after
firing of f1

D

π(D) = πD(A) · ( 0.8 0.2
0.4 0.6 ) = (0.28, 0.72) · ( 0.8 0.2

0.4 0.6 )
= (0.512, 0.488)

P (D) = α (λ(D) ◦ π(D))
= α ((1.0, 1.0) ◦ (0.512, 0.488)) = (0.512, 0.488)

The interpretation is that after spouse dines with another
(λ(B) = (1.0, 0.0)) the probabilities (our beliefs) that
• spouse is cheating
• spouse is reported seen dining with another
• strange man/lady calls on the phone

are increased, now.
If we, in addition, assume that no strange man/lady calls

on the phone (λ(D) = (0.0, 1.0)) the constant arc weight
(1.0, 1.0) at the output arc of transition λD has to be changed
into (0.0, 1.0). This does not change P (B) and P (C). It
changes P (D) and P (A):

P (D) = α (λ(D) ◦ π(D)) = α ((0.0, 1.0) ◦ (0.512, 0.488))
= α(0.0, 4.88) = (0.0, 1.0) for α = 1

0.488

In the λ(A)-t-invariant of Fig. 12 we find λD(A) =
λ(D) · f2

C = (0.0, 1.0) · ( 0.8 0.4
0.2 0.6 ) = (0.2, 0.6) on

place A after firing of transition F 2
D. Then, after fir-

ing of transition m1
A λ(A) = λB(A) ◦ λD(A) =

(0.7, 0.2) ◦ (0.2, 0.6) = (0.14, 0.12) was put on A. So,
P (A) = α (π(A) ◦ λ(A)) = α ((0.1, 0.9) ◦ (0.14, 0.12)) =
α(0.014, 0.108) = (0.1148, 0.8852) for α = 1

0.122 .
So, the probability (our belief) that spouse is cheating is

decreased.

Example 10 (Burglar Alarm)
In this equally very popular example [9], Mr. Holmes is sitting
in his office when he gets a call that his burglar alarm is
sounding (A). Of course, he suspects a burglary (B) (even

Fig. 15. BN B of Example 10

TABLE X
RANDOM VARIABLES OF EXAMPLE 10

a1 Mr. Holmes’ burglar alarm sounds
a2 Mr. Holmes’ burglar alarm does not sound
b1 Mr. Holmes’ residence is burglarized
b2 Mr. Holmes’ residence is not burglarized
c1 there is an earthquake
c2 there is no earthquake

Fig. 16. PB of Example 10

though there might be other reasons for activating the alarm,
e.g. an earthquake (C)). On his ride home, he hears on the
radio an announcement about some earthquake. How do the
phone call and the radio announcement influence his belief
about getting burglarized?

The BN B with prior and conditional probabilities is shown
in Fig. 15. The random variables A,B,C have two attributes
(–1 and –2 meaning ”yes” and ”no”) listed in Table X. The
PN version PB of B is shown in Fig. 16, the corresponding
transitions functions in Table XI. Due to lack of space, the
rules for calculating π(A), λA(B), λA(C) are missing in Fig.
16, but they are specified in the t-invariants (Fig. 17–19).

To open the initialization phase, we set all λ-tuples to
(1.0, 1.0). In doing so, we state that there is no evidence
to change the prior probabilities of B and C (initialization
rule (1)). Moreover, we set π(B) = P (B) = (0.01, 0.99)

13
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TABLE XI
TRANSITION FUNCTIONS OF EXAMPLE 10

fB ' P (B) =
B
1 2

0.01 0.99

fC ' P (C) =
C
1 2

0.001 0.999

f1
A ' P (A | BC) =

A
B C 1 2
1 1 0.99 0.01
1 2 0.9 0.1
2 1 0.5 0.5
2 2 0.01 0.99

f2
A ' P B←AC(A | BC) =

B
A C 1 2
1 1 0.99 0.5
1 2 0.9 0.01
2 1 0.01 0.5
2 2 0.1 0.99

f3
A ' P C←AB(A | BC) =

C
A B 1 2
1 1 0.99 0.9
1 2 0.5 0.01
2 1 0.01 0.1
2 2 0.5 0.99

Fig. 17. π(A)-t-invariant of PB

and π(C) = P (C) = (0.001, 0.999) (initialization rule (2)).
Next, we calculate π(A) by reproducing the empty marking in
the π(A)-t-invariant of Fig. 17. When firing, πB and πC put
tokens (0.01, 0.99) and (0.001, 0.999) on the places B and C,
respectively. Then f1

A is activated and fires. By that, the tuples
are removed from places B and C and the following tuple is
put on place A (operative formula (4)):

π(A) = (πA(B)× πA(C)) ·
(

0.99 0.01
0.9 0.1
0.5 0.5
0.01 0.99

)
= ((0.01, 0.99)× (0.001, 0.999)) ·

(
0.99 0.01
0.9 0.1
0.5 0.5
0.01 0.99

)
= (0.019, 0.982).

Fig. 18. λ(B)-t-invariant of PB

Fig. 19. λ(C)-t-invariant of PB

So,

P (A) = α · (λ(A) ◦ π(A))
= α ((1.0, 1.0) ◦ (0.019, 0.981))
= (0.019, 0.982) for α = 1

Firing of πA completes reproducing the empty marking.
Now, we assume that Mr. Holmes got the call and knows

that his alarm sounds. That means A has to be instantiated for
a1. Consequently, we have to change the arc label (1.0, 1.0) of
arc (λA, A) to (1.0, 0.0) in Fig. 16–19. In order to calculate
Holmes’ present beliefs about B (being burglarized) and C
(earthquake), we reproduce the empty marking in the λ(B)-
and λ(C)-t-invariant (Fig. 18 and 19).

In Fig. 18, after firing λA and πC , tuples (1.0, 0.0) and
(0.001, 0.999) are lying on places A and C, respectively. Now,
f2

A is activated and fires. After that the tuples are removed

14
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from places A and C and the following tuple is put on place
B (operative formula (1)):

λA(B) = (λ(A)× λA(C)) ·
(

0.99 0.5
0.9 0.01
0.01 0.5
0.1 0.99

)
= ((1.0, 0.0)× (0.001, 0.999)) ·

(
0.99 0.5
0.9 0.01
0.01 0.5
0.1 0.99

)
= (0.9, 0.01).

Removing that tuple by λB completes the reproduction of the
empty marking.

In the same way, we get λA(C) = (0.505, 0.019) in the
λ(C)-t-invariant of Fig. 19. This leads to

P (B) = α ((λ(B) ◦ π(B)) = α ((0.9, 0.01) ◦ (0.01, 0.99))
= α(0.009, 0.0099) = (0.476, 0.524) for α = 1

0.0189

P (C) = α ((λ(C) ◦ π(C))
= α ((0.505, 0.019) ◦ (0.001, 0.999))
= α(0.000505, 0.018981) = (0.026, 0.974)
for α = 1

0.019486

Holmes’ belief in being burglarized has increased from 0.01
to 0.476. Even his belief in an earthquake has increased from
0.001 to 0.026.

Next, we assume that Mr. Homes heard the announcement
of an earthquake on the radio. Now, we have to change the arc
label (0.001, 0.99) of arc (πc, C) to (1.0, 0.0) in Fig. 16–19
since C has to be instantiated for c1. To calculate Mr. Holmes’
belief about B (being burglarized) we again reproduce the
empty marking in the λ(B)-t-invariant (Fig. 18). After firing
λA and πC , tuples (1.0, 0.0) are lying on places A and C,
respectively. After firing f2

A these tuples are removed and the
following tuple is put on place B:

λA(B) = ((λ(A)× πA(C)) ·
(

0.99 0.5
0.9 0.01
0.01 0.5
0.1 0.99

)
= ((1.0, 0.0)× (1.0, 0.0)) ·

(
0.99 0.5
0.9 0.01
0.01 0.5
0.1 0.99

)
= (1.0, 0.0, 0.0, 0.0) ·

(
0.99 0.5
0.9 0.01
0.01 0.5
0.1 0.99

)
= (0.99, 0.5).

λB fires and removes that tuple from B, thus completing the
reproduction of the empty marking. Mr. Holmes’ new belief
concerning B is

P (B) = α ((λ(B) ◦ π(B)) = α ((0.99, 0.5) ◦ (0.01, 0.99))
= α(0.0099, 0.495) = (0.02, 0.98) for α = 1

0.5049 .

So, Holmes’ belief in being burglarized has changed from
0.01 via 0.476 to 0.02. Holmes was worried after the phone
call and calmed down after the announcement.

VI. CONCLUSION AND FUTURE WORK

We introduced probability propagation nets (PPNs) on the
basis of PN representation of propositional Horn clauses. This
makes it possible to represent deduction (and abduction) pro-
cesses as reproduction of the empty marking [7]. Touchstones
for our approach are the representation of probabilistic Horn
abduction and the propagation of λ- and π-messages in BNs.

In our opinion, it is valuable to introduce specific PN con-
cepts into the field of propagations. In particular t-invariants
as an elementary means to structure PNs turned out to be
quite fruitful. The minimal t-invariants, on the one hand when
reproducing the empty marking describe exactly the flows of
λ- and π-messages, thus structuring the PNs (and so the BNs)
in a very natural way. On the other hand, they reveal the true
complexity behind the simply structured BNs.

Also the markings turned out to be useful insofar as they
clearly (and completely) partition all flows in easily observable
situations. Altogether, the PPNs are an additional means for
describing the flows of probability and evidence that yields a
lot of clarity.

In the near future, we aim at integrating PN representations
of technical processes and probability propagations.

APPENDIX

A. Operative Formulas in Bayesian Networks

The following formulas used in chapter V are taken from
[9].

1) If B is a child of A, B has k possible values, A has
m possible values, and B has one other parent D, with
n possible values, then for 1 ≤ j ≤ m the λ message
from B to A is given by

λB(aj) =
n∑

p=1

πB(dP )
( k∑

i=1

P (bi|aj , dp)λ(bi)
)
. (1)

2) If B is a child of A and A has m possible values, then
for 1 ≤ j ≤ m the π message from A to B is given by

πB(aj) =


1 if A is instantiated for aj

0 if A is instantiated,
but not for aj

P ′(aj)
λB(aj)

if A is not instantiated,

(2)

where P ′(aj) is defined to be the current conditional
probability of aj based on the variables thus far instan-
tiated.

3) If B is a variable with k possible values, s(B) is the set
of B’s children, then for 1 ≤ i ≤ k the λ value of B is
given by

λ(bi) =



∏
C∈s(B) λC(bi) if B is not

instantiated
1 if B is instantiated

for bi

0 if B is instantiated,
but not for bi.

(3)
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4) If B is a variable with k possible values and exactly two
parents, A and D, A has m possible values, and D has
n possible values, then for 1 ≤ i ≤ k the π value of B
is given by

π(bi) =
m∑

j=1

n∑
p=1

P (bi|aj , dp)πB(aj)πB(dp). (4)

5) If B is a variable with k possible values, then for 1 ≤
i ≤ k, P ′(Bi), the conditional probability of bi based
on the variables thus far instantiated, is given by

P ′(bi) = αλ(bi)π(bi). (5)

B. Initialization in Bayesian Networks

The following rules taken from [9] describe the initialization
phase for BNs:

1) Set all λ values, λ messages and π messages to 1.
2) For all roots A, if A has m possible values, then for

1 ≤ j ≤ m, set π(aj) = P (aj).

C. Definition of λ and π Messages

The following definitions are, again, taken from [9].

Definition 15 (λ message) Let C = (V,E, P ) be a causal
network in which the graph is a tree, W a subset of instan-
tiated variables, B ∈ V a variable with k possible values,
and C ∈ s(B) a child of B with m possible values. Then for
1 ≤ i ≤ k, we define

λC(bi) =
m∑

j=1

P (cj |bi)λ(cj).

The entire vector of values λC(bi) for 1 ≤ i ≤ k, is called
the λ message from C to B and is denoted λC(B).

Definition 16 (π message) Let C = (V,E, P ) be a causal
network in which the graph is a tree, W a subset of instanti-
ated variables, B ∈ V a variable which is not the root, and
A ∈ V the father of B. Suppose A has m possible values.
Then we define for 1 ≤ j ≤ m

πB(aj) =



1 if A is instantiated
for aj

0 if A is instantiated,
but not for aj

π(aj)
∏

C∈s(A)
C 6=B

λC(aj) if A is not

instantiated,

where λC(aj) is defined in definition 15. Again, if there are
no terms in the product, it is meant to represent the value 1.
The entire vector of values, πB(aj) for 1 ≤ j ≤ m, is called
the π message from A to B and is denoted πB(A).
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