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Abstract

While reading this sentence, you probably gave (more or less deliberately) instructions to
approximately 100 to 200 muscles of your body. A sceptical face or a smile, your fingers
scrolling through the text or holding a printed version of this work, holding your head,
sitting, and much more. All these processes take place almost automatically, so they seem
to be no real achievement. In the age of digitalization it is a defined goal to transfer
human (psychological and physiological) behavior to machines (robots). However, it turns
out that it is indeed laborious to obtain human facial expression or walking from robots.
To optimize this transfer, a deeper understanding of a muscle’s operating principle is
needed (and of course an understanding of the human brain, which will, however, not be
part of this thesis).

A human skeletal muscle can be shortened willingly, but not lengthened, thereto it takes
an antagonist. The muscle’s change in length is dependent on the incoming stimulus from
the central nervous system, the current length of the muscle itself, and certain muscle—
specific quantities (parameters) such as the maximum force. Hence, a muscle can be
mathematically described by a differential equation (or more exactly a coupled differential—
algebraic system, DAE), whose structure will be revealed in the following chapters. The
theory of differential equations is well-elaborated. A multitude of applicable methods
exist that may not be known by muscle modelers. The purpose of this work is to link the
methods from applied mathematics to the actual application in biomechanics.

The first part of this thesis addresses stability theory. Let us remember the prominent
example from middle school physics, in which the resting position of a ball was obviously
less susceptible towards shoves when lying in a bowl rather than balancing at the tip
of a hill. Similarly, a dynamical (musculo—skeletal) system can attain equilibrium states
that react differently towards perturbations. We are going to compute and classify these
equilibria.

In the second part, we investigate the influence of individual parameters on model
equations or more exactly their solutions. This method is known as sensitivity analysis.
Take for example the system “car” containing a value for the quantity “pressure on the
break pedal while approaching a traffic light”. A minor deviation of this quantity upward
or downward may lead to an uncomfortable, abrupt stop or even to a collision, instead
of a smooth stop with a sufficient gap. The considered muscle model contains over 20
parameters that, if changed slightly, have varying effects on the model equation solutions at
different instants of time. We will investigate the sensitivity of those parameters regarding
different sub—models, as well as the whole model among different dynamical boundary
conditions.

The third and final part addresses the optimal control problem (OCP). The muscle turns
a nerve impulse (input or control) into a length change and therefore a force response
(output). This forward process is computable by solving the respective DAE. The reverse
direction is more difficult to manage. As an everyday example, the OCP is present re-
garding self—parking cars, where a given path is targeted and the controls are the position
of the steering wheel as well as the gas pedal. We present two methods of solving OCPs
in muscle modeling: the first is a conjunction of variational calculus and optimization in
function spaces, the second is a surrogate—based optimization.
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Zusammenfassung

Wahrend Sie diesen Satz lesen, werden Sie mit Sicherheit mindestens 100 bis 200
Muskeln Thres Korpers (mehr oder weniger bewusst) einen Arbeitsauftrag erteilt haben.
Ein unglaubiges Gesicht machen oder Lécheln, mit Hilfe der Finger die Maus veranlassen
durch den Text zu scrollen oder eine ausgedruckte Version dieser Arbeit halten, sitzen,
den Kopf heben und vieles mehr. All diese Prozesse laufen meist so automatisiert ab,
dass es keine grofle Leistung scheint sie auszufiihren. Im Zeitalter der Digitalisierung
ist es ein erklértes Ziel, menschliches (physisches und psychisches) Verhalten auf Maschi-
nen (Roboter) zu tibertragen. Es stellt sich heraus, dass es jedoch sehr wohl schwierig
ist, etwa menschliche(n) Mimik oder Gang von Robotern ausfiihren zu lassen. Um diese
Ubertragung zu optimieren bendtigt man ein vertieftes Verstindnis der Arbeitsweise von
Muskulatur (und natiirlich auch des Gehirns, welches aber nicht Bestandteil dieser Arbeit
sein wird).

Ein menschlicher Skelettmuskel kann willentlich kontrahiert werden, jedoch nicht ver-
langert. Hierzu bedarf es eines kontrahierenden Gegenspielers (Antagonist). Die Langen-
anderung ist dabei abhéngig vom eingehenden Reiz des Zentralen Nervensystems, der
momentanen Lange des Muskels selbst, sowie einigen muskelspezifischen Kenngrofien (Pa-
rametern) wie etwa der Maximalkraft. Folglich ldsst sich ein Muskel mathematisch durch
eine Differentialgleichung (genauer gesagt durch ein gekoppeltes differential-algebraisches
System) beschreiben, deren Struktur wir in den folgenden Kapiteln aufzeigen werden. Die
Theorie der Differentialgleichungen ist weit ausgearbeitet und beinhaltet eine Vielzahl von
Verfahren, die Muskelmodellierern nicht im Detail bekannt sein diirften. Zu diesem Zweck
mochten wir in der vorliegenden Arbeit eine Briicke schlagen zwischen der angewandten
Mathematik und der Anwendung selbst; der Biomechanik.

Der erste Teil dieser Arbeit beschéftigt sich mit der Stabilitdtstheorie. Erinnern wir uns
an das bekannte Beispiel aus der Schulphysik, in dem die Ruheposition einer Kugel offenbar
weniger anfillig gegeniiber kleinen Schubsern ist, wenn sie in einer Schiissel liegt als auf
der Spitze eines Hiigels. Ahnlich nimmt ein dynamisches (muskulo—skelettales) System
Gleichgewichtszustande ein, die auf Stérungen unterschiedlich reagieren kénnen. Diese
Zustéande werden wir flir unser behandeltes Muskelmodell berechnen und klassifizieren.

Im zweiten Teil untersuchen wir den Einfluss einzelner Parameter auf die Modellglei-
chung beziehungsweise deren Losung mit Hilfe der Sensitivitatsanalyse. Nimmt man etwa
in dem dynamischen System ,,Auto” einen Wert fir die Gréfe ,,Druck auf das Bremspedal
an der Ampel”, dann kann eine kleine Abweichung nach oben oder unten dazu fithren, dass
man entweder durchgeschiittelt wird oder sogar auffahrt, anstatt sanft und mit ausreichend
Abstand zum Stehen zu kommen. Das betrachtete Muskelmodell enthélt iiber 20 Parame-
ter, bei denen kleine Anderungen zu unterschiedlichen Zeiten unterschiedlich viel Einfluss
auf die Losung der Modellgleichungen haben. Wir werden verschiedene Teilsysteme sowie
das gesamte System unter verschiedenen dynamischen Randbedingungen auf Sensitivitat
beziiglich der einzelnen Parameter untersuchen.

Der dritte und abschliefende Teil beschéftigt sich mit dem Problem der optimalen
Steuerung. Wenn der Nervenreiz (Input) bekannt ist, kann mit Hilfe des Modells eine
Kraftantwort (Output) des Systems ,,Muskel” berechnet werden. Umgekehrt jedoch ist
es ungleich schwerer. Im Alltag beobachtet man das Problem der optimalen Steuerung
etwa bei selbsteinparkenden Autos, bei denen ein vorgegebener Einparkweg nur unter
Steuerung der Lenkradposition und des Gaspedals erreicht werden soll. Wir werden zwei
Verfahren optimaler Steuerung vorstellen. Das erste Verfahren stellt eine Verzahnung
von Optimierung in Funktionenrdumen und Variationsrechnung dar. Das zweite eine
Stellvertreter—basierende Optimierungsmethode.
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Abbreviations & List of Symbols

The first table contains abbreviations that were used throughout this thesis. Although we
define them on demand within the respective section, this table may serve as a fallback.
The second table contains a list of consistently used symbols, such as special functions,
parameters, and miscellaneous nomenclature. Note that some sections contain additional,
individual denotations that are not given here, but will be defined and explained if needed.

List of Abbreviations:

ASM
BVP
CC
CE
DAE
EC
EMD
ICE
IVP
LES
MBS
MTC
OCP
ODE
PDE
PE
PEE
PI
PROPT
SDE
SEE
TSI
VBS

cf.
e.g.
i.e.
w.r.t.

aggressive space mapping
boundary value problem
concentric contraction
contractile element
differential algebraic equation (system)
eccentric contraction
electro-mechanical delay
isometric contraction experiment
initial value problem

linear equation system
multi-body system

muscle tendon complex
optimal control problem
ordinary differential equation
partial differential equation
parameter estimation
parallel elastic element
partial integration

Per Rutquist OPTimizer
serial damping element

serial elastic element

total sensitivity index
variance—based sensitivity

confer (compare)

exempli gratia (for example)
id est (that is)

with respect to
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1. General Introduction

At the beginning, we will pose and answer a few questions, providing an insight on the
motivation, background, structure and aims of this thesis.

Why do we consider muscle models and their application?

As stated in the Abstract (Zusammenfassung), it is nowadays desired to transfer human
motor skills to mechanical devices. There exist a variety of research areas dealing with
this request: biomechanics, bioengineering, biomathematics and much more. Among the
manifold applications of theoretical and artificial muscle models, we will list a few, divided
into three categories: First, and maybe most important, are the medical applications.
Creating artificial muscles from electro—active polymer (EAP) [3] or myoelectric prostheses
[19] to restore or replace endogenous body material can increase the livability of affected
people. A second field is robot technology [6, 72]. Besides from robots being able to play
football [44], possible applications of humanoid robots can be easily thought of: More
accurate manufacturer of components, replaceable disaster relief force or assistant for
elderly people. As a third application, there is the facilitation of daily routines. A sought
market for muscle models is the automobile industry; the application ranges from the
design of car seats [37] to autonomous driving [57].

How is a muscle structured? How does it work?

We will shortly outline the structure and functional principles of a skeletal muscle. For
an advanced insight to the topic, introductory literature about physiology is recommended,
e.g. [46]. Note that there exist two other types of muscles such as smooth (found in the wall
of organs) or cardiac muscles (found only in the heart). In contrast to skeletal muscles,
these two muscle types are involuntary, i.e. can not be contracted at will, but rather work
automatically. Therefore they possess no neuromuscular junction, but are controllable by
a pacemaker.

Figure 1.1 shows the composition of a (human) skeletal muscle. Both ends of a muscle are
attached to the bones via a tendon, which is a very stiff, visco—elastic, fibrous connective
tissue consisting of collagen. The purpose of the tendon is to store mechanical energy
or redirect forces around joints. The tendon material then continuously merges into the
muscle belly that consists of muscle fiber bundles (fascicles), nerve fibers and blood vessels.
The muscle belly and fascicles are encapsulated by the epi— and perimysium, respectively,
a sheath of elastic connective tissue that protects the muscle from friction and rupture.
It is still unclear, if this sheath plays a role in the active muscle contraction, i.e. if and
how it is connected to the neural system [51]. Each muscle fiber consists of a variety of
myofibrils that comprise the muscular motor units: the sarcomeres. With a rest length
of around 3 um, a sarcomere consists of an alternating assembly of the proteins actin and
myosin. The previous is directly attached to the so—called Z-disc, whereas the latter is
linked to the disc via another protein, namely titin. The exact role of titin is also not yet
fully understood [69], but it seemingly acts like an adjustable spring.

Although everyone is used to the handling of (his own) muscles as a force producing
actuator, the detailed molecular processes of this force production are not yet entirely
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Figure 1.1.: ”Skeletal muscle”. Licensed under CC BY-SA 3.0 via Commons
https://commons.wikimedia.org/wiki/File:Skeletal muscle.jpg

revealed, see for example [39, pp. 169, C. 2.7] and [51]. However, a coarse sequence plan
(which is sufficient for this work) from the thought “I should raise my arm” to the final
execution covers the following steps:

Step 1: The brain gives a signal to raise the arm in form of an electrical, neural impulse via
the nerve system.

Step 2: The neural impulse reaches the neuromuscular junction as an action potential and
causes the release of calcium ions (Ca?™).

Step 3: The calcium ions allow the myosin heads to tie to the actin filament. In the following
we refer to this process as activation and the relative number of tied heads as activity.

Step 4: Further biochemical processes allow the myosin head to fold up along the actin
filament and change the length of the sarcomere.

Step 5: The length change of multiple sarcomeres causes the muscle belly to change its
length. We call this process a contraction, regardless of whether the muscle shortens
(concentric contraction) or elongates (eccentric contraction) due to external load.

Step 6: The length change of the muscle induces a force change in the connective tissue and
therefore perturb the mechanical equilibrium of the musculo—skeletal system.


https://commons.wikimedia.org/wiki/File:Skeletal$_$muscle.jpg

Step 7: The muscle transmits the force to the bone via the tendon and literally forces the
musculo—skeletal system into a new equilibrium, hopefully a raised arm.

Note that the presented sequence plan takes macroscopic effects into account rather
than microscopic, molecular processes. An insight into the molecular processes, the so—
called cross—bridge theory, can be found in [31, 33, 38, 39, 40], but will not be part of this
thesis.

How is a skeletal muscle mathematically modeled?

Mathematically modeling a real world system requires to simplify as much as necessary
to describe the system’s processes with (more or less simple) mathematical language, but
only as little as possible to preserve the system’s characteristics. Walking through our
sequence plan from Step 1 to Step 7, we comment our simplifications and notations of our
underlying mathematical muscle model. A detailed, formal description can be found in
Section 7.2 ([66]) or in [30].

The neural impulses from the nerve system reach the neuromuscular junction as discrete
action potentials with a duration of 1-2 ms and thus a maximal frequency of approximately
500Hz. Since we aim at modeling whole muscle contractions that take seconds rather
than milliseconds, we average the incoming action potentials into a piecewise continuous
function over time: the neural stimulation denoted by o(t).

For Steps 2 and 3 there are different approaches existing, of which we address two in
this work. The first approach according to H. Hatze [35] takes physiological observations
into account. The concentration of free Ca?t ions, denoted by v(t), is modeled by an
ordinary differential equation (ODE), where the right hand side linearly depends on ~(t)
and o(t). Subsequently, the solution of this ODE is inserted in a non-linear equation
for the activity, denoted ¢(t). This differential-algebraic system can be transformed to
a single non—linear ODE, see [26, 68]. The second approach according to F. Zajac [84] is
more phenomenological. It describes the activation as directly, linearly dependent from
q(t) and o(t). The advantages and disadvantages of both models are discussed in Section
3 ([68]).

The contraction dynamics in Steps 4 to 6 were modeled by A. V. Hill in [41]. Therefore,
muscle models containing this contraction dynamics are classified as “Hill-type”. Hill
proposed a hyperbolic relation between the velocity of the muscle belly and its exerted
force, and formulated the respective ODE. Note that the differential equation itself is not
called hyperbolic, which is a term in the field of partial differential equations (PDEs).

To macroscopically describe a muscle, we use the abbreviation CE, for contractile
element, to describe the entirety of sarcomeres in one muscle. In parallel to the CE,
the encapsulating connective tissue is modeled as a non—linear spring and denoted as PEE
for parallel elastic element. A possible pennation of the muscle [39, 46, 51] is not ex-
plicitly taken into account, but covered by the choice of model parameters. To model
the visco—elastic tendon, which is placed in series to the CE/PEE component, we use
so—called Kelvin—Voigt material (cf. [16]). The tendon is modeled as a non-linear spring
denoted by SEE (serial elastic element) in parallel to a force-dependent damping element
SDE (serial damping element). The whole muscle is further referred to as muscle-tendon
complex (MTC). In the course of this thesis, the length of an element X € {CE, PEE,
SEE, SDE, MTC} is denoted with £x and the respective force with Fx. Figure 1.2 shows
the described model according to the work of [27, 30].



1. General Introduction
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Figure 1.2.: Sketch of the four elements of the Hill-type muscle model according to [30].

And what is the aim of this thesis?

This thesis reviews known mathematical methods and works them up to a final use in
the field of biomechanics or, more exactly, in muscle modeling. In other words, this thesis
is bridging between applied mathematics and the actual application. Mathematicians,
especially theoretical ones, often content themselves with the demonstration of proven
theorems within their own community. The implications, interpretations or applications
in the real world are often subsidiary (the author speaks out of personal experience, re-
garding his diploma thesis [65]). As one consequence, many theorems do not see the light
of day or, if found somewhere, are hard to understand for someone who lacks a certain
mathematical education. As another consequence, the findings from mathematical theo-
rems are processed into user software that works like a “black box”, i.e. the user has to
trust the mode of operation, because he can not comprehend it. Both consequences are
very unsatisfying.

After reading this thesis, a biomechanist, or whoever wants to gain an insight on muscle
modeling, can rely on three pillars. First, the presentation of a state-of-the—art muscle
model. Second, a condensed preparation of necessary mathematical theories, including
basic notations as well as fundamental coherences (which are also applicable to other
ODE-based models). Third and most important, comprehensible as well as replicable ap-
plications of the mathematical theory on the given model, including results, interpretations
and discussions for a deeper understanding.

How is the thesis structured? Which mathematical methods are utilized? What are
the goals being achieved?

In Part I, we will show the application of stability theory on ODE-based models. Sta-
bility theory investigates the numerical behavior of equilibrium states with respect to
perturbations. The stability of critical solutions of muscle model equations is of great
interest for their application, see for example [71]. Chapter 2 contains an introduction to
stability theory and the calculation of critical solutions within activation and contraction
dynamics as stated above. The stability of these critical solutions is also investigated.

In Part II, we will show the application of sensitivity analysis on ODE-based models.
With the help of sensitivity analysis, the influence of certain parameters on the model
output can be determined. More mathematically, we state how a change in the parameter
value changes the model output value. Our first research paper in Chapter 3 contains a



description of the mathematical theory as well as an application on the two mentioned
activation dynamics. In Chapter 5, we extend the approach to a sensitivity analysis of the
whole muscle model among different contraction modes; in detail isometric contractions,
isotonic contractions, quick-release contractions, and concentric contractions versus an
inertial mass. In our second research paper, in Chapter 4, sensitivity analysis is used
as a tool to reach two goals: First, to prove that isometric contractions are influenced
by dynamic muscle parameters. Second, to specifically design an isometric contraction
experiment for determining an eccentric contraction parameter.

In Part III, we will show the application of optimal control theory on ODE—-based models.
Briefly, optimal control theory is used to obtain model input, e.g. o(t), from a given model
output, e.g. Fyrro(t). In contrast to model evaluation, i.e. obtain model output from
model input, optimal control requires optimization methods. Chapter 6 outlines the fun-
damentals of functional analysis and gives simple examples to re-enact the theory step by
step. Our third research paper in Chapter 7 contains the application of optimal control
theory on the presented muscle model. This paper focuses on isometric muscle contrac-
tions, where the MTC is held at constant length. Our fourth research paper in Chapter 8
carries the previous method forward and contains a further application of optimal control
in biosciences: the modeling of dengue fever transmission. The final Chapter 9 presents
an alternative optimal control approach known as space-mapping. This theory might be
a good example for mathematical work that has not yet been discovered for a large scale
application outside a confined community. The idea behind this approach is to simplify
the ODE—-based model as much as possible to cheapen optimization processes. The results
from this optimization are then transferred back to the original model via the so—called
space—mapping function. We give two examples of simplifying our model and perform the
respective optimizations.

Part IV provides a final conclusion as well as an outlook for future research in Chapter
10, and the bibliography of all sections that are not research papers.






Part 1.

Stability Theory
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2. Stability Investigations of Dynamic
Muscle Properties

This chapter gives an overview of common techniques in stability theory and their appli-
cation on muscle dynamics. Regarding a model of a dynamical system, the question arises
whether there exists a state at which the model reaches an equilibrium. Typical examples
for systems with equilibrium points are the predator—prey model from Lotka—Volterra, the
mathematical pendulum or a free fall with air resistance. It is of interest to know, if small
perturbations of the equilibrium only cause small long—term deviations of the system. The
system is then called stable. The formal definitions and theorems are given below.
Modeling a musculo—skeletal system requires a variety of muscles, each one including
a differential-algebraic equation system (DAE), a parameter set and a set of initial con-
ditions. After applying a constant neural stimulation on every muscle, the system tends
to reach an isometric equilibrium, for example sitting or standing. Although the respec-
tive MTC lengths are easily determined by basic mechanics, the equilibrium lengths of
the contractile elements are not. These equilibria should be attained, independent of the
initial conditions’ choice, and persist after small perturbations. Otherwise, even a small
deviation in the initial guess or error in measurement can lead to a large deviation in the
model output. To investigate, whether an attained equilibrium is stable with respect to
minor perturbations, results from stability theory are applied on the muscle model from
[27, 30]. The underlying ordinary differential equations (ODEs) are autonomous, which
means they do not explicitly depend on the independent variable time. Note that future
improvements of the model including history effects, fatigue, force enhancement or force
depression might add non—autonomous parts to the model. For these parts, the presented

approaches do not apply generally, because it is less likely for an equilibrium to occur, cf.
[80].

2.1. Introduction to Stability Theory

Let 2 be an open subset of R™, f: Q2 — R™ and consider the autonomous, ordinary, first
order initial value problem (IVP):

i=f(t), 2(0)=w | (2.1)

where z(t) = (z1(t), x2(t),...,xn(t)) and f = (f1, f2,..., fn) denote the vectors of state
variables and right—hand sides of the ODE, respectively.

The following definitions and theorems are mainly taken from [78] but can also be found
in most introductory literature about ODEs.

Definition 2.1.1. A function f : © — R"™ is called Lipschitz continuous or L—
continuous on €, if there exist an L € RQF such that

1f (@) = FIl < L-[lx =yl

for all z,y € Q, where || .|| denotes an arbitrary norm.

13



2. Stability Investigations of Dynamic Muscle Properties

Definition 2.1.2. A point z* € Q of the state space is called equilibrium point (or
stationary point in the case n = 1) of ODE (2.1), if f(2*) = 0 (zero vector).

Definition 2.1.3. Let * be an equilibrium point of Eqn. (2.1). Then z* is called

e stable, if for all ¢ > 0 with B.(z*) C €, there exist a 6 > 0 with Bs(z*) C Q, such
that for every solution x(t) with 2(0) € Bs(z*) it holds that z(t) € B.(x*), for all
te R+

e asymptotically stable, if z* is stable and lim z(t) = z*
—00

e exponentially stable, if x* is asymptotically stable and there exist a;, 8 > 0 such
that, if x(0) € Bs(z*), then x(t) € Bys.—s:(z*), for all t € Ry

e unstable, if £* is not stable.

This definition of stability was first given by Aleksandr Lyapunov in [52] and therefore
is called Lyapunov stability. Note that all of the above definitions hold for linear as well
as non-linear right hand sides and do not provide any insight on how the stability can be
calculated in practise. However, if f is linear in z, the autonomous equation & = f(z(t))
can be written as the homogeneous linear system & = A -z with A € R"*". Hence, we
can determine the stability of the solution by the following theorem, see [78, Section 4.3].

Theorem 2.1.4. Let & = Ax be a linear homogeneous ODE system and o(A) the spectrum
of A, i.e. the set of eigenvalues. The system is then

1. asymptotically stable, if for all X € o(A) it holds: R(X) < 0 (real part of \),

2. stable, if for all X\ € o(A) it holds: R(\) < 0 and the algebraic multiplicity of all
Ai € 0(A) with R(N\;) = 0 is equal to their geometric multiplicity,
3. unstable, if it is not stable, i.e. if
(a) there exist at least one A € o(A) with R(A) >0 or

(b) there exist at least one A € o(A) with R(A\) = 0 and the algebraic multiplicity
of X is greater than its geometric multiplicity.

If the right hand side is non-linear, we first need to linearize f by its Jacobian, which
has the same local behavior as the system itself according to the theorem of Hartman—
Grobman [12]. The asymptotic stability of an equilibrium point z* can be obtained as
follows:

Theorem 2.1.5. Let f and x be defined as in (2.1). Additionally, let f be continuously
differentiable w.r.t. © and let x* be an equilibrium point. Set M := d/dx f(z*).

1. If R(X) < 0 for every A € o(M) then z* is asymptotically stable.

2. If there exist at least one A\ € o(M) for which holds R(X) > 0 then x* is unstable.

14



2.2. Stability of Activation Dynamics

Unlike the linear case, there is no possible statement about the stability of x*, if
max{R(\) | A € o(M)} =0, see [78, Remark 8.12.1].

The method using Theorem 2.1.5 is called the indirect method of Lyapunov, since the
system has to be linearized first. A more general method, the direct method of Lyapunov,
uses the trajectories of the ODE to determine the stability as follows:

Definition 2.1.6. Let V : U — R be a continuous function, where U C () is an open
subset containing x*. Then V is called a Lyapunov function for the differential equation
(2.1) at x* if

(1) V(z*) =0,
(2) V(z) >0forall z € U\ {z*},
)

(3) V is continuously differentiable on U \ {z*} and V := (VV, f(z)) < 0 holds for all
x € U\ {z*}, where (, ) denotes the canonical inner (scalar) product.

If furthermore V < 0 for all z € U \ {z*} then V is called a strict Lyapunov function.

Theorem 2.1.7. Let x* be an equilibrium point of Eqn. (2.1). Then z* is
1. stable, if there is a Lyapunov function for system (2.1) at z*,
2. asymptotically stable, if there is a strict Lyapunov function for system (2.1) at x*,

3. unstable, if V' satisfies theorem 1.56 from [11, p. 31]: Let V' be a smooth function on
U with V(z*) =0 and V > 0 on U \ {z*}. If V has a positive value somewhere in
each open set containing x*, then x* is unstable.

In the following, we want to determine the equilibrium points of muscle activation and
contraction dynamics and investigate their stability.

2.2. Stability of Activation Dynamics

2.2.1. Zajac’s Activation Dynamics

The simplest dynamical system of the muscle model from [27, 30] is the activation dynamic
according to Zajac. It consists of a linear ODE that phenomenologically describes the
relation of a neural stimulation o and the resulting activity ¢ as:

iz = hlaz) = 7

[0(1 —qo0) —o(1 - B)(az — q0) — Blaz — qo)] (2.2)
q0)

with ¢z(0) = gz0. As in [66, 68] the parameter 7 denotes the activation time constant, /3
the activation—deactivation ratio, gy the minimum activation, and o the neural stimulation,
which is considered to be constant. Calculating the equilibrium point ¢7, yields:

o+ Bqo — Boqo
B+o—pfo

filgz) =0 = qz (2.3)

15



2. Stability Investigations of Dynamic Muscle Properties

Since 0 < 0,8 < 1, we note that the denominator 5 4+ o — B0 is only 0, if ¢ = 8 = 0.
In that case, the solution of equation (2.2) is already an equilibrium ¢z(t) = qz0 = ¢%.
Furthermore, we can verify immediately that go < ¢, < 1.

We calculate the derivative of the right hand side f; w.r.t. ¢z and obtain:

d B+ o—fo

dqul(QZ) T <0 (2.4)
Note that d/dqz f1(gz) does not depend on gz and is always < 0, in particular at the
equilibrium point ¢7. That is, because go —1 < 0 and 3+ o0 — B0 > 0. Hence, the solution
of equation (2.2) is always asymptotically stable and even exponentially stable, since the
system is linear. As illustrated in Fig. 2.1, applying a constant simulation o always yields
a unique and asymptotically stable equilibrium for Zajac’s activation dynamics, regardless

the initial value. The arrows (quivers) indicate the slope field of the IVP.
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Figure 2.1.: Slope field (or direction field) for Zajac’s activation dynamics (2.2). The
parameters are chosen as follows: ¢ = 0.5, 5 = 0.8, 7 = 1/40, gop = 0.01. The equilibrium
point g7, = 0.556 is exponentially stable.

2.2.2. Hatze’s Activation Dynamics

An alternative approach for describing the muscle activation dynamics was given by H.
Hatze, see [35]. In contrast to the phenomenological description from Zajac, it contains
physiological observations regarding the calcium ion concentration and a continuous, mo-
notonously increasing length-dependency function p(/cg) > 0. The non-linear Hatze
formulation writes as:

1V_m0 lop(bom) (1 = am) ¥ (an = a0)' ™% = (1= am)lam —a0)| . (25)

qn = f2(qu) =

where ¢(0) = gm0, cf. [26, 68]. The parameters gy and o are defined equally to Zajac’s
formulation. As in [68], the parameter m denotes a time constant and v a dimensionless
exponent.
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2.2. Stability of Activation Dynamics

Calculating the equilibrium points yields three candidates qfﬁ where 7 € {1,2,3}:

« _ plor)’a” +q
H3 p(lep)Vo? + 1

f2lqu) =0 = Qi1 =q0, Qo =1, (2.6)

The first two equilibrium points occur as a direct consequence of the shape of fo and
require v # 1, whereas the third equilibrium point is a consequence of the build—up of

f2 in [26] from the original formulation by [35], c¢f. Eqns. (3.3) — (3.5). We insert these
equilibrium points in the derivative of the right hand side:

d
@fQ(QH) =
1 Z 1

mrvr —_ v —_

1 2qi — qo — 1+ op(lcr) <qH> <—2(JH +qo+ 1+ 1 >]
— qH — qo v
d ) ) _1 1,

1 f2(qi;1)  is not defined, since (¢} 1 — qo) » = 0~ v is not defined,
qH ’ ,
d

fo(q5r) =mv >0, since m,v >0,

dgn ’
4 g =-m<0

dgy 123 =

Hence, we can conclude that ¢}; 5 is an unstable equilibrium, whereas ¢3; 5 is asymptoti-
cally stable. However, for q}},l = ¢o we cannot provide any statement, but have to further
investigate the right hand side fo. We make two observations:

1) If o = 0 then g is still an equilibrium point of fo !0:0 and

d

 — =—mr <0
dan f2(qo0) L

that means at zero neural stimulation ¢p is an asymptotically stable equilibrium
point.

2) The function fa(gp) is not Lipschitz continuous in g = qo, see Definition 2.1.1. The
L—continuity constitutes a sufficient condition for uniqueness of a solution of the ODE
(2.1) according to the theorem of Picard—Lindel6f. Before deriving consequences for
this observation, we try to illustrate these consequences on a simpler example.

Example 2.2.1. Let g : [0,00) = R and @ = g(u) := /|u|, uw(0) =n with n € R be a
first order IVP. Assuming 1 > 0, a unique solution can be given by

u(t) = <\fn+;>2.

Obviously, the right hand side g(u) is not L—continuous in v = 0, but L—continuous on the
interval [e, 00) for every ¢ € Ry with L. = 1/(2/¢).
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2. Stability Investigations of Dynamic Muscle Properties
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Figure 2.2.: Slope field of the ODE @ = 1/|u|. Solutions of the form u(t) = (t —ty)?/4 are
delineated for tg € {0,0.3,0.9} to show the non-uniqueness..

Consequently, the uniqueness of the solution vanishes, if u passes the zero value. Pro-
vided 1 = 0 we get infinitely many solutions of the above IVP, for example of the form

0, t<to
u(t) = 2 - )
" {in’ t>to

where o € R;. Figure 2.2 shows possible solutions for various ¢y values on the interval
[0, 2].

We see that, once the solution attains the zero value, it is either possible for u to stay
in zero or to continue as a quadratic function at any time 3. This phenomenon can be
called semi-stability in the one-dimensional case, see [11, p. 13].

We transfer the example to Hatze’s ODE (2.5), because d/dqy f2(qm) is not L—continuous
in g = qo. But for every suitable small € > 0 it holds

d d
—falgo+€) >0 and 3?( 2q0—6><0.
T hln+2) T halw—2)
Figure 2.3 shows the slope field of the right hand side of Hatze’s formulation with the
unstable equilibrium at 1 and the asymptotically stable equilibrium at q}l73 as expected.
For gy we have a semi-stable equilibrium, because the equilibrium point switches stability
by passing through gy and the solution therefore loses its uniqueness.

Remark 2.2.2. In numerical experiments, we would try to avoid the semi—stable case,
because it is not physiologically interpretable. In the example we stated that for every
initial value n > 0 the solution would be unique. Same holds true for Hatze’s equation

when gz is not equal to ¢}; ; or ¢j; 5. Therefore we choose gz in the open interval (go, 1)
in numeric simulations.

18



2.3. Contraction Dynamics

Besides gaining uniqueness of the solution, the suggested strategy also ensures that the
equilibrium point q}m = o becomes unstable. Consequently, in a numeric simulation,
q7r 5 is attained by the system.
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Figure 2.3.: Slope field for Hatze’s activation dynamics equation (2.5). The parameters are
chosen as follows: 0 = 0.1, v =3, m =11, p. =9, locg = LcE,opts {p = 2.9, qo = 0.001.
The equilibrium points are ¢z ; = qo (semi-stable), ¢j;, = 1 (unstable) and g7 3 =

plcr)’ o +q0 ~ 0.4

RS (asymptotically stable).

2.3. Contraction Dynamics

2.3.1. Simplified Contraction Dynamics

In addition to the equilibrium points of the activation dynamics, we are naturally inter-
ested in statements about possible equilibrium points of a muscle’s inner dynamic. As a
simplified example we start by investigating the hyperbolic equation from Hill [41], which
has been modified by [79] and is also used as a basis for the model presented in [27] (and
the remaining thesis). This reduced model of contraction dynamics only consists of the
muscle’s CE without any serial or parallel elastic element. Furthermore, to exclude cou-
plings with other state variables, we use Zajac’s activation dynamics. Thus, the simplified
right hand side fg reads as

(2.7)

. 7 Fisom (¢ + Qye
log = fs(lcr) = brellcE,opt (1 _ 4z (fcr) l)

F
OB 4 Qrel

max

where ¢, denotes the only equilibrium point of Zajac’s formulation. The parameters a,;
and b, are fit parameters for the hyperbolic force—velocity relation and known as “Hill-
parameters”. The maximum isometric muscle force is denoted by Fj,., and the length at
which this force is exerted is denoted by fog ope. We assume that the parameters Fop, arq
and b, are constants, i.e. independent of ¢ or g (cf. [27]).
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2. Stability Investigations of Dynamic Muscle Properties

Setting the right hand side equal to zero yields:

fg(ch) =0 <= Fogp= q%FmamFisom(ECE) . (28)

The explicit solution for /or now depends on the
structure of Fjsom, whether it has the form of a
parabola [79] (van Soest), is piecewise linear [75]
(Siebert) or has a bell-shaped form [27] (Giinther),
see alongside figure. The term “relative CE length”
indicates a normalization of the CE length w.r.t.
LoEopt Via Lopre = Lop/lcEopt- Regardless the
shape of Fjsom, the solution for /o is not unique
in general. In all cases there is the possibility of
two solutions K*CEJ <AloEopt < €8E,2 (see Fig. 2.4),
it Focp < ¢, Fpaz- For the parabola and the bell-
shaped curve there is the possibility of the unique

o F‘sm (Gunther)
o F‘scm (Siebert)

* F‘som (van Soest)

—_
T

isometric force
o o o
= P Q@

9
N

0.5 1 15
relative CE length

equilibrium point €5, = lopopt, if For = ¢ Finae. For the piecewise linear curve there
even might exist infinitely many equilibrium points, which lie in the plateau region, de-
noted by [(cE opt,£3) in [75]. A last possibility is for the system to have no equilibrium
point at all, if Fop > ¢ Finae- In general, it is not possible to give a closed—form solution

for £, hence we use the implicit Eqn. (2.8).
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Figure 2.4.: Isometric force-length curve from [27] along with its derivative. For the
choice of Fop = 1/2¢} Finaq there exist two equilibrium points ﬁgEJ < ALcE,opt < EEEQ.
One verifies immediately that in general the derivative d/d¢c gy -Fisom(E*CE,l) > 0 and

d/dEC’Erel F’isom(E*CEQ) < 0.

20



2.3. Contraction Dynamics

Remark 2.3.1. The described change in the qualitative behavior of the ODE solution
with respect to a containing parameter, in the above case the CE force Fpop, is called a
bifurcation. The bifurcation theory, we base our observations on, can be found in [11],
[32] or [80]. In the case of the simplified contraction dynamics, we more precisely speak of
a saddle—node bifurcation or fold bifurcation, whose normal form is the family of ODEs

tw=p—u=(/p+u) (Vg—u), upcR. (2.9)

In practice, a differential equation of this form can be utilized to describe a free fall with
air resistance and turbulent flow or, assuming p > 0, can be transformed into a logistic

ODE.

For p < 0 there is no (real) equilibrium point existing. For u = 0 there is one rest
point (the saddle-node) u* = 0. Finally, for 4 > 0 there are two equilibria uj , = +\/1
existing, where u] = ,/u is asymptotically stable and uj = —,/u is unstable. According
to Theorem 2.1.7 the respective Lyapunov functions can be chosen as Vi (u) = (u — /n)?
on Uy = (—uj, 00) for uj as well as Va(u) = (u + \/f)* on Uy = (—oo,u}) for u}. For the
respective bifurcation diagram see [11, p. 13] or [80, p. 199]. The change of the slope field
of ODE (2.7) w.r.t. changes in Frp is displayed in Fig. 2.5.
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Figure 2.5.: Bifurcation, visualized by a changing slope field in dependence of one
parameter. The slope field of the simplified contraction dynamics equation (2.7) in depen-
dence of the parameter Fog is shown. For Fop = 0.4+ Fp,4, (left), we have two equilibrium
points, where one is asymptotically stable and the other, called the saddle, is unstable.
For Fop = Finas (middle), there is a collision of the two equilibria, which results in one
semi-stable equilibrium. For Fop = 2+ Fp,4, (right), the equation has no equilibrium at
all. In all cases it holds ¢}, = 1. The remaining parameter values were taken from [27,
Table 1].
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2. Stability Investigations of Dynamic Muscle Properties

To investigate the stability of the equilibrium point(s) 75, we take the derivative

d
dlop

(2.10)

* d
quFisom(gCE)
fS(gCE) = _bTeIECE,opt ( décs

Fo
7+ Qrel

max

and look at its sign. Since all occurring parameters are positive, the sign is opposite
to the sign of d/dlcg Fisom(fcp). As illustrated in Figures 2.4 and 2.5, in the case of
two equilibrium points E*CEJ < Logopt < Z*C’E,27 it holds that Z*CEJ is asymptotically
stable, whereas (. 5 is unstable. For the cases {5, = {coE,opt (Parabola, bell-shaped) and
g € LoE,opt, 03] (piecewise linear) the derivative of the right hand side is zero, which
means that no prediction can be made. However, the slope fields in Fig. 2.5 indicate that

those points might be semi-stable.

Naturally the question arises, whether this mathematical observation is of any biome-
chanical relevance. We recall that our observed contractile component only consist of a
single CE with no parallel or serial elastic element. In other words: in the stationary state,
we are looking at a spring with a non—linear force—length characteristic. For a biomechan-
ical interpretation, we want to verify the meaning of £, g1 < LoE,opt being asymptotically
stable and £ B2 > lcgopt being unstable. The definition of stability states that a small
change of the equilibrium state should only lead to a small change of the solution over
time, which even tends to zero in the case of asymptotic stability. For EEE’I, a small
diminution of /o means a decrease in force production. Hence, the outer force is going to
lengthen the muscle again until £¢,p (see Figs. 2.4 and 2.5). In contrast, increasing the
length Lo > (7 g, Would result in a force production increase and thus in a shortening of
the muscle until the equilibrium is reached. On the other hand diminishing lor < {7 E2
results in an increase in force production and in a further shortening until Z’éE,l. Con-
sequently, if lop > ZEEQ is increased, the muscle’s force decreases and the outer force
further lengthens the muscle arbitrarily.

2.3.2. Complete Contraction Dynamics

In a final step, we are considering the complete state—of-the—art muscle model from [27,
30]. Besides including a parallel elastic element (PEE), a serial elastic element (SEE) and
a damping element (SDE), we also take the coupling with Hatze’s activation dynamics
into account. The question, whether there exist equilibrium points and whether they are
stable is very important. This is, because in in vivo experiments one can only observe the
outer (MTC) dynamics, but has to model the inner (CE) dynamics. As stated in [67],
during an isometric contraction cycle, the MTC length does not change, but the CE passes
through a concentric and an eccentric contraction phase with two different steady states.
The respective model equations are obtained by inserting the contraction dynamics into
the muscle force equilibrium and can be found in [27, 30, 66]:

qu = f2(qm) ,

Yy . (2.11)
0=Co -l +Ci-log +Cp .
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2.3. Contraction Dynamics

We recall the occurring coefficients for clarity:

Co = Do lrnirc + Lcm.opt bret (Fser — FrEE — FinazFisom)
C1 = —(Cylyre + Do + Fspp — Fppe + Fazarea)

F
Cy = dsE max (RSDE - [arez - FPEE} (1-— Rsm:)) ,

max

F
Do = Lcg,opt bret dsEmax (RSDE + (1 — RspE) <quSOm 4 FPEE>> ’

dsEmaz = DspE M )
CE,optVrel,0
where Fprpr and Fjis,y, are functions of g, further Fggg is a function of o and £yre,
and finally a,¢; and b,.; are functions of {og and ¢, see Eqns. 7.4 — 7.12.
The equilibrium points for gy were already given in Eqn. (2.6). For the equilibrium
points /5 we see that

Dol yire

lep=0 < Co=0 < Fspp = Fppr + Fna - ¢ - Fisom —
brelgCE,opt

(2.12)
In this formulation, the equilibria would depend on the velocity of the MTC, because of
the damping element. Since a shortening or elongating muscle would hardly allow for an
inner steady state, we only consider an isometric equilibrium where {yire = 0. Note that
this does not imply on overall isometric contraction, but we assume that, after performing
any contraction mode, the MTC attains a fixed length £3/7c cng. Hence, the equilibrium
points £, are the roots of the function:

S(lyrc,end LoE,0) = Fsge(Uymrc,end: tor) — FPEE(lcE) — Fraz - 451(lcE, 0) - Fisom(lcE)
(2.13)
For bcp < LcEg,opt, the force of the serial elastic element is positive and the force of
the parallel elastic element and the isometric force is approximately zero. In contrast, for
log > LoE,opt, the force of the SEE is zero and the force of the PEE is positive. Hence,
assuming o € [0, 1] is constant, there exists a root according to the mean value theorem,
since ® is continuous. Furthermore, because in our case ®(.,lcg, . ) is strictly monotonic
decreasing, the equilibrium is unique.

Remark 2.3.2. The monotonicity of ® w.r.t. /o is dependent on the parameter values. A
different set of parameters may strengthen the isometric properties. For example increasing
Lprg to a value greater than one would result in a local minimum—maximum pair of ®.
Consequently, there could be up to three roots of ® resulting in one stable and two unstable
equilibria.

Figure 2.6 shows the values of @ for three different MTC lengths. For short muscle length
(e.8. Lyrrc,end = 0.9 - Lyrreres = 5,54 cm) the equilibrium points are strongly dependent
on the applied stimulation, whether (7, ~ 0.67¢c g opt for o =1 or {5, = 0.950c g opt for
o = 0. The longer the MTC length, the lesser the equilibrium depends on the value of o.
For a long muscle length (e.g. ¢yrcend = 1.1 - Lyrorep = 6.77cm) the stimulation has
no effect on the equilibrium at all, because the passive behavior is dominating the force
output.
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Figure 2.6.: Graphs of q)(KMTC’,endy loE, U) = Fsgg — Fpee — Fraz - QE - Fisom applying
different MTC lengths and o € {0;1}. Regarding every line type, the lower function
belongs to the case 0 = 1 and the upper function to the case ¢ = 0. All graphs are strictly
monotonic decreasing resulting in a unique root and therefore a unique equilibrium point
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Figure 2.7.: Slope fields of the complete contraction dynamics from (2.11). From left to
right, the MTC length varied over 0.9 - £yrrcref, Crrcres and 1.1 - £yrporep. The initial
conditions were {cp o (ordinate at t = 0) and 1.1gy (see Remark 2.2.2). Stimulation was
chosen as o(t) = 1.

24



2.3. Contraction Dynamics

Figure 2.7 shows the respective slope fields for a fully stimulated muscle held at lengths
Cyre/lurcrer € {0.9,1,1.1}. For the short MTC length, the equilibrium is not as
obvious or sharp as for the long MTC length, but is still unique, see Fig. 2.6.

The slope fields from Fig. 2.7 indicate that the unique equilibrium £¢, is stable. How-
ever, an analytical validation requires to linearize the right hand side of model (2.11) and
determine the definiteness of the resulting Jacobian. We relinquish an explicit deriva-
tion due to the complexity and nesting of the model functions. For the example cases in
Figs. 2.6 and 2.7, the resulting Jacobian proofed to be negative definite in our numerical
simulations. Hence, the equilibria were stable.

Regarding model (2.11), we want to state additional influences on the equilibria £,
among a broad variety of cases. Therefore we varied the MTC length, the stimulation
and the activation dynamics. The MTC lengths were chosen relative to the reference
length {yre/Curcreyr € {0.7,0.8,0.9,1,1.1,1.2}, the stimulation was chosen from o €
{0,0.2,0.4,0.6,0.8,1} and the activation dynamics were chosen from Hatze and Zajac. In
each case, the equilibria were determined. Figure 2.8 contains an overview of the attained
CE lengths.
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Figure 2.8.: Attained equilibrium points ¢ of model (2.11), in dependence on the rela-
tive MTC length (dashed lines), the stimulation (abscissa) and the activation dynamics
according to Hatze (filled circles) or Zajac (open circles). The respective relative MTC
lengths are indicated with little numbers 0.7,...,1.2.
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2. Stability Investigations of Dynamic Muscle Properties

The dependence of the equilibria on the MTC lengths was stated above and recovered
in Fig. 2.8. For short (0.7) and long (> 1.1) relative muscle lengths, the equilibria do
not depend on the level of stimulation, because the passive behavior of the muscle is
dominating the force output. For relative MTC lengths from 0.8 to 1.0, an increasing
stimulation expectably results in a shortened CE. At zero, as well as at full stimulation,
the equilibria are not dependent on the activation dynamics. At short relative muscle
lengths (0.7,0.8) and for sub-maximal stimulation, model (2.11) together with Zajac’s
activation yields lower CE equilibria than with Hatze’s formulation. The opposite holds
true for longer lengths (0.9,1.0). This effect may be associated with an observation from
[68]: Zajac’s activation dynamics seemed to fit better, regarding experimental data at short
relative muscle lengths, whereas Hatze’s formulation seemed to be more valid at longer
muscle lengths.
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Part II.

Sensitivity Analysis
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3. Research Paper I: Comparative Sensitivity
Analysis of Muscle Activation Dynamics

R. Rockenfeller M. Gunther S. Schmitt T. Gotz

The following is a reformatted and slightly modified copy of the open source article
R. Rockenfeller et al. “Comparative Sensitivity Analysis of Muscle Activation
Dynamics”. In: Computational and Mathematical Methods in Medicine. Ar-
ticle ID 585409, doi:10.1155/2015/585409 (2015), 16 pages
available at http://www.hindawi.com/journals/cmmm/2015/585409.

This article is also referred to as [50] (in Chapter 4), [24] (in Chapter 7) or [68] (in the
remaining work).

The initial idea for this article originated from T. Gotz. Structure, calculations and
results were given by R. Rockenfeller. The sections “Introduction”, “The Numerical Ap-
proach” and “Consequences, Discussion and Conclusion” originated from a direct, personal
collaboration of R. Rockenfeller and M. Giinther. The publication fee was sponsored by
S. Schmitt.

Abstract

We mathematically compared two models of mammalian striated muscle activation dy-
namics proposed by Hatze and Zajac. Both models are representative for a broad variety of
biomechanical models formulated by ordinary differential equations (ODEs). These mod-
els incorporate some parameters that directly represent known physiological properties.
Other parameters have been introduced to reproduce empirical observations. We used sen-
sitivity analysis as a mathematical tool to investigate the influence of model parameters on
the solution of the ODEs. Thereto, we calculated first order, local sensitivities according
to a former approach adopted from literature. We expanded this approach to treat initial
conditions as parameters and to calculate second order sensitivities, the latter quantifying
the non—linearly coupled effect of any combination of two parameters. Furthermore, we
used a global sensitivity analysis approach to factor in finite ranges of parameter values.
The methods we suggest have numerous uses. A theoretician striving for model reduction
could use them to identify particularly low sensitivities to detect superfluous parameters.
An experimentalist could use them to identify particularly high sensitivities to facilitate
determining parameter values with maximized precision.

Hatze’s non—linear model incorporates some parameters to which activation dynamics is
more sensitive than to any parameter in Zajac’s linear model. Other than Zajac’s model,
Hatze’s model can moreover reproduce measured shifts in optimal muscle length with
varied muscle activity. Accordingly, we extracted a specific parameter set for Hatze’s model
that led to optimal fits, in combination with a particular muscle force—length relation. We
also provide an outlook on how sensitivity analysis could be used for optimizing parameter
sets in future work.
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List of Symbols

[ Symbol | Meaning Value
leg contractile element (CE) length time—depending
éc E contraction velocity first time derivative of fcg
LcE,opt | optimal CE length muscle—specific
LCErel relative CE length LCErel = fceg.}im (dimensionless)
Fras maximum isometric force of the CE musclefspeciﬁc
o neural muscle stimulation usually time—depending ; here constant
q muscle activity (bound Ca®T concentration) time-depending
qo basic activity according to [11] 0.005
qH activity according to [10] time-length—depending
qH,0 initial condition for Hatze’s activation ODE mutable
qz.0 initial condition for Zajac’s activation ODE mutable
T activation time constant in [27] here: 4 s
Tdeact deactivation time constant in [27] here: 45 s or % s
8 corresponding deactivation boost [27] B = T/Tdeact
v exponent in Hatze’s formulation 2 or 3
m activation frequency constant in [10] range: 3.67...11.251; here: 101
c maximal Ca®" concentration in [9] 1.37-107* met
~ representation of free Ca®" concentration [10, 11] | time-depending
p length dependency of [9] activation dynamics p(lcErel) = pe - %
e
L, pole in Hatze’s length dependency function 2.9 et
po factor in [10, 25] 6.62- 10" —L. or 5.27- 10" -L.
Pe merging of po and ¢ pe = po - ¢; here: 9.10 or 7.24
A model parameter set A={\,...; \n}
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3.1. Introduction

3.1. Introduction

Scientific knowledge is gained by an interplay between quantitative real world measure-
ments of physical, chemical, or biological phenomena and the development of mathemat-
ical models for understanding the dynamical processes behind. In general, such phenom-
ena are determined as spatio—temporal patterns of physical measures (state variables).
Modeling consists of distinguishing the surrounding world from the system that yields the
phenomena and formulating a mathematical description of the system, which is called a
model. A model can predict values of the state variables. The calculations depend on
model parameters and often on giving measured input variables. By changing parameter
values and analyzing the resulting changes in the values of the state variables, the model
may then be used as a predictive tool. This way, the model’s validity can be verified. If
the mathematical model description is moreover derived from first principles, the model
has the potential to explain the phenomena in a causal sense.

Calculating the sensitivities of a model’s predicted output, i.e. the system’s state vari-
ables, with respect to model parameters is a way of eliminating redundancy and indeter-
minacy from models, and thus helps to identify valid models. Sensitivity analyses can
be helpful both in model-based experimental approaches and in purely theoretical work.
A modeling theoretician could be looking for parameters to which all state variables are
non—sensitive. Such parameters might be superfluous. An experimentalist may inspect the
model that represents his working hypothesis and analyze, which of the model’s state vari-
ables are specifically sensitive to a selected parameter. Hence the experimentalist would
have to measure exactly this state variable to identify the value of the selected parameter.

A biomechanical study [21] applied sensitivity analysis to examine the dynamics of a me-
chanical multi-body system: a runner’s skeleton coupled to muscle activation—contraction
dynamics. They calculated specific sensitivity coefficients in three slightly different ways.
A sensitivity coefficient is the difference quotient calculated from dividing the change in
a state variable by the change in a model parameter value, evaluated in a selected sys-
tem state [16]. The corresponding partial derivative may be simply called “sensitivity”.
Therefore, a sensitivity function is the time evolution of a sensitivity [16]. Accordingly, [16]
proposed a more general and unified approach than [21], which allows to systematically
calculate the sensitivities of any dynamical system described in terms of ordinary differen-
tial equations. As an example for sensitivity functions, [16] applied their proposed method
to a muscle—driven model of saccadic eye movement. By calculating a percentage change
in a state variable value per percentage change in a parameter value, all sensitivities can
be made comprehensively comparable, even across models.

Sensitivity, as defined so far, is of first order. Methodically, we aim at introducing a
step beyond, namely at calculating second order sensitivities. These measures are suited
to quantify, how much the sensitivity of a state variable with respect to (w.r.t.) one
model parameter depends on changing another parameter. By analyzing second order
sensitivities, the strength of their interdependent influence on model dynamics can be
determined. In addition to this so—called local sensitivity analysis, we will take the whole
parameter variability into account by calculating global sensitivities according to [3] and
[19]. This approach allows to translate the impact of one parameter on a state variable
into a parameter’s importance, by completely comprising its interdependent influence in
combination with all other parameters’ sensitivities.

In this study, we will apply sensitivity analysis to models that predict how the activity
of a muscle (its chemical state) changes, when the muscle is stimulated by neural signals
(electrical excitation). Such models are used for simulations of muscle contractions coupled

31



3. Research Paper I: Comparative Sensitivity Analysis of Muscle Activation Dynamics

to their activation dynamics. Models for coupled muscular dynamics are often part of
neuro—musculo—skeletal models of biological movement systems. In particular, we want
to try and rate two specific model variants of activation dynamics, formulated by Zajac
[27] and by Hatze [10]. As a first result, we present an example of a simplified version of
the Zajac model, in which sensitivity functions can in fact be calculated in closed form.
Subsequently, we calculate the sensitivities numerically w.r.t. all model parameters in
both models, aiming at an increased understanding of the influence of changes in model
parameters on the solutions of the underlying ordinary differential equations (ODEs).
Additionally, we discuss which of both models may be physiologically more accurate.
The arguments come from a mixture of three different aspects: sensitivity analysis, other
experimental findings, and an additional attempt to best fit different combinations of
activation dynamics and force-length relations of the contractile element (CE) in a muscle
to known data on shifts in optimal CE length with muscle activity [14].

3.2. Two Models for Muscle Activation Dynamics

Macroscopically, a muscle fiber or an assembly thereof, a muscle belly, is often mapped
mathematically by a one—dimensional massless thread called “contractile component” or
“contractile element” (CE) [4, 7, 8, 25, 26]. Its absolute length is cg, which may be
normalized to the optimal fiber length (g opr by oEre = LoE/lCE,opt- In macroscopic
muscle models, the CE muscle force is usually modeled as a function of a (CE-)force-length
relation, a (CE-)force—velocity relation, and (CE-)activity ¢. Commonly, the muscle
activity ¢ represents the number of attached cross—bridges within the muscle, normalized to
the maximum number available (go < ¢ < 1). It can also be considered as the concentration
of bound Ca?* ions in the muscle sarcoplasma relative to its physiological maximum.
The parameter gy represents the minimum activity that is assumed to occur without any
stimulation [10].

We analyze two different formulations of muscle activation dynamics, i.e. the time
(its symbol: t) evolution of muscle activity ¢(¢). One formulation of muscle activation
dynamics was suggested by Zajac, which we modified slightly to take gy into account:

1

m'[a'(l—%)—m(1—6)-(qz—qo)—ﬁ-(qz—qo)] , (3.1)

qz =
with the initial condition ¢z(0) = gzo. In this context, o is supposed to represent the
(electrical) stimulation of the muscle, being a parameter for controlling muscle dynam-
ics. It represents the output of the nervous system applied to the muscle, which in turn
interacts with the skeleton, the body mass distribution, the external environment, and
therefore with the nervous system in a feedback loop. Electromyographic (EMG) signals
can be seen as a compound of such neural stimulations collected in a finite volume (be-
ing the input to a number of muscle fibers) over a frequency range and coming from a
number of (moto—)neurons. The parameter 7 denotes the activation time constant, and
B = T/Tgeact 1 the ratio of activation to deactivation time constants (deactivation boost).
An alternative formulation of muscle activation dynamics was introduced by Hatze in
[10]:
J=m-(c-7) . (3.2)

We divided the original equation from [10] by the parameter ¢ = 1.37 - 10~% mol/1, which
represents the maximum concentration of free Ca?t ions in the muscle sarcoplasm. Thus,
the value of the corresponding normalized Ca?* concentration is 0 < v < 1. The activity
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is finally calculated by the function

qo + [p(eCErel) ) ’Y]V

qu (s LcErel) = , 3.3
(7 " ) 1+ [:O(ECErel) : ’7]V ( )
and the parameter c is shifted to the accordingly renormalized function
l,—1
p(ECErel) = Pc 45 s (34)
LoErel o

with p. = ¢ po and ¢, = 2.9. Two cases have been suggested by [11]: py = 6.62 -
10*1/mol (i.e. p. = 9.10) for v = 2 and pg = 5.27 - 10*1/mol (i.e. p. = 7.24) for v = 3,
which have been applied in literature [12, 13, 14, 25]. By substituting equations (3.2) and
(3.3) into gy = d/dy qu (v, lcEre) - 7 and re—substituting the inverse of (3.3) afterwards,
Hatze’s formulation of an activation dynamics can be transformed into a single non—linear
differential equation:

i vm
1 —qo

qn op(lemra) (1 —qm) ™V (g — g0) VY — (1 — qu) (qn — QO)] , (3.5)

with the initial condition gz (0) = q.0.

The solutions gz(t) and gm(t) of both formulations of activation dynamics, (3.1) and
(3.5), can now be directly compared by integrating them with the same initial condition
47,0 = qu,0 using the same stimulation o.

3.3. Local First and Second Order Sensitivity of ODE Systems
Regarding Their Parameters

Let Q C R xRM x RN and f: Q@ — R™. We then consider a system of ordinary, first
order initial value problems (IVPs)

Y = f(t,Y(t,A),A) , Y(0,A)=Y, , (3.6)

where Y (t,A) = (y1(¢t,A), y2(t, A), ..., yp(t,A)) denotes the vector of state variables. Fur-
thermore, let denote f = (f1, fa,..., far) the vector of right-hand sides of the ODE, and
A = {1, A2, ..., AN} the set of parameters that the ODE depends on. The vector of initial
conditions is abbreviated by

Y(Ov A) = (yl (Oa A)’ yQ(Oa A)’ s 7yM(07 A)) = (yl,Oa Y20,---, yM,O) = Yb . (37)

The first order sensitivity of the solution Y (¢, A) with respect to the parameter set A is
defined as the matrix

S(t,A) = (Sik(t,N)i=1,.. Nk=1,.M with Sik(t,A) = (t,A) . (3.8)

d
X Yk
Simplifying, we denote Y = Y (t,A), f = f(t,Y,A), Sirx = Six(t,A) but keep the depen-
dencies in mind. Because the solution Y might only be gained numerically rather than in
a closed—form expression, we have to apply the well-known theory of sensitivity analysis
as stated in [5, 16, 24, 28]. Differentiating equation (3.8) w.r.t. time ¢ and applying the
chain rule yields

d d? d? d d d d
T T T T D a T It g

A\, oy Tk
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with 9/09Y being the gradient of state variables. Hence, we obtain the following ODE for
the first order solution sensitivity:

0 0
Zszl an e o Su(0)= Uk = 0, (3.9)
or in short terms .
S=S-J+B , S(0) =0nxm

where S is the N x M sensitivity matrix, J is the M x M Jacobian matrix containing the
partial derivatives Ji; = 9/0y; fx, furthermore B the N x M matrix containing the partial
derivatives B = 0/0\; fr, and Oy s the N x M matrix consisting of zeros only.

By analogy, the second order sensitivity of Y with respect to A is defined as the following
N x N x M tensor

R(t,A) = (Rijr(t,A))ij=1,.Njg=1,.M

with
Riji(t A)—iS _ig. I = Ri(t,A) (3.10)
ijk\bs - d)\z jk — d)\] ik — d)\z d)\]yk_ Jik\by ) .
assuming R;j, = Ry, for all k = 1,..., M, therefore assuming that the prerequisites of

Schwarz’ Theorem (symmetry of the second derivatives) are fulfilled throughout. Differ-
entiating w.r.t. time ¢ and applying the chain rule leads to the ODE

M

. 82
Rijkzz< il g, fk+Szl jfk+5jl(9 > ZZSM 2 90 3y12f +a)‘ia)‘jfk

=1 l1=11l2=1

(3.11)

with R;;;(0) = 0. For purposes beyond the aim of this paper, a condensed notation
introducing the concept of tensor (or Kronecker) products as in [28] may be helpful. For
a practical implementation in MATLAB see [1].

Furthermore, if an initial condition yy o (see (3.7)) is considered as another parameter,
we can derive a separate sensitivity differential equation by rewriting equation (3.6) in its
integral form

Y(t,A) =Yy + /f(s,Y(s,A))ds

Differentiating this equation w.r.t. Yy yields

t
8 8
0

and differentiating again w.r.t. time ¢ results in a homogeneous ODE for each component
Sy o (t, A), namely

Yk,0

. )
Sy Za Suo with Syro(0,A) = Fors —yo=1 . (3.12)

The parameters of our analyzed models are supposed to represent physiological pro-
cesses, and therefore bear physical dimensions. For example, m and 1/7 are frequencies
measured in [Hz], whereas ¢ is measured in [mol/l]. Accordingly, S; = d/d7 gz would be
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measured in [Hz] and S,, in [s] (note that our model only consists of one ODE, which
makes a second index superfluous). Normalization provides a comprehensive comparison
between all sensitivities, even across models. For any parameter, the value )\; fixed for a
specific simulation is a natural choice. For any state variable, we chose its current value
yr(t) at each point in time of the corresponding ODE solution. Hence, we normalize
each sensitivity S;; = d/dAy, by multiplying it with the ratio \; /yx(t) to get the relative
sensitivity

Sii, = S; i (3.13)
Yk

A relative sensitivity S;, thus quantifies the percentage change in the k—th state variable
value per percentage change in the i—th parameter value. This applies accordingly to the
second order sensitivity
Rijk = Riji - i
Yk

It can be shown that this method is valid and mathematically equivalent to another
common method in which the whole model is non-dimensionalized a priori [20]. A non—
normalized model formulation has the additional advantage of usually allowing a more
immediate appreciation and transparent access for experimentalists. In the remainder
of this manuscript, we are always going to present and discuss relative sensitivity values
normalized that way.

In our model, the specific case M = 1 applies, so equations (3.9) and (3.11) simplify to
the case k =1 (no summation).

(3.14)

3.4. Variance—Based Global Sensitivity Analysis

The differential sensitivity analysis above is called a local method, because it does not
take the physiological range of parameter values into account. Additionally factoring in
such ranges characterizes so—called global methods. The main idea behind most global
methods is to include a statistical component to scan the whole parameter space C. Thus
they combine the percentage change in a state variable value per percentage change in
a parameter value with the variability of all parameters. The parameter space C can be

seen as a N-dimensional cuboid C = [A[;A]] X ... x [Ay;A%], where A, and )] are
the minimum and maximum parameter values and N is the number of parameters. We
can now fix a certain point A = (A1,...,An) € C and calculate the local gradient of the

solution w.r.t. A. The volume of the star—shaped area, investigated by changing only
one parameter at once and lying within a ball around f\, vanishes in comparison to C for
an increasing number of parameters [18]. For an overview of the numerous methods like
ANOVA, FAST, Regression, or Sobol’ Indexing, the reader is referred to [6, 19].

In this section we want to sketch the main idea of the variance—based sensitivity analysis
approach as presented in [3], which is based on Sobol’ Indexing. We chose this method,
because of its transparency and low computational cost. This method aims at calculating
two measurands for the sensitivity of a state variable w.r.t. parameter \;: the variance—
based sensitivity function denoted by V BS;(t) and the total sensitivity index function
denoted by T'SI;(t). The VBS functions give a normalized first order sensitivity quite
similar to S from the previous section, but include the parameter range. The T'ST func-
tions, however, additionally include higher order sensitivities and give a measurand for
interdependencies of parameter influences.

A recipe for calculating VBS and T'ST is as follows: first of all, set boundaries for
all model parameters, either by model assumptions or by literature reference, thus fixing
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C. Secondly, generate two sets of n sample points /A\Lj,f\gd‘ € C, j =1,...,n suited to
represent the underlying probability distribution of each parameter, in our case the uniform
distribution. Thirdly, with ¢ indicating a certain parameter, generate 2nN sets of new
sample points Ali,j,f\fé, 7=1,...n,i=1,..., N, where Allj consists of all sample points
in Al, ;j except for its i—th component (parameter value) replaced by the i—th component of
Ag,j. Consequently, f\lw; consists of the i—th component of Al, ; and every other component

taken from Ay ;. Fourthly, evaluate the model from equation (3.6) at all of the 2n(N + 1)
sample points Ay j, Ag ;, A’i’j, AT’; resulting in a family of solutions.
For this family perform the following calculations:

1. Compute the variance of the family of all 2n(N + 1) solutions as a function of time,
namely V'(t). This variance function indicates the general model output variety
throughout the whole parameter range.

2. Compute the variances V; of the family of n(N + 1) solutions resulting from an
evaluation of the model at all A;; and Ali,j’ i.e. for every j and i. Each V;(t) is a
function of time and indicates the model output variety, if solely the value A; of the

i-th parameter is changed.

3. Compute the variances V.; of the family of n(N + 1) solutions resulting from an
evaluation of the model at all A;; and Afj-, i.e. for every j and i. Each V_;(t) is a
function of time and indicates the model output variety, if the value of \; is fixed,

whereas all other parameter values are changed.

Note that the computations in [3] were conducted using Monte—Carlo integrals as an
approximation. The V BS and T'ST can be finally calculated as

Vi(t) Vei(t)
VBS;(t) = , TSI;(t)=1— 3.15
0= 15 (0 =1- 0 (315)
The normalization entails additional properties of VBS and T'ST (see [3, Fig. 1]):
N N
Y VBS(t)<1, ) TSIL(t) =1 (3.16)
i=1 i=1

In other words, V BS;(t) gives the normalized global first order sensitivity function of the
solution w.r.t. A; in relation to the model output range. Accordingly, T'SI;(t) quantifies
a relative impact of the variability in parameter A; on the model output, factoring in the
interdependent influence in combination with all other parameters’ sensitivities. In [3] it
was suggested to characterize the T'SI;(t) value as the “importance” of \;.

3.5. An Analytical Example for Local Sensitivity Analysis
Including a Link Between Zajac’s and Hatze’s Formulations

By further simplifying Zajac’s activation dynamics (3.1), through assuming an deactivation

boost 5 = 1 (activation and deactivation time constants are equal) and a basic activity

qo = 0, we obtain a linear ODE for this specific case qup , which is similar to Hatze’s
equation (3.2), modeling the time evolution of the free Ca?* ion concentration:

, 1
iy = ;(0 -q¢7) 47 0)=qzo - (3.17)
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By analyzing this specific case, we aim at making the above described sensitivity analysis
method more transparent for the reader. Solving equation (3.17) analytically yields

¢Ft)=0c-(1—e ) +qz0-e7"7, (3.18)

depending on just two parameters o (stimulation: control parameter) and 7 (time constant

of activation: internal parameter) in addition to the initial value yo = ¢z,0. The solution
sp

q, (t) equals the o value after about 7.

We apply the more generally applicable, implicit method (3.9),(3.12) to determine the
derivatives of the solution w.r.t. the parameters (the sensitivities), although we already
know the solution (3.18) in a closed form. Hence, for the transparency of our method, we
calculate the gradient of the right hand side f(q7}, 0, 7) of the ODE (3.17)

0
g’ =77 0 8l =7

1 ) 1 d 0C—dy 4z0—0 _y
,and Ef:_ o= 3 ¢ T

and insert these partial derivatives into equations (3.9) and (3.12). Solving the respective
three ODEs for the three parameters (o, 7, ¢z,0) and normalizing them according to (3.13)
gives the relative sensitivities of ¢;) w.r.t. o, 7, and gz as functions of time (see Fig. 3.1):

~ (et — 1)
S,(t)=(1—etry. 2 ___ 9 (e , 3.19
( ) ( ) qZp(t) o - (et/T _ 1) + QZ,O ( )

g (gz0—0) -t t/) T t-(gz0— o)
So(t)= (20Tt ) T ’ . and 3.20
(*) < T2 € qZp(t) T lo-(et/T —1)+ qz,0) an ( )
Sypo(t) = et/ L0 _ 42,0 . (3.21)

gy (t) o (e!/T—1)+qzp

One verifies immediately that the results are equivalent to taking the derivatives of ¢}
w.r.t. the occurring parameters, cf. the definition of sensitivity in Eqn. (3.8). A straight-
forward result is that the time constant 7 has its maximum effect on the solution (Fig. 3.1:
see S-(t)) at time ¢ = 7. In case of a step in stimulation, the sensitivity S,(¢) vanishes
in the initial situation and exponentially approaches zero again after a few further mul-
tiples of the typical period 7. Note that S (t) is negative, which means that an increase
in 7 decelerates activation. Thus, for a fixed initial value gz, the solution value qup (t)
decreases at a given point in time, if 7 is increased. After a step in stimulation o, the
time in which the solution qup (t) bears some memory of its initial value ¢z is equal to
the period of being non-sensitive to any further step in ¢ (compare ng’o (t) to S,(t) and

(3.19) to (3.21)). After about 7/2 the sensitivity S'qzyo(t) has already fallen to about 0.1
and S, (t) to about 0.9 accordingly.

3.6. The Numerical Approach and Results

Typically, biological dynamics are represented by non—linear ODEs. Therefore the linear
ODE used for describing activation dynamics in the [27] case (3.1) is more of an exception.
A closed—form solution can be given in (3.18), as shown in the previous section .

In general, however, non-linear ODEs used in biomechanical modeling, as the Hatze
case (3.5) for describing activation dynamics, can only be solved numerically. It is under-
stood that any explicit formulation of a model in terms of ODEs allows to provide the
partial derivatives of their right hand sides f w.r.t. the model parameters in a closed form.
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Figure 3.1.: Relative sensitivities S \; W.r.t. the three parameters in the simplified formu-
lation (3.17) of Zajac’s activation dynamics (3.1). Parameters: stimulation o (see (3.19):
solid line), activation time-constant 7 (see (3.20): dashed line), and initial activation gz
(see (3.21): dash-dotted line). Note that S, is negative, but for reasons of comparability,
we have plotted its absolute value. Parameter values are 0 = 1, 7 = 1/40s = 0.025 s, and
qz0 = 0.05. Because the ODE (3.17) for ¢} is equivalent to Hatze’s ODE (3.2) for the
free Ca?T—ion concentration -y, we can identify the sensitivity of 1/7 with that of m.

Fortunately, this is exactly what is required as part of the sensitivity analysis approach
presented in Section 3.3, in particular in equation (3.9).

As an application for this approach, we will now present a comparison of both formula-
tions of activation dynamics. The example indicates that the approach may be of general
value because it is common practice in biomechanical modeling to formulate the ODEs
in closed form and integrate the ODEs numerically. Adding further sensitivity ODEs for
model parameters then becomes an inexpensive enhancement of the procedure used to
solve the problem anyway.

For the two different activation dynamics from [27] and [10], the parameter sets Az and
Ajr, respectively, consist of

AZ = {QZ,()’ 0,40, T, 5} ; (322)
AH = {QH,Oa g, 4o, M, Pec, V, Epv gC’ET@l} ) (323)

including the initial conditions. The numerical solutions for these ODEs were computed
within the MATLAB environment (The MathWorks, Natick, USA; version R2013b), using
the pre-implemented numerical solver ode45, which is a Runge-Kutta algorithm of order
5 (for details see [2]).
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3.6.1. Results for Zajac’s Activation Dynamics: Sensitivity Functions

We simulated activation dynamics for the parameter set Az (3.22) leaving two of the
values constant (go = 0.005, 7 = % s) and varying the other three (initial condition ¢z,
stimulation o, and deactivation boost 3). The time courses of the relative sensitivities gz(t)
w.r.t. all parameters \; € Az are plotted in Fig. 3.2. In the left column of Fig. 3.2 we used
B =1, in the right column 8 = 1/3. Pairs of the parameter values gy = 0.005 < gz < 0.5
and 0.01 < ¢ < 1 are specified in the legend of Fig. 3.2, with increasing values of both

parameters from top to bottom.

Relative sensitivity gqo: Solutions are non—sensitive to the gy choice, except the case
that initial activity and stimulation (also approximating the final activity if § = 1 and
o >> qo) are very low, i.e. nearby qq itself.

Relative sensitivity ng,o: The memory (influence on solution) of the initial value is lost
after about 27, almost independently of all other parameters. This loss in memory is
obviously slower than in the case from Section 3.5, see Fig. 3.1). In that extreme case, the
influence (relative sensitivity) of the lowest possible initial value (gz0 = 0) on the most
rapidly increasing solution (maximum possible final value: o = 1) is lost earlier.

Relative sensitivity S;: The influence of the time constant 7 on the solution is reduced
with decreasing difference between initial and final activity values (compare maximum S.
values in Figs.3.1 and 3.2) and, no matter the  value, with compound raised levels of
initial activity qzo and o, the latter determining the final activity value if 3 = 1. When
deactivation is slower than activation (8 < 1: right column in Fig. 3.2), S is higher than
in the case f = 1, both in its maximum amplitude and for longer times after the step in

stimulation, especially at low activity levels (upper rows in Fig. 3.2).

Relative sensitivity S,: Across all parameters, the solution in general is most sensitive to
o. However, the influence of the deactivation boost parameter g is usually comparable. In
some situations, this also applies for the activation time constant 7 (see below). For § =1
(Fig. 3.2, left), the solution becomes a little less sensitive to o with decreasing activity
level (S, < 1), which reflects that the final solution value is not determined by o alone,
but by go and S as much. If deactivation is much slower than activation (8 = 1/3 < 1:
Fig. 3.2, right), we find the opposite to the § = 1 case : the more the activity level
rises, the lesser o determines the solution. Additionally, stimulation ¢ somehow competes
with both deactivation boost 8 and time constant 7 (see further below). Using the term
“compete” illustrates the idea that any single parameter should have an individual interest
in influencing the dynamics as much as possible in order not to be considered superfluous.

Relative sensitivity 5’/3: Sensitivity w.r.t 8 generally decreases with increasing activity
gz, and stimulation o levels. It vanishes at maximum stimulation o = 1.

Relative sensitivities So, 56, ST: At sub-maximal stimulation levels o < 1, the final
solution value is determined to almost the same degree by stimulation ¢ and deactivation
boost £, yet with opposite tendencies (S’g > 0, gg < 0). As explained, both parameters
compete for their impact on the final solution value. Only at maximum stimulation (o = 1,
lowest row in Fig.3.2), this parameter competition is resolved in favor of o. In this
specific case, 8 does not influence the solution at all. For 8 = 1 the competition about
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influencing the solution is intermittently, but only slightly biased by 7: sensitivity S, peaks
at comparably low magnitude around ¢ = 7. This 7 influence comes likewise intermittently
at the cost of # influence: the absolute value of 55 rises a little slower than S,. In the
case 8 < 1, this competition becomes more differentiated and spread out in time. Again
at sub-maximal stimulation and activity levels, the absolute value of S; is lower than that
of S, but higher than that of 5’5, making all three parameters o, 8, and 7 compete to
comparable degrees for an impact on the solution until about ¢ = 47. Also, S, does not
vanish before about ¢ = 107.
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7
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w.r.t. all parameters )\;

1

Figure 3.2.: Relative sensitivities S,
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Zajac’s activation dynamics (3.1).
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3.6.2. Results for Hatze’s Activation Dynamics: Sensitivity Functions

We also simulated activation dynamics for the parameter set Ay (3.23), leaving now four
of the values constant (go = 0.005, m = 10s, ¢, = 2.9, {cpre = 1) and again varying
three others (initial condition gz, stimulation o, and non-linearity v), keeping in mind
that the eighth parameter (p.) is assumed to depend on v. Time courses of the relative
sensitivities Sj(t) w.r.t. all parameters \; € Ay are plotted (see Fig.3.3). In the left
column of Fig.3.3, v = 2, p. = 9.10 is used, in the right column v = 3, p. = 7.24. Here,
the same pairs of parameter values (¢o = 0.005 < gz < 0.5 and 0.01 < ¢ < 1, increasing
from top to bottom; see legend of Fig.3.3) are used as in the previous Section 3.6.1, see
Fig. 3.2 (author’s note: as seen in Chapter 2 Remark 2.2.2, choosing ¢z = go would lead
to a numeric instability. Therefore, we used gz = qo + eps, where eps = 2752 ~92.10716
is a pre-implemented MATLAB variable).

Hatze’s activation dynamics (3.5) are non-linear unlike Zajac’s activation dynamics
(3.1). This non-linearity manifests particularly in a changeful influence of the parameter
v. Additionally, the parameter m is hardly comparable to the inverse of the exponential
time constant 7 in Zajac’s linear activation dynamics.

Relative sensitivity S,,: In Zajac’s linear differential equation (3.1), 7 establishes a dis-
tinct time scale, which is independent of all other parameters. The parameter m in Hatze’s
activation dynamics (3.5) is just formally equivalent to the reciprocal of 7: the sensitivity
S,, does not peak stringently at t = 1/m = 0.1s but rather diffusely between about 0.05s
and 0.1 s in both of the cases v = 2 and v = 3. This may at first be not surprising, because
the scaling factor in Hatze’s dynamics is v - m rather than just m. However, v - m does
neither fix an invariant time scale for Hatze’s non-linear differential equation. This fact
becomes particularly prominent at extremely low activity levels for v = 2 (Fig. 3.3, left,
top row) and up to moderately sub-maximal activity levels for v = 3 (Fig. 3.3, right, top
two rows). Here, S, is negative, which means that increasing the parameter m results
in less steeply increasing activity. This observation is counter—intuitive to identifying m
with a reciprocal of a time constant like 7. Rather than expected from the product v - m,
the exponent v does not linearly scale the time behavior, because Sy, peaks do not occur
systematically earlier in the v = 3 case as compared to v = 2.

Relative sensitivity qu,o: Losing the memory of the initial condition confirms the analysis

of time behavior based on S,,. At high activity levels (Fig. 3.3, bottom row), Hatze’s acti-
vation dynamics lose memory at identical time horizons (no matter the v value) seemingly
slower for higher v at intermediate levels (Fig.3.3, two middle rows), and faster at very
low levels (Fig.3.3, top row). The parameter m still does roughly determine the time
horizon in which the memory of the initial condition gz is lost and the influence of all
other parameters is continuously switched on from zero influence at t = 0.

Relative sensitivity S’QO: As in Zajac’s dynamics the solution is generally only sensitive
to qo at very low stimulation levels o ~ ¢y (Fig. 3.3, top row). At such levels, the v = 3
case shows the peculiarity that the solution becomes strikingly insensitive to any other
parameter than qg itself (and ggo). The time evolution of the solution is more or less
determined by just this minimum (go) and initial (gg o) activities, and m determining the
approximate switching time horizon between both. The /g dependency, constituting a
crucial property of Hatze’s activation dynamics, is practically suppressed for v = 3 at very
low activities and stimulations. In contrast, for v = 2, the sensitivity Sgc e TEIMAINS on
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a low, but still significant level of about a fourth of the three dominating quantities gqo,
S and S,.

qH,0°

Relative sensitivity S,: The sensitivity w.r.t. v is extraordinarily high at low activities
and stimulations around 0.1, both for v = 2 and v = 3 (Fig. 3.3, second row from top),
and at extremely low levels for v = 2 (Fig. 3.3, left, top row). At moderately sub-maximal
levels (Fig. 3.3, third row from top), the solution is influenced with an already inverted
tendency (S,, changes sign to positive) after around an 1/m time horizon for v = 2.
However, at these levels the solution is practically insensitive to v for any v. At high
levels (Fig. 3.3, bottom row), we find that there is no change in the character of time
evolution of the solution, despite the specific value of v. The degree of non-linearity v is
unimportant, because the time evolution and the ranking of all other sensitivities is hardly
influenced by v. In both cases, the rise in activity is quickened by increasing v (5'1, > 0),
as opposed to low activity and stimulation levels, where rises in activity are slowed down
(5, < 0; see also above).

Relative sensitivities S, S'pc, gfcmezv S'gp: Of all the remaining parameters, i.e. stimu-
lation o, scaled maximum free Ca?t ion concentration p., relative CE length ¢cpye;, and
the pole £, of the length dependency in Hatze’s activation dynamics, the latter has the
lowest influence on the solution. The influence characters of all four parameters are yet
completely identical. Their sensitivities are always positive and coupled by fixed scaling
ratios, because all of them occurring within just one product on the right side of (3.5).
The values of gg and S’pc are identical, while the sensitivity w.r.t. £ogre is the highest,
with a ratio SZC’ETEZ/SZP ~ 3 and S'gCErel/S’U ~ 1.2. Except at very low activity (where
qo plays a dominating role) and except for the generally changeful v influence, these are
the four parameters that dominate the solution after an initial phase in which the initial
activity gqmo determines its evolution. The parameter m does not have a strong direct
influence on the solution. As stated above, it defines the approximate time horizon at
which the gy o influence gets lost.
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Figure 3.3.: Relative sensitivities S’)\i w.r.t. all parameters \; € Ay from (3.23) in

Hatze’s activation dynamics (3.5).
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3.6.3. Variance—Based Sensitivity (VBS) and Total Sensitivity Indices (TSI)
for Zajac’s and Hatze’s Activation Dynamics

Table 3.1 pools the lower and upper boundaries for every parameter in Az and Ay used
in our calculations. We refer to [7, 9, 27| for the traceability of our choices.

Table 3.1.: Lower and upper bounds for the parameter choices in both Zajac’s and Hatze’s
model of activation dynamics.

Parameter | B | Lopra | b | m | v | g | azo.quo | pe | o] T
Lower bound | 0.1 04 [22] 3 [15]0.001| 001 [4]0]0.01
Upperbound || 1 | 1.6 [3.6[11] 4 | 005 | 1 [11[1]0.05

The left hand side of Fig. 3.4 shows the VBS functions for every parameter in Ay
of Zajac’s model. The plotted functions can be compared to our previously computed
relative first order sensitivity functions from Fig. 3.2: at first sight, qu,o and VBS,,
look equal, but the V BS function indicates a slightly increased duration of influence of
qz0. Regarding 7, the VBS function peaks at the same time as S, but with a smaller
amplitude. Likewise, the courses of VBS, and V BSg are comparable to S, and g/g from
the second and third row of Fig. 3.2. The calculated V BS functions in the Zajac case
show what would be expected intuitively: a V BS represents a parameter’s mean influence
averaged over its range of values. Additionally, we plotted the sum of all first order
sensitivities. This sum indicates which amount of the total variance is covered by first
order sensitivities. The closer the sum comes to 1, the smaller the impact of second and

higher order sensitivities gets.
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Figure 3.4.: Variance—based sensitivity (left) and total sensitivity index (right) of every
parameter of Zajac’s activation dynamics equation

The right hand side of Fig. 3.4 shows the T'SI functions for every parameter in Ay
of Zajac’s model. Generally, there are only minor deviations of the T'SI; functions from
their counterparts V' BS;. That is, the influence of none of the parameters is significantly
enhanced by an interdependent effect in combination with other parameters. According to
both analyses, there are just four globally important parameters that govern the system’s
state throughout the whole examined solution space: the initial condition gz within a
typical time horizon 7 after a step in o, the new stimulation level o determining activity
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after about 7, the deactivation boost 8 with smaller impact than o, and 7 determining
the time horizon itself.

The left hand side of Fig. 3.5 shows the V BS functions for every parameter in Ag of
Hatze’s model. Very similar to the Zajac case, the calculated V B.S seemingly represent
to a high degree a parameter’s mean influence averaged over its range of values (compare
Fig. 3.3). As in the Zajac case, there are four globally important parameters, according
to both V BS and T'ST analyses. Compared to Zajac’s model, the interdependent effect in
combination with other parameters (T'SI: right hand side of Fig. 3.5) is more pronounced
for two parameters: both the stimulation o and the CE length /o importances are
distinctly higher than their first order effects as expressed by V B.S functions. Furthermore,
the time horizon, within the initial condition gg o has an after—effect in response to a step
in ¢. This horizon is globally a little higher in V' BS as compared to local sensitivity
analysis (Fig. 3.3). In addition, the time horizon of gp o is enhanced by interdependencies
with other parameters (T'SI: right hand side of Fig. 3.5).
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Figure 3.5.: Variance—based sensitivity (left) and total sensitivity index (right) of every
parameter of Hatze’s activation dynamics equation

Altogether, V BS versus T'ST analysis substantiate local first and second order sensi-
tivity analyses: for one thing, Hatze’s model is more inert against steps in stimulation
than Zajac’s model. Furthermore, the dynamics described by Hatze’s model incorporates
stronger non-linear coupling effects from combinations of parameters than Zajac’s model.
These latter effects are better seen in detail, when looking at local sensitivities, i.e. an-
alyzing only small and selected volumes of the parameter space C. In turn, VBS and
TSI provide a broad, but coarse overview about first and higher order sensitivities of all
parameters.

3.7. Consequences, Discussion, Conclusions

3.7.1. A Bottom Line for Comparing Zajac’s and Hatze’s Activation
Dynamics: Second Order Sensitivities

At first sight, Zajac’s activation dynamics [27] is more transparent, because it is descrip-
tive in a sense that it captures the physiological behavior of activity rise and fall in an
apparently simple way. It thereto utilizes a linear differential equation with well-known
properties, allowing for a closed—form solution. It needs only four parameters to describe
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the Ca®t ion influx to the muscle as a response to electrical stimulation: the stimula-
tion o itself as a control parameter, the time constant 7 for an exponential response to
a step increase in stimulation, a third parameter 8 (deactivation boost) biasing both the
rise and fall times and the saturation value qZ\oo of activity, which in turn depends on
o and the basic activity gp being the fourth parameter. The smaller § < 1 (deactiva-
tion slower than activation), the faster the activity level qZ];o: L =q +o-(1—qo)is
reached, at which saturation would occur for § = 1. Saturation for 8 < 1 occurs at a level
qZ|Zo =qo+(1—qo)/(1— B+ /o) that is higher than qz\gil. Altogether, in Zajac’s acti-
vation dynamics, the outcome of setting a control parameter value o, with regard to how
fast and at which level the activity saturates, seems easier to be handled by a controller,
compared to Hatze’s formulation.

A worse controllability of Hatze’s activation dynamics [10] may be expected from its
non—linearity, a higher number of parameters, and their interdependent influence on model
dynamics. Additionally, Hatze’s formulation depends on the CE length /¢ g, which makes
the mutual coupling of activation with contraction dynamics more interwoven. So, at
first sight, Hatze’s dynamics seem a less manageable construct for a controller to deal
with a muscle in terms of a biological actuator. Regarding the non-linearity exponent v,
solution sensitivity further depends non—monotonously on activity level, partly even with
the strongest influence, partly without any influence. We also found that the solution is
more sensitive to its parameters o, {cprer, £, than is Zajac’s activation dynamics to any
of its parameters.

This higher complexity of Hatze’s dynamics becomes even more evident by analyzing
the second order sensitivities (see (3.10), or (3.14) for their relative values). They express
how a first order sensitivity changes upon variation of any other model parameter. In other
words, they are a measure of model entanglement and complexity. Here, we found that the
highest values among all relative second order sensitivities in Zajac’s activation dynamics
are about —0.8 (Rg,) and 1.6 (Rgg). In Hatze’s activation dynamics, the highest relative
second order sensitivities are those with respect to v or {ope (in particular for o, p. and
v, Lo prel themselves) with maximum absolute values between about —8.0 (ﬁgc Frel U R, pe)
and 13.4 (RECEM Comrers RZCEM pes }NQCEMU, R, at sub-maximal activity). That is, they
are an order of magnitude higher than in Zajac’s activation dynamics.

Despite this result, we have to acknowledge that Hatze’s activation dynamics contains
crucial physiological features that go beyond Zajac’s description.

3.7.2. A Plus for Hatze’s Approach: Length Dependency

It has been established that the length dependency of activation dynamics is both physio-
logical [14] and functionally vital [12], because it largely contributes to low—frequency
muscle stiffness. It has also been verified, that Hatze’s model approach provides a good
approximation to experimental data [14]. In that study, v = 3 was used without comparing
to the v = 2 case. There seem to be arguments in favor of v = 2 from a mathematical point
of view. Especially, the less changeful scaling of the activation dynamics’ characteristics
down to very low activity and stimulation levels, at which some CE length sensitivity
remains, seem to be an advantage, when being compared to the v = 3 case. Up to this
point, we have argued solely mathematically. However, the eventual aim is physiological
reality. We therefore repeated the model fit done by [14], while now allowing a variation
in v and in force-length relations.
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3.7.3. An Optimal Parameter Set for Hatze’s Activation Dynamics Plus CE
Force—Length Relation

Sensitivity analysis allows to rate Hatze’s approach as an entangled construct. Addi-
tionally, [14] decided to choose v = 3 without giving a reason for discarding v = 2.
It further seemed that they did not perform an algorithmic optimization across vari-
ous sub—maximal stimulation levels to find a muscle parameter set, which works best
for known shifts Alcg opt,submar = LCE,opt — LCE,opt,submaz in Optimal, sub-maximal CE
length £ g opt,submaz at which isometric force Fisom = Fisom(q, cE) peaks. Accordingly, it
seemed worth to perform such an optimization, because Fjg,,, generally depends on length
lcg and activity ¢, and the latter may be additionally biased by an £cg—dependent capa-
bility for building up cross-bridges at a given level 7 of free Ca?* ions in the sarcoplasma,
as formulated in Hatze’s approach: Fisom(q,lcr) = Fhaz - 4(7,log) - Fo(bop). Thus, a
shift in optimal CE length Alck opt submar With changing v can occur depending on the
specific choices of both the length-dependency of activation ¢(, cg) (see (3.3),(3.4)) and
the CE’s force-length relation Fy(¢cg).

Consequently, we searched for optimal parameter sets of Hatze’s activation dynamics in
combination with two different force-length relations Fy(¢cg): either a parabola [14] or
bell-shaped curves [7, 17]. For a given optimal CE length {cg o = 14.8 mm [22] repre-
senting a rat gastrocnemius muscle and three fixed exponent values v = 2,3,4 in Hatze’s
activation dynamics (all other parameters as given in Section 3.2), we thus determined
Hatze’s constant pg and the width parameters of the two different force—length relations
Fy(lcg) (WIDTH in [14, 26] and AW,se = AWyges = AW in [17], respectively) by an
optimization approach. The objective function to be minimized was the sum of squared dif-
ferences between the Alog opt,submas Values as predicted by the model and as derived from
experiments (see [14, Table 2 |) over five stimulation levels o € {0.55,0.28,0.22,0.17,0.08}.
Note that v = o applies in the isometric situation (see (3.2) and compare (3.3)). Further
note that experimental data for muscle contractions at very low stimulation levels are
missing in literature so far: the lowest analyzed level available for [14] was o = 0.08, i.e.
comparable to the second rows from top in Figs. 3.2 and 3.3.

The optimization results are summarized in Table 3.2. The higher the v value, the
smaller the optimization error. The predicted width values WIDTH or AW, respectively,
decrease along with the error. We would yet tend to exclude the case v = 4, because the
predicted width values seem unrealistically low when compared to published values from
other sources (e.g., WIDTH = 0.56 [26], AW = 0.35 [17]). Furthermore, py decreases
with v using the parabola model for Fy(¢cp) whereas it saturates between v = 3 and
v = 4 for the bell-shaped model. The bell-shaped model shows the most realistic AW in
the case v = 3 (AW = 0.32). Fitting the same model to other contraction modes of the
muscle [17], a value of AW = 0.32 had been found. In contrast, when using the parabola
model, realistic WIDTH values between 0.5 and 0.6 are predicted by our optimization
for v = 2.

When comparing the optimized parameter values across all start values of the Fy(¢cog)
widths, across all v values, and across both Fy({cg) model functions, we find that the
resulting optimal parameter sets are more consistent for bell-shaped Fy({cg) than for
the parabola function. The bell-shaped force-length relation gives generally a better
fit. For each single v value, the corresponding optimization error is smaller, when com-
paring realistic, published WIDTH and AW values that may correspond to each other
(WIDTH = 0.56 [26] and AW = 0.35 [17]). Additionally, the error values from our op-
timizations are generally smaller than the corresponding value calculated from [14, Table
2] (0.23mm).
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Summarizing, we would say that the most realistic model for the isometric force Fjso, at
sub—maximal activity levels is the combination of Hatze’s approach for activation dynamics
with v = 3 and a bell-shaped curve for the force-length relation Fy({cp) with vese = 3.
As a side effect, we predict that the parameter value pg, being a weighting factor of the
first addend in the compact formulation of Hatze’s activation dynamics (3.5), should be
reduced by about 40% (po = 3.25 - 10*1/mol), compared to the value originally published
in [11] (po = 5.27 - 10 1/mol).

Table 3.2.: Parameters minimizing the sum over five sub—-maximal isometric stimulation
levels v = o € {0.55,0.28,0.22,0.17,0.08} of squared differences between shifts in opti-
mal CE length Alcog opt,submaz(7) (Alpraope by Roszek et al. (1994) [14, Table 2, third
column]) at these levels. The parameters were predicted by the isometric force model
Fisom(q,cE) = Fraz-q(v = 0,lcr)-Fi(for) and by experiments; simulated data represent
a rat gastrocnemius muscle with an optimal CE length {cp opr = 14.8 mm [22]; start value
of po was 6.0 - 10*1/mol; the exponents of the bell-shaped force-length relations Fy(¢ck)
were fixed according to [17] (Vase = 3, Vges = 1.5), the corresponding width values in the
ascending and descending branch were assumed to be equal: AWy = AWges = AW [26]
and [14] used a parabola for Fy(¢cg); for all other model parameters see Sections 3.7.3 and
3.2; optimization was done by fminsearch (Nelder-Mead algorithm) in MATLAB with
error tolerances of 10~8; error is the square-root of the above mentioned sum divided by
five; corresponding error value given in [14, Table 2] was 0.23 mm.

v bell-shaped [7, 17] parabola [14, 26]
AWorars = 0.25 WIDT Hypry — 0.46
AW ] po[10*1/mol] error[mm] | WIDTH][] po[10*1/mol] error [mm]
2| 0.46 3.80 0.08 0.63 8.78 0.10
3| 0.32 3.25 0.05 0.41 5.45 0.07
41 0.26 3.20 0.02 0.34 4.60 0.05
AWitart = 0.35 WIDT Hgtgrt = 0.56
AW po[10*1/mol] error[mm] | WIDTH][ po[10*1/mol] error [mm]
2| 0.45 3.80 0.07 0.53 6.92 0.11
3| 0.32 3.30 0.05 0.41 5.67 0.07
41 0.26 3.20 0.02 0.34 4.55 0.05
AWeiary = 0.45 WIDT Hgiart = 0.66
AW po[10*1/mol] error [mm] | WIDTH][] po[10*1/mol] error [mm]
2| 045 3.78 0.07 0.55 7.35 0.11
3| 0.32 3.25 0.05 0.41 5.35 0.07
41 0.26 3.20 0.02 0.34 4.56 0.05

3.7.4. A Generalized Method for Calculating Parameter Sensitivities

The findings in the last section were initiated by thoroughly comparing two different
biomechanical models of muscular activation, using a systematic sensitivity analysis as
introduced in [5] and [16], respectively. Starting with the latter formulation, [21] calculated
specific parameter sensitivities for muscular contractions. They applied three variants of
this method:

Method 1 applies to state variables that are explicitly known to the modeler as in an
eye model [16], a musculo—skeletal model for running that includes a Hill-type muscle
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model [21], or the activation models analyzed in our study. [21] calculated the change
in the value of a state variable averaged over time per a finite change in a parameter
value, both normalized to each of their unperturbed values. They thus calculated just
one (mean) sensitivity value for a finite time interval (e.g. a running cycle) rather than
time—continuous sensitivity functions.

Method 2: Whereas [5] and [16] had introduced the full approach for calculating such
sensitivity functions, [21] distorted this approach by suggesting that the partial derivative
of the right hand side of an ODE, i.e. of the rate of change of a state variable, w.r.t. a model
parameter would be a “model sensitivity”. The distortion becomes explicitly obvious from
our formulation: this partial derivative is just one of two addends that contribute to the
rate of change of the sensitivity function (3.9), rather than it defines the sensitivity of the
state variable itself (i.e. the solution of the ODE) w.r.t. a model parameter (3.8).

Method 3: [21] also asked for calculating the influence of a parameter of the activation
dynamics (like the time constant) on an arbitrary joint angle, i.e. a variable that quantifies
the overall output of a coupled dynamical system. Of course, the time constant does not
explicitly appear in the mechanical differential equation for the acceleration of this very
joint angle, which renders applicability of Method 2 impossible. The conclusion in [21] was
to apply Method 1. Here, the potential of our formulation comes particularly to the fore.
It enables the user to calculate the time—continuous sensitivity of all components of the
coupled solution, i.e. any state variable yx (¢, A). This is because all effects of a parameter
change are in principle reflected within any single state variable, and the time evolution
of a sensitivity according to (3.9) takes this into account.

We have further worked out the sensitivity function approach by [16], presenting the
differential equations for sensitivity functions in more detail to those modelers, who want
to apply the method. Furthermore, we enhanced the approach by [16] to also calculating
the sensitivities of the state variables w.r.t. their initial conditions (3.12). This should be
helpful not only in biomechanics but also, for example, in meteorology, when predicting
the behavior of storms [15]. Since initial conditions are often just known approximately
but start with the relative sensitivity values of 1, their influence should be traced to verify
how their uncertainty propagates during a simulation. In the case of muscle activation
dynamics, the sensitivities ng,o and qu,m respectively, decreased rapidly to zero: initial
activity has no effect on the solution very early before steady state is reached.

Moreover, we included a second order sensitivity analysis which is not only helpful for
an enhanced understanding of the parameter influence, but also part of mathematical
optimization techniques [23]. The values of Rijk could be either interpreted as the relative
sensitivity of the sensitivity S;; w.r.t. another parameter Aj (and vice versa: S’jk w.r.t. A)
or as the curvature of the graph of the solution yi (¢, A) in the (N + M + 2-dimensional)
solution—parameter space. The latter may help to connect the results to the field of
mathematical optimization, in which the second derivative (Hessian) of a function is often
included in objective functions to find optimal parameter sets.

3.7.5. Insights Through Global Methods

Some additional conclusions can be drawn from global sensitivity analysis, in particular
from comparing results in Section 3.6.3 to those based on local sensitivity analysis (Sections
3.6.1, 3.6.2, and 3.7.1).

For Zajac’s activation dynamics, global analysis confirms local analysis in stating that
there are no significant second or higher order sensitivities, with the slight exception of the
phase of rapid change in activity after a step in stimulation. An experimentalist who wants
to measure the activation time constant 7, can exclude influence from potentially slower
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deactivation processes (8 < 1) by starting from high activity levels (Fig. 3.2, bottom).
It should yet be kept in mind that the build—up of activity to a new level is not solely
determined by 7, but might be biased by the other parameters than 7. This conclusion
can be made, because T'SI; peaks during the build—up phase (Fig. 3.4, right).

In Hatze’s activation dynamics, the higher order sensitivities play a more significant
role, even in the near-steady—state case (Fig. 3.5: stronger deviation from 1 of both
VBS and T'ST). When arguing in terms of controllability of the models in Section 3.7.1,
we speculated that Zajac’s dynamics might be easier to control than Hatze’s dynamics.
Notwithstanding, Fig. 3.5 shows that the stimulation is the most important control factor
with even a higher importance than in Zajac’s formulation.

At first sight unapparent, another result is the importance of p.. From a strictly local
point of view, we concluded that this parameter should have the same sensitivity as o, since
they both are formally equivalent multipliers in Hatze’s ODE (see relative sensitivities
in Fig. 3.3). However, the importance of p. is significantly smaller than that of o, in
fact almost negligible. This may be explained by their different value variabilities. The
parameter p. in the product p. - o € [4;11] - [0;1] has a lower relative variability than
o, measured in maximum percentage deviation from the respective mean value. The
parameter p. thus acts as an amplifier for ¢. Similarly, the parameter v has a relatively
small variability throughout literature. So, although its differential sensitivity is quite
large, v is found to have a low importance for the model output. For the latter fact there
is yet another reason. In Section 3.6.2, we have emphasized that v has a very changeful
influence on solutions, depending on activity level. Additionally, its influence is highly
dependent on other parameters like length ¢cp and p. (see end of Section 3.7.1). Its
strong influence in some situations or configurations is thus hidden by global averaging.

This demonstrates that the findings of global sensitivity analysis must be treated with
caution, because the whole dynamics of a system is condensed to a single average function
per whole parameter range. Without local analyses of the solution space as exemplified in
Sections 3.6.1 and 3.6.2 crucial features of its topology might be lost, when solely relying
on global analysis.
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4. Research Paper |l: Extracting Concentric
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from Isometric Contraction Experiments
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The following is a reformatted and slightly modified copy of the submitted article
R. Rockenfeller and M. Giinther. “Extracting Concentric and Eccentric Dy-
namic Muscle Properties from Isometric Contraction Experiments”. Submit-
ted to: Mathematical Biosciences.
In the remaining work, this article is also referred to as [67].

The idea for this article was developed by R. Rockenfeller. The sections “Introduction”
and “Switching Time Results and EMD” as well as a final revision originated from a direct,
personal collaboration of the two authors. The remaining sections as well as the structure,
computations and results originated from R. Rockenfeller.

Abstract

Determining dynamic properties of mammalian muscle, such as activation characteris-
tics or force—velocity relation, challenges the experimentalists. Tracking system, appa-
ratus stiffness, load oscillation and force transducer must be incorporated, synchronized
and evaluated in an experimental set—up. In contrast, isometric contraction experiments
(ICEs) are less challenging, but are generally not considered to reveal dynamic muscle
properties. A sensitivity analysis of our muscle model discloses the influence of concen-
tric, eccentric and activation parameters on the isometric force. Using experimental ICE
data only, we validated concentric as well as eccentric muscle performance and compared
two different activation dynamics in regards to their physiological relevance. To improve
model-fits to ICE data, we optimized different combinations of such dynamic parameter
subsets with respect to their influence on contraction solutions. As a first result, we sug-
gest one formulation of activation dynamics to be superior. Second, the step in slope of
the force—velocity relation at isometric force was found to be the least influential among all
dynamic parameters. Third, we suggest a specially designed isometric experimental set—up
to estimate this transition parameter. Fourth, because of an inconsistency in literature, we
developed a simple method to determine exact switching times of the neural stimulation
in ICEs.

Keywords: Biomechanics, Striated Muscle Model, Sensitivity Analysis, Optimization,
Electro-Mechanical Delay, Experimental Design
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List of abbreviations:

CC concentric contraction

CE contractile element

DAE differential algebraic equation (system)
EC eccentric contraction

EMD electro—mechanical delay

ICE isometric contraction experiment
MTC muscle tendon complex

ODE ordinary differential equation
PEE parallel elastic element

SDE serial damping element
SEE serial elastic element
w.r.t. with respect to

4.1. Introduction

Describing complex systems, models usually consist of several sub-models (or parts), delin-
eating structurally or functionally distinct contributions to system dynamics. In biological
systems, the parts interact mostly non—linearly. An essential scientific task is to validate
such models by sorting out sub—models of low validity and to improve or exchange them
if needed.

Muscular contraction can be examined by using macroscopic Hill-type muscle models
[19]. These are often combined with model descriptions of electro—chemical processes that
lead to muscle force production in response to neural stimulation, the so—called activation
dynamics [13, 67]. Some properties of coupled contraction—activation dynamics are well—
established, for instance the force-length relation of muscle fibers [6, 17, 18, 22, 50, 63] or
the visco-elastic characteristics of tendon material [16, 26, 27, 46, 47, 48, 51, 67]. Perform-
ing isometric contractions in experiments is a well-suited method to determine muscular
force—length relations. A near—static condition, such as an isometric contraction, is appro-
priate for determining static properties and implies minimized experimental complexity
and methodical effort. It seems natural that determining dynamic properties, such as a
fiber’s force—velocity relation or activation dynamics, requires performing dynamic con-
traction modes. For this purpose, the experimentalist has to develop more elaborated
and sophisticated experimental methods. Moreover, in such dynamic contraction modes,
the various contributions to dynamic force, to activity development and to muscle length
change superpose each other, see [21].

The concentric branch of the force—velocity relation is the most investigated dynamic
muscle property. Experimental approaches are traceable to the nineteenth century and
first quantitative results are dating back to the 1920s [5, 20, 35, 36], culminating in the
1930s [4, 19]. Attention has been paid to muscle activation dynamics in the late 1970s
[12, 13, 14], late 1980s [67] and again during the last two decades [28, 53, 63]. Dynamic,
dissipative properties of tendon and aponeurosis material [9] as well as activity—dependent,
potentially visco—elastic properties of titin molecules [54] have recently been considered in
muscle modeling as well.

Determining eccentric muscle properties challenges an experimentalist and requires
extra—delicate set—ups. The muscle can be easily damaged [43, 61, 66], which obstructs
both data quality and repeatability. Compared to the concentric case, experimental data
on eccentric contractions are scarce [11, 23, 24, 25, 32, 39, 57, 58, 61]. Parameter values
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describing eccentric contractions differ considerably and ought to be treated with caution.

It is assumed that there is passive visco—elastic material (serial elastic and damping
elements: SEE and SDE) in series to the contractile material (contractile element: CE) in
a real muscle-tendon complex (MTC). Be it in situ or in vitro, any isometric contraction
experiment (ICE) on an MTC should then also be a source of information about the
dynamic components, i.e. concentric and eccentric CE properties as well as activation.
With the MTC held isometrically, a step in muscle stimulation from zero to maximum
or vice versa will induce the CE to contract concentrically or eccentrically, respectively,
against the SEE and SDE. There has not been brought attention to this fact, although ICEs
are less challenging in terms of apparatus design and experimental execution, compared
to eccentric contractions of the entire MTC. Furthermore, ICEs provide a physiologically
tolerable eccentric loading condition for the muscle material.

The first aim of our study was to assess the validity of several parts of a Hill-type muscle
model for coupled contraction—activation dynamics. For this purpose, we compared two
different model descriptions of both the eccentric branch of the CE force—velocity relation
and the activation dynamics. We compared model simulations containing a complete
set of Hill-type model parameters to literature data of a piglet muscle experiment [9].
Subsequently, we searched for the model part combination with a minimal least—square
deviation from the experimental force—time curves, measured during isometric contractions
of this muscle at various MTC lengths. In these experiments, the muscle was clamped
unstimulated at a particular length. After a period of rest, it was fully stimulated at a
certain switch—on time. One second later, at switch—off time, the stimulation was set to
zero again. During the experiment, the MTC force output was measured. The best—fitting
model was then subjected to an optimization procedure that minimized the deviation
from the measured data. As a consequence of checking and optimizing model validity, we
determined dynamic muscle parameters of the Hill-type muscle model for concentric and
eccentric contractions, together with parameters of the coupled model for contraction—
activation dynamics.

Our second aim was the optimization of experimental set—ups. Therefore, we purpose-
fully limited the information about muscle dynamics to force—time curves during isometric
contractions. This self-limitation demonstrates, that dynamic contraction parameters may
be determined solely from this near—static contraction mode, which is easier to perform,
compared to experiments in which the MTC length changes. Based on [33, 53, 62], a sensi-
tivity analysis of the model dynamics revealed the influence of dynamic muscle parameters
on the time evolution of the isometric force. Among all dynamic parameters, the ratio
between the derivatives of the concentric and eccentric branch within the force—velocity re-
lation at the isometric point (denoted by S.) was least sensitive. Using sensitivity analysis,
we can now suggest an isometric contraction experiment, optimized for solely determining
the eccentric parameter S..

An interesting side effect arises from the necessity of knowing when exactly the steps
in stimulation occur. The activation and dynamic contraction parameters sensitively in-
fluence the electro-mechanical delay (EMD), which is the time interval between a step in
stimulation input and the subsequently measurable change in force output. We realized,
that the specification of the switch—off times in the experiments were unreliable. This chal-
lenge lead to a method of extracting the EMD solely from experimental data of isometric
contractions.
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4. Extracting Dynamic Muscle Properties from Isometric Contractions

4.2. Model and Methods

4.2.1. Model Description

The used Hill-type muscle model was initiated by [9] and further developed by [10]. We
shortly outline the model structure, including activation dynamics. For a detailed descrip-
tion see [52]. Let ¢yrre, Cser, UspE, Lor and Lppgr denote the lengths of the constituting
elements composing the whole muscle-tendon complex (MTC): the serial elastic (SEE)
and damping element (SDE) in series to the contractile (CE) and parallel elastic element
(PEE). For this four—element arrangement, the kinematic restrictions

lsge ={lspe, fce={pere and {yrc ={lce+{sEe

and the one—dimensional force equilibrium

Fyre = Fog + Fpee = Fsee + Fspe (4.1)

apply, in which ¢; denotes the length of element ¢ and F; its generated force.

Furthermore, let o denote the neural stimulation, which drives the MTC dynamics as an
input control parameter, and ¢x the muscle activity, which represents the MTC’s second
state variable alongside with ¢op. The force production of the MTC within an isometric
contraction can be described by the following differential-algebraic equation (DAE) system
(author’s note: cf. Chapter 7, Eqn. (7.18)):

ix = fillce,qx,0) , ax(0) = gx,0 (4.2a)
lor = folbyre, bure, ok, ax) | tce(0) =Llepo , (4.2b)
(e =0, (are(0) = Cyurco (4.2¢)
Fure = fs(bure, ture, bop, ax) - (4.2d)

In this notation, fi represents the activation dynamics that is either linear according to
[67] (Zajac; Models 1 — 3 and 5a, see below) or non-linear according to [12, 14] (Hatze;
Models 4 and 5b). Both models are currently being used to perform state—of-the—art
modeling of activation dynamics [2, 10, 28]. To reveal the validity of both formulations,
we interchanged them during our study, designating X € {Z, H}. The contraction dy-
namics fo is a modified Hill relation [13] solved for d/dt {cp, which explains the model
classification as “Hill-type”. With the formulation by [63, 64] as a mainstay, fo always
includes the minor reformulations and force-dependent SDE introduced by [9], the latter
marginally modified by [45]. In Models 2 to 5, the right hand side f; is further refined by
a physiologically—based eccentric branch of the force—velocity relation as described in [10],
which also goes back to [63, 64]. For a given o, initial steady-state values gx o and og
can be calculated by simultaneously setting fi and fs equal to zero, which corresponds to
the electro-mechanical equilibrium state (author’s note: cf. Chapter 2 Eqns. (2.3), (2.6)
and (2.12)). As purely isometric contractions are being examined, the MTC length in a
simulation is always fixed to the initial length ¢p;/7c o that represents the corresponding
whole muscle length in the experiment. Note that other contraction modes (isokinetic, iso-
tonic, quick-release, etc.) can be modeled by formulating an adapted ODE for d/dt £yrrc.
Those adaptations can contain an upper bound for Fjr¢ (isotonic) or an additional ODE
for d/dt £yrre based on Newton’s law of motion (author’s note: see Chapter 5). The
function f3 calculates the MTC force output in any state. Note that Eqn. (4.2d) is no
ODE but an algebraic equation and therefore does not require an initial value at ¢t = 0.
Altogether, the following five model variants were investigated:
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4.2. Model and Methods

Model 1:  Model from [9]. In detail: Bell-shaped force-length curve, non-linear
PEE characteristics, partly non—linear partly linear SEE characteris-
tics, force-dependent SDE adapted according to [10], single hyperbolic
force—velocity relation according to Hill, no eccentric branch, Zajac’s
activation dynamics.

Model 2:  Model from [10] with a double hyperbolic force—velocity relation (i.e.
including eccentric branch) and Zajac’s activation dynamics. In this
set—up, we noted that the value of the activation—deactivation ratio
(8 = 1) was overestimated in [9] due to the missing eccentric branch,
see Subsection 4.3.3. A correction is given in Model 3.

Model 3: Same as Model 2, but g = 0.5.

Model 4:  Model from [10] with Hatze’s activation dynamics [12, 14] and their
parameters ({,, pc, v, m, qo) optimized, see Eqn. (4.6) and Table 4.2
(fourth column).

Model ba: Same as Model 3, but with an optimized dynamic parameter set, in-
cluding Zajac’s parameters (qo, 3, 7), the Hill parameters (aye1,0, brei0)
and the eccentric parameters (Fe, S.), see Eqn. (4.6) and Table 4.2
(fifth column).

Model 5b: Same as Model ba, but Zajac is exchanged by Hatze and all dynamic
parameters are optimized, see Eqn. (4.6) and Table 4.2 (sixth column).

4.2.2. Determining Exact Switching Times in Experiments

Model validation is done by comparing the model’s output to experimentally generated
data, w.r.t. the same input. In [9, Fig. 7] the force output of Model 2 was plotted versus
time during a number of isometric contractions, in which the muscle was passively (o = 0)
stretched to different MTC lengths and underwent an isometric contraction cycle. By
comparison, they also plotted the corresponding experimental force—time data, denoted
by F e (t), taken from a piglet soleus muscle [9]. After having been fixed at a particular
muscle length and left unstimulated (passive) for a while, the muscle was fully stimulated
(0 = 1) and again left unstimulated after a finite time interval. In the experiment, the
neural stimulation was induced via the intact nerve. In [9], it was stated that stimulation
lasted for ’about’ one second from switch—on time at ¢4t = 0.1 to switch—off time at
tend = 1.1s. However, a close look at the plot revealed that the experimental force started
to decrease partly before and partly after the stated switch—off time. Presumably, the
switching times were not implemented accurately or distorted by using a filter.

A characteristic muscle property is the time difference between a step in stimulation
(e.g. switch—on or switch—off) on the input side and a corresponding change in force on
the output side: the electro-mechanical delay (EMD). In [45], a simulation study presented
characteristic EMD values for two slightly different Hill-type muscle models [9, 56]. As a
finite amount of force change, one percent of the maximum muscle force was assumed.

As we aim at finding model parameters that validly represent the physiological muscle,
the quality of our results depends sensitively on reproducing the time characteristics of
the real muscle in isometric contractions. Several model parameters influence the EMD:
the PEE parameters, the SEE stiffness, the CE force—length relation, both concentric and
eccentric parameters of the CE force—velocity relation, as well as the time constants of
the activation dynamics. Therefore, knowing exact switching times of the stimulation in
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4. Extracting Dynamic Muscle Properties from Isometric Contractions

the experiments is an essential prerequisite for model validity. This accuracy allows to
determine parameter values that represent physiology.

Consequently, we calculated physiological EMD values based on the experimental data
of isometric forces versus time. In our first order muscle model (4.2), a step in stimulation
induces a step in activation d/d¢ ¢ as well as in CE velocity d/dt ¢cp and thus a step
in force change rate d/dt Fprc(t). Such a force change event is represented in the
real muscle by a change in sign of the second derivative d?/dt?> Fppc(t), which is the
curvature of the experimental force curve Fy;rc(t). The switch-on is determined by the
first time the curvature becomes strictly positive, which corresponds to an increasing force
rate, and vice versa for switch—off.

The resulting switching times are shown in Figs. 4.1(a) and (b). The time derivations
were calculated by the function “gradient”, a centered difference method implemented in
MATLAB (The MathWorks, Natick) version 8.2.0.701. The last sample, at which the
value of d?/dt?> Fyreo(t) was either negative (switch-on) or positive (switch-off), was
taken as the respective time of the stimulation step event.

4.2.3. Sensitivity Analysis of Model Dynamics

Before assessing the validity of the whole muscle model according to Eqn. (4.2), we first
checked to what extend those parts influence the model output. Since all model parts are
described by parameters, this influence can be quantified using sensitivity analysis. In a
recent study [53] (author’s note: Chapter 3), we applied sensitivity analysis on Hatze’s
and Zajac’s activation dynamics. The remainder of this subsection is a summary of this
approach.

Let y = (qX,ECE,FMTC)T be the vector of the state variables qx,fcgr and the out-
put variable Fy;re of our model described by Eqn. (4.2). The external state variables
Cyre, d/dt £ype are treated as fixed parameters in our simulations and are consequently
excluded. Let further f = (f1, f2, f3)* be the corresponding vector of right hand sides and
A = {\1,..., Ay} be the set of parameters occurring in the DAE. The sensitivity of the
state yj w.r.t. the parameter \; is then defined as Sy, x,(t) := d/dA\; yx(?).

As described in [53], we can derive and solve a set of ordinary differential equations
(ODEs) for all sensitivities Sy, », corresponding to the two ODEs 4.2a,b, with right hand
sides f1 and f7, and all parameters \; considered. Furthermore, the sensitivities Sg,, ... \;
can be calculated directly. Altogether, the DAE for these sensitivity functions writes as

. 0 0 0
Saxni = Sqx s - a—ylﬁ + Secpa - 87y2f1 + 87)\Z-f1’ Syx 0 (0) =0 (4.3)

: 0 0 0
Sfc’E,Az‘ == SqX7)\~; . aiylfé + SECE:)\i * 873/2'](‘2 —|— 87)\Z.f2’ SZCEy)\i(O) = O (44)

0 0 0
SFyrei = Sax i ° aTJlf?) + Stcp - ainfs + 87)\Zf3 . (4.5)

It is necessary to normalize all sensitivities w.r.t. the parameter values as well as state
variable values. Hence, the sensitivities become dimensionless and therefore comparable
through different parameter units, situations, dynamics, and models. Normalized sensi-
tivities are defined as Sy, x,(t) := Xi/yx(t) - Sy, (1)

The outlined method is called differential or local sensitivity analysis because the pa-
rameter space is analyzed only pointwise. In [55], a variety of additional methods are
presented, including so—called global methods calculating the sensitivities within the pos-
sible (physiological) range of every parameter. Three reasons kept us from using these
global methods. First, global methods are prone to omit local particularities, because
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4.2. Model and Methods

they average across the whole parameter space [53]. Second, an initial parameter set from
[9] is available, so that we can restrict our search for optimal parameter values to a local
area around this set. Third, lower and upper bounds for all examined parameters would
have to be specified, which would go beyond the scope of this paper.

As stated in Subsection 4.2.2, the EMD is sensitive w.r.t. certain parameters. In [45]
a coarse sensitivity analysis of the EMD was performed w.r.t. Zajac’s time constant 7,
the PEE rest length {prg o, the SEE stiffness AFsgr o and the SEE toe zone AUsgE ni-
The corresponding values were varied by a percentage change and the model outputs were
compared. However, we give a more general formulation of sensitivities as functions over
time of an entire isometric contraction cycle, compare [53].

4.2.4. Estimation of Model Parameters by a Least—Square Fit

After including Hatze’s activation dynamics and adding a physiologically—based eccentric
branch of the contraction dynamics in (4.2), the parameter set suggested by [9] should be
reconsidered. There are sources for Hatze parameters as [12, 14, 28], but they may not be
adequate for the examined piglet muscle. Referring directly to [64], parameter values for
the eccentric branch are given in [9]. The values, however, were not used in their model
and thus not fitted to the experimental data. One can find a variety of scattering values
in literature [11, 23, 24, 25, 32, 39, 43, 61, 64]. Furthermore in [9, Fig. 7], the curvatures
of the simulated force curves versus time after switch—on are significantly lower than the
corresponding curvatures of the experimental curves in most cases. In a first attempt to
diminish this deviation, [9] varied the normalized Hill parameters a0, brer,0, which were
suspected to have an influence on the curvature in the force-time curves, cf. [9, Fig. 10].
Taking this idea a step further, we optimized all dynamic parameters (Hatze, Hill and
eccentric) simultaneously by an algorithmic procedure. All static parameters were fixed
to the values given in [9], including parameters of the SDE (damping very low: cf. [9,
Fig. 12]), the SEE, the PEE and the CE force—length relation Fjsom, (Yopg)-

We optimized the model w.r.t. the set Ay, containing the five Hatze parameters (Model
4); the set Ap z, containing the dynamic CE parameters aye; 0, brer0, Fe, Se as well as
the three parameters adapted from Zajac (Model 5a); and the set Ap g, containing all
dynamic CE parameters as well as the five Hatze parameters (Model 5b).

AH = {@07 Pec, V, M, q()}
AD,Z = {arel,()a bTel,07 Fe? S€7 q0, 67 T} (46)
AD,H = {arel,07 bT‘€l,07 Fe7 S€7 gpa Pe, V, M, QO}

A concise presentation of Hatze’s activation dynamics and the respective parameters Ap
can be found in [8, 53]. For the adaptation of Zajac’s activation dynamics see [8, 49, 67]. A
description and use of the additional dynamic parameters can be found in [9]: aye1 0, brer0
denote the normalized (concentric) Hill parameters and F,, S. denote the normalized eccen-
tric force asymptote and step in slope at the isometric point in the force—velocity relation,
respectively. Typical values for all model parameters are summarized in Table 4.2.

For a mathematical formulation of the estimation process, we define the domain of
the neural stimulation o = o(t) as U := C([0,77],[0,1]), which is the set of continuous
functions ¢ : [0,7] — [0, 1], mapping the time interval [0, 7] to values in the interval [0, 1].
In a mathematical notation, model (4.2) then rewrites as

F:UxRY — C([0,T],R),  F(o,A) = Fyrol(t), (4.7)
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4. Extracting Dynamic Muscle Properties from Isometric Contractions

where M is the number of parameters in the adaptable parameter set. Accordingly, finding
an optimal parameter set, such that the model output fits best to the experimental data,
can be written as the minimization problem

1 —
A* = argmin J (7, A) := argmin —||F(7,A) — Furcll3: - (4.8)
AeRM AeRM 2
In this context, Fyrc denotes the experimental force and & = &(t) := iz, 4= ] the

experimental stimulation, which is 1 if ¢ € [t};,,;,t5,,] and 0 else. The notation t%;,,, and

t. 4 is explained in the following (sub)section. The objective function J can be interpreted
as the least square distance between the experimental and simulated force curves in terms
of the L>distance: ||f — g|[2, = [ (f(z) — g())? da.

For solving non-linear problems of the form (4.8), MATLAB offers various pre—imple-
mented algorithms. All calculations were conducted by lsqnonlin (for least square non—
linear) which is a trust-region algorithm. This improvement of the well-known Gaufi—
Newton method is more robust than most gradient—based methods. It contains additional
step—size constraints to escape poor local minima. Furthermore, it is possible to fix lower
and upper boundaries for the parameter values, allowing for physiologically reasonable
limits. Although lsqnonlin can likewise work with a Levenberg—Marquart algorithm [34,
38|, we refrained from using this feature, because it does not allow boundaries. Moreover,
the Levenberg—Marquart method basically becomes a damped Gau3—Newton method near
local minima and is thus may converge slower, cf. MATLAB documentation based on [42].
We can assume to be near a local minimum, because the initial parameter set was taken
from a previous manual optimization by [9].

4.3. Results and Discussion

4.3.1. Switching Time Results and EMD

Figures 4.1(a) and (b) show the switching times of the experimental data from [9] as
determined by the curvature method described in Subsection 4.2.2. Data are plotted versus
relative MTC length ¢arrc0/¢mrcerer- The switch-on time was specified as tqr¢ = 0.1
[9] and our calculation resulted in t%,,, = 0.1s £ 0.002s where 2ms is the inverse of
the sampling rate. Hence, the curvature method and data coincide perfectly within one
sample. In contrast, the switch—off time was stated to be t.,q = 1.1 s whereas the curvature
method yields ¢, € [1.054s,1.108s]. There are thus deviations from —23 to 44 samples,
i.e. about twice the time constant of the activation process (cf. Table 4.2) in the extreme
case of the shortest relative MTC length £yrre0/lrvrcrer = 0.85 (—46ms in relation to
tend). For the next shortest relative MTC lengths (0.88, 0.91, 0.94), the deviation accounts
for —20ms. In contrast, t},_; overshoots t.,q by maximal four samples at longer CE lengths
(ymrco/lyurerer € {1.03,1.06,1.08}). The curvature method may be suspected to be less
reliable than the experimental specification t.,q = 1.1s. At close inspection of the extreme
case {yreo/lyurcrer = 0.85 in Fig. 4.4 it is evident, however, that the specification
tend = 1.1 has to be inaccurate, because force starts with the typical pattern of force
decay before ¢ = 1.1s. Moreover, the reproducible determination of switch—on times by
the curvature method at all MTC lengths, in perfect accordance with the experimental
specification in [9], is a sound basis to rely on calculated t},,,, and ¢’ , values. These values
are delicate simulation input numbers, when determining reliable activation parameter
values.
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Figure 4.1.: Switch-on times t},,,; ((a), circles) and switch—off times t¥ , ((b), squares)

of the isometric contraction experiments in [9] determined by the curvature method. The
values according to [9] were tgqr¢ = 0.1s and tepg = 1.1s. Relative muscle lengths
Cvirco/lyvTeres are given in relation to £yrerey = 0.0615m [9)].

Figure 4.2(a) shows both the switch—off times determined by the curvature method,
and the times at which the force has further decayed by Fj,4:/100, corresponding to
switch—off times plus their respective EMD. By calculating the difference between both
points in time, EMD values for switch—on and switch—off were determined in all isometric
experiments and plotted versus relative MTC length arrc0/¢ymrerey in Fig. 4.2(b). As
the CE contracts eccentrically after switch—off, we use “EC” as an index to the EMD in
this case, and “CC” (concentric contraction) in the switch-on case. As in Fig. 4.1, data
are plotted versus relative MTC length £yrrc0/¢mrc ref-

In our model, neural stimulation o represents the electrical stimulus at the muscle sur-
face. The time delay between stimulation and finite force increase, inherent in the ordinary
differential equation representing muscle activation dynamics (Eqn. 4.2a), is assumed to
model all electrical, chemical and diffusion processes between spike arrival at the surface
and myosin head conformation. It does not include the spike propagation time along the
nerve from the stimulator used in the experiment to the muscle surface in [9]. Thus, EMD
values occurring in our model simulations are expected to underestimate experimentally
measured ones by approximately 4 milliseconds (about 0.25ms per centimeter propaga-
tion distance on a mammalian motor nerve axon [41]). Figures 4.2(c) and (d) show EMD
values for Model 3 and Model 5b, respectively.

In the following, we summarize our results. We first look at the switch-off case (EC).
Adding 4ms to any model value, Zajac’s activation dynamics seems to represent real
deactivation dynamics almost perfectly for £yrrco0/lmrcerer > 0.97 (Fig. 4.2(c)), whereas
only Hatze’s activation dynamics can provide a similar degree of reproduction at all shorter
MTC lengths (Fig. 4.2(d)). In the switch-on case (CC) the Zajac model is no realistic
representation, aside from the small range 1.0 < yrrco/lvrcrer < 1.03. The range of
almost realistic representations by the Hatze model is much larger, from shortest values
Cyvreo/yvrerer = 0.85 up to Larrco/lyvrcres = 1.06. However, Hatze’s model predicts
EMD-—values that are on average 2ms larger than measured ones.

Concentric EMD characteristics (symbol: stars) can be compared to [45, Fig. 2], who
used precisely Model 1 as one model alternative (named “MOD1”) for their calculations.
Their model version “MOD?2” differed from MOD1 in the choice of the specific functional
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Figure 4.2.: Sub-figure (a) shows the comparison of experimental switch—off ¢¥ , (squares)
determined by the curvature method, and the times at which the force has decayed by
further F),.,/100 after switch—off (diamonds). The resulting EMD values in the switch—
off case (diamonds: t! ;) and in the switch-on case (stars: t%,,;) are displayed in (b).
The experimentally determined EMD¢c (dash—dotted line) and EMDgc (dashed line) are
juxtaposed in opposition to the EMD values from evaluating Model 3 in (c) and Model 5
in (d). Note that the CE contracts concentrically after switch-on and eccentrically after
switch—off.

dependency for each element within the contraction dynamics, whereas Zajac’s activation
dynamics were used generally. The experimental condition was congruent to our switch—on
situation. However, they examined a different muscle: a cat’s soleus muscle represented by
Frae = 20N, log opt = 5.5cm, sppo = 6.0 cm, i.e. essentially with a tendon-fiber length
ratio of about 1, rather than 3 as in our piglet muscle. The relatively longer SEE length in
our model explains its systematically higher EMD values, because the piglet tendon is less
stiff than the cat’s tendon when measured in relation to the forces exerted by the CE. In [45]
it was shown that SEE stiffness has a strong influence on the EMD. Their MOD2 contained
a stiffer PEE compared to their MOD1 (our Model 1). We conclude that Hatze’s activation
dynamics are not accountable for the increasing discrepancy between our Model 5b and
the measurements. Instead, our model PEE stiffness has been underestimated. However,
simply increasing PEE stiffness would lead to another dilemma, as passive forces before
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stimulation would become too high.

There are strong indications [54] that implementing conservative, elastic forces via the
PEE is not sufficient for representing all forces in the muscle that act parallel to the
cross—bridges. It is well-established by now that forces are transmitted between titin and
actin [54]. These forces act functionally in parallel to the CE and depend on activity as
well as history. Hence, they can account for history effects as “force depression” and
“force enhancement” and thus ought to be implemented in Hill-type muscle models as
parallel, visco—elastic force elements. Based on our finding that Zajac’s description can
only predict realistic EMD values in a narrow range and taking further indications into
account [28, 52, 53|, activation dynamics ought to be based on Hatze’s model. In any
case, it is necessary to understand, whether existing deficits of our model are resulting
from insufficient representation of activation dynamics, from absent activity—dependent,
parallel forces or from other physiological processes. There is an unequivocal demand for
implementing appropriate representations of history effects as part of a muscle model. The
relevance of this additional sub—-model has to be quantified using its interaction with the
remaining model in dynamic situations.

4.3.2. Sensitivity Analysis Results

In our sensitivity study, we followed [9], applying the reference stimulation & = Lt rart tenal
to the muscle, which was held isometrically at various MTC lengths. The muscle was
represented by the model from [10] and the parameters for Hatze’s activation dynamics
were taken from [53], see Table 4.2, third column. Three preliminary remarks are empha-
sized. First, the solution has slightly different sensitivities w.r.t. some parameters at short
MTC lengths and other parameters at long MTC lengths, respectively. For example, at
short lengths the solution is not sensitive w.r.t. changes in AWy because lorp < Lop,opt
during the whole contraction. For the sake of clarity, we averaged the sensitivity values at
any time for all ten examined MTC lengths to obtain one meaningful, average sensitivity
function for every parameter on the force production, see Fig. 4.3. Second, although we
calculated the exact switching times according to Subsection 4.3.1, the presumably incor-
rect switch—off time ¢.,4 = 1.1 s from [9] was used for sensitivity analysis. Otherwise, the
averaging of the sensitivity functions would not be meaningful. Third, the parameter set
from Hatze’s activation dynamics was not optimized prior to the sensitivity analysis to
show the influence of the educated guess from literature (Table 4.2, third column).

Figures 4.3(a) and (b) show the averaged relative sensitivities of the force output
w.r.t. the dynamic model parameters. For a better overview, we zoomed in at times
tstart and tenq, because the influence of the dynamic parameters remains near—constant
else. During concentric (o = 1, t > tgqr¢) and eccentric (o = 0, t > tenq) contractions,
the force is sensitive w.r.t. activation parameters, particularly p., m, and v. During con-
centric contractions, the force is additionally sensitive w.r.t. the Hill parameters a,; o and
brel,0, whereas during eccentric contractions, the force shows sensitivity w.r.t. the activa-
tion parameter £, and the eccentric parameter F,. The parameter gy is only influential
at low activity levels [53]. Summarizing, in ICEs, the dynamic muscle parameters influ-
ence the force output shortly after switch—on and switch—off time. Consequently, it seems
reasonable to perform a parameter fit of dynamic muscle parameters based on ICEs.
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Figure 4.3.: Relative sensitivities of the isometric force output S Furohis abbreviated as
S \i» W.r.t. dynamic muscle parameters. The sensitivities were averaged throughout all
relative muscle lengths. The parameter values can be taken from Table 4.2 third column.
Sub—figure (a) shows the largest sensitivities after tgq+ = 0.1s. Sub-figure (b) shows
the largest sensitivities after t.,q = 1.1s. The sensitivities in the concentric scenario rise
instantaneously after ¢4+ and have a local maximum only 30 ms after the step in stimula-
tion. In contrast, after t.,4, the sensitivities begin to rise mildly and reach their maximum
after 85 ms. Still, the convergence to a steady state is faster than in the concentric case.
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Regarding static as well as dynamic muscle parameters, the most sensitive parame-
ters, as measured by their averaged maximum absolute sensitivities, are the SEE slack
length (spp o (max ’S’FJ\/ITCHZSEE,O(t)‘ = 54.4), the optimal fiber length o g opt (14.1), the
PEE slack length Lpgrg(10.6) and the SEE toe zone AUgsgg ni (5.8). Therefore, these
parameters have to be fixed before performing an optimization of the dynamic parameters.
The ratio lop opt/lsEE,0 is a fundamental design parameter for the function fulfilled by
muscle contraction [44, 67].

The least sensitive parameters, as measured by their averaged maximum absolute sen-
sitivities, are the exponent of the descending force-length limb vg4es (0.02), the damping
parameter Rgp (0.03), the step in slope parameter of the force—velocity relation S (0.04),
the PEE curve shape parameters Fpgpg (0.07), vprpg (0.08) and the damping parameter
Dsp (0.09). These parameters are difficult to estimate in an optimization process based on
ICEs, because they have little influence on the force output. Of all dynamic parameters,
the step in slope parameter S, was the least sensitive. At first glance, the parameter ought
to be disregarded within the optimization process. Instead, we included S, in Ap for the
sake of completeness, but developed an additional isometric contraction experiment that
maximizes the influence of this specific parameter, see Subsection 4.3.4.

4.3.3. Results From Evaluating Models 1-5

The aim of this section is to validate all dynamic model parts described in Eqn. (4.2) on the
basis of ICEs, particularly the eccentric branch of the force—velocity relation, the activation
dynamics and the Hill parameters. Therefore, we successively exchanged parts of the
muscle model from [9] and calculated the objective function value (residuum) J(c*, A) to
be minimized as the L?-distance between the model output and the experimental force
data Fyrrc, see Subsection 4.2.4. Here, 0 = 1[t3tamt2nd] denotes the stimulation with
switching times from Subsection 4.3.1 and A denotes the set of parameters that corresponds
to the current model in use. The optimal objective function values are summarized in Table
4.1 for each model from Subsection 4.2.1 at each relative MTC length {yrrc/Cyvrc ref €
{0.85, ..., 1.1}. In Fig. 4.4, the model outputs are graphically compared to the experimental
data. For clarity, only six of the ten curves are shown.

Figure 4.4(a), showing Model 1, is almost identical to [9, Fig. 7], additionally containing
the adapted switching times ¢3;,,, and t?,_ ; according to Subsection 4.3.1. After switch-on
time, the force rises similar to, but obviously slower than the experimental data. However,
after switch—off time, the force decrease in Model 1 is almost linear, whereas the experi-
mental force decreases exponentially. The parameter set for Model 1 was taken from [9,
Table 2]. The total residuum accounts for almost 500 N, see Table 4.1. The highest con-
tributions to the residuum were made around the MTC reference length, mainly because
of the incongruous force decay.

Consequently, in Model 2, we exchanged the eccentric branch of the force—velocity re-
lation by the double-hyperbolic formulation from [10, 64], with the eccentric parameters
F., S, taken from [9]. This exchange improved Model 1 in Fig. 4.4(b) and resulted in an
almost halved residuum. The improvement can be seen at relative MTC lengths less than
1.06. Supplementary to [10], we showed that adding the eccentric branch results in a
physiologically more accurate rather than only a faster eccentric muscle contraction.

Taking a closer look at Model 2 in Fig. 4.4(b), the force decrease is too steep, especially at
long relative muscle lengths. This steep decrease is a direct consequence of the parameter
fit of Model 1 in [9], because Zajac’s activation—deactivation ratio 5 was chosen based on
a model with an non—physiological eccentric branch. This ratio was maximized (8 = 1)
to compensate for the slow force decay. To reveal the effect of the activation—deactivation
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Figure 4.4.: Results from evaluating Models 1-5b from Section 4.2.1 in comparison to
experimental ICEs: (a) Model 1 represents the model from [9] with Zajac’s activation dy-
namics and non—physiological eccentric branch. (b) Model 2 includes the eccentric branch
according to [10]. (¢) Overestimation of force decay rate in Model 2 may be compensated by
setting 5 = 1/2 (Model 3). (d) Model 4 replaces Zajac’s with Hatze’s activation dynamics
with an optimized activation parameter set. (e¢) Model 5a contains an optimized parame-
ter set of all dynamic parameters including Zajac’s formulation. (f) Model 5b contains an
optimized parameter set of all dynamic parameters including Hatze’s formulation.
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ratio, we halved the value of 8 in Model 3, which improved the residuum by approximately
nine percent. The effect is particularly perceptible at long relative muscle lengths, see
Fig. 4.4(c). However, at short relative MTC lengths < 0.91 the residues worsened.

&% Model 1 | Model 2 | Model 3 | Model 4 | Model 5a | Model 5b
0.85 12.76 7.45 9.64 3.70 10.36 3.48
0.88 21.67 6.88 | 11.76 7.12 9.81 4.68
0.91 40.57 | 1548 | 20.85 | 13.75 14.32 5.47
0.94 61.04 | 26.88 | 2637 | 23.56 15.42 11.26
0.97 85.76 | 3355 | 3522 | 28.18 19.44 10.96
1.00 94.26 | 4451 | 37.76 | 3528 12.56 14.42
1.03 80.11 | 4810 | 38.80| 3818 17.21 21.69
1.06 52.36 | 37.30 | 3023 |  32.45 26.37 29.79
1.08 26.62 | 2823 | 19.88 | 24.25 18.80 23.49
1.10 21.79 | 2662 | 21.09 | 24.45 23.82 22.81

X || 496.94| 275.00 | 251.60 | 230.92 | 168.11 | 148.05

Table 4.1.: Optimal objective function values (in Newton) for the six models in Fig. 4.4. For
their respective parameter sets see Table 4.2. Each row represents an isometric contraction
experiment at a given muscle length. The literature reference £ ;¢ ror was given as 6.15 cm
in [9]. For a reliable comparison, the last row contains the sum of all objective function
values. The best-fitting curve at each MTC length as well as the best overall residuum
are printed in bold.

Regarding the muscle’s activation dynamics, Zajac [65, Chapter 8] stated in reference to
Hatze [15], that “the simplest model which fulfils the needs of the research and development
project should be employed”. Nevertheless, recent studies [7, 28, 52, 53] indicated that
Hatze’s formulation might be physiologically more relevant, because it includes a CE length
dependency of the activation. Consequently, we replaced Zajac’s formulation with Hatze’s
in Model 4 to test its validity, see Fig. 4.4(d). As no parameter set for Hatze’s activation
dynamics was given in [9], we performed the parameter estimation from Subsection 4.2.4
Eqns. (4.7) and (4.8) with respect to all Hatze parameters Ap, see (4.6). The resulting
optimal parameter values A}, are shown in Table 4.2 (fourth column). The resulting
parameter values are unusually large compared to literature values. For the activation time
constant m this high value occurs, because the optimizer compensated the underestimated
curvature of the force-time curves for times after t%,,,, by accelerating the activation after a
step in stimulation. For the parameter £, however, the small relative sensitivity allows the
parameter to vary greatly in size with low impact on the solution. The model exchange
resulted in a further eight percent decrease of the residuum, especially at short MTC
lengths.

For a maximally fair comparison between Zajac’s and Hatze’s formulation, we chose
either one or the other formulation and optimized all dynamic parameters at once.

Accordingly, in Model 5a, we optimized the parameter set Ap 7z (cf. (4.6)) w.r.t the
isometric muscle data, including Zajac parameters and the Hill constants a,e; 0, bre0 as
well as the eccentric parameters F, S.. The total residuum decreased to 168.11 N, which
is approximately one third of Model 1 and two thirds of Model 3 and 4. The residuum at
medium MTC lengths decreased drastically, because the curvature of the force-time curves
highly depends on the optimized Hill parameters, see Fig. 4.3(a). As a consequence of the
optimization process, the estimated maximum CE velocity v,q, from [9] increased by a
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4. Extracting Dynamic Muscle Properties from Isometric Contractions

factor 4.5, because it depends linearly on the ratio bye;0/arer0, see [9, Eqn. 7]. Additionally,
the limit factor F, increased to a value of 2.57, which seems unrealistically high compared
to literature values from 1.3 to 1.8, see [11, 32, 39, 61]. Although all dynamic muscle
parameters were optimized, the objective function values at short MTC lengths worsened
compared to Model 4.

After having exchanged Zajac’s with Hatze’s formulation (Model 5b), we optimized
the parameter set Ap g (cf. (4.6)). As shown in Table 4.1, the objective function value
improved at every MTC length compared to Model 4 as well as at short lengths less than
Cyrerer compared to Model 5a. This effect is visible by comparing Figs. 4.4(e) and (f). At
MTC lengths greater than 0.97 - £3/7c ref, the residuum was approximately ten to twenty
percent higher than in Model 5a, but improved altogether by twelve percent to a final
value of 148.05 N. The corresponding optimal parameter values A*D7 p are again displayed
in Table 4.2 (sixth column). Here, in contrast to A}, every Hatze parameter stayed
near to the initial guess. Similar to Model 5a, the optimized Hill parameters implied an
increased vmqz, but only by a factor of 2.2. The optimal eccentric force limit F, = 1.35 is
at the lower limit of the range found in literature. The most interesting optimal parameter
value is found regarding S.. Here, the ratio between eccentric and concentric slopes was
determined as approximately 1, resulting in a differentiable force—velocity relation with
no need for S.. However, as stated in Subsection 4.3.2, S, has the least sensitivity of
all parameters and is therefore assumed to be unreliably estimated in these ICEs. The
following Subsection 4.3.4 provides an ICE set—up in which the force output is maximally
influenced by Se.

parameter H source ‘ Asiart ‘ A%y ‘ A*D’Z ‘ ALy
trelo ] o] [ 01 0.04 | 0.06
breto [2] [9] 1.0 1.80 | 1.42
F.[] 9] | 1.8 2.57 | 1.35
Se [] [9] 2.0 3.31 | 0.99
(] 14, 28] 2.9 | 5.78 3.12
pe 1] [14, 28, 53] | 7.24 | 13.19 7.40
v ] [14 28, 53] 3.0| 244 3.14
m [1] adapted [14] | 15.0 | 47.82 22.54
@[] [14, 28] | 0.005 | 0.027 | 0.008 | 0.006
B[] adapted [9] | 0.50 0.66
7 [s] [9] | 0.025 0.026

Table 4.2.: Results of parameter estimation. Parameter symbols and units (first column),
literature source for educated guess (second column), guessed start value for optimiza-
tion (third column), results for optimizing Hatze parameters Ay only (Model 4: fourth
column), results for optimizing all dynamic muscle parameters Ap z including Zajac’s
formulation (Model 5a: fifth column), and results for optimizing all dynamic muscle pa-
rameters Ap g including Hatze’s formulation (Model 5b: sixth column). The respective
residues are shown in Table 4.1.

4.3.4. ICE Design for Determining S,

Based on experiments [25] and according to models [9, 10, 64], the double hyperbolic force—
velocity relation is assumed to be non—differentiable at the isometric state d/dt lop = 0.
The parameter S, describes the ratio between the slope of the eccentric and concentric
branch at this point. As seen in Subsection 4.3.2, the relative sensitivity Sg,,,¢.s. (t) is the
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smallest of all dynamic parameters (averaged maximum value 0.04). Thus, a parameter
value increase of 10% would result in a 0.4% increase of the solution at this instant.
Consequently, S, can be chosen almost arbitrarily and is therefore hard to determine by a
least square fit. The results from Table 4.2 even indicate that the parameter is superfluous
in modeling isometric contractions.

Could it still be possible to determine the value of S, using ICEs? As eccentric con-
traction experiments exhaust and damage the muscle [43, 61, 66], we constructed an ICE
of which the output is substantially influenced by the S, value. Our approach is based on
five considerations:

1) The external conditions of ICEs are only determined by the applied stimulation o
and the fixed MTC length £yr7rc 0.

2) Applying sensitivity analysis, we noted that changes in S, affect the force output
every time the CE switches to eccentric contraction mode, i.e. at d/dt lop = 0
transitions. Changes in S, only influence the force output at small positive CE
velocities. At larger positive velocities, the influence of the limit factor F. takes over
and at negative velocities, S, exerts no influence at all.

3) For normalization, the sensitivities are divided by the current MTC force. Hence,
the lower the force, the higher the expected relative sensitivity.

4) Forces can be systematically reduced by decreasing stimulation levels. By doing so,
however, the signal to noise ratio may become too low, which is expected to be a
limiting factor for the previous consideration.

5) The impacts of CE velocity and MTC force on the sensitivity may overlap or occur
separately, see Fig. 4.5.

Consequently, we searched for an ICE set—up that maximized the relative sensitivity
Skyrc.s.(t) = Ss.[0,mrco/tuTcres) Wor.t. the applied stimulation and fixed MTC
length. To realize the combination of low positive CE velocities and low MTC forces,
the stimulation has to be constructed as a slightly oscillating impulse at sub—maximal
level. We tested four shapes of oscillating impulses, in particular rectangle, sawtooth, sine
and triangle waves, but found no striking differences. Hence, for easier implementation in
experiments, the oscillation was chosen as a rectangle wave of the form:

op =og(t) = ag -sgn(sin(fr-2-7-t)) +dg,

where sgn(z) := |z|/z denotes the sign (or signum) function. The parameters for amplitude
ar € [0,1], frequency fr € [1Hz, 10 Hz|, mean value dr € [0, 1] and relative MTC length
Cyreo/lyvreres € {0.85, ..., 1.1} were varied systematically.

First we tried to find an ICE set—up with maximal absolute relative sensitivity, i.e. with
maximum L*®-norm |[|f|[z~ = max;co ) |f(t)] . Among all simulations, a maximum
L>-value of || Ss,[0r, Larrco/lurcres] || = 0.117 occurred repeatedly at any MTC
length with amplitudes below 0.4, mean value below 0.5 and frequencies between 1 Hz
and 4Hz. However, the L>®—value of a sensitivity only refers to the influence on the
output at a specific instance. Therefore as a second measurand, we investigated the overall
relative sensitivity, by calculating the L?norm || S’ge [oRr, Lavrre,0/mTeres] || L2 Across all
rectangle impulses, resulting in a maximum L sensitivity of 0.117, the highest L?-value
on the observed time interval [0s, 1.6s] was 0.76 occurring for

o =02-sgn(sin(2Hz-2-7-1)) + 0.5, Lyrco =103 Lyroef -

71



4. Extracting Dynamic Muscle Properties from Isometric Contractions

The resulting sensitivity gse [0%,1.03] is displayed in Fig. 4.5. For comparison, the sensi-
tivity Sg, [7,1.03] is shown, exhibiting an L>value of 0.03 and an L?>value of 0.01.

Summarizing, we found an ICE set—up that is influenced by changes in S, four times as
much in terms of maximum sensitivity and around 75 times as much in terms of overall
sensitivity, opposite to conventional ICEs. However, the absolute values are small com-
pared to other parameter sensitivities, see Subsection 4.3.2. Thus, to determine the S,
value as accurately as possible, a parameter fit to the data of the suggested, additional
ICE ought to be performed while fixing all remaining parameter values.
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Figure 4.5.: Normalized sensitivities 5’56 [0, ¢nmreo/lvurcref] of Farre wr.t. Se, dependent
on the neural stimulation ¢ and the isometric MTC length ¢3¢ 0. The maximum sensi-
tivity Ss,[0%, 1.03] (black line), subject to the L®-norm (0.117) as well as the L?>-norm
(0.76), occurred for o}, (gray line) at yrroo = 1.03 - Larrcres = 6,34 cm. In comparison,
the sensitivity Sg, [, 1.03] (black dashed line) is displayed, obtained from applying 7 (gray
dashed line) at the same MTC length, with an L>-value of 0.03 and an L?-value of 0.01.
To reveal the effects of slow positive CE velocities and low MTC forces on the sensitivity,
we added the sensitivity Ssg,[7,0.85] (circles). After a step in stimulation from high to
low level, the sensitivity first rises convexly due to low CE velocity until a limit velocity
is exceeded. At higher velocities, the sensitivities Sg,[7,1.03] and Ss, [7,0.85] decrease
exponentially. However, the latter begins to rise again concavely due to low MTC force,
see Fig. 4.4. For sensitivity function 5'36 [07;,1.03], both effects superpose, resulting in a
first—convex—then—concave, undulate rise of the sensitivity. After a step in stimulation
from low to high level, the sensitivity decreases exponentially, tending to zero, because
the concentric branch of the force—velocity relation applies.

4.4. Conclusions and Outlook

The results from Subsections 4.3.1 — 4.3.3 revealed the benefits of the interaction between
physiological muscle experiments and various mathematical methods. By employing our
methods on ICEs, experimentalists are in the a—priori—position to answer the following
question: Given specific muscle model parts under test, are ICEs generally suitable for
validating these parts and which set—up has to be chosen to maximize this validity? In
addition, experimentalists are in the a—posteriori—position to answer the following ques-
tions: In terms of switching—times, do the data coincide with the experimental set—up?
Furthermore, as an indicator of model validity, does a modified model improve a previous
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version, in terms of a decreasing residuum?

ICEs allow extracting dynamic muscle properties. This finding was revealed by applying
sensitivity analysis to an established Hill-type muscle model. The sensitivity approach
enables a well-directed optimization to determine dynamic muscle parameters. As another
consequence, we can give a suggestion for an experiment to estimate such an insensitive
parameter as the step in slope of the force—velocity relation S.. The eccentric branch
of the force—velocity relation plays a significant role in ICEs (compare Model 1 and 2).
The activation dynamics according to Hatze seems to be physiologically more valid than
Zajac’s formulation (Models 3-5). Furthermore, we conclude from analyzing Model 4 that
the activation dynamics can not be validated in isolation, but only in combination with
other model parts that have a comparable impact on contraction dynamics.

There are two conceivable continuations of this work. First, concerning theory, future
model modifications should include an activity—dependent PEE, which is expected to
model history effects like fatigue, force enhancement and force depression. Descriptions
and attempts of modeling these known physiological effects can be found in [29, 30, 31,
37, 40, 54, 59, 60, 61], but they are phenomenological and lack a structural foundation
except for [54]. Second, concerning the experimental set—up of ICEs, the theory of optimal
design may be applied. Developed in the 1970s by [1, 3], this statistical auxiliary tool can
systematically detect ICE set—ups that are optimal w.r.t. maximum absolute (or overall)
parameter sensitivity. The challenge of optimal design lies in the absence of reference
data. Nevertheless, it seems conceivable that every parameter of a muscle model can be
accurately determined by specifically constructed ICEs.
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5. Sensitivity Analysis of Different
Contraction Modes

In our papers [67, 68] (Chapters 3 and 4), we investigated the influence of model parameters,
which are associated to activation dynamics and other dynamic properties, on the force
output of the muscle. To complete the picture of parameter—induced influences on the
whole muscle model, we performed a sensitivity analysis among different contraction types.
To determine a valid set of parameters, [27] used isometric, concentric and quick-release
experiments to fit the model on an entire data set. During this process it was assumed that
some parameters influence the output of specific experiments more than others. For ex-
ample, a quick-release experiment was assumed to reveal the influence of SEE parameters
[29], whereas a contraction against an inertial mass was assumed to reveal the influence of
SDE parameters [27]. Since these assumptions were only based on educated guesses as well
as graphical trial and error, we wanted to give a mathematical decision criterion. In the
following, we outline certain muscle contraction modes, describing their set—ups, provide
characteristics, and perform a sensitivity analysis including all occurring parameters. The
model in use is elaborately described in Chapter 7, but we recall the DAE system for
clarity.

q¢= fillce,q,0,A), q(0) = qo ,
lcr = follarre, byres tors g, N) lcp(0) =Lego ,
Cvre = fo(lures bure, bor, 4, A) Cvre(0) = Lvrcyo (5.1)
{nrc(0) =0

Fyre = f3(bure, buro, bos, ¢, A) -

Additionally, the following internal restrictions hold:

lcg =Llpee, {sge ={spe and {yrc =/Llcr +UsEE
Fyrre = Fog + Frere = Fsge + Fspe (5.2)

The initial parameter set A was taken from [27, Table 2] and [67, Table 2, third column].

5.1. Simulated Experiments

5.1.1. Isometric Contractions

Isometric contractions experiments (ICEs) are comparatively easy to conduct by experi-
mentalists. One end of the muscle is fixed, for example via the bone, by the use of screws
or rods, to an apparatus. The other end of the muscle is also fixed, attached to a force
transducer measuring the generated force, while keeping the length of the MTC constant,
see Fig. 5.1 and [27, Fig. 1]. The muscle is then held passively at different lengths until
the inner equilibrium is reached. In the experiments, on which this study is based on, the
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5. Sensitivity Analysis of Different Contraction Modes

muscle is fully stimulated at ¢ = t54,¢ via the nerve for a certain time (in our case about
one second) until ¢ = ¢4 and then left unstimulated again. Figure 5.5(a) shows the force—
time curves for the simulated isometric contractions. For a comparison to experimental
data see [27, Fig. 7].

o=0

[]

Figure 5.1.: Sketch of an isometric contraction experiment including a force transducer
(FT) and a current source (V)

5.1.2. Isotonic Contractions

In contrast to isometric contractions, during an isotonic experiment, the MTC is allowed
to change its length versus a controllable force. The free end of the muscle is attached to
a movable lever (servo control), which is adjustable to a certain external load, see Fig. 5.2.
After holding the muscle passively for a short time, the muscle is fully stimulated via
the nerve at t = tgq¢. Consequently, the muscle first contracts isometrically and after
exceeding the external load the MTC shortens at constant load (isotonically). Then, at
t = tramp, the stimulation is switched off and the lever lengthens the muscle with a constant
MTC velocity. System (5.1) has to be extended by the inequality constraint Firre < Fegy.
Figure 5.5(b) shows the force-time curves for the simulated isotonic contractions.

Figure 5.2.: Sketch of an isotonic contraction experiment including a lever and a current
source (V)
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5.1. Simulated Experiments

5.1.3. Quick—Release Contractions

Quick-release experiments require a more sophisticated set—up. A mass is attached at the
free end of the muscle via a (preferably stiff) rope and pulley system. At the beginning of
the experiment, the free end is fixed by a controllable clamp, see Fig. 5.3 or [27, Fig. 1].
The muscle is then fully stimulated and held until the inner equilibrium is reached. At
t = trejease the clamp opens, allowing the muscle to contract against the inertial load, see
below. An additional optical tracking system registers the position of the mass and the
MTC length. Figure 5.5(c) shows the force—time curves for the simulated quick-release
contractions.

Figure 5.3.: Sketch of a quick-release contraction experiment including a mass (kg) and a
current source (V)

5.1.4. Concentric Contractions Against an Inertial Mass

In contrast to quick—release, in the referred concentric contraction experiments, the mass
is now placed on a solid surface and the clamp is removed, see Fig. 5.4. After reaching the
inner equilibrium, the muscle is fully stimulated at ¢t = ¢4, first contracting isometrically
against the mass. As soon as the muscle’s force output exceeds the gravitational force on
the mass, the MTC shortens and raises the attached mass. In contrast to the isotonic
contraction, the acceleration of the muscle works against the gravitational acceleration g,
which leads to an oscillating behavior of the MTC velocity over time, see [27, Figs. 6,11].
This effect is taken into account by writing down Newton’s law of motion

Fyrre = mass - (9 — Lyrre)

and thus a differential equation for CvTe as

1
mass

lure = — N Fepllor, bure, buro, q) + FPEE(ECE)] +g

Figure 5.5(d) shows the force-time curves for the simulated concentric contractions.
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SEE
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Figure 5.4.: Sketch of a concentric contraction experiment including a mass (kg) and a
current source (V)
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Figure 5.5.: Force-time curves of the simulated muscle experiments. (a) Isometric con-
traction cycle at various MTC lengths. The small numbers 0.85,...,1.1 indicate the ra-
tio Cyre/lymrcres, Where Lyrorer = 6.155cm, see [27]. The steps in stimulation at
tstart = 0.1s (o from 0 to 1) as well as at t.,g = 1.1s (0 from 1 to 0) are indicated
with vertical dotted lines. (b) Isotonic contraction cycle with various loads, indicated
by small numbers 4N, ...,20N. The steps in stimulation are marked at tsq+ = 0.1s
and trgmp = 1.1s, where after t,qmp the lever lengthens the MTC with a constant ve-
locity. (¢) Quick-release contraction versus various masses, indicated by small numbers
200g,...,1500g. The releasing time is marked at treeqse = 0.2s. (d) Concentric con-
traction versus various masses, indicated by small number 100g,...,1800g. The step in
stimulation is marked at tg4q+ = 0.5s.
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5.2. Phase Portrait Analysis

5.2. Phase Portrait Analysis

Which contraction mode might be influenced the most by a specific parameter or whole
sub—model? To answer the question, we use a phase portrait analysis. The so—called phase
space ¥ is the space of all possible states of a (mechanical) system. The time-evolving
path of the system is represented via a trajectory Im(I') C W that is the image of a
so—called Jordan curve I.

Definition 5.2.1. Let I := [tg,t;] C R and ¥ C R” the phase space of the n states of a
mechanical system. A curve I': I — W is called a Jordan curve (or simple curve),
if it is injective on [to, 1), i.e. if it does not cross itself. A Jordan curve for which holds
['(tg) = T'(t1) is called closed.

Investigating a given Jordan curve requires an applicable depiction. In general, if n > 3,
the image of I can not be fully displayed. Therefore, projections to suitable sub—spaces
are performed.

Definition 5.2.2. Let I" be a Jordan curve of a mechanical system, i.e. Im(I') C ¥ C R"
represents the time evolution of the system in its phase space ¥ with n > 3. For z € ¥,
let m;; be the projection m;; : ¥ — R? with mij(x) = (:L’i,;L‘j)T. Displaying the image of
m;j is called a phase portrait.

In the case of muscle experiments, the phase space consists of all states of system (5.1),
namely U = (q,lcp, (vre, Uure, Fure) © R®. Bach muscle experiment corresponds to
the image of a Jordan curve in R®. In order to project a curve to a two-dimensional sub—
space, extrinsic restrictions such as {cg = loE,opt 0r ¢ = 1 as well as intrinsic restrictions
such as in Eqn. (5.2) have to be made. Figures 5.6 — 5.9 show four selected phase portraits
that each reveal different muscle characteristics. In detail, the force—length, force—velocity,
SEE and SDE characteristics. The figures can also be directly compared to Tables 5.2 to
5.6 in Section 5.3, containing the findings of the sensitivity analysis.

5.2.1. Force-Length Characteristics

In the first phase portrait, we project the phase space on the sub—space of two directly
measurable system states: the MTC force and the MTC length. The force—length relation
of muscle material is well-investigated [24, 38, 40, 45, 63, 79], because it reveals the
influence of the static muscle components PEE, SEE and Fj4,, on muscle contractions.
Experiments, whose trajectories best recreate the force-length relation, are thus higher
influenced by the underlying parameter sets. Figure 5.6 shows the trajectories of all
four contraction modes data. As a reference, the passive force-length relation Fsgg pas 1=
Fuyrre |g=0= Fprr and active force-length relation Fspp aet := Fyure lg=1= Free+Fisom
are displayed. These two characteristics ought to be extracted as good as possible from
experiment data.

Isometric contractions are assumed to be static, because the MTC is held at a constant
length. Hence, ICEs should provide a good characteristic of the length—dependent model
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5. Sensitivity Analysis of Different Contraction Modes

components. Figure 5.6(a) shows the phase portrait of an isometric contraction at various
MTC lengths. One verifies immediately, that the passive (PEE) and active (PEE + CE)
force—length curves are well recreated by taking the point of lowest and highest MTC force
of each experiment.

The remaining contraction modes do neither sketch the active force-length relation
above {yrroref nor the PEE at all, see Figs. 5.6(b) — (d). Using isotonic or concentric
contractions, the ascending branch of the force—length characteristic can be extracted by
taking the point of lowest MTC length of each experiment.

Summarizing, we conclude (and show in Table 5.6) that ICEs are best suited for recre-
ating MTC force-length characteristics and thus to estimate the respective parameters.

(a) (b)
40 —simulated isometric data 40 —simulated isotonic data
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30r 1 30r b
Z ’ Z
8 8
5 1 S 1
O (&)
= =
= =
4 10, 4
; ) E 0...‘ ................................... —e ) ) ) 4
0.85 0.9 0.95 1 1.05 1.1 0.85 0.9 9! 1 05 11
relative MTC length relative MTC length
(c) (d)
49 —simulated quick-release data 40 —simulated concentric data
-wtheoretical Fspp pos= Free | --theoretical Fspg pos= Fper
—theoretical Fspp o= Fpee+ Fisom —theoretical Fsppact= Fpere + Fisom
E A 30 A
8 8
S 1 520 ]
o (@]
= =
= =
| 10k |
. ) ..........‘......-. ) ) ) 4 0...‘ ................. ‘ ................. T ‘. ) ) E
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Figure 5.6.: MTC force versus relative MTC length phase portrait of the simulated muscle
experiments. For comparison, the passive (no activity, i.e. ¢ = 0) force Fsgg pas (gray
dashed line) and active (full activity, i.e. ¢ = 1) force Fsgpg o (gray line) are displayed.
(a) Isometric contraction: each experiment is represented by a vertical line, because the
MTC length is constant. (b) Isotonic contraction: each curve starts at passive force at
Cyre = Lyreref, describing an isometric contraction (vertical upward movement) up to
the respective external load, a subsequent isotonic contraction (horizontal left movement),
and a final eccentric contraction (relaxation, downward movement). (c) Quick-release
contraction: each curve starts at active force at {yrc = £yrerep and performs a quick
contraction. For low attached masses, the curves almost reach the passive force. After this
first, quick contraction, the muscle interacts with the mass, resulting in an oscillating be-
havior. (d) Concentric contraction: each curve starts at passive force at £yrrc = Lyrcires,
performing an isometric contraction with a subsequent isotonic-like contraction. The
slight oscillation results from the gravitational interaction with the mass.
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5.2.2. Force—Velocity Characteristics

A second well-investigated characteristic is the relation between MTC force and CE ve-
locity. As described by Hill in [41], a hyperbolic function does fit experimental data for
concentric contractions (vcg < 0). The expansion to eccentric contractions (vcg > 0) in
[30] was done by adding a hyperbolic branch with opposite curvature to bring the model
closer to physiological behavior, see also [67]. Figure 5.7 shows the trajectories of all four
contraction modes. As a reference, the force—velocity relation, including the restrictions
lorg = lcE,opt and g = 1, are displayed. Note that in our simulation, the CE lengths were
obtained by solving system (5.1). When fitting experimental data, the CE lengths have
to be calculated by finding the corresponding equilibria, see Section 2.3.2.
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Figure 5.7.: MTC force versus CE velocity phase portrait of the simulated muscle experi-
ments. For comparison, the force-velocity relation at optimal fiber length and full activity
is displayed (gray dashed line). (a) Isometric contraction: for each experiment, the trajec-
tory is a closed curve, because the simulation starts and ends at the passive equilibrium
VCE |g=qo= 0. (b) Isotonic contraction: each trajectory starts and ends at vcp = 0. For
scaling purposes, the eccentric contraction was pruned. The maximum (positive) velocity
occurred at 4N and accounted for approximately 1m/s. During quick-release (c¢) and
concentric contraction (d), there occurred no eccentric contraction.

Isotonic contractions against a pre—defined external load were developed to fit the
theoretical force—velocity relation, cf. [47]. The idea behind this contraction mode is, that
the muscle reaches its external load before its maximum CE velocity. Consequently, as
displayed in Fig. 5.7(b), the force range is limited to the range of the external load. A
comparison to the remaining contraction modes shows, that isotonic contraction in fact
provides least information of the concentric branch of the force—velocity relation. This
result can be confirmed in Table 5.6. However, isotonic contractions give indications of
the eccentric behavior, because at the end of the stimulation process, the MTC as well as
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the CE lengthen (relax) at sub-maximal activity level.

In the previous subsection, we stated that isometric experiments were assumed to be
static. Figure 5.7(a) however, shows that they do fit the concentric force-velocity relation.
Like isotonic contractions, ICEs do also provide eccentric characteristics at sub—maximal
activity level. At MTC lengths greater than £y;rc es, it holds that log > log ope con-
stantly, see Fig. 2.8. Hence, the simulated forces lie above the reference curve.

Quick-release and concentric experiments do provide a good fit of the concentric branch,
but give no information about the eccentric behavior.

5.2.3. SEE Characteristics

Besides the MTC—force-MTC-length relation, the MTC—force-SEE-length relation can
be obtained from the simulated data. Figure 5.8 displays the MTC forces w.r.t. the SEE
length, which was scaled to {y;rcref- As a reference, we displayed the theoretical SEE-
force-SEE-length relation that, in contrast to the MTC—force-SEE-length relation, does
not include the damping force from the SDE.

The quick-release experiments were assumed to reveal SEE characteristics [27, 29],
because after the release, the tendon contraction would dominate the muscle behavior.
Indeed, these experiments show the widest {sgg re = {sEE/{MTC res Tange (from 0.65 to
0.83), but give the non—sharpest approximation of the corresponding SEE forces.

To measure the “sharpness” of the fits in Fig. 5.8, we provide two characteristic numbers
in Table 5.1: The maximum absolute (L) deviation of Fyre and Fspp as well as the
average absolute (L') deviation, where

T

- 1

1l = o £ and (17l = o [ Lo .
0

The lesser those values for f(t) := Fyro(t) — Fsgg(t), the sharper the respective fit.

Table 5.1.: Maximum absolute and average absolute deviation of experimental and theo-
retical MTC—force-SEE-length curves in Fig. 5.8

contraction mode H isometric ‘ isotonic ‘ quick-release ‘ concentric
L deviation 3.21 2.19 8.01 0.46
average L' deviation 0.44 0.29 1.60 0.10

Isometric contractions provide a sharper approximation and a wider range in the “inter-
esting” area ({sgr > {ser,) than the quick-release experiments. Isometric experiments
have less {spE re range (from 0.73 to 0.82). Concentric contractions perform the sharpest
fit but do not cover {sgg,o (range from 0.75 to 0.82), see Fig. 5.7(a).

Summarizing, we conclude (and show in Table 5.6) that ICEs are best suited for recre-
ating SEE force—length characteristics and thus to estimate the respective parameters.
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Figure 5.8.: MTC force versus relative SEE length phase portrait of the simulated muscle
experiments. For comparison, the slack length (spp orel := (sEE0/{MmTCres = 0.73 (gray
vertical dots) as well as the theoretical Fspp curve is displayed (gray dashed line). (a)
Isometric contraction, (b) isotonic contraction, (c) quick-release contraction, and (d) con-
centric contraction. Note that (theoretically) the linear part of the SEE characteristics
begins at ESEE,rel = (1 + AUSEE,nll) . ESEE,O/KMTC,ref = 0.865 (Cf. [27, Fig. 4]) at
AFspgo = 60N and lies beyond the range of any experiment.

5.2.4. SDE Characteristics

In [27, Fig. 11], the influence of a varying damping element is shown, using a concentric
contraction against an inertial mass of 100 g. Figure 5.9 shows the exerted damping force
of the simulated muscle at all contraction modes. As a reference, the SDE force, which
depends linearly on the MTC force [66, Eqn. 12], is displayed at fcg = lopopt and
VOE = Umaz = LCE,optqFisombrel/arer (27, Eqn. 7]. This damping force is the maximal
possible damping and serves as an lower bound. Note that the damping element acts
opposite to the CE and its force is therefore negative during concentric contractions and
positive during eccentric contractions.

Although [27] used concentric contractions to indicate the need for a damping element,
this mode is least influenced by the underlying parameters among all contraction modes.
The highest damping force is exerted in isometric experiments around £j;7¢ rcf. Hence, the
assumption of ICEs only providing static characteristics of the muscle has to be revisited
again. Quick-release experiments with low mass best fit the theoretical damping curve.
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Figure 5.9.: SDE force versus MTC force phase portrait of the simulated muscle
experiments. For comparison, the linear damping force at £cr = lop opt and VOE = Vmaz 18
displayed (gray dashed line). (a) Isometric contraction, (b) isotonic contraction, (c¢) quick—
release contraction, and (d) concentric contraction. Note that the damping is translational
(unit [Ns/m]) rather than rotational (unit [Nm/s]) and depends linearly on the MTC force.
The displayed damping force additionally depends linearly on the SEE velocity, see [30,

Eqn. 13].
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5.3. Sensitivity Analysis

In this section, we perform a sensitivity analysis as in [68, Eqn. (6) — (19)] of the complete
activation—contraction dynamic system (5.1). We calculate the relative sensitivity of the
exerted force w.r.t. the whole parameter set A at every contraction mode. For a better
overview, we divide the set A into the following disjoint parameter sets:

e The SEE parameters Aspr = {¢ser,0, AUsggn, AFseE0, AUsgE, }

e The PEE parameters Apprp = {FreEr, LPEE, VPEE}

The CE force-length parameters Ajsom = {AWase, AWaes, Vases Vdess Fmax, CCE,opt }

The Hill parameters Agi = {arel,0, brei,0}

The SDE parameters Aggmp = {Dsk, Rse}
e The eccentric parameters Apcc = {Se, Fe}
e The Hatze activation parameters Axqize = {qo, £y, pe, m, v}

After calculating the normalized sensitivity functions for every contraction mode w.r.t.
every parameter, the maximum (L) value (see [67]) of each sensitivity function served
as a reference value for the corresponding parameter influence. A comparison regarding
the L? norm is not suitable, because the contraction modes take place on different time
scales.

Tables 5.2 — 5.5 show the maximal relative sensitivities, previously defined as the nor-
malization max;e7|Sh; Fyre (t)| = maxier| Sy, Fyre (8)|-Ai/Farre. An analysis of the entire
sensitivity functions (in this section over 800) can be of interest, when tracking the in-
fluence of a specific parameter in a specific contraction mode, but is beyond the scope of
this section. In the following, we give a summary of observations, tendencies and expla-
nations for the occurring maximum sensitivity values for all simulated contraction modes.
Table 5.6 contains a juxtaposition of maximum L sensitivity values among the different
contraction modes.

5.3.1. Isometric Contractions

In the isometric case, the influence of Aspr, Amir, Adamp and Apqi.e parameters is ten-
dentially decreasing with increasing MTC length. The opposite holds for parameters
in Apgg. However, we note that there is a local sensitivity maximum for most of
the parameters at {yre/Cyvrogrer € {0.97,1}, especially distinct for the slack-length
parameters {sgg 0, Lok, opts LPEE,O-

The most sensitive parameter is the SEE slack-length £ g o (maximum value of 323.51),
especially at short MTC lengths. The least sensitive parameters are Se, Vges, AWyes, RsE
and Dgp (maximum value of less than 0.3).

Expectably, the influence of CE force-length parameters is decreasing with increasing
MTC length, if they belong to the ascending limb (AWjsc, V4se), and increasing, if they
belong to the descending limb (AWyes, Vges). The maximum sensitivity of Fjq, remains
almost constant.

Consequently, when performing isometric contractions to estimate parameters, there
should be experiments at short, medium and long MTC lengths.
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5.3.2. Isotonic Contractions

Most parameter sensitivities remain constant among the various loads up to 12N — 16 N.
At higher loads, the sensitivity increases (Aspgr, Aprr and Apj;) or remains constant
(Aecc, Adamp). The activation parameters m and p. are the only parameters with a
decreasing influence, because at higher loads, the activation process has almost come to
an end before the MTC begins to shorten.

As in the isometric case, the most sensitive parameter is the SEE slack-length (sgg o
(maximum value of 19.49) at 20 N. The least sensitive parameters are vges, Rsg, Se, DsE, qo
and AWyes (maximum value of less than 0.3).

5.3.3. Quick—Release Contractions

With increasing mass, the influence of Asgr, AWase, Vase, LoE,opt and Aggmp parameters
decreases. The Hill parameters as well as F),,, have a local maximum sensitivity at
mass € {400g,600g}.

The most sensitive parameter is the SEE slack-length {spp ¢ (maximum value of 44.97)
at 200 g. Parameters in Appp, Afatze (maximum value less than 10*4) as well as AW,
Vdes, Ndamp (maximum value less than 0.2) have virtually no influence on the force output,
because the muscle is fully activated and shortens concentrically subject to SEE properties.

5.3.4. Concentric Contractions

Parameters from Asgg, Apeg, Agi and Apqi.. have a decreasing influence with increasing
mass and obtain a stationary value above 200g—600g. No parameter sensitivity value is
increasing alongside the mass. Hence, these experiments are superfluous when estimating
parameter values. In [27, Fig. 11], the damping is intuitively fit for the lowest mass, at
which point all occurring parameters have the highest influence. But looking at Table 5.5,
we see that the damping influence remains constant, whereas the influence of the other
parameters decreases. Thus, it would be more advantageous to fit the damper at higher
masses.

The most sensitive parameter is again the SEE slack-length {sgg ¢ (maximum value of
36.49) at 100 g. The least sensitive parameters are Rsg, Dsg, o and AWyes. The influence
of Vges, Se and F, is almost negligible (maximum value less than 2 - 1074).
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Table 5.2.: Maximum L values of the normalized sensitivity functions of the simulated
isometric contraction force w.r.t. every occurring parameter (rows). The columns represent
the respective relative MTC length.

relative MTC length gMTC/gMTC,ref

group | parameter 0.85 088 091 094 097 100 1.03 1.06 1.08 1.10
Asge | lsEEo 323.51 36.75 23.v8 19.98 40.73 16.72 12.77 8.40 3.87 6.59
AUSEEnu 9.13 3.67 298 263 354 226 197 1.30 0.60 1.03
AFsgE 0.84 0.60 057 057 0.60 0.66 0.61 0.40 0.19 0.35
AUsgR, 7.03 225 174 150 226 1.09 045 0.29 0.12 0.24
AppE | FPEE 0.00 0.00 0.00 0.00 0.10 0.16 014 0.13 0.16 0.27
LpEED 0.00 0.00 0.00 0.00 820 281 1.16 0.30 0.30 0.47
VPEE 0.00 0.00 0.00 0.00 0.57 042 022 0.09 0.05 0.10
Nisom | AWase 748 276 1.8 1.20 0.65 024 0.04 0.00 0.00 0.00
AW ges 0.00 0.00 0.00 0.00 0.15 024 020 0.17 013 0.24
Vase 0.69 045 034 024 024 0.16 0.05 0.00 0.00 0.00
Vdes 0.00 0.00 0.00 0.00 0.00 0.00 000 0.04 011 0.21
Fraz 096 099 102 1.04 091 0.8 095 0.98 090 1.08
CCE, opt 5.86 340 2.85 265 1047 4.60 3.08 2.32 1.14 2.09
A Qrel,0 254 072 067 068 059 022 013 0.08 0.06 0.04
brei 0 255 093 094 098 094 061 041 032 027 0.20
Adamp | DsE 029 015 018 021 0.20 0.08 0.04 0.02 0.02 0.03
Rsg 0.26 0.09 009 010 0.08 0.01 0.00 0.00 0.00 0.00
Agco | Se 0.12 013 013 013 0.11 0.04 0.056 0.05 0.05 0.06
F. 0.84 087 091 094 096 096 096 0.86 0.72 0.66
AHatze | Q0 260 08 091 093 08 014 004 0.02 0.01 0.01
4y 0.70  0.71 072 071 0.65 0.53 031 0.09 0.02 0.06
Pe 204 190 210 231 248 256 231 1.78 1.52 1.34
m 3.04 358 421 485 542 551 454 344 3.03 2.62
v 260 27 294 308 314 250 144 0.83 0.59 0.34
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Table 5.3.: Maximum L values of the normalized sensitivity functions of the simulated
isotonic contraction force w.r.t. every occurring parameter (rows). The columns represent
the respective maximum forces.

maximum force [V]

group | parameter 4 ) 6 8 10 12 14 16 18 20
Asge | lsEEo 14.49 1449 1449 1449 1449 1449 1449 1594 17.49 19.49
AUsggnu | 2.03 203 203 203 203 203 203 211 224 239
AFsgE 044 044 044 044 044 044 044 045 046 047
AUsgR, 095 095 095 095 09 095 095 100 1.10 1.23
Aprpe | FPEE 0.14 014 014 014 014 014 014 0.14 014 0.14
LpEED 2.40 240 240 240 240 240 240 240 248 2.76
VPEE 037 037 037 037 037 037 037 037 037 0.38
Nisom | AWase 0.0 092 1.14 137 159 181 203 253 285 3.25
AWes 0.21 021 021 021 021 021 021 021 021 0.21
Vasc 0.26 026 023 023 024 026 031 043 050 0.58
Vdes 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Fraz 0.72 074 077 079 081 082 084 08 08 0.95
CCE, opt 393 393 393 393 393 393 393 393 393 4.26
A Qrel,0 0.22 022 022 022 022 024 026 032 039 0.50
brei 0 0.60 0.60 060 060 061 0.67 078 092 1.02 1.16
Adamp | DsE 0.08 0.08 008 008 0.08 0.08 0.08 008 008 0.10
Rsg 0.01 0.01 001 001 0.01 0.01 001 001 001 0.01
Agcc | Se 0.04 0.04 004 004 003 0.03 003 003 003 0.03
F. 096 096 096 096 096 096 096 098 098 0.99
AHatze | Q0 0.26 026 026 026 026 026 026 026 026 0.26
4y 0.67 071 0.5 078 080 083 0.8 08 089 0.90
Pe 244 243 242 240 239 237 236 233 232 231
m 483 4.71 460 449 438 427 414 399 390 3.79
v 3.19 320 320 320 320 320 320 3.19 3.18 3.16
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Table 5.4.: Maximum L values of the normalized sensitivity functions of the simulated
quick-release contraction force w.r.t. every occurring parameter (rows). The columns
represent the respective attached masses.

affixed load [g]
group | parameter 200 400 600 800 1000 1500
Aser | lsEE 4497 29.87 1547 11.82 941 6.98
AUsggnu | 3.05 260 1.64 1.21 0.98 0.90
AFspe 0.40 051 041 035 0.26 0.25
AUsgE, 259 213 139 120 1.05 0.7
Apee | FPEE 0.00 0.00 0.00 0.00 0.00 0.00
LPEED 0.00 0.00 0.00 0.00 0.00 0.00
VPEE 0.00 0.00 0.00 0.00 0.00 0.00
Nisom | AWase 992 516 220 1.13 0.75 0.37
AW ges 0.00  0.00 0.00 0.00 0.00 0.00
Vase 044 052 056 045 0.32 0.20
Vdes 0.00 0.00 0.00 0.00 0.00 0.00
Fnaz 1.36 143 144 133 1.15 0.90
LoE,opt 586 3.22 155 087 0.64 0.49
Amin Qrel 0 090 151 081 043 0.19 0.12
brel0 1.00 1.72 126 095 0.61 0.29
Adamp | DsE 144 042 026 0.22 0.18 0.12
Rsp 0.19 0.05 0.02 0.01 0.01 0.00
Agco | Se 0.03 0.00 0.00 0.00 0.00 0.00
F, 0.17 0.00 0.00 0.00 0.00 0.00
AHatze | Q0 0.00 0.00 0.00 0.00 0.00 0.00
4, 0.00 0.00 0.00 0.00 0.00 0.00
Pe 0.00 0.00 0.00 0.00 0.00 0.00
m 0.00 0.00 0.00 0.00 0.00 0.00
v 0.00 0.00 0.00 0.00 0.00 0.00
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Table 5.5.: Maximum L values of the normalized sensitivity functions of the simulated
concentric contraction force w.r.t. every occurring parameter (rows). The columns repre-
sent the respective attached masses.

affixed load [g]
group | parameter 100 200 400 600 800 1000 1400 1800
Asee | UseEo 36.49 2456 17.22 13.60 13.08 13.08 13.08 13.08
AUsggnu | 328 259 213 190 190 1.90 1.90 1.90
AFspe 0.50 044 042 042 042 042 042 042
AUsgE, 204 149 109 0.87r 087 087 087 0.87
Aper | FPEE 0.16 0.14 0.13 0.13 0.13 0.13 0.13 0.13
LPEED 444 293 218 214 214 214 214 214
VPEE 052 038 033 033 033 033 033 033
Nisom | AWqse 723 483 329 256 207 170 114 0.74
AW ges 023 020 019 0.19 0.19 019 019 0.19
Vase 148 091 045 031 028 026 023 0.20
Vies 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Foax 093 091 090 0.8 0.8 0.83 079 0.75
LoE,opt 6.19 410 349 349 349 349 349 3.49
Amin Qrel,0 230 114 053 033 026 0.22 022 0.22
brei o 3.04 187 122 096 0.80 0.70 0.60 0.60
Adamp | DsE 0.07 0.07 0.08 0.08 0.08 0.08 0.08 0.08
Rsg 0.01 0.01 0.01 0.01 0.01 001 001 0.01
Agco | Se 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Fe 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AHatze | Q0 0.15 0.09 0.09 0.09 0.09 0.09 0.09 0.09
I 0.31 022 014 0.10 0.08 0.06 0.04 0.03
Pe 098 081 0.80 0.80 0.80 0.80 0.80 0.80
m 096 084 084 084 0.84 084 084 084
v 044 032 032 032 032 032 032 032
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5.3.5. Comparison of the Contraction Modes

Table 5.6 shows the row—wise maximum values from Tables 5.2 — 5.5 with four digits
accuracy. The row—wise maximum of these values are printed in bold, i.e.

max . max max |S>\17FMTc(t)’ .
contraction modes experiment variations tel

As seen in Fig. 5.6 — 5.9, most parameters have their highest influence on the MTC force
during isometric contractions. In the case of Asgr and Apgg, the influence is up to seven
times higher compared to the other contraction modes. Furthermore, the maximum L
sensitivities of F,,/, and v in the isotonic case, and the maximum L sensitivities of
AWise and Fipq, in the quick—release case are just slightly higher than in the isometric
case. The higher values for b, ¢ in the concentric case are explainable by the circumstance
that this mode allowed the muscle to shorten quicker and thus better fit the concentric
branch of the force—velocity relation.

The only parameters, whose maximum sensitivity is significantly (> 50%) higher than
in the isometric case, are Dgg during the quick-release experiment and v,s. during the
concentric experiment, both against a low mass.

Summarizing the results from Figs. 5.6 — 5.9 and Tables 5.2 — 5.6, we derive the following
statements:

e Although isotonic experiments were designed to obtain meaningful force—velocity
characteristics, they turned out to be least sensitive to Agyy.

e Although quick-release experiments were designed to obtain meaningful SEE and
force—velocity characteristics, they turned out to be less sensitive to Asgr and Ag;y
than ICEs.

e Although concentric contraction against an inertial mass were used to indicate a need
for a SDE, they are least influenced by Ag4m, throughout all contraction modes.

We showed in Chapter 4 ([67]) that isometric experiments allow for determining dy-
namic muscle properties. In comparison with various other contraction modes, we now
quantified the respective parameter influences. We saw that ICEs can provide a basis for
an overall parameter estimation. Hence, instead of performing sophisticated and error—
prone experiments, ICEs might solely suffice to perform a complete parameter fit with
minimal effort.
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Table 5.6.: Maximum of the maximum L sensitivities from Tables 5.2 — 5.5 w.r.t. every
occurring parameter throughout every contraction mode. For every parameter, the highest
relative sensitivity is printed in bold.

contraction type
group | parameter | isometric isotonic quick-release concentric
Aser | lsEE 323.5132 19.4867 44.9652 36.4870
AUSEE nul 9.1263 2.3926 3.0527 3.2789
AFsgEo 0.8401 0.4718 0.5100 0.4970
AUsgE, 7.0261 1.2333 2.5944 2.0392
Aper | FPEE 0.2711 0.1434 0.0000 0.1602
LPEE0 8.1986 2.7583 0.0000 4.4420
VPEE 0.5694 0.3768 0.0000 0.5248
Nisom | AWiqse 7.4785 3.2494 9.9165 7.2274
AWges 0.2427 0.2091 0.0000 0.2336
Vase 0.6852 0.5778 0.5562 1.4842
Vdes 0.2086 0.0000 0.0000 0.0000
Fraa 1.0783 0.9489 1.4416 0.9256
LoE, opt 10.4651 4.2597 5.8570 6.1947
Apgin Qrel,0 2.5406 0.4958 1.5083 2.3035
brel0 2.5524 1.1582 1.7220 3.0408
Adamp | DsE 0.2924 0.1040 1.4434 0.0751
Rsg 0.2587 0.0084 0.1942 0.0139
Apcc | Se 0.1333 0.0365 0.0294 0.0002
F, 0.9649 0.9886 0.1698 0.0002
Apatze | Q0 2.5972 0.2591 0.0000 0.1530
4, 0.7168 0.9025 0.0000 0.3078
Pe 2.5589 2.4400 0.0000 0.9844
m 5.5087 4.8255 0.0000 0.9630
v 3.1375 3.1998 0.0000 0.4417
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6. Introduction to Optimal Control Theory

This chapter contains an introduction to optimal control theory and serves as a prequel
to the articles [25, 66]. The theory of optimal control was developed by the Soviet math-
ematician Pontryagin [61] during the cold war and was, among other fields, used to solve
minimum time interception problems [60]. The main aim of an optimal control problem
is to minimize an objective function with respect to boundary constraints expressed by
(ordinary or partial) differential equations. A few examples of the manifold applicability
are:

e the economic behavior of companies w.r.t. their assets [15],
e the vibration of civil engineering structures w.r.t. random loadings [82],

e the uniform heating of a potato on the open fire w.r.t. the position of the attached
stick [56],

e the treatment of a cancer tumor w.r.t. the applied radiation [77],
e the reduction of mosquito-induced dengue infections w.r.t. different strategies [81],

e or the recreation of the force production of a human skeletal muscle w.r.t. the applied
neural stimulation [25, 66].

The two mainly used approaches for solving optimal control problems are the first dis-
cretize then optimize (or direct) method and the first optimize then discretize (or indirect)
method. The former method is based on discretizing the problem on a given time grid and
solve the upcoming (very large) system of equations. The latter method aims on finding
an optimal solution in the function space, in form of differential equations, which are then
solved on a discrete time grid. In [66], we give a comparison of a direct and an indirect
method by finding the optimal neural stimulation that recovers isometric muscle forces.
For a detailed discussion on advantages and disadvantages of both methods see [5, 23, 36,
42]. In the following, we will address the indirect method, state some fundamentals from
functional analysis and give examples of optimal control problems that can be solved using
first optimize then discretize.

6.1. Fundamentals from Functional Analysis

We want to state some relevant notations, definitions and theorems used in [25, 66]. The
presented concepts can altogether be found in literature, e.g. [21, 43, 49, 56].

Definition 6.1.1. Let X be a real vector space and {2 C R™ open.

e If there exists a norm [|.|| : X — RY such that X is complete with respect to
[|.]], i-e. if any Cauchy sequence (f,) has a limit in X under the induced metric
d(fn, fm) = ||fn — fml|, the space B = (X,]|.]|) is called a Banach space.
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If there exists an inner (scalar) product ( , )x : X x X — R that induces a norm
via || f||% := (f, f), the space H = (X,( , )x) is called a Pre—Hilbert space.

A Pre-Hilbert space H = (X,( , )x) is called a Hilbert space, if X is complete
w.r.t. the associated norm || . ||x.

Let C*(2) denote the Banach space of k-times differentiable functions from Q to R.
Consequently, CY(€2) denotes the space of continuous functions and hence C*(Q) =

N CF(9) the space of smooth functions. Furthermore, let C?(£2) denote the space of
k=0

all continuous functions with compact support, where supp(f) := {x € Q | f(z) # 0}.
Then, C(2) = C>(2) N C%(Q) is called the space of bump functions.

For 1 < p < oo and a function f: Q@ — R define the LP—norm of f by

1/p
(1 as) . it # 00
Fllze = § \@ :
essesglzlp]f(xﬂ:: inf{a > 0| p({|f| >a}) =0}, ifp=o0

provided the integral exists, under the equivalence relation f ~ g < ||f — g||zr = 0.
Here, 1 denotes the Lebesgue measure. The space of Lebesgue measurable functions
(up to equivalence) together with the defined norm is denoted by LP(Q2) = LP(Q; R).

e The space W*P(Q) of functions f € LP(£2), whose weak derivatives exist and are
elements of LP(£2) up to order k € N, is called Sobolev space. Here, g € LP(Q) is
called the weak derivative of f, if

/ o) p(a) dz = — / f@)g (@) dr, Y e CF(R).
Q

For p = 2 write H¥(Q) instead of W*?2(2). A prominent function space in optimal
control of partial differential equations (PDEs) is H{ (), which denotes the closure
of C(Q2) in HY(Q), cf. [25, 42].

Definition 6.1.2. Using the notation from above, we call
e a (linear) map 7': X — R a (linear) functional
e a linear functional D : C°(2) — R a distribution

e the set of all linear functionals T': X — R the (algebraic) dual space of X. We
denote this space with X*.

Example 6.1.3.

a) The space L?(Q) of squared Lebesgue-integrable functions is complete w.r.t. the
scalar product

(f.g) e = / f@)-g(z)dr,  where f,g € L2(Q)
Q
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Figure 6.1.: Example bump functions ®,(z) for b € {1,1,2}.

and the induced norm

1£1122 = / f@)?do = (f, f).
Q

Hence, L%(Q) is a Hilbert space. All LP spaces are Banach spaces.
b) Functions of the form

By(a) = 4 OPGER) el <b
0 x| > b

are bump functions, since they are continuous, indefinitely often differentiable and
with compact support, see Fig. 6.1.

c) The weak derivative of the absolute value function f(z) = |z| is the sign function
sgn(z) := z/|z|, if x # 0 and sgn(0) := 0, see Section 4.3.4 for its use.

d) Let X,Y be normed vector spaces. Let the linear mapping A : X — Y be bounded,
e. ||Allxy = sup ||Af|ly < oco. Theset of all bounded linear mappings L(X,Y")
[1fllx=1
is a normed vector space and even a Banach space, if Y is a Banach space.
e) All Sobolev spaces are Banach spaces and for p = 2 even Hilbert spaces.

f) The Dirac delta, denoted by § : C(2) — R with d[p](z) = ¢(0) for every
bump function ¢, is a distribution. A common formulation is §[f] = li_r>n (On, ) =

ligl J 6n(2z) f(z) dz using a sequence of functions (6,) such that
n—oo Q

if 2 =0
lim 8,(z) =4 0 7
n—00 0, ifx#0

Furthermore, the Dirac delta is the weak derivative of the Heaviside function, de-

noted by
0, if 0
o) =4 " 7
1, ifxz>0
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g) The dual space of LP is (LP)* ~ L9 with %—l—% = 1. Consequently, it holds (L?)* ~ L2.
However, it holds that (L')* ~ L°°, but (L!) is only a subspace of (L>)*, see [70].

As we aim on finding local extrema in an infinite dimensional function space, the concept
of derivatives and directional derivatives has to be generalized.

Definition 6.1.4. Let X,Y be Banach spaces and U C X open.

e The map A: U — Y is called Fréchet differentiable in zg € U, if there exist a
continuous linear mapping DA : X — L(X,Y) with

i A@o+h) = Afao) = DA@)(R)ly

=0
||| x—0 I[h]lx

e Considering a functional T': X — R,

Tyo(w0) = Dy T (0) = }Llino (o hO) (zo0)

denotes the Gateaux derivative of T in zy € U in direction vy € X.

Remark 6.1.5. (Properties of Fréchet and Gateaux derivatives)

1) If X =R"™ and Y = R, the Fréchet derivative DA corresponds to the total derivative
of a function A : R" — R, see [21].

2) If A is Fréchet differentiable in xg, there exist the Gateaux derivative for every
vo € X and it holds that D,,A(xg) = DA(xo)(vo), see [56]. The converse do not
hold in general, inter alia because the Gateaux derivative might not be linear.

3) f A: X DU — Y is Gateaux differentiable in every direction vy € X within an
e-ball around x¢ € U, and it holds
(a) D¢y(wo) : X — R is continuous and linear,
(b) Dyy(x) = Dyy(x0) for & — ¢ uniformly on ||v||x =1,
then A is Fréchet differentiable in zg and DA(xo) = D(.)(z0), see [56].

6.2. Formulation and Examples for Optimal Control Problems
Let the following differential equation system
z = f(t,x(t),o(t)), x(0) = zo(c(0)) € R, (6.1)

be influenced by an input (or better: control) function o = o(t). The solution x(t) = T'(0)
of the system, expressed by the functional T', can be obtained analytically or numerically
in dependence of the control. Furthermore, let Q = [0,1] C R, z € L?(Q;R") and
o € Uyq(2) where

Uaa(Q) == {u € L*(Q;R™) | |Ju||z2 < a € R}
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6.2. Formulation and Examples for Optimal Control Problems

denotes the set of a—bounded L2—functions.

The optimal control problem occurs, if a model’s output Z(¢) is predetermined, e.g. by
a desired trajectory or experimentally observed data. Hence, we want to find an optimal
control function o*, such that T'(c*) = Zz. At first sight, the problem is solvable by
computing o* = T~1(Z), but it is not clear a priori whether T is analytic, invertible or
at least covers the observation, i.e. & € Im(7"). Formally, the desired output z has to be
projected to the image of T', which is done by minimizing ||7'(c) — Z||z2. To preserve the
uniqueness of this projection and to avoid an infinite value of the control function, the
minimization problem is enhanced by a regularization term of the control, w/2-||o||3,, for
details see [20, 34]. The weighting factor 0 < w € R of the regularization term is assumed
to be sufficiently small to not influence the output considerably while being sufficiently
large to ensure convexity of the optimization problem. Thus, the optimization problem,
expressed by the convex objective function J : L? x Uyq — R, writes as

win J(a(t).0(0) = 3 lo(t) = 5Ol + o = [ ita).ow) &t (62

0€Uuq
Q

suchthat @& = f(¢t,z(t),o(t)), z(0) = x0(c(0)) (6.3)

The ODE constraint (6.3) can be included in the objective function by the introduction
of a Lagrange multiplier \ : L?> — R. This so—called co-state variable serves as a penalty
function, if the ODE constraint is not fulfilled. Note that A € (L?)* ~ L2,

Theorem 6.2.1.

Given a model of the form (6.1), which is dependent on a control o = o(t), as well as a
desired path & = Z(t), which should be approximated at best by the solution x = x(t). The
optimal control problem of minimizing the Lagrange functional £ : L? x Uyq x L?> — R,
where

L(z,0,\) :=T(z,0)+ /)\(w — f(z,0))dt = /j(x,a) + A& — Af(z,0)dt (6.4)

Q Q

1s equivalent to solving the following system:

&= f(z,0) z(0) = xo
A= -N\o.f(z,0) 4 ,j(z,0) MT) = (6.5)
Ooj(z,0) = X0p f(z,0) 0 € Uy

Proof.

The differential-algebraic equation system (DAE) (6.5) is a direct consequence of the
Euler—Lagrange equation, see [49, 56]. This equation originates from taking the Fréchet
derivatives of £ w.r.t. the state, the co—state and the control.
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6. Introduction to Optimal Control Theory

To show this connection, we rearrange £ using partial integration (PI) on Ai:

L(x,o,)\):/j(x,a)dt—i—//\jsdt—/)\f(m,a)dt

Q Q Q

PI . T \

= [ j(x,o)dt+zNg — [ Aedt — | Af(x,0)dt
/ [rec]

= [ j(z,0)dt + 2(T)MT) — zoA(0) — [ Azdt — [ Mf(z,0)dt
/ [ree]

When taking the (Gateaux) derivative of £ in direction Z, the initial condition Z(0) = zg
has to be fulfilled. Furthermore, the adjoint variable has to attain the boundary value
MT) = 0, because Z(T') is free. This requirement is known as the transversality condition,
see [21, 49, 56]. Taking the Gateaux derivative of £ in z in direction Z yields

Diﬁ(x):% /j(a:—i—ti:,a)—j(a;,a)dt—/tit)'\dt—//\[f(a:—i-ti:,a)—f(w,a)]dt

Q Q Q

= [ 0j(z,0)zdt — [ EAdt — [ NOpf(x,0)Edt
/ [7]
axj($70)vj> - <)‘ + Aaxf(I,O'),i?>

=
= (02 (w,0) — A — A0y f(z,0),2) =0

To be Fréchet differentiable in x, the Gateaux derivatives have to be zero for all Z. Thus,
it follows

0pj(x,0) = A= A0pf(x,0) =0

and consequently the co—state equation
A= N\, f(x,0) + 0pj(z,0)

with the terminal condition A(T) = 0. The state and control equation follow analogously
by setting D5 £ = 0 and DsL = 0, respectively.

Example 6.2.2. Considering the ODE
#(t) = —z(t) + o (t), z(0) =1,
we want to find a control o(t) € U,q such that the objective function
1
JI(@,0) = 5llz = & + Slo]
with w > 0 is minimized. The desired output z is given by

1 ,ifteo0,1]

z(t) =0(1—1) |pg= {0 if t € (1,2]

After including the adjoint variable A = A(¢), we apply Theorem 6.2.1 and derive the
Lagrange functional
L(z,0,\) =T (z,0)+ (N z+z—0)
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with respect to the state variable z, the co—state variable A as well as the control ¢ and
obtain the system:

N\, f(x,0) + 0, (x,0) = A=-A+z—1 JA(2) =0
f(z,0) = t=—-x+0 ,z(0) =1 (6.6)
Ooj(z,0) = (N, 0, f(x,0)) = wo = A

To solve system (6.6), we substitute ¢ = A\/w in the second equation and obtain an
inhomogeneous, linear first order ODE system:

ae) = 2)C) () =2C) w0 n=()o=()

Because the initial value A\g is unknown, it has to be calculated a posteriori in dependence
on w. The eigenvalues of A are ;)9 = (—w £ y/w)/w. Hence, the solution is obtained as
a combination of the fundamental system {e#1!, e#2t} by variation of constants via:

¢
At w, o)) ar At—s)
(x(t,w,)\o)> =e''n+ [ e b(s)ds (6.7)

where e4 = Yoo A¥/E! denotes the matrix exponential. Setting A(2,w, o) = 0, we
obtain analytic expressions for x, A and Ag in dependence on w, which are, however, too
longish to display here. All calculations were conducted in MATLAB.

1 1 LS
(@]
© —(t)
% 0.5 % 0.5 ey % 0.5 o ox(t)
[e]
o]
% 2
0 0 0 —oasaenasseanans)|
0 0.5 1 1.5 2 0 0.5 1 1.5 2 0 0.5 1t 1.5 2
0- ............... oo m T 0 ) ~.~ . 0 .
., ,.". '
[°) o pN © - d o(t)
-0.2 -0.2 0.2 _. o
04 05 1 1.5 > 9% 0.5 1 1.5 2 9% 0.5 1 1.5 2

t t t

Figure 6.2.: Solution of equation system (6.6) for w = 10 (left column), w = 0.1 (mid
column) and w = 0.001 (right column). The upper row shows the numerical solution
x(t) (circles) in comparison to the desired output Z(t) (line). The corresponding control
function o(t) (dashed line) is displayed in the lower row. The respective objective function
values J, were Jig = 28.6, Jo.1 = 20.4 and Jy g1 = 4.4.

Figure 6.2 shows the analytic solution for different values of w € {10,0.1,0.001}, reveal-
ing the effect of the regularization term. For w = 10, the minimization of the objective
function is dominated by the minimization of the (absolute) control. Accordingly, the
adjoint variable A(t) ~ 0 and the solution z(t) ~ e~!. For smaller values of w, the term
||z — Z||?> becomes more important to minimize. Since this term is already convex, we
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would expect an optimal fit of x(t) on Z(¢t) for w = 0. However, the analytic solution
is not defined at w = 0 and we found the evaluation to be numerically susceptible for
w < 1074, resulting in highly oscillating solutions. Hence, Fig. 6.2 only shows the solution
up to w = 1073.

An attempt to better approximate this instability was a numerical approach. For iter-
atively solving system (6.6), we chose w = 107° and the initial value oo(t) = 0. Every
iteration step consisted of solving the ODE for z(t) with the MATLAB pre-implemented
Runge-Kutta method ode45, then solving the ODE for A(t) (backwards in time) and fi-
nally updating o(¢). Figure 6.3 shows the solution z(t) in comparison to Z(t) as well as
the respective control o(t) after 10, 100 and 1000 iteration steps.

1 { e s Al EeN 1 man]
OoO ° —(t)
=< 0.5 0 = 0.5 o < 0.5 o o x(t)
OO
Q o
&@5 <
0 0 e 0 e
0 0.5 1t 1.5 2 0 0.5 1t 1.5 2 0 0.5 1t 1.5 2
0- i . 0- mT - (N m—— of T Nermermaamas
o © o) 'G(t)
-5 -5 ! -5
% o5 1 15 2 % os 1 15 2 % 05 1 15 2

t t t

Figure 6.3.: Solution of equation system (6.6) for w = 10~ after 10 (left column), 100
(mid column) and 1000 (right column) iteration steps. The upper row shows the numerical
solution z(t) (circles) in comparison to the desired output Z(t) (line). The corresponding
control function o(t) (dashed line) is displayed in the lower row. The respective objective
function values .J,, after n iterations were Jig = 17.9, J1ig0 = 5.0 and Jiggg = 1.6.

This example leads to two observations. First, the method is not bounded to approxi-
mating continuous functions. Second, for w — 0, the control o(t) converges pointwise to
an optimal control o*(t) ¢ U,q([0, 2]), namely

1 ,if t € 0,1)
o) =01 —t)+d6(t—1)=4 —00 ,ift=1 ;
0 Lif t € (1,2]

which is not bounded and not even a function, but a distribution. To proof the optimality
of o*, we solve the ODE

t=—-zr4+0"=—-2+01—-t)-6(t—-1), =z(0)=1

via variation of constants. The homogeneous solution is obviously zy(t) = e“tc. Varying
the constant ¢ = c¢(t) to obtain the general solution z(t) = e 'c(t) and differentiating
yields

é(t) =e'O(1 —t) — et — 1)
— () =e'O(1l—t)—e'Ot—1)+e'0(t—1)=c'O(1 —1t)
= ()= 'Ol —t)=0(1 —t) = z(t)
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Example 6.2.3. The described method is also applicable to ODEs of higher order. For
example consider the oscillation boundary value problem:

(t) = —x(t) + o(t) z(0) =0 =z(2). (6.8)

Let the objective function J be as above with a desired output Z in form of an approxi-
mated triangle wave on [0, 2]

sin(1) . . .
- sin Sln(t) ,if t e [O7 1] Sln(l) . ‘
X = . (2 _ sin B _ sin(t — '
" {ZiEE§§ sin(t) —sin(t — 1) Lifte (12 sz nf) = O Dsin=1) (6.9)

Differentiation of the corresponding Lagrange functional
L(z,0,)\) =T (z,0)+ (\E—z+0)
w.r.t. state variable, co—state variable and control variable yields

Ouf(z,0)\ — 0yj(z,0) = A=-\—(z—2) JA0) =0=A(2)
f(z,0) = I=—-x+0 ,2(0) =0
0sj(z,0) = N0p f(x,0) = wo = A

In contrast to the proof of Theorem 6.2.1, transforming the Lagrangian £ requires two
partial integrations, resulting in switched signs in the co—state equation. Moreover, the
analytic solution using variation of the constant is not possible, because the matrix expo-
nential contains expressions of the form exp(¢?), whose integral does not exist in a closed—
form expression. Nevertheless, substituting ¢ = A/w as above, the pre-implemented
MATLAB solver dsolve finds an analytic solution of the system in dependence on w. Fig-
ure 6.4 shows the solution w.r.t. the regularization term w € {1,0.1,0.001}, the desired
output Z and the respective control o. For values of w < 1072 the solution became nu-
merically unstable, due to occurring high—frequency oscillations. However, the analytic
solutions does not give rise to the shape of the optimal control function ¢* for w — 0.
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- DCQ 655 % 590 _ql o 0 o
_4 1 s ey o
0 0.5 ]{ 1.5 2 0 0.5 ]{ 1.5 2 0
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20 200 em o 200 Py i
e ———_ 5 * ™, -=o(t)
© op==" o © or ‘\. © 0
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-20 -20 -20 L :
0 0.5 1 1.5 2 0 0.5 1 15 2 0 0.5 1 15 2

t t t

Figure 6.4.: Analytic solution of equation system (6.10) for w = 1 (left column), w = 0.1
(mid column) and w = 10~ (right column). The upper row shows the numerical solution
x(t) (circles) in comparison to the desired output Z(t) (line). The corresponding control
function o(t) (dashed line) is displayed in the lower row. The respective objective function
values were J1 = 53, Jp.1 = 15.6 and Jp 01 = 0.5.
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To obtain a more meaningful outline of the control function, we solved the equation
system (6.10) numerically using three different approaches: a self-implemented shooting
method, a self-implemented centered difference method and the state—of-the—art pre—
implemented MATLAB solver bup4c.

The shooting method: The main idea of the shooting method is to transform a boundary
value problem (BVP), like system (6.10), into an initial value problem (IVP). In the case
of a linear BVP, this transformation can be obtained by the solution of the corresponding
gradient IVP, see Algorithm 1. We give a pseudocode for a simple shooting method in
Algorithm 1. Details for applying this method can be found in [21, 56, 76].

Algorithm 1 Shooting Method
Solving a BVP of the form: & = f(¢,x), x(0) = a, z(T) = b by transformation
into an IVP of the form & = f(¢,x), z(0) = a, £(0) = s
Require: Right hand side f(¢,z), boundary values a,b € R, initial value sy = 1
Ensure: Numerical solution z(t)

Sete=1landi=0
while ¢ > error tolerance do
(1) Solve the IVP: & = f(¢t,x), z(0) = a, £(0) = s;
(2) Solve the corresponding (gradient) IVP:
v=v-2+ f(t,z) -0, v(0) =0, 0(1) =1
(3) Update the initial value s; by the newton step s;41 = s; — v *
with a suitable step size a
(4) €= ’8i+1—si|,i:’i+1
end while
Return z as the solution of the IVP: & = f(t,x), (0) = a, £(0) =s =s;

z(T)
o(T)

< 0.5

O, ()...~~ o or & -,
., . W o "\ K
.. - ey - ‘-‘ .,' .
o 1 e o -1 RS o 1 s ; ot
e % s
-2 -2 2 " 4
0 0.5 1 1.5 2 0 0.5 1 15 2 0 0.5 1.5 2

Figure 6.5.: Shooting method solution of equation system (6.10) for w = 1073 after 10
(left column), 100 (mid column) and 1000 (right column) iteration steps. The upper row
shows the numerical solution z(t) (circles) in comparison to the desired output z(t) (line).
The corresponding control function o(¢) (dashed line) is displayed in the lower row. The
respective objective function values were Ji9 = 1.6, J100 = 0.4 and J1000 = 0.07.
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As in the previous example, the equation system (6.10), now transformed into a system
of four ODEs of first order as well as an algebraic equation, was solved numerically.
Figure 6.5 shows the solution z(¢) in comparison to Z(t) as well as the respective control
o(t) after 10, 100 and 1000 iteration steps. The disadvantages of the shooting method
are its elaborated implementation and a slow convergence, resulting in an elapsing time
of approximately 50 seconds. In the next paragraph, we present the centered difference
approach as a cheaper alternative.

The centered difference method: The main idea of this second approach is to dis-
cretize the equation system (6.10) and solve the upcoming linear equation system (LES).
Therefore, we recall the (forward and backward) Taylor expansion of a sufficiently often
differentiable function f: R — R at & with step size h > 0:

P+ ) = F(@) + F/(@)-ht 3 (@) - B+ O(?)
Fl& =) = (@) = /@) bt 5 f(@) 0+ O()

Adding these two equations and solving for f”(z) yields
f(@+h)—2f(@)+ f(@—h)

1"(@) ~ L
We discretize system (6.10) using the grid {0 = to,t1, ..., tn,tnt1 = 2} for the time as
well as {0 = Ao, A1, - .., A, Adpyp1 = 0} for the co—state, {0 = zg,x1, ... ,Zn,Tpy1 = 0}
for the state, and {0 = Zo, Z1, ... , Tpn, Tnt1 = 0} for the desired path. This discretization

leads to the following linear equation system (LES)
Ait1 — 2M + A

12 =—X\ — (v — &)
1 — O o s
s R = (6.11)

for i = 1,...,n. This LES can be expressed by a block—wise tridiagonal (Toeplitz) matrix

h? —2 1 h?
2 _
1 h?—2 1 A\ Z1h?
1 h2-2 1 _ g
1 m2-2 h? R N
—h?jw h? —2 1 x| 0

1 h2—2 1

1 h2-2 1 Tn 0
—h?jw 1 h? -2

Due to the structure, the matrix is invertible and allows a simultaneous evaluation of
the state and the co—state variable (and thus the control) in a single step via the so—called
Thomas method, cf. [13]. For a detailed overview of methods concerning Toeplitz matrices
see [55]. Our non—iterative approach is straightforward to implement and executed for n =
1000 in about 0.6 seconds, approximately one percent of the time of the shooting method.
Figure 6.6 shows the solution w.r.t. the regularization parameter w € {1,1073,107%}, the
desired output & and the respective control o. Unlike the analytic solution, the centered
difference method is numerically stable for w <« 1. Furthermore, the control seems to
converge to o* = §(t — 1), which we will prove to be the correct solution in the following.
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Figure 6.6.: Centered difference solution of equation system (6.10) for w = 1071 (left
column), w = 1073 (mid column) and w = 1079 (right column). The upper row shows
the numerical solution z(t) (circles) in comparison to the desired output z(t) (line). The
corresponding control function o(t) (dashed line) is displayed in the lower row. The
respective objective function values were Jy1 = 10.6, J19-3 = 0.25 and Jyp-¢ = 0.0014.

State—of—the—art solver (bupdc): There exists a specific solver for BVPs in MATLAB;
bupdc, which is short for boundary value problem solver of jth order using collocation
method. According to [73], a shooting method may be too susceptible to ill-posed BVPs,
leading to stiff or numerically unstable IVPs. Hence, buvp4c replaces the shooting method
by a collocation method that approximates the solution of an IVP by a polynomial, in
our case a piecewise cubic spline. The algorithm adaptively creates a grid on which the
solution is evaluated. Furthermore, it is possible to include parameters (like w) in the
equation to reveal their influence. Figure 6.7 shows the solution w.r.t. the regularization
parameter w € {1,1073,107%}, the desired output Z and the respective control o. The
evaluation time for bvpdc was 0.05 seconds, about ten percent of the centered difference
method and one permil of the shooting method.

From the three numerical methods, we expect the optimal control u*(¢) to be a Dirac §
of the form
o Lift=1

0 ,else

o (t) = 8(t — 1) = {

To prove this assumption, we solve the ODE & = —z+¢* with boundary values z(0) =0 =
x(2) by variation of the constant, see Eqn. (6.7). Written as a system of first order equa-
tions, we obtain eigenvalues fi;/o = +i and thus the fundamental system {sin(t),cos(t)}.
Denoting 1,9 = #(0) the unknown initial value of the first derivative, we yield

x(t) = x1,08in(t) — /sin(t —5)0(s—1)ds =z sin(t) + O(t — 1)sin(t — 1) .
0

Setting x(2) = 0 we obtain x; ¢ = sin(1)/sin(2) and hence z(t) = z(t).
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Figure 6.7.: MATLAB bvp4c solution of equation system (6.10) for w = 107! (left column),
w = 1073 (mid column) and w = 10~% (right column). The upper row shows the numerical
solution z(t) (circles) in comparison to the desired output z(¢) (line). Note that the time
grid is not equidistant, but is concentrated around ¢ = 1s. From left to right, the number
of grid points were 36,37 and 47. The corresponding control function o(t) (dashed line)
is displayed in the lower row. The respective objective function values were Jy.1 = 10.6,

Jio-3 = 0.25 and Jjg-¢ = 0.0014, i.e. exactly the same as in the centered difference
method.
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7. Research Paper Ill: Optimal Control of
Isometric Muscle Dynamics

R. Rockenfeller T. Gotz

The following is a reformatted and slightly modified copy of the open source article
R. Rockenfeller and T. Go6tz. “Optimal Control of Isometric Muscle Dynam-
ics”. In: Journal of Mathematical and Fundamental Sciences. 47.1 (2015), pp.
12-30
available at http://journals.itb.ac.id /index.php/jmfs/article/view /867.

This article is also referred to as [49] (in Chapter 4), [13] (in Chapter 8) or [66] (in the
remaining work).

The idea for this article originates from T. Go6tz. Content, structure, calculations and
presentation of the results were done by R. Rockenfeller.

Abstract

We use an indirect optimal control approach to calculate the optimal neural stimulation
needed to obtain a measured muscle force. The neural stimulation of the nerve system
is hereby considered to be a control function (input) of the system ’muscle’ that solely
determines the muscle force (output). We use a well-established muscle model and ex-
perimental data of isometric contractions. The model consists of coupled activation and
contraction dynamics described by ordinary differential equations. To validate our results,
we perform a comparison with a commercial optimal control software.

Keywords: Biomechanics, Muscle Model, Optimal Control, Inverse Dynamics

7.1. Introduction

Mathematical models for everyday phenomena often ask for a control or input such that
a system reacts in an optimal or at least in a desired way. Whether finding the optimal
rotation of a stick for cooking potatoes on the open fire such that the potato has a desired
temperature, see [34], or computing the optimal neural stimulation of a muscle such that
the force output is as close as possible to experimentally measured data. Typical examples
for biomechanical optimal control problems occur in the calculation of goal directed move-
ments, see [8, 15, 27] and in robotics [13]. Concerning huge musculo-skeletal systems, the
load sharing problem of muscle force distribution has to be solved using optimal control
[1, 19]. The most common application for solving the load sharing problem is the inverse
dynamics of multi-body systems (MBS) as in [3, 28]. Its aim is to approximate observed
multi—-body trajectories by a forward simulation. The problem is to find a set of muscle
activations such that the muscle forces resulting from the MBS simulation are similar to
the measured ones.
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7. Research Paper III: Optimal Control of Isometric Muscle Dynamics

Considering a general optimal control problem, there is a process described by a vector
of state variables x. This state vector has to be influenced by a control variable u € U
within a time interval [tg,t1] such that a given objective function J(x,w) is minimized
subject to the model equations. These model equations can be either ordinary differential
equations (ODE), partial differential equations (PDE) or differential-algebraic equations
(DAE). Additional constraints on the control variable as well as the state variable itself
can be imposed. The corresponding general optimal control problem reads as:

t1

min  J(x,u) = /j (x(u,t), u(t), t) dt (7.1)
u )
subject to % = f(x,u,t) (ODEs)
0=g(x,u,t) (DAEs)
X € [Xmins Xmaz], uw €U, x(u(ty),ty) = Xo, ... (Constraints)

For solving this minimization problem, we introduce an adjoint (or co—state) variable A,
which operates as a penalty function, if the ODE or DAE are not fulfilled. The optimal
control variable u* is found at the saddle point of the Lagrangian £, where

L(x,u, 2) = / 3056 1 )+ M (8) [k — F0 1)) + Aot) g(x,ut) dt

to

(7.2)
subject to  x € [Xmina XmaxL u€el, X(U(to), tO) = X0y -

Almost exclusively in biomechanical literature, problem (7.1) is solved by the technique
of first discretize then optimize. Therefore J as well as the ODE/DAE constraints are
discretized on a given time grid resulting in a huge non-linear program (NLP) see [4,
10, 21, 34]. For solving such NLPs, several efficient solvers have been designed. In [28],
the program DIRCOL (DIRect COLlocation) from [29] is used. But for state-of-the—art
programming, MATLAB based packages exist; like GPOPS2 (General Pseudo—spectral
Optimal Software) [18] or TOMLAB’s developments SNOPT (Sparse Linear OPTimizer)
and PROPT (Per Rutquist OPTimizer) in [14]. Those solvers commonly use a (pseudo—
) gradient based method like BFGS or other quasi-Newton methods for minimizing the
objective function.

However, we want to apply the approach of first optimize then discretize. Therefore,
we derive the first order necessary conditions for problem (7.2) explicitly. We obtain
the optimal control u* by solving the upcoming coupled ODE/DAE system. A state—of—
the—art solver for the so—called indirect method (BNDSCO) was developed by Oberle in
[22]. The name BNDSCO indicates the use on boundary value problems with switching
conditions. This solver uses a multiple shooting method to solve the resulting boundary
value problem. For an enhanced discussion on both first discretize then optimize and first
optimize then discretize approaches, see [10, 12, 29].

Most of the available literature on optimal control of muscle dynamics takes only place
at the level of activation, see [28]. However, we choose a control on a deeper physiological
level, namely the neural stimulation, to find an optimal neural stimulation such that
the observed muscle forces are recovered. Furthermore, we want to think of the neural
stimulation as a continuous function rather than a bang-bang impulse as in [23].

The biomechanical applications of our method are multifaceted. It is a validation for
the used muscle model, because a qualitative error (objective function value) can be given.
Moreover, the method’s findings allow an investigation of specific parts of the model, for
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example the passive and active force-length curves as well as the activation dynamics.
Regaining the optimal stimulation of an isometric contraction additionally reveals infor-
mation about internal concentric and eccentric contraction processes, where the latter
is normally hard to investigate solely, see [32]. Finally, we obtain indications for model
improvements such as the need to include the concept of fatigue, as suggested in [2].

In Section 7.2 we recapitulate the muscle model given in [7] using contraction modes
from [6]. For simplicity, we only consider the situation for a single muscle. In Section 7.3
we formally derive the first order optimality conditions and present an iterative solution
algorithm for the upcoming coupled state/co—state system. Our results are presented in
Section 7.4. In Section 7.5 we compare our finding with the output of the above mentioned
commercial software PROPT. The paper closes with an outlook on possible future work.

7.2. Model Description and Problem Formulation

We use a modified Hill-type model [6, 7] to describe the contraction motion of muscles.
This model is based on a mechanical analogy of the muscle tendon complex (MTC) and
is constituted by four basic compartments (author’s note: see Chapter 1).

e The contractile element (CE) produces the force by contracting via actin-myosin
cross—bridges at sarcomere level.

e The parallel elastic element (PEE) represents the connective tissues and is respon-
sible for the muscle’s passive behavior.

e The serial elastic element (SEE) represents the elastic behavior of the tendon, which
connects the muscle to the skeleton.

e The serial damping element (SDE) describes the viscous damping of the tendon.

(Author’s note: Figure 1.2 sketches this structure of the Hill-type muscle model consisting
of those four elements)

7.2.1. Model Description

Let lyre, Lpee,LoE, Lser and £gpg denote the length of the constituting elements. Due
to the set—up of the model the following restrictions hold:

lcg =Llpee, {lsge ={spe and {yrc =Lcg +USEE -

Using the notation F; for the force acting on the i—th component, at equilibrium it holds
that
Fyre = Fog + Fpep = Fsge + Fspr - (7.3)

In the sequel, we outline the individual force equations, details can be found in [6]. We
recall that isometric contraction refers to the situation, where the CE exerts some force
without a change of the MTC length. In contrast to that, we speak of a concentric or
eccentric contraction, if the CE exerts force and shortens or elongates.

Following [6], we define the relation between the isometric force Fjson, and the length
fcg of the muscle

exp (— ‘M Vasc) if blop < lop
LoE,optAWasc ’ »opt
Fisom(gCE) — . (74)

ZCE_ZCE opt Vdes .
_ B 7CEopt >
exp ( ‘ECE,optAWdes 3 if ECE = ECE,opt
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The parameters AWse, Vase and AW, Vges determine the width and slope of the as-
cending and descending branch of the bell-shaped Fjs, curve. Note the normalization
Fisom({cEopt) = 1 at the optimal fiber length {op = loE opt, where the muscle is able
to produce its maximum isometric force Fi,q,.. Other functional dependencies appear in
literature, cf. [26, 35].

Subsequently, we introduce the force—velocity relation of the contractile element

F; +a
F q isom rel
max eCE
b’V‘EZZCE,Opt (7 5)

— Qrel |, if lop <0 (concentric)

Fep(lep, lop,q) =
F'e rel,e
Fmam q z«om.'f'a 1,

_ Lep
\ brel,eecE,opt

— Qrele | if éCE >0 (eccentric)

Note that Fop is non—differentiable at /¢ = 0. The variable q denotes the muscle activity.
According to Zajac [37] the activity and the external neural stimulation o are related via

the ODE

i=~(r—0 =0 (=) -5 la— ). (7.6

The time constant 7 and the activation—deactivation ratio § determine the velocity of
activation growth or decay after a neural impulse. For a particular description of the
physiological meaning of the occurring parameters see the List of Symbols in the Appendix
or [6].

Another formulation of activation dynamics was given as a differential-algebraic system
by Hatze [9]. A compact form of this system as a first order non-linear ODE was derived
in [6, 24] (author’s note: see Eqns. 3.3 — 3.5):

rV-m
I —qo

VY g — o) Y — (1 - an) - (g — qo)

qm = : [0 ~plcre) - (1 — qu
(7.7)
The frequency m and the parameter v were introduced by Hatze and depend on the
particular muscle. The function p(¢cgre) is monotonically increasing and introduces a
length—dependency of the activation, see Fig. 7.7 in the Appendix. In [6], Hatze’s ac-
tivation dynamics is not used. However, [24] stated that Hatze’s formulation might be
physiologically more relevant than Zajac’s. Hence, we want to include its impact in the
discussion, cf. Fig. 7.8 in the Appendix.
Following [6, 7] the parameters aye;, Grei,e, bye; and byep e in Eqn. (7.5) depend themselves

on fcg and ¢ via

drel0 (1 4 3q), if lop < o
Qre] = arjl 0< ) . o Erovt ) Qrel,e = —FeqFisom , (78)
4’ (1 + 3Q)F1£som7 if EC’E > gCE,opt
b brei(1 — F
brel = ret0 (3 + 4Q) ) brel,e = Tel( 6) : (79)
se (1+ 7)

The parameter S, denotes the ratio of the slopes at for = {oE,opt between the concentric
and eccentric branch, see Eqn. (7.5). The parameter F, = lim bop—soo For/(Fmaz 4 Fisom)
is related to the asymptotic behavior of the eccentric force. The parameters a,¢ o and
bre,o refer to the Hill parameters, see [11].
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For the two elastic elements, we generally assume a non-linear behavior above a certain
slack length {prg o respectively {sgr o

0, it log < LpEEo
(7.10)

Fpep(lce) = FoF ter—pEEo VPEE e Sy
max Y PEE 0B .0pt I+ AWaes)—LpEEO , WUWELCE Z £PEE0

The constant Fpgg is related to the force Fpgg of the parallel elastic element at the
length lrnax = gC’E,optO + Avvdes) via Fpeg (gmaz) = Frua FPEE-

Following [6], the serial elastic element is assumed to behave linear, if its length exceeds
a threshold KSEEynu = (1 + AUSEE,nll)£SEE,O-

0, if {spr < lsEE
AF. _Aspp—tsppo \"PE . < lomm < 0
FSEE(KCE) = SEE0 \ AUsppnulsemo ) SEE,0 S £SEE SEEnll . (7,11)
LsEE—LSEE .
tspE—lsEE.nlL >
AFspEgo (1 + AUSEE,MSEE,O) , i lspr > lsERnu

The parameter AFspg o refers to the force of the serial elastic element at length {spg ni-
The linear elastic regime for large length {spr > {spEnu is governed by the parameter
AUsgg,;. The exponent of non-linearity for the serial elastic element is fixed by vspr =
AUsggni/AUsgg,, whereas the exponent for the parallel elastic element is an adjustable
model parameter In this work we choose vprpr = vsgg, cf. [6].

For the damping element SDE, we assume a linearly increasing damping force

Fecg + Fpek : :
— 5 thsps (¢mrc —Lor)
max
(7.12)

with damping parameters Dgpg indicating the slope and Rgpp indicating the rest
damping at Fyprro = 0. .

Solving the equilibrium equation (7.3) for the contraction velocity ¢ g, we obtain the
following differential equation

—Cy — /CT = 4C5Cy

Fspe(éurc,loe,lor,q) = Dspe ((1 — RspE)

20 if éCE‘ <0
. 2
bop = _Cl,e I \/C%e _ 402’60076 . (7.13)
: if >
2o , iflecp >0

The coefficients Cp, C; and Cy are given by

Co = Do lrrre 4 Lop.opt ret (Fser — FPeg — FrnazqFisom)
C1 = —(Cylyre + Do + Fspe — Fppg + Fastrea)

F
Cy = dSE max <RSDE — (arel — FPEE> (1-— RSDE)> -

The coefficients Cp ., C1 and Cy, in the eccentric case ZCE > 0 are obtained when re-
placing a,ej, brep With ayepe, brere- The auxiliary coefficients dgg mqr and Dy are given
by

Fmamarel,o
dSE,max = DSDE 7{) ’
ECE,opt rel,0

F
DO = gC’E,opt brel dSE,maz (RSDE + (1 - RSDE) (qmsom + FPEE>) .
mazx
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Summarizing the above Eqns. (7.3) — (7.13), we obtain a coupled system of equations
allowing us to represent the muscle force Fy;ro as a function of the neural stimulation o,
i.e.

Fyrc = Furc(o) . (7.14)

Introducing the Heaviside step function (author’s note: see Example 6.1.3)

0, if 0
0: R—[0,1], O@):=4 ¥ (7.15)
1, ifz>0

we can rewrite the previous model equations without using piecewise defined terms, e.g. the
isometric force (7.4) is given by
leg —Lopopt |7
F; lop) = exp (— s e
zsom( ) eCE,optAWasc
Vdes
+ [exp (— > — exp <—

7.2.2. Problem Formulation

log —LeE,opt
ECE,optAWasc

Lok — LoE,opt
gCE,optAWdes

>:| @(KC’E - gCE,opt) .
(7.16)

In [6], all model parameters stated above were estimated on the basis of piglet muscle
experiments within three contraction modes: isometric, quick-release and concentric con-
traction against an inertial mass. In the following, we will address the isometric case, i.e.
we obtain a force output at different, fixed length ¢j;rc o of the muscle, see [6, Fig. 7]
(author’s note: this choice was made, because Chapter 5 showed that isometric contrac-
tions provide the widest range of information about the model). The neural stimulation
o was imposed as an electrical 0/1-impulse via a primed nerve.

{1 if ¢ € [tstart, tend] = [0.18,1.15] (7.17)

0 else

In the sequel we address the following scenario: Assume, we are unable to apply or
measure the stimulation o directly, but only able to measure the force, resulting from
isometric contraction. Is the stimulation o(¢) reconstructable? In other words: We wish
to find a stimulation o*(t) such that the resulting force Fi;+ = Furc(o*) is as close as
possible to the experimentally measured force denoted by Fyrc = Fuyrc(7).

Based on the previous muscle model, we may notate this problem as a constrained
minimization problem. Let & = C([0,T7,[0,1]) denote the continuous functions from
time interval [0, 7], which are bounded by [0, 1]. The objective function J measures the
distance of our simulated results and the measured experimental data. Additionally, it
contains an regularization term to ensure a finite control.

T

1 _
— /(FMTC — FMTC)2 + aoc?dt

. 1 — 2 (6% 2
glelzrllj(FMTc,U) =3 ||Fyre — Furel |2 + 5 llollz2 =5

0
(7.18)
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subject to the constraints

¢ = fi(g0), q(0) = qo , (7.19a)

lop = f2(bure, burce. bor.q) lcp(0) =Lep (7.19b)

byre =0, tre(0) = tyrcyo (7.19¢)
Lyre(0) =0

Fure = fs(urc, bure, lep. q) - (7.19d)

The constraint ¢ mrc = 0 in equation (7.19¢) arises from the isometric contraction sce-
nario. If other contraction types, e.g. quick-release or concentric/eccentric contractions,
are considered, this condition has to be replaced by the respective equations. If further-
more Hatze’s activation dynamics is considered instead of Zajac’s, fi has to be modified,
in particular an {op—dependency has to be added.

7.3. Solution and Results

Minimizing a cost functional J with respect to a control ¢ and subject to constraints
given by a set of differential or algebraic conditions is a well-known and well-investigated
problem. We will not go into details of proving the existence or uniqueness of minimizers,
but rather formally derive the first order necessary conditions for the optimum.

In the isometric case, £y rc = £vre,o is constant and thus ¢ mrc = 0, therefore we skip
these variables henceforth. Using this simplification, let us denote the state variable by
x = (¢, lcE, Furc). Introducing the adjoint variable A = (Ag, Aep s APy pe ), We formally
define the Lagrangian

L(z,\,0) =T (x,0)+ Ny d— f1) 2+ Mgy bor—F2) 12+ Arype, Fure—f3)12 - (7.20)

By (u,v)2 := fOT u(t) v(t) dt, we denote the usual L?-inner product. We use Dgu for the
(Gateaux) derivative of u in the direction of @ and use d,u for the partial derivative of u
w.r.t. t.

The necessary first order optimality conditions imply that at a local optimum all
(Gateaux) derivatives of £ vanish. Computing formally the derivatives w.r.t. the adjoint
variables Ay, Ay, ARy pe We recover the state system

Dy,L=0= qd= fi(g,0), q(0) = qo , (7.21a)
Dy, ,L=0= log = f2(burco,0,bcr,q) s Lop(0) =Llopy , (7.21b)
>‘FMT0£ =0= Fyre = f3(£MTC,O7O7€CE7 q) - (7.21c¢)

Taking derivatives w.r.t. the state variables q,{cr, Farre leads to a system of equations
for the adjoint or co—state

DL =0= }\q = —AFurc04f3 = McgOqfo — Ag0q f1 )‘Q(T) =0, (7.22a)
Dy £=0= )'\ZCE = —APurcOton f3 = MeOior f2 Ao (T)=0, (7.22b)
DryrcL=0=  Apyre = Fure — Furco - (7.22¢)

The derivative w.r.t. to the control o gives rise to the gradient condition
D, L=0= a0 = NOsf1, 0<oc<1. (7.23)
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Note that the differential equations for the adjoint variables A, and A,., have to
be solved backwards in time, starting with the terminal conditions A,(7") = 0 as well
as Ao, (T) = 0. The functional expressions for the partial derivatives, appearing in
Eqns. (7.22a) — (7.23), can be derived explicitly, or at least symbolically in MATLAB.
Using the Heaviside function as in (7.15), these derivatives can be calculated in a closed
form.

To solve the non-linear system (7.21) — (7.23), we use the iterative Algorithm 2. For
the simulation results discussed in the next section, we implemented this algorithm using
MATLAB (Version R2013b) including the symbolic toolbox for automatic computation
of the partial derivatives and the pre-implemented ODE—solver ode45 for the numerical
solution of the differential equations.

Algorithm 2 Discretization after Optimization

Require: f1, fo, f3, Fyrc, o, Lo, error tolerance Tol, initial guess o for the stimula-
tion
Calculate ¢ o using equation (7.3)
Calculate Fyro using o = og
while j(FMTc, O') > Tol do
Calculfcxte ANeyre = Fyure — Fuyre
Solve )'\gCE = —)\FMTCagCEfg — )\gCEagCEfQ with A, (T)=0
Solve )\q = —)\FMTcaqu - )\[CanfQ - )\qaqfl with Aq(T) =0
Update o via 0 = (1 —¢) -0 + £ - \y0,f1 with convex combination factor ¢
Solve ¢ = fi(q,00) with ¢(0) = qo
Solve lor = fo(lmTcy0,0,lcE, q) with £og(0) = LoEo
Calculate Fyre = f3(Cymrco,0,lcE,q)
end while
Output Fyre, EC’EJCE, q, 0" =0

Figures 7.1 and 7.2 show the results of the optimal control approach. Regarding Fig. 7.1,
we compare the experimentally measured isometric forces F e (thin line), see [36] with
the force Fi;pe = Fayre(o*) computed in the optimal control approach (bold line). Addi-
tionally, we plotted the direct model output Fysrc (@) of the model equation (7.14) (dashed
line), using the experimentally applied 0/1-stimulation @, see Eqn. (7.17). In Fig. 7.2, we
show the reconstructed stimulation ¢* obtained by the optimal control approach versus
time. The dashed line refers to the experimental input, i.e. the 0/1-impulse @. The results
are plotted versus time for a muscle of given length £y;7c = {yrorep = 6.15cm. In the
subsequent Figs. 7.3 and 7.4 this length serves as reference length.

7.4. Discussion

7.4.1. Results for Muscle Length (yrc = Cyreres

We start with a discussion about certain general findings for the reference muscle length
Cyvre = Lyurcerep = 6.15cm. In Figs. 7.1 and 7.2, we compare the optimal control results
to the experimental and reference data.
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Figure 7.1.: Isometric contraction forces vs. time: Experimental data [36] (thin), opti-
mal control results F;p~ from Algorithm 2 (bold) and direct model output Fyrc(7)
using (7.14) (dashed). The relative muscle length ¢yrre/Cyrcrer = 1. In addition, we
have marked the starting time tg,rt = 0.1s and ending time tenq = 1.1 of the experimental
reference stimulation o.
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Figure 7.2.: Stimulation vs. time: Comparison of the reconstruction of the optimal stimu-
lation via optimal control (¢*, thick line) and the reference stimulation (&, dashed line),
see Eqn. (7.17) applied in the experiments. As an initial guess, we used o¢(t) = 0.5. The
respective force outputs are given in Fig. 7.1.
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First of all, we notice that the shape of the reconstructed stimulation ¢* is similar to
the reference stimulation @. The same holds true for the recomputed force Fy;, (bold
line) compared to the experimental data F y;7¢ (thin line) and the model output Fysrc(7)
(dashed line).

However, the reconstructed stimulation starts to rise before the onset of the reference
stimulation. This can be explained by looking at the force curves in Fig. 7.1. The curve
for the experimental data shows a much steeper increase than both computed curves, the
bold one for the optimal control results and the dashed one for the model output. To
compensate for the slower rate of increase, the optimal control curve has to start at earlier
times t < tgtqrt- This is only possible, if the stimulation o* also switches to 1 at earlier
times (author’s note: cf. Chapter 4).

Secondly, one may observe that the experimental results for the force show a slow
decrease right after the peak of the force at ¢ ~ 0.5s, although the muscle is still fully
stimulated, see Fig. 7.2. A mathematical explanation cannot be given, but this might
indicate fatigue. However, this slight decrease of the experimental force data is responsible
for the rather unexpected local peak of the optimal control stimulation at times ¢t = 1s.
Since the experimental forces decay already for ¢ > 0.5s and the optimal control tries
to determine the stimulation such that the computed force fits the experimental data,
the stimulation starts to decrease at around ¢t = 0.8s. Adjusting the decay rate of the
computed force to the experimental data, combined with the prior decay in the stimulation,
seems to require the local peak of o* at ¢ &~ 1s. Once the stimulation is switched off at
times t > 1.1s, all three force curves show almost identical decay rates. This indicates the
model’s good correspondence with its parameters and the real-world situation.

The optimal control results are largely independent of the initial guess o¢(t); the pre-
sented results were obtained using oo(t) = 0.5.

7.4.2. Results for Muscle Lengths 0.85 < (yirc/Cyrerey < 1.1

Using Figs. 7.3 and 7.4, we compare the optimal control results with experimental and
reference data for various muscle lengths given in [6].

The previously stated results for the shape of the calculated curves, i.e. the stimulation
peak at ¢ = 1s and the fatigue still hold true. However, the variation of the muscle length
reveals some additional observations.

At short muscle lengths, the stimulation ¢ in Fig. 7.4 appears to be significantly lower
than the expected full stimulation, e.g. 0* < 0.6 at the shortest length {arrc/arc ey =
0.85. An explanation cannot be given within the framework of the used models. However,
one may suggest to replace Zajac’s activation dynamics (7.6) by Hatze’s formula (7.7),
see [5, 9]. In this modified activation dynamics, the muscle activation ¢ depends not only
on the neural stimulation o, but also on the current muscle length ¢-g (author’s note: in
Chapter 8, we realized this replacement).

For short muscles, e.g. {arrc/fare,res = 0.85 and 0.88, the data show a faster decay
of the experimental force compared to the simulated results. This may also indicate that
the activation depends on the muscle length as explained above.
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Figure 7.3.: Isometric contraction forces vs. time: Experimental data from [36] (thin black
line), optimal control results (bold black line) and direct model output using (7.14) (dashed
line). The different graphs refer to different relative muscle lengths ¢yrre/Cavircires,
marked with little numbers 0.85,...,1.1.
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Figure 7.4.: Stimulation vs. time for different muscle lengths: Result from the reconstruc-
tion using optimal control (thick line) and literature reference @, see [6] (dashed line). The
muscle length is indicated by the ¢yrc/aiTc repratio and printed besides the respective
optimal control curves.
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For long muscles, e.g. {yrre/Cyvrcres = 1.1, Fig. 7.4 shows, that the reconstructed
stimulation is non—zero even for times t < tgsqrt, Which can be explained regarding the
initial forces in Fig. 7.3. For t < t44,+ the experimentally observed forces are larger than
the direct model output without neural stimulation. This indicates the need for further
adjustment of the model parameters in the passive regime, i.e. for zero stimulation. The
optimal control algorithm tries to diminish this force difference in order to reduce the
objective function value. The only option is applying some non—zero stimulation to the
model, which responds in generating the missing force for ¢ < tsqrt-

The results for the muscle length €yr7c /¢ vrcres = 1.06 show a special behavior. Before
the onset of the stimulation, i.e. for times ¢ < tgqt, the experimentally measured forces
are less than the simulated forces, even with zero stimulation as seen in the direct model
output (see dashed line in Fig. 7.3). In contrast to that, during the stimulation phase,
i.e. for t € [tstart, tend], the experimentally forces are larger than the simulated ones, even
with maximal stimulation o = 1. Hence, the optimal control forces Fjj; -~ agree with the
direct model output Fpsrc (@) for the experimentally applied 0/1-impulse & in Eqn. (7.17).

7.5. Comparison with Commercial Software

To further validate our findings, we present a comparison of the results obtained by our
optimal control Algorithm 2 with a commercial software package called PROPT (see [33]).
This software is based on MATLAB and available with a demo license. PROPT currently
uses Gauss or Chebyshev—point collocation for solving optimal control problems. As ini-
tial input, PROPT requires the model functions (7.3) — (7.13) as well as the objective J
and boundaries for state and control variables. The optimal control problem is discretized
and the upcoming non-linear program (NLP) is solved. We are going to state some rele-
vant factors using PROPT. For further information including some illustration problems
see [25]. A similar commercial software package based on Gaussian pseudo—spectral collo-
cation is called GPOPS2, see [18].

Since non—continuous functions cannot be handled by the above mentioned packages, we
have to approximate e.g. the Heaviside function © by a smooth logistic function Oy (z) =
1/(1+e2k) with k > 1. In our computations k& = 3000 turned out to be a good choice.
Since the commercial packages solve the optimal control problem by a first discretize then
optimize approach, attention has to be paid to the number of discretization or grid points
used in the computations. For more than 200 grid points PROPT issued a warning that
the upcoming NLP matrix was close to singularity and for less than 100 grid points the
results may be incorrect. With a choice of 120 grid points the algorithm was able to run
all calculations, while the evaluation time was similar to our self-implemented optimal
control algorithm.

In Fig. 7.5, we compare the computed muscle forces obtained by our optimal control
Algorithm 2 (bold line) and the PROPT software (dashed line). As a reference, we included
the experimental data (thin line). Figure 7.6 shows the stimulation o} computed by
PROPT in comparison to the reference 0/1-impulse & used in the experiments.

Both optimal control methods, our first optimize then discretize approach in Algorithm 2
and the first discretize then optimize method implemented in the PROPT software yield
very similar results for the muscle forces, see Fig. 7.5. The initial oscillations in the
PROPTforce at £prre /evrerer = 1.06 can be explained by similar reasons as the optimal
control results in the previous section.
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Figure 7.5.: Isometric contraction forces vs. time: Experimental data (F y;7¢, thin line),
our Algorithm 2 (Fj;1¢, bold line) and software package PROPT (Fy;r¢ p, dashed line).
The different graphs refer to different relative muscle lengths ¢yrre/Cyrc rey, cf. Fig. 7.3.
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Figure 7.6.: Stimulation vs. time for different muscle lengths: Result from the reconstruc-
tion using PROPT (o7, thick line) and literature reference (@, dashed line). The PROPT
result is smoothed by a moving average (over a time period d¢ = 0.08s) to remove highly
oscillatory behavior.
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Note that the stimulation o3 computed by PROPT needed to be smoothed by a moving
average filter. Due to the first discretize then optimize approach, the underlying NLP
computes an individual optimal search direction for the stimulation at each discretization
point. Thus, the results can exhibit artificial oscillations and peaks. In contrast to that,
our Algorithm 2, which is based on the first optimize the discretize approach, computes
globally valid search directions; hence, the results do not show discretization—dependent
artefacts or oscillations.

Table 7.1 lists the values of the objective function 7, see Eqn. (7.18), for our optimal
control Algorithm 2, the commercial software PROPT and the direct model output using
the 0/1-impulse stimulation. Additionally to the MTC lengths from Figs. 7.3 and 7.5, we
added the objective function values for lengths {arrc/Cyrc ey € {0.91,0.97,1.03,1.08}
(cf. [6]), which we did not display due to clarity. As expected, both optimized results
yield significantly lower objective function values compared to the direct output given in
the last column. Comparing the two optimization approaches to each other, the optimal
control results are in most cases slightly better than the PROPT results; the total value
of the objective function is about 3% lower for the optimal control methods.

Length | Optimal Control PROPT Comparison Direct Output
1 *
nde | I(Fire.o®) | I(Furc.p,of) QHQFMZ(i fMTC’PH J (Fure(0),0)
et +3lo" —opll
0.85 3.3 2.9 1.9 13.4
0.88 7.6 8.7 6.0 15.0
0.91 9.7 8.9 4.8 24.0
0.94 15.3 15.0 6.0 28.1
0.97 16.5 17.2 5.4 35.3
1 22.9 24.2 4.2 33.8
1.03 24.7 26.3 4.4 32.7
1.06 24.8 25.9 6.1 26.4
1.08 8.9 9.4 3.6 21.0
1.1 4.9 3.3 3.2 21.8
> 138.6 141.9 45.6 251.5

Table 7.1.: Objective function values at different muscle lengths: Optimal control Algo-
rithm 2 (F};p¢, second column), Commercial software PROPT (Fyre,p, third column)
and direct model output (Fyre (@), fifth column). The regularization parameter was cho-
sen as o = 0.1. The fourth column shows the L?-difference between our results and the
PROPT results.

7.6. Conclusion and Outlook

We presented an optimal control algorithm to recover the stimulation of a muscle, based
on its isometric force output. Simulations performed in comparison to experimental data
showed the applicability of our approach. High congruence between the experimentally
applied stimulation and the mathematically recovered one was found. A further compar-
ison with commercial software validated our results. The computational results showed,
that the choice of the activation dynamics could be of importance. To further investigate
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the choice of activation dynamics, we derived a comparative sensitivity analysis of Hatze’s
and Zajac’s activation dynamics by taking the effects of parameter changes into account,
see [24] (author’s note: see Chapter 3 and 8).

Furthermore interesting would be the parameter estimation of the whole muscle model
described in Section 7.2, compared to another muscle model from [26]. In today’s biome-
chanics, parameter estimation is still done by educated try and error, therefore we want
to find an algorithmic optimization approach. Additionally, the available models might
be improved by including physiologically observed effects, such as eccentric force—velocity
relation, force depression, force enhancement and fatigue, see [7, 16, 31].

Eventually, regarding modern biomechanical simulations, we have to face huge multi—
body systems with a multitude of muscles and boundary conditions performing a variety
of movements as in human walking, jumping or scoring a soccer goal, see [8, 20, 27, 30].
Solving an optimal control problem for each muscle would be too expensive to perform
within reasonable time. As an alternative optimal control strategy, the technique of space—
mapping could be used (authors note: cf. Chapter 9). Developed for the use of microwave
filter designs, see [17], the optimal control algorithm uses the idea of surrogate—based
modeling: an accurate but complex model is simplified to obtain a less complex (but
inexact) model. The optimization is done exclusively on the level of the simpler model,
whereas the crucial part is to find a mapping of the complex model to the simpler model,
the so—called space—mapping. This idea can be applied to control a complex multi-body
system with several hundreds of components.

Acknowledgement:
The authors want to thank Dr. Michael Gilinther, University of Stuttgart for numerous
discussions and providing us contact to experimental data. Special thanks also go directly
to Prof. Dr. Veit Wank, University of Tiibingen, for granting us access to his experimental
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Appendix

Length—Dependency of Activation Dynamics

20
15-
<10

© 0.4 0.6 0.8 1 1.2 1.4 1.6

Relative length

Figure 7.7.: Outline of the hyperbolic function p(lcgrer) = po-c-lomrea(lp—1)/(lp—LcErel)
on the interval 0.3 < fopre < 1.7. The parameters are taken from the List of Symbols
below.
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Figure 7.8.: Comparison of Zajac’s and Hatze’s activation dynamics. As stimulation we
used the experimental input @. If the relative muscle lengths {0 g, is decreasing, so is
the maximum value for ¢z, whereas Zajac’s activation maximum is not.
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List of Symbols

Symbol

l

Meaning

7.6. Conclusion and Outlook

| Value / Remark

QArel,0 b'rel,O

c
Dsg
AW@SC
AWdes
AFsgEo
AUsgE nil
AUsEgE,
F.
F'Lsom

max
FPEE
v
lep
lee
éCE,opt
LpEE
4o
lsEE,0
m
v
Vasc
Vdes
VPEE

Hill-parameters of contraction dynamics
activation—deactivation ratio [37]

maximum Ca®T concentration in [9]
damping parameter

width of ascending limb of Fjsom—curve
width of descending limb of Fjsom—curve
reference force of SEE

relative width of non—linear branch in SEE
relative width of linear branch in SEE

limit factor for high eccentric velocities
isometric muscle force

maximum isometric force of the CE
normalization factor of Fpeeg w.r.t. Frax
representation of free Ca®" concentration [9)]
contractile element (CE) length
contraction velocity

optimal CE length

root of Fppg at [:PEEZC'E,Dpt

pole in Hatze’s length—dependency function
slack length of SEE

activation frequency constant in [9]
exponent in Hatze’s formulation

exponent of ascending limb of Fjgom—curve
exponent of descending limb of Fjsom—curve
exponent of Fpgg—curve

muscle activity (bound Ca®" concentration)
basic activity according to [9]

activation dynamics from Hatze

damping parameter

length dependency of Hatze’s activation
factor in [9, 35]

ratio of derivatives of Fcg at lop =0
neural muscle stimulation

activation time constant in [37]

0.1 resp. 1Hz (muscle—specific)
0.8 (muscle-specific)
1.37-10"* mol/1

0.3 (muscle-specific)
0.57 (muscle—specific)
0.14 (muscle—specific)
60N (muscle-specific)
0.1825 (muscle—specific)
0.073 (muscle—specific)
1.8 (muscle-specific)
length—depending

30N (muscle-specific)

1 (muscle-specific)
time—-depending
time—-depending

first time derivative of Yo g
0.015m (muscle-specific)
0.9 (muscle-specific)

2.9

0.045m (muscle-specific)
10 Hz (muscle-specific)

3 (muscle-specific)

4 (muscle-specific)

3 (muscle-specific)

2.5 (muscle—specific)
time—depending

0.005

time—depending

0.01 (muscle-specific)
length—depending

5.27 - 10*1/mol (muscle-specific)
2 (muscle-specific)
time—depending

here: 1/40 s
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The following is a reformatted and slightly modified copy of the article
T. Gotz, R. Rockenfeller and K. P. Wijaya. “Optimization Problems in Epi-
demiology, Biomechanics & Medicine”. In: International Journal of Advances
in Engineering Sciences and Applied Mathematics. 7.2 (2015), pp. 25-32
available at http://link.springer.com/article/10.1007/s12572-015-0130-5 .
This article is also referred to as [7] (in Chapter 4) or [25] (in the remaining work).

The introductory sections as well as the conclusion were written by T. Go6tz. The section
“Application in Epidemiology” was written by K. P. Wijaya. The section “Application in
Biomechanics” was written by R. Rockenfeller.

Abstract

Mathematical simulations are of increasing relevance for applications in engineering and
the life sciences. Disciplines like epidemiology, biomechanics, medical image processing,
just to name a few, are subject of academic research since decades. Modern numerical
methods profit from increasing computational power, therefore simulations of complex bi-
ological systems are within reach. Furthermore, optimization of these systems, in term
of goal directed behaviour, can be addressed. We will discuss some examples from epi-
demiology as well as biomechanical models for muscles. These models are based on a set
of differential equations. Defining a suitable cost functional to measure the distance to
the goal of our optimization, mathematical tools from constrained optimization can be
applied to solve optimization problems and to derive suitable numerical algorithms.

Keywords: Optimal Control, Epidemiology, Biomechanics

8.1. Introduction

Mathematical models for everyday phenomena often ask for a control or input such that
a system reacts in an optimal or at least in a desired way. Examples for such problems
are manyfold, e.g. finding the optimal rotation of a stick for cooking potatoes on the open
fire such that the potato has a desired temperature, see [15], constructing an optimal
strategy against the spread of dengue disease such that maximal reduction of the number
of infected cases is achieved with minimal cost [1, 18] or computing the optimal neural
stimulation of a muscle such that the force output is as close as possible to experimentally
measured data [13].
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In the next section we will give some general outline of optimal control problems. Sec-
tion 8.3 presents its application to a model for Dengue epidemics. A second application
related to the neural stimulation of muscles is the content of Section 8.4. Finally, we give
some conclusions and an outlook on possible topics for future research.

8.2. General Outline of Optimal Control Problems

We consider a system characterized by a state variable x € X that satisfies the state
equation © = f(z,u,t) on the time interval [0,7] supplemented by an initial condition
x(0) = mp. Here, X denotes the state space. In case of X C C'([0,T];R"), the state
equation is given by an ordinary differential equation. In case of X being a suitable
function space, e.g. X = L?([0,T]; H}(2)) for a domain @ C R™, the state equation can
be interpreted as a partial differential equation. In the sequel we consider, also for the
sake of shortness, just the case X = C([0,T];R"), and hence systems described by a set
of ordinary differential equations.

The control variable u € U belongs to the set U of admissible control functions, e.g. U C
L2([0,T];RP). The goal of our optimization problems is to find an admissible control
u € U, such that a cost functional of integral type

T
/j ),t) dt — min
0

attains a minimum, provided the state x solves the state equation = f(x, u,t), (0) = xo.

Typical control problems are so—called tracking—type problems: Find the control uw such
that the state x of the system is as close as possible to a desired state z4 € X. In that
case, the cost functional is often modeled as

1 1
Tirack (2, u) = o ||z = wdll 2 + 5 IIUHL2 = 2/Iﬂc(t) —zq(t)* + wlu(t)|”

Here, the parameter w > 0 acts as a regularization parameter.
To solve the constrained minimization problem

Inig{l J(x,u) subject to &= f(x,u,t), z(0) ==z, (8.1)
uUE

we formally introduce the adjoint (or co—state) variable z € Z. The resulting Lagrangian
L:X xUxZ — R reads as

L(z,u,2):=J(x,u)+ (T — flz,u,t), z) .

By (z, 2) fo t) dt we denote the usual L?~inner product. The necessary first order
optimality condltlons 1mply that at a local optimum all (Gateaux) derivatives of £ vanish.
Computing the derivatives w.r.t. the adjoint variable z formally, we recover the state

system
&= f(z,u,t), x(0)=x0. (8.2)

Taking the (vector—valued) derivative with respect to the state variable x leads to a system
of equations for the adjoint

2= —z-0gf(x,u,t) 4+ 0xj(x,u), =2(T)=0. (8.3)
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Note that the differential equation for the adjoint variable has to be solved backwards in
time, starting with the terminal condition z(7') = 0. The derivative w.r.t. the control u
gives rise to the gradient condition

0=V, L(z,u,z):=0uj(z,u) — 2z Ouf(z,u,t) . (8.4)
To solve the non-linear system (8.2) — (8.4), we use an iterative gradient method.

(Step 1) Given an initial guess u(?) € U/ for the control. Set k := 0.

(Step 2) Solve the state system
gkt = ¢ (x(k+1),u(k),t) 2B (0) = zg

for (k1) ¢ x.

(Step 3) Solve the adjoint system
S — (k) g (l,(kJrl)’u(k)’t) 40, (x(k+1)7u(k)>

with z-+D(T) = 0 for 2+1) € Z.

(Step 4) Update the control
w* ) — 11, [uw) —5-V,L (x(m), u® Z<k+1>)]

with a step size § > 0. By IIy : L?([0, T]; R) — U we denote the projection onto
U, if needed.

(Step 5) Set k +— k + 1 and go to (Step 2) until convergence.

To determine an appropriate step size d in the update Step 4, there exist several alternative
approaches, e.g. small but fixed step sizes, the heuristic Armijo rule or an approximate
line search. A detailed description can be found in [11, 15].

8.3. Application in Epidemiology

We consider a dengue transmission model as the underlying state equation. Typical sam-
ples of similar model can be found in the monographs [2, 4]. Irrespective to the possible
complexity of modeling the transmission, interacting four dengue serotypes with sophisti-
cated immune responses and possible development of clinical syndromes, we stick to the
one—serotype model with assumption of no symptomatic fragmentation. The key question
addressed in this research is concerned with a quest toward optimal vaccination strategy
and deployment of thermal fogging based on the established model.

8.3.1. A Dengue Transmission Model

The model centers on the most endemic—situated area, representing interaction between
host (human) and vector (mosquito) in this area. Let = (Sk, In, Ri, Sv, I,) " € R® be the
state variable, summarizing the human sub—populations susceptible Sy, passively infective
I, and recovered Ry, from the disease as well as the susceptible S, and actively infective I,
vector sub—populations. By Ny, N, we denote the total host and vector population. The
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growth rate of susceptible host is assumed to be proportional with the total population
size, the corresponding proportion is given by the constant p, meanwhile the growth
rate of susceptible vector is attributed to constant recruitment, given by A. The usual
observable determinants arising in dengue dynamics are also considered, i.e. infection
exposure occurring in susceptible host SBpSpl, (modeled by mass—action law enclosing
susceptible host and infective vector with p being the infective vector’s biting rate and 3
being the driving force), infection exposure occurring in susceptible vector v¢S, I, with ¢
being the susceptible vector’s biting rate, recovering rate o and uniform mortality rates u
(for all host sub—populations) and k (for all vector sub—populations). The reason behind
the same proportion of the growth and the mortality rates is to support our assumption
that

Ny, = Sy, + I, + Rp, = constant (85)

when the control is not present. The control variable u = (u1,us)" € L?(]0,T]; R?) takes
two different measures against a dengue outbreak into account. The variable u; describes
the vaccination rate and the corresponding treatment is applied to susceptible hosts, uo
describes the thermal fogging rate affecting the vector.

Taking into account all the above mentioned effects, the state equation (8.2) is given by
the following set of equations

Sy, = uNy, — BpSpl, — 1S, — w1 Sh, Sp(0) >0, (8.6a)
I, = BpSpl, — (0 + w1, I,(0) >0, (8.6b)
Ry, = oI, — uRy, + u1Sh, Rp(0) >0, (8.6¢)
Sy = A —vqSuIp — KSy — usSy, S,(0) >0, (8.6d)
Iy = vqSuIy — kly — ugly, 1,(0) > 0. (8.6¢)

The main aim, is optimizing the distribution of vaccination and thermal fogging such
that it yields significant reduction of the dengue incidences. However, once the control
is operational, an increasing trend of the corresponding accumulative usage should lead
to an increasing expense. On the contrary, lesser usage of the control infers insignificant
reduction of infective population. Thus, finding a minimum of the following functional is
thought to reflex a compromise for the aforementioned conflicting objectives:

" u 1 w
J(@,u) = J*(In, L) + T (u) := 5 IZall72 + 1 Tol72 | + 5 7> (8.7)

where the weighting parameter w > 0 balances the influence of reducing the infected cases
(first two summands) and the cost for the control (last summand).

The control variable u is naturally bounded in [0, 1]?, where e.g. u; = 1 represents the
maximal possible imposing vaccination rate of one hundred percent.

Following the general outline, presented in the previous section, weave at the following
system for the adjoint variable z € R:

Z1 = (Bply + u1)z1 — Bply2s (8.8a)
Zo =1Ip —pz1 + (0 + p)ze — oz3 + vqSy(24 — 25) (8.8b)
Z3 = p(z3 — 21) (8.8¢)
24 = (yqln + Kk 4+ u2)zg — vqlpzs (8.8d)
Z5 = Iy + (k + u2)z5 + BpSp(z1 — 22) (8.8¢)
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supplemented by the terminal conditions z;(7) = 0 for ¢ = 1,...,5. Alongside with the
adjoint equation, we also obtain the gradient equation

0 = wuy + Sp21, (8.9a)
0 = wug + Syzq + Iy25 . (8.9b)

8.3.2. Numerical Results

It is generally agreed, that the main strength of a model lies in its congruousness with the
data for a specific test scenario, thus the result of optimal control is expected to become a
reasonable strategy. However, the model without any validation will suffer from a number
of caveats in terms of practical use. The validation through matching processes, e.g. least
square or maximum likelihood [17], is primarily a technique to estimate parameters in the
model. That is, the set of parameters alters among different data.

© p p o A gl g K
1 _ 1 1 ind 1 1
mth mthxind mth mth  mthxind - mth

1 1 1 2 1
19%60 0.0025 10 5 300 0.0033 10 i5

Table 8.1.: List, unit and estimate of all parameters; ind = individual, mth = month.

Irrespective to the afore-remarked issue, this paper hinges on putting forward an em-
phasis to optimal control strategy in the context of theoretical tests. Therefore, all the
parameters involved in the model are sensibly estimated in order to match the preferences
for pedagogical purpose. To derive the corresponding estimate, we consider a simple way
based on nomenclatural derivation of each parameter. For example, 1~ denotes the aver-
age host lifespan period in the area of interest. We assume it is equal to 12 x 60 months.
The average recovering period o' of the infective hosts, whether or not they earn clinical
treatment, is assumed equal to 2 months. Additionally among p~' susceptible hosts there
exists, on average, 1 successful bite done by infective vector.

In Table 8.1, we summarize our estimate for the corresponding parameters, based on the
preceding description. Meanwhile, Table 8.2 gives estimates for other usual components
used in numerical test. Note that the time unit is month.

Su(0) In(0) Rw(0) S.(0) 1,(0) T
1000 70 180 20000 100 10

Table 8.2.: Initial conditions and terminal observation time (in year).

Let Iy, I, respectively denote the infective host and vector levels as responses of the
system with zero control, and I} (w), I;(w) be the optimal responses w.r.t. the weighting
constant w. Moreover, let u*(w) denote the optimal control, whose change is subject to
variation of w. Figures 8.1 and 8.2 illustrate the difference among the response with zero
control and that with optimal control. The set of values for the weighting constant w is
Q= {10°,10%,3 x 10%,107,10%,10°}.

As shown in Figures 8.1 and 8.2, typical trajectories generated by the optimal control
show improvement in terms of size reduction compared to the trajectory with zero control.

Figures 8.3 and 8.4 present our optimal control, arising from variation of w in the set of
values ). The results show, that the optimal control changes w.r.t. different w, similarly
meaning that a specific imposition of weighting constant in the objective functional leads
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to a unique optimal control. In the discrete set of choices €2, the results show that the
optimal control, w.r.t. its area, increases as w increases.
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Figures 8.5 and 8.6 show our result on how J* and J* change w.r.t. w € . The dom-
inance of J¥, as well as the increasing trend of J“, admit collection of two—dimensional
points (J*, J*) which further preserves convexity in discrete space. However, we do not
exhibit the corresponding result in this paper. This result likely supports our presump-
tion that there are conflicting objectives remaining in the application of optimal control,
i.e. either the reduction—based or cost—based objective is preferable to expose. Variation
of the weighting constant w can now give more alternative strategies (i.e. variation of the
population dynamics and the control) needed by the decision maker.
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Figure 8.5.: Infection reduction (J*) with Figure 8.6.: The cost for control (J*) with
respect to w. respect to w.

8.4. Application in Biomechanics

8.4.1. Motivation, Model and Method

Within the wide field of biomechanics, the modeling of musculo—skeletal systems received
increasing attention over the last decades. The applications of a realistic and individually
adaptable human musculo—skeletal model are manyfold: From surgery planning [3] to safer
car seats [5] through to the development of humanoid robots [14]. The passive mechanical
parts of the model, the bones and ligaments, are well-understood [12]. In contrast, the
dynamical parts of the model, the muscles, have not been implemented satisfactory yet.
One underlying model was developed by Hill [10] and later on extended, see [6, 7]. We
shortly outline the model structure based on [13].
It is assumed, that the muscle-tendon—complex MTC consists of four elements:

e the contractile element CE that is responsible for the force production,

e the parallel elastic element PEE that represents the connective tissue around the
CE,

e the serial elastic element SEE that represents the tendon,
e and the serial damping element SDE that acts parallel to the SEE.

Let {yre, LpeE, Lop, Lspr and £spE denote the lengths of the constituting elements. Due
to the set—up of the model the following restrictions hold (author’s note: cf. Fig. 1.2):

lce =lpee, lsere ={spe and {yrc ={ce+USEE -

Using the notation F; for the force acting on the i—th component, at equilibrium it holds
that

Fyre = Feg + Free = Fspe + Fspr - (8.10)

Let the control u describe the neural stimulation, causing a chemical reaction within
the muscle. In a next step, the muscle passes through an activation process, where ¢
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denotes the activity. As a consequence, the CE produces a force, dependent on its current
length and the activity. For simplicity, we consider the so—called isometric contraction,
which means that the length of the whole MTC does not change over time. The force
production of the MTC within an isometric contraction can be described by the following
differential-algebraic equation system (DAE):

q= fillce,q,u) , q(0) = qo , (8.11a)

lop = f2(barres byt lop,q) | lep(0) =Llepy , (8.11b)
byre =0, barre(0) = 0, Larre(0) = Ly (8.11c)
Fyre = fs(bure, bure, lor, q) - (8.11d)

In this model, fi denotes the activation dynamics according to Hatze in [8], where the
activation depends on the current CE length as well as the current activity. Additionally,
f2 denotes the contraction dynamics according to [10], extended by the eccentric branch
from [7] (author’s note: cf. Eqns. 7.3 — 7.13). The ODE for j;7¢ ensures an isometric
behavior of the muscle. Note that other contraction modes, e.g. a quick—release experiment
or an interaction with an inertial mass, result in a different equation (author’s note: see
Chapter 5). At last, f3 represents a double hyperbolic force-velocity characteristics, see
[7].

During in vivo experiments, it is often possible to measure the force production Firc ezp
of a muscle, but not the stimulation that was needed to produce this force. Therefore, a
controller has to determine the optimal stimulation such that the force output of model
(8.11) is as close as possible to the measured force. In [6], the model was optimized
w.r.t. parameter values, regarding isometric contraction experiments from [16]. We use
this model, including the obtained parameter set, to perform an optimal control scenario.
Thereto, we set z = (¢,lcr, Lurc, Fure) ' € R* as the vector of state variables and f =
(f1, f2,0, f3) " as the vector of right hand sides. The stimulation as a control function has
to be restricted to a subset of U, namely U, := C(]0,T7; [0, 1]). A zero—stimulation refers to
no electrical impulse, whereas a stimulation u = 1 refers to the maximal possible electric
potential. In the experiment, the applied stimulation was given by ug = 1y, ., t...,]» Which
has the value 1 between the switch-on and switch—off times ¢ € [tsiare, tena) = [0.18,1.15]
and is 0 else. Since the experimental data only cover the force state, set x4 = Farrc eap-
Consequently, the cost functional writes as

J(x,u) = % Hx@‘) - xd’ ’

L2

w
+ 2 fulls

where () denotes the fourth component of z. The corresponding optimal control problem
can finally be formulated as:

mgl J(xz,u) subject to &= f(z,u,t). (8.12)
ucty

The upcoming equation system (8.2) — (8.4) was solved with Algorithm 1 from [13]. As a

(8.
starting stimulation we chose ug(t) = 0.5.

8.4.2. Results and Discussion

Applying the numerical iteration, we obtained a set of ten optimal control stimulations u*.
Each stimulation corresponds to an isometric contraction performed at different relative
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MTC lengths from 0.85 to 1.08. The reference length was given in [6] as lyrorer =
6.15 cm. For simplicity, we chose only five of the ten cases to display explicitly in Figs. 8.7

and 8.8. A detailed analysis of a similar scenario, including objective function values, can
be found in [13].
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Figure 8.7.: Optimal control results for fitting experimental isometric force data (thick
gray lines). The optimal curves (dashed lines) are plotted against the direct model output
from the adapted model of [6] (thin black lines). The respective relative muscle lengths
Cyre /ure rer are given by small numbers 0.85, ..., 1.06. Switch—on and switch—off times
of the experimental stimulation are indicated with ¢4+ = 0.1 s and tepq = 1.15.
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Regarding both figures, there is a high congruence of the experimental force curves, the
optimal control result and the direct model output using [6]. Likewise, the obtained optimal
control functions are of similar shape as the experimental stimulation. This congruence
indicates the model’s ability to represent physiological observations within physiologically
reasonable boundaries. However, there are several observations (1) — (5) that indicate
model weaknesses or incompletenesses. Therefore, the force curves in Fig. 8.7 are examined
forward in time.

(1) In the passive state (t < tsire) there are force displacements of about 2N at relative
MTC lengths 1.03 and 1.06. In the former case, the passive force is overestimated, whereas
in the latter case the force is underestimated. These displacements are consequences of
the parameter estimation process from [6]. We want to use these cases to demonstrate
the mechanisms of our algorithm. Having an overestimated passive force can not be
compensated by the iterative method, because we prohibited a negative stimulation. For
an underestimated passive force, the algorithm tries to diminish the displacement by
applying a stimulation of about 8%, see Fig. 8.8.

(2) We notice the steep increase of the experimental force curves right after g,
especially for the relative MTC length 0.97. Both the optimized results and the direct
model output are unable to perform this increase. The algorithm consequently starts the
stimulation earlier in time to compensate for the slower reaction, see Fig. 8.8. At this point
the parameter set of the contraction dynamics could be reinvestigated, which is however
beyond the aim of this paper.

(3) After reaching the maximum value, the experimental force curves perform a slight
linear decrease. This effect can not be explained using model (8.11). A possible expla-
nation could be the muscle fatigue, see [9], which is yet to be implemented in the model.
However, the optimal control algorithm is able to catch this decrease, resulting in a de-
creasing stimulation, see relative muscle lengths 0.85 and 0.97 in Fig. 8.8.

(4) It occurs that for a relative MTC length of 0.85 the experimental force begins to
rapidly decrease before the stated t.,q = 1.1 s, thus resulting in an earlier decrease of the
optimal stimulation. The only possible explanation is an error in the experimental set—up
(author’s not: see Chapter 4).

(5) The force decrease of the experimental curves after the switch—off time t.,,4 is again
steeper than the optimal control or direct output curves. Consequently, the algorithm
begins to down-regulate the stimulation earlier in time. Since the eccentric branch was
not optimized in [6], an extensive interpretation of the results is unprofitable.

In [13], an optimal control of model (8.11) was performed, using activation dynamics
from Zajac in [19]. We exchanged the activation dynamics to improve the performance
of the model (author’s note: Comparing the above results to Figs. 7.1 — 7.4 from Chap-
ter 5) ([13]) confirms this hypothesis). In detail, the recovered stimulation using Zajac’s
formulation was only about 60% of the experimental stimulation at short relative muscle
lengths. In contrast, the length-depending Hatze formulation recovered 100% of the ex-
perimental stimulation at all lengths. In addition, the objective function values were also
approximately 40% lower using the Hatze activation.

Summarizing, the results validate two major improvements of the muscle model from
[6]; the eccentric branch of the force-velocity characteristic introduced by [7], and the
activation dynamics from [8]. Furthermore, the need for further model improvements is
revealed, e.g. including muscle fatigue. Finally, an algorithmic parameter optimization
would be essential to validate model parts that are added or exchanged.
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8.5. Conclusion and Outlook

Questions regarding the optimization and control of dynamical systems are of increasing
interest, both inside the mathematical community and beyond. We have given two typical
examples: optimizing strategies against diseases and identifying neural signal from mea-
surements of muscle movements. These two case studies highlight the applicability and
potential of optimization techniques in biomathematical applications.

Nevertheless, there are numerous open problems for future research. In the presented
work we considered single criteria optimization problems. However, in real-world applica-
tions one typically faces questions regarding multi—criteria optimization, e.g. minimize the
number of infected persons and minimize the cost at the same time. Another open topic
touches the field of random or stochastic differential equations. Parameters modeling the
behavior of living systems are often subject to more—or—less fluctuations and hence, the
resulting models have a random or statistic component within. Extending the presented
approach to cover those cases will be subject of further research.
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9. Space—Mapping: An Alternative Optimal
Control Approach

What is the optimal neural stimulation for a group of leg muscles such that the resulting
jump is as high as possible [58]7 Which electrical impulse is needed to direct a robot arm
along a desired trajectory [6]? To answer these and other biomechanical questions, we
investigated direct and indirect optimal control approaches in Chapter 7 and 8 ([25, 66]).
Both methods were validated but we stated, they were not applicable in a multi-body
system due to their huge time consumption.

An alternative optimal control approach was developed by [1] in 1994 for the purpose
of microwave filter design. The idea behind the so—called space-mapping is to replace
an accurate but computationally expensive (fine) model by an inaccurate but cheaper
(coarse) model. The optimal solutions obtained in the coarse model are then used to
update the control of the fine model via the space—mapping function. The applications
of this technique are manifold, e.g. to enhance the thermal behavior of physical devices
[48], to improve the bahavior of car components during crashes [64], to optimize a marine
ecosystem [62], or to detect the underlying distribution of electrical brain activity [14].
However, to our knowledge, the space-mapping has not yet been applied in the field of
muscle modeling.

In the following section, we give the basic definitions and ideas of the so—called aggressive
space—mapping (ASM) according to [18]. Depending on the problem formulation, there
exist alternative approaches as the trust region ASM, which operates in a pre—defined
trust region, or the hybrid ASM, containing classical optimization methods. A state—
of-the—art overview on space-mapping is given in [2], including numerous examples and
stating advantages and disadvantages of the different methods.

9.1. Mathematical Description

Definition 9.1.1. Let X,Y be Banach spaces. A preferably accurate mathematical de-
scription of a given problem (P) is called a fine model and denoted by F : X — Y.
An elements z € X is called control variable. The cost function of the fine model F
is defined as F': X — R, where F(x) = ||F(z) — y||y and || . ||y denotes an arbitrary
norm in Y. Thus, the cost is the distance of the model output F(x) to a desired or ob-
served behavior y € Y, w.r.t. an arbitrary norm. Minimizing the cost function yields the
optimization problem

x* = argmin F'(z) = argmin || F(z) — y||y (9.1)
zeX zeX

Remark 9.1.2. In general, optimization problem (9.1) is not solvable by simply evaluating
F~Yy) = x*, since the inverse does not exist or cannot be calculated in reasonable time.
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Definition 9.1.3. Let X C X,Y C Y. A computationally cheap but less accurate
mathematical description of problem P is called a coarse model and denoted by C :
X — Y. The cost function of the coarse model C is defined as C(z) = ||C(&) — y||y.
Consequently, the corresponding optimization problem writes as

z* = argmin C(z) = argmin ||C(Z) — y||y (9.2)
ieX ieX

Remark 9.1.4. There are no general instructions existing on how to choose the coarse
model to an existing fine model. However, the simplest model that contains fine model
characteristics should be considered. In Example 9.1.7, we give a coarse model for a
linear equation system and in the next section, we give coarse models for two muscular
contraction modes.

Since the aim of the space—mapping approach is to solve an optimization problem in
the coarse model, these results have to be transferred into the fine model. Therefore, we
define the space—mapping function.

Definition 9.1.5. The misalignment of the coarse and the fine model is given by
r(z,z) = ||F(x) — C(z)||y. A projection from X to X of the form

P(z):=argminr(x,z) = argmin||F(z) — C(2)||ly (9.3)
#eX #eX
is called a space—mapping function. Furthermore, a space—mapping is called perfect
mapping, if additionally * = P(z*) and hence F(x) = C(P(x)).

Remark 9.1.6. Assuming a perfect mapping P is invertible, the optimal control x* can
be determined by z* = P~1(3%).

Example 9.1.7. (Linear equation system — first part)

Let A € R™™ be a matrix, y € R™ a vector and ||.|| the euclidean norm. Thus, X =
X =Y =Y =R". A fine model for a linear equation system (LES) writes as F(z) = Ax,
including the cost function F(z) = ||Az — y||. The optimal solution z* = A~ly is easy
to calculate for small n and regular matrices A, using various methods (Gaufi—Jordan,
BFGS, CG,...etc). But as n gets bigger or if A is singular, the algorithm becomes more
time consuming with an order of O(n?®) or fails completely. Therefore, we derive the
space—mapping function on basis of a coarse model.

One possible choice for the coarse model is C(z) = Dz where D = diag(A) denotes the
diagonal matrix, containing the main diagonal entries from A, assuming they are non—
zero. Thus, the optimal solution #* = D1y is unique and computable in O(n). Finally,
the space—mapping function writes as

P(z) = argmin ||Az — Di|| = D™ Ax
TER™

Obviously, it holds that F(z) = Ar = DD 'Ax = DP(z) = C(P(z)). Consequently, P
is a perfect mapping, according to Definition 9.1.5. Hence, the optimal fine model control
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z* can be obtained by using Remark 9.1.6:

2" =P N2*) = A"'Di* = AT'DD 1y = A7y

Remark 9.1.8. The example provides useful observations for the general modeling case:

1. At first, y might not be in the range of F, write y ¢ Im(F) (no solution of the LES).
In that case there exist no * with F(z*) = y, but rather z* = min,cx || F(x) —y||v,
we write F(z*) ~ y. If A from the example is not invertible, the minimization
problem w.r.t. the euclidean norm yields to a best least-squared fit where A~! is
replaced by the Moore—Penrose pseudo-inverse of A, see [53, 59].

2. The optimal solution of the coarse model * should be cheap to calculate. This fact
can be used to obtain an optimal fine model control x*. Therefore, use xg := z* as
an initial guess and construct a sequence (zy)reny C X via the fixed—point iteration
z), = Py '(2*). It then holds that lchjgo xp = x*, see [18].

3. However, in general it is not possible to give Py in a closed form. To evaluate Py for
a given x € X, an optimization in the coarse model has to be performed as well as
an evaluation of the fine model, see Equs. (9.2) and (9.3).

4. Additional to the evaluation of Py, inverting Pi could become as costly as inverting
F, as seen in the end of Example 9.1.7.

Summarizing Remark 9.1.8, it is desired to construct a sequence (zj)ken With zo = &%,
which converges to x*. The question remains, how the respective P can be constructed.
Space—mapping evaluations should be easy to perform. Hence, Py is updated via lineariza-
tion. Let Bj denote the numerical approximation to the Jacobian of Py at x;. Then due
to Taylor series expansion

Pr(x) = P(xr) + Br - (2 — xp) - (9.4)
Consequently, solving for x = x1, the sequence recursion writes as
Tpr1 =2k — B (P(ar) — Pr(enga)) = o — By ' - (Plag) — &)

To determine the Jacobian approximation By, a Broyden rank—one—update with step size
h = zy+1 — xp is performed, see [7, 50]. Let id denote the identity mapping.

P(zpy1) — Plar) — Br-1-h

By = 1d, By = By_1+ W

-hT . (9.5)

In [18, Fig. 5] the pseudo-inverse of By is used instead of the inverse, because it is
cheaper to calculate. In a finite dimensional Banach space however, the inverse of a rank—
one—updated map can be directly calculated by the Sherman—Morrison formula from [4,
74]:

B, 1uvTB,; !

—k — —k 9.6
1+47B (6:6)

(B +w) ' =B, -
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where u = (P(xp41) — 2*)/(hTh) and v = h. The addition of their dyadic product
corresponds with a rank—one—update of By. This method is known as Broyden’s first or
“good” method. For an overview of further possible methods, see [28].

In Algorithm 3, we summarize all above considerations, which is necessary to perform
an aggressive space—mapping optimization.

Algorithm 3 ASM

Require: Fine and coarse model F and C, observation y, By = id, k = 0,
xo = &* = argmin ||C(Z) — y||y, upper bound of steps N, tolerance e.
#eX
Ensure: Control variable z* with F(z*) ~ C(P(2*)) = y

Calculate P(zo) = argmin ||F(xzg) — C(2)||y
eX
while ||P(z) — 2*||ly > ¢ and kK < N do
h= By (Plag) — )
Tl = Tk + Ty
Calculate P(2x+1) = argmin |[F(2k41) — C(2)[ly

zeX
_ P(@py1)—2"
U= T nTh)
v=~h e
-1 _ p-1_ B, “uv® By
Bk+1 =B, L+oT B, tu
k=k+1
end while

Output z* = i,

Example 9.1.9. (Linear equation system — second part)
Given the notation from Example 9.1.7, choose By = I,, as the identity matrix of size
n x n. According to Algorithm 3, the update of the control is given by

h=B.' DAz —y)

T4l = Tk + 7577

i 1Al
Bt [D7 YAz —y)RT] - B!
(14 hTB, 'D~Y(Azji1 —y)) hTh

To validate the method, we performed the ASM algorithm in MATLAB for various n.
The matrix A consists of random numbers from the interval [—50,50], the vector y of
random numbers in [—5, 5]. Figure 9.1 compares the results of Algorithm 3 with the exact
solution of the LES and the initial solution Z*. The results show a high congruence of the
exact solution and the ASM results.

To compare our algorithm with the exact solution, Table 9.1 contrasts the computational
effort of the space—mapping method with a self-implemented Gauf} algorithm as well as
the pre-implemented MATLAB solver, which uses a single value decomposition (SVD).
The results show, that the ASM algorithm is approximately twice as fast as a straight
forward implemented Gaufl method, but approximately 10 to 20 times slower compared
to the SVD method.

-1 _ p-1
BkJrl _Bk B
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9.2. Recovering Optimal Neural Stimulation Using ASM

Table 9.1.: Computational effort for solving an LES of the form Az = b with three different
methods: The pre-implemented MATLAB solver (SVD), the ASM algorithm and a self-
implemented Gaufl method.

times for
n SVD ‘ ASM ‘ Gaufl
5[ 7.1-107%s | 0.0014s | 0.0038s
10 || 7.6-107*s | 0.0015s | 0.0039s
100 0.0013s | 0.0203s | 0.0302s
500 0.0390s 1.4s 2.2
1000 0.1393s 13.1s 24.3s
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Figure 9.1.: Optimal solution z* of the LES Ax = y for n = 10 (left) and n = 100 (right).
As a reference the optimal solution of the coarse problem (black dots) is given. The
required accuracy of € = 1072, between the exact solution (circles) and the ASM results
(stars) was reached after 16 respectively 102 iteration steps.

9.2. Recovering Optimal Neural Stimulation Using ASM

As in [66, 68], we use the Hill-type muscle model from [27, 30] to apply the space—mapping
method. The neural stimulation o = o(t) acts as the control function (input), which
induces an activation ¢ = ¢(t) = ¢[o](t), followed by a length change of the contractile
element (CE) as well as the muscle-tendon complex (MTC), and finally a force production
Fyrre = Fyre(t) (output), cf. Eqn. (5.1).

q':fl(ECanva)v q

(0) =qp
ler = folbyre, burces boE, q) | lop(0) =lorp ,
bvre = fobure, bvre, ber, q) Cyre(0) = Lurco (9.7)
(nrc(0) =0

Fyre = f3s(lure, bvros bos, q) -

In addition to the isometric scenario from [66, 68], we want to consider a concentric
contraction against an initial mass. Therefore, the right hand side of the MTC equation
in (9.7) depends on the respective dynamic (contraction mode), which we indicate by the
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notation fp. In the following, we give a fine and a coarse model for both contraction types
and calculate the respective optimal controls.

9.2.1. Isometric Contractions

We consider isometric contraction experiments from [27], which were conducted on a piglet
soleus. The observed time horizon covers T' = [—0.2s, 1.4 5], where the first 0.2 s were used
to adapt the muscle model to the outer conditions in order to reach an internal equilibrium,
see Chapter 2. In particular, the muscle was passively stretched at various MTC lengths
for ¢ € [-0.2,0.1], fully stimulated for a one second duration ¢ € [0.1s, 1.1s], and restored
its passive state again for t € [1.1,1.4].

Notation 9.2.1.

e Let 7, F e denote the experimental stimulation and force, Fjqz (arrc,o) the max-
imum isometric force at full activity (¢ = 1), and Fp.s({rprc,0) the passive (¢ = 0)
force exerted at {yrrc = Cyrep-

e Let CP¥(I,J) denote the vector space of piecewise continuous functions from the
interval I to the interval J. We assume that o € CP¥(T, [0, 1]), with t — o(t).

o Let 6 € Rand ¢ € CP*¥(I3,J;) with ¢t — ¢(t). Denote by S : R x CP*(I1,J1) —
CPY(Iy, J1) with S[d, ¢|(t) = Ss[p] := ©(t — ) the shift function that shifts the time
interval I} = [t1, t2] backwards in time (or forward, if § < 0) to Iy = [t1 — d,t2 — 4].

During the contraction, the MTC length was held constant. Consequently, in Eqn. (9.7),
the right hand side fp = 0. Thus, the fine model is described by

F . CP(T,[0,1]) — C(T,R), with

Flol(t) = F(o) = Fure = fs(Umrco,0,lek, q) -

The force output is solely determined by the control o, for a given £j;7rco. The fine model
cost function then becomes F(o) = ||F(0) — Fyrol|2-

Since there exist no general instructions on how to choose a coarse model, we recall
the desired properties. At first, the model should be simpler than the fine model and
possibly invertible to make the optimization cheap. Secondly, it should contain similar
properties as the fine model w.r.t. the control. Hence, we take the following considerations
into account:

e The force Fpas({prco) of a passively stretched muscle is exerted by applying no
stimulation (o = 0).
e The force Fpaz({rrrc,o) is exerted by applying full stimulation (o = 1).

e Assume, that the force Fyrrc(o) € [Fpas(Cmrco)s Fmaz(Cvrcp)] scales linearly
w.r.t. the applied stimulation (o € [0, 1]), compare Chapter 7, Figs. 7.1 — 7.4.

e Observe that, after a step in stimulation, the muscle reacts with a step in force after a
certain period of time. This effect is known as electro-mechanical delay (EMD) and
investigated in [10, 54, 68]. Usually, the EMD is length—dependent, but for simplicity,
we chose it as 6 = 20ms by trial and error.
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Summarizing, the coarse model at given length ¢;rc o writes as

C: RxCPT,[0,1]) - CP(T,R), with

C[5,3)(t) = C(8,6) = S3]& - [Frnaa(Errrc:0) = Fras(Carrco)] + Fyas (barreio)]

The corresponding cost function becomes C(4, ) = ||C(8,6) — Farrel|, which is minimized
by the directly calculable optimal auxiliary control

v SslFurc] — Fpas(Cyrcp)

Fma:c(EMTC,O) - Fpas(gMTC,O) .

Applying Algorithm 3, set 09 = 6* and calculate the sequence o that converges to o*.
The space—mapping function has to be evaluated once per iteration step, resulting in one
evaluation of the fine model F(o) and one optimization in C.

Results

Figure 9.2 shows the resulting optimal control o* (upper sub—figure) as well as the cor-
responding force Fi;po = F(0*) (lower sub-figure). The given experimental force F yrc
was obtained in [27] at yrrc0 = Cymrcres = 6.15 cm, which served as a reference length.
Additionally, the figure shows the optimal control results (05, Fy;rc o) from [66] (Chap-
ter 7) and the model evaluation (7, F (7)) from [27] for the corresponding MTC length.

The space—mapping results show almost identical behavior as the optimal control results
from [66]. At first, o as well as o5 begin to rise about 0.08s resp. 0.06 s before the onset
of 7. That effect was explained in [66, 68] by an improvable fit of the curvature variables in
[27]. Secondly, both optimal control functions show a characteristic peak at ¢t ~ 1s. Using
Zajac’s activation dynamics, this peak seemed to be a necessary consequence to better
approximate the force descent. Thirdly, the minor differences were a steeper ascend and
a pronounced peak for o).

The maximal difference of the optimal forces Fy;~ and F' JT/ITC,OC lies at 1.26 N, which
is approximately 4.5% of the maximum isometric force. The L?-difference of Fyrro to the
experimental data accounts for 24.1, which is approximately the value from the optimal
control approach (22.9) and less than the value for the direct model output (33.8), compare
[66, Table 1, Row 6].

Finally, we give the computational effort of this method and the ASM algorithm, com-
paring both to the optimal control approach from [66]. Recall that both methods provided
almost the same objective function value and therefore are directly comparable in terms
of validity. In our implementation, the ASM algorithm took approximately 22s (= 10
iteration steps) and the direct optimal control approach approximately 45s (£ 15 itera-
tion steps).
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Figure 9.2.: Upper: Optimal stimulation obtained by ASM (¢*, black line) and optimal
control from [66] (05, black dashed line) in comparison to the experimentally applied
stimulation (@, gray thick line).

Lower: Experimental force (F y;7¢, thick gray line) in comparison to the fine model output
(Fyre = F(o*), black line), the optimal control result from [66] (Fy;rc 00 = F(0Hc),
black dashed line), and the direct model output from [27] (F(7), thin gray dashed line).
Additionally, the coarse model output (C(6*), gray dash-dotted line)

The MTC length was fixed at £y7co = 6.15cm, see [27].
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9.2.2. Concentric Contractions Against an Inertial Mass

In the previous sub—section, we gave a very simplified coarse model for an isometric con-
traction experiment and validated the results on experimental data. In this sub—section, we
want to consider an alternative muscle contraction mode: concentric contraction against
an inertial mass, denoted mass. The detailed experimental set—up is explained in [27,
Fig. 1]. In short, a mass of 100g was placed on a table and linked to a passively fixed
muscle. The muscle then was fully stimulated at ty ~ 0.034s, performed an isometric
contraction, and, after exceeding a certain force threshold, eventually lifted the mass, see
Fig. 5.4. Thereto, the MTC had to shorten as well, which was measured over time. The
resulting MTC velocities for various masses are displayed in [27, Fig. 6].

As before, we want to give a fine model, representing the described contraction mode.
In contrast to the isometric case, the only measured quantity is the MTC length, denoted
by arre. Thus, its acceleration can be calculated by Newton’s law of motion. Let g
denote the gravitational force:

FMTC(EMTCaéMTC7€CE7Q) _. fD(

yres Lvure, Lok, q) -
mass

EMTC =9 -

Hence, the fine model output is the MTC length according to Eqn. (9.7), again solely
determined by the neural stimulation input:

F: CPY(T,[0,1]) — C*(T,R), with

Flo|(t) = F(o) = yure -

The cost function consequently writes as F'(o) = || F (o) — Larrol| 2

The choice of the coarse model proves more difficult, since there is no obvious relation
between o and ¢ypc. To formulate a simpler model with the properties of Eqns. (9.7),
we made the following considerations.

e Assume, the activity equals the stimulation.

e Assume, there is no CE length dependency for a,e;, bre; and Fisom,. Thus, replace
Arel = Grel,0 A0d bre = byeo as well as Figom(¢or) = 1. Consequently, there is no
CE length dependency for d/dt cg in fa.

e Assume, the eccentric branch of fs to be superfluous.

e Assume, that the velocity of the MTC equals the velocity of the CE. That is, the
serial elastic element is assumed to be rigid.

e Assume, the MTC velocity to be piecewise constant, thus calculating the MTC
length by ¢y (t) = EMTC(O) +t-Lyre (t)

e Assume, that the exerted force equals the weight of the mass, Fysre = mass- g, i.e.
there is no acceleration of the MTC.

After these simplifications, the linear coarse model of the MTC length writes as

C: CP(T,[0,1]) — CP*(T,R),  with

N N 6+a
Clo](t) = C(6) = turco + 1t bret - bcE,opt - (1 - W) ;
Fran + Grel

157



9. Space—Mapping: An Alternative Optimal Control Approach

where the MTCivelocity is calculated by a simplified Hill equation. The cost function
C(6) =1|C(6) — yrre|| 2 is minimized by

G = (Fmax * Qrel,0 + g- mass) : (KMTC,O - zMTC)
t- Fmaz : brel,O : ECE,opt

As above, we apply Algorithm 3 with initial stimulation &*.

Results

Figure 9.3 shows the resulting optimal control ¢* (upper sub—figure), the corresponding
length £, = F(0*) (mid sub-figure) as well as the resulting velocity d/dt £}, (lower
sub—figure). Although our fine model response was compared to experimental MTC length,
in [27, Fig. 6] only the MTC velocity is displayed. We calculated the experimental length
out of the experimental velocity with an initial length of £y;7c o = 5.97 cm, approximately
0.97 times the reference length. To recall, the applied mass was mass = 100g. Addition-
ally, the figure shows the model evaluation (7, F (7)) from [27] for the corresponding MTC
length and mass. Note that our time ¢t = 0 differs from [27]. There, the time was shifted
to the first instant where d/dt ¢p;rc < 0. The displayed results were reached after 10
iteration steps.

Like in the isometric contraction case, the optimal control stimulation begins to rise
slightly before the experimental stimulation. In the concentric contraction scenario, a
step in stimulation does not immediately produce a measurable effect on the output.
That is, because the inner (CE) dynamic has to exceed a force threshold, depending on
the weight, before the muscle begins to shorten. In the further evolution, the optimal
control oscillates unsteadily between 0.6 and 1, in order to approximate the interactions
of the mass and the elastic muscle components. In the model of [27], these oscillations
were modeled by a linear, force-dependent serial damping element (SDE).

The MTC length and velocity, from the ASM algorithm as well as from the direct
model output, show almost exact congruence to the experimental data. For comparison,
the L2-distances of the experimental data to the optimal solutions from the ASM and [27]
were:

| F(c®) = Cyrel|2 = 4.2-1074 |F@) — barrellpe = 3.8 1072

Thus, although the direct model output gives a good approximation of the data, the
space—mapping error is one magnitude lower. The computational time for the ASM was
approximately 6s (£ 8 iteration steps).
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Figure 9.3.: Concentric contraction against an inertial mass of mass = 100 g at an initial
length of EMTC,O =5.97cm ~ 0-97£MTC,ref‘

Upper: Experimentally applied stimulation (@, thick gray line) compared to the optimal
stimulation (o*, black line). Additionally the optimal stimulation of the coarse model (6*,
black dashed line), which served as an initial guess, is displayed.

Mid: Experimental MTC length (ZMTC, thick gray line), calculated from measured ve-
locities, compared to the fine model output (F(c*), black line), the direct model output
from [27] (F (), black dashed line), and the coarse model output (C(6*, gray dash—dotted
line).

Lower: Experimental MTC velocity (d/dt £yrc, thick gray line) compared to the gradi-
ent of the fine model output (black line) and the direct model output (black dashed line),
displayed in [27, Fig. 6].
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10. Conclusion

10.1. Summary

We investigated an ODE-based state—of-the—art Hill-type muscle model with well-known
mathematical methods.

In the first part, stationary solutions and their stability were calculated, regarding
the activation dynamics according to Hatze and Zajac as well as the complete coupled
contraction—activation dynamics.

In the second part, we investigated the influence of model parameters on the solution
using sensitivity analysis. Two different activation dynamics were compared in our first
research paper, regarding the sensitivity of their underlying parameter set. Therefore, we
gave a detailed approach for a local sensitivity method and sketched the idea of a global
method. The latter was found to coincide with the previous, but to cover some local pecu-
liarities. As a consequence of calculating the respective sensitivities, we found that Hatze’s
formulation might be physiologically more appropriate than Zajac’s. Consequently, within
our second research paper, we used sensitivity analysis and optimization methods to ex-
tract dynamic muscle properties using solely ICEs. We provided an optimized dynamic
parameter set and designed an ICE for a particular unsensitive parameter. Furthermore,
we developed a curvature method to gain physiological electro—mechanical delay (EMD)
values from isometric force data. In an additional chapter, the sensitivity analysis was
extended to the complete muscle model, passing through different contraction modes. We
found that isometric contraction experiments (ICEs) expose the most information about
system parameter values, among different contraction modes.

In the third part, we presented the recovery of the neural stimulation from force data
only, using optimal control. We stated the basics of optimal control theory and gave
small examples using the indirect method. Our third research paper applied the indirect
optimal control approach to regain the neural stimulation from experimental isometric
force data. We validated our approach by comparing the results to the experimentally
applied stimulation. Subsequently, the approach was tested against a commercial direct
optimal control program and was shown to be equal in accuracy. Our fourth research
paper demonstrated the application of indirect optimal control approaches in epidemiology
(dengue fever transmission) and biomechanics. In the final chapter, we presented the
space—mapping technique as an alternative optimal control approach. With two surrogate
models for isometric and concentric contractions, we recovered experimental stimulation
from force and length data, respectively.

10.2. Qutlook and Future Work

A consequent continuation of this thesis results in an algorithmic parameter estimation
(PE) for (Hill-type) muscle models. In the first decade of the 2000s, the demand for
estimating parameters from experimental data increased. However, there is only few
literature on PE, which is mostly conducted by brute—force least-square fits [8, 17, 22,
83] or by trial and error respectively educated guesses [27, 54, 75]. Obviously the main
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problem is the large number of parameters (> 20), cf. [8, "Too many parameters is not
good”]. An approach containing sensitivity analysis [9] only dealt with a reduced set of
parameters.

In Chapter 5, we linked phase portrait analysis and sensitivity analysis, which might be
a powerful tool to estimate sub—model parameters in a feedback—loop with a global PE.
Furthermore, we saw that isometric contraction experiments contain information about
every model parameter. We aim at extracting a complete parameter set by using ICEs
only. How many force curves are sufficient to perform a decent PE? Can such a parameter
set predict a muscle’s behavior throughout different contraction modes and boundary
conditions?
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