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Abstract

Statistical Shape Models (SSMs) are one of the most successful tools in 3D-
image analysis and especially medical image segmentation. By modeling
the variability of a population of training shapes, the statistical informa-
tion inherent in such data are used for automatic interpretation of new
images. However, building a high-quality SSM requires manually gener-
ated ground truth data from clinical experts. Unfortunately, the acquisi-
tion of such data is a time-consuming, error-prone and subjective process.
Due to this effort, the majority of SSMs is often based on a limited set of
this ground truth training data, which makes the models less statistically
meaningful. On the other hand, image data itself is abundant in clinics
from daily routine. In this work, methods for automatically constructing
a reliable SSM without the need of manual image interpretation from ex-
perts are proposed. Thus, the training data is assumed to be the result
of any segmentation algorithm or may originate from other sources, e.g.
non-expert manual delineations. Depending on the algorithm, the output
segmentations will contain errors to a higher or lower degree. In order
to account for these errors, areas of low probability of being a boundary
should be excluded from the training of the SSM. Therefore, the probabil-
ities are estimated with the help of image-based approaches. By includ-
ing many shape variations, the corrupted parts can be statistically recon-
structed. Two approaches for reconstruction are proposed - an Imputa-
tion method and Weighted Robust Principal Component Analysis (WRPCA).
This allows the inclusion of many data sets from clinical routine, cover-
ing a lot more variations of shape examples. To assess the quality of the
models, which are robust against erroneous training shapes, an evaluation
compares the generalization and specificity ability to a model build from
ground truth data. The results show, that especially WRPCA is a powerful
tool to handle corrupted parts and yields to reasonable models, which have
a higher quality than the initial segmentations.
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Zusammenfassung

Statistische Formmodelle sind eine der erfolgreichsten Methoden für 3D-
Bildanalysen und insbesondere für die Segmentierung von medizinischen
Bilddaten geeignet. Durch die Modellierung der Abweichungen eines Or-
gans in einem Trainingsdatensatz können die statistischen Informationen
genutzt werden, um neue Bilddaten automatisch zu interpretieren. Um
ein qualitativ hochwertiges statistisches Formmodell zu erstellen, werden
jedoch manuell generierte Ground Truth-Daten eines Experten benötigt.
Diese Datenbeschaffung ist mit einem enormen Zeitaufwand verbunden
und ist außerdem fehleranfällig und subjektiv. Aus diesem Grund basie-
ren die meisten Formmodelle auf einer begrenzten Anzahl an Trainings-
daten, welche das Modell weniger statistisch aussagekräftig machen. An-
dererseits sind medizinische Bilddaten in Kliniken reichlich vorhanden. In
dieser Arbeit werden automatische Methoden zur Erstellung eines statisti-
schen Formmodells ohne die manuelle Interpretation von Bilddaten eines
Experten vorgestellt. Die benötigten Trainingsdaten werden als Ergebnis
eines jeden Segmentierungsalgorithmus angenommen. Abhängig von der
Wahl des Algorithmus, sind die Segmentierungen mit Fehlern verbunden.
Diese Bereiche sollten bei der Modellbildung nicht berücksichtigt werden.
Aus diesem Grund werden jedem Punkt in einer Trainingsform mittels
Bild-basierten Verfahren Wahrscheinlichkeiten zugeordnet, wie sicher die
Segmentierung ist. Unter Hinzunahme einer Vielzahl von Formvariatio-
nen können die fehlerhaften Daten dann statistisch rekonstruiert werden.
Zwei Verfahren zur Rekonstruktion werden vorgestellt - eine sogenannte
Imputation method und Weighted Robust Principal Component Analysis (WRP-
CA). Diese Methoden ermöglichen die Einbeziehung vieler Datensätze aus
der klinischen Routine, welche zu mehr Variationen in dem statistischen
Modell führen. Um die Modelle bewerten zu können, vergleicht eine Eva-
luation die Ergebnisse zu einem Modell aus Ground Truth-Daten. Die Er-
gebnisse zeigen, dass besonders WRPCA eine robuste Methode liefert, um
fehlerhafte Daten zu verarbeiten und gleichzeitig eine Qualitätsverbesse-
rung gegenüber den kaputten Eingangsdaten aufweist.
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Basic Symbols and Abbreviations

λk The kth eigenvalue in some set of eigenvalues.

x̄ The mean of a set of shapes.

x̂ A generated shape of a shape model.

S An entire shape in three dimensions.

x A shape vector, containing np points to describe a shape.

D The singular value thresholding operator.

G(m) Generalization ability for m retained modes.

L The augmented Lagrangian function.

S The shrinkage operator.

S(m) Specificity ability for m retained modes.

µk A positive and monotonically increasing penalty scalar.

σi The ith singular value of a matrix.

b A shape parameter vector.

C The common Covariance matrix.

D The observation matrix of size 3np×nS , containing the training data
of a set of shapes.

E A matrix formed by the eigenvectors.

ek The kth eigenvector of a matrix.

I A 3D-image.

L A low-rank matrix.

N A perturbation matrix, containing small and i.i.d. Gaussian noise.

nm Number of modes of variation of a model.

np Number of points describing a shape.

nS Number of shapes in a data set.

nv Number of voxels inside a segmentation.

Pi The ith probability for a point pi.

ix



pi The ith point of a shape in Cartesian coordinates.

PD A probability of being a boundary, based on the distance.

PGR A probability of being a boundary, based on the gradient.

PHU A probability of being a boundary, based on the HU-values.

R Rotation matrix in alignment.

S A sparse matrix.

s Scaling factor in alignment.

t Translation factor in alignment.

ui A vector describing the spacing of the ith image.

vi The ith voxel in an image.

X A set of nS shape vectors.

Y A Lagrangian multiplier.

ADM Alternating Direction Method

ALM Augmented Lagrange Multipliers

GPA Generalized Procrustes Alignment

HU Hounsfield Unit

MAE Mean Absolute Error

PCA Principal Component Analysis

PDF Probability Density Function

PDM Point Distribution Model

PPCA Probabilistic Principal Component Analysis

RMSE Root Mean Square Error

RPCA Robust Principal Component Analysis

SDM Signed Distance Map

SSM Statistical Shape Model

SVD Singular Value Decomposition

WRPCA Weighted Robust Principal Component Analysis
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1 Introduction

The influence of medical image analysis is constantly increasing over the
past 30 years. In healthcare, doctors find diseases earlier and thus, the ap-
propriate treatments become more effective. However, automatic meth-
ods for image interpretation is a challenging task, still to modern times. In
medicine, this interpretation is often done manually, although, the process
is time-consuming and prone to error. In addition, manual interpretation
can be subjective, when different clinicians have different opinions. Early
work on automatic image interpretation found out, that pixel-based oper-
ations, such as edge detection and region growing, are less practicable in
medical images [DTT08]. These images are often noisy and contain artifacts
due to occlusion. Figure 1 demonstrates the additional challenge of classi-
fying a tumor as part of the organ and a case where little contrast between
nearby organs makes the interpretation even more difficult. Due to this,
higher-level analysis is needed to separate adjacent organs. A more promis-
ing approach is to incorporate a priori knowledge about the expected struc-
ture of interest into the interpretation process.

(a) Transversal view (b) Coronal view

Figure 1: A tumor in the liver is shown in (a) and similar tissue structures in (b),
which makes boundary detection difficult. The red outline shows the
ground truth border extraction from an expert.

In recent years, automated operations such as model-based segmen-
tation approaches have been appeared, where a model with information
about the expected shape and appearance of a particular object is used. Of-
ten, the model is build from only a single reference shape, e.g. in industrial
applications. However, due to the natural variability of human organs, a
single template is not sufficient in medical images. The whole variance of
a population of template shapes needs to be included. This leads to a more
flexible and specific model - the Statistical Shape Model (SSM). The idea of
using a SSM in medical image interpretation was first introduced by Cootes
et al. [CTCG95]. By now, SSMs are one of the most successful tools in 3D
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image analysis and especially medical image segmentation. For example,
they have been successfully applied to model all major organs, such as the
liver or the heart, and to bone structures like vertebrae and pelvic bones
[KW10]. All important imaging modalities like CT, MRI, ultrasound and
other can be used to build a model for segmentation purposes.

Modeling the statistics of a particular organ of interest requires accu-
rate data acquisitions, i.e. gathering training sets with enough shape varia-
tions. Manually generated ground truth data has to be provided to achieve
a high-quality SSM. However, getting sufficient high-quality manually gen-
erated data is in need of clinical experts or specialist knowledge is required.
Unfortunately, this process is time-consuming, error-prone and not explicit.
For example, the effort to manually outline a single shape in a set of 256
CT-slice images is huge and strenuous. In addition, collecting a plenty of
training shapes to cover the whole variability of a organ is important. Due
to this effort, the majority of existing SSMs is often based on a limited set of
this ground truth training data, which makes the models less statistically
meaningful. On the other hand, image data itself is abundant in clinics
from daily routine.

In this work, methods for automatically constructing a reliable SSM
without the need of manual image interpretation from experts will be in-
troduced. The training data is assumed to be the result of any segmentation
algorithm or may originate from other sources, e.g. non-expert manual de-
lineations. This allows low-quality data gained during clinical routine to
be used for data acquisition. Usually such images are noisy, incomplete or
include artifacts, to minimize harm of the patient. Depending on the al-
gorithm, the output segmentations will contain errors to a higher or lower
degree, as Figure 2 points out.

(a) Transversal view (b) Sagittal view

Figure 2: A segmentation algorithm is used to extract the boundary of a liver in
a set of CT images. The red shading visualizes the correct ground truth
segmentation. The differences are clearly visible.
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The idea behind this work is that the statistics inherent in such data can
be exploited and the corrupted shapes can be statistically reconstructed. In
contrast to use only a few ground truth samples, lots of data sets can be
incorporated in the model building process and new applications benefit
from more shape examples. Thus, a SSM which is robust against corrupted
shape examples can be build without the need of costly manual interac-
tions, as long as the anatomical variance is covered from the training data.
Commonly, SSMs are rarely available in public, thus, an initial model build-
ing step is often required in new applications [GMS+14]. This encourages
the need of a robust SSM pipeline.

1.1 Structure of the Work

The structure of this work is divided as follows. At first, the principles of
building a statistical shape model is provided in Section 2. The state of the
art in Section 3 addresses two related approaches of building a SSM from
low-quality data. To handle corrupted data, the points in each training
shape is assigned a probability of being a boundary. Therefore, two meth-
ods are proposed in Section 4. The reconstruction of the corrupted data and
how the model is build from such data is explained in Section 5. An evalu-
ation of the proposed methods can be found in Section 6. Furthermore, the
outcome of this evaluation yields to an outlook and further work in Section
7 and a final conclusion in Section 8.

3



2 Statistical Shape Models

Building a statistical shape model of a particular organ of interest usually
starts with a training set of segmented images. In this work, these are the
results of any existing segmentation algorithm or may are originated from
other sources, e.g. manual delineations. The segmentation is transferred to
a mesh representation by extracting the volume data, e.g. by using March-
ing Cubes algorithm [LC87]. The first step to cover the whole shape vari-
ability, a representation of the sample shapes has to be chosen.

2.1 Landmark-based Shape Representation

Landmark-based meshes are the simplest and most widely used represen-
tation of surface meshes, that can be found in SSM literature [HM09]. A
landmark is defined as a specific point pi, distributed along the surface of a
shape S:

pi ∈ S, i = 1, . . . , np, (1)

where np is the amount of landmarks used to describe S. All np landmark
coordinates of a particular shape form the shape vector x:

x = (x1, y1, z1, x2, y2, z2, . . . , xnp , ynp , znp)T , (2)

where (xi, yi, zi) are the Cartesian coordinates of a particular landmark
point pi in R3. This kind of representation has been extensively used in
the statistical analysis of biological shapes and is often denoted as a Point
Distribution Model (PDM) as a synonym [CTCG92]. Gathering a sample set
of nS training shapes is given by:

X = {x1,x2, . . . ,xnS} (3)

This yields to the basis input data for SSM construction. The next step is to
find corresponding positions of landmarks across the set of nS examples.

2.2 Point Correspondences

By building statistical shape models, the landmarks in the training meshes
must form a dense groupwise correspondence. That means, every mesh is
represented by the same amount of landmarks and each single landmark
describes approximately the same feature in all training shapes. Establish-
ing these correspondences is one of the main challenges in the construction
of a SSM. A reasonable distribution of landmarks is important, as it will
affect the quality of the resulting SSM [HM09].

Manually establishing landmarks is a very time-consuming and error-
prone process and is depending on expert knowledge. Identifying an ap-
propriate feature point in 3D is also often difficult and the choice of the
position from several annotators varies.
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To solve the so-called correspondence problem, several automatic methods
have been proposed. A review is given in the book of Davies et al. [DTT08].
All approaches basically perform a registration between the training set,
where meshes can have a variable amount of points. The state-of-the-art
algorithms map the shapes to a parameter space to build correspondences.
By defining topological primitives in the parameter space with the same
amount of points for each mesh, these points can be manipulated in an op-
timization algorithm and mapped back to the original space to establish
corresponding shapes. Most shapes in medical imaging (e.g. liver, heart
ventricles and kidney) have a genus-01 topology and can therefore be rep-
resented as a unit-sphere. However, these algorithms are sensitive to in-
consistent parameterization. This leads to different mapping regions in the
parameter space of corresponding areas in the original space. Due to this,
they can fail and the convergence time can increase. [HWM06]

Kirschner et al. presented a groupwise shape parameterization algo-
rithm in [KW10], which results in a consistent high-quality parameteriza-
tion. The approach starts by choosing a mesh as a reference shape and
mapping it to the unit sphere by using an area-preserving spherical pa-
rameterization. To reduce the area distortion of the parameterization, the
parameters are optimized. The final parameterization is transfered to the
other shapes by first aligning the actual mesh with the reference shape,
defining an approximate correspondence and deducing the parameteriza-
tion of the reference mesh to the considered shape. In the following correc-
tion phase, incorrect triangles like flipped or folded ones are repaired. A
last refinement step reduces the local distortion.

Due to the high-quality parameterization arising of the described algo-
rithm, the approach is used in this work to compute np landmarks between
all training shapes. Once a dense correspondence have been established,
the meshes are aligned in the next section.

2.3 Shape Alignment

In most cases, the training meshes have different size, position and orien-
tation, depending on the structure of interest and the used segmentation
method. The property of shape, however, does not change under these sim-
ilarity transformations. Therefore, the degrees of freedom, such as transla-
tion t, scaling s and rotationR are arbitrary factors and are non-relevant for
shape variation analysis. The shape alignment steps remove the unneces-
sary transformations. Figure 3 visualizes this for the case of two unaligned
shapes in 2D.

Considering the set of unaligned training shapes in 3D, a common co-
ordinate frame has to be found. One of the most popular approaches to

1Genus-0 shapes are topologically equivalent to spheres.
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Initial configuration Translation Scaling Rotation

Figure 3: Shape alignment of two shapes in 2D.

solve the alignment problem for PDMs is the Generalized Procrustes Align-
ment (GPA) [Gow75], where a similarity transformation on a shape vector
x is performed as:

x 7→ sR(x− t) (4)

The translation parameter t ∈ R3 centers all shapes around the origin.
Therefore, the center of mass of each shape is computed:

t =
1

np

np∑
i=1

pi, (5)

and subtracted from each point in Equation 4. After centering all shapes,
scaling and rotation can then factored out about the origin. To eliminate
the scaling factor s ∈ R+, any scale metric can be used. One example to
calculate s is an average unit distance scaling:

s =

(
1

np

np∑
i=1

‖pi‖

)−1
, (6)

where ‖ · ‖ denotes the Euclidean norm of a point in R3. The inverting of
the metric is necessary to fit in Equation 4. Shapes are scaled such that the
average Euclidean distance of their points to the origin is 1, i.e. ‖x‖ = 1.
Often, other measures can be found in literature [SG02], e.g. the Root Mean
Square Distance (RMSD):

s =


√√√√ np∑

i=1

‖pi‖2

−1 (7)

Removing the rotational parameter is a more challenging task. First,
a reference shape xref is selected to get an initial orientation. This can be
arbitrarily chosen from the set of training shapes or computed as the mean
x̄ of all nS shapes:

x̄ =
1

nS

nS∑
i=1

xi (8)
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Note that if the mean is chosen as the reference shape, it should be scaled
as before, i.e. the average distance to the origin is 1. To find the optimal
rotation matrix R for a particular shape, which best fits the reference orien-
tation, the sum of the squared distances between corresponding landmarks
has to be minimized:

minimize ‖xref − x‖2 (9)

This can be solved by first calculating the covariance matrix C of the two
shapes:

C =

np∑
i=1

xixref
T
i (10)

Next, the matrix C is factorized by Singular Value Decomposition (SVD) into
the form:

C = UΣV T (11)

where U and V are the matrices of left- and right-singular vectors and Σ
contains the positive singular values on its diagonal. Finally, the optimal
3× 3 rotation matrix R that fits in Equation 4 can be extracted:

R = V UT (12)

In literature, this procedure is often called the orthogonal Procrustes problem.
[ELF97]

After optimally aligning all shapes to the reference shape in a least
squares sense, the GPA algorithm computes the mean of the shapes. Again,
the mean should have the same scaling as the other shapes, i.e. ‖x̄‖ = 1. Fi-
nally, the distance between the mean and the reference shape is computed,
e.g. with the Euclidean distance. If this distance exceeds a threshold, the
reference shape is replaced with the mean. In this case, the algorithm itera-
tively repeats the alignment of all shapes to their mutual mean and verifies
the distance metric. This process is repeated a few times until convergence.
Algorithm 1 summarizes the whole alignment procedure.
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Algorithm 1 Alignment procedure
Input: Set of unaligned shapes
Center all shapes around the origin.
Normalize all shapes.
Select a reference shape xref .
Normalize ‖xref‖ = 1
repeat

Align all shapes to xref

Compute the mean shape x̄
Normalize ‖x̄‖ = 1
Distance d = ‖xref − x‖
Set xref = x̄

until d > threshold
Output: Set of mutually aligned shapes

2.4 Shape Space

After establishing correspondences and aligning the training data set, the
shape vectors can be arranged as the nS columns of a large data matrix D:

D =



x1,1 x1,2 · · · x1,nS

y1,1 y1,2 · · · y1,nS

z1,1 z1,2 · · · z1,nS

x2,1 x2,2 · · · x2,nS

y2,1 y2,2 · · · y2,nS

z2,1 z2,2 · · · z2,nS

...
...

. . .
...

xnp,1 xnp,2 · · · xnp,nS

ynp,1 ynp,2 · · · ynp,nS

znp,1 znp,2 · · · znp,nS


∈ R3np×nS (13)

Each row represents corresponding coordinates across the set of shapes.
Considering all rows of D as a unique dimension, this leads to the Shape
Space, which is spanned by 3np dimensions. A single training shape is now
represented as a point in the new space and on the other hand, a point in
shape space corresponds to a physical shape. The training set of nS shape
examples X = {x1,x2, . . . ,xnS} forms a point cloud in this shape space (cf.
Figure 4).

To model the statistical shape variability of the whole training data, the
distance between points in shape space can be considered as a measure-
ment of shape variation. A high distance of shapes in shape space means a
high variation in physical space. The interpolation of points in shape space
can be used to generate an arbitrary large number of new shape instances.
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Figure 4: The shape space is spanned by 3np dimensions. A set of training shapes
forms a point cloud in this space.

One of the main difficulties which arises with a huge amount of data, is
the curse of dimensionality2. Consider the following problem. A training
set where each shape consists of np = 2500 landmark points in R3, yields
to a total amount of 7500 dimensions in shape space. To alleviate this way
of looking at the problem, one must reduce the dimensionality of the set of
sample shapes.

2.5 Principal Component Analysis

Principal Component Analysis (PCA) is probably the most commonly used
statistical tool for data analysis and dimensionality reduction [Jol02]. With
the help of PCA, the most relevant information can be extracted from high-
dimensional data. It seems likely, that in some dimensions only small
changes across the set of training shapes occur, e.g. due to aligning the data.
Thus, those dimensions can be rejected and a new set of axes, that better re-
flects the actual data distribution needs to be found. In other words, the as-
sumption is, that high-dimensional data lie near a linear subspace of much
lower dimensionality. PCA tries to find an estimate of this low-dimensional
subspace by finding a new set of orthogonal axes, the directions where the
most variance occur. These axes are called the Principal Components and are
linear transformations of the original axes. Dimensionality reduction is per-
formed by keeping only a subset of k principal components, where k < 3np.

2The curse of dimensionality, termed by Richard E. Bellman, are phenomena, that arise
when high-dimensional data is analyzed. For example, by adding more dimensions in a
mathematical space, the volume of the space rapidly increases, making the data sparse.
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Mathematically, the principal components correspond to the eigenvectors
ek of the data matrix and their respective variances are the eigenvalues λk.

To find the new set of orthogonal axes in the shape space, that best
describes the observed variation, the first step is to calculate a new origin.
This origin is set to the mean shape x̄ and is calculated by averaging all nS
shape vectors as before in Equation 8. The mean shape can be considered
as the center of mass of all shape examples, as showed in Figure 5.

x

Figure 5: The mean shape x̄ is the center of mass of all shapes in shape space.

The next step is the calculation of eigenvectors and eigenvalues of the
data set, which are considered as the mapping from shape space to the un-
derlying low-dimensional subspace. Therefore, several methods exist. By
subtracting the mean of each variable from the set, the sample covariance
matrix C of size 3np × 3np can be computed:

C =
1

nS − 1

nS∑
i=1

(xi − x̄)(xi − x̄)T (14)

The set of eigenvectors of C and the according eigenvalues are computed
by Eigendecomposition, i.e. deconstructing the square matrix C into the
form:

C = QΛQ−1, (15)

where the columns of the square matrix Q contains the 3np eigenvectors
of C and Λ is a diagonal matrix with corresponding eigenvalues on the
diagonal. [Jol02]

A more general solution to find ek and λk is to perform a singular value
decomposition directly on the original data. At first, all shape vectors in
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the aligned data matrix D from Equation 13 are centered around the origin
by subtracting the mean shape:

D = ((x1 − x̄), (x2 − x̄), . . . , (xnS − x̄)) (16)

Next, the SVD factorizes the matrix D into the form D = UΣV T , where the
columns ofU and V are the orthonormal eigenvectors ofDDT andDTD re-
spectively, and the rectangular diagonal matrix Σ contains the square roots
of eigenvalues from U or V in descending order. The SVD approach offers
a higher numerical stability in contrary to the covariance method. Thus,
the SVD approach is preferred in practical implementations with high di-
mensional data. [HM09]

However, both cases yield to a set of at most k ≤ nS−1 non-zero eigen-
values λk. The corresponding eigenvectors ek form the new axes, that better
reflect the original data. These axes are linearly independent and are called
the principal components. This means, that dimensionality reduction was
performed, since k < 3np. [DTT08]

The set of non-zero eigenvalues are ordered by descending size:

λ1 ≥ λ2 ≥ · · · ≥ λk, (17)

where the largest possible variance corresponds to the first principal com-
ponent. Figure 6 visualizes the first two principal components in the shape
space.

x

e
1

e
2

Figure 6: The eigenvector e1 that correspond to the largest eigenvalue λ1, repre-
sents the direction where the most variance occur. The second eigen-
vector e2 is perpendicular to the first one. These axes span a new low-
dimensional vector space.
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The whole variance of the data can be covered with the sum of all non-
zero eigenvalues:

k∑
i=1

λi (18)

In practice, only a certain portion of the total variance is retained, such that
the dimensionality can be further reduced:

nm∑
i=1

λi, (19)

where nm < k. Usually, the smallest dimension nm is chosen, such that
90%−99% of the total variance of the training data is captured [HM09]. The
residual terms can be considered as noise. By keeping the most relevant
principal modes of variation, new shape instances x̂ can be generated by a
linear combination of those nm modes:

x̂ = x̄ +

nm∑
i=1

biei, (20)

where b ∈ Rnm defines a set of shape parameters, which should be re-
stricted to a certain interval, allowing only plausible shapes to be recon-
structed. Usually, bi is chosen to lie inside

[
−3
√
λi, 3
√
λi
]
. This limitation

ensures, that a generated shape in Equation 20 is similar to those from the
original training set. The vector b is therefore used to vary a shape, making
the model deformable.

A statistical shape model is fully described by these nm retained eigen-
vectors and eigenvalues. Figure 7 visualizes the largest two modes of vari-
ation for the example of a liver SSM. Notice that PCA results in global
modes, this means, each mode will have an impact on every landmark
point. [HM09]

Defining the retained eigenvectors (e1, e2, . . . , enm) as columns of a ma-
trix E of size 3np × nm, Equation 20 can be rewritten:

x̂ = x̄ + Eb, (21)

Then, the matrix E performs the mapping from the low-dimensional sub-
space to the shape space. On the other hand, the transposed matrix ET is
used for the backwards mapping, i.e. the back projection of a shape vector
x to the low-dimensional subspace is defined as:

x 7→ ET (x− x̄) (22)

Figure 8 illustrates the mapping from the shape space to the underlying
subspace and vice versa.
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Figure 7: The first two principal modes of variation of a liver SSM. The mean
shape is pictured in the middle. Retaining only the largest mode is
shown on the horizontal axis and the second largest mode on the ver-
tical axis.

1

2

3
4

3n
p

e
1

e
2

 x → ET(x   x) 

 b → x + Eb 

Shape Space Low-dimensional

subspace 

Figure 8: A shape vector x in the shape space is mapped to the underlying low-
dimensional subspace by subtracting the mean shape x̄ and multiplying
the transposed eigenvector matrix ET . This is called the back projection.
On the other hand, new shape instances can be generated with the vector
b, by defining a set of shape parameters.
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It has to be mentioned, due to the different dimensionality of spaces, the
mappings cannot be the inverse to each other. This means, a reconstruction
of an original training shape vector in shape space xi ≈ x̄ + Eb, is only an
approximation, since the available number of principal modes is nm < 3np.

To summarize, PCA is used to build a statistical shape model by model-
ing the distribution of a training set of shapes. The most relevant principal
modes of variation are retained to reduce the dimensionality in the shape
space. Eigenvectors and their corresponding eigenvalues define the new
axes, which are centered around the mean shape of the training data. Thus,
a SSM can be used to evaluate new shapes, in reference to the similarity to
the training set. In addition, a SSM can be used to generate new shape in-
stances inside the distribution by a linear combination. In a next step, this
distribution is analyzed.

2.6 Model Distribution

Since x̄ and E are fixed after applying PCA, a generated shape using Equa-
tion 21 is explicitly defined by the parameter vector b. Suppose, the param-
eter vectors {b1, . . . , bnS}, that describe the set of nS training shapes in the
low-dimensional subspace, follow a certain distribution p(b). This distribu-
tion can be considered as a Probability Density Function (PDF). Sampling the
parameter vectors with p(b) can be used to represent new shape examples,
that follow the same distribution as the original training set. If the shapes
in the shape space form a unimodal distribution, PCA finds the new low-
dimensional coordinate system, centered in the distribution and spanned
by the most relevant principal modes of variation. A simple unimodal dis-
tribution is the Gaussian distribution. This PDF forms an ellipsoid in the
remaining nm dimensions. Every interpolation between training shapes
models valid shapes. In contrast, if the distribution in the shape space is
multimodal or rather non-linear, PCA can be used to reduce the dimension-
ality, but the axes of the coordinate system do not necessarily correspond
to the largest variances of the training data. Therefore, constraining the pa-
rameter vector b as before will possibly yield to invalid shapes. In this case,
other modeling techniques, e.g. kernel methods have to be used. [DTT08]
However, this work is restricted to Gaussian distributed input data.

2.7 Problems with PCA

Despite the attractive feature of reducing the dimensionality of a data ma-
trix and projecting the data onto a set of lower dimensional vectors, PCA
has several shortcomings. To fit the principal components to the set of
points in the shape space, PCA operates in an least square sense. Suppose
PCA as the deconstruction of D into the sum of a low-rank matrix L and a
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small perturbation or noise matrix N :

D = L+N, (23)

where L has sufficiently smaller rank than D. The assumption holds that
the entries ofN are small and independent and identically distributed (i.i.d)
Gaussian random variables. Performing dimensionality reduction is done
by following least squares constrained optimization:

minimize ‖D − L‖2
subject to rank(L) ≤ r, D = L+N,

(24)

where ‖·‖2 is the spectral norm of a matrix, that is, the largest singular value
λmax and r � min(3np, nS) is the target rank of the underlying subspace.
Here, PCA seeks the optimal solution of L in an `2 sense. In Section 2.5 for
example, this problem can be solved by the SVD of D.

The most serious problem with least square minimization is the non-
robustness to outliers. If the data matrixD contains large corruptions, PCA
yields to arbitrarily false results of the estimated low-rank matrix L. In
particular, a single corrupted entry in the data matrix can have a strong
influence on L, leading to an overfitting of this error. Figure 9 illustrates
the result of PCA with only one extremely corrupted shape example.

Figure 9: A single outlier can lead to an extremely bad estimation of the underly-
ing subspace. The dashed line shows the first principal component.

If the amount of data points explaining large outliers in the training
set increases, some modes of variation will focus on representing these
corrupted parts. Therefore, it is necessary to detect and handle such cor-
rupted data in a pre-processing step before applying PCA to the training
data. [CLMW11]
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3 State of the Art

Robust statistical shape modeling based on incomplete or corrupted data
is a rarely covered topic in the literature. Most attention is given to solve
the correspondence problem properly [HM09], as this is directly associated
with the quality of the model. Robust modifications are usually applied
to the model-based segmentation task, i.e. to the search step after model
building [ANJY06]. In the first place, corrupted data is avoided and usually
manually segmented ground truth data is used.

The first work to address the problem of using training shapes from
lousy data to build a SSM is the approach of Lüthi et al. [LAV09]. In their
approach, they choose a reference shape which is free of outliers, i.e. a
manually segmented ground truth shape. This reference is divided into ar-
bitrary parts, preferably anatomically significant patches. Later, each part
is tested individually if it is used for model building. Lüthi et al. used a
non-rigid registration algorithm to create a vector field among all training
shapes. Thus, correspondence is established, where each shape can be rep-
resented as a warp of the reference with the vector field. If a shape contains
outliers, this transformation will cause unnatural deformations. Lüthi et al.
statistically identify the outlier patches by using a algorithm called PCOut.
PCOut basically rescales the data with robust estimators, e.g. the median,
and performs PCA. Additionally, each part of a shape is assigned a prob-
ability, depending on how well this patch fits into the PCA model. Those
parts whose probability is below a user-specified threshold are removed
before the model is build. One method to deal with such incomplete data
sets to build a SSM is Probabilistic PCA (PPCA) [TB99].

One drawback of this approach from Lüthi et al. is that a single cor-
rupted landmark can cause the rejection of a whole patch. This would
mean a loss of statistical information. Furthermore, the method is depend-
ing on the size and position of the subdivided parts. This can lead to arti-
facts in the reconstruction step and on the variation modes of patch bound-
aries [GMS+14]. In addition, they need a reference shape, which is free of
arbitrarily corrupted data, i.e. a manually segmented shape. Finally, PPCA
is designed to handle missing data, but automatic segmentation algorithms
results typically in an appearance of more ore less corrupted points, rather
than missing points.

The second work to mention is the method of Gutierrez et al. [GMS+14].
They are the first addressing the problem of building a SSM from both,
outlier and incomplete training data. In contrast to use robust statistical
methods, their work relies on advances in sparse optimization in recent
years. Using a modern technique called Robust PCA (RPCA), the shape data
matrix is modeled as the addition of a low-rank matrix and a sparse matrix.
The assumption is, that the low-rank matrix can be recovered, leaving the
corrupted data points in the sparse matrix. The reconstructed low-rank
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matrix can be used with standard PCA, assuming that the data is free of
outliers. They achieve significantly better results in terms of robustness to
missing data in comparison to Lüthi et al. and standard PCA.

The method of Gutierrez et al. is the first work to address the prob-
lem of building a SSM, which is robust against outliers and missing data.
However, the drawback of this method is, that non-outlier high frequency
information may get lost. That is the result of using RPCA to recover the
outlier-free data. Furthermore, in their work, a reference shape is needed to
establish correspondences. This reference image is assumed to contain the
boundary of the organ completely, i.e. a manually segmented shape which
can induce bias towards this reference.

However, the approach from Gutierrez et al. is closely related to the
approach presented in this work and the idea of Robust PCA is introduced
in Section 5.2. To avoid rejecting non-outlier high-frequency information,
the affected points should be declared as safe. Therefore, the training set of
shapes is analyzed and each landmark is assigned a probability of being a
true boundary segmentation, as inspired by the approach of Lüthi et al.
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4 Outlier Detection by Boundary Probabilities

Depending on the data acquired during clinical routine, the structure of in-
terest will contain errors to a higher or lower degree. Accepting different
automatic segmentation algorithms, this can lead to more or less corrupted
output meshes. In order to account for these errors, areas of low probabil-
ity of being a boundary should be excluded from the training of a statisti-
cal shape model. Knowing the probability of a landmark to be an outlier,
allows for robustifying the model building step. Therefore, two separate
image-based measures are used to assign each landmark point pi a bound-
ary probability Pi - the Hounsfield Unit (HU) and the Gradient Magnitude.

Since the output of the segmentation algorithm is producing a mesh,
the mapping to the original image has to be found. If we define the origin
point of a composed 3D-image I at zero in all three axes, the corresponding
voxel vi for the ith landmark point is calculated by a 3D-index ki:

vi = I[ki], ki =
pi
u
, (25)

where pi is the ith landmark from a mesh and u contains the spacings in
each direction of the 3D-image. These np voxels are used in the following
to assign boundary probabilities for np landmarks.

4.1 Hounsfield Unit

In CT imaging, the Hounsfield Unit is the normalized attenuation of X-ray
radiation in tissue. The radiodensity of distilled water is defined as 0 HU
and air as -1000 HU (see Table 1). Each voxel in the data set is assigned
a value in the range of -1000 (Air) and 1000 (compact bone). To calculate

Type HU
Compact bone 1000
Liver 40 to 60
White matter ∼ 20 to 30
Grey matter ∼ 37 to 45
Blood 40
Muscle 10 to 40
Kidney 30
Cerebrospinal fluid 15
Water 0
Fat −50 to − 100
Soft Tissue −100 to − 300
Air −1000

Table 1: Overview of the common differentiation of HU-values.
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probabilities for each landmark based on HU-values, first, the global mean
HU-value hmean of the segmented organ is computed. For example, in the
case of the liver as a target organ, all nv voxels inside the segmentation are
considered and tested if they correspond to liver values from Table 1:

hmean =
1

M

nv∑
i=1

ψ(vi)HU(vi), ψ(v) =

{
1 if HU(v) ∈ [40, 60]

0 otherwise
, (26)

where HU(v) returns the HU-value of the considered voxel and M is the
number of voxels where ψ(v) is 1. Only liver HU-values between 40 and
60 are taken into account to calculate the global mean3. In the next step,
a box B of size b × b × b is sampled around each voxel, specified by the
precomputed index. All voxels inside the segmented region of the box are
considered and a local mean HU-value inside the box is calculated:

hlocal =
1

W

B∑
i=1

Γ(vi)HU(vi), Γ(v) =

{
1 if HU(v) ∈ [-1000, 1000]

0 otherwise
(27)

The denominatorW is the number of voxels where Γ(v) is 1. The difference
of hlocal and hmean is illustrated in Figure 10.

h
local

h
mean

Figure 10: To calculate hlocal, a box is sampled around a landmark. All HU-values
inside the segmentation are used to compute the mean within the box.
For better visualization, the Figure shows the two-dimensional case
with a box size of 7× 7.

3If contrast medium is used, the values should be adapted.
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To assess a probability, the Euclidean distance EHU between the global
mean hmean and the local mean hlocal serves as a measure:

EHU = ‖hmean − hlocal‖ = |hmean − hlocal| (28)

The HU probability for a landmark is formed with a threshold T , to penal-
ize high distances:

PHU =
T − EHU

T
(29)

Figure 11 compares a liver mesh, colored with the HU probabilities and
colored with the optimal probabilities, computed by using the distance to
the ground truth. The optimal probability distance function is described
later in Section 4.4

(a) HU probabilities (b) Optimal probabilities

Figure 11: A liver mesh is colored with (a) the HU probabilities and with (b) the
optimal probabilities. The coloring encodes good probabilities (green)
and bad probabilities (red) of being a boundary.

4.2 Gradient Magnitude

Another measure to define a boundary probability is the image gradient.
In a preprocessing step, the original 3D-image is filtered with a gradient
magnitude filter, to strengthen the contour of the organ and to separate ho-
mogeneous regions [JMIC15]. Figure 12 visualizes the result of the filter.
Next, the segmented image region is converted to a binary image by defin-
ing all entries inside the segmentation as 1, and 0 for outside respectively.
With the binary image as input, a Signed Distance Map (SDM) is computed
with the algorithm from Maurer et al. [MQR03]. The result of a SDM is
another image with the Euclidean distance of each voxel to the boundary
of the segmentation. The boundary is considered as the zero level line of
the SDM. The inside has negative distance values and outside positive dis-
tances.

With the use of the precomputed index, a box B1 of size b1 × b1 × b1 is
centered around a considered landmark. By using the SDM, all boundary
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(a) Before (b) After

Figure 12: The input image (a) and the effect of a gradient magnitude filter (b) is
pictured for a single slice.

voxels are found inside the box. A second box B2 of size b2 × b2 × b2 is
used to calculate the local gradient magnitude mean of all boundary voxels.
The two boxes are shown in Figure 13a. By including the neighbors of a

(a) Boxes B1 and B2
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(b) Implicit weighting of voxels

Figure 13: Two boxes B1 and B2 are used to compute the gradient probability (a).
B1 is centered around a landmark point andB2 is centered around each
boundary voxel inside B1. This leads to an implicit weighting of voxels
(b), where voxels close to or at the boundary are sampled more often.

supposed boundary voxel with the second box, a better sampling of the
gradient is obtained (cf. Figure 13b). Mathematically, this is given by:

glocal =
1

Q

B1∑
i=1

Φ(vi)

B2∑
j=1

g(vj)

 , Φ(v) =

{
1 if SDM(v) = 0

0 otherwise
(30)
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The factor Q is the number of voxels where Φ is 1, multiplied by the size
of B2. The function g(v) returns the gradient magnitude of v and SDM(v)
returns the value in the SDM at the voxel v. Due to this oversampling of
B2, an implicit weighting is gained.

To form the gradient probability PGR, the local gradient glocal is mapped
to [0, 1]:

PGR =
glocal − gmin
gmax − gmin

, (31)

where the factor gmin is the global minimum of the gradient magnitude
of all investigated landmarks and gmax the maximum respectively. With
Equation 31, only local gradients which equals gmax can reach a probability
of 1. To attenuate this condition, gmax can be set empirically and values
PGR > 1 are clamped to 1. Figure 14 compares the liver mesh, colored with
the gradient probabilities and the optimal probabilities.

(a) Gradient probabilities (b) Optimal probabilities

Figure 14: A liver mesh is colored with (a) the gradient probabilities and with
(b) the optimal probabilities. The coloring encodes good probabilities
(green) and bad probabilities (red) of being a boundary.

4.3 Combined Probability

The combined probability Pi for the ith landmark is the combination of
Equation 29 and Equation 31 with an additional weighting parameter α,
to balance the influence of PGR and PHU:

Pi = (1− α) · PGRi + α · PHUi (32)

Additionally, the boundary probability is weighted with a S-curve, to pe-
nalize bad results and strengthen good probabilities:

Pi =
sin((Pi − 0.5) · π) + 1

2
(33)

Figure 15 visualizes the final probabilities with an equally weighting of
PGR and PHU, i.e. where α = 0,5. An evaluation of the estimated boundary

22



probabilities can be found in Section 6.2, where the deviation to the optimal
probabilities based on the ground truth is computed.

(a) Combined probabilities (b) Optimal probabilities

Figure 15: A liver mesh is colored with (a) the combined HU and gradient proba-
bilities and with (b) the optimal probabilities. In addition, the estimated
probabilities are weighted with a S-curve. The coloring encodes good
probabilities (green) and bad probabilities (red) of being a boundary.

4.4 Optimal Boundary Probabilities

To test whether the probabilities computed from the HU-values and the
gradient are a reasonable guess, the true distance of each landmark point
to the ground truth is represented as probabilities as well. High distance
points should be assigned a low probability and low distances should get a
high probability. Hence, for a particular point p of a training shape xt, the
distance to the nearest point q in the corresponding ground truth shape xgt

is calculated. Generally, the minimum distance dmin is given by:

dmin = δ(p,xgt) = min
i∈{1,...,np}

‖p− qi‖ (34)

A probability can be computed by defining a threshold TD to describe the
maximal allowed extent of the distance. Distances exceeding the thresh-
old are clamped to TD, such that dmin ∈ [0, TD]. To get values in the range
[0, 1], the distances are divided by TD. To form a probability such that small
distances are correspond to higher probabilities, the distance must be in-
verted:

PD = 1−
(
dmin

TD

)
(35)

This representation of the probabilities has one drawback. A special
case is visualized in Figure 16a, where a ground truth shape contains a
bulge. To overcome the problem of false probability assignment in this par-
ticular case, Equation 34 is additionally performed for each ground truth
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(a) Bad probability assignment (b) Better probability assignment

Figure 16: If the ground truth shape contains a bulge, the probabilities based on
the nearest distance can lead to bad estimates (a). To overcome this
problem, one should additionally iterate over the ground truth shape
(b).

point. Each point, found in the second iteration, is tested if the precom-
puted distance differs to the new computed distance, as seen in Figure 16.
If this is the case, the maximum of both distances is chosen to be the true
distance. Thus, in Figure 16b, the point is assigned a bad probability. How-
ever, another special case appears with this approach. Consider a ground
truth shape with a deep concave part (cf. Figure 17a), where a bad proba-
bility is misleadingly assigned.

(a) Bad probability assignment (b) Better probability assignment

Figure 17: In strong concave regions, the probability assignment can fail (a). To
overcome this problem, the distance from a point on the ground truth
to the training shape is only replaced, if the point lies in the front hemi-
sphere of the training shape (b).

To avoid wrong probability assignment in this case, the distance of the
ground truth to a particular point pi ∈ xt is only taken into account, if the
ground truth point q lies in the front hemisphere of pi. This can be verified
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by the dot product of the normal4 of pi and the normalized vector between
pi and q ∈ xgt. A positive dot product corresponds to points in the front
hemisphere and therefore the point in Figure 17b is assigned a reasonable
probability.

This approach is more robust than simply calculating the closest point
to the ground truth, as before in Equation 34. Finally, each point in xt

is assigned a probability by using Equation 35. Figure 18 compares the
improvement of this approach to simply applying Equation 34 only. The
procedure is summarized in Algorithm 2.

(a) Ground truth (b) Training mesh (c) Training mesh

Figure 18: Visualization of the optimal probabilities of a training mesh, based on
the distance to the corresponding ground truth shape (a). The nearest
distance is computed directed from the training mesh to the ground
truth (b), and from both directions with additional front hemisphere
checking (c). Notice, that the described method yields slightly better
estimated probabilities in the marked area.

4It has to be mentioned, that a point does not have a normal. However, a normal at a
particular point can be interpolated from its adjacent faces.
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Algorithm 2 Computing optimal probabilities with ground truth
Input: xt, xgt, TD
Initialize distance array dt[np]
Initialize index i = 0
Initialize minimal distance dmin = 0
for all p ∈ xt do

Find point q with minimum distance in xgt

dmin = ‖p− q‖
dt[i] = dmin
i = i+ 1

end for
for all q ∈ xgt do

Find point p with minimum distance in xt

dmin = ‖q − p‖
i = getIndex(p)
if dt[i] < dmin then

if (getNormal(p) · ~pq) > 0 then
dt[i] = dmin

end if
end if

end for
for all d ∈ dt do

Clamp d to [0, TD]
Normalize distance: d = d · T−1D
Invert distance: d = 1− d

end for
Output: Optimal probabilities dt
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5 Handling Corrupted Training Data

Handling outliers and missing entries in high-dimensional data is a well
known problem in the field of statistical investigation [IR10]. For example,
Imputation methods exist, where each uncertain point is replaced with a rea-
sonable guess, e.g. the mean. These methods carry out the analysis as no
corrupted data is existent. Thus, an imputation method is proposed in the
following subsection to sort out outliers, by using the estimated boundary
probabilities, and to create a statistical shape model.

5.1 Imputation Approach

The construction of a statistical shape model starts with a set of segmented
images. Surface meshes with an arbitrary amount of points are extracted
from the volume data, e.g. by Marching Cubes algorithm [LC87]. The first
critical step to build the model is to find corresponding landmarks through-
out the data set. A state-of-the-art groupwise consistent shape parame-
terization [KW10] is used to generate shapes with np corresponding land-
marks. Deformations caused by corrupted data should be replaced with
the information of corresponding points. Thus, to estimate such outliers,
each landmark point pi is assigned a probability Pi of being a boundary, as
described before in Section 4. After aligning the shapes with the Procrustes
method (see Section 2.3), the landmark coordinates with a bad result from
the probabilities are substituted with reasonable points from the remaining
data. A brute force approach is to take the mean of all high probability
points. With the probabilities, a weighted mean of landmark points is com-
puted as visualized in Figure 19.

0.5

0.75

0.25
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0.75

0.25

0.5

Figure 19: The weighted shifting of landmarks in 2D. The point in the bottom
left corner (gray) has a probability of 0.5. Thus, the transformation to
the mean is only affected half. The mean itself is calculated from the
weighted sum of all corresponding landmarks.
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Mathematically, for the ith point in the jth shape vector, the weighted
mean p̄ij of all corresponding points in the other shapes is given by:

p̄ij =
1

nS∑
k=1,k 6=j

Pik

·
nS∑

k=1,k 6=j
(Pik · pik) , (36)

where Pik is the probability of the ith point in the kth shape. Thus, points
with low probability have less influence on the mean, than points with a
high probability. The point pij is then shifted towards the mean p̄ij . How-
ever, if the own probability of the omitted point is already reflecting a good
segmentation result, the point should stay unchanged. In other words, the
shifting to p̄ij is weighted with its own probability:

p′ij = pij + (1− Pij) · (p̄ij − pij) (37)

The probability Pij has to be inverted in Equation 37, because a high proba-
bility point from the segmentation is already a good result and the influence
of shifting pij to p̄ij is low. Thus, a single point is completely replaced by
the weighted mean, if its probability is 0. This procedure is performed for
every shape, where every corrupted landmark is shifted with respect to its
probability towards the corresponding mean. Figure 20 compares the dif-
ference between a transversal slice of a mesh before and after the weighted
shifting procedure, with the estimated boundary probabilities from Section
4.3, is applied.

(a) Before (b) After

Figure 20: The effect of the imputation method (a) before and (b) after the
weighted shifting approach.

Due to the fact that the probabilities are estimates, the modified meshes
can contain some spikes. Smoothing these parts could be a possibility to
overcome problems in the PCA model building, where some modes could
focus on explaining these spikes. In order to create a reasonable shape
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model, the statistics inherent in the data are used to smooth out the meshes.
First, a statistical shape model is build in an iterative leave-one-out fashion.
By excluding one mesh in each iteration, the statistics are captured with
nS − 1 training shapes by PCA. Therefore, the eigenvectors and eigenval-
ues are computed as described in Section 2.5. In the next step, the omitted
shape is projected back onto the low-dimensional subspace, spanned by
the nm retained principal components of the SSM (cf. Figure 21).

21
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backprojection model buildingmodel building

Figure 21: An omitted shape is back-projected onto the model of all other shapes.
This process is iteratively performed for each shape.

Here, the transformation to the back-projected mesh is only applied
to points with low probability, i.e. the back projection is again weighted
with probabilities. This procedure is performed for all other shape exam-
ples, where the previously back-projected shape is used for the next model
building iteration. This is performed until each shape was projected back
onto the underlying subspace. The overall process is repeated a few times,
until the spikes are decreased. Figure 22 demonstrates the effect of this it-

(a) Before (b) After

Figure 22: The effect (a) before and (b) after the iterative model building approach.
The result is a slightly smoother shape representation.
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erative leave-one-out model building approach. Finally, all reconstructed
shapes are assumed to be free of outliers and therefore used to create a SSM.
Figure 23 gives an overview of the proposed work flow.
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Figure 23: Overview of the imputation method.

This imputation approach is published under the title Statistical Shape
Modeling from Gaussian Distributed Incomplete Data for Image Segmentation
at the 4th MICCAI workshop on clinical image-based procedures in 2015
[MLH+15].
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5.2 Robust PCA

In classical PCA, the large training data matrixD in Equation 23 can be con-
sidered as a decomposition of a low-rank matrix L and a small noise matrix
N . The low-rank matrix L can be recovered under the assumption, that the
magnitude of perturbation is small and caused by i.i.d. Gaussian noise.
Unfortunately, allowing corrupted shapes in the training set yields to arbi-
trarily corrupted entries of unknown magnitude in the perturbation matrix
N and classical PCA is not practicable, as Section 2.7 pointed out. Several
approaches have been proposed in the literature, addressing the topic of ro-
bustifying PCA. As mentioned in Section 3, an idealized version of Robust
PCA exists by Wright et al. [CLMW11]. The method relies on advances in
sparse optimization in recent years and its robustness has been proved in
several areas of application of computer science, such as the separation of
moving objects from the background in video surveillance [BZ14].

In contrast to PCA, the data matrix D ∈ R3np×nS is supposed to be the
result of a low-rank matrix L ∈ R3np×nS and an arbitrarily corrupted, but
sparse5 matrix S ∈ R3np×nS :

D = L+ S (38)

In Figure 24, this decomposition of a corrupted observation matrix is illus-
trated. Recovering the underlying low-rank matrix L, while S holds the

Corrupted data matrix D Underlying low-rank matrix Sparse error matrix

Figure 24: A visualization of splitting a corrupted data matrix D into their under-
lying low-rank structure and a sparse component. Most of the entries
in the error matrix are 0, but all non-zero entries are of arbitrary magni-
tude, i.e. unbounded.

deformations caused by outliers, falls into the class of constrained optimiza-
tion problems. The robust PCA problem can be formulated as:

minimize rank(L) + γ‖S‖0
subject to D = L+ S,

(39)

5In a sparse matrix, only a fraction of the entries are affected.
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where ‖·‖0 is the `0-norm6, i.e. the total number of non-zero elements in the
matrix. The parameter γ is a positive weighting factor, balancing the contri-
bution of the terms L and S. This formulation is a highly non-convex7 opti-
mization problem, which is NP-hard and difficult to solve efficiently with-
out approximation [WGR+09]. To obtain a tractable optimization problem,
the objective function is relaxed with a convex formulation of Equation 39.
This is done by replacing the rank of L with the nuclear norm ‖ · ‖∗, i.e. the
sum of its singular values:

‖L‖∗ =

min(np,nS)∑
i=1

σi (40)

and the `0-norm of S with the `1-norm, i.e. the maximum absolute column
sum of the matrix:

‖S‖1 = max
j=1,...,nS

np∑
i=1

|aij |, (41)

where aij are the entries of the matrix S. Hence, this relaxation of the robust
PCA problem yields to the following convex representative:

minimize ‖L‖∗ + γ‖S‖1
subject to D = L+ S

(42)

Wright et al. proved in [CLMW11], that each component of the matrices L
and S can be exactly recovered. The only assumption is, that the matrix L is
of low-rank and not sparse, and the sparse components in S are uniformly
and randomly distributed. However, the entries in the matrix S are allowed
to be of arbitrarily large magnitude, in contrast to the small noise term N
in classical PCA.

The weighting parameter γ is used to control the influence of the sparse
component. For example, a high value for γ would yield to a stronger in-
fluence on S, that means, rejecting more outliers in the data. A low value
would behave like classical PCA [GMS+14]. However, it is explicitly men-
tioned in [CLMW11], that whatever the choice of γ, the recovered matrices
L and S are exact solutions of the problem. In practice, a universal value for
the parameter γ can be chosen from the maximum dimension of the data
matrix D:

γ =
1√

max(3np, nS)
(43)

6The `0-norm is not actually a norm. It is defined as ‖a‖0 = 0
√∑

i a
0
i , where zeroth-

power and zeroth-root appear.
7A non-convex optimization problem may have multiple local optima, while a local op-

timum in a convex problem is at the same time a global optimal solution.
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Several methods exist to solve constrained optimization problems. One
of the most efficient approaches is the method of Augmented Lagrange Mul-
tipliers (ALM) in [Ber82], which seeks a solution by a set of unconstrained
subproblems. The general method of ALM solves equality constrained op-
timization problems in the form:

minimize f(X)

subject to h(X) = 0,
(44)

where f : Rn → R and h : Rn → Rm. By introducing a Lagrangian multi-
plier matrix Y ∈ Rm×n, the equality constraint h(X) = 0 can be removed.
The augmented Lagrangian function L, which has to be minimized, is then
defined as:

L(X,Y, µ) = f(X) + 〈Y, h(X)〉+
µ

2
‖h(X)‖2F , (45)

where µ is a positive scalar, penalizing the violation of the linear constraint.
The notation 〈·, ·〉 denotes the standard trace inner product between two
matrices8 of the same size, i.e. 〈A,B〉 = trace(ATB) =

∑
i,j Ai,jBi,j . The

induced Frobenius norm ‖ · ‖F of a real matrix A ∈ Rm×n is defined as:

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

a2ij (46)

Thus, the method replaces the original constrained problem in Equation
44, by a sequence of unconstrained subproblems in Equation 45. Lin et al.
showed in [LCM10], that ALM is applicable to the robust PCA problem
with the following substitutions:

X = (L, S), f(X) = ‖L‖∗ + γ‖S‖1, h(X) = D − L− S (47)

According to this, the augmented Lagrangian function is given by:

L(L, S, Y, µ) = ‖L‖∗ + γ‖S‖1 + 〈Y,D − L− S〉+
µ

2
‖D − L− S‖2F , (48)

To minimize Equation 48, a general ALM algorithm would minimize L and
S simultaneously by iteratively setting:

(Lk, Sk) = arg min
L,S
L(L, S, Yk, µk) (49a)

Yk+1 = Yk + µk(D − Lk − Sk), (49b)

where k describes the kth iteration. Lin et al. showed in [LCM10], that
when the penalty parameter µk is progressively increasing, the Lagrange

8The trace of a product of two matrices is similar to the dot product of vectors.
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multiplier Yk converges to the exact optimal solution. Hence, the optimal
step size for updating Yk is µk.

However, in the low-rank and sparse decomposition problem, D =
L+S, the direct usage of the general ALM method ignores the fact, that the
objective function and the constraint are separable [YY13]. A practical im-
provement of the ALM method splits the minimization of L, with respect
to L and S, into two subproblems. This sequential variant of ALM is called
the Alternating Direction Method (ADM) [YY13]. With ADM, minimizing
these subproblems is done iteratively by repeatedly updating L and S as
follows:

Lk+1 = arg min
L
L(L, Sk, Yk, µk) (50a)

Sk+1 = arg min
S
L(Lk+1, S, Yk, µk) (50b)

Yk+1 = Yk + µk(D − Lk+1 − Sk+1) (50c)

Both subproblems, Equations 50a and 50b, have simple and efficient solu-
tions. In [CLMW11], the estimate of Sk+1 is solved as:

Sk+1 = Sγµ−1
k

[
D − Lk+1 + µ−1k Yk

]
, (51)

where Sτ : R → R is the so-called shrinkage operator with τ as a positive
thresholding parameter, given by τ = γµ−1k . This operator performs a se-
lection for each element aij of a matrix of being part of the sparse matrix:

Sτ [aij ] = sgn(aij) ·max(|aij | − τ, 0) =


aij − τ if aij > τ

aij + τ if aij < −τ
0 otherwise

, (52)

where sgn(aij) tests the sign of aij :

sgn(aij) =


1 if aij > 0

0 if aij = 0

−1 if aij < 0

(53)

In this manner, each element of the matrix is proofed to be an outlier of
the data (cf. Figure 25). Since the denominator µk is an increasing value
in Equation 51, the threshold τ in Sτ is decreasing in each iteration. The
geometrical meaning of this is, that for example in the first iteration, the
sparse matrix is filled with the largest outliers of the data.

The second subproblem in Equation 50a, estimating Lk+1, can be solved
via a singular value thresholding operator Dτ [A]:

Lk+1 = Dµ−1
k

[
D − Sk + µ−1k Yk

]
, (54)
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0

0

Figure 25: The influence of the shrinkage operator S. All values in the range of
[−τ, τ ] are set to zero in the sparse matrix S. Entries outside the inter-
val, i.e. [−∞,−τ ] and [τ,∞], correspond to outliers. These outliers are
included in the sparse matrix and the values are set to the magnitude
of the violation of the threshold, as indicated with the red lines.

where Dτ limits the number of retained singular values in a matrix, with τ
as the positive thresholding parameter. This operator computes the SVD of
the matrix, followed by applying the shrinkage operator Sτ onto Σ:

Dτ [A] = USτ [Σ]V T (55)

Thus, this thresholding operator tests, if the singular values of a matrix
fall below the threshold τ . Since singular values are all positive, the alter-
nate expression of the shrinkage operator in Equation 52 can be reduced to
Sτ [aij ] = max(x− τ, 0). Finally, the guess of Lk+1 is build from the inverse
SVD, where all singular values below τ are set to 0 and the threshold is
subtracted from the sv valid singular values. This means, the estimation of
Lk+1 is given by:

Lk+1 = UΣ′V T , Σ′ =

σ1 − τ . . .
σsv − τ

 ∈ Rsv×sv (56)

The meaning of this is, that the amount of such large singular values is
bounded by the rank of L. As the threshold τ = µ−1k decreases, the number
of valid singular values increases. Thus, the rank of Lk is monotonically in-
creasing and converges to the true rank, since µk in an increasing sequence.
[LCM10]

In practice, in the first iteration k = 0, the matrices L0 and S0 are filled
with zeros. As an initialization of the Lagrange multiplier matrix Y0, the
authors in [LCM10] suggest to choose:

Y0 =
D

max (‖D‖2, γ−1‖D‖∞)
, (57)

where ‖ · ‖2 is the spectral norm of a matrix, i.e. the largest singular value9

of the matrix:
‖D‖2 = σmax(D), (58)

9The positive singular values are the square roots of the eigenvalues.
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and ‖ · ‖∞ is the maximum absolute row sum of the matrix:

‖D‖∞ = max
j=1,...,np

nS∑
j=1

|aij | (59)

The following assignments of matrix Yk+1 in Equation 50c are based on the
residual matrix D − L− S. The parameter γ is universally chosen, such as
in Equation 43 and µ0 is initially set to 1.25/‖D‖2, as suggested in [LCM10].
This procedure is summarized in Algorithm 3.

Algorithm 3 Solving the robust PCA problem with ADM
Input: Observation matrix D, parameter γ
initialize k = 0
initialize L0, S0 = 0
initialize Y0 = Eq. 57
initialize µ0 > 0
while not converged do

Lk+1 = Dµ−1
k

[
D − Sk + µ−1k Yk

]
Sk+1 = Sγµ−1

k

[
D − Lk+1 + µ−1k Yk

]
Yk+1 = Yk + µk(D − Lk+1 − Sk+1)
update µk to µk+1

update k to k + 1
end while
Output: Lk, Sk

As proposed in [LCM10], a stopping criterion to terminate the algo-
rithm could be:

‖D − Lk − Sk‖F
‖D‖F

< ε, (60)

where ε is a small tolerance value. To confirm convergence, a value of
1 × 10−7 is adequate. The parameter µk is assumed to be monotonically
increasing after each iteration. Thus, any positive multiplication ρ > 1 is
sufficient:

µk+1 = ρµk (61)

In this work, the approach of robust PCA is used for outlier detection
and correction. Solving the optimization problem via ADM, the deforma-
tions from corrupted landmarks in the training data matrix D are placed in
the sparse matrix S. The underlying low-rank structure of D is recovered
and stored in L. Figure 26 shows a shape example from the reconstructed
low-rank matrix, compared to the initial and ground truth segmentation, as
well as to the imputation method. Assuming that the data in L is error-free,
standard PCA is finally applied to build a statistical shape model.

36



(a) Before (b) After RPCA (c) After imputation

Figure 26: Three slices of the input image (a), compared to the effect of RPCA (b)
and the imputation approach (c) from Section 5.1. The top row is the
transversal view, the middle row is the sagittal view and the bottom
row is the coronal view. The red shading encodes the manually gener-
ated ground truth segmentation. RPCA yields to a smoother mesh re-
construction, compared to the imputation approach. Both approaches
handles the wrong bulges in the transversal and sagittal views better
than the initial representation.
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In addition to the outlier correction using RPCA, the probabilities from
Section 4 can be incorporated into the method, as some prior knowledge
where the errors probably appear. One simple approach is to weight the
transformations from all landmarks in the training data D, to the recon-
structed low-rank matrix L with their probabilities:

L′ij = Dij + (1− Pij) · (Lij −Dij) , (62)

where i ∈ {1, . . . , np} and j ∈ {1, . . . , nS} are the indices of the entries of
the matrices L and D and their boundary probability P . In this work, this
is referred to Weighted Robust PCA (WRPCA) with outer weighting.

Another approach is to directly weight the selection of entries in the
sparse matrix. Bringing Equation 52 into a different form:

Sτ [aij ] = sgn(aij) ·max(|aij | − τ, 0) (63)
= max(aij − τ, 0) + min(aij + τ, 0) (64)

Then, the weights are applied by influencing the result of the minima and
maxima parts:

Sτ [aij ] = max(aij − τ − Pij · aij , 0) + min(aij + τ − Pij · aij , 0) (65)

Thus, if the coordinate of the point in entry aij has a high probability of
being a boundary, i.e. P ≈ 1, the results of the minima and maxima parts
becomes 0, since τ is a positiv value. On the other hand, probabilities nearly
0, yield to the same result as standart RPCA. In this work, this is referred to
WRPCA with inner weighting. Notice, that due to the additional weighting
in Sτ , the amount of non-zero entries in S decreases. Hence, the parameter
γ that regulates this, needs to be adapted, to get the same amount of non-
zero entries in S, as in standard RPCA. Figure 27 compares the different
results of WRPCA with built-in probabilities.

Notice, that the estimated probabilities provides better results with the
outer weighting approach. In case of inner weighting, the accuracy of the
estimated probabilities are not enough to get acceptable reconstructions.
On the other hand, if optimal boundary probabilities are existent, the inner
weighting gives slightly better boundary reconstructions, than the outer
weighting. However, both of these approaches to incorporate the probabil-
ities in RPCA are further evaluated in the next Section.
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(a) Outer weighting (b) Inner weighting (c) Adapted γ

Figure 27: Comparison between outer weighting (a), inner weighting (b) and in-
ner weighting with adapted γ (c) of a transversal slice. The top row
shows the result with the estimated boundary probabilites from Sec-
tion 4.3 and the bottom row shows the result with the optimal bound-
ary probabilities from Section 4.4. The parameter γ is chosen, such that
the number of entries in the sparse matrix S is roughly the same as in
standart RPCA. Notice, that the inner weighting with estimated proba-
bilities provides the poorest results, whereas the inner weighting with
optimal probabilities produces the best results.
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6 Evaluation

The intention of this work was to build reliable statistical shape models
from routine clinical data, instead of using time-consuming ground truth
data. The set of automatic segmented images from a particular organ of
interest, is the results of any segmentation algorithm or non-professional
manual delineations of the organs contour. The challenge was to find cor-
rupted regions in the segmented meshes and manipulate them with the
help of the statistics in the training set, to better reflect the class of corre-
sponding ground truth data. The quality of the built SSM should be similar
to a model built by ground truth data.

First, the estimated probabilities from Section 4.3 are rated, by reference
to the optimal boundary probabilities from Section 4.4. Then, the evalua-
tion of the two approaches, developed in 5.1 and 5.2, is divided in two dif-
ferent quality measurements - a model and a mesh evaluation. In the model
evaluation, the associated SSMs of the two approaches have to be rated, in
matters to the similarity to a SSM, built by the ground truth. To assess the
statistical model, built by these reconstructed meshes, the measures Gener-
alization and Specificity are considered. In the mesh evaluation, simply the
reconstruction of the corrupted meshes are compared to the ground truth
shapes. More precisely, the change in the error is measured before and af-
ter the corrupted data is handled. Different distance metrics are used to
compare two shapes from the different data sets.

In both evaluations, the two approaches are performed with different
settings. To rate the imputation approach, the algorithm is performed with
1, 3 and 5 iterations and without the iterative back-projection step. The
RPCA evaluation is divided into the different weighting approaches, i.e.
outer and inner weighting. In addition, the standard RPCA procedure
without including the weights and the WRPCA with inner weighting and
corrected γ is computed. The available input training data for both ap-
proaches is introduced next.

6.1 Dataset

For evaluation, a training set of 63 clinical CT scans have been used. 19 data
sets were taken from the public 3D-IRCAD data base10, 17 training data sets
from the MICCAI liver challenge [HvGS09] in 2007 and the remaining 27
were additional non-public data sets. These data sets have a slice dimen-
sion of 512× 512 voxels and varying extent in the z-dimension in between
[129, 183]. For evaluation purposes, ground truth data is available for each
example. An existing segmentation algorithm is used to create the initial
outlines of the structure of interest. Here, a liver segmentation was cho-

10www.ircad.fr
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sen [EK10], since the data sets contain CT liver scans. By extracting the
image data with Marching Cubes algorithm [LC87], the delineations are
transferred to a mesh representation with 2402 points in R3. After finding
corresponding points across the set of ground truth shapes and the initial
segmented mesh data11, each shape vector contains 2562 landmark points.
In order to test whether the anatomical variance of the liver follows a Gaus-
sian distribution in shape space, the 63 ground truth shape examples have
been used for building a SSM. The projection of the first two principal com-
ponents is visualized in Figure 28.

Figure 28: A liver SSM with underlying Gaussian distributed PDF. The shading
encodes the probability of being a plausible liver shape.

The shading encodes the underlying probability density function of the
model, where the saturation indicates the probability of a shape to be a
plausible liver shape. The shapes cluster around the point with the highest
probability, i.e. the mean shape is very representative for the distribution of
the training data. The PDF continuously decreases from the point with the
highest probability, therefore, a Gaussian normal distribution is assumed
to be sufficient.

6.2 Probability Evaluation

To get a measure for evaluation of the estimated boundary probabilities
P , based on the combined HU and gradient magnitude values, the Mean
Absolute Error (MAE) to the optimal boundary probabilities PD from Section
4.4 is calculated. For a single shape, this is given by:

dMAE =
1

np

np∑
i=1

|Pi − PDi | (66)

Thus, the average magnitude of the absolute deviation of the probabilities
is measured. In addition, the standard deviation σ of dMAE is computed to

11Establishing correspondences together for both, the ground truth and the initial seg-
mentations, is necessary for the model evaluation.
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quantify the amount of variation of each boundary probability to the MAE:

σdMAE =

√√√√ 1

np

np∑
i=1

(|Pi − PDi | − dMAE)2 (67)

In the computation of the boundary probabilities, the box sizes for the
HU and the gradient were chosen to be 7 × 7 × 7 and the inner box of the
gradient is 9 × 9 × 9. In order to form the probability based on the HU, a
threshold T = 30 is chosen. This means, that distances between hmean and
hlocal higher or equal 30 are assigned a probability of 0. For the probabil-
ities based on the gradient, the maximum gradient gmax is set to 60. All
gradient values that exceed gmax have a probability of 1. Both probability
estimates are weighted equally with α = 0.5. The threshold TD for the op-
timal boundary probability calculations is set to 10. Since the distances are
measured with the meshes in the original size, the units correspond to mm.
That means, distances exceeding 10 mm are assigned the worst probability.
In Figure 29, the results of dMAE for each training shape are plotted with
their corresponding standard deviation. Lower values indicate better re-
sults. The total average of all training shapes, i.e. n−1S ·

∑nS
i=1 dMAEi , yields

a deviation of approximately 22%.
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Figure 29: The Mean Absolute Error of the boundary probability estimation to the
optimal distance probabilities, plotted for 63 shape examples. The ver-
tical lines indicate the standard deviation of a particular shape. The
average error is 22%.

6.3 Model Evaluation

A statistical shape model is described by the underlying PDF of the train-
ing meshes in the shape space. For Gaussian distributed meshes, PCA finds
the coordinate system, centered in the mean and spanned by the axes with
the highest variance. To evaluate these models, the whole region in shape
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space defined by the PDF has to be considered [DTT08]. Common specifi-
cations to assess the quality of a SSM are:

1. Generalization: The model is able to represent any instance of the
PDF and not only the training data.

2. Specificity: The model represents only valid instances of the class of
the training data.

3. Compactness: The model is described with the minimum amount of
possible parameters. This is already given, since PCA reduced the
dimensionality and a low-dimensional subspace is found [DTT08].

Generalization A statistical shape model should be able to generate
any new instances of the class of the training shapes, not only the training
shapes itself. Considering Figure 30a, a PDF with a high generalization
ability scatters between and around the data points. If the generalization
is low, the PDF does not cover the whole class of input data (cf. Figure
30b). This fundamental property permits learning the characteristics of the
training meshes and utilizes the statistics to generate new shapes.

(a) (b) (c)

Figure 30: The PDF (grey) of different models is illustrated, where the data is rep-
resented as points (black). A model with (a) high generalization and
low specificity overestimates the space spanned by the data points. A
model with (b) high specificity and low generalization ability does not
cover the whole space between the data points. A specific model which
has also a high generalization ability is shown in (c).

Generalization is usually computed using a leave-one-out measure, by
building a model of all but one training mesh and reconstructing the omit-
ted shape with the model PDF [GB10]. This procedure is repeated for all
training shapes. The reconstructed meshes are reviewed, relating to the
accuracy of the reconstruction to the original training mesh. This error is
averaged over the whole distribution. The leave-one-out method has one
drawback, it only probes the models PDF at the data points [DTT08]. As
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mentioned above, the entire class of the training shapes should be con-
sidered in a meaningful evaluation. Hence, another way to compute the
generalization ability, is to generate samples within the PDF and compare
these samples to the training data. With the set of input training shapes
Xt = {xt1,xt2, . . . ,xtnS

} and a set of samples Y = {y1,y2, . . . ,yK}, gener-
ated by sampling the PDF p(b) of Xt (see Equation 21), the generalization
G(m) for m retained modes can be computed by:

G(m) =
1

nS

nS∑
i=1

min
y∈Y

(d(xi,y)) (68)

where d(·, ·) is any distance metric between two shapes. Thus, the gener-
alization is just the mean of all minimum distances for each training mesh
to the nearest sample in Y . Due to this, the appearance of the sample af-
fects the quality of the resulting generalization value. Notice, if each gen-
erated sample is similar to one of the training shapes, the result will be
low. Thus, to minimize the generalization ability, samples preferable simi-
lar to the training meshes have to be generated. The variations of the input
shapes are described by the eigenvectors and the eigenvalues of the model.
To cover most of the distribution of training shapes with the samples, dif-
ferent modes of variation have to be considered. For example, if only a sin-
gle mode is retained, the parameter vector b is build from the first principal
component by randomly sampling in the range

[
−3
√
λ1, 3
√
λ1
]
. In the in-

terpretation of the results, smaller values stand for a higher generalization.
The standard deviation of G(m) can be computed:

σG(m) =

√√√√ 1

nS

nS∑
i=1

(
min
y∈Y

d(xi,y)− G(m)

)2

(69)

Specificity A specific model only generates plausible examples, i.e. shapes
similar to the training shapes. Figure 30b represents a PDF with a high
specificity ability, where the PDF is centered around the data points. Though,
in 30a, the PDF represents more than the space spanned by the data points.
Thus, the model can generate shape instances different to the data points.
The property of generating specific shapes can be described similar as the
generalization ability:

S(m) =
1

K

K∑
i=1

min
x∈X

(d(x,yi)), (70)

where K is the amount of randomly generated samples. Different to G,
the mean of all minimum distances from the population of samples to the
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training shapes is computed. The smaller the values, the more specific is
the model PDF. However, a small result of S does not yield to a coverage of
the complete training data [DTT08]. Therefore, the evaluation of general-
ization and specificity should be considered and evaluated in combination.
Figure 30c illustrates a model with both, a high generalization as well as a
high specificity ability. The standard deviation of S(m) is given by:

σS(m) =

√√√√ 1

K

K∑
i=1

(
min
x∈X

d(x,yi)− S(m)

)2

(71)

In summary, the computation of G(m) and S(m) calculates the distance
between the set of training shapes to a population of instances within its
class. The two specifications rate the quality of one model. The evalua-
tion in this work however, should achieve a rating of one model referring
to the model built by the ground truth data. Therefore, the procedure of
computing generalization and specificity is modified. Additionally to the
training set Xt and their sample set Y , the corresponding ground truth set
Xgt = {xgt1,xgt2, . . . ,xgtnS

} has to be involved. Instead of using Xt and
Y for the computation of G(m) and S(m), Xgt and Y are used. For exam-
ple, consider the resulting shapes of the RPCA approach as Xt. A model
is build from this training data and samples Y are generated within this
model. Then Y is compared to the ground truth set Xgt by computing
G(m) and S(m).

6.3.1 Surface-based evaluation

As mentioned before, any distance metric can be used in the evaluation of
G(m) and S(m), to compare the surfaces of two shape vectors. One simple
approach is a point-to-point distance measure, based on the corresponding
landmarks of the two shapes y and xgt. With the linear MAE measure
from Equation 66, all differences between the points would be weighted
equally. In order to give a relatively high weight to large differences of
corresponding landmarks, the Root Mean Square Error (RMSE) dRMSE can be
used instead for comparison:

dRMSE(y,xgt) =

√√√√ 1

np

np∑
i=1

‖pi − qi‖2, (72)

where p ∈ y and q ∈ xgt. The RMSE indicates the square root of the mean
of the squared Euclidean distances between the two surfaces y and xgt. No-
tice, that point correspondences between Y andXgt are needed. By finding
corresponding landmarks between Xt and Xgt, implicitly correspondence
between the generated samples in Y and Xgt exists.

45



In the following, the models of the proposed meshes from Sections 5.1
and 5.2 are evaluated. The two approaches are performed with different
settings and in each case with the estimated image-based (P) and the opti-
mal distance probabilities (D). Furthermore, the ground truth model itself
is rated, by generating samples directly in this model, as a reference. The
RMSE is used as a distance metric and the amount of retained modes of
variation m in G(m) and S(m) is set to 12. To attempt a high coverage of
the PDF, the number of generated samples K is set to 10000.

The results of specificity and generalization ability for the imputation
approach with 3 iterations is shown in Figure 31. Varying the amount of
iterations do not show significant differences. Hence, the graph of the im-
putation method is taken as a representative, due to better visualization.
Notice, since a SSM is scaled during model building, the units of general-
ization and specificity are arbitrary. However, by keeping track of the av-
erage scaling factor, it is possible to rescale the outcome. Thus, the original
unit of mm is reobtained.
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(b) Generalization

Figure 31: The specificity and generalization ability of the imputation approach,
computed with the RMSE as internal shape metric.

In both cases, the ground truth achieves the best results, as the sam-
ples are generated directly in the model of Xgt. The imputation method
yields to a more specific model in the relation to the ground truth, than the
raw segmented meshes. Both, estimated and optimal probabilities, show
similar results. Unlike the specificity of the raw segmented and the ground
truth, the specificity of the imputation only increases slightly with the num-
ber of retained modes and the standard deviations are smaller. Here the
reconstruction accuracy of the ground truth model is about 2−7 mm better.
However, the generalization ability of the imputation approach provides
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only slightly improvements to the raw segmented meshes with a recon-
struction accuracy to the ground truth of about 6, 7 mm.

The evaluation results for RPCA are plotted in Figure 32. Again for bet-
ter visualization, only the estimated probabilities are shown. On average,
the approaches with the optimal distance probabilities are 0, 2 mm better
than with the image-based estimates. Again, all variations of RPCA yield

5 

7 

9 

11 

13 

15 

17 

19 

1 2 3 4 5 6 7 8 9 10 11 12 

RMSE 

Ground truth Raw segmented  

Standard RPCA WRPCA_Outer - P 

WRPCA_Inner - P WRPCA_Inner_C - P 

(a) Specificity

5 

7 

9 

11 

13 

15 

17 

19 

1 2 3 4 5 6 7 8 9 10 11 12 

RMSE 

Ground truth Raw segmented  

Standard RPCA WRPCA_Outer - P 

WRPCA_Inner - P WRPCA_Inner_C - P 

(b) Generalization

Figure 32: The specificity and generalization ability of the RPCA approach, com-
puted with the RMSE as internal shape metric.

to a higher specificity and generalization than the raw segmented meshes.
Against the expectations, the standard RPCA approach achieves slightly
better specificity results than WRPCA. This issue will be discussed later in
this section. Concerning generalization, the values are all similar, with no
significant improvements.

6.3.2 Volume-based evaluation

The major drawback of the model evaluation is the dependence on cor-
responding landmark points. As these are obtained from all training and
ground truth shapes, perfect correspondence cannot be assumed to exist
between the data. Thus, the distribution of the landmarks can cause better
results for worse models, where slightly deviations occur. Ideally, corre-
spondence is established again for each pair of investigated sample y and
ground truth shape xgt. From a computational point of view, this would be
impractical though. Therefore, other measures without the need of corre-
sponding features are required. However, if 10000 samples with each 2562
points are used, the approach proposed in Section 4.4 and other closest
point algorithms are still to complex. [HWM06]
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By changing the distance metric within the computation of G(m) and
S(m) to a volumetric difference, the measure becomes independent of the
underlying landmark distribution [CCH06]. One method to define such
shape similarity in a volumetric representation is the Tanimoto coefficient
(TC), also known as Jaccard coefficient. The TC is defined by the ratio of
the number of voxels in the intersecting set of two binary images A and B,
to the number of voxels in the union:

dO(A,B) =
|A ∩B|
|A ∪B|

(73)

where dO ∈ [0, 1]. An overlap of dO = 1 means, the meshes are exactly the
same. If dO = 0, the two images do not coincide at all. A distance metric is
obtained by computing the volumetric error dVE:

dVE = (1− dO) · 100 (74)

To integrate the TC in the proposed evaluation method, the meshes
have to be converted into a binary volume representation. This is done by
stenciling each shape with a reference volume, where 1 indicates the fore-
ground and 0 the background. According to [HWM06], this procedure to
obtain the overlap of two shapes is less time consuming than the complex
surface distance computation, even if the meshes first have to be converted
to a volume representation. Since a volume representation requires more
memory space, the amount of randomly generated samples is set to 800.

To generate this reference volume for a set of input shapes, the region
covered by the meshes has to be found. Since the data is centered around
the origin, the extent h in each dimension x, y and z can be computed by
finding the minimum and maximum bounds in this data set. For example,
the extent in direction x is computed by hx = maxx −minx. The spacing u
is defined to be equal in all three dimensions and is described by:

u =
max(hx, hy, hz)

Nv
(75)

where the value Nv is a predefined maximal number of voxels in one di-
mension. The actual amount of voxels (dimx, dimy, dimz) is computed for
each dimension by:

dimx =
hx
u
, dimy =

hy
u
, dimz =

hz
u

(76)

The resulting volume has an equally spacing, but a different amount of
voxels in each dimension (cf. Figure 33).

Applying the volumetric error measurement to the G(m) and S(m) eval-
uation, the ground truth meshes Xgt, as well as the sample set Y have to
be transformed into a volume representation. The result for the imputation
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Figure 33: The generated reference volume for the evaluation is defined by the
triple (dimx, dimy, dimz). The voxel spacing u is equal in each dimen-
sion.

approach is visualized in Figure 34, where the results for three iterations
are used as a representative. Due to the limited memory space, the value
Nv is set to 200 and the number of generated samples to 800.
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Figure 34: The specificity and generalization ability of the imputation approach,
computed with the volumetric error as internal shape metric.

Directly noticeable, the results indicate greater differences between the
developed approaches and the raw segmented meshes. With the volu-
metric error as the shape distance metric, the generalization ability shows
greater improvements. However, the specificity show some unexpected re-
sults, where both imputation methods are more specific than the ground
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truth samples. Same with the RPCA approaches in Figure 35, where the
standard RPCA achieves the best specificity, even compared to the ground
truth. Furthermore, standard RPCA yields to the result with the closest
generalization graph to the ground truth. However, all developed ap-
proaches show improvements compared to the raw segmented model sam-
ples.

20 

22 

24 

26 

28 

30 

32 

1 2 3 4 5 6 7 8 

Volumetric Error 

Ground Truth Raw segmented 
RPCA_Outer - P RPCA_Outer - D 
RPCA_Inner - P RPCA_Inner - D 
RPCA_Inner_C - P RPCA_Inner_C - D 
Standart RPCA 

(a) Specificity

19 

20 

21 

22 

23 

24 

25 

26 

27 

1 2 3 4 5 6 7 8 

Volumetric Error 

Ground Truth Raw segmented 
RPCA_Outer - P RPCA_Outer - D 
RPCA_Inner - P RPCA_Inner - D 
RPCA_Inner_C - P RPCA_Inner_C - D 
Standart RPCA 

(b) Generalization

Figure 35: The specificity and generalization ability of the RPCA approach, com-
puted with the volumetric error as internal shape metric.

6.3.3 Discussion

Concerning the unexpected results from the model evaluation with the
RMSE and the volumetric error, some arguments need to be considered.
The main problem arises, when different datasets are used, such as the im-
putation approach, RPCA and ground truth, where samples are generated
within the fixed interval of

[
−3
√
λk, 3
√
λk
]
. The eigenvalues of the mod-

els of those different training sets for generating samples highly deviate,
as Figure 36 points out. The ground truth data has the highest variance in
the first modes, followed by the raw segmented data set. Noticeable is the
low variance of the imputation methods and the standard RPCA approach.
Exactly these meshes achieved a high specificity and generalization in the
previous evaluation. In Figure 37, the ellipses, constructed by the variances
of the first two principal components are drawn. The space spanned by the
ground truth is much bigger than the space spanned by the imputation
method. In the evaluation of G(m) and S(m), samples are generated in this
small space and compared to the ground truth meshes. Hence, the gener-
ated samples cannot cover the whole variance of the ground truth. In the
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Figure 36: The eigenvalues of the proposed approaches show smaller values, com-
pared to the ground truth and raw segmented data. The imputation
approach in (a) suffers the most loss of variance, whereas the WRPCA
preserves more shape variability, i.e. higher eigenvalues.
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Figure 37: The ellipses are drawn from the eigenvalues of the first two principal
components. The legend is sorted by decreasing order of the amount of
variance.
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imputation approach, the meshes are all shifted towards the mean. The
resulting meshes as well as the generated samples are similar to the mean
and do not show a high variance. Due to this, it is reasonable, that the im-
putation method achieves a high specificity compared to the ground truth.
In the computation of S(m) for each of these mean-like meshes, the most
similar ground truth is found. Thus, the PDF of the ground truth follows a
Gaussian distribution, the chance that a sample of the imputation method
finds a similar ground truth in the mean area is high. The same applies
for the standard RPCA approach. Due to this, considering only generaliza-
tion and specificity as a model quality measurement, is not sufficient in this
modified evaluation procedure. The properties of the PDF have to be taken
into account in the rating. Notice, that all proposed approaches in Figure 37
yield to a decreasing variance to a lower or higher degree, compared to the
original raw segmented shape data. However, all WRPCA approaches pre-
serve the retained variance better than the imputation and standart RPCA.
Therefore, by considering all given facts from evaluating specificity, gen-
eralization and the variance, the methods of the weighted RPCA obtain
the most reasonable results and can be recommended to build a SSM from
erroneous data. By correcting γ in the inner weighting, the model can be
slightly improved, however, deciding between outer and (corrected) inner
weighting is difficult. The outer weighting achieves better values in the
specificity and generalization ability, whereas the inner weighting has the
smallest loss of variance.

All experiments were performed on an Intel Core i5 3570k CPU desktop
PC with 8 GB RAM. The computation for the surface-based evaluation with
10000 samples took 18 minutes for 12 modes. The evaluation of the volume-
based shape difference with 800 samples took 110 minutes for 8 modes. It
could be argued, that more samples would improve the accuracy of the
evaluation. However, 800 samples was the limit under the conditions of
the hardware.

6.4 Mesh Evaluation

The described model evaluation probes the PDF of a SSM in the entire class
of the training shapes. According to this, the actual physical shapes of the
reconstructed meshes need to be considered independently [DTT08]. This
is done by computing the distance between these training meshes and the
corresponding ground truth.

6.4.1 Surface-based evaluation

For mesh evaluation, first, the distance metric dRMSE is performed for each
pair of the 63 training meshes from the initial segmentation to the corre-
sponding ground truth. Each of these pairs are centered around the origin
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and mutually aligned with the Procrustes method from Section 2.3. The
average of all distances is taken as the reference error dref of the raw seg-
mented mesh data, i.e. before the approaches from Sections 5.1 and 5.2 are
applied:

dref =
1

nS
·
nS∑
i=1

dRMSEi (77)

Then, the mean RMSE in the above equation is recomputed after the meshes
have been reconstructed using the proposed methods from this work. Here,
the estimated boundary probabilities (P) and the optimal boundary proba-
bilities (D) are both considered again. Finally, Figure 38 shows the average
RMSE for the imputation approach and Figure 39 the same for RPCA. The
lower the values, the smaller is the deviation to the ground truth data.
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Figure 38: The average RMSE of all meshes after the imputation approach.
Smaller values indicate better results, i.e. a smaller error.

Since the results in both figures are less than the reference error, both
approaches generate on average meshes, more similar to the ground truth
than the raw segmented meshes. Trivially, the results from the imputation
method in Figure 38 show, that the optimal probabilities provide lower re-
sults and therefore a smaller error to the ground truth than the estimated
image-based probabilities. Furthermore, the influence of the iterative back-
projection steps are limited to small changes, as recognized in the model
evaluation. However, the best result is given by 1 iteration.

The RPCA results in Figure 39 yield to the best outcome with the outer
weighting. Notice, that the outer weighting with probabilities achieve a
higher value than without using any weights. By varying the parameter γ
in the inner weighting as suggested, slightly better results are obtained.

Since this assessment is based on point correspondences again, plausi-
ble results are not ensured. As mentioned in the model evaluation, closest
point algorithms are a better choice. The computational complexity in the
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Figure 39: The average RMSE of all meshes after the RPCA approach. Smaller
values indicate better results, i.e. a smaller error.

mesh evaluation is much lower, as only 63 shape comparisons are com-
puted, instead of 63 · 10000 in the model evaluation. One possible closest
point metric is the Hausdorff distance, which is described below.

The Hausdorff distance is a common technique to compute the difference
between sets of points. It is based on the Euclidean-norm and is very sensi-
tive to outliers [GB10]. The metric is given by computing twice the directed
Hausdorff distance and finding the maximum. The directed Hausdorff dis-
tance is described as the maximum distance to the nearest points on another
mesh:

ddHD(xt,xgt) = max
p∈xt

min
q∈xgt

‖p− q‖ (78)

This means, for every point in xt, a landmark in xgt is found, where the
Euclidean norm is minimized. The directed Hausdorff distance ddHD arises
from the maximum of these smallest Euclidean norms. Equation 78 com-
putes an oriented distance from one shape to another. It is obvious that
ddHD(xt,xgt) 6= ddHD(xgt,xt). The general Hausdorff distance dHD be-
tween xt and xgt is formed from the maximum of ddHD in both directions:

dHD(xt,xgt) = max (ddHD(xt,xgt), ddHD(xgt,xt)) . (79)

The Hausdorff distance is applied to the evaluation of the reconstructed
meshes. The averaged results for the imputation approach are visualized
in Figure 40 and for the RPCA approach in Figure 41. The Hausdorff dis-
tance is always positive and smaller values represent better results, i.e.
higher similarity to the ground truth. Same as the RMSE evaluation, all
approaches yield to smaller distance values than the raw segmented data.

By considering the different imputation method performances, the low-
est value is reached by the weighted shifting. Unlike the RMSE evaluation,
the smoothing iteration steps do not further improve the Hausdorff dis-
tance.
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Figure 40: The average Hausdorff distance of all meshes after the imputation ap-
proach. Smaller values indicate better results, i.e. a smaller error.
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Figure 41: The average Hausdorff distance of all meshes after the RPCA approach.
Smaller values indicate better results, i.e. a smaller error.
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In the Hausdorff evaluation of the different RPCA performances, the
meshes of the RPCA with optimal inner weighting and corrected γ achieve
the best results. However, the worst performance, i.e. the lowest similar-
ity to the ground truth, is the RPCA with estimated inner weighting. This
corresponds to the previously findings from Figure 27. Since the Hausdorff
distance is very sensitive to outliers, the results show that the estimated
probabilities are too inaccurate to reduce all corrupted parts. This sensi-
bility has to be handled carefully. In particular, a case of similar meshes,
a single high distance value results in a high Hausdorff distance. Com-
pared to the standard RPCA, the use of estimated probabilities, however,
can enhance the mesh reconstruction in the case of outer weighting.

6.4.2 Volume-based evaluation

Same as with the model evaluation, the meshes can be transferred to a
volume-based representation, to get rid of the dependence of the under-
lying point structure. Thus, it is possible to use the Hausdorff distance as
a measure in a volume representation. However, the results did not show
significant differences to the surface-based Hausdorff distances. Therefore,
the volumetric overlap is used to get a different perspective of shape com-
parison.

After transforming all 63 training meshes and all 63 ground truth meshes
to a binary volume representation, as described in Section 6.3.2, each over-
lap dO from Equation 73 is computed between the nS shape pairs. In Figure
42 and 43, the mean of the overlap, i.e. n−1S

∑nS
i=1 dOi , is shown for both pro-

posed approaches and the raw segmented data.

0,78 

0,79 

0,80 

0,81 

0,82 

0,83 

Raw segmented  Imputation Only 

- P 

Imputation Only 

- D 

Imputation 1 It. - 

P 

Imputation 1 It. - 

D 

Imputation 3 It. - 

P 

Imputation 3 It. - 

D 

Imputation 5 It. - 

P 

Imputation 5 It. - 

D 

Overlap  

Figure 42: The average overlap of all meshes after the imputation approach.
Higher values indicate better results, i.e. a better match with the ground
truth.

The imputation results from Figure 42 show a decreasing mesh quality
with the estimated probabilities. In contrast, the optimal boundary prob-
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Figure 43: The average overlap of all meshes after the RPCA approach. Higher
values indicate better results, i.e. a better match with the ground truth.

abilities achieve a higher overlap to the ground truth. This strengthen the
speculation, that the estimated probabilities in the imputation method are
not sufficient. As discovered in Section 6.2, the estimated probabilities vary
about 22% to the optimal probabilities. It can be argued, that due to this, ac-
tually good segmented regions however have a 22%-higher chance of being
shifted towards the mean shape. In this case, the structure of the physical
shape is hard to preserve.

On the other hand, the WRPCA approaches from Figure 43 improve the
overlap to the ground truth, even with the estimated probabilities. Here,
the WRPCA approach with inner weighting achieves the best result on av-
erage. Furthermore, standard RPCA yields to a degradation of the overlap,
where the reconstruction provides mean-like meshes again.

Finally, in Figure 44, the different proposed approaches with the es-
timated boundary probabilities are compared with three example shapes
and in Figure 45 with the optimal probabilities respectively.

6.5 Conclusion

Summarizing the results from the proposed evaluation methods, the re-
constructed meshes of both, the imputation as well as the RPCA approach,
achieve a higher quality, i.e. a lower distance to the ground truth. In ev-
ery case, the meshes weighted by the estimated probabilities have a lower
agreement to the ground truth, than with the optimal probabilities. As
shown in Evaluation 6.2, the image-based probabilities deviate 22% from
the optimal probabilities. By using these estimates, only the WRPCA ap-
proach with outer weighting yields to acceptable results. Using the opti-
mal weights, both approaches show reasonable outcomes. The imputation
approach achieves a good specificity and generalization ability, the eigen-
value analysis in 6.3.3 however, shows a high loss of variance. The meshes
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Figure 44: Overview of three reconstructed meshes with the estimated boundary
probabilities. From top to bottom: Raw segmented, imputation with 1
iteration, standard RPCA, inner WRPCA with corrected γ, outer WR-
PCA, ground truth.
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Figure 45: Overview of three reconstructed meshes with the optimal boundary
probabilities. From top to bottom: Raw segmented, imputation with
1 iteration, standard RPCA, inner WRPCA with corrected γ, outer WR-
PCA, ground truth.
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are more similar to each other than the ground truth meshes, so they cannot
cover the whole variance of the ground truth. Considering the different it-
eration steps, the meshes with one iteration achieves slightly better results
than the others. Comparing the two developed approaches, the RPCA with
the optimal weighting scores in nearly every case the best outcome. By rat-
ing the different settings in the RPCA approach, the standard RPCA has
a higher dissimilarity to the ground truth than the WRPCA. In the model
evaluation, the outer weighting has the highest specificity and generaliza-
tion ability, on the other hand, in the mesh evaluation, the inner weighting
with the corrected γ attains in most cases the best results. Regarding the
retained variance, the standard RPCA has the highest loss from the class of
RPCA. The method with inner weighting retained the most variance.
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7 Outlook and Further Work

Regarding the evaluation results, it can be argued, that the output of the
segmentation algorithm used to create the corrupted training data may al-
ready be of good quality. By using the distance method from Section 4.4,
without clamping the values to a certain threshold, the average error of the
input segmentations and the ground truth is 4,41 mm. From the 63 shape
examples, the maximum mean point deviation is 8,34 mm and the mini-
mum is 2,92 mm. Hence, other segmentation algorithms might lead to train-
ing data with a higher degree of errors and a poorer initial shape model. It
would be interesting to see the improvement by using the meshes of other
segmentation algorithms. Furthermore, the resulting SSM could be inte-
grated into a model-based segmentation algorithm and the methods from
this work could be iteratively applied to see if the quality of the model can
be further enhanced.

The amount of ground truth training shapes is typically limited and
rarely publicly available. With the proposed approaches from this work,
potentially hundreds or thousands of corrupted training shapes can be in-
corporated in the model building procedure. It would be also interesting
to see, how many data sets are needed in order to create a SSM of the same
or better quality, than a shape model generated from a limited number of
ground truth data.

In this work, the construction of a statistical shape model is based on a
landmark representation. Thus, point correspondences are needed in order
to model the variability of a population of shape examples. As mentioned
in the evaluation, a volume-based representation is a better choice for the
internal shape comparison metric, to get rid of the problems that arise from
the point correspondences. Building correspondences means, relocating
points to specific positions of the shapes in the data set. Thus, the distri-
bution of the landmarks of the meshes could be suboptimal (cf. Figure 46).
The density of the mapped points can slightly vary and the distribution
of the landmarks can become sparse in certain regions [HWM06]. Thus,
it may happen that the represented mesh varies from the original mesh.
Hence, building correspondences can cause errors. Additionally in this
work, the proposed reconstruction approaches can cause some changes in
the landmark distribution and it is not ensured, that dense correspondence
exists anymore.

By considering the evaluation in a volume-representation, the problem
was only solved partially. However, in the steps of building a model from
landmark meshes, the correspondence error is already included. By trans-
ferring the meshes exclusively in the evaluation into a volume-based repre-
sentation, the correspondence error cannot be undone, it simply preserves
the error of increasing. To overcome this correspondence error, the whole
pipeline of model building has to be transferred into a volume-based proce-
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Figure 46: A problem of landmark-based shape representation is shown. The dis-
tribution of points varies after correspondence is established. Espe-
cially, the deviations appear in regions with a high curvature. The red
outline shows the initial segmentation and the white outline the mesh
after correspondence is established.

dure, e.g. where the boundary shape is implicitly described with a signed
distance map. However, there are also some limitations. Considering the
pipeline developed in this work, one problem arises with the handling
of boundary probabilities. In the landmark-based representation, the 3D-
points were shifted towards a specific point, in relation to their probability.
Assuming a probability for each voxel, a simple shifting of voxels is not
possible. Furthermore, by changing the value of voxels in the signed dis-
tance map representation, it could happen, that the zero-level line becomes
sparse and the SDM is not representative anymore. Another shortcoming
is, that building a shape model with PCA can become erroneous, if the
volume is defined by a SDM. As said in [DRT08], building linear PCA on
SDMs can cause unrealistic shapes by linear combination of the SDMs. To
solve this issue, Cremers et al. proposed a method in [COS06], where kernel
PCA and a Parzen estimator is used for modeling the shape distribution.
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8 Conclusion

In this work, methods for constructing a statistical shape model without
the need of manually delineated ground truth data have been proposed.
The training data is assumed to be the result of any segmentation algo-
rithm or may originated from non-expert annotators. Depending on this
data acquisition, the shape examples will contain regions with erroneous
boundary segmentations. In order to handle such corrupted parts, each
landmark point is assigned a probability of being a boundary. These esti-
mated probabilities rely on image-based methods and have an average de-
viation to the optimal probabilities of about 22%. During the further model
building procedure, two different approaches were introduced, to treat the
erroneous data appropriately, before PCA is applied. The statistics inher-
ent in the training data is used for reconstruction of the corrupted shapes.
The imputation method is a rather brute-force approach, where low prob-
ability points are replaced with the mean of corresponding landmarks. Re-
cent advances in sparse optimization yield to a robustified version of PCA,
where a low-rank matrix is recovered from the corrupted training data ma-
trix. Outliers are separated from the data, by solving a convex optimiza-
tion problem. By incorporating the boundary probabilities into the RPCA
method, the prior knowledge can be exploited, by weighting the selection
of the outliers in RPCA. After the training data is reconstructed, using ei-
ther the imputation or RPCA approach, the data is assumed to be free of
outliers. By applying PCA to the data, the low-dimensional linear subspace
is found, to perform dimensionality reduction and model the variability of
the training data.

In order to test whether the imputation and RPCA approaches enhance
the quality of the resulting shape model to the initial segmentations, an
evaluation of 63 liver CT scans compared the generalization and specificity
ability and the difference between the training shapes and ground truth.
Both approaches showed improvements of the mesh reconstruction, where
the WRPCA achieves the best outcome. By rating the different weighting
methods, the outer, as well as the inner with the corrected γ, result in good
reconstructions. The model built by these meshes is of reasonable quality
and preserves a high amount of variation. However, using these models,
built of 63 reconstructed meshes from routine clinical data instead of 63
high-quality ground truth, leads to a degraded quality. It would be inter-
esting to see, how the quality of the model is affected by using potentially
hundreds or thousands of corrupted training shapes and compared to a
model, built with only a limited amount of ground truth data.

The approaches developed in this work could be further integrated in
a model-based segmentation algorithm, by first building a SSM of a set of
reconstructed meshes in an initialization step and than using this model
as a reference for new segmentations. The underlying shape model can be
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updated in every segmentation phase, in order to increase the amount of
training shapes in the model. However, the proposed approaches allow
the inclusion of even low-quality data, gained during clinical routine, to
enlarge the amount of shape variations in a SSM. Accepting, that the qual-
ity of a ground model cannot be reached, corrupted shape examples can be
used to create a reasonable SSM. Hence, new applications can benefit from
the robust framework to build reliable statistical shape models.
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