I I TA
OBLENZ LANDAU MAXON

Fachbereich 4: Informatik MAXON Computer GmbH

3D FOR THE REAL WORLD

Interactive Physically-Based Hair
Rendering

Masterarbeit

zur Erlangung des Grades eines Master of Science (M.Sc.)
im Studiengang Computervisualistik

vorgelegt von

Jochen Hunz

Erstgutachter: ~ Prof. Dr.-Ing. Stefan Miiller
(Institut fiir Computervisualistik, AG Computergraphik)

Zweitgutachter: Mauro van de Vlasakker , M.Sc.
(MAXON Computer GmbH)

Koblenz, im Miarz 2016

Erklarung

Ich versichere, dass ich die vorliegende Arbeit selbstindig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Ja Nein
Mit der Einstellung der Arbeit in die Bibliothek bin ich einverstanden. O [

Der Veroffentlichung dieser Arbeit im Internet stimme ich zu. O O

(Ort, Datum) (Unterschrift)

Abstract

This work covers techniques for interactive and physically - based render-
ing of hair for computer generated imagery (CGI). To this end techniques
for the simulation and approximation of the interaction of light with hair
are derived and presented. Furthermore it is described how hair, despite
such computationally expensive algorithms, can be rendered interactively.
Techniques for computing the shadowing in hair as well as approaches to
render hair as transparent geometry are also presented. A main focus of
this work is the DBK-Buffer, which was conceived, implemented and eval-
uated. Using the DBK-Buffer, it is possible to render thousands of hairs as
transparent geometry without being dependent on either the newest GPU
hardware generation or a great amount of video memory. Moreover, a com-
prehensive evaluation of all the techniques described was conducted with
respect to the visual quality, performance and memory requirements. This
revealed that hair can be rendered physically - based at interactive or even
at real - time frame rates.

Zusammenfassung

Die vorliegende Arbeit behandelt Techniken zur interakativen und physik -
alisch basierten Darstellung von Haaren fiir Computer-Generated Imagery
(CGI). Dafiir werden Techniken zur Simulation und Approximierung der
Interaktionen von Licht mit Haar hergeleitet und vorgestellt. Des Weit-
eren wird beschrieben, wie Haare, trotz solch berechnungsintensiver Algo-
rithmen, sehr interaktiv dargestellt werden konnen. Verfahren zur Berech-
nung von Schatten in Haaren sowie Ansitze zur effizienten Darstellung
von Haar als transparente Geometrie werden ebenfalls vorgestellt. Einen
Hauptschwerpunkt der Arbeit bildet dabei der DBK-Buffer, welcher im Rah-
men dieser konzeptioniert, implementiert und evaluiert wurde. Mit Hilfe
des DBK-Buffers ist es moglich tausende von transparenten Haaren sehr
effizient darzustellen ohne auf Funktionalitidten der neusten Grafikkarten-
Generation, oder sehr viel Videospeicher, angewiesen zu sein. Dariiber
hinaus wurde eine umfassende Evaluierung der beschriebenden Techniken
beziiglich der visuellen Qualitét, der Performanz und des Speicheraufwan-
des durchgefiihrt. Dabei wurde gezeigt, dass Haare nicht nur mit interak-
tiven, sondern sogar mit echtzeitfihigen Bildwiederholungsraten physik-
alisch basiert dargestellt werden konnen.

ii

Acknowledgments

I would first like to thank my thesis supervisor Prof. Dr. Stefan Miiller of
the University of Koblenz - Landau. Prof. Miiller always guided me in the
right direction when I ran into difficulties but also allowed me freedom for
this thesis to be my own work. Besides this work, Prof. Miiller played a
significant role during my studies as my teacher and advisor. Without his
talent to inspire and motivate his students, things would have been differ-
ent.

I would also like to thank Mauro van de Vlasakker from the Maxon Com-
puter GmbH as the second reader of this thesis. I am gratefully indebted to
him for his valuable comments and contributions. Moreover, I would like
to thank to everyone at the Maxon Computer GmbH who made this thesis
possible. Especially, I would like to thank Maik Schulze, Stefan Minning
and Fritz Kemmler as they always discussed algorithmic details with me,
Edd Biddulph for his valuable help with OpenGL and Sebastian Jeckel for
giving me deeper insights into the C++ programming language.

I would also like to acknowledge John Rees and Simon Wagner for proof
reading, not only of this thesis, and for all their valuable comments. Fur-
thermore, I would like to thank my fellow students, Dennis Schlgsser and
Christopher Krey, who enriched my last five years at university.

Finally, I must express my very profound gratitude to my parents, Brigitte
and Rolf, my sister Anke and my brother Martin, as well as to my girlfriend
Lisa. Neither this thesis nor my studies would have been possible without
your unfailing support and continuous encouragement. Thank you!

Jochen Hunz

iii

Contents

1

Introduction
11 Motivation L.
1.2 Organization of this Work
Fundamentals
2.1 Properties of Human Hair
22 SolidAngles
23 Radiometry
2.3.1 Radiometric Quantities
24 BRDFTheory
2.4.1 Physically Plausible BRDFs
242 Rendering Equation
2.5 Physics of Light Scattering
Light Scattering in Fibers
3.1 Terminology and Notation
3.2 Kajiyaand Kay’sModel
3.3 Marschner'sModel
3.3.1 Scattering Measurements
3.3.2 A Physically-Based Shading Model
3.3.3 Scattering in Elliptical Fibers
334 Implementation
3.4 An Artist Friendly Hair Shading Model . .
Shadowing
41 Opacity ShadowMaps
42 DeepOpacityMaps
43 Approximated Deep Shadow Mapping . .
Transparency
51 A-Buffer
52 K-Buffer,
5.3 A Novel Approach: DBK-Buffer
54 RandomSubsets.
Results and Evaluation
6.1 ShadingModels
6.1.1 VisualResults
6.12 Performance.
6.2 Shadowing
6.21 VisualResults
6.2.2 Performance.
6.3 Transparency

iv

6.3.1 VisualResults
6.32 Performance
6.3.3 Memory Requirements.

7 Conclusion
71 FutureWork
72 Summary . o.o. ...

Additional Figures
List of Symbols
List of Figures

References

59

62

68

69

1 Introduction

The importance of hair and fur in computer graphics imagery (CGI) be-
comes more and more relevant. Obviously, the movie industry has a huge
interest in hair and fur rendering for all kinds of movies as nearly every
character has some kind of hair or fur. On the one hand, there are cartoon-
ish movies such as Tangled, Frozen, and Zoomania from the Walt Disney Ani-
mation Studios. On the other hand, there are photo-realistic kinds of movies,
where CGI augments real footage, as in recent movies such as Planet of the
Apes by 20th Century Fox (see figure 1). All these movies are typically ren-
dered using offline rendering technologies like ray or path tracing. These
techniques provide the best quality currently available in exchange for very
long computation times.

Figure 1: Hair and fur rendering in production movies. Top: Cartoonish looking
hair of Rapunzel and Flynn in Tangled from the Walt Disney Animation
Studios. Bottom: full CGI Ceasar with his photo-realisitc fur beside James
Franco playing as William Rodman in Rise of the Planet of the Apes from
20th Century Fox.

For production movies, tools like Shave and a Haircut by Joe Alter [20] and
yeti by Peregrine Labs [40] are commonly used. Besides that, 3D content
creation tools such as Cinema 4D, developed by the MAXON Computer
GmbH, provide in-house solutions for creating, authoring, and rendering
of hair (see figure 2).

Figure 2: Screenshot of Cinema 4D showing the interface as well as several view-
ports. Here, the guide hairs of the hair model are highlighted with a
blue color. The top left image shows a final render using the internal
hair material system.

The power of graphics processing units (GPUs) is continuously growing
which opens another market for hair and fur rendering: real-time applica-
tions such as video games and content creation tools which uses the GPU
as a rasterizer. One of the first fully fledged real-time implementation of
a physically-based hair model was done by Nvidia for their Nalu Demo in
2004 (see figure 3a) [11]. The effort Nvidia spent on hair and fur rendering
resulted in a Software and SDK called HairWorks in 2014 [12]. HairWorks is
a content creation and authoring tool (see figure 3b) which also provides
an SDK in order to include HairWorks in other software. Nvidia’s competi-
tor AMD provides an open source system called TressFX [13] as shown in
figure 4a. TressFX is a library for rendering and simulation of hair and fur.
Beside that, TressFX comes with a plugin for Maya [3] in order to create
and author hair and fur. TressFX was used for the reboot of Tomb Raider by
SquareEnix in 2013 to render and simulate Lara’s pony-tail (see figure 4b).

(a) Nalu demo. (b) HairWorks.

Figure 3: a) Real-time hair rendering in the Nalu Demo by Nvidia [11] and b) the
hair creation and authoring tool HairWorks by Nvidia. [12]

(a) TressFX.

Figure 4: a) Real-time hair rendering in TressFX by AMD [13] and b) TressFX used
in the video game Tomb Raider by SquareEnix.

1.1 Motivation

This thesis was created in strong cooperation with the MAXON Computer
GmbH, the developer of Cinema 4D and BodyPaint 3D. We asked several
users of Cinema 4D to find out what they need and miss in terms of hair
creation and rendering. As a result, the users came up with several very
interesting ideas. Unfortunately, most ideas would not fit into the scope of
this thesis or wouldn’t offer good fields for research. However, the users
do miss a good preview rendering of the hair shading in the OpenGL based
viewport of Cinema 4D and other tools. For instance, the viewport of Cin-

ema 4D is only capable of previewing the geometry of the hair but not the
actual shading as shown in figure 2. Because of this, we decided to dig into
the great field of interactive physically-based hair rendering as it provides
many resources and many open questions for scientific research. Neverthe-
less, it is worth noting that the implementation that was done during this
thesis is a standalone project which is totally independent of Cinema 4D.

1.2 Organization of this Work

Chapter 2 introduces the fundamentals that are necessary to understand
the theory of physically-based hair rendering. Therefore, an overview of
the most important properties of human hair is given in chapter 2.1. Fur-
thermore, chapters 2.2 - 2.5 introduce concepts of math, physics, and ren-
dering that are used throughout this thesis. In chapter 3, a comprehensive
discussion and derivation of the most important hair shading models is
given. Thus, there is the phenomenological model of Kajiya and Kay (3.2),
the physically-based model of Marschner et al. (3.3), and the artist friendly
hair shading system of Sadeghi et al. (3.4) which was developed by the
Walt Disney and Pixar Animation Studios for their production renderer
RenderMan [43, 50]. As shadowing is very important for the appearance
of hair, chapter 4 describes techniques suited for real-time hair rendering.
As hair is a semi-transparent material, chapter 5 addresses techniques for
rendering transparent geometry. Transparency for hair is difficult and ex-
pensive in terms of performance and memory as hair has a very complex
and dense geometry. In chapter 5.3, the DBK-Buffer is introduced which is
the main contribution of this thesis. The DBK-Buffer enables rendering of
hair in a very efficient way without being dependent on recent hardware
features that most GPUs don’t even support. Furthermore, the DBK-Buffer
is very efficient in terms of memory allocation which makes it even more
suitable for GPUs. A comprehensive evaluation of the shading models and
the shadowing and transparency techniques is given in chapter 6. Finally,
chapter 7 concludes this thesis and anticipates possible future work.

2 Fundamentals

2.1 Properties of Human Hair

Hair is a filament consisting of layered keratin structures (cf. figure 5a). The
outer hull of hair, called cuticle, is covered with tilted scales, growing from
the root of the hair to its tip, as one can see in figure 5b. These scales are
a very important for rendering as they shift reflected and transmitted light
ray about several degrees. The innermost part of the hair is the medulla,
which is surrounded by the cortex. The cortex and the medulla contain
many pigment granules which define the color of the hair. The thickness
of human hair varies between 50 and 120 um based on the ethnic group
[47]. For instance, the average diameter of European hair is 63.93um, the
thickness of Asian hair can average around 120m. Moreover, Asian hair
tend to be circular in cross section, where European hair has a significant
eccentricity of approximately 0.67:1. A much more detailed overview of
the geometric and physical properties of human hair is given by Sobottka
and Weber [53].

Cortex

Cuticle

(a) Ilustration of a hair strand. (b) Hair under a microscope.

Figure 5: a) Hair as a schematic illustration showing cuticle, cortex, and medulla
[48]. b) Hair as seen under a microscope showing scales growing from
the root to the tip [64].

2.2 Solid Angles

Solid angles are a fundamental concept for physically-based rendering. Basi-
cally, they are an extension of the two-dimensional planar angles (cf. figure
6a) to an angle on a unit sphere (cf. figure 6b) [41]. While planar angles
are measured in radians, solid angles are measured in steradians sr. The
solid angle w of an object c is the object’s projected area on the unit sphere.
Thus an entire sphere subtends a solid angle of w = 4x. Usually, direc-
tions within a sphere are measured in spherical coordinates (6, ¢), where ¢

is the azimuth. Using spherical coordinates, the differential solid angle dw
is written as
dw = sinfdfde. (@)

Please see figure 7 for a visual derivation of this equation. In literature, one
can often find the projected solid angle dw, which simply is the cosine -
weighted solid angle: dw’ = |cosf|dw. Using the projected solid angle,
several equations can be simplified.

n
0

<t v‘k

(a) Planar angle. (b) Solid angle.

Figure 6: a) The planar angle of an object c is the length of the arc s on the unit
sphere. b) The solid angle w of an object c is the object’s projected area
on the unit sphere. The differential projected solid angle is the cosine -
weighted solid angle: dw' = |cosf| dw. Images from [41].

sinBd¢

Figure 7: Derivation of equation 1: The differential solid angle dw is the product
of the two edges sinfd¢ and df. Image from [41].

2.3 Radiometry

The science of radiometry deals with the measurement of electromagnetic
radiation and describes the flow of energy through space. Radiation is

made of a flow of photons which behaves like waves or particles. Each
photon has an associated wavelength A or frequency v which affects the in-
teraction between photons and matter. The wavelength and the frequency
of a photon are related as

v = Xa (2)
A= ©)
Q= h, @

where h = 6.62620 * 10734.J x s is Planck’s constant and ¢ = 2.998 * 108m/s
is the speed of light [2, p. 202]. The radiant energy () is the basic unit in
radiometry and is measured in joules.

The electromagnetic spectrum covers the range of all possible wavelengths
starting from extremely low frequency radio waves to extremely high fre-
quency gamma rays. Thereby, the spectrum of wavelengths perceptible to
human eye ranges roughly from 380 nm to 780 nm. In the following, the ra-
diometric units and their relationships are described. For a total reference
of all used quantities and units see table 1.

2.3.1 Radiometric Quantities

The entire emitted energy per time unit is called the radiant flux ®. It’s unit
is watt = J /s and it’s given by

& = dQ/dt.)

Basically, it is a measure for the power of a light source. Derived from that,
the radiant intensity I measures the emitted radiant flux per solid angle w
and therefore is measured in watts per steradiant W /sr:

I =dd/dw. (6)

For the purpose of physically-based rendering the terms irradiance and ra-
diosity are very important. Thereby, the irradiance E is the arriving radiant
flux per area, the radiosity, or radiant exitance, B is the leaving radiant flux
per area:

E = d®/dA,,)

B = d®/dAs,. 8

The last important radiometric quantity is the radiance L. The unit of radi-
ance is watts per square meter per steradiant. It measures the power per
unit projected area dA+ = dA * ¢os6 per unit solid angle dw (cf. figure 8).
Therefore, the radiance is given by:

L =dI/(dA xcos0)

= (d%®)/(dA % 2050 * dw). ©)

7

The symbol ¢os represents a cosine clamped to zero. It is used because a
negative cosine value only occurs when the projected area is 0 [2, p. 207].
A very important property of radiance is that it remains constant along a
single light ray through empty space [41, p. 285]. This property is the basis
of a rendering technique called raytracing.

AN

dAL

Figure 8: Radiance L is flux per unit projected area per unit solid angle. Image
from [41].

24 BRDF Theory

In 1977, the physicist Fred Nicodemus defined a function that describes
how a surface reflects light as the bidirectional relectance distribution function
(BRDF) [39]. Thus, a BRDF defines the ratio between differential outgoing
radiance and differential incoming irradiance:

dLy(dw,
fldwi, dwo) = f(8i, b3, 0o, ¢o) = dEEdw)) (10)
Given equation 7 and 9, the BRDF can also be expressed as:
dLo(dw,)
2 o) = 15 Pis Vo, Po) = J— 11
f(dwi, dw,) = f(0i, $i, 0o, Po) 0L (duos)cos0sdn (11)

Therefore, the units of the BRDF are inverse solid angles sr—! as it is de-
fined as radiance devided by irradiance. Accordingly, the BRDF value is
the relative amount of energy reflected in direction w, given an incoming
direction w; (cf. figure 9). A more detailed look at the notation is given in
chapter 3.1.

yhe
I

=

Figure 9: Bidirectional reflectance distribution function (BRDF). Image from [41].

In general, the BRDF is an approximisation of the more complex bidirec-
tional surface scattering reflectance distribution function (BSSRDF), which also
handles phenomena like subsurface scattering [39]. Depending on the sur-
face’s properties, light can scatter into the surface (refraction) or scatter
away from it (reflection). In addition, refracted light can be absorbed or
can be scattered multiple times within the subsurface. Because of to this, it
is also possible that light can exit the subsurface again in more or less ran-
dom directions. Figure 10 shows such a complex interaction of light with
some surface. Here, the green and red circles are also noteworthy as they
show the region covered by a pixel at two different scales of observations.
Thereby, the green circle represents the case where each pixel covers a large
region. Because of this, all complex scattering events can be approximated
as happening at a single point. In contrast to this, the red circle covers only
a very small area of the surface, which makes more complex algorithms
necessary.

Figure 10: Complex interaction of light with a surface leading to subsurface scat-
tering. The left image shows a full simulation of all scattered paths in
the subsurface whereby the scattered light in the right image emits from
the entry point only. Image from [2].

The ratio of all outgoing radiance L, to all incoming radiance L; is called
the directional reflectance p:

D, f2 o(dw,)cosbydw,

p= o, f2 i(dw;)cosb;dw;

(12)

Beyond that, the directional-hemispherical reflectance p(6;) measures the total
reflected light, regardless of an outgoing direction, for a specific incoming
direction [2, p. 226]. Therefore it is defined as:

p(0;) = f(dwi, dw,)cosbydw,. (13)
2

2.4.1 Physically Plausible BRDFs

A BRDF is called physically plausible when it fulfills three properties:
¢ the BRDF is not negative,
e the conservation of energy (0 < p(6#;) < 1) holds, and

e the Helmholtz reciprocity can be applied.

The conservation of energy is essential for light simulating algorithms as
they would fail to converge otherwise. In real-time rendering approaches, a
BRDF that is not energy conserving can still be used, but the shaded surface
might appear much too bright. The term Helmbholtz reciprocity is a princi-
ple of physics named after the German physicist Hermann von Helmholtz
[57]. It basically states that the incoming and outgoing directions can be
switched and the result of the BRDF remains the same:

f(dwi, dw,) = f(dw,, dw;). (14)

However, it is worth noting that the Helmholtz reciprocity is often violated
without noticeable artifacts in practice [2, p.226].

2.4.2 Rendering Equation

The rendering equation, or light transport equation, is a very prominent in-
tegral equation first introduced by James Kajiya [21] and by Immel and
Cohen [19] in 1986. In order to solve this equation, various rendering tech-
niques such as path tracing or radiosity were developed. The rendering equa-
tion is:

Lo(dws) = Lo(duws) + / F(dwy, dog) Li(dws) [costy| dwi. (15)
Q

It simply states that the total outgoing radiance L, along a direction w,
is the emitted radiance L. in that direction plus the incident radiance L;
coming from all directions dw; scaled by the BRDF f and the cosine of 6;.

10

2.5 Physics of Light Scattering

There are two phenomena in optics that are very important to simulate light
scattering: Snell’s law and the Fresnel equations. When a ray of light hits a
surface with an angle of inclination 6;, the reflected ray w, can be computed
as

wr = 2(n * w;)n — w;. (16)

When taking transmission into account, the angle of transmission 6; de-
pends on the angle of inclination 6; as well as on the two indices of re-
fraction (IOR) n; and 7, whereby 7; is the IOR for the medium above the
interface and 7 is the IOR for the medium below the interface (see figure
11). This dependence is known as Snell’s law, which is:

n;sind; = nysinbs. 17)

Using this law, §; can be easily computed. It is worth noting that in general,
the IOR varies with the wavelength of light. Due to this, light may scatter
in multiple directions. This effect, called dispersion, splits light into its spec-
tral components when interacting with a prism, for instance. However,
dispersion is mostly ignored in real-time rendering to simplify the render-
ing equation. When light interacts with an interface, it is either reflected or
refracted.

9. ||cos 9,

T
n

......

Figure 11: Geometry and terms used for Snell’s law and the Fresnel equations [41].

The Fresnel equations, derived from the Maxwell equations, precisely de-
scribe the amount of light that gets reflected from a surface. There exist
two different versions of Fresnel equations for conductors (materials that
conduct electricity) and for dielectrics, respectively.

11

The Fresnel equations for dielectrics are:

1
F(niyne, 0;) = §(F||(Th'ﬂ7t, 0:)% + Fi(ni,ne, 0:)%), (18)
where p p
necosl; — n;cosby
EF iy 79i =) 19
H(Tl ", 0:) necost; + nicosby (19)
1;c080; — Nrcosby
F 75 79i - . 20
'L (15 me, 0;) nicost; + ncos0; (20)

F) accounts for parallel polarized light and F', for perpendicular polarized
light. As hair is a dielectric material, the Fresnel equations for conductors
are omitted here.

12

3 Light Scattering in Fibers

3.1 Terminology and Notation

The complex math and physics behind light scattering in fibers requires a
well-considered notation and terminology as in figure 12. All terms and
symbols used in this thesis are listed in table 1. The tangent of the hair is u,
going from the root of the hair to its tip. It builds a right-handed orthonor-
mal basis together with the vectors v and w, whereby v is the major and
w is the minor axis. All vectors perpendicular to u lie in the v — w plane,
which is called the normal plane. The incoming light direction is noted as [
in Cartesian coordinates and w; in spherical coordinates, whereby the out-
going view direction is noted as e and w,, respectively. The spherical coor-
dinates are formed by the angles x € [-7,] and ¢x € [0, 2], where X
is either ¢ for the incoming direction or o for the outgoing one. The longitu-
dinal inclination fx is an angle with respect to the normal plane, whereby
the angle ¢ x is the azimuth around the hair. The angles are measured in a
way so that fx = 0 is perpendicular to the hair, 0x = §isu, 0x = —7 is
—u, ¢x = 0isvand ¢x = 5 is w.

In addition to these angles several derived angles are used as well. Thus,
the difference angle ¢ is defined as

0, — 6;
o= — (21)
The relative azimuth ¢ is given by
¢ = ¢o — ¢i. (22)
Beside that, the half angles 6;, and ¢}, are simply
O = (i +0,)/2, (23)
and
b = (i + ¢0)/2. (24)

13

\

T

/-

P
S

(4]
6,
1%

Figure 12: Geometry and notation. Image from [32]

3.2 Kajiya and Kay’s Model

In 1989 Kajiya and Kay[22] presented the first technique to render furry
and hairy surfaces. They separate the lighting model for a single hair into a
diffuse ¥, and a specular component ¥,. The diffuse component is derived
from Lambert’s law [25], which describes the diffusely reflected radiance of
an ideal matt surface as

kq*mn*l. (25)

Here, k, is the diffuse reflection coefficient. The derivation of ¥, is obtained
by integrating the Lambert model over a cylindrical surface as in figure 13b.
The orthonormal basis is given by the hair tangent u, the projection of the
light direction on the normal plane !’ and the orthogonal vector b (figure
13a). The vectors I’ and b are given by

' =norm(l — (ux1) xu) (26)
b=1xu (27)

Using these values, the diffuse component is computed as

\Ild:kd/ lxn rdb
0

:kdr/ L% (bxcosd +1'* sinf) df
0 (28)

:kdr*l*l// sinf df
0

=Kg*lxl

14

(a) Orthonormal basis. (b) Integration over the hemisphere.

Figure 13: The diffuse model of Kajiya - Kay. Images from [26]

where K represents all quantities independent of / and !’ including the
diffuse hair color. Substituting equation 26 into equation 28 yields:

Uy =Kgx*l * norm(l — (ux1) *u) 29)
=Ky * sin(u,!)

In addition to the diffuse component, Kajiya and Kay derive a specular
component from the ad-hoc phong specular model [42]. The reflected light
only depends on the longitudinal component of w, as the normal of a hair
strand points in all directions perpendicular to u. The specular component
L using the terms of figure 14 is given by

U, =K, * cos(e, e/)™

30
=K, * cos(f —)" (30)

where m is the specular exponent from the Phong lighting model. Here,
the angles 6 and 6’ can be computed as:

0 = acos(u 1)
, (1)
0" =7 — acos(u * e)

Even today, the model of Kajiya and Kay is widely used in computer graph-
ics, for example in the game Ryse by Crytek [52]. However, the model is ex-
tended using the approach of Scheuermann [51]. Scheuermann computes
two highlights using the specular model of Kajiya and Kay, whereby the

15

tirst highlight is shifted towards the tip of the hair and the second high-
light is shifted towards the root of the hair. The theory of this approach is
based on the shading model of Marschner et al., which will be adressed in
the next chapter.

Figure 14: The specular model of Kajiya - Kay. Image from [26]

3.3 Marschner’s Model

The first fully physically-based light scattering model for hair fibers was
developed by Marschner et al. in 2003 [32]. They derive a bidirectional scat-
tering function fs from the general BRDF (see chapter 10) as

~ dLy(dw,)

fs(dwiadwo) = fs(9i7¢i7907¢o) = ma (32)

where L is curve intensity and E is curve irradiance. Both values are normal-
ized per unit length and are analogous to irradiance F and radiance L:

dE = D x dE, (33)
dL = D xdL, (34)
dE;(dw;) = DL;(dw;)cost;dw;, (35)

where D is the diameter of the fiber. Given these equations the curve radi-
ance is:

Lo(w,) =D fs(wi,wo) Li(w;)cosh;dw;. (36)
47

16

Figure 15: Left: Primary highlight (R) and secondary highlight (TRT). Middle:
Strong forward scattering of light. Right: Glints / caustics. Images
from [32].

Please note that the integral to compute L, is defined over the entire sphere,
while the rendering equation introduced in chapter 2.4.2 is defined over a
hemisphere.

3.3.1 Scattering Measurements

Light scattering in the incidence plane of hair fibers was investigated first
by Stamm et al. in 1977 [54]. Incidence plane means that the light source
and the light detector are coplanar with the fiber. They measured that a
primary specular peak occurs which is shifted several degrees away from
the specular direction due to the outer cuticle surface of hair fibers (cf. fig-
ure 17). Moreover, a secondary specular peak in non black hair appears
on the other side of the specular direction. Likewise, a study conducted
by Bustard and Smith in 1991[8] reports that the primary peak preserves
polarization, whereby the secondary peak is depolarized. They also ob-
served azimuthal scattering in the normal plane producting strong peaks.
Additionally, both studies show that the secondary peak is due to internal
reflections within the fiber. Motivated by light scattering measurements of
hair fibers by Stamm et al. and by Bustard and Smith, Marschner et al. con-
ducted their own experimental and theoretical study. In particular, they
measured light scattering in the incidence plane, the normal plane, and in
the full 3D hemisphere. The measurements in the incidence plane follow
the measurements conducted by Stamm et al. as well as those conducted by
Bustard and Smith, and they were able to verify earlier results. Most note-
worthy is that the specular highlight occurs approximately when 6, = —6,.
Scattering within the normal plane was measured in order to understand
the complexity of the secondary highlight. Thus, the light source and the
light detector were oriented perpendicular to the fiber. As a result, it can
be stated that hair has a 180° rotational symmetry and is bilaterally sym-

17

(a) Scattering in normal plane. (b) Scattering in hemisphere.

Figure 16: a) Scattering in the normal plane from blonde hair with eccentricity
around 0.7:1. Green plots show the result of a Monte Carlo simula-
tion. All illumination comes from the right side. b) Scattering in one
hemisphere for a fixed incidence direction §; = 45°. Images from [32]

metric in cross section [32]. Furthermore, there are two bright peaks which
are called glints. Figure 16a shows plots of the measurement in the normal
plane. All illumination comes from the right side. The green ellipses indi-
cates the hair orientation and that hair fibers are not generally circular in
cross section [47]. Here, the eccentricity a is around 0.7:1. Green plots show
the result of a Monte Carlo simulation on the fiber model.

A full 3D hemispherical scattering measurement was also conducted dur-
ing the experiments (see figure 16b). The angle of incidence was fixed at
45°: Three main components can be derived:

¢ Primary highlight (R): The primary specular peak shifted toward the
root due to the tilted surface scales of the outer cuticle surface of hair
fibers.

¢ Transmittance (TT): The strong transmittance component due to for-
ward scattering from light colored hair.

¢ Secondary highlight (TRT): The colored secondary peak shifted to-
ward the tip which strongly depends on ¢ and on the eccentricity a
of the hair.

The letters R (for reflection) and T (for transmission) are used to describe
the paths the light travels in order to produce these effects as shown in
figure 17. Scattering angles without the tilted surface scales are indicated
with dashed lines. Figure 15 shows some photographs of these effects.

18

tilted
cuticle
Ma scales

interior:
refrac. index n
absorption 0,

elliptical surface roughness

cross section

axis ratio a:1 TT —~€— root tip ——

Figure 17: Longitudinal light scattering from hair. The scattering angles are
shifted to certain degrees due to the tilted cuticle scales. All three light
paths R, TT, and TRT are visible. Image from [32]

3.3.2 A Physically-Based Shading Model

Based on the introduced measurements, Marschner et al. developed the
first fully physically-based hair shading model. As hair is a dielectric ma-
terial, a strand is treated as a dielectric cylinder. The optical properties of
the fiber are approximated using an index of refraction n = 1.55 and an
uniform color absorption coefficient o,. In the following, a circular cross
section of the hair is assumed which simplifies the math due to symmetry
and other properties. However, chapter 3.3.3 gives a description of how to
extend the model for elliptical cross sections.

The 4-dimensional scattering equation 32 can be expressed as a product
of two 2-dimensional functions M,(6;,6,) and N, (04, ¢), where p € {R =
0,T7T = 1,TRT = 2}. The function M,(6;,6,) captures the # dependence
and is therefore called the longitudinal scattering function whereby N, (64, ¢)
is called the azimuthal scattering function as it captures ¢ dependence. Thus,
the scattering function fs can be written as:

2
N M (61, 80) N, (04, 0). (37)

2
cos20
d p=0

fs(‘gia QSZ'; 007 QSO) =

The division by cos?6, accounts for the projected solid angle of the specular
cone [32]. In addition, earlier work on scattering from fibers [1, 31, 37] has
shown two important properties:

* A ray that enters a dielectric cylinder will always exit at the same
inclination. Thus, a bundle of parallel incident rays coming from di-
rection w; will scatter in a cone in direction —w;. This property is

19

strongly related to the fact that scattering only occurs when 6, = —6;
as described in chapter 3.3.1. This effectively reduces f; from 4D to
3D.

* Moreover, it is sufficient to do a 2D analysis in the normal plane. This
follows as a consequence of Bravais’s law: The law of Bravais says that
if the incident and refracted rays at a dielectric interface are projected
in the normal plane, the projected rays still obey Snell’s law (see equa-
tion 17) when using a corrected index of refraction 7/(n, 64) > 7 [32].
Thereby, 1/’ is given by

/72 _ sin2
o (n.00) = Vs (38)
cosfy

The measurements by Marschner et al. revealed that reflected light will
stay exactly in the specular cone. Additionally, the scattered distribution
gets blurred to different degrees depending on the specific path p . The cu-
ticle scales of the outer hair surface cause a tilt of the surface normals. As a
result, the scattered lobes will not be centered on the specular cone. In order
to account for these effects, Marschner et al. approximate the longitudinal
scattering function with a unit-integral gaussian function

_%(TEM)Z

9(B,x,p) = (39)

1
e
BV 2w
with a standard deviation 8 and mean . As the different paths p cause
different lobe shifts and widths, the longitudinal scattering functions M,
can be defined as:

91‘ + 90
Mp(eia 90) = g(ﬁpa T — Op, 0)

= g(ﬂpa On — Qp, 0)'

The terms o, and 3, are the longitudinal shift and the longitudinal width
for p € {R,TT,TRT}. Typical values that are directly derived from the
measurements can be found in table 1. In literature, one can find the lon-
gitudinal scattering function often simply expressed as M,,(6},) because M,
only depends on 6§, on the right side of the equation. The derivation of
the azimuthal scattering function N, is much more sophisticated. Figure
18 shows the geometry for scattering from a dielectric circle. As described
before, the cross section of the hair is assumed to be circular and is ex-
tended for elliptical cross sections in chapter 3.3.3. According to the law of
Bravais, it is sufficient to analyze azimuthal scattering in the normal plane
only, when using the adjusted index of refraction n’. This simplifies the
derivation as the math of scattering from a circular cross section is well
known. It was first studied by Descartes to understand the appearance of

(40)

20

TRT (p =2)

Figure 18: Scattering from a cross section. Image from [32]

rainbows (see Humphreys’ physics of the air [18]). Thus, the angle of inci-
dence in circular cross section is

vi = asin(h), 41)

where —1 < h < 1 is the offset from the center of a unit circle. Then the
angle ~; of the refracted ray can be computed straightforwardly using equa-
tion 17 (Snell’s law) and 7'

1y = asin(s,). (42)

The exit angle ¢(p, h) can be computed by following a ray and its interac-
tions with the cross section as in figure 18:

é(p, h) = 2py; — 27 + pm
Y (43)

= 2p * asm(szn,) — 27 + pm.

In order to find all paths that contribute in a given direction ¢ one need to
solve the equation

o(p,h) — ¢ =0. (44)
The roots r of this equation yield +;. There is one root for p = O and forp = 1
and there are one or three roots for p = 2. However, solving this equation
44 is a non trivial and expensive task. Because of this, Marschner et al.
approximated Snell’s law with a cubic polynomial in order to compute ;.
Hence v; can be expressed as:

3c 4c 4

M=% 3 (45)

21

where ¢ = asin(1/n). By using equation 45 in equation 43 , the exit angle
¢(p, h) can be approximated with the cubic polynomial

A 3c 4c
o, 7i) = 2p(—i = gv?) — 27, +pm
_8pc 5 Gpc (#0)

= 3%t (7 —2)vi +pm.

Finally, one can get all paths contributing in direction ¢ by solving for the
roots of equation é(p,7i) — ¢ = 0. The next step is to compute the intensity
of the scattered light. As the unit cross section represents a fiber diameter
of 2, according to equation 33 the uniform irradiance that falls on the cross
section is given by:

E(h)dh = E/2dh. (47)

Here, the width of the incident beam is noted as dh. Given the fact that
the incident beam is scattered into the angular interval d¢, (cf. figure 18),
the curve radiance L, for a specific path p, taking into account the path
attenuation A(p, h), can be computed by [32]

Ly(¢(h))ddp = A(p, h) * E[2dh, (48)
which yields
_ 1| dh | =
Ly(o() = A1)+ 5| £
P
dy | (49)
= A(p, h)x[2—2| E.
The derivative % is given by:
_ 24pc,. 2 6pc 92
Wp _ it w =2 (50)
dh V1 — h2

Attenuation A(p, h) occurs because of volume absorption within the fiber
and Fresnel reflection at the interfaces. Volume absorption strongly de-
pends on the path length inside the fiber. Fortunately, the length per path
projected to the normal plane s can be derived from figure 18:

S = 2% cosYz. (51)
Using this inner path length s, the attenuation due to volume absorption is:
T(h) — 672*aa*cos%) (52)

The attenuation due to Fresnel reflection is computed using the Fresnel
equations (see chapter 2.5). However, the Fresnel equations have to use

22

the corrected index of refraction 1’ due to Bravais’s law (see equation 38).
Furthermore, Marschner et al. have shown that 1’ has to be used for the
perpendicular component F; and another index 7" has to be used for the
parallel component Fj. The index " is:

n?cosly B n?

!
1" (0,00) = ———me = -
() V2 —sin20; 1

Putting all this together yields the definition of A(p, h):

(53)

A0, h) = F(L,n', %)

AL h) = (1= F(L ', %))« (1= F(y, 1,m)) « T(h) (54)
A2,h) = (1= F,n' %)+ F(n',1,m) « (1= F(f,1,7)) * T(h)*.
Finally, Marschner et al. conclude the azimuthal scattering function based
on equation 49 to be:

dgy |

Np(0a: 6) = > Alp, h)‘z i (55)

where r is the roots of equation 44.

This approach works well for the R- and TT - components. However, the
TRT-component produces singularities in f; with infinite intensity which
are called caustics. In order to remove these unrealistic phenomena, Marschner
et al. proposed algorithm 1 that first removes the caustic from Nrrr and
then replaces it by Gaussians representing the same energy centered over
the caustics positions. Caustics appear because the function ¢(p, h) is smooth
which results in a fold at the transition from one to three roots [32, 64].

Descartes has shown that this fold occurs when Z—f = 0, hence if

W’ =(4-n")/3. (56)

Obviously this equation is symmetric, resulting in two extrema. Using this
knowledge, the angle ~. at which the caustic appears can be computed as:

do
— =0&
dh

_ 24%2xc 2 4 6*72r*c -9

3 c

V1 — h?
48 xc o 12x¢ (57)
= —-2&

=0«

a3 ¢ T

12xc 2
_ s
e = + 48«c
3

Algorithm 1 is the original algorithm from Marschner et al. adjusted with
some additions to make it more easy to implement. The terms w,, kg, An’

23

and Ah,s are user adjustable parameters. They represent the azimuthal
width of caustic, glint scale factor, fade range for caustic merge, and the
caustic intensity limit. Common values are listed in table 1. Line 2 accounts
for the fact that equation 56 is only defined for values n’ < 2. For greater
values, the Gaussian lobe is inserted at ¢. = 0 (line 10) and from there
on smoothed out over a short range of incidence angles An’. The func-
tion smoothstep(a,b,x) from line 9 implements a cubic hermite interpolation
between a and b.

Algorithm 1 Smooth the caustic in Nygr (cf. [32]

1: procedure Nrpr(4, ¢, 1, we, kg, An', Ahyy)
2 if ’ < 2 then
3 Compute h. and 7, using equation 41 and 57
4 Ah = min(Aha, 24/ 2we/ |52 (he)))
5: t=1 R
6 ¢c = ¢(27 ’Yc)
7 else
8 Ah = Ahy
9: t = 1 — smoothstep(2,2 + An/,7')
10: ¢ =0
11: end if

12: L = Nrrr(0a, ¢)

13: L=Lx(1—1t*g(¢— ¢e,we,0)/g(0,we,0))

14: L=Lx(1—-txg(¢+ ¢c,we0)/g(0,w,,0))

15: L=L+txkgxA(2,he)* Ah* (g9(¢ — ¢c,we,0) + g(d + ¢e, we,0))
16: return L

17: end procedure

24

3.3.3 Scattering in Elliptical Fibers

This chapter describes how the physically-based shading model presented,
that is based on smooth circular cylinders, can be extended to elliptical
cross sections. Unfortunately, a simple analytical solution is not possible
[32]. However, Marschner et al. have shown that a change of the index of
refraction can have a qualitative effect similar to changing the eccentricity
a. They have stated that for mild eccentricities 0.85 < a < 1 it is sufficient
to use an index of refraction ; when ¢y, is aligned with a principal axis. In
total, the corrected index of refraction for the TRT - component is:

1
n*(on) = 5((?71‘ +13) 4 cos(26n) (N —n3)) (58)
with
* . 2
m =2(n l)a_2 n+ 2 (59)
n=2n—1a “+n+2

3.3.4 Implementation

The implementation of the model of Marschner et al. follows the ideas
of Nguyen and Donnelly [38]. As the computations of the longitudinal
scattering functions M, and the azimuthal scattering functions IV, are very
expensive, they suggest pre-computing them in three 2-dimensional look
up textures. Thereby the first texture stores the one dimensional functions
Mg, M7, and Mrgr in the RGB channels. Therefore, the texture is param-
eterized with sin(6;) and sin(6,). Using the sine instead of the angle itself
helps avoiding inverse trigonometric functions within the GLSL shader.
For the azimuthal functions N,,, two lookup textures are required as Nrr
and Npr are 3-dimensional functions due to absorption. Thus, N and N1
are stored in the second texture and Nrgr in the third. As IV, depends on
4 and ¢, the textures are parameterized with cos(6,;) and cos(¢). In addi-
tion to that, 6, can also be stored in the first lookup texture as it is a function
of 6; and 0,. Finally, the model of Marschner et al. can be applied within
GLSL as shown in algorithm 2. Lines 2 and 3 simply compute the sine of
6; and 6, whereby lines 3 and 4 projects them into the normal plane. With
those projected vectors, line 6 can easily compute the cosine of ¢. Lines 8
- 10 perform the actual lookups using the computed values. Thereby they
transform the sine and cosine values € [—1, 1] to uv space € [0, 1] by mul-
tiplying with 0.5 and adding 0.5. Finally, line 12 computes equation 37.
The term 1/cos?d, is already applied to the M lookup table in order to save
computation time in the shader.

25

Algorithm 2 Applying the shading model of Marschner et al. using pre-
computed lookup textures.

: procedure MARSCHNER(CUZ‘, wo, u, M, Nr,uro, NLUTI)
: sin(0;) = w; xu
sin(0,) = we * u
wi- = w; — sin(6;) * u
= w, — sin(f,) x u

1

2

3

4.

5: UJJ‘

6 cos(9) = (wh xwih)/y/(wd xwd) « (W *wh)
7

8

9

o
(MR, Mrr, MTRT, Cos(ed)) = M(Sln(el) x0.540.5, Sin(eo) *O.5—|—0.5)
: (Ngr, Nrr) = Nruro(cos(¢) * 0.5+ 0.5, cos(0g) * 0.5 + 0.5)
10: Nrrr = Nrum (COS(qb) 0.5+ 0.5, COS(Qd) * 0.5 + 0.5)
11:
12: return Mg * Ngr + Mpr * Nrp + Mrpr * NTRT
13: end procedure

3.4 An Artist Friendly Hair Shading Model

The model of Marschner et al. adds important detail to the overall appear-
ance of hair in rendering. However, the model is difficult to control for
artists as it can only be controlled using physically-based parameters. In
addition, these parameters strongly depend on each other, which is unde-
sirable from an artist’s point of view. As an example, the intensity of a
highlight must be reduced by the model in order to preserve energy if the
artist increases the width of a highlight (see figure 19). It is difficult for
artists to guess parameters of such a shading model [36]. Because of this,
much production work in motion pictures uses older ad-hoc approaches as
they offer more control to artists [49]. To account for this, Sadeghi et al. [49]
developed an artist friendly hair shading system which uses meaningful
artist friendly controls. These controls were defined in strong collaboration
with a team of artists working for the Walt Disney Animation Studios. They
came up with the following control parameters for the shading model:

R: Color, intensity, longitudinal position, longitudinal width.

TT: Color, intensity, longitudinal position, longitudinal width, azimuthal
width.

TRT minus glints: Color, intensity, longitudinal position, longitudinal
width.

Glints: Color, intensity, frequency of appearance.

26

Figure 19: Top row: Varying the index of refraction affects all visual components
of the appearance (coupled parameters). Middle row: The intensity
and the width of the highlight are coupled. Thus, the intensity of the
highlight decreases as its width increases. Bottom row: The same but
with decoupled parameters from the artist friendly hair shading model.
Image from [49].

It can easily be seen that these artist friendly controls align nicely with the
physically-based model of Marschner et al. (cf. chapter 3.3.1). The overall
goal of Sadeghi et al. was to approximate the scattering function f, (see
equation 37) with a pseudo scattering function f/ as:

2
1
Ji0i: 61 00,60) =~ > CplpMy (61, 60) N, (9), (60)
p=0

where p € {R,TT,TRT} and C), and I, are the color and intensity of com-
ponent p, respectively. The longitudinal pseudo scattering function Mj is
very similar to the one used by Marschner et al. M, is

Mzﬁ(ei,eo) = gl(ﬁpvx50)7 (61)

where ¢'(3, z, 1) is the Gaussian function g but with unit height. Because
of their complexity, the azimuthal pseudo scattering functions N, need to
be defined separately. The azimuthal scattering function for the primary
highlight N}, follows the work of Kim [23, p. 84]:

Np = cos(¢/2). (62)

Thus when plotted, Ny, is shaped like a flipped heart as shown in figure 20.

27

Figure 20: Primary highlight’s azimuthal control parameters (left) and a frontlit
rendering (right) where (a) is the intensity I, (b) is the longitudinal
shift ar, and (c) is the longitudinal width 3%. Images from [49].

Transmission N/ is a sharp forward directed lobe which is approximated
using a Gaussian with unit height:

N%T(qb) = g/((;%"T, T— ¢, 0) (63)

Here, 5%T is the azimuthal width. See figure 21 for a visualization of N/.,.
and all its parameters.

Figure 21: Transmission’s azimuthal control parameters (left) and a backlit render-
ing (right) where (a) is the intensity I, (b) is the azimuthal width 62.;,
(c) is the longitudinal shift arr, and (d) is the longitudinal width 5%
Images from [49].

Finally, the azimuthal scattering function for the secondary highlight N7,
is split into two functions N/ . and N{; to account for the glints. As

28

glints can be seen as two sharp peaks, they are simply modeled as a Gaus-
sian with a random shift. In total, these functions are defined as:

Nrgrr(®) = Nrpr—c(¢) + Na(9),
N:’r’RT—G(Cb) = cos(¢/2), (64)
Né‘(¢) = IGg/((Sév Gangle -9, 0)7

where % is the azimuthal width of the glints, I is the glint intensity, and
the half angle between two glints Gynge € {30°,45°} is randomized per
hair strand to give some random appearance to the glints. Figure 22 gives
an overview over N, and its parameters.

Figure 22: Secondary highlight’s azimuthal control parameters (left) and a frontlit
rendering (right) where (a) is the intensity I g7, (b) is the glint intensity
Ig, (c) is the azimuthal width of glints 62, (d) is the half angle between
two glints Gangie, (e) is the longitudinal shift ar g7, and (f) is the longi-
tudinal width 3% ;.. Images from [49].

29

4 Shadowing

o
f‘..r

< Iy

¥
Pl ™ WA

o & o

(a) Without shadow. (b) With shadow.

Figure 23: Hair rendered without and with proper shadowing. Image from [29]

Shadows are a crucial factor for all kinds of volumetric objects such as
hair, fur, clouds, or smoke. They have a major influence on their appear-
ance and illumination. Figure 23 shows hair rendered with and without
proper shadows. One very common technique for computing shadows
in a real-time computer graphics environment is the use of depth-based
shadow maps [58]. However, shadow maps only provide a binary decision
whether or not an object receives light. This yields to unpleasant results
when rendering hair (see chapter 6.2). Instead, when dealing with such
semi-transparent geometry, the transmittance function 7(x) has to be eval-
uated. The transmittance function measures how much light is transmitted
from the light source to a point within the hair volume. For this, it com-
putes an exponential falloff using the opacity O(z). The values are given
by [24]:

7(x) = e O, (65)

O(x) = /0 o), (66)

where p is a density (or extinction) function along the path [6]. This den-
sity function can be simply expressed as the transparency value o, of the
geometry at point x.

4.1 Opacity Shadow Maps

Kim and Neumann introduced a two pass algorithm called opacity shadow
maps [24], one of the first real-time capable approaches to render appropri-
ate shadows for hair [14, p. 246]. As in figure 25a, they use a set of parallel

30

opacity maps oriented perpendicular to the light’s direction. However, it
is worth noting that the slicing does not have to be uniform. In contrast
to a shadow map, an opacity map stores O(z) per Texel. For rendering
the first pass, the depth buffer is disabled in order to not lose information
due to early depth tests and additive hardware blending is enabled. Using
this, the integral of equation 66 can be approximated with a sum over .
Then, each fragment contributes its transparency o, to the nearest opacity
map along the shadow ray. In the second pass, the opacity values from
adjacent opacity maps are sampled using common shadow map sampling
techniques like percentage closer filtering [46]. It is then straight forward
to do a linear interpolation of these two values to get an approximation
of O(z) from which the transmittance function 65 can be computed. The
opacity reaches infinity for opaque geometry. Because of this, Kim and
Neumann introduced a scaling constant x such that e™" = 2= where d
is the number of bits per pixel. As an example, using a 8 bit alpha buffer
yields to x =~ 5.56. Consequently, equation 65 becomes:

T(z) = e r*O(@) (67)

It is obvious that the quality of opacity shadow maps highly depend on the
number of slices one uses. Using too few slices will produce strong lay-
ering artifacts as in figure 24. Due to this, an implementation should use
a least 16 layers in order to achieve convincing results. The implementa-
tion of Nguyen and Donnelly is able to generate all 16 opacity maps in a
single render pass by using the GPU in an efficient way [38]: As O(z) is a
one dimensional value, one can store 4 opacity maps within one RGBA tex-
ture. In addition, using a GPU feature called multiple render targets allows
rendering to 4 (or more) different textures simultaneously.

4.2 Deep Opacity Maps

The goal of deep opacity mapping is to reduce the layering artifacts pro-
duced by opacity shadow maps and to reduce the number of layers and
thereby the performance of the algorithm (see figure 24). To achieve this,
Yuksel and Keyser [63] propose an algorithm that warps opacity layers to
the shape of the hair structure as in figure 35a. Their algorithm has three
steps:

First, the hair mesh is rendered to a depth map as seen from the light source
to capture the shape of the hair. As the depth map is only used to compute
the shape of the opacity maps, an 8-bit depth map is sufficient. Using the
entry 2 from the depth map, one can introduce K layers zo+dj—1 to zo+dy,
where dy = 0,d;—1 < dr and 1 < k < K. As with opacity shadow maps,
the slicing does not have to be uniform.

31

Opacity Shadow Maps
12 layers 16 layers

Deep Opacity Maps
3 layers 7 layers 11 layers

Figure 24: Top row: Using too few layers with opacity shadow maps generates
strong layering artifacts. Bottom row: Use of deep opacity maps pro-
duces good quality with just 3 layers. Images from [63].

Second, the deep opacity map is generated. For this, additive hardware
blending is enabled and the depth test is disabled. The layer in which a
fragment falls can be computed efficiently on the fly within the fragment
shader using the depth map from the first pass. Now, in order to compute
the integral of the transmittance function 67, the fragment can contribute its
transparency a; to its layer and to the layers behind that one. It is essential
that texture filtering for the depth map is disabled during this pass. As
before, one can store up to 4 layers in one RGBA texture and can compute
multiple layers using multiple render targets. However, figure 24 shows
that using just three layers is sufficient to produce a pleasant result. One
problem is that using a small number of layers makes it difficult to assign
every hair to a layer. For instance, the point in the green area of figure 35a
lies behind the last layer. The authors propose three different options if
points lie beyond the last layer: Ignoring the points so that they don’t cast
shadows at all, add them to the last layer, or increase the last layer to cover
the complete hair volume. Unfortunately, increasing the layer size yields
to less accuracy within that layer. As transmittance at that point should be
near to zero anyway, adding them to the last layer usually give reasonable

32

results. The third and last step is to render the hair using the deep opacity
map. Here, the algorithm is just the same as for opacity shadow maps.

N

~HS

(a) Opacity Shadow Map. (b) Deep Opacity Map.

Figure 25: Opacity shadow maps using a set of parallel opacity maps, whereby
deep opacity maps uses fewer layers matching the shape of the hair.
The green area lies behind the last layer and is in total shadow. Image
from [63]

4.3 Approximated Deep Shadow Mapping

Deep opacity as well as opacity shadow maps are suitable techniques to
compute proper shadows for hair rendering. However, when it comes to
real-time rendering of hair in video games, these techniques might be much
to expensive. Eventually, hair is only a minor part of the overall video
game and must be rendered as fast as possible in just a few milliseconds.
Because of this, AMD came up with approximated deep shadow mapping for
their SDK TressFX [28, 33]. The first video game that uses this approach
was Tomb Raider by Square Enix from 2013 [27]. The basic idea is rather
simple as it just uses a standard depth based shadow map. While shading,
each fragment shader invocation estimates the number of hairs n that lie in
between the current fragment and the light source by:

- max(O,jf - ds)’ (68)

where w is the width of the hair, dy is the distance from the fragment to the
light source, and d is the distance from the hair surface to the light source,
respectively. The hair surface is just given by the depth based shadow map.
However, as the distance between the current hair fragment and the hair
surface d; — d, involves floating point arithmetic, it is recommended to in-
crease n by one as soon as the distance becomes greater than some e. In the

33

end, one can compute the attenuation of light, and therefore the strength of
the shadow by:

inShadow = clamp((1 — a5)™,0,1). (69)

Here, the function clamp(z, a, b) returns the value as a < x < b.

34

5 Transparency

The discussion about physically-based hair rendering has already shown
that hair is semi-transparent. Thus, light scatters in the hair volume strongly
effecting lighting and shadowing. Beside that, the geometry of hair has
to be rendered taking transparency into account. Without a proper trans-
parency technique, hair appears dull and aliased (cf. figure 26).

a=0.5 a=1.0

Figure 26: Hair rendered with and without transparency. Transparency increases
the smoothness of the hair so that it appears less dull and aliased.

In real-time computer graphics, the common approach to solving trans-
parency is alpha blending. The order of the scene is very important for ap-
propriate alpha blending. So either the scene is rendered from back to front
while using the over-operator or it is rendered from front to back using the
under-operator [44]. For both approaches, the scene must be sorted every
frame along the view direction. As such sorting might be suitable for a
few transparent objects, it becomes unacceptably expensive when it comes
to hair rendering. Additionally, it is not sufficient to sort all hair strands
along the camera direction only because the individual strands are highly
overlapping. Thus, sorting per fragment becomes necessary. Techniques
related to the term order independent transparency (OIT) try to solve the trans-
parency problem without the need to sort the scene. A prominent approach
to solve OIT is depth peeling [15, 30] and related techniques like dual depth
peeling [5]. For depth peeling, the scene is rendered multiple times. The first
render stores only the foremost fragments (the first peel). Using the depth

35

(c) WBOIT « = 1.0. (d) WBOIT o = 0.5.

Figure 27: Renderings of the Stanford bunny: (a) fully opaque, (b) depth peeling
produces the correct result, (c) WBOIT fails to render the bunny opaque,
and (d) WBOIT renders a good approximation of depth peeling. All im-
ages were generated using the NVIDIA GameWorks™ OpenGL sam-
ples [17].

buffer from the first render, the second render can discard the foremost
fragments while storing the next deeper fragments, and so on. For scenes
with a moderate depth complexity, depth peeling is a sensible approach (cf.
tigure 27b). However, a great number of depth peels is necessary for hair as
it has a very high depth complexity. Due to this, depth peeling is not suit-
able for hair rendering. Another area of OIT is approximation techniques
like sort-independent alpha blending [35] or weighted blended order independent
transparency (WBOIT) [34]. These techniques can render transparent geom-
etry very quickly and the quality might be acceptable for several use cases
(cf. figure 27d). Unfortunately, WBOIT lacks quality and consistency while
moving the camera. Moreover, even a fully opaque object is rendered with
a high transparency as shown in figure 27c.

36

5.1 A-Buffer

Yang et al. presented the first real-time concurrent per-pixel linked list (PPLL)
construction on the GPU [60] in 2010 which heavily relies on modern GPU
features like atomic counters and (image load store) for arbitrary read and
write to images. It basically is a hardware implementation of the old A-
Buffer, which provides a list of fragments per pixel used for effects like
transparency or anti-aliasing [10]. To construct a PPLL, two different data
structures are necessary: the head pointer buffer and the node buffer. Thereby,
the head pointer buffer is a 2D texture as big as the render target storing
pointers inside the node buffer. The node buffer itself is some GPU based
storage type big enough to store as many fragments as needed (3D textures
or shader storage buffer objects). Using the PPLL approach for hair ren-
dering yields to a three step algorithm: In the first step, the head pointer
buffer is cleared with the value —1, which basically indicates a null pointer.
Secondly, the node buffer gets filled as in algorithm 3. For both of these,
depth and color writing are disabled, since all outputs are routed into the
node and head pointer buffer. In addition, depth testing against the depth
map of the opaque scene is enabled in order to handle occlusion correctly.
An atomic counter tracks the current global position in the head pointer
buffer (line 2). This is possible because, as the name suggests, atomic coun-
ters provide functionality to atomically read, increment, and decrement an
unsigned integer in a shader program. For each fragment, the current en-
try in the head pointer buffer is atomically exchanged with the incremented
atomic counter (line 6). This yields the link to the next element in the linked
list. The link is —1 if no element got inserted yet, thus if the current frag-
ment is the first element in the linked list of that pixel. Lines 3 and 4 are
necessary to avoid an overdraw of the node buffer. This can happen if more
fragments are written than memory was allocated. In the end, the tangent,
depth and the link are stored in the node buffer.

Algorithm 3 Fill the A-Buffer in the Fragment Shader

1: procedure FILL A-BUFFER(vector2 p, uint maxIndex)
2 index = atomicIncrement(counter)

3 if index > maxIndex then

4: return

5: end if

6 link = atomicExchange(headBuffer,p,index)

7 Store link, tangent, and depth in nodeBuffer[index]
8: end procedure

The last step is to resolve the PPLL to render the hair. For this, a full screen
quad is rendered where each fragment shader invocation accesses one en-
try in the head pointer buffer. If the entry is not equal to —1, at least one

37

entry in the underlying linked list is stored. Now, the PPLL can be easily
traversed using the link information stored in the node buffer. However, as
the overall goal is to render the hair as transparent geometry, the PPLL have
to be sorted on the GPU first. Afterwards, the fragments can be blended us-
ing common alpha blending.

5.2 K-Buffer

Complex and dense hairstyles can have dozens of fragments per pixel. Ren-
dering all of those using a PPLL is very costly and most often not suitable.
Anyhow;, hair is only semi-transparent and only the K foremost fragments
might be visible. Thus, only the K foremost fragments must be blended to-
gether and the rest can be ignored. Techniques and data structures taking
this idea into account are denoted as a K-Buffer. The term K-Buffer was in-
troduced first by Callahan et al. [4, 9]. However, their approach assumes al-
ready partially sorted geometry which makes it useless for hair rendering.
Fortunately, a K-Buffer can be easily created on the fly using the A-Buffer as
done by Yu et al. [61]. For this, the first K entries of the A-Buffer are stored
in a local array on the GPU. Afterwards, the complete A-Buffer is traversed
whereby each element is compared to the local array. If any smaller element
is found, it is exchanged with the largest element in the local array. As this
technique still requires the creation of an A-Buffer, memory consumption
is still very high. Therefore, Vasilakis et al. introduced the K*-buffer which
stores the K nearest fragments [55, 56] only. To do so, they propose to
use one of two array-based data structures: max-array and max-heap. Both
track the depths of all currently stored fragments. The first entry in the
max-array is always the fragment with the greatest depth whereby the rest
is unordered. In contrast to this, the max-heap is a binary tree where each
node is larger or equal to the depth of its child nodes. In their paper, an easy
array based implementation is given [55]. As graphic devices may process
fragments in parallel, even if they relate to the same fragment coordinates,
read-modify-write memory-hazards might appear. To solve this issue, mod-
ern GPU functionalities such as INTEL_fragment_shader_ordering [16] for
Intel GPUs or NV_fragment_shader_interlock [7] for Maxwell GPUs can be
used. For other hardware, the authors propose per-pixel binary semaphores
using a 32-bit unsigned integer texture initialized with 0.

38

Algorithm 4 Mutex in OpenGL using binary semaphores (black), Intel’s
fragment shader ordering (red), or NVIDIA’s fragment shader interlock
(blue) [56]

1: procedure MUTEX
2: beginFragmentShaderOrderingINTEL()
beginInvocationInterlockNV()
while true do
if limageAtomicExchange(t,p,1) then
{enter critical section}
imageStore(t,p,0)
break
end if
10: end while
11: endInvocationInterlockNV()
12: end procedure

Algorithm 4 shows the implementation of a mutex in OpenGL using either
Intel’s fragment shader ordering, NVIDIA’s fragment shader interlock, or
the binary semaphores as proposed by [55]. Here, line 5 atomically ex-
changes the current value stored in the unsigned integer texture with 1.
The if statement only becomes true if the returned value is 0. Thus, if no
other invocation has entered the critical code section yet. All other invo-
cations continue spinning until the lock is free again. Please note that the
critical code in line 6 is executed for all three methods.

5.3 A Novel Approach: DBK-Buffer

During this thesis, a novel approach for rendering semi-transparent hair
was developed in order to compensate the drawbacks of other methods:
the depth-based K-Buffer (DBK-Buffer). The main goals were:

¢ Find only the foremost fragments to be more memory efficient than
the A-Buffer.

* Do not use a GPU mutex as they either need special hardware or are
very inefficient (as binary semaphores).

¢ Preserve a quality similar to other approaches while not being slower.

The idea is to introduce a layer which works a bit like the layering approach
of deep opacity mapping (see chapter 4.2). The hair is first rendered into a
depth map from the camera’s point of view. Afterwards, the depth map is
shifted along the view direction by a user controllable amount. Every frag-
ment that lies within that layer is stored in the PPLL using algorithm 3. All

39

other fragments are just discarded. Because of this, a huge amount of mem-
ory is saved as shown in chapter 6.3.3. One drawback is that the technique
might miss important fragments that do not lie within that layer. For in-
stance, a single hair strand might stick out of the hair volume in a way that
following fragments have a distance too far away to lie within the layer.
Because of this, the hair is rendered once more as opaque geometry in such
a way that every fragment that does lie within the layer is discarded. The
PPLL is then blended over this opaque layer. Another drawback is that the
user has to use a proper depth shift and must allocate a sufficient amount
of memory in order to avoid overdraws. However, the A-Buffer also has
the challenge of allocating enough memory. Nevertheless, the advantage
of significantly less memory in comparison to the A-Buffer in combination
with a better performance than the mutex based K-Buffer does make this
novel approach very valuable for certain scenarios. A much more sophisti-
cated and detailed evaluation is done in chapter6.3.

5.4 Random Subsets

Older GPUs that don’t support at least OpenGL version 4.2, and therefore
don’t support important features like atomic counters or image load store,
are not able to execute PPLL in any of the presented forms. For systems
using such hardware, or when a more easy implementation is necessary,
blending random subsets might be a good way to go. Therefore the hair
strands are split in K random subsets. Each of those is then rendered into
textures using deferred rendering. Then it is possible to shade each subset
and blend them from front to back or vice versa. One can also split the
hair strands into layers starting from the skull to the outer hair. However,
this approach might not work for arbitrary hairstyles and meshes. For this
reason random subsets were implemented instead.

40

6 Results and Evaluation

In this chapter results of the implementation are shown and evaluated. For
each described feature, a comprehensive analysis of the visual quality and
the computational performance was conducted. OpenGL timer queries are
used for performance measurements, as computations are mainly done
on the GPU. The test system consists of an Intel® Core™ i7-4790K quad-
core CPU running at 4 GHz, 16 GB RAM, and an NVIDIA GeForce® GTX
960 GPU with 4 GB of VRAM. The viewport resolution for all images is
656 x 861 pixels, which was embedded within a Qt user interface as shown
in figure 45. The hair models used are courtesy of Cem Yuksel and can be
downloaded on his web page [62]. They are basically a set of splines that
can be loaded using the library provided. Figure 28 gives an overview of
the hair models used in this thesis. In addition to the hair models, the fe-
male head model is courtesy of Murat Afshar and can also be downloaded
on the web page.

Straight Wavy Curly
50.000 strands 50.000 strands 50.000 strands
1.250.000 vertices 2.450.000 vertices 3.441.580 vertices

Figure 28: The different hair models (Straight, Wavy, Curly) used throughout this
thesis rendered with the shading model of Marschner et al. All three
consist of 50.000 hair strands whereby the number of segments per hair
strand does not have to be uniform. Because of this, the total number
of vertices per hair mesh varies. All hair models are courtesy of Cem
Yuksel and the female head model is courtesy of Murat Afshar [62].

41

6.1 Shading Models
6.1.1 Visual Results

This chapter shows visual results of the three implemented and described
shading models: Kajiya and Kay (3.2), Marschner et al. (3.3), and Sadeghi
et al. (3.4). All figures of this sub-chapter are rendered transparent and are
using Deep Opacity Mapping with PCF filtering.

The phenomenological model of Kajiya and Kay does not provide many pa-
rameters in order to control the appearance of the hair. There is the diffuse
color and intensity as well as the specular intensity and the specular expo-
nent m. Figure 29 shows varying specular exponents with fixed intensities
and a fixed diffuse color. It can be seen that decreasing the specular expo-
nent does broaden the specular highlight. This follows directly from the
phong model from which the model of Kajiya and Kay was derived. How-
ever, the model does not observe the law of energy conservation (cf. 2.4.1),
implying that the model of Kajiya and Kay is not physically-plausible. Fig-
ure 46 shows more renderings using the model of Kajiya and Kay.

m = 10 m = 50 m = 100

Figure 29: Shading model of Kajiya and Kay. The specular exponent varies from
left to right from m = 10, m = 25, to m = 50, whereby the specular
intensity is always set to 1 and the diffuse color is (0.72,0.59,0.47)

The model of Marschner et al. comes with much more sophisticated, phys-
ically - based parameters. In total, the model can be split into three com-
ponents: R, TT, and TRT (see 3.3.1). All three components heavily depend
on the longitudinal shift a;, and the azimuthal shift 3,, whereby the shifts
of the TT and TRT component are based on the ones from the R compo-
nent (see table 1). Using the longitudinal shift a,, one can control where the
component tends to appear on the hair model. In addition to that, the az-
imuthal shift 3, controls the width of the component. Figure 30 shows the R
and TRT component where the azimuthal shift S varies from 5° to 10° and

42

the longitudinal shift ap is set to —5°. The last column of figure 30 even-
tually shows the full shading model together with the diffuse component
of Kajiya and Kay as suggested by [32]. In contrast to the model of Kajiya
and Kay, the model of Marschner et al. is physically plausible as it is en-
ergy conserving. This can be easily seen as the highlight intensity decreases
when the highlight width increases. The color of the secondary highlight
only depends on the absorption coefficient o, as one can see in the top row
of figure 32. Here, different absorption coefficients are shown for different
hair colors. Beside the R and TRT components, the strong TT component
contributes much to the appearance of hair as shown in figure 31. In this
figure, the hair is lit by two light sources whereby one light source serves
as a backlight. As for the model of Kajiya and Kay, other examples of the
Marschner shading model can be found in the appendix (figure 46).

R component TRT component R + TRT + diffuse

Figure 30: Shading model of Marschner et al. showing the R and TRT component
as well as the complete model including the diffuse component of Ka-
jiya and Kay’s shading model. The longitudinal width S is 5° for the
first row and 10° for the second.

43

Marschner et al. Sadeghi et al.

Figure 31: Hair lit with two point lights, whereby one serves as a stronger back-
light.

Sadeghi et al. approximated the model of Marschner et al. to provide more
artist friendly controls. Chapter 3.4 already provides a good overview of
all parameters. The longitudinal scattering functions M, are unit-height
Gaussians. Due to this, the intensity of the highlights is independent of
the highlight’s width ,. However, intensity control parameters I,, were
introduced to provide artists full control over each visual feature. Given
all these parameters, it is feasible to match the model of Sadeghi et al. to
the Marschner shading model as shown in figure 32. Here, the bottom
row shows fine tuned renderings using the model of Sadeghi et al. The
main difference is due to the lack of Fresnel equations in Sadeghi’s model.
However if needed, one can easily incorporate Fresnel equations in their
model. For this thesis, the half angle between two glints G4 is fixed to
45°. To allow some more variation in the TRT component, G4 should
vary between 30° and 45° per hair strand. More results are shown in the
appendix (figure 46).

Beside the primary and the secondary highlight, the model of Sadeghi et
al. also provides a simple approximation for the TT forward scattering
component of Marschner et al (see figure 31 right). Again, it is feasible to
get a similar appearance of the TT component using the approximation of
Sadeghi et al. However, a perfect match is not possible.

44

0o =(0,0.06,0.17) 0, =(0.22,0.3,0.4) o, = (0.11,0.36,0.4)

Figure 32: Top: Model of Kajiya and Kay. Center: Sadeghi shading model (Ir =
0.45, Irrr = 0.3) trying to match the Marschner based shading. Bot-
tom: Marschner shading model (a«g = —5° fr = 7.5°) with varying
absorption coefficients o,.

6.1.2 Performance

The performance for the three shading models was measured using the
three different hair models. However, all shading models perform nearly
the same on the test system due to the fact that most of the math is pre-
computed. Nevertheless, the performance varies for the three hair mod-
els simply because of different amounts of geometry being rendered. Fig-
ure 33 shows the performance in milliseconds for the Straight, Wavy, and

45

50K

40K

30K

20K

10K

0 0.5 1 15 2 25 3 3.5 4 4.5

w Curly ™ Wavy m Straight

Figure 33: Performance in milliseconds for the three different hair models
(Straight, Wavy, Curly) with varying hair density (10.000 - 50.000 hairs).
The hair is illuminated by one light, without shadows and without
transparency taken into account. Different shading models are not com-
pared as they all perform very similarly on the test system used.

Curly hair model where the number of rendered hair strands varies be-
tween 10.000 and 50.000 strands. The hair was rendered as opaque geom-
etry without any shadowing as GL_LINES. When using deferred render-
ing instead of plain forward rendering, the performance is slightly worse.
However, further evaluation will show that deferred rendering is highly
recommended for rendering hair with shadows.

6.2 Shadowing
6.2.1 Visual Results

Shadows are a crucial factor when rendering hair. They highly increase the
voluminous appearance and the realism of the hair. For this work, three dif-
ferent real-time shadow techniques were implemented: Shadow Mapping
(SM), Approximated Deep Shadow Mapping (ADSM), and Deep Opacity
Mapping (DOM). The quality and the performance of all approaches highly
depends on the shadow map and deep opacity map resolution (cf. figure
34). For this evaluation, the resolution is set to 512x512 texels.

The common approach to achieving proper shadows whit real-time render-
ing is SM. However, SM only provides a binary decision whether or not a
fragment is in shadow. This yields to very noisy and unrealistic shadows
when used with hair (cf. figure 37a). However, applying PCF - filtering
helps to smooth the shadow significantly as shown in figure 37b. Here, a
5x5 PCF filter was applied. Nevertheless, the hair still appears much too

46

a) 128x128 b) 256x256 ¢) 512x512

Figure 34: Shadow rendered with DOM using a opacity map resolution of either
a) 1282, b) 2562, or ¢) 5122 texels using a PCF kernel size of 3x3.

dark when using SM. For this, the shadow strength s can be decreased
yielding brighter shadows as in figure 37c. Here, s was decreased to 0.6.
Unfortunately, this leads to an artificial look of the hair as it then appears
way too bright in general, even in full shadowed regions.

To solve this, AMD came up with ADSM for TressFX [28, 33]. ADSM is a
simple extension to normal SM as it just increases the shadow strength for
fragments that lie deeper in the hair volume. In direct comparison to SM,
ADSM provide shadows that are much more realistic (see figure 37f). With-
out proper filtering, ADSM also struggles with aliasing and noise as one
can see in figure 37d. For artists, ADSM doesn’t offer much control. There
are basically two parameters that can be controlled: The transparency a;
and the width of the hair w. As shown in figure 37e and 37f, o, affects the
strength of the shadow. In addition to that, the hair width w also controls
the strength of the shadow because w is used to guess the number of fibers
between the current shading point and the light source. Because of this, a
lower width increases the shadow strength. A more sophisticated but also
more accurate technique is DOM. DOM tries to approximate the transmit-
tance function 7(x) (see equation 67) in order to measure how much light
is transmitted to a certain point = using K opacity layers aligned with the
shape of the hair model. In this implementation, KX = 3 layers are used
as they fit best in one OpenGL texture while providing good results as de-
scribed in chapter 4.2. Figure 35a shows the three layers as seen from the
light source. Here, the red, green, and blue channels correspond to the first,
second, and third layer, respectively. The depth of each layer is controllable
by the user. However, the initial layering is based on the hair boundaries
such that the first layer covers approximately 5%, the second layer 15%,
and the third layer the rest of the hair model. The resulting opacity map is
shown in figure 35b. It stores the accumulated opacity values of each layer

47

in the red, green, and blue channels. Due to the fact that the accumulated
opacity values increase from layer to layer, the third layer contributes most
to this visualization. Therefore, the most prominent color in figure 35b is
blue. DOM also suffers from aliasing and noise without proper filtering.
With proper filtering however, DOM gives the most plausible result. In di-
rect comparison to ADSM, DOM provides smoother shadows and better
nuances, especially for darker shadows. For brighter shadows however,
ADSM gives a good approximation for volumetric shadows.

(a) DOM Layers (b) Opacity Map

Figure 35: a) Layers as seen from the light source used for DOM. The first layer is
red, the second green, and the third is blue. b) The deep opacity map
as seen from the light source. The red, green, and blue channels store
the accumulated opacity values of the first, second, and third layers,
respectively.

6.2.2 Performance

Shadows do have a huge impact on the performance of the rendering. Be-
cause of this, a comprehensive measurement was conducted. Figure 36 pro-
vides an overview of those measurements. It differs between three different
resolutions of shadow and opacity maps (128x128, 256x256, and 512x512)
as well as between the different shadow techniques using different filter-
ing (none, 3x3, and 5x5 PCF). One can easily see that ADSM comes with
nearly no cost in contrast to SM and that DOM is the most expensive tech-
nique. PCEF filtering does have a slight impact on the performance of SM
and ADSM and a greater impact on the performance of DOM. Noteworthy,
the biggest performance impact on DOM ic caused by the size of the opac-
ity map. However, chapter 6.2.1 has shown that a resolution of 256x256 can

48

be sufficient. Then, DOM using a 3x3 PCF filter requires ~ 6.3 ms to com-
pute whereby ADSM requires ~ 3.3 ms. When transparency is not an issue,
one can use deferred rendering in order to further speed up the rendering.
With deferred rendering, DOM with 3x3 PCF filtering requires ~ 5.0 ms to
compute which is a speedup of ~ 25%. However, deferred rendering does
not speed up SM or ADSM significantly. Because of this and the good qual-
ity that ADSM is capable of offering, ADSM should be used in performance
critical applications like video games. In any case, ADSM should be pre-
ferred to SM. With high PCF filtering and 512x512 shadow map resolution,
ADSM is only ~ 5% slower than SM while providing much more pleasant
results. See figure 37 for visual results.

DOM 5x5 PCF

DOM 3x3 PCF

bom

ADSM 5x5 PCF

ADSM 3x3 PCF

ADSM

SM 5x5 PCF

SM 3x3 PCF

SM

0 2 4 6 8 10 12

m512x512 W 256x256 M 128x128

Figure 36: Performance in milliseconds for different shadow techniques (SM,
ADSM, DOM) with varying shadow map / opacity map resolutions
and varying filtering (none, 3x3, and 5x5 PCF). The resulting images
are shown in figure 37.

49

(@SMs=1 (b) SM5x5PCFs =1 (c) SM 5x5 PCF s = 0.6

(d) ADSM a, = 0.4 (e) ADSM 5x5 PCF a5 = 0.4 (f) ADSM 5x5 PCF oy = 0.2

(g) DOM s = 0.03 (h) DOM 5x5 PCF a5 = 0.03 (i) DOM 5x5 PCF o5 = 0.01

Figure 37: Comparison of SM (a-c), ADSM (d-f), and DOM (g-i). The first column
shows the techniques using one sample only, whereby a 5x5 PCF filter
was applied in the second column. In the third column, the shadow
strength s and the shadow transparency a, have changed in order to
get brighter shadows.

50

6.3 Transparency
6.3.1 Visual Results

Transparency is a huge and difficult topic in hair rendering, simply because
of the sheer amount of fragments that need to be blended. Furthermore,
as hair is a translucent material, transparency plays a huge role when it
comes to plausible, physically-based hair rendering. Without proper trans-
parency, hair appears much to dull and aliased as in figure 38.

Figure 38: Transparent hair in contrast to opaque hair. Without transparency, the
hair appears much more dull and aliased.

For this thesis, five different techniques have been implemented: Blending,
Random Subsets, A-Buffer, K*-Buffer, and our new depth-based K-Buffer ap-
proach called: DBK-Buffer. Blending simply blends the hair from back to
front using additive hardware blending. Because of this, the hair strands
are sorted along the view direction on the CPU beforehand (cf. figure 39a
and 39b). Beside that, Blending can produce wrong results, especially for
complex hair models (cf. figure 39c). This is due to the fact that hair strands
might overlap, which do make a sort per fragment necessary.

51

(a) Unsorted (b) Sorted (c) Complex model

Figure 39: Additive hardware blending of a) unsorted and b) sorted hair strands.
For complex models as in c), sorting per hair strand is not sufficient.

Because of this, more sophisticated strategies using some kind of per pixel
linked list (PPLL) approach should be used. Using the A-Buffer, all frag-
ments are routed in the PPLL. This allows a full sorting and blending of
all fragments. As the hair models used are very dense, one should avoid
such a scenario. Moreover, only the k£ foremost fragments contribute to the
final image when using a specific transparency a. Thus for o = 0.5, only
the k = 6 foremost fragments need to be blended, for instance. Using this,
the A-Buffer still stores all fragments but sorts and blends only the & fore-
most ones. To solve this, the K*-Buffer was implemented which uses frag-
ment shader interlocks in order to store the k foremost fragments only. The
DBK-Buffer stores fragments that lie within a user-defined layer. All PPLL
approaches, thus the A-Buffer, K*-Buffer, and the DBK-Buffer, are capable of
producing the same visual result when used correctly. Because of that, a vi-
sual comparison is neglected. They only differ in terms of performance and
memory consumption. Beside the sophisticated PPLL approaches, an easy
to implement and fast technique called Random Subsets was implemented.
It simply renders the hair in & random subsets in a deferred manner and
sorts and blends them while compositing. Figure 47 shows k£ = 8 random
subsets and the corresponding result.

52

(a) Blending (b) PPLL (c) Random Subsets

Figure 40: Visual results of a) Blending with sorted strands, b) PPLL approaches
(A-Buffer, K*-Buffer, DBK-Buffer), and c) Random Subsets.

6.3.2 Performance

Handling transparency for dense hair meshes is challenging and expensive.
The performance measurements of the techniques presented vary strongly
as shown in figure 42. Here, measurements in milliseconds for all ap-
proaches implemented using either SM, ADSM, DOM, or without shadows
(None) are shown. The Straight hair model, viewed from the side as in fig-
ure 37, is used again. It can be seen that the A-Buffer performs worst. That
is because the complete PPLL needs to be traversed several times in order
to find the k foremost fragments. The PPLLs can become very large, as the
hair models with 50.000 strands each are very dense. The faster, but still
slow K*-Buffer uses the OpenGL extension NV_fragment_shader_interlock.
For this extension, a huge number of control flow barriers are introduced
within a massive parallel algorithm. Due to this, the number of operations
the GPU can execute in parallel is reduced, yielding a bad performance.
Out novel DBK-Buffer outperforms the outer PPLL approaches. With DOM
and 3x3 PCF filtering, the DBK-Buffer approach is capable of rendering
the hair at a minimum of 50 frames per second (FPS). Using ADSM in-
stead, nearly 58 FPS are attainable. For performance critical applications
like video games, even 58 frames per second is much too slow. For this,
the Random Subset (k = 8) approach is very suitable as it renders the hair
with 91 FPS (DOM) and 125 FPS (ADSM), respectively. Considering that
video games will not use such dense hair models, those techniques are
well suited for real-time rendering. The hardware Blending approach might
be fairly fast for SM and ADSM. However as mentioned before, Blending
should be avoided as it yields wrong results. In contrast to all transparency
techniques, the performance measurement also reveals that deferred ren-
dering is not always faster than forward rendering. It is noteworthy, that

53

the performance of the DBK-Buffer strongly depends on the user defined
depth shift. This depth shift depends on the hair model used and the trans-
parency « and needs to be adjusted appropriately. For the measurements of
figure 42, the depth shift was chosen such that £ > 8 fragments are stored
and thus the result is equal to the other approaches.

Opaque Deferred

Opaque Forward

Blending

Random Subsets

A-Buffer

K+-Buffer

DBK-Buffer

0 10 20 30 40 50 60
None ®SM mADSM mDOM

Figure 41: Performance in milliseconds for different transparency approaches
using either Deep Opacity Mapping (DOM), Approximated Deep
Shadow Mapping (ADSM), or just Shadow Mapping (SM), including
a 3x3 PCF filter.

6.3.3 Memory Requirements

In addition to the technique’s performance, its memory consumption is cru-
cial, especially because GPUs have a limited amount of memory available.
Figure 42 shows the GPU memory consumption of the transparency tech-
niques described in megabytes (MB). Please note that Blending is omitted
here as it doesn’t consume any additional memory. The viewport is, as be-
fore, 656 x 861 = 564.816 pixels in size. As the Random Subset approach uses
k = 8 framebuffer objects (FBOs), where each FBO has one RGB16 color
(for the tangent) and one 16 bit depth texture attached, a total of 34.47 MB
is used. The K*-Buffer allocates memory for k = 8 fragments per pixel of
size RGBA16 (tangent and depth). In addition, the counter buffer has to
store one integer (4 byte) per pixel. Thus, the K*-Buffer allocates 36.63 MB
in total. In contrast to this, the A-Buffer stores not only & but all fragments.
For the Straight hair model as in figure 37, 12.959.208 fragments are stored
in the A-Buffer. Thereby each entry consists of one RGBA16 for the tangent
and the depth and one R32 for the link. Additionally, the head buffer also
occupies around 2.16 MB. Thus, a total of 150.46 MB is stored. However, as
this is only true for a particular point of view and the Straight hair model,

54

the A-Buffer has to be much bigger in order to avoid overdrawing. For in-
stance, the A-Buffer implementation of AMD in TressFX allocates around
276 MB of video memory for the given viewport size. For a full HD view-
port (1920 x 1080), 930 MB are allocated. In order to avoid such huge mem-
ory consumption, the DBK-Buffer was developed. The huge advantage of
this novel approach is the massive amount of saved memory combined
with the very good performance it provides. Beside that, the DBK-Buffer
does not depend on hardware features like the fragment shader interlock
which is only available for the newest GPU generation. For memory mea-
surements, the depth shift of the DBK-Buffer was chosen in such a way
that the result looks equal to the other PPLL implementations. Then the
DBK-Buffer stores 4.518.344 fragments which results in 53.86 MB of mem-
ory including the head buffer. In addition to this, the hair that lies behind
the depth layer is rendered as opaque geometry as described in chapter 5.3.
Thus, a total of 59.25 MB is occupied by the DBK-Buffer.

Random Subsets

K+-Buffer

DBK-Buffer

A-Buffer

0 25 50 75 100 125 150 175

Figure 42: Video memory requirements of different transparency approaches in
megabytes.

55

7 Conclusion

7.1 Future Work

Beyond this thesis some more papers can be taken into account. For in-
stance, Yan et al. recently developed a physically-accurate reflectance model
for fur [59]. Their model approximates the fiber with two cylinders whereby
the outer cylinder accounts for the cortex and the inner one accounts for the
medulla (cf. figure 43). They state that there is a structural difference be-
tween hair and fur strands. The medulla of fur is significantly larger than
that of hair (see chapter 2.1) and therefore the medulla is approximated
using one additional cylinder. Additionally, the cuticle of fur is usually
rougher than that of hair.

TttRttT

v medulla

cortex

cuticle

TttRttT

Figure 43: Double cylinder model of Yan et al. for the longitudinal direction (left)
and the azimuthal direction (right). Image from [59].

The work of Zinke et al. about a dual scattering approximation in hair is a
very sophisticated but valuable paper [65]. The basic idea here is to intro-
duce a multiple scattering function Q(x,wq,w;) which measures how much
light arrives at a certain point z coming from direction w;. Thereby, the
light enters the hair volume from a direction w, and scatters multiple times
within the hair volume. Furthermore, Zinke et al. separate 2 in two com-
ponents : global multiple scattering Q¢ and local multiple scattering Q. The
global component ¢ computes the irradiance that arrives at a point x (cf.
figure 44a) whereby the local component Q¥ computes the multiple scat-
tering of this irradiance within the local neighborhood of x. According to
Zinke et al., the multiple scattering function is then

Oz, wa, w;) = Q% (, wa, w;) * (14 QF(z, wg, wi)). (70)

Figure 44b shows the cross section of a hair cluster which shows forward
and backward scattering. Here, the strand z receives illumination from for-
ward scattered light, which comes from the orange region, and it receives

56

illumination from light that scatters back from the blue region.

Implementing the dual scattering approximation is challenging, especially
for real-time rendering. Zinke et al. proposed an algorithm that would fit
within a real-time system by pre-computing a lot of things and by doing
further approximations. One idea is to use deep opacity mapping to ap-
proximate the forward scattering transmittance function 7y and the vari-
ance of forward scattering 0120 in order to compute the global scattering

function Q¢. When deep opacity mapping is not a valid option, one could
apply the ideas of Sadeghi and Tamstorf to efficiently approximate Ty and
aj% [50]. They assume that all hairs in front of = have the same orientation
as x. Nevertheless, this is only true for flat hair styles.

In the work about an artist friendly hair shading system by Sadeghi et al.
(see 3.4), the dual scattering approximation is also discussed and imple-
mented. Therefore, the dual scattering approximation also fits within an
artist friendly system. The implementation is highly related to the original
but involves some modifications in order to provide artist friendly controls.

X o,

(@) Dual Scattering (b) Cross section

Figure 44: a) Global and local multiple scattering within the hair volume and b)
forward and backward scattering in the cross section of a hair cluster.
Images from [65].

7.2 Summary

Interactive physically-based rendering of hair is a challenging and expen-
sive task. This thesis provides a broad overview of existing real-time-capable
techniques for rendering hair that are commonly used in the industry. Ad-
ditionally, a comprehensive evaluation of the techniques in terms of quality,
performance, and memory requirements is provided. The main contribu-
tion of this work is the DBK-Buffer, which was developed in order to solve
the limitations of existing transparency approaches. Here, the goal was
to reduce the amount of memory that is used on the GPU. However, our
considerations also result in better performance compared to other buffer

57

based approaches. Thus it can be stated that the DBK-Buffer is a very useful
contribution. However, the DBK-Buffer also has a drawback: The user has
to specify a certain depth shift so that neither too few nor too many frag-
ments are stored in the buffer. To capture the first case, the hair beyond that
depth shift is rendered as opaque geometry.

For hair shading models, the model of Kajiya and Kay was deduced from
the well-known Phong shading model. Furthermore, the physically-based
hair shading model of Marschner et al. was derived, which is to the present
day the foundation of most research in that area. In addition to that, the
artist friendly hair shading system of Sadeghi et al., which is used in pro-
duction rendering at the Walt Disney Animation Studios, was shown. All
these shading models were evaluated in a comprehensive analysis in chap-
ter 6.1. It was shown that the model of Kajiya and Kay is suitable for pro-
viding a useful diffuse component. Their specular component however
can only provide a harsh approximation of the primary highlight of hair. In
contrast to this, the model of Marschner et al. results in much more realistic
renderings. In addition to that, the model of Sadeghi et al. is much easier to
control while providing a very good approximation of Marschner’s model.
Nonetheless, their model is not physically plausible as it is not energy con-
serving. If this is an issue, one can easily fix that by applying the Fresnel
equations to the model and by normalizing the pseudo scattering function
as i = fl/([, fi)- Besides these three shading models, chapter 7.1 pro-
vides ideas for future work. So, an outlook on the prominent paper Dual
Scattering Approximation for Fast Multiple Scattering in Hair by Zinke et al. is
given. Furthermore, the ideas of Yan et al. to approximate fur fibers with
two cylinders are mentioned briefly.

Moreover, this thesis also covers appropriate techniques for computing
shadows in hair in real-time. Here, the evaluation has shown that Ap-
proximated Deep Shadow Mapping (ADSM) and Deep Opacity Mapping
(DOM) provide the best results. For time critical applications such as video
games, ADSM might be the better way to go as it is much faster than DOM.
For applications that place the most importance on quality, DOM should
be used instead.

In conclusion it can be stated that hair rendering at interactive, or even at
real-time frame rates is practically possible. Using either the novel DBK-
Buffer or the Random Subsets approximation allows very fast renderings
with all the shadowing techniques presented using a mid-range GPU.

58

Additional Figures

Figure 45: The user interface using the Qt library [45]. The left side lists all objects
in the scene as cameras, meshes, lights, and certain controllable param-
eters. Objects can be selected by the user by clicking on them. Here, the
object Artist Friendly Parameters is currently selected. The right side of
the user interface provides a simple parameter editor to adjust exposed
values during the run-time. As Artist Friendly Parameters are selected
in the object list, the parameter editor shows all controllable parame-
ters of the artist friendly hair shading system (cf. chapter 3.4). The
OpenGL viewport lies in between both interfaces, currently rendering
the Straight hair model (cf. figure 28).

59

Kajiya and Kay Marschner et al. Sadeghi et al.

Figure 46: Curly hair model rendered using either the model of Kajiya and Kay
(left), the model of Marschner et al. (middle), or the model of Sadeghi
et al. (right).

60

Figure 47: Top left: Hair rendered transparent using 8 random subsets. Rest: The 8
random subsets rendered deferred. A fragment shader sorts each frag-
ment per depth, shades, and blends them from back to front.

61

List of Symbols

Symbol Description Definition

v frequency eq. 2

A wavelength eq. 3

Q radiant energy eq. 4

o radiant flux eq. 5

I radiant intensity eq. 6

E irradiance eq.”7

B radiosity eq. 8

L radiance eq. 9

f(dw;,dw,) bidrectional reflectance distribution func- eq. 10
tion (BRDF)

fs(dwi, dw,) single scattering function eq. 32

fi(dwi,dw,) pseudo scattering function eq. 60

p directional reflectance eq. 12

p(0;) directional-hemispherical reflectance eq. 13

n index of refraction 1.55 (for hair)

n bravais index perpendicular equation 38

n" bravais index parallel equation 53

n* Corrected index of refraction for elliptical ~ equation 59
fibers

Oa absortion coefficient (R,G,B) [0.2, 00]

a eccentricity [0.85,1]

u hair tangent pointing from root toward (ugs,uy,u.)
the tip

v major axis (Vg, vy, V)

w minor axis (We, Wy, W)

L/ incoming light direction / projected equation 26

e/é€ outgoing view direction / projected -

wi / Wo incoming / outgoing light direction in 0, 9)
spherical coordinates

6; / 0, incoming / outgoing longitudinal angle -5, 5]

04 difference longitudinal angle eq. 21

o, half longitudinal angle eq. 23

oi | bo incoming / outgoing azimuth 0, 27]

@ relative azimuth eq. 22

on half azimuth eq. 24

Table 1: List of all symbols and terms used in this thesis

62

Symbol Description Definition

U,/ diffuse / specular component of Kajiya- -
Kay

kq/ks diffuse / specular reflection coefficient -

P number of internal path segments {R,TT,TRT}

h offset from the center of a unit circle [—1,1]

Yi angle of incidence in a circular cross sec- equation 41
tion

Ve angle of the refracted ray in a circular equation 42
cross section

Ve angle at which caustic appears equation 57

o(p, h) exit angle in a ciruclar cross section equation 43

(g(P, i) approximation of ¢(p, ;) equation 46

aR logitudinal shift path R [—10°, —5°]

arr logitudinal shift path TT —ap/2

QTRT logitudinal shift path TRT —3ag/2

Br logitudinal width path R [5°,10°]

Brr logitudinal width path TT Br/2

Brrr logitudinal width path TRT 206R

62,1 azimuthal width path TT -

62, azimuthal width for glints -

ka glint scale factor [0.5, 5]

We azimuthal width of caustic [10°, 25°]

Ay fade range of caustic merge [0.2,0.4]

Ahyg caustic intensity limit 0.5

M, (0r) longitudinal scattering function path p equation 40

M, (0r) longitudinal pseudo scattering function equation 61
pathp

Ny(64,) azimuthal scattering function path p equation 55

N, (04, ¢) azimuthal pseudo scattering function equation 62,63,64
pathp

F(ni,m,0;) Fresel equation for dielectrics equation 18

9(B,x, 1) normalized Gaussian function with mean equation 39
1 and standard deviation 3

T(0q,h) absorption factor equation 52

A(p, h) attenuation factor equation 54

T(x transmittance function equation 67

O(x) opacity at point = equation 66

K scaling constant e ™" = 274 b=8=k~ 556

Table 1: List of all symbols and terms used in this thesis

63

List of Figures

1

10

11

12
13
14
15

Hair and fur rendering in production movies. Top: Car-
toonish looking hair of Rapunzel and Flynn in Tangled from
the Walt Disney Animation Studios. Bottom: full CGI Ceasar
with his photo-realisitc fur beside James Franco playing as
William Rodman in Rise of the Planet of the Apes from 20th
Century Fox.
Screenshot of Cinema 4D showing the interface as well as sev-
eral viewports. Here, the guide hairs of the hair model are
highlighted with a blue color. The top left image shows a
final render using the internal hair material system.
a) Real-time hair rendering in the Nalu Demo by Nvidia [11]
and b) the hair creation and authoring tool HairWorks by
Nvidia. [12] o e
a) Real-time hair rendering in TressFX by AMD [13] and b)
TressFX used in the video game Tomb Raider by SquareEnix. .
a) Hair as a schematic illustration showing cuticle, cortex,
and medulla [48]. b) Hair as seen under a microscope show-
ing scales growing from the root to the tip [64].
a) The planar angle of an object c is the length of the arc s
on the unit sphere. b) The solid angle w of an object c is
the object’s projected area on the unit sphere. The differen-
tial projected solid angle is the cosine - weighted solid angle:
dw' = |cosf| dw. Images from [41].
Derivation of equation 1: The differential solid angle dw is

the product of the two edges sinfd¢ and df. Image from [41].

Radiance L is flux per unit projected area per unit solid an-
gle. Image from [41].
Bidirectional reflectance distribution function (BRDF). Im-
agefrom [41]. o
Complex interaction of light with a surface leading to sub-
surface scattering. The left image shows a full simulation of
all scattered paths in the subsurface whereby the scattered
light in the right image emits from the entry point only. Im-
agefrom|[2]. Lo
Geometry and terms used for Snell’s law and the Fresnel
equations [41]. Lo o
Geometry and notation. Image from [32]
The diffuse model of Kajiya - Kay. Images from [26]
The specular model of Kajiya - Kay. Image from [26]
Left: Primary highlight (R) and secondary highlight (TRT).
Middle: Strong forward scattering of light. Right: Glints /
caustics. Images from [32]. L oL

11
14
15
16

16

17

18

19

20

21

22

23

24

25

26

a) Scattering in the normal plane from blonde hair with ec-
centricity around 0.7:1. Green plots show the result of a Monte
Carlo simulation. Allillumination comes from the right side.

b) Scattering in one hemisphere for a fixed incidence direc-

tion 0; = 45°. Images from [32] 18
Longitudinal light scattering from hair. The scattering angles

are shifted to certain degrees due to the tilted cuticle scales.

All three light paths R, TT, and TRT are visible. Image from

[32] . . o 19
Scattering from a cross section. Image from [32] 21
Top row: Varying the index of refraction affects all visual
components of the appearance (coupled parameters). Mid-

dle row: The intensity and the width of the highlight are
coupled. Thus, the intensity of the highlight decreases as its
width increases. Bottom row: The same but with decoupled
parameters from the artist friendly hair shading model. Im-
agefrom[49].o o 27
Primary highlight’s azimuthal control parameters (left) and

a frontlit rendering (right) where (a) is the intensity Ig, (b)

is the longitudinal shift ag, and (c) is the longitudinal width

512%. Imagesfrom [49]. L. 28
Transmission’s azimuthal control parameters (left) and a back-

lit rendering (right) where (a) is the intensity I7r, (b) is the
azimuthal width (5%T, (c) is the longitudinal shift ap7, and

(d) is the longitudinal width B%T. Images from [49]. 28
Secondary highlight’s azimuthal control parameters (left) and

a frontlit rendering (right) where (a) is the intensity I7rr,

(b) is the glint intensity Iz, (c) is the azimuthal width of
glints 82, (d) is the half angle between two glints G, g1, (€) is

the longitudinal shift a7 gy, and (f) is the longitudinal width

B2 Imagesfrom[49]. L. 29
Hair rendered without and with proper shadowing. Image
from[29] 30

Top row: Using too few layers with opacity shadow maps
generates strong layering artifacts. Bottom row: Use of deep
opacity maps produces good quality with just 3 layers. Im-
agesfrom [63]. L Lo 32
Opacity shadow maps using a set of parallel opacity maps,
whereby deep opacity maps uses fewer layers matching the
shape of the hair. The green area lies behind the last layer
and is in total shadow. Image from [63] 33
Hair rendered with and without transparency. Transparency
increases the smoothness of the hair so that it appears less
dulland aliased. 35

27

28

29

30

31

32

33

34

35

Renderings of the Stanford bunny: (a) fully opaque, (b) depth
peeling produces the correct result, (c) WBOIT fails to render

the bunny opaque, and (d) WBOIT renders a good approx-
imation of depth peeling. All images were generated using

the NVIDIA GameWorks™ OpenGL samples [17]. 36
The different hair models (Straight, Wavy, Curly) used through-

out this thesis rendered with the shading model of Marschner

et al. All three consist of 50.000 hair strands whereby the
number of segments per hair strand does not have to be uni-
form. Because of this, the total number of vertices per hair
mesh varies. All hair models are courtesy of Cem Yuksel and

the female head model is courtesy of Murat Afshar [62]. . . . 41
Shading model of Kajiya and Kay. The specular exponent
varies from left to right from m = 10, m = 25, to m = 50,
whereby the specular intensity is always set to 1 and the dif-

fuse coloris (0.72,0.59,0.47) 42
Shading model of Marschner et al. showing the R and TRT
component as well as the complete model including the dif-

fuse component of Kajiya and Kay’s shading model. The
longitudinal width g is 5° for the first row and 10° for the

second. 43
Hair lit with two point lights, whereby one serves as a stronger
backlight. oo 44

Top: Model of Kajiya and Kay. Center: Sadeghi shading
model (Ir = 0.45, ITrr = 0.3) trying to match the Marschner
based shading. Bottom: Marschner shading model (ar =
—5°, Br = 7.5°) with varying absorption coefficients o,. . . . 45
Performance in milliseconds for the three different hair mod-
els (Straight, Wavy, Curly) with varying hair density (10.000
- 50.000 hairs). The hair is illuminated by one light, without
shadows and without transparency taken into account. Dif-
ferent shading models are not compared as they all perform
very similarly on the test systemused. 46
Shadow rendered with DOM using a opacity map resolution
of either a) 1282, b) 2562, or c) 5122 texels using a PCF kernel
sizeof3x3. 47
a) Layers as seen from the light source used for DOM. The
first layer is red, the second green, and the third is blue. b)
The deep opacity map as seen from the light source. The
red, green, and blue channels store the accumulated opacity
values of the first, second, and third layers, respectively.. . . 48

66

36

37

38

39

40

41

42

43

44

45

Performance in milliseconds for different shadow techniques
(SM, ADSM, DOM) with varying shadow map / opacity map
resolutions and varying filtering (none, 3x3, and 5x5 PCF).
The resulting images are shown in figure 37.
Comparison of SM (a-c), ADSM (d-f), and DOM (g-i). The
first column shows the techniques using one sample only,
whereby a 5x5 PCF filter was applied in the second column.
In the third column, the shadow strength s and the shadow
transparency «a; have changed in order to get brighter shad-

Transparent hair in contrast to opaque hair. Without trans-
parency, the hair appears much more dull and aliased.

Additive hardware blending of a) unsorted and b) sorted
hair strands. For complex models as in c), sorting per hair
strand is not sufficient. o 0oL
Visual results of a) Blending with sorted strands, b) PPLL
approaches (A-Buffer, K*-Buffer, DBK-Buffer), and c) Random
Subsets.
Performance in milliseconds for different transparency ap-
proaches using either Deep Opacity Mapping (DOM), Ap-
proximated Deep Shadow Mapping (ADSM), or just Shadow
Mapping (SM), including a 3x3 PCFE filter.
Video memory requirements of different transparency ap-
proaches in megabytes.
Double cylinder model of Yan et al. for the longitudinal di-
rection (left) and the azimuthal direction (right). Image from

a) Global and local multiple scattering within the hair vol-
ume and b) forward and backward scattering in the cross
section of a hair cluster. Images from [65].
The user interface using the Qt library [45]. The left side lists
all objects in the scene as cameras, meshes, lights, and cer-
tain controllable parameters. Objects can be selected by the
user by clicking on them. Here, the object Artist Friendly Pa-
rameters is currently selected. The right side of the user in-
terface provides a simple parameter editor to adjust exposed
values during the run-time. As Artist Friendly Parameters are
selected in the object list, the parameter editor shows all con-
trollable parameters of the artist friendly hair shading sys-
tem (cf. chapter 3.4). The OpenGL viewport lies in between
both interfaces, currently rendering the Straight hair model
(cf. figure28).

67

49

50

51

52

53

54

55

56

57

46

47

Curly hair model rendered using either the model of Kajiya
and Kay (left), the model of Marschner et al. (middle), or the
model of Sadeghi et al. (right).
Top left: Hair rendered transparent using 8 random subsets.
Rest: The 8 random subsets rendered deferred. A fragment
shader sorts each fragment per depth, shades, and blends
them from backtofront.

68

References

[1] Charles L Adler, James A Lock, and Bradley R Stone. Rainbow
scattering by a cylinder with a nearly elliptical cross section. Applied
Optics, 37(9):1540-1550, 1998.

[2] Tomas Akenine-Moller, Eric Haines, and Naty Hoffman. Real-time
rendering. CRC Press, 2008.

[3] Inc. Autodesk. Maya. http:/ /www.autodesk.de/products/maya/
overview (last access: 03/03/2016).

[4] Louis Bavoil, Steven P Callahan, Aaron Lefohn, Jodo LD Comba, and
Claudio T Silva. Multi-fragment effects on the gpu using the k-buffer.
In Proceedings of the 2007 symposium on Interactive 3D graphics and
games, pages 97-104. ACM, 2007.

[5] Louis Bavoil and Kevin Myers. Order independent transparency
with dual depth peeling. NVIDIA OpenGL SDK, pages 1-12, 2008.

[6] James F Blinn. Light reflection functions for simulation of clouds and
dusty surfaces. In ACM SIGGRAPH Computer Graphics, volume 16,
pages 21-29. ACM, 1982.

[7] Jeff Bolz and Mathias Heyer. Nv_fragment_shader_interlock.
https:/ /developer.nvidia.com/sites/default/files/akamai/opengl/
specs/GL_NV_fragment_shader_interlock.txt (last access:
02/01/2016).

[8] Helen K Bustard and Robin W Smith. Investigation into the scattering
of light by human hair. Applied Optics, 30(24):3485-3491, 1991.

[9] Steven P Callahan, Milan Ikits, Joa OLD Comba, and Claudio T Silva.
Hardware-assisted visibility sorting for unstructured volume

rendering. Visualization and Computer Graphics, IEEE Transactions on,
11(3):285-295, 2005.

[10] Loren Carpenter. The a-buffer, an antialiased hidden surface method.
ACM Siggraph Computer Graphics, 18(3):103-108, 1984.

[11] Nvidia Corporation. Nalu.
http:/ /www.nvidia.de/coolstuff /demos#!/ nalu (last access:
03/03/2016).

[12] Nvidia Corporation. Nvidia hairworks.
https:/ /developer.nvidia.com/hairworks (last access: 03/03/2016).

69

[13] Advanced Micro Devices. Tressfx - gpuopen.
http:/ /gpuopen.com/gaming-product/tressfx/ (last access:
03/03/2016).

[14] Elmar Eisemann, Michael Schwarz, Ulf Assarsson, and Michael
Wimmer. Real-time shadows. CRC Press, 2011.

[15] Cass Everitt. Interactive order-independent transparency. White
paper, NVIDIA, 2(6):7, 2001.

[16] Tim Foley, Brent Insko, Tomasz Janczak, Marco Salvi, Larry Seiler,
and Tomasz Poniecki. Intel_fragment_shader_ordering.
https:/ /www.opengl.org/registry/specs/INTEL/fragment_shader_
ordering.txt (last access: 02/01/2016).

[17] NVIDIA GameWorks. Nvidia gameworks opengl samples.
https:/ /developer.nvidia.com/gameworks-opengl-samples (last
access: 01/27/2016).

[18] William Jackson Humphreys. Physics of the Air. Franklin Institute of
the state of Pennsylvania, 1920.

[19] David S Immel, Michael F Cohen, and Donald P Greenberg. A
radiosity method for non-diffuse environments. In ACM SIGGRAPH
Computer Graphics, volume 20, pages 133-142. ACM, 1986.

[20] Inc. Joseph Alter. Shave and a haircut. http://www.joealter.com (last
access: 03/03/2016).

[21] James T Kajiya. The rendering equation. In ACM Siggraph Computer
Graphics, volume 20, pages 143-150. ACM, 1986.

[22] James T Kajiya and Timothy L Kay. Rendering fur with three
dimensional textures. In ACM Siggraph Computer Graphics,
volume 23, pages 271-280. ACM, 1989.

[23] Tae-Yong Kim. Modeling, rendering and animating human hair.
University of Southern California, Los Angeles, CA, 2002.

[24] Tae-Yong Kim and Ulrich Neumann. Opacity shadow maps. Springer,
2001.

[25] JH Lambert. Photometria, sive de mensura et gradibus luminis,
colorum et umbrae (augsberg: Eberhard klett). 1760.

[26] Dominik Lazarek. Real-time simulation and rendering of hair, fur
and grass. Master’s thesis, University of Koblenz-Landau, 2014.

70

[27] Jason Lcroix. Advanced visual effects with directx 11: Tomb raider on
dx11. http:/ /www.gdcvault.com/browse/gdc-13 (last access:
01/27/2016).

[28] Jason Lcroix. Tressfx 2.0 porting guide.
http:/ /developer.amd.com/tools-and-sdks/graphics-
development/amd-radeon-sdk/ (last access:
01/27/2016).

[29] Tom Lokovic and Eric Veach. Deep shadow maps. In Proceedings of the
27th annual conference on Computer graphics and interactive techniques,
pages 385-392. ACM Press/Addison-Wesley Publishing Co., 2000.

[30] Abraham Mammen. Transparency and antialiasing algorithms
implemented with the virtual pixel maps technique. Computer
Graphics and Applications, IEEE, 9(4):43-55, 1989.

[31] D Marcuse. Light scattering from elliptical fibers. Applied Optics,
13(8):1903-1905, 1974.

[32] Stephen R Marschner, Henrik Wann Jensen, Mike Cammarano, Steve
Worley, and Pat Hanrahan. Light scattering from human hair fibers.
In ACM Transactions on Graphics (TOG), volume 22, pages 780-791.
ACM, 2003.

[33] Timothy Martin, E Wolfgang, Nicolas Thibieroz, Jason Yang, and
Jason Lacroix. Tressfx: Advanced real-time hair rendering. GPU Pro,
5:193-209, 2014.

[34] Morgan McGuire and Louis Bavoil. Weighted blended
order-independent transparency. Journal of Computer Graphics
Techniques (JCGT), 2(2), 2013.

[35] Houman Meshkin. Sort-independent alpha blending. GDC Talk, 2007.

[36] Tadao Mihashi, Christina Tempelaar-Lietz, and George Borshukov.
Generating realistic human hair for the matrix reloaded. In ACM
SIGGRAPH 2005 Courses, page 17. ACM, 2005.

[37] Catherine M Mount, David B Thiessen, and Philip L Marston.
Scattering observations for tilted transparent fibers: evolution of airy
caustics with cylinder tilt and the caustic merging transition. Applied
Optics, 37(9):1534-1539, 1998.

[38] Hubert Nguyen and William Donnelly. Hair animation and
rendering in the nalu demo. GPU Gems, 2:361-380, 2005.

71

[39] FE Nicodemus, JC Richmond, J] Hsia, IW Ginsberg, and T Limperis.
Geometric considerations and nomenclature for reflectance, volume
161 of monograph. National Bureau of Standards (US), 1977.

[40] Inc. Peregrine Labs. yeti. http://peregrinelabs.com/yeti (last access:
03/03/2016).

[41] Matt Pharr and Greg Humphreys. Physically based rendering: From
theory to implementation. Morgan Kaufmann, 2004.

[42] Bui Tuong Phong. Illumination for computer generated pictures.
Communications of the ACM, 18(6):311-317, 1975.

[43] Pixar. Renderman. https://renderman.pixar.com (last access:
03/03/2016).

[44] Thomas Porter and Tom Duff. Compositing digital images. In ACM
Siggraph Computer Graphics, volume 18, pages 253-259. ACM, 1984.

[45] Qt. Qt web page. http://www.qt.io/ (last access: 17/02/2016).

[46] William T Reeves, David H Salesin, and Robert L Cook. Rendering
antialiased shadows with depth maps. In ACM Siggraph Computer
Graphics, volume 21, pages 283-291. ACM, 1987.

[47] Clarence R Robbins. Chemical and physical behavior of human hair,
volume 4. Springer, 1994.

[48] Martin Ruenz. Real-time hair simulation and rendering. Master’s
thesis, University of Koblenz-Landau, 2012.

[49] Iman Sadeghi, Heather Pritchett, Henrik Wann Jensen, and Rasmus
Tamstorf. An artist friendly hair shading system. In ACM
Transactions on Graphics (TOG), volume 29, page 56. ACM, 2010.

[50] Iman Sadeghi and Rasmus Tamstorf. Efficient implementation of the
dual scattering model in renderman. Technical report, Tech. rep.,
Walt Disney Animation Studios, 2010.

[51] Thorsten Scheuermann. Practical real-time hair rendering and
shading. In ACM SIGGRAPH 2004 Sketches, page 147. ACM, 2004.

[52] Nicolas Schulz. The rendering technology of ryse. 2014.

[53] Gerrit Sobottka and Andreas Weber. Geometrische und physikalische
eigenschaften von human-haar. Computer Graphics Technical Reports,
2003.

72

[54] Robert F Stamm, Mario L Garcia, and Judith] Fuchs. The optical
properties of human hair i. fundamental considerations and
goniophotometer curves. J. Soc. Cosmet. Chem, 28(9):571, 1977.

[55] Andreas A Vasilakis and Ioannis Fudos. k+-buffer: Fragment
synchronized k-buffer. In Proceedings of the 18th Meeting of the ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games, pages
143-150. ACM, 2014.

[56] Andreas-Alexandros Vasilakis, Georgios Papaioannou, and Ioannis
Fudos. -buffer: An efficient, memory-friendly and dynamic-buffer
framework. Visualization and Computer Graphics, IEEE Transactions on,
21(6):688-700, 2015.

[57] Hermann Von Helmholtz. Handbuch der physiologischen Optik,
volume 9. Voss, 1867.

[58] Lance Williams. Casting curved shadows on curved surfaces. In
ACM Siggraph Computer Graphics, volume 12, pages 270-274. ACM,
1978.

[59] Ling-Qi Yan, Chi-Wei Tseng, Henrik Wann Jensen, and Ravi
Ramamoorthi. Physically-accurate fur reflectance: modeling,

measurement and rendering. ACM Transactions on Graphics (TOG),
34(6):185, 2015.

[60] Jason C Yang, Justin Hensley, Holger Griin, and Nicolas Thibieroz.
Real-time concurrent linked list construction on the gpu. In Computer
Graphics Forum, volume 29, pages 1297-1304. Wiley Online Library,
2010.

[61] Xuan Yu, Jason C Yang, Justin Hensley, Takahiro Harada, and Jingyi
Yu. A framework for rendering complex scattering effects on hair. In
Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games, pages 111-118. ACM, 2012.

[62] Cem Yuksel. Hair model files.
http:/ /www.cemyuksel.com/research/ hairmodels (last access:
17/02/2016).

[63] Cem Yuksel and John Keyser. Deep opacity maps. In Computer
Graphics Forum, volume 27, pages 675-680. Wiley Online Library,
2008.

[64] Arno Zinke et al. Photo-realistic rendering of fiber assemblies. In
Ausgezeichnete Informatikdissertationen, pages 331-337. Citeseer, 2008.

73

[65] Arno Zinke, Cem Yuksel, Andreas Weber, and John Keyser. Dual
scattering approximation for fast multiple scattering in hair. In ACM
Transactions on Graphics (TOG), volume 27, page 32. ACM, 2008.

74

	Introduction
	Motivation
	Organization of this Work

	Fundamentals
	Properties of Human Hair
	Solid Angles
	Radiometry
	Radiometric Quantities

	BRDF Theory
	Physically Plausible BRDFs
	Rendering Equation

	Physics of Light Scattering

	Light Scattering in Fibers
	Terminology and Notation
	Kajiya and Kay's Model
	Marschner's Model
	Scattering Measurements
	A Physically-Based Shading Model
	Scattering in Elliptical Fibers
	Implementation

	An Artist Friendly Hair Shading Model

	Shadowing
	Opacity Shadow Maps
	Deep Opacity Maps
	Approximated Deep Shadow Mapping

	Transparency
	A-Buffer
	K-Buffer
	A Novel Approach: DBK-Buffer
	Random Subsets

	Results and Evaluation
	Shading Models
	Visual Results
	Performance

	Shadowing
	Visual Results
	Performance

	Transparency
	Visual Results
	Performance
	Memory Requirements

	Conclusion
	Future Work
	Summary

	Additional Figures
	List of Symbols
	List of Figures
	References

