
Finite Automata on Unranked and Finite Automata on Unranked and
Unordered Unordered DAGsDAGs
ExtentedExtented VersionVersion

Lutz Lutz PriesePriese

Nr. 22/2007Nr. 22/2007

Arbeitsberichte aus demArbeitsberichte aus dem
Fachbereich InformatikFachbereich Informatik

Die Arbeitsberichte aus dem Fachbereich Informatik dienen der Darstellung
vorläufiger Ergebnisse, die in der Regel noch für spätere Veröffentlichungen
überarbeitet werden. Die Autoren sind deshalb für kritische Hinweise dankbar. Alle
Rechte vorbehalten, insbesondere die der Übersetzung, des Nachdruckes, des
Vortrags, der Entnahme von Abbildungen und Tabellen – auch bei nur
auszugsweiser Verwertung.

The “Arbeitsberichte aus dem Fachbereich Informatik“comprise preliminary results
which will usually be revised for subsequent publication. Critical comments are
appreciated by the authors. All rights reserved. No part of this report may be
reproduced by any means or translated.

Arbeitsberichte des Fachbereichs Informatik

ISSN (Print): 1864-0346
ISSN (Online): 1864-0850

Herausgeber / Edited by:
Der Dekan:
Prof. Dr. Paulus

Die Professoren des Fachbereichs:
Prof. Dr. Bátori, Jun.-Prof. Dr. Beckert, Prof. Dr. Burkhardt, Prof. Dr. Diller, Prof. Dr.
Ebert, Prof. Dr. Furbach, Prof. Dr. Grimm, Prof. Dr. Hampe, Prof. Dr. Harbusch,
Jun.-Prof. Dr. Hass, Prof. Dr. Krause, Prof. Dr. Lautenbach, Prof. Dr. Müller, Prof. Dr.
Oppermann, Prof. Dr. Paulus, Prof. Dr. Priese, Prof. Dr. Rosendahl, Prof. Dr.
Schubert, Prof. Dr. Staab, Prof. Dr. Steigner, Prof. Dr. Troitzsch, Prof. Dr. von
Kortzfleisch, Prof. Dr. Walsh, Prof. Dr. Wimmer, Prof. Dr. Zöbel

Kontaktdaten der Verfasser

Lutz Priese
Institut für Computervisualistik
Fachbereich Informatik
Universität Koblenz-Landau
Universitätsstraße 1
D-56070 Koblenz
EMail: priese@uni-koblenz.de

Finite Automata on Unranked and Unordered DAGs

Extented Version∗

Lutz Priese
Fachbereich Informatik

Universität Koblenz-Landau, Germany
priese@uni-koblenz.de

Abstract

We introduce linear expressions for unrestricted dags (directed acyclic graphs) and finite
deterministic and nondeterministic automata operating on them. Those dag automata are a
conservative extension of the Tu,u-automata of Courcelle on unranked, unordered trees and
forests. Several examples of dag languages acceptable and not acceptable by dag automata
and some closure properties are given.

Keywords: finite state automata, directed acyclic graphs, regular dag languages.

1 Introduction

Various equivalent concepts to finite automata operating on finite or infinite words and (ordered
and ranked) trees and regularity are known. Those are recognizability with congruences, ra-
tionality with magmas, expressibility with regular expressions, definability in certain classes of
monadic second order logic, generation by certain right-linear grammars. A good overview on the
tree results is given in the TATA book [6]. However, only ranked and ordered trees are considered
there, where a graph is called ranked if the degree of any node is determined by its label, leading
to ranked alphabets. On the other hand, the degree in an infinite set of unranked graphs may
be unbounded. Thus, a finite automaton recognizing languages of unranked trees has to operate
on nodes with an unknown number of outgoing arcs (let us call this the ”problem of unbounded
degree”). An unpublished but well-known report [4] of Brüggemann-Klein, Murata and Wood
researches ordered, unranked trees in some detail. Unranked, ordered and unordered trees have
been investigated as an algebra by Courcelle in [8]. He presents a very elegant characterization
of acceptability by Tu,u-magmas and frontier-to-root Tu,u-automata. Unranked and unordered
trees with arc labels instead of node labels allow for a simpler algebraic approach and are found
in Boneva and Talbot [2]. Brüggemann-Klein, Murata, Wood, and also Boneva, Talbot, solve
the problem of unbounded degree for their unranked trees by allowing infinite but regular sets of
transitions for their automata, while Courcelle uses an associative and commutative transition
function on pairs of state that easily extends to unbounded multisets of states.
Some generalizations of automata to ranked graphs or to their sub-class of ranked directed acyclic
graphs are known: Finite graph automata have been introduced by Thomas [15], automata
over planar dags by Kamimura and Slutzki [10]. A Kleene theorem for planar dags has been

∗A shorter version [14] of this paper without proofs and fewer examples was accepted to DLT 2007, Turku,
and published in LNCS 4588.

Finite Automata on Unranked and Unordered DAGs, Extented Version, Fachbereich Informatik, Nr. 22/2007

presented by Bossut, Dauchet and Warin [3]. They describe planar dags by linear expression
that follow a graphic lay-out and use seriell and parallel composition. Graph expressions have
also been introduced by Courcelle [7] for hyper-graphs to define context-free graph grammars.
Charatonik [5] has researched automata on t-dags where no isomorphic sub-trees are allowed.
Anantharaman, Narendran and Rusinowitch [1] continue this work, where the dag automata
are mainly tree automata that run on dags, and present several interesting properties of such
recognizable dag languages.
However, there exists no satisfying concept of automata on unrestricted unranked, unordered
graphs or dags. Kaminski and Pinter [11] avoid the problem of unbounded degree as their
automata define a bound on the degree of acceptable graphs. However, the language of all
graphs over a fixed alphabet now is not accepted any more. Fanchon and Morin [9] define
regular pomsets languages over unranked alphabets with auto-concurrency via congruences of
finite index. Those congruences mirror a serial-parallel composition of pomsets. They receive a
concept of regularity that is closed under union but not under intersection or complement.
We will follow Courcelle’s approach towards automata - but without using algebras as a seman-
tics. We introduce linear dag expressions as a syntax and give a set-theoretical semantics as
graphs. Finite automata operating as well on (congruence classes of) dag expressions as on ab-
stract dags are introduced. In contrast to trees, dags possess incoming and outgoing arcs and all
problems of root-to-frontiers and of frontiers-to-root automata must appear in dags. It is known
that on trees deterministic root-to-frontier automata are a proper sub-class of nondeterministic
ones which are equivalent to deterministic or nondeterministic frontier-to-root automata. As a
consequence, the ’root-to-frontier’ part of dag automata should be nondeterministic. Our dag
automata will therefore contain aspects of deterministic frontier-to-root and nondeterministic
root-to-frontier automata.

2 Graphs and DAGs

Set-Theoretic Approach

A set-theoretical approach to graphs is simple:
A graph γ over an alphabet Σ is a triple γ = (N,E, λ) of two finite sets N of nodes and E ⊆ N×N
of edges and a labelling mapping λ : N → Σ. Two graphs γi = (Ni, Ei.λi) are isomorphic,
γ1 ∼iso γ2, if there exists a bijective function h : N1 → N2 with (v, v′) ∈ E1 ⇔ (h(v), h(v′)) ∈ E2

and λ2(h(v)) = λ1(v) holds for all v, v′ in N1.
Thus, graphs in this paper are directed, unranked, unordered, finite and node labelled. We use
the following rather standard notations.

•v := {v′ ∈ V |(v′, v) ∈ E}, v• := {v′ ∈ V |(v, v′) ∈ E}. For V ′ ⊆ V : •V ′ :=
⋃

v∈V ′
•v, V ′• :=⋃

v∈V ′ v
•. Any node in •v (v•) is a father (son) of v. |•v| (|v•|) is the in- (out-)degree of v. A

root (leaf) of a graph is a node with in-degree (out-degree) 0. A connection of length n between
two nodes v, v′ is a word w = v1...vn+1 s.t. v = v1, v

′ = vn+1 and (vi, vi+1) ∈ E ∪ E−1 holds for
1 ≤ i ≤ n. If (vi, vi+1) ∈ E holds for all i w is called a directed path from v to v′. A cycle is a
directed path of some length > 0 from one node to itself.
A dag (directed acyclic graph) is a graph without cycles. A forest is a dag where any node
possesses at most one connection to at most one root. A tree is a forest with exactly one root.
Thus, the empty graph ε := (∅, ∅, ∅) is a forest but not a tree. We usually identify isomorphic
graphs and thus deal with abstract graphs.

2

Finite Automata on Unranked and Unordered DAGs, Extented Version, Fachbereich Informatik, Nr. 22/2007

By Σt, Σf , Σ†, and Σg we denote the sets of all abstract trees, forests, dags, and graphs,
respectively, over Σ.
A graph is ranked if all nodes with the same label must also possess the same out-degree, and
double ranked if the label defines both the in- and out-degree. It is ordered if a specific order
between all sons of any node is given.

Algebraic Specification for Unranked Trees

Courcelle [8] defines a theory Tuu for unranked, unordered trees that consists of a syntax of sorts
Suu = {l, t, f} (for letter, tree, forest), operator symbols Opuu = {pl×f→t, rt→f , +f×f→f , θ→f},
and equations Euu :

u + v = v + u
(u + v) + w = u + (v + w)

u + θ = u,

for variables u, v, w of sort f .
Let Σ denote a set of 0-ary generators of sort l. Any unranked, unordered tree over Σ now
simply becomes an element of sort t of F(Tuu,Σ) = Term(Suu, Σ)/≡uu , where Term(Suu, Σ) are
all terms generated by Opuu∪Σ and ≡uu is the Suu-algebra congruence induced by the equations
Euu. To get a theory Tuo for unranked, ordered trees just drop the equation for commutativity.
We might try to follow this approach and define a theory Td for dags by adding to Tuu a new
sort s for synchronization point and a new operator symbol qs×t→t and study Term(Td, Σ ∪N),
where any integer i ∈ N is regarded as a 0-ary symbol of sort s. However, as we will not be
able to use Td-algebras as a semantics for dags such an approach seems to be overloaded. In the
following syntax of linear dag expression we mainly abbreviate p(a, f) by af , p(a, θ) by a, q(i, t)
by it, and r(t) by t and give a set-theoretic semantics.

Syntax of Graph Expressions

Let Σ denote a finite alphabet with Σ ∩ N = ∅. We define the sets Et
Σ∪N and Ef

Σ∪N of tree and
forest expressions over Σ∪N as the smallest sets fulfilling the following requirements ∀x ∈ Σ∪N:

Et
Σ∪N ⊆ Ef

Σ∪N, θ ∈ Ef
Σ∪N, x ∈ Et

Σ∪N,

f, g ∈ Ef
Σ∪N =⇒ xf ∈ Et

Σ∪N, (f + g) ∈ Ef
Σ∪N.

The binary relation ≡ on forest expressions is defined ∀f, f ′, g, g′, h,∈ Ef
Σ∪N, x ∈ Σ ∪ N by

1) f ≡ f, f ≡ g =⇒ g ≡ f, (f ≡ g ∧ g ≡ h) =⇒ f ≡ h,
2) f ≡ f ′ =⇒ xf ≡ xf ′, (f ≡ f ′ ∧ g ≡ g′) =⇒ (f + g) ≡ (f ′ + g′),
3) (f + g) ≡ (g + f), (f + (g + h)) ≡ ((f + g) + h), (f + θ) ≡ f .

By 1) ≡ becomes an equivalence relation, by 2) a congruence on our expressions, and fulfills
by 3) the equations Euu. The congruence ≡0 is defined as above but without the requirement
f + θ ≡0 f in 3). (f1 + ... + fn) abbreviates (...(f1 + f2) + ...) + fn).

Semantics of Graph Expressions

In a first, intermediate step we interpret a graph expression as a forest over Σ ∪ N.

3

Finite Automata on Unranked and Unordered DAGs, Extented Version, Fachbereich Informatik, Nr. 22/2007

∀x ∈ Σ ∪ N, f, g ∈ Eg
Σ:

=o(θ) := (∅, ∅, ∅), =o(x) := ({1}, ∅, λ(1) := x),
=o(f) = (V, E, λ) =⇒ =o(xf) := (V ∪{vnew}, E ∪{(vnew, v)|v ∈ V ∧• v = ∅}, λ∪λ(vnew) := x},
=o(f + g) := =o(f) + =o(g), where α + β is the disjoint union of the two graphs α, β.
To get our intended interpretation as abstract graphs over Σ we regard all integers as synchro-
nization points that must be synchronized (i.e., all occurrences of the same integer are identified)
and deleted. Therefor we introduce the operation Syd (for ”Synchronize and delete”):

Sydi1,...,ik(α) := Syd(i1(...(Sydik(α)...), with

Sydi(α) := (V ′, E ∩ (V ′ × V ′) ∪ E′, λ|V ′), for

V ′ = {v ∈ V |λ(v) 6= i}, E′ = {(v, v′)|∃v1, v2 ∈ V : λ(v1) = λ(v2) = i ∧ (v, v1), (v2, v
′) ∈ E},

setting all nodes v as a father of all nodes v′ if v possesses some son with label i and v′ possesses
some father with label i, deleting such all melted synchronization points.
The interpretation of an expression as an abstract graph is given as

=(f) := [Sydint(f)(=0(f))]∼iso,

where int(f) is the set of all integers appearing in f .

Example 2.1 =o(f) and =(f) for f = a1b2a + a(1 + 2 + a) + ab are shown in Figure 1.
The abstract graph α is the interpretation of the expressions 1a2c(1 + db2), 1c(a1 + db1), and
1db2c(a2 + 1).

¤

=o(f): a → 2
1↗

↘ a

a → b

a → 1 → b → 2 → a

¡¡µ
a - b - a

³³³³³1

=(f): a - a

a - b

c
-¾ a

HHj
d

α:
b ¾©

©* β: c → d
↗↘

e ↗

a → b

Figure 1: Some graphs.

Of course, ≡- or ≡0-congruent expressions describe the same abstract graph and [f]≡0 is always
finite.

DAG Expressions

We start with an example.

Example 2.2 Regard the dag β of Figure 1. There are various different expressions d repre-
senting β, i.e. with =(d) = β. We will discuss a few of them.

• d1 := a1 + c1 + 1(2 + 3) + 2b + 3d + e3, where β is cut into ”atomar” pieces, its nodes
a, b, c, d, e, that are glued together by the synchronization points 1,2 and 3,

• d2 := a1b + c12d + e2, gluing together the pathes ab, cd and e,

• d3 := a1b + c12 + e2d, gluing together the pathes ab, c and ed,

4

Finite Automata on Unranked and Unordered DAGs, Extented Version, Fachbereich Informatik, Nr. 22/2007

• d4 := a1(b + 2d) + c1 + e2, gluing together the tree a(b + d) and the pathes c and e, using
a trick - a synchronization point preceding a forest - to give two sons to c,

• d5 := a(1b + 2d) + c(1 + 2) + e2, gluing together the trees (a(b + d), and the pathes c, e,
presenting clearly the son structure of a, c, and e,

• d6 := c(1d + 2b) + a(1 + 2) + e1, an alternative to the idea in d5,

• d7 := 3c(1d + 2b4 + 5) + a(1 + 1 + 2)4 + 3e1, similar to d6 but using superfluous synchro-
nization points 3,4 and 5 that have no influence on = but destroy the clear son structure
as presented in d5 or d6.

¤

If we allow all those different graph expression to represent dags we will run into difficulties in
defining automata operating on all of them. Only some of those possible expression representing
dags are ”smooth” and will be allowed as dag expressions. These are d5 and d6 in the above
example.

We will give a syntactic definition of dag expressions as a sub-class of graph expressions. Therefor
we have to identify some interesting parts of the intermediate graph =o(f) in the interpretation
for an expression f ∈ Ef

Σ∪N already in the syntax of f . We operate with multisets. A multiset
m over a set M is a mapping m : M → N where m(a) denotes the multiplicity of an element
a in M . We also write m ∪ m′ for m + m′ and sometimes regard a multiset m as the set
{a ∈ M |m(a) > 0}. A relation ρ ⊆ M ×M may also be regarded as a multiset where a ρ b holds
for a, b ∈ M if ρ(a, b) > 0. We define

• the multiset int(f) of all integers appearing in f ,

• the multiset first(f) of all elements in f that become roots in =o(f),

• the multiset last(f) of all elements in f that become leaves in =o(f), as well as

• #jnol(f) the number of occurrences of integer j in f that do not become leaves in =o(f),
and

• C(f) ⊆ int(f)× int(f) a relation that tells the order of integers in =o(f)

inductively for a ∈ Σ, i, j ∈ N, x ∈ Σ ∪ N, f, g ∈ Ef
Σ∪N as:

1. int(θ) := first(θ) := last(θ) := #jnol(θ) := C(θ) := 0,

2. int(a) := 0, int(i) := 1·i, first(x) := last(x) := 1·x, #jnol(x) := C(θ) := 0,

3. int(af) := int(f), int(if) := int(f) + 1·i, first(xf) := 1·x, last(xf) := last(f),
#jnol(af) := #jnol(f), #jnol(if) := #jnol(f)+δij , for last(f) 6= 0 with δij = 1 for i = j
and 0 elsewhere, C(af) := C(f), C(if) := C(f) ∪ {(i, j)|j ∈ int(f)},

4. X(f + g) := X(f) + X(g), for X ∈ {int, first, last,#jnol,C}.
Obviously, the interpretation =(f) of an expression f is an abstract dag if the transitive closure
C(f)+ of C(f) is an irreflexive partial order. We now present a formal definition for graph
expression admissible as dag expressions:

An expression f ∈ Ef
Σ∪N is called admissible if f = θ or

5

Finite Automata on Unranked and Unordered DAGs, Extented Version, Fachbereich Informatik, Nr. 22/2007

1. f contains no sub-expressions θ, ij, ig with i, j ∈ N, g ∈ Ef
Σ∪N − Et

Σ∪N,

2. no f ′ with f ≡0 f contains a sub-expression (t1 + t2) with two tree expressions
t1, t2 with first(t1) = first(t2) ∈ N,

3. first(f) ∩ N = ∅, and

4. j ∈ int(f) =⇒ #jnol(f) = 1 and int(f)(j) 6= 1.

In an admissible expression we drop the redundant symbol θ (with the exception of f = θ to
express the empty forest). Further, no two synchronization points must follow each other (1) (as
this must lead to a complicated synchronization of synchronization points with different names).
Each occurring synchronization point j must occur exactly once not as a last element (4). In
this case j must precede some tree expression (1). It makes no sense to synchronize the roots
of two brother trees (2). If they are both sons of a common father node this father does the
synchronization itself. If not, we will not synchronize a root of f with another node (3) to avoid
situations as indicated in d1. It makes no sense to synchronize only leaves. However, life will
become more easy if we synchronize only leaves with exactly one inner node that is no leaf. We
also claim (4) that no synchronization points appears exactly once in f as in this case i has
no synchronization partner and is without meaning. It should be noted (4) that at most one
occurrence of an integer j can be followed by a tree expression. Thus, for admissible expressions
2. is equivalent to

2’. no f ′ with f ≡0 f contains a sub-expression (jt + j) for any t ∈ Et
Σ∪N, j ∈ N,

and 4. is equivalent to

4’. j ∈ int(f) =⇒ #jnol(f) = 1 and last(f)(j) > 0.

Tree and forest expressions over Σ are simply expressions without integers, a graph expression
over Σ is a forest expression over Σ ∪ N, and a dag expression over Σ is an admissible graph
expression where C+ is an irreflexive partial order:

Et
Σ := {t ∈ Et

Σ∪N| int(t) = ∅}, Ef
Σ := {f ∈ Ef

Σ∪N| int(f) = ∅}, Eg
Σ := Ef

Σ∪N,

E†
Σ := {f ∈ Eg

Σ|f is admissible and @i, j ∈ int(f) : (i C(f)+j ∧ j C(f)+i)}.
All abstract trees, forest, dags, and graphs can be expressed:

Lemma 2.1 =(Et
Σ) = Σt, =(Ef

Σ) = Σf , =(E†
Σ) = Σ†, =(Eg

Σ) = Σg.

3 DAG-Automata

Let M be a set. A function f : M ×M → M is associative and commutative if f(x, y) = f(y, x)
and f(x, f(y, z)) = f(f(x, y), z) holds for all x, y, z ∈ M .
Such an associative and commutative function f is easily extended to

f∗ : (NM−{0}) → M

operating on nonempty multisets over M : ∀a ∈ M : ∀m ∈ NM−{0}:
f∗(1·a) := a, f∗(1·a + m) := f(a, f∗(m)).

6

Finite Automata on Unranked and Unordered DAGs, Extented Version, Fachbereich Informatik, Nr. 22/2007

A (root-to-frontier) dag automaton

A = (Q,Σ, δ, δi, δo, δI , δF , I, F)

consists of
- a finite set Q of states with Q ∩ N = ∅,
- a finite alphabet Σ with Q ∩ Σ = ∅ = Σ ∩ N,
- a function δ : Q× Σ → 2Q,
- four associative and commutative functions

δi, δo, δI , δF : Q×Q → Q,

- a set I ⊆ Q of initial states, and
- a set F ⊆ Q of final states.

We now introduce the concept of configurations and computations of dag automata. A configu-
ration C for A is a graph expression over Σ∪Q where exactly the first elements of C are states.
A configuration Cd for a dag expression d results by putting one state before any first element of
d. Cd is start configuration for d if for the multiset first(Cd) of state δ∗I (first(Cd)) ∈ I holds.
Cd denotes the set of all start configurations for d. A configuration that consists solely of states
- i.e., a multiset of states - is called a final configuration. As a configuration is a dag expression
itself the congruences ≡ and ≡0 may also be applied to configurations.

A configuration C ′ is a direct successor of a configuration C, C `A C ′, if there exists a configu-
ration Ĉ with C ≡0 Ĉ and C ′ is the result of replacing in Ĉ a sub-expression

1. sa by s′, with s′ ∈ δ(s, a), or

2. s(f1 + f2) by (s1f1 + s2f2), with δo(s1, s2) = s, or

3. (s1it + s2i) by s′it, with δi(s1, s2) = s′, or

4. si by s, if i occurs exactly once in Ĉ,

for a ∈ Σ, i ∈ N, t ∈ Σt
Σ∪N, f1, f2 ∈ Σg

Σ, s, s1, s2 ∈ Q.

In addition, we write d `A C for a dag expression d and a start configuration C ∈ Cd and
Cf `A s for a final configuration Cf with δ∗F (Cf) = s. Only here δI and δF play a rôle.
δo handles the transport of a state to outgoing arcs and δi of states from incoming arcs.
evalA(d) := {s ∈ Q|d `∗A s} is the set of all states into which a dag expression d may evaluate
under A.
D(A) := {d ∈ E†

Σ|evalA(d) ∩ F 6= ∅} is the dag language accepted by A. A dag language is
regular if it is accepted by some dag automaton.

Example 3.1 Let Σ†even denote the language of all dags over Σ with an even number of nodes.
Σeven is accepted by Aeven with Q := {0,1}, where we use boldface integers as states, I := F :=
{0}, δ(s, a) := s + 1mod 2 for all a ∈ Σ, and δF := δI := δi := δo := +mod 2.
A nondeterministic computation with the dag expression f of example 2.1 for the dag =(f) of
Figure 1 is, e.g.

7

Finite Automata on Unranked and Unordered DAGs, Extented Version, Fachbereich Informatik, Nr. 22/2007

f = a1b2a +
(
a
(
(1 + 2) + a

)
+ ab

)
` 1a1b2a +

(
0a

(
(1 + 2) + a

)
+ 1ab

)
(∈ Cf)

`∗(δ) 01b2a + 1
(
(1 + 2) + a

)
+ 0b `∗(δo,δ) 01b2a +

(
1(1 + 2) + 0a

)
+ 1 `(δo)

01b2a +
(
(11 + 02) + 0a

)
+ 1 ≡0

((
(01b2a + 11) + 02

)
+ 0a

)
+ 1 `(δi)(

(11b2a + 02) + 0a
)

+ 1 `∗ (1b2a + 02) + (1 + 1) `∗ (02a + 02) + 0 ` 02a + 0 `∗ 1.

Any computation for f leads to 1, thus f /∈ D(Aeven).
¤

Any start configuration is a dag expression, but a computation may lead to configurations that
are graph expression but no dag expressions, i.e., if exactly one synchronization point is left that
has to be eliminated by rule 4.

Example 3.2 Let Σ†dis denote the language of all disconnected dags over Σ and Σ†con those
of all connected dags. We present an automaton Ad accepting Σ†dis. When an abstract dag
α consists of two disjunct dags α1, α2 an accepting computation of Ad guesses a state s1 to be
attached to all roots of α1 and a different state s2 to all roots of α2. Ad passes si through αi. If
α1 and α2 should have a common node the states s1 and s2 will meet and pass an error message
to some leaf thats forbids acceptance. Thus simply choose
Q := {s0, s1, s2,X,⊥} with a sink state ⊥ (s.t. δ•(x, y) = ⊥ if x = ⊥ or y = ⊥ for all transition
functions), I := {s0}, F := {X},
δI(s1, s2) := s0, δI(s1, s1) := s1, δI(s2, s2) := s2,
δ(s1, x) := s1, δ(s2, x) := s2, for x ∈ Σ,
δo(s1, s1) := s1, δo(s2, s2) := s2,
δi(s1, s1) := s1, δi(s2, s2) := s2, δi(s1, s2) := ⊥,
δF (s1, s1) := s1, δF (s2, s2) := s2, δF (s1, s2) := X, δF (X, si) := X for i = 1, 2, plus all required
transitions to get commutative and associative mappings and make ⊥ a sink state. A nonaccept-
ing and an accepting computation for the dag expression f in example 3.1 are shown in Figure
2. Thus, f ∈ Σ†dis.

¤

a b a

a a

a b

- -

-
-

¡¡µ³³³³1

`
s1

s2

s1

-

-

-
a b a

a a

a b

- -

-
-

¡¡µ³³³³1

`∗
s1 b a

s2 a

s1 b

- -

-
-

¡¡µ³³³³1

`
s1 b a

s2 s2

s1 b

a

- -

-

-¡¡µ ¡¡µ `∗
⊥ b a

s2

s1 s2

- -

a-

¡¡µ

`∗ ⊥ - a

s2
¡¡µ s2

s1

`∗ ⊥
- a

X
` ⊥

X
` ⊥ .

a b a

a a

a b

- -

-
-

¡¡µ³³³³1

`
s1

s1

s2

-

-

-
a b a

a a

a b

- -

-
-

¡¡µ³³³³1

`∗
s1 b a

s1 a

s2 b

- -

-
-

¡¡µ³³³³1

`
s1 b a

s1 s1

s2 b

a

- -

-

-¡¡µ ¡¡µ `∗
s1 b a

s1

s2 s1

- -

a-

¡¡µ

`∗ s1
- a

s1
¡¡µ s1

s2

`∗ s1
- a

X
` s1

X
` X .

Figure 2: A nonaccepting and an accepting computation of Adis

8

Finite Automata on Unranked and Unordered DAGs, Extented Version, Fachbereich Informatik, Nr. 22/2007

We may regard a dag automaton as operating on dag expressions, ≡0-congruence classes of them,
or on abstract dags, as any dag automaton operates identically on different dag expressions of
the same abstract dag:

Theorem 1 For all dag expressions d1, d2 and dag automata A over the same alphabet:

=(d1) = =(d2) =⇒ evalA(d1) = evalA(d2).

Proof. Let α = [G]∼iso be a graph represented by a dag expressions d, i.e. =(d) = α.
We firstly note that the number of roots (leaves) of α coincides with the size of first(d)
(last(d)): By 1. (no θ allowed) and 3. of admissibility roots cannot result from synchro-
nization (thus, |first(d)| ≤ |root(α)|) or as last elements of some tree sub-expression (thus,
|first(d)| ≥ |root(α)|). Any leaf v of G with λ(v) = a ∈ Σ must be expressed by at least one
occurrence a of a in last(d). a i is not allowed in d1 as in this case i must find a proper synchro-
nization partner (4.) s.t. a would not present a leaf in G. Thus, |leaves(α)| ≤ |last(d)∩Σ|. On
the other hand, by the definition of =o one occurrence a of a in last(d) cannot represent two
different leaves in G, thus |last(d) ∩ Σ| ≥ |leaves(G) ∩ Σ| = |leaves(α)|.
Let v be a node in G with λ(v) = a ∈ Σ. There must be at least one occurrence a of a in d
representing v. However, as no synchronization can melt two occurrences a1,a2 into the single
node v of G there is exactly one occurrence a in d that is mapped into v via =o.
Let indegree(v) = n > 1. Thus, we need one synchronization point, i, to express the incoming
arcs into v. Two different synchronization points i and j cannot do the job as i j (1.) cannot be
a sub-expression of d. Thus ≥ n occurrences of i are required. However, as no occurrence of i
is a first element of d or follows a θ, any such occurrence give reason to one incoming arc. Thus
there are exactly n occurrences of i in d. By 4. n − 1 are last elements and one occurrence is
with in the sub-expression ia f for some forest sub-expression f or empty sub-expression f .
For indegree(v) = 1 the same arguments show that no integer may precede a as single occur-
rences of integers are forbidden (4.).
Let outdegree(v) = o > 0. In this case the sub-expression ia f possesses a forest sub-expression
f with at least o elements in first(f). However, no first elements of f can be synchronized (by
2.) or ignored (1., θ as well as i j is forbidden), yielding o = |first(f)|.

Now, let d1, d2 be two different dag expressions representing α. Let Cd1 be a start configura-
tion for a computation from d1. This implies that m := first(Cd1) is a multiset of states with
δ∗I (m) ∈ I. However, as |first(d1)| = |first(d2)| = |roots(α)| there exists also an admissible
start configuration Cd2 with also m = first(Dd2).

Let aj be the occurrence of a in dj , j = 1, 2, representing the same occurrence a of a node labelled
with a in α. For indegree(a) = n > 1 and outdegree(a) = o ≥ 1 we have sub-expressions ij aj fj

in dj with exactly n occurrences of ij in dj and with |first(dj)| = o. Suppose we have a
computation in d1 from Cd1 to a configuration C ′

1 where all occurrences of i1 are preceded by
a multiset m′ of states. By induction hypothesis we can find a computation from Cd2 to some
configuration C ′

2 where also all occurrences of i2 are preceded by the same multiset m′. If one
can compute from C ′

1 by applying δ∗i to i1 (i.e., applying rules 3. and 4. of a direct successor in
any order) resulting in C ′′

1 with a sub-expression sa1 with s = δ∗i (m
′) we can do the same rule

application to C ′
2 resulting in C ′′

2 with the sub-expression sa2 for the same s.
Suppose we have a computation in d1 from Cd1 to a configuration C ′

1 with a sub-expression s f1.
By induction hypothesis we can find a computation from Cd2 to some configuration C ′

2 with the
subexpression s f2 with the same state s. Thus, any series of application of rule 2. to C ′

1 - to

9

Finite Automata on Unranked and Unordered DAGs, Extented Version, Fachbereich Informatik, Nr. 22/2007

simulate δ∗o - can also be applied to C ′
2 as |first(f1)| = |first(f2)| = o.

Thus, as all δ• functions are commutative and associative, any computation from d1 can be
simulated in a straight forward way started from d2.

¥

Example 3.3 The dag expressions

d1 = a(b(e + 3f) + 1c3 + 2d3) + b(1 + 2), d2 = b(2d3f + 1c3) + a(1 + 2 + b(3 + e))

describe the same dag. We present a computation of some dag automaton A on both. For simplic-
ity we assume a deterministic automaton where I := {s0}, δo(s, s) = δI(s, s) = s, δ(s, a) := sa

holds and abbreviate sx‖y := δi(sx, sy), sxa := δ(sx, a) and sx+y := δF (sx, sy).

s0a(b(e + 3f) + 1c3 + 2d3) + s0b(1 + 2)
`∗ sa(b(e + 3f) + 1c3 + 2d3) + s0b(1 + 2)
`∗ sab(e + 3f) + sa1c3 + sa2d3 + sb1 + sb2
`∗ sab(e + 3f) + sa‖b1c3 + sa‖b2d3
`∗ sab(e + 3f) + sa‖bc3 + sa‖bd3
`∗ sabe + sab3f + s(a‖b)c3 + s(a‖b)d3
`∗ sabe + s(ab‖(a‖b)c‖(a‖b)d)3f `∗ sabe+(ab‖(a‖b)c‖(a‖b)d)f

s0b(2d3f + 1c3) + s0a(1 + 2 + b(3 + e))
`∗ sb2d3f + sb1c3 + sa1 + sa2 + sab3 + sabe
`∗ sb‖ad3f + sb‖ac3 + sab3 + sabe

`∗ s((b‖a)d‖(b‖a)c‖ab)3f + sabe `∗ s((b‖a)d‖(b‖a)c‖ab)f+abe

Obviously, sabe+(ab‖(a‖b)c‖(a‖b)d)f and s((b‖a)d‖(b‖a)c‖ab)f+abe coincide by commutativity and asso-
ciativity of the functions.

¤

Although the treatment of incoming and outgoing arcs in dag expressions is completely different
(using a simple + for outgoing arcs but an alphabet of infinitely many synchronization points
for incoming arcs) they are treated symmetrically in dag automata. This is easily seen with
reverse dags.
The reverse Arev of an automaton A = (Q,Σ, δ, δi, δo, δI , δF , I, F) is

Arev = (Q,Σ, δrev, δrev
i , δrev

o , δrev
I , δrev

F , Irev, F rev),

with
Irev := F, F rev := I, δrev(s, a) := {s′|s ∈ δ(s′, a)},

δrev
i := δo, δ

rev
o := δi, δ

rev
I := δF , δrev

F := δI .

Any successful computation in A for some α defines in reverse order immediately a successful
computation for αrev in Arev. This implies D(A)rev ⊆ D(Arev). Further

D(A) = (D(A)rev)rev ⊆ D(Arev)rev ⊆ D((Arev)rev) = D(A), thus

Lemma 3.1 D(Arev) = D(A)rev

10

Finite Automata on Unranked and Unordered DAGs, Extented Version, Fachbereich Informatik, Nr. 22/2007

4 Regular and Nonregular DAG Languages

Simple Regular DAG Languages and Closure Properties

Some typical examples of regular dag languages are - as expected - the language of all dags
- where no node possesses several sons with the same labels,
- where no node possesses several fathers with the same labels,
- where no node possesses several sons (fathers, respectively) with different labels,
- with exactly j roots (j leaves or j nodes, respectively),
- with 0 roots (0 leaves or 0 nodes, respectively) modulo some constant,
- where all nodes have the in-degree i or 0 (out-degree i or 0, in-degree mod i is 0, out-degree
mod i is 0, respectively).
Constructing dag automata that accept those languages is just a simple exercise.

A maximal path in a dag is a directed path from some root to some leaf. A path is identified
with the word of labels of its nodes. path(α) is the set of all maximal paths in a dag α and
path(D) =

⋃
α∈D path(α) for D ⊆ Σ† defines a projection

path : 2Σ† → 2Σ∗

from languages over dags into languages over words. In the opposite direction there are two
canonical ways to embed languages over words into languages over dags:

- the skinny embedding of L ⊆ Σ∗ regards any word w ∈ Σ∗ as a path w ∈ Σ† and is also
denoted as L (⊆ Σ†),
- the fat embedding DL of L ⊆ Σ∗ is the dag language

DL := {α ∈ Σ†|path(α) ⊆ L}.

Lemma 4.1 The skinny embedding L and the fat embedding DL of a regular word language L
are regular dag languages.

Proof. This is obvious for the skinny embedding. For the fat embedding let the deterministic au-
tomaton AL = (QL, Σ, δL, sL, FL) accept L ⊆ Σ∗. To accept DL by A = (Q,Σ, δ, δi, δo, δI , δF , I, F)
we set for M, N ⊆ QL, x ∈ Σ:
Q := 2QL ∪ {⊥} with a sink state ⊥, I := {sL}, F := {M |M ⊆ FL},
δ(M,x) := {δL(s, x)|s ∈ M}, δi(M, N) := M ∪N, δo(M, M) := M ,

δF (M,N) :=
{

FL ; if M, N ⊆ FL,
⊥ ; elsewhere

¥
The opposite statement holds for projections of a fat embedding but not for projections of
general dag languages.

Lemma 4.2 If DL is a regular dag language then L is a regular word language. But there exist
regular dag languages whose path projection is not even a context-free word language.

Proof. Let A = (Q,Σ, δ, δi, δo, δI , δF , I, F) accept the fat embedding DL of some word language
L. For w ∈ L we regard w as a path with path(w) = w, thus w must be also in DL and A accepts
w without using δi, δo, δI , or δF . Thus, the non-deterministic automaton AL := (Q,Σ, δ, I, F)
accepts L.

11

Finite Automata on Unranked and Unordered DAGs, Extented Version, Fachbereich Informatik, Nr. 22/2007

Figure 3: A dag accepted by AD.

For a counterexample of a regular dag language with a noncontext-free path projection we con-
struct a dag automaton AD that accepts only dags of the form as shown in Figure 3 with an equal
number of labels a, b, c and d where the order a before b before c before d must be respected.
This can be achieved by forcing all nodes with a label a to have four sons, labelled with a, b, c, d,
but one who has three sons labelled with b, c and d. All nodes labelled with x ∈ {b, c, d} are
forced to have two fathers, one labelled with a and a second labelled with x with an exception
for the first label x as shown. Formally, define AD with
Q := ({sa, s

o
a, sb, sc, sd, s

i
b, s

i
c, s

i
d, s

i
a,b, s

i
b,c, s

i
c,d, s1, s

′
1, s2,⊥} with a sink state ⊥,

Σ := {a, b, c, d}, I := {sa}, F := {si
d},

δ(sa, a) = so
a, δ(sx, x) := si

x for x ∈ {b, c, d}, δ(., .) := ⊥ elsewhere,
δi(si

b, s
i
a,b) := sb, δi(si

c, s
i
a,c) := δ(si

b, s
i
a,c) := sc, δ(si

c, s
i
a,d) := δ(si

d, s
i
a,d) := sd,

δo(sa, s
i
b) := s1, δo(s1, s

i
c) := s2, δ(sb, s

i
c) := s′1, δo(s2, s

i
d) := δ(s′1, s

i
d) := so

a,
δI(q, q′) := δF (q, q′) := ⊥ for q, q′ ∈ Q.

There holds δ∗I (m) = s ∈ Q − {⊥} ⇔ m = 1 ·s which forces one root that achieves the state
sa in any start configuration. Analogously, δF forces exactly one leaf in state si

d in the final
configuration of an accepting computation. Note, δ∗o(m) = sa ⇔ (m = 1·sa + 1·si

b + 1·si
c + 1·si

d

or m = 1·si
b + 1·si

c + 1·si
d). Thus, δo forces any a-node to possess exactly four sons, labeled with

a, b, c, d, or three sons labelled with b, c, d. δi forces each node labelled with b, c or d to possess
exactly two fathers, one of them an a-node. Thus, AD accepts only dags with an equal number
of labels a, b, c and d where the order a before b before c before d must be respected. I.e.,

path(D(AD)) = {aidj |1 ≤ i, j} ∪ {aicjdn|1 ≤ i, j ≤ n} ∪ {aibjcndn|1 ≤ i, j ≤ n},

a noncontext-free language.
¥

Lemma 4.3 The class of regular dag languages is closed under union and intersection.

Proof. The standard product of finite automata is simply generalized to dag automata:
For Aj = (Qj , Σ, δj , δi,j , δo,j , δt,j , sj , Fj), j = 1, 2, set

A1 ×A2 := (Q1 ×Q2, Σ, δ1 × δ2, δi,1 × δi,2, δo,1 × δo,2, δt,1 × δt,2, (s1, s2), F ′),

with
δF,1 × δF,2((x1, x2), (y1, y2)) := (δF,1(x1, y1), δF,2(x2, y2)), etc.

To get the union D(A1) ∪D(A2) choose F ′ := (F1 × Q2) ∪ (Q1 × F2). For the intersection set
F ′ := F1 × F2.

¥

12

Finite Automata on Unranked and Unordered DAGs, Extented Version, Fachbereich Informatik, Nr. 22/2007

Some Gaps between Regular and Nonregular DAG Languages

There are simple example of nonregular dag languages as finite dag automata cannot count above
some boundary: the language Dr=l of all dags with the same number of roots and leaves, or
Dn= (Dr=, Dl=) over {a, b} where equally many nodes (roots, leaves, respectively) are labelled
with a and b. However, if one would change the concept of nondeterministic dag automata
in such a way that also partial, not associative functions δI and δF are allowed then Dr=

and Dl= (in contrast to Dn=) become regular. To accept Dl= choose Q = {s0, sa, sb,X},
I = {s0}, F = {X}, δI(s0, s0) = s0, δ(s0, x) = sx and δi(sx, sy) = s0 and δo(sx, sx) = sx

for x, y ∈ {a, b} such that sx tells that the last node visited has been labelled with x. Now,
simply set δF (sa, sb) = X, δF (X,X) = X and δF (., .) undefined elsewhere to accept Dl=. For
Dr= use the reverse automaton. However, such a trick is impossible with total associative and
commutative functions δI , δF .

Theorem 2 Σ†dis is regular but Σ†con is not. Thus, regular dag languages are not closed under
complement.

Proof. Regularity of Σ†dis was shown in example 3.2. Non-regularity of Σ†con is seen as follows:
Suppose there exists an automaton A that accepts Σ†con. Set

d :=
∑

1≤i≤n

a(ia + i′)

with i′ := i + 1 for 1 ≤ i < n and n′ := 1, compare Figure 4 with α := =(d). α is connected.

Figure 4: =(d).

Thus, A accepts α. For n large enough (i.e., longer than (|Q|+1)2) there must exist two different
occurrences o′1, o

′
2 of labels a on the lower row and o1, o2 of their right fathers in the upper row

where an accepting computation C of A reaches in o1 and o2 the same state, say s, and in o′1
and o′2 a same state, say s′. Now, let β result from re-pointing the arc originally from o1 to o′1
now to o′2 and the arc pointing originally from o2 to o′2 now to o′1. This doesn’t introduce cycles
and the same computation C will still accept β - but β is disconnected (and still planar).

¥
However, ”bounded” connectivity becomes regular:

Lemma 4.4 The languages of all connected dags with a fixed or bounded number of roots or
leaves, respectively, are regular.

Proof. If the number of roots is bounded by l we can construct a finite automaton that guesses
the number k ≤ l of roots and attaches to any root a different state s1, ..., sk in an initial
configuration. For M,N ⊆ {1, ..., k} a state sM is passed along until it meets another state
sN , switching into sM∪N . sM tells that up to now all roots in M can be connected by an
undirected path. δF has to check that all roots are connected. Therefore we need further states
with subscripts M,N that are sets of subsets of {1, ..., k} and set δF (sM , sM) := s{M}∗{N},

13

Finite Automata on Unranked and Unordered DAGs, Extented Version, Fachbereich Informatik, Nr. 22/2007

δF (sM, sN) := sM∗N with A ∈M∗N :⇐⇒ (∃B ∈M : ∃C ∈ N : (B ∩C 6= ∅ ∧A = B ∪C) or
(A ∈M∪N ∧ @B ∈M∪N : (A 6= B ∧A ∩B 6= ∅)). Now, with F := {s{{1,...,k}}} connectivity
is detected. By symmetry the same holds for leaves.

¥

Ladders of type 1 or 2 and beams are dags as presented in Figure 5. D1−ladder, D2−ladder, Dbeam

Figure 5: A type 1 ladder (left), type 2 ladder (middle) and beam (right)

denote the languages of all type 1 ladders, all type 2 ladders, and all beams, respectively, over
a.

Theorem 3 Dbeam and D2−ladder are regular, D1−ladder is not.

Proof. Assume there exists an automaton Al accepting exactly the type 1 ladders. For a type 1
ladder α long enough (i.e., longer than (|Q| + 1)2) there must exist two occurrences o1, o2 of a
in the upper line such that some accepting computation attaches to o1 and to o2 a same state,
say s, and to their two sons in the lower row also a same state, say s′. Let β result from α by
interchanging the lower sons of o1, o2. β stays acyclic and the same computation accepts also
β, but β is no type 1 ladder any more. A contradiction. It should be noted for the following
corollary that β is not planar any more.

Such an argument fails for beams or type 2 ladders as interchanging those two sons in a beam
or type 2 ladder will introduce cycles. However, the behavior of a dag automaton on a graph
that is no dag is irrelevant. To prove that Dbeam is regular we need the following topological
property of beams: Beams are exactly those dags that
- possess exactly two roots and two leaves,
- all non-roots possess exactly two fathers,
- all non-leaves possess exactly two sons,
- there exist no three nodes v, v1, v2 such that v is the father of both v1 and v2 where v1 is the
second father of v2, i.e. no node is son and grandson of the same node.
All those properties are acceptable by a dag automaton Ab with
Q := {s0, s1, s

i
1, s

o
1, s2, s

i
2, s

o
2,X,⊥} with a sink state ⊥, I := {s0}, F := {X},

δI(s1, s1) := s0, δ(., .) := ⊥, elsewhere,
δ(sj , a) := so

j , δ(s
i
j , a) := δ(so

j , a) := ⊥ for j = 1, 2,
δo(si

j , s
i
j) := so

j for j = 1, 2 and δo(., .) := ⊥ elsewhere,
δi(si

1, s
i
1) := s2, δi(si

2, s
i
2) := s1, δi(., .) := ⊥ elsewhere,

δF (so
1, s

o
1) := δF (so

2, s
o
2) := X and δF (., .) := ⊥ elsewhere.

δI forces two roots with an attached state s1 in a start configuration. The change from sj to so
j

to si
j forces each node to possess exactly two sons and two fathers (or none). The change from

sub-script 1 to 2 to 1 forces that no node is a son and grandson of one node.

A proof for the regularity of type 2 ladders is similar. Let an i-j-node be a node with i in-coming
and j out-going arcs. Then type-2-ladders are uniquely described as those dags with

14

Finite Automata on Unranked and Unordered DAGs, Extented Version, Fachbereich Informatik, Nr. 22/2007

- there exits exactly one root that is a 0-2-node with its both sons being a 1-2-node and a
1-1-node that possesses itself one 2-1-node as son,
- each 1-2-node possesses exactly two 2-1-nodes or one 2-0-node and one 2-1-node as sons,
- each 2-1-node has one 1-2-node or 1-1-node as its son.
Those properties are acceptable by a dag automaton.

¥
At a first sight, theorem 3 seems to point to a disadvantage of our concept of dag automata:
type 1 ladders and type 2 ladders seem to be so similar that one might think that one type
of ladders could result from the other by some ”regular transformation”(and automata should
preserve regular transformations). However, this is not the case. Type 1 and type 2 ladders
have very distinct synchronization properties: An automaton may evaluate the upper row of a
type-1-ladder ignoring the evaluation of the lower row, which is impossible for type 2 ladders.
The situation is similar for Petri nets: There is a (rather simple) Petri net with D2−ladder as it
true-concurrency dag semantics, but no Petri net can possess D1−ladder as its dag semantics, see
[12].

In the above proof of theorem 3 it was shown that any dag automaton accepting D1−ladder must
also accept some connected but not planar dag (that is not in D1−ladder). Thus, D1−ladder can’t
even be recognized relative to connected dags, i.e., if input dags are restricted to be connected.
Both automata α, β of the proof of theorem 2 are planar. Thus, even if all input dags must be
planar Σ†con is not regular. This implies

Corollary 4.1 The language Σ†plan of all planar dags over Σ is not regular. Σ†con is not regular
relative to Σ†plan and Σ†plan is not regular relative to Σ†con.

The shuffle
D1 ‖ D2 := {α1 + α2|αi ∈ Di}

of two dag languages consists of disjoint unions of one dag from D1 with one from D2. ‖i and
the big shuffle ‖∗ are defined as

‖0D := {=(θ)}, ‖n+1:= (‖nD) ‖ D, ‖∗D :=
⋃

i≥0

‖nD.

It turns out that the big shuffle of even a single dag may be no regular language. Let ¤ be
the beam of length 1, consisting of four nodes and being described by a(1a + 2a) + a(1 + 2).
d := a(a1a + a1) describes a dag ♦ := =(d) with also only four nodes and four arcs as ¤ but
only one root and leaf.

Theorem 4 ‖∗¤ and ‖∗♦ are nonregular.

Proof. ‖∗ ¤ is not regular: Assume some dag automaton A accepts ‖∗ ¤. Let α ∈‖∗ ¤ be
a union of a number of ¤ large enough that an accepting computation for α must attach the
same multiset of states to the roots of two different occurrences o1, o2 of ¤. Let α′ result from
exchanging one son of o1 with one son of o2. α′ is still acyclic but not in ‖∗ ¤. However,
the mentioned accepting computation for α cannot sense this change and still accepts α1. The
argument for ‖∗♦ is similar.

¥
This immediately implies:

Lemma 4.5 The class of regular dag languages is closed under ‖n for any n but not under ‖∗.

15

Finite Automata on Unranked and Unordered DAGs, Extented Version, Fachbereich Informatik, Nr. 22/2007

5 Deterministic DAG Automata

A dag automaton A = (Q,Σ, δ, δi, δo, δI , δF , I, F) is called deterministic if |δ(s, a)| = 1 holds
for s ∈ Q, a ∈ Σ, I = {s0} for one initial state s0, there exists a sink state ⊥ ∈ Q and
δI(s0, s0) = s0, δI(., .) = ⊥ elsewhere, δo(s, s) = s for some states s ∈ Q and δo(., .) = ⊥
elsewhere. Thus, to ensure a deterministic computation a start configuration for a dag α receives
by δI the same state s0 attached to all roots and the same state must be prolonged by δo from
a father to all sons. As in a parse tree for a context-free derivation, the order of where to apply
a transition in a configuration is still free, but |evalA(d)| = 1 will hold. A regular dag language
is called deterministic regular if it is accepted by some deterministic dag automaton.
If one applies a deterministic (root-to-frontier) dag automata to the reverse αrev of an unranked,
unordered tree α it behaves exactly as Courcelle’s (frontiers-to-root) Tuu-automata applied to α.
Tree languages accepted by deterministic root-to-frontier tree automata are a proper subclass
of those accepted by deterministic or nondeterministic frontier-to-root automata. Let B = =(d)
for d = a1a + a1. The trivial language {B} is deterministic regular but {B} ‖ {B} is not,
as any deterministic automaton accepting B + B = =(a1a + a1 + a2a + a2) must also accept
¤ = =(a(1a + 2a) + a(1 + 2)). Also, the regular languages Σ†even and Σ†dis are no longer
deterministic regular. It is easily seen that the class of deterministic regular dag languages is
closed under union, intersection and complement.
When a deterministic dag automaton passes a state from a father node to its sons it cannot
react on the possibly different labels of the sons. Thus, deterministic dag automata are forward
blind. One easily can define with the help of commutative and associative mappings a concept
of not forward-blind deterministic root-to-frontier dag automata where the state passed to a son
may depend on the state of the father and the multiset of labels of all sons. An nfb regular dag
language is a regular dag language accepted by a deterministic not forward-blind dag automaton.
Table 1 presents some properties of the classes of regular, deterministic regular, nfb regular and
semi rational dag languages. A dag language is semi rational if it is the dag semantics of some
Petri net, see [13]. In contrast to word languages, dag languages accepted by finite automata
must not necessarily be Petri net dag languages, see the last two lines of table 1.

6 Comparison to Further Automata Concepts

There are several concepts in the literature of finite automata analyzing graphs or dags with
”local conditions”. Kaminski and Pinter [11] operate on rooted directed graphs over a double
ranked alphabet, and, thus, with a global bound for the in- and out-degree. With their automata
D1−ladder is also not recognizable, see Thomas [16]. (One easily may regard D1−ladder as a
language over a double ranked alphabet by using different labels for the upper and lower row).
Thomas introduces ”acceptors” on ranked graphs equivalent to existential monadic second-
order logic (EMSL) on those graphs. Those acceptors simulate a tiling of a ranked graph with
elementary graphs of a finite set of types plus some nonlocal constraints. D1−ladder becomes
now acceptable relative to connected graphs. However, connectedness is expressible in MSL but
not in EMSL, and thus not acceptable by those graph acceptors. It is hard to imagine how to
generalize Thomas’ acceptor concept to unranked graphs and languages with no fixed bound of
the in- and out-degree.
It is also known that D1−ladder is acceptable relativ to a class of planar dags (pdags) of Bossut,
Dauchet and Warin [3]. They introduce algebraic pdag expressions built from two-sorted letters
and operations (iterated) parallel and serial composition. They can present an automaton
that accepts all connected pdag expressions, in contrast to our theorem 2, corollary 4.1 and

16

Finite Automata on Unranked and Unordered DAGs, Extented Version, Fachbereich Informatik, Nr. 22/2007

Closed under: Reg†det Reg†nfb Reg† SemiRat†

union X X X X
intersection X X X X
complement X X no no
reverse no no X X
shuffle no no X X
big shuffle no no no no
finite sets no no X X
fat embedding
of L3 X X X X
contains:
Σ†dis no no X X
Dr=l no no no X
Dn= no no no X
can count
modulo i the:
nodes no no X X
roots no no X X
leaves X X X X
incoming arcs X X X (no)
outgoing arcs no X X (no)

Table 1: Closure Properties, () is a Conjecture.

inexpressibility of connectedness in EMSL. This contradiction is resolved if one notes that their
pdag expression cannot describe all planar dags, especially not all planar dags of Figure 4 that
have been required for violating regularity of connectedness.

Résumé

We have introduced linear expressions that can describe all unranked and unordered abstract
dags and finite automata on those unrestricted dags defining a class of regular dag languages.
According to theorem 1, these dag automata operate on abstract dags as well as on dag ex-
pressions. The closure properties and examples of regular dag languages are just what should
be expected from a reasonable concept of nondeterministic and deterministic dag automata.
Although our approach is similar to the Tu,u approach of Courcelle we don’t have a concept of
rationality of dag languages by finite algebras, even not in the deterministic case. The reason
is that in our concept of a computation the treatment of sorts l, t and f fits perfectly into the
evaluation schema of algebras - such as to replace sa ba δ(s, a) or s(f1 + f2) by sf1 + sf2. But
for synchronization points a global view is involved as we replace si by s only if i occurs exactly
once in the overall term. However, example 3.3 shows how close we are to algebras. The ex-
amples of regular and nonregular dag languages are very similar to those of semi-rational and
not semi-rational ones in [13] although the concepts of regularity (acceptance by dag automata)
and of semi-rationality (dag semantics of Petri nets) are rather different. This may be a hint
that regularity and semi-rationality of dag languages indeed point more to inherent properties
of dags than of the chosen concepts of automata and Petri nets.

17

Finite Automata on Unranked and Unordered DAGs, Extented Version, Fachbereich Informatik, Nr. 22/2007

References

[1] S. Anantharaman, P. Narendran, and M. Rusinowitch. Closure properties and decision
problems of dag automata. Information Processing Letters, 94:231–240, 2005.

[2] I. Boneva and J.-M. Talbot. Automata and logic for unranked and unordered trees. LNCS,
3467:500–515, 2005.

[3] F. Bossut, M. Dauchet, and B. Warin. A Kleene theorem for a class of planar acyclic
graphs. Theor. Comp. Science Center Report HKUST-TCSC 2001-5, 117:251–265, 1995.

[4] A. Brüggemann-Klein, M. Murata, and D. Wood. Regular tree and hedge languages of
unranked alphabets. Theor. Comp. Science Center Report HKUST-TCSC 2001-5,pp29,
2001.

[5] W. Charatonik. Automata on dag representations of finite trees. Technical Report MPI-I-
1999-2-001, MPI, Univ. SaarbrÃ1

4cken, 1999.

[6] H. Comon, M. Daucher, R. Gilleron, S. Tison, and M. Tommasi. Tree automata techniques
and application. Available on the Web from 13ux02.univ-lille.fr in directoty tata, 1998.

[7] B. Courcelle. A representation of graphs by algebraic expressions and its use for graph
rewriting systems. In Proc. 3rd Internat. Workshop on Graph-Grammars, LNCS, pages
112–132. Springer Verlag, 1988.

[8] B. Courcelle. On recognizable sets and tree automata. In H. Aı̈t-Kaci, M. Nivat, editor,
Resolution of Equations in Algebraic Structures, volume 1, pages 93–126. Academic Press,
1989.

[9] J. Fanchon and R. Morin. Regular sets of pomsets with auitoconcurrency. In CONCUR
2002, LNCS 2421, pages 402–417, 2002.

[10] T. Kamimura and G. Slutzki. Parallel and two-way automata on directed ordered acyclic
graphs. Inf. Control, 49:10–51, 1981.

[11] M. Kaminski and S. Pinter. Finite automata on directed graphs. J. Comp. Sys. Sci.,
44:425–446, 1992.

[12] J.R. Menzel, L. Priese, and M. Schuth. Some examples of semi-rational dag languages. In
Developments in Language Theory: 10th International Conference, DLT 2006, St.Barbara,
USA, LNCS 4036, pages 351–362. Springer Verlag, 2006.

[13] L. Priese. Semi-rational sets of dags. In Developments in Language Theory: 9th Interna-
tional Conference, DLT 2005, Palermo, Italy, LNCS 3572, pages 385–396. Springer Verlag,
2005.

[14] L. Priese. Finite automata on unranked and unordered dags. In Developments in Language
Theory: 11th International Conference, DLT 2007, Turku, Finland, LNCS 4588, pages
346–360. Springer Verlag, 2007.

[15] W. Thomas. Finite-state recognizability of graph properties. In D. Krob, editor, Theorie
des Automates et Applications, volume 172, pages 147–159. l’Universite de Rouen, France,
1992.

18

Finite Automata on Unranked and Unordered DAGs, Extented Version, Fachbereich Informatik, Nr. 22/2007

[16] W. Thomas. Automata theory on trees and partial orders. In Proc. 7th Intern. Joint Con-
ference CAAP/FALSE: TAPSOFT’97, LNCS, volume 1214, pages 20–34. Springer Verlag,
1997.

19

Finite Automata on Unranked and Unordered DAGs, Extented Version, Fachbereich Informatik, Nr. 22/2007

Bisher erschienen

Arbeitsberichte aus dem Fachbereich Informatik
(http://www.uni-koblenz.de/fb4/publikationen/arbeitsberichte)

Lutz Priese: Finite Automata on Unranked and Unordered DAGs Extented Version,
Arbeitsberichte aus dem Fachbereich Informatik 22/2007

Mario Schaarschmidt, Harald F.O. von Kortzfleisch: Modularität als alternative Technologie-
und Innovationsstrategie, Arbeitsberichte aus dem Fachbereich Informatik 21/2007

Kurt Lautenbach, Alexander Pinl: Probability Propagation Nets, Arbeitsberichte aus dem
Fachbereich Informatik 20/2007

Rüdiger Grimm, Farid Mehr, Anastasia Meletiadou, Daniel Pähler, Ilka Uerz: SOA-Security,
Arbeitsberichte aus dem Fachbereich Informatik 19/2007

Christoph Wernhard: Tableaux Between Proving, Projection and Compilation, Arbeitsberichte
aus dem Fachbereich Informatik 18/2007

Ulrich Furbach, Claudia Obermaier: Knowledge Compilation for Description Logics,
Arbeitsberichte aus dem Fachbereich Informatik 17/2007

Fernando Silva Parreiras, Steffen Staab, Andreas Winter: TwoUse: Integrating UML Models
and OWL Ontologies, Arbeitsberichte aus dem Fachbereich Informatik 16/2007
Rüdiger Grimm, Anastasia Meletiadou: Rollenbasierte Zugriffskontrolle (RBAC) im
Gesundheitswesen, Arbeitsberichte aud dem Fachbereich Informatik 15/2007

Ulrich Furbach, Jan Murray, Falk Schmidsberger, Frieder Stolzenburg: Hybrid Multiagent
Systems with Timed Synchronization-Specification and Model Checking, Arbeitsberichte aus
dem Fachbereich Informatik 14/2007

Björn Pelzer, Christoph Wernhard: System Description:“E-KRHyper“, Arbeitsberichte aus dem
Fachbereich Informatik, 13/2007

Ulrich Furbach, Peter Baumgartner, Björn Pelzer: Hyper Tableaux with Equality,
Arbeitsberichte aus dem Fachbereich Informatik, 12/2007

Ulrich Furbach, Markus Maron, Kevin Read: Location based Informationsystems,
Arbeitsberichte aus dem Fachbereich Informatik, 11/2007

Philipp Schaer, Marco Thum: State-of-the-Art: Interaktion in erweiterten Realitäten,
Arbeitsberichte aus dem Fachbereich Informatik, 10/2007

Ulrich Furbach, Claudia Obermaier: Applications of Automated Reasoning, Arbeitsberichte
aus dem Fachbereich Informatik, 9/2007

Jürgen Ebert, Kerstin Falkowski: A First Proposal for an Overall Structure of an Enhanced
Reality Framework, Arbeitsberichte aus dem Fachbereich Informatik, 8/2007

Lutz Priese, Frank Schmitt, Paul Lemke: Automatische See-Through Kalibrierung,
Arbeitsberichte aus dem Fachbereich Informatik, 7/2007

Rüdiger Grimm, Robert Krimmer, Nils Meißner, Kai Reinhard, Melanie Volkamer, Marcel
Weinand, Jörg Helbach: Security Requirements for Non-political Internet Voting,
Arbeitsberichte aus dem Fachbereich Informatik, 6/2007

Daniel Bildhauer, Volker Riediger, Hannes Schwarz, Sascha Strauß, „grUML – Eine UML-
basierte Modellierungssprache für T-Graphen“, Arbeitsberichte aus dem Fachbereich
Informatik, 5/2007

http://www.uni-koblenz.de/fb4/publikationen/arbeitsberichte

Richard Arndt, Steffen Staab, Raphaël Troncy, Lynda Hardman: Adding Formal Semantics to
MPEG-7: Designing a Well Founded Multimedia Ontology for the Web, Arbeitsberichte aus
dem Fachbereich Informatik, 4/2007

Simon Schenk, Steffen Staab: Networked RDF Graphs, Arbeitsberichte aus dem Fachbereich
Informatik, 3/2007

Rüdiger Grimm, Helge Hundacker, Anastasia Meletiadou: Anwendungsbeispiele für
Kryptographie, Arbeitsberichte aus dem Fachbereich Informatik, 2/2007

Anastasia Meletiadou, J. Felix Hampe: Begriffsbestimmung und erwartete Trends im IT-Risk-
Management, Arbeitsberichte aus dem Fachbereich Informatik, 1/2007

„Gelbe Reihe“
(http://www.uni-koblenz.de/fb4/publikationen/gelbereihe)

Lutz Priese: Some Examples of Semi-rational and Non-semi-rational DAG Languages.
Extended Version, Fachberichte Informatik 3-2006

Kurt Lautenbach, Stephan Philippi, and Alexander Pinl: Bayesian Networks and Petri Nets,
Fachberichte Informatik 2-2006

Rainer Gimnich and Andreas Winter: Workshop Software-Reengineering und Services,
Fachberichte Informatik 1-2006

Kurt Lautenbach and Alexander Pinl: Probability Propagation in Petri Nets, Fachberichte
Informatik 16-2005

Rainer Gimnich, Uwe Kaiser, and Andreas Winter: 2. Workshop ''Reengineering Prozesse'' –
Software Migration, Fachberichte Informatik 15-2005

Jan Murray, Frieder Stolzenburg, and Toshiaki Arai: Hybrid State Machines with Timed
Synchronization for Multi-Robot System Specification, Fachberichte Informatik 14-2005

Reinhold Letz: FTP 2005 – Fifth International Workshop on First-Order Theorem Proving,
Fachberichte Informatik 13-2005

Bernhard Beckert: TABLEAUX 2005 – Position Papers and Tutorial Descriptions,
Fachberichte Informatik 12-2005

Dietrich Paulus and Detlev Droege: Mixed-reality as a challenge to image understanding and
artificial intelligence, Fachberichte Informatik 11-2005

Jürgen Sauer: 19. Workshop Planen, Scheduling und Konfigurieren / Entwerfen, Fachberichte
Informatik 10-2005

Pascal Hitzler, Carsten Lutz, and Gerd Stumme: Foundational Aspects of Ontologies,
Fachberichte Informatik 9-2005

Joachim Baumeister and Dietmar Seipel: Knowledge Engineering and Software Engineering,
Fachberichte Informatik 8-2005

Benno Stein and Sven Meier zu Eißen: Proceedings of the Second International Workshop on
Text-Based Information Retrieval, Fachberichte Informatik 7-2005

Andreas Winter and Jürgen Ebert: Metamodel-driven Service Interoperability, Fachberichte
Informatik 6-2005

Joschka Boedecker, Norbert Michael Mayer, Masaki Ogino, Rodrigo da Silva Guerra,
Masaaki Kikuchi, and Minoru Asada: Getting closer: How Simulation and Humanoid League
can benefit from each other, Fachberichte Informatik 5-2005

Torsten Gipp and Jürgen Ebert: Web Engineering does profit from a Functional Approach,
Fachberichte Informatik 4-2005

Oliver Obst, Anita Maas, and Joschka Boedecker: HTN Planning for Flexible Coordination Of
Multiagent Team Behavior, Fachberichte Informatik 3-2005

http://www.uni-koblenz.de/%7Eag-pn/html/mitarbeiter/mitarbeiter.html
http://www.uni-koblenz.de/%7Eag-pn/html/mitarbeiter/apinl.html
http://www.uni-koblenz.de/%7Ewinter/
http://www.uni-koblenz.de/%7Emurray/
http://fstolzenburg.hs-harz.de/
http://www.uni-koblenz.de/%7Ebeckert/
http://www.uni-koblenz.de/FB4/Institutes/ICV/AGPaulus/Members/paulus
http://www.uni-koblenz.de/%7Edroege/
http://www.uni-koblenz.de/%7Ewinter/
http://www.uni-koblenz.de/%7Eebert/
http://www.uni-koblenz.de/%7Ejboedeck/
http://www.er.ams.eng.osaka-u.ac.jp/user/asada/asada.html
http://www.uni-koblenz.de/%7Etgi/
http://www.uni-koblenz.de/%7Eebert/
http://www.uni-koblenz.de/%7Efruit/
http://www.uni-koblenz.de/%7Emaas/
http://www.uni-koblenz.de/%7Ejboedeck/

Andreas von Hessling, Thomas Kleemann, and Alex Sinner: Semantic User Profiles and their
Applications in a Mobile Environment, Fachberichte Informatik 2-2005

Heni Ben Amor and Achim Rettinger: Intelligent Exploration for Genetic Algorithms –
 Using Self-Organizing Maps in Evolutionary Computation, Fachberichte Informatik 1-2005

http://www.cc.gatech.edu/grads/a/avh/
http://www.uni-koblenz.de/%7Etomkl/
http://www.uni-koblenz.de/%7Esinner/
http://www.uni-koblenz.de/%7Eamor/
http://www.uni-koblenz.de/%7Eachim/

	plakatform_cv
	Foliennummer 1

	Impressum
	DLT07Uni-Publikation
	Bisher erschienen
	Bisher erschienen

