
Fachbereich 4: Informatik

License Usage Analysis and License
Recommendation in Open Source

Software Development

Masterarbeit
zur Erlangung des Grades Master of Science

im Studiengang Informatik

vorgelegt von

Kevin Schmidt

Erstgutachter: Ralf Lämmel

Institut für Informatik

Zweitgutachter: Hakan Aksu

Institut für Informatik

Koblenz, im Mai 2016

Erklärung

Hiermit bestätige ich, dass die vorliegende Arbeit von mir selbständig verfasst

wurde und ich keine anderen als die angegebenen Hilfsmittel benutzt habe und

die Arbeit von mir vorher nicht in einem anderen Prüfungsverfahren eingereicht

wurde.

Ja Nein

Mit der Einstellung der Arbeit in die Bibliothek bin ich einver-

standen.

� �

Der Veröffentlichung dieser Arbeit im Internet stimme ich zu. � �

. .

(Ort, Datum) (Unterschrift)

Contents

1 Introduction 7
1.1 Research Context . 7

1.2 Motivation . 7

1.3 Research Problem . 8

1.4 Methodology . 9

1.5 Thesis Structure . 9

2 Background 11
2.1 Open Source Software . 11

2.2 Software Licenses . 13

2.3 Mining Software Repositories . 15

2.4 101companies . 16

3 Related Work 17
3.1 Current Open Source Licensing . 17

3.1.1 Choosing an Open Source License 17

3.1.2 Open Source License Distribution 18

3.1.3 Usage of Licenses Over Time 19

3.1.4 License Enforcement and License Publication 20

3.1.5 License Compatibility and License Combination 22

3.2 Mining Licenses for Analytical Purposes 24

3.2.1 License Identification . 24

3.2.2 Automated Data Assembly . 25

4 License Usage Analysis 27
4.1 Distribution of Licenses . 27

4.1.1 Automated License Mining . 27

2

CONTENTS 3

4.1.2 Design and Implementation . 29

4.1.3 Results . 32

4.1.4 Evaluation . 35

4.2 Association of Licenses Over Time . 38

4.3 License Consistency . 40

4.4 License Publication . 42

5 License Recommendation 46
5.1 Recommendation Logic Design . 47

5.1.1 Developer’s Perception on Licensing 47

5.1.2 Recommendation Logic Requirements 50

5.2 Recommendation Logic Implementation 53

5.3 Recommendation Logic Appliance . 57

5.3.1 Use-Case Requirement Analysis 57

5.3.2 Use-Case Requirement Realization 58

5.3.3 Use-Case Solution . 62

5.4 Recommendation Logic Evaluation . 63

6 Concluding Remarks 64
6.1 Summary . 64

6.2 Limitations and Future Work . 66

6.2.1 License Usage Analysis . 66

6.2.2 License Recommendation . 67

6.3 Closing Words . 67

Appendices 71

List of Figures 80

List of Tables 81

Bibliography 83

Abstract

The publication of open source software aims to support the reuse, the distribution and

the general utilization of software. This can only be enabled by the correct usage of open

source software licenses. Therefore associations provide a multitude of open source soft-

ware licenses with different features, of which a developer can choose, to regulate the

interaction with his software. Those licenses are the core theme of this thesis.

After an extensive literature research, two general research questions are elaborated in

detail. First, a license usage analysis of licenses in the open source sector is applied, to

identify current trends and statistics. This includes questions concerning the distribution

of licenses, the consistency in their usage, their association over a period of time and their

publication.

Afterwards the recommendation of licenses for specific projects is investigated. There-

fore, a recommendation logic is presented, which includes several influences on a suitable

license choice, to generate an at most applicable recommendation. Besides the exact

features of a license of which a user can choose, different methods of ranking the recom-

mendation results are proposed. This is based on the examination of the current situation

of open source licensing and license suggestion. Finally, the logic is evaluated on the

exemplary use-case of the 101companies project.

Abstrakt

Durch das Publizieren von Open Source Software soll die Weiterverwendung, Vertei-

lung und allgemeine Nutzung von Software unterstützt werden. Dies ist nur durch den

korrekten Gebrauch von Lizenzen für diese Art von Software möglich. Dazu werden ei-

ne Vielzahl von verschiedenen Open Soruce Software Lizenzen von Organisationen zur

Verfügung gestellt, aus welchen der Entwickler wählen kann, um den Umgang mit seiner

Arbeit zu regulieren. Diese werden im Rahmen dieser Arbeit näher untersucht.

Dazu werden, nach einer ausführlichen Literaturstudie, zwei allgemeine Fragestellungen

detailliert betrachtet. Zunächst wird eine Nutzungsanalyse von Lizenzen im Open Sour-

ce Sektor durchgeführt, um allgemeine Trends auszumachen und Statistiken zu erstel-

len. Diese beinhaltet Fragestellungen wie die Verteilung von verschiedenen Lizenzen, die

Konsistenz ihrer Nutzung, die Assoziation von Lizenzen über einen bestimmten Zeitraum,

sowie ihre Publikation.

Im Anschluss wird das Empfehlen von Lizenzen für verschiedene Projekte thematisiert.

Dazu wird eine Empfehlungslogik vorgestellt, welche unterschiedliche Einflüsse auf die

korrekte Lizenzwahl einbezieht, um so möglichst passende Ergebnisse zu liefern. Neben

den genauen Eigenschaften einer Lizenz, welche der Nutzer wählen kann, wird so auch ei-

ne Möglichkeiten der Einstufung vorgeschlagen. Die Grundlage bildet eine umfangreiche

Betrachtung von aktuellen Gegebenheiten und Entwicklungen, sowie die zuvor ermittel-

ten Ergebnisse. Abschließend wird die Logik am Beipsiel des 101companies Projektes

evaluiert.

Acknowledgement

Foremost, I would like to express my sincere gratitude to my supervisor Prof. Dr. Ralf

Lämmel for the guidance and support in all the time of research and writing of this thesis.

My sincere thanks also go to my family and friends for their continuous support and

motivation throughout my study.

Chapter 1

Introduction

The following chapter will give an introduction to this thesis. The research context, a

motivation, the research problem, the methodology and the structure of the thesis are

given below. All guiding research questions are included as well.

1.1 Research Context

The usage and development of open source software is increasing its popularity [1]. Re-

searchers at research institutions steadily develop new tools and programs and publish

them in online open source software repositories. Therefore, a developer can choose be-

tween one of many licenses, to determine the further usage of his work. Each of these li-

censes has its own characteristics and therefore advantages and disadvantages, dependent

on its intended purpose. This promotes a complex state of affairs. It is the developer’s

obligation to properly choose a suitable license for his work, which is not well understood

so far [2].

1.2 Motivation

The process of choosing a license for an open source project is a non-trivial task, as there

are many influences on a license decision. The diversity and wideness of the open source

sector, with large and multifaceted projects being developed, promotes this complexity

and unclear extent. To enhance future development and licensing processes, it is im-

portant to identify latest trends and behaviors. Therefore, it is helpful, to take a look at a

7

CHAPTER 1. INTRODUCTION 8

large number of existing projects, as well as projects which are currently being developed.

With the 101companies project, an exemplary large and complex open source software

project is on hand. The 101companies project1 is developed by the Software Languages

Team Koblenz2 at University Koblenz-Landau. It consists of a wiki system that aggregates

knowledge about software languages, technologies and concepts. 101companies is also a

software chrestomathy [3], thus, a collection of small software systems useful for teach-

ing programming and software engineering in general. Each software system is called a

contribution and implements parts of a common feature model to demonstrate specific lan-

guages, technologies and concepts. Consequently, 101companies is a widely distributed

and not centralized system with many different repositories and a large amount of derived

and distributed artifacts. Currently there is no definite license convention implemented

for 101companies, as it is not clear, how to properly realize a coherent licensing for the

great number of separate files and which license is most suitable. The described problem

serves as a basis for this thesis, answering general and more abstract research questions

in the field of licensing open source software and finally represents a use-case for which

there is to recommend a licensing concept. This leads to the research questions in the

following section.

1.3 Research Problem

To gain deeper insights on open source software licensing, general research questions are

elaborated and answered within the scope of this thesis. Each question contains several

sub-questions, guiding to the final result.

The purpose of this thesis is to firstly depict the state of the art in the field of licensing

open source software. Therefore, it is of interest to identify current trends and the general

scheme of things. The first research question (RQ) hence addresses statistical issues with

most up to date data. Results are to generate in an automated manner and aim to have a

high degree of representativity.

• RQ 1: What is the state-of-the-art in licensing open source software?

– RQ 1.1: What is the distribution of licenses in the open source sector?

– RQ 1.2: Are there changes in the association of licenses over time?

– RQ 1.3: How consistent is the usage of licenses?

1http://101companies.org/ 2http://softlang.wikidot.com/

CHAPTER 1. INTRODUCTION 9

– RQ 1.4: How can licenses be publicized properly?

Subsequently, the possibility of recommending licenses for open source software projects

is investigated. Through recommendation of licenses, the general usage of open source

software, from a developer’s perspective, as well as a user’s perspective, can be improved.

To provide a reasonable possibility to recommend licenses, a logic is to be implemented.

Therefore, also the results of the first research question are included. Along the develop-

ment of the recommendation logic, the following research questions are answered.

• RQ 2: Can we provide a recommendation logic for licenses?

– RQ 2.1: How can licenses be classified?

– RQ 2.2: What is the developer’s perception on the field of licensing and

which inferences regarding license recommendation can be made?

– RQ 2.3: How can licenses be suggested or recommended?

– RQ 2.4: How can a recommendation logic apply to complex open source

projects like the 101companies project?

1.4 Methodology

This thesis is elaborated by processing the above research questions step by step. Gen-

erally, the treatment of the research questions is established on an extensive literature

research throughout the field of licensing and other correlating fields of research. After-

wards, the research questions are answered systematically, according to modern research

principles. A detailed methodology can be found in the beginning of each of the chap-

ters, elaborating the different research questions. Chapter License Usage Analysis for the

first research question and chapter License Recommendation accordingly for the second

research question. All implementations are documented with comments in the source files

and described in the respective chapters.

1.5 Thesis Structure

The thesis is structured in the following way. The general problem context, the task of

the thesis and an overview over the general procedure were given in this introductory

chapter. The following chapter Background will provide a basic knowledge foundation

CHAPTER 1. INTRODUCTION 10

in the field of open source software, mining software repositories and the licensing of

software, as well as the 101companies project. The next chapter, chapter three, will deliver

a comprehensive overview over literature related to this thesis. The following two chapters

provide the answers for the previously presented research questions in depths. The last

chapter will finally provide some concluding remarks and an outlook on future work.

Additional information will be provided in the appendix, followed by the bibliography.

Chapter 2

Background

The general background knowledge for the following chapters will be provided in this

chapter. At first, general concepts and terms will be introduced, followed by an intro-

duction to mining software repositories and a brief overview over terminologies of the

101companies project.

2.1 Open Source Software

In [4] open source software is described: “Open source software is software whose source

code is available for modification or enhancement by anyone”. The term Open Source

Software originated 1998 along with the foundation of the Open Source Initiative (OSI)

and is the dominant term since then [5]. Brügge et al. name four characteristics for open

source software:

• License of the software

• Non-commercial attitude

• High degree of collaboration in the development process

• Geographical distance of the developers

The Bundesamt für Sicherheit in der Informationstechnik (BSI) lists four criteria to open

source software as well [6]:

• The program can be used without limitations

11

CHAPTER 2. BACKGROUND 12

• It is permitted to analyze and change the program to own needs

• It is permitted to redistribute copies of the program

• The program can be improved and improvements can be distributed

As those definitions have considerable differences, for this thesis open source software is

defined as following: Open source software is unrestricted publicly accessible software

or code, published under a copyright and terms of usage and distribution (typically a li-

cense).

This definition concludes, that although the source code of open source software (OSS)

is accessible for everyone, the software itself does not have to be (for) free to use it. If

so, it is often called free and open source software (FOSS), or free software (FS), where

FS is not necessarily open source. For every type of software, there are several different

licenses or usage agreements - the focus in this thesis is on open source software licenses

(see section 2.2 and appendix), which are eligible for the software owner. Note, that unli-

censed software can be open source as well, if the source code is published, as no license

is also a regular form of licensing.

The opposite of open source software is proprietary software or closed source software.

Proprietary software is always licensed under terms of use, restricting the usage, analysis,

distribution and modification. The source code of the software is not publicly accessible

and protected by the manufacturers copyright. The term proprietary software does not im-

ply that the software is consequently a commercial software. The relations of the different

types of software are illustrated in figure 2.1. For this thesis, open source software and its

licenses embody the basis of all research questions (green and yellow in figure 2.1).

Figure 2.1: Software relationships: Open Source Software (OSS), Free and Open
Source Software (FOSS), Proprietary Software (PS)

CHAPTER 2. BACKGROUND 13

2.2 Software Licenses

Software licenses are legal instruments to ensure the originators copyright and regulate

the distribution and usage. A license agreement between the user of software and its orig-

inator governs all legal aspects of usage and redistribution, this can include limitations

of liability, warranties and disclaimers. In general, software licenses can be fit into two

categories: proprietary software licenses and (free- and) open source software licenses.

For proprietary software, the end-user license agreement (EULA) typically grants the use

of a specified amount of copies of the software, while the actual ownership remains with

the manufacturer. The EULA often contains terms to limit the number of installations

allowed and the terms of redistribution.

Licenses for open source software can be divided in permissive and copy-left licenses.

Permissive licenses aim to have minimal requirements on the redistribution of the soft-

ware, whereas copy-left licenses ensure that all subsequent end-users receive the specified

rights.

The GNU General Public License1 (GPL), provided by the Free Software Foundation,

gives an example for a copy-left software license. GPL intends to guarantee the users

freedom to share and change a program and all of its versions, by assuring it to by free,

in terms of freedom, for all users. Modification, analysis and redistribution of software or

software parts is possible, if the user adheres to the terms and conditions of GPL.

An example of a permissive software license is the Berkeley Software Distribution (BSD)

license. BSD gives the user the permission to analyze and privately modify the software,

as well as redistribute it with minimal requirements. By using the BSD license, a user has

the permission to use code as a part of proprietary software.

Another classification for open source licenses is given by [7]. He divides licenses in four

categories, which specify the previous classification more precisely:

1. permissive: permit the software to become proprietary

2. weakly protective: weak copy-left: prevention the from becoming proprietary, yet

permitting software to be part of a larger proprietary programs

3. strongly protective: strong copy-left: prevention from becoming proprietary

4. network protective: protection of networks included

1http://www.gnu.org/licenses/gpl-
3.0.de.html

CHAPTER 2. BACKGROUND 14

Alternatively, [8] classifies licenses by self-explaining slogans, which are based on the

above classifications in a more comprehensible way. I want it simple and permissive for

permissive licenses, I am concerned about patents for permissive licenses with patent

regulation included (e.g. Apache License) and I care about sharing improvements for

weakly to strongly protective licenses. However, all those classification approaches of

open source software licenses tend in the same direction. They are the most common

ways of classifying licenses, also in regard of RQ 2.1.

Generally, open source software licenses can have different features [8]: requirements,

permissions and constraints. Those features can be defined the following way:

• Requirements: What the license requires users and license holders to do.

• Permissions: What license holders allow users to do by choosing the license.

• Constraints: What license holders restrict users to do by choosing the license.

The tables 2.1, 2.2 and 2.3 give an overview over those features, which are probably not

exhaustive. Generally, software licenses for open source software are the basic point of

investigation for this thesis, in all possible categories.

Table 2.1: Requirement features of licenses

Requirement Explanation
License and copyright no-
tice

The code has to provide a copyright and license
notice

State changes Significant changes within the code have to be
annotated

Disclose source Source code must be made available when dis-
tributing the software

Network use Users who interact with the software via network
have the right to receive a copy of the correspond-
ing source code

Library usage The library may be used in non open source
projects

Same License Modifications must be released under the same
license (sometimes related licenses)

CHAPTER 2. BACKGROUND 15

Table 2.2: Permission features of licenses

Permission Explanation
Commercial use The software may be used for commercial pur-

poses
Private use The software can be used and modified without

distribution
Distribution The software may be distributed
Modification The software may be modified
Patent use The license provides an express grant of patent

rights from distributor to the recipient
Sub-licensing Sub-licenses can be provided to third parties not

included in the license

Table 2.3: Constraint features of licenses

Constraint Explanation
Hold liable No warranty and liability for the owner
Use trademark Does not grant right in the trademark
Sub-licensing No sub-licenses are allowed
Distribution Distribution of the software is not allowed
Modification Modification of the software is not allowed
Patent use No rights in the patents of contributors (explicitly

stated)

2.3 Mining Software Repositories

The general idea of mining software repositories is described in [9], the mining software

repositories conference of 2015, as following. “The mining software repositories (MSR)

field analyzes the rich data available in software repositories to uncover interesting and

actionable information about software systems and projects. Software repositories such as

source control systems, archived communications between project personnel, and defect

tracking systems are used to help manage the progress of software projects”. They see the

main goals of MSR in supporting the maintenance of software systems, improving design

and reuse of software, empirically validating novel ideas and techniques, understanding

software development and evolution and planning future development. In this thesis those

goals will be investigated in regard of the open source licensing field. Several mining

software repositories methodologies are applied in the license usage analysis.

CHAPTER 2. BACKGROUND 16

2.4 101companies

The 101companies project was briefly described in the introductory chapter as a compre-

hensive knowledge and data collection. It is organized as a widely distributed and not

centralized system with many different repositories and a large amount of derived and

distributed artifacts. [10] gives a more detailed description. Relating to this thesis, differ-

ent properties of the project have to be lined out, especially the great number of software

technologies, software languages and stakeholders. As an academic project, it is under

steady development and aims to grow in all areas.

The following terms are the foundation to understand the structure of the 101companies

project. To deal with versatile influences on the project, the notion of contributions is

introduced, meaning the implementation of a software system, to better apply to varying

stakeholders and objectives. Different contributions are grouped in themes, which are

tailored towards interests of specific stakeholders to help users to navigate through the

knowledge collection. The 101companies Ontology classifies all entities, that are relevant

for the 101companies project and is divided into different categories, which are broken

down into three sub-categories: programming technologies, software languages and tech-

nological spaces. Those categories help to cluster different parts of the system and can

therefore provide knowledge about those parts.

The 101companies project is introduced, as it will be referred to as a general research

motivation and a complex exemplary use-case and example, to apply a coherent and rea-

sonable licensing to, effectuating the research results of this thesis. The contribution-

structure, in which the contributions are distributed throughout repositories, will be a

challenge for license usage analysis and a coherent licensing concept.

Chapter 3

Related Work

In the chapter Background, general concepts and terminologies were introduced. The fol-

lowing chapter will give a more detailed overview over different aspects of licensing open

source software, as a basis for the following elaborations. Also, the necessary background

information for the experimental and analytic methodologies are provided.

3.1 Current Open Source Licensing

The licensing of open source software is a field on which every developer, who aims to

make his work publicly accessible, has to inform himself. Especially the process of choos-

ing an appropriate license is indispensable, if others shall profit from it. The following

sections give an overview over literature regarding this process and other general aspects

in the context of this thesis.

3.1.1 Choosing an Open Source License

The right choice of a license for an open source project is the key to ensure the intended

usage of the software. The first step in choosing a license is to think of the general way

the owner wants to distribute his software. Therefore, it is helpful to look at the classifi-

cation approaches introduced in the background chapter from the perspective of making

a choice.

In short, [11] differentiates between three types of licenses: Free-for-all licenses, Keep-

open licenses and Share-alike licenses. Whereas the Free-for-all licenses only require the

user to give credit to the original author, the Keep-open licenses also require, that modifi-

17

CHAPTER 3. RELATED WORK 18

cations have to be published as open source as well. The Share-alike licenses refer to the

copy-left licenses. When software is modified or extended, the result as a whole has to be

made available as open source as well. Since all of those three types have its benefits and

drawbacks, [11] describes the problem as a choosing between acceptance and contribu-

tion.

There are several ideas of how owners can be helped to decide for the right license.

Choosealicense.com1 is probably one of the most common license suggestion websites,

as it is linked on GitHub. They refer to the three types of licenses with short slogans to de-

scribe them roughly. If an author wants to publish software “simple and permissive” they

suggest the MIT license. If the author is “concerned about patents” the Apache License

and if the author “cares about sharing improvements” the GPLv2 or GPLv3 license. If

more choices are needed, choosealicense.com provides a lookup table of the most popular

licenses including their requirements, permissions and constraints. This way, users can

make a quick choice, but can also inform themselves more deeply.

Within the scope of this thesis, it is a goal, to provide a recommendation logic for licenses

(RQ2). It is to see, if the named approaches are a good way to help authors choose a

license, or if it is possible to develop a different kind of recommendation logic.

In [12] the developer membership, coding activity and development speed in relation to

the license choice of a project was investigated. They were able to demonstrate that the

social movement account of voluntary participation in open source projects does seem to

predict the relationships between the development process activity and the license choice.

Specifically projects with a copy-left license are associated with higher developer mem-

bership and coding activity and suggest evolving faster. This indicates that license sugges-

tions can go further than just involving the intended usage of the open source software:

additional factors within the process of choosing a license might be relevant. Possibly,

including additional factors into the suggestion process might even result in a recommen-

dation logic, which would be more useful than just a suggestion, for example legal factors

(see following sections).

3.1.2 Open Source License Distribution

The license distribution on GitHub was analyzed in year 2015 by GitHub itself [13]. Table

3.1 shows the analysis results.

Those results can be used as a comparative value, as the goal of this thesis also aims

1http://choosealicense.com/

CHAPTER 3. RELATED WORK 19

Table 3.1: License distribution on GitHub

License Distribution [%]
MIT 44.69
GPL 24.19
Other 15.68
Apache 11.19
BSD 6.23
Unlicensed 1.87

to analyze GitHub projects. It is important to note that their approach only considered a

project as licensed, if the license was declared in the licenses API of GitHub. If there are

license files or the license is declared in each file of the project, but not in the API, this

approach is not sufficient. This problem is considered within the scope of this thesis.

The private company Black Duck made a list of the most used licenses in the open source

sector as well, using their knowledge base. However, the overall analysis process is not

further mentioned [14]. The results of their analysis are illustrated in table 3.2.

Table 3.2: License distribution according to Black Duck

License Distribution [%]
GPL 38
MIT 24
Other 16
Apache 16
BSD 6

3.1.3 Usage of Licenses Over Time

As mentioned in the section Open Source License Distribution before, GitHub investi-

gated usage of licenses on their platform github.com. They were also able to make some

statements on the usage of licenses over time [13]. The results are shown in figures 3.1

and 3.2.

Figure 3.1 shows a graph of licensed repositories over time with a decreasing percent-

age of licensed repositories. The reason for this trend is not further mentioned, however

the sharp spike in 2013 shows, that users actually use license recommendation tools, as

CHAPTER 3. RELATED WORK 20

GitHub’s choosealicense.com was started then. This is a general indicator, that recom-

mendation tools are useful and justifies further research. Figure 3.2 approves this state-

ment, as it shows that the three featured licenses record a swift uptick in 2013, with the

relative percentages remaining otherwise steady over the past six years.

Figure 3.1: Percentage of licensed repositories on GitHub [13]

Figure 3.2: License breakdown on GitHub [13]

3.1.4 License Enforcement and License Publication

A software license is a legal measure to ensure the software owners rights and declare

how his work is allowed to be used. It is essential to take a brief look at the legal aspects

CHAPTER 3. RELATED WORK 21

of licensing, as it corresponds with other licensing concepts and is the basis of a solid

licensing concept. When it comes to enforcing an open source license, [15] state several

issues. It is not clear, whether a license is to be treated as a mere copyright or as a contract

between owner and user and it is unclear to what degree a court will actually enforce an

open source license, as it is not a common case yet.

The Free Software Foundation (FSF) in collaboration with the Software Freedom Conser-

vancy (SFC) published the The Principles of Community-Oriented GPL Enforcement [16].

They state, that license enforcement should only serve the society and not financial mo-

tives. FSF and SCF represent authors and copyright holders and aim to support their

interests. To enforce copy-left licenses, they want to help users to comply with a correct

license usage. Lawsuits are only a ”last resort”. Karen Sandler, Executive Director of the

Software Freedom Conservancy reasons their approach by saying: ”The ugly truth about

copyleft compliance is that if there are never any lawsuits when companies refuse to com-

ply, then there’s very little incentive to do the right thing” [17].

Those sources illustrate that there is a need for clarification in the field of license en-

forcement, as authors and copyright holders are mostly self-responsible in enforcing their

rights. However, there have been verdicts [18] and law offices are willing to support their

clients. A problem is, that it is hard to discover license violations and to distinguish be-

tween code reuse or self-developed code, at least for smaller code parts [19].

To enable the enforcement of a license, the license has to be included correctly. How to

include a license is often explained in the full license text, or on the originators’ website.

GNU for example recommends attaching a short notice to the program, ideally to the start

of each source file, or at least the ”copyright” and a pointer to the full notice in every

source file [20]. The short notice for the GPL licenses looks as follows:

’one line to give the program’s name and a brief idea of what it does.’ Copyright (C)

’year’ ’name of author’

This program is free software: you can redistribute it and/or modify it under the terms

of the GNU General Public License as published by the Free Software Foundation, either

version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-

RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A

PARTICULAR PURPOSE. See the GNU General Public License for more details.

CHAPTER 3. RELATED WORK 22

You should have received a copy of the GNU General Public License along with this

program. If not, see ’http://www.gnu.org/licenses/’.

Other types and forms of publicizing licenses are investigated in the chapter License Us-

age Analysis. The enforcement of licenses is also included in the development of a rec-

ommendation logic for licensing open source projects (see chapter License Recommenda-

tion).

3.1.5 License Compatibility and License Combination

Besides the publication or declaration of a license, another aspect for correct and en-

forcible licensing is essential: the compatibility and combinability of licenses. In the field

of open source software licenses, few licenses are dominantly used. Those licenses tend

to be compatible, so that software can be combined for larger projects, although those

projects already have one or more different licenses. However, it is possible, that issues

arise, when licenses are applied to already licensed software or software packages, as

licenses can contain contradictory features. [21] prove that license violations due to in-

compatibility are not uncommon. They define a license incompatibility or violation as

illustrated in figure 3.3. Therefore, let program P1, licensed under L1, be reused in the

form of program P2 licensed under L2, which includes P1 and all derivative works, if any.

Q, the project which contains P2 may by itself, have an overall license L3. Based on these

notations, they define violations by the following rules:

1) Type 1: L1 and L2 are incompatible or, L1 and L2 are compatible, but L1s copy-left

nature is not honored by L2.

2) Type 2: Similar to the violations of first type, but with checks between L2 and L3

instead.

[7] investigated the compatibility of the most common licenses with an emphasis on the

combinability and created an illustration (fig. 3.4). Wheeler describes, that the different

licenses are represented by the named boxes. An arrow from box A to box B means

that you can combine software with these licenses; the combined result effectively has the

license of B, possibly with additions from A. To see if software can be combined, just start

at their respective licenses, and find a common box you can reach following the arrows.

Therefore, following the paths shows the compatibility of licenses. Some minor popular

licenses (as MPL1.1) show a limited compatibility to other licenses, so it is important to

note that not all licenses are necessarily compatible to each other and can even contradict.

CHAPTER 3. RELATED WORK 23

Figure 3.3: Definition of license violation [21]

This shows that the compatibility of licenses is not sufficient to identify license violations,

the combinability has to be considered as well, which is not often accomplished.

In short, for this thesis, compatibility and combinability are defined the following way.

• If two or more licenses do not contradict each other, they are compatible.

• If wo or more licenses can be combined under one license, they are combinable

(includes correct declaration).

Figure 3.4: Compatibility and combinability of licenses [7]

CHAPTER 3. RELATED WORK 24

3.2 Mining Licenses for Analytical Purposes

To analyze the state of the art in current open source licensing, it is necessary to take a

look at current licensing standards. To examine existing open source projects regarding

their licensing, a methodology was developed, to automatically download software from

online repositories and analyze its license information.

The methodology was determined within the scope of a seminar, held preceded to the

composition of this thesis. The goal of the seminar was a systematic literature research in

the past MSR conferences2, to identify possible research questions and an experimental

methodology in the field of mining software repositories. The literature research identified

the following related work, leading to a final methodology presented in the next chapter.

3.2.1 License Identification

In A Method to Detect License Inconsistencies in Large-Scale Open Source Projects [1]

open source software was examined regarding license inconsistencies. Referring to the

experimental implementation of this thesis in the context of RQ1, some parallels can

be seen, as they needed to analyze license information as well. They used the license

classifier Ninka3 to analyze source code automatically and in an efficient way [22].

The developers of Ninka implemented the following procedure model:

1. The CommentExtractors extract the top comments of each source file. If no com-

ment extractor is known for the files programming language, it extracts top lines

from the source (currently the first 700 lines)

2. Ninka works by matching sentences of licenses, hence it needs to properly break

text into sentences.

3. The SentenceFilter checks if sentences are related to a license or not. It is valuable

to know if a file contains lines that look like a license or not (e.g. to know that a

file has no license).

4. Then it creates a file that corresponds to the recognized sentence tokens. For each

sentence, it outputs its sentence token, or unknown otherwise.

5. Finally it looks at the sentence tokens and outputs the licenses found.

2msrconf.org 3http://ninka.turingmachine.org/

CHAPTER 3. RELATED WORK 25

An alternate approach was presented in [23]. They proposed a methodology to analyze

Java Jar archives regarding their licenses with a code-search approach. They implemented

the following steps:

1. Extract data of the jar archives by decompiling

2. Identification and classification of licenses saved in text files

3. Querying of license information decompiled from the byte code via code search

engines, such as Google Code Search4 to identify associated licenses

4. Comparison of the results

Ninka was used by [23] as well, to verify their results.

3.2.2 Automated Data Assembly

For the automated approach it is necessary to implement a system to automatically down-

load free open source projects and provide them locally. Especially with regard to the

representativity of the research results, it is essential to retrieve a large amount of license

information.

In [24] different repositories containing open source software collections are presented.

Besides Debian5,Maven6 and Drupal7, GitHub8 is one of the largest software collections.

GitHub will be in focus of this experiment. Other repositories that should be named in

this context are bitbucket9, sourceforge10 and Google code11. Possibly some inferences

to the domain of application or other assumptions on the software can be made by their

source repository or licensing information as well.

[25] addresses the collection process of data from GitHub. GitHub limits the amount of

requests from a host via the GitHub API within a 60 minutes interval. GitHub Archive12

could be an alternate way of investigation, as GitHub Archive spares said limitation.

GitHub Archive describes itself as a project to record the public GitHub time line, archive

it, and make it easily accessible for further analysis.

A possible approach to extract data from GitHub is presented in [2]. To collect the needed

4https://code.google.com/
5http://www.debian.org/
6https://maven.apache.org/
7https://www.drupal.org/
8https://github.com/

9https://bitbucket.org/
10http://sourceforge.net/
11https://code.google.com/
12https://www.githubarchive.org/

CHAPTER 3. RELATED WORK 26

data from GitHub they made a script to generate a comprehensive project list of projects

in GitHub, using the GitHub API. As the first list contained over 12 million projects, the

list was filtered. All desired projects were then downloaded via the git-clone command.

Their local storage contained projects of more than 6TB. Afterwards they analyzed the

cloned data with an analysis tool in relation to the MARKOS European Project [26]. The

tool used the license classifier Ninka as well.

On the basis of the researched literature, the seminar effort developed the described

methodology, which can be summarized as follows:

1. Collection of source data (projects) in open source repositories

2. Extraction of license data from the source data

3. Analysis of the retrieved information

A detailed description of the final methodology is given in the respective chapter in section

4.1.1, Automated License Mining.

Chapter 4

License Usage Analysis

As explained before, one goal of this thesis is to depict the state of the art in the field

of licensing open source software. Therefore, it is of interest to identify current trends

and the general scheme of things. The first research question hence addresses statistical

issues with most up to date data. Results are to generate in an automated manner and

aim to have a high degree of representativity. Additionally, methodologies and techniques

will be helpful for several parts of the next research question. The following chapter will

comprise the methodologies, design, implementation and final results of RQ 1. Therefore

the following sections elaborationg the subqeustions of RQ1 are ordered, so that they

build up on the previous results of each sub-question, as some of the statistics are strongly

related.

4.1 Distribution of Licenses

The first part of the first research questions (RQ 1.1) is to elaborate the distribution of

licenses in the open source sector. This question aims to identify the most prominent

licenses as a basis for further research. Therefore, an approach for automated license

mining and identification is presented and performed on a multitude of GitHub reposito-

ries.

4.1.1 Automated License Mining

The conception process of the general methodology for this part of the first research ques-

tion, concerning the distribution of licenses in the open source sector, was briefly de-

27

CHAPTER 4. LICENSE USAGE ANALYSIS 28

scribed in the last chapter Related Work. The exact approach will be stated more precisely

in this section. The analysis of a large amount of open source projects was performed in

six sub-steps.

1. Create a search list:

To realize the first two sub-steps of this approach, a Java program was imple-

mented. For creating a list of open source projects from the open source software

archive GitHub, the GitHub API v3 is used as an interface between the program it-

self and GitHub. The program requests search queries for repositories with specific

attributes. As for some parts a random distribution of projects was sufficient, a list

of projects containing the letters “A” to “Z” was created automatically, it is however

possible, to further specify the search queries. GitHub limits the search requests

to 1.000 search results, so, after removing all duplicates, the list can contain about

26.000 open source projects at max. Different search preferences can hence extend

this list.

2. Save open source projects locally:

After creating the search list, the program automatically starts to clone the projects

from the repositories, which means to locally store the projects of the list, as fast

as GitHub and the available bandwidth allows it to. To preserve the representa-

tivity of the data, empty projects and GitHub related data (e.g. the .git folder) are

deleted. The manual deletion of particularly large files that do not contain any

license information improves the performance of the following steps additionally.

3. Analyze open source projects:

As mentioned in the chapter Related Work, the Ninka classifier was used to analyze

the project data for licenses. The console application was run on Ubuntu 14.04

with the following command:

console command (shortened):

1 f i n d ∗ | x a r g s −n1 −I@ . / n i n k a . p l ’@’

4. Preprocess the data of the analysis:

Ninka creates a set of analysis files for every source file existing in a project. Those

files have to be preprocessed, as the amount of files for even one project easily

CHAPTER 4. LICENSE USAGE ANALYSIS 29

rises above thousands of single files. Therefore, a ruby script was implemented.

The script searches for all “.license”-files created by Ninka and investigates them

for the licenses that Ninka detected. The classified licenses can be found in the

appendix. For every different license that is found in the project, a “license.txt”-

file is created at the root directory of the project. Note that it is important that

every license is only counted once within a project, to obtain correct results in the

evaluation. This is not self-evident, as a license declaration is often included in

every source file explicitly. Therefore, the “.txt”-files are overwritten by identical

results, to ensure the correct count. The intermediate creation of “.txt”-files proved

itself as a helpful strategy to split computing effort and facilitate reproducibility.

Additionally it creates a clear overview.

5. Evaluate the preprocessed data:

To finally evaluate the results of the previous steps, the occurrences of each li-

cense are counted. The addition of those values leads to the distribution of licenses

within the examined projects and can then be summarized for all projects. The

implemented ruby scripts can be seen in the appendix.

6. Interpretation of the results:

The final step is then to illustrate and interpret the results. This will be done in the

sections 4.1.3 and 4.1.4.

4.1.2 Design and Implementation

As previously described, the automated approach of identifying licenses required the im-

plementation of a Java program. This program and the additional scripts are presented in

this section.

GitDownloader

The program GitDownloader was implemented, to automatically clone open source projects

from GitHub. It consists of three packages. Package main contains the main method

and all necessary define parameters, to adjust the final output and retrieval process. The

searchCrawler builds search queries for the GitHub API which are then used by the git-

Cloner, cloning the queried projects from GitHub on a local disc space.

The main method gives a good example of how the program is executed, the preferences

can be seen the Defines class, also containing detailed comments on the preferences (see

CHAPTER 4. LICENSE USAGE ANALYSIS 30

appendix).

Main.main.java (shortened):

1 p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {
2 c r a w l e r = new Crawle r () ;
3 c r a w l e r D a t a F i l t e r = new C r a w l e r D a t a F i l t e r () ;
4 r e p o s i t o r y C l o n e r = new R e p o s i t o r y C l o n e r () ;
5
6 F i l e s e a r c h R e s u l t s = new F i l e (D e f i n e s . s e a r c h R e s u l t F i l e) ;
7 boolean c r e a t e d = s e a r c h R e s u l t s . c r e a t e N e w F i l e () ;
8
9 c r a w l e r . g r a b C o n t e n t () ;

10 c r a w l e r D a t a F i l t e r . r e m o v e D u p l i c a t e s () ;
11 r e p o s i t o r y C l o n e r . c loneWi thTimeou t () ;
12 }

In lines 2 to 8 of the main function, all necessary objects and files for the later usage

are created. After the execution, the file searchResults.txt lists all projects retrieved by

the crawler, which grabs the results of the search in the GitHub API. As duplicates in

the search cannot be precluded, the list has to be filtered again by the crawlerDataFilter,

which also adjusts the formatting of the list. Finally, the list is used to clone the project

repositories directly from GitHub as shown below.

gitCloner.RepositoryCloner.java (shortened):

1 p u b l i c O b j e c t c l o n e R e p o s i t o r y () {
2 F i l e l o c a l P a t h = n u l l ;
3 G i t r e s u l t = n u l l ;
4 r e p o U r l B u i l d e r = new R e p o U r l B u i l d e r () ;
5 whi le (r e p o U r l B u i l d e r . loadNextRepo ()) {
6 l o c a l P a t h = F i l e . c r e a t e T e m p F i l e (” T e s t R e p o s i t o r y ” , ” ”) ;
7 l o c a l P a t h . d e l e t e () ;
8 t r y {
9 r e s u l t = G i t . c l o n e R e p o s i t o r y () . se tURI (r e p o U r l B u i l d e r .

g e t C u r r e n t R e p o ()) . s e t D i r e c t o r y (l o c a l P a t h) . c a l l () ;
10 } c a t c h (G i t A P I E x c e p t i o n e) {
11 e . p r i n t S t a c k T r a c e () ;
12 c loneWi thTimeou t () ;
13 }
14 r e s u l t . g e t R e p o s i t o r y () . c l o s e () ;
15 }
16 re turn r e s u l t ;
17 }

CHAPTER 4. LICENSE USAGE ANALYSIS 31

At first a new folder is prepared for the cloned repository to store (here: temporary folder).

Then the clone process begins by downloading the repository from the URL that was

formerly retrieved. If an error occurs, the cloning process is restarted after a timeout.

Errors occur, as GitHub limits the amount of requests. Working with timeouts generally

proved itself as an expedient strategy to work around the limitations. All timeouts can

be adjusted manually in Main.defines.java (see Appendix for all defines). The program

finishes when all repositories in the list are cloned or it is interrupted manually in before.

The UML activity diagram in figure 4.1 illustrates the overall process. The full code of

the RepositoryCloner will be attached to this thesis.

Figure 4.1: UML activity diagram for the GitDownloader

CHAPTER 4. LICENSE USAGE ANALYSIS 32

Additional Scripts

To analyze the output of the Ninka license classifier, the ruby script process.rb was imple-

mented. To understand the idea of the script, it is important to know, that Ninka creates

analysis files for every file successfully analyzed, for example “filename.license”-files.

Those files contain keywords for every license Ninka was able to classify. To process all

those files, the script process.rb runs through all directories and reads the keywords from

every “filename.license”-file. This is to be done for every project that was analyzed by

Ninka in before. Only if a license is found in a project, the script creates another count-

able file in the root folder of each project once for every license. A second script count.rb

can then count the total occurrences of licenses in a set of projects. This way it can be

excluded, that licenses are counted more than once within a project. For example: as-

suming that a project declares a license more than once, e.g. in every source file header,

the license is counted only once for the project. A third script (combinations.rb) lists all

license combinations for each repository. The scripts count.rb and process.rb can be seen

in the appendix as well.

4.1.3 Results

Respective to the described methodology and implementation, the experimental approach

lead to the following results for the first research question (RQ 1).

The first run of the experiment contained 1,330 random open source projects from GitHub.

Those projects contained 1,722 licenses, without doubling within a project. The number

of retrieved licenses is higher than the number of overall projects, as a project can have

multiple licenses. For one project, each license is counted only once. The first run of

the experiment aimed to create a reference result for the following runs and provide a

basic knowledge base. The results of the first run can be seen in table 2 in the appendix,

and in a combined version in table 4.1 below. The combined results combine the results

of different licenses with the same provenance (e.g. BSD combines spdxBSD(1-4) and

BSD(1-4)). The selected licenses comprise clearly more than 90% of all licenses used for

open source projects.

For more information on specific license identifiers, used in the tables, also see [27].

The full results of the first run are illustrated in figure 4.2, whereas figure 4.3 illustrates the

simplified combined results. Those results are created from the total number of identified

licenses. The results from a project’s perspective, including the unlicensed projects, can

be seen in figure 4.4. Therefore, the distribution of each license is broken down to its

CHAPTER 4. LICENSE USAGE ANALYSIS 33

Table 4.1: Combined license distribution of all classified licenses on GitHub:
(Run1)

License Distribution [abs] Distribution [%]
MIT 599 34.79
GPL 454 26.36
BSD 286 16.61
Apache 285 16.55
Others 98 5.69

proportion including the unlicensed projects. Generally, only licenses that were classified

at least once, are listed in the overall statistics.

Figure 4.2: Graph of the license distribution of all classified licenses on GitHub:
(Run 1)

The second run of the experiment contained 842 open source projects, likewise from

GitHub. The approach was generally the same, but the set of projects was specified dif-

ferently. As for random projects, the reproducibility is difficult and the representativity

is probably not optimal, the second run used a set of projects which were highly rated

(most “stars” in ascending order from “A” to “Z”) from the GitHub community. Those

projects contained 1,206 licenses without doubling within a project. Again, the number

of retrieved licenses is higher than the number of overall projects, as a project can have

multiple (different) licenses. For one project, each license is counted only once. The sec-

ond run had the combined license distribution as can be seen in table 4.2, the full results

can be seen in table 3 the appendix. Table 4.3 shows the projects perspective.

Although the experimental results should be representative, some general limitations of

CHAPTER 4. LICENSE USAGE ANALYSIS 34

Figure 4.3: Diagram of the combined license distribution of all classified licenses
on GitHub: (Run 1)

Table 4.2: Combined license distribution of all classified licenses on GitHub:
(Run2)

License Distribution [abs] Distribution [%]
MIT 583 48.34
Apache 221 18.33
BSD 196 16.25
GPL 167 13.85
Others 39 3.23

Table 4.3: Combined license distribution of projects on GitHub: (Run2)

License Distribution [%]
MIT 41.57
Apache 221 15.77
Unlicensed 13.99
BSD 13.98
GPL 11.91
Others 2.78

the described approach must be noted.

1. Ninka: Referring to [22], Ninka has an accuracy of 93%. Although this is probably

the highest accuracy for current license classifiers, it leaves space for slight inac-

curacies in the results. It is also possible, that some less popular licenses are not

classified by Ninka. All classified licenses can be seen in the appendix.

CHAPTER 4. LICENSE USAGE ANALYSIS 35

Figure 4.4: Combined license distribution of projects on GitHub: (Run 1)

2. Projects without licenses: With said approach it is not possible to make a clear

statement of how many projects do not have any license. This has three reasons.

First, if a project does not have any license, but a library the project uses has, the

license is counted for the project, as it is not possible to differentiate between a

project itself and content of foreign sources.

Second, projects on GitHub are not necessarily finished and in some state of work-

ing copy. Licenses might be added or deleted any time. Some projects only contain

README files, that generally do not contain any license header and hence key-

words. And some might only have noted the used license in the GitHub API.

And third, if Ninka does not classify a licensed project, because the license is not

used in the classifier.

However, it is possible to identify the projects where Ninka was not able to clas-

sify any license. This was the case for 442 out of the 1,330 projects, making it

33.23% of all projects of the first run and respectively 13.99% in the second run,

not containing a license, as a low estimate.

4.1.4 Evaluation

The results of this thesis approach to identify the usage of licenses on GitHub, were pre-

sented previously. To evaluate those results, it is sensible to compare them to other re-

search results (also see Table 4.4). In the chapter Related Work an alternate approach of

mining license usage via the GitHub API was presented.

CHAPTER 4. LICENSE USAGE ANALYSIS 36

For the first run, both approaches have in common, that the MIT license is the most used

license on GitHub, although with noticeable lower percentage in the thesis results, fol-

lowed by the different GPL licenses and with some space in between the Apache licenses.

Another difference is, that the BSD licenses are more popular in the thesis results, than in

the related approach, comparable with the Apache licenses usage. The higher popularity

of BSD licenses can however be approved by other sources [28] which use GitHub as a

knowledge base. Other licenses, by contrast, are less popular in the thesis results. More-

over, the API-based approach of [13] has a much lower percentage of unlicensed projects,

as the API usage logically connotes the selection of a license. Since [13] do not clarify

which licenses they included, it is impossible to make further comparisons for this sec-

tion. As a side note, a minor influence for the difference of the unlicensed project count

might be caused by Ninka, as the less popular licenses might not have been classified,

this effect should however be valuated low, as more than 75 licenses were included in

the classification process (see appendix for all classified licenses). In general, the results

of [13] can nevertheless be approved.

The second related comparative work was from Black Duck. Their results differ in the

top licenses category, as the GPL and MIT licenses are swapped in their ranking. How-

ever, [29] already prognosticated the decrease of GPL usage and an increase of more

permissive licenses in the late year 2014. The percentage for the others licenses category

is lower as well. In contrast, the Apache licenses are really close to [13]. It is important

to note, that Black Duck’s knowledge base does not necessarily consist of projects from

the GitHub community, which could be a general explanation of differences and why the

first (and second) runs results were closer to GitHub’s results. This further approves, that

fluctuation in the results is common. Generally, it can be said, that the results of this thesis

first run tend in the same direction as the results from the other researches. Approximately

all three researches show comparable results, which shows a general confirmation of all

approaches.

The second run, including only highly rated projects, had variating results. It is notice-

able, that GPL licenses have a significantly lower distribution in those projects than on the

other data sets, whereas the MIT license is by far dominating, close to the results of [13].

The usage of Apache licenses and BSD licenses is nearly identical with the thesis first run.

The percentage of licensed projects is also markedly higher for the highly rated projects,

which seems comprehensible, regarding the community standing and development con-

CHAPTER 4. LICENSE USAGE ANALYSIS 37

text. Overall, the results lead to the conclusion, that the second run can be compared to the

others as well. Figure 4.5 and table 4.4 show the combined distributions, of both runs, in

comparison to the related approaches, which illustrates the previous statement. However,

it can be seen that different setups create different results.

All in all, the license distribution analysis reveals, that there is a widely spread distribution

of licenses, with few established licenses notably dominating. Although less popular li-

censes seem to have a certain support, the “big” licenses will continue to be dominating in

the near future, probably with the (by tendency) permissive licenses, especially the MIT

license, on top, as the second run indicates. Generally, those assumptions are based on the

results of two different test runs on GitHub and can be approved by related researches.

Figure 4.5: Comparison of the combined license distribution

Table 4.4: Comparison of the combined license distribution

License Distr. [%] Distr. [%] Distr. [%] Distr. [%] Mean
Thesis Run1 Thesis Run2 GitHub BlackDuck

MIT 34,79 48.34 44.69 24.00 37.96
GPL 26.36 13.85 24.19 38.00 25.60
BSD 16.61 16.25 6.26 6.00 11.28
Apache 16.55 18.33 11.19 16.00 15.52
Others 5.69 3.23 15.68 16.00 10.15

CHAPTER 4. LICENSE USAGE ANALYSIS 38

4.2 Association of Licenses Over Time

The general distribution of licenses over a period of time was already investigated by

GitHub, as described in the chapter Related Work. Another correlating aspect is the asso-

ciation of licenses over a period of time (RQ 1.2), as changes in the licensing can always

have different consequences for users and developers.

To get a deeper insight on license changes, the commit messages on GitHub were investi-

gated on a large-scaled basis by utilizing the knowledge base of GitHubArchive.com. For

the year 2014 GitHubArchive archived 66,428,295 PushEvent’s from the GitHub timeline.

With the help of Google BigQuery, a data warehouse to enable the analysis of massive data

sets, those events were investigated regarding their payload commit msg with the follow-

ing query:

BigQuery query:

1 SELECT r e p o s i t o r y n a m e , pay load commi t msg
2 FROM [g i t h u b a r c h i v e : year . 2 0 1 4]
3 WHERE t y p e =” PushEvent ”
4 AND (
5 LOWER(pay load commi t msg) CONTAINS ” l i c e n s e ” AND
6 LOWER(pay load commi t msg) CONTAINS ” change ”
7)

The resulting table contained 11,382 commit messages containing the keywords “license”

and “change” (0.017% of all commits). This means, that the changing of a license for a

project is not uncommon and the association of licenses actually does change sometimes.

Respectively the keywords “license” and “add” resulted in 75,564 table rows (0.114% of

all commits), showing that licenses are also added after the project was already published.

Table 4.5 illustrates the results for those keywords in comparison to the years 2012 and

2013.

Table 4.5: Commit messages with keywords on GitHub

2012 2013 2014
total PushEvents 34,383,307 39,847,469 66,428,295
keywords: license, change 7,110 8,412 11,382
keywords: license, add 57,084 62,105 75,564
keyword: license 106,024 138,905 200,242

CHAPTER 4. LICENSE USAGE ANALYSIS 39

After getting a general overview previously, the investigation of several highly starred

projects will give additional insights on the association of licenses over time. There-

fore, as before, all PushEvents containing the keyword “license” of the following GitHub

projects were retrieved and the respective commit messages analyzed.

bootstrap:
For bootstrap 202 commits containing “license” were found. There are several occur-

rences of license changes, all from Apache license to MIT license, as well as updates to

the Apache-v2.0 license. Apart from that, only some rearrangements of the license file

and smaller changes are notable. Running the license analysis on bootstrap proved, that

for the releases 3.1.1, 3.2.0, 3.3.0, 3.3.6 and 4.0.0-alpha only the MIT license is still in use.

jquery:
For jquery 49 commits containing “license” were found. Until version 1.8.1, the commit

messages indicate the addition and update of several license files. Then the commit mes-

sage of version 1.8.1 was published: “license change to MIT only”. Since that point, only

a few minor changes can be recognized. The usage of the GPL licenses for copiers is ex-

plicitly allowed in some commit messages. Investigating the releases 1.12.3, 1.8.1, 2.2.3

and 3.0.0-beta on license usage showed that the MIT license is used in all releases. How-

ever, in all of the releases the BSD3 license was found as well. This is caused by some

external code used in the project. For the release 1.12.3 those source files are labeled un-

der the BSD3 license. Since release of 1.8.1 those external source files are licenses under

BSD3 or MIT license, approving the commit message of 1.8.1. In the root folder of all

releases, jquery states the MIT license.

rails:
For rails 40 commits containing “license” were found. The MIT license is used by the

ruby on rails project. This license was stated from the beginning, changes can not be

recognized, apart from several minor adaptations. This is approved by the license usage

analysis for the releases 3.2.22, 4.1.14 and 5.0.0.

docker:
For docker 42 commits containing “license” were found. The commits indicate an early

switch to WTFPL license and a later switch to the Apache licenses, including an update to

Apache-v2.0. They require new additions to apply Apache as well. Several minor adap-

CHAPTER 4. LICENSE USAGE ANALYSIS 40

tations can likewise be recognized.

The manual investigation of those four projects approves the previous results. Changes

of licenses are not uncommon, but generally the licensing seems stable for most (highly

starred) projects. It shows that licensing needs maintenance to some degree, as adaptations

for license files or different parts of a project are necessary, especially if different licenses

are used, which is probably why jquery had its license changed to MIT only. Concluding

it can be said, that the association of licenses over time can change, but changes are not

trivial. The usage of one license from the beginning is recommendable (see RQ 1.3),

although this might be unattainable for most projects.

4.3 License Consistency

Research question 1.3 is about the consistency of licensing in open source projects. To

answer this research question, a manual investigation on existing open source projects is

accompanied by a literature research, to reveal relevant statistics based on the preceding

results. Therefore the licensing of an open source project is investigated on its consistency

on two different levels:

1. Is license incompatibility causing inconsistency of licenses?

2. Are changes of the licensing over time causing inconsistency of licenses?

For the first level, a project with only one license is trivially considered consistent. If a

project contains more than one license, those have to be compatible to each other, else

they are inconsistent. On the second level, the changing of the license of a source file at

any time can cause consistency issues, if the files are evolved from the same provenance.

The idea of license compatibility was already explained in section 3.1.5. To investigate the

compatibility, the manual investigation is based on the open source projects from GitHub,

which were utilized in the previous section 4.1 (Run2). Therefore, another ruby script

was implemented to automatically retrieve all combinations of licenses, meaning an ex-

plicit list of all licenses used per project. This approach clearly showed, that most licenses

are used in combination with other licenses. This was to expect, as more licenses were

classified than there were projects, in the previous section. Out of 1,167 licenses, only

470 (40.27%) are used as a single license and accordingly trivially consistent. The results

CHAPTER 4. LICENSE USAGE ANALYSIS 41

for the most popular licenses can be seen in table 4.6. Combinations of derivations of the

same licenses are counted for each license derivation on the single licenses side, so the

licenses add up to the total number of classified licenses. For a project’s perspective see

table 4.7.

Most common are the combinations of Apache (v2.0), MIT and BSD(1-3) licenses. Those

three are generally compatible to each other and, given the correct declaration, also com-

binable. Since single licensing in addition to combinations of those three licenses make

the plurality of all used licenses, from this point, 979 licenses are consistent, making

81,01% of the overall licenses. However, there are license combinations with the GPL

and BSD4 licenses, which can cause problems, as most GPL licenses contain the same

license feature, commonly causing compatibility issues, whereas BSD4 generally lacks

compatibility with other licenses. This does not necessarily mean they are incompatible,

as it has to be considered by case, but there is a certain possibility.

The manual investigation on the GPL and BSD4 licenses combinations shows, that about

51 times, the usage of licenses in combination with other licenses was incompatible the

way they are used and therefore inconsistent. Interestingly, all BSD4 license usages turned

out to be incompatible with other licenses in that project. This results in a total of 1,116

(95,63%) consistent licenses.

Generally, the license combinations are assumed to be combinable and therefore consis-

tent, which is true for a correct license declaration. Additionally, other licenses are not

included, the results must therefore be considered as a positive estimate.

Table 4.6: Consistency of licenses on GitHub: (Run2)

License single license multiple licenses
MIT 352 231
Apache 70 151
BSD 27 169
GPL 21 146
Sum 470 697

As this calculation leaves out the changes of licenses over time and only considers the cur-

rent state, the second level still has to be investigated. This aspect was however included

by [1]. They investigated the changes in license headers, causing license inconsistencies.

In their research, license inconsistency refers to the situation that two source files that

evolved from the same provenance but contain different licenses. They state, that 7.2%

CHAPTER 4. LICENSE USAGE ANALYSIS 42

Table 4.7: Consistency of licensing of projects on GitHub: (Run2)

License single license multiple licenses
MIT 352 231
Apache 70 151
BSD 25 120
GPL 15 77
Sum 462 579

of selected file groups of Debian reported to have one or more license inconsistencies,

mostly caused by license change, meaning two related files contained a different license.

In the previous section, the association of licenses over time was investigated as well.

Based on those results, the results of [1] can be confirmed. For the highly starred projects,

no incompatibility was found, but there were changes of licenses over time within those

projects nevertheless, which would be an inconsistency referring to [1]. This however

only concerns a fraction of the overall files, supporting the high consistency rate.

Generally, the results show that current open source licensing is mostly consistent. How-

ever, license inconsistencies can cause violations and therefore license infringement, or

respectively avert further usage. It is important for the developers, to thoroughly check

the license if they are reusing code. The next chapter also provides a matrix to examine

licenses regarding their compatibility in table 5.3, which can be helpful.

4.4 License Publication

The last sub-question of the first research question covers the publication of a license (RQ

1.4). The way a license is publicized is of major concern for the users of open source

software, as well as the owners. The owner has to ensure that the license of his work is

properly publicized, as potential users must know about the licensing. The user likewise

has the responsibility to examine if an open source project is publicized under a license

and follow the regulations. Note, that having no license is also a valid kind of licensing.

As well, it is important to note, that different licenses can conflict with other licenses,

making the reuse of foreign code to a more complex task and emphasizing a proper pub-

lication. Apparently it is of interest for both, the user and the owner, to have a clear

communication of the licensing of software.

In the chapter Related Work, further background information on legal aspects in publiciz-

CHAPTER 4. LICENSE USAGE ANALYSIS 43

ing a license and the importance of a proper license publication were already provided.

To get further insights on current publication forms for open source licenses, it is helpful

to take a look at existing open source projects and examine them regarding their license

publication. Therefore, reference points are given by a preceding literature research and

supported by a manual investigation. The manual investigation is inevitable, as new forms

of license publication or declaration can not be retrieved automatically. On the basis of

those results, advantages and disadvantages of the different forms of publication can be

outlined. With those, recommendations or suggestions for a proper publication concept

can then be justified.

Due to the research, several ways to properly publicize a license can be identified.

1. Publication with a license file:

A license file is a file, optimally located in the projects root directory, containing all

necessary license information for the project. The most common way is to create a

file named ”LICENSE.file” including the whole license text and ideally all authors

and the creation date. The file then represents the license for all subdirectories. A

weak point of this kind of publication is that projects potentially use foreign code

or libraries as well, which could be publicized under a different license. This is

probably not expected by a user. However, there are some cases, where this is

explicitly noted in the file or additional files.

2. Publication within a file-header:

Publicizing a license within a license header means, that the license of a project

is inserted at the beginning of every single source file in the project in the form of

a comment. This kind of publication leaves no space to false interpretations and

is the easiest way to ensure a correct licensing in case of re-usage of code oder

even code parts. The disadvantage for the developers is the additional effort to

license all files manually. The user encounters the same problem when source files

contain different licenses. However, some IDE’s facilitate the use of plugins to

automatically insert the license. Furthermore, the raw source files increase in their

size and tend to look unclear because of a big leading comment section.

3. Publication via some API:

Some open source hosts, like GitHub1, provide an API for project licensing. This

1https://developer.github.com/v3/licenses/

CHAPTER 4. LICENSE USAGE ANALYSIS 44

way it is easy to identify a license of a project by just checking it out from the

project site. Also the developer only has to insert the project license once for

the whole project. A clear downside however is, that the license publication is

dependent on said API, which could cause problems for a potential redistribution,

as the license might not be transferred correctly.

There is no solely established way to publicize a license, however, the following approach

seems most recommendable. It seems reasonable to combine the advantages of the pub-

lication with a license file and the publication within a file-header. Therefore, the license

file should contain the license text of the license used in the project and be located at the

project’s root folder. This is also recommended by the Free Software Foundation [21]

and even required by some licenses [30]. If there are multiple licenses, extra license files

should be added, as the collection of multiple license texts in just one file makes those

files really confusing and also the editing can be fault-prone. For eventual automation

processes, a common file format for license texts could be an opportunity, an example can

be seen in figure 4.6. “.LICENSE” for example, is a file extension which is also supported

by different operating systems (e.g. Windows) and should be preferred over “.txt”-files,

which are currently the mostly used file format. Additionally every source file should

Figure 4.6: Example for license publication in the root folder

contain a short license notice in its file header, as shown below. This notice is a shortened

form of the full license text and is often made available by the licenses providers. Note,

that (for example) the actual Apache-v2.0 license has 201 lines of text, the developer

would have to put into the header comment, instead of the shortened three lines below.

1 /∗
2 ∗ T h i s f i l e i s p u b l i s h e d under Apache L i c e n s e (s e e : apache . l i c e n s e)
3 ∗ /

By utilizing this way of publicizing a license, all problems would be solved:

CHAPTER 4. LICENSE USAGE ANALYSIS 45

1. The license can easily be seen in every file, excluding misunderstandings of the

license used, but keeping it short and clear, also without the usage of an IDE. The

insertion of the header could be automatized, as it is already common nowadays.

2. All licenses used in the project can be seen in the root folders license files unprob-

lematically.

3. If there are additional licenses from reused code or libraries, they can easily be

found by a simple search procedure as well, as they have the common file format

“file.license”. It would be easy for API’s to retrieve the licenses in the same way,

increasing their overall value for users. However, currently an own file format for

license files is not utilized.

4. This form of declaring a license is compatible with all considered licenses and

therefore legally enforcible.

The proposed way of publicizing licenses weak point however is, that it has to be estab-

lished as a general way, which will be difficult. The currently utilized ways of publicizing

a license will therefore be the most prominent approaches in the near future.

Chapter 5

License Recommendation

In this chapter, the possibility of recommending licenses for open source projects (RQ 2)

is analyzed. Through the recommendation of licenses, the general usage of open source

software, from a developer’s perspective, as well as a user’s perspective, can be improved.

Since there is a distribution of different licenses throughout open source software, an ini-

tial conclusion is, that there is some kind of decision-making process in choosing a license

and therefore a reasoning behind the choice of a specific license. By taking a look at the

different features of licenses, this hypothesis can be supported. The requirement feature

network use allows users who interact with the software via a network, to have the right to

receive a copy of the corresponding source code, meaning that network use is also consid-

ered as distribution. Licenses including this requirement are recommendable for software

which will commonly be run over a network. This suggests, that projects containing this

feature really are indeed running over a network, since the most common license with net-

work use is Affero GPLv3 (AGPL) and its most prominent alternatives (GNU GPLv2, GNU

GPLv3) include the same features except of network use. The distribution of licenses (see

chapter 4.1) or [13]) approves, that the usage of the GPL-licenses without network use is

significantly higher than its alternative, therefore we can infer, that the AGPL-licenses are

chosen on purpose because of its additional feature. This kind of reasoning can be done

for other license features as well, for example library usage. By experience, the usage

of license suggestion tools can be approved as well. As [13] verifies, the license usage

increased markedly since the introduction of choosealicense.com, approving the idea of

license recommendation tools.

To finally elaborate a new recommendation or suggestion logic, a methodology is pre-

sented initially. Afterwards, the perspective of open source developers on the field of

46

CHAPTER 5. LICENSE RECOMMENDATION 47

licensing is further investigated, to get deeper insights on current and typical behaviors.

Finally, a recommendation logic is designed, implemented and tested on the realistic use-

case of 101companies.

5.1 Recommendation Logic Design

As the classification of licenses (RQ 2.1) was already covered by literature research in

the chapter Background, the developer’s perspective (RQ 2.2) is the next point of inter-

est. Therefore, several relating ways of recommending a license were described in the

chapter Related Work. To actually design a recommendation logic methodically, basic

information and requirements can be retrieved, by directly addressing developers and in-

vestigating their behaviors and perception at first. To further elaborate the design for a

recommendation logic, which is an actual improvement to current recommendation tools,

already existing tools and logics have to be investigated and possible weak spots have to be

detected. The next step is then to analyze if the detected weak spots can be overhauled and

how they can be included in a new design. Afterwards, the accordingly created design can

be implemented. A following analysis can then evaluate the new recommendation logic

on a realistic use-case.

5.1.1 Developer’s Perception on Licensing

To gain deeper insights on the perspective of developers towards licensing, which serves

as a basis for the next steps, a questionnaire was developed (RQ 2.2). The questionnaire

is standardized for every participant, which were selected in online development commu-

nities, to assure the correct target group. To participate, a participant has to answer three

mandatory questions and is provided a set of answers of which he can choose. Also mul-

tiple answers are possible, to facilitate meaningful results (closed-ended multiple choice

questions). The idea of the questionnaire is to get a general understanding of user behav-

ior and detect saliences. Therefore, the questionnaire is designed to generate quantitative

results, which are comparable among themselves. To reach a high number of participants,

the questionnaire is conducted electronically and designed simply. Further surveys based

on those questions could extend the questionnaire in the future. The complete published

questionnaire can be seen below.

The first question asks, why the participant chose a specific license in his last open source

project. The goal of this question is to find out, on which factors the decision-making

CHAPTER 5. LICENSE RECOMMENDATION 48

of choosing a license was based. The results will be an indicator on the usage of license

recommendation and suggestion tools, the general awareness of licenses and the sustain-

ability of the decision-making process, as well as the willingness to deal with the field of

licensing.

The second question requires the participant to explain his decision. The results of this

question aim to provide a deeper understanding of the thought process behind the license

choice. Additionally, it questions the general interest in the field of licensing and the cur-

rent state of knowledge in the open source development community and therefore also

approves the correctness of the first question.

Finally, the third question asks for the license that was actually used in the project. This

makes sure that the participant has really published a project and therefore belongs to the

target group of the survey. Additionally, it gives another statistic on license distribution

as a side effect, which can be used for RQ1.

Questionnaire:

1. Why did you choose the ?? license in your last open source project? Choose all

correct answers.

• I chose it for no special reason

• I think the license fits to my project

• I want exactly the features of the chosen license

• Only some of the features of the license were determining

• I used a tool which suggested the license

• I just randomly chose a license

• Some (company...) regulations

• For other reasons

2. What do you think of the license you chose? Choose all correct answers.

• I am well-informed about that license

• I am sure (no doubt) that I chose the best possible license option

• There might be a better license choice

• I do not care which license I chose

CHAPTER 5. LICENSE RECOMMENDATION 49

• I would like to know more about several licenses

• I would like to know more about licensing

3. Which license did you choose? Insert the license you used.

The surveys results can be seen in figures 5.1, 5.2 and 5.3. Overall, 51 participants were

recognized for the survey.

For the first question, the results show, that 45.10% think, that their chosen license also

fits to their project. 31.37% assume their choice to be optimal, since they wanted exactly

the features, the license provides, whereas 27.45% only consider some of the features as

fitting. This shows that there is a clear uncertainty in choosing a license and confirms

that there is a need for better license guidance. Other reasons for choosing a license

were: license suggestion (21.57%), regulations(11.76%), random choosing (11.76%) and

other reasons (5.88%). Especially the results for license suggestions, random choosing

and other reasons show, that there is still a lot of potential in recommending licenses.

However, the awareness of the importance of properly licensing a project seems rather

small.

Figure 5.1: Survey answers for the first question

For the second question, 37.25% think they are well-informed about the chosen license

and 27.03% are sure of their license choice to be the best possible option, whereas only

23.53% think that there might be a better option. This confirms the assumptions from the

first questions, as not even half of the participants consider themselves as well-informed.

However, only 23.53% would like to know more about several licenses and 29.41% would

like to be better informed about licensing in general, which indicates a lack of interest

CHAPTER 5. LICENSE RECOMMENDATION 50

in the field of licensing. As 15.69% do not care about their license choice at all, this

assumption can be approved. This underlines the importance of a quick and easy form

of choosing licenses, as big parts of the open source community do not seem to want to

invest a lot of time in it. Those requirements need to be considered when designing a

recommendation logic for open source licensing.

Figure 5.2: Survey answers for the second question

The third question was checkup question. The results however showed, that MIT and

GPL licenses are the most popular license choices, followed by BSD and Apache. Other

licenses are above average in comparison to the results of the previous chapter. The re-

trieved trends from the last chapter can however be approved, which also confirms the

representativity of the participants of the survey.

5.1.2 Recommendation Logic Requirements

In the course of this thesis many influencing factors on the decision-making of what li-

cense to choose were revealed. Conventional tools for suggesting licenses only consider

the purpose of the software being licensed. The popularity, the enforcement and different

formalities or peculiarities of licenses are not necessarily involved in the process. The fol-

lowing approach tries to pay attention to all influences being explained below. The goal

is to not only provide a suggestion for a license choice, but also to recommend licenses,

which fit best to the project and its intended usage, by including a ranking-logic that uti-

lizes secondary influences (RQ 2.3). Generally, the recommendation logic needs to be

easy and fast to use, but still provide substantial help for the users. Additionally, it needs

CHAPTER 5. LICENSE RECOMMENDATION 51

Figure 5.3: Survey answers for the third question

to provide extra value in comparison to conventional logics. As users should be able to

rely on the logic, it has to be unfailing and trustworthy. As well, licenses not only need to

be included in the largest possible number, but also completely and legally correct. There-

fore, an implementation should support the addition of new or editing of existing licenses

or knowledge. Possibly providing it as open source software will encourage a growing

knowledge base. Other requirements can be directly derived from the following design

approach.

To suggest a license, the first guiding principle should always be, what the later license

holder’s (developer’s) general intention is. Therefore, the features (requirements, permis-

sions, constraints) of licenses can be used as an indicator. By selecting the most important

features in the view of the developer, licenses with conflicting features can be excluded

from the list of possibly appropriate licenses. There is a possibility, that there is no per-

fectly matching license for the developers desires, so suggestions and possible problem-

atics must be pointed out during this process interactively, to facilitate a reaction on the

feature choices.

Optimally, the previous step leads to a list of possibly appropriate licenses. To provide

further recommendation, also the following secondary influences can be considered.

1. Popularity: A popular license has several advantages in comparison to less popular

license. Popular licenses are not only used more, they are also better known by

the community. Therefore, more people know what the license is about and it

is more likely that they know how to properly use it. The most popular licenses

CHAPTER 5. LICENSE RECOMMENDATION 52

also tend to have associations backing them up and a user can be sure of their

juridical correctness. The popularity of a license is also an important factor to its

enforcement. [30] also recommend the use of “formal” licenses, which the most

popular licenses all are.

2. Enforcement: The enforcement of licenses is a difficult field. As previously de-

scribed, there have been some cases of license infringement. It is to assume that

licenses, which have already proven their validity in court, are relatively safe to

use. Licenses with an approving verdict or leading case are therefore preferable.

3. Compatibility: Not all licenses are compatible to each other. If a user has already

inferred licenses in his code, probably through foreign code or libraries, incompat-

ible licenses have to be excluded from the list. This should be done preliminary.

Exemplary techniques (scripts) to analyze a project regarding currently used li-

censes and license combinations were presented in the previous chapter.

4. Combination of licenses: If several different licenses are used in a project, it is not

always clear, which license is the overlapping one. Although licenses are compat-

ible with each other, some require to be declared on the highest level of licenses

and will be determining.

5. Deprecated licenses: Licenses are updated from time to time. Although the features

of a license remain nearly identical, special or problematic clauses may influence

the recommendation of that license and are eliminated in newer versions. There-

fore, newer versions might be a better choice.

Figure 5.4: UML activity diagram of the recommendation logic

Respective to those requirements, a possible recommendation logic could be designed

like the UML activity diagram in figure 5.4 models. The first input for the recommenda-

tion logic is the user’s intention, which is expressed by the user selecting license features

CHAPTER 5. LICENSE RECOMMENDATION 53

in a selection menu, that he denotes useful. Those features are interactively checked re-

garding their compatibility with already selected features. An additional input are the

licenses which are already used within the project, e.g. by different libraries, to ensure

the compatibility of those licenses and the currently suggested ones. A license which is

in conflict with already used licenses, can neither be suggested nor recommended. With

the collected input data, a list of all possible licenses can be created. To provide further

recommendation, the user can select a method of ranking the suggested licenses, for ex-

ample a ranking via license popularity or license enforcement, or additional preferences.

As the ranking rates the different licenses for the special use-case, in the end, the user has

a well-considered license recommendation.

5.2 Recommendation Logic Implementation

The previously proposed logic design was implemented as an Java applet, to provide

an alike online and offline solution for the tool. This provides an easy-to-use graphical

user interface with different checkboxes, buttons and several labels (text-fields), which

are updated on action. The graphical user interface of the license recommendation applet

can be seen in figure 5.5. Although the design has to be adapted to modern standards and

more licenses need to be added, the logic is fully implemented and working. It can easily

be integrated in a website as well.

Figure 5.5: License recommendation applet (v1.0)

CHAPTER 5. LICENSE RECOMMENDATION 54

The License Recommender consists of three classes. Licenses.java provides all included

licenses and their features. The features of several licenses can be seen in appendix table

1. App.java contains the main method and the applet logic. And LicenseSuggestion.java

provides the recommendation logic.

The following code snippet contains the method SuggestLicense() from the file Licens-

eSuggestion.java, basically showing how the recommendation of licenses works in the

applet.

SuggestLicense() (shortened):

1 p u b l i c L i n k e d L i s t<S t r i n g> S u g g e s t L i c e n s e () {
2 L i n k e d L i s t<S t r i n g> s u g g e s t e d L i c e n s e s = new L i n k e d L i s t<S t r i n g >() ;
3 s u g g e s t e d L i c e n s e s = C h e c k F e a t u r e s () ;
4 s u g g e s t e d L i c e n s e s = C h e c k I n f e r r e d L i c e n s e s (s u g g e s t e d L i c e n s e s) ;
5 i f (! isCheckedA () && isCheckedB ()) {
6 / / i n c l u d e p o p u l a r i t y r a n k i n g
7 }
8 i f (isCheckedA () && ! isCheckedB ()) {
9 / / i n c l u d e e n f o r c e m e n t r a n k i n g

10 }
11 i f (isCheckedA () && isCheckedB ()) {
12 / / i n c l u d e p o p u l a r i t y− and e n f o r c e m e n t r a n k i n g
13 }
14 i f (i sCheckedC ()) {
15 / / remove l i c e n s e s which are n o t f e a t u r e d
16 }
17 i f (isCheckedD ()) {
18 / / i n c l u d e t h e w h e e l e r l i c e n s e s l i d e
19 }
20 re turn s u g g e s t e d L i c e n s e s ;
21 }

At first, a new and empty LinkedList of strings is created, which later contains all the rec-

ommended licenses in a ranked order. By calling the method CheckFeatures, the features

of each license are compared with the features the user selected, returning all respective

licenses. This works by comparing the predefined LinkedList’s for every license, with the

user’s input. Every License therefore has a list of permissions, requirements, constraints

and incompatible licenses. As the result list is updated interactively, unwanted features

can be tested, to see which licenses are not desired by the user and deselected afterwards.

Therefore, all buttons and checkboxes are implemented with a toggle function. The next

line of SuggestLicense() uses the incompatibility list and checks if the licenses are com-

CHAPTER 5. LICENSE RECOMMENDATION 55

patible with the already used (inferred) licenses. The following if clauses refer to the

optional preferences and ranking choices. The ranking rules are based on this thesis re-

sults. The popularity is implemented according to the second run of the previous chapter.

A license is labeled as enforcible, if a verdict has proven its enforceability (see table 5.1).

The compatibility of features and licenses is expressed in tables 5.3 and 5.4. The licenses

compatibility table (5.3) also includes special clauses of licenses which are not necessar-

ily expressed as features and the combinability of licenses. If both are selected, popularity

is preferred over enforcement as a standard, as enforcement data is still a growing field in

the open source sector. Therefore the most used licenses are on top and the lesser used

licenses (less than 1%) are sorted by their enforcement. All steps are repeated on every

action (something changes) of the user.

Table 5.1: Enforced licenses (verdict)

License(s): verdict Source
GPL (v3, v2) supported [31], [32]
LGPL supported [32]
GPL (alternatives) likely [32]
BSD likely [15]
MPL likely [15]
Ohters unknown

The additional choice featured licenses deletes all licenses from the list, which are not fea-

tured, those licenses can be seen in table 5.2. It leaves out licenses like the Apache-v1.0,

as the Apache foundation recommends the usage of the newer version. Another choice is

to include the Wheeler license slide [7], checking which license is to declare, for combi-

nations of licenses. Those preferences are selected by default, as they are recommended

for the user. The full code of the LicenseRecommender will also be attached to this thesis.

Table 5.2: Not recommendable licenses

License: Reason:
Apache-v1 Deprecated version of Apache-v2
BSD4 Lack of compatibility because of special clauses
GPLv1 Deprecated version of GPLv2 or GPLv3
Artistic 2.0 Not yet included in the license slide
Eclipse Public License Not yet included in the license slide
No license All positive effects of open source software are reversed

CHAPTER 5. LICENSE RECOMMENDATION 56
Ta

bl
e

5.
3:

C
om

pa
tib

le
an

d
co

m
bi

na
bl

e
lic

en
se

s
ru

le
s

(s
ho

rt
en

ed
)

L
ic

en
se

s:
M

IT
B

SD
4

B
SD

3
B

SD
2

B
SD

1
A

pa
ch

e
v2

A
pa

ch
e

v1
G

PL
v3

+
G

PL
v2

+
G

PL
v1

A
G

PL
v3

M
IT

X
X

X
X

X
X

X
X

X
X

X
B

SD
4

-
X

-
-

-
-

-
-

-
-

-
B

SD
3

-
X

X
X

X
X

X
X

X
X

X
B

SD
2

-
X

X
X

X
X

X
X

X
X

X
B

SD
1

-
X

X
X

X
X

X
X

X
X

X
A

pa
ch

e-
2

-
-

-
-

-
X

X
X

-
-

X
A

pa
ch

e-
1

-
-

-
-

-
-

X
-

-
-

-
G

PL
v3

+
-

-
-

-
-

-
-

X
-

-
X

G
PL

v2
+

-
-

-
-

-
-

-
X

X
-

X
G

PL
v1

-
-

-
-

-
-

-
X

X
X

X
A

G
PL

v3
-

-
-

-
-

-
-

-
-

-
X

T
hi

s
ta

bl
e

w
as

cr
ea

te
d

w
ith

gr
ea

tc
ar

e,
ho

w
ev

er
,r

ea
di

ng
th

e
or

ig
in

al
so

ur
ce

s
is

re
co

m
m

en
de

d.
A

dd
iti

on
al

co
m

pa
tib

ili
ty

ov
er

vi
ew

s
of

(o
th

er
)l

ic
en

se
s

ca
n

be
fo

un
d

th
er

e
as

w
el

l:
[7

],
[3

0]
,[

33
],

[3
4]

,[
42

])
.

H
ow

to
re

ad
:

T
he

lic
en

se
s

co
lu

m
n

is
th

e
lic

en
se

al
re

ad
y

us
ed

in
th

e
pr

oj
ec

t,
th

e
lic

en
se

s
ro

w
de

pi
ct

s
th

e
lic

en
se

to
be

ad
de

d
as

th
e

de
te

rm
in

in
g

lic
en

se
(i

nc
lu

de
s

co
m

bi
na

bi
lit

y)
.F

or
co

m
pa

tib
ili

ty
on

ly
,r

ea
d

in
bo

th
di

re
ct

io
ns

an
d

ch
ec

k
if

th
er

e
is

at
le

as
to

ne
X

.

K
ey

ov
er

vi
ew

:

X
:L

ic
en

se
s

ar
e

co
m

pa
tib

le
(c

om
bi

na
bl

e)

-:
L

ic
en

se
s

ar
e

in
co

m
pa

tib
le

(i
nc

om
bi

na
bl

e)

CHAPTER 5. LICENSE RECOMMENDATION 57

5.3 Recommendation Logic Appliance

In the previous sections, a license recommendation logic was designed and implemented.

Using the example of the 101companies project, the logic can be tested and further evalu-

ated (RQ 2.4). The 101companies project is a good test-case, as its complex structure and

its versatile features involve all the different parts of the logic.

Table 5.4: Contradicting features of licenses rules

Constraints:
Permissions:

Modification Distribution Sub-Licensing Patent use

Modification X
Distribution X
Sub-Licensing X
Patent use X

5.3.1 Use-Case Requirement Analysis

To enable the evaluation of the later solution for the 101companies project (and therefore

the recommendation logic), all requirements on a licensing concept for the project have

to be determined. General information of the 101companies project were therefore given

in the chapter Background, identifying stakeholders and other general aspects. The fol-

lowing list specifies all requirements and processes for each step of the recommendation.

This list is meant to be applicable to other projects as well, but tailored for 101companies.

All steps can be executed with the tools presented during this thesis. The meta model in

figure 5.6 shows how the licensing is meant to be conceptualized. The project itself is

licensed under one license, whereas each contribution may have another license (e.g. in

used libraries), compatible with the projects license. This way, the 101companies project

is licensed as one project, including all contributions as sub-projects.

1. General Requirements

(a) The licensing of the project must be coherent.

(b) The license for the project must be suitable (academic project with many

stakeholders).

CHAPTER 5. LICENSE RECOMMENDATION 58

(c) The licensing concept should be extensible, as the 101companies project is

still growing.

(d) Every part of the project must be licensed (excluding no-license-licensing).

2. Prerequisites:

(a) All currently used licenses must be included (license usage analysis).

(b) All currently existing license combinations must be compatible, to ensure

legal and enforcible licensing

(c) In case: all incompatible licenses must be eliminated.

3. Feature Consideration

(a) All requirement features must be considered.

(b) All permission features must be considered.

(c) All constraint features must be considered.

4. Evaluation of license options

(a) All preferences must be considered (Wheeler, featured licenses).

(b) All ranking options must be considered.

5. License publication:

(a) The license declaration must be legally correct.

(b) Contributions can be licensed automatically.

5.3.2 Use-Case Requirement Realization

As shown in the requirement specification before, the first step is to check which licenses

are already used in the contributions of 101companies, by applying a license usage anal-

ysis. Therefore, the techniques of the previous chapter can be utilized. The results of the

analysis for all 228 contributions can be seen in table 5.5.

Table 5.6 shows in which combinations those licenses occur and if those license com-

binations are compatible. Incompatible combinations would have to be excluded from

a prospective licensing concept, as they are not legally enforcible. Luckily, a manual

CHAPTER 5. LICENSE RECOMMENDATION 59

Figure 5.6: Meta model of a 101companies licensing concept

Table 5.5: Licenses identified in the 101companies contributions

License Distribution [abs]
Apache 2.0 4
spdxBSD3 1
BSD3 2
BeerWare 1
GPL-2.0 1
GPL-2.0+ 6
GPL-3.0+ 1
LesserGPL 4
MIT 3

Table 5.6: License combinations identified in the 101companies contributions

Combination Compatible
MIT yes
Apache 2.0 yes
GPLv2 yes
BSD3, MIT yes
Apache 2.0, GPLv2, LesserGPL yes
BeerWare, GPLv2 yes
GPLv3, LesserGPL yes
BSD3, GPLv2, LesserGPL yes

CHAPTER 5. LICENSE RECOMMENDATION 60

investigation showed, that all combinations are compatible within the 101companies con-

tributions, so no license must be eliminated.

The next step is the consideration of features. This step is postponed at this point, as the

results of the previous step generate a special case: only one license can be suggested

in regard of the current information. Selecting different features would not extend the

results. However, with this information, different licensing options can be constructed.

Those will be presented and discussed below.

Option 1:
If the preferences Wheeler and featured Licenses are included, which they should be, the

Affero GPL v3.0 License is the only recommendable license. The reason for that is, that

already many different licenses are included in the contributions and therefore limit the

options. Especially the GPL licenses same license feature is a reason for that, which is

often criticized [35]. However, the AGPL license would be a possible comprehensive

license for the 101companies project. It is to note, that the AGPL license is a strongly

protective license and therefore lacks compatibility with other licenses, once it is used

within the project. Several contributions could be licensed differently on a lower level,

but the AGPL license will outweigh them. However, software with other licenses could

be included nevertheless, under those circumstances.

Option 2:
Derived from the first option, it could be a promising approach to eliminate licenses,

which are already used in the project. This is not inevitable, but the elimination of licenses

would have the consequences, as illustrated in table 5.7 and provide lots of different li-

censing options. Especially the elimination of the protective licenses would enable a lot

of additional possibilities to license 101companies, particularly the permissive licenses.

Those could be advantageous for an academic project with many different contributors, as

it eases reuse and collaboration. The selection of desired features in the recommendation

tool could then provide new license options or features, for example features like same

license could be excluded, making derivative work easier. The second step of the recom-

mendation process could then be applied meaningfully. Generally, the following features

seem reasonable for the 101companies project:

1. Requirement state changes, to easily evaluate code changes.

2. Permission private use, as it is an academic project which is also supporting learn-

CHAPTER 5. LICENSE RECOMMENDATION 61

ers.

3. Permission modification, to allow modifying contents.

4. Permission distribution, to allow the distribution of contents.

5. Constraint hold liable, as there is no warranty on the functioning of code.

And the following features should probably not be included:

1. Requirement same license, as explained before.

2. Permission patent use, as the patent should remain with the distributor.

3. All contradicting constraints: modification and distribution.

The selection of this feature combination supports the usage of the Apache-v2.0 license.

If state changes is however not explicitly included, also MIT, BSD(1-3) and MPLv2 can

be recommended.

Table 5.7: Consequences of license elimination for the 101companies contribu-
tions

Eliminated licenses Additional options
GPLv2 GPLv3
GPLv2, GPLv3 GPLv3, LGPLv3
GPLv2, GPLv3, LGPLv3 GPLv3, LGPLv3, Apache v2
GPLv2, GPLv3, LGPLv3,
Apachev2

GPLv3, LGPLv3, Apachev2,
BSD(1..3), GPLv2, MPLv2

GPLv2, GPLv3, LGPLv3,
Apachev2

GPLv3, LGPLv3, Apachev2,
BSD(1..3), GPLv2, MPLv2

GPLv2, GPLv3, LGPLv3,
Apachev2, BSD3

GPLv3, LGPLv3, Apachev2,
BSD(1..3), GPLv2, MPLv2, MIT

Option 3:
The third option is to choose a different licensing approach and license all contributions in-

dividually. An advantage would be, that the licenses could be adapted to the requirements

of each contribution, especially if certain features are desired. As well, the inclusion of

new contributions that already contain a license would be easy. However, the coherency

requirement would be failed. There would be a multitude of different licenses throughout

CHAPTER 5. LICENSE RECOMMENDATION 62

the 101companies project, promoting an unclear and confusing licensing concept. This

concept is currently utilized, by not specifying a 101companies-license. However, most

contributions are currently licensed under no license, which should be changed then, to

enable proper open source usage.

5.3.3 Use-Case Solution

Previously, three possible and valid licensing options were presented. All of those options

have different advantages and disadvantages. It seems recommendable, to firstly try the

second option, as a minimum of included licenses in a project always makes reuse and

maintenance easier and permissive licenses seem more suitable for academic projects.

The first option can still be used as a fallback option afterwards, if license elimination

is not possible or the AGPL license is still desired. The third option does not meet all

requirements, therefore it is not recommendable, although it is a valid form of licensing.

Independent from which approach is finally desired, it is possible to find a licensing strat-

egy for a complex project like 101companies, proving the value of the recommendation

logic as well as its usability.

The next step is to declare the license within the project. Therefore, it is recommended

to use a short license header and a license file in the top folder, as explained previously.

Afterwards the project is successfully licensed. Regardless of the desired option, it is

suggestive to eliminate other licenses step by step in the future, to minimize maintenance

and potential conflicts. Also the inclusion of new (not already used licenses) should be

avoided. If some of the contributions shall however be licensed differently than the com-

prehensive and coherent license, those have to be investigated separately case by case.

Nevertheless, some limitations have to be outlined. Several licenses in the 101companies

contributions are not included in the recommendation logic yet (BeerWare), hence, they

cannot be checked regarding their compatibility with other licenses, which had to be done

manually. Equally, maybe more licenses are possibly recommendable. Additionally, the

recommendation process was conducted with background knowledge of the tool and the

licenses. It must be assured, that users of the tool are provided all necessary informa-

tion. For this use-case, the results should however satisfy, as a comprehensible solution is

found.

CHAPTER 5. LICENSE RECOMMENDATION 63

5.4 Recommendation Logic Evaluation

In the chapter Related Work the license recommendation tool choosealicense.com was

presented. Now, that a new recommendation logic was implemented and tested in the

course of this thesis, it is to analyze, if there is a surplus value in the new idea.

Choosealicense.com has its advantages in its simplicity. The user just has to read the three

slogans and can choose one of the featured licenses directly, which is a very fast and easy

method to choose a license. If the user wants a wider spectrum of choices, chooseali-

cense.com provides a clear and well-arranged overview over additional licenses.

However, there are disadvantages which the suggested recommendation logic tries to

avoid. By selecting the fundamental features of a license, the user can investigate a large

amount of different licenses in a reactive manner. This way the user should get a much

deeper understanding of the license for his own software and misconceptions can more

likely be avoided. As well, the list of considered licenses is much longer than in other rec-

ommendation tools, so there is a chance of choosing a license that actually fits better to the

project. With the idea of providing different choices of ranking, the suggested licenses can

help the user in the choosing process additionally and provide a recommendation. Since

the compatibility and the combinability of licenses is included as well, clearly wrong de-

cisions can be excluded from the process. Therefore, also the provided techniques for

analyzing an existing project can be helpful.

A disadvantage of the new approach is that it takes a little more effort from the user, who

needs to inform himself about the different features. This could probably discourage some

users from using the tool.

Concluding it can be said, that the suggested recommendation logic is something in be-

tween the minimalistic approach from choosealicense.com and reading the license text of

all licenses self-initiated. It seems that the advantages outweigh the disadvantages, how-

ever a final evaluation needs to include the developers and authors themselves. Therefore,

the logic was applied on the 101companies project in the last section. It was able to rec-

ommend a license, which is fitting for the project and provides a proper form of licensing.

Therefore, the proposed recommendation logic proved itself as a good assistance in li-

censing complex projects. In comparison, a manual investigation of the project with such

a great number of contributions would have been an enormous and time-consuming ef-

fort. With a certain amount of background knowledge, the license recommendation tool

can generate and provide good results.

Chapter 6

Concluding Remarks

The following chapter will summarize the thesis results and give an overview over limita-

tions and the consequential future work. Some closing words will round off the elabora-

tion of this thesis.

6.1 Summary

In the chapter Introduction, two research questions were presented and answered in the

subsequent chapters. The results can be shortly summarized the following:

RQ 1: What is the state-of-the-art in licensing open source software?

To answer this question, several sub-questions were designed. Each of them contains

different statistics and information. Together, they represent the state of the art in open

source licensing.

RQ 1.1: What is the distribution of licenses in the open source sector?

The distribution of licenses was acquired by an automated approach for GitHub. Sev-

eral runs of analysis yield, that the MIT license is the dominating license throughout the

open source sector. The GPL, BSD and Apache licenses are less popular but still widely

distributed. It seems that the more permissive licenses are currently in favor of the open

source community.

RQ 1.2: Are there changes in the association of licenses over time?

The investigation showed that changes in the association of licenses over a period of time

happen. Those changes are not trivial and can cause several difficulties, which have to be

64

CHAPTER 6. CONCLUDING REMARKS 65

considered by the developers (license holder).

RQ 1.3: How consistent is the usage of licenses?

The results showed that current open source licensing is mostly consistent. However, it is

common that licenses are used in combination with other licenses, therefore license con-

flicts need to be considered. It becomes apparent that there is a certain amount of projects,

which are not correctly licensed and may hence cause violations of licenses.

RQ 1.4: How can licenses be publicized properly?

The most common way to publish a license is a license header as comment in the be-

ginning of every source file. In addition, the integration of a license file for every used

license, containing the full license text is common. This is also the most recommendable

way to publish a license. Licenses API’s can however be a sensible addition.

RQ 2: Can we provide a recommendation logic for licenses?

This question was split in several sub-questions as well. By answering those questions

step by step, a recommendation logic was designed, which proves the possibility of de-

signing one.

RQ 2.1: How can licenses be classified?

There are many ways of how to classify licenses on different levels. Various approaches

were outlined throughout this thesis. The most prominent way is the differentiation be-

tween several levels of permissiveness of a license.

RQ 2.2: What is the developer’s perspective on the field of licensing and which inferences

regarding license recommendation can be made?

The results showed that the process of choosing a license is uncertain for many developers.

It is clear that there is a need for a better license guidance and potential for recommenda-

tion and suggestion logics.

RQ 2.3: How can licenses be suggested or recommended?

To recommend licenses, a recommendation logic was designed and implemented. It works

by utilizing several levels of information, retrieved through the user of the tool and dif-

ferent knowledge bases. This way the user’s intention, as well as given restrictions are

considered and combined.

RQ 2.4: How can a recommendation logic apply to complex open source projects like the

101companies project?

The recommendation logic worked well for the 101companies project. It is possible to

recommend a license for projects with many contributions containing different licenses

with the proposed approach. Different licensing options could be provided.

CHAPTER 6. CONCLUDING REMARKS 66

6.2 Limitations and Future Work

The results for the thesis research questions were summarized before, however, some

limitations have to be mentioned. Those limitations provide different opportunities for

future work.

6.2.1 License Usage Analysis

The limitations of the chosen approach of identifying the distribution of licenses were

already listed in the chapter License Usage Analysis: the accuracy of Ninka and the in-

accuracy in the statistic of projects that do not have a license. An additional point of

limitation is the number of investigated projects. As the computing effort for running the

analysis and the amount of data was enormous, as [2] can approve, it is a particularly

time-consuming process to analyze open source projects on a large-scaled basis. The

1,330 investigated projects of the first run contained about 29.7 gigabytes of data dis-

tributed in 100,234 folders containing 5,000,181 files, although the big and irrelevant data

was previously deleted. Especially the amount of single files, which have to be processed,

is a complex task. With more computing power and a higher network bandwidth the re-

sults could be enhanced and more precisely. As a side note, the analysis with Ninka was

performed on an Ubuntu 14.04 virtual machine with 2GB DDR2 Ram and two CPU cores

from a Intel Core2 Quad Processor Q6600. Other tasks on a second virtual machine with

4 gigabytes DDR3 Ram and one core from an Intel Core i5-4300U. For the other sub ques-

tions of the first research question, the limitation of the number of investigated projects

must be considered as well, as more input data always creates more representative work.

Additionally, any suggestions, like the idea of how to publish licenses, are dependent on

the open source community.

This leads to the following opportunities of future work. In general, the analysis of the

distribution of licenses can be expanded on a higher number of projects to improve the

results. An additional approach for the license usage analysis would be, to further dif-

ferentiate between the types of projects that are analyzed and specify criteria, as in the

second run of this approach. In this research, the analyzed projects were chosen from the

GitHub search API, it could be interesting to see, if and which licenses are dominant, for

example for a single programming language, and if those results differ from the overall

results, just as the second run of the thesis already indicates. As mentioned before, also

the retrieved statistics will be out-dated sometime and therefore not be useful anymore,

CHAPTER 6. CONCLUDING REMARKS 67

unless they are updated. Generally, as time progresses, all retrieved statistics for the first

research question might be in need of an update, to identify the latest trends.

6.2.2 License Recommendation

The idea of creating a license recommendation logic is relatively young and currently

there is only one dominating license suggesting logic powered by GitHub. In this thesis,

a new approach was presented, which might be an improvement to known tools, provid-

ing a logical recommendation. However, this approach is limited to the user acceptance

and needs to be featured by larger instances to get any attention. Otherwise, the idea of

spreading the knowledge for the proper usage of licenses cannot be supported with it.

However, the survey generally showed a certain interest. Like all recommendation logics,

also the new approach is limited to a set of licenses, which are included.

As a side note, especially the enforcement, combinability and compatibility of licenses is

a field for jurists, computer scientists can only make suggestions and expose problems.

As of now, it seems, that the enforcement of open source licenses is not a common topic

for law-firms, so the state of the art is a bit unclear. The compatibility (including com-

binability) of licenses must therefore also undergo professional legal investigation. Those

results have to be included in the tool.

The approach itself can still be improved by giving the tool a user friendlier design and by

constantly adding licenses and further data relevant for the ranking. As well, the tool is

not tested by a large group of users, so feedback might bring up some further limitations.

The test with the 101companies project however was promising.

As a consequence from said limitations, the license recommendation applet needs a cer-

tain amount of maintenance. Also, it is yet to publish for public access, therefore, a

website or alternate ideas have to be implemented. This platform also needs to deliver the

necessary background knowledge for a proper utilization of the logic.

6.3 Closing Words

The thesis License Usage Analysis and License Recommendation in Open Source Soft-

ware Development provides various insights in open source software development and

licensing. Those are the basis for this section, commenting on several general aspects

and questions, as well as a view on certain trends in open source development regarding

CHAPTER 6. CONCLUDING REMARKS 68

licensing, to provide a perspective on the results. As an introduction, the general idea

behind open source software can be questioned.

There are many reasons why open source software is good for companies, developers and

software users and the utilization is well-marked in many different areas. Open source

software keeps costs down, improves quality, delivers business agility and mitigates busi-

ness risk [36]. Additionally, it grants freedom, flexibility and is non-binding [37]. Open

source software archives provide easily accessible, mostly high-quality and versatile soft-

ware that can be used by anyone and generally without any charging. Private users, as

well as professionals, are the profiteers, both in a private and a working environment. So

as apparently the users are the ones who profit most from open source software, what is

their role?

Since the usage of open source software obliges the users only to few conditions, which

are rarely enforced, those rules or some etiquette should be followed. The least thing a

user of open software can do, is to give credit to the owner, for providing his work. If open

source software is a key for you earning a lot of money though, especially as a company,

a donation or sign of gratitude should really be considered. Nevertheless, the compliance

with those ideas seems rather small, so what can the developers do?

The developers of open source software can be private persons, companies, as well as free

development groups. It is them, who put the work into the software, mostly without any

payment. If they want to get something back for their work (give and get), they have to

question their own intentions. So what are the intentions behind open source program-

ming? Zed Shaw writes in [38]: “I wrote Mongrel and then gave it away, on the hopes

that it would help a bunch of other people, and that giving it away would come back to me

in some way. Maybe a job, or some respect, or hell maybe my own company doing more

software like it”. Those are probably the most common intentions behind open source

development. However, Shaw did not get anything back, although the software was a

huge success. As his, as well as general intentions seem rather naive, relying on trust and

decency, open source needs software licenses and not only software licenses, but fitting

software licenses, to enforce developer’s intention.

The best way to get an understanding of which the best license for a certain project is, is

the reading of the licenses texts. As this is a time-consuming task, license recommenda-

tion or suggestion tools can help. In the course of this thesis, one tool was presented and

one developed, specially designed for unexperienced developers. Of course also those

tools might not be sufficient for everyone. Nevertheless, it is important to make a decision

and be aware of the consequences. The case of Shaw can be exemplary here as well, as he

CHAPTER 6. CONCLUDING REMARKS 69

learned from his earlier mistake. He now prefers to use the GPL-licenses, to force users

of his software, especially companies, to admit the actual usage [38], which is perfectly

comprehensible and emphasizes the importance of choosing a fitting license. Yet, Shaw

reports of complaints of his choice of license, as it makes things harder for some of the

users [39]. This impression approves, that some people do not cherish open source soft-

ware enough, as it should be and even complain about freely accessible software, although

the naive approach clearly does not work. Therefore, all different licenses should be ac-

cepted in the open source community, since they are used by the developers on purpose.

In addition, the common knowledge and awareness should be improved, as open source

software development is a promising advancement for the IT sector.

In the end, every developer, as professional in a company or in private, can benefit from

sharing code, so the least that should be done, is to accept the conditions of usage and

give the developer the earned credit without exception.

Appendices

71

72

Licenses and their Features

The following table provides a large collection of open source licenses and their features.

The list might not be exhaustive and no warranties can be made, although the list has been

carefully crafted. Fore more information please refer to the license text of each license.

The following labels are used for the different features:

Requirements: License and copyright notice (R1), State changes (R2), Disclose source

(R3), Network use (R4), Library usage (R5), Same License (R6).

Permissions: Commercial use (P1), Private use (P2), Distribution (P3), Modification (P4),

Patent use (P5), Sub-licensing (P6).

Constraints: Hold liable (C1), Use trademark (C2), Sub-licensing (C3), Distribution (C4),

Modification (C5), Patent use (C6).

Table 1: Lookup-table for licenses and their features

License Requirements Permissions Constraints
Apache License
2.0

R1, R2 P1, P2, P3, P4, P5 C1, C2

GNU GPLv3 R1, R2, R3, R6 P1, P2, P3, P4, P5 C1
GNU GPLv2 R1, R2, R3, R6 P1, P2, P3, P4, P5 C1
Affero GPLv3 R1, R2, R3, R4, R6 P1, P2, P3, P4, P5 C1, C3
MIT License R1 P1, P2, P3, P4 C1
Artistic License
2.0

R1, R2 P1, P2, P3, P4, P5 C1, C2

Eclipse Public Lic-
nese 1.0

R1, R3,R6 P1, P2, P3, P4, P5 C1

(BSD) ISC License R1 P1, P2, P3, P4 C1
BSD 3-Clause R1 P1, P2, P3, P4 C1
BSD 2-Clause R1 P1, P2, P3, P4 C1
GNU LGPLv3 R1, R3, R6 P1, P2, P3, P4, P5 C1
GNU LGPLv2.1 R1, R3, R6 P1, P2, P3, P4, P5 C1
Mozilla Public Li-
cense 2.0

R1, R3, R6 P1, P2, P3, P4, P5 C1, C2

(Public Domain)
The Unlicense

P1, P2, P3, P4 C1

(Public Domain)
CC0 1.0 Universal

P1, P2, P3, P4 C1, C2, C6

73

Classified Licenses: License Usage Analysis

AAL

AFL-1.1, AFL-1.2, AFL-2.0, AFL-2.1, AFL-3.0

AGPL-1.0, AGPLv3+

Apache-1.0, Apache-1.1, Apache-2.0

ArtisticLicensev1

BeerWare

boost-1

BSD1, BSD2, BSD3, BSD4, BSD-4-Clause-UC, spdxBSD2, spdxBSD3, spdxBSD4,

BSD-Doc, BSD-style

CC

Cecill

CPL

DoWhatTheFuckYouWant

emacsLic

EUPL, EUPL-1.0, EUPL-1.1

FSFUnlimited

GFDL-1.1, GFDL-1.2, GFDL-1.3

GPLv1, GPLv1+, GPLv2, GPLv2+, GPLv3, GPLv3+

IBMv1

Intel

MPLv1

kerberos

LesserGPL

LGPL, LGPL-2.1, LGPL-2.1+, LGPL-2.1+-KDE-exception, LGPL-3.0, LGPL-3.0+

LibraryGPL

MIT, MIT-style

MX4J

NPLv1

OSL-1.0, OSL-1.1, OSL-2.0, OSL-2.1, OSL-3.0

phpLic

PLv2

postgresql, postgresqlRef

74

public domain

QPLv1

SameAsPerl

simpleLic2, simpleLicense1

sunRPC, SunSimpleLic

W3CLic

X11CMU

zendv2

75

License Distribution Analysis Data

Table 2: Analysis results of the total distribution of all classified licenses on
GitHub (Run1)

License Distribution [abs] Distribution [%]
MIT 599 34.79
Apache 282 16.38
spdxBSD3 141 8.19
GPL-2.0+ 135 7.84
GPL-3.0+ 115 6.69
spdxBSD2 88 4.48
LesserGPL 88 5.11
GPL-2.0 63 3.66
BSD3 37 0.15
LibraryGPL 24 1.34
LGPL 18 1.05
MPLv1 16 0.93
boost-1 14 0.81
spdxBSD4 14 0.81
Intel 14 0.81
FSFUnlimitet 13 0.75
BeerWare 9 0.52
simpleLicense1 7 0.41
SameAsPerl 7 0.41
X11CMU 5 0.29
BSD2 4 0.23
LGPL-3.0 5 0.29
kerberos 3 0.17
Apache-1.0 3 0.17
SunSimpleLic 3 0.17
sunRPC 3 0.17
doWhatTheFuckYouWant 3 0.17
BSD4 2 0.12
GPL-1.0 2 0.12
GPL-1.0+ 2 0.12
GPL-3.0 2 0.12
NPLv1 1 0.06

76

Table 3: Analysis results of the total distribution of all classified licenses on
GitHub (Run2 (highly rated projects))

License Distribution [abs] Distribution [%]
MIT 583 48.34
Apache 213 17.66
BSD3 24 1.99
spdxBSD3 94 7.79
spdxBSD2 65 5.39
GPL-2.0+ 51 4.23
GPL-3.0+ 47 3.99
LesserGPL 28 2.32
GPL-3.0 16 1.33
GPL-2.0 13 1.08
Intel 12 1.00
Apache-1.0 7 0.58
LibraryGPL 7 0.58
FSFUnlimitet 5 0.41
LGPL 5 0.41
spdxBSD4 5 0.41
BSD4 4 0.33
BeerWare 4 0.33
BSD2 4 0.33
boost-1 4 0.33
MPLv1 4 0.33
doWhatTheFuckYouWant 2 0.17
SunSimpleLic 2 0.17
Apache-1.1 1 0.08
CC 1 0.08
NPLv1 1 0.08
phpLicense 1 0.08
public domain 1 0.08
SameAsPerl 1 0.08
w3cLic 1 0.08

77

Additional Implementation Excerpts

Main.defines.java of the GitDownloader program (shortened):

1 /∗ F i l e f o r t h e s e a r c h r e s u l t s ∗ /
2 p u b l i c s t a t i c f i n a l S t r i n g s e a r c h R e s u l t F i l e = ” s r c / R e t r i e v e d D a t a / S e a r c h r e s u l t s

. t x t ” ;
3
4 /∗ keyword t o f i l t e r t h e s e a r c h r e s u l t s : d e f a u l t = ” f u l l n a m e ” ∗ /
5 p u b l i c s t a t i c f i n a l S t r i n g f i l t e r K e y = ” f u l l n a m e ” ;
6
7 /∗ HashSet s i z e i n r e m o v e D u p l i c a t e s : d e f a u l t = 10000 ∗ /
8 p u b l i c s t a t i c f i n a l i n t r e m o v e D u p l i c a t e s H a s h S e t = 10000 ;
9

10 /∗ how many pages o f t h e GitHub s e a r c h are crawled : l i m i t = 35 ∗ /
11 p u b l i c s t a t i c f i n a l i n t maxSearchPages = 3 5 ;
12
13 /∗ r e q u e s t s o f t h e c r a w l e r u n t i l t i m e o u t ∗ /
14 p u b l i c s t a t i c f i n a l i n t maxCrawle rReques t s = 8 ;
15
16 /∗ d u r a t i o n o f t i m e o u t b e f o r e c o n t i n u i n g t o r e q u e s t : d e f a u l t = 60000 ∗ /
17 p u b l i c s t a t i c f i n a l i n t c r a w l e r T i m e o u t = 60000 ;
18
19 /∗ g e n e r a l GitHub API s e a r c h l i n k ∗ /
20 p u b l i c f i n a l s t a t i c S t r i n g g i t S e a r c h = ” h t t p s : / / a p i . g i t h u b . com / s e a r c h /

r e p o s i t o r i e s ? q=” ;
21
22 /∗ e l e m e n t s o f t h e GitHub API s e a r c h ∗ /
23 /∗ Examples :
24 ∗ Order by b e s t match : &page=
25 ∗ Order by s t a r s desc . : +&s o r t = s t a r s&o r d e r=desc&page=
26 ∗ Based on language : +language : a s s e m b l y&s o r t = s t a r s&o r d e r=desc&page=
27 ∗ /
28 p u b l i c f i n a l s t a t i c S t r i n g s e a r c h E l e m e n t s = ”+& s o r t = s t a r s&o r d e r = desc&page=” ;
29
30 /∗ g e n e r a l GitHub r e p o s i t o r y s e a r c h l i n k ∗ /
31 p u b l i c f i n a l s t a t i c S t r i n g g i t R e p o = ” h t t p s : / / g i t h u b . com / ” ;
32
33 /∗ pa th f o r c l o n e d r e p o s i t o r i e s ∗ /
34 p u b l i c s t a t i c f i n a l S t r i n g r e p o P a t h = ” s r c / Repos / ” ;
35
36 /∗ Timeout f o r b e g i n n i n g t o c l o n e t h e n e x t r e p o s i t o r y i n s e c o n d s ∗ /
37 p u b l i c s t a t i c f i n a l i n t c loneTimeOut = 300 ;

78

process.rb (preprocess analysis data from Ninka):

1
2 # r e t r i e v e a l l c h i l d d i r e c t o r i e s (r e p o s i t o r i e s) p a t h s
3 Dir . e n t r i e s (’ . ’) . s e l e c t { | e | F i l e . d i r e c t o r y ? (e) } . each do | f o l d e r p a t h |
4 f o l d e r p a t h s << f o l d e r p a t h
5 end
6
7 # check f o r a l l r e p o s i t o r i e f o l d e r s
8 f o l d e r p a t h s . each do | c h i l d f o l d e r |
9 Dir . c h d i r (c h i l d f o l d e r) do

10 p u t s (” c u r r r e n t l y a n a l y z i n g : ” + c h i l d f o l d e r)
11
12 # r e t r i e v e a l l . l i c e n s e− f i l e p a t h s and s t o r e i n a r r a y
13 Dir [’ ∗∗ /∗ ’] . s e l e c t { | f | F i l e . f i l e ? (f) } . each do | f i l e p a t h |
14 l i c e n s e f i l e p a t h s << f i l e p a t h i f f i l e p a t h =˜ / . ∗ \ .

l i c e n s e $ /
15 end
16
17 # check f o r l i c e n s e s i n a l l e x i s t a n t p a t h s
18 l i c e n s e f i l e p a t h s . each do | l i c e n s e f i l e |
19 c u r r e n t F i l e = F i l e . f o r e a c h (l i c e n s e f i l e)
20 l i c e n s e s . each do | c u r r e n t L i c e n s e |
21 i f c u r r e n t F i l e . any ?{ | l | l [c u r r e n t L i c e n s e] }
22 l i c e n s e a p p e a r e n c e s [i] = 1
23 end
24 i += 1
25 end
26 i = 0
27 end
28
29 # make l i c e n s e . t x t f o r a l l f ound l i c e n s e s
30 l i c e n s e a p p e a r e n c e s . each do | a p p e a r e n c e |
31 i f a p p e a r e n c e == 1
32 o u t f i l e 0 = F i l e . new (l i c e n s e s [j] + ” . t x t ” , ”w”)
33 l i c e n s e a p p e a r e n c e s [j] = f a l s e
34 end
35 j += 1
36 end
37
38 # c l e a r f o r n e x t i t e r a t i o n
39 l i c e n s e f i l e p a t h s . c l e a r
40 l i c e n s e a p p e a r e n c e s . c l e a r
41 i = 0
42 j = 0
43
44 end
45 end

79

count.rb (count license occurrences after preprocessing):

1 # l i c e n s e s
2 l i c e n s e s = []
3 l i c e n s e a p p e a r e n c e s = []
4
5 f o l d e r p a t h s = []
6 i = 0
7 j = 0
8 k = 0
9

10 # r e t r i e v e a l l c h i l d d i r e c t o r i e s (r e p o s i t o r i e s) p a t h s
11 Di r . e n t r i e s (’ . ’) . s e l e c t { | e | F i l e . d i r e c t o r y ? (e) } . each do | f o l d e r p a t h |
12 f o l d e r p a t h s << f o l d e r p a t h
13 end
14
15 # i n i t i a l i z e l i c e n s e a p p e a r e n c e s
16 l i c e n s e s . each do | e l e m e n t |
17 l i c e n s e a p p e a r e n c e s [j] = 0
18 j = j + 1
19 end
20
21 f o l d e r p a t h s . each do | p a t h |
22 Dir . c h d i r (p a t h) do
23 Dir . e n t r i e s (’ . ’) . s e l e c t { | e | F i l e . f i l e ? (e) } . each do | f i l e p a t h |
24 l i c e n s e s . each do | c u r r e n t L i c e n s e |
25 i f f i l e p a t h . i n c l u d e ? c u r r e n t L i c e n s e
26 i f l i c e n s e a p p e a r e n c e s [i] != n i l
27 l i c e n s e a p p e a r e n c e s [i] =

l i c e n s e a p p e a r e n c e s [i] + 1
28 end
29 end
30 i += 1
31 end
32 i = 0
33 end
34 end
35 end
36
37 # o u t p u t
38 l i c e n s e s . each do | l i c e n s e |
39 p u t s (l i c e n s e , l i c e n s e a p p e a r e n c e s [k])
40 p u t s ()
41 k += 1
42 end

List of Figures

2.1 Software relationships: Open Source Software (OSS), Free and Open

Source Software (FOSS), Proprietary Software (PS) 12

3.1 Percentage of licensed repositories on GitHub [13] 20

3.2 License breakdown on GitHub [13] . 20

3.3 Definition of license violation [21] . 23

3.4 Compatibility and combinability of licenses [7] 23

4.1 UML activity diagram for the GitDownloader 31

4.2 Graph of the license distribution of all classified licenses on GitHub: (Run

1) . 33

4.3 Diagram of the combined license distribution of all classified licenses on

GitHub: (Run 1) . 34

4.4 Combined license distribution of projects on GitHub: (Run 1) 35

4.5 Comparison of the combined license distribution 37

4.6 Example for license publication in the root folder 44

5.1 Survey answers for the first question . 49

5.2 Survey answers for the second question 50

5.3 Survey answers for the third question . 51

5.4 UML activity diagram of the recommendation logic 52

5.5 License recommendation applet (v1.0) 53

5.6 Meta model of a 101companies licensing concept 59

80

List of Tables

2.1 Requirement features of licenses . 14

2.2 Permission features of licenses . 15

2.3 Constraint features of licenses . 15

3.1 License distribution on GitHub . 19

3.2 License distribution according to Black Duck 19

4.1 Combined license distribution of all classified licenses on GitHub: (Run1) 33

4.2 Combined license distribution of all classified licenses on GitHub: (Run2) 34

4.3 Combined license distribution of projects on GitHub: (Run2) 34

4.4 Comparison of the combined license distribution 37

4.5 Commit messages with keywords on GitHub 38

4.6 Consistency of licenses on GitHub: (Run2) 41

4.7 Consistency of licensing of projects on GitHub: (Run2) 42

5.1 Enforced licenses (verdict) . 55

5.2 Not recommendable licenses . 55

5.3 Compatible and combinable licenses rules (shortened) 56

5.4 Contradicting features of licenses rules 57

5.5 Licenses identified in the 101companies contributions 59

5.6 License combinations identified in the 101companies contributions 59

5.7 Consequences of license elimination for the 101companies contributions . 61

1 Lookup-table for licenses and their features 72

2 Analysis results of the total distribution of all classified licenses on GitHub

(Run1) . 75

81

LIST OF TABLES 82

3 Analysis results of the total distribution of all classified licenses on GitHub

(Run2 (highly rated projects)) . 76

Bibliography

[1] Y. Wu et al., “A method to detect license inconsistencies in large-scale open source

projects.” 12th Working Conference on Mining Software Repositories, Florence,

Italy, 2015.

[2] C. Vendome et al., “License usage and changes: A large-scale study of java projects

on github.” Proceedings of the 2015 IEEE 23rd International Conference on Program

Comprehension, 2015.

[3] R. Laemmel, “Software chrestomathies.” Science of Computer Programming, 2013.

[4] “What is open source?.”

http://opensource.com/resources/what-open-source [abgerufen

am 5.11.2015].

[5] B. Bruegge et al., “Open source software: Eine oekonomische und technische anal-

yse.” Springer Verlag, Germany, 2004.

[6] B. f. Sicherheit i. d. Informationstechnik, “Fragen und antworten zu open source

software.”

https://www.bsi-fuer-buerger.de/BSIFB/DE/

MeinPC/OpenSourceSoftware/FragenUndAntworten/

fragenundantworten_node.html [abgerufen am 5.11.2015].

[7] D. Wheeler, “The free-libre / open source software (floss) license slide,” 2007.

[8] G. Inc., “Licenses.”

http://choosealicense.com/licenses/ [abgerufen am 21.01.2016].

[9] “Working conference on mining software repositories.”

http://msrconf.org/ [abgerufen am 1.10.2015].

83

http://opensource.com/resources/what-open-source
https://www.bsi-fuer-buerger.de/BSIFB/DE/MeinPC/OpenSourceSoftware/FragenUndAntworten/fragenundantworten_node.html
https://www.bsi-fuer-buerger.de/BSIFB/DE/MeinPC/OpenSourceSoftware/FragenUndAntworten/fragenundantworten_node.html
https://www.bsi-fuer-buerger.de/BSIFB/DE/MeinPC/OpenSourceSoftware/FragenUndAntworten/fragenundantworten_node.html
http://choosealicense.com/licenses/
http://msrconf.org/

BIBLIOGRAPHY 84

[10] J.-M. Favre, R. Lämmel, et al., “101companies: a community project on software

technologies and software languages.” Proceedings of TOOLS 2012, Springer, 2012.

[11] A. Engelfriet, “Choosing an open source license.” Athens University of Economics

and Business, 2010.

[12] J. Colazo et al., “Impact of license choice on open source software development

activity.” Wiley InterScience, 2009.

[13] B. Balter, “Open source license usage on github.com,” 2015.

https://github.com/blog/1964-license-usage-on-github-com

[abgerufen am 10.12.2015].

[14] B. Duck, “Top 20 open source licenses,” 2014.

https://www.blackducksoftware.com/resources/data/

top-20-open-source-licenses [abgerufen am 10.12.2015].

[15] www.law.washington.edu, “Enforceability of open source licenses.”

https://www.law.washington.edu/lta/swp/law/

enforceability.html [abgerufen am 06.01.2016].

[16] F. S. F. Software Freedom Conservancy, “The principles of community-oriented gpl

enforcement,” 2015.

https://sfconservancy.org/copyleft-compliance/

principles.html [abgerufen am 11.01.2016].

[17] K. M. Sandler, “Conservancy and fsf publish principles of copyleft enforcement,”

2015.

https://sfconservancy.org/news/2015/oct/01/

compliance-principles/ [abgerufen am 11.01.2016].

[18] KLBB, “Open source.”

https://www.jbb.de/rechtsbegriffe/open-source [abgerufen am

11.01.2016].

[19] A. Mathur et al., “An empirical study of license violations in open source projects.”

Microsoft Research India, 2012.

[20] F. S. Foundation, “Gnu general public license,” 2007.

http://www.gnu.org/licenses/gpl.html [abgerufen am 23.03.2016].

https://github.com/blog/1964-license-usage-on-github-com
https://www.blackducksoftware.com/resources/data/top-20-open-source-licenses
https://www.blackducksoftware.com/resources/data/top-20-open-source-licenses
https://www.law.washington.edu/lta/swp/law/enforceability.html
https://www.law.washington.edu/lta/swp/law/enforceability.html
https://sfconservancy.org/copyleft-compliance/principles.html
https://sfconservancy.org/copyleft-compliance/principles.html
https://sfconservancy.org/news/2015/oct/01/compliance-principles/
https://sfconservancy.org/news/2015/oct/01/compliance-principles/
https://www.jbb.de/rechtsbegriffe/open-source
http://www.gnu.org/licenses/gpl.html

BIBLIOGRAPHY 85

[21] A. Mathur et al., “An empirical study of license violations in open source projects.”

IEEE 35th Software Engineering Workshop, 2012.

[22] D. M. German et al., “A sentence-matching method for automatic license identifica-

tion of source code files.” 25th IEEE/ACM International Conference on Automated

Software Engineering, Antwerp, Belgium, 2010.

[23] M. D. Penta et al., “Identifying licensing of jar archives using a code-search ap-

proach.” 12th Working Conference on Mining Software Repositories, Florence,

Italy, 2015.

[24] P. Abate et al., “Mining component repositories for installability issues.” 12th Work-

ing Conference on Mining Software Repositories, Florence, Italy, 2015.

[25] I. Moura et al., “Mining energy-aware commits.” 12th Working Conference on Min-

ing Software Repositories, Florence, Italy, 2015.

[26] G. Bavota et al., “The market for open source: An intelligent virtual open source

marketplace.” Software Evolution Week - IEEE Conference on Software Mainte-

nance, Reengineering, and Reverse Engineering, Antwerp, Belgium, 2014.

[27] L. foundation, “Spdx license list.” v2.4.

https://spdx.org/licenses/ [abgerufen am 14.04.2016].

[28] N. McAllister, “Study: Most projects on github not open source licensed,” 2013.

http://www.theregister.co.uk/2013/04/18/github_

licensing_study/ [abgerufen am 23.03.2016].

[29] S. Vaughan-Nichols, “The fall of gpl and the rise of permissive open-source

licenses.” Linux and Open Source, 2014.

http://www.zdnet.com/article/the-fall-of-gpl-and-the-rise-of-permissive-open-source-licenses/

[abgerufen am 23.03.2016].

[30] GNU, “Various licenses and comments about them.”

http://www.gnu.org/licenses/license-list.en.html [abgerufen

am 05.04.2016].

[31] versioneye, “Verdict to gpl violation in germany,” 2015.

https://blog.versioneye.com/2015/09/21/

https://spdx.org/licenses/
http://www.theregister.co.uk/2013/04/18/github_licensing_study/
http://www.theregister.co.uk/2013/04/18/github_licensing_study/
http://www.zdnet.com/article/the-fall-of-gpl-and-the-rise-of-permissive-open-source-licenses/
http://www.gnu.org/licenses/license-list.en.html
https://blog.versioneye.com/2015/09/21/judgment-to-gpl-violation-in-germany/

BIBLIOGRAPHY 86

judgment-to-gpl-violation-in-germany/ [abgerufen am

20.04.2016].

[32] A. Stiller, “The open source trials: hanging in the legal balance of copyright and

copyleft,” 2011.

http://www.visionmobile.com/blog/2011/03/

the-open-source-trials-hanging-in-the-legal-balance-of-copyright-and-copyleft/

[abgerufen am 20.04.2016].

[33] P. A. QUESTIONS, “Gpl compatibility.”

http://www.apache.org/legal/resolved.html [abgerufen am

05.04.2016].

[34] Wiki, “Comparison of free and open-source software licenses.”

https://en.wikipedia.org/wiki/Comparison_of_free_and_

open-source_software_licenses [abgerufen am 05.04.2016].

[35] Sun-Times, “Microsoft ceo takes launch break with the sun-times,” 2001.

http://web.archive.org/web/20010615205548/http:

//suntimes.com/output/tech/cst-fin-micro01.html [abgerufen

am 21.04.2016].

[36] H. Baldwin, “4 reasons companies say yes to open source,” 2014.

http://www.computerworld.com/article/2486991/

app-development-4-reasons-companies-say-yes-to-open-source.

html [abgerufen am 03.03.2016].

[37] K. Noyes, “10 reasons open source is good for business,” 2010.

http://www.pcworld.com/article/209891/10_reasons_open_

source_is_good_for_business.html [abgerufen am 03.03.2016].

[38] Z. Shawn, “Why i (a/l)gpl.”

http://zedshaw.com/archive/why-i-algpl/ [abgerufen am

03.03.2016].

[39] Z. Shawn, “Why i (a/l)gpl.”

http://zedshaw.com/archive/is-bsd-the-new-gpl/ [abgerufen

am 03.03.2016].

https://blog.versioneye.com/2015/09/21/judgment-to-gpl-violation-in-germany/
https://blog.versioneye.com/2015/09/21/judgment-to-gpl-violation-in-germany/
http://www.visionmobile.com/blog/2011/03/the-open-source-trials-hanging-in-the-legal-balance-of-copyright-and-copyleft/
http://www.visionmobile.com/blog/2011/03/the-open-source-trials-hanging-in-the-legal-balance-of-copyright-and-copyleft/
http://www.apache.org/legal/resolved.html
https://en.wikipedia.org/wiki/Comparison_of_free_and_open-source_software_licenses
https://en.wikipedia.org/wiki/Comparison_of_free_and_open-source_software_licenses
http://web.archive.org/web/20010615205548/http://suntimes.com/output/tech/cst-fin-micro01.html
http://web.archive.org/web/20010615205548/http://suntimes.com/output/tech/cst-fin-micro01.html
http://www.computerworld.com/article/2486991/app-development-4-reasons-companies-say-yes-to-open-source.html
http://www.computerworld.com/article/2486991/app-development-4-reasons-companies-say-yes-to-open-source.html
http://www.computerworld.com/article/2486991/app-development-4-reasons-companies-say-yes-to-open-source.html
http://www.pcworld.com/article/209891/10_reasons_open_source_is_good_for_business.html
http://www.pcworld.com/article/209891/10_reasons_open_source_is_good_for_business.html
http://zedshaw.com/archive/why-i-algpl/
http://zedshaw.com/archive/is-bsd-the-new-gpl/

BIBLIOGRAPHY 87

[40] R. Gobeille, “The fossology project.” International Working Conference on Mining

Software Repositories, MSR 2008, Leipzig, Germany, 2008.

[41] T. Tuunanen et al., “Automated software license analysis. autom. softw. eng.,” 2009.

[42] C. Boldyreff et al., “Open source ecosystems: Diverse communities interacting.” 5th

IFIP WG 2.13 International Conference on Open Source Systems, Sweden, 2009.

	Introduction
	Research Context
	Motivation
	Research Problem
	Methodology
	Thesis Structure

	Background
	Open Source Software
	Software Licenses
	Mining Software Repositories
	101companies

	Related Work
	Current Open Source Licensing
	Choosing an Open Source License
	Open Source License Distribution
	Usage of Licenses Over Time
	License Enforcement and License Publication
	License Compatibility and License Combination

	Mining Licenses for Analytical Purposes
	License Identification
	Automated Data Assembly

	License Usage Analysis
	Distribution of Licenses
	Automated License Mining
	Design and Implementation
	Results
	Evaluation

	Association of Licenses Over Time
	License Consistency
	License Publication

	License Recommendation
	Recommendation Logic Design
	Developer's Perception on Licensing
	Recommendation Logic Requirements

	Recommendation Logic Implementation
	Recommendation Logic Appliance
	Use-Case Requirement Analysis
	Use-Case Requirement Realization
	Use-Case Solution

	Recommendation Logic Evaluation

	Concluding Remarks
	Summary
	Limitations and Future Work
	License Usage Analysis
	License Recommendation

	Closing Words

	Appendices
	List of Figures
	List of Tables
	Bibliography

