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Abstract

This thesis presents novel approaches for integrating context information

into probabilistic models.

Data from social media is typically associated with metadata, which in-

cludes context information such as timestamps, geographical coordinates or

links to user profiles. Previous studies showed the benefits of using such

context information in probabilistic models, e.g. improved predictive perfor-

mance. In practice, probabilistic models which account for context informa-

tion still play a minor role in data analysis. There are multiple reasons for

this. Existing probabilistic models often are complex, the implementation

is difficult, implementations are not publicly available, or the parameter

estimation is computationally too expensive for large datasets. Addition-

ally, existing models are typically created for a specific type of content and

context and lack the flexibility to be applied to other data.

This thesis addresses these problems by introducing a general approach

for modelling multiple, arbitrary context variables in probabilistic models

and by providing efficient inference schemes and implementations.

In the first half of this thesis, the importance of context and the poten-

tial of context information for probabilistic modelling is shown theoretically

and in practical examples. In the second half, the example of topic models

is employed for introducing a novel approach to context modelling based on

document clusters and adjacency relations in the context space. These mod-

els allow for the first time the efficient, explicit modelling of arbitrary context

variables including cyclic and spherical context (such as temporal cycles or

geographical coordinates). Using the novel three-level hierarchical multi-

Dirichlet process presented in this thesis, the adjacency of ontext clusters

can be exploited and multiple contexts can be modelled and weighted at the

same time. Efficient inference schemes are derived which yield interpretable

model parameters that allow analyse the relation between observations and

context.
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Zusammenfassung

Diese Arbeit stellt neue Verfahren zur Integration von Kontext-Information

in probabilistische Modelle vor.

Daten aus sozialen Medien sind oft mit Metadaten assoziiert, wie bei-

spielsweise Uhrzeit, geographische Koordinaten oder Nutzerdaten. Frühere

Studien haben die Bedeutung von Kontextinformationen für die Vorher-

sagekraft von Wahrscheinlichkeitsmodellen gezeigt. In der Praxis spielen

Wahrscheinlichkeitsmodelle die Kontextinformationen integrieren dennoch

eine geringe Rolle. Die Gründe hierfür sind vielfältig: Vorhandene Wahr-

scheinlichkeitsmodelle sind oft komplex, die Implementierung ist schwierig,

Implementierungen sind nicht frei verfügbar oder die Parameterschätzung

ist für größere Datensätze zu aufwendig. Dazu kommt, dass vorhandene Mo-

delle typischerweise für eine spezielle Art von Kontextinformation angepasst

sind und nicht ohne Weiteres auf andere Daten angewendet werden können.

Diese Arbeit stellt einen neuen Ansatz zur Modellierung von mehre-

ren, beliebigen Kontext-Variablen in Wahrscheinlichkeitsmodellen vor und

präsentiert effiziente Inferenz-Strategien.

In der ersten Hälfte der Arbeit wird die Bedeutung von Kontextinforma-

tionen anhand theoretischer und praktischer Beispiele gezeigt. In der zweiten

Hälfte werden neue Topic-Modelle vorgestellt, die Kontextinformationen an-

hand von Dokument-Clustern und Nachbarschaftsbeziehungen im Kontext-

Raum modellieren. Diese Topic-Modelle erlauben erstmals die effiziente, ex-

plizite Modellierung von zyklischen Kontextvariablen und Kontextvariablen

mit Verteilung auf der n-Sphäre (beispielsweise von Zeit-Zyklen und geogra-

phisch verteilten Variablen). Mit Hilfe des neuartigen Hiearchichal Multi-

Dirichlet Process (HMDP), der in dieser Arbeit vorgestellt wird, können

Nachbarschaftsbeziehungen zwischen Kontext-Clustern ausgenutzt werden

und es können mehrere Kontexte gleichzeitig modelliert und gewichtet wer-

den. Es werden effiziente Inferenz-Strategien hergeleitet, die interpretierbare

Modell-Parameter liefern, welche die Analyse der Beziehung zwischen Beob-

achtungen und Kontext-Informationen erlauben.
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Introduction

Man kann für eine große Klasse von Fällen der Benützung des
Wortes “Bedeutung” – wenn auch nicht für alle Fälle seiner
Benützung – dieses Wort so erklären:
Die Bedeutung eines Wortes ist sein Gebrauch in der Sprache.

Ludwig Wittgenstein, Urfassung Philosophische Untersuchungen, 40

The Importance of Context

While the amount of social media data analysed with probabilistic models
is growing, one particular kind of information is still neglected in many data
mining applications: the context, in which data was created.

The location in which a photography is taken can affect the interpre-
tation of its content. The political system, in which votes are cast, might
influence the behaviour of voters and should be accounted for in an analysis
of voting systems. The metadata of an email storing the time at which an
email was written might give a hint about the topics covered in that email.

It is surprising that on the one hand nearly all social media content is
associated with metadata and, on the other hand, most probabilistic models
applied to social media data do not account for context information. The
reasons for this development include the high complexity of available mod-
els, the resulting complexity of the inference together with a lack of freely
available implementations, and missing scalability for large datasets. Ad-
ditionally, for the important class of probabilistic topic models, there is no
efficient method for explicitly modelling cyclic or spherical metadata. This
is important, as the most-common context information in social media – the
timestamp of a document – contains cycles such as the daily 24h cycle, the
weekly cycle and the yearly cycle. A large share of data from social media
is additionally associated with geographical coordinates.

Since more metadata stemming e.g. from mobile sensors or user profiles
is available for an increasing share of documents in the web, the question of
how to include this rich information in probabilistic models is pressing.

3
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Problem and Approach

Especially if there exist complex dependencies between context variables
and observations, existing methods for including context information into
probabilistic models are either not capable of detecting these structures, the
resulting models are overly complex so that an interpretation or a plausi-
bility check of parameters is impossible, or the inference costs prevent the
application on large datasets.

In this thesis, the problem of including context information in proba-
bilistic models is studied in three parts. (i) System context models.
The inclusion of a system-context – the properties of a given system such
as a online platform – is studied on the example of probabilistic power
indices which include the properties of a democratic platform. (ii) Single-
context models. The problem of including a single context variable into
probabilistic models is studied on the example of geographical topic models.
(iii) Multi-context models. The multi-context case – where multiple
context information is available – is studied on the example of probabilistic
topic models conditioned on multiple, arbitrary metadata.

For modelling the influence of arbitrary context information on mix-
ture models, a novel class of probabilistic models is presented which uses
so-called Multi-Dirichlet Processes (MDP). The properties of MDP-based
models allow the derivation of efficient inference schemes, which are derived
and implemented.

Probabilistic Models

Probability theory provides a powerful framework for creating models which
explain real-world observations. Modern philosophers of science like Karl
Popper have argued that inductive science – which creates hypotheses based
on observations – does not prove hypotheses, but makes them more truth-
likely by testing them in experiments [Pop79]. It therefore is possible that
a new observation, which was not predicted by existing hypotheses, falsifies
a theory, even if the theory was successfully tested before in thousands
of experiments. In this case, existing theories can often be extended or
updated, to account for novel observations.

Probabilistic models provide the framework to express such uncertain-
ties and provide natural ways for assigning probabilities to previously non-
observed events. It even is possible to account for novel observations by
updating the parameters of a model or by changing parts of the model struc-
ture [KF09]. Therefore, it seems natural to employ probabilistic models for
expressing theories about real-world observations.

The mechanisms for including the possibility for previously unseen obser-
vations into probabilistic models are based on prior distributions, commonly
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referred to as priors. Prior distributions introduce probability distributions
over parameters of a model, expressing beliefs about the probability of pa-
rameter settings which can be independent of observations.

Prior distributions also allow to model the influence of context infor-
mation during parameter inference: The context of an observation can be
linked to a belief on expected model parameters. Therefore, based on a
given context, prior distributions can be constructed to predict the parame-
ters of new observations. The problem of including context information into
probabilistic models in many cases involves the modelling and learning of
the right prior distributions to express beliefs about model parameters.

Bayesian Networks and Topic Models

An important class of probabilistic models are Bayesian networks, which are
directed graphical models. Graphical models allow for expressing complex
causal structures, potentially combining thousands of probability functions,
which explain a generative process behind observed data.

Graphical models not only allow for coding complex relations between
observed and hidden parameters and variables, but also provide a high flex-
ibility in their application. Significant parts of this thesis are about proba-
bilistic topic models – models which explain co-occurrences of grouped obser-
vations, which are typically applied to model words grouped by documents,
e.g. words in newspaper articles [BNJ03]. However, the very same model
structure can be e.g. employed to group bird species based on their genotype
data [PSD00]. And by replacing the multinomial distributions behind topics
with other distributions, arbitrary mixture models can be constructed using
exactly the same structural properties and inference structure (e.g. Gaussian
mixture models).

Therefore, while the presented methods for including context information
in probabilistic models are applied for modelling social media data, their field
of application is much broader.

Structure

In chapter 1, the foundations of probabilistic modelling are explained with
a focus on topic modelling.

In chapter 2 of this thesis, probabilistic power indices for predicting the
power of voters in online democracies are presented, which include the con-
text in which votes are cast by modelling system-specific voting bias. Power
indices are crucial to assess the distribution of power in novel online democ-
racy systems, which have the potential to change the political processes of
the future.
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In Chapter 3, a classification of metadata variables into context classes
is introduced. Using the structural properties of common context classes,
probabilistic models which include context information based on mixtures
of prior distributions are presented. Additionally, mixtures of Dirichlet pro-
cesses, called Multi-Dirichlet Processes (MDP) are described and a Gibbs-
sampling-based inference scheme is derived. Based on adjacency-networks
of document clusters, hierarchies of multi-Dirichlet processes are employed
to model the influence of geographical metadata on topics in a document
collection. The impact of this modelling – a dynamic smoothing of context
clusters and an improved sharing of topic information between adjacent con-
text clusters – is described and evaluated.

Chapter 4 presents a generalisation of hierarchical multi-Dirichlet process
models which allows to model the influence of multiple, arbitrary metadata
such as demographic variables, temporal information (including temporal
cycles) and geographical locations. Again, a mixture of prior distributions
on the document-topic distributions is constructed in a mixture of multi-
Dirichlet processes. Using the properties of multi-Dirichlet process and by
applying multiple approximations – namely a practical collapsed stochas-
tic variational Bayes inference with a zeroth-order Taylor approximation of
counts – efficient inference strategies for multi-Dirichlet processes are de-
rived.

An overview over the structure of this thesis is given in Figure 1.

Applications

Integrating context information (e.g. from metadata) into probabilistic mod-
els serves several purposes:

Data analysis. The presented topic models exploit context information
for extracting topics of higher quality from document collections. The top-
ics can provide insights into the topic distribution of a corpus or of single
documents. Additionally, the relation between context variables and top-
ics can be directly visualised and analysed using the interpretable model
parameters.

Context selection. Additionally, the importance of context variables for
topic prediction is learned during inference, so that less important variables
can be automatically excluded during inference. The weighting of context
variables can be visualised and interpreted.

Prediction. The detected relations between context variables and docu-
ment topics can be used to predict observations (i.e. words in documents)
for a given context such as the geographical location, the day of the week
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in the weekly cycle or user data. This can be e.g. exploited in recommender
systems. Additionally, the metadata of a given document can be predicted.

Information retrieval. As the inference schemes for the presented meth-
ods are efficient, allow a distributed computation and support online infer-
ence, the models can be used to extract topics of large document collec-
tions. The topics then can serve as input for topic-based retrieval algo-
rithms [WC06].

Contributions

All novel methods and implementations presented in this thesis are own
contributions.

Jérôme Kunegis, Heinrich Hartmann, Markus Strohmaier and Steffen
Staab contributed text for the study on power indices in Chapter 2, which
was published at the International Conference on Web and Social Media
(ICWSM) 2015 [KKH+15]. The temporal network analysis in Section 2.4.4
including Figure 2.6 is by Jérôme Kunegis. Heinrich Hartmann contributed
to the introduction of power indices in Section 2.5.1. Jérôme Kunegis, Sergej
Sizov and Steffen Staab contributed to the text on the multi-Dirichlet geo-
graphical topic model in Chapter 3, which was published at the International
Conference on Web Search and Data Mining (WSDM) 2014 [KKSS14].

The following is a list of the main contributions made in this thesis.

In Chapter 2:

• A novel generalisation of the Banzhaf and the Shapley power index is
introduced in Sec. 2.5, which allows the inclusion of system-context,
i.e. observed voting bias.

• The first evaluation of power indices using large datasets of observed
voting behaviour in delegative democracies is presented in Section 2.5.6.
Using observed power in real-world data, a probabilistic interpretation
of power indices is employed for evaluation.

In Chapter 3:

• The novel concept of geographical networks for modelling complex spa-
tial structures in probabilistic models is presented in Sec. 3.6.1. Using
context networks, it is for the first time possible to efficiently model
topics with complex distributions on the sphere (e.g. geographically
distributed documents).
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• Two models for context networks, one based on model selection and
one based on a mixture of Dirichlet processes are presented in Sec. 3.6
and Sec. 3.7.4.

• A generalisation of the Dirichlet process for base measures consisting
of mixtures of Dirichlet processes is introduced in Sec. 3.7.1 as the
multi-Dirichlet process (MDP), which has been developed indepen-
dently from [LF12].

• A generalised estimator for the concentration parameter of a symmet-
ric Dirichlet distribution with changing dimensionality is derived in
Sec. 3.7.6 to learn the hyper-parameter of mixing proportions in a
MDP.

• A three-level hierarchical MDP is employed in Sec. 3.7.4 for modelling
geographical network structures.

• An implementation of the Gibbs sampler is published as open source.

In Chapter 4:

• A generalisation of the hierarchical multi-Dirichlet process for multiple
context variables is presented in Sec. 3.7.1.

• The HMDP topic model is the first topic model which is able to ex-
plicitly model multiple cyclic or spherical context variables.

• With the HMDP, it is possible to weight and to eventually select (i.e.
remove) context variables during sampling.

• The HMDP topic model also is the first to allow for a direct interpre-
tation of the parameters governing the influence of multiple non-trivial
context variables.

• A practical collapsed stochastic variational Bayesian inference (PCSVB)
scheme for the three-level HMDP is derived in Sec. 4.4.

• The implementation of PCSVB for the HMDP is published as open
source.
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Figure 1: Overview of the structure of the thesis. In chapter 2, a
system context model is presented which adds system-specific prior distribu-
tion to power indices. In topic modelling, the LDA model [BJ06a] can be ex-
tended for a system-specific prior distribution, which yields the asymmetric
LDA model by Wallach [WMM09]. Replacing the asymmetric prior distri-
bution of asymmetric LDA with a Dirichlet process yields a non-parametric
topic model, the Hierarchical Dirichlet Process topic model (HDP). In chap-
ter 3, a generalisation of the three-level HDP topic model for multinomial
mixtures of Dirichlet processes is introduced, the Multi-Dirichlet Process
(MDP). Using the MDP, a smoothing of topic distributions based on a geo-
graphical network of document clusters is introduced. This model is called
the MDP Geographical Topic Model (MGTM). In chapter 4, the notion of
geographical networks is generalised to multiple, arbitrary context networks
and an efficient inference scheme based on Practical Collapsed Variational
Bayesian inference with zeroth-order Taylor approximations (PCSVB0) is
derived.
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Chapter 1

Foundations and Related
Work

In this chapter, a brief introduction to the foundations of probability theory
is given. This includes the most important inference techniques for proba-
bilistic models, namely maximum likelihood estimation, maximum a posteri-
ori estimation and Bayesian inference. Then, basic probabilistic topic mod-
els are reviewed, including probabilistic latent semantic indexing (PLSA),
latent Dirichlet allocation (LDA) and hierarchical Dirichlet Process topic
models (HDP). For the latter models, two inference methods for complex
probabilistic models are presented: Gibbs sampling and variational infer-
ence. Finally, methods for evaluating probabilistic models are discussed.

The example of a democratic vote. This chapter explains the funda-
mental concepts of probability with the help of the example of a democratic
vote. The example will be used in preparation of the voting models pre-
sented in the next chapter.

In a democratic vote, a set of voters is voting on a given proposal. Every
voter can vote with yes or no, and the sum of positive votes is used to
calculate if a proposal is passed. If the share of positive votes exceeds a
given quorum – e.g. 50% – the proposal will be successful, otherwise it will
fail.

1.1 The Concept of Probability

The field of science can be divided into two parts:

• In deductive sciences, knowledge is created by logically deducting new
facts from a set of known facts using a set of given operators. The
derived facts can be proven to be true.

11
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• In inductive sciences, hypotheses are created based on observations.
Hypotheses are tested in order to increase their probability of being
true or their truthlikeliness as Popper would say [Pop79]. However,
concepts such as truth or certain knowledge do not exist in inductive
sciences, and all the stochastic models created to describe patterns in
observations are potentially falsifiable [Pop79, Die95].

It therefore seems to be a natural choice to employ the concept of probability
when developing models for explaining real-world observations. Probabilistic
models are able to describe the uncertainty associated with rules derived
from observations and provide the flexibility to react and adapt to new
observations.

There are two competing notions of probability:

• In the frequentist interpretation, probability corresponds to the ex-
pected frequency of an event given a number of trials. Probabilities
are inferred by dividing the number of times an event was observed by
the total number of observations.

• From the Bayesian viewpoint, probabilities are beliefs about the like-
lihood of events. The belief does not have to relate to any observed
events, and thus probabilities cannot be directly inferred. [KF09, p. 16]

One could want to describe the probability pim with which a voter i
will vote yes on proposal m. It was never observed how voter i voted for
this very proposal, so a frequentist would not be able to make any statement
about the probability pim as this particular event was never observed before.
Additionally, it would be absurd to conduct an experiment where voter i
votes n times on the very same proposal m to learn about the probability
with which the voter will agree with proposal m.

The frequentist interpretation of probabilities – while being useful for
a multitude of applications (e.g. in descriptive statistics) – plays only a
minor role in this thesis. In the models developed later in this thesis, non-
observed or hidden variables are employed which can only be interpreted
from a Bayesian viewpoint.

1.2 Basic Concepts and Distributions

Probability distributions are defined by probability functions which assign a
positive value to measurable events x ∈ Σ where Σ is the set of measurable
events. Σ is a subset of the sample space Ω, the set of possible outcomes.
The subset Σ is required to contain the empty set as well as the whole
sample space Ω, and it must be closed under the complement and union
of its contained sets [KF09]. Such subsets are called a σ-algebra. P (Ω),
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the probability assigned to the event of sampling any element of the sample
space, is 1.

There are two different types of probability distributions:

• Discrete probability distributions (also referred to as probability mass
functions) which are defined on a discrete set of measurable events.

• Continuous probability distributions are defined by probability density
functions (PDF) f(x) ∈ R+ with x ∈ Σ, where Σ is a continuous
space of measurable events. The PDF value itself has no direct se-
mantic interpretation other than as a relative likelihood, which can be
calculated for measurable events consisting of a single value from the
sample space.

In the setting of a single vote, the sample space is Ω = {0, 1}, where 0
indicates a negative and 1 a positive vote. The space of measurable events
is Σ = {{}, {0}, {1}, {0, 1}} and P (Ω) = p(0) + p(1) = 1.

1.2.1 Bernoulli distribution

The most simple non-trivial probability distribution is the Bernoulli distri-
bution. It is defined as:

p(v | p) =

{
p if v = 1

1− p if v = 0

= pv · (1− p)1−v with v ∈ {0, 1}. (1.1)

In the example of a vote, the Bernoulli distribution could define a belief in
a voter to vote yes (coded as v = 1), which she then does with probability
p, according to this very simple model. In the following, this probability p
will be called the approval rate of the voter.

1.2.2 Likelihood

The likelihood of a probabilistic model is given by the probability of the
outcomes under the model parameters.

If the example of a vote is extended to describe the voting behaviour of a
voter who participates in a set of votes m ∈ {1, 2, . . . ,M} (with a constant
approval rate of p), the outcomes are the voting decisions (v1, . . . , vM ) ∈
{0, 1}n and the parameter is the approval rate p. The resulting likelihood is
a product of Bernoulli distributions:

L(p | v) = p(v | p) =

M∏
m=1

pvm · (1− p)1−vm = pn1 · (1− p)n0 (1.2)

where n1 is the number of times voter i voted yes, and n0 the number of
times she voted no.
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1.2.3 Binomial distribution

If one does not know the individual votes of the voters but only the number
of positive and negative votes, then a binomial distribution describes the
probabilities of observed vote counts:

p(n0, n1 | p) =
(n0 + n1)!

n0! · n1!
· pn1 · (1− p)n0 (1.3)

There are (n0+n1)! ways of ordering the votes to obtain the observed counts,
but one cannot distinguish the positive votes (which could be ordered n1!
different ways) and the negative votes (which could be ordered n0! different
ways).

1.2.4 Marginal probability

In a probabilistic model with several variables, it sometimes is desirable to
focus on some specific variables by factoring out other variables. One can
do so by calculating the expected value of the variable of interest given the
factored out variable. This process is called marginalising out the variable.

For instance, in the voting example one could be interested in the prob-
ability of v = (v1, . . . , vM ) ∈ {0, 1}M , the binary vector of voting decisions,
but not in the agreement rate p. Given that all values for p are equally
likely (i.e. p takes on values in [0, 1] with equal probability), the marginal
probability of v is:

p(v) =

∫ 1

0
pn1 · (1− p)n0 dp =

n0! · n1!

(n0 + n1 + 1)!
(1.4)

where the parameter p is integrated out and the following equation can be
employed:∫ 1

0
p(n0, n1 | p) dp =

(n0 + n1)!

n0! · n1!

∫ 1

0
pn1 · (1− p)n0 dp =

1

n0 + n1 + 1
(1.5)

because under the assumption of uniformity every number of positive votes
is equally likely and n1 can take on n0 + n1 + 1 = M + 1 different values.

1.2.5 Maximum likelihood estimation

The parameters of such a simple probabilistic model can be estimated by
maximising the likelihood of the given observations under the parameters,
in this case a single parameter p. The maximum likelihood estimation is
typically performed on the logarithm of the likelihood to ease the calculation
of the derivative. For the example of the voter, the parameter p can be
estimated dividing the number of positive votes by the total number of
votes:

p =
n1

n0 + n1
. (1.6)

The complete derivation is given in Appendix A.1.
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1.3 Bayesian Networks

One of they key concepts in probabilistic modelling are probabilistic graphi-
cal models (PGM) [KF09]. In this work, Bayesian networks are used, which
are a subclass of PGMs. Bayesian networks make use of conditional in-
dependence relations between variables in graphical model to create visual
representations of probabilistic models and to derive inference schemes.

Recall that two random variables A and B are independent if P (A∩B) =
P (A) · P (B). Two variables A and B are called conditionally independent
given C if:

P (A ∩B | C) = P (A | C) · P (B | C). (1.7)

In the example of the voter who draws votes v = (v1, . . . , vM ) which are
positive with probability p, a conditional independence was observed and
exploited: If the probability p is unknown and all votes are observed except
for the first vote, the belief in the probability of v1 depends on all the other
observed votes. For instance, if it was observed that the voter voted yes in
all the votes except for the first vote, where the voting decision is unknown,
one would yield a high estimate for the approval rate p and therefore assign
a high probability for v1 being a positive vote as well.

The situation is different if the approval rate p is known. Now the
belief about the probability of v1 to be a positive vote only depends on the
approval rate, and it is conditionally independent of all the other votes given
the approval rate p. This intuition was used when defining the likelihood of
the votes in Equation 1.2:

p(v1, . . . , vM | p) = p(v1 | p) · p(v2 | p) · · · p(vM | p)

where it was implicitly assumed that the voting decisions of the voter are
independent given the approval rate (i.e. the voting decision in the first vote
does not have an impact on the second voting decision etc.).

This assumption can be expressed with a Bayesian network which codes
independence relations between probabilistic variables. In a Bayesian net-
work representation, variables are denoted as nodes and directed edges can
be interpreted as causal relations [Mur01, KF09]. The absence of edges in
a Bayesian network indicates conditional independence relations between
variables.

The Bayesian network for the model of the voting example is shown in
Fig. 1.1(a). In the model, votes vi1, . . . , viM of voter i are caused by the
agreement rate p and vim denotes the mth vote. Given the agreement rate
p, all votes are conditionally independent.
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p

vi2vi1 viM. . .

(a) Bayesian network of the voting model

p

v2mv1m

rm

(b) Extended voting model; votes given

p

v2mv1m

rm

(c) Extended voting model; result given

p

vim

M

(d) Plate notation of (a)

Figure 1.1: (a) Bayesian network representation of M observed
variables v1, . . . , vM sampled from a Bernoulli distribution with pa-
rameter p. Observed variables are highlighted with a grey background.
The observations are independent and identically distributed (i.i.d.). (b)
Bayesian network for a vote with two voters which both share the same
approval rate p and cause the voting result r with their votes, which are
observed. (c) Bayesian network for a vote with two voters which both share
the same approval rate p and cause the observed voting result r with their
votes, which are unobserved. (d) Plate notation of the Bayesian network for
the voting model from (a). The plate notation helps to simplify the nota-
tion of complex Bayesian networks. Repeating subgraphs are surrounded by
plates, a displayed variable denotes the number of repetitions (in this case
M).
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1.3.1 Dependencies in Bayesian networks

A Bayesian network codes conditional (in)dependence relations based on
the notion of trails and d-separation. Trails are undirected, loop-free paths
between two variables. A trail between two variables u and v is d-separated
if at least one of the following conditions holds [KF09]:

1. The trail contains a sequence u . . . → x ← . . . v and x is given. E.g.
a given parent node of two variables renders them independent in the
absence of another trail.

2. The trail contains the sequence u . . . → x → . . . v or the sequence
u . . . ← x ← . . . v and x is given. E.g. a variable is independent of
descendants of child nodes if these child nodes are given and there is
is no other trail between the variable and the descendants.

3. The trail contains a sequence u . . . ← x → . . . v and neither x nor
any descendant of x is given. E.g. two variables are dependent of the
co-parents of a child node if the child node or one of its descendants
is given.

Two variables in a Bayesian network are independent if all trails between
them are d-separated.

Rule 1 was already implicitly demonstrated in Fig. 1.1(a): The belief
in the first voting decision vi1 of voter i becomes independent of all other
voting decisions if the parent node p, the agreement rate, is given.

For demonstrating Rule 2, the example is extended. Imagine a setting
where there are two voters who together vote on a proposal m. The voting
decisions are v1m and v2m. Now the belief about the outcome of the vote can
be added to the model, expressed as rm ∈ {0, 1}, indicating the voting result
(i.e. if the proposal is approved or not). A proposal needs 50% of the votes
to pass the vote. Clearly, this variable is caused by voting decisions v1m and
v2m. The corresponding Bayesian network is depicted in Figure 1.1(b). Now,
if there is no information given about the variables, the Bayesian network
indicates that the voting decisions are caused by the approval rate, and the
voting result then is caused by the voting decisions. Thus the approval rate
depends on the result (i.e. if the result is positive, then we know that the
approval rate is greater than zero). However, given that the voting decisions
are known, the approval rate becomes independent of the result, and it is
possible to estimate the approval rate by only looking at the voting decisions.

Rule 3 can be explained with the same setting. The Bayesian network is
given in Figure 1.1(c). If one does not know the voting result rm, variables
v1m and v2m are independent. However, if it would be known that the vote
was passed (i.e. rm = 1), the variables would become dependent. There are
three out of four scenarios which result in a passed vote: either the first
voter votes yes, or the second – or both. If it now would be known that
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the vote was passed, and it would be known that the second voter voted
no, it would be evident that the first voter voted yes with a probability of
100%. Both variables became dependent. In contrast, if the voting result is
unknown, the knowledge about the voting decision of the second voter does
not affect the belief in the vote of the first voter.

1.3.2 Plate notation

Looking at the Bayesian network of the voting example in Figure 1.1(a),
one can see that not all child nodes of the approval rate p are depicted in
the figure. In general, for complex graphical models, it is undesirable to
draw the complete network of nodes, potentially consisting of thousands of
nodes. Instead, repetitions in the network can be utilised to simplify the
representation using the so-called plate notation. The plate notation of the
Bayesian network for the voting model is depicted in Figure 1.1(d).

In plate notation, repeating subgraphs are surrounded by a plate which
is labelled with the number of repetitions. Indices are used to indicate the
repeating nodes in the subgraph. In the voting example, voting decisions
vim are surrounded by a plate with M repetitions (the number of votes) and
the index m is used to distinguish between single voting decisions.

1.4 Priors and Bayesian Inference

Parameter estimation for the models presented so far was limited to max-
imum-likelihood estimation. For instance, in Equation 1.6 the approval rate
p in a vote was estimated by dividing the number of positive votes by the
total number of votes. For cases where a higher number of observations is
available, this method is plausible. However, for a small number of obser-
vations, maximum likelihood estimation can yield bad parameter estimates.
Consider a scenario where the voting behaviour of a voter is known for only
two votes (on two different proposals), where the voter voted no in both
cases. Maximum likelihood estimation now would estimate that the approval
rate should be zero. Obviously, this estimate is unintuitive – there are not
enough observations available to rule out the possibility that the voter would
never vote yes. From a science-theoretic point of view, it is in general not
desired to allow probabilities to become zero, as it is impossible to rule out
that a previously unobserved event will occur in the future [Pop79]. Addi-
tionally, probabilistic models should not assign zero probabilities to events
because they limit the set of explainable events and potentially assign a like-
lihood of zero to new observations. This especially becomes a problem in
cases where a probabilistic model is used as an input for machine learning
algorithms or when the likelihood is employed to compare the performance
of several probabilistic models, e.g. for model selection [KF09].
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Figure 1.2: Probability density functions of the beta distribution
at changing parameters. The expectation is α/(α + β). Parameters
smaller than 1 assign high densities to extreme values (i.e. 1 or 0) while
values greater than 1 lead to densities centred around the expectation.

Prior probabilities help to overcome this problem. Before the approval
rate p in the example is estimated, it is already known that p will not be
taking on extreme values (i.e. not 0 or 1). It might be even known from
existing theories that the approval rate should be e.g. close to 0.5. This
information can be coded in a probability distribution over the approval
rate.

1.4.1 Beta distribution

The typical prior for the parameter of a binomially distributed variable is
the beta distribution, which takes two positive, real-valued parameters α
and β:

Beta(x | α, β) =
Γ(α+ β)

Γ(α) · Γ(β)
· x(α−1) · (1− x)(β−1) (1.8)

where the gamma function Γ(x) is used, which is a generalisation of the
factorial function for real numbers with

Γ(x) = (x− 1)! ∀x ∈ N+. (1.9)

Note that the following equation holds:

Γ(x+ 1)

Γ(x)
= x (1.10)

which is frequently exploited in parameter inference for probabilistic models
involving beta distributions and related probability density functions. Later
in this thesis, in chapter 4, approximations to the gamma function will be
used to speed up the parameter inference for complex probabilistic models.
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The derivative of the logarithm of the gamma function is the digamma
function:

Ψ(x) =
d

dx
log (Γ (x)) . (1.11)

The digamma function plays a role in parameter inference, e.g. when the
logarithm of the probability density function of the beta distribution is max-
imised.

The first part of the beta distribution is the inverse of the beta function,
defined as

B(α, β) =
Γ(α) · Γ(β)

Γ(α+ β)
(1.12)

which ensures that the integral of Beta(x | α, β) over the sample space [0, 1]
equals 1:

B(α, β) =

∫ 1

0
x(α−1) · (1− x)(β−1)dx ∀α, β ∈ R+. (1.13)

The probability density of the beta distribution at different parameter set-
tings is shown in Figure 1.2. The higher the parameters, the more focussed
the distribution gets, indicating a strong prior belief. If the parameters are
both set to α = β = 1, the beta distribution becomes a uniform distribution
and for parameters smaller than 1, the distribution becomes sparse, assign-
ing high weights on values equal to 1 or 0. Beta priors with α = β are
commonly referred to as symmetric priors.

1.4.2 Maximum a posteriori estimation

For the voting example, one now can multiply the likelihood with the prior
probability of the parameter to get the so called posterior probability, the
probability of the parameters given observations.

Given observations n = {n0, n1} and a beta prior with hyperparameters
α, β on the parameter p of a binomial distribution, Bayes’ theorem yields

p(p | α, β)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
p(n | p) ·

prior︷ ︸︸ ︷
p(p | α, β)

p(n)︸︷︷︸
evidence

(1.14)

where the evidence can be interpreted as a normalisation constant which
makes sure that the posterior is a probability:

p(n) =

∫ B

A
p(n | p) · p(p | α, β) dp (1.15)
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and the domain of p is [A,B]. The evidence is independent of the parameter
p and therefore it plays no role in parameter inference and is frequently
omitted.

Omitting the evidence, the posterior probability of the vote model is
proportional to

p(p | n0, n1, α, β) ∝ p(n0, n1 | p) · p(p | α, β) ∝ pn1+α−1(1− p)n0+β−1.

which is a beta distribution with parameters n1 + α and n0 + β.

This beta distribution over the parameter p of the model can be max-
imised to obtain the parameter setting which maximises the likelihood under
the prior.

The beta distribution is concave for α > 1 and β > 1 (cf. Fig. 1.2)
and for these cases, one obtains the parameter which maximises the a pos-
teriori probability by setting the derivative (of the logarithm) to zero. This
yields [Hei08]:

p =
n1 + α− 1

n1 + n0 + α+ β − 2
.

For a detailed dervivation see Appendix A.2. Instead of only counting the
positive votes and dividing by the total number of votes, the beta prior
effectively adds so-called pseudo counts to the observations. The inference
e.g. acts as if (α−1) positive and (β−1) negative votes were already observed.
An exception which is ignored in literature (e.g. [Hei08, AWST12, KF09,
p. 754]) is that for sparse parameters α < 1 or β < 1 one gets negative
pseudo-counts and the MAP estimate from Eq. 1.4.2 returns inadequate
results. The reason is that the posterior stops being concave for counts
smaller than one. Therefore different estimates are required for this special
case, which are given here:

p̂MAP =



n1+α−1
n1+n0+α+β−2 if n1 + α > 1 ∧ n0 + β > 1

1 else if n1 + α > n0 + β

0 else if n1 + α < n0 + β

x, x ∼ unif(0, 1) else if n1 + α = n0 + β = 1

1 or 0 else if n1 + α = n0 + β

(1.16)

i.e. the probability estimate is either p̂MAP = 0 or p̂MAP = 1 for counts
smaller than one. In this case, the posterior probability is infinite for both
p = 1 and p = 0, and the likelihood is growing faster to the direction of the
larger counts. Therefore it is reasonable to set p̂MAP = 1 if n1 + α is larger
and p̂MAP = 0 if it is smaller than n0 + β. Theoretically, there could be
situations where the counts are smaller than one and equal, i.e. n1 + α =
n0+β, and in this case the maximum is found by setting p̂MAP to 1 or 0. For
cases where n1 + α = n0 + β = 1, the posterior is the uniform distribution
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and therefore all parameter settings maximise the posterior. In MAP, non-
sparse beta priors smooth the estimate, while sparse beta priors produce
more extreme estimates, compared to the maximum likelihood estimate for
a multinomial without priors.

For the example of the vote with two observed negative votes, one could
decide to set a prior which assigns high probability to approval rates around
50%, like a symmetric beta prior with parameters α = β = 5.0. While
maximum likelihood estimation yields an estimated approval rate of 0, the
maximum a posteriori inference would estimate the approval rate as 0.4, by
including the prior belief in the approval rate of the voter.

1.4.3 Bayesian inference

A different and more elegant way of using the prior probability over the
parameters is Bayesian inference. Both maximum likelihood estimation and
maximum a posteriori inference maximise parameters with regard to a con-
tinuous probability distribution over the parameter. All information about
the shape of this probability distribution is lost, i.e. there is no effect of the
existence of other parameter settings with high probability on the parame-
ter estimate. And MAP might return zero probabilities which typically are
undesired for probabilistic modelling.

Therefore, it can be advantageous to include the whole information of
the distribution of the parameter into the parameter estimate. Bayesian
inference estimates parameters as the expectation of the posterior over the
parameters.

For the example of a binomial distribution with a beta-distributed prior,
this yields [Hei08]:

E [p (p | n0, n1, α, β)] =

∫ 1

0
p · p (p | n0, n1, α, β) dp

=

∫ 1

0
p · p (n0, n1 | p) p (p | α, β)∫ 1

0 p (n0, n1 | p′) p (p′ | α, β) dp′
dp

=

∫ 1

0

p1+n1+α−1 · (1− p)n0+β−1∫ 1
0 p
′n1+α−1 · (1− p′)n0+β−1dp′

dp.

The binomial distribution can be moved to the exponent of the numerator
and integrals replaced by beta functions using Equation 1.13:

=

∫ 1
0 p

n1+α · (1− p)n0+β−1dp

B(α+ n1, β + n0)
=
B(α+ n1 + 1, β + n0)

B(α+ n1, β + n0)
.

Plugging in equation 1.12 yields

=
Γ(α+ n1 + 1) · Γ(β + n0) · Γ(α+ β + n1 + n0)

Γ(α+ n1) · Γ(β + n0) · Γ(α+ β + n1 + n0 + 1)
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and using the properties of the gamma function by plugging in Equation 1.10
gives

E [p (p | n0, n1, α, β)] =
n1 + α

n1 + n0 + α+ β
. (1.17)

Obviously, Bayesian inference yields a different parameter estimate than
maximum a posteriori inference (Eq. 1.4.2): The parameters α and β of
the beta distribution directly correspond to pseudo counts. In the voting
example, this means that the inference acts as if α positive and β negative
votes were already observed. As the parameters of the beta distribution are
greater than zero, the probability estimates are guaranteed to be non-zero.

For the example of the vote with two observed negative votes and a prior
of α = β = 5.0, maximum likelihood estimation estimated the approval rate
as p = 0, maximum a posteriori inference as p = 0.4. Bayesian inference
now would estimate the approval rate as p = 0+5

0+2+5+5 = 0.416. In practice,
Bayesian inference often yields more appropriate parameter estimates than
maxima-based estimates, as the whole information of the posterior is used
instead of a single maximum.

1.4.4 Multinomial distribution

It is straightforward to extend the binomial distribution for multiple (i.e.
more than two) categories. For instance, in the voting example one could add
abstention to the set of possible voting decisions, so that for a single voting
decision vim ∈ {0, 1, 2} where the numbers code no, yes and abstention,
respectively.

The resulting probability distribution is the multinomial distribution:
Given K categories with counts n1, n2, . . . , nK for each category and prob-
abilities p1, p2, . . . , pK , the probability of the observed counts is (c.f. Eq. 1.3):

p(n1, n2, . . . , nK | p1, p2, . . . , pK) =
(
∑K

i=1 ni)!

n1! · · ·nK !
· pn1

1 · · · p
nK
K . (1.18)

The first part of the formula accounts for the possible combinations of events
which produce the given numbers of observations in each category. As for
the binomial distribution, this term is not relevant for maximum likelihood
estimation of the parameters p1, p2, . . . , pK (compare to Eq. 1.6). The right-
hand side of the equation can be turned into a binomial distribution by
merging categories. In the example of a vote, if one e.g. does not distinguish
between negative votes and abstention, one obtains a two-category distri-
bution again which is a binomial with two counts, nyes and n{no,abstention}.
Analogous to Eq. 1.6 the maximum likelihood estimate of the probability of
a single category in a multinomial then is given by

pi =
ni∑K
i=1 ni

∀i ∈ {1, . . . ,K}. (1.19)



24 CHAPTER 1. FOUNDATIONS AND RELATED WORK

1.4.5 Dirichlet distribution

For maximum a posteriori estimation and Bayesian inference, the Dirichlet
distribution, a multi-dimensional generalisation of the beta distribution, can
be used used as a prior for the parameters of the multinomial distribution.
The Dirichlet distribution is defined as (c.f. Eq. 1.8):

p(θ1, . . . , θK | α1, . . . , αK) =

∏K
k=1 Γ(αk)

Γ
(∑K

k=1 αk

) · K∏
k=1

θαk−1
k (1.20)

with θk ∈ [0, 1]K ∀k ∈ {1, . . . ,K} and
∑K

k=1 θk = 1. The normalisation
factor is based on a generalisation of the beta function (see Eq. 1.12):

∫ K∏
k=1

θαk−1
k dα =

Γ
(∑K

k=1 αk

)
∏K
k=1 Γ(αk)

(1.21)

The interpretation of the parameters of the Dirichlet distribution is the
same as for the beta distribution. Parameter values smaller than one induce
sparsity, while values larger than one lead to a smoothed distribution. If all
parameters are set to the same value (αi = αj ∀k ∈ {1, . . . ,K}), the prior
is symmetric and assigns the same prior probability to each θi. In this case,
one might re-write the Dirichlet distribution as

p(θ1, . . . , θK | α) =
Γ(α)K

Γ (K · α)
·
K∏
k=1

θα−1
k . (1.22)

For the special case of α = 1, the symmetric Dirichlet distribution equals a
uniform distribution. The parameter α commonly is referred to as a concen-
tration parameter [KF09] as large values lead to high probabilities around
the expected value while small values assign high probability densities to
areas distant to the expected value, where e.g. one θi virtually takes on all
the probability mass while the other output parameters θ are close to zero.

For a better understanding of the Dirichlet distribution, Polya intro-
duced an iterative scheme of drawing coloured balls from urns which yields
a Dirichlet distribution in its infinite limit, the Polya urn scheme. Imagine
that there are balls of K colours, one colour for every category of a given
Dirichlet distribution. There further exists an urn which contains α1 balls
of colour 1, α2 balls of colour 2 and so on. In the Polya urn scheme, a ball is
repeatedly drawn from the urn, its colour is noted, the ball returned and an
additional ball of the same colour added to the urn. After normalising the
counts by the number of balls in the urn, one obtains a probability for each
category to be drawn from the urn; and the infinite limit of this scheme will
yield Dirichlet distributed probabilities.
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1.4.6 Maximum a posteriori estimation and Bayesian infer-
ence for the multinomial distribution

Again, the analogy to the binomial distribution can be exploited to ob-
tain parameter estimates for the multinomial distribution with a Dirichlet
prior: One can merge all categories except one to turn the distribution into
a binomial distribution with a beta prior, for which the parameter esti-
mate is known. The posterior probability then is Dirichlet distributed with
p(p1, . . . , pK) = Dir (n1 + α1, · · · , nK + αK).

A maximum a posteriori estimate of the multinomial distribution with
a Dirichlet-distributed prior is (analogous to Eq. 1.4.2) obtained as:

p̂i =


(ni+αi−1)·[nk+αk>1]∑K
k=1(nk+αk−1)[nk+αk>1]

if ∃ nj + αj >= 1, j ∈ {1, . . . ,K}

[ni + αi > nj + αj ∀j 6= i] else if Dir(n+α) is unimodal

randp() otherwise

(1.23)
where Iverson brackets are used: False statements within the square brackets
return 0, true statements return 1, i.e. in the second case the probability
of the class with the highest counts (including pseudo-counts) is set to 1.
Theoretically, there could be situations where the posterior Dir(n + α) is
multi-modal, i.e. there exist several categories whose counts are maximal.
In this case a maximum is found by randomly setting pi to 1 for one of these
categories. If all counts are equal to one, the posterior is uniform and a
MAP estimate can be randomly drawn from this uniform distribution. This
behaviour of the estimator is denoted by the randp() function.

The Bayesian inference of parameter pi of a multinomial distribution
with a Dirichlet prior given observed counts n1, n2, . . . , nK is (analogous to
Eq. 1.17):

pi =
ni + αi∑K
k=1 nk + αk

. (1.24)

1.4.7 Fisher distribution and approximate inference

So far, this chapter presented three discrete probability distributions – the
Bernoulli distribution and its generalisations, the binomial and the multino-
mial distribution. Additionally, two probability density functions, the beta
and Dirichlet distribution, were introduced. All these distributions have a
closed-form solution for estimating the parameter which maximises the like-
lihood or the posterior. However, there exist probability distributions where
maximum likelihood estimation does not yield a closed-form solution.

As mentioned, the parameter α of the symmetric Dirichlet distribution
is commonly referred to as a concentration parameter. Another probability
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(a) κ = 1 (b) κ = 10 (c) κ = 100

Figure 1.3: The Fisher distribution, a special case of the Mises-
Fisher distribution for three dimensions. Each of the figures shows
100 random Fisher-distributed samples on the three-dimensional unit sphere
with concentration parameters κ = 1 (a), κ = 10 (b) and κ = 100 (c). Sim-
ilar as for the symmetric Dirichlet (and Beta) distribution, a higher concen-
tration parameter means a higher probability density around the expected
value.

density function with a concentration parameter is the Mises–Fisher distri-
bution.

The Mises–Fisher distribution is a probability density function on an
n-sphere, the generalisation of the sphere for arbitrary dimensions. An im-
portant special case of the Mises–Fisher distribution is the Fisher distribu-
tion on the three-dimensional sphere. In short, the Fisher distribution is
comparable to an isotropic Gaussian distribution on the plane (i.e. a “non-
directed” Gaussian with equal variance and no correlation between both
dimensions) [Fis53, Wat82]. The Fisher distribution is defined as

f (x | κ, µ) =
κ

4π · sinh(κ)
· eκ·µTx

where µ is the mean, which is located on the unit-sphere, and κ ∈ R+

is the concentration parameter. As for the Dirichlet distribution, a high
concentration parameter implies a high probability mass centred around the
expected value. For a low concentration parameter, the probability density
function becomes more uniform and the uniform distribution is reached at
κ = 0.

Maximum likelihood estimation of Fisher distributions

Given a set of N observed samples {x1, . . . , xN} from this distribution,
one can apply maximum likelihood estimation for obtaining parameter esti-
mates.
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Each observation xi is a point on the sphere and the estimate for the mean
direction is [MJ09, p. 198]:

µx =

∑
i xi

‖
∑

i xi ‖2
(1.25)

The estimate of the concentration parameter κ is more complex, because the
normalisation factor has to be taken into account. Maximising the likelihood
with respect to κ yields an optimum at [MJ09, Sra12]:

Ap(κ) = R̄ ⇒ κ = A−1
p (R̄) (1.26)

with

R̄ =
‖
∑

i xi ‖2
N

(1.27)

and

A(κ) =
I 2

3
(κ)

I 1
2
(κ)

(1.28)

with Is(x) denoting the Bessel function of the first kind defined as

Is(x) =

∞∑
k=0

(−1)k

Γ(k + s+ 1) · k!

(x
2

)2k+s
. (1.29)

Because of the complex nature of the Bessel functions (which include a
summation over fractions involving gamma functions), it is not possible to
obtain a closed-form solution for equation 1.26. There exist several alter-
native approximations for the concentration parameter of the Mises–Fisher
distribution [BDGS05, MJ09, TFO+07]. A popular approximation is given
by Banerjee et al. [BDGS05]:

κ ≈ 3 · R̄− R̄2

1− R̄2
(1.30)

However, more precise approximations exist which estimate κ in an iterative
process [TFO+07].

It is evident that for some probability distributions, parameter estimates
can be significantly harder to compute than for simple distributions such
as the multinomial with a Dirichlet prior. Large graphical models involving
complex probability distributions amplify the high computational costs. For
large datasets, inference would be slowed down significantly, which renders
the application of these models practically impossible. On the other hand,
one often wants to use the special properties of complex distributions, e.g.
the periodicity of the Fisher distribution. These issues are addressed later
in the thesis.
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Figure 1.4: Bayesian network representation for a mixture of
two Fisher distributions. The observed data {x1, . . . , xN} (points on the
sphere) are drawn from two Fisher distributions with parameters µ1, κ1 and
µ2, κ2, respectively. Membership variable zi ∈ {1, 2} indicates from which
of the two distributions observation xi was sampled.

1.4.8 Latent variables and expectation-maximisation

In Section 1.3 Bayesian networks were introduced which included given ob-
servations drawn from probability distributions with unknown parameters.
In Fig. 1.1(c) a graphical model was shown which includes latent (i.e. unob-
served) variables representing the actual votes of two voters, which can be
estimated given the known voting result.

The most popular application of latent variables, however, is the in-
ference on generating probability distributions: Given multiple probability
distributions and N observed samples x, find out which observations were
sampled from which probability distribution. For the case of two Fisher
distributions, the problem can be formalised as follows: Given two Fisher
distributions with parameters µ1, κ1 and µ2, κ2, which e.g. could correspond
to the center and the spread of two neighbouring cities. Additionally, there
are latent membership variables z with zi ∈ {1, 2}∀i ∈ {0, . . . , N} which –
for every data point xi – indicate if the data point is sampled from the first
or the second Fisher distribution, i.e. an observed photo with a GPS tag is
associated with the area of geographic reach of the first or the second city.

Every data point xi then is sampled from its generating Fisher distribu-
tion, known from zi:

xi | zi ∼ f(κzi , µzi) (1.31)

The corresponding graphical model is shown in Fig. 1.4. Models which
explain observations with multiple alternative probability distributions, and
which learn latent variables assigning each observation to one single proba-
bility distribution, are called single-membership models.

Parameter inference in the setting of a mixture of two Fisher distribu-
tions involves the estimation of two types of variables: the parameters µ and
κ of the Fisher distributions and the latent membership variables z.

This general scheme of modelling data has a broad range of applications:
One can chose the number of groups and plug in every desired probability
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distribution in the model to explain data by a set of probability distributions
with different parameters. Each datapoint is explained by being generated
by a single group and thus such models are called single membership models.
A broad range of data mining methods for detecting a-priori unknown groups
of datapoints is based on similarly structured probabilistic models.

Expectation-maximisation

The probability distribution over the latent variables in a model with two
Fisher distributions is already quite complex because of the dependencies
between the latent variables through the parameters of the Fisher distri-
butions. From Fig. 1.4 one can see that all membership variables z and
parameters µ1, κ1, µ2, κ2 depend on each other through their children, the
observations x, which are given.

If the membership-variables z would be known, the parameters of each
Fisher distribution would only depend on their observations x and it would
be possible to use maximum likelihood estimation to infer the latent param-
eters.

Additionally, knowing the parameters of the probability distributions,
the latent variables z would become independent of each other and one could
use the fact that probability densities are relative likelihoods to infer the
membership probabilities for each data point (i.e. it is possible to calculate
the probability of a observation being drawn from the first or the second
Fisher distribution).

Both facts can be used to learn about the unknown variables in an iter-
ative sampling scheme in which the parameters of the probability distribu-
tions are randomly initialised and then the algorithm iteratively (i) learns
about the latent variables and then (ii) re-estimates the parameters of each
probability distribution, given the membership of each observed datapoint.
The latent variables are estimated as membership-probabilities. For param-
eter estimation, observations are weighted by the probability of being drawn
from the respective probability distribution. This sampling scheme is called
expectation-maximisation (EM).

For a mixture of Fisher distributions, one can plug in the weighted ob-
servations in the formula for maximum likelihood estimation given in Equa-
tions 1.25 and 1.30. The expectation-maximisation algorithm then is given
by: [BDGS05, GY14]

1. Initialisation: Set κ1 = κ2 = 0 and set µ1 and µ2 to the position of
two randomly chosen, distinct observations.

2. Expectation step: For every observation xi, calculate the member-
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ship probabilities as:

p(zi = 1) =
f(xi | µ1, κ1)

f(xi | µ1, κ1) + f(xi | µ2, κ2)

p(zi = 2) =
f(xi | µ2, κ2)

f(xi | µ1, κ1) + f(xi | µ2, κ2)

3. Maximisation step: Re-estimate the parameters of the two Fisher
distribution indexed by t ∈ {1, 2} with weighted observations:

µt =

∑
i p(zi = t) · xi

‖ (
∑

i p(zi = t) · xi) ‖2

R̄t =
‖ (
∑

i p(zi = t) · p(zi = t) · xi) ‖2
N

κt ≈
3 · R̄t − R̄t2

1− R̄t2

Step 2 and 3 are repeated until the average change in p(z) is smaller than a
pre-defined lower limit ε.

1.5 Topic Models

The core of this thesis is centred around a special class of probabilistic mod-
els which is more complex and more powerful than the models introduced so
far. These probabilistic models are called topic models, because their most
prominent use case is the automatic extraction of topics from a corpus of
text documents. The motivation behind topic modelling is the processing
of large corpora of text documents. For example, in data mining, topic
models can be applied to analyse the content of a large corpus by learning
which topics are covered and how many documents are available for each
topic. In machine learning, processing words of documents is often ineffi-
cient. Instead, documents can be represented by the topics they cover to
reduce the complexity of the input for a prediction algorithm. The histor-
ically most important motivation for topic models is information retrieval.
Given a search query consisting of several words, it can be computationally
expensive to compare the words of the query with the words in each text
document of a corpus. Instead, the topics behind the query words can be
detected and the search can be limited to documents from the topic of the
query. For instance, it could be advantageous to limit the search to text
documents from the topic sports given the query “best football players”.

Generally speaking, topics in topic modelling correspond to sets of fre-
quently co-occurring words in a given corpus of text documents. In the
probabilistic setting, topics are multinomial distributions over the known
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vocabulary, e.g. all terms appearing in the corpus. This is best explained
with an example. Imagine one would do a simple quantitative analysis of a
collection of newspaper articles based on word frequencies. For each article,
the section is known which can be interpreted as the (very general) topic
of the contained news and there are three sections, politics, economy and
sports. Looking at the news articles, one could observe that there are typ-
ical words which occur frequently in each section. For instance, terms like
financial, economy, bank and crisis frequently occur in the economy section.
For the politics section, one could observe that election, politician and vote
occur often and the words soccer, match and goal frequently appear in the
sports section. The word frequencies can then be normalised by the total
number of words in each newspaper section to obtain a frequentist estimate
of the probability of a term in a given section of the newspaper. These
multinomial distributions over the vocabulary are simple descriptions of the
topic of each news section and assign high probabilities to semantically re-
lated terms. One could employ such multinomial topic-word distributions to
guess the topic of a given text document e.g. by selecting the most probable
topic given that the words in the document are independent draws from a
topic multinomial.

The target of topic models is to automatically extract topics from a set
of documents without requiring any background knowledge about sections
or other categorisations of documents, and where documents potentially
cover multiple topics. There exist both non-probabilistic and probabilistic
approaches for topic modelling.

1.5.1 Latent semantic analysis

The classical method for topic extraction is called Latent Semantic Analysis
(LSA). For every corpus of text documents there exists a matrix represen-
tation D, where rows correspond to documents, columns correspond to the
terms in the vocabulary, and entry dit stores the frequency of term t in
document i. Note that the ordering of words is lost by this matrix represen-
tation of documents. This is the so-called bag-of-words assumption. Because
of its mathematical implications this assumption is behind all the models
presented in this thesis.

LSA is based on a Singular Value Decomposition (SVD) of the document-
term matrix D. D can be decomposed as follows:

D = UΣV T (1.32)

with Σ being a diagonal matrix containing the singular values of the matrix,
and U and V T being orthogonal matrices, i.e. UUT = I and V TV = I.
V T can be interpreted as a topic-word matrix, where every row corresponds
to a topic vector and the entries give the weight of a term t under topic
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k with vkt ∈ [−1, 1]. Terms which are important for a given topic (i.e. co-
occur frequently) have a weight close to 1, while terms which co-occur less
often than expected with a given topic have negative weights. U can be
interpreted as a document-topic matrix, storing the weight of the topics for
the given document.

By reordering the matrices Σ, U and V by the size of the singular values
and reducing the matrix to the first K singular values, one obtains matrix
Σ′. Then U and V are reduced to the first K topics, yielding U ′ and V ′.
An approximation to the document-term matrix D then is given by D′ =
U ′Σ′V ′T . U ′ has M × K columns, where M is the number of documents.
Given that the vocabulary size V is much larger than K, U ′ is an effective
dimensionality reduction of the document-term matrix D and has especially
proven useful for information retrieval tasks.

Because topic vectors may contain negative values and because of un-
desired behaviour such as the inability to detect polysemy, LSA makes a
human interpretation of the detected topics difficult. Additionally, it is not
clear how to extend or modify LSA e.g. for documents with metadata.

1.5.2 Probabilistic latent semantic analysis

The most basic non-trivial probabilistic topic model is Probabilistic Latent
Semantic Analysis (PLSA) [Hof99]. PLSA models a corpus of M documents
D = {d1, . . . , dM} where documents are sets of words (i.e. the bag-of-words
assumption again is employed): di = {wi1, wi2, . . . , wiNi} and where Ni is
the length of document i. Because the ordering of words is ignored, the
probability of observations would be identical for all orderings of observed
words in the documents, making the observations exchangeable. De Finetti’s
theorem tells that any set of exchangeable observations can be modelled by a
mixture of probability distributions [BNJ03, Kin78]. In PLSA, the number
of topics K is chosen a priori and each word is modelled as the result of the
following process:

1. For every of the K topics, draw a topic-word distribution φk from a
uniform distribution.

2. For every document di, draw a document-topic distribution θi from a
uniform distribution.

3. Select a document i from a uniform probability distribution over all
documents.

For each word wij in document di, draw a topic zij from θi:

zij ∼ Mult(θi)

and then draw a word wij from φzij :

wij ∼ Mult(φzij )
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It is assumed that the number of topics K is known. The resulting graphical
model is depicted in Figure 1.5(a).

Topics found by PLSA are multinomial distribution over the set of words
and therefore can be interpreted. As for every probabilistic model, exten-
sions to PLSA are straightforward, and numerous variants of PLSA exist in
literature. Some of the extensions will be reviewed in a later section.

Inference for PLSA is based on the expectation-maximisation algorithm
described in the original paper by Hofmann [Hof99]. First, all probability
distributions are randomly initialised. Then, in an iterative scheme un-
til convergence, topic-word assignments zin are calculated and the assign-
ments then are used to re-estimate the topic-word distributions (topics) and
document-topic distributions via maximum likelihood estimation.

PLSA – though being an easy-to-implement and popular method for
topic extraction – comes with restrictions. First of all, there is no smoothing,
meaning that unseen words will lead to zero probabilities in the topic-word
multinomials. Second, the PLSA model from the original paper only allows
inference for known documents which are selected with equal probability. To
infer the topic distribution for new documents within the PLSA framework,
the topic-word distributions of existing documents have to be averaged to
obtain an empirical topic-word distribution.

1.5.3 Latent Dirichlet allocation

To overcome some of the problems with PLSA, Blei et al. [BNJ03] proposed
Latent Dirichlet Allocation (LDA), a probabilistic topic model with a dif-
ferent generative process for documents. As in PLSA, the number of topics
K is chosen a priori. The process is as follows:

1. For each document, draw the document length Ni from a Poisson
distribution:

Ni ∼ Poisson(λ)

2. For every of the K topics, draw a topic-word distribution φk from a
symmetric Dirichlet distribution with parameter β:

φk ∼ Dir(β)

3. For every document di, draw a document-topic distribution θi from a
symmetric Dirichlet distribution with parameter α:

θi ∼ Dir(α)

4. Finally, for each word wij in document di, first draw a topic zij from
θi and then draw a word wij from φzij :

zij ∼ Mult(θi) wij ∼ Mult(φzij ) (1.33)
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According to Blei [BNJ03], one key advantage of LDA over PLSA is that
LDA is a well-defined model not only for the documents of the training
corpus D, but also for unseen documents [GK03]. However, in practice,
PLSA can be slightly reformulated to yield a model which permits inference
for new documents. It can be easily shown that LDA with uniform priors (i.e.
α = 1 and β = 1) is identical to such a corrected PLSA [GK03, AWST12].
The strength of LDA thus lies in the (non-uniform) Dirichlet priors which
can be shown to improve the model quality significantly in practice.

Improvements in model quality through Dirichlet priors are due to mul-
tiple causes. In Section 1.4.1 and 1.4.4 it was demonstrated that the param-
eters of a Dirichlet prior serve as pseudo-counts during inference and thus
effectively prevent zero probabilities and overfitting. As visualised in Fig.
1.2, symmetric Dirichlet priors (and the beta prior, the two-dimensional case
of a Dirichlet) induce sparsity for concentration parameters smaller than 1,
i.e. it is very likely to see a small set of categories (or only one) with a high
probability while all other categories have probabilities close to zero. Both
for the topic-word distributions φ and the document-topic distributions θ it
can be shown that sparse Dirichlet priors help the topic detection process:
First, for the vast majority of datasets, topics only place weight on a small
set of terms from the vocabulary [BNJ03]. Second, a single document typi-
cally covers only a limited set of topics and therefore a sparse prior for the
document-topic distribution is beneficial for many datasets.

However, there are exceptions where documents have a non-sparse distri-
bution over the set of topics, e.g. if the number of topics is small. Addition-
ally, in many cases an asymmetric sparse Dirichlet prior over the topic-word
distribution can be beneficial for topic quality and perform better than a
symmetric prior [WMM09].

1.6 Inference for Complex Graphical Models

Latent Dirichlet Allocation samples words from a mixture of multinomial
distributions with Dirichlet priors. Parameter inference for LDA can become
more complex and there exists a multitude of different approaches which,
however, all turn out to result in similar inference equations [AWST12].

1.6.1 Expecation-maximisation and maximum a posteriori
inference

As described in Section 1.5.2, inference for PLSA is based on an expectation-
maximisation algorithm where parameters are estimated with maximum
likelihood estimation. To account for the Dirichlet priors in LDA, the
expectation-maximisation scheme can be modified – instead of maximum
likelihood estimation, maximum a posteriori estimation can be employed.
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Figure 1.5: Graphical models for (a) Probabilistic Latent Seman-
tic Analysis (PLSA) and (b) Latent Dirichlet Allocation (LDA).
While PLSA is able to detect topics as probability distributions over the
known vocabulary, in the model by Hofmann [Hof99] both document-topic
and topic-word multinomials do not have a prior. LDA adds a Dirichlet
prior over the topic-word and the document-topic distribution, which re-
sults in a fully generative model that comes with several desired properties,
i.e. allowing for sparse document-topic and topic-word priors [BNJ03].

However, in MAP sparse Dirichlet priors might lead to zero probabilities,
an unwanted behaviour in probabilistic modelling. MAP also is more likely
to yield parameter estimates in local optima because of estimates involving
probability estimates of 0 and 1.

It can be shown that MAP parameter estimates lead to lower topic
quality compared to alternative inference procedures [AWST12]. Therefore,
other inference techniques are employed in practice.

1.6.2 Gibbs sampling

The most popular and easy-to-implement method for inference in complex
probabilistic models with latent variables is Gibbs sampling.

Probabilistic topic models assume that each observed word is drawn
from a topic. The topic of a word is stored in a latent topic assignment
variable zij . In the model of LDA, each topic assignment can take on K

different values. For a corpus with L =
∑M

i=1Ni different words, the space
of possible settings for the latent variables is huge and has a size of KL – it
is impossible to explore this space with naive methods.

The idea behind Gibbs sampling is to explore the space of possible
settings for the latent variables of a probabilistic model by repeatedly re-
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estimating a single latent variable based on all the other latent variables,
which are kept fixed. Estimates are based on Bayesian inference [Gri02,
Hei08].

For LDA, the topic-assignments z are initialised with random values, i.e.
for each topic assignment a topic is drawn from a uniform distribution over
the K topics.

The Gibbs sampler then works as follows:

1. A latent topic assignment variable zij is picked at random, storing
the topic of the jth word in document i. Given all the other topic-
assignments denoted as z−ij , one can calculate the probability for each
topic k ∈ {1, . . . ,K} as γijk = p(zij = k | wij , z−ij ,w−ij , θi,φ, α, β).
The jth word in document i is term t, stored in word variable wij = t.
This yields the probability [Gri02, Hei08]:

γijk ∝
nik + α

Ni +K · α︸ ︷︷ ︸
prob. of topic k in document i

· nkt + β

nk· + V · β︸ ︷︷ ︸
prob. of term t under topic k

(1.34)

where nik stores how often topic k is used in document i

nik =

Nj∑
j=1

[zij = k] (1.35)

and nkt keeps track of how often term t was assigned to topic k

nkt =
M∑
i=1

Nj∑
j=1

[wij = t] · [zij = k] (1.36)

where Iverson brackets are employed (i.e. false statements within the
square brackets return 0, true statements return 1) and nk· is the total
number of words assigned to topic k

nk· =
V∑
t=1

nkt. (1.37)

The topic assignment zij then is randomly sampled from γij :

zij ∼Mult(γij) (1.38)

i.e. the topic assignment zij is set to a concrete value which is randomly
drawn from the multinomial distribution over the topic probabilities.

2. For each document, the document-topic distribution θi can be esti-
mated with:

θi =
nik + α

Ni +K · α
. (1.39)
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3. Topic-word distributions are estimated as:

φk =
nkt + β

nk· + V · β
. (1.40)

1.6.3 Variational inference

In the original LDA paper [BNJ03], Blei et al. presented a parameter esti-
mate based on variational inference. The idea behind variational inference
is simple: Intuitively, one would try to estimate the parameters of a proba-
bilistic model by maximising the posterior (or the marginal distribution) of
the model given observations.

However, this is impossible due to the dependencies between the vari-
ables in the model [Law01, BNJ03]. One solution to deal with that problem
is to assume independence between the variables in an approximate proba-
bility distribution and to approximate the optimal parameter setting under
that assumption. [XJR12] This is the so-called mean-field assumption and
the inference is commonly referred to as variational mean field approxima-
tion [HG09].

Given the likelihood p (x | α, β) of the observed words in documents un-
der the hyper-parameters of LDA, it is possible to create a lower bound on
the marginal likelihood of the observations and parameters, which is denoted
by q(z, θ, φ). This lower bound is called the variational distribution.

The lower bound is based on Jensen’s inequality [JGJS99, BNJ03, KF09]:

log(p(w | α, β)) =

log

∫
· · ·
∫ ∑

z∈{1,...,K}|D|
q(z,θ, φ)

p(w, z,θ, φ | α, β)

q(z,θ, φ)
dθ1 · · · θM dφ1 · · ·φK

≥∫
· · ·
∫ ∑

z∈{1,...,K}|D|
q(z,θ, φ) log

p(w, z,θ, φ | α, β)

q(z,θ, φ)
dθ1 · · · θM dφ1 · · ·φK

= Eq [log p(w, z,θ, φ | α, β)]− Eq [log q(z,θ, φ)] (1.41)

where all the parameter settings of z, θ and φ are summed over and in-
tegrated out in the first step. Looking at the formula, one can see that
maximising this lower bound is minimising the Kullback-Leibler (KL) di-
vergence between q and p [JGJS99, KF09] because

DKL(q ‖ p) =
∑
i

q(i) log

(
q(i)

p(i)

)
= −

∑
i

q(i) log

(
p(i)

q(i)

)
. (1.42)

As mentioned, in variational mean field approximation, the approximate dis-
tribution assumes independence between the variables and introduces vari-
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ational parameters γ, α̃ and β̃ over the variables [JGJS99, BNJ03]:

q(z,θ, φ) =
∏
ij

q(zij | γij)
∏
i

q(θi | α̃i)
∏
k

q(φk | β̃k). (1.43)

By iteratively maximising the likelihood for single variational parameters in
the lower bound from 1.41, estimates on the latent parameters and variables
of the original model are obtained.

The best-performing variational inference scheme for LDA is collapsed
variational inference where the multinomial parameters are marginalised
out [TNW07, AWST12]. It models the topic-word distributions φ and the
document-topic distributions θ as dependent variables in the variational ap-
proximation, which yields the variational distribution

q(z,θ, φ) = q(θ, φ | z) ·
∏
ij

q(zij | γij). (1.44)

The lower bound on the true likelihood then is given by

log(p(x | α, β)) ≥ Eq [log p(x, z | α, β)]− Eq [log q(z)] (1.45)

and maximising this term with respect to the parameters γij of the multino-
mial distributions over zij yields an optimum at approximately [AWST12]:

γijk =
exp

(
Eq

[
log(n−ijik + α) + log(n−ijkt + β)− log(n−ijk· + V · β)

])
∑K

k′=1 exp
(

Eq

[
log(n−ijik′ + α) + log(n−ijk′t + β)− log(n−ijk′· + V · β)

])
≈

Eq

[
n−ijik

]
+ α

Eq

[
n−iji·

]
+K · α︸ ︷︷ ︸

prob. of topic k in document i

·
Eq

[
n−ijkt

]
+ β

Eq

[
n−ijk·

]
+ V · β︸ ︷︷ ︸

prob. of term t under topic k

(1.46)

This estimate originally is based on a Taylor expansion of the logarithm
of the smoothed, approximately normally distributed counts [TKW08], and
in [AWST12] it was mentioned that the variance can be neglected in prac-
tice. Interestingly, there is no explicit reason given why the variance can be
neglected.

The probabilities of the topic assignments in practice have a sparse
Dirichlet prior, i.e. one expects to see either very large or very small prob-
abilities. In this case, the variance of the sum of Bernoulli trials, defined
as

Varq(n
−ij
ik ) =

∑
l 6=j

γilk · (1− γilk) (1.47)

becomes relatively small. The second-order Taylor expansion of the loga-
rithm of smoothed counts at α+ Eq[n

−ij
ik ] is

Eq[log(α+ n−ijik )] ≈ log(α+ Eq[n
−ij
ik ])−

Varq(n
−ij
ik )

2 · (α+ Eq[n
−ij
ik ])2

(1.48)
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Topics with significant counts (i.e. Eq[n
−ij
ik ] � 1) almost completely deter-

mine the topic assignments during inference. Knowing that for such topics
Eq[n

−ij
ik ] � α under a sparse Dirichlet prior, and given that most topic as-

signments have a very low probability, the right-hand side of this equation
can be approximated as

Varq(n
−ij
ik )

2 · (α+ Eq[n
−ij
ik ])2

≈
Varq(n

−ij
ik )

2 · (Eq[n−ijik ])2
=

∑
l 6=j γilk · (1− γilk)
2 · (

∑
l 6=j γilk)

2

≤ 1

2 ·
∑

l 6=j γilk
=

1

2 · Eq[n−ijik ]
� log(α+ Eq[n

−ij
ik ]) (1.49)

which explains why in practice the variance can be neglected for approxi-
mating the logarithm of counts.

In the equations given above, expected counts are used, where n−ij in-
dicates that the topic assignment zij is excluded. Eq[nik] is the expectation
about how often topic k is used in document i:

Eq[nik] =

Nj∑
j=1

γijk (1.50)

and Eq[nkt] is the expectation of how often term t was assigned to topic k:

Eq[nkt] =
M∑
i=1

Nj∑
j=1

[wij = t] · γijk. (1.51)

Eq[nk·] denotes the total number of words assigned to topic k:

Eq[nk·] =
V∑
t=1

Eq[nkt]. (1.52)

Equation 1.46 is repeatedly estimated for every topic assignment during
inference.

The document-topic distributions and topic-word distributions can be
estimated with an equation identical to the estimates of the collapsed Gibbs
sampler [SKN12]:

Eq[θi] =
Eq[nik] + α

Ni +K · α
(1.53)

and

Eq[φk] =
Eq[nkt] + β

Eq[nk·] + V · β
(1.54)

respectively.
Because topic assignments follow multinomial distributions parametrised

by variational parameters, variational inference for LDA stores more infor-
mation about the posterior over z during inference and therefore avoids
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local optima and converges significantly faster compared to Gibbs sam-
pling [TNW07, AWST12]. However, variational inference techniques in gen-
eral require the derivation of the maximum of a lower bound on the prob-
ability function of a potentially complex model. This maximum often has
to be approximated for performance reasons. Additionally, the variational
parameters have to be stored and consume additional memory during infer-
ence. Due to these differences, in practice Gibbs sampling is often favoured
over variational inference.

1.7 Evaluation of Topic Models

There are hundreds of different probabilistic and non-probabilistic models for
detecting topics in text corpora. In order to select the optimal topic model
for a given collection of documents and to find the optimal parametrisation,
one needs measures for evaluating the quality of a trained topic model.
Evaluation is based on two fundamentally different approaches. Human
evaluation aims at testing the semantic coherence of the top words of each
topic in a user study. Theoretical approaches to evaluation calculate a score
based on the likelihood of new observations under a trained topic model.
The theoretical approaches are limited to probabilistic topic models, while
the human evaluation might be applied to non-probabilistic topic models
such as LSA.

1.7.1 Human evaluation

Human evaluation of topic models is based on the assumption that the top-
words of topics should be semantically coherent. In [CBGW+09], Chang
et al. propose a word intrusion based evaluation, where human raters are
presented with the top-N words of a topic (N = 5 in the original paper)
and an intruder word which has a high probability under another topic.
The task is to detect the intruder word, which is easier for semantically
coherent, i.e. high qualitative topics, and harder for semantically incoherent
topics. The rate of correct answers over the raters can be used as a test
score, and additionally a box plot can be employed to compare the variance
of the performance of raters.

1.7.2 Perplexity

Topic models can be interpreted as hypotheses on the creation of docu-
ments. A probabilistic topic model explains documents and their words as
the result of a probabilistic process. In the case of LDA, first topic-word
distributions and document-topic distributions are sampled from Dirichlet
distributions, and then words in documents are created by repeatedly draw-
ing topics from the document-topic distribution of a given document and
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subsequently drawing words from the topic-word distribution of the drawn
topic.

After the estimation of model parameters on a training corpus using
expectation-maximisation, Gibbs sampling or variational inference, it is pos-
sible to evaluate the quality of the model based on the likelihood of previ-
ously unseen documents. If the hypothesis on the creation of documents
and the parameter estimates are good, then the likelihood of new observa-
tions will be high. Otherwise, new observations would be unlikely or even
impossible – in case the parameters include zero probabilities. The latter
can occur either in cases where there are no priors or where sparse priors
are given and inference techniques such as maximum a posteriori inference
are employed, which might lead to zero probabilities.

The likelihood of observations is a product over the probabilities of each
single observation. Therefore, a higher number of observations trivially re-
duces the likelihood and it is necessary to normalise the likelihood in order
to calculate a test score for comparing several topic models.

This can be achieved by normalising the likelihood by the number of
words of the previously unseen documents. As the likelihood can take on
very small values, the negative log likelihood is used instead and the expo-
nential function is applied after normalisation. This yields the formula for
perplexity [BNJ03]:

perplexity(Dtest) = exp

(
−
∑M

j=1

∑Ni
i=1 log p(wji)∑M
j=1Ni

)
(1.55)

where lower perplexity values indicate a higher average log likelihood and
therefore a better model performance.

For evaluating a topic model, the parameters are learned on a training
corpus Dtrain and calculate the perplexity on a testing corpus Dtest, learning
document-specific parameters for the test documents but keeping the learned
topic-word distributions fixed.

If the inference algorithm is non-deterministic, like in Gibbs sampling,
an average perplexity is calculated over a number of runs of the sampler.

1.8 Non-Parametric Topic Models

All the probabilistic topic models presented so far require a parameter K
for the number of topics to be set. It is theoretically possible to do a human
evaluation of the topic quality for different settings of K, but due to high
costs this is not feasible in practice. Another approach could be based on
perplexity, but unfortunately the perplexity simply decreases (i.e. improves)
with an increasing number of topics [BNJ03] even when the topic quality
measured by human raters decreases [CBGW+09].
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One solution for setting the topic count parameter is to set the number
of topics to an infinite number and to use a prior over this space of infinite
topics which de-facto reduces the number of used topics. The most popular
prior over this infinite space of topics is the Hierarchical Dirichlet Process
(HDP) which is a coupling of Dirichlet processes.

1.8.1 The Dirichlet process

The Dirichlet process (DP) is defined as a probability density function over
a probability measure G0 with two parameters γ, the scaling parameter, and
H, the base measure:

G0 ∼ DP(γ,H). (1.56)

In the case of topic models, H is the infinite probability measure on of all
possible topic-word distributions, i.e. it contains all possible parameter set-
tings for topic-word multinomials with V categories, where V is the number
of terms in the vocabulary. G0 is a probability measure on the measure on
topics which assigns a probability to every single topic from the measure H.
The name Dirichlet process stems from the property of the DP that for any
partition (A1, . . . , AN ) of the base measure H, the random probability vector
of the partitions of G0 follows a Dirichlet distribution [Fer73, TJBB06]:

(G0(A1), . . . , G0(AN )) ∼ Dir(γH(A1), . . . , γH(AN )) (1.57)

G0 both contains information about the topic-word distributions from H
and their probabilities.

The stick-breaking process

It is possible to separate the topics and their probability in G0 by defining
the probability vector G0 as an infinite sum over the drawn topics and their
probabilities [TJBB06]. If the kth topic is denoted by φk, a multinomial
topic-word distribution, G0 is obtained as an infinite weighted sum over
topics:

G0 =

∞∑
k=1

βkδφk (1.58)

where βk are weights drawn from beta distributions with

φk ∼ H (1.59)

β̃k ∼ Beta(1, γ) (1.60)

βk = β̃k ·
k−1∏
j=1

(1− β̃j) (1.61)

and δφk being a Dirac delta at φk which assigns the weight 1 to the location
of φk in the topic space.
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As the weights βk can be interpreted as parts of a stick which is re-
peatedly broken at position β̃k, this process is called the Stick Breaking
Process (SBP) and the notation is

β ∼ SBP(γ). (1.62)

The Chinese restaurant process

Another metaphor for the Dirichlet process is a scheme similar to the Polya
urn scheme from Section 1.4.4. Imagine a Chinese restaurant which has
infinitely many tables. Customers enter the restaurant and decide to sit
on an occupied table with a probability proportional to mk, the number of
customers seated at that table. A customer sits at an unoccupied table with
a probability proportional to γ. If zi is a variable holding the decision for
the ith customer, then the customer sits down at table k with probability

p(zi = k) =


mk

(
∑K

j=1mj) + γ
for existing tables

γ

(
∑K

j=1mj) + γ
k = (K + 1) (open new table)

(1.63)

where the counts are updated after every step and K is the number of
occupied tables. Repeating this scheme for infinitely many customers yields
probabilities for choosing a table proportional to the probabilities of the stick
breaking process. This scheme is called the Chinese Restaurant Process
(CRP) and was introduced by Aldous [Ald85]. It is easy to see that the
scaling parameter γ influences the rate of newly created tables – high values
lead to a larger number of occupied tables. In the setting of topic models,
the number of topics detected is influenced by the scaling parameter.

Hierarchical Dirichlet process topic models

In order to create a probabilistic model which explains words in documents
by topics, it is possible to sample the topics of a document as a probability
measure Gd ∼ DP (H, γ) from a Dirichlet process with H as base measure
on the topics. Though this procedure would result in a valid probabilistic
model, the model would imply that documents draw totally different topics
from H, as the probability of two documents to draw the same topic from
the infinite measure H over topics would be zero.

Therefore, the document-specific measures on the topic space have to be
coupled. In the Hierarchical Dirichlet Process (HDP), this is achieved by
sampling a common base measure G0 on the topic space from a Dirichlet
process and then sampling document-specific base measures Gdm from this
global base measure. By this, the weight of topics is concentrated at a finite
number of topics in G0 with probability one [BM73] and documents sample
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Figure 1.6: The Hierarchical Dirichlet Process (HDP) topic
model. (a) Graphical model of the two-level hiearchical Dirichlet process
topic model. Topics of documents each are drawn from Dirichlet processes
with a shared, global topic distribution as base measure. The global topic
distribution is itself a measure drawn from a Dirichlet process with the mea-
sure H over all possible topics as base measure. The global topic distribution
makes sure that the documents share common topics. The HDP does not
require a parameter for the number of topics as PLSA and LDA. φ denotes
a topic-word distribution drawn from Gdm, the base measure of document m
which gives a document-specific weighting of topics. The global base mea-
sure G0 yields a global weighting of topics. (b) Stick-breaking construction
of the HDP topic model. The global topic distribution π0 is drawn from a
Stick-Breaking Process (SBP) which resembles the weights of the Dirichlet
process. There are infinitely many topics drawn from a Dirichlet distribu-
tion (previously part of H) and the global topic distribution is a distribution
over the indices of these topics.
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topics from this finite set of topics. The corresponding graphical model is
shown in Figure 1.6(a). The generative model of the HDP then is:

1. Sample a global measure on topics from a Dirichlet process with the
measure H over topics as base measure and scaling parameter γ:

G0 ∼ DP(γ,H) (1.64)

with global mixing proportions π0 ∼ SBP (γ) and H placing a Dirich-
let prior over the topics: H = Dir(β).

2. For every document, sample a document-specific base measure from a
Dirichlet process with base measure G0 and scaling parameter α0

Gdm ∼ DP(α0, G0) (1.65)

3. For every word wmn in document m, draw a topic-word distribution
φmn from G0 and draw the word from the multinomial φmn:

φmn ∼ Gdm (1.66)

wmn ∼ φmn (1.67)

For simplicity, the different sampled topics φmn are indexed and topic-
assignment variables zmn are introduced, holding the index of the topic
assigned to word wmn.

The Chinese restaurant franchise

The metaphor of the Chinese restaurant process can be extended for a hi-
erarchical Dirichlet process by introducing the notion of dishes, which are
served across several restaurants. In the Chinese restaurant franchise, there
exist several franchise restaurants (corresponding to document-level Dirich-
let processes) in which customers again enter the restaurant as in a CRP.
Addionally, when a new table is opened, a dish k is chosen which is served
to everybody who will be sitting at that table. The variable mjk stores at
how many tables dish k is served in restaurant j and njk stores how many
customers are eating dish k (i.e. sit at tables which serve dish k). The dishes
correspond to topics.

When a new table in a franchise-restaurant is opened, the dish is drawn
from a global distribution over dishes, which is sampled from a global Dirich-
let process. This global Dirichlet process makes sure that customers in dif-
ferent restaurants share the same dishes, as the probability mass generated
from a Dirichlet process is discrete with probability one [Fer73]. To stay
in the CRP metaphor, the global proportions correspond to customers in
a global restaurant sitting at tables. Every time a new table in the global
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restaurant is opened, a dish is drawn from H (an infinite measure on all
possible topics) and a new topic is created.

In the case of a HDP topic model, the dishes correspond to the topics
present in a document, njk are the topic counts and mjk gives the number
of times a topic was drawn from the global topic distribution. This means
that the global topic distribution – itself a draw from a DP – behaves like
an own restaurant with

∑M
j=1mjk customers sitting at a table serving dish

k and every table serves a different dish, as there is no concentration on a
discrete set of topics in the measure H on the infinite space of topics.

1.8.2 Inference for the HDP

Inference for models involving infinite probability measures such as the
Dirichlet process is different from standard inference techniques. For Gibbs
sampling, the infinite parameter space is typically reduced to the parameters
actually used in the current sampling step, while the unused parameters (e.g.
the infinitely many topics of a HDP topic model) are treated as a single new
topic. Variational methods rely on a truncation of the infinite topic space to
K dimensions, and there are different flavours of how to implement the re-
sulting sampler. In this section, state-of-the-art methods in Gibbs sampling
and variational inference for hierarchical Dirichlet processes are presented.

Gibbs sampler for the HDP

A Gibbs sampler for the HDP is given by [TJBB06, Hei06]. Instead of
sampling each topic assignment from a multinomial distribution over a fixed
number of topics, the number of topics is given by the number of used topics
K. Additionally, there is a probability for sampling from the space of unused
topics, which is proportional to the scaling parameter α0 multiplied with the
probability of a given word under the base measure H (the measure on the
topic space).

The Gibbs sampler is as follows:

• A latent topic assignment variable zij is picked at random, storing
the topic of the jth word in document i. Given all the previous
topic-assignments denoted as z−ij , it is straightforward to calculate
the probability for each topic k ∈ {1, . . . ,K} as γijk = p(zij = k |
wij , z−ij ,w−ij , γ, α0). The jth word in document i is term t, stored
in the given word variable wij = t, and the global mixing proportions
are β ∼ SBP (α0). Then the probability is given by:

γjmk ∝


njk + α0 · π0k

Ni +K · α0
· nkt + β

nk· + V · β
for previously used topics

α · π0new ·
1

V
for a new topic

(1.68)
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where 1/V is the probability of a word under a new topic given a
vocabulary of size V . H is a symmetric Dirichlet distribution over all
possible topic-word multinomials (i.e. there is no preference for any
specific term) and thus

p(w | φnew, H) =

∫
p(w | φnew) · p(φnew | H) dφnew =

1

V
(1.69)

for every word w. Note that the pseudo-counts α0 · π0k correspond to
the event of opening a new table and choosing dish k which is already
eaten at another table (in this or in another franchise restaurant). The
topic assignment is sampled from this K+ 1 dimensional multinomial:

zij ∼ γjmk. (1.70)

If a topic is not in use any more (i.e. after an update of a topic-
assignment zij there exists no topic assignment which takes on the
topic index), the topic is removed from the list of used topics and K
is decreased. If a new topic is sampled, K is increased and the index
added to the list of used topics.

The count variables nik, nkt and nk· are identically estimated as in the
Gibbs sampler for LDA given in Section 1.6.2.

• The global topic-proportions π0 depend on the topic frequencies in
the documents. However, the connection is not direct. Recall that in
the Chinese restaurant metaphor, words in documents correspond to
customers eating a dish, which is drawn from the global topic distri-
bution every time a new table is opened. Therefore, it is necessary
to count the number of tables which serve dish k in order to find out
about the global distribution of topics.

There are two ways of dealing with that issue. It is possible to keep
track of the number of tables during the Gibbs sampling process, which
would require a different sampling equation in Eq. 1.68. Alternatively,
one can estimate the number of tables using the number of customers,
the scaling parameter α0 and the global mixing proportions π0: For
a new customer entering the franchise-restaurant, the probability of
opening a new table for topic k given that nk customers are already
eating dish k is α0·π0k

nk+α0·π0k , and nk
nk+α0·π0k is the probability of a customer

to sit down with the nk other customers at an existing table. Given
that there are nk customers in a franchise-restaurant sitting at mk

tables eating dish k, there exist multiple combinations which result
in the observed table counts, and each combination has a well-defined
probability.



48 CHAPTER 1. FOUNDATIONS AND RELATED WORK

Accounting for the combinations [Ant74, TJBB06] yields a probability
for table counts mk given observations and parameters:

p(mk = m | nk, α0,π0) =
Γ(α0 · π0k)

Γ(nk + α0 · π0k)
·s(n,m) ·(α0 ·π0k)

m (1.71)

where s(n,m) are unsigned Stirling numbers of the first kind which are
recursively defined as [TJBB06]:

s(0, 0) = 1

s(n, 0) = 0

s(n, n) = 1

s(n,m) = 0 (for m > n)

s(n+ 1,m) = s(n,m− 1) + n · s(n,m). (1.72)

Given the table counts, the global topic distribution of the top-level
CRP follows a Dirichlet distribution from which it is sampled during
inference [TJBB06]:

π0 ∼ Dir(m1, . . . ,mK , γ). (1.73)

• For each document, the document-topic distribution θi can be esti-
mated with:

θi =
nik + α0 · π0k

Ni + α0
(1.74)

• Topic-word distributions are estimated identically to the Gibbs sam-
pler for LDA:

φk =
nkt + β

nk· + V · β
(1.75)

Variational inference for the HDP

In the Gibbs sampler for the HDP, the fact that topic-assignments take on
a single topic index during inference was used to limit the number of topics
to the number of topics used in the current state of the sampler. All other
topics were treated as a single topic which is representing all new topics.

Variational inference, as introduced in Section 1.6.3, relies on a lower
bound on the marginal likelihood and learns variational parameters over
the hidden variables. For the topic assignments, it learns a probability
distribution over all possible topics. In the case of the HDP, there are
infinitely many topics and therefore a distribution over infinitely many topics
would be required.

To deal with this issue, the variational distribution can be limited to K
topics, where the infinitely many topics from the Dirichlet process are trun-
cated and the last topic takes on the rest of the probability mass [BJ06a].
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The most popular inference schemes are based on the stick-breaking repre-
sentation of the Dirichlet process [BJ06a, TKW08, SKN12] which is depicted
in Fig. 1.6(b): The global topic weights π0 are drawn from a stick-breaking
process, giving probabilities over infinitely many topic-word distributions
drawn from a Dirichlet distribution:

π0 ∼ SBP(γ), θm ∼ Dir(α0π0), φk ∼ Dir(β); k = 1, . . . ,∞
(1.76)

and the stick-breaking process makes use of auxiliary variables π̃0k for the
stick lengths:

π0k = π̃0k

l=k−1∏
l=1

(1− π̃0l), π̃0k ∼ Beta(1, γ). (1.77)

Integrating out the parameters θ and φ improves the inference with respect
to speed and convergence rate [TKW08]. The resulting marginal distribution
over the latent topic assignments and observations then is given by:

p(w, z | α0, β,π0) =∫
· · ·
∫ M∏

m=0

(
p(θm | α0π0) ·

Nm∏
n=1

p(zmn | θm)p(wmn | φzmn)

)

·
K∏
k=1

p(φk | β) dθ1 · · · dθMdφ1 · · · dφK

=

∫
· · ·
∫ M∏

m=0

(
Γ(
∑K

k=1 α0π0k)∏K
k=1 Γ(α0π0k)

·
K∏
k=1

θα0π0k−1
mk ·

Nm∏
n=1

θmzmnφzmnwmn

)

·
K∏
k=1

(
Γ(
∑V

t=1 β)∏V
t=1 Γ(β)

·
V∏
t=1

φβ−1
kt

)
dθ1 · · · dθMdφ1 · · · dφK

=
M∏
m=0

Γ(α0)

Γ(α0 + nm·)
·
K∏
k=1

Γ(α0π0k + nmk)

Γ(α0π0k)︸ ︷︷ ︸
Probability of topics in documents

·
K∏
k=1

Γ(V · β)

Γ(β + nk·)
·
V∏
t=1

Γ(β + nkt)

Γ(β)︸ ︷︷ ︸
Probability of terms in topics

(1.78)

where Eq. 1.21 is employed and (in contrast to [TKW08]) it is assumed that
the Dirichlet prior on the topic-word distributions is symmetric because of
the findings in [WMM09] that asymmetric topic priors are rarely improving
the topic quality in practice.

To simplify inference, Teh et al. [TKW08] introduce auxiliary variables
to replace the gamma functions on the left-hand side of the formula with
the beta distribution (see Eq. 1.8) and the distribution over tables from
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Eq. 1.71:

p(w, z | α0, β,π0,η, s) =

M∏
m=0

ηα0−1
m · (1− ηm)Nm·−1

∏K
k=1 s(nmk, smk) · (α0π0k)

smk

Γ(nm·)

·
K∏
k=1

Γ(β)

Γ(β + nk·)
·
V∏
t=1

Γ(β + nkt)

Γ(V · β)
. (1.79)

Integrating over the auxiliary variables yields the original formula. One can
interpret sm as the number of tables in restaurant m.

The variational approximation q assumes independence between all vari-
ables to be inferred, and maximising the lower bound with respect to the
variational parameters yields the inference equations. As exact inference
on the variational distribution – which is itself an approximation – is not
required in practice, the approximations by Asuncion et al. [AWST12] and
Sato et al. [SKN12] are employed to yield:

q(zmn = k) ≈ Eq [nmk] + α0 · π0k

nm· + α0

Eq [nkt] + β

Eq [nk·] + V · β
(1.80)

where the counts – as in the variational inference scheme for LDA – denote
the expected counts under the variational distribution.

For the parameters π̃0 of the stick-breaking process, the approximation
by Sato [SKN12] estimates the beta distributed stick lengths as

q(π̃0k) = Beta(ak, bk) ∝ π̃ak−1
0k · (1− π̃0k)

bk−1

ak = 1 +

M∑
m=1

Eq [nmk ≥ 1]

bk = γ +

M∑
m=1

K∑
l=k+1

Eq [nml ≥ 1] . (1.81)

The counts n again denote expected counts, and table counts are estimated
as

Eq [nmk ≥ 1] = 1−
Nm∏
n=1

q(zmn 6= k). (1.82)

The hyperparamters α0, β and γ can be sampled during inference. A
generalised estimator for the parameter of a Dirichlet distribution is given
in Chapter 3. Formulas for hyperparameter inference in a HDP are given in
Chapter 4.

Finally, the topic-word distributions are estimated as in the variational
inference for LDA and the document-topic distributions can be estimated as
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in the Gibbs sampler for the HDP, with expected counts instead of counts
based on hard topic assignments:

θi =
nik + α0 · π0k

ni· + α0
. (1.83)

1.9 Summary

In this section, basic concepts behind probabilistic modelling which are used
in this thesis were introduced. The binomial and beta distribution will be
employed to develop novel probabilistic power indices in Chapter 2. A mix-
ture of Fisher distributions and expectation-maximisation will be used in
Chapter 3 for clustering geographically distributed documents. The hier-
archical Dirichlet process topic model and the presented inference schemes,
Gibbs sampling and variational inference, are the ingredients for develop-
ing novel probabilistic models for integrating context information, which are
presented in Chapter 3 and Chapter 4.
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Chapter 2

Single-Context Voting
Models

The focus of this thesis is on novel, high-performance and yet easy-to-use
probabilistic models which allow for the inclusion of context information.

In order to demonstrate how context-specific probabilistic models im-
prove model quality (as measured by perplexity), the setting of voting mod-
els is employed in this chapter. Specifically, novel generalisations of power
indices which account for system-specific voting bias are introduced and
their advantages over existing power indices are demonstrated on the largest
available voting history of an online delegative democracy [KKH+15].

The LiquidFeedback platform of the German Pirate Party is studied with
a focus on voting behaviour and the power of voters. The core contribution
of the study is the development of a novel probabilistic power index which
permits the inclusion of system-specific voting behaviour via prior distribu-
tions. It serves as the most basic example on how probabilistic models can
be improved using context information.

2.1 Problem Setting and Approach

In the last decade, the World Wide Web has increasingly been adopted for
facilitating political processes and conversations [LWBS14]. The Web has
also sparked the development of novel voting and democracy platforms im-
pacting both societal and political processes. Today, a wide range of online
voting platforms are available, based on different democratic methods such
as consensual decision making, liquid democracy [Pau14] or dynamically
distributed democracy [TFH14]. These platforms are becoming increasingly
popular and political movements and parties have started adopting them to
open up and facilitate political coordination. In contrast to experimental
data or simulations (e.g. from game theory), the behaviour of voters on these
platform is realistic, i.e. voting takes place in a natural environment and the
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Figure 2.1: User activity. Active users on the LiquidFeedback platform
of the German Pirate Party over time. Users are labelled inactive after 180
days without login. Several events led to a rise and decrease in activity.

decisions of voters have a real political impact. Having such a natural setting
is crucial for studying voting behaviour in real life political movements and
for validating research on voting behaviour and measures of power [Loe99].
Yet, this kind of data has historically been elusive to researchers.

LiquidFeedback represents a popular platform which implements sup-
port for delegative democracy. A delegative democracy can be described as
a mixture of direct and representative democracy. In contrast to a repre-
sentative democracy, all voters in a delegative democracy in principle are
equal, i.e. every voter could directly vote on proposals. Alternatively, each
voter can delegate his vote to another voter, raising the voting weight of
the delegate by one. The delegate can again delegate his voting weight to
a third user and so forth, creating a transitive delegation chain. A key in-
novation of delegative democracy platforms is the ability of every voter to
revoke his delegated votes at any point, preserving full control over his votes
and allowing for the emergence of dynamic delegation structures in contrast
to representative voting systems. Votes are public and pseudonymous, and
therefore both individual and collective voting behaviour can be analysed. A
common objection against the use of these platforms is the nature of delega-
tions, as they can potentially give rise to so-called super-voters, i.e., powerful
users who receive many delegations. It has been asserted in the past that
the presence of these super-voters undermines the democratic process, and
therefore delegative democracy should be avoided.

2.1.1 Problem setting

In order to assess the true potential and limitations of delegative democracy
platforms to facilitate political discourse and agenda setting, it is necessary
to quantify the distribution of power in delegative democracies and to detect
super-voters by measuring the power of individual voters. System-specific
voting behaviour is expected to influence the power of voters. For instance,
a system in which all voters always vote against proposals is unlikely to
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assign power to a new voter, as it is impossible to win the necessary ma-
jority for passing a vote by coalition. Therefore, the voter behaviour has
to be understood and modelled to account for the system context in which
votes are given. Tapping into the complete voting history and delegation
network from world’s largest delegative democracy platform (operated by
the German Pirate Party), it is essential to (i) understand how people
vote in delegative democracy platforms such as LiquidFeedback, and how
they delegate votes to super-voters. Based on these insights, it is possible to
(ii) model voting power: how power can be assessed in online democracy
systems and how it is used.

2.1.2 Approach

For understanding the behaviour of voters in an online delegative democracy,
the voting behaviour of members of the German Pirate Party is analysed
over a period of four years from 2009–2013. The German Pirate Party has
adopted LiquidFeedback as their online delegative democracy platform of
choice. First, the temporal delegation network of users is analysed and the
emergence of power structures identified, i.e. the presence of super-voters
within the party. Next, established power indices from game theory and
political science theory – the Shapley and Banzhaf power index [Sha54,
Ban65] – are applied to assess the theoretical power of super voters. Then,
the predicted power of super voters is compared with their potential as well
as their exercised power based on real world voting data. The analysis
reveals a clear gap between existing theoretical power indices and actual
user voting behaviour. As a result, a novel generalisation of power indices
is presented that better captures voting behaviour by including the system-
specific voting bias. Finally, the proposed power indices are evaluated with
data from the LiquidFeedback platform.

2.2 Delegative Democracies

First steps towards the direction of a delegative democracy were published in
1884 by Charles L. Dogson, better known under his pseudonym Lewis Car-
roll. In his book about the mathematical properties of voting mechanisms,
Dogson proposes a voting scheme where elected candidates may delegate
their votes to other candidates. The delegated votes then can be further
passed to other candidates [Dod84]. A review of further works which in-
fluenced the development of the concept of a delegative democracy can be
found in [Jab11, Pau14]. Based on these ideas, the novel concept of delega-
tive voting was developed and recently popularised. A formalisation of a
delegative democratic system is given in [YYT07]. The implementation of
delegative voting systems is non-trivial as loops in the delegation network
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have to be detected and resolved and regaining votes potentially can affect
a long delegation chain.

2.2.1 Democracy platforms

Existing software implementations of delegative democracy include Liquid-
Feedback1, Agora Voting2, GetOpinionated3 and Democracy OS4. This anal-
ysis is based on the online voting platform of the German Pirate Party, an
instance of LiquidFeedback, a free software that implements an online plat-
form in which votes can be conducted, and users can delegate their vote to
other users. LiquidFeedback was adopted by the German Pirate Party in
May 2010 [Pau14] and has 13,836 users as of January 2015.

2.2.2 Pirate parties

Pirate parties are an international political movement with roots in Swe-
den [Fre13], where legal cases related to copyright law led to the formation
of a party advocating modern copyright laws and free access to informa-
tion [MO08]. The scope of the party quickly broadened and nowadays ac-
tive Pirate parties exist in 63 countries of which 32 are officially registered
parties. The German Pirate Party is the largest of all pirate parties with
15,285 members as of January 2016.

2.3 Description of the Dataset

The German Pirate Party maintained the largest installation of LiquidFeed-
back with 13,836 registered users, and used the software to survey the opin-
ion of members. The German Pirate Party’s installation of LiquidFeedback
represented the largest online community implementing delegative democ-
racy. This study uses a complete dataset created from daily database dumps
of that installation, ranging from August 13 2010 up to November 25 2013,
spanning 1,200 days. The data was available to all party members until the
system was deactivated in 2015.

2.3.1 LiquidFeedback platform

LiquidFeedback is a complex and powerful implementation of a delegative
democracy. A brief overview of the most important processes and policies
within the system is given here. More detailed descriptions are available
from Jabbusch and from Paulin [Jab11, Pau14].

1http://www.liquidfeedback.org
2http://www.agoravoting.com
3http://www.github.com/getopinionated
4http://www.democracyos.org

http://www.liquidfeedback.org
http://www.agoravoting.com
http://www.github.com/getopinionated
http://www.democracyos.org
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In LiquidFeedback as used in the German Pirate Party, members can
create initiatives which are to be voted on to obtain the current opinion of
the party members, e.g. for collaboratively developing the party program.
Initiatives are grouped into issues which group competing initiatives for the
same issue. For instance, if a user proposes an initiative to reduce the emis-
sion of CO2 by subsidising the construction of wind turbines, another user
could create a competing initiative to subsidise solar fields. Furthermore,
issues belong to areas which represent main topics such as environmental
policies. Each user can create new initiatives, which need a minimum first
quorum of supporters for being voted upon. In LiquidFeedback, votes can be
delegated to other voters at three levels: At the global level, meaning that
all initiatives can be voted for by the delegate on behalf of the delegating
user; at the area level, so that delegations are restricted on an area; or at
the issue level. The actions of every voter are recorded and public, allowing
the control of delegates at the expense of votes not being secret.

2.3.2 Dataset

In total, the dataset includes 499,009 single votes for 6,517 initiatives be-
longing to 3,565 issues. Throughout the four-year observation period, a
total of 14,964 delegations where made on the global, area or issue level,
constituting the delegation network. The number of active users over the
observation period is shown in Fig. 2.1. Usage of LiquidFeedback in the
German Pirate Party fluctuates with political events in the party. A strong
growth in active users is observed after the electoral success of the Berlin
Pirate Party in 2011, where 8.9% of the votes were received. Another point
of growth is observed prior to the German federal election in 2012. 180
days after the programmatic federal party congress in 2011, the number of
active users drops significantly, when the voting system was used to prepare
proposals for the party congress. After the congress, a critical debate on
the future role of delegative democracy for the Pirate party started. In a
discussion on the effect on super-voters – i.e. users with a large share of
incoming delegations – the democratic nature of the system was questioned,
and many users became inactive.

2.4 Voting Behaviour and Delegations

In the following, different aspects of voting behaviour are studied using the
complete voting history and the temporal delegation network.

2.4.1 Existence and role of super-voters

In order to explore whether super-voters exist, and whether they wield an
over-proportional influence in the system, we plot the distribution of voting
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Figure 2.2: Distribution of voting weights (a) and voting activity
(b). (a) shows the total number of distinct voters who had the given voting
weight at any point in time during the observation period, summing over
global, area and issue delegations. (b) shows the activity distribution of all
voters, for delegates and delegating voters, measured by the number of votes
cast. The activity distributions are power law like. Delegating voters and
delegates vote more frequently, i.e. are more active than other voters.

weights in the delegation network in Fig. 2.2(a), summing over global, area
and issue delegations. Most voters have no delegations (i.e. their voting
weight is 1) and a small set of voters possesses a huge voting weight – the
super-voters. There are only 38 individual voters who received more than 100
delegations in the voting history, and therefore the non-significant statistics
for these voters are excluded from the following figures of this study.

The practical power of super-voters does not only depend on their voting
weight – it also depends on how often a voter actually participates in votes.
One could ask: Are delegates more active than normal users? The overall
activity of voters is power law distributed (at a significance level of 0.05)
with an exponent of 1.87 and a median of 8. 3,658 members voted more
than 10 times, 1,156 voted more than 100 times and 54 members voted
more than 1,000 times. The power law exponent of users who received
delegations during the observation period is 2.68 with median 64, indicating
an increased activity. For controlling this result, the exponent is compared
with the exponent of users who delegated their vote at least once to another
user. Those users who actively participated in the system have a power law
exponent of 2.21 for the number of voted issues at a median of 42 – delegates
indeed have a increased activity also when compared to active, delegating
users.

In order to get an insight in the meaning of delegations, the match of
voting decisions between delegates and their delegating voters before the
delegation is calculated. The percentage of votes where both users gave
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Figure 2.3: Average approval rates per initiative and per user.
An approval rate of 1 means maximum approval (all votes have been posi-
tive), an approval rate of 0 means minimum approval (all votes have been
negative). (a) Initiatives. The distribution shows a strong voting bias with
a first peak at an approval rate of around 0.75 and a smaller second peak
at 0.90. (b) Users. Histogram of approval rates of users who voted for more
than 10 initiatives. It is plausible to approximate the per-user approval rate
with a beta distribution. Voters show a strong tendency towards approving
initiatives with an expected approval rate of 0.71.

identical ratings (positive/negative) to the same initiative is 0.61 whilst any
two random voters have an average match of 0.51. As this difference is
quite small, delegates do not seem to receive delegations mainly because
of shared political views. Instead, they often decide differently than their
voters in past votes. This could indicate that delegates in the system then
are not expected to represent the opinion of their voters and that they act
independently, giving them a high freedom of action.

Another factor in the power of users are voting results. If votes are
narrowly decided, even a small weight gives voters the power to decide votes
alone. A histogram for the frequency of voting results is shown in Fig. 2.3(a).
The distribution is skewed towards positive results with its peak at about
0.8. As the required majority for passing an initiative in most cases is 2/3 of
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the votes, this means that most of the votes are approved. The distribution
of support shows a striking similarity to the distribution of ratings in other
online communities as described by Kostakos [Kos09].

2.4.2 User approval rates

In Fig. 2.3(b), the user approval rates, i.e. the percentage of positive votes for
each voter, are shown. Users who voted for less than 10 issues are excluded
to ensure significance. The distribution exhibits a strong bias towards the
approval of proposals and reaches the highest numbers at about 0.8 and 0.9.
This distribution closely resembles the overall approval of users for initia-
tives. Surprisingly, there is a larger number of “100%-users” (in total 160)
who voted yes in all of the votes. These users are found to receive a lower
number of incoming delegations (1.05 vs. 1.48 on average). One explana-
tion for this behaviour could be that some users only vote for initiatives
they support and hope that other initiatives won’t reach the quorum with-
out their votes. The distribution of user approval can be approximated by
a beta distribution which will prove to be useful later for developing novel
power indices. Fig. 2.3(b) shows a fitted beta distribution as a dashed line.
100%-users were removed from the data before learning the parameters to
obtain a better fit [Min00].

It seems very natural for a democratic voting system without coalitions
or party discipline to have a biased distribution of approval rates. As these
systems typically include mechanisms to filter out proposals before they
reach the voting phase (to prevent an unworkable flood of voting) such as
requiring minimum support, the quality of the voted proposals already is
relatively high. Due to selection processes, most democratic online systems
are likely to exhibit a biased distribution of approval rates.

As the approval distribution is close to the 2/3 quorum (which is typically
required in votes), super voters are expected to have a bigger influence in
the voting outcomes.

An interesting observation can be made in the context of the temporal
dynamics of approval rates: The average approval rates for the kth vote of
all users is shown in Fig. 2.4, illustrating the probability for seeing a positive
vote in the first, second etc. vote of a user. Clearly, more experienced users
get more critical towards proposals. The learning curve is observed for all
users, independent of their activity as measured by the number of voted
issues – this e.g. can be seen in the approval rates for users of different
activity levels depicted in Fig. 2.5(a), which decrease much slower than the
learning curve. The negative impact of the number of votes on the approval
rate eventually would lead to a stagnation of the system, as the typical
quorum of 2/3 would be reached by hardly any initiative.
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Figure 2.5: Voting behaviour. (a) Active users as measured by the
count of voted issues tend to approve initiatives less often. The effect is less
pronounced than in Fig. 2.4. (b) Approval rate of votes for given weights.
Surprisingly, super-voters tend to approve more initiatives (approval rate),
and tend to agree more often with the majority compared to normal users
(agreement rate). Delegations for authors of initiatives were ignored to rule
out effects of implicit approval.

2.4.3 Impact of delegations

Surprisingly, such a stagnation cannot be observed in the platform, even in
periods when few new users join the system. The effective votes of a user –
i.e. all votes including delegated votes made on behalf of a user – are shown
in Fig. 2.4. The negative development of approval rates is compensated by
delegated votes.

Do these findings imply that super-voters are more likely to agree with
initiatives? And do super-voters use their power to turn voting results when
voting in favour of initiatives, or do they agree with and vote according to the
majority of voters? Fig. 2.5(b) shows the average approval and agreement
rate of voters for growing numbers of incoming delegations. The agreement
rate is given by the percentage of votes which agree with the majority of
voters, excluding delegations. One can observe a positive effect of incoming
delegations both on the approval rate and the agreement rate.

In contrast to the intuition that users tend to delegate their votes to
users who often vote in favour of proposals, no significant differences were
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Figure 2.6: Changes in the temporal delegation network over the
observation period [KKH+15]. The statistics show (from top to bot-
tom): Added and removed delegations, changes in the per-user delegation
count, inequality of incoming delegations measured by the Gini coefficient,
reciprocity (the proportion of mutual delegations), the global clustering co-
efficient and the size of the largest connected component (LCC). Note that
mutual delegations are only permitted for distinct areas or issues. The ob-
served changes indicate a consolidation of the network, i.e. the emergence of
super-voters and a stronger concentration of power over time.

found in the approval rates of users with many delegations in their voting
history and normal users. However, as soon as users get many incoming
delegations, positive votes become more likely. One could hypothesise that
voters with many incoming delegations feel social pressure to vote positively
and avoid giving a negative vote which would inevitably lead to the failure
of a proposal, given the high voting weight. This social control would limit
the exercised power of the super-voters and stabilise the voting system,
effectively preventing political stagnation.
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2.4.4 Temporal analysis of the delegation network

Since LiquidFeedback is a novel system, its use is still in an emerging stage,
and therefore one would expect its usage patterns to vary over time. Specifi-
cally, by analysing the temporal evolution of network-based statistics shown
in Fig. 2.6, the following changes are observed [KKH+15]:

Changes in the distribution of delegations. While the distribution
of received delegations is found to be power law-like, the inequality of this
distribution is not constant, as shown by several statistics in Fig. 2.6. In par-
ticular, the Gini coefficient of the delegation network’s indegree distribution
[KP12] is growing, i.e., the inequality of the number of received delegations
increases over time. This is consistent with a consolidation of the network,
i.e., the emergence of super-voters and a stronger concentration of power.

Changes in reciprocity. The reciprocity of the delegation behaviour is
measured as the ratio of delegation edges for which a reciprocal delegation
edge exists, to the total number of reciprocity edges, and observe that this
value decrease over time. This would indicate that the community is going
away from a set of small groups of voters that delegate to each other, to a
community in which most delegation edges go to super-voters who do not
delegate back. One must note however that reciprocal delegations are only
possible for delegations in different areas, as the set of delegations in a single
area must not form cycles.

Changes in clustering. The clustering coefficient gives the probability
that two neighbours of a voter are themselves connected, within taking into
account edge directions [WS98]. This clustering coefficient decreases over
the lifetime of the network while the largest connected component (LCC) is
growing, indicating again that the delegation network is slowly becoming less
like a set of local groups, and more like a bipartite network of super-voters
connected to normal voters.

2.5 Power in Online Democracies

The delegation system behind liquid democracy systems creates a complex
delegation network. In the previous section it was shown that the network
evolves to a state where it assigns high voting weights to a smaller set
of voters. This could lead to situations where single voters become very
powerful, so that e.g. one voter could decide all votes alone. To test if such
dictators exist, the distribution of power in the LiquidFeedback system is
assessed using power indices.

Power indices are numerical indicators designed to measure the ability
of voters to influence voting outcomes. Imagine a vote with n voters with
voting weights w1, w2, . . . , wn, i.e. voter 1 has w1 votes and so on. A typical
example is a parliament with several parties, where all the members of a
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party are forced to vote the same way and therefore parties act like a single
individual voter. In this case, if party 1 won 50 seats in the parliament, it
has a voting weight of w1 = 50.

Now one could ask: “how powerful is party 1?”. The answer to that
question is not as trivial, as it might seem. First of all, the term power has
to be defined. Typically, voting power is defined as the ability to change the
outcome of a vote. The relation between voting weight and voting power
then becomes rather complex. Imagine a setting where there are three voters
with w1 = 5, w2 = 4 and w3 = 2. If the voters need 50% to pass a vote, all
three voters have the same voting power, as they all need at least to agree
with one other voter to reach the majority.

Power indices predict the power of an individual voter given the voting
weights of all the participants in a vote. In delegative democracies, power
indices can be used to describe the distribution of power among voters in
the system and to assess the power of super-voters.

2.5.1 Power indices

The most widely used power indices are the Shapley index [Sha54] and the
Banzhaf index [Ban65].

The Shaplex power index

The Shapley index is based on so called pivotal voters: For every vote where
the majority is in favour of the proposal voted upon, and where the exact
order of votes is known, there is a single pivotal voter who turns the vote
from rejected to approved with her vote. For a given voter, it is possible to
calculate the share of possible outcomes of the vote where she is pivotal.

Simply speaking, if the number of orderings where voter i is pivotal is
given by ri, the formula for the Shapley index is

φi =
ri
n!

(2.1)

where there are n voters and n! gives the number of possible orderings of
the votes [Str77].

The Banzhaf power index

The Banzhaf index in contrast ignores the ordering of voters and utilises
winning coaltions and swings instead. Winning coalitions are sets of vot-
ers W which get the majority of votes. The winning coalitions which
would not gain the majority of votes without voter i are stored in the set
Si = {si1, . . . , si|Si|}, i.e. voter i alone could decide the vote in each of these
winning coalitions. A swing sik ∈ Si (where k is an index) is a winning
coalition from this set.
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The size of the set Si of these winning coalitions which involve voter i
divided by the total number of possible voting decisions defines the Banzhaf
index [Ban65, Str77]:

βi =
|Si|
2n−1

(2.2)

One can also express the Shapley index using the notion of swings [Str77]:

φi =
∑
sik∈Si

(|sik| − 1)! · (n− |sik|)!
n!

(2.3)

where the fact is used that there are (|sik| − 1)! combinations of the swing
where voter i voted last and (n − |sik|)! is the number of possible combi-
nations of additional voters (which are not required to gain the majority),
yielding the number of winning coalitions so that voter i is pivotal.

Alternative power indices

Both the Banzhaf and the Shapley index are based on game theory and are
mostly popular due to their simplicity. Other power indices try to capture
the parliamentary reality, e.g. by limiting the index to majorities by minimal
coalitions [DJP78, PDJ80]. However, these indices seem not appropriate for
delegative democracies, as voting weights change frequently and no fixed
coalitions are formed, and thus minimal coalitions are as likely as any other
coalition.

Gelman et al. criticised the simplicity of the game-theoretic approaches
by suggesting an Ising model for modelling dependencies between voters,
e.g. common administrative regions [GKT02]. However, the study lacks the
appropriate data for fitting the model as it relies on aggregated voting results
and therefore cannot consider decisions at the individual level.

In the following, it will be shown how to utilise user-based voting be-
haviour to derive adjusted power indices and conduct the first objective
evaluation of power indices on large real-world voting data with constantly
changing voting weights.

2.5.2 Probabilistic interpretation of power indices

The Banzhaf and the Shapley power index have an interpretation as prob-
abilistic models, as first noted by Straffin [Str77]. If one wants to know the
probability that voter i is able to influence the outcome of a vote, and every
outcome would be equally likely, then one could count the number of win-
ning coalitions where this is the case and divide by the number of possible
voting outcomes. As the number of votes that voter i is able to influence
is just the number of swings where voter i voted yes plus the number of
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swings, where the voter voted no, one gets [Str77]:

2 · |Si|
2n

=
|Si|
2n−1

= βi (2.4)

which shows that the Banzhaf index can be interpreted as a probability.

However, this equation only holds true under the assumption of indepen-
dence: All voters vote independently of each other and their probability of
voting yes is pi = 0.5 for every voter i. This makes all coalitions and swings
equally likely to occur.

As shown in Equation 2.3, the Shapley index can be expressed as a sum
over the sets of winning coalitions where voter i is a swing voter. The
probability of the swings of voter i is given by their marginal probability
under a uniformly distributed p [Str77] as given in Equation 1.4:

p(S+
i ∪ S

−
i ) =

∑
sik∈S+

i

(|sik|)! · (n− |sik|)!
(n+ 1)!

+
(|sik| − 1)! · (n− |sik|+ 1)!

(n+ 1)!

=
∑

sik∈S+
i

(|sik|)! · (n− |sik|)! + (|sik| − 1)! · (n− |sik|+ 1)!

(n+ 1)!

=
∑

sik∈S+
i

(|sik| − 1)! · (n− |sik|)! · (|sik|+ (n− |sik|+ 1))

(n+ 1)!

=
∑

sik∈S+
i

(|sik| − 1)! · (n− |sik|)!
n!

(2.5)

where S+
i denotes the swings where voter i voted positive, S−i denotes the

swings where voter i voted negative and n = |S+
i ∪ S

−
i | = |Si|.

2.5.3 Theoretical (uniform) power indices

Both the Banzhaf and the Shapley index can be characterised in probabilistic
terms [Str77]. Indeed, assume that the vote of a voter i is drawn randomly
with probability pi for a “yes” and 1 − pi for “no”. The individual effect
of a voter i is the probability that the voter i makes a difference to the
outcome of the entire vote. Of course, the individual effect will depend on the
individual probabilities pi. Typical assumptions behind existing theoretical
power indices are:

• Uniformity. Each pi is chosen from a uniform distribution on [0, 1].

• Independence. Each pi is chosen independently.

• Homogeneity. All pi are equal to p, a common agreement rate shared
by all voters.
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It was shown in [Str77] that the Banzhaf index represents the individual
effect of a voter under the assumption of independence and the Shapley index
represents the individual effect of a voter under the homogeneity assumption.
Both indices rely on the uniformity assumption, and most power indices from
literature repeat this assumption [Str77, Str94, GKT02].

2.5.4 Empirical power

Theoretical measures of power are based on simulation. With the large num-
ber of observations available from the LiquidFeedback dataset, it is possible
to directly measure power in a large, real-world dataset. An important dif-
ference to traditional voting data from parliaments is the absence of fixed
coalitions, the high number of votes and the relatively stable set of voters.
Recall that power in the context of power indices is defined as the ability of
a voter to influence voting outcomes.

Potential Power. The ability to decide a vote is calculated with the sum
of weights of positive W p

m and negative Wn
m votes in a voting m, testing if

the weight wim of voter i is bigger than the votes needed to reach quorum
qm:

γpim = [wim > qm · (W p
m +Wn

m)−W p
m + wim · v′im︸ ︷︷ ︸

votes missing to reach quorum without voter i

(2.6)

∧ qm · (W p
m +Wn

m)−W p
m + wim · v′im > 0︸ ︷︷ ︸

quorum not reached without voter i

]

where v′im ∈ {0, 1} indicates the decision of voter i in voting m and squared
brackets denote Iverson brackets so that γpim ∈ {0, 1}.

Exercised Power. Similarly, one can look at the actual vote of voters
and see whether the power actually was used to reverse the voting result :

γei =
[
(
W p
m − wim · v′im

W p
m +Wn

m − wim
> qm︸ ︷︷ ︸

voting result without voter i

) 6= (
W p
m

W p
m +Wn

m

> qm︸ ︷︷ ︸
actual voting result

)
]

(2.7)

Looking at the voting history, the impact of delegates on voting out-
comes can be easily estimated by subtracting delegations from vote counts.
Without the delegations, the vast majority of 84.9% of the results remain
unchanged – only one in six voting outcomes is not identical to the outcome
of a hypothetical direct democratic system.

Does that mean that super-voters are not as powerful as they were thought
to be? To answer that question, the potential and the exercised power
is shown in Fig. 2.7(a). The ability to decide votes grows approximately
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linearly with the voting weight and the exercised power measured as the
percentage of reversed votes grows slower than the potential power – super-
voters use their power relatively less often than ordinary delegates. This
explains the positive influence of delegations on the majority agreement
observed in Fig. 2.5(b). The average ratio between theoretical and empirical
power is 0.34 – powerful users reverse the result of a voting in only one of
three votes. Potential power and exercised power are weakly negatively
correlated with ρ = −0.26 (p < 0.05).

In theory, power indices are supposed to correspond to the potential
power of users. To test this, the Banzhaf and Shapley index are calculated
for every vote and the average predicted power is shown in Fig. 2.7(b). On
the Pirate Party platform, both theoretical power indices fail to approximate
the potential voting power. Instead, the Shapley index and the Banzhaf
index understate the potential power of users and predict a growth rate
that is lower than the observed growth.

The main focus of this study is on the prediction and recognition of high
potential power and the danger of power abuse, and therefore it is not the
aim to predict the exercised power. Potential power might not be used at a
given time, but there is no reason to assume that this behaviour is stable.

2.5.5 Non-uniform power indices

The limited alignment of existing power indices with observed voting be-
haviour suggests that some of the fundamental assumptions behind these
indices do not hold in real-world voting systems. Existing power indices are
based on the uniformity assumption, i.e. that users vote with equal proba-
bility in favour or against a proposal. Historically, there was no extensive
voting data available to test this assumption. For online platforms such
as LiquidFeedback, there is enough data to observe a voting bias [Kos09].
The findings on the distribution of voting results and user approval rates
shown in Fig. 2.3 will help to overcome this over-simplifying assumption of
uniformity.

In this section, generalisations of the Banzhaf and Shapley power index
are proposed which allow to model non-uniform distributions of approval
rates (as observed in real-world voting data).

The Beta power index

The user approval rate pj approximately follows a beta distribution. Under
a beta distribution, this parameter is sampled from

pj ∼
1

B(α, β)
pα−1
j (1− pj)β−1 = Beta(pj | α, β). (2.8)

For parameter estimation, extreme cases of users with 100% approval are
removed and the maximum likelihood estimate for Dirichlet distributions
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Figure 2.8: Bayesian networks of the beta index, the regression
index and the beta2 index. In contrast to the Banzhaf and Shapiro
indices, the voting models presented in this thesis assume that the approval
rate p of a voter is unknown and drawn from a context-dependent distribu-
tion. The beta index (a) is based on the assumption that for every of the
M votings and for every of the V voters in that voting, there is an approval
rate p drawn from a beta distribution with parameters α and β. Each voting
decision v is then drawn from a Bernoulli distribution with the approval rate
p as parameter. The regression index (b) similarly assumes a voting- and
voter-specific approval rate, which is this time predicted using the known
voting weight w of a voter in a vote, by a logistic regression with parameters
β0 and β1. The beta2 index (a) finally assumes that for every of the M vot-
ings there is only one approval rate p drawn from a beta distribution with
parameters α and β. Each of the V voters then draws a voting decision v
from this common approval rate.
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given by Minka [Min00] is applied to obtain α = 3.00, β = 1.17. The prob-
ability density of the beta distribution is shown in Fig. 2.3(b).

The first novel power index is a generalisation of the Banzhaf index based
on the beta distributed pi. This index is called the beta power index. The
intuition behind this index is identical to the Banzhaf index: the power
of a voter corresponds to the fraction of coalition constellations in which
the user is a swing voter. In order to create a non-uniform power index,
the permutation of possible coalitions are re-weighted by their probability
under beta-distributed pj for every voter. Every voter j ∈ V has an assigned
probability pj for approving a proposal and users are independent. For
calculating the beta power index β′, all possible winning coalitions in which
i is a swing voter are considered and weighted by their probability

β′i =

∫ 1

0
· · ·
∫ 1

0

 ∑
sik∈Si

∏
j∈V

p
vjsik
j (1− pj)1−vjsik


·
∏
j∈V

Beta(pj | α, β) dp1 · · · dpV (2.9)

where Si denotes the set of possible winning coalitions in which i is a swing
voter and vjsik is 1 if voter j ∈ V of the swing sik ∈ Si voted “yes” and 0
otherwise. The probability of a coalition is given by a multinomial distribu-
tion with success probability ~p = (p1, . . . , pV ), the beta distributed approval
rates. By integrating over the approval rates under the beta distributions,
the marginal likelihood of each swing is obtained, i.e. the probability of each
swing under the biased, beta-distributed approval rate. Beck [Bec75] noted
that the probability of a tie is very small under such a model – this finding
is trivial and indeed in the whole LiquidFeedback dataset only one initia-
tive exhibits a tie. The Bayesian network of the beta index is shown in
Fig. 2.8(a).

It is evident that the beta index represents a generalisation of the Banzhaf
index – one can choose symmetric beta parameters to retain the original in-
dex.

The Regression power index

Another observation besides biased user approval rates is the impact of del-
egations on the approval rate shown in 2.5(b). To model this influence, a
logistic regression can be trained to predict the approval rates for given vot-
ing weights which yields an alternative power index. The regression function
is given by

pj =
1

1 + e−(β0+β1wj)
(2.10)

where wj is the voting weight of voter j. Users with 100% approval rate again
are removed from the data, which then yields regression parameters β0 =
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0.7933 and β1 = 0.0036. The regression predicts an approval probability pi
of 0.69 at a weight of 1 and 0.76 at a weight of 100.

For obtaining the regression power index ρi, the possible coalitions are
weighted by the product of all approval rates predicted by logistic regression
based on the set of winning coalitions Si where voter i is a swing voter:

ρi =
∑
sik∈Si

∏
j∈V

p
vjsik
j (1− pj)1−vjsik (2.11)

where each pj is calculated using the logistic regression in Eq. 2.10. The
graphical model of the regression index is shown in Fig. 2.8(b).

The Beta2 power index

The assumption of independence made by the Banzhaf index implies that
voters have inhomogeneous opinions and that there is frequent disagreement
in votings, i.e. there exist opposing groups within the party. In contrast,
the Shapley index assumes that all voters share a similar “attitude” on
a particular initiative, i.e. they will approve it with the same probability
pj = p, ∀j ∈ V . However, pi in the Shapley index is sampled from a
uniform distribution.

The Shapley index can be generalised by sampling p from the same beta
distribution employed for the beta index: p ∼ Beta(α, β) with α = 3.00, β =
1.17. This index assumes that voters share a homogeneous opinion on ini-
tiatives, and that there is a positive voting bias to accept proposals. For the
overall calculation of the beta2 power index β′′i , one sums over all possible
coalitions where voter i is a swing voter, weighted by their probability:

β′′i =

∫ 1

0

 ∑
sik∈Si

∏
j∈V

pvjsik (1− p)1−vjsik

Beta(p | α, β) dp (2.12)

where Si again denotes the set of possible winning coalitions in which i is a
swing voter, and vjsik ∈ {0, 1} is the approval of voter j ∈ V in swing sik ∈
Si. As in the beta index, the marginal likelihood of each swing under the beta
distributed approval rate is obtained by integrating over the shared approval
rate. The Bayesian network of the beta index is shown in Fig. 2.8(c).

Gelman et al. [GKT02] claim that models based on binomial distribu-
tions with p 6= 0.5 would not be useful because of the small standard devi-
ation of the expected voting result. In the evaluation, it is shown that this
interpretation is wrong. A larger variance of voting results is obtained by
defining a generative process for votes with approval probability p, where
the approval rate is sampled from a beta distribution with a possibly large
variance.
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2.5.6 Evaluation

For a quantitative comparison of the power indices, the prediction quality is
evaluated both at the global and at the local level. At the global level, power
indices predict the average power of super-voters as in Fig. 2.7. The closeness
of the prediction can be measured as the sum of squared errors of the average
predicted theoretical power and the average measured potential power for
each voting weight wi ∈ [1, 100]. The squared errors of the power indices are
shown in Table 2.1. The biggest deviations are found for the regression, beta
and Banzhaf index, indicating that the independence assumption is violated
in the voting system. For the Shapley index, a significantly lower value is
achieved and the beta2 index provides the closest approximation.

At the local level, the extensive voting history is employed to compare
the observed potential power of voters – the ability to decide a vote – to the
predicted power index of every user. Following the probabilistic interpreta-
tion of power indices [Str77], a power index corresponds with the predicted
probability of a voter having potential power. This probability is computed
for every voter in each vote. Now, given the measured potential power of
a voter, it is straightforward to calculate the log-likelihood of the observed
power in the voting history. Formally, the likelihood of a vote is:

logL(γpm | θ) =
∑
i∈Vm

log (p (γpmi | θ)) (2.13)

where p(γpmi | θ) denotes the probability of the observed power under the
the tested model with parameters θ, Vm is the set of voters participating in
the vote over initiative m and γpmi indicates the potential power of voter i
in voting m.

The likelihood can then be used to calculate the perplexity, a common
measure for the predictive quality of a probabilistic model. The per-vote

Table 2.1: Performance of power indices. Perplexity and squared pre-
diction error for the uniform power indices by Banzhaf and Shapley and the
non-uniform power indices presented in this thesis, evaluated on the com-
plete voting history of the LiquidFeedback system. Lower perplexity values
indicate a better model fit. The beta2 index proposed earlier outperforms
existing and other competing power indices.

Model Squared Error Perplexity

Shapley [Sha54] 0.903 78.6
Banzhaf [Ban65] 1.320 297.9
Beta power index 2.220 227.8
Regression power index 2.266 232.0
Beta2 power index 0.627 76.6
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Figure 2.9: Power distribution in the LiquidFeedback system of
the German Pirate Party. Users who participated in more than 100
votes are ranked by their average beta2 power index, which is shown on the
y-axis. Note that both axes are logarithmic. The distribution is flattened in
the beginning compared to a power-law distribution. While the distribution
of power is uneven, there are no dictators i.e. no voter could decide all votes
alone.

perplexity is then given by

perplexity = 2−
1
M

∑M
i=1 logL(γ

p
m|θ) (2.14)

where M is the number of voted initiatives.
Following the perplexity scores, the beta2 index outperforms all other

indices. The Shapley index yields the second best result. The beta index
is slightly better than the regression index and the Banzhaf index performs
worst.

2.5.7 Distribution of Power

The best performing index, the beta2 index, can be employed to analyse the
distribution of the average power per vote of voters in the system. Figure 2.9
shows the distribution of power for voters who participated in more than
100 votes, i.e. voters who potentially could have a significant impact on
the system. The maximum power index is 0.248, indicating that the most
powerful user could decide every fourth vote she or he participated. Looking
at the distribution of power, one can see that the distribution does not follow
a power-law but is flattened in the beginning. While there exists a group
of super-voters with a relatively high power, there are no dictators which
alone could decide the majority of the votes.
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2.6 Discussion

The observed performance of the power indices allows the evaluation of the
assumptions behind these models. First, indices based on the independence
assumption of voters perform significantly worse than the indices based on
the homogeneity assumption, implying that voters share a common attitude
towards initiatives, which can be modelled by a common, vote-specific ap-
proval rate for all voters. It was found that the integration of the observed
positive influence of delegations on the approval rate by the regression index
leads to worse performance as measured by squared error and perplexity (see
Table 2.1). The effect seems to be more complex and has to be examined
in future work. Modelling voters homogeneously – e.g. sampling approval
rates independent of voting weights – yields significantly better results.

Including system-specific voting bias in power indices leads to an over-
all better predictive quality of power indices, measured by lower perplexity.
However, only for homogeneous indices a better global prediction was ob-
tained.

The proposed beta2 index, a biased generalisation of the Shapley index,
gives a precise prediction of the overall power distribution in a voting system
with delegations. It is possible to accurately predict the ability of delegates
to decide votes by sampling sets of voters and calculating the beta2 index.
The parameters of the beta distribution can be learned from voting history or
taken over from similar voting platforms. With these predictions, qualified
statements about the distribution of power in voting systems can be made
and discussions objectified.

Both the analysis of voting behaviour and the empirical measurement
of potential and exercised power exhibit a responsible exercise of power by
super-voters. This might indicate a responsible selection of delegates, the
social control in an enforced public voting and the risk of the immediate loss
of voting power by recall of delegations.

2.7 Summary

Online platforms for delegative democracy are likely to gain relevance for
political movements and parties in the future. Understanding the voting be-
haviour and emergence of power in such movements represents an important
but open scientific and pressing practical challenge.

The study analysed (i) how people vote in online delegative democ-
racy platforms such as LiquidFeedback, and (ii) how they delegate votes
to super-voters. The main objective of this study was to (iii) better un-
derstand the power voters have over voting processes. In particu-
lar, (iv) the theoretical, potential as well as the exercised power
of super voters in online delegative democracy platforms were examined.
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Towards that end, the Banzhaf and Shapley power index were employed,
but exhibited conflicts between the assumption of uniformity of voting be-
haviour made by both indices and the observed voting bias. Thus (v) a new
class of power indices was introduced and evaluated that (a) gen-
eralises previous work based on beta distributed voter agreement
and (b) achieves significantly better predictions of potential vot-
ing power in the evaluation. To the best of knowledge of the author, the
evaluation based on a large voting history represents an innovative objective
evaluation of power indices.

By introducing system-specific indices for voting power, this study of a
liquid democracy platform is a very basic example of how context-specific
priors for probabilistic models can improve the prediction quality. In the fol-
lowing chapter, more complex models – namely probabilistic topic models –
will be extended for context information by using the same principal method-
ology: Instead of relying on e.g. uniformity assumptions, context-specific
prior distributions are learned and help to find topics of higher quality.
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Chapter 3

Single-Context Topic Models

In this chapter, extensions of mixed-membership models for context vari-
ables are presented which – for the first time – allow for the efficient mod-
elling of cyclic and spherical context variables such as the daily 24h cycle or
geographical coordinates.

Mixed-membership models are based on the assumption that grouped
observations are generated by mixtures of multiple latent distributions. The
topic models presented here are mixed-membership models, i.e. documents
are assumed to be created by a mixture of topics. Though the examples and
the evaluation are based on words grouped by documents, the very same
models can be applied to arbitrary grouped observations, e.g. attributes of
users of a social media platform. Furthermore, it is straightforward to re-
place the multinomial distribution of topics over terms with any arbitrary
probability distribution e.g. to model normal-distributed, grouped measure-
ments.

Context is a broad term and it depends on the dataset which information
is perceived as content and which as context. Therefore, context information
typically found in social media is categorised in Section 3.1. Important
properties, which later are used for the modelling of context variables, are
discussed.

Subsequently, context-specific topic models are investigated as a repre-
sentative class for complex probabilistic models in Section 3.2. Existing
approaches for context integration are reviewed, similarities between the
approaches are pointed out and weaknesses of the approaches are analysed.

Finally, a novel approach for integrating context information into com-
plex probabilistic models is presented in Section 3.7.4. Based on multi-
Dirichlet processes, a generalisation of the Dirichlet process employed for
coding context information, a novel approach for the modelling of context-
dependent topics is developed. The model overcomes weaknesses of existing
methods and shows improved performance in modelling real-world datasets
from related work.

79
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3.1 A Classification of Context Variables

Most content from social media such as articles, messages or images is as-
sociated with metadata. The time of creation, authorship information (po-
tentially linking to a user profile), the location a message was written – all
this information can help to understand the context in which content was
created. Additionally, using information about location and time, more con-
text information such as weather data can be merged in [KSS11]. In this
thesis, “context” refers to such metadata and derived context information.

In order to exploit this metadata in probabilistic models, the nature of
the available context variables has to be understood. The context variables
used in this thesis can be classified into four categories: discrete, linear,
cyclic and spherical context variables.

3.1.1 Discrete context variables

Instances of discrete context variables include information about the source
of a document (e.g. the ID of a mailing list where an email was posted),
authorship information such as gender or user roles, discrete location infor-
mation such as the country or state in which a document was written or
language information. Discrete context variables can always be coded as a
set of binary variables. It often is not clear how discrete context variables
relate to each other, e.g. a-priori, it is unclear whether female and male users
in a system are similar or dissimilar. Figure 3.1(a) visualises this property.
Probabilistic models for purely discrete context variables therefore typically
assume independence between the variables. The independence assumption
can be replaced with structured information from networks to induce inde-
pendence. However, networked context information is not the focus of this
thesis and there exists a vast amount of literature on how to make use of
network information in probabilistic (topic) models [MCZZ08, CB09].

3.1.2 Linear and continuous context variables

A more complex class of context variables are linear metadata such as time-
stamps or two-dimensional projections of geographical coordinates. Linear
context variables relate to each other and can be ordered. This property
is visualised in Figure 3.1(b). If a linear variable is continuous, a typical
way to model dependencies between documents in the context space is to
introduce continuous probability distributions over the context variable –
typically on the level of the latent topics.

3.1.3 Cyclic and spherical context variables

A class of context variables which so far received little attention in topic
modelling literature is the class of variables which lie on the cycle, sphere or
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n-sphere. Geographical locations are common spherical context variables.
Cyclic context variables can be found in temporal cycles such as the annual,
weekly and daily cycle, which can be directly extracted from timestamps
which are available for nearly all social media data. The difference to non-
spherical context variables clearly is the absence of an ordering between
data points. Every context variable has neighbour relations to other context
variables on the n-dimensional sphere, e.g. on a cycle there typically exists
a next and a previous value, as depicted in Figure 3.1(c).

Even though cyclic and spherical context information can be extracted
from most datasets, topic models so far only treat two-dimensional projec-
tions of cyclic or spherical data. Clearly, it would be better to employ distri-
butions which yield a more realistic model of the data, such as the spherical
Mises–Fisher distribution introduced in Section 1.4.7. Unfortunately, for
large datasets, parameter inference for models involving Mises–Fisher dis-
tributions is expensive as there exists no closed-form solution for inferring
the parameters of the distribution. This makes distributions on the n-sphere
unattractive for context modelling. The novel models introduced in this the-
sis are the first topic models to explicitly model cyclic and spherical context
variables, overcoming performance issues by using a two-step process and by
exploiting neighbour relations between (grouped) cyclic or spherical context
variables.

3.2 Single-Context Topic Models

Based on the different structural properties of context variables, different
approaches for context-aware probabilistic models were developed in the
past.

The topic models presented in Section 1.5 model documents as being gen-
erated by a mixture of topics. Every document is associated with a multi-
nomial distribution over the available topics, and topics are distributions
over the vocabulary. Words in documents are drawn from the topic-word
multinomials of the topics.

In an abstract sense, topics exploit the co-occurrence of words in doc-
uments to explain the observed document corpus by latent factors (which
are called topics). Knowing contextual information from the metadata of
a document – such as the source, authorship, time or the geographic loca-
tion – can help to improve the detection of topics. Topics then not only
exploit the co-occurrence of words in documents, but also the co-occurrence
of words in the context space, e.g. within all the texts of an author, within
a geographical region or within a time frame.

In the following, existing topic models for different types of context vari-
ables are reviewed.



82 CHAPTER 3. SINGLE-CONTEXT TOPIC MODELS

(a) Schema of a discrete context variable

(b) Schema of a linear context variable

(c) Schema of a cyclic context variable (d) Schema of a spherical context variable

Figure 3.1: Visualisation of the structural properties of context
variable types. (a) Discrete context variables typically do not have a pre-
defined ordering, while 3.1(b) continuous context variables are comparable
and can be ordered. For 3.1(c) cyclic and 3.1(d) spherical context variables,
there exists a more complex network of neighbour relationships, i.e. on a
cycle, there typically exists a predecessor and successor for every data point.

3.2.1 Topic models for discrete context variables

The most simple way of creating a context-specific topic model is to group
documents by their source. Given a corpus of documents from one source,
it is straightforward to learn the prevalence of topics in the source – for
instance for news paper, one could find that there are far more documents
about politics than about sports. With that knowledge, ambiguities can be
solved easier. Basic LDA does not support the inclusion of such information
and assumes a-priori that all topics have the same probability. Wallach
et al. [WMM09] put an asymmetric Dirichlet prior over the document-topic
distribution which is learned during inference and showed that this yields an
improved perplexity. This approach bears similarities to the generalisation of
power indices presented in the previous section, where a system-specific prior
was introduced which improved the predictive performance of the underlying
model. The Bayesian network representation of the model by Wallach et al.
is shown in Fig. 3.2(b).

A rather simple alternative for discrete contexts is to directly merge
documents from the same context, as done in the author-topic model by
Rosen-Zvi et al. [RZGSS04]. In this case, topics are purely learned based
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on the co-occurrence of words in the context space (i.e. within the collected
works of authors) and the information about co-occurrences of words in
documents is lost.

Multiple sources then can be modelled by learning a specific prior for
each source. Teh et al. [TJBB06] went one step further, grouping multiple
sources by sampling topic distributions from a common Stick-Breaking Pro-
cess (SBP) in a three-level HDP. That way, topic preferences can be shared
across similar sources (e.g. news papers with a similar focus) and the scaling
parameter α0 on the second level DP governs the similarity between different
sources. Figure 3.2(c) shows the resulting model. G0 is a global measure on
the topic space, Gc holds the topic probabilities for every context and there
are C different values, the context variable can take (e.g. different sources).
Gd is the document-specific topic distribution which has the context-specific
distribution as a prior.

An interesting variation of this motive is the Citation Influence Model by
Dietz et al. [Die06] where citation information is included in a topic model
for scientific papers. In the model, words in a document either are drawn
from a document-specific topic distribution or from the topic distribution of
a cited document. That way, multiple contexts (cited papers are the context
in which a paper was written) can be taken into account and the strength of
the influence of the different contexts can be estimated (in situations where
the topics of the cited documents differ significantly).

Mei et al. [MLSZ06] extend PLSA for spatio-temporal context by mixing
the topic distribution of documents with location- and time-specific topic
distributions. Locations and timestamps are modelled as discrete sets. In
practice, the division of data into location and time intervals results in sparse
data.

The models presented so far can be called “upstream” models [MM08],
because the context information influence the Dirichlet prior over topics,
which is learned from the topic assignment of words.

A different approach of coping with discrete context variables are models
where topics not only are each associated with a distribution over the vo-
cabulary, but additionally have a multinomial distribution over the context
variable. Mimno et al. call such models “downstream” topic models [MM08].

One instance of such a model is the model for discrete geographical
information (e.g. over administrative areas) by Wang et al. [WWXM07].
The model extends LDA in a way that topics are multinomial distributions
both over words and a discrete set of locations. The authors are aware of
the fact that some related locations, such as locations within a country, are
expected to share a similar topic distribution. They therefore suggest to
introduce a hierarchy between locations such as countries or cities to share
topic information by merging those locations.

A typical problem of such “downstream” models is the strength of the
influence of context on topics. Every context information is repeated Nm
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times (the length of the document), and this yields the implicit assumption
that context information is exactly equally important for finding topics as
the words of the documents.

3.2.2 Topic models for linear context variables

A simple trick for modelling continuous linear context variables is to discre-
tise the context space by clustering and to subsequently apply a topic model
for discrete context variables.

A temporal clustering of documents can be used to share information
between documents in a three level HDP, as for discrete variables. Addi-
tionally, cluster-specific topic distributions can be modelled as dependent
from the previous cluster in time, as proposed in [RDC08] (for general prob-
abilistic models) and in [ZSZL10] (for topic models). Additionally to the
topic preference, the topic-word distributions of topics can evolve over time
as modelled in the infinite Dynamic Topic Model (iDTM) [AX12] where
topic-word distributions depend on the topics of the preceding temporal
cluster.

Alternatively, the “downstream” approach can be applied, extending
topics for distributions over the continuous context space. In the popular
Topics Over Time (TOT) model by Wang et al. [WM06], topics are ex-
tended for beta distributions over the time frame of the document corpus
(i.e. all timestamps are normalised to the interval between 0 and 1). A
non-parametric extension of TOT based on Dirichlet processes, the npTOT
model was proposed in [DHWX13].

A very general approach for modelling the influence of context variables
on topics is the Dirichlet-multinomial regression (DMR) topic model by
Mimno et al. [MM08]. The DMR topic model places a Dirichlet-multinomial
regression over the topic distributions of documents, which takes discrete
and continuous context variables as an input. This approach is especially
interesting as the model structure remains simple and inference is relatively
cheap. However, it is limited to linear variables. For discrete context vari-
ables, the approach is similar to a model which learns a topic distribution for
every context variable and then mixes the topic distributions with learned
weights. Therefore, the DMR topic model can be considered a generalisation
of the upstream modelling approach.

3.2.3 Topic models for cyclic and spherical context variables

Topic models which explicitly model the properties of cyclic context were
not proposed so far. The most commonly modelled spherical context in
topic modelling is geographical context. All existing topic models for cyclic
or spherical context project the context to a simpler representation before
modelling.
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Figure 3.2: Probabilistic topic models for discrete context vari-
ables. Figure (a) shows the basic LDA model with a symmetric Dirichlet
prior for reference. Figure (b) shows a modified LDA with an asymmet-
ric Dirichlet prior with parameters α1 . . . αK over document-topic distribu-
tions, which allows to capture topic preferences across similar documents.
(c) Groups of documents can be grouped themselves, for instance in a three-
level hierarchichal Dirichlet process. This enables the sharing of topic pref-
erences between the groups. Both models follow the “upstream” approach,
where context information influences the prior over topics. (d) An alterna-
tive way of integrating context into probabilistic topic models is to extend
the notion of topics by introducing a topic-specific distribution over the con-
text space, additionally to the distribution over the vocabulary. Every word
then comes with a copy of the context variable, and both the word and the
(copy of the) context variable are drawn from the same topic.
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In [YCH+11a], the yearly cycle was modelled in a downstream model
by mapping it on a timeline and fitting several Gaussian distributions, with
means repeating in equal distances. Every topic has an associated mean,
giving the position on the periodic interval. However, only a limited number
of periodic repetitions can be modelled and thus there is no natural way for
adding new documents which appear later in time. Additionally, topics can
only have one peak (i.e. one Gaussian distribution) per temporal cycle (i.e.
per year).

Yin et al. [YCH+11b] propose a clustering of documents based on their
location in a preprocessing step which then serves as an input for the Lo-
cation Driven Model (LDM). Geographically distributed data are clustered
in a preprocessing step to obtain a discrete set of locations. In the model,
all documents within a spatial cluster share a common topic distribution,
similar to the author-topic model [RZGSS04]. The topic distributions of the
clusters are modelled as independent variables.

A first approach for modelling geographical topics using Gaussian dis-
tributions was proposed by Sizov [Siz10]. GeoFolk first uses the Mercator
projection of documents on a two-dimensional map and then makes use of
the “downstream” approach. Every topic in GeoFolk has a Gaussian distri-
bution on the coordinates of a document (note that latitude and longitude
are modelled as drawn from two independent Gaussians in the original pa-
per). The drawback of this kind of topic modelling clearly is the limited
geographical distribution of topics: Every topic has a normal geographical
distribution and topic areas that are not normal distributed are split into
independent topics.

Yin et al. [YCH+11b] therefore introduced latent geographical topic anal-
ysis (LGTA), an extended version of GeoFolk based on PLSA. Instead of
directly assigning normal distributions to topics, in the model of Yin several
normal distributions are assigned to regions which have a distribution over
the set of topics. Clearly, there now can be several Gaussian regions sharing
the same topic. Regions now take the role of discrete locations as in the
model of Mei. Therefore, the model inherits the problem of merging regions
of one kind.

In [AHS13], Ahmed et al. present a hierarchical topic model which mod-
els both document and region specific topic distributions and additionally
models regional variations of topics. Relations between the Gaussian dis-
tributed geographical regions are modelled by assuming a strict hierarchical
relation between regions that is learned during inference.

A more general approach for modelling arbitrary, complex context infor-
mation such as geolocations was introduced by Agovic and Banerjee [AB12].
Given that the similarity between topic distributions of documents directly
depends on their respective position in the context space, topic distribu-
tions of documents can be sampled from a Gaussian process (GP) prior
which encodes the similarity of documents in the context space. However, it
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is unclear how to choose the right GP kernel in the geographical scenario, as
the similarity of document-topic distributions across the geographical space
is typically hard to predict and involves complex structures such as countries
or geographical zones.

3.2.4 Categorisation of approaches

The presented methods all share a set of common motifs for integrating
context into topic models. A distinction of models based on the context
type was used to structure the presentation of topic models. Addition-
ally, the distinction between upstream and downstream models [MM08] was
mentioned. Abstractly speaking, some contextual topic models use a trans-
formation of context data in a simpler space, such as discretising continuous
variables or mapping geographical data from a three-dimensional sphere on
a two-dimensional map. Some models go beyond single distributions (e.g.
Gaussians) and model complex dependencies in the context space between
documents of different geographical regions, e.g. by introducing hierarchical
structures or temporal dependencies via prior distributions. While simple
models base on PLSA and LDA, advanced models base on Dirichlet pro-
cesses and thus are non-parametric, i.e. the number of topics must not be
set in advance. Additionally, the Dirichlet process leads to a coupling of the
topic priors of different context variables. A comparison of the methods is
shown in Table 3.1.

3.3 Drawbacks of Existing Models

For cyclic and spherical context, existing topic models exhibit weaknesses in
modelling complex context structures. As all approaches for explicitly mod-
elling cyclic or spherical context are designed for the geographical context,
in the following models for geographic coordinates are examined. However,
the problems presented also occur with cyclic context data, e.g. temporal
cycles.

Under the bag-of-words assumption, both words and context variables
can be modelled as being generated by latent factors in a probabilistic model.
Existing approaches for integrating geographical context adopt topic mod-
els such as PLSA [Hof99] or LDA [BNJ03] and extend the models by as-
signing distributions over locations to topics, or by introducing latent geo-
graphical regions. In models which extend topics for spatial distributions
(such as two-dimensional normal distributions) [Siz10], topics with a com-
plex (i.e non-Gaussian) spatial distribution cannot be detected. In models
with latent, Gaussian distributed regions [YCH+11b, AHS13], documents
within a complex shaped topic area do not influence the topic distribu-
tion of distant documents within the same area. Therefore, topics with
a complex spatial distribution such as topics distributed along coastlines,
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Three-level HDP [TJBB06] U X
Citation-Influence [Die06] U X
Mei et al. [MLSZ06] U
Wang et al. [WWXM07] D X

Linear context

EvoHDP [ZSZL10] U X X X
TOT [WM06] D
npTOT [DHWX13] D X
iDTM [AX12] U X X X
Dir-Mult Regress. [MM08] U X

Cyclic and Spherical context

LPTA [YCH+11a] D X
LDM [YCH+11b] U X
LGTA [YCH+11b] U X
Agovic et al. [AB12] U X X
GeoFolk [Siz10] D X
Ahmed et al. [AHS13] U X X X
MGTM U X X X

Table 3.1: Comparison of common topic models for discrete and
continuous context variables. Upstream models exploit context informa-
tion using context-dependent priors for document-topic distributions. For
complex context variables, it is typical to transform the context variables in
order to better model their properties. Advanced models are able to detect
complex dependencies beyond simple probability distributions in the con-
text space, e.g. hierarchies. Finally, models based on hierarchical Dirichlet
processes share topic information between different context clusters and are
non-parametric and do not require a parameter for the number of topics.
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rivers or country borders are harder to detect by such methods. More elab-
orate models introduce artificial assumptions about the structure of geo-
graphical distributions by introducing hierarchical structures [AHS13] or by
defining Gaussian process kernels [AB12] in advance. Additionally, some
approaches [MLSZ06, YCH+11b] do not model document-specific topic dis-
tributions.

In contrast to existing models, the multi-Dirichlet process (MDP) based
geographical topic model (MGTM) presented in this thesis uses a MDP mix-
ture model that groups documents by geographical regions. A geographical
network between spatially adjacent regions is used to equalise topic distri-
butions within coherent topic areas. Consequently, it allows for constructing
generative models which provide a better data fit than existing approaches.

A geographical topic model is a statistical model of a set of spatially
distributed documents that uses word co-occurrences both within texts and
within geographical regions.

From an application perspective, location-aware topic models should sat-
isfy the following top-level requirements:

(1) Modelling document-specific topic distributions: Documents typically
cover a small set of topics, an assumption used for prediction (e.g. tag
recommendation)

(2) Recognition of topics with complex (e.g. non-Gaussian) spatial distri-
butions and changing observation densities

(3) Detection of coherent topic regions that form complex shaped areas
of similar characteristics (e.g. countries, seas, mountain ranges, etc.)
require prior knowledge for the parameter setting

(4) The influence of context information on the learned topics should be
governed by a parameter which is learned during inference

The existing geographical topic models described in the previous sections
have major drawbacks with respect to these requirements. The models of
Yin and Hong [HAG+12, YCH+11b] do not model document-specific topic
distributions; the model of Sizov [Siz10] cannot detect topics with a complex
spatial distribution; and the model of Wang [WWXM07] supports the merg-
ing of semantically related geographical regions but lacks a general merging
method. Finally, only the model by Ahmed et al. is parameter-free [AHS13].

Models based on a hierarchical relation between regions such as the
model by Wang et al. [WWXM07] and Ahmed et al. [AHS13] have draw-
backs, not only in modelling complexity as mentioned in [WWXM07]. Par-
ticular hierarchical relations such as city-state-country might work for rep-
resenting geographical topics such as languages or cultural behaviour. How-
ever they would be misleading e.g. for topics representing geographical fea-
tures such as rivers or mountain areas. In most cases, there will be no
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hierarchy which fits all topics. Additionally, when introducing a hierarchy
of Gaussian distributed regions as in [AHS13], geographical topics which fit
into such a hierarchy will be preferred over topics with a non-elliptic shape
such as, say, coast lines, which would be poorly approximated by a hierarchy
of Gaussian regions. Therefore, introducing a hierarchical relation between
regions will prevent the model from properly learning topics whose complex
geographical distribution does not fit such a simple hierarchical structure.
Table 3.2 summarizes the requirements met by the models presented.

3.4 Multi-Dirichlet Process Topic Models

Consider the general setting of documents consisting of words which are an-
notated with their geographic location. For topic modelling, words are as-
sumed to be exchangeable within documents, the bag-of-words assumption.
Formally, a corpus of size M consists of documents D = {d1, . . . , dM} , and
a document dj consists of a set of Nj words denoted by wj = (wj1, . . . , wjNj )
and a geographical location, a latitude and longitude pair locj = (latj , lonj).

By de Finetti’s theorem [BNJ03], words can be modelled as a mixture
of independent and identically distributed random variables generated by
latent factors. The document location is generated by L latent factors cor-
responding to geographical clusters associated with continuous distributions
on the geographical space. The K latent factors assigned to words, written
as topics φ1, . . . , φK , are multinomial distributions over the vocabulary of
size V .

In the following section, three novel geographical topic models are pre-
sented: a basic model using a three-level hierarchical Dirichlet process, an
extension that considers neighbour relations between regions by model selec-

Table 3.2: Requirements met by existing models for spherical
context, and by the presented model (MGTM). 1partial fulfilment

Model Requirements
(1) (2) (3) (4)

Mei et al. [MLSZ06] X
Wang et al. [WWXM07] X X (X)1

GeoFolk [Siz10] X
LDM [YCH+11b] X
LGTA [YCH+11b] X
Agovic et al. [AB12] X X (X)1 (X)1

Ahmed et al. [AHS13] X X (X)1 X
MGTM X X X X
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tion and an improved version based on the multi-Dirichlet process introduced
in this thesis.

3.5 The Basic Model

For the basic geographical topic model, locations and words are modelled
separately, i.e. the geographical locations are mapped on a set of clusters.
This has two reasons:

Detection of coherent topic areas. The separation of spatial clusters
and document semantics allows the definition of meaningful neighbour re-
lations between spatially adjacent clusters. In fact, as shown later, the use
of these spatial adjacency relations permits the detection of coherent topic
areas and significantly improves the topic quality in the final model. Exist-
ing models that use continuous document positions do not allow the use of
spatial adjacency as a proxy for similarity between the topics of geograph-
ical regions. The reason is that in these models the geographical location
of a region is influenced both by words and document locations, and thus
two geographically adjacent regions can be very dissimilar (i.e. having com-
pletely different topic distributions). This prevents the direct modelling of
geographically coherent topic areas.

Computational complexity. Probabilistic clustering methods in two-
or three-dimensional space usually converge very fast, while samplers for
probabilistic topic models usually take many iterations. Integrating both
processes would result in a high computational overhead which is unaccept-
able for large datasets in real-world applications.

The basic topic model takes a set of geographical clusters as input. In
order to get a clustering which also is a generative model of document po-
sitions, a mixture of Fisher distributions (see Section 1.4.7) is fitted to the
data. The clusters are used to group documents in a three-level hierarchical
Dirichlet process in order to ensure that documents within a geographical
cluster share similar topics. This basic topic model is identical to the topic
model for multiple corpora proposed by Teh et al. [TJBB06].

3.5.1 Geographical clustering

Existing approaches for geographical topic modelling rely on a representa-
tion of document positions in Euclidean space of latitude and longitude.
This causes problems for documents located close to the poles or to the In-
ternational Date Line. Instead, it is more appropriate to employ the unit
sphere as a model for the shape of the Earth. For geographical clustering, it
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is reasonable to assume that document locations follow a Fisher distribution,
defined in Section 1.4.7.

Given the number of Fisher distributions L and assuming a uniform
prior, the expectation-maximisation algorithm presented in Section 1.4.8 is
employed for parameter estimation. To construct a non-parametric model
where the number of regions is inferred from data, the number of clusters
L can be sampled using a Dirichlet process that samples from a space of
Fisher distributions [BHO10]. Clearly, the geographical distribution of top-
ics and therefore the topic-word distributions in a trained topic model will
depend on the number of regions. In order to ensure comparability be-
tween approaches, the number of regions is kept as a fixed parameter in the
algorithms evaluated in this chapter.

3.5.2 Topic detection

The choice of the underlying topic model is crucial for the task of geo-
graphical topic detection. Existing methods are typically based on PLSA
[YCH+11b] or LDA [HAG+12, Siz10]. The models presented in this theses
are based on the hierarchical Dirichlet process (HDP) [TJBB06] instead as it
is non-parametric, yields a sound generative model and supports a grouping
of documents by external factors such as geographical clusters.

Topic models based on Dirichlet processes always have at least two lev-
els: In order to share topics between documents (see Section 1.8), each
document-topic distribution is sampled from a higher-level topic-distribution,
e.g. a global topic distribution which is itself a draw from a Dirichlet pro-
cess [TJBB06].

It is natural to extend the hierarchical scheme by adding layers for docu-
ment groups with characteristic topic distributions. For the basic model, the
three-layer Dirichlet process hierarchy for modelling document corpora pro-
posed in [TJBB06] is applied, but documents are grouped by geographical
regions instead using the spatial clustering of documents defined before.

The three-level hierarchical topic model using geographical clusters is
then defined as follows: Given a set of L geographical clusters, each cluster
is a subset Dl of the document corpus. First, a global probability measure
G0 on the topic space is drawn from a Dirichlet process with base measure
H on the continuous topic space:

G0 ∼ DP(γ,H),

where γ is the scaling parameter for the Dirichlet process, influencing the
sparsity of the global topic distribution. A symmetric Dirichlet prior is
placed over H. The mixture proportions β for the global topic distribution
belonging to the base measureG0 (see Section 1.8.1) are generated by a stick-
breaking process β ∼ SBP(γ) [TJBB06]. For every geographical cluster, a
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Figure 3.3: Graphical models for (a) the basic model and (b) the
multi-Dirichlet process geographical topic model (MGTM). MGTM
introduces dependencies between geographical clusters by including adja-
cency relations between clusters into the model.

region-specific topic distribution Gsl is drawn from the global measure G0

on the topic space:

Gsl ∼ DP(α0, G0), l = 1, . . . , L

with mixing proportions βsl and scaling parameter α0. Finally, the docu-
ments from each region-specific document set Dl draw a document-specific
topic probability measure from Gl:

Gdj ∼ DP(αs, G
s
l ), dj ∈ Dl

with mixing proportions πj . All clusters share the common scaling param-
eter αs.

Note that superscripts here are used to distinguish the base measures
of documents Gd, base measures of geographical clusters Gs and the global
base measure G0. In the rest of this thesis, superscripts of base mea-
sures or multinomial topic distributions do not denote indices or
exponentiations, but are used to distinguish different levels of hierarchical
Dirichlet processes.

The resulting model is given in Figure 3.3(a). A collapsed Gibbs sampler
and strategies for hyperparameter inference are given in [TJBB06].
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(a) Document locations

(b) Geographical clusters (c) Geographical network

Figure 3.4: Document positions (a), geographical clusters (b)
and geographical network (c) for the car dataset presented in Sec-
tion 3.8.1. The vertices of the geographical network correspond to the
means of Fisher distributions fit on the data and the edges are based on
a Delaunay triangulation of mean locations. The geographical network is
used in the neighbour-aware model (NAM) and in the multi-Dirichlet pro-
cess topic model (MGTM) to smooth the topic distributions of adjacent
clusters.

3.6 The Neighbour-Aware Model

In order to exploit and model complex structures in the context space, the
basic model is extended to include geographical network information. Geo-
graphical networks are constructed based on adjacency relations between ge-
ographical clusters, and therefore the resulting model is called the neighbour-
aware model (NAM). The application of geographical networks is a novelty
in geographical topic modelling.
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3.6.1 Definition of a geographical network

For cyclic and spherical context variables, a network of clusters can be de-
fined by exploiting adjacency relations between clusters. There are multiple
ways of defining spatial adjacency relations. For the models presented here,
the Delaunay triangulation is applied, obtained as the dual of the Voronoi
diagram [Aur91]. Calculating the Voronoi diagram for points on the sphere
(i.e. creating cells around every geographical cluster which contain all points
for which the given cluster centroid is closest), and connecting clusters of
adjacent Voronoi cells yields the Delaunay triangulation. Adjacency rela-
tions defined by the Delaunay triangulation are intuitive and do not require
any parameters and thus permit the creation of parameter-free methods.

For the studies in this thesis, triangles with side lengths greater than one
eighth of the earth radius are discarded, as it is not expected to find such
large structures in data. An example for the resulting geographical network
is shown in Figure 3.4.

Note that other adjacency definitions such as k-nearest-neighbour (KNN)
could be used as well. However, one has to keep in mind that in real-world
data, observation densities typically vary significantly, e.g. for some regions
on earth there will be far less observations than on others. Applying naive
adjacency definition such as KNN can lead to a large number of network
components which prevents the detection of complex coherent structures in
the context space.

3.6.2 Advantages of the neighbour-aware model

Using geographical neighbour relations has several advantages over the basic
model:

Exploiting similarity for smoothing. Geographical clusters adjacent
in space often are similar in their topic distribution. Most geographical top-
ics cannot be approximated by a simple spatial probability distribution such
as a Gaussian or Fisher distribution and for these complex topic areas, co-
herent sets of multiple spatial distributions are a reasonable approximation.
Therefore adjacent regions may smooth their topic distributions to increase
the probability of detecting such coherent topic areas.

Coping with sparsity. Geographical proximity seems to be a natural
factor for smoothing the topic distributions of geographical clusters: The
closer two geographical clusters are, the more similar their topic distribu-
tions should be. However, as mentioned before, the observation density
in the geographical space is often inhomogeneous. Geographical proxim-
ity in practice needs to be re-weighted for areas of sparse or dense obser-
vations [BFC98]. This re-weighting requires an additional parameter and
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would be rather arbitrary. Basing the smoothing on a geographical network
of adjacent clusters avoids these issues and is parameter-free.

Sharing emerging topics. In the basic model, new topics emerge locally,
first on the document level, then on cluster level and finally on the global
level. Under the assumption that adjacent clusters are likely to be similar,
new topics should be actively shared with neighbour clusters. Sharing top-
ics through a network of adjacent clusters during Gibbs sampling has an
interesting analogy in the evolutionary process of memes [Daw06]. Topic
assignments of documents can be seen as limited resources which are occu-
pied by topics. Topics are competing with each other in occupying these
resources, and topics which have a better fit (i.e. assign higher likelihoods to
observed words) have an evolutionary advantage against other topics. At the
same time, topics evolve to better fit to the occupied words (i.e. the topic-
word multinomial is constantly updated based on topic assignments). The
sharing of topics through a geographical network resembles the transmis-
sion of memes through social interaction. Eventually, strong topics, which
describe observed documents well, will survive, while poor topics will perish
during the sampling process. A schematic representation of this process is
depicted in Figure 3.5.

The idea behind the extended topic model is to include an uncertainty
over the cluster membership of documents in clusters in order to more
strongly connect topic distributions of adjacent geographical clusters. Each
document topic distribution is assumed to be drawn either from the topic
distribution of its geographical cluster or from one of the adjacent cluster
distributions. Pl is the union of the cluster index l and the set of neighbour
cluster indices, and λj indicates from which cluster-specific topic distribu-
tion βsr the document dj was sampled. The set of topic distributions βs can
be used for Bayesian model selection: Given a uniform prior over the prob-
ability for a document dj to be sampled from Gsr with r ∈ Pl, the sampling
equation for λj is

p(λj = r | z,m,βs) ∝
K∏
k=1

(αsβ
s
rk)

mjk (r ∈ Pl) (3.1)

where mjk gives the number of times a topic was drawn from the global topic
distribution. This equation is identical to the sampling equation in [CG11],
except that the weights of the document-specific topic distribution πj are
integrated out. The model structure then is sampled during Gibbs sampling
and the rest of the sampler remains the same as for the basic model.
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(a) (b) (c)

Figure 3.5: Schematic representation of the sharing of topic infor-
mation between adjacent clusters in the neighbour-aware model
(NAM) and in the multi-Dirichlet process topic model (MGTM).
(a) During Gibbs sampling, a newly detected topic (denoted by a yellow
node) will be offered to adjacent geographical clusters via a common topic
prior. (b) If some of the words in the documents of the adjacent clusters
are better explained by this new topic, the priors of the adjacent clusters
will assign a high probability to the novel topic as well. (c) If an adjacent
cluster does not take on the topics of the neighbour clusters, the parameter
for topic exchange is lowered, ultimately deactivating the topic exchange
between dissimilar adjacent clusters.

3.7 The MDP Based Geographical Topic Model

The neighbour-aware topic model clearly leads to an interaction between
adjacent cluster-topic distributions. However, in some cases this interaction
does not yield the intended smoothing.

Consider the example of two adjacent geographical clusters which both
have a high probability for two topics, while other geographical cluster-
topic distributions assign very low probabilities to both of the topics. Now,
the probability of this model would clearly be maximised if one of the two
clusters has a very high probability for the first topic, and the other cluster
for the second topic. This (unwanted) effect occurs in cases where there are
only few adjacent clusters with high probabilities for a small set of topics.
In practice, this is often the case as data are sparse and the number of
geographical clusters is small.

To overcome this apparent drawback, a dynamic smoothing technique is
introduced. This smoothing is based on the multi-Dirichlet process (MDP),
a generalisation of the Dirichlet process that combines multiple base mea-
sures into a single mixing distribution over the space of the base measures.

Note that a Dirichlet-distributed mixture of Dirichlet processes was in-
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dependently developed by Lin et al. [LF12] and applied in two-level mixtures
of uncoupled MDPs.

In the following, the Multi-Dirichlet process is defined and an inference
scheme is derived. Finally, a MDP-based topic model is presented which
allows for an improved smoothing of topic distributions of geographical clus-
ters.

3.7.1 The multi-Dirichlet process

The multi-Dirichlet process (MDP) is defined using a notation similar to
that used in [TJBB06]. Let G1, . . . , GP be probability measures on a stan-
dard Borel space (Φ,B) associated with positive real parameters α1, . . . , αP .
Then the multi-Dirichlet process MDP(α1, . . . , αP , G1, . . . , GP ) is defined as
a probability measure G over (Φ,B), which for every finite measurable parti-
tion (A1, . . . , Ar) of Φ yields a Dirichlet-distributed random vector, denoted
(G(A1), . . . , G(Ar)), with:

(G(A1), . . . , G(Ar)) ∼ Dir

 P∑
p=1

αpGp(A1), . . . ,
P∑
p=1

αpGp(Ar)

 (3.2)

In the following, the base measures are referred to as parent distributions of
the MDP. An alternative notation of the concentration parameters α1, . . . , αP
is given by

A =
P∑
p=1

αp ηp =
αp
A
, p ∈ {1, . . . , P} (3.3)

which gives a convenient parametrisation for the MDP:

MDP(A, η1, . . . , ηP , G1, . . . , GP ).

Using the alternative notation, the MDP can be understood as a Dirichlet
process with base distribution G0 =

∑P
p=1 ηpGp, the weighted sum of parent

distributions, and scaling parameter A. Given a set of observed samples
from G, φ1, . . . , φi−1, the probability of a factor φi ∈ Φ to be sampled
from G can be estimated by integrating out G using the properties of the
Dirichlet distributed partitions [Nea00] and replacing the base measure with
the weighted sum of parent distributions:

φi | φ1, . . . φi−1 ∼
1

i− 1 +A

i−1∑
j=1

δ(φj) +A

P∑
p=1

ηp
i− 1 +A

Gp (3.4)

with δ(φj) being the Dirac delta, giving weight to a single point φj . One
immediately can see that a MDP with a single parent distribution yields a
standard Dirichlet process.
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3.7.2 Inference

Topic assignments can be sampled by extending the inference strategies us-
ing the Chinese restaurant franchise representation by Teh et al. [TJBB06]
introduced in Section 1.8.1: For a given two-level hierarchical Dirichlet
process, global “dishes” are introduced, corresponding to the Dirichlet dis-
tributed random variables on the first level from which the Dirichlet process
of the second level samples factors φj . For factor sampling, customers
corresponding to the factors φj form Dirichlet distributed groups sitting at
tables in a restaurant and all customers at a table share the same dish. The
number of customers at the ith table is given by mi and the tables are sam-
ples from the Dirichlet distributed base distribution of dishes. A detailed
explanation of the Chinese restaurant process and its parameters is given in
[TJBB06]. The Gibbs sampling equation for topic assignment zji of word
wji in document dj is:

p(zji=k | z−ji,m,βs) ∝ (mjk +
∑
p∈Pl

αpβ
s
pk)f

−xji
k (xji) (3.5)

for topics already sampled, and

p(zji=k
new | z−ji,m,βs) ∝ (

∑
p∈Pl

αpβ
s
pu)f

−xji
knew (xji) (3.6)

for new topics where βsp are mixing proportions of the parent distributions,

f
−xji
k (xji) is a topic-specific probability function with parameters from the

parent distribution and z−ji denotes the set of all topic assignments except
for zji. The number of customers in document dj assigned to the kth factor
is given by mjk.

For sampling the number of components, the MDP can be interpreted as
a multinomial mixture of stick-breaking weights of multiple Dirichlet pro-
cesses. This becomes apparent if one makes use of the alternative represen-
tation from Eq. 3.3. Substituting α0 by (a sum of) Aηlp in Equation 40 from
[TJBB06] gives:

p(mjk=m | z,m−jk) =
Γ(
∑

p∈Pl
Aηlpβ

s
pk)

Γ((
∑

p∈Pl
Aηlpβ

s
pk)+njk)

s(njk,mjk·)·

Amjk·

(
mjk·

mjk1, . . . ,mjkP

) ∏
p∈Pl

(ηlpβ
s
pk)

mjkp (3.7)

and where l is the index of the MDP of document dj and Pl denotes the set of
parent distribution indices. The function s(n,m) denotes the unsigned Stir-
ling numbers of the first kind introduced in Section 1.8.2 and

(
mjk·

mjk1,...,mjkP

)
the multinomial coefficient. The number of tables mjkp is tracked per topic



100 CHAPTER 3. SINGLE-CONTEXT TOPIC MODELS

and parent and sampled simultaneously for all parent distributions. Vari-
able mjk· denotes the sum of tables over all parents, njk is the number of
customers (topic assignments) for a given document and topic. For sampling
the tables, Gamma functions are dropped as they do not depend on m, the
sum of tables mjk· is sampled per topic and then the parent specific table
counts mjkp are the result of mjk· draws from a multinomial with normalised
parameters ηlpβpk.

Sampling the weights βp for each Gp is done using m·kp, the sum over all
tables of topic k and parent p from documents with parent distribution Gp.
If Gp is sampled from a parent Dirichlet process with scaling parameter α0

and weights β, then

βp ∼ Dir(m·1p + α0β1, . . . ,m·Kp + α0βK , α0βu) (3.8)

where βk denotes the weight of topic k in the parent Dirichlet process and
βu is the weight of the previously unseen topics.

3.7.3 Estimation of scaling parameters for the MDP

Sampling for scaling parameters αp is similar to the sampling for Dirichlet
processes as described in [TJBB06]. Instead of directly sampling the con-
centration parameters αp, first A is sampled and then η. The probability of
the total table counts for all documents in the MDP is given by:

p(ml | n,m,η, A) =∏
j∈Dl

Γ(A)

Γ(A+ nj·)
s(nj·,mj·)A

mj· ·
(

mj·
mj1, . . . ,mjP

) ∏
p∈Pl

η
mjp

lp (3.9)

where Dl is the set of documents which is sampled from the MDP with in-
dex l. The left part of the equation is identical to Equation 44 in [TJBB06]
with parameter A as concentration parameter. Therefore sampling for A is
identical as for a normal DP. The document specific table counts mj· are
obtained by summing over the sampling results from Equation 3.7. Obvi-
ously, the right side of Equation 3.9 is a multinomial again. As η governs
the influence of parent distributions, it is possible to introduce a symmetric
Dirichlet prior over the sampling parameters:

ηl ∼ Dir(δl) (3.10)

For a MDP with index l, Bayesian inference for the multinomial parameters
ηl then yields an estimate based on the table counts of the parent DPs:

η̂lp =
m·p + δ

m·· + |Pl|δ
(3.11)
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3.7.4 MDP-based topic model

The extension of NAM for the multi-Dirichlet process, the multi-Dirichlet
process geographical topic model (MGTM), is obtained by replacing the
model selection for uncertain cluster memberships by multi-Dirichlet pro-
cesses. Instead of sampling for document memberships from the set of po-
tential parent distributions Pl, the potential parent distributions of the NAM
are used as indices of parent base distributions in a MDP. Every document
has one or more parent base distributions Gsr (the topic distribution of a
spatial cluster) with r ∈ Pl, holding the indices of the region of the docu-
ment and the adjacent regions. A schematic representation of the resulting
dependencies is shown in Figure 3.6. The weight of region r in the MDP
is given by ηlr and is estimated during inference. With a concentration
parameter δ > 1 the cluster weights of parent distributions are smoothed,
which is explicitly coding the assumption that adjacent clusters are similar.
The concentration parameter δ can be estimated from data as well, allowing
insights into the similarity of regions.

As the number of adjacent regions varies across regions, and the dimen-
sionality of ηl· is changing, standard inference schemes from literature cannot
be applied. Therefore, a generalised estimator for the concentration param-
eter of a Dirichlet distribution with changing dimensionality is derived in
Section 3.7.6.

3.7.5 Generative process

The generative process of MGTM is:

1. Draw a global topic measure

G0 ∼ DP(γ,H)

2. Draw cluster-specific topic measures:

Gsl ∼ DP(α,G0) (3.12)

3. For every geographical cluster, draw a weighting over the parent cluster-
topic distributions:

ηl ∼ Dir(δ) (3.13)

4. For every document of every geographical cluster l with Nl adjacent
clusters, draw a topic measure from a multi-Dirichlet process with:

Gdj ∼ MDP(A, ηl1, . . . , ηlNl
, GsPl1

, . . . , GsPlNl
) (3.14)

5. For every word n in document j, draw a topic-word distribution and
a word wjn from this distribution

φjn ∼ Gdj wjn ∼ φjn
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Figure 3.6: Modelling of adjacency relations in MGTM. The ge-
ographical adjacency of regions (left) is used in the model to derive depen-
dencies of document-specific topic distributions from the topic distributions
of regions (right). Dependencies from regions adjacent to the region of a
document are shown in grey.

The resulting model is shown in Figure 3.3(b). The dashed arrow con-
necting the cluster specific topic distributions Gsl and the document specific
distributions Gdj indicates that not every cluster specific distribution is a
parent base distribution of each MDP.

In MGTM, all documents of a given region share the same MDP and thus
the same weights ηl for the parent topic distributions of the region and its
neighbour regions. Each region stores the influence of its adjacent regions
on the topic distribution of the contained documents in the multinomial
parameters ηl which is adjusted during inference. Given Pl, the union of
the region index l and its neighbour region indices, ηl assigns a probability
to every region to be chosen as a base topic distribution by the documents
Dl in region l, and thus ηlr is an indicator of similarity between the lth
region and its rth neighbour.

As mentioned, it is possible to smooth the influence of adjacent regions
by setting a Dirichlet prior over η. In contrast, a prior for the model selection
of NAM (Eq. 3.1) only could re-weight but not smooth the probability for
cluster memberships. Using the MDP, one obtains a flexible and stable
framework for sharing information across context clusters. The influence of
adjacent context clusters is learned during inference, and the MDP allows
for a smoothing of topic distributions of adjacent clusters via a Dirichlet
prior.

The resulting model has an important advantage: For the neighbour-
aware model, it was assumed that adjacent spatial clusters are similar and
therefore their topic distributions should be smoothed. However, this as-
sumption could not be explicitly modelled in the NAM. The MDP ensures
that the model in fact creates homogeneous topic distributions for similar
adjacent regions and at the same time prevents a smoothing of dissimilar
regions by adjusting the influence parameter η during the sampling process
and by re-estimating the concentration parameter δ, leading to a dynamic



3.7. THE MDP BASED GEOGRAPHICAL TOPIC MODEL 103

smoothing of topic regions.

An MDP-based topic model also could be used to create a model in
which all documents are connected to all base measures of the second-level
Dirichlet process. This topic model would learn a clustering of documents
and similarity relations between clusters. MGTM restricts documents to
base measures of their geographical clusters to make sure that the learned
patterns correspond to geographical structures.

3.7.6 Generalised estimator of the concentration parameter

For the MDP based model, a dynamic smoothing of topic distributions be-
tween adjacent geographical clusters based on a multinomial distribution
with a symmetric Dirichlet prior was introduced.

Unlike in standard applications, the dimensionality of the symmetric
Dirichlet distributions potentially changes for different MDPs in the model.
The reason behind this is the changing number of adjacent clusters in the
underlying geographical network. For each cluster, the multinomial distribu-
tion drawn from the Dirichlet prior has Pi ∈ N+ dimensions, corresponding
to the probability of drawing a topic from cluster p ∈ {1, . . . , P}. Despite
the changing dimensionality, the consistent semantics of the concentration
parameter (effectively working as pseudo-counts during inference) makes it
desirable to learn a single symmetric parameter δ which is shared by all
Dirichlet distributions regardless of their dimensionality. In this section,
the inference method by Minka [Min00] is reviewed and a novel, generalised
inference scheme for estimating the shared concentration parameter of mul-
tiple Dirichlet distributions with changing dimensionality is presented.

The widely-used parameter estimate presented by Minka [Min00] is based
on a maximum likelihood estimation employing a lower bound on the like-
lihood [Hua05]. The likelihood of observations D = {x1, x2, . . . , xM} with
counts mnp for the pth observation of the multinomial in the nth trial and
asymmetric Dirichlet prior ~α = {α1, . . . , αP } is given by

p(D | ~α) =
M∏
n=1

p(xn | ~α) =

M∏
n=1

 Γ(
∑P

p=1 αp)

Γ(mn +
∑P

p=1 αp)

P∏
p=1

Γ(mnp + αp)

Γ(αp)

 .

(3.15)

Now the straightforward inference approach would be to maximise the likeli-
hood directly. However, the derivative with respect to αp contains digamma
functions of αk and there exists no closed form solution for the optimisation.
One can find the parameters maximising the likelihood using the Newton-
Raphson method as for instance done in Appendix 4.2 in [BNJ03].

Minka instead proposes to optimise a lower bound on the likelihood
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which is based on two inequalities [Min00]:

Γ(x)

Γ(n+ x)
≥ Γ(x̂) · e(x̂−x)·b

Γ(n+ x̂)
(3.16)

with
b = Ψ(n+ x̂)−Ψ(x̂) (3.17)

where x̂ ∈ R+ can take on arbitrary values;
and (for n ≥ 1):

Γ(n+ x)

Γ(x)
≥ c · xa (3.18)

with
a = (Ψ(n+ x̂)−Ψ(x̂)) · x̂ (3.19)

c =
Γ(n+ x̂)

Γ(x̂)
· x̂−a (3.20)

where x̂ ∈ R+ again. The first inequality is intuitive for x > 1, because
in this case the digamma function can be approximated as Ψ(x) ≈ log(x−
0.5) [AWST12] so that for Equation 3.16

Γ(x̂)e(x−x̂)·b

Γ(n+ x̂)
≈ Γ(x̂)

Γ(n+ x̂)
·
(

(n+ x̂− 0.5)

(x̂− 0.5)

)(x̂−x)

(3.21)

where the right-hand side of the formula creates a lower bound on the gamma
function by multiplying and dividing by (x̂− 0.5) and (n+ x̂− 0.5) respec-
tively, instead of counting up until x and n+ x.

Plugging both inequalities into Equation 3.15 yields:

p(D | ~α) ≥=
M∏
n=1

Γ(
∑P

p=1 α̂p) · exp ((α̂p − αp) · bp)
Γ(mn +

∑P
p=1 α̂p)

P∏
p=1

cpn · αpanp


(3.22)

and taking the logarithm gives:

log p(D | ~α) ≥
M∑
n=1

(
log(Γ(

P∑
p=1

α̂p)) +
P∑
p=1

α̂p · bn −
P∑
p=1

αp · bn

− log

Γ(mn +
P∑
p=1

α̂p)

+
P∑
p=1

c+ anp · log(αp)

)
.

(3.23)

For maximising the likelihood with respect to parameter αp, one first sorts
out those summands of the formula which do not depend on αp:

log p(D | ~α) ≥ −
P∑
p=1

αp ·
M∑
n=1

bn +
M∑
n=1

P∑
p=1

anp · log(αp) + (const.) (3.24)
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Note that the corresponding Equation 130 in the original paper by Minka
gives an incorrect log-likelihood estimate which fortunately does not affect
the result of the differentiation [Min00].

Finally, setting the derivative of the log-likelihood equal to zero leads to
a fixed-point iteration which in every step optimises αp = αnewp in order to

get a tighter lower bound based on the old estimates α̂p = αoldp :

αnewp = αoldp

∑M
n=1

(
Ψ(mnp + αoldp )−Ψ(αoldp )

)
∑M

n=1

(
Ψ(mn +

∑P
p=0 α

old
p )−Ψ(

∑P
p=0 α

old
p )
) (3.25)

For the symmetric prior with changing number of outcomes, the likelihood
of multinomially-distributed observations D = {x1, x2, . . . , xM} with counts
mnp (in MGTM corresponding to the tables of parent p of the nth document)
is

p(D | α) =
M∏
n=1

p(xn | α) =
M∏
n=1

 Γ(Pn · α)

Γ(mn + Pn · α)

P∏
p=1

Γ(mnp + α)

Γ(α)

 (3.26)

with Pn being the number of possible outcomes (in MGTM the number of
connected clusters in the geographical network) for the nth document. A
lower bound then is given by

log p(D | ~α) ≥
M∑
n=1

(
log(Γ(Pn · α̂)) + Pn · α̂ · bn − Pn · α · bn

− log(Γ(mn + Pn · α̂)) +
P∑
p=1

· (c+ anp · log(α))

) (3.27)

=
M∑
n=1

(−Pn · α · bn) +
M∑
n=1

P∑
p=1

anp · log(α) + (const.) (3.28)

Setting the derivative to zero yields:

M∑
n=1

(−Pn · bn) +
M∑
n=1

P∑
p=1

anp ·
1

α

!
= 0

⇔ α =

∑M
n=1

∑P
p=1 anp∑M

n=1 Pn · bn
so that

αnew = αold ·

∑M
n=1

(∑P
p=1 Ψ(mnp + αold)− Pn ·Ψ(αold)

)
∑M

n=1 (Pn ·Ψ (mn + Pn · αold)−Ψ (Pn · αold))
. (3.29)
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In practice, the computation of alpha can be sped up by using a random
sample of observed counts, as the calculation of digamma functions is rela-
tively expensive and the required accuracy, e.g. for topic models, is typically
small. However, for the multi-Dirichlet process topic model, the number of
regions often is small enough to calculate the concentration parameter on
all observed table counts.

3.8 Evaluation

In this section, the ability of MGTM to improve the quality of topics by
detecting more accurate, coherent topic areas is demonstrated. The evalu-
ation is in four parts: First, the basic model, the neighbour-aware model,
the multi-Dirichlet process model and a state-of-the-art model for geograph-
ical topic detection, LGTA by Yin et al. are compared, using the datasets
and parameters given in [YCH+11b]. Second, the influence of raised region
parameters on topic quality is evaluated for all four methods. Then, the
runtime of the presented methods is compared on the largest dataset for
larger region parameters. Finally, the topic quality of LGTA and MGTM
is evaluated in a user study, based on topics trained on the largest of the
datasets.

3.8.1 Datasets

As the evaluation of topic models is heavily dependent on the datasets used
for comparison, it is crucial to use existing datasets in order to guaran-
tee a fair comparison. Therefore, the evaluation is based on the datasets
from [YCH+11b], created for the evaluation of the LGTA model. The
datasets consist of photographs with geographic coordinates and text tags
from the photo sharing service Flickr. The landscape dataset contains 5,791
photos, tagged by “landscape” together with the terms mountains, moun-
tain, beach, ocean, coast, desert from within the US. Topic models should
recognise separated topics for mountain regions, coastal regions and desert
areas as they belong to different, almost mutually exclusive geographical
landscapes. The activities dataset contains 1,931 images, taken within the
US and tagged by “hiking” and “surfing”. These two activities should be
recognised as separate topics of behaviour. The car dataset contains 34,707
globally distributed images annotated with chevrolet, pontiac, cadillac, gmc,
buick, audi, bmw, mercedesbenz, fiat, peugeot, citroen or renault, filtered for
event-like images tagged with autoshow, show, race, racing. Only the tags
from the set of car brands were kept. Concerning the geographical topics,
American, German and French car brands are expected to be detected. The
Manhattan dataset consists of images from New York containing the tag
manhattan. Different parts of Manhattan should be detected. For the food
dataset, Yin et al. filtered geotagged photos containing the tags cuisine,
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food, gourmet, restaurant, restaurants, breakfast, lunch, dinner, appetizer,
entree,dessert and kept 278 co-occurring tags. Cultural food patterns such
as national cuisines are latent topics hidden in the data [YCH+11b]. An
overview of the data is given in Table 3.3.

3.8.2 Experimental setting

In order to test the generalisation performance of geographical topic mod-
els, the word perplexity (see Section 1.7.2) is calculated. Lower perplexity
values indicate a better model fit. Yin et al. used the word perplexity in
their evaluation of LGTA which they showed to be superior to GeoFolk
[Siz10] and a set of basic geographical topic models. Models that outper-
form LGTA in perplexity therefore also outperform GeoFolk and the basic
methods evaluated by Yin [YCH+11b].

The comparison between the basic Dirichlet process-based model and its
extensions is needed to test the effect of including the additional information
of the geographical network in the model and to compare the multi-Dirichlet
process with a smoothing mechanism based on model selection.

For each perplexity calculation, a random 80% / 20% split is used to
create a training set Dtrain and a test set Dtest. As explained in Section 3.4,
each document dj is represented by a word set wj . The likelihood of words
in held-out documents is calculated using the location of documents, the set
of topics and other parameters sampled from the training dataset.

For the hierarchical Dirichlet process-based models, the probability of a
document is given by

p(wj) =
∏

wi∈wj

K+1∑
k=1

φkwi
πjk

where φkwi
is the probability of word wi under topic k and πjk is the

document-topic distribution for topic k. K + 1 denotes the index of a pre-
viously unseen topic and the topic-word probability φK+1,wi is given by

Table 3.3: Collection period, document count (M) and vocabulary size
(V ) of the datasets used for comparison [YCH+11b]

Dataset Collection period M V

Landscape 09/01/2009 – 09/01/2010 5.791 1.143
Activity 09/01/2009 – 09/01/2010 1.931 408
Manhattan 09/01/2009 – 09/01/2010 28.922 868
Car 01/01/2006 – 09/01/2010 34.707 12
Food 01/01/2006 – 09/01/2010 151.747 278
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φK+1,t = 1/V, t ∈ {1, . . . , V } as new topics are drawn from a symmetric
Dirichlet prior over the topic space.

For convenience, the parameters for the (multi-)Dirichlet processes are
set to the values used for the evaluation of three-level HDPs in [TJBB06]. A
Gamma(1, 0.1) prior is assigned to γ and a Gamma(1, 1) prior to α0, αs and
A. The concentration parameters are initialised to 1. For the multi-Dirichlet
process, the weights η of parent distributions are initialised to 1/P and the
concentration parameter is set to δ = 10. The base measure H is a symmet-
ric Dirichlet distribution with concentration parameter 0.5, except for the
car dataset where the parameter is set to 5 for smooth topic-word distribu-
tions, as all car brands are expected to appear in all topic areas. The number
of iterations of the Gibbs sampler is set to a low value of 200. The source
code for MGTM is available from: https://github.com/ckling/mgtm.

For the evaluation of LGTA, the parameters from the original paper by
Yin [YCH+11b] were used. The stopping criterion is set to a change in
log-likelihood lower than 0.0001 and the background model weight is set to
0.1. LGTA requires a parameter for the number of normally distributed
regions which is analogous to the number of geographical clusters (Fisher
distributions) in the models presented in this section. For comparison, iden-
tical numbers of regions are used. The setting depends on the dataset and
is taken from the LGTA paper.

As the number of detected topics varies for models based on the hierar-
chical Dirichlet process, each of the HDP-based methods is run 100 times
on each dataset and the resulting perplexity is averaged for topic counts
with at least ten samples for all three models. The perplexity of LGTA is
calculated for the same number of topics by averaging over ten runs.

3.8.3 Comparison with LGTA

Resulting perplexity scores for each model are given in Figure 3.7 (a), (c),
(e), (g) and (h). The experiments show that the base model, NAM and
MGTM are superior to LGTA for all datasets. This finding can be explained
by the ability of the models to model document-specific topic distributions
that cannot be detected by LGTA. However, the performance of the HDP-
based models differs. For the globally distributed datasets (car and food),
MGTM performs significantly better than the base model and NAM. In
contrast, for local datasets with a small number of regions, all HDP-based
methods perform comparably well.

The dynamic smoothing by MGTM helps to detect coherent topic regions
and can effectively improve the topic quality for large, complex structured
data while for simple datasets the basic model performs similar or even
better.

https://github.com/ckling/mgtm
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Figure 3.8: Comparison of average per-word perplexity for
LGTA, the basic model, NAM and MGTM on the car dataset
with five topics for growing region counts. The plot shows the un-
desired behaviour of NAM to optimise the posterior by setting the topic
probabilities of sparse regions to extreme values, leading to an increased
perplexity for high region counts.

3.8.4 Effect of the region parameter

To further investigate the behaviour of MGTM for complex structured re-
gions, the experiments are repeated for the three datasets with the smallest
number of regions increasing the region parameter by a factor of ten. The
results are given in Figure 3.7 (b), (d) and (f). For an increased number
of regions, MGTM shows an improved perplexity for all three datasets and
outperforms the basic and neighbour-aware model, demonstrating its ability
to effectively exploit the adjacency relation between regions for sharing topic
information.

The effect of a growing number of regions for the car dataset at a fixed
number of five topics is plotted in Figure 3.8. The car dataset is adequate
to demonstrate the usage of geographic information in the topic models as
the documents contain only a single word, meaning that intra-document
co-occurrences of words do not contribute to the model creation. One can
observe that LGTA, the basic model and MGTM improve the topic quality
for increased region parameters, but the improvement of MGTM is consid-
erably larger than for LGTA and the basic model. The dynamic smoothing
based on the MDP helps to improve the topic quality by exchanging topic
information between similar adjacent clusters. In contrast, the perplexity of
NAM dramatically gets worse for larger region counts due to the instability
of the naive smoothing mechanism based on model selection.

3.8.5 User study

A lower perplexity does not necessarily indicate an improved topic quality
in terms of semantic coherence [CBGW+09]. Therefore a user study was
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(a) Introduction of the topic model game

(b) Game for human topic evaluation

Figure 3.9: The topic model game. (a) Screenshot from the in-
troduction of the topic model game implemented for the evaluation of
MGTM which allows a human evaluation of the semantic coherence of the
top-N words of topics. The game implements the evaluation proposed in
[CBGW+09]. (b) The player is presented with six words, consisting of the
top-5 words of a topic and one intruder word from a different topic. In
order to gain points, the player has to select the intruder word. For high
qualitative, semantically coherent topics, this task should be easier than for
incoherent topics of low quality.
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conducted to evaluate the semantic coherence of words within the topics
detected by LGTA, the basic model, NAM and MGTM for the food dataset
with 1000 regions at 4, 6 and 8 topics. Figure 3.5 shows the words with
the highest probability for the topics detected by LGTA and MGTM at
eight topics. Participants performed the “word intrusion” task introduced
by Chang et al. [CBGW+09]: For evaluating a topic, users are presented
with a set of six words, which consists of the five words with the highest
probability under the topic and a word from another topic from the same
model. The user’s task is to “find the word which does not fit with the
other words”. In case of semantically coherent topic words, the intruder
can be easily found. To additionally test the interaction between topics, the
intruding word was chosen from a set of words which had a low probability
(not in the top 25 words) in the evaluated topic and a high probability (top
5 of the remaining words) in another topic. The study was conducted with
31 users which were presented with word sets in a random order of models
and topics. Only one word set per model-topic combination was shown to
the user and a total of 1,446 of word sets were rated. Screenshots of the
implementation of the intrusion detection game are shown in Figure 3.9.

In order to measure the quality of a model, the overall model precision
is calculated (the percentage of intruders detected by participants) and the
per-topic precisions within a given model.

Table 3.4 shows the average precision and the median of the per-topic
precisions for all four models. Clearly, MGTM performs considerably better
with both an average model precision and median model precision of around
0.8 compared to about 0.6 for LGTA. Only for the case of 4 topics, the
neighbour-aware model shows a comparable precision. However, for 6 topics
the precision is worse compared to LGTA and for 8 topics it is only slightly
better. Similarly, the basic model is worse than LGTA for 4 topics and only
slightly better for 6 and 8.

To analyse the distribution of the per-topic precision, the corresponding
box-and-whisker plot for the case of 8 topics is given in Figure 3.10. Clearly,
the quality of the topics detected by the basic model and NAM is mixed

Table 3.4: Model precision and median of per-topic precisions for
LGTA, the basic model, NAM and MGTM on the food dataset
with 1000 regions.

4 topics 6 topics 8 topics
avg / median avg / median avg / median

LGTA 0.67 0.64 0.57 0.57 0.60 0.58
Basic 0.45 0.57 0.63 0.61 0.64 0.58
NAM 0.79 0.75 0.51 0.48 0.64 0.60
MGTM 0.79 0.80 0.82 0.81 0.78 0.75
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Figure 3.10: Results of the human evaluation. The Boxplots show
the model precision for LGTA, the basic model, NAM and MGTM on the
food dataset with 1000 regions, 8 topics. Higher is better.

– the per-topic precision ranges from very low values of about 0.2 to high
values greater than 0.8. The precision of LGTA is more consistent, as the
topic precision is closer distributed around the median with only one outlier.
Finally, the per-topic precision of MGTM is high for all topics and most
homogeneous among all models.

The human evaluation supports the findings of the perplexity comparison
– indeed, MGTM detects semantically more coherent topic-word distribu-
tions by exploiting the spatial structure of topics using dynamic smoothing.
The differences between LGTA and MGTM can be explained by taking the
topics from Table 3.5 as an example.

Topic quality. The key difference between LGTA and MGTM is the se-
mantic coherence of the topic-word distributions. Topic 2 of LGTA assigns
high probabilities to the terms chocolate, cheese, bread and fish. By con-
trast, the most similar topic of MGTM contains the semantically related
words chocolate, icecream, strawberry and baking – all related to desserts.
The incoherent word-selection of LGTA is due to the fact that these tags
often occur within a small region and repetitions of similar word combina-
tions in adjacent regions are not sufficiently taken into account.

Globality. The first topic from LGTA and the corresponding topic from
MGTM mostly contain terms related to seafood. Clearly, the words rice
and chicken from the seafood topic of LGTA do not fit – they often occur
in Asia, where many photos of seafood are located. The seafood topic from
MGTM is more coherent – it assigns a high probability to the word wine,
as it is often consumed together with fish across Europe. From this exam-
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ple, one can see that the topics of LGTA are strongly influenced by local,
region-specific patterns in tag co-occurrences whereas MGTM is more influ-
enced by intra-document co-occurrences of tags and the global distribution
of topics.

The reason is that LGTA does not model document-specific topic dis-
tributions. Instead, all documents within a region share the same topic
distribution and therefore individual deviations from the regional topics are
not recognised in the model.

In contrast, MGTM allows for document-specific topic distributions and
permits deviations from the regional topic distribution. By detecting single
documents fitting the topic of seafood in coastal regions all over the world,
and by exchanging this topic information over the network of adjacent re-
gions, a global topic of seafood is established.

Support for non-compact topics. Some of the topics detected in the
food dataset are expected to exhibit a complex spatial distribution. As
mentioned before, MGTM is able to detect such complex spatial structures.
To give an example, the maps in Table 3.5 show the geographical distri-
bution of documents with a higher-than-average probability for the seafood
topic (Topic 1) as detected by LGTA and MGTM. One would expect Topic
1 to have a distribution along coastlines. This is the case for Topic 1 of
both LGTA and MGTM, which covers both countries where fish is regu-
larly eaten (such as the UK and the Netherlands) and countries where the
seafood topic mainly appears at the coast (e.g. Spain, France). However,
the geographical distribution of the seafood topic of LGTA has a large gap
on the coast between Spain and France and is not detected in Denmark or
on mainland Italy. The reason is that there are not many photos showing
seafood in these areas and therefore the evidence is not sufficient for LGTA.
Due to the dynamic smoothing of adjacent areas, MGTM still is able to
detect such topics and thus correctly detects the seafood topic in documents
along the whole coastline as seen on the map.

3.8.6 Runtime comparison

Another advantage of the HDP-based models is the separation of geograph-
ical clustering and the topic sampling step. By excluding the distance cal-
culation between every document and every region centre from the slowly
converging topic sampling process, the runtime is expected to be reduced
significantly.

For comparing the runtime of the distinct methods, the implementation
of LGTA provided by Yin was optimised before the runtime was measured on
the largest dataset for different settings of the region parameter on a 2.8GHz
CPU with 72GB of RAM using a single core. The topic parameter of LGTA
is set to 7. The runtime in seconds is given in Figure 3.11. The runtime of
LGTA linearly grows with a higher region count, as in every iteration every
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Figure 3.11: Average runtimes (in seconds) of LGTA, the basic
model, NAM and MGTM for the food dataset. The runtime was
measured for different numbers of regions. Note that the y-axis is a log
scale.

document has to be compared with every region for sampling its membership
probability. The Base model, NAM and MGTM use a separate geographical
clustering step that can be efficiently implemented and takes only a fraction
of the total runtime. The topic sampling is practically not influenced by the
number of regions as it only creates additional region-specific topic distribu-
tions. MGTM shows a higher runtime compared to the basic model as the
sampling of region-topic distributions in the multi-Dirichlet process is more
expensive than in a normal hierarchical Dirichlet process. In return, for a
larger number of regions, MGTM detects and merges topics with a coherent
spatial distribution which results in a lower number of detected topics and a
slightly decreased runtime. MGTM thus has a significantly reduced runtime
and can be applied to much larger datasets.

Furthermore, it is straightforward to implement a distributed algorithm
for MGTM as the distributed Gibbs sampling equations for hierarchical
Dirichlet processes from [NASW09] can be directly applied to multi-Dirichlet
processes and region-specific topic distributions can be shared across proces-
sors with dependent document-topic distributions using the same technique
as for sharing topics across processors.

3.9 Summary

The results from the user study and extensive quantitative evaluation of
MGTM show a clear improvement in topic quality compared to state-of-
the-art methods in topic modelling. This means that (i) MGTM detects
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topics of a higher quality as measured by per-word perplexity and
by precision in user experiments. Additionally, the runtime analy-
sis demonstrates that (ii) modelling context with three-level multi-
Dirichlet processes is highly efficient and thus suitable for large
datasets. After the preprocessing step, the runtime of the model is almost
independent of the number of modelled geographical regions. (iii) The
presented model is the first to make use of adjacency relations
between groups of documents for a dynamic smoothing of topic
distributions. Finally, the improved performance of MGTM at higher
numbers of regions shows that (iv) in real-world datasets, many geo-
graphical topics have a complex, non-Gaussian spatial distribution
and that their detection can be supported.

The presented topic model is just one example of how to use the MDP
for dynamic smoothing. In the following chapter, a generalisation of MGTM
and the underlying three-level hierarchical multi-Dirchlet process for mul-
tiple contexts is presented. Additionally, efficient online inference schemes
based on variational inference are derived.
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Chapter 4

Multi-Context Topic Models

In this chapter, a novel class of topic models for multiple context variables is
presented. The derived topic models can treat both discrete and continuous
context data, and the latter can be linear, cyclic or spherical.

Having a large set of potentially important context variables, it is neces-
sary to weight contexts by their impact on the learned topics to detect and
remove irrelevant context variables and to exploit valuable context informa-
tion [KS96]. The proposed class of topic models fulfils this requirement by
learning a (potentially sparse) weighting of context-specific topic distribu-
tions in a three-level multi-Dirichlet process.

Including multiple context variables leads to increased memory consump-
tion, a larger parameter space and therefore a slower convergence of the topic
parameters during inference. To address this issue, an approximate infer-
ence procedure for three-level multi-Dirichlet processes is derived, extending
and combining inference schemes for hierarchical Dirichlet processes.

4.1 Generalisations and Special Cases of MGTM

The Multi-Dirichlet process Geographical Topic Model (MGTM) presented
in the previous chapter was applied to geographically distributed documents.
In a preprocessing step, documents were clustered based on their geograph-
ical locations. Adjacent clusters were connected in a three-level Hierar-
chical Multi-Dirichlet Process (HMDP) where documents draw their topic
distributions from a cluster-specific mixture of cluster-topic distributions.
Cluster-topic distributions were drawn from a global Dirichlet process, en-
suring that adjacent clusters exchange topic information and documents of
different clusters share the same discrete set of topics.

In this section, the relation of three-level hierarchical multi-Dirichlet
process models to existing topic models is shown in order to demonstrate
the flexibility of the model structure of the HMDP and to show how it can
be used for modelling different types of context variables.

119
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The model structure behind the MGTM can be interpreted as a gener-
alisation of several well-known topic models. In fact it is straightforward to
show the equivalence of the HMDP model structure to several existing topic
models under special parameter settings.

4.1.1 Relation to the hierarchical Dirichlet process

The novelty of the hierarchical multi-Dirichlet process lies in the introduc-
tion of multi-Dirichlet processes, which are employed to code a network of
context clusters based on adjacency relations. If there is only one context
variable and the context clusters are completely unconnected, the model re-
duces to a three-level hierarchical Dirichlet process [TJBB06], the structure
behind the basic model presented in Section 3.5.

4.1.2 Relation to the author topic model

The model further simplifies in cases where not only all context clusters are
unconnected, but documents consist of single words only. In this case, the
table counts of documents in the Chinese restaurant franchise are identical
to the topic counts (being 1 for the topic assigned to a document and 0
otherwise). This means that the words of documents within one cluster
directly influence the topic distribution of the cluster – which is equivalent
to merging all the documents in a cluster to form a single big document.
The same effect can be achieved by letting α1 (the scaling parameter of
the second-level (multi-)Dirichlet process) go to infinity. This increases the
probability of opening a new table for every topic-assignment and thus also
leads to a de-facto merging of documents.

Therefore, the HMDP is identical to models which merge documents,
such as the author-topic model by Rosen-Zvi et al. [RZGSS04], if all context
clusters are unconnected and documents consist of single words only, or if
α1 is set to a very high value.

4.1.3 Relation to the citation influence model

A mixture of topic distributions was also used in the Citation Influence
Model (CIM) by Dietz et al. [Die06] for modelling the influence of cited
papers in a corpus of scientific publications. In contrast to the three-level
MDP mixture model of the HMDP topic model, CIM directly mixes the
topic distributions of cited papers and the citing paper to yield a document-
topic distribution for a given paper. Cited papers in CIM are similar to
the context clusters in MGTM, but while CIM mixes document-topic dis-
tributions, MGTM is mixing context-specific distributions to create a prior
for the topic distributions of documents. However, if the scaling parame-
ter α1 is set to a large value, documents will directly be sampled from the
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context-topic distribution. By creating a context cluster for each single doc-
ument and connecting the context clusters of cited documents, one obtains
a non-parametric version of the CIM. The influence of each cited paper then
is governed by the multinomial parameters η. Additionally, the concentra-
tion parameter δ of the Dirichlet prior over the influence of context clusters
(corresponding to citations) now can be learned using the generalised MLE
estimator derived in Section 3.7.6.

The contextual focussed topic model [CZC12] is similar to the CIM, as
it creates document-specific topic distributions by mixing the topic distribu-
tion of the author, the venue and a unique topic distribution of a document.
Replacing the notion of authors and venues with cited papers, the CIM is
obtained, and thus the HMDP can be used to model the influence of authors
and venues on the content of documents.

4.1.4 A generalisation of the HMDP for arbitrary contexts

A hierarchical multi-Dirichlet process turns into a standard three-level hi-
erarchical Dirichlet process if the context clusters are unconnected. Thus,
the HMDP is also applicable for coding the influence of discrete context
variables.

For modelling non-spherical, continuous contexts, documents can be
clustered in the context space and adjacent clusters can be connected, e.g.
based on adjacency on the timeline. Thus, the HMDP is a flexible model
and can model a variety of different context variables.

In practice, real-world corpora from social media have multiple context
variables, such as information from user profiles, temporal information or
geographical information altogether. An ideal model would be able to treat
multiple contexts simultaneously.

4.2 Existing Multi-Context Topic Models

In this section, existing topic models for modelling multiple context vari-
ables are briefly reviewed before it is shown how to model multiple context
variables with the HMDP in the next section.

4.2.1 Dirichlet-multinomial regression

In the Dirichlet-multinomial regression topic model by [MM08], the influ-
ence of multiple context variables was modelled by learning a Dirichlet-
multinomial regression to predict the document-topic distribution of a doc-
ument given its context. The big advantage of this approach is that multiple
different factors can be taken into account for modelling the dependence of
topics on context, while keeping the model simple. A drawback is the limited
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flexibility of the regression model – only discrete and non-spherical continu-
ous variables can be treated, and only linear or similarly simple dependencies
can be modelled.

4.2.2 Topic models for context-specific topics

There also exists a regression-based approach for multiple context variables
which introduces context-specific variants of topics, i.e. given the context of
a document, some topic-specific words will be more likely than in a global
topic distribution [RB14]. The approach is somewhat similar to [AHS13],
where context-specific topic hierarchies were detected. However, such mod-
els are not suitable for all applications: Context-specific topics can make it
difficult to compare the topic distribution across documents, as local topics
can deviate significantly from the global topics. This can lead to situations
where two documents of different contexts have a high probability for the
same topic, but the topic distributions of the context-specific interpretations
of this topic are very different, meaning that the two documents are actu-
ally unrelated. Therefore, such models are limited to applications where
such deviations are acceptable, and models for context-specific topics are
not the scope of this thesis.

4.2.3 Distance-based topic models for multiple contexts

More complex approaches based on a transformation of context data, such
as the model by Agovic and Banerjee [AB12] which is relying on a Gaussian
process prior on the document-topic distributions, require the definition of
a kernel function, which would have to be trained during inference, in order
to model complex dependencies and structures in the context space (e.g.
borders or coastlines in geographical data). This makes the model more
complex and computationally expensive, as iterative distance calculations
on real numbers would be required.

Distance-based approaches first define a distance function between doc-
uments and then learn topic distributions by mixing the topics of documents
based on their distances [BF11]. These approaches require the iterative cal-
culation of distances between documents, which is expensive. Additionally,
they would require an iterative re-adjustment of the distance measure and
cannot cope with sparse regions in the context space.

Therefore, a model which is both able to model complex structures
in multiple context spaces and at the same time remains computationally
tractable, even on big data sets, is required.
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4.3 Hierarchical MDPs for Multiple Contexts

It is natural to extend hierarchical multi-Dirichlet processes for multiple
contexts variables. In MGTM, a mixture of adjacent context clusters was
introduced to construct a dependency of documents on both the topic dis-
tributions of their own cluster and on the topic distributions of adjacent
clusters at the same time.

The same idea can be employed to include multiple contexts: Documents
do not only depend on one context-specific topic distribution, but on a multi-
Dirichlet process mixture of multiple context distributions.

To clarify the terms used in the description of the model, a definition
of context spaces and context variables is given and the notion of context
groups and context clusters is introduced.

Context spaces and context variables. Documents in social media
typically are associated with metadata describing the context in which a
document is created. A context space is a space to which documents are
mapped based on their context information. A context variable stores the
location of each document in the context space. In the multi-context case,
there are multiple context spaces and context variables. Context variables
are assumed to be independent.

For instance, for a corpus of geo-tagged documents, the unit-sphere could
be a context space to which all documents are mapped based on their lati-
tude and longitude. Each document then has an entry in a context variable
which stores the coordinates of the documents on the unit sphere. If docu-
ments additionally have a timestamp, a second context space can be added,
for instance the timeline. Alternatively, time and space can be combined to
yield one spatio-temporal context space, preserving dependencies between
time and space.

Context groups. The HMDP topic model for multiple contexts requires
a preprocessing step, in which documents with similar context variables of
one context space are grouped into context groups. Every document has
multiple context groups, one for every context space. A context group links
a set of documents which share the same set of parent context-clusters in
the multi-Dirichlet process of the HMDP topic model.

For instance, in MGTM, all documents which were assigned to the same
geographical cluster in the preprocessing step belong to the same context
group.

Context clusters. Context clusters each have a distribution over the set
of topics, and serve as base measures for the multi-Dirichlet process. The
context cluster memberships are given by the context group of a document.
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In the geographical setting, context clusters were associated with the
index of a geographical cluster. The context group of documents defined that
documents are drawn from the topic distributions of their own geographical
cluster and from the topic distributions of adjacent geographical clusters.

For the multi-context HMDP, context clusters are more abstract con-
cepts: Context clusters are associated with topic distributions which can be
arbitrarily mixed to obtain the prior for the documents of a context group.
The mixing proportions are group-specific. This further increases the flexi-
bility of the model. However, for the applications of the HMDP topic model
presented in this chapter, the usage of context clusters is simple. For discrete
context variables, context groups and context clusters are directly related,
so that a context group has one parent context cluster of the same index.
For linear or cyclic context variables, the parents of a context group are the
context cluster of the same index and its adjacent context clusters.

4.3.1 The HMDP Topic Model

Using the notion of context groups and context clusters, the generative pro-
cess of the multi-Dirichlet process for arbitrary contexts is as follows:

1. A global topic distribution G0 is drawn from a DP with a symmetric
Dirichlet distribution H over the topic space as base measure:

G0 ∼ DP (γ,H) H = Dir(β0) (4.1)

2. For every context space f of the F context spaces and every of the
Cf context clusters of the context space, draw a topic distribution for
each context cluster j:

Gcj ∼ DP (α0, G0) (4.2)

3. The strength of the influence of a context space on the document topics
is stored in ζ, which is drawn from a Dirichlet distribution:

ζ ∼ Dir(ε) (4.3)

4. Within a given context space, there exist context clusters and for a
given context group, there exists a set of parent context clusters with
indices Pfg from which the documents of that group generate their
topic prior. The influence of each context cluster within a group is
given by ηfi, a multinomial drawn from a symmetric Dirichlet distri-
bution with parameter δf :

ηfi ∼ Dir(δf ) (4.4)
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5. Document-specific topic distributions are sampled from a multi-Dirichlet
process. For every context space f , the context group membership gmf
of documentm determines from which parent context clusters the topic
prior of a document is created. The number of parent context clusters
for context group g in context space f is given by Lfg. The mixing pa-
rameter ηfi governs the influence of context clusters within a context
space, and feature weights ζ weight the influence of each context space
within the MDP.

For every document m, a document-specific topic distribution is drawn
from a multi-Dirichlet process with context clusters as parent distribu-
tions, group-specific mixing proportions δ and context space weights η
(the parent context clusters are known from the context group mem-
berships gm of the document).

This can be denoted with a simplified parametrisation of the multi-
Dirichlet process, where the parameter α1ζη is a short-hand notation
for the vector of mixing proportions and the second parameter Gc is

Table 4.1: Variables of the hierarchical multi-Dirichlet process
topic model.

M Number of documents
Nm Number of words in document m
F Number of context spaces
Cf Number of context clusters for context space f
Af Number of context groups with common parents in context space f
β0 Concentration parameter of the topic prior
H Space of all possible topic multinomials, with Dirichlet prior β0

G0 Global measure on the topic space (includes topics and their weight)
Gcfj Measure on the topic space for cluster j of context space f

Gdm Document-specific measure on the topic space
γ Scaling parameter of the global Dirichlet process (DP)
α0 Scaling parameter for the context cluster DPs
α1 Scaling parameter for the document MDPs
φmn Topic drawn for wmn
wmn Word n of document m
gmf Context group of document m in context space f
ζ Mixing weights for the context spaces
ηfi Mixing weights for group i in context space f
ε Concentration parameter of the Dirichlet prior on ζ
δf Concentration parameter of the Dirichlet prior on η in context space f
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φ

f

Figure 4.1: Graphical model of the Hierarchical multi-Dirichlet
Process (HMDP) topic model for arbitrary contexts. In the
HMDP topic model, document-topic distributions are sampled from a multi-
Dirichlet process with several context-specific topic distributions of context
clusters as base measures.

the matrix of cluster-specific base measures of parent clusters:

Gdm ∼MDP (α1ζη,G
c)

A schematic visualisation of the dependencies between the base mea-
sures in this hierarchical multi-Dirichlet process is given in Figure 4.2.

6. Finally, for every of the Nm words of document m, a topic-word multi-
nomial φmn is drawn from Gdm (the document-specific measure on the
infinite topic space) and a word wmn is drawn from this multinomial:

φmn ∼ Gdm wmn ∼ φmn (4.5)

The graphical model for the hiearchical multi-Dirichlet process is given in
Figure 4.1. For every context space, the given context group gmf of document
m governs on which parent nodes Gdm depends.
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Figure 4.2: Schematic representation of the influence of the topic
distributions of context clusters on a document-topic distribution.
On the top level, G0 represents the global base measure on topics, from which
for each context cluster a measure on the topic space is drawn in a Dirichlet
process. Each context space (indicated by colour) has a set of context clus-
ters. Typical context spaces include the timeline or the geographical space.
Clusters can be obtained by applying appropriate clustering methods in the
context space. Each context cluster has an own measure Gc on the infinite
space of topics. For each document, a measure on the topic space Gd is ob-
tained by drawing from a Dirichlet process with a mixture of the measures of
the different contexts as base measure. The mixing proportions are given by
multinomial parameters ζ, indicated by the thickness of arrows in the figure.
For each context space f , the context group i = gfm determines from which
of the context clusters the topic-prior is generated and the group-specific
influence of each context cluster j is governed by a multinomial parameter
ηfij . Groups of different context spaces are modelled as independent. Note
that the superscripts do not correspond to indices or exponentiations, but
are used to distinguish the topic distributions of the different levels of the
hierarchical multi-Dirichlet process.

4.4 Efficient Inference

Inference based on Gibbs sampling has a relatively slow convergence rate
compared to variational inference [AWST12]. The larger the parameter
space, the more likely it is that the Gibbs sampler will take a long time for
traversing the areas with a low likelihood. Additionally, a larger number of
parameters might lead to local optima, in which the Gibbs sampler might
get stuck.

For MGTM, the parameter space was already significantly larger com-
pared to a standard two-level HDP, as there are additional counts required
to estimate the topic distribution of regions, which (in case of the collapsed
Gibbs sampler) depend on the choice of parent distributions stored in an
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extra variable.

By modelling the influence of multiple context spaces on the topic dis-
tribution of documents, the parameter space grows substantially, and Gibbs
sampling becomes more and more inefficient. For large datasets, the infer-
ence scheme should have the following characteristics:

Fast convergence rate. The per-word perplexity on held-out data should
decrease (i.e. improve) quickly as the parameter space is traversed and areas
of a high likelihood are reached.

Low memory consumption. Storing the context group assignments per
word would result in an increased memory consumption, which is problem-
atic for large datasets.

Online inference. Ideally, the model should be able to process streams of
documents and to update the model parameters without requiring iterative
runs on all documents of a potentially quickly growing dataset.

Feature selection. Treating a multitude of context information from rich
document metadata as found in social media is a challenging problem. Some
of the context information will be more valuable than others for modelling
topics, and some context variables will have virtually no significant influence
on topics. An ideal inference scheme should be able to select relevant con-
text information and to exclude irrelevant context spaces during inference.

In the following, an efficient online variational inference for the HMDP
with additional approximations is derived, which fulfils these requirements.
The inference scheme is based on the Practical Collapsed Stochastic Vari-
ational Bayesian inference (PCSVB) for the two-level HDP proposed by
Bleier [Ble13].

4.4.1 Collapsed variational Bayes for the HMDP

To develop a variational inference scheme, the inference strategy presented
in [TKW08] is adapted and the stick-breaking representation of the MHDP
is employed by introducing π0, π

c
j and πdm, which are SBP distributed prob-

abilities on topic indices corresponding to the topic weights in G0, G
c
j and

Gdm, respectively. The indexed topic-word multinomials over the vocabulary
are stored in vectors φk, where k is the index of the topic. For every word n
in document m, a topic index zmn is drawn from πdm and a word wmn drawn
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from φzmn . Formally:

π0 ∼ SBP (γ)
ζf ∼ Dir(ε)
ηfi ∼ Dir(δfi)
πcfj ∼ DP(α0, π0)

πdm ∼ MDP(α1ζη,π
c
Pg

)

φk ∼ Dir(β0)
zmn ∼ πdm
wmn ∼ φzmn

where the notation of the MDP is simplified by using a short-hand notation
for the topic distributions πcPg

of the parent context clusters and for the
group-specific mixing proportions α1ζη. Figure 4.3 shows the graphical
model of the stick-breaking construction and Table 4.2 gives an overview of
the parameters used in the model.
The joint distribution of the HMDP model over observations and parameters
then is given by:

p(w, z,πd,πc,π0, ζ, η, φ | β0, γ, α0, α1, ε, δ, g)

=
M∏
m=1

N∏
n=1

[
p(wmn | φk, zmn)p(zmn | πdm)

]
p(πdm | α1,η, ζ,π

c, gm)

F∏
f=1

p(ζf | ε) Af∏
i=1

p(ηfi | δf )

Cf∏
j=1

p(πcfj | π0, α0)

 p(π0 | γ)
∞∏
k=1

p(φk | β0).

(4.6)

Collapsed representation

To simplify inference and to yield a more exact variational approximation,
the topic-word distributions and the document-topic distributions can be
integrated out as in [TNW07, TKW08]. Additionally, the cluster-topic dis-
tributions of context clusters and the multinomial distributions over the
mixing proportions ζ and η of context clusters in the MDP are integrated
out. For permitting a variational approximation, the collapsed variational
inference scheme introduced in Section 1.8.2 is applied. The number of top-
ics used by the top-level Dirichlet process is truncated at K topics [BJ06b].

The resulting marginal distribution over words and topic assignments is
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Figure 4.3: Stick-breaking construction of the hierarchical multi-
Dirichlet process model for arbitrary contexts. A truncation at K
topics is used in preparation of the variational inference scheme.

given by

p(w, z | β0,π0, α0, α1, ε, δ, g)

=

M∏
m=0

Γ(α1)

Γ(α1 +Nm)
·
K∏
k=1

Γ(α1π
s
mk + nm··k)

Γ
(
α1πsmk

)
·
K∏
k=1

Γ(V · β0)

Γ(V · β0 + nk·)
·
V∏
t=1

Γ(β0 + nkt)

Γ(β0)
(4.7)

where πsmk denotes the document-specific topic prior for topic k defined later
in Eq. 4.9, which is a weighted mixture of the multinomial topic distributions
of the context clusters. nm··k are the topic counts of a document, indicating
how often a topic was assigned to its words.

Practical approximation

The gamma functions make inference difficult. One way to simplify the
equation is to introduce auxiliary variables corresponding to the tables in
the Chinese restaurant process as shown in Equation 1.79. However, there
exists an alternative approximation by Sato et al., which does not require
the sampling of table counts: For small scaling parameters or short docu-
ments, it is unlikely to observe table counts larger than one [SKN12, Ble13].
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The expected table counts then simplify to a binary variable indicating the
presence of a topic, so that e.g. the table counts of a document reduce to
[nm··k > 0] using Iverson brackets. Inference based on this simplification
is called practical inference [SKN12]. In the case of the HMDP, the joint
distribution further simplifies to:

p(w, z | β0,π0, α0, α1, ε, δ, γ, g)

≈
M∏
m=0

Γ(α1)

Γ(α1 +Nm)
·
K∏
k=1

(Γ(nm··k)α1π
s
mk)

[nm··k>0]

·
K∏
k=1

Γ(V · β0)

Γ(V · β0 + nk·)
·
V∏
t=1

(Γ(nkt)β0)[nkt>0] . (4.8)

The expected table counts per topic then are obtained as the probability of
seeing a topic in a given document.

As mentioned before, the document-topic-prior πsmk can be integrated
out. Given observations, the topic prior of an individual document is a
mixture of the estimated topic distributions πcfj of parent context clusters

Table 4.2: Variables of the SBP representation of the hierarchical
multi-Dirichlet process topic model. The stick-breaking representation
is employed to derive the variational inference scheme.

M Number of documents
Nm Number of words in document m
F Number of context spaces
Cf Number of context clusters in context space f
Af Number of context groups for context space f
gmf Context group ID of document m for context space f
π0 Global topic distribution
πcfj Topic distribution for cluster j of context space f

πdm Document-specific topic distribution
φk Topic-word distribution of topic k
β0 Topic prior: Symmetric concentration parameter
γ Scaling parameter of the global SBP
α0 Scaling parameter for the context cluster DPs
α1 Scaling parameter for the document MDPs
zmn Topic assignment of document m, word n
K Truncation level of topics
ζ Mixing weights for the context spaces
ηfi Mixing weights for group i in context space f
ε Concentration parameter of the Dirichlet prior on ζ
δf Concentration parameter of the Dirichlet prior on η in context space f
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from different context spaces with expected probability

πsm =
F∑
f=1

∑
j∈Pfg′

n′f ·· + ε

n′··· + F · ε
·

n′′fg′j + δf

n′′fg′· + Lfg′ · δf
· πcfj (4.9)

where mixing proportions ζ and η are integrated out and g′ = gmf is a
short-hand notation for the context-specific index of the context group of
document m in context space f . Lfg gives the number of parent context
cluster IDs for group g in context space f and Pfg is the set of parent
context cluster IDs for group g in context space f . The variable n′f ·· denotes
the number of topics drawn from clusters of context space f , n′··· is the total
number of topics drawn from all context clusters, n′′fg′j is the number of
topics drawn from the context group g′, and n′′fg′· is the total number of
topics drawn from the context clusters belonging to the context group g′ of
the document in context space f .

The expected value of the probability of topic k in context cluster j of
context space f can be e approximated using the approximation for the table
counts of documents:

πcfjk ≈
∑

m∈Gfj
[nmfjk > 0] + α0π0k∑K

k=1

∑
m∈Gfj

[nmfjk > 0] + α0

(4.10)

where nmfjk stores the counts of how often topic k from cluster j in context
space f was assigned to a word in the document, Gfj is the set of document
IDs which are drawing topics from cluster j of context space f , and [nmfjk >
0] is the practical estimate of the number of tables drawn from group j of
context space f and topic k for document m. Table counts can then be
calculated during inference by multiplying the table estimate [nm··k > 0]
with the topic probabilities of the context clusters of context space f of
document m.

Variational approximation

Two variables were not integrated out: The topic assignments z and π0,
the global topic prior. To break the dependencies between these variables,
variational mean field approximation is employed, which factorises the prob-
abilities:

q(z,π0) =

M∏
m=1

q(zmn) · q(π0). (4.11)

A practical variational lower bound on the marginal distribution (c.f. Eq. 1.41)
then is given by

log p(w, z | π0, β0, α0, α1, ε, δ, γ, g)

≥ Eq[p(w, z | β0, α0, α1, ε, δ, g,π0) · p(π0 | γ)]− Eq[log q(z,π0)]. (4.12)
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By taking the derivative with respect to q(zmn = k) and following the ap-
proximations by Asuncion [AWST12] and Sato [SKN12], given in Equa-
tion 1.80, the variational parameter for a single topic assignment can be ob-
tained. Note that the inference additionally assigns a context and a cluster
to every word from which the selected topic stems. However, the assign-
ment can be made after learning the variational distribution over the topic
assignment. Details on the inference are given in the appendix A.3. The
resulting variational distribution over topic assignments is:

q(zmn = k) ≈
Eq[nm··k] + α1π

s
mk

Nm + α1

Eq[nkt] + β

Eq[nk·] + V · β
(4.13)

where the counts (nm··k, nkt and nk) are expected counts under the vari-
ational distribution and πsmk is the estimated topic weight from Eq. 4.9.
Counts are estimated by summing over q(zmn) for all the other words of the
corpus as in the variational inference scheme for LDA given in Equation 1.46.

In the practical approximation, table counts are obtained by summing
over topic assignment probabilities, which are calculated as the inverse of
the probability of not seeing a topic in a document:

Eq [nm··k > 0] = 1−
Nm∏
n=1

q(zmn 6= k). (4.14)

The estimated table counts of the documents are used to infer the topic
distribution of context clusters. As every document has only one table per
topic, the probability of a topic in a document is shared across clusters based
on the topic weight in each cluster. For a given cluster j of context space f
the table count n′fjk for topic k is approximated as

Eq
[
n′fjk

]
=

∑
m∈Gfj

Eq[nmfjk > 0] ≈
∑

m∈Gfj

Eq[nm··k > 0] · Eq[πcfjk]∑F
f ′=1

∑
h∈Pf ′gmf

Eq[πcf ′hk]

(4.15)

using the practical approximation, i.e. the table counts of a document are
assumed to be binary per topic. Gfj is the set of indices of documents
depending on cluster j in context space f , Pfg is the set of parent context
cluster IDs for group g in context space f . For the global topic distribution,
the estimate is obtained as in Eq. 1.81 using expected global table counts
m··k to derive stick lengths in a SBP representation. Because the number of
context clusters is relatively small compared to the number of documents,
and because clusters might contain thousands of tables of documents (us-
ing the Chinese restaurant process metaphor), a practical approximation of
global table counts m··k is not meaningful. Instead, the number of tables is
sampled as in Eq. 1.71:

q(mfjk = m) ∝ s(n′fjk,m) · (α0 · π0k)
m (4.16)
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where n′fjk denotes the sums of document tables over all documents in cluster
j of context f , and s(n,m) again denotes the unsigned Stirling numbers of
the first kind which account for the possible combinations and orderings
in which tables might be occupied in the Chinese restaurant process. For
estimating the global table count per topic, the sum over all table counts

of a given topic is calculated as m··k =
∑F

f=1

∑Cf

j=1mfjk. Using the global
table counts, the global topic distribution π0 is obtained similar to Eq. 1.81
with:

q(π̃0k) = Beta(ak, bk) ∝ π̃ak−1
0k · (1− π̃0k)

bk−1

ak = 1 + Eq [m··k]

bk = γ +

K∑
l=k+1

Eq [m··l] (4.17)

which is used to obtain the global topic distribution as

Eq [π0k] = Eq [π̃0k]

l=k−1∏
l=1

(1− Eq [π̃0l]). (4.18)

4.4.2 Online inference

The inference scheme described so far requires a large memory to store
variational parameters for the topic assignment of each single word in the
corpus. Additionally, the corpus is assumed to be static, and it is not clear
how to efficiently include novel documents during inference.

One solution to this problem is the practical collapsed stochastic varia-
tional inference scheme for the HDP given in [Ble13]. Stochastic inference
consists in updating the global topic distribution of a topic model with pa-
rameters learned on mini-batches of documents using a decreasing learning
rate [HBB10]. The learning rate ρ follows a function

ρt =
s

(τ + t)κ
(4.19)

where t is the step during sampling, τ is an offset to prevent too big steps
in the beginning and κ influences the slope of the learning curve.

The parameters of the model – i.e. the topic-word distribution φk of a
given topic – can then be updated using

φk = (1− ρt) · φk + ρt · φ̃k (4.20)

where φ̃k is the estimated parameter based on documents in a batch. A
typical parameter setting is s = 1, τ = 64 and κ = 0.5.

Foulds et al. [FBD+13] extended this idea by updating the counts of a
collapsed variational inference scheme for LDA instead of the parameters.
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Every batch is assumed to be representative of the whole corpus, and given
that the corpus consists of C words, topic-word counts nkt can be updated
as

nkt = (1− ρt) · nkt + ρt ·
C

B
· ñkt (4.21)

where B is the batch size and ñkt denotes the estimated count of term t for
topic k in the batch. In the HMDP, the same approach can be applied to
update the topic and table counts per document, the topic and table counts
per cluster, the table counts on the top-level Dirichlet process [Ble13], the
table counts of all clusters of a context space and the table counts per context
cluster in a context group as given in 4.15. For the context groups, a batch
size of Bc is used, i.e. there have to be Bc documents seen in a context group
before an update is performed on the counts associated with the context
clusters belonging to that group.

The scaling parameters of the HMDP can be updated using a sample of
documents and the equation from [SKN12]:

α1 =

∑
m∈S

∑K
k=1 Eq [nm··k ≥ 1]∑

m∈S
(
Ψ
(
Nm + αold

1

)
−Ψ

(
αold

1

)) (4.22)

where S denotes the document indices of the sample and α1 is the previous
value of the scaling parameter. In practice, a subsample of documents will
be sufficient for a precise estimate. For the experiments in the following
sections, every document is included in the sample. An alternative estimate
for the concentration parameter which does not require auxiliary variables
(i.e. table counts) and yields more plausible results for larger values of α1 is
given in the appendix A.4. The stochastic update proposed in [Ble13] might
be necessary if the sample size is small or documents are very heterogeneous.
As the counts already are updated with a learning rate and the equation
is a fixed-point iteration, it seems not necessary to employ an additional
learning rate in the case of the HMDP.

Similarly, the scaling parameter for cluster-topic distributions can be
estimated as

α0 =

∑F
f=1

∑Cf

j=1

∑K
k=1 Eq[mfjk]∑F

f=1

∑Cf

j=1

(
Ψ
(∑K

k=1 Eq[n′fjk] + αold
0

)
−Ψ

(
αold

0

)) (4.23)

where mfjk are the table counts from Eq. 4.16, n′fjk is the sum of document-
table counts for a given cluster and all clusters are included in the parameter
estimate. And following [SKN12], the parameter of the topic Dirichlet prior
can be estimated as

β0 =

∑K
k=1

∑V
t=1 Eq[nkt > 0]∑K

k=1

(
Ψ
(
Eq[nk·] + βold

0

)
−Ψ

(
βold

0

)) (4.24)
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which can be executed after seeing all documents (for a fixed corpus) or
after seeing enough documents to yield a meaningful estimate.

The online inference scheme reduces the memory consumption of the
inference algorithm dramatically. If the corpus contains M documents which
contain C words, the memory used for the topic assignments and the parent
assignments in the MDP is saved, which reduces the memory consumption
by at least C × K values for the topic assignments and M × F values for
the parent assignments.

Initialisation

In [BJ06a, TKW08, FBD+13], a random initialisation of parameters was
suggested as a requirement for variational inference schemes. Indeed, vari-
ational inference needs an initial imbalance to distribute probability mass
on the topic distributions in an uneven fashion. On the practical side, the
Dirichlet process already introduces an imbalance by sampling the global
topic distribution from a stick-breaking process. Therefore, variational in-
ference schemes for hierarchical Dirichlet processes do not require a random
parameter initialisation and also can find topics if parameters initially set
to zero. This yields a deterministic inference procedure, which is desired
e.g. for studies which require the reproducibility of results. The cost of a
non-random initialisation is a slower convergence of the sampler, and thus
a zero initialisation is deprecated for large datasets.

Implementation

The code of the practical collapsed stochastic variational Bayesian infer-
ence scheme for the hierarchical multi-Dirichlet process topic model is a
completely new implementation and released as open source under GPL v3
licence1.

Documents together with their context group memberships are given as
input. Additionally, the parent context clusters of documents in a context
group have to be specified. Finally, a truncation level K has to be chosen
by the user.

Optional parameters include the batch size and the parameters τ, κ and
s for the learning rate. A prior on the context space weights and a context-
specific smoothing of the weights between connected context clusters can be
specified. All hyper-parameters are automatically learned during inference.

As the definition of context clusters can be done using simple heuristics
or standard data mining software, the application can be used without prior
knowledge of topic models.

1https://github.com/ckling/hmdp

https://github.com/ckling/hmdp
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4.5 Applications of the HMDP

In the following, the practical collapsed stochastic variational HMDP topic
model is applied on different datasets to demonstrate its ability to model a
variety of different context information.

The HMDP has unique properties. Most importantly, it allows to simul-
taneously model the influence of multiple, arbitrary context information, to
weight the importance of the context information and to exclude irrelevant
context information. In contrast to related topic models [MM08, AB12], the
HMDP topic model does not require a function which links context spaces
to topics, and thus can detect arbitrary non-linear patterns in the context
space, including cyclic and spherical patterns. Additionally, the weights of
different context spaces have a natural interpretation as probabilities, unlike
in e.g. kernel- or regression-based models.

The special abilities of the HMDP and the generality of the model are
demonstrated on three very different corpora: First, the impact of practical
collapsed stochastic variational Bayesian inference on performance and topic
quality is examined on the largest dataset from Section 3.8.1, the geograph-
ically distributed and tagged photos of food. The second dataset is a set of
tagged user profiles from a social network of sexual fetishists, with context
information from users profiles. The third corpus consists of messages of
the Linux kernel mailing list, observed over a period of almost twenty years.
Context information involves all aspects of time, such as daily, weekly and
yearly cycles – which for the first time can be explicitly modelled in a topic
model using the HMDP.

4.5.1 Improved inference

The hierarchical multi-Dirichlet process (HMDP) for multiple context vari-
ables is a generalisation of the multi-Dirichlet geographical topic model
(MGTM). As such, the Gibbs sampler for MGTM can be employed to eval-
uate the impact of the practical collapsed stochastic variational Bayesian
inference (PCSVB) derived in the previous section.

Differences between PCSVB and Gibbs sampling

For a single context space, in which documents are geographically clustered
and where adjacent clusters are dependent via context groups, the HMDP
topic model is identical to MGTM.

Still, the parameters learned during inference are expected to differ due
to the different inference technique. The original inference scheme of MGTM
is a Gibbs sampler. In theory, the Gibbs sampler would converge to a
parameter estimate which optimises the exact posterior of the model. In
practice, Gibbs samplers for models with many parameters are prone to get
stuck in local optima [LJT07].
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The PCSVB inference scheme presented with the HMDP topic model
involves several approximations:

• Variational mean field approximation. Instead of maximising the
posterior, a lower bound is maximised, which assumes independence
between the inferred variables.

• Approximation of expected counts. The variance of the expected
counts is neglected.

• Practical approximation. Table counts in the Chinese restaurant
franchise are approximated as binary counts.

• Stochastic inference. Instead of directly updating the parameters
during inference, observations are processed in mini-batches. Param-
eters are updated with a learning rate instead of exactly updating the
counts, assuming that all documents in the corpus behave like the
observations in the batch.

To summarise, the Gibbs sampler in theory maximises the exact posterior,
but the inferred parameters could be a local optimum, while the PCSVB in-
ference traverses very fast through the parameter space to find an optimum,
but it is unclear if the update direction is reasonable, due to the various
approximations.

Convergence and perplexity

A standard way of comparing the performance of two different sampling
strategies is to calculate the per-word perplexity of the learned models. For
the comparison, the largest dataset from the evaluation of MGTM from
Section 3.8.1 is used: The food dataset, consisting of 151,747 tagged pho-
tographies of food, where the location the photo was taken is given as GPS
coordinates in the metadata. The number of distinct tags is very low with
278 tags, allowing for a potentially very precise prediction. As in the evalu-
ation of MGTM, the topics and the region-specific priors are given as fixed
parameters and the document-specific distribution is sampled before the
perplexity is calculated.

Figure 4.4(a) shows the perplexity after a given number of sampling
iterations, for the Gibbs sampler and PCSVB at changing batch sizes (groups
and documents share the same batch size). The number of truncated topics
for PCSVB was set to 8 to match the number of topics used by the Gibbs
sampler. The parameter for the learning rate κ was set to 0.5 with τ = 64 as
in [HBB10]. Interestingly, PCSVB yields a dramatically improved perplexity
compared to the Gibbs sampler. Regardless of the batch size, the perplexity
converges to a value of about 20, an extremely low value. For a small
batch size of 8, PCSVB shows the fastest convergence. Small batch sizes
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(a) Perplexity of MGTM versus sampling iteration for various inference settings
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(b) Perplexity of MGTM versus computing time for various inference settings

Figure 4.4: Comparison of convergence rates measured by per-
word perplexity for the Gibbs sampler and practical collapsed
stochastic variational Bayes (PCSVB) for the HMDP topic model
on the food dataset (see Section 3.8.1). The Gibbs sampler detected
8 topics, so PCSVB was set to a truncation level of 8. The perplexity is
calculated after a full iteration of the sampler and plotted against (a) the
number of sampling iterations and (b) the sampling time. PCSVB yields a
drastically better prediction than the Gibbs sampler. The optimal perplex-
ity is obtained at a batch size of 8 with a perplexity of 19.7. For a batch size
of 64, the sampler converges earliest in time at a perplexity of 20.2. This
batch size thus is to be preferred for settings where resources are limited.
After convergence, the differences in perplexity for varying batch sizes are
marginal. Very small batch sizes lead to a slow convergence rate given the
computing time.

also mean higher computation costs, as the counts have to be updated after
every batch. Therefore, the inference scheme was executed on a single core
of a 2.6 GHz processor and the sampling time was recorded. The perplexity
for a given sampling time, plotted in Figure 4.4(b), shows that a batch size of
64 yields the earliest convergence in time. Since the perplexity converges to
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very good values for all batch sizes, a batch size of 64 would be the preferred
setting.

Topic quality

To better understand the phenomenon of the perplexity improvement, the
topics detected by the Gibbs sampler and PCSVB are shown in Table 4.3.
Topics detected by PCSVB were reordered to match the topics detected
by the Gibbs sampler if possible. Topic 1 of the Gibbs sampler is about
seafood, while PCSVB is mixing seafood with vegan and vegetarian food,
which yields an inconsistent topic. Similarly, all the topics detected by
PCSVB are mixtures of several underlying topics. Therefore the quality of
the topics detected by PCSVB would be low if semantic coherence would be
the measure of topic quality (e.g. in a human evaluation).

However, this behaviour is optimal for optimising the predictive quality
of the model. PCSVB is able to identify more than just eight topics. In order
to maximise the posterior, the words of the different topics are distributed
over the available eight topic slots.

One could ask why the very same model produces different topic esti-
mates. The answer lies is in the way topics are created. As mentioned
in Section 3.6.2, the Gibbs sampler resembles the evolutionary process be-
hind the creation of memes [Daw06]. All documents start with one topic,
which is supposed to explain all the document words. Within a document,
a novel way of explaining the observations (the words) in the document can
be created during inference, resulting in a new topic. All the documents
in the region of this document and the adjacent regions get to know the
topic via a shared topic prior. Additionally, with a small probability, the
topic is offered to all documents in the corpus via a global topic prior. If
the topic is a better explanation for the observed words and documents, it
will eventually be taken up by a large enough number of documents to be
sustained; otherwise, it will perish. Gibbs sampling therefore starts with one
topic and slowly creates new topics during inference which have to occupy
sufficient resources in order to persist. The newly created topics are likely to
be pure if the probability for creating a new topic is reasonably high. Words
which cannot be explained by existing topics will typically create new topics
instead of being mixed into existing topics.

In contrast, PCSVB starts with a total mixture of K topics – every
word and every document has the same probability for all topics. During
inference, small imbalances in the global topic distribution lead to non-
uniform topic word distributions. The latter then lead to imbalances in
the document-topic distributions and the cluster-topic distributions – which
due to the sparse Dirichlet priors strengthen the imbalances of topic-word
distributions. This feedback process is repeated until convergence. Because
topics are mixtures from the very beginning, it is likely that a topic is a
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mixture of multiple latent groups of co-occurring words.

To test this behaviour, the number of truncated topics is increased to
K = 25 and topics are re-calculated. Table 4.4 shows the detected topics.
Looking at Topic 24, PCSVB now is able to correctly detect the seafood
topic. Additionally, the cuisines of ten different countries are separated
from each other: there is each a topic for the Chinese (1), Spanish (4),
Korean (6), French (13), Japanese (14), Thai (15), Italian (16), Indian (17),
Vietnamnese (19) and Mexican (20) cuisine.

A comparison of the semantic coherence of topics between the different
sampling schemes is impossible: The Gibbs sampler is non-parametric, and
it is very unlikely to detect 25 topics in the food dataset. Only for parametric
models such as LGTA it is possible to explicitly set the number of topics. In
Table A.1 of the appendix, the food topics detected by latent geographical
topic analysis (LGTA) [YCH+11b] for 25 topics are given to show that
MGTM is superior in detecting coherent complex-shaped regions, even if
the number of topics is increased and the inference scheme is switched to
PCSVB. In contrast to MGTM, LGTA has problems to detect coherent
geographical topics if the underlying distribution is non-Gaussian, which
can be seen by looking at the topics for the Italian, Japanese and Indian
cuisines, which are split into several distinct topics.

Discussion of results on the food dataset

With the detected topics on the food dataset, it seems that there is not one
sampling scheme which works best. Both the Gibbs sampler and variational
inference have strengths and weaknesses. The Gibbs sampler clearly is to
be preferred if the number of topics should be automatically detected and
topics are required to be semantically coherent. This is a desired property
in applications for creating descriptions of datasets. Users have to be aware
of the fact that the number of topics is potentially underestimated by the
Gibbs sampler.

The number of topics can be inferred by PCSVB, as unused topic have a
small probability in the global topic prior π0. However, for a low truncation
level, all available topics under the truncation level K are used, because
they improve the posterior of the model [AWST12]. Therefore, for a low
K, PCSVB yields a parametric model, similar to a multi-level version of
asymmetric LDA [WMM09] with asymmetric document-topic priors.

PCSVB yields semantically coherent topics only if the truncation level is
correctly adjusted, for instance by conducting a human evaluation of topic
quality. For a too-low truncation level, the topics are superior in word
prediction, making PCSVB the inference of choice for prediction problems.
If a high number of topics is desired, PCSVB potentially is able to detect a
higher number of semantically coherent topics than the Gibbs sampler.
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Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
chinese vegan rice tapas salad
dimsum vegetarian chicken spanish soup
duck tofu fish paella pasta
noodles pork pescado potato
hotpot shrimp olives bread
chopsticks beef octopus salmon
tofu mango tortilla mushroom

Topic 6 Topic 7 Topic 8 Topic 9 Topic 10
korean ramen bbq hamburger baking
noodles noodle barbecue hotdog butter
soup curry barbeque cheeseburger berries
beef soba grill burgers strawberries
noodle udon hotdogs vanilla
tofu fish deli peppers
pork noodles burger cinnamon

Topic 11 Topic 12 Topic 13 Topic 14 Topic 15
bacon orange french japanese thai
sausage grill bistro sushi stickyrice
burger chocolate pastry sashimi padthai
pork icecream resto tofu curry
steak love patisserie tuna
chips steak croissant miso
beef bread tart chopsticks

Topic 16 Topic 17 Topic 18 Topic 19 Topic 20
italian fish coffee sushi mexican
pizza tea bakery vietnamese tacos
pasta indian cream roll taco
pizzeria bread cocktail pho salsa
toscana curry latte salmon margarita
spaghetti chips pancake wasabi guacamole
gelato coffee butter cocktails cajun

Topic 21 Topic 22 Topic 23 Topic 24 Topic 25
sandwich chocolate cheese seafood wine
pizza cookie tomato fish cheese
fries bento onion lobster chocolate
chicken strawberry corn crab bread
cheese cheese garlic shrimp fish
burger tomato lettuce oyster orange
pancakes peach chili crabs pizza

Table 4.4: Topics detected by the PCSVB inference for MGTM on
the food dataset. Parameters are set to 25 topics and 1000 regions at a
batch size of 8 both for groups and documents. Without any prior informa-
tion, local topics for the Chinese (1), Spanish (4), Korean (6), French (13),
Japanese (14), Thai (15), Italian (16), Indian (17), Vietnamnese (19) and
Mexican (20) cuisine are detected. Words with a probability < 0.01 are not
displayed.
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4.5.2 Modelling user profiles of a social network for fetishists

So far, the inference technique of the HMDP topic model was evaluated
against a Gibbs sampler. It could be shown that PCSVB is able to detect
a high number of semantically coherent topics. The core of the HMDP
model however is the ability to include multiple context information and to
weight them. Due to the intuitive structure of the model, all the parameters
of the HMDP have a natural interpretation as weights and pseudo-counts.
This makes the HMDP a valuable method for understanding the influence
of context information on topics.

To demonstrate the ability of HMDP to weight context information,
a special dataset is employed: Tagged user profiles of FetLife, the largest
online social network for sexual fetishists.

Dataset description

On the online fetish platform, users create profiles where they state their
gender (there are eleven different genders, e.g. transvestites, trans-males
etc.), age, relationship status, if their relationship is a lifetime relationship,
their sexual orientation, sexual role (e.g. master or slave) and the informa-
tion if fetish events are attended. A detailed description of the demographic
context is given in [FHS+15]. Additionally to the demographic variables –
which in the following will be interpreted as the context information – users
describe their fetishes with freely chosen tags (which might be copied from
other users). The tags allow the fetishists to be found by other users with
similar interests, and thus many users create a rich profile description.

The dataset used for this study consists of 126,408 tagged user profiles
crawled in 2013. 2,140 tags are used more than 100 times and were included
in the analysis. The gender and age distributions are shown in Figure 4.5.
70% of the users are male, 24% are female and 6% chose a different gender.
The age distribution is heavily skewed towards young users, most fetishists
on the website are in their twenties or thirties. It seems that some users
do not want to reveal their real age and leave the pre-defined year of birth
(1977) in the registration form unchanged, resulting in a peak at 36 years.
Other users chose the lowest option, 1920, which yields a second peak at 93
years. Further minor peaks at birth years of 1980, 1970 and 1960 indicate
users who do not want to state their precise age.

Detected topics

For topic detection, the categorial context variables were directly translated
into clusters. In order to code the continuous age variable, every age (from 18
to 93) was coded as a single cluster and adjacent age clusters were connected
to share topic information across clusters. Additionally, a cluster for missing
values was created for every context variable. PCSVB for the HMDP then
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Topic 1 Topic 2 Topic 3 Topic 4
slave mind fucks spreader bars anal training
master crying orgasm denial anal stretching
blindfolds fear begging anal beads
oral sex interrogation blindfolds anal hooks
talking dirty wrestling ben wa balls strap
whips sadomasochism eye contact r...1 ass play

Topic 5 Topic 6 Topic 7 Topic 8
creampie nipple torture photography making home m...2

lactation bondage art erotica gangbangs
breastfeeding leather bondage art pain
breeding whips writing erotica dildos
impregnation ...3 high heels tantra exhibitionism
incest play humiliation hot oil massages talking dirty

Topic 9 Topic 10 Topic 11 Topic 12
feminization anonymous enc...4 bbw cock and ball...5

sissification group sex bbw bondage candle wax
sissy training outdoor sex forced mastur...6 electrotorture
forced femini...7 sex with stra...8 forced nudity pain
dollification sex in public forced submission masochism
cross dressing public play nipple play humiliation

Topic 13 Topic 14 Topic 15 Topic 16
kissing exhibitionism sexual slavery orgasm control
fingering erotic photog...9 degradation orgasm denial
light bondage piercings public humili...10 teasing
caressing voyeurism slavery forced orgasms
handjobs candle wax total power e...11 obedience tra...12

blow jobs nipple torture objectification edge play

Topic 17 Topic 18 Topic 19 Topic 20
caning double penetr...13 ass worship cuckold
belt spanking fucking machines pussy worship forced deepthroat
whipping vaginal stret...14 body worship strapon
corporal puni...15 fisting facesitting female domination
belt whippings triple penetr...16 queening deepthroat
paddling pussy pumping oral servitude forced bi

Table 4.5: Description of the first 20 topics detected in the fetish
community dataset. The full topic description can be found in Table A.2
of the Appendix. 1eye contact restrictions 2making home movies 3impregnation fan-

tasy 4anonymous encounters 5cock and ball torture 6forced masturbation 7forced femi-

nization 8sex with strangers 9erotic photography 10public humiliation 11total power ex-

change 12obedience training 13double penetration 14vaginal stretching 15corporal punish-

ment 16triple penetration
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Figure 4.5: Age and gender distribution in the fetish dataset.
(a) About 24% of the users identify themselves with a female gender, 70%
stated a male gender, 3% identified as transvestites and 3% stated other
gender information (there are eleven options in total). (b) The age distribu-
tion shows that users are at least 18 years old. It peaks at 25, and shows a
second peak at 36 years, which is the predefined age on the account creation
web page. Some members do not want to reveal their age and thus leave the
predefined age unchanged or pick the lowest available year of birth (1920),
which was chosen by about 700 users and results in a peak at 90+ years.

was run with a truncation level of 25, 50 and 100, at a batch size of 8 and
a learning rate parameter of κ = 0.5. Even at a high number of topics, the
topics seem semantically coherent, i.e. synonyms are grouped together. The
first 20 topics for K = 100 are shown in Table 4.5, and the full 100 topics
are given in Table A.2 of the Appendix. It is hard to rate the quality of
the detected topics without a reference. Therefore, the topics detected by
standard LDA with K = 100 and identical parameters as learned by the
HMDP during inference (i.e. the topic-word and the document-topic prior)
are given in Table A.9. LDA has less sparse topics (though the priors were
identical), which is visualised by greying out words with a probability below
one percent. Additionally, very long tags (consisting of several words) have
a higher probability in LDA.

However, even though LDA and HMDP detect different topics, the top
words of the topics seem semantically coherent for both and it is left to
future work to evaluate the topic quality of both models in a user study.

Context weighting

The unique feature of HMDP is the weighting of the context spaces. During
inference, the mixing proportions ζ for weighting the influence of different
context spaces in the multi-Dirichlet process are constantly updated. If a
the topic distributions of the clusters of a context space predict the topics
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Figure 4.6: Weighting of context spaces (corresponding to demo-
graphic information) for the fetish dataset at changing numbers of
topics. The ordering is stable for changing numbers of topics, but a higher
number of topics allows for a better discrimination between the influence of
demographic variables on the observed topics.

of documents well, the weight of that context space will be raised.

Every context weight in the HMDP can be directly interpreted as the
probability that a document is explained by the priors of the clusters in a
context space. Context-specific priors are weighted relative to each other,
i.e. the weight of the priors of context clusters in a context space is decreased
if there exists a different context space which predicts topics better. The
weight of a context space also is relative in a sense that combinations of con-
text variables are taken into account. If two context spaces together explain
the topic distribution of documents well, the context spaces of both variables
will receive higher weights. It thus might be that a single context space alone
does not have a high predictive quality, despite having a high weight in the
HMDP model. A context space which does not contribute to the topics of
a document – or which is redundant given the other context spaces – can
even be completely explained away [KS96]. Unlike in regression models, it
is not necessary to check for high correlations between context variables,
as the model would automatically down-rate one of the context spaces of
the context variables, using minimal imbalances in the initial setting of the
inference algorithm.

For the fetish dataset, there are seven demographic variables. Figure 4.6
shows their learned weight ζ of context spaces (corresponding to demo-
graphic information) in the HMDP for a truncation level of 25, 50 and 100
topics. One can see that gender, age and sexual orientation are the most
important variables for predicting the fetishes of a user. This observation
is stable for different truncation levels. The sexual role and the participa-
tion in events are the next important factors according to HMDP with 100
topics. However, for 50 and 25 topics, this observation does not hold. The
reason why the number of topics affects the weights of context spaces is a
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mutual dependence between context space weights and topics. For a low
number of topics, the HMDP topic model will be unable to detect some of
the context-dependent fetish topics (e.g. topics which are more popular for
younger fetishists). Thus the weighting of context spaces is complicated for
a low number of topics (with the extreme case of one topic, where no state-
ment about the importance of context variables can be made). Raising the
truncation level will result in a better analysis on the importance of context
spaces.

However, for a too-high number of topics, the detected topics would
no longer be semantically coherent, making an interpretation of the model
parameters meaningless. The number of topics is automatically determined
by the hierarchical multi-Dirichlet process. To make sure that the MDP
detected the right number of topics, the maximum number of meaningful
topics can be empirically evaluated before statements on the importance of
context variables are made.

Note that the weighting of context variables cannot be achieved by cor-
relating context information with topics learned by a standard topic model,
as there is a mutual dependence between context and topics: If the topics
were different, the context space weighting would be different, too. And if
the context weighting was different, the topic prior of each document would
change, effectively changing the topic assignments and the detected topics.
One example for this behaviour would be the car dataset used to evaluate
the MGTM topic model in Section 3.8.1: Because documents in this dataset
contain only a single word, a normal topic model would not be able to de-
tect any topics. If the dataset would contain timestamps for the photos, a
weighting of the impact of temporal information and geographical informa-
tion would only be possible if meaningful topics were detected first, which
requires the use of geographical and temporal information.

The HMDP is the first topic model which allows the integration and
human-interpretable weighting of multiple arbitrary context variables at the
same time. Because interactions between context variables are taken into
account, the weighting of context spaces differs from the ranking of vari-
ables e.g. by forward selection techniques [KS96] which have the advantage
of being universally applicable at the cost of failing to detect complex de-
pendencies between variables.

In order to demonstrate this behaviour, one could use the perplexity
as quality measure and select the single context space which optimises the
perplexity of the model. Applying this technique for the fetish dataset at
100 topics, one finds that the information if a user is in a relationship yields
a per-word perplexity of 17.88 after 200 iterations. The context space which
alone yields the worst prediction is the gender, with a perplexity of 19.37.
However, given all the context variables, the gender of a user is the most
important context information for topic prediction – showing the importance
of including dependencies between context variables.
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For the given dataset, the detected weighting of context spaces cannot
be generalised in the sense that statements about the relation between de-
mographic variables and fetishes could be made. However, by modelling
representative data with the HMDP topic model, insights in the connection
between context variables and topics can be gained, which makes the HMDP
a useful tool for data analysis.

4.5.3 Context selection and analysis with the HMDP – a
study of the Linux kernel mailing list

The HMDP not only allows a weighting of context information (i.e. the
influence of topic distributions of clusters of each context space on the topics
of the documents), but also can be used to select (i.e. remove unnecessary)
context information. Additionally, the context-specific topic distributions
can be used to learn about the specific relation between context information
and single topics.

For demonstrating the ability of the HMDP topic model to select and
describe context information, a third dataset is employed, which is sub-
stantially different to the food dataset and the fetish dataset: the archived
messages of the Linux kernel mailing list (LKML) collected over a period of
almost twenty years.

Dataset description

The Linux kernel mailing list is a central communication channel in the de-
velopment of the Linux kernel, where bugs are reported and technical topics
are discussed [MS02, HKS15]. It brings together professional contributors
from companies, hobbyists, members of universities as well as public and
private research institutes [HKS15].

A complete dump of messages was downloaded from the LKML archive,
consisting of emails archived from 1995 until the end of 2014. In total
3,381,285 messages were retrieved. Figure 4.7 shows the number of messages
posted in the LKML over the collection period. The activity in the LKML
is growing every year.

Five context spaces can be constructed using the metadata from the
LKML dataset. Every email has an associated timestamp, which yields
information about

• the timeline,

• the yearly cycle,

• the weekly cycle,

• and the daily cycle.
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Figure 4.7: Emails per year in the Linux kernel mailing list over the
observation period from 1995 to 2014. The activity is increasing every year:
In 1996, on average 63 mails were posted per day and in 2014, 1226 messages
were posted per day on the mailing list.

In addition, the LKML has several mailing lists for subtopics. The mailing
list ID on which a mail was published is stored, and over the years in total
1730 different mailing lists were created. If an email was posted on multiple
mailing lists, it was duplicated in the dataset.

To the best of the knowledge of the author, explicitly modelling temporal
cycles in a topic model is a novelty. This is important, because information
about temporal cycles is available for almost all documents from social me-
dia, as the only information required is a timestamp (and, in some cases,
the time zone of a user). In the following, it will be shown that including
temporal cycles in a topic model significantly contributes to topic prediction
and can allow to gain valuable insights into the semantics of topics.

Detected topics

In order to detect topics on this larger dataset, messages were stemmed and
stopwords removed using the Snowball stemmer and stopword list [Por01].
Rare words which occurred less than 1,000 times in the 20 years of the
observation period were excluded for performance reasons. The batch size
was set to a large value of 4096, and the parameters of the learning rate
function were set to κ = 0.5 and τ = 64, which is identical to the optimal
parameters empirically found in [HBB10].

For modelling the context information, the mailing list ID can be directly
used as context variable. The three temporal cycles and the timeline were
split in 1,000 equally-sized clusters each, by sorting messages by time and
creating chunks. This resulted in a total number of 5,730 context clusters.

The truncation level of topics was set to 50. This is a rather small value
given the size of the dataset, but already lead to interpretable topics. The
complete topic description is given in Table 4.6 and Table 4.7. Most topics
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Figure 4.8: Weighting of context information for the Linux kernel
mailing list. The timestamp of a mail is most predictive, followed by the
position on the week cycle (e.g. indicating if a message was written on a
work day), the daily cycle and the weekly cycle. Knowing the mailing list a
email was posted on does not have any impact on the topic prediction and
thus the probability is set to a value close to zero during inference. Using
this mechanism, unnecessary context information can be removed.

cover technical aspects of kernel development, such as “device, driver, pci”
(Topic2 ) or “packet, network, connect” (Topic 3 ), while some topics such
as “thank, patch, appli” (Topic 1 ) cover the communication between users
who search and find help.

Context analysis

The weighting of context spaces given in parameter ζ for the mixing pro-
portions of context spaces in the MDP is given in Figure 4.8. The time an
email is created has the largest predictive power on the topics of a document
– more than 80% of the topics of documents are explained by the location
of documents on the timeline. The timeline is followed by the weekly cycle,
which explains about 10% of the topics used in the messages. Finally, the
daily and yearly cycle share the rest of the probability. Knowing the mailing
list on which an email was published does not contribute to topic prediction
and is virtually set to a probability of zero. A possible explanation for this
is that the number of topics is too low to detect the subtopics which are dis-
cussed on the various mailing lists. However, the fact that one of the context
spaces has an assigned weight of virtually zero demonstrates the ability of
the HMDP to exclude unimportant context spaces during inference. This is
important for datasets with a large number of context variables. One natu-
ral extension of the PCSVB sampling scheme would be to explicitly prune
context spaces if their weight falls below a predefined threshold, as in [EB15].
In addition, context variables could be added during inference. Variable sets
where interactions between variables are assumed to be present should be
evaluated simultaneously. That way, large sets of context variables could be
efficiently evaluated during online inference.
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Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
thank devic packet problem use
patch driver network patch size
appli pci connect bug number
test usb socket issu valu
greg bus server fix structur
send port receiv report pointer

Topic 6 Topic 7 Topic 8 Topic 9 Topic 10
block use fix case int
data support chang way struct
buffer work add differ diff
read fix use think return
disk user remov use static
file patch cleanup reason unsign

Topic 11 Topic 12 Topic 13 Topic 14 Topic 15
messag time architectur check regard
list perform implement return best
mail run use call sorri
email test support code hello
question result code fail pgp
help system arch case thank

Topic 16 Topic 17 Topic 18 Topic 19 Topic 20
tree code acpi version state
merg system pci cheer power
linus make kernel releas devic
patch devic irq avail suspend
fix issu tabl git alan
branch file apic linux system

Topic 21 Topic 22 Topic 23 Topic 24 Topic 25
kernel just chang set memori
problem like patch option page
run see move enabl address
machin seem one depend map
boot someth two use tabl
system look comment default use

Table 4.6: Topics detected by the HMDP topic model in the Linux
kernel mailing list. Part 1/2. For every topic, the six most-probable
terms are displayed. The ordering of topics is arbitrary. All displayed words
have a probability greater than 1% in the respective topic.
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Topic 26 Topic 27 Topic 28 Topic 29 Topic 30
error kernel linux time think
function trace softwar also yes
warn oop busi call good
type call develop current right
declar code free look make
refer jan project still sure

Topic 31 Topic 32 Topic 33 Topic 34 Topic 35
kernel need control kernel add
modul well intel need mode
compil still bridg new support
build correct status driver creat
make alreadi memori set patch
load bit capabl just chang

Topic 36 Topic 37 Topic 38 Topic 39 Topic 40
pleas page lock file driver
know alloc call mount clock
let memori path directori control
patch free hold filesystem regist
review swap loop root devic
anyon cach race inod gpio

Topic 41 Topic 42 Topic 43 Topic 44 Topic 45
event thing interrupt cpu use
perf realli irq task new
debug peopl thread node driver
output just timer cpus function
trace even handler memori instead
use want queue schedul interfac

Topic 46 Topic 47 Topic 48 Topic 49 Topic 50
user get get kernel remov
process think tri scsi function
use list time drive line
program two now devic name
userspac chang work error defin
access sinc back ide use

Table 4.7: Topics detected by the HMDP topic model in the Linux
kernel mailing list. Part 2/2. Words with a probability below 1% are
greyed out. Some topics model technical aspects of the kernel development,
such as Topic 27, other topics cover language aspects such as questions which
are covered in Topic 36.



154 CHAPTER 4. MULTI-CONTEXT TOPIC MODELS

0
0.01

0.02
0.03
0.04

0.05
0.06

1999 2003 2007 2011 2015

To
p
ic

 P
ro

b
a
b
ili

ty kernel, problem, run

(a) Example of a topic of decreasing importance over time
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Figure 4.9: Probability of (a) Topic 21 (“kernel, problem”) and
(b) Topic 43 (“interrupt”) to appear in messages on the Linux
kernel mailing list, over time. While the share of messages about ker-
nel problems is decreasing, the share of messages mentioning the topic of
interrupts is growing over time. Note that the interpretation of the cluster-
specific topic distributions as topic probabilities is only possible due to the
practical inference approximation.

To understand the importance of the timeline and the weekly cycle on
topic prediction, the topic probabilities of context clusters can be analysed.
The cluster-specific topic distributions in the HMDP topic model have a
natural interpretation if parameters are learned via practical inference.

In the Gibbs sampler, mixing proportions (between adjacent geographi-
cal clusters) were estimated by assigning the tables of the Chinese restaurant
franchise to their parent distribution. Every document can have multiple
tables per topic, and thus long documents might have a bigger impact on
the cluster-specific topic distribution than short documents. Therefore, it
is hard to interpret the weights of the prior distributions associated with
context clusters.

Practical inference changes this setting by assuming that table counts
are binary, i.e. there is only one table or no table, and the estimate of table
counts reduces to the question if a topic appears in a given document or not.
As the context-specific topic distributions in practical inference schemes are
estimated as sums of these table counts (see Equation 4.10), the context-
specific topic distributions directly correspond to the probability that a topic
occurs in a document, given the context information.
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(b) Distribution on the weekly cycle for a hobbyist topic.

Figure 4.10: Probability of (a) Topic 40 (“driver”) and (b) Topic
28 (“linux, software”) to appear in messages on the Linux kernel
mailing list over the weekly cycle. Messages discussing drivers have a
twice-as-high probability of 2% during the working hours, indicating that the
topic is mostly discussed by professionals. In contrast, messages mentioning
the topic of linux software are twice as likely on the weekend than during
the week, indicating a hobbyist topic. These two patterns on the weekly
cycle are typical for the topics of professionals and hobbyists and most of
the topics in the dataset exhibit similar patterns.

Because of the high importance of the timeline on topic prediction, it
is expected that the topic probability of several topics changes over time.
The temporal development of the topic probabilities of Topic 21 (“kernel
problem”) and Topic 43 (“interrupt”) on the timeline shown in Figure 4.9
confirm this intuition. While in the beginning of the LKML almost 6% of
the messages covered Topic 21, in 2015 less than 2% of the messages covered
that topic. On the other hand, the share of Topic 43 developed from less
than 1% of the messages to about 2% in 2015.

Similarly, the topic probabilities on the weekly cycle can be examined.
The topic probabilities for Topic 40 (“driver”) and Topic 28 (“linux, soft-
ware”) are shown in Figure 4.10. Topic 40 is exemplary for a professional
topic: it is significantly more often discussed during the working hours than
during the night or on the weekend. In contrast, the topic of linux software
seems to be more popular with hobbyists and regularly raises in importance
on the weekend.

Practical inference for the HMDP allows for a direct interpretation of the
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topic weights of context clusters as topic probabilities. Including the location
of documents on the weekly cycle can be beneficial both for predicting topics
and for understanding the meaning of a topic, whether it is mainly used by
professionals or hobbyists.

4.6 Summary

The comparison of the Gibbs sampler and PCSVB on the food dataset pro-
vided several interesting insights. The results indicate that Gibbs sampling
for the parameters of the HMDP topic model is a better method for de-
tecting a low number of semantically coherent topics. PCSVB improves the
predictive performance of HMDP, detects a higher number of semantically
coherent topics and yields a faster convergence of the sampler.

The application of the HMDP topic model on the fetish dataset and
on the messages of the Linux kernel mailing list demonstrated the special
properties of the HMDP:

(i) The HMDP is able to model multiple context variables.
Context variables can include discrete, continuous, cyclic and spherical con-
text. Using efficient PCSVB online inference, (ii) the HMDP can be
employed to model large text corpora. As the structure of the model
remains relatively simple, standard approaches for distributed computing
such as [NASW09] can be applied. As demonstrated by the use case of the
Linux kernel mailing list with nearly 6000 context clusters, (iii) PCSVB
for the HMDP can cope with a large number of context clusters.
Context clusters are a required input and can be created by simple heuris-
tics, e.g. by sorting data and creating equally-sized blocks. During inference,
non-relevant context spaces are weighted down and can be excluded, which
means that (iv) the HMDP can be employed to select context spaces
relevant for topic prediction. Additionally, (v) the parameters of the
HMDP have a natural interpretation as probabilities. Specifically, the
topic weights of context-variables correspond to the probability that a doc-
ument in the context cluster includes the given topic. The mixing weights of
the context clusters in the MDP correspond to the probability that a given
context space explains the topic of a document in the corpus.



Conclusion

In this thesis, a novel way of integrating context information in probabilistic
models was presented using the example of topic models.

First, the benefit of including system-specific context was demonstrated
on the example of power indices. Using a probabilistic interpretation, an
evaluation of existing power indices was conducted on real-world observa-
tions from the delegative democracy platform of the German Pirate Party.
It could be shown that novel generalisations of the Banzhaf and Shapley in-
dex, which are able to model system-specific voting bias, lead to an improved
prediction of voting power.

Then, geographical networks based on adjacency relations between clus-
ters of geographically distributed documents were introduced as an instance
of a network representation of context variables. The multi-Dirichlet pro-
cess and three-level hierarchical multi-Dirichlet processes (HMDP) were pre-
sented as a novel way of modelling context information using context net-
works. It could be shown that using a HMDP topic model, it is possible to
detect topics with a complex distribution in the context space by modelling
dependencies between adjacent clusters of the context network.

Finally, a generalisation of hierarchical multi-Dirichlet processes for mul-
tiple context variables was presented, which exploits multiple context net-
works based on adjacent document clusters in arbitrary context spaces. An
efficient online inference scheme based on practical stochastic variational
Bayesian inference (PCSVB) was derived which significantly improves the
convergence rate as well as the predictive quality of the model, and which al-
lows to detect a larger number of semantically coherent topics. The unique
ability of the HMDP topic model to simultaneously model multiple com-
plex structures in the context space was demonstrated. It was shown that
the parameters governing the connection between the context space and the
detected topics have a natural interpretation as probabilities. Both the im-
plementation of the Gibbs sampler for the geographical topic model based on
the HMDP2 and the PCSVB inference scheme for the HMDP3 are published
as open source.

2https://github.com/ckling/mgtm
3https://github.com/ckling/hmdp
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Findings

The main findings of this thesis are:

Delegative democracies for evaluating power indices. It could be
shown that voting data of large delegative democracies can be used to eval-
uate power indices. In order to do so, the probabilistic interpretation of
power indices by [Str77] is employed and the perplexity of observed voting
power is calculated.

System-specific power indices. A probabilistic interpretation of power
indices allows the integration of context information. Specifically, observed
voting bias can be integrated in existing power indices via system-specific
parameters. It could be shown that power indices that take voting bias into
account yield a better prediction.

Context networks for modelling spherical context variables in prob-
abilistic topic models. The novel concept of modelling spherical (e.g.
geographically distributed) variables with context networks in probabilistic
models was introduced. Context networks are based on a clustering of data
in the context space and on adjacency relations between clusters. The net-
work structure can be implicitly modelled using model selection, but is most
efficiently modelled with the three-level hierarchical multi-Dirichlet process
presented in this thesis. Including this network structure in a probabilistic
topic model can significantly improve the topic quality, which was shown for
geographically distributed context variables.

Context networks for modelling multiple, arbitrary context vari-
ables. Using hierarchical multi-Dirichlet processes (HMDP), multiple dis-
crete, linear, cyclic or spherical context variables (such as temporal or ge-
ographical context variables) can be included in a probabilistic model. In
the case of topic models, the context variables can be described in terms of
topic probabilities.

HMDP for weighting and selecting multiple context variables in
probabilistic models. Context variables can be weighted and ultimately
removed using learned parameters for context influence in the HMDP. It is
possible to place Dirichlet distributions over the weights of context spaces,
allowing to include prior beliefs on the importance of context spaces.

Efficient inference for hierarchical multi-Dirichlet processes. A
practical collapsed stochastic variational Bayesian inference (PCSVB) [Ble13]
scheme for the parameters of the three level HMDP was presented in this
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thesis. Due to the dramatically reduced memory consumption and a faster
convergence rate, the inference scheme allows for the online processing of
large corpora of documents with metadata. Additionally, it allows to detect
more semantically coherent topics than a Gibbs sampler, indicating con-
vergence problems of the Gibbs sampler in the high dimensional context
space.

Outlook

In future work, the impact of modelling context information on the quality
of detected topics will be evaluated in detail. The potential of the HMDP for
answering research questions in the social sciences (e.g. about the influence
of context variables on observations) will be demonstrated on appropriate
data, which allow to relate findings to existing theory.

The network structure between context clusters in the HMDP allows for
the a-priori modelling of complex dependencies in the context space such as
dependencies between different context variables. A systematic comparison
of different network structures for modelling dependencies between temporal
context variables will be conducted to develop best practices in modelling
temporal context.

The development of the implementation of PCSVB for the HMDP will
be continued to simplify the use, e.g. by automatically creating context clus-
ters for typical context variables such as timestamps, geo-coordinates and
discrete variables from given data. Additionally, a distributed implementa-
tion based on Apache Hadoop will be released for modelling large corpora
with metadata.

Finally, the HMDP has a wider range of applications than topic models
or mixed-membership models of multinomial distributions. It can be applied
to include structural information in a multitude of probabilistic models. The
application of the HMDP in other probabilistic models will be the subject
of future research.
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d’Été St Flour 1983, pages 1–198. Springer-Verlag, 1985. Lec-
ture Notes in Math. 1117.

[Ant74] C. Antoniak. Mixtures of Dirichlet processes with applications
to Bayesian nonparametric problems. The Annals of Statistics,
2:1152–1174, 1974.

[Aur91] Franz Aurenhammer. Voronoi diagrams – a survey of a fun-
damental geometric data structure. ACM Comput. Surv.,
23(3):345–405, 1991.

[AWST12] Arthur U. Asuncion, Max Welling, Padhraic Smyth, and
Yee Whye Teh. On smoothing and inference for topic models.
CoRR, abs/1205.2662, 2012.

[AX12] A. Ahmed and E. P. Xing. Timeline: A dynamic hierarchical
Dirichlet process model for recovering birth/death and evolu-
tion of topics in text stream. ArXiv e-prints, March 2012.

[Ban65] John Banzhaf. Weighted voting does not work: a mathemati-
cal analysis. Rutgers Law Review, 19:317–343, 1965.

[BDGS05] Arindam Banerjee, Inderjit S. Dhillon, Joydeep Ghosh, and
Suvrit Sra. Clustering on the unit hypersphere using von
mises-fisher distributions. Journal of Machine Learning Re-
search, 6:1345–1382, 2005.

[Bec75] Nathaniel Beck. A note on the probability of a tied election.
Public Choice, 23(1):75–79, 1975.

161



162 BIBLIOGRAPHY

[BF11] David M. Blei and Peter I. Frazier. Distance dependent Chi-
nese restaurant processes. Journal of Machine Learning Re-
search, 12:2461–2488, 2011.

[BFC98] Chris Brunsdon, Stewart Fotheringham, and Martin Charl-
ton. Geographically weighted regression. Journal of the Royal
Statistical Society: Series D (The Statistician), 47(3):431–443,
1998.

[BHO10] Mark Bangert, Philipp Hennig, and Uwe Oelfke. Using an
infinite von Mises–Fisher mixture model to cluster treatment
beam directions in external radiation therapy. In ICMLA,
pages 746–751. IEEE Computer Society, 2010.

[BJ06a] David M. Blei and Michael I. Jordan. Variational inference for
Dirichlet process mixtures. Bayesian Analysis, 1(1):121–144,
2006.

[BJ06b] David M. Blei and Michael I. Jordan. Variational methods for
the Dirichlet process. In Proc. ICML, 2006.

[Ble13] A. Bleier. Practical collapsed stochastic variational inference
for the HDP. ArXiv e-prints, December 2013.

[BM73] D. Blackwell and J. MacQueen. Ferguson distributions via
Polya urn schemes. The Annals of Statistics, 1:353–355, 1973.

[BNJ03] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent
Dirichlet allocation. J. Mach. Learn. Res., 3:993–1022, March
2003.

[CB09] Jonathan Chang and David M. Blei. Relational topic mod-
els for document networks. In David A. Van Dyk and Max
Welling, editors, AISTATS, volume 5 of JMLR Proceedings,
pages 81–88. JMLR.org, 2009.

[CBGW+09] Jonathan Chang, Jordan Boyd-Graber, Chong Wang, Sean
Gerrish, and David M. Blei. Reading tea leaves: How humans
interpret topic models. In Neural Information Processing Sys-
tems, 2009.

[CG11] Kevin Robert Canini and Thomas L. Griffiths. A nonparamet-
ric Bayesian model of multi-level category learning. In Proc.
AAAI Conf. on Artificial Intelligence, 2011.

[CZC12] Xu Chen, Mingyuan Zhou, and Lawrence Carin. The con-
textual focused topic model. In Qiang Yang 0001, Deepak
Agarwal, and Jian Pei, editors, KDD, pages 96–104. ACM,
2012.



BIBLIOGRAPHY 163

[Daw06] Richard Dawkins. The selfish gene. Oxford University Press,
2006.

[DHWX13] Avinava Dubey, Ahmed Hefny, Sinead Williamson, and Eric P.
Xing. A nonparametric mixture model for topic modeling over
time. In SDM, pages 530–538. SIAM, 2013.

[Die95] Andreas Diekmann. Empirische Sozialforschung. Grundlagen,
Methoden, Anwendungen. Rowohlt, Reinbek bei Hamburg,
1995.

[Die06] Laura Dietz. Exploring social topic networks with the author-
topic model. In Workshop “Semantic Network Analysis” at
European Semantic Web Conference ’06, pages 54–60, Budva,
Montenegro, June 2006.

[DJP78] John Deegan Jr and Edward W Packel. A new index of power
for simple n-person games. Int. J. of Game Theory, 7(2), 1978.

[Dod84] Charles Lutwidge Dodgson. The principles of parliamentary
representation. Harrison and Sons, 1884.

[EB15] Tarek Elguebaly and Nizar Bouguila. Simultaneous high-
dimensional clustering and feature selection using asymmetric
Gaussian mixture models. Image Vision Comput., 34:27–41,
2015.

[FBD+13] J. Foulds, L. Boyles, C. Dubois, P. Smyth, and M. Welling.
Stochastic collapsed variational Bayesian inference for latent
Dirichlet allocation. ArXiv e-prints, May 2013.

[Fer73] T. Ferguson. A Bayesian analysis of some nonparametric prob-
lems. The Annals of Statistics, 1:209–230, 1973.

[FHS+15] Damien Fay, Hamed Haddadi, Michael C. Seto, Han Wang,
and Christoph Carl Kling. An exploration of fetish social net-
works and communities. NetSci-X, abs/1511.01436, 2015.

[Fis53] Ronald Fisher. Dispersion on a sphere. Proc. of the Royal Soci-
ety of London. Series A, Mathematical and Physical Sciences,
217(1130), 1953.

[Fre13] Martin Fredriksson. An open source project for politics. In
James Arvanitakis and Ingrid Matthews, editors, The Citizen
in the 21st Century. Inter-Disciplinary Press, 2013.

[GK03] M. Girolami and A. Kaban. On an equivalence between PLSI
and LDA. In Proc. of ACM SIGIR, 2003.



164 BIBLIOGRAPHY

[GKT02] A. Gelman, J.N. Katz, and F. Tuerlinckx. The mathematics
and statistics of voting power. Statistical Science, 17(4):420–
435, 2002.

[Gri02] Tom Griffiths. Gibbs sampling in the generative model of La-
tent Dirichlet Allocation. Technical report, Stanford Univer-
sity, 2002.

[GY14] Siddharth Gopal and Yiming Yang. Von Mises-Fisher cluster-
ing models. In ICML, volume 32 of JMLR Proceedings, pages
154–162. JMLR.org, 2014.

[HAG+12] Liangjie Hong, Amr Ahmed, Siva Gurumurthy, Alexander J.
Smola, and Kostas Tsioutsiouliklis. Discovering geographical
topics in the Twitter stream. In Proc. World Wide Web Conf.,
pages 769–778, 2012.

[HBB10] Matthew D. Hoffman, David M. Blei, and Francis R. Bach. On-
line learning for latent Dirichlet allocation. In John D. Lafferty,
Christopher K. I. Williams, John Shawe-Taylor, Richard S.
Zemel, and Aron Culotta, editors, NIPS, pages 856–864. Cur-
ran Associates, Inc., 2010.

[Hei06] Gregor Heinrich. Infinite LDA. Estimation of the inherent
number of topics using Dirichlet process prior and exploiting
sparsity of conditional topic distributions, August 2006.

[Hei08] Gregor Heinrich. Parameter estimation for text analysis. Tech-
nical note version 2 (1: 2005), vsonix GmbH and University of
Leipzig, February 2008.

[HG09] Gregor Heinrich and Michael Goesele. Variational Bayes for
generic topic models. In Proc. 32nd (German) Annual Con-
ference on Artificial Intelligence, 2009.
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Appendix

A.1 MLE Estimate for the Binomial Distribution

The complete derivation of the maximum likelihood estimate for the bino-
mial distribution with n0 negative and n1 positive observations is:

∂

∂p
log (L (p | v))

!
= 0

⇔ ∂

∂p
log(p(v | p)) = 0

⇔ ∂

∂p
log(

n∏
j=1

pvj · (1− p)1−vj ) = 0

⇔ ∂

∂p

n∑
j=1

log(pvj · (1− p)1−vj ) = 0

⇔ ∂

∂p
(n1 · log(p) + n0 · log(1− p)) = 0

⇔ n1 ·
∂

∂p
(log(p)) + n0 ·

∂

∂p
(log((1− p))) = 0

⇔ n1 ·
1

p
+ n0 ·

1

1− p
· (−1) = 0

⇔ n1 ·
1

p
= n0 ·

1

1− p
⇔ n1 · (1− p) = n0 · p

⇔ n1 − n1 · p = n0 · p ⇔ n1 = (n0 + n1) · p

⇔ n1

n0 + n1
= p (A.1)
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A.2 MAP Estimate for the Binomial Distribution

The derivation of the MAP estimate for the binomial distribution with a
beta-distributed prior is given by:

∂

∂p
log(p (p | n0, n1, α, β)) =

∂

∂p
log Beta(p, n1 + α, n0 + β)

!
= 0

⇔ ∂

∂p
log
(
pn1+α−1 · (1− p)n0+β−1

)
= 0

⇔ (n1 + α− 1) · 1

p
+ (n0 + β − 1) · 1

1− p
· (−1) = 0

⇔ (n1 + α− 1) · (1− p) = (n0 + β − 1) · p

⇔ p =
n1 + α− 1

n1 + n0 + α+ β − 2
(A.2)
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A.4 ML Estimate Scaling Parameter α1

The scaling parameters of the HMDP topic model alternatively can be up-
dated using Newtons method on the exact (i.e. non-approximated) joint
distribution of the truncated HMDP process model. The marginal joint
distribution over words and topic assignments is:

p(w, z | β0,π0, α0, α1, ε, δ) =

M∏
m=0

Γ(α1)

Γ(α1 +Nm)
·
K∏
k=1

Γ(α1π
s
mk + nm··k)

Γ
(
α1πsmk

)
·
K∏
k=1

Γ(V · β0)

Γ(V · β0 + nk·)
·
V∏
t=1

Γ(β0 + nkt)

Γ(β0)
. (A.6)

Taking the derivative with respect to α1 yields

d log p(w, z | β0,π0, α0, α1, ε, δ)

d α1
=

M ·Ψ(α1)−
M∑
m=0

Ψ(α1 +Nm) +

K∑
k=1

Ψ(α1π
s
mk + nm··k)π

s
mk −Ψ (α1π

s
mk)π

s
mk

(A.7)

using digamma functions. The second derivative involving trigamma func-
tions is given by

d log p(w, z | β0,π0, α0, α1, ε, δ)

d α2
1

=

M · ψ1(α1)−
M∑
m=0

ψ1(α1 +Nm)

+
K∑
k=1

ψ1(α1π
s
mk + nm··k) · πsmk

2 − ψ1 (α1π
s
mk) · πsmk

2 (A.8)

and an iteration of the Newton method is then calculated as:

αnew
1 = αold

1 − log p(w, z | β0,π0, α0, α1, ε, δ)′

log p(w, z | β0,π0, α0, α1, ε, δ)′′
. (A.9)

A.5 Topic Descriptions

The tables on the following pages contain extended and additional topic
descriptions from Chapter 4.
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Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
sandwich japanese dimsum tapas sausage
pizza sushi vietnamese spanish bacon
salad fish chinese paella pork
cheese sashimi rice chocolate beef
italian seafood noodles fish steak
deli tuna soup wine bbq
bacon rice seafood seafood beans

Topic 6 Topic 7 Topic 8 Topic 9 Topic 10
sushi chicken japanese fish bbq
japanese rice korean mediterranean potatoes
salmon soup ramen bread coffee
tuna potato noodle salad chocolate
shrimp mushroom soba orange barbeque
roll beef noodles pasta chicken
avocado cheese rice icecream toscana

Topic 11 Topic 12 Topic 13 Topic 14 Topic 15
baking cheese indian italian love
chocolate bento chips wine chocolate
bread tomato bread pizza strawberry
butter lettuce tea pasta strawberries
cheese bacon fish coffee pie
cookie salad salad pizzeria wine
orange chicken chicken turkish cheesecake

Topic 16 Topic 17 Topic 18 Topic 19 Topic 20
soup coffee seafood french bbq
tea wine fish wine barbecue
salad chocolate shrimp cheese grill
tofu bakery lobster chocolate chicken
chicken pastry crab bread chili
bread icecream oyster bistro onion
beef cream chicken orange orange

Topic 21 Topic 22 Topic 23 Topic 24 Topic 25
vegetarian chinese thai grill mexican
vegan noodles rice pizza burger
tofu chicken curry hotdog hamburger
salad fish fish icecream fries
indian duck indian hotdogs cheeseburger
rice pork seafood fries tacos
beans chopsticks noodles bbq chicken

Table A.1: Topics detected by LGTA [YCH+11b] on the food
dataset with 25 topics and 1000 regions. Multiple local topics for
Italian (1, 14), Japanese (2, 6 and 8), Spanish (4), Indian (8, 21 and 23),
French (19), Chinese (22), Thai (23) and Mexican (20) cuisine are detected.
Words with a probability < 0.01 are not displayed. Because of the inde-
pendence of regions, the Japanese, Indian and Italian cuisines are split into
several distinct topics and in Topic 8, 23 and 25 multiple cuisines are mixed.
This is due to the independence of geographical clusters.
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Topic 1 Topic 2 Topic 3 Topic 4
slave mind fucks spreader bars anal training
master crying orgasm denial anal stretching
blindfolds fear begging anal beads
oral sex interrogation blindfolds anal hooks
talking dirty wrestling ben wa balls strap
whips sadomasochism eye contact r...1 ass play
ass play tears butt plugs dildos
hair pulling emotional sadism crawling anal
bondage violence bare bottom s...2 fisting

Topic 5 Topic 6 Topic 7 Topic 8
creampie nipple torture photography making home m...3

lactation bondage art erotica gangbangs
breastfeeding leather bondage art pain
breeding whips writing erotica dildos
impregnation ...4 high heels tantra exhibitionism
incest play humiliation hot oil massages talking dirty
taboo lingerie body paint ass play
bareback chains chakra energy...5 handcuffs
milking spanking food play chains

Topic 9 Topic 10 Topic 11 Topic 12
feminization anonymous enc...6 bbw cock and ball...7

sissification group sex bbw bondage candle wax
sissy training outdoor sex forced mastur...8 electrotorture
forced femini...9 sex with stra...10 forced nudity pain
dollification sex in public forced submission masochism
cross dressing public play nipple play humiliation
transformation orgy blow jobs strap
human doll glory hole forced exhibi...11 high heels
maid swinging guided mastur...12 dildos

Topic 13 Topic 14 Topic 15 Topic 16
kissing exhibitionism sexual slavery orgasm control
fingering erotic photog...13 degradation orgasm denial
light bondage piercings public humili...14 teasing
caressing voyeurism slavery forced orgasms
handjobs candle wax total power e...15 obedience tra...16

blow jobs nipple torture objectification edge play
sex nipples sexual object...17 tease and denial
multiple orgasms bondage female humili...18 begging
sleepy sex whips humiliation cock milking

Table A.2: Fetish Topics by HMDP 1/7 1eye contact restrictions
2bare bottom spanking 3making home movies 4impregnation fantasy 5chakra energy play
6anonymous encounters 7cock and ball torture 8forced masturbation 9forced feminization
10sex with strangers 11forced exhibitionism 12guided masturbation 13erotic photography
14public humiliation 15total power exchange 16obedience training 17sexual objectification
18female humiliation
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Topic 17 Topic 18 Topic 19 Topic 20
caning double penetr...19 ass worship cuckold
belt spanking fucking machines pussy worship forced deepthroat
whipping vaginal stret...20 body worship strapon
corporal puni...21 fisting facesitting female domination
belt whippings triple penetr...22 queening deepthroat
paddling pussy pumping oral servitude forced bi
riding crops vacuum pumping boot worship cuckold humil...23

discipline glass dildos foot worship throat fucking
bullwhips speculums female supremacy strapon dildos

Topic 21 Topic 22 Topic 23 Topic 24
threesomes chastity devices suspension bondage
tattoos chastity rope bondage oral sex
multiple orgasms bondage shibari anal sex
double penetr...24 discipline japanese bondage blindfolds
outdoor sex chains kinbaku role play
rough sex humiliation bondage art candle wax
porn enforced chastity suspension bo...25 diaper
kissing high heels outdoor bondage handcuffs
cuddles male chastity breast bondage hair pulling

Topic 25 Topic 26 Topic 27 Topic 28
master catsuits gagging spanking
pain spandex cocksucking erotic photog...26

blow jobs lycra face fucking oral sex
multiple orgasms zentai cock worship blindfolds
exhibitionism latex bukkake talking dirty
anal training wam cum mutual mastur...27

spreader bars vacuum bed swallowing voyeurism
bare handed s...28 tights blow jobs lingerie
face fucking wet and messy double penetr...29 bondage

Topic 29 Topic 30 Topic 31 Topic 32
stockings me cuckolding cunnilingus
pantyhose love golden showers bisexuality
mutual mastur...30 moaning ball kicking lesbian domin...31

dildos you chastity devices kissing
high heels a brilliant mind whipping switching
lingerie cuddles cross dressing face fucking
vibrators hugs electrotorture butt plugs
spanking cuddling and ...32 sissy maid tr...33 female ejacul...34

erotic photog...35 screaming cbt bondage

Table A.3: Fetish Topics by HMDP 2/7 19double penetration 20vaginal

stretching 21corporal punishment 22triple penetration 23cuckold humiliation 24double pen-
etration 25suspension bondage 26erotic photography 27mutual masturbation 28bare handed
spanking 29double penetration 30mutual masturbation 31lesbian domination 32cuddling and
conversation 33sissy maid training 34female ejaculation 35erotic photography
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Topic 33 Topic 34 Topic 35 Topic 36
female ejacul...36 ball gags shemales femdom
squirting collars transexual female supremacy
oral sex gags transgender male submission
tongue sucking strap gay sex humiliation
anal sex spreader bars bimboification small penis h...37

cum orgasm control gender play cfnm
talking dirty sensory depri...38 gay bondage cunt worship
tongues nipple torture strap domestic serv...39

rough sex hair pulling bimbofication feminization

Topic 37 Topic 38 Topic 39 Topic 40
skirts with n...40 cbt cross dressing ass play
eating pussy ballbusting transvestism rimming
doggy style r...41 trampling latex watersports
facial ball stretching lingerie toys
blowjobs ball kicking high heels oral sex
pussy eating cock slapping chastity devices anal sex
blow jobs cock and ball...42 rubber gangbangs
deep throat genital torture enemas snowballing
blowjob castration leather strap

Topic 41 Topic 42 Topic 43 Topic 44
big tits sensual domin...43 body modification cock milking
tit fucking flirting piercings prostate massage
breasts humor needle play prostate milking
black women intelligence tattoos medical play
older women sensual play blood play urethral sounds
interracial sex seduction biting catheters
asian snuggling blood strap
sluts teasing genital piercings shaving
blow jobs touching knife play urethral fucking

Topic 45 Topic 46 Topic 47 Topic 48
oral sex power exchange deep throating domination
masturbation discipline rough sex submission
strap handcuffs blow jobs male authority
talking dirty humiliation play rape discipline
role play bondage face fucking rough sex
biting breath play hair pulling high heels
discipline sensory depri...44 talking dirty begging
lingerie pain cmnf talking dirty
ass play role play bare handed s...45 handcuffs

Table A.4: Fetish Topics by HMDP 3/7 36female ejaculation 37small penis

humiliation 38sensory deprivation 39domestic servitude 40skirts with no panties 41doggy
style rough and hard 42cock and ball torture 43sensual domination 44sensory deprivation
45bare handed spanking
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Topic 49 Topic 50 Topic 51 Topic 52
shoes spanking masks foot worship
boot licking hair pulling master foot massage
boot worship role play chains feet
gloves sex in public slave toes and feet
boot oral sex vibrators barefoot
smoking discipline chastity devices legs
boots mutual mastur...46 role play socks
fetish wear biting sensory depri...47 high heels
high heels piercings electrotorture foot

Topic 53 Topic 54 Topic 55 Topic 56
feet electrical play ass to mouth orgasm control
foot candle wax human toilet play rape
high heels violet wand toilet slave gags
humiliation wartenberg pi...48 spitting obedience tra...49

lingerie flogging toilet wax
leather needle play armpits abduction play
forniphilia subspace human ashtray suspension bo...50

having my hai...51 rope face farting service
cock and ball...52 clamps and clips watersports degradation

Topic 57 Topic 58 Topic 59 Topic 60
sex in public slave blindfolds bare handed s...53

masturbation mistress spanking control
biting femdom breath play hair pulling
lingerie domination sensory depri...54 candle wax
voyeurism lesbian domin...55 whips bare bottom s...56

oral sex yes discipline slapping
high heels male submission handcuffs biting
mutual mastur...57 slavery candle wax bondage
dildos cock and ball...58 bondage attention

Topic 61 Topic 62 Topic 63 Topic 64
sadism intelligence red heads latex
pain consensual no...59 geeks rubber
masochism begging cosplay masks
pinching biting hentai leather
whips polyamory small tits fetish wear
nipple torture blindfolds anime pvc
chains sapiosexuality glasses gas masks
breath play hair pulling freckles vinyl
spanking talking dirty goth gasmask

Table A.5: Fetish Topics by HMDP 4/7 46mutual masturbation 47sensory

deprivation 48wartenberg pinwheels 49obedience training 50suspension bondage 51having
my hair played with 52cock and ball torture 53bare handed spanking 54sensory depriva-
tion 55lesbian domination 56bare bottom spanking 57mutual masturbation 58cock and ball
torture 59consensual nonconsent
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Topic 65 Topic 66 Topic 67 Topic 68
flogging bondage piss you belong to me
wax corsets pissing respect
bondage ball gags anal fisting lust
caning bare bottom s...60 enema genuine and d...61

bdsm chains ass licking yes
pain whips golden showers when i want it
collar and leash bdsm vaginal fisting no
breast and ni...62 butt plugs ass how i want it
plugs domination butt plug treat her lik...63

Topic 69 Topic 70 Topic 71 Topic 72
obedience tra...64 daddy biting diapers
domestic serv...65 daddy daughte...66 scratching diaper
behavior modi...67 age play ice cubes diaper lover
service babygirl leaving marks infantilism
bathroom use ...68 fuck me tearing off c...69 wearing diapers
collars schoolgirl rough sex abdl
kneeling schoolgirl un...70 bruises plastic pants
discipline good girl teasing diaper punishment
eye contact r...71 incest play candle wax adult baby

Topic 73 Topic 74 Topic 75 Topic 76
anal breast bondage shaving watersports
butt plugs breast spanking clothespins golden showers
rimming clit spanking clamps and clips bald girls
anal sex clit torture fisting gay
blow jobs female humili...72 figging facesitting w...73

ass to mouth tit slapping nipple torture pee
bdsm breast whipping face slapping head shaving
fingering nipple torture caning golden shower
bondage cunt torture breath play wetting

Topic 77 Topic 78 Topic 79 Topic 80
goth age play massages pegging
vampires role play erotic literature androgyny
victorian lif...74 ass play cuddles panties
accents strap tickling strap on
sex in the ce...75 biting nudity pet play
music breath play outdoor sex crossdressing
fur erotic photog...76 foot tickling hair
martial arts fisting tickle torture cunnilingus
muscles nipple torture blow jobs blow jobs

Table A.6: Fetish Topics by HMDP 5/7 60bare bottom spanking 61genuine

and deep submission 62breast and nipple torture 63treat her like a lady 64obedience train-
ing 65domestic servitude 66daddy daughter roleplay 67behavior modification 68bathroom use
control 69tearing off clothing 70schoolgirl uniform 71eye contact restrictions 72female hu-
miliation 73facesitting watersports 74victorian lifestyles 75sex in the cemetery 76erotic pho-
tography



182 APPENDIX A. APPENDIX

Topic 81 Topic 82 Topic 83 Topic 84
handcuffs schoolgirl un...77 bare bottom s...78 humiliation
latex uniforms otk spanking enemas
anal sex maid uniforms bondage anal sex
leather business suits hairbrush spa...79 ass play
high heels french maids role play strap
blindfolds schoolgirl hair pulling watersports
hair pulling military uniforms spanking discipline
bondage stockings candle wax mutual mastur...80

breath play cheerleading ...81 cornertime chastity devices

Topic 85 Topic 86 Topic 87 Topic 88
anal sex corsets nipples vibrators
nipple torture burlesque mutual mastur...82 slave
spanking high heels masturbation bisexuality
oral sex lingerie discipline sensual domin...83

talking dirty fishnets lingerie spanking
blindfolds vintage lingerie dildos blindfolds
ass play skirts chains swallowing
diaper corsetry oral sex oral sex
rough sex lace handcuffs talking dirty

Topic 89 Topic 90 Topic 91 Topic 92
kidnapping ro...84 lipstick mummification petplay
abduction play handjobs bondage equipment puppy play
bondage stockings bondage tape hypnosis
duct tape skirts armbinders mind control
gags fingering vacuum bed pony play
handcuffs flirting suspension bo...85 erotic hypnosis
damsels in di...86 porn hoods kitten petplay
pursuit tit fucking bondage mental bondage
ball gags breasts posture collars human doll

Topic 93 Topic 94 Topic 95 Topic 96
toys face slapping smothering bdsm
strap choking face sitting restraints
vibrators asphyxiaphilia cunt worship handcuffs
dildos rough sex cunnilingus blindfolds
lingerie talking dirty pussy worship domination
high heels gagging strap obedience tra...87

mutual mastur...88 play rape golden showers collars
spanking humiliation rimming leather
masturbation belt spanking spitting submission

Table A.7: Fetish Topics by HMDP 6/7 77schoolgirl uniform 78bare bottom

spanking 79hairbrush spanking 80mutual masturbation 81cheerleading uniforms 82mutual
masturbation 83sensual domination 84kidnapping roleplay 85suspension bondage 86damsels
in distress 87obedience training 88mutual masturbation
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Topic 97 Topic 98 Topic 99 Topic 100
licking fisting cyber sex slut
massage anal sex webcams letting her up for air
being tied up high heels online play and then doing it again
sucking sex in public sex online being held down and fucked
roleplay rimming phone sex skirt up
kissing erotic photography webcam being used as a slut
silk lingerie blackmail shut the fuck up and bend over
nibbling humiliation skype sex good girl
blindfolded talking dirty online domination forced deepthroat

Table A.8: Fetish Topics by HMDP 7/7. Terms with a probability
smaller than 0.01 were greyed out. The topic distribution has a sparse
Dirichlet prior which places a high probability on the first words of a topic
and very low probabilities on the rest of the words. Therefore, words with
a very low probability often are not meaningful for describing a topic.
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Topic 1 Topic 2 Topic 3 Topic 4
high heels bondage blow jobs shibari
corsets shibari cocksucking rope bondage/...1

latex rope bondage/...2 deep throating japanese bondage
erotic photog...3 japanese bondage tit fucking bondage art
lingerie blindfolds face fucking suspension bo...4

burlesque candle wax cum outdoor bondage
stockings ball gags handjobs spreader bars
tattoos bondage art cyber sex remote-contro...5

art erotica bdsm fingering kinbaku

Topic 5 Topic 6 Topic 7 Topic 8
bondage oral sex lingerie pain
spanking masturbation masturbation breast/nipple...6

blindfolds sex in public erotic photog...7 sadism
handcuffs mutual mastur...8 role play whips
collar and le...9 dildos sex in public discipline
discipline anal sex making home m...10 candle wax
hair pulling vibrators pantyhose/sto...11 breath play
master/slave voyeurism mutual mastur...12 collar and le...13

oral sex exhibitionism talking dirty masochism

Topic 9 Topic 10 Topic 11 Topic 12
ball gags anal sex latex sadism
gags ass play strap-ons leather
rope bondage/...14 rimming cock and ball...15 piercings
restraints oral sex cross dressing masks
spreader bars watersports chastity devices electrotorture
bondage equipment fisting high heels nipples
bondage tape strap-ons humiliation pain
duct tape dildos leather masochism
outdoor bondage toys foot/feet pinching

Topic 13 Topic 14 Topic 15 Topic 16
masturbation toys ballbusting breast/nipple...16

sex in public oral sex cock and ball...17 fisting
oral sex vibrators femdom flogging
mutual mastur...18 masturbation cbt deep throating
exhibitionism dildos ball kicking figging
anal sex anal sex boot licking face slapping
vibrators spanking mistress/slave clothespins
toys bondage female supremacy biting
dildos talking dirty cock slapping whips

Table A.9: Fetish topics by LDA 1/7 1rope bondage/suspension
2rope bondage/suspension 3erotic photography 4suspension bondage 5remote-control de-
vices 6breast/nipple torture 7erotic photography 8mutual masturbation 9collar and
lead/leash 10making home movies 11pantyhose/stockings 12mutual masturbation 13collar
and lead/leash 14rope bondage/suspension 15cock and ball torture 16breast/nipple torture
17cock and ball torture 18mutual masturbation
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Topic 17 Topic 18 Topic 19 Topic 20
pain masturbation intelligence oral sex
candle wax oral sex tantra toys
sadism sex in public art erotica blindfolds
breast/nipple...19 erotic photog...20 chakra energy...21 vibrators
whips mutual mastur...22 sensual domin...23 masturbation
breath play talking dirty caressing spanking
discipline lingerie spiritual bdsm handcuffs
biting voyeurism humor anal sex
collar and le...24 exhibitionism kissing lingerie

Topic 21 Topic 22 Topic 23 Topic 24
bare bottom s...25 diapers foot/feet bondage
spanking age play high heels bdsm
bare handed s...26 humiliation feet d/s
otk spanking watersports foot massage flogging
belt spanking enemas pantyhose/sto...27 pain
caning spanking barefoot caning
discipline diaper toes and feet oral sex
paddling bathroom use ...28 tickling wax
hairbrush spa...29 bondage kissing collar and leash

Topic 25 Topic 26 Topic 27 Topic 28
anal sex face slapping orgasm control cross dressing
butt plugs face fucking orgasm denial latex
anal verbal humili...30 forced orgasms strap-ons
ass to mouth rough sex teasing pantyhose/sto...31

fisting gagging/choke...32 bring-them-to...33 high heels
ass play deep throating forced mastur...34 lingerie
rimming humiliation multiple orgasms transvestism
anal stretching hair pulling remote-contro...35 ass play
anal training choking tease and denial leather

Topic 29 Topic 30 Topic 31 Topic 32
cock and ball...36 anal sex being more co...37 lingerie
cbt ass play causing peopl...38 bondage
ball stretching rimming finding out i...39 toys
cock milking watersports intelligence oral sex
prostate milking oral sex cuddles handcuffs
prostate massage fisting spelling spanking
urethral sounds strap-ons and punctuation vibrators
electrotorture age play kissing high heels
electrical play master/slave girls with hi...40 blindfolds

Table A.10: Fetish topics by LDA 2/7 19breast/nipple torture 20erotic

photography 21chakra energy play 22mutual masturbation 23sensual domination 24collar
and lead/leash 25bare bottom spanking 26bare handed spanking 27pantyhose/stockings
28bathroom use control 29hairbrush spanking 30verbal humiliation and degradation
31pantyhose/stockings 32gagging/choked by cock 33bring-them-to-the-edge-of-orgasm-but-
don’t-let-them-cum-for-a-while 34forced masturbation 35remote-control devices 36cock and
ball torture 37being more complex than an anonymous list of fetishes could show 38causing
people to have to actually converse with me 39finding out if they like *me* and not just
what gets me off. 40girls with high iqs and low morals



186 APPENDIX A. APPENDIX

Topic 33 Topic 34 Topic 35 Topic 36
tattoos foot worship bdsm intelligence
piercings foot/feet bondage sensual domin...41

goth foot massage domination kissing
vampires face sitting/...42 collar and le...43 domination
body modification ass worship collars orgasm control
biting femdom ball gags teasing
genital piercings body worship restraints erotic literature
bisexuality boot licking submission light bondage
sex in the ce...44 boot worship obedience tra...45 rough sex

Topic 37 Topic 38 Topic 39 Topic 40
intelligence face slapping bondage spanking
biting crying oral sex bondage
scratching cutting spanking blindfolds
corsets fear blindfolds discipline
polyamory violence hair pulling anal sex
sapiosexuality bruises biting oral sex
sensory depri...46 asphyxiaphilia anal sex hair pulling
leaving marks choking handcuffs collar and le...47

shibari leaving marks high heels breast/nipple...48

Topic 41 Topic 42 Topic 43 Topic 44
collar and le...49 masturbation schoolgirl un...50 whips
caging/confin...51 sex in public teacher/student chastity devices
chastity devices mutual mastur...52 schoolgirl discipline
humiliation oral sex role play breast/nipple...53

obedience tra...54 voyeurism cosplay leather
discipline exhibitionism kitten petplay caging/confin...55

master/slave erotic photog...56 anime cock and ball...57

bondage toys hentai latex
24/7 making home m...58 petplay bondage

Topic 45 Topic 46 Topic 47 Topic 48
making you do...59 vintage lingerie teasing anal sex
when i want it burlesque kissing ass play
how i want it corsets cuddles bondage
and you will ...60 lace caressing spanking
moaning costumes/dres...61 snuggling humiliation
screaming stockings ice cubes fisting
rough sex lipstick massages breast/nipple...62

groaning and ...63 fishnets submission oral sex
scratches lingerie touching rimming

Table A.11: Fetish topics by LDA 3/7 41sensual domination 42face

sitting/smothering 43collar and lead/leash 44sex in the cemetery 45obedience training
46sensory deprivation 47collar and lead/leash 48breast/nipple torture 49collar and lead/leash
50schoolgirl uniform 51caging/confinement 52mutual masturbation 53breast/nipple torture
54obedience training 55caging/confinement 56erotic photography 57cock and ball torture
58making home movies 59making you do whatever the fuck i feel like 60and you will like
it because i like it 61costumes/dressing-up 62breast/nipple torture 63groaning and other
sounds of pleasure and pain
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Topic 49 Topic 50 Topic 51 Topic 52
pain corsets being treated...64 aren’t you?”
whips leather “cum for me “you’re a fil...65

breast/nipple...66 gloves being fucked ...67 treat her lik...68

sadism high heels a fistful of ...69 fuck her like...70

candle wax uniforms being told i’...71 being treated...72

chains stockings slut” ”skirts with ...73

discipline riding crops “you belong t...74 i’m going to ...75

sensory depri...76 costumes/dres...77 writhing in h...78 “if i catch you
masochism domination being told “y...79 being pushed ...80

Topic 53 Topic 54 Topic 55 Topic 56
candle wax clit spanking doctor/nurse play threesomes
spanking breast bondage masks group sex
bondage breast spanking foot/feet sex in public
hair pulling clit torture rubber exhibitionism
bare handed s...81 tit slapping cross dressing outdoor sex
breath play clit pumping scent voyeurism
tickling breast whipping enemas bisexuality
blindfolds cunt torture cock and ball...82 double penetr...83

biting female ejacul...84 pantyhose/sto...85 erotic photog...86

Topic 57 Topic 58 Topic 59 Topic 60
face sitting/...87 latex bondage rough sex
ass worship rubber chastity devices hair pulling
mistresses wi...88 mummification spanking play rape
femdom ball gags high heels choking
cunnilingus ballet boots/...89 discipline face slapping
pussy worship vacuum bed corsets domination
cunt worship hoods golden showers blow jobs
strap-ons gas masks whipping kissing
mistress/slave masks caning deep throating

Topic 61 Topic 62 Topic 63 Topic 64
strap-ons rough sex bondage female ejacul...90

cross dressing deep throating spanking squirting
mistresses wi...91 face fucking blindfolds cunnilingus
shemales blow jobs discipline deep throating
bisexuality gagging/choke...92 collar and le...93 blow jobs
transgender anal sex candle wax multiple orgasms
transexual play rape master/slave rough sex
transvestism double penetr...94 handcuffs anal
pegging threesomes hair pulling threesomes

Table A.12: Fetish topics by LDA 4/7 64being treated like a beautiful princess

but fucked like a dirty little whore 65“you’re a filthy little slut 66breast/nipple torture 67being
fucked with a hand on my throat and threats being whispered into my ear 68treat her like
a lady 69a fistful of hair and a long passionate kiss 70fuck her like a slut 71being told
i’m a good girl 72being treated like a beautiful princess but fucked like a dirty little whore
73“skirts with no panties” 74“you belong to me” whispered in my ear 75i’m going to fuck
you” 76sensory deprivation 77costumes/dressing-up 78writhing in his arms and struggling
as he whispers everything he’s going to do in my ear 79being told “you’re mine” 80being
pushed up against a wall in a passionate kiss 81bare handed spanking 82cock and ball tor-
ture 83double penetration 84female ejaculation 85pantyhose/stockings 86erotic photography
87face sitting/smothering 88mistresses with strap-ons 89ballet boots/shoes 90female ejacula-
tion 91mistresses with strap-ons 92gagging/choked by cock 93collar and lead/leash 94double
penetration
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Topic 65 Topic 66 Topic 67 Topic 68
rough sex verbal humili...95 bukkake latex
bare bottom s...96 humiliation gangbangs leather
bare handed s...97 public humili...98 group sex bondage
hair pulling degradation sex with stra...99 masks
skirt up obedience tra...100 double penetr...101 rubber
play rape sexual slavery cocksucking collar and le...102

panties down exhibitionism creampie high heels
belt spanking objectification cum handcuffs
“sit the fuck...103 female humili...104 glory hole chains

Topic 69 Topic 70 Topic 71 Topic 72
sex in public domination obedience tra...105 femdom
anal sex orgasm control mind control mistress/slave
licking ball gags orgasm control mistresses wi...106

threesomes collars mind fucks strap-ons
rough sex bdsm mental bondage chastity devices
oral sex obedience tra...107 hypnosis male submission
fingering butt plugs d/s chastity
“skirts with ...108 bare bottom s...109 behavior modi...110 cuckold
kissing restraints control face sitting/...111

Topic 73 Topic 74 Topic 75 Topic 76
obedience tra...112 pursuit sex in public caning
domestic serv...113 take-down & ...114 masturbation flogging
slavery abduction play voyeurism whipping
24/7 kidnapping ro...115 erotic photog...116 wartenberg pi...117

sexual slavery consensual no...118 exhibitionism riding crops
petplay play rape oral sex single tail whips
verbal humili...119 predator/prey mutual mastur...120 electrical play
service-orien...121 interrogation making home m...122 violet wand
behavior modi...123 tearing off c...124 talking dirty bullwhips

Topic 77 Topic 78 Topic 79 Topic 80
cross dressing a collar mutual respect respect
feminization cuddles kissing lust
sissification being pushed ...125 cuddles the heartfelt...126

transvestism two wrist cuffs trust and com...127 and mental an...128

forced femini...129 two ankle cuf...130 caressing genuine and d...131

maid uniforms hugs love a brilliant mind
mistresses wi...132 “trust me sensual domin...133 a creative pl...134

french maids you will be c...135 massages intelligent c...136

costumes/dres...137 being hugged ...138 intelligence subtlety

Table A.13: Fetish topics by LDA 5/7 95verbal humiliation and degradation
96bare bottom spanking 97bare handed spanking 98public humiliation 99sex with strangers
100obedience training 101double penetration 102collar and lead/leash 103“sit the fuck down
104female humiliation 105obedience training 106mistresses with strap-ons 107obedience train-
ing 108“skirts with no panties” 109bare bottom spanking 110behavior modification 111face
sitting/smothering 112obedience training 113domestic servitude 114take-down & capture
115kidnapping roleplay 116erotic photography 117wartenberg pinwheels 118consensual non-
consent 119verbal humiliation and degradation 120mutual masturbation 121service-oriented
submission 122making home movies 123behavior modification 124tearing off clothing 125being
pushed up against a wall in a passionate kiss 126the heartfelt kind that comes from trust
127trust and communication. 128and mental and emotional connection 129forced feminiza-
tion 130two ankle cuffs and a smile 131genuine and deep submission 132mistresses with
strap-ons 133sensual domination 134a creative player and imaginative lover. 135you will
be crying your eyes out long before this spanking is over.” 136intelligent conversation
137costumes/dressing-up 138being hugged by strong safe arms
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Topic 81 Topic 82 Topic 83 Topic 84
bondage lingerie bare bottom s...139 kissing
hair pulling high heels belt spanking cunnilingus
spanking schoolgirl un...140 butt plugs massages
blindfolds stockings breast spanking female ejacul...141

discipline pantyhose/sto...142 bare handed s...143 blow jobs
handcuffs corsets ball gags fingering
whips costumes/dres...144 breast/nipple...145 multiple orgasms
pain blow jobs clit spanking cuddles
collar and le...146 butt plugs breast bondage oral sex

Topic 85 Topic 86 Topic 87 Topic 88
breast/nipple...147 age play needle play watersports
pain daddy/girl knife play golden showers
electrotorture daddy daughte...148 biting human toilet
chastity devices bare bottom s...149 blood play rimming
whips role play breath play toilet slave
cock and ball...150 schoolgirl un...151 scratching ass to mouth
caging/confin...152 spanking fire play ass worship
sadism anal candle wax face sitting/...153

chains blow jobs piercings spitting

Topic 89 Topic 90 Topic 91 Topic 92
bondage “i’m not asking biting forced deepthroat
blindfolds i’m telling.” tattoos deepthroat
spanking “look me in t...154 kissing cocksucking
handcuffs not an option cuddles cum
oral sex being a priority rough sex whore
master/slave you think you...155 teasing slut
discipline why are you s...156 massages being fucked ...157

hair pulling thats so cute scratching anal fisting
collar and le...158 talking in a ...159 corsets “skirts with ...160

Topic 93 Topic 94 Topic 95 Topic 96
face fucking anal stretching hair pulling latex
deep throating anal training rough sex rubber
gagging/choke...161 anal beads bare bottom s...162 leather
forcing her d...163 anal hooks consensual no...164 pvc
letting her u...165 butt plugs bare handed s...166 masks
and then doin...167 fisting play rape catsuits
face slapping anal begging fetish wear
forced deepthroat enemas intelligence high heels
blow jobs vaginal stret...168 belt spanking gas masks

Table A.14: Fetish topics by LDA 6/7 139bare bottom spanking
140schoolgirl uniform 141female ejaculation 142pantyhose/stockings 143bare handed spanking
144costumes/dressing-up 145breast/nipple torture 146collar and lead/leash 147breast/nipple
torture 148daddy daughter roleplay 149bare bottom spanking 150cock and ball torture
151schoolgirl uniform 152caging/confinement 153face sitting/smothering 154“look me in the
eye while i’m hurting you” 155you think you have a choice 156why are you so wet? 157being
fucked in the ass by a girl 158collar and lead/leash 159talking in a sweet voice while you’re
doing something really mean 160“skirts with no panties” 161gagging/choked by cock 162bare
bottom spanking 163forcing her down on your cock til she gags 164consensual nonconsent
165letting her up for air 166bare handed spanking 167and then doing it again 168vaginal
stretching
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Topic 97 Topic 98 Topic 99 Topic 100
bondage breast/nipple...169 red heads bondage
spanking pain cyber sex discipline
blindfolds spanking webcams spanking
oral sex whips small tits blindfolds
lingerie candle wax online play humiliation
handcuffs toys tit fucking collar and le...170

high heels bondage big tits handcuffs
hair pulling discipline older women exhibitionism
anal sex nipples sex online master/slave

Table A.15: Fetish topics by LDA 7/7 The topics differ from the top-
cis detected by the HMDP topic model. 169breast/nipple torture 170collar and
lead/leash
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