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Galileo

Few may hear Galileo’s song (calling)
A tribulation
Adversities

Fuel for a living, feeds us all

Spirit is fire
Uncompromising

Hidden hand, protect us from
The dead and dying

Echo his madness
His heresy feeds us all

Spirit is fire
Uncompromising

Hidden hand, protect us from
The dead and dying

Few may

Spirit is fire
Feed on the senseless ending

Spirit is fire
Feed on the senseless ending

- Song by Maynard James Keenan
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SUMMARY

Freshwaters are of immense importance for human well-being. Nevertheless, they are
currently facing unprecedented levels of threat from habitat loss and degradation, over-
exploitation, invasive species and pollution. To prevent risks to aquatic ecosystems,
chemical substances, like agricultural pesticides, have to pass environmental risk as-
sessment (ERA) before entering the market. Concurrently, large-scale environmental
monitoring is used for surveillance of biological and chemical conditions in freshwaters.
This thesis examines statistical methods currently used in ERA. Moreover, it presents a
national-scale compilation of chemical monitoring data, an analysis of drivers and dy-
namics of chemical pollution in streams and, provides a large-scale risk assessment by
combination with results from ERA. Additionally, software tools have been developed
to integrate different datasets used in ERA.

The thesis starts with a brief introduction to ERA and environmental monitoring and
gives an overview of the objectives of the thesis. Chapter 2 addresses experimental
setups and their statistical analyses using simulations. The results show that current
designs exhibit unacceptably low statistical power, that statistical methods chosen to fit
the type of data provide higher power and that statistical practices in ERA need to be re-
vised. In chapter 3 we compiled all available pesticide monitoring data from Germany.
Hereby, we focused on small streams, similar to those considered in ERA and used
threshold concentrations derived during ERA for a large-scale assessment of threats
to freshwaters from pesticides. This compilation resulted in the most comprehensive
dataset on pesticide exposure currently available for Germany. Using state-of-the-art
statistical techniques, that explicitly take the limits of quantification into account, we
demonstrate that 25% of small streams are at threat from pesticides. In particular neon-
icotinoid pesticides are responsible for these threats. These are associated with agri-
cultural intensity and can be detected even at low levels of agricultural use. Moreover,
our results indicated that current monitoring underestimates pesticide risks, because
of a sampling decoupled from precipitation events. Additionally, we provide a first
large-scale study of annual pesticide exposure dynamics. Chapters 4 and 5 describe
software solutions to simplify and accelerate the integration of data from ERA, envi-
ronmental monitoring and ecotoxicology that is indispensable for the development of
landscape-level risk assessment.

Overall, this thesis contributes to the emerging discipline of statistical ecotoxicol-
ogy and shows that pesticides pose a large-scale threat to small streams. Environmen-
tal monitoring can provide a post-authorisation feedback to ERA. However, to protect
freshwater ecosystems ERA and environmental monitoring need to be further refined
and we provide software solutions to utilise existing data for this purpose.





CONTENTS

1 introduction and objectives 1

1.1 Threats to freshwater ecosystems from chemical pollution . . . . . . . . . 1

1.2 Environmental Risk Assessment . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Environmental Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Statistical Ecotoxicology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Objectives and Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . 6

1.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 ecotoxicology is not normal 15

2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Models for count data . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Models for binomial data . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.3 Statistical Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.4 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.6 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.1 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 large scale risks from pesticides in small streams 37

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 Data compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.2 Characterization of catchments . . . . . . . . . . . . . . . . . . . . . 41

3.3.3 Characterization of pesticide pollution . . . . . . . . . . . . . . . . 41

3.3.4 Statistical analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.1 Overview on the compiled data . . . . . . . . . . . . . . . . . . . . 43

3.4.2 Influence of agricultural land use and catchment size . . . . . . . . 46

3.4.3 Effect of precipitation on pesticide risk . . . . . . . . . . . . . . . . 48

3.4.4 Pesticide risk in small streams . . . . . . . . . . . . . . . . . . . . . 50

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.1 Overview on the compiled dataset . . . . . . . . . . . . . . . . . . . 50

3.5.2 Influence of agricultural land use and catchment size . . . . . . . . 52



3.5.3 Effect of precipitation on pesticide risk . . . . . . . . . . . . . . . . 52

3.5.4 Pesticides in small streams . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 webchem : an r package to retrieve chemical information 61

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Implementation and design details . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Data sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5.1 Install webchem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5.2 Sample data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5.3 Query identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5.4 Toxicity of different pesticide groups . . . . . . . . . . . . . . . . . 69

4.5.5 Querying partitioning coefficients . . . . . . . . . . . . . . . . . . . 70

4.5.6 Regulatory information . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5.7 Utility functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6.1 Related software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6.2 Open Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6.3 Further development . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 taxize : taxonomic search and retrieval in r 81

5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Why do we need taxize? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 Data sources and package details . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5 Use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.5.1 First, install taxize . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.5.2 Resolve taxonomic names . . . . . . . . . . . . . . . . . . . . . . . . 88

5.5.3 Retrieve higher taxonomic names . . . . . . . . . . . . . . . . . . . 90

5.5.4 Interactive name selection . . . . . . . . . . . . . . . . . . . . . . . . 91

5.5.5 Retrieve a phylogeny . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5.6 What taxa are children of the taxon of interest? . . . . . . . . . . . 93

5.5.7 IUCN Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.5.8 Search for available genes in GenBank . . . . . . . . . . . . . . . . 94

5.5.9 Matching species tables with different taxonomic resolution . . . . 95

5.5.10 Aggregating data to a specific taxonomic rank . . . . . . . . . . . . 95

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 general discussion and outlook 101

6.1 Topics in Statistical Ecotoxicology . . . . . . . . . . . . . . . . . . . . . . . 101

6.2 Leveraging monitoring data for environmental risk assessment . . . . . . 103

6.3 Challenges utilising ’Big Data’ in environmental risk assessment . . . . . 105



6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Supplemental Materials 115

a ecotoxicology is not normal 117

a.1 Supplementary Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

a.2 Worked R examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

a.2.1 Count data example . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

a.2.2 Binomial data example . . . . . . . . . . . . . . . . . . . . . . . . . 139

a.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

b large scale risks from pesticides in small streams 147

b.1 Data Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

b.2 Overview on compiled data . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

b.3 Thresholds for agricultural land use and catchment size . . . . . . . . . . 162

b.4 Effect of precipitation and season on RQ . . . . . . . . . . . . . . . . . . . 163

b.5 Pesticides in small streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

b.6 Catchment size - stream width relationship . . . . . . . . . . . . . . . . . . 174

b.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

c supplemental material for : taxize : taxonomic search and re-
trieval 177

c.1 A complete reproducible workflow . . . . . . . . . . . . . . . . . . . . . . . 177

c.2 Matching species tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

c.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

publications 187

author’s contributions 189

declaration 191

curriculum vitae 193



L I ST OF F IGURES

Figure 1.1 Conceptual overview of the topics addressed by this thesis . . . . 6

Figure 2.1 Example data from Brock et al. (2015). . . . . . . . . . . . . . . . . 22

Figure 2.2 Count data simulations: Type I error and Power for the test of a
treatment effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 2.3 Count data simulations: Type I error and Power for determina-
tion of LOEC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 2.4 Binomial data simulations: Type I error and power for the test of
a treatment effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 2.5 Binomial data simulations: Type I error and power for the test
for determination of LOEC. . . . . . . . . . . . . . . . . . . . . . . 28

Figure 3.1 Spatial distribution of the 2,301 small stream sampling sites. . . . 44

Figure 3.2 Compound spectra of the different federal states. . . . . . . . . . 45

Figure 3.3 Distribution of catchment area and agriculture within the catch-
ment area across the sampling sites. . . . . . . . . . . . . . . . . . 46

Figure 3.4 Effect of percent agriculture within the catchment and catchment
size on the number of RAC exceedances. . . . . . . . . . . . . . . 47

Figure 3.5 Summarised coefficients for precipitation and quarter from a meta-
analysis of the 22 modelled compounds. . . . . . . . . . . . . . . . 49

Figure 3.6 15 compounds with the highest risk quotients in small streams. . 51

Figure 4.1 Overview of current data sources. . . . . . . . . . . . . . . . . . . 66

Figure 4.2 Toxicity of different pesticide groups. . . . . . . . . . . . . . . . . 70

Figure 4.3 Simple QSAR for predicting log LC50 of pesticides by log P. . . . 71

Figure 5.1 A phylogeny for three species produced using the phylomatic_tree
function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Figure B.1 Overview on data cleaning steps. . . . . . . . . . . . . . . . . . . . 148

Figure B.2 Number of sampling occasions per year and month. . . . . . . . . 150

Figure B.3 Complete Linkage Cluster Dendrogram of Jaccard Similarity of
analysed compound spectra between federal states. . . . . . . . . 151

Figure B.4 Average silhouette width for different cluster sizes. . . . . . . . . 151

Figure B.5 Raw data used for the model in equation 3.2 and Figure 3.4 of
the main article. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Figure B.6 Distribution of precipitation at sampling occasions. . . . . . . . . 163

Figure B.7 Graphical representation of coefficients from table B.4. . . . . . . 168

Figure B.8 Cumulative distribution of the number sites exceeding RAC. . . 171

Figure B.9 Proportion of samples with detects in small streams. . . . . . . . 172

Figure B.10 Distribution of the number of quantified compounds in the sam-
ples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Figure B.11 Relationship between catchment size and stream width. . . . . . 174

Figure C.1 A phylogeny created using taxize . . . . . . . . . . . . . . . . . . . 180

Figure C.2 A map created using taxize . . . . . . . . . . . . . . . . . . . . . . 181



L I ST OF TABLES

Table 4.1 Identifiers for the jagst data sets as queried with webchem. . . . 69

Table 5.1 Some key functions in taxize, what they do, and their data sources 85

Table A.1 Count data simulations - Proportion of models converged . . . . 118

Table A.2 Count data simulations - Power to detect a treatment effect. . . . 118

Table A.3 Count data simulations - Power to detect LOEC. . . . . . . . . . . 119

Table A.4 Count data simulations - Type 1 error to detect a global treatment
effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Table A.5 Count data simulations - Type 1 error to detect LOEC. . . . . . . 120

Table A.6 Binomial data simulations - Power to detect a global treatment
effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Table A.7 Count data simulations - Power to detect LOEC. . . . . . . . . . . 121

Table A.8 Binomial data simulations - Type 1 error to detect a global treat-
ment effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Table A.9 Binomial data simulations - Type 1 error to detect LOEC. . . . . . 122

Table B.2 Overview on pesticides in the database. . . . . . . . . . . . . . . . 152

Table B.3 23 pesticides for which we modelled the relationship with pre-
cipitation and seasonality. . . . . . . . . . . . . . . . . . . . . . . . 164

Table B.4 Coefficients and CI from per compound models. . . . . . . . . . . 165

Table B.5 Overview on RAC exceedances of the 78 compounds with more
than 1000 measurements. . . . . . . . . . . . . . . . . . . . . . . . 169





11 I NTRODUCT ION AND OBJECT IVES

threats to freshwater ecosystems from

chemical pollution

Freshwater ecosystems, such as streams, lakes and wetlands, amount to only 0.01% of
the world’s water and cover only 0.8% of Earth’s surface (Dudgeon et al., 2006; Gleick,
1996), yet they host an important component of global biodiversity. Freshwaters are
a habitat for more than 125,000 species which represents 10% of global biodiversity
and 1⁄3 of all vertebrate species (Balian et al., 2007; Strayer and Dudgeon, 2010) and
provide essential services for human well-being (Millennium Ecosystem Assessment,
2005). Small water bodies are of particular importance because of their high abundance
(Downing et al., 2012), the high biodiversity they host (Davies et al., 2008) and the
ecosystem services they provide (Biggs et al., 2016).

The earth is currently experiencing a functional change driven by human activities
which are so far-reaching, that a new geological epoch "Anthropocene" has been pro-
posed (Crutzen, 2002; Steffen et al., 2011; Waters et al., 2016). Consequently, this is also
associated with detrimental biotic changes: 65% of rivers are currently at threat (Vörös-
marty et al., 2010), 21% of 27,516 assessed freshwater species are currently threatened
with extinction (IUCN, 2016) and greatest biodiversity losses are observed in freshwater
ecosystems (WWF, 2016). A multitude of stressors contribute to this deterioration of
freshwater biodiversity, including habitat loss and degradation, overexploitation, inva-
sive species and pollution (Collen et al., 2014; Dudgeon et al., 2006; Vörösmarty et al.,
2010; WWF, 2016). Previous studies investigating water pollution have mainly focused
on nutrient loading, acidification and pollution by organic loading (Schäfer et al., 2016).
However, chemicals have become ubiquitous in mankind and are indispensable for so-
ciety and economy. Currently, more than 100,000 chemicals are registered and in daily
use (Schwarzenbach et al., 2010; Schwarzman and Wilson, 2009). Some of these chemi-
cals degrade quickly, while others rather accumulate in the environment (Fenner et al.,
2013).

Despite their potential negative effects on biota and their intentional release, pes-
ticides have been neglected in the past by ecological studies investigating threats to
freshwaters (Schäfer et al., 2016) and it is unknown how much they contribute to bio-
diversity loss (Persson et al., 2013; Rockström et al., 2009). However, recent studies
indicate that pollution by pesticides may be a frequent threat to freshwaters. Malaj
et al. (2014) showed that almost half of the European water bodies are at risk from
pesticides. In the United States, Stone et al. (2014) showed that 61% of assessed agri-
cultural streams exceed thresholds for a healthy aquatic-life. On a global scale, Stehle
and Schulz (2015) found that 52% of detected insecticide concentrations (n = 11,300)
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exceeded regulatory threshold levels (RTL) and that biodiversity is reduced by ~30% at
the RTL. Small streams are particularly exposed to pesticide pollution because of their
large contact area with adjacent land and low water volume (Biggs et al., 2016). How-
ever, there is currently a lack of data on pesticide pollution of small streams (Lorenz
et al., 2016).

As a reaction to the degradation of freshwaters, several legal frameworks have been
established to safeguard and improve the quality of freshwater ecosystems. In the
European Union (EU), the Water Framework Directive (WFD, European Union (2000))
regulates the protection of aquatic ecosystems and commits the member states to moni-
tor chemical pollution and to achieve a ‘good’ status of all water bodies. Knowing of the
toxic potential of pesticides and their intentional release into the environment, also the
introduction of new pesticides is strictly regulated. Sophisticated environmental risk
assessment procedures have been developed and are requested by the EU to ensure
that the use of pesticides does not cause unacceptable effects to non-target organisms,
soil, air and water (European Union, 2009).

environmental risk assessment

Environmental risk assessment (ERA) evaluates risks to animals, populations, commu-
nities or ecosystems. ERA investigates if a chemical can be used as intended without
causing detrimental impacts to the environment. Therefore, ERA is also a tool to sup-
port decision making under uncertainty (Newman, 2015). Environmental risk is defined
as a combination of the severity and the probability of occurrence of a potential adverse
effect on the environment (Suter, 2007). Therefore, ERA is based on two components:
Effect- and exposure assessment. A combination of both is needed to characterise envi-
ronmental risks.

Effect assessment characterises the strength of ecological effects using laboratory,
semi-field and field experiments. This is done by establishing relationships between
the concentration of a compound and the observed effects. In the EU a tiered approach
with increasing complexity and realism has been established. Lower tier assessment is
based on highly standardised single species laboratory experiments. If a low risk can-
not be established in lower tiers, higher tier assessment refines the assessment by testing
additional species, extended laboratory experiments or model ecosystem experiments
and aims to reduce the uncertainty in the assessment (Brock et al., 2006; EFSA, 2013).
To address the various uncertainties in effect assessment (e.g. experimental variation,
variation between species, variation in environmental conditions etc.) the estimated
toxicity values are divided by an assessment factor (AF) between 100 (lower tier as-
sessment) and 2 (higher tier assessment) depending on data quality, which leads to a
regulatory acceptable concentration (RAC) (Brock et al., 2006; EFSA, 2013).

Exposure assessment for freshwaters aims to characterise the potential contact of the
ecological entity with the chemical by deriving a predicted environmental concentra-
tion (PEC) in surface waters and sediments (Newman, 2015). This derivation is mainly
based on modelling the fate of chemicals in the environment using computer simula-
tions. In the European Union the FOCUS models are used to derive PECs (EFSA, 2013;
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FOCUS, 2001). For their calculations, these models need many compound specific in-
put parameters like the molecular weight, water solubility, partitioning coefficients and
dissipation time. Additionally, information on the application regime and crop type is
needed. FOCUS estimates the concentration within edge-of-field streams of 1 m width
(corresponding a catchment size of approx. 5 to 40 km2, see Figure B.11) and 30 cm
depth (Erlacher and Wang, 2011). Nevertheless, recent research showed that FOCUS
models fail to predict measured field concentrations of pesticides (Knäbel et al., 2014;
Knäbel et al., 2012).

The final step in ERA is risk characterisation, putting together the information gained
from effect and exposure assessment. Risk can be expressed in a quantitative way using
the risk quotient approach: If the ratio PEC / RAC exceeds a value of 1 potential
risks cannot be rebutted (EFSA, 2013; Solomon et al., 2000; Suter, 2007). Consequently,
pesticides can be authorised only if the risk quotient is below 1, indicating that harmful
effects are unlikely to happen.

environmental monitoring

Widespread anthropogenic activities and the induced environmental changes have re-
sulted in concerns about the state of the environment and have led worldwide to the
development of environmental monitoring programs (Nichols and Williams, 2006). Pes-
ticides applied to agricultural fields may enter aquatic ecosystems via diffuse sources
like spray-drift, surface run-off or drainage (Carter, 2000; Liess et al., 1999; Schulz, 2004;
Stehle et al., 2013), where they may have ecological effects such as the loss of sensi-
tive species, a reduced leaf-litter breakdown rate or a decreased functional microbial
richness (Liess and von der Ohe, 2005; Schäfer et al., 2007; Schäfer et al., 2012). For
monitoring the progress towards the goal of a ‘good’ status and for assessment of the
chemical status of surface waters the EU WFD established monitoring requirements for
all European river basins (European Union, 2000). For chemical monitoring the WFD
requires grab sampling and chemical analysis of 21 priority substances (of which 7 are
pesticides) every third month and of 24 other pollutants (of which 12 are used as pesti-
cides) every month. For these compounds environmental quality standards (EQS) have
been derived that define maximum permissible concentrations (European Union, 2013).
Additionally, substances that may pose a significant risk, have currently an insufficient
data basis and are candidates for future priority substances can be monitored ("watch
list"). These are currently 14 substances (of which 8 are used as pesticides, including
all Neonicotinoids) that are monitored until 2019 (European Union, 2015). Neverthe-
less, monitoring programs on a national scale might consider a broader spectrum of
chemical substances adapted to national requirements, e.g. for investigative monitor-
ing. However, recent studies indicate that the current sampling and chemical analyses
strategy greatly underestimates the pesticide exposure (Moschet et al., 2014; Stehle et
al., 2013; Xing et al., 2013).

Environmental monitoring produces humongous amounts of data containing infor-
mation on pesticide concentrations in the field. Moreover, data from long-term moni-
toring programs can be used to study hypotheses about spatial and temporal dynamics



1

4 introduction and objectives

and interactions that are not evident from short term and short scale studies (Gitzen,
2012) and provide insights for modelling approaches. Therefore, it can be complemen-
tary to ERA (Suter, 2007). If the environmental risk assessment process captured all
relevant sources of risk no concentrations above the derived RAC should be observable
in European rivers. Therefore, monitoring data could be used to provide feedback for
ERA after approval (Knauer, 2016). However, monitoring under the WFD has its main
focus on large water bodies >10 km2 catchment size (European Union, 2000), whereas
ERA has its focus on small water bodies of approx. 5 to 40 km2 catchment size (Fig-
ure B.11, Brock et al. (2006) and European Union (2009)). At present little is known on
pesticide concentrations in small streams comparable to those assessed in ERA (Biggs
et al., 2016; Lorenz et al., 2016).

statistical ecotoxicology

As outlined, environmental effect assessment is based on experimental approaches and
generates data on ecological effects. The produced datasets range from small univariate
datasets (lower tier assessment) to medium-sized multivariate datasets (higher tier as-
sessment). To extract usable information for assessment, these datasets are analysed us-
ing statistical techniques (Newman, 2012). Statistical ecotoxicology combines statistics
with the specific needs and constraints of ecotoxicology. Ecotoxicologists deal generally
with low replicated experiments, complicating statistical inference (Van Der Hoeven,
1998): A recent analysis of 11 mesocosm studies revealed that the sample sizes for this
kind of experiments range between two and five (Szöcs et al., 2015). Statistical eco-
toxicology aims to provide solutions to statistical challenges in ecotoxicology (Fox and
Landis, 2016a), guidance on experimental designs (Johnson et al., 2015) and tools to
integrate big data (Van den Brink et al., 2016). The ultimate goal is to improve the
accuracy of ERA.

The relationships between the concentration of a compound and the observed effects
are usually analysed using dose-response models, which can be used to derive an effec-
tive concentration (ECx) for x% effect (Ritz, 2010). Nevertheless, such relationships can-
not always be established from experimental data. For example, mesocosm experiments
are conducted to characterise effects on whole biological communities. However, be-
cause of the multivariate response and potential indirect effects between species, there
is no clear dose-response relationship and no models for this kind of data currently
available. Recently, Green (2016) provided examples were fitting dose-response mod-
els is problematic. In such cases, a no-observed-effect concentration (NOEC) is usually
derived to quantify the toxic potential.

The NOEC is the highest tested concentration that does not lead to a statistically
significant deviation from the control response and therefore relies on null hypothesis
significance testing (NHST). However, the use of NOEC as a toxicity measure in en-
vironmental effect assessment has been heavily criticised in the past (Chapman et al.,
1996; Fox et al., 2012; Fox and Landis, 2016b; Jager, 2012; Laskowski, 1995; Warne and
van Dam, 2008). One such shortcoming is the low statistical power of NHST in common
ecotoxicological experiments (Van Der Hoeven, 1998). A priori power calculations can
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provide useful guidance for choosing experimental designs (Johnson et al., 2015), but
are rarely used by ecotoxicologists (Newman, 2008).

Instead of conducting experiments, toxicity could be also predicted from molecular
structures using quantitative structure-activity relationships (QSAR), which are usu-
ally calculated using machine learning techniques (Breiman, 2001; Cortes-Ciriano, 2016;
Murrell et al., 2015). Nevertheless, in order to improve and validate these models to
give sufficient prediction accuracy more data from experiments is needed (Kühne et al.,
2013). Indeed, a large amount of data is available that could be used for effect and
exposure assessment. Several comprehensive databases (e.g. the US EPA ECOTOX
database (U.S. EPA, 2016), the Pesticides Properties Database (Lewis et al., 2016) and
ETOX (Umweltbundesamt, 2016)) provide toxicity data that could be used for effect
assessment. Databases like Physprop (Howard and Meylan, 2016) and PubChem (Kim
et al., 2016) provide chemical properties that are needed as input for exposure models.
Monitoring data provide information on realised concentrations that could be used for
validation of models and retrospective feedback to risk assessment. This "big data" can
provide new information and opportunities for ERA (Dafforn et al., 2015). However, it
needs to be harmonised, linked and easily accessible in order to be used effectively in
ERA.
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objectives and outline of the thesis

The overall goal of this thesis was to contribute to the emerging field of statistical eco-
toxicology, environmental risk assessment and environmental monitoring. The main
objectives were (i) to scrutinise new methods in statistical ecotoxicology and effect as-
sessment, (ii) explore risk dynamics using available monitoring data and (iii) provide
tools to deal with and integrate big data in ERA. Figure 1.1 provides a conceptual
overview on ERA and environmental monitoring as outlined in the previous sections,
as well as the parts considered in this thesis and their relationships.

Experiment Data /
Statistics

Effects

Data /
Properties Models

Exposure

Environmental
Risk

Assessment

Environmental
Monitoring

Biology

Chemistry

Chap. 2

Chap. 3

Chap. 4

Chap. 5

Retrieve & link data

Retrieve & link data

RAC

PEC

Retrospection

Approves
Substance

Figure 1.1.: Conceptual overview on environmental risk assessment, environmental monitoring
and the parts addressed by this thesis.

The thesis starts with a comparison of statistical methods to analyse ecotoxicological
experiments using NHST in effect assessment (Chapter 2). Specific questions addressed
were:

• Are state-of-the-art statistical methods that explicitly consider the type of analysed
data, more powerful than currently used methods for NHST?

• How much statistical power do current experimental designs in ecotoxicology
exhibit?
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Risk assessment procedures in the European Union have the main focus on small wa-
ter bodies adjacent to agricultural fields where plant protection products are applied.
Therefore, chapter 3 focuses on measured environmental concentrations on a large spa-
tial scale in small streams, their drivers and comparison with RACs derived from ERA.
Specific goals of this study were:

• Compile monitoring data on pesticides in small streams in Germany and check if
the available data is suitable to inform ERA.

• Explore the relationship between agricultural land use, stream size and RAC ex-
ceedances.

• Scrutinise the annual dynamics of pesticide exposure, as well as the influence of
precipitation on measured pesticide concentrations.

• Assess the current pollution in small streams using RACs from ERA and identify
pesticides exhibiting currently a risk to freshwaters.

The compilation of monitoring data from different data sources in Chapter 3 resulted
in a big inhomogeneous amount of data. Moreover, biologists, chemists and ecotoxicol-
ogists face similar problems with the need to identify and harmonise their biological
and chemical data. Chapters 4 (chemical data) and 5 (biological data) describe software
solutions to simplify and accelerate the workflow of:

• Validating and harmonising chemical and taxonomic data

• Linking datasets from different databases

• Retrieving properties and identifiers
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abstract

Ecotoxicologists often encounter count and proportion data that are rarely normally
distributed. To meet the assumptions of the linear model such data are usually trans-
formed or non-parametric methods are used if the transformed data still violate the
assumptions. Generalised Linear Models (GLM) allow to directly model such data,
without the need for transformation. Here, we compare the performance of two para-
metric methods, i.e., (1) the linear model (assuming normality of transformed data),
(2) GLMs (assuming a Poisson, negative binomial, or binomially distibuted response),
and (3) non-parametric methods. We simulated typical data mimicking low replicated
ecotoxicological experiments of two common data types (counts and proportions from
counts). We compared the performance of the different methods in terms of statistical
power and Type I error for detecting a general treatment effect and determining the
lowest observed effect concentration (LOEC). In addition, we outlined differences on a
real world mesocosm data set. For count data, we found that the quasi-Poisson model
yielded the highest power. The negative binomial GLM resulted in increased Type I
errors, which could be fixed using the parametric bootstrap. For proportions, bino-
mial GLMs performed better than the linear model, except to determine LOEC at ex-
tremely low sample sizes. The compared non-parametric methods had generally lower
power. We recommend that counts in one-factorial experiments should be analysed
using quasi-Poisson models and proportions from counts by binomial GLMs. These
methods should become standard in ecotoxicology.

introduction

Ecotoxicologists perform various kinds of experiments yielding different types of data.
Examples are animal counts in mesocosm experiments (non-negative, integer-valued
data) or proportions of surviving animals (data bounded between 0 and 1, discrete).
These data are typically not normally distributed. Nevertheless, such data are often
analysed using methods that assume a normal distribution and variance homogene-
ity (Wang and Riffel, 2011). To meet these assumptions data are usually transformed.
For example, ecotoxicological textbooks (Newman, 2012) and guidelines (EPA, 2002;
OECD, 2006) advise that survival data should be transformed using an arcsine square
root transformation. For count data from mesocosm experiments a log(Ay + C) transfor-
mation is usually applied, where the constants A and C are either chosen arbitrarily or
following general recommendations. For example, van den Brink et al. (2000) suggest
to set the term Ay to be 2 for the lowest abundance value (y) greater than zero and C
to 1. Other transformations, like the square root or fourth root transformation, are also
commonly applied in community ecology (Anderson et al., 2011). Note that there has
been little evaluation and advice for practitioners which transformations to use. If the
transformed data still do not meet the assumptions of the linear model, non-parametric
tests are usually applied (Wang and Riffel, 2011).

Generalised linear models (GLM) provide a method to analyse counts or proportions
from counts in a statistically sound way (Nelder and Wedderburn, 1972). GLMs can
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handle various types of data distributions, e.g., Poisson or negative binomial (for count
data) or binomial (for proportions); the normal distribution being a special case of
GLMs. Despite GLMs being available for more than 40 years, ecotoxicologists do not
regularly make use of them. Recent studies concluded that the linear model should not
be applied on transformed data and GLMs be used as they have better statistical proper-
ties (O’Hara and Kotze 2010; Warton 2005 (counts), Warton and Hui 2011 (proportions
from counts)).

Ecotoxicological experiments often involve small sample sizes due to practical con-
straints. For example, extremely low samples sizes (n < 5) are common in many meso-
cosm studies (Sanderson, 2002; Szöcs et al., 2015). Small sample sizes lead to low
power in statistical hypothesis testing, on which many ecotoxiological approaches (e.g.
risk assessment for pesticides) rely. Such an endpoint are L/NOEC values (Lowest /
No observed effect concentration). Although their use has been heavily criticized in the
past (Laskowski, 1995), they are the predominant endpoint in mesocosm experiments
(Brock et al., 2015; EFSA PPR, 2013).

We explore how GLMs may enhance, when appropriately used, inference in ecotox-
icological studies and compared three types of statistical methods (linear model on
transformed data, GLM, non-parametric tests). We first illustrate differences between
statistical methods using a data set from a mesocosm study. Then we further elaborate
differences in detecting a general treatment effect and determining the LOEC using
simulations of two common data types in ecotoxicology: counts and proportions from
counts.

methods

Models for count data

Linear model for transformed data

To meet the assumptions of the standard linear model, count data usually needs to be
transformed. We followed the recommendations of van den Brink et al. (2000) and used
a log(Ay + 1) transformation (eqn. 2.1):

Ynew i = log(AYi + 1) (2.1)

, where Yi is the measured and Ynew i the transformed abundance of the ith observa-
tion. The factor A was chosen in such way that AY equals 2 for the lowest non-zero
abundance value (Y).

Then we fitted the linear model to the transformed abundances (hereafter LM):
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Ynew i ∼ N(µi, σ2)

E(Ynew i) = µi and var(Ynew i) = σ2 (2.2)

µi = β× Xi

This model assumes a normal distribution of the transformed abundances. The ex-
pected value for each observation i is given by its mean (µi) and the variance (σ2) is
constant between treatments. We allow this mean to vary between treatments (Xi codes
the treatments) and β are the estimated coefficients related to these changes in trans-
formed abundances between treatments (eqn. 2.2).

Generalised Linear Models

GLMs extend the linear model to variables that are not normally distributed. Instead of
transforming the response variable, the counts could be directly modeled by a Poisson
GLM (GLMp):

Yi ∼ P(µi)

E(Yi) = var(Yi) = µi (2.3)

log(µi) = β× Xi

This model assumes Poisson distributed abundances with mean µi ≥ 0. The expected
value for each observation i is given by its mean. Moreover, this model assumes that
mean and variance are equal. We are modeling the mean as a function of treatment
membership (Xi). However, to avoid negative values of the mean this is done on a log
scale. Therefore, β also describes the differences between treatments on a log scale (eqn.
2.3).

The assumption of equal mean and variance is rarely met with ecological data, which
is typically characterized by greater variance than the mean (overdispersion). To over-
come this problem a quasi-Poisson model (GLMqp) could be used, which models the
variance as a linear function of the mean (eqn. 2.4):

var(Yi) = φµi (2.4)

Here, φ is used to account for additional variation and is known as overdispersion
parameter. The quasi-Poisson model is a post hoc method, meaning that first a Poisson
model is estimated (eqn. 2.3) and than the standard errors are scaled by the degree of
overdispersion (Hilbe, 2014).
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Another possibility to deal with overdispersion is to model abundances by a negative
binomial distribution (GLMnb, eqn. 2.5):

Yi ∼ NB(µi, κ)

E(Yi) = µi and var(Yi) = µi + µ2
i /κ (2.5)

log(µi) = β× Xi

This models assumes that abundances are negative binomially distributed, with a
mean of µi ≥ 0 and a variance µi + µ2

i /κ. Similar to the Poisson model we use a log
link between mean and treatments. Note, that the quasi-Poisson model assumes a linear
mean-variance relationship (eqn. 2.4), whereas the negative binomial model assumes a
quadratic relationship (eqn. 2.5).

The above described models are most commonly used in ecology (Ver Hoef and
Boveng, 2007), although other distributions for count data are possible, like the negative
binomial model with a linear mean-variance relationship (also known as NB1) or the
poisson inverse gaussian model (Hilbe, 2014).

Models for binomial data

A binomial variable counts how often an event x occurs in a fixed number of indepen-
dent trials N (e.g. "5 out of 10 fish survived"), with an equal probability of occurrence π

between trials. The number of times an event occurs can also be calculated as propor-
tion x/N.

Linear model for transformed data

To accommodate the assumptions for the standard linear model with such proportions,
a special arcsine square root transformation (eqn. 2.6) is suggested (EPA, 2002; New-
man, 2012):

Ynew i =


arcsin(1)− arcsin(

√
1

4n ) , if Yi = 1

arcsin(
√

1
4n ) , if Yi = 0

arcsin(
√

Yi) , otherwise

(2.6)

, where Yi are the untransformed proportions, Ynew i are the transformed proportions,
and n is the total number of exposed animals per treatment. The transformed propor-
tions are then analysed using the standard linear model (LM, eqn. 2.2). Note, that the
coefficients of the linear model are not directly interpretable due to transformation.
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Generalised Linear Models

A more natural way to model such data is the binomial distribution with parameters N
and π (GLMbin):

Yi ∼ Bin(N, πi)

E(Yi) = πi × N and var(Yi) = πi(1− πi)/N (2.7)

logit (πi) = β× Xi

This model assumes that the number of occurrences (Yi) are binomially distributed,
where N = number of trials (e.g. exposed animals) and πi is the probability of occur-
rences (fish survived), which together give the expected number of occurrences. The
variance of the binomial distribution is a quadratic function of the mean. We are mod-
eling the probability of occurrence as function of treatment membership (Xi) and to
ensure that 0 < πi < 1 we do this on a logit scale (eqn. 2.7). The estimated coefficients
(β) of this model are directly interpretable as changes in log odds between treatments.

Non-independent trials (e.g. fish are grouped in aquaria) may lead to overdispersion
(Williams, 1982). Methods to deal with overdispersed binomial data are for example
quasi methods (see above) or Generalized Linear Mixed models (GLMM). However,
these are not further investigated in this paper (see Warton and Hui (2011) for a com-
parison).

Statistical Inference

After model fitting the next step is statistical inference. Ecotoxicologists are generally
interested in two hypotheses: (i) is there any treatment related effect? and (ii) which
treatments show a treatment effect (to determine the LOEC)?

Following general recommendations (Bolker et al., 2009; Faraway, 2006), we used F-
tests (LM and GLMqp) and Likelihood-Ratio (LR) tests (GLMp, GLMnb and GLMbin) to
test the first hypothesis. However, it is well known that the LR test is unreliable with
small sample sizes (Wilks, 1938). Therefore, we additionally explored the parametric
bootstrap (Faraway, 2006) to assess the significance of the LR. Bootstrapping is compu-
tationally very intensive and for this reason we applied it only for the LR test of the
negative binomial models (using 500 bootstrap samples, denoted as GLMnpb).

To assess the LOEC we used Dunnett contrasts (Dunnett, 1955) with one-sided Wald t
tests (normal and quasi-Poisson models) and one-sided Wald Z tests (Poisson, negative
binomial and binomial models). Beside these parametric methods we also applied
two, in ecotoxicology commonly used, non-parametric methods: The Kruskal-Wallis
test (KW) to test for a general treatment effect and a pairwise Wilcoxon test (WT) to
determine the LOEC. We adjusted for multiple testing using the method of Holm (1979).
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Figure 2.1.: Data from Brock et al. (2015) (dots). Predicted values (triangles) and 95% Wald
Z or t confidence intervals from the fitted models (vertical lines) are given beside.
Horizontal bars above indicate treatments statistically significant different from the
control group (Dunnett contrasts). The data showed considerable overdispersion
(κ = 3.91, φ = 22.41) and therefore, the Poisson model underestimates the width
of confidence intervals.

Case study

Brock et al. (2015) presents a typical example of data from mesocosm studies, which we
use to demonstrate differences between methods. The data are mayfly larvae counts on
artificial substrate samplers at one sampling date. A total of 18 mesocosms have been
sampled from 6 treatments (Control (n = 4), 0.1, 0.3, 1, 3 mg/L (n = 3) and 10 mg/L (n
= 2)) (Figure 2.1).

Simulations

Count data

To further scrutinise the differences between methods we simulated data sets with
known properties. We simulated count data that mimics the data of the case study
with five treatments (T1 - T5) and one control group (C). Counts were drawn from a
negative binomial distribution with overdispersion at all treatments (κ = 4, eqn. 2.5).
We simulated data sets with different number of replicates (N = {3, 6, 9}) and dif-
ferent abundances in control treatments (µC = {2, 4, 8, 16, 32, 64, 128}). For Type I
error estimation mean abundance was equal between treatments. For power estima-
tion, mean abundance in treatments T2 - T5 was reduced to half of control and T1
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(µT2
= ... = µT5

= 0.5 µC = 0.5 µT1
), resulting in a theoretical LOEC at T2. We

generated 1000 data sets for each combination of N and µC and analysed these using
the models outlined in section 2.3.1.

Binomial data

We simulated data from a commonly used design as described in Weber et al. (1989),
with 5 treated (T1 - T5) and one control group (C). Proportions were drawn from a
Bin(10, π) distribution, with varying probability of survival (π = {0.60, 0.65, 0.70, 0.75,
0.80, 0.85, 0.90, 0.95}) and varying number of replicates (N = {3, 6, 9}). For Type I error
estimation, π was equal between treatments. For power estimation π was fixed at 0.95

in C and T1 and varied only in treatments T2 - T5. For each combination we simulated
1000 data sets and analysed these using the models outlined in section 2.3.2.

Data Analysis

We analysed the case study and the simulated data using the outlined methods. We
compared the methods and models in terms of Type I error (detection of an effect when
there is none) and power (ability to detect an effect when it is present) at a significance
level of α = 0.05.

All simulations were done in R (Version 3.1.2) (R Core Team, 2014) on an Amazon
EC2 virtual Linux server (64bit, 15GB RAM, 8 cores, 2.8 GHz). Source code to reproduce
the simulations and paper is available online at https://github.com/EDiLD/usetheglm.
Moreover, Supplement A.2 provides worked examples of the data of Brock et al. (2015)
and Weber et al. (1989).

results

Case study

The data set showed considerably higher variance then expected by the Poisson model
(φ = 22.41 (eqn. 2.4), κ = 3.91 (eqn. 2.5)). Therefore, the Poisson model did not fit to
this data and led to underestimated standard errors and confidence intervals, as well as
overestimated statistical significance (Figure 2.1). In this case, inferences on the Poisson
model are not valid and we do not further discuss its results. The normal (F = 2.57, p
= 0.084) and quasi-Poisson model (F = 2.90, p = 0.061), as well as the Kruskal test (p =
0.145) did not show a statistically significant treatment effects. By contrast, the LR test
and parametric bootstrap of the negative binomial model indicated a treatment-related
effect (LR = 13.99, p = 0.016, bootstrap: p = 0.042).

All methods predicted similar values, except the normal model predicting always
lower abundances (Figure 2.1). 95% confidence intervals (CI) were most narrow for the
negative binomial model and widest for the quasi-Poisson model - especially at lower

https://github.com/EDiLD/usetheglm
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estimated abundances. Consequently, the LOECs differed (Normal and quasi-Poisson:
3 mg/L, negative binomial: 0.3 mg/L). The pairwise Wilcoxon test did not detect any
treatment different from control.

Simulations

Count data

For detecting a general treatment effect, GLMnb and GLMp showed inflated Type I error
rates, whereas KW was conservative at low sample sizes. However, using the paramet-
ric bootstrap for the negative binomial model (GLMnpb), as well as LM and GLMqp

resulted in appropriate Type I error rates. For detecting a treatment effect,GLMqp had
the highest power, followed by GLMnpb, LM and KW, the latter having least power (Fig-
ure 2.2). For our simulation design (reduction in abundance by 50%) a sample size per
treatment of n = 9 was needed to achieve a power greater than 80%. At small sample
sizes (n = 3, 6) and low abundances (µC = 2, 4) many of the negative binomial models
(GLMnb and GLMnpb) did not converge to a solution (convergence rate <85% of the
simulations, Supplement A.1).

For LOEC determination GLMnb and GLMp showed an increased Type I error and all
other methods were slightly conservative. The inferences on LOEC generally showed
less power. LM showed a mean reduction of 20.7% and GLMqp of 24.3 %. Power to
detect the LOEC was highest for GLMqp. LM and WT showed less power, with WT
having no power to detect the LOEC at low sample sizes (Figure 2.3).

Binomial data

GLMbin showed slightly increased Type I error rates at low sample sizes and small effect
sizes. KW was more conservative than LM and GLMbin. In addition, GLMbin exhibited
the greatest power for testing the treatment effect. This was especially apparent at low
sample sizes (n = 3), with up to 27% higher power compared to LM. However, the
differences between methods quickly vanished with increasing samples sizes (Figure
2.4).

For inference on LOEC we found that all methods were slightly conservative. WT
was generally more conservative and GLMbin especially at low effect sizes (pE > 0.7).
Inference on LOEC was not as powerful as inference on the general treatment effect.
Contrary to the general treatment effect, LM showed the higher power than GLMbin at
small sample sizes (n = 3, 6). WT had no power for n = 3 and showed less power in the
other simulation runs (Figure 2.5).
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Figure 2.2.: Count data simulations: Type I error (top) and Power (bottom) for the test of a treatment effect. Type I errors are displayed on a logarithmic
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discussion

Case study

The outlined case study demonstrates that the choice of the statistical model and proce-
dure can have substantial impact on ecotoxicological inferences and endpoints like the
LOEC. Therefore, ecotoxicologists should not base their inferences solely on statistical
significance tests, but also on model estimates, their uncertainty and importance (Gel-
man and Stern, 2006). O’Hara and Kotze (2010) showed that the linear model on log
transformed data gave unreliable and biased estimates, whereas GLMs performed well
with little bias. Bias occurs also when back-transforming fitted means to the original
scale, which explains the lower predicted means by LM in Figure 2.1 (Rothery, 1988)
and should be corrected for (Newman, 1993). When applied to non-transformed data,
the linear model would predict identical treatment means as GLMs, because for a cate-
gorical predictor the predicted means of the LM and GLM are identical. When applied
to non-transformed data, the linear model would result in identical predicted treat-
ment means as GLMs. However, predictions would differ with continuous predictors
and GLMs are particularly advantageous in this case.

This is further highlighted by the fact that for the same model (linear model applied
to transformed data), Brock et al. (2015) reported a 10-fold lower LOEC (0.3 mg/L) then
found in our study (3 mg/L, Figure 2.1). The reasons are manifold: (i) Brock et al. (2015)
used a log(2 y + 1) transformation, whereas we used a log(A y + 1) transformation,
where A = 2 / 11 = 0.182 (van den Brink et al., 2000). (ii) We adjusted for multiple
testing using Holm’s (1979) method. (iii) Brock et al. (2015) used a one-sided Williams
test (Williams, 1972), whereas we used one-sided comparisons to the control (Dunnett
contrasts). The choice of transformation contributed only little to the differences. If
the assumptions of Williams test are met it has strictly greater power than Dunnett
contrasts (Jaki and Hothorn, 2013), which explains the differences in the case study.
A generalisation of the Williams test as multiple contrast test (MCT) can be used in a
GLM framework (Hothorn et al., 2008). Nevertheless, such a Williams-type MCT is not
a panacea (Hothorn, 2014) and our simulated semi-concave dose-response relationship
is a situation where it fails and likely underestimates the LOEC (Kuiper et al., 2014).

Overdispersion is common for ecological datasets (Warton, 2005) and the case study
illustrates the potential effects of overdispersion that is not accounted for: standard
errors will be underestimated and significance overestimated (Figures 2.1). This is also
shown by our simulations (Figures 2.2, 2.3) where GLMp showed increased Type I error
rates because of overdispersed simulated data. However, in factorial designs the mean-
variance relationship can be easily
checked by plotting mean versus variance of the treatment groups or by inspecting
residual versus fitted values plots (see Supplement A.2). Our simulations revealed that
the LR test for GLMnb is invalid because of increased Type I errors. This explains why
it had the lowest p-value in the case study.

In the introduction we pointed out that there is little advice how to choose between
the plenty of possible transformations - how do GLMs simplify this problem? The dis-
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tribution modeled can be chosen using knowledge about the data (e.g. bounds, integer
or continuous data etc). Knowing what type of data is modeled (see Methods section),
the model selection process can be completely guided by the data and diagnostic tools.
Therefore, choosing an appropriate model is easier than choosing between possible
transformations.

Simulations

Our simulations showed that GLMs have generally greater power than the linear model
applied to transformed data. However, the simulations also suggest that the power at
the population level in common mesocosm experiments is low. For common samples
sizes (n ≤ 4 ) and a reduction in abundance of 50% we found a low power to detect
any treatment-related effect (<50% for methods with appropriate Type I error, Figure
2.2). Statistical power to detect the correct LOEC was even lower (less than 25%), which
can be attributed to multiple testing. The low power of all methods to detect significant
treatment levels such as the LOEC or NOEC suggests that these endpoints from eco-
toxicological studies should be interpreted with caution and underpins their criticism
(Landis and Chapman, 2011; Laskowski, 1995).

Mesocosm studies allow also for inferences on the community level. For community
analyses GLM for multivariate data (Warton et al., 2012) have been proposed as alter-
native to Principal Response Curves (PRC) and yielded similar inferences, but better
indication of responsive taxa (Szöcs et al., 2015). However, ter Braak and Šmilauer
(2015) argue to use data transformations with community data because of their sim-
plicity and robustness. Although our simulations covered only simple experimental
designs at the population level, findings may also extend to more complex situations.
Nested or repeated designs with non-normal data could be analysed using Generalised
Linear Mixed Models (GLMM) and may have advantages with respect to power (Stroup,
2015).

To counteract the problems with low power at the population level Brock et al. (2015)
proposed to take the Minimum Detectable Difference (MDD), a method to assess statis-
tical power a posteriori, for inference into account. However, a priori power analyses can
be performed easily using simulations, even for complex experimental designs (Johnson
et al., 2015), and might help to design, interpret and evaluate ecotoxicological studies.
Moreover, Brock et al. (2015) proposed that statistical power of mesocosm experiments
can be increased by reducing sampling variability through improved sampling tech-
niques and quantification methods, though they also caution against depleting popula-
tions through more exhaustive sampling. As we showed, using GLMs can enhance the
power at no extra costs.

Wang and Riffel (2011) advocated that in the typical case of small sample sizes (n
<20) and non-normal data, non-parametric tests perform better than parametric tests
assuming normality. In contrast, our results showed that the often applied KW and
WT have less power compared to LM. Moreover, GLMs always performed better than
non-parametric tests. Though more powerful non-parametric tests may be available
(Konietschke et al., 2012), these are focused on hypothesis testing and do not provide
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estimation of effect sizes. Additionally to testing, GLMs allow the estimation and inter-
pretation of effects that might not be statistically significant, but ecologically relevant.
Therefore, we advise using GLMs instead of non-parametric tests for non-normal data.

We found an increased Type-I error for GLMnb at low sample sizes. However, it is
well known that the LR statistic is not reliable at small sample sizes (Bolker et al., 2009;
Wilks, 1938). Parametric bootstrap (GLMnpb) is a valuable alternative in such situations
and maintains appropriate levels (Figure 2.2). Moreover, at small sample sizes and low
abundances a significant amount of negative binomial models did not converge. We
used an iterative algorithm to fit these models (Venables and Ripley, 2002) and other
methods assessing the likelihood directly may perform better.

GLMqp showed higher statistical power than GLMnpb (Figure 2.2, bottom). This could
be explained by the simpler mean-variance relationship of GLMqp (eqn. 2.4 and 2.5),
because at small samples sizes, low abundances or few treatment groups it is difficult
to determine the mean-variance relationship. Our results are similar to Ives (2015), who
compared GLMs to LM applied to transformed data for testing regression coefficients.
Because of inflated Type I errors for GLMnb and, in the case of multiple explanatory
variables in the model, inflated Type I errors of GLMqp he considered the LM on trans-
formed data as most robust and recommended its preferred use. However, we showed
that the parametric bootstrap LR test of GLMnb provides appropriate Type I errors and
bootstrapping might be an alternative for testing coefficients. Nevertheless, bootstrap-
ping is computationally very intensive and we found no gains in power compared to
GLMqp (Figure 2.2). Given the higher power, appropriate Type I errors, stable conver-
gence and reduced bias (O’Hara and Kotze, 2010) we suggest that count data in one
factorial experiments should be analysed using the quasi-Poisson model.

Binomial data are often collected in lab trials, where increasing the sample size may
be relatively easy to accomplish. We found notable differences in power to detect a
treatment effect for all simulated sample sizes. Similarly, Warton and Hui (2011) also
found that GLMs have higher power than arcsine transformed linear models. Though
we did not simulate overdispersed binomial data, this should be checked and accounted
for. In such situations a GLMM may offer an appealing alternative (Warton and Hui,
2011). At low effect sizes GLMbin became conservative with increasing πC, although
this effect lessened as sample size increased (Figure 2.5). This is because π approaches
its boundary and is also known as the Hauck-Donner effect (Hauck and Donner, 1977). A
LR-Test or parametric bootstrap may provide an alternative in such situations (Bolker
et al., 2009). This can also explain why LM performed better for deriving LOECs at low
sample sizes.

GLMs can be fitted with several statistical software packages and many textbooks
are available to introduce ecotoxicologists to these models (e.g. Zuur 2013 or Quinn
and Keough 2009). We recommend that ecotoxicologists should change their models
instead of their data. GLMs should become a standard method in ecotoxicology and
incorporated into respective guidelines.
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abstract

Small streams are important refugia for biodiversity. In agricultural areas they may be
at high risk from pesticide pollution. However, most related studies have been limited
to a few streams on the regional level, hampering extrapolation to larger scales. We
used data from German governmental water quality monitoring to quantify the drivers
of pesticide risk and to assess pesticide risk in small streams on a large scale. The
data set comprised of 1,766,104 measurements of 478 pesticides (including metabolites)
related to 24,743 samples from 2,301 sampling sites. We investigated the influence of
agricultural land use, catchment size, as well as precipitation and seasonal dynamics
on pesticide risk using new statistical modelling techniques that explicitly consider the
limit of quantification. Agricultural land use lead to a 3.7-fold increase in exceedance of
risk thresholds when the proportion of agriculture in a catchment exceeded 28 percent.
Precipitation increased pesticide risk by 36% and risk was the highest during summer
months. Risk thresholds were exceeded in 26% of streams, with the highest risk related
to neonicotinoid insecticides. We conclude that pesticides from agricultural land use
are a major threat to small streams and their biodiversity and that a realistic pesticide
sampling would be driven by precipitation events.

introduction

More than 50% of the total land area in Germany is used by agriculture (Statistisches
Bundesamt, 2014). In the year 2014 more than 45,000 tonnes of 776 authorised plant
protection products were sold for application on this area (Bundesamt für Verbraucher-
schutz und Lebensmittelsicherheit (BVL), 2015). The applied pesticides may enter sur-
face waters via spray-drift, edge-of-field run-off or drainage (Liess et al., 1999; Schulz,
2001; Stehle et al., 2013). Once entered the surface waters they may have adverse effects
on biota and ecosystem functioning (Schäfer et al., 2012). Although it is known that
pesticide pollution and its ecological effects increase with the fraction of agricultural
land use in the catchment (Schulz, 2004), the shape of the relationship is unknown and
studies on potential thresholds are lacking.

Two recent studies indicate that pesticides might threaten freshwater biodiversity
in the European union. Malaj et al. (2014) analysed data supplied to the European
Union (EU) in the context of the Water Framework Directive (WFD) and showed that
almost half of European water bodies are at risk from pesticides. Stehle and Schulz
(2015b) compiled 1,566 measured concentrations of 23 insecticides in the EU from sci-
entific publications. They found that many of these measurements exceed regulatory
acceptable concentrations (RAC). However, these studies reflect only a small amount
of potentially available data (173 sites in predominantly mid-sized and large rivers in
Malaj et al. (2014) and 138 measurements in Stehle and Schulz (2015b)), and it is un-
clear how representative they are for Germany. Much more comprehensive data on
thousands of sites are available from national monitoring programs that are setup for
the surveillance of water quality, which is done independently by the federal states in
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Germany in compliance with the WFD (Quevauviller et al., 2008) and additional state-
specific needs. Despite that these data are providing the opportunity to study pesticide
risks and other research questions on a large scale with high spatial density, to date
these data have not been compiled and related analyses are lacking.

Small streams comprise a major fraction of streams (Nadeau and Rains, 2007), ac-
commodate a higher proportion of biodiversity compared to larger freshwater systems
(Biggs et al., 2014; Davies et al., 2008) and play an important role in the recoloniza-
tion of disturbed downstream reaches (Liess and von der Ohe, 2005; Orlinskiy et al.,
2015). Nevertheless, a clear definition of small streams in terms of catchment or stream
size is currently lacking (Lorenz et al., 2016). For example, the WFD defines small
streams with a catchment size between 10 and 100 km2, without further categorisa-
tion of streams <10km2 and Lorenz et al. (2016) defines small streams with catchment
size <10km2. Moreover, small streams might particularly be at high risk of pesticide
contamination in case of adjacent agricultural areas given their low dilution potential
(Liess et al., 1999; Schulz, 2004). Indeed, meta-analyses using data from studies with
a few sites reported higher pesticide pollution in smaller streams compared to bigger
streams (Schulz, 2004; Stehle and Schulz, 2015b). Despite their ecological relevance and
potentially higher pesticide exposure, a recent analysis of pesticide studies showed that
a disproportionally small fraction of studies was conducted in small water bodies, and
these were largely limited to a few sites (Lorenz et al., 2016). Consequently, knowl-
edge on the pesticide pollution of small streams on larger scales is scant. In European
law, the Directive 2009/128/EC (European Union, 2009) places an obligation on the EU
Member States to adopt National Action Plans (NAP) for the Sustainable Use of Plant
Protection Products and the German NAP also addresses the knowledge gap concern-
ing pesticide impact on small streams, specifically including those with catchment size
<10km2.

In this study, we compiled and analysed large-scale chemical monitoring data from
small streams in Germany. First, we analysed the shape of the relationship between
pesticide risk, agricultural land use, and catchment size and examined whether related
thresholds for pesticide risks can be derived. Second, we investigated the influence of
precipitation and seasonal dynamics on pesticide detections, given that precipitation
proved an important driver of pesticide exposure in several small-scale studies (Schulz,
2004; Wittmer et al., 2010), but it is unknown whether a precipitation signal prevails on
large scales. Finally, we quantified the current risks from pesticides in small streams in
Germany and the compounds accountable for the risk.

methods

Data compilation

We queried pesticide monitoring data from sampling sites that can be classified as
small streams (catchment sizes < 100 km2 according to the WFD) from all 13 non-city
federal states of Germany (see Supplemental Table S1 for the abbreviations of federal
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state names) for 2005 to 2015. We homogenised and unified all data provided by the
federal states into a database and implemented a robust data-cleaning workflow (see
Supplemental Figure S1 for details) (Poisot, 2015).

We identified precipitation at sampling sites by a spatio-temporal intersection of sam-
pling events with gridded daily precipitation data (60×30 arcsec resolution) available
from the German Meteorological Service (DWD). This data spatially interpolates daily
precipitation values from local weather stations (Rauthe et al., 2013). We performed the
intersection for the actual sampling date and the day before and extracted precipitation
during and up to 48 hours before sampling.

Characterization of catchments

We compiled a total of 2,369 sampling sites in small streams with pesticide measure-
ments. Alongside, we also queried catchment sizes and agricultural land use within
the catchment for the sampling sites from the federal states. Catchment size was pro-
vided for 59% of sites. Additionally, we delineated upstream catchments for each of the
sampling sites using (i) a digital elevation model (DEM) (EEA, 2013) and the multiple
flow direction algorithm (Holmgren, 1994) as implemented in GRASS GIS 7 (Neteler et
al., 2012) and (ii) from drainage basins provided by the Federal Institute of Hydrology
(BfG). Delineated catchments were visually checked for accuracy by comparison with
state stream networks and derived information amalgamated with existing data. Thus,
catchment size information was available for 99% of all sites (59% from authorities, 24%
from DEM and 16% from drainage basins).

For each derived catchment (either from DEM or drainage basins) we calculated the
% agricultural land-use within the catchment based on the Authoritative Topographic-
Cartographic Information System (ATKIS) of the land survey authorities (AdV, 2016).
Thus, agricultural land use information was available for 98% of all sites (24% from
authorities, 52% from DEM and 22% from drainage basins). 68 sites (3%) that lacked
catchment size or land use information were omitted from the analysis, resulting in
2301 sites used in the analyses outlined below.

Characterization of pesticide pollution

We characterised pesticide pollution using regulatory acceptable concentrations (RAC)
(Brock et al., 2010). RACs are derived during pesticide authorisation as part of the
ecological risk assessment. No unacceptable ecological effects are expected if the envi-
ronmental concentration remains below this concentration. Stehle and Schulz (2015b)
showed that RAC exceedances reflect a decrease in biodiversity and from this perspec-
tive are ecologically relevant indicators. The German Environment Agency (UBA) pro-
vided RACs for 107 compounds, including those with the highest detection rates (Sup-
plemental Table S2). Based on theses RACs, we calculated Risk Quotients (RQ):

RQi =
Ci

RACi
(3.1)
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where Ci is the concentration of a compound i in a sample and RACi the respective
RAC.

Statistical analyses

All data-processing and analyses were performed using R (R Core Team, 2016). To
display differences in the spectra of analysed compounds between federal states we
used Multidimensional Scaling (MDS) based on Jaccard dissimilarity in conjunction
with complete linkage hierarchical clustering using the vegan package (Oksanen et al.,
2016). We determined the optimum number of clusters using the average silhouette
width (Rousseeuw, 1987).

We expected non-linear responses to agriculture and catchment size and therefore,
used generalised additive models (GAM) to establish relationships (Fewster et al., 2000).
We modelled the number of RAC exceedances (RQ >1) at a site as:

No(RQ > 1)i ∼ NB(µi, κ)

log(µi) = β0 + f1(agrii) + f2(sizei) + log(ni)
(3.2)

where No(RQ > 1)i is the observed number of RAC exceedances at site i. We mod-
elled No(RQ > 1)i as resulting from a negative binomial distribution (NB) with mean

µi and a quadratic mean-variance-relationship (Var(No(RQ > 1)i) = µi +
µ2

i
κ ). The

proportion of agriculture within the catchment (agrii) and the catchment size of the site
(sizei) were used as predictors of the number of RAC exceedances. β0 is the intercept
and f1 and f2 are smoothing functions using penalized cubic regression splines (Wood,
2006). The degree of smoothness was estimated using restricted maximum likelihood
(REML) during the model fitting process (Wood, 2011). The number of measurements
per site (ni) was used as an offset to account for differences in sampling efforts (sam-
pling interval and analysed compound spectrum) at a site and is equivalent to mod-
elling the rate of exceedances. We used point-wise 95% Confidence Intervals (CI) of the
first derivative of the fitted smooth to identify regions of statistically significant changes.
GAMs were fitted using the mgcv package (Wood, 2011).

To assess the influence of precipitation and seasonality, we modelled the RQ of in-
dividual compounds as the response variable. RQ and concentrations show a skewed
distribution with an excess of zeros (no pesticides detected and quantified). Therefore,
we modelled these as two processes (one generating values below the limit of quantifi-
cation (LOQ) and one generating values above LOQ) using a Zero-Adjusted Gamma
(ZAGA) distribution (Rigby and Stasinopoulos, 2005; Stasinopoulos et al., 2016) (Equa-
tion 3.3). These two processes can be interpreted as changes in the mean value of RQ
(change in µ) and changes in the probability of exceeding LOQ and showing any risk
(change in ν).
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RQi ∼ ZAGA(µi, σ, νi) =

{
(1− νi) if y < LOQ

νi × fGamma(µi, σ) if y ≥ LOQ
(3.3)

νi denotes the probability of a measurement i being above LOQ and fGamma denotes
the gamma function and is used for values equal to or greater LOQ, with µ being
the mean and σ the standard deviation of RQ. We used the log(x + 0.05) transformed
precipitation at sampling date (log prec0) and the day before (log prec−1), as well as
quarters of the year (Q1− Q4) as linear predictors for µ and ν. We used appropriate
link functions for µ and ν and assumed σ to be constant. Equation 3.4 summarises the
deterministic part of the model for a measurement i.

log(µi) = log prec0i + log prec−1i + Q1i + Q2i + Q3i + Q4i

logit(νi) = log prec0i + log prec−1i + Q1i + Q2i + Q3i + Q4i
(3.4)

To account for temporal autocorrelation and differences between federal states we
used site nested within state as random intercepts. We implemented this model using
the gamlss package (Stasinopoulos and Rigby, 2007).

We fitted this model separately to each compound with a RAC, measured in at least
1000 samples and with more than 5% of values above LOQ (n = 22 compounds, see Sup-
plemental Table S3 for a list of compounds). To summarise the coefficients across the
22 modelled compounds we used a random effect meta-analysis for each model coeffi-
cient separately (Harrison, 2011), resulting in an averaged effect of the 22 compounds.
The results of individual compounds are provided in the Supplemental Table S4 and
Figure S7. The meta-analysis was performed using the metafor package (Viechtbauer,
2010).

results

Overview on the compiled data

The compiled dataset used for analysis comprised 1,766,104 pesticide measurements in
24,743 samples from 2,301 sampling sites in small streams. These samples were all taken
via grab sampling. We found large differences between federal states in the number of
sampling sites and their spatial distribution (Figure 3.1 and Supplemental Table S1).
The number of small stream sampling sites per state ranged from 1 (Lower Saxonia, NI)
to 1139 (North Rhine-Westphalia, NW). No data were available from Brandenburg.

In total 478 different compounds used as pesticides and their metabolites were mea-
sured at least once (Supplemental Table S2). Most of the compounds were herbicides
(179), followed by insecticides (117) and fungicides (109). Most samples were taken
in the months April till October, while fewer samples were taken during winter (see
Supplemental Figure S2). We found substantial differences in the spectra of analysed
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Figure 3.1.: Spatial distribution of the 2,301 small stream sampling sites. Colour codes different
federal states (see Supplemental Table S1 for abbreviations).

pesticides between federal states (Figure 3.2). The number of different pesticides per
state ranged from 57 (SL) to 236 (RP) (Supplemental Table S1). Hierarchical clustering
revealed that RP and NI analysed distinct compound spectra compared to the cluster
of other states. However, it has to be noted that both states surveyed these distinct
spectra in special monitoring programs from only a few sites. Although there was high
variability within the remaining cluster, this could not be further split (Figure 3.2, also
Supplemental Figures S3 and S4). 4% (=71,113) of all measurements were concentra-
tions above LOQ. The distribution of sampling sites across catchment sizes indicated a
disproportionally low number of sites with catchments below 10 km2, with most sam-
pling sites having catchment sizes between 10 and 25 km2 (Figure 3.3).
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Figure 3.2.: Compound spectra of the different federal states. Left: Barcode plot - each vertical line is an analysed compound. Right: MDS ordination.
Colors according to two clusters determined by hierarchical clustering (see Supplemental Figure S3 and S4).
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Figure 3.3.: Distribution of catchment area and agriculture within the catchment area across the
sampling sites. Colour codes the 2-dimensional density of points.

Influence of agricultural land use and catchment size

The number of RAC exceedances increased strongly and statistically significant up to
28% agriculture within the catchment. The mean number of RAC exceedances per
site increased 3.7-fold from 0.10 (no agriculture) to 0.39 (28% agriculture within the
catchment). Above this threshold the exceedances levelled. Above 75% agriculture
within the catchment the number of exceedances further increased, but the increase
was not statistically significant (Figure 3.4, left). Catchment size had no statistically
significant effect on the number of RAC exceedances (Figure 3.4, right). We also could
not detect a statistically significant interaction between catchment size and agriculture.
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Figure 3.4.: Effect of percent agriculture within the catchment (left) and catchment size (right)
on the number of RAC exceedances. Red line marks statistically significant changes.
Dashed lines denote 95% point-wise Confidence Intervals.
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Effect of precipitation on pesticide risk

The spatio-temporal intersection revealed that most samples were taken during periods
of low precipitation. For example, only 5% of the samples were taken at or after days
with rainfall events greater than 10mm / day that may lead to run-off (Supplemental
Figure S6).

prec0 and prec−1 increased the probability of exceeding LOQ and RQ. In Q2 an in-
crease from 0.1 mm to 10 mm of precipitation before sampling (prec−1) lead on average
to a 36% higher mean RQ of 0.05. The probability to exceed LOQ increases 1.6-fold from
8.7% to 13.5% (Figure 3.5, top). Effects differed between individual compounds and are
provided in the Supplemental Table S4. Precipitation before sampling (prec−1) had a
stronger effect than precipitation during sampling (prec0) on the probability of exceed-
ing LOQ. This difference was less pronounced for the mean value of RQ (Figure 3.5,
top).

The first quarter showed the lowest RQ and probability of exceeding LOQ. Both
increased during summer months and decreased towards the end of the year. There
was a 2.5-fold higher probability of exceeding LOQ in Q2 (10.6%) than in Q1 (4.6%).
The differences were less pronounced for the mean value of RQ and with less precision
(Figure 3.5, bottom). Individual compounds showed different temporal patterns (see
Supplemental Table S4).
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Figure 3.5.: Summarised coefficients (and their 95% CI) for precipitation (top row) and quarter
(bottom row) from a meta-analysis of the 22 modelled compounds. Left: coefficients
for mean RQ (µ), right: coefficients for probability of exceeding LOQ (ν). Coefficients
are shown on the link scale (see Eq. 3.4). Single compound coefficients are provided
in Supplemental Table S4 and Figure S7).
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Pesticide risk in small streams

We found RAC exceedances in 25.5% of sampling sites and RQ > 0.1 in 54% of sites. In
23% of sites none of the chemicals, for which RACs were available, were detected (see
also Supplemental Figure S8). Neonicotinoid insecticides and Chlorpyrifos showed the
highest RQ (Figure 3.6). For Thiacloprid and Chlorpyrifos the RAC was equal or less
than LOQ, therefore, all detections have a RQ ≥ 1. The herbicides Nicosulfuron and
Diflufenican, as well as the fungicide Dimoxystrobin also showed high exceedances of
RQ (26.7, 14.1 and 21.1 % of measurements > LOQ), see also Supplemental Table S5).
RAC exceedances were found in 14% of samples with concentrations >LOQ (and 7.3%
of all samples).

The highest RQs were observed for Chlorpyrifos (max(RQ) = 220), Clothianidin
(max(RQ) = 157), Dimoxystrobin(max(RQ) = 117) and Isoproturon (max(RQ) = 80).
Where analysed, metabolites exhibited the highest detection rates (for example, Metaza-
chlor sulfonic acid was detected in 84% of all samples where it was analysed (n = 3038,
see also Supplemental Figure S9). Glyphosate was the compound with the highest de-
tection rates (41%, n = 3557 samples), followed by Boscalid (23%, n = 9886) and Isopro-
turon (22%, n = 19112). However, only the latter showed RAC exceedances (Figure 3.6).
In 45.9% of samples more than one compound was quantified, with a maximum of 54

different compounds in one sample (Supplemental Figure S10).

discussion

Overview on the compiled dataset

The compiled dataset of governmental monitoring data, with a particular focus on small
streams, represents currently the most comprehensive available for Germany. Simi-
lar nationwide datasets have been compiled for the Netherlands (Vijver et al., 2008),
Switzerland (Munz and Leu, 2011) and the United States (Stone et al., 2014). While the
compilations from Europe are of similar quantity and quality to the data compiled and
analysed here, the compilation used in Stone et al. (2014) is much smaller, though these
data may be complemented by more data in future analyses.

A nationwide assessment of pesticide pollution is hampered by inhomogeneous data
across federal states: Beside large differences in the spatial distribution and quantity of
sampling sites (Figure 3.1), the spectrum of analysed compounds (Figure 3.2) and the
quality of chemical analyses differed between states. Despite the outlined differences
between states, all ecoregions occurring in Germany (Abell et al., 2008; Illies, 1978)
were covered by the presented dataset and thus it might nonetheless represent a sample
covering all types of small streams in Germany. For Thiacloprid and Chlorpyrifos the
LOQs were above the RAC, which means that exceedances are likely underestimated.
For these compounds a lowering of LOQ through an improvement of chemical analysis
is essential for reliable assessment. Moreover, a nationwide assessment would benefit
from a harmonised spectrum of analysed compounds between federal states.
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Figure 3.6.: 15 compounds with the highest risk quotients in small streams. Non-detects are not
shown due to the logarithmic axis. Numbers on the right give the percentage of
values >LOQ and the total number of samples were the compound was analysed.

Given their high abundance in the landscape (Nadeau and Rains, 2007) small streams
below 10 km2 are disproportionally less sampled in current monitoring (Figure 3.3),
which may be attributed to the missing categorisation in the WFD. Clearly, there is
currently a lack of knowledge on stressor effects on small streams. We analysed only
data from small streams, however, for lentic small water bodies this lack might be even
greater (Lorenz et al., 2016).
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Influence of agricultural land use and catchment size

We found a strong influence of agriculture on the pollution of streams. Above 25%
agriculture within a catchment, it is likely that a RAC will be exceeded, with a further
increase in entirely agricultural catchments (above 75 % agriculture). To our knowledge,
this is the first study investigating such thresholds of pesticide risk. Previous studies
examined thresholds for the percentage of agricultural land use with respect to the
response of biological communities, integrating different agricultural stressors. Feld
(2013) found change points of biological community metrics at 40% agricultural land
use in lowland streams in Europe. Similarly, Waite (2014) found a threshold for aquatic
diatoms at 40% agricultural land use in wadeable streams in the United States. Our
results coincide with these thresholds and suggest that pesticides might contribute to
the observed biological changes.

We did not find a statistically significant relationship between pesticide pollution
and catchment size. However, previous studies showed that small streams are more
polluted than bigger streams (Knauer, 2016; Schulz, 2004; Stehle and Schulz, 2015b).
This can be explained by the relatively short gradient of catchment sizes in our dataset,
with most of the streams with catchments above 10 km2 and below 100 km2 (Figure 3.3,
top). For example, the gradient of Schulz (2004) covered 6 orders of magnitude.

Effect of precipitation on pesticide risk

Our results revealed that pesticide sampling for chemical monitoring in Germany is
mainly performed when no precipitation occurs. Nevertheless, we found a 36% higher
RQ if samples were taken after rainfall events. Samples taken on the day of a rainfall
event showed less risk than samples taken one day after a rainfall event. This could
be explained by the sampling preceding the rainfall event and the delay between the
start of a rain event and the peak in discharge or runoff. The effects of precipitation
were more pronounced for the probability to exceed LOQ, with smaller effect sizes for
the absolute value of RQ. This may be explained by a higher variability of absolute
concentrations. Overall, our results indicate that current pesticide monitoring relying
on grab sampling, largely disconnected from precipitation events, underestimates pes-
ticide risks. Automatic event-driven samplers (Stehle et al., 2013) and passive samplers
(Fernández et al., 2014; Moschet et al., 2015) may help overcome these shortcomings
and provide a better representation of risks, especially for small water bodies (Lorenz
et al., 2016).

We found the highest the probability of exceeding LOQ during summer (10% for
Q2) and lowest in the first quarter of the year (4%, Figure 3.5, bottom right). This
annual pattern coincides with the main application season for pesticides in Central
Europe. Nevertheless, there are compound-specific differences in the annual pattern,
which explains the wide CI for the absolute RQ (Figure 3.5, bottom left). For exam-
ple, the herbicide Diflufenican showed the highest RQ and the highest probability of
exceeding LOQ during the winter quarters Q1 and Q4 (Supplemental Table S4), which
coincides with the application period it is registered for in Germany (Bundesamt für
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Verbraucherschutz und Lebensmittelsicherheit (BVL), 2016). Our study suggests that
pesticide risks display compound specific spatio-temporal dynamics. Currently, little is
known about these and further research on those might provide useful information for
future ecological risk assessment. For example, the sensitivity of organisms is often life
stage dependent (Hutchinson et al., 1998) and knowledge on temporal dynamics could
inform on concurrent exposure to multiple pesticides, as well as assist to parameterise
toxicokinetic and toxicodynamic models (Ashauer et al., 2016). Moreover, our results
show that analysing absolute concentrations and probabilities of LOQ together might
deliver valuable insights into risk dynamics.

Pesticides in small streams

Our results suggest that small streams are frequently exposed to ecologically relevant
pesticide concentrations. In one-quarter of small streams RACs were exceeded at least
once. Stehle and Schulz (2015b) found the highest percentage of RAC exceedances
for organophosphate insecticides. By contrast, we found that neonicotinoid insecticides
have highest exceedances of RACs, followed by the organophosphate chlorpyrifos. This
difference can be attributed to the low sample size for neonicotinoid insecticides in their
study (n = 33) compared to the dataset presented here (for example 3,540 samples of
Thiacloprid, Figure 3.6). Overall, our results suggest that neonicotinoids may currently
pose a high risk to freshwater ecosystems. Moreover, our results add further evidence
to the growing literature on the risks arising from neonicotinoids for aquatic (Morrissey
et al., 2015) and terrestrial (Pisa et al., 2015) ecosystems.

Compared to Stehle and Schulz (2015b) we found higher rates of RAC exceedances
for insecticides. They found exceedances in 37.1% of insecticide measurements >LOQ
(n = 1352, 23 insecticides), whereas, we found exceedances in 67% of insecticide mea-
surements with RACs >LOQ (n = 1855, 22 insecticides). This could be attributed to
different insecticides considered and different underlying RACs. Our study has only
7 insecticides with RACs in common with the insecticides investigated by Stehle and
Schulz (2015b). Moreover, all RACs were lower in our study (average difference = -
0.71 µg/L, range = [-2.757; -0.005]). Nevertheless, it must be noted that the dataset
compiled here comprised only samples from grab sampling, which may considerably
underestimate pesticide exposure (Stehle et al., 2013; Xing et al., 2013).

By contrast, Knauer (2016) found exceedances from monitoring data mainly for her-
bicides and fungicides and only one insecticide Chlorpyrifos-methyl. Moreover, RAC
exceedances in Switzerland were generally lower and less abundant (for example 6 ex-
ceedances (=0.2%) for Isoproturon with a maximum RQ of 2) compared to our results
for Germany. This might reflect differences in pesticide use between countries, ecore-
gions and RACs used. From the definition of RAC it follows that if the concentration of
a compound exceeds its RAC ecological effects are expected. Indeed, Stehle and Schulz
(2015a) found that the biological diversity of stream invertebrates was significantly re-
duced by 30% at RQ = 1.12 and by 10% at 1/10 of RAC. We found RQ values greater
than 1.12 in 25% of small streams and RQ at 1/10 of RAC in 54% of small streams. Con-
sequently, we conclude that agricultural pesticides are on a large scale a major threat to
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small streams, the biodiversity they host and the services they provide. This threat may
exacerbate because pesticides often occur in mixtures (Schreiner et al., 2016) and may
co-occur with other stressors (Schäfer et al., 2016).

Monitoring data, despite the outlined limitations, provides an opportunity to study
large-scale environmental occurrence patterns of pesticides. Furthermore, such nation-
wide compilations, may not only be used for governmental surveillance, but also to
answer other questions, like validation of exposure modelling (Knäbel et al., 2014), ret-
rospective evaluation of regulatory risk assessment (Knauer, 2016; Stehle and Schulz,
2015b) or occurrences of pesticide mixtures (Schreiner et al., 2016). However, the sam-
pling design needs to account for precipitation events to provide robust data. Our
results suggest that exceedances of RACs are landscape dependent and therefore, pesti-
cide regulation should account for landscape features. Moreover, the high exceedances
of RACs indicate that greater efforts are needed to describe causal links, which may
lead to further developments of the current authorisation procedure.
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abstract

A wide range of chemical information is freely available online, including identifiers,
experimental and predicted chemical properties. However, these data are scattered
over various data sources and not easily accessible to researchers. Manual searching
and downloading of such data is time-consuming and error-prone. We developed the
open-source R package webchem that allows users to automatically query chemical
data from currently 11 web sources. These cover a broad spectrum of information. The
data are automatically imported into an R object and can directly be used in subsequent
analyses. webchem enables easy, structured and reproducible data retrieval and usage
from publicly available web sources. In addition, it facilitates data cleaning, identifica-
tion and reporting of substances. Consequently, it reduces the time researchers need to
spend on chemical data compilation.

introduction

Before each statistical analysis, data cleaning is often required to ensure good data
quality. Data cleaning is the process of detecting errors and inconsistencies in data sets
(Chapman, 2005). In practice, the data cleaning step is often more time consuming than
the subsequent statistical analysis, particularly, when the analysis relies on the joining
of multiple data sources.

When dealing with chemical data sets (e.g. environmental monitoring data, toxico-
logical data), a first step is often to validate the names of chemicals or to link them to
unique codes that simplify subsequent querying and appending of compound-related
physico-chemical or toxicological information. Several web sources provide chemical
names or link them to unique codes (see also section Data sources below). However, man-
ual searching for each compound, often through a graphical web interface, is tedious,
error-prone and not reproducible (Peng, 2009).

To simplify, robustify and automate this task, i.e. to search and retrieve chemical
information from the web, we created the webchem package for the free and open
source R language (R Core Team, 2016; Wehrens, 2011). R is one of the most widely used
software environments for data cleaning, analysing and visualising data, and supports
full reproducibility of each step (Marwick, 2016).

In the following, we describe the basic functionality of the package and demonstrate
with a few use cases how to clean and retrieve new data with webchem.

implementation and design details

The webchem package is written entirely in R and available under a MIT license. The
development repository is hosted on GitHub (2016) and a stable version is released
on the official R repository (CRAN, 2016). webchem is part of the rOpenSci project
(Boettiger et al., 2015), which aims at fully reproducible data analysis.
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webchem follows best practices for scientific software (Poisot, 2015; Wilson et al.,
2014), namely: (i) a public available repository with easy collaboration and an issue
tracker (via GitHub), (ii) a non-restrictive license, version control (git), (iii) an elaborate
test-suite covering more than 90% of the relevant lines of code (currently approximately
1500 lines, using testthat (Wickham, 2011)), (iv) continuous integration (via Travis-CI
(2016) and AppVeyor (2016); testing on Linux & Windows with current and develop-
ment R versions), (v) in-source documentation (using roxygen2 (Wickham et al., 2015))
and (vi) compliance with a style guide (Wickham, 2015a).

webchem builds on top of the following R packages: RCurl (Lang and Team, 2016)
and httr (Wickham, 2016) for data transfer, stringr (Wickham, 2015c) for string handling,
xml2 (Wickham, 2015d) and rvest (Wickham, 2015b) for parsing HTML and XML, json-
lite (Ooms, 2014) for parsing JSON, rcdk (Guha, 2007) for parsing SMILES. For parsing
molfiles we use a lightweight implementation of Grabner et al. (2012).

Some data sources provide application programming interfaces (API). Web APIs de-
fine functions that allow accessing services and data via http and return data in a
specific way. webchem uses the API of a data source provider, where available. For
sources where an API is lacking, data is directly searched and extracted from the web
pages, analogous to manual interaction with a website.

Only few design decisions have been made: Each function name has a prefix and suf-
fix separated by an underscore (Chamberlain and Szöcs, 2013). They follow the format
of source_function, e.g. cs_compinfo uses ChemSpider as source (see next section) to
retrieve compound information. Some functions require querying first a unique identi-
fier from the data source and then use this identifier to query further information. The
prefix get is used to denote these functions, e.g. get_csid to retrieve the identifier used
in ChemSpider.

webchem is friendly to the resources of data providers. Between each request there
is a time-out of 0.3 to 2 seconds depending on the data source. Therefore, processing of
larger data sets can take some time, but still represents a major improvement compared
to manual lookup. We provide a link to the Terms of Use of data providers in the
documentation of each function and we encourage the users to read these before using
webchem. Moreover, all functions return an URL of the source, which can be used for
(micro-)attribution.

data sources

The backbone of webchem are data sources providing their data and functionality to the
public. Currently, data can be retrieved from 11 sources. These cover a broad spectrum
of available data, like identifiers, experimental and predicted properties and regulatory
information (Figure 4.1, a detailed overview of all sources is included as supplement):
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nih chemical identifier resolver (cir) A web service that converts
from and to various chemical identifiers (NIH, 2016).

chemical translation service (cts) A web service that converts from and to
various chemical identifiers (Wohlgemuth et al., 2010).

etox Information System Ecotoxicology and Environmental Quality Targets by the
German Federal Environmental Agency. Provides basic identifiers, synonyms,
ecotoxicological data and quality targets for different countries (UBA, 2016).

pan pesticide database Information on pesticides - provides basic identifiers, eco-
toxicological data and chemical properties (PAN, 2016).

src physprop Contains physical properties for over 41,000 chemicals. Physical prop-
erties collected from a wide variety of sources including experimental and mod-
eled values(Howard and Meylan, 2016).

pubchem PubChem is a public repository for information on chemical substances,
providing identifiers, properties and synonyms (Kim et al., 2016). We use an
interface to the PUG-REST web service (Kim et al., 2015).

wikidata Wikipedia contains information for over 15,000 chemicals (Ertl et al., 2015;
Wikipedia, 2016). Currently webchem can only query chemical identifiers.

compendium of pesticide common names The compendium provides informa-
tion on pesticide common names, identifiers and classification (Wood, 2016).

chemidplus is a large web-based database provided by the National Library of Medi-
cine (NLM). It provides identifiers, synonyms, toxicological data and chemical
properties (Tomasulo, 2002).

chemspider is a free chemical structure database providing access to over 40 million
structures. It provides identifiers, properties and can also be used to convert
identifiers (Pence and Williams, 2010).

opsin The Open Parser for Systematic IUPAC nomenclature is a chemical name inter-
preter and provides InChI and SMILES identifiers (Lowe et al., 2011).

Though the data sources exhibit some overlap in the provided information, each
has been selected because it also provides unique information and we encourage the
interested reader to consult the related source for details. However, we provide a brief
overview in the Supporting Information.



4

66 webchem : an r package to retrieve chemical information
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Figure 4.1.: Overview of current data sources. Input and output possibilities currently imple-
mented in the package.

use cases

Installation

webchem can be easily installed and loaded from CRAN:

R> install.packages("webchem")

R> library("webchem")

The package is under active development. The latest development version is available
from GitHub and also permanently available at Zenodo (2016). This document has been
created using webchem version 0.1.
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Sample data sets

To demonstrate the capabilities of webchem we use two small publicly available real
world data sets. The data sets are only used for purpose of demonstration, have been
slightly preprocessed (not shown) and are available through the package.

(i) jagst: This data set comprises environmental monitoring data of organic sub-
stances in the river Jagst, Germany, sampled in 2013. The data is publicly available
and can be retrieved from LUBW (2016). It comprises concentrations (in µg / L) of 34

substances on 13 sampling occasions. First we load the data set and inspect the first six
rows:

R> data("jagst")

R> head(jagst)

## date substance value qual

## 1 2013-01-04 2,4-Dimethylphenol 0.006 <

## 2 2013-01-29 2,4-Dimethylphenol 0.006 <

## 3 2013-02-26 2,4-Dimethylphenol 0.006 <

## 4 2013-03-26 2,4-Dimethylphenol 0.006 <

## 5 2013-04-23 2,4-Dimethylphenol 0.006 <

## 6 2013-05-22 2,4-Dimethylphenol 0.006 <

This data set identifies substances only by substance names. Values below the limit
of quantification (LOQ) are indicated by a qualifier column.

(ii) lc50: This data consists of median acute lethal concentration for the water flea
Daphnia magna in 48 h tests (LC50,D.magna,48h) of 124 insecticides. The data has been
retrieved from the EPA ECOTOX database (U.S. EPA, 2016).

R> data("lc50")

R> head(lc50)

## cas value

## 4 50-29-3 12.415277

## 12 52-68-6 1.282980

## 15 55-38-9 12.168138

## 18 56-23-5 35000.000000

## 21 56-38-2 1.539119

## 36 57-74-9 98.400000

This data set identifies the substances only by CAS numbers.

Query identifiers

The jagst data set covers 34 substances that are identified by (German) names. Merging
and linking these to other tables is hampered by differences and ambiguity in com-
pound names.



4

68 webchem : an r package to retrieve chemical information

One possibility to resolve this, is to use different chemical identifiers allowing easy
identification. There are several identifiers available, e.g. registry numbers like CAS or
EC, database identifiers like PubChemCID (Kim et al., 2016) or ChemSpiderID (Pence
and Williams, 2010), line notations like SMILES (Weininger, 1990), InChI and InChiKey
(Heller et al., 2015). In this first example we query several identifiers to create a table
that can be used as (i) supplemental information to a research article or (ii) to facilitate
subsequent matching with other data.

As we are are dealing with German substance names we start to query ETOX for
CAS registry numbers. A common work flow when dealing with web resources is to
1) query a unique identifier of the source, 2) use this identifier to retrieve additional
information and 3) extract the parts that are needed from the R object (Chamberlain
and Szöcs, 2013).

First we search for ETOX internal ID numbers using the substance names:

R> subs <- unique(jagst$substance)

R> ids <- get_etoxid(subs, match = ’best’)

R> head(ids)

## etoxid match distance query

## 1 8668 2,4-Dimethylphenol ( 8668 ) 0 2,4-Dimethylphenol

## 2 8494 4-Chlor-2-methylphenol ( 8494 ) 0 4-Chlor-2-methylphenol

## 3 <NA> <NA> <NA> 4-para-nonylphenol

## 4 8397 Atrazin ( 8397 ) 0 Atrazin

## 5 7240 Benzol ( 7240 ) 0 Benzol

## 6 7331 Desethylatrazin ( 7331 ) 0 Desethylatrazin

Only three substances could not be found in ETOX. Here we specify that only the ‘best’
match (in terms of the Levenshtein distance between query and results) is returned. A
manual check confirms appropriate matches. Other options include: ‘all’ - returns all
matches; ‘first’ - returns only the first match (not necessarily the best match); ‘ask’ - this
enters an interactive mode, where the user is asked for a choice if multiple matches are
found and ‘na’ which returns NA in case of multiple matches.

We use these data to retrieve basic information on the substances.

R> etox_data <- etox_basic(ids$etoxid)

webchem always returns a named list (one entry for each substance) and the available
information content can be very voluminous. Therefore, we provide extractor functions
for the common identifiers: CAS, SMILES and InChIKeys.

R> etox_cas <- cas(etox_data)

R> head(etox_cas)

## 8668 8494 <NA> 8397 7240 7331

## "105-67-9" "1570-64-5" NA "1912-24-9" "71-43-2" "6190-65-4"

A variety of data are available and we cannot provide extractor functions for each of
those. Therefore, if users need to extract other data, they have to write simple extractor
functions (see following examples).
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In the same manner, we can now query other identifiers from another source using
these CAS numbers (Figure 4.1), like PubChem

cids <- get_cid(etox_cas)

pc_data <- pc_prop(cids, properties = c(’CanonicalSMILES’, ’InChIKey’))

pc_smiles <- smiles(pc_data)

pc_inchikey <- inchikey(pc_data)

Finally, we combine the queried data into one data.frame

res <- data.frame(name = subs, cas = etox_cas, smiles = pc_smiles,

cid = pc_data$CID, inchikey = pc_inchikey,

stringsAsFactors = FALSE)

Note that in order to use the ChemSpider functions, a personal authentication key
(token) is needed, which can be retrieved from the ChemSpider web page. Finally, we
obtain a compound table containing many different identifiers (Table 4.1), allowing easy
identification and merging with other data sets, e.g. the lc50 data set based on CAS.

Name CAS SMILES CID InChIKey

2,4-Dimethylphenol 105-67-9 CC1=CC(... 7771 KUFFULV...
4-Chlor-2-methylphenol 1570-64-5 CC1=C(C... 14855 RHPUJHQ...
4-para-nonylphenol - - - -
Atrazin 1912-24-9 CCNC1=N... 2256 MXWJVTO...
Benzol 71-43-2 C1=CC=C... 241 UHOVQNZ...
Desethylatrazin 6190-65-4 CC(C)NC... 22563 DFWFIQK...

Table 4.1.: Identifiers for the jagst data sets as queried with webchem. Only the first 6 entries are
shown. For SMILES and InChIKey only the first 7 characters are shown. - = not found.

Toxicity of different pesticide groups

Another question we might ask is How does toxicity vary between insecticide groups? An-
swering this question would require tedious lookup of insecticide groups for each of
the 124 CAS numbers in the lc50 data set. The Compendium of Pesticide Common
Names (Wood, 2016) contains such information and can be easily queried using CAS
numbers with webchem:

R> aw_data <- aw_query(lc50$cas, type = ’cas’)

To extract the chemical group from the retrieved data set, we write a simple extractor
function and apply this to the retrieved data:
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igroup <- sapply(aw_data, function(y) ifelse(’subactivity’ %in% names(y),

y[[’subactivity’]],

NA))

igroup[1:3]

## 50-29-3

## "organochlorine insecticides"

## 52-68-6

## "phosphonate insecticides"

## 55-38-9

## "phenyl organothiophosphate insecticides"

Figure 4.2 displays the result after additional data cleaning (see supplement for full
code). Overall, it took only 5 R statements to retrieve, clean and plot the data using
ggplot2 (Wickham, 2009).
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Figure 4.2.: Toxicity of different pesticide groups. LC50 values have been retrieved from EPA
ECOTOX database, chemical groups from the Compendium of Pesticide Common
Names.

Querying partitioning coefficients

Some data sources also provide data on chemical properties that can be queried. Here
we query for the lc50 data the log Poct/wat from the SRC PHYSPROP database to build
a simple quantitative structure–activity relationship (QSAR) to predict toxicity.
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R> pp_data <- pp_query(lc50$cas)

The database contains predicted and experimental values. Extracting
log Poct/wat from the data object is slightly more complicated, because i) for some com-
pounds no data could be found and ii) the data-object has a more complex structure (a
data frame within a list).

R> lc50$logp <- sapply(pp_data, function(y) {

if (length(y) == 1 && is.na(y))

return(NA)

y$prop$value[y$prop$variable == ’Log P (octanol-water)’]

})

We opted for this more complex approach, because the information available is very
diverse and we cannot provide an extractor function for each purpose. Moreover, it
provides users with high flexibility regarding organisation of their data. Nevertheless,
in the documentation of each function we provide examples on how to extract more
complicated parts of the data. The resulting data and model is displayed in Figure 4.3.
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Figure 4.3.: Simple QSAR for predicting log LC50 of pesticides by log P. Log P values have been
retrieved from SRC Physprop database (97 experimental data, 9 estimated data and
18 substances without data). The line indicates the regression model (log LC50 =
2.88− 0.37 logP, RMSE = 1.45).
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Regulatory information

Regulatory information is of particular interest if concentrations exceed national thresh-
olds. In the European Union (EU) the Water Framework Directive (WFD, European
Union (2000)) defines Environmental Quality Standards (EQS). Similarly, the U.S. and
Canadian EPA and the WHO define Quality Standards. Information on these standards
can be queried with webchem from the PAN Pesticide Database (using pan_query())
and from ETOX (using etox_targets()).

In this example we search for the minimum EQS for the EU for the compounds in the
jagst data set, join these with measured concentrations and evaluate wether exceedances
occurred. We re-use the above queried ETOX-IDs to obtain further information from
ETOX, namely the MAC-EQS:

R> eqs <- etox_targets(ids$etoxid)

R> ids$mac <- sapply(eqs, function(y){

if (length(y) == 1 && is.na(y)) {

return(NA)

} else {

res <- y$res

min(res[res$Country_or_Region == ’EEC / EU’ &

res$Designation == ’MAC-EQS’, ’Value_Target_LR’])

}

})

Again, the returned information is humongous and we encourage users to study the
returned objects and description of the data source. Here, the column Designation
defines the type of EQS and Value_Target_LR contains the value. Unfortunately, we
only found MAC-EQS values for 5 substances:

R> (mac <- with(ids, ids[!is.na(mac) & is.finite(mac),

c(’etoxid’, ’query’, ’mac’)]))

## etoxid query mac

## 4 8397 Atrazin 2.000

## 5 7240 Benzol 50.000

## 11 8836 Irgarol 0.016

## 12 7442 Isoproturon 1.000

## 29 8756 Terbutryn 0.034

The get_etoxid() function used to search ETOX-IDs returns also the original substance
name (query), so that we can easily join the table with MAC values with the measure-
ments table :

R> jagst_eqs <- merge(jagst, mac, by.x = ’substance’, by.y = ’query’)

R> head(jagst_eqs)
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## substance date value qual etoxid mac

## 1 Atrazin 2013-09-10 0.0068 = 8397 2

## 2 Atrazin 2013-10-08 0.0072 = 8397 2

## 3 Atrazin 2013-03-26 0.0040 = 8397 2

## 4 Atrazin 2013-04-23 0.0048 = 8397 2

## 5 Atrazin 2013-11-05 0.0036 = 8397 2

## 6 Atrazin 2013-07-16 0.0052 = 8397 2

Finally, we can compare the measured value to the MAC, which reveals that there
have been no exceedances of these 5 compounds.

Utility functions

Furthermore, webchem provides also basic functions to check identifiers that can be
used for data quality assessment. The functions either use simple formatting rules,

R> is.inchikey(’BQJCRHHNABKAKU-KBQPJGBKS-AN’)

## Hyphens not at position 15 and 26.

## [1] FALSE

R> is.cas(’64-17-6’)

## Checksum is not correct! 5 vs. 6

## [1] FALSE

or web resources like ChemSpider

R> is.inchikey(’BQJCRHHNABKAKU-KBQPJGBKSA-5’,

type = ’chemspider’)

## [1] FALSE
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discussion

Related software

Within the R ecosystem, there are only a few similar projects: rpubchem (Guha, 2014)
provides an interface to PubChem. Similarly, ChemmineR (Cao et al., 2008), a mature
chemo-informatics package, provides an interface to Pubchem. webchem does not pro-
vide any chemo-informatic functionality, but integrates access to many data sources.
WikidataR (Keyes and Graul, 2016) provides an interface to wikidata that could be used
to retrieve chemical data from Wikipedia. However, it does not provide predefined
methods for chemical data like webchem. Within the Python ecosystem the libraries
PubChempy (Swain, 2015b), ChemSpiPy (Swain, 2015a) and CIRpy (Swain, 2016) are
available for similar tasks as those outlined here. webchem is not specialized and tries
to integrate many data sources and for some of these it provides a unique program-
matic interface. The Chemical Translation Service (Wohlgemuth et al., 2010), which is
also one of the sources that can be queried, allows batch conversion of chemical iden-
tifiers. However, it does not provide access to other data (experimental, modeled or
regulatory data).

Open Science

An increasing number of scientific data is becoming publicly available (Gewin, 2016;
O’Boyle et al., 2011; Reichman et al., 2011), either in public data repositories or as sup-
plement to publications. To be usable for other researchers chemical compounds should
be properly identified, not only by chemical names but also with accompanying iden-
tifiers like InChIKey, SMILES and authority-assigned identifiers. webchem provides an
easy way to create such meta tables as shown in Table 4.1 and facilitates chemical data
availability to researchers. However, good quality of data is crucial for every analy-
sis (Stieger et al., 2014) and additional effort and methods are needed to validate data
quality.

Further development

We have outlined only a few use cases that will likely be useful for many researchers.
Given the huge amount of publicly available information, many other possibilities can
be envisioned. webchem is currently under active development and several other data
sources have not been implemented yet but may be in the future. GitHub makes con-
tributing easy and we strongly encourage contribution to the package. Moreover, com-
ments, feedback and feature requests are highly welcome.
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conclusions

Researchers need to have easy access to global knowledge on chemicals. webchem can
save "hundreds of working hours" gathering this knowledge (Münch and Galizia, 2016),
so that researchers can focus on other tasks.
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abstract

All species are hierarchically related to one another, and we use taxonomic names to
label the nodes in this hierarchy. Taxonomic data is becoming increasingly available on
the web, but scientists need a way to access it in a programmatic fashion that’s simple
and reproducible. We have developed taxize, an open-source software package for the
R language (freely available from http://cran.r-project.org/web/packages/taxize).
taxize provides simple, programmatic access to taxonomic data for 13 data sources
around the web. We discuss the need for a taxonomic toolbelt in R, and outline a
suite of use cases for which taxize is ideally suited (including a full workflow as an
appendix). The taxize package facilitates open and reproducible science by allowing
taxonomic data collection to be done in the open-source R platform.

introduction

Evolution by natural selection has led to a hierarchical relationship among all living
organisms. Thus, species are categorized using a taxonomic hierarchy, starting with
the binomial species name (e.g, Homo sapiens), moving up to genus (Homo), then family
(Hominidae), and on up to Domain (Eukarya). Although taxonomic classifications are
human constructs created to understand the real phylogeny of life (Benton, 2000), they
are nonetheless essential to organize the vast diversity of organisms. Biologists, whether
studying organisms at the cell, organismal, or community level, can put their study
objects into taxonomic context, allowing them to infer close and distant relatives, find
relevant literature, and more.

The use of taxonomic names is, unfortunately, not straightforward. Taxonomic names
often vary due to name revisions at the generic or specific levels, lumping or splitting
lower taxa (genera, species) among higher taxa (families), and name spelling changes.
For example, a study found that a compilation of 308,000 plant observations from 51

digitized herbarium records had 22,100 unique taxon names, of which only 13,000

were accepted names (Boyle et al., 2013; Weiser et al., 2007). In addition, there is no
one authoritative source of taxonomic names for all taxa - although, there are taxon
specific sources that are used by many scientists. Different sources (e.g., uBio [Universal
Biological Indexer and Organizer], Tropicos, ITIS [Integrated Taxonomic Information
Service]) may use different accepted names for the same taxon. For example, while ITIS
has Helianthus x glaucus as an accepted name, The Plant List (http://www.theplantlist.
org) gives that name as unresolved. But Helianthus glaucus is an accepted name in The
Plant List, while ITIS does not list this name.

One attempt to help inconsistencies in taxonomy is the use of numeric codes. For
example, ITIS assigns a Taxonomic Serial Number (TSN) to each taxon, while uBio
assigns each taxon a NameBank identifier (namebankID), and Tropicos assigns their
own identifier to each taxon. Codes are helpful within a database as they can easily refer
to, for example, Helianthus annuus with a code like 123456 instead of its whole name.
However, each database uses their own code; in this case for Helianthus annuus, ITIS uses

http://cran.r-project.org/web/packages/taxize
http://www.theplantlist.org
http://www.theplantlist.org
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36616, uBio uses 2658020, and Tropicos uses 40022652. As there are no universal codes
for taxa across databases, this can lead to additional confusion. Last, name comparisons
across databases have to be done with the actual names, not the codes.

Taxonomic data is getting easier to obtain through the web (e.g., http://eol.org/).
However, there are a number of good reasons to obtain taxonomic information pro-
gramatically rather than through a web interface. First, if you have more than a few
names to look up on a website, it can take quite a long time to enter each name, get
data, and repeat for each species. Programatically getting taxonomic names solves the
problem by looping over a list of names. In addition, doing taxonomic searching, etc.
becomes reproducible. With increasing reports of irreproducibility in science (Stodden,
2010; Zimmer, 2012), it is extremely important to make science workflows repeatable.

The R language is widely used by biologists, and now has over 5,000 packages on the
Comprehensive R Archive Network (CRAN) to extend R. R is great for manipulating,
visualizing and fitting statistical models to data. Gentleman et al. Gentleman et al.
(2004) give a detailed discussion of advantages of R in computational biology. Getting
data from the web will be increasingly common as more and more data gets moved
to the cloud. Therefore, there is a need to get data from the web directly into R. In-
creasingly, data is available from the web via application programming interfaces (API).
These allow computers to talk to one another using code that is not human readable,
but is machine readable. Web APIs often define a number of methods that allow users
to search for a species name, or retrieve the synonyms for a species name, for example.
A further advantage of APIs is that they are language agnostic, meaning that data can
be consumed in almost any computing context, allowing users to interact with the web
API without having to know the details of the code. Moreover data can be accessed
from every computer, whereas for example an Excel file can only be opened in a few
programs.

The goal of taxize is to make many use cases that involve retrieving and resolving
taxonomic names easy and reproducible. In taxize, we have written a suite of R func-
tions that interact with many taxonomic data sources via their web APIs (Table 5.1).
The interface to each function is usually a simple list of species names, just as a user
would enter when interacting with a website. Therefore, we hope that moving from a
web to an R interface for taxonomic names will be relatively seamless (if one is already
nominally familiar with R).

Here, we justify the need for programmatic taxonomic resolution tools like taxize,
discuss our data sources, and run through a suite of use cases to demonstrate the
variety of ways that users can use taxize.

http://eol.org/
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Table 5.1.: Some key functions in taxize, what they do, and their data sources
Function name What it does Source
apg_lookup() Changes names to match

the APGIII list
Angiosperm Phylogeny Group
http://www.mobot.org/MOBOT/

research/APweb/

classification() Upstream classification Various
col_children() Direct children Catalogue of Life

http:

//www.catalogueoflife.org/

col_downstream() Downstream taxa to
specified rank

Catalogue of Life
http:

//www.catalogueoflife.org/

eol_hierarchy() Upstream classification Encyclopedia of Life
http://eol.org/

eol_search() Search EOL taxon
information

Encyclopedia of Life
http://eol.org/

get_seqs() Get NCBI sequences National Center for Biotechnology
Information (Federhen, 2012)

get_tsn() Get ITIS TSN Integrated Taxonomic Information
System
http://www.itis.gov/

get_uid() Get NCBI UID National Center for Biotechnology
Information (Federhen, 2012)

gisd_isinvasive() Invasiveness status Global Invasive Species Database
http://www.issg.org/database/

welcome/

gni_parse() Parse scientific names into
components

Global Names Index
http://gni.globalnames.org/

gni_search() Search EOL’s global names
index

Global Names Index
http://gni.globalnames.org/

gnr_resolve() Resolve names using EOL’s
global names index

Global Names Resolver
http:

//resolver.globalnames.org/

itis_downstream() Downstream taxa to
specified rank

Integrated Taxonomic Information
System
http://www.itis.gov/

iucn_status() IUCN status IUCN Red List
http://www.iucnredlist.org

phylomatic_tree() Get a plant Phylogeny Phylomatic (Webb and Donoghue,
2005)

plantminer() Search Plantminer Plantminer (Carvalho et al., 2010)
searchby-
commonname()

Search ITIS by common
name

Integrated Taxonomic Information
System
http://www.itis.gov/

searchby-
scientificname()

Search ITIS by scientific
name

Integrated Taxonomic Information
System
http://www.itis.gov/

http://www.mobot.org/MOBOT/research/APweb/
http://www.mobot.org/MOBOT/research/APweb/
http://www.catalogueoflife.org/
http://www.catalogueoflife.org/
http://www.catalogueoflife.org/
http://www.catalogueoflife.org/
http://eol.org/
http://eol.org/
http://www.itis.gov/
http://www.issg.org/database/welcome/
http://www.issg.org/database/welcome/
http://gni.globalnames.org/
http://gni.globalnames.org/
http://resolver.globalnames.org/
http://resolver.globalnames.org/
http://www.itis.gov/
http://www.iucnredlist.org
http://www.itis.gov/
http://www.itis.gov/
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Table 5.1 – Cont.
Function name What it does Source
tax_name() Get taxonomic name for

specific rank
Various

tax_rank() Get rank of a taxonomic
name

Various

tnrs() Resolve names using iPlant iPlant Taxonomic Name Resolution
Service
http://tnrs.

iplantcollaborative.org/

tp_acceptednames() Check for accepted names
using Tropicos

Tropicos
http://www.tropicos.org/

tpl_search() Search the Plant List The Plant List
http://www.theplantlist.org

ubio_namebank() Search uBio uBio
http://www.ubio.org/index.php?

pagename=sample_tools

why do we need taxize?

There is a large suite of applications developed around the problem of searching
for, resolving, and getting higher taxonomy for species names. For example, Lin-
naeus (http://linnaeus.sourceforge.net/) provides the ability to search for taxo-
nomic names in documents and normalize those names found. In addition, there
are many web interfaces to search for and normalize names such as Encyclopedia of
Life’s Global Names Resolver (http://resolver.globalnames.org/), uBio tools (www.
ubio.org/index.php?pagename=sample_tools), and iPlant’s Taxonomic Name Resolu-
tion Service (http://tnrs.iplantcollaborative.org/).

All of these data repositories provide ways to search for taxonomic names and resolve
them in some cases. However, scientists ideally need a tool that is free and can be
used programmatically, thereby facilitating reproducible research. The goal of taxize
is to facilitate the creation of reproducible and easy to use workflows for searching for
taxonomic names, resolving them, getting higher taxonomic names, and other tasks
related to research dealing with species.

data sources and package details

taxize uses many data sources (Table 5.1), and more can be easily added. There are
two common tasks provided by the data sources: name search and name resolution.
Other functionality in taxize includes retrieving a classification tree for a species, or
retrieving child taxa of a focal taxon. O ne of the data sources (Phylomatic) returns
phylogenies, while another (NCBI) returns genetic sequence data. However, there are
other R packages that are focused solely on sequence data, such as rsnps (Chamberlain

http://tnrs.iplantcollaborative.org/
http://tnrs.iplantcollaborative.org/
http://www.tropicos.org/
http://www.theplantlist.org
http://www.ubio.org/index.php?pagename=sample_tools
http://www.ubio.org/index.php?pagename=sample_tools
http://linnaeus.sourceforge.net/
http://resolver.globalnames.org/
www.ubio.org/index.php?pagename=sample_tools
www.ubio.org/index.php?pagename=sample_tools
http://tnrs.iplantcollaborative.org/
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and Ushey, 2013), rentrez (Winter, 2013), BoSSA (Lefeuvre, 2010), and ape (Paradis et
al., 2004), so taxize does not venture deeply into these other domains.

Some of the data sources taxize interacts with require authentication. That is, in
addition to the search terms the user provides (e.g., Homo sapiens), the data provider
requires an alphanumeric identification key. This is necessary in some cases so that API
providers can 1) better prevent databases crashing from too many requests, 2) collect
analytics on requests to their API to provide better performance, etc., and 3) provide
user level modification of rules for interacting with the API. The services that require
an API key in taxize are: Encyclopedia of Life (EOL) (http://eol.org/), the Universal
Biological Indexer and Organizer (uBio) (http://www.ubio.org/index.php?pagename=
sample_tools), Tropicos (http://www.tropicos.org/), and Plantminer (Carvalho et al.,
2010). One can easily obtain API keys by visiting the website of each service (see Ta-
ble 5.1 for links to each site). There are two typical ways of using API keys. First, you
can pass in your API key in a function call (e.g., ubio_namebank(srchName=’Ursus amer-
icanus’, key=’your_alphanumeric_key’)). Second, you can store your key in the .Rprofile
file, which is a common place to store settings. We recommend the second option as it
simplifies function calls as taxize detects the stored keys.

taxize would not have been possible without the work of others. taxize uses httr
(Wickham, 2012a) and RCurl (Lang, 2013a) for performing calls to web APIs, XML
(Lang, 2013c) for parsing XML, RJSONIO (Lang, 2013b) for parsing JSON, and stringr
(Wickham, 2012b) and plyr (Wickham, 2011) for manipulating data.

New data sources can be added: for example, we plan to add the following
sources: Wikispecies (https://species.wikimedia.org) and The Tree of Life (http:
//tolweb.org/tree/). A connection to www.freshwaterecology.info (a database with
autecological characteristics, ecological preferences and biological traits as well as distri-
bution patterns of more than 12,000 European freshwater organisms belonging to fish,
macro-invertebrates, macrophytes, diatoms and phytoplankton) will be finished when
their new API is released. In addition, the authors welcome further suggestions of data
sources to be added.

http://eol.org/
http://www.ubio.org/index.php?pagename=sample_tools
http://www.ubio.org/index.php?pagename=sample_tools
http://www.tropicos.org/
https://species.wikimedia.org
http://tolweb.org/tree/
http://tolweb.org/tree/
www.freshwaterecology.info
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use cases

First, install taxize

First, one must install and load taxize into the R session.

R> install.packages("taxize")

R> library(taxize)

Advanced users can also download and install the latest development copy from
GitHub https://github.com/ropensci/taxize, also permanently available at http://
dx.doi.org/10.5281/zenodo.7097.

Resolve taxonomic names

This is a common task in biology. We often have a list of species names and we want
to know a) if we have the most up to date names, b) if our names are spelled correctly,
and c) the scientific name for a common name. One way to resolve names is via the
Global Names Resolver (GNR) service provided by the Encyclopedia of Life (http:
//resolver.globalnames.org/). Here, on can search for two misspelled names:

R> temp <- gnr_resolve(names = c("Helianthos annus",

"Homo saapiens"))

R> temp[ , -c(1,4)]

# matched_name data_source_title

# 1 Helianthus annuus L. Catalogue of Life

# 2 Helianthus annus GBIF Taxonomic Backbone

# 3 Helianthus annus EOL

# 4 Helianthus annus L. EOL

# 5 Helianthus annus uBio NameBank

# 6 Homo sapiens Linnaeus, 1758 Catalogue of Life

The correct spellings are Helianthus annuus and Homo sapiens. Another approach uses
the Taxonomic Name Resolution Service via the Taxosaurus API (http://taxosaurus.
org/) developed by iPLant and the Phylotastic organization. In this example is a list
of species names, some of which are misspelled, and then call the API with the tnrs
function.

R> mynames <- c("Helianthus annuus", "Pinus contort",

"Poa anua", "Abis magnifica", "Rosa california",

"Festuca arundinace", "Sorbus occidentalos",

"Madia sateva")

R> tnrs(query = mynames)[ , -c(5:7)]

https://github.com/ropensci/taxize
http://dx.doi.org/10.5281/zenodo.7097
http://dx.doi.org/10.5281/zenodo.7097
http://resolver.globalnames.org/
http://resolver.globalnames.org/
http://taxosaurus.org/
http://taxosaurus.org/
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# submittedName acceptedName sourceId score

# 9 Helianthus annuus Helianthus annuus iPlant_TNRS 1

# 10 Helianthus annuus Helianthus annuus NCBI 1

# 4 Pinus contort Pinus contorta iPlant_TNRS 0.98

# 5 Poa anua Poa annua iPlant_TNRS 0.96

# 3 Abis magnifica Abies magnifica iPlant_TNRS 0.96

# 7 Rosa california Rosa californica iPlant_TNRS 0.99

# 8 Rosa california California NCBI 1

# 2 Festuca arundinace Festuca arundinacea iPlant_TNRS 0.99

# 1 Sorbus occidentalos Sorbus occidentalis iPlant_TNRS 0.99

# 6 Madia sateva Madia sativa iPlant_TNRS 0.97

It turns out there are a few corrections: e.g., Madia sateva should be Madia sativa,
and Rosa california should be Rosa californica. Note that this search worked because
fuzzy matching was employed to retrieve names that were close, but not exact matches.
Fuzzy matching is only available for plants in the TNRS service, so we advise using
EOL’s Global Names Resolver if you need to resolve animal names.

taxize takes the approach that the user should be able to make decisions about what
resource to trust, rather than making the decision on behalf of the user. Both the EOL
GNR and the TNRS services provide data from a variety of data sources. The user may
trust a specific data source, and thus may want to use the names from that data source.
In the future, we may provide the ability for taxize to suggest the best match from a
variety of sources.

Another common use case is when there are many synonyms for a species. In this
example, there are six synonyms of the currently accepted name for a species.

R> library(plyr)

R> mynames <- c("Helianthus annuus ssp. jaegeri",

"Helianthus annuus ssp. lenticularis",

"Helianthus annuus ssp. texanus",

"Helianthus annuus var. lenticularis",

"Helianthus annuus var. macrocarpus",

"Helianthus annuus var. texanus")

R> tsn <- get_tsn(mynames)

R> ldply(tsn, itis_acceptname)

# submittedTsn acceptedName acceptedTsn

# 1 525928 Helianthus annuus 36616

# 2 525929 Helianthus annuus 36616

# 3 525930 Helianthus annuus 36616

# 4 536095 Helianthus annuus 36616

# 5 536096 Helianthus annuus 36616

# 6 536097 Helianthus annuus 36616
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Retrieve higher taxonomic names

Another task biologists often face is getting higher taxonomic names for a taxa list.
Having the higher taxonomy allows you to put into context the relationships of your
species list. For example, you may find out that species A and species B are in Family
C, which may lead to some interesting insight, as opposed to not knowing that Species
A and B are closely related. This also makes it easy to aggregate/standardize data to
a specific taxonomic level (e.g., family level) or to match data to other databases with
different taxonomic resolution (e.g., trait databases).

A number of data sources in taxize provide the capability to retrieve higher taxo-
nomic names, but we will highlight two of the more useful ones: Integrated Taxonomic
Information System (ITIS) (http://www.itis.gov/) and National Center for Biotechnol-
ogy Information (NCBI) (Federhen, 2012). First, search for two species, Abies procera
and Pinus contorta within ITIS.

R> specieslist <- c("Abies procera", "Pinus contorta")

R> classification(specieslist, db = "itis")

# $‘Abies procera‘

# rankName taxonName tsn

# 1 Kingdom Plantae 202422

# 2 Subkingdom Viridaeplantae 846492

# 3 Infrakingdom Streptophyta 846494

# 4 Division Tracheophyta 846496

# 5 Subdivision Spermatophytina 846504

# 6 Infradivision Gymnospermae 846506

# 7 Class Pinopsida 500009

# 8 Order Pinales 500028

# 9 Family Pinaceae 18030

# 10 Genus Abies 18031

# 11 Species Abies procera 181835

#

# $‘Pinus contorta‘

# rankName taxonName tsn

# 1 Kingdom Plantae 202422

# 2 Subkingdom Viridaeplantae 846492

# 3 Infrakingdom Streptophyta 846494

# 4 Division Tracheophyta 846496

# 5 Subdivision Spermatophytina 846504

# 6 Infradivision Gymnospermae 846506

# 7 Class Pinopsida 500009

# 8 Order Pinales 500028

# 9 Family Pinaceae 18030

# 10 Genus Pinus 18035

# 11 Species Pinus contorta 183327

http://www.itis.gov/
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It turns out both species are in the family Pinaceae. You can also get this type of
information from the NCBI by excuting the following code in R: classification(specieslist,
db = ’ncbi’).

Instead of a full classification, you may only want a single name, say a family name
for your species of interest. The function tax_name is built just for this purpose. As with
the classification-function you can specify the data source with the db argument, either
ITIS or NCBI.

R> tax_name(query = "Helianthus annuus", get = "family",

db = "itis")

# family

# 1 Asteraceae

R> tax_name(query = "Helianthus annuus", get = "family",

db = "ncbi")

# family

# 1 Asteraceae

If a data source does not provide information on the queried species, the result could
be taken from another source and the results from the different sources could be pooled.

Interactive name selection

As mentioned previously most databases use a numeric code to reference a species. A
general workflow in taxize is: Retrieve Code for the queried species and then use this
code to query more data/information. Below are a few examples. When you run these
examples in R, you are presented with a command prompt asking for the row that
contains the name you would like back; that output is not printed below for brevity. In
this example, the search term has many matches. The function returns a data.frame of
the matches, and asks for the user to input which row number to accept.

R> get_tsn(searchterm = "Heliastes", searchtype = "sciname")

# combinedname tsn

# 1 Heliastes bicolor 615238

# 2 Heliastes chrysurus 615250

# 3 Heliastes cinctus 615573

# 4 Heliastes dimidiatus 615257

# 5 Heliastes hypsilepis 615273

# 6 Heliastes immaculatus 615639

# 7 Heliastes opercularis 615300

# 8 Heliastes ovalis 615301

# 1

# NA

# attr(,"class")

# [1] "tsn"
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In another example, you can pass in a long character vector of taxonomic names:

R> splist <- c("annona cherimola", ’annona muricata’,

"quercus robur", "shorea robusta",

"pandanus patina", "oryza sativa",

"durio zibethinus")

R> get_tsn(searchterm = splist, R> searchtype = "sciname")

# [1] "506198" "18098" "19405" "506787" "507376" "41976"

# [7] "506099"

# attr(,"class")

# [1] "tsn"

In another example, note that no match at all returns an NA:

R> get_uid(sciname = c("Chironomus riparius", "aaa vva"))

# [1] "315576" NA

# attr(,"class")

# [1] "uid"

Retrieve a phylogeny

Ecologists are increasingly taking a phylogenetic approach to ecology, applying phylo-
genies to topics such as the study of community structure (Webb et al., 2002), ecological
networks (Rafferty and Ives, 2013), functional trait ecology (Poff et al., 2006). Yet, Many
biologists are not adequately trained in reconstructing phylogenies. Fortunately, there
are some sources for getting a phylogeny without having to know how to build one;
one of these is for angiosperms, called Phylomatic (Webb and Donoghue, 2005). We
have created a workflow in taxize that accepts a species list, and taxize works behind
the scenes to get higher taxonomic names, which are required by Phylomatic to get a
phylogeny. Here is a short example, producing the tree in figure 5.1.

R> taxa <- c("Poa annua", "Abies procera", "Helianthus annuus")

R> tree <- phylomatic_tree(taxa = taxa)

R> tree$tip.label <- capwords(tree$tip.label)

R> plot(tree, cex = 1)

Behind the scenes the function phylomatic_tree retrieves a Taxonomic Serial Number
(TSN) from ITIS for each species name, then a string is created for each species like this
poaceae/oryza/oryzasativa (with format "family/genus/
genus_epithet"). These strings are submitted to the Phylomatic API, and if no errors
occur, a phylogeny in newick format is returned. The phylomatic_tree() function also
cleans up the newick string and converts it to an ape phylo object, which can be used for
plotting and phylogenetic analyses. Be aware that Phylomatic has certain limitations -
refer to the paper describing Phylomatic (Webb and Donoghue, 2005) and the website
http://phylodiversity.net/phylomatic/.

http://phylodiversity.net/phylomatic/
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Poa annua

Helianthus annuus

Abies procera

Figure 5.1.: A phylogeny for three species. This phylogeny was produced using the phylo-
matic_tree function, which queries the Phylomatic database, and prunes a previously
created phylogeny of plants.

What taxa are children of the taxon of interest?

If someone is not a taxonomic specialist on a particular taxon they probably do not
know what children taxa are within a family, or within a genus. This task becomes
especially unwieldy when there are a large number of taxa downstream. You can of
course go to a website like Wikispecies (http://species.wikimedia.org) or Encyclope-
dia of Life (http://eol.org/) to get downstream names. However, taxize provides an
easy way to programatically search for downstream taxa, both for the Catalogue of Life
(CoL) (http://www.catalogueoflife.org/) and the Integrated Taxonomic Information
System (http://www.itis.gov/). Here is a short example using the CoL in which we
want to find all the species within the genus Apis (honey bees).

R> col_downstream(name = "Apis", downto = "Species")[[1]]

# childtaxa_id childtaxa_name childtaxa_rank

# 1 6971712 Apis andreniformis Species

# 2 6971713 Apis cerana Species

# 3 6971714 Apis dorsata Species

# 4 6971715 Apis florea Species

# 5 6971716 Apis koschevnikovi Species

http://species.wikimedia.org
http://eol.org/
http://www.catalogueoflife.org/
http://www.itis.gov/
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# 6 6845885 Apis mellifera Species

# 7 6971717 Apis nigrocincta Species

The result from the above call to col_downstream() is a data.frame that gives a number
of columns of different information.

IUCN Status

There are a number of things a user can do once they have the correct taxonomic names.
One thing a user can do is ask about the conservation status of a species (IUCN Red
List of Threatened Species (http://www.iucnredlist.org)). We have provided a set of
functions, iucn_summary and iucn_status, to search for species names, and extract the
status information, respectively. Here, you can search for the panther and lynx.

R> ia <- iucn_summary(c("Panthera uncia", "Lynx lynx"))

R> iucn_status(ia)

# Panthera uncia Lynx lynx

# "EN" "LC"

It turns out that the panther has a status of endangered (EN) and the lynx has a status
of least concern (LC).

Search for available genes in GenBank

Another use case available in taxize deals with genetic sequences. taxize has three
functions to interact with GenBank to search for available genes
(get_genes_avail), download genes by GenBank ID (get_genes), and download genes via
taxonomic name search, including retrieving a congeneric if the searched taxon does
not exist in the database (get_seqs). In this example, one can search for gene sequences
for Umbra limi.

R> out <- get_genes_avail(taxon_name = "Umbra limi",

seqrange = "1:2000",

getrelated = FALSE)

Then one can ask if ’RAG1’ exists in any of the gene names.

R> out[grep("RAG1", out$genesavail, ignore.case = TRUE), -3]

# spused length access_num ids

# 413 Umbra limi 732 JX190826 394772608

# 427 Umbra limi 959 AY459526 45479841

# 434 Umbra limi 1631 AY380548 38858304

http://www.iucnredlist.org


5

5.5 use cases 95

It turns out that there are 430 different unique records found. However, this doesn’t
mean that there are 430 different genes found as the API does not provide metadata
to classify genes. You can use regular expressions (e.g., grep) to search for the gene of
interest.

Matching species tables with different taxonomic resolution

Biologists often need to match different sets of data tied to species. For example, trait-
based approaches are a promising tool in ecology (Statzner and Bêche, 2010). One
problem is that abundance data must be matched with trait databases such as the NCBI
Taxonomy database (Usseglio-Polatera et al., 2000). These two data tables may contain
species information on different taxonomic levels and data might have to be aggregated
to a joint taxonomic level, so that the data can be merged. taxize can help in this data-
cleaning step, providing a reproducible workflow.

A user can use the mentioned classification-function to retrieve the taxonomic hier-
archy and then search the hierarchies up- and downwards for matches. Here is an
example to match a species (A) with names of on different taxonomic levels (B1 & B2).

R> A <- "gammarus roeseli"

R> B1 <- "gammarus"

R> B2 <- "gammaridae"

R> A_clas <- classification(A, db = ’ncbi’)

R> B1_clas <- classification(B1, db = ’ncbi’)

R> B2_clas <- classification(B2, db = ’ncbi’)

R> A_clas[[1]]$Rank[tolower(A_clas[[1]]$ScientificName) %in% B1]

# [1] "genus"

R> A_clas[[1]]$Rank[tolower(A_clas[[1]]$ScientificName) %in% B2]

# [1] "family"

If one finds a direct match (here Gammarus roeseli), they will be lucky. However,
Gammaridae can also be matched with Gammarus roeseli, but on a lower taxonomic
level. A more comprehensive and realistic example (matching a trait table with an
abundance table) is given in the supplemental materials.

Aggregating data to a specific taxonomic rank

In biology, one can ask questions at varying taxonomic levels. This use case is easily
handled in taxize. A function called tax_agg() will aggregate community data to a
specific taxonomic level. In this example, one can take the data for three species and
aggregate them to family level. Again one can specify whether they want to use data
from ITIS or NCBI. The rows in the data.frame are different communities.
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R> data(dune, package = ’vegan’)

R> df <- dune[ , c(1,3:4)]

R> colnames(df) <- c("Bellis perennis", "Juncus bufonius",

"Juncus articulatus")

R> head(df)

# Bellis perennis Juncus bufonius Juncus articulatus

# 2 3 0 0

# 13 0 3 0

# 4 2 0 0

# 16 0 0 3

# 6 0 0 0

# 1 0 0 0

R> agg <- tax_agg(df, rank = ’family’, db = ’ncbi’)

R> agg

#

# Aggregated community data

#

# Level of Aggregation: FAMILY

# No. taxa before aggregation: 3

# No. taxa after aggregation: 2

# No. taxa not found: 0

R> head(agg$x)

# Asteraceae Juncaceae

# 2 3 0

# 13 0 3

# 4 2 0

# 16 0 3

# 6 0 0

# 1 0 0

The two Juncus species are aggregated to the family Juncaceae and their abundances
are summed. There was only a single species in the family Asteraceae, so the data for
Bellis perennis are carried over.
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conclusions

Taxonomic information is increasingly sought by biologists as we take phylogenetic and
taxonomic approaches to science. Taxonomic data are becoming more widely available
on the web, yet scientists require programmatic access to this data for developing re-
producible workflows. taxize was created to bridge this gap - to bring taxonomic data
on the web into R, where the data can be easily manipulated, visualized, and analyzed
in a reproducible workflow.

We have outlined a suite of use cases in taxize that will likely fit real use cases for
many biologists. Of course we have not thought of all possible use cases, so we hope
that the biology community can give us feedback on what use cases they want to see
available in taxize. One thing we could change in the future is to make functions that fit
use cases, and then allow users to select the data source as a parameter in the function.
This could possibly make the user interface easier to understand.

taxize is currently under development and will be for some time given the large
number of data sources knitted together in the package, and the fact that APIs for each
data source can change, requiring changes in taxize code. Contributions to taxize are
strongly encouraged, and can be easily done using GitHub here: https://github.com/
ropensci/taxize. We hope taxize will be taken up by the community and developed
collaboratively, making it progressively better through time as new use cases arise, bug
reports are squashed, and contributions are merged.

https://github.com/ropensci/taxize
https://github.com/ropensci/taxize
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6 GENERAL D I SCUSS ION AND OUTLOOK

topics in statistical ecotoxicology

The simulation study performed in chapter 2 clearly showed that common experimental
designs in ecotoxicology exhibit unacceptably low statistical power (Szöcs and Schäfer,
2016; Van Der Hoeven, 1998). This underpins the criticism accumulated over the last
30 years towards the usage of NOEC as an endpoint for ERA (Fox and Landis, 2016).
Nevertheless, the NOEC is still one of the standard endpoints of mesocosm experiments
in higher tier risk assessment (EFSA, 2013). Therefore, further advances in the statistical
evaluation of mesocosm experiments are needed.

Recently, a posteriori calculations of statistical power have been proposed to counter-
act these limitations and aid the interpretation of treatment-related effects in model
ecosystems (Brock et al., 2015). The "minimum detectable difference" (MDD) estimates
the difference between two means that must exist in order to produce a statistically sig-
nificant result (p <0.05, but see Gelman and Stern (2006)) and could be used to interpret
NOEC. However, a posteriori calculations have been shown to have logical flaws when
used for interpretation of non-significant results (Hoenig and Heisey, 2001; Nakagawa
and Foster, 2004). In contrast, conducting and reporting of a priori power calculations, as
performed in chapter 2, might provide researchers important information to optimise
their study designs, ensuring that their experimental designs have appropriate power
and lead to interpretable results (Johnson et al., 2015).

Moreover, similar approaches could not only be used to study factorial but also re-
gression designs. Indeed, simulations could be used to determine the optimal exper-
imental design for dose-response models and ECx determination, balancing precision
and usage of resources. Regression designs are generally more powerful and provide
more information than factorial designs (Cottingham et al., 2005). In mesocosm experi-
ments, such designs, assigning the replicates to more tested concentrations, might also
provide additional insights. Statistical tools to analyse dose-response relationships on
the community level are currently not well-explored and no equivalent ECx,community
available. One possibility could be to fit separate dose-response models to each species,
leading to a ECx for each species in a mesocosm study. Subsequently, these ECx val-
ues could be combined and summarised using Species Sensitivity Distributions (SSDs,
Posthuma et al. (2002)), providing a single measure of the community response, e.g.
a hazardous concentration (HCx,communityrk) for x % of species affected in mesocosms
(Maltby et al., 2005). Another possibility would be to use a logistic type of ordination
(van den Brink et al., 2003). Reduced-rank vector generalised linear models (RR-VGLM)
could be used to fit such type of models (Yee, 2015; Yee and Hastie, 2003) but they have
not been applied in ecotoxicology, yet.

101
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In a similar vein, community ecology is currently experiencing a shift towards a new
class of multivariate methods, incorporating statistical models for abundances across
many taxa simultaneously (ter Braak and Šmilauer, 2015; Warton et al., 2015a; Warton
et al., 2015b; Warton et al., 2012). However, these methods have not been applied fre-
quently and their applicability to ecotoxicological data is currently unclear (Szöcs et
al., 2015). All these models have in common that the choice of the statistical model
is primarily based on data properties. In chapter 2 we showed that using statistical
models that fit the type of data analysed can provide higher statistical power. Simul-
taneously to this study, Ives (2015) published a study reaching contradictory conclu-
sions ("For testing the significance of regression coefficients, go ahead and log-transform count
data"). It must be noted that the simulation designs differed significantly between both
studies: We used a low-replicated factorial design, whereas Ives (2015) simulated a
well-replicated regression design with two predictors. We both found that the negative-
binomial GLMs were surprisingly prone to Type I errors, although the assumptions
of this model closely matched the data. Nevertheless, as we show in chapter 2, the
parametric bootstrap might provide a solution to this problem but is computationally
intensive and not widely used. The parametric bootstrap is akin to Bayesian methods
(Gelman et al., 2014), which might provide an alternative method for inference. The
main reason for Ives’ (2015) conclusion was that GLM showed undesirable Type I er-
rors in case of correlated predictors, a case not commonly encountered in ecotoxicology
and not studied in chapter 2. Recently, the current state-of-the-art was discussed by
Warton et al. (2016). They proposed the following approach: i) choose the statistical
model based on the grounds of data properties, ii) fix Type I errors using the paramet-
ric bootstrap or resampling, iii) take mean-variance relationship into account, which is
in line with the findings of chapter 2. However, there are still open questions regarding
the use of GLMs for count data (e.g. see Prof. John Maindonald’s discussion of the mat-
ter, http://uni-ko-ld.de/fb). To diagnose issues such as overdispersion and excess of
zeros in count data models new tools like the recently developed "Rootograms" provide
useful additions (Kleiber and Zeileis, 2016).

In chapter 3 we applied new statistical modelling techniques that explicitly consider
the limit of quantification. The most often used methods to deal with such censored
data is either to omit or to substitute non-detects. Censoring is very common when deal-
ing with chemical and ecological datasets but is rarely taken into account (Fox et al.,
2015). Indeed, recent examples from ecotoxicology and environmental chemistry show
that the omission (Hansen et al., 2015), randomization (Goulson, 2015) or substitution
by a fixed value (Helsel, 2010; Helsel, 2006) can lead to biased results. Hansen et al.
(2015) used a Tobit regression (Tobin, 1958) that takes the amount of censored data into
account, assuming a (log-) normal distribution of concentrations. Chapter 3 describes
a slightly different approach using a zero adjusted gamma distribution (ZAGA). We
modelled measured concentrations as two separate processes, generating i) zero values
and ii) non-zero values assuming a gamma distribution of concentrations. In ecological
statistics this type of models is also known as hurdle models (Martin et al., 2005). Gener-
ally, the difference between Tobit and two-part models are small (Min and Agresti, 2002)
and the same holds true for differences between the log-normal and Gamma distribu-

http://uni-ko-ld.de/fb
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tion. Indeed, a Tobit-like model could be also fitted assuming a Gamma distribution
(Sigrist and Stahel, 2010). However, the log-normal Tobit model has no probability mass
at zero, whereas ZAGA model has a probability at zero.

It is known that grab sampling most likely underestimates chemical concentrations
because of short-term peak concentrations (Stehle et al., 2013; Xing et al., 2013) and may
lead to an increased variation in chemical measurements. However, even if the absolute
value is subject to a high error we still can learn from the process generating values
above LOQ. This is also highlighted by the results of chapter 3, with estimated coeffi-
cients for the absolute concentration showing much larger uncertainty than coefficients
for the probability of exceeding LOQ (Figure 3.5). Currently, models explicitly taking
the censored nature of chemical monitoring data into account are not well explored
and rarely applied. Further research on those is needed and might provide useful in-
formation for analysing monitoring data, assessing the chemical status and trends in
chemical pollution.

leveraging monitoring data for environmental

risk assessment

In chapter 3 we compiled and analysed monitoring data, that lead to the currently
most extensive dataset on pesticide exposure available for Germany, up to now. We
demonstrated that small streams below 10 km2 are underrepresented within the cur-
rent monitoring scheme (Figure 3.3, top). Given their importance, we must admit that
we currently do not have much knowledge about their pollution status and threats
(Biggs et al., 2016; Lorenz et al., 2016). To fill these gaps, monitoring networks need
to be adapted to give a better representation of small streams. Our results revealed
that chemical monitoring schemes within Germany differed largely in terms of spatio-
temporal coverage and compound spectra between federal states. Similarly, Malaj et
al. (2014) showed big differences in chemical monitoring data between European coun-
tries. Overall, a homogenisation and standardisation of chemical monitoring programs
would enhance the comparability and the possibility for a large-scale assessment.

We found that the signal from agricultural pesticides can be detected down to a
small percentage of agricultural area within the catchment (Figure 3.4). Thus, we can
conclude that if there is agriculture within a catchment it is very likely that pesticides
will be applied, enter the streams and are detected by chemical monitoring. This has
implications for selection of reference sites for environmental monitoring that need to
have no agricultural influence. Nevertheless, we studied only the influence of agricul-
tural non-point sources and point-sources like wastewater treatment plants can also
contribute to pesticide pollution of streams (Bunzel et al., 2014).

We were able to detect a small but distinct increase of risks after precipitation events.
This is in line with findings that pesticides mainly enter surface waters via edge-of-field
runoff (Schulz, 2001). Moreover, our results suggest that absolute measured concentra-
tions are subject to a high error due to the sampling process. We add evidence that
current monitoring schemes, largely unconnected from precipitation events, underesti-
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mate pesticide risks (Stehle et al., 2013; Xing et al., 2013). Automatic and event-driven
samplers in small streams could provide knowledge on pesticide risk dynamics that are
currently unknown.

In chapter 3 we provide results only for small streams, however, small lentic water
bodies are also highly abundant in the northern parts of Germany. Indeed, more than
95% of German standing waters are lentic small water bodies. Nevertheless, a recent
meta-analysis revealed that only 5% of studies investigating pesticides in freshwaters
were performed on lentic small water bodies (Lorenz et al., 2016). The data query to
the federal states in chapter 3 did also include lotic systems, however, the returned
data and consultations with the federal states revealed that there are currently no such
monitoring data available (Brinke et al., 2016). This highlights the urgent need to adapt
monitoring schemes to also include small standing waters.

Monitoring data can provide an opportunity to inform ERA after authorization and
could possibly trigger a refinement of the assessment (Knauer, 2016). However, current
monitoring mainly addresses streams bigger than those considered in ERA. Our results
indicated that small streams are frequently subject to high risks from pesticides. To
provide a suitable feedback for ERA small agricultural streams must be integrated into
environmental monitoring schemes. As the measurements within the current monitor-
ing schemes generally provide an underestimation, all exceedances of RACs represent
an unacceptable risk. This indicates that the current ERA might have missed potential
risks and that further enhancements of the current authorisation procedure are needed.
Modelling results could be compared with monitoring data in order to validate models
(Knäbel et al., 2014). Moreover, this might give insights for model improvements and
increase the confidence in the used models (Gitzen, 2012).

Especially for the organophosphate Chlorpyrifos and neonicotinoid insecticides risk
thresholds were regularly exceeded. This adds to the existing evidence that this partic-
ular class of insecticides poses a serious threat to freshwaters and stricter regulations
are warranted (Goulson, 2013; Morrissey et al., 2015). The high number of exceedances
shows that ERA for these substances was not accurate and protective enough and lead
to risks for the environment. Recent studies investigating large-scale pesticide risks
had only little (Stehle and Schulz, 2015) or no data on neonicotinoid insecticides (Malaj
et al., 2014) and therefore likely underestimated the risks to freshwaters. However,
this also shows that the analysed spectrum is an important driver of detecting com-
pounds in water samples (Malaj et al., 2014; Schreiner et al., 2016) and must be taken
into account when evaluating monitoring data for risk assessment. The WFD currently
considers only a few relatively well-known substances (European Union, 2013) and a
status assessment based on EQS likely misses the actual chemical pollution (Moschet
et al., 2014). Compared to the data presented in chapter 3, only 4% of the pesticides (19

out of 478 pesticides measure in Germany) are covered by the EU-wide EQS for chem-
ical status assessment (European Union, 2013). Additionally, EU member states must
also derive EQS for river basin specific pollutants (RBSP) as part of the ecological status
assessment on a national level. In Germany 162 RBSP have been specified (of which 54

are used as pesticides, Arle et al. (2016) and Umweltbundesamt (2013)). Nevertheless,
the RBSP approach has been criticised recently because of the decoupling from chemi-
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cal status assessment and differences of several orders of magnitude between member
states (Brack et al., 2017). Recently, neonicotinoids have been incorporated in the watch
list of substances for an EU-wide monitoring (European Union, 2015), so that more
information on the environmental dynamics of those compounds will be available in
the future. Monitoring data provide also valuable information for the prioritisation of
emerging pollutants and for a future monitoring within the WFD (Brack et al., 2017).
Indeed, the data we compiled could be a valuable input for such a prioritisation.

Monitoring under the WFD is also performed for biological components (phytoplank-
ton, fish, macroinvertebrates and other aquatic flora) of freshwaters (European Union,
2000) and a combination with pesticide exposure data might provide valuable insights
into large-scale field effects of chemical substances (Schipper et al., 2014). Currently,
chemical and biological monitoring are not synchronised. On a continental scale, Malaj
et al. (2014) were able to compile ecological status data for only 5% of sites with chemi-
cal measurements. For the dataset presented in chapter 3 we found a spatial match with
biological monitoring for 60% of sites (Brinke et al., 2016). However, as biological data
in Germany is sampled at lower frequencies (often less than once per year) a spatio-
temporal match would result in much less accordance. Synchronising these samplings
in a future monitoring would facilitate the assessment of large-scale post-authorization
field effects of chemical substances.

challenges utilising ’big data’ in environmental

risk assessment

Effect assessment and environmental monitoring produce huge amounts of data. How-
ever, the accuracy of environmental risk assessment is often determined by the avail-
able data (Van den Brink et al., 2016). Useful data for ERA is currently spread over
several largely unconnected databases. E.g. ecotoxicity data is spread over databases
maintained by the U.S. EPA (ECOTOX, U.S. EPA (2016)), the University of Hertford-
shire (PPDB, Lewis et al. (2016)), the German Environment Agency (ETOX, Umwelt-
bundesamt (2016)) and others. Chemical information is similarly spread over sev-
eral databases, like PubChem (Kim et al., 2016) or Chemspider (Pence and Williams,
2010). Additional complications arise because these databases use different identifiers
for chemical substances. The U.S. EPA (U.S. EPA, 2016) uses solely the CAS-Number
for identification, whereas other databases use SMILES (Weininger, 1990) or InChI and
InChIKeys (Heller et al., 2015). Integrating these databases is currently a challenge in
ERA, which is complicated by ambiguous identifiers (e.g. different salts of the same
parent compound). Projects like the NORMAN EMPODAT database (Brack et al., 2012)
or the STOFF-IDENT database (Huckele and Track 2013, http://uni-ko-ld.de/fc) are
first attempts of such an integration. Moreover, integration of monitoring and risk as-
sessment data is a mandatory requirement for landscape level ecotoxicology and risk
assessment (Focks, 2014) and needed for an improved model development and vali-
dation (Brock et al., 2006; Knäbel et al., 2012). Chapter 3 is an example of such an

http://uni-ko-ld.de/fc
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integration but represents only a preliminary assessment. Little is known about spatio-
temporal risk dynamics and these need to be further investigated.

The webchem package, presented in chapter 4, can foster such an integration. How-
ever, data must also be accessible in order to be retrievable by webchem. Unfortunately,
major parts of data produced for environmental risk assessment are not available (Daf-
forn et al., 2015; Schäfer et al., 2013). Recently, it has been demonstrated that data
from the European Registration, Evaluation, Authorisation, and Restriction of Chemi-
cals (REACH) database can be used to improve the characterisation of ecotoxicity in life
cycle assessment (LCA) (Müller et al., 2016). Although this database hosts humongous
amounts of data used in risk assessment, it is currently not available in a convenient
way. Indeed, a systematic data collection contravenes the legal usage of the REACH
database (http://uni-ko-ld.de/fd). This may be also the reason why the quality of
chemical property data submitted to this database is currently unknown (Müller et al.,
2016; Stieger et al., 2014). "Good data is the key to good assessments" (Prof. Anthony Hardy,
Chair ESFA Scientific Committee, http://uni-ko-ld.de/fl) and recent initiatives of
the EFSA towards open science and assessments are highly appreciated. Currently,
webchem can retrieve data from 11 data sources. However, many other data sources
are available and more than 15 other data sources will be implemented in the future
(http://uni-ko-ld.de/fi).

The software tools described in chapters 4 and 5 assist researchers in handling and
cleaning their data. For example, aggregating taxonomic data to a higher taxonomic
level is a common task when analysing data from mesocosm experiments or from field
sampling. Taxize facilitates the retrieval of taxonomic classification, which is the basis
also for more sophisticated aggregation methods (Cuffney et al., 2007). Today, taxize
has been used in more than thirty scientific publications, mainly from ecology using
taxize for data validation and cleaning. Recent applications of the webchem package,
have been demonstrated by Münch and Galizia (2016) and Ranke (2016): Münch and
Galizia (2016) compiled a database for odorant responses of Drosophila melanogaster and
webchem "likely saved [them] hundreds of working hours". Ranke (2016) is using webchem
to compile and store chemical information for further analyses. The analyses performed
in chapter 3 needed to integrate monitoring, chemical and risk assessment data which
would have been difficult without the webchem package. These examples show that
researchers have been missing such tools in the past. If they can reduce their time spent
on data retrieval and handling, they focus more on the quintessence of their research.

http://uni-ko-ld.de/fd
http://uni-ko-ld.de/fl
http://uni-ko-ld.de/fi
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conclusions

In the near future, big amounts of data will be available for environmental risk assess-
ment. Integration and analysis of these data are forthcoming challenges in ecotoxicol-
ogy (Dafforn et al., 2015; Van den Brink et al., 2016). This thesis provides insights into
statistical analyses and experimental designs for a future risk assessment. Statistical
ecotoxicology is just at the beginning and many problems are pending to be solved.

Environmental monitoring data can provide an important feedback to improve envi-
ronmental risk assessment. The integration of environmental risk assessment and envi-
ronmental monitoring in this thesis showed that in Germany highly toxic insecticides
pose a major threat to freshwaters. We also highlighted current problems within ERA
and environmental monitoring. Further improvements of both are needed to safeguard
freshwaters from chemicals. It needs to be re-evaluated if the current use of neoni-
cotinoid insecticides is within the safe operating space to provide long-term health of
ecosystems upon which humanity depends (Rockström et al., 2009).

Big data and modern statistical tools are a means of improving the accuracy and re-
ducing the uncertainty of environmental risk assessment (Van den Brink et al., 2016).
The software described in this thesis contributes its part to these improvements. Never-
theless, science and politics need to develop a culture of openness to promote the safety
of our environment.
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Table A.1.: Count data simulations - Proportion of models converged. N = sample sizes, µC
= mean abundance in control, LM = Linear model after transformation, GLMnb =
negative binomial model, GLMqp = quasi-Poisson model, GLMp = Poisson model

N µC LM GLMnb GLMqp GLMp
3.00 2.00 1.00 0.33 1.00 1.00

3.00 4.00 1.00 0.53 1.00 1.00

3.00 8.00 1.00 0.79 1.00 1.00

3.00 16.00 1.00 0.94 1.00 1.00

3.00 32.00 1.00 0.99 1.00 1.00

3.00 64.00 1.00 1.00 1.00 1.00

3.00 128.00 1.00 1.00 1.00 1.00

6.00 2.00 1.00 0.63 1.00 1.00

6.00 4.00 1.00 0.85 1.00 1.00

6.00 8.00 1.00 0.98 1.00 1.00

6.00 16.00 1.00 1.00 1.00 1.00

6.00 32.00 1.00 1.00 1.00 1.00

6.00 64.00 1.00 1.00 1.00 1.00

6.00 128.00 1.00 1.00 1.00 1.00

9.00 2.00 1.00 0.76 1.00 1.00

9.00 4.00 1.00 0.95 1.00 1.00

9.00 8.00 1.00 1.00 1.00 1.00

9.00 16.00 1.00 1.00 1.00 1.00

9.00 32.00 1.00 1.00 1.00 1.00

9.00 64.00 1.00 1.00 1.00 1.00

9.00 128.00 1.00 1.00 1.00 1.00

Table A.2.: Count data simulations - Power to detect a treatment effect. N = sample sizes, µC
= mean abundance in control, LM = Linear model after transformation, GLMnb =
negative binomial model, GLMqp = quasi-Poisson model, GLMqp = Poisson model,
np = pairwise Wilcoxon test.

N µC LM GLMnb GLMqp GLMp np NA
3.00 2.00 0.13 0.17 0.17 0.08 0.36 0.04

3.00 4.00 0.14 0.18 0.17 0.10 0.54 0.06

3.00 8.00 0.19 0.36 0.24 0.21 0.78 0.09

3.00 16.00 0.23 0.49 0.33 0.29 0.95 0.14

3.00 32.00 0.31 0.57 0.38 0.35 0.99 0.16

3.00 64.00 0.32 0.58 0.38 0.34 1.00 0.18

3.00 128.00 0.35 0.61 0.42 0.37 1.00 0.19

6.00 2.00 0.26 0.30 0.29 0.22 0.49 0.21

6.00 4.00 0.36 0.48 0.44 0.40 0.78 0.32

6.00 8.00 0.48 0.64 0.57 0.53 0.94 0.44

6.00 16.00 0.59 0.76 0.70 0.65 0.99 0.54

6.00 32.00 0.68 0.82 0.76 0.73 1.00 0.63

6.00 64.00 0.72 0.85 0.80 0.77 1.00 0.64

6.00 128.00 0.73 0.84 0.80 0.76 1.00 0.63

9.00 2.00 0.34 0.40 0.42 0.35 0.64 0.31

9.00 4.00 0.56 0.69 0.66 0.63 0.91 0.54

9.00 8.00 0.70 0.82 0.79 0.76 0.98 0.68

9.00 16.00 0.81 0.91 0.89 0.88 1.00 0.79

9.00 32.00 0.89 0.95 0.94 0.92 1.00 0.87

9.00 64.00 0.92 0.96 0.95 0.95 1.00 0.89

9.00 128.00 0.94 0.97 0.96 0.95 1.00 0.91
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Table A.3.: Count data simulations - Power to detect LOEC. N = sample sizes, µC = mean abun-
dance in control, LM = Linear model after transformation, GLMnb = negative bino-
mial model, GLMqp = quasi-Poisson model, GLMp = Poisson model, np = pairwise
Wilcoxon test.

N µC LM GLMnb GLMqp GLMp np
3.00 2.00 0.05 0.01 0.02 0.02 0.00

3.00 4.00 0.08 0.09 0.08 0.15 0.00

3.00 8.00 0.11 0.22 0.12 0.30 0.00

3.00 16.00 0.13 0.30 0.18 0.42 0.00

3.00 32.00 0.17 0.35 0.22 0.50 0.00

3.00 64.00 0.19 0.37 0.23 0.51 0.00

3.00 128.00 0.18 0.37 0.23 0.53 0.00

6.00 2.00 0.14 0.11 0.09 0.15 0.06

6.00 4.00 0.17 0.23 0.19 0.30 0.12

6.00 8.00 0.28 0.39 0.32 0.52 0.20

6.00 16.00 0.33 0.48 0.39 0.59 0.23

6.00 32.00 0.40 0.54 0.47 0.64 0.28

6.00 64.00 0.44 0.56 0.48 0.61 0.29

6.00 128.00 0.44 0.57 0.49 0.56 0.29

9.00 2.00 0.19 0.20 0.18 0.26 0.13

9.00 4.00 0.29 0.37 0.31 0.48 0.27

9.00 8.00 0.40 0.52 0.46 0.62 0.35

9.00 16.00 0.51 0.63 0.57 0.70 0.45

9.00 32.00 0.57 0.69 0.63 0.68 0.52

9.00 64.00 0.61 0.72 0.66 0.65 0.53

9.00 128.00 0.65 0.73 0.68 0.61 0.58

Table A.4.: Count data simulations - Type 1 error to detect a global treatment effect. N = sample
sizes, µC = mean abundance in control, LM = Linear model after transformation,
GLMnb = negative binomial model, GLMqp = quasi-Poisson model, GLMpb = negative
binomial model with parametric boostrap, GLMp = Poisson model, np = Kruskal-
Wallis test.

N µC LM GLMnb GLMqp GLMpb GLMp np
3.00 2.00 0.07 0.04 0.02 0.07 0.21 0.03

3.00 4.00 0.05 0.07 0.03 0.05 0.37 0.01

3.00 8.00 0.04 0.12 0.05 0.05 0.58 0.02

3.00 16.00 0.05 0.14 0.05 0.05 0.84 0.02

3.00 32.00 0.04 0.13 0.03 0.04 0.94 0.01

3.00 64.00 0.05 0.16 0.05 0.05 0.99 0.03

3.00 128.00 0.05 0.13 0.05 0.06 1.00 0.02

6.00 2.00 0.04 0.05 0.04 0.06 0.20 0.03

6.00 4.00 0.05 0.08 0.05 0.05 0.36 0.04

6.00 8.00 0.06 0.09 0.05 0.06 0.58 0.04

6.00 16.00 0.05 0.08 0.05 0.05 0.80 0.04

6.00 32.00 0.06 0.08 0.05 0.06 0.94 0.04

6.00 64.00 0.05 0.09 0.05 0.05 0.98 0.04

6.00 128.00 0.05 0.09 0.04 0.05 1.00 0.04

9.00 2.00 0.06 0.06 0.05 0.07 0.20 0.05

9.00 4.00 0.04 0.08 0.05 0.06 0.36 0.04

9.00 8.00 0.05 0.08 0.05 0.06 0.58 0.04

9.00 16.00 0.04 0.07 0.04 0.05 0.81 0.04

9.00 32.00 0.04 0.06 0.04 0.06 0.94 0.05

9.00 64.00 0.04 0.07 0.05 0.05 0.99 0.04

9.00 128.00 0.05 0.07 0.05 0.06 1.00 0.04
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Table A.5.: Count data simulations - Type 1 error to detect LOEC. N = sample sizes, µC = mean
abundance in control, LM = Linear model after transformation, GLMnb = negative bi-
nomial model, GLMqp = quasi-Poisson model, GLMp = Poisson model, np = pairwise
Wilcoxon.

N µC LM GLMnb GLMqp GLMp np
3.00 2.00 0.05 0.02 0.02 0.02 0.00

3.00 4.00 0.04 0.08 0.04 0.14 0.00

3.00 8.00 0.05 0.11 0.06 0.24 0.00

3.00 16.00 0.03 0.11 0.04 0.36 0.00

3.00 32.00 0.04 0.15 0.05 0.55 0.00

3.00 64.00 0.05 0.16 0.06 0.61 0.00

3.00 128.00 0.04 0.13 0.05 0.68 0.00

6.00 2.00 0.04 0.04 0.02 0.07 0.02

6.00 4.00 0.03 0.06 0.03 0.15 0.02

6.00 8.00 0.04 0.08 0.05 0.26 0.03

6.00 16.00 0.04 0.08 0.05 0.37 0.03

6.00 32.00 0.04 0.08 0.04 0.52 0.03

6.00 64.00 0.05 0.10 0.05 0.61 0.04

6.00 128.00 0.04 0.08 0.04 0.66 0.05

9.00 2.00 0.03 0.05 0.04 0.08 0.03

9.00 4.00 0.04 0.06 0.05 0.15 0.04

9.00 8.00 0.04 0.05 0.04 0.27 0.04

9.00 16.00 0.04 0.07 0.04 0.38 0.03

9.00 32.00 0.03 0.05 0.04 0.49 0.03

9.00 64.00 0.04 0.06 0.04 0.61 0.04

9.00 128.00 0.04 0.06 0.04 0.67 0.04

Table A.6.: Binomial data simulations - Power to detect a global treatment effect. N = sample
sizes, pE = probability in effect treatments, LM = Linear model after transformation,
GLM = binomial model, np = Kruskal-Wallis test.

N pE LM GLM np
3.00 0.60 0.97 1.00 0.87

3.00 0.65 0.90 0.99 0.76

3.00 0.70 0.78 0.95 0.60

3.00 0.75 0.60 0.84 0.41

3.00 0.80 0.36 0.64 0.22

3.00 0.85 0.20 0.41 0.10

3.00 0.90 0.11 0.17 0.05

3.00 0.95 0.06 0.06 0.03

6.00 0.60 1.00 1.00 1.00

6.00 0.65 1.00 1.00 1.00

6.00 0.70 1.00 1.00 1.00

6.00 0.75 0.97 1.00 0.97

6.00 0.80 0.85 0.93 0.82

6.00 0.85 0.53 0.62 0.48

6.00 0.90 0.17 0.24 0.15

6.00 0.95 0.04 0.08 0.03

9.00 0.60 1.00 1.00 1.00

9.00 0.65 1.00 1.00 1.00

9.00 0.70 1.00 1.00 1.00

9.00 0.75 1.00 1.00 1.00

9.00 0.80 0.98 0.99 0.97

9.00 0.85 0.75 0.82 0.73

9.00 0.90 0.26 0.32 0.23

9.00 0.95 0.05 0.07 0.04
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Table A.7.: Count data simulations - Power to detect LOEC. N = sample sizes, pE = probability
in effect treatments, LM = Linear model after transformation, GLM = binomial model,
np = pairwise Wilcoxon.

N pE LM GLM np
3.00 0.60 0.86 0.70 0.00

3.00 0.65 0.74 0.57 0.00

3.00 0.70 0.59 0.40 0.00

3.00 0.75 0.41 0.17 0.00

3.00 0.80 0.23 0.04 0.00

3.00 0.85 0.11 0.01 0.00

3.00 0.90 0.05 0.00 0.00

3.00 0.95 0.01 0.00 0.00

6.00 0.60 0.98 0.95 0.97

6.00 0.65 0.97 0.93 0.91

6.00 0.70 0.93 0.90 0.82

6.00 0.75 0.82 0.78 0.62

6.00 0.80 0.60 0.55 0.36

6.00 0.85 0.33 0.19 0.16

6.00 0.90 0.08 0.01 0.03

6.00 0.95 0.01 0.00 0.00

9.00 0.60 0.97 0.95 0.97

9.00 0.65 0.98 0.96 0.98

9.00 0.70 0.97 0.96 0.96

9.00 0.75 0.94 0.93 0.89

9.00 0.80 0.82 0.81 0.73

9.00 0.85 0.46 0.43 0.35

9.00 0.90 0.13 0.08 0.08

9.00 0.95 0.01 0.00 0.00

Table A.8.: Binomial data simulations - Type 1 error to detect a global treatment effect. N = sam-
ple sizes, p = probability, LM = Linear model after transformation, GLM = binomial
model, np = Kruskal-Wallis test.

N p LM GLM np
3.00 0.60 0.05 0.06 0.02

3.00 0.65 0.06 0.06 0.02

3.00 0.70 0.04 0.05 0.02

3.00 0.75 0.06 0.05 0.02

3.00 0.80 0.05 0.07 0.02

3.00 0.85 0.06 0.07 0.02

3.00 0.90 0.05 0.08 0.01

3.00 0.95 0.06 0.07 0.02

6.00 0.60 0.06 0.06 0.04

6.00 0.65 0.04 0.05 0.03

6.00 0.70 0.04 0.05 0.04

6.00 0.75 0.05 0.05 0.03

6.00 0.80 0.06 0.06 0.04

6.00 0.85 0.04 0.06 0.04

6.00 0.90 0.06 0.06 0.04

6.00 0.95 0.05 0.08 0.03

9.00 0.60 0.05 0.05 0.04

9.00 0.65 0.06 0.06 0.05

9.00 0.70 0.06 0.05 0.05

9.00 0.75 0.05 0.05 0.05

9.00 0.80 0.06 0.07 0.06

9.00 0.85 0.04 0.05 0.04

9.00 0.90 0.06 0.07 0.05

9.00 0.95 0.06 0.06 0.04
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Table A.9.: Binomial data simulations - Type 1 error to detect LOEC. N = sample sizes, p = proba-
bility, LM = Linear model after transformation, GLM = binomial model, np = pairwise
Wilcoxon.

N pE LM GLM np
3.00 0.60 0.03 0.03 0.00

3.00 0.65 0.04 0.03 0.00

3.00 0.70 0.04 0.03 0.00

3.00 0.75 0.04 0.03 0.00

3.00 0.80 0.03 0.01 0.00

3.00 0.85 0.04 0.01 0.00

3.00 0.90 0.03 0.00 0.00

3.00 0.95 0.05 0.00 0.00

6.00 0.60 0.05 0.06 0.02

6.00 0.65 0.03 0.04 0.01

6.00 0.70 0.05 0.04 0.02

6.00 0.75 0.03 0.03 0.02

6.00 0.80 0.04 0.04 0.01

6.00 0.85 0.03 0.02 0.01

6.00 0.90 0.05 0.01 0.01

6.00 0.95 0.05 0.00 0.01

9.00 0.60 0.04 0.04 0.04

9.00 0.65 0.04 0.03 0.04

9.00 0.70 0.05 0.04 0.05

9.00 0.75 0.03 0.04 0.02

9.00 0.80 0.04 0.04 0.03

9.00 0.85 0.04 0.03 0.03

9.00 0.90 0.04 0.03 0.03

9.00 0.95 0.05 0.00 0.01

worked r examples

Count data example

Introduction

In this example we will analyse data from (Brock et al., 2015). The data are count of
mayfly larvae in Macroinvertebrate Artificial Substrate Samplers in 18 mesocosms at
one sampling day. There are 5 treatments and one control group.

First, we load the data, bring it to the long format and remove NA values.

R> df <- read.table(header = TRUE,

text = ’Control T0.1 T0.3 T1 T3 T10

175 29 27 36 26 20

65 114 78 11 13 37

154 72 27 105 33 NA

83 NA NA NA NA NA’)

R> require(reshape2)

R> dfm <- melt(df, value.name = ’abu’, variable.name = ’treatment’)

R> dfm <- dfm[!is.na(dfm[’abu’]), ]

R> head(dfm)

## treatment abu
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## 1 Control 175

## 2 Control 65

## 3 Control 154

## 4 Control 83

## 5 T0.1 29

## 6 T0.1 114

This results in a table with two columns - one indicating the treatment and one with
the measured abundances.

Let’s have a first look at the data:

R> boxplot(abu ~ treatment, data = dfm, xlab = ’Treatment’,

ylab = ’Count’, col = ’grey75’, main = ’Raw abundances’)
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We clearly see a treatment related response. Moreover, we may note that variances
are increasing with increasing abundances.

Assuming a normal distribution of transformed abundances

Data transformation

Next we transform the data using a ln(Ax + 1) transformation. A is chosen so that
the term Ax equals two for the lowest non-zero abundance. We add these transformed
abundances as extra column to our table.



A

124 ecotoxicology is not normal

R> A <- 2 / min(dfm$abu[dfm$abu != 0])

R> A

## [1] 0.1818182

R> dfm$abu_t <- log(A * dfm$abu + 1)

R> head(dfm)

## treatment abu abu_t

## 1 Control 175 3.490983

## 2 Control 65 2.550865

## 3 Control 154 3.367296

## 4 Control 83 2.778254

## 5 T0.1 29 1.836211

## 6 T0.1 114 3.078568

It looks like the transformation does a good job in equalizing the variances:

R> boxplot(abu_t ~ treatment, data = dfm,

xlab = ’Treatment’, ylab = ’Transf. Counts’,

col = ’grey75’, main = ’Transformed abundances’)
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Model fitting

The model from eqn. 2.2 can be easily fitted using the lm() function:

R> modlm <- lm(abu_t ~ treatment, data = dfm)

The residuals vs. fitted values diagnostic plot show no problematic pattern, though
it might be difficult to decide with such a small sample size

R> plot(residuals(modlm) ~ fitted(modlm))

R> abline(h = 0, lty = ’dotted’)
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The summary() gives the estimated coefficients with standard errors and Wald t tests:

R> summary(modlm)

##

## Call:

## lm(formula = abu_t ~ treatment, data = dfm)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.94133 -0.31454 0.04576 0.31813 0.96033
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##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 3.0468 0.2970 10.260 2.71e-07 ***
## treatmentT0.1 -0.5267 0.4536 -1.161 0.26814

## treatmentT0.3 -0.9558 0.4536 -2.107 0.05682 .

## treatmentT1 -1.0069 0.4536 -2.220 0.04646 *
## treatmentT3 -1.4121 0.4536 -3.113 0.00897 **
## treatmentT10 -1.2575 0.5144 -2.445 0.03089 *
## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 0.5939 on 12 degrees of freedom

## Multiple R-squared: 0.5167,Adjusted R-squared: 0.3154

## F-statistic: 2.566 on 5 and 12 DF, p-value: 0.08406

Inference on general treatment effect

Or, if you want to have the ANOVA table with an F-test:

R> summary.aov(modlm)

## Df Sum Sq Mean Sq F value Pr(>F)

## treatment 5 4.526 0.9052 2.566 0.0841 .

## Residuals 12 4.233 0.3528

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

From this output we might infer that we cannot detect any treatment effect (F = 2.566,
p = 0.084).

Inference on LOEC

Let’s move on to the LOEC determination. This can be easily done using the multcomp
package (Hothorn et al., 2008):

Here we perform a one-sided (alternative = ’less’) using Dunnett contrasts of
treatment (mcp(treatment=’Dunnett’)). Moreover, we adjust for multiple testing using
Holm’s method (test = adjusted(’holm’)):

R> require(multcomp)

R> summary(glht(modlm, linfct = mcp(treatment = ’Dunnett’),

alternative = ’less’),

test = adjusted(’holm’))

##

## Simultaneous Tests for General Linear Hypotheses

##

## Multiple Comparisons of Means: Dunnett Contrasts
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##

##

## Fit: lm(formula = abu_t ~ treatment, data = dfm)

##

## Linear Hypotheses:

## Estimate Std. Error t value Pr(<t)

## T0.1 - Control >= 0 -0.5267 0.4536 -1.161 0.1341

## T0.3 - Control >= 0 -0.9558 0.4536 -2.107 0.0697 .

## T1 - Control >= 0 -1.0069 0.4536 -2.220 0.0697 .

## T3 - Control >= 0 -1.4121 0.4536 -3.113 0.0224 *
## T10 - Control >= 0 -1.2575 0.5144 -2.445 0.0618 .

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

## (Adjusted p values reported -- holm method)

Here only treatment 3 mg/L shows a statistically significant difference from control
and is the determined LOEC. The column ’Estimate’ gives the estimated difference in
means between treatments and control and ’Std. Error’ the standard errors of these
estimates.

To determine the LOEC we could also use a Williams type contrast (Bretz et al., 2010).
Here I use a step-up Williams contrast. First we need to define a contrast matrix (see

also ?contrMat()):

# observations per treatment

R> n <- tapply(dfm$abu_t, dfm$treatment, length)

R> k <- length(n)

R> CM <- c()

R> for (i in 1:(k - 1)) {

help <- c(-1, n[2:(i + 1)] / sum(n[2:(i + 1)]), rep(0 , k - i - 1))

CM <- rbind(CM, help)

}

R> rownames(CM) <- paste("C", 1:nrow(CM))

R> CM

## T0.1

## C 1 -1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000

## C 2 -1 0.5000000 0.5000000 0.0000000 0.0000000 0.0000000

## C 3 -1 0.3333333 0.3333333 0.3333333 0.0000000 0.0000000

## C 4 -1 0.2500000 0.2500000 0.2500000 0.2500000 0.0000000

## C 5 -1 0.2142857 0.2142857 0.2142857 0.2142857 0.1428571

Then we supply this contrast matrix to glht():

R> summary(glht(modlm, linfct = mcp(treatment = CM),

alternative = ’less’),

test = adjusted(’holm’))

##
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## Simultaneous Tests for General Linear Hypotheses

##

## Multiple Comparisons of Means: User-defined Contrasts

##

##

## Fit: lm(formula = abu_t ~ treatment, data = dfm)

##

## Linear Hypotheses:

## Estimate Std. Error t value Pr(<t)

## C 1 >= 0 -0.5267 0.4536 -1.161 0.1341

## C 2 >= 0 -0.7413 0.3834 -1.934 0.0771 .

## C 3 >= 0 -0.8298 0.3569 -2.325 0.0576 .

## C 4 >= 0 -0.9754 0.3429 -2.845 0.0295 *
## C 5 >= 0 -1.0157 0.3367 -3.016 0.0268 *
## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

## (Adjusted p values reported -- holm method)

This indicates a LOEC at 3 mg/L.
If we do not adjust for multiple testing (test = adjusted(’none’)), we end up with

the same NOEC (0.1 mg/L) as Brock et al. (2015):

R> summary(glht(modlm, linfct = mcp(treatment = CM),

alternative = ’less’),

test = adjusted(’none’))

##

## Simultaneous Tests for General Linear Hypotheses

##

## Multiple Comparisons of Means: User-defined Contrasts

##

##

## Fit: lm(formula = abu_t ~ treatment, data = dfm)

##

## Linear Hypotheses:

## Estimate Std. Error t value Pr(<t)

## C 1 >= 0 -0.5267 0.4536 -1.161 0.13407

## C 2 >= 0 -0.7413 0.3834 -1.934 0.03855 *
## C 3 >= 0 -0.8298 0.3569 -2.325 0.01921 *
## C 4 >= 0 -0.9754 0.3429 -2.845 0.00739 **
## C 5 >= 0 -1.0157 0.3367 -3.016 0.00537 **
## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

## (Adjusted p values reported -- none method)

Note, this multiple contrast test is different from the original Williams test (Williams,
1972) used by (Brock et al., 2015). See Bretz (1999) for a comparison.
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Assuming a Poisson distribution of abundances

Model fitting

We are dealing with count data, so a Poisson GLM might be a good choice. GLMs can
be fitted using the glm() function and here we fit the model from eqn. 2.3:

R> modpois <- glm(abu ~ treatment, data = dfm,

family = poisson(link = ’log’))

Here family = poisson(link = ’log’) specifies that we want to fit a poisson model
using a log link between response and predictors.

The summary gives the estimated coefficients, standard errors and Wald Z tests:

R> (sum_pois <- summary(modpois))

##

## Call:

## glm(formula = abu ~ treatment, family = poisson(link = "log"),

## data = dfm)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -6.7625 -2.7621 -0.8219 2.7172 6.6602

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 4.78122 0.04579 104.423 < 2e-16 ***
## treatmentT0.1 -0.50920 0.08214 -6.199 5.69e-10 ***
## treatmentT0.3 -0.99703 0.09835 -10.138 < 2e-16 ***
## treatmentT1 -0.85595 0.09314 -9.190 < 2e-16 ***
## treatmentT3 -1.60317 0.12643 -12.680 < 2e-16 ***
## treatmentT10 -1.43132 0.14014 -10.213 < 2e-16 ***
## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## (Dispersion parameter for poisson family taken to be 1)

##

## Null deviance: 604.79 on 17 degrees of freedom

## Residual deviance: 273.77 on 12 degrees of freedom

## AIC: 387.63

##

## Number of Fisher Scoring iterations: 5

But is a poisson distribution appropriate here? A property of the poisson distribution
is that its variance is equal to the mean. A simple diagnostic would be to plot group
variances vs. group means:
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R> require(plyr)

# mean and variance per treatment

R> musd <- ddply(dfm, .(treatment), summarise,

mu = mean(abu),

var = var(abu))

R> musd

## treatment mu var

## 1 Control 119.25000 2857.583

## 2 T0.1 71.66667 1806.333

## 3 T0.3 44.00000 867.000

## 4 T1 50.66667 2370.333

## 5 T3 24.00000 103.000

## 6 T10 28.50000 144.500

# plot mean vs var

R> plot(var ~ mu, data = musd,

xlab = ’mean’, ylab = ’variance’,

main = ’Mean-variance relationships’)

# poisson

R> abline(a = 0, b = 1, col = ’darkblue’, lwd = 2)

# quasi-Poisson

R> abline(a = 0, b = 22.41, col = ’darkgreen’, lwd = 2)

# negative binomial

R> curve(x + (x^2 / 3.91), from = 24, to = 119.25, add = TRUE,

col = ’darkred’, lwd = 2)

R> legend(’topleft’,

legend = c(’NB(k = 3.91)’,’Poisson’,’Quasi-Poisson(t=22.4)’),

col = c(’darkred’, ’darkblue’, ’darkgreen’),

lty = c(1,1, 1),

lwd = c(2,2, 2))
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I also added the assumed mean-variance relationships of the Poisson, quasi-Poisson
and negative binomial models (see below). We clearly see that the variance increases
much more than would be expected under the poisson distribution (the data is overdis-
persed). Moreover, we could check overdispersion from the summary: If the ratio of
residual deviance to degrees of freedom is >1 the data is overdispersed.

R> sum_pois$deviance / sum_pois$df.residual

## [1] 22.81412

Apply quasi-Poisson to deal with overdispersion

The plot above suggests that the variance may increasing stronger than the mean and a
quasi-Poisson or negative binomial model might be more appropriate for this data.

Model fitting

Fitting a quasi-Poisson model (eqn. 2.4) is straight forward:

R> modqpois <- glm(abu ~ treatment, data = dfm, family = ’quasipoisson’)

The summary gives the estimated coefficients:
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R> summary(modqpois)

##

## Call:

## glm(formula = abu ~ treatment, family = "quasipoisson",

## data = dfm)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -6.7625 -2.7621 -0.8219 2.7172 6.6602

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 4.7812 0.2168 22.058 4.43e-11 ***
## treatmentT0.1 -0.5092 0.3889 -1.309 0.2149

## treatmentT0.3 -0.9970 0.4656 -2.142 0.0534 .

## treatmentT1 -0.8560 0.4409 -1.941 0.0761 .

## treatmentT3 -1.6032 0.5985 -2.679 0.0201 *
## treatmentT10 -1.4313 0.6634 -2.157 0.0519 .

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## (Dispersion parameter for quasipoisson family taken to be 22.411)

##

## Null deviance: 604.79 on 17 degrees of freedom

## Residual deviance: 273.77 on 12 degrees of freedom

## AIC: NA

##

## Number of Fisher Scoring iterations: 5

, with the dispersion parameter Θ = 22.41055. Note, that the coefficients estimates
are the same as from the Poisson model, only the standard errors are scaled/wider.

Inference on general treatment effect

An F-test can be performed using drop1():

R> drop1(modqpois, test = ’F’)

## Single term deletions

##

## Model:

## abu ~ treatment

## Df Deviance F value Pr(>F)

## <none> 273.77

## treatment 5 604.79 2.9019 0.06059 .

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Here we would reject that there is treatment effect (at alpha = 0.05).

Inference on LOEC

The LOEC can be determined with multcomp:

R> summary(glht(modqpois, linfct = mcp(treatment = ’Dunnett’),

alternative = ’less’),

test = adjusted(’holm’))

##

## Simultaneous Tests for General Linear Hypotheses

##

## Multiple Comparisons of Means: Dunnett Contrasts

##

##

## Fit: glm(formula = abu ~ treatment, family = "quasipoisson",

## data = dfm)

##

## Linear Hypotheses:

## Estimate Std. Error z value Pr(<z)

## T0.1 - Control >= 0 -0.5092 0.3889 -1.309 0.0952 .

## T0.3 - Control >= 0 -0.9970 0.4656 -2.142 0.0619 .

## T1 - Control >= 0 -0.8560 0.4409 -1.941 0.0619 .

## T3 - Control >= 0 -1.6032 0.5985 -2.679 0.0185 *
## T10 - Control >= 0 -1.4313 0.6634 -2.157 0.0619 .

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

## (Adjusted p values reported -- holm method)

, which determines 3 mg/L as LOEC.

Assuming a negative binomial distribution of abundances

Model fitting

To fit a negative binomial GLM (eqn. 2.5) we could use glm.nb() from the MASS
package (Venables and Ripley, 2002):

R> require(MASS)

R> modnb <- glm.nb(abu ~ treatment, data = dfm)

The estimated coefficients:

R> summary(modnb)

##

## Call:

## glm.nb(formula = abu ~ treatment, data = dfm,

## init.theta = 3.905898474,
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## link = log)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -2.2554 -0.8488 -0.3020 0.5954 1.5899

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 4.7812 0.2571 18.596 < 2e-16 ***
## treatmentT0.1 -0.5092 0.3951 -1.289 0.19746

## treatmentT0.3 -0.9970 0.3988 -2.500 0.01241 *
## treatmentT1 -0.8560 0.3975 -2.153 0.03130 *
## treatmentT3 -1.6032 0.4066 -3.943 8.05e-05 ***
## treatmentT10 -1.4313 0.4601 -3.111 0.00186 **
## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## (Dispersion parameter for Negative Binomial(3.9059)

## family taken to be 1)

##

## Null deviance: 39.057 on 17 degrees of freedom

## Residual deviance: 18.611 on 12 degrees of freedom

## AIC: 181.24

##

## Number of Fisher Scoring iterations: 1

##

##

## Theta: 3.91

## Std. Err.: 1.37

##

## 2 x log-likelihood: -167.238

, with κ = 3.91.

Inference on general treatment effect (LR-test)

For an LR-Test we need to first fit a reduced model:

R> modnb.null <- glm.nb(abu ~ 1, data = dfm)

, so that the dispersion parameter κ is re-estimated for the reduced model. Then we
can compare these two models with a LR-Test:

R> anova(modnb, modnb.null, test = ’Chisq’)

## Likelihood ratio tests of Negative Binomial Models

##

## Response: abu

## Model theta Resid. df 2 x log-lik. Test df LR stat.
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## 1 1 1.861577 17 -181.2281

## 2 treatment 3.905898 12 -167.2383 1 vs 2 5 13.98985

## Pr(Chi)

## 1

## 2 0.015674

, which suggests a treatment related effect on abundances.

Inference on general treatment effect (parametric bootstrap)

To test the LR statistic using paramtric bootstrap, we use two custom functions:
The first function myPBrefdist generates a boostrap sample and return the LR statis-

tic for this sample:

#’ PB of LR statistic

#’ @param m1 Full model

#’ @param m0 reduced model

#’ @param data data used in the models

#’ @return LR of boostrap

# generate reference distribution

R> myPBrefdist <- function(m1, m0, data){

# simulate from null

x0 <- simulate(m0)

# refit with new data

newdata0 <- data

newdata0[ , as.character(formula(m0)[[2]])] <- x0

m1r <- try(update(m1, .~., data = newdata0), silent = TRUE)

m0r <- try(update(m0, .~., data = newdata0), silent = TRUE)

# check convergence (otherwise return NA for LR)

if(inherits(m0r, "try-error") | inherits(m1r, "try-error")){

LR <- ’convergence error’

} else {

if(!is.null(m0r[[’th.warn’]]) | !is.null(m1r[[’th.warn’]])){

LR <- ’convergence error’

} else {

LR <- -2 * (logLik(m0r) - logLik(m1r))

}

}

return(LR)

}

The second one (myPBmodcomp) repeats myPBrefdist many time and returns a p-value:

#’ generate LR distribution and return p value

#’ @param m1 Full model

#’ @param m0 reduced model

#’ @param data data used in m1 and m0

#’ @param npb number of bootstrap samples
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#’ @return p-value of boostrapped LR values

R> myPBmodcomp <- function(m1, m0, data, npb){

## calculate reference distribution

LR <- replicate(npb, myPBrefdist(m1 = m1, m0 = m0, data = data),

simplify = TRUE)

LR <- as.numeric(LR)

nconv_LR <- sum(!is.na(LR))

## original stats

LRo <- c(-2 * (logLik(m0) - logLik(m1)))

## p-value from parametric bootstrap

p.pb <- mean(c(LR, LRo) >= LRo, na.rm = TRUE)

return(list(nconv_LR = nconv_LR, p.pb = p.pb))

}

Sounds complicated, but we can easily apply this to the negativ binomial model
using:

R> set.seed(1234)

R> myPBmodcomp(modnb, modnb.null, data = dfm, npb = 500)

## $nconv_LR

## [1] 499

##

## $p.pb

## [1] 0.042

Here, we specify to generate 500 bootstrap samples (npb = 500). Of these 500 sam-
ples, 499 converged (nconv_LR) (one did not and throws some errors) and gives a p-
value of 0.042.

Inference on LOEC

This is similar to the other parametric models:

R> summary(glht(modnb, linfct = mcp(treatment = ’Dunnett’),

alternative = ’less’),

test = adjusted(’holm’))

##

## Simultaneous Tests for General Linear Hypotheses

##

## Multiple Comparisons of Means: Dunnett Contrasts

##

##

## Fit: glm.nb(formula = abu ~ treatment, data = dfm,

## init.theta = 3.905898474,

## link = log)

##

## Linear Hypotheses:
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## Estimate Std. Error z value Pr(<z)

## T0.1 - Control >= 0 -0.5092 0.3951 -1.289 0.098731 .

## T0.3 - Control >= 0 -0.9970 0.3988 -2.500 0.018615 *
## T1 - Control >= 0 -0.8560 0.3975 -2.153 0.031300 *
## T3 - Control >= 0 -1.6032 0.4066 -3.943 0.000201 ***
## T10 - Control >= 0 -1.4313 0.4601 -3.111 0.003727 **
## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

## (Adjusted p values reported -- holm method)

which suggests a LOEC at the 0.3 mg/l treatment.

Non-parametric methods

Kruskal-Wallis Test

We can use the Kruskal-Wallies test to check if there is a difference between treatments:

R> kruskal.test(abu ~ treatment, data = dfm)

##

## Kruskal-Wallis rank sum test

##

## data: abu by treatment

## Kruskal-Wallis chi-squared = 8.219, df = 5, p-value = 0.1446

Pairwise Wilcoxon test

To determine the LOEC we could use a Pairwise Wilcoxon test. The built-in
pairwise.wilcox.test() compares by default all levels (Tukey-contrasts). We are only
interested in a subset of these comparisons (Dunnett-contrast). Therefore, we use a
custom function, which is a wrapper around wilcox.exact from the exactRankTests
package:

#’ pairwise wilcox.test with dunnett contrasrs

#’ @param y numeric; vector of data values

#’ @param g factor; grouping vector

#’ @param dunnett logical; if TRUE dunnett contrast, otherwise

Tukey-contrasts

#’ @param padj character; method for p-adjustment, see ?p.adjust.

#’ @param ... other arguments passed to exactRankTests::wilcox.exact

R> pairwise_wilcox <- function(y, g, dunnett = TRUE, padj=’holm’,...){

if(!require(exactRankTests)){

stop(’Install exactRankTests package’)

}

tc <- t(combn(nlevels(g), 2))

# take only dunnett comparisons
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if(dunnett){

tc <- tc[tc[ , 1] == 1, ]

}

pval <- numeric(nrow(tc))

# use wilcox.exact (for tied data)

for(i in seq_len(nrow(tc))){

pval[i] <- wilcox.exact(y[as.numeric(g) == tc[i, 2]],

y[as.numeric(g) == tc[i, 1]],exact=TRUE,

...)$p.value

}

# adjust p-values

pval <- p.adjust(pval, padj)

names(pval) = paste(levels(g)[tc[,1]], levels(g)[tc[,2]],

sep = ’ vs. ’)

return(pval)

}

Here, we use one-sided Dunnett contrasts and adjust p-values using Holm’s method:

R> pairwise_wilcox(y = dfm$abu, g = dfm$treatment,

dunnett = TRUE, p.adj = ’holm’, alternative = ’less’)

## Control vs. T0.1 Control vs. T0.3 Control vs. T1 Control vs. T3

## 0.2285714 0.2285714 0.2285714 0.1428571

## Control vs. T10

## 0.2285714

This indicates no treatment effect at no level of concentration.
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Binomial data example

Introduction

Here we will show how to analyse binomial data (x out of n). Data is provided in New-
man (2012) (example 5.1, page 223) and EPA (2002). Ten fathead minnow (Pimephales
promelas) larvals were exposed to sodium pentachlorophenol (NaPCP) and proportions
of the total number alive at the end of the exposure reported.

First we load the data:

R> df <- read.table(header = TRUE, text = ’conc A B C D

0 1 1 0.9 0.9

32 0.8 0.8 1 0.8

64 0.9 1 1 1

128 0.9 0.9 0.8 1

256 0.7 0.9 1 0.5

512 0.4 0.3 0.4 0.2’)

R> df

## conc A B C D

## 1 0 1.0 1.0 0.9 0.9

## 2 32 0.8 0.8 1.0 0.8

## 3 64 0.9 1.0 1.0 1.0

## 4 128 0.9 0.9 0.8 1.0

## 5 256 0.7 0.9 1.0 0.5

## 6 512 0.4 0.3 0.4 0.2

The we do some house-keeping, reformat the data and convert concentration to a
factor:

R> require(reshape2)

# wide to long

R> dfm <- melt(df, id.vars = ’conc’, value.name = ’y’,

variable.name = ’tank’)

# conc as factor

R> dfm$conc <- factor(dfm$conc)

So after data cleaning the data looks like

R> head(dfm)

## conc tank y

## 1 0 A 1.0

## 2 32 A 0.8

## 3 64 A 0.9

## 4 128 A 0.9

## 5 256 A 0.7

## 6 512 A 0.4

Let’s have a first look at the data:
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R> boxplot(y ~ conc, data = dfm,

xlab = ’Concentration’, ylab = ’Proportion surv.’,

main = ’Raw data’, col = ’grey75’)
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This plot indicates a strong effect at the highest concentration.

Assuming a normal distribution of transformed proportions

First, we arcsine transform (eqn. 2.6) the proportions:

R> dfm$y_asin <- ifelse(dfm$y == 1,

asin(1) - asin(sqrt(1/40)),

ifelse(dfm$y == 0,

asin(sqrt(1/40)),

asin(sqrt(dfm$y))

)

)

R> boxplot(y_asin ~ conc, data = dfm,

xlab = ’Concentration’, ylab = ’Proportion surv.’,

main = ’Transformed data’, col = ’grey75’)
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Then, like in the count data example we fit the model using lm():

R> modlm <- lm(y_asin ~ conc, data = dfm)

The summary gives the estimated coefficients:

R> summary(modlm)

##

## Call:

## lm(formula = y_asin ~ conc, data = dfm)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.32401 -0.08149 -0.00527 0.08150 0.30261

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 1.33053 0.07693 17.295 1.16e-12 ***
## conc32 -0.14717 0.10880 -1.353 0.1929

## conc64 0.04074 0.10880 0.374 0.7124

## conc128 -0.07622 0.10880 -0.701 0.4925

## conc256 -0.22113 0.10880 -2.032 0.0571 .

## conc512 -0.72735 0.10880 -6.685 2.86e-06 ***
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## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 0.1539 on 18 degrees of freedom

## Multiple R-squared: 0.7871,Adjusted R-squared: 0.7279

## F-statistic: 13.31 on 5 and 18 DF, p-value: 1.612e-05

The F-test suggests a treatment related effect:

R> drop1(modlm, test = ’F’)

## Single term deletions

##

## Model:

## y_asin ~ conc

## Df Sum of Sq RSS AIC F value Pr(>F)

## <none> 0.42613 -84.746

## conc 5 1.5753 2.00142 -57.621 13.308 1.612e-05 ***
## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

And the LOEC is at the highest concentration:

R> summary(glht(modlm, linfct = mcp(conc = ’Dunnett’),

alternative = ’less’),

test = adjusted(’holm’))

##

## Simultaneous Tests for General Linear Hypotheses

##

## Multiple Comparisons of Means: Dunnett Contrasts

##

##

## Fit: lm(formula = y_asin ~ conc, data = dfm)

##

## Linear Hypotheses:

## Estimate Std. Error t value Pr(<t)

## 32 - 0 >= 0 -0.14717 0.10880 -1.353 0.289

## 64 - 0 >= 0 0.04074 0.10880 0.374 0.644

## 128 - 0 >= 0 -0.07622 0.10880 -0.701 0.493

## 256 - 0 >= 0 -0.22113 0.10880 -2.032 0.114

## 512 - 0 >= 0 -0.72735 0.10880 -6.685 7.14e-06 ***
## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

## (Adjusted p values reported -- holm method)
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Assuming a binomial distribution

The binomial model with a logit link (eqn. 2.7) between predictors and response can be
fitted using the glm() function:

R> modglm <- glm(y ~ conc , data = dfm, family = binomial(link=’logit’),

weights = rep(10, nrow(dfm)))

Here the weights arguments, indicates how many fish where exposed in each treat-
ment (N=10, eqn 2.7).

The summary gives the estimated coefficients:

R> summary(modglm)

##

## Call:

## glm(formula = y ~ conc, family = binomial(link = "logit"),

## data = dfm,

## weights = rep(10, nrow(dfm)))

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -1.8980 -0.5723 0.0000 0.7869 2.2578

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 2.9444 0.7255 4.059 4.94e-05 ***
## conc32 -1.2098 0.8499 -1.423 0.1546

## conc64 0.7191 1.2458 0.577 0.5638

## conc128 -0.7472 0.8967 -0.833 0.4047

## conc256 -1.7077 0.8183 -2.087 0.0369 *
## conc512 -3.6753 0.8002 -4.593 4.37e-06 ***
## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 88.672 on 23 degrees of freedom

## Residual deviance: 23.889 on 18 degrees of freedom

## AIC: 72.862

##

## Number of Fisher Scoring iterations: 5

To perform a LR-test we can used the drop1() function:

R> drop1(modglm, test = ’Chisq’)

## Single term deletions

##
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## Model:

## y ~ conc

## Df Deviance AIC LRT Pr(>Chi)

## <none> 23.889 72.862

## conc 5 88.672 127.645 64.783 1.243e-12 ***
## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Also with the binomial model the LOEC is at the highest concentration:

R> summary(glht(modglm, linfct = mcp(conc = ’Dunnett’),

alternative = ’less’),

test = adjusted(’holm’))

##

## Simultaneous Tests for General Linear Hypotheses

##

## Multiple Comparisons of Means: Dunnett Contrasts

##

##

## Fit: glm(formula = y ~ conc, family = binomial(link = "logit"),

## data = dfm,

## weights = rep(10, nrow(dfm)))

##

## Linear Hypotheses:

## Estimate Std. Error z value Pr(<z)

## 32 - 0 >= 0 -1.2098 0.8499 -1.423 0.2319

## 64 - 0 >= 0 0.7191 1.2458 0.577 0.7181

## 128 - 0 >= 0 -0.7472 0.8967 -0.833 0.4047

## 256 - 0 >= 0 -1.7077 0.8183 -2.087 0.0738 .

## 512 - 0 >= 0 -3.6753 0.8002 -4.593 1.09e-05 ***
## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

## (Adjusted p values reported -- holm method)
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data cleaning

Before combining into a common database, more than 30 datasets have been cleaned
and homogenised separately. Cleaning steps comprised the following steps (Figure B.1
gives a graphical overview):

1. Structure: Datasets have been adjusted to the database structure.

2. Coordinates: Coordinates have been transformed to a common Coordinate Refer-
ence System (DHDN / 3-Grad Gauss-Krüger Zone 3 (EPSG:31467)) and duplicates
merged.

3. Chemicals: Chemical names and identifiers have been unified using the webchem
package (https://github.com/ropensci/webchem).

4. Identifiers: Unique identifiers have been assigned.

5. Units: All concentrations have been converted to µg/L. Values below limit of
quantification were set to zero (and can be used to identify non-detects).

6. Other meta-data: meta-data has been standardised.

7. Temporal resolution: The temporal resolution of the database is 1 day. Samplings
below this resolution have been aggregated by the maximum daily value.

8. Validity Checks: Simple rules for validity checks have been implemented.
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Raw Data

Cleaned
Data

For each dataset

merge datasets

remove duplicates

Adjust coordinates
Adjust structure
Assign substanceID
Assign siteID and sampleID
convert units
adjust names
validity checks

Figure B.1.: Overview on data cleaning steps. After cleaning, data have been stored in a relational
spatial PostgreSQL database.
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overview on compiled data
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Figure B.2.: Number of sampling occasions per year and month.



B

B.2 overview on compiled data 151

0.
0

0.
2

0.
4

0.
6

0.
8

Ja
cc

ar
d 

D
is

ta
nc

e

●

N
I

●
R

P
●

B
Y

●

H
E

●

M
V

●

S
N

●

N
W

●

S
H

●

S
T

●

T
H

●

B
W

●

S
L

Figure B.3.: Complete Linkage Cluster Dendrogram of Jaccard Similarity of analysed compound
spectra between federal states. Abbreviations of state names according to ISO 3166-
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Figure B.4.: Average silhouette width for different cluster sizes of complete linkage clustering of
jaccard similarity of analysed compound spectra between federal states. Two clusters
showed the maximum silhouette width.
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Table B.2.: Overview on pesticides (and metabolites) in the database. a Authorized in Germany
(Source: German Federal Office of Consumer Protection and Food Safety (BVL) as at
March 2015). b Authorized in the European union (Source: EU Pesticides database
as at March 2015). c Regulatory Acceptable Concentration [µg/L] (Source: German
Environment Agency (UBA) as at November 2015).

Name CAS Group Auth.
GERa

Auth.
EUb

RAC c

1 (E)7-(Z)9-
Dodecadienylacetat

55774-32-8 other x x

2 (Z)-9-Dodecenylacetat 16974-11-1 other x x
3 1,3-cis-Dichlorpropen 10061-01-5 other
4 1,3-trans-

Dichlorpropen
10061-02-6 other

5 1-(3,4-
Dichlorphenyl)urea

2327-02-8 metabolite

6 1-(4-
Isopropylphenyl)urea

56046-17-4 metabolite

7 1-Decanol 112-30-1 other x x
8 1-Methylcyclopropen 3100-04-7 other x x
9 2,4,5-T 93-76-5 herbicide
10 2,4,6-Trichlorphenol 88-06-2 metabolite
11 2,4-D 94-75-7 herbicide x x 1.10000

12 2,4-DB 94-82-6 herbicide x
13 2,4-Dichlorphenol 120-83-2 metabolite
14 2,6-Dichlorobenzamid 2008-58-4 metabolite
15 2-

Hydroxydesethylatrazin
19988-24-0 metabolite

16 3-Hydroxy Carbofuran 16655-82-6 metabolite
17 4,6-Dinitro-o-Cresol 534-52-1 insecticide
18 4-tert. Cyclobutylhex-

anon
98-53-3 metabolite

19 AMPA 1066-51-9 metabolite
20 Acequinocyl 57960-19-7 insecticide x x 9.00000

21 Acetamiprid 135410-20-7 insecticide x x 0.24000

22 Acetochlor 34256-82-1 herbicide
23 Acetochlorsulfonsäure 187022-11-3 metabolite
24 Acetochlorsäure 194992-44-4 metabolite
25 Acifluorfen 50594-66-6 herbicide
26 Aclonifen 74070-46-5 herbicide x x 1.06000

27 Acrinathrin 101007-06-1 insecticide x
28 Alachlor 15972-60-8 herbicide
29 Aldicarb 116-06-3 insecticide
30 Aldrin 309-00-2 insecticide
31 Ametoctradin 865318-97-4 fungicide x x
32 Ametryn 834-12-8 herbicide
33 Amidosulfuron 120923-37-7 herbicide x x
34 Aminopyralid 150114-71-9 herbicide x x
35 Amisulbrom 348635-87-0 fungicide x x
36 Anthranilsäure-

isopropylamid
30391-89-0 metabolite

37 Atraton 1610-17-9 herbicide
38 Atrazin 1912-24-9 herbicide
39 Atrazin, 2-Hydroxy 2163-68-0 metabolite
40 Avermectin B1a 71751-41-2 insecticide x x
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Table B.2 Continued.

Name CAS Group Auth.
GERa

Auth.
EUb

RAC c

41 Azadirachtin (Neem) 11141-17-6 insecticide x x
42 Azinphos-ethyl 2642-71-9 insecticide
43 Azinphos-methyl 86-50-0 insecticide
44 Aziprotryn 4658-28-0 herbicide
45 Azoxystrobin 131860-33-8 fungicide x x 0.55000

46 Azoxystrobin-CA metabolite
47 Beflubutamid 113614-08-7 herbicide x x
48 Benalaxyl 71626-11-4 fungicide x x 20.00000

49 Benazolin 3813-05-6 herbicide
50 Bensulfuron-methyl 83055-99-6 herbicide x
51 Bentazon 25057-89-0 herbicide x x 535.00000

52 Benthiavalicarb 413615-35-7 fungicide x x
53 Benzoesäure 65-85-0 fungicide x x
54 Betacypermethrin 65731-84-2 insecticide x
55 Bifenazate 149877-41-8 insecticide x x
56 Bifenox 42576-02-3 herbicide x x
57 Bifenthrin 82657-04-3 insecticide x 0.00050

58 Bixafen 581809-46-3 fungicide x x 0.46000

59 Boscalid 188425-85-6 fungicide x x 12.50000

60 Bromacil 314-40-9 herbicide
61 Bromadiolon 28772-56-7 other x
62 Bromocyclen 1715-40-8 insecticide
63 Bromoxynil 1689-84-5 herbicide x x 3.30000

64 Bupirimat 41483-43-6 fungicide x
65 Buturon 3766-60-7 herbicide
66 Captan 133-06-2 fungicide x x 5.00000

67 Carbendazim 10605-21-7 fungicide 0.15000

68 Carbetamid 16118-49-3 herbicide x
69 Carbofuran 1563-66-2 insecticide
70 Carboxin 5234-68-4 fungicide x
71 Carfentrazone-ethyl 128639-02-1 herbicide x x 0.31000

72 Chloramben 133-90-4 herbicide
73 Chlorantraniliprole 500008-45-7 insecticide x x 0.35500

74 Chlorbromuron 13360-45-7 herbicide
75 Chlordan 57-74-9 insecticide
76 Chlorfenac 85-34-7 herbicide
77 Chlorfenvinphos 470-90-6 insecticide
78 Chlorfluazuron 71422-67-8 insecticide
79 Chloridazon 1698-60-8 herbicide x x 56.00000

80 Chlormequat 7003-89-6 other x x
81 Chloroxuron 1982-47-4 herbicide
82 Chlorpropham 101-21-3 herbicide x x
83 Chlorpyrifos 2921-88-2 insecticide x 0.00050

84 Chlorpyriphos methyl 5598-13-0 insecticide x
85 Chlorsulfuron 64902-72-3 herbicide
86 Chlorthalonil 1897-45-6 fungicide x x
87 Chlorthalonil-SA metabolite
88 Chlortoluron 15545-48-9 herbicide x x 2.30000

89 Cinidon-ethyl 142891-20-1 herbicide
90 Clethodim 99129-21-2 herbicide x x
91 Clodinafop 114420-56-3 herbicide x x
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Table B.2 Continued.

Name CAS Group Auth.
GERa

Auth.
EUb

RAC c

92 Clodinafop-propargyl 105512-06-9 herbicide
93 Clofentezin 74115-24-5 insecticide x
94 Clomazon 81777-89-1 herbicide x x 5.70000

95 Clopyralid 1702-17-6 herbicide x x 1080.00000

96 Cloquintocet-mexyl 99607-70-2 other x
97 Clothianidin 210880-92-5 insecticide x x 0.00700

98 Codlemone (Codlelure) 33956-49-9 other x x
99 Coumaphos 56-72-4 insecticide
100 Crimidin 535-89-7 other
101 Cyanazin 21725-46-2 herbicide
102 Cyazofamid 120116-88-3 fungicide x x
103 Cyclanilide 113136-77-9 other
104 Cycloat 1134-23-2 herbicide
105 Cycloxidim 101205-02-1 herbicide x x
106 Cyflufenamid 180409-60-3 fungicide x x
107 Cyfluthrin (Summe Iso-

mere)
68359-37-5 insecticide

108 Cyhalothrin (Summe
Isomere)

91465-08-6 insecticide x x

109 Cymoxanil 57966-95-7 fungicide x x 4.40000

110 Cypermetryn 52315-07-8 insecticide x x 0.00100

111 Cyproconazol 94361-06-5 fungicide x x
112 Cyprodinil 121552-61-2 fungicide x x 0.75000

113 Cyromazin 66215-27-8 insecticide x
114 Daminozid 1596-84-5 other x x
115 Deiquat 2764-72-9 herbicide x x
116 Deltamethrin 52918-63-5 insecticide x x
117 Demeton-O 298-03-3 insecticide
118 Demeton-S 126-75-0 insecticide
119 Demeton-S-methyl 919-86-8 insecticide
120 Demeton-S-

methylsulfon
17040-19-6 insecticide

121 Desaminometribuzin 35045-02-4 metabolite
122 Desethyl-2-

hydroxyterbuthylazin
66753-06-8 metabolite

123 Desethylatrazin 6190-65-4 metabolite
124 Desethylsebuthylazin 37019-18-4 metabolite
125 Desethylsimazin 6190-65-4 metabolite
126 Desethylterbuthylazin 30125-63-4 metabolite
127 Desisopropylatrazin 1007-28-9 metabolite
128 Desmedipham 13684-56-5 herbicide x x
129 Desmethyldiuron 3567-62-2 metabolite
130 Desmethylisoproturon 34123-57-4 metabolite
131 Desmetryn 1014-69-3 herbicide
132 Desphenyl-Chloridazon 6339-19-1 metabolite
133 Diazinon 333-41-5 insecticide
134 Dicamba 1918-00-9 herbicide x x 180.00000

135 Dichlobenil 1194-65-6 herbicide
136 Dichlofluanid 1085-98-9 fungicide
137 Dichlorprop 120-36-5 herbicide
138 Dichlorprop-P 15165-67-0 herbicide x x
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Table B.2 Continued.

Name CAS Group Auth.
GERa

Auth.
EUb

RAC c

139 Dichlorvos 62-73-7 insecticide
140 Diclofop 40843-25-2 herbicide x
141 Dicofol 115-32-2 insecticide
142 Dieldrin 60-57-1 insecticide
143 Difenacoum 56073-07-5 other x
144 Difenoconazol 119446-68-3 fungicide x x 0.36000

145 Diflubenzuron 35367-38-5 insecticide x
146 Diflufenican 83164-33-4 herbicide x x 0.02500

147 Dimefuron 34205-21-5 herbicide 0.83000

148 Dimethachlor 50563-36-5 herbicide x x 3.50000

149 Dimethachlor-CA metabolite
150 Dimethachlor-

sulfonsäure
metabolite

151 Dimethachlorsäure metabolite
152 Dimethenamid 87674-68-8 herbicide
153 Dimethenamid-CA metabolite
154 Dimethenamid-P 163515-14-8 herbicide x x 1.35000

155 Dimethenamid-SA metabolite
156 Dimethenamid-

sulfonsäure
metabolite

157 Dimethoat 60-51-5 insecticide x x 4.00000

158 Dimethomorph 110488-70-5 fungicide x x 5.60000

159 Dimoxystrobin 149961-52-4 fungicide x x 0.03160

160 Diniconazol 83657-24-3 fungicide
161 Dinoseb 88-85-7 herbicide
162 Dinotefuran 165252-70-0 insecticide
163 Dinoterb 1420-07-1 herbicide
164 Disulfoton 298-04-4 insecticide
165 Dithianon 3347-22-6 fungicide x x 0.78000

166 Diuron 330-54-1 herbicide x 0.79000

167 Dodin 2439-10-3 fungicide x x 5.33000

168 Endosulfan, alpha 959-98-8 insecticide
169 Endosulfan, beta 33213-65-9 insecticide
170 Endosulfansulfat 1031-07-8 metabolite
171 Endrin 72-20-8 insecticide
172 Epoxiconazol 133855-98-8 fungicide x x 0.53750

173 Esfenvalerat 66230-04-4 insecticide x x
174 Etaconazol 60207-93-4 fungicide
175 Ethidimuron 30043-49-3 herbicide
176 Ethirimol 23947-60-6 fungicide
177 Ethofenprox 80844-07-1 insecticide x x
178 Ethofumesat 26225-79-6 herbicide x x 24.00000

179 Etrimfos 38260-54-7 insecticide
180 Famoxadone 131807-57-3 fungicide x x
181 Fenamidon 161326-34-7 fungicide x x
182 Fenamiphos 22224-92-6 insecticide x
183 Fenarimol 60168-88-9 fungicide
184 Fenazaquin 120928-09-8 insecticide x x
185 Fenhexamid 126833-17-8 fungicide x x 10.10000

186 Fenitrothion 122-14-5 insecticide
187 Fenoprop 93-72-1 herbicide
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Table B.2 Continued.

Name CAS Group Auth.
GERa

Auth.
EUb

RAC c

188 Fenoxaprop 95617-09-7 herbicide
189 Fenoxaprop-p 113158-40-0 herbicide x x
190 Fenoxaprop-p-ethyl 71283-80-2 herbicide
191 Fenoxycarb 72490-01-8 insecticide x
192 Fenpropidin 67306-00-7 fungicide x x
193 Fenpropimorph 67564-91-4 fungicide x x 0.19500

194 Fenpyroximat 134098-61-6 insecticide x x
195 Fenthion 55-38-9 insecticide
196 Fenuron 101-42-8 herbicide
197 Fipronil 120068-37-3 insecticide x 0.00077

198 Flamprop 58667-63-3 herbicide
199 Flazasulfuron 104040-78-0 herbicide x x
200 Flonicamid 158062-67-0 insecticide x x 310.00000

201 Florasulam 145701-23-1 herbicide x x
202 Fluazifop 69335-91-7 herbicide 146.00000

203 Fluazifop-P 83066-88-0 herbicide x x 146.00000

204 Fluazifop-P-butyl 79241-46-6 herbicide 7.70000

205 Fluazifop-butyl 69806-50-4 herbicide 7.70000

206 Fluazinam 79622-59-6 fungicide x x 0.26000

207 Fluchloralin 33245-39-5 herbicide
208 Fludioxonil 131341-86-1 fungicide x x 0.50000

209 Flufenacet 142459-58-3 herbicide x x 2.40000

210 Flufenacet-SA metabolite
211 Flufenoxuron 101463-69-8 insecticide
212 Flumioxazin 103361-09-7 herbicide x x
213 Fluometuron 2164-17-2 herbicide x
214 Fluopicolide 239110-15-7 fungicide x x
215 Fluopyram 658066-35-4 fungicide x x 5.12000

216 Fluoxastrobin 361377-29-9 fungicide x x
217 Flupyrsulfuron 150315-10-9 herbicide x x
218 Fluquinconazole 136426-54-5 fungicide x x 0.80000

219 Flurochloridon 61213-25-0 herbicide x
220 Fluroxypyr 69377-81-7 herbicide x x 16.00000

221 Fluroxypyr-
methylheptyl

81406-37-3 herbicide

222 Flurtamone 96525-23-4 herbicide x x 0.99000

223 Flusilazol 85509-19-9 fungicide 1.10000

224 Flutolanil 66332-96-5 fungicide x x
225 Flutriafol 76674-21-0 fungicide x
226 Fluxapyroxad 907204-31-3 fungicide x x
227 Folpet 133-07-3 fungicide x x
228 Foramsulfuron 173159-57-4 herbicide x x 0.09500

229 Fosetyl 15845-66-6 fungicide x x
230 Fosthiazat 98886-44-3 other x x
231 Fuberidazol 3878-19-1 fungicide x x
232 Furalaxyl 57646-30-7 fungicide
233 Furmecyclox 60568-05-0 fungicide
234 Glufosinat 51276-47-2 herbicide x x
235 Glyphosate 1071-83-6 herbicide x x 100.00000

236 HCH, gamma (Lindan) 58-89-9 insecticide
237 Haloxyfop 69806-34-4 herbicide
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Table B.2 Continued.

Name CAS Group Auth.
GERa

Auth.
EUb

RAC c

238 Haloxyfop-P 95977-29-0 herbicide x x
239 Haloxyfop-ethoxyethyl 87237-48-7 herbicide
240 Heptachlor 76-44-8 insecticide
241 Heptachlorepoxid 1024-57-3 metabolite
242 Heptenophos 23560-59-0 insecticide
243 Hexachlorbenzen 118-74-1 fungicide
244 Hexachlorophen 70-30-4 other
245 Hexaconazol 79983-71-4 fungicide
246 Hexaflumuron 86479-06-3 insecticide
247 Hexazinon 51235-04-2 herbicide
248 Hexythiazox 78587-05-0 insecticide x x
249 Hymexazol 10004-44-1 fungicide x x
250 Icaridinsäure metabolite
251 Imazalil 35554-44-0 fungicide x x
252 Imazamox 114311-32-9 herbicide x x
253 Imazapic 104098-48-8 herbicide
254 Imazaquin 81335-37-7 herbicide x
255 Imazethapyr 81335-77-5 herbicide
256 Imazosulfuron 122548-33-8 herbicide x x
257 Imidacloprid 138261-41-3 insecticide x x 0.00900

258 Indoxacarb 173584-44-6 insecticide x x
259 Iodosulfuron 185119-76-0 herbicide x x 0.07900

260 Iodosulfuron-methyl 144550-06-1 herbicide
261 Iodosulfuron-methyl-

sodium
144550-36-7 herbicide

262 Ioxynil 1689-83-4 herbicide x 2.70000

263 Iprodion 36734-19-7 fungicide x x
264 Iprovalicarb 140923-17-7 fungicide x x 189.00000

265 Isodrin 465-73-6 insecticide
266 Isophenphos 25311-71-1 insecticide
267 Isoproturon 34123-59-6 herbicide x x 1.30000

268 Isopyrazam 881685-58-1 fungicide x x
269 Isoxaben 82558-50-7 herbicide x x
270 Isoxaflutole 141112-29-0 herbicide x x
271 Karbutylat 4849-32-5 herbicide
272 Kresoxim-methyl 143390-89-0 fungicide x x 1.00000

273 Kresoximsäure metabolite
274 Lenacil 2164-08-1 herbicide x x 0.65000

275 Linuron 330-55-2 herbicide x
276 MCPA 94-74-6 herbicide x x 9.00000

277 MCPB 94-81-5 herbicide x
278 Malathion 121-75-5 insecticide x
279 Mancozeb 8018-01-7 fungicide x x 0.21900

280 Mandipropamid 374726-62-2 fungicide x x 7.60000

281 Maneb 12427-38-2 fungicide x x
282 Mecoprop 93-65-2 herbicide x 160.00000

283 Mefenpyr-diethyl 135591-00-3 other x
284 Mepanipyrim 110235-47-7 fungicide x x
285 Mepiquat 15302-91-7 other x x
286 Mepronil 55814-41-0 fungicide
287 Meptyldinocap 131-72-6 fungicide x
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Table B.2 Continued.

Name CAS Group Auth.
GERa

Auth.
EUb

RAC c

288 Mesosulfuron 400852-66-6 herbicide x x
289 Mesotrion 104206-82-8 herbicide x x
290 Metaflumizone 139968-49-3 insecticide x x
291 Metalaxyl 57837-19-1 fungicide x 46.00000

292 Metalaxyl-CA 75596-99-5 metabolite
293 Metalaxyl-CA2 104390-56-9 metabolite
294 Metalaxyl-M 70630-17-0 fungicide x x 46.00000

295 Metaldehyd 108-62-3 other x x
296 Metamitron 41394-05-2 herbicide x x 38.00000

297 Metamitron-Desamino 36993-94-9 metabolite
298 Metazachlor 67129-08-2 herbicide x x 0.88000

299 Metazachlor-
dicarbonsäure

metabolite

300 Metazachlor-
sulfonsäure

172960-62-2 metabolite

301 Metazachlorsäure 1231244-60-2 metabolite
302 Metconazol 125116-23-6 fungicide x x
303 Methabenzthiazuron 18691-97-9 herbicide
304 Methamidophos 10265-92-6 insecticide 2.60000

305 Methidathion 950-37-8 insecticide
306 Methiocarb 2032-65-7 insecticide x x 0.01000

307 Methobromuron 3060-89-7 herbicide x 2.00000

308 Methomyl 16752-77-5 insecticide x
309 Methoprotryn 841-06-5 herbicide
310 Methoxychlor 72-43-5 insecticide
311 Methoxyfenozid 161050-58-4 insecticide x x
312 Methyldesphenyl-

Chloridazon
17254-80-7 metabolite

313 Metiram 9006-42-2 fungicide x x
314 Metolachlor 51218-45-2 herbicide
315 Metolachlorsulfonsäure 171118-09-5 metabolite
316 Metolachlorsäure 152019-73-3 metabolite
317 Metosulam 139528-85-1 herbicide x x
318 Metoxuron 19937-59-8 herbicide
319 Metrafenon 220899-03-6 fungicide x x
320 Metribuzin 21087-64-9 herbicide x x 0.58400

321 Metsulfuron 79510-48-8 herbicide x x
322 Metsulfuron-methyl 74223-64-6 herbicide
323 Mevinphos 7786-34-7 insecticide
324 Milbemectin 51596-11-3 insecticide x x
325 Mirex 2385-85-5 insecticide
326 Monolinuron 1746-81-2 herbicide
327 Monuron 150-68-5 herbicide
328 Myclobutanil 88671-89-0 fungicide x x 2.40000

329 Napropamid 15299-99-7 herbicide x x 6.70000

330 Neburon 555-37-3 herbicide
331 Nicosulfuron 111991-09-4 herbicide x x 0.08500

332 Nitenpyram 120738-89-8 insecticide
333 Nitrofen 1836-75-5 herbicide
334 Norflurazon 27314-13-2 herbicide
335 Omethoat 1113-02-6 insecticide



B

B.2 overview on compiled data 159

Table B.2 Continued.

Name CAS Group Auth.
GERa

Auth.
EUb

RAC c

336 Orysastrobin 248593-16-0 fungicide
337 Oxadiazon 19666-30-9 herbicide x
338 Oxadixyl 77732-09-3 fungicide
339 Oxamyl 23135-22-0 insecticide x
340 Oxydemeton-methyl 301-12-2 insecticide 1.10000

341 Paclobutrazol 76738-62-0 other x x
342 Parathion-ethyl 56-38-2 insecticide
343 Parathion-methyl 298-00-0 insecticide
344 Pelargonsäure 112-05-0 herbicide x x
345 Penconazol 66246-88-6 fungicide x x 3.20000

346 Pencycuron 66063-05-6 fungicide x x
347 Pendimethalin 40487-42-1 herbicide x x 0.63000

348 Penflufen 494793-67-8 fungicide x
349 Penoxsulam 219714-96-2 herbicide x x
350 Permethrin 52645-53-1 insecticide
351 Pethoxamid 106700-29-2 herbicide x x 1.77200

352 Phenmedipham 13684-63-4 herbicide x x
353 Phoxim 14816-18-3 insecticide 0.00700

354 Picloram 1918-02-1 herbicide x x
355 Picolinafen 137641-05-5 herbicide x x 0.03600

356 Picoxystrobin 117428-22-5 fungicide x x 0.60000

357 Pinoxaden 243973-20-8 herbicide x
358 Pirimicarb 23103-98-2 insecticide x x 0.09000

359 Pirimicarb-desmethyl 30614-22-3 metabolite
360 Pirimiphos-ethyl 23505-41-1 insecticide
361 Pirimiphos-methyl 29232-93-7 insecticide x x
362 Primisulfuron-methyl 86209-51-0 herbicide
363 Prochloraz 67747-09-5 fungicide x x 5.00000

364 Procymidon 32809-16-8 fungicide
365 Profoxydim 139001-49-3 herbicide x
366 Prohexadion 88805-35-0 other x x
367 Prometryn 7287-19-6 herbicide
368 Propachlor 1918-16-7 herbicide
369 Propamocarb 24579-73-5 fungicide x x
370 Propanil 709-98-8 herbicide
371 Propaquizafop 111479-05-1 herbicide x x
372 Propazin 139-40-2 herbicide
373 Propetamphos 31218-83-4 insecticide
374 Propham 122-42-9 herbicide
375 Propiconazol 60207-90-1 fungicide x x 2.00000

376 Propoxur 114-26-1 insecticide
377 Propoxycarbazone 145026-81-9 herbicide x x
378 Propyzamid 23950-58-5 herbicide x x 34.00000

379 Proquinazid 189278-12-4 fungicide x x
380 Prosulfocarb 52888-80-9 herbicide x x 3.80000

381 Prosulfuron 94125-34-5 herbicide x x
382 Prothioconazol 178928-70-6 fungicide x x 1.71000

383 Prothioconazol-desthio 120983-64-4 metabolite
384 Pymetrozin 123312-89-0 insecticide x x
385 Pyraclostrobin 175013-18-0 fungicide x x
386 Pyraflufen 129630-17-7 herbicide x x
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Table B.2 Continued.

Name CAS Group Auth.
GERa

Auth.
EUb

RAC c

387 Pyrazophos 13457-18-6 fungicide
388 Pyrethrum 8003-34-7 insecticide x x 0.01400

389 Pyridaben 96489-71-3 insecticide x
390 Pyridat 55512-33-9 herbicide x x
391 Pyrifenox 88283-41-4 fungicide
392 Pyrimethanil 53112-28-0 fungicide x x 8.00000

393 Pyroxsulam 422556-08-9 herbicide x x
394 Quinalphos 13593-03-8 insecticide
395 Quinmerac 90717-03-6 herbicide x x 316.00000

396 Quinoclamin 2797-51-5 herbicide x x
397 Quinoxyfen (5,7-di-

chloro-4-(p-fluoro-
phenoxy)quinoline)

124495-18-7 fungicide x x

398 Quintozen 82-68-8 fungicide
399 Quizalofop 76578-12-6 herbicide
400 Quizalofop-ethyl 76578-14-8 herbicide
401 Rimsulfuron 122931-48-0 herbicide x x 0.46000

402 Saflufenacil 372137-35-4 herbicide
403 Sebuthylazin 7286-69-3 herbicide
404 Secbumeton 26259-45-0 herbicide
405 Silthiofam 175217-20-6 fungicide x x
406 Simazin 122-34-9 herbicide
407 Simazin, 2-Hydroxy 2599-11-3 metabolite
408 Spinosad 168316-95-8 insecticide x x 0.06200

409 Spirodiclofen 148477-71-8 insecticide x x
410 Spiromesifen 283594-90-1 insecticide x
411 Spiroxamin 118134-30-8 fungicide x x 0.13000

412 Sulcotrion 99105-77-8 herbicide x x
413 Sulfosulfuron 141776-32-1 herbicide x
414 Sulfurylfluorid 2699-79-8 insecticide x x
415 Tebuconazol 107534-96-3 fungicide x x 0.57800

416 Tebufenozid 112410-23-8 insecticide x x
417 Tebufenpyrad 119168-77-3 insecticide x x
418 Tebutam 35256-85-0 herbicide
419 Teflubenzuron 83121-18-0 insecticide x
420 Tefluthrin 79538-32-2 insecticide x x
421 Telodrin 297-78-9 insecticide
422 Tembotrione 335104-84-2 herbicide x x
423 Tepraloxydim 149979-41-9 herbicide x x
424 Terbumeton 33693-04-8 herbicide
425 Terbuthylazin 5915-41-3 herbicide x x 1.20000

426 Terbutryn 886-50-0 herbicide
427 Terbutylazin-Metabolit

CGA 324007

309923-18-0 metabolite

428 Terbutylazin-Metabolit
SYN 545666

metabolite

429 Tetraconazol 112281-77-3 fungicide x x
430 Thiabendazol 148-79-8 fungicide x x
431 Thiacloprid 111988-49-9 insecticide x x 0.00400

432 Thiacloprid-SA metabolite
433 Thiamethoxam 153719-23-4 insecticide x x 0.04300
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Table B.2 Continued.

Name CAS Group Auth.
GERa

Auth.
EUb

RAC c

434 Thiencarbazon-methyl 317815-83-1 herbicide x x
435 Thifensulfuron-methyl 79277-27-3 herbicide
436 Thifenylsulfuron 79277-67-1 herbicide x x
437 Thiometon 640-15-3 insecticide
438 Thiophanat-methyl 23564-05-8 fungicide x x
439 Thiram 137-26-8 fungicide x x 0.11000

440 Tolclofos-methyl 57018-04-9 fungicide x x
441 Tolylfluanid 731-27-1 fungicide
442 Topramezone 210631-68-8 herbicide x 0.90000

443 Tralkoxydim 87820-88-0 herbicide x
444 Triadimefon 43121-43-3 fungicide
445 Triadimenol 55219-65-3 fungicide x x 3.40000

446 Triallat 2303-17-5 herbicide x
447 Triasulfuron 82097-50-5 herbicide x x
448 Triazophos 24017-47-8 insecticide 0.03000

449 Triazoxid 72459-58-6 fungicide x x
450 Tribenuron 106040-48-6 herbicide x x
451 Tribenuron-methyl 101200-48-0 herbicide
452 Trichlorfon 52-68-6 insecticide
453 Triclopyr 55335-06-3 herbicide x x
454 Trifloxystrobin 141517-21-7 fungicide x x 0.08620

455 Trifloxystrobin-CA2 metabolite
456 Triflumizol 99387-89-0 fungicide x
457 Triflumuron 64628-44-0 insecticide x
458 Trifluralin 1582-09-8 herbicide
459 Triflusulfuron 135990-29-3 herbicide x x
460 Triforin 26644-46-2 fungicide
461 Trinexapac-ethyl 95266-40-3 other x x
462 Triticonazol 131983-72-7 fungicide x x
463 Tritosulfuron 142469-14-5 herbicide x x
464 Valifenalate 283159-90-0 fungicide x x
465 Vinclozolin 50471-44-8 fungicide
466 Warfarin 81-81-2 other
467 Zoxamid 156052-68-5 fungicide x x
468 alpha-Cypermethrin 67375-30-8 insecticide x x
469 cis-Chlordan 5103-71-9 insecticide
470 gamma-Cyhalothrin 76703-62-3 insecticide x x
471 o,p-DDE 3424-82-6 metabolite
472 o,p-DDT 789-02-6 insecticide
473 oxi-Chlordan 27304-13-8 metabolite
474 p,p-DDD (p,p TDE) 72-54-8 insecticide
475 p,p-DDE 72-55-9 metabolite
476 p,p-DDT 50-29-3 insecticide
477 tau-Fluvalinat 102851-06-9 insecticide x x 0.03300

478 trans-Chlordan 5103-74-2 insecticide
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Figure B.5.: Raw data used for the model in equation 2 and Figure 3 of the main article. Color
codes the number of RAC exceedances (on a log-scale). Grey points denote sites
without any exceedance.
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effect of precipitation and season on rq
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Figure B.6.: Distribution of precipitation at sampling occasions. top: at sampling date. bottom:
at the day before sampling.
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Table B.3.: 23 pesticides for which we modelled the relationship between RQ and precipitation
and seasonality, respectively. Order is the same as in Figure 5 of the main text. See
Table B.4 for model coefficients.

Name CAS Group %>LOQ no. > LOQ total no.

1 Azoxystrobin 131860-33-8 fungicide 9.58 644 6723

2 Bentazon 25057-89-0 herbicide 19.43 2313 11905

3 Boscalid 188425-85-6 fungicide 23.00 2175 9455

4 Carbendazim 10605-21-7 fungicide 16.10 582 3615

5 Chlorpyrifos 2921-88-2 insecticide 6.17 865 14026

6 Clothianidin 210880-92-5 insecticide 6.30 141 2237

7 Diflufenican 83164-33-4 herbicide 12.63 1867 14784

8 Dimoxystrobin 149961-52-4 fungicide 6.83 216 3164

9 Diuron 330-54-1 herbicide 12.07 2138 17708

10 Ethofumesat 26225-79-6 herbicide 5.10 998 19552

11 Flufenacet 142459-58-3 herbicide 5.97 772 12923

12 Glyphosate 1071-83-6 herbicide 40.73 1389 3410

13 Imidacloprid 138261-41-3 insecticide 5.88 176 2992

14 Isoproturon 34123-59-6 herbicide 21.84 3984 18239

15 MCPA 94-74-6 herbicide 12.81 1567 12237

16 Mecoprop 93-65-2 herbicide 12.21 1463 11984

17 Metazachlor 67129-08-2 herbicide 9.23 1930 20907

18 Nicosulfuron 111991-09-4 herbicide 5.33 263 4934

19 Propiconazol 60207-90-1 fungicide 5.67 772 13622

20 Quinmerac 90717-03-6 herbicide 13.46 939 6974

21 Tebuconazol 107534-96-3 fungicide 6.08 968 15924

22 Terbuthylazin 5915-41-3 herbicide 14.59 3142 21540
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Table B.4.: Coefficients and CI from per compound models. Bold values denote coefficients where the CI for precipitation encompasses zero. Coeffi-
cients are on the link scale (log for µ and logit for ν).

Compound effect log precip0 log precip−1 Quarter 1 Quarter 2 Quarter 3 Quarter 4

1 Azoxystrobin µ 0.23
(0.15 - 0.31)

0.04

(-0.03 - 0.12)
-3.39

(-3.56 - -3.22)
-3.02

(-3.14 - -2.89)
-3.16

(-3.29 - -3.03)
-3.47

(-3.63 - -3.3)
2 Bentazon µ -0.03

(-0.07 - 0)
0.02

(-0.02 - 0.05)
-9.46

(-9.53 - -9.38)
-8.97

(-9.02 - -8.92)
-9.14

(-9.2 - -9.07)
-9.46

(-9.53 - -9.39)
3 Boscalid µ 0.06

(0.02 - 0.1)
0.1
(0.06 - 0.13)

-6.72

(-6.79 - -6.64)
-6.42

(-6.49 - -6.36)
-6.51

(-6.58 - -6.45)
-6.58

(-6.65 - -6.5)
4 Carbendazim µ -0.1

(-0.16 - -0.03)
0.16
(0.09 - 0.22)

-2.42

(-2.58 - -2.27)
-1.95

(-2.05 - -1.84)
-2.11

(-2.22 - -2)
-2.32

(-2.46 - -2.18)
5 Chlorpyrifos µ 0.08

(0.04 - 0.13)
-0.03

(-0.08 - 0.01)
0.85

(0.77 - 0.93)
1

(0.93 - 1.06)
0.9
(0.82 - 0.98)

0.94

(0.86 - 1.03)
6 Clothianidin µ 0.08

(-0.04 - 0.19)
-0.1
(-0.21 - 0.02)

0.94

(0.77 - 1.12)
0.67

(0.49 - 0.84)
1.02

(0.8 - 1.25)
1.55

(1.32 - 1.78)
7 Diflufenican µ -0.02

(-0.06 - 0.02)
0.05
(0.02 - 0.09)

-0.56

(-0.62 - -0.5)
-1.01

(-1.07 - -0.94)
-1.08

(-1.16 - -1)
-0.71

(-0.77 - -0.65)
8 Dimoxystrobin µ 0.35

(0.2 - 0.5)
0.02

(-0.15 - 0.19)
-1.17

(-1.44 - -0.89)
-0.42

(-0.64 - -0.2)
-0.07

(-0.39 - 0.25)
-0.02

(-0.35 - 0.31)
9 Diuron µ 0

(-0.03 - 0.03)
0.07
(0.04 - 0.1)

-2.72

(-2.83 - -2.61)
-2.43

(-2.47 - -2.39)
-2.48

(-2.53 - -2.44)
-2.64

(-2.71 - -2.58)
10 Ethofumesat µ 0.12

(0.06 - 0.17)
0.01

(-0.05 - 0.06)
-6.11

(-6.27 - -5.96)
-5.49

(-5.56 - -5.42)
-6.18

(-6.29 - -6.08)
-6.1
(-6.24 - -5.95)

11 Flufenacet µ 0.03

(-0.02 - 0.08)
0.05
(0.01 - 0.1)

-3.71

(-3.79 - -3.62)
-3.7
(-3.81 - -3.59)

-3.29

(-3.44 - -3.15)
-3.63

(-3.68 - -3.57)
12 Glyphosate µ -0.04

(-0.09 - 0.01)
0.14
(0.09 - 0.19)

-6.3
(-6.46 - -6.13)

-6.08

(-6.16 - -6)
-5.73

(-5.8 - -5.66)
-6.11

(-6.21 - -6.01)
13 Imidacloprid µ 0

(-0.08 - 0.09)
-0.01

(-0.09 - 0.07)
0.61

(0.33 - 0.88)
1.15

(1.02 - 1.27)
1.4
(1.28 - 1.53)

1.24

(1.06 - 1.42)
14 Isoproturon µ 0.02

(-0.02 - 0.05)
0.21
(0.17 - 0.24)

-3.29

(-3.37 - -3.22)
-3.01

(-3.06 - -2.96)
-3.43

(-3.5 - -3.35)
-2.79

(-2.84 - -2.73)
15 MCPA µ 0.04

(-0.01 - 0.09)
0.09
(0.04 - 0.14)

-5.07

(-5.27 - -4.87)
-4.25

(-4.32 - -4.19)
-4.48

(-4.57 - -4.4)
-4.7
(-4.81 - -4.58)
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Table B.4 Continued.

Compound effect log precip0 log precip−1 Quarter 1 Quarter 2 Quarter 3 Quarter 4

16 Mecoprop µ 0.04

(-0.01 - 0.09)
0.05
(0.01 - 0.1)

-8.36

(-8.49 - -8.22)
-7.59

(-7.65 - -7.52)
-7.77

(-7.85 - -7.69)
-8.07

(-8.18 - -7.97)
17 Metazachlor µ -0.07

(-0.12 - -0.02)
0.09
(0.04 - 0.13)

-2.97

(-3.06 - -2.88)
-2.94

(-3.04 - -2.85)
-2.21

(-2.28 - -2.14)
-2.77

(-2.84 - -2.7)
18 Nicosulfuron µ 0.23

(0.12 - 0.34)
-0.28
(-0.39 - -0.18)

-0.98

(-1.22 - -0.74)
-0.2
(-0.36 - -0.03)

-0.07

(-0.25 - 0.11)
-0.97

(-1.16 - -0.78)
19 Propiconazol µ 0.08

(0.02 - 0.14)
0.01

(-0.05 - 0.07)
-3.99

(-4.15 - -3.83)
-3.63

(-3.71 - -3.55)
-3.82

(-3.91 - -3.72)
-3.63

(-3.74 - -3.53)
20 Quinmerac µ 0.02

(-0.05 - 0.09)
0.05

(-0.01 - 0.12)
-9.08

(-9.19 - -8.96)
-9.12

(-9.24 - -9)
-8.46

(-8.59 - -8.33)
-8.64

(-8.72 - -8.55)
21 Tebuconazol µ -0.01

(-0.06 - 0.03)
0.09
(0.04 - 0.14)

-2.17

(-2.28 - -2.06)
-1.93

(-2 - -1.86)
-2.2
(-2.28 - -2.11)

-2.15

(-2.24 - -2.06)
22 Terbuthylazin µ 0.09

(0.06 - 0.13)
0.11
(0.08 - 0.15)

-3.65

(-3.73 - -3.56)
-2.78

(-2.84 - -2.73)
-3.25

(-3.3 - -3.19)
-3.52

(-3.59 - -3.44)

23 Azoxystrobin ν 0

(-0.13 - 0.13)
0.24
(0.11 - 0.37)

-3.5
(-3.76 - -3.25)

-2.33

(-2.54 - -2.13)
-2.14

(-2.36 - -1.92)
-3.2
(-3.45 - -2.95)

24 Bentazon ν 0

(-0.08 - 0.08)
0.05

(-0.03 - 0.13)
-2.26

(-2.44 - -2.09)
-1.53

(-1.65 - -1.4)
-1.88

(-2.02 - -1.74)
-2.25

(-2.4 - -2.11)
25 Boscalid ν -0.01

(-0.1 - 0.08)
0.45
(0.37 - 0.54)

-1.99

(-2.16 - -1.82)
-1.22

(-1.36 - -1.07)
-1.24

(-1.38 - -1.09)
-1.81

(-1.96 - -1.65)
26 Carbendazim ν 0.09

(-0.04 - 0.22)
0.19
(0.06 - 0.32)

-2.72

(-3 - -2.44)
-1.49

(-1.69 - -1.28)
-1.26

(-1.48 - -1.04)
-2.31

(-2.56 - -2.06)
27 Chlorpyrifos ν 0.11

(0.01 - 0.21)
0.1
(0 - 0.19)

-3.27

(-3.45 - -3.1)
-2.63

(-2.79 - -2.48)
-3.22

(-3.39 - -3.05)
-3.42

(-3.61 - -3.23)
28 Clothianidin ν -0.05

(-0.3 - 0.2)
0.19

(-0.07 - 0.44)
-2.66

(-3.06 - -2.26)
-2.58

(-2.97 - -2.19)
-3.19

(-3.69 - -2.69)
-3.93

(-4.46 - -3.41)
29 Diflufenican ν 0.06

(-0.02 - 0.14)
0.26
(0.17 - 0.34)

-1.89

(-2.03 - -1.75)
-2.45

(-2.59 - -2.31)
-3.14

(-3.3 - -2.98)
-2.09

(-2.22 - -1.95)
30 Dimoxystrobin ν 0.19

(-0.02 - 0.41)
0.23
(0.01 - 0.46)

-3.37

(-3.78 - -2.96)
-2.25

(-2.58 - -1.91)
-3.14

(-3.55 - -2.72)
-3.58

(-4.02 - -3.15)
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Table B.4 Continued.

Compound effect log precip0 log precip−1 Quarter 1 Quarter 2 Quarter 3 Quarter 4

31 Diuron ν 0.05

(-0.01 - 0.12)
0.28
(0.22 - 0.35)

-3.88

(-4.09 - -3.67)
-1.67

(-1.76 - -1.58)
-1.74

(-1.84 - -1.63)
-2.72

(-2.85 - -2.6)
32 Ethofumesat ν 0.09

(-0.01 - 0.18)
0.21
(0.12 - 0.3)

-4.39

(-4.63 - -4.16)
-2.23

(-2.35 - -2.11)
-3.49

(-3.66 - -3.32)
-4.23

(-4.44 - -4.01)
33 Flufenacet ν 0.16

(0.06 - 0.27)
0.59
(0.49 - 0.69)

-2.57

(-2.75 - -2.39)
-3.8
(-4.01 - -3.58)

-4.17

(-4.44 - -3.89)
-1.76

(-1.88 - -1.64)
34 Glyphosate ν 0.11

(0 - 0.23)
0.29
(0.18 - 0.4)

-1.79

(-2.09 - -1.48)
-0.12

(-0.3 - 0.05)
0.34

(0.17 - 0.51)
-0.53

(-0.73 - -0.32)
35 Imidacloprid ν -0.01

(-0.26 - 0.25)
-0.1
(-0.34 - 0.15)

-4.68

(-5.35 - -4)
-3.04

(-3.41 - -2.68)
-2.83

(-3.21 - -2.45)
-4.07

(-4.56 - -3.58)
36 Isoproturon ν 0.04

(-0.02 - 0.09)
0.31
(0.25 - 0.36)

-1.82

(-1.93 - -1.7)
-1.19

(-1.27 - -1.12)
-2.11

(-2.22 - -2.01)
-0.8
(-0.88 - -0.72)

37 MCPA ν -0.06

(-0.13 - 0.02)
0.35
(0.28 - 0.42)

-3.79

(-4.04 - -3.54)
-1.27

(-1.37 - -1.18)
-1.81

(-1.93 - -1.68)
-2.77

(-2.92 - -2.62)
38 Mecoprop ν 0.07

(-0.01 - 0.15)
0.35
(0.27 - 0.42)

-3.04

(-3.23 - -2.84)
-1.56

(-1.67 - -1.45)
-1.89

(-2.02 - -1.76)
-2.71

(-2.86 - -2.56)
39 Metazachlor ν 0.06

(-0.01 - 0.13)
0.21
(0.14 - 0.27)

-2.81

(-2.94 - -2.67)
-3.22

(-3.36 - -3.09)
-2.11

(-2.22 - -2.01)
-2.05

(-2.16 - -1.95)
40 Nicosulfuron ν 0.2

(0.01 - 0.39)
0.26
(0.07 - 0.45)

-3.87

(-4.27 - -3.48)
-2.96

(-3.26 - -2.66)
-2.99

(-3.3 - -2.68)
-3.23

(-3.56 - -2.9)
41 Propiconazol ν -0.02

(-0.13 - 0.09)
0.39
(0.29 - 0.5)

-4.05

(-4.32 - -3.78)
-2.72

(-2.88 - -2.57)
-2.88

(-3.06 - -2.7)
-3.43

(-3.63 - -3.24)
42 Quinmerac ν -0.03

(-0.13 - 0.08)
0.32
(0.22 - 0.42)

-2.23

(-2.43 - -2.02)
-2.58

(-2.76 - -2.41)
-2.49

(-2.69 - -2.29)
-1.2
(-1.34 - -1.06)

43 Tebuconazol ν 0.1
(0.01 - 0.2)

0.3
(0.21 - 0.39)

-3.41

(-3.61 - -3.2)
-2.66

(-2.8 - -2.53)
-2.9
(-3.06 - -2.75)

-3.17

(-3.34 - -3)
44 Terbuthylazin ν 0.06

(0.01 - 0.12)
0.28
(0.22 - 0.33)

-2.92

(-3.05 - -2.79)
-1.45

(-1.53 - -1.37)
-1.48

(-1.57 - -1.39)
-2.47

(-2.58 - -2.37)
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Figure B.7.: Graphical representation of coefficients from table B.4. Top row: Effect of precipi-
tation at the day before sampling and at day of sampling. Bottom row: estimates
for the four Quarters. Each dot represents one compound (in the order described
in table B.3). Coefficients where the CI encompasses zero are shown in gray colour.
Coefficients are shown on the link scale (log for µ and logit for ν).
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pesticides in small streams

Table B.5.: Overview on RAC exceedances of the 78 compounds with more than 1000 measure-
ments. No. = number of measurements; % RQ >1 = RAC exceedances; % RQ >1 |
>LOQ= RAC exceedances as fraction of detects.

Name No. No.
>LOQ

%
>LOQ

No.
RQ >1

% RQ >1 % RQ >1

| >LOQ

2,4-D 12290 284 2.3 10 0.1 3.5
Aclonifen 9861 67 0.7 4 0.0 6.0
Azoxystrobin 7059 690 9.8 6 0.1 0.9
Benalaxyl 6964 10 0.1 0 0.0 0.0
Bentazon 12429 2421 19.5 0 0.0 0.0
Bifenthrin 1353 0 0.0 0 0.0
Boscalid 9886 2296 23.2 0 0.0 0.0
Bromoxynil 9451 78 0.8 0 0.0 0.0
Carbendazim 3851 654 17.0 12 0.3 1.8
Chloridazon 15724 511 3.2 0 0.0 0.0
Chlorpyrifos 14704 954 6.5 838 5.7 87.8
Chlortoluron 18286 371 2.0 2 0.0 0.5
Clomazon 9268 440 4.7 0 0.0 0.0
Clopyralid 5520 107 1.9 0 0.0 0.0
Clothianidin 2409 154 6.4 123 5.1 79.9
Cypermetryn 1428 5 0.4 1 0.1 20.0
Cyprodinil 9779 118 1.2 0 0.0 0.0
Dicamba 7641 76 1.0 0 0.0 0.0
Difenoconazol 1644 11 0.7 2 0.1 18.2
Diflufenican 15457 1932 12.5 273 1.8 14.1
Dimefuron 7833 5 0.1 0 0.0 0.0
Dimethachlor 8858 344 3.9 0 0.0 0.0
Dimethoat 14423 185 1.3 1 0.0 0.5
Dimethomorph 2316 91 3.9 0 0.0 0.0
Dimoxystrobin 3370 232 6.9 49 1.5 21.1
Diuron 18560 2336 12.6 40 0.2 1.7
Epoxiconazol 16454 621 3.8 7 0.0 1.1
Ethofumesat 20430 1078 5.3 0 0.0 0.0
Fenhexamid 2690 42 1.6 0 0.0 0.0
Fenpropimorph 12850 199 1.5 5 0.0 2.5
Fluazifop 3022 57 1.9 0 0.0 0.0
Fluazifop-P 4033 14 0.3 0 0.0 0.0
Fluazifop-P-butyl 1728 0 0.0 0 0.0
Fluazifop-butyl 1287 0 0.0 0 0.0
Fludioxonil 3203 42 1.3 1 0.0 2.4
Flufenacet 13509 798 5.9 1 0.0 0.1
Fluquinconazole 6762 117 1.7 0 0.0 0.0
Fluroxypyr 8096 378 4.7 0 0.0 0.0
Flurtamone 16958 638 3.8 2 0.0 0.3
Flusilazol 5257 53 1.0 1 0.0 1.9
Glyphosate 3557 1455 40.9 1 0.0 0.1
Imidacloprid 3169 192 6.1 169 5.3 88.0
Ioxynil 8114 20 0.2 0 0.0 0.0
Isoproturon 19112 4164 21.8 92 0.5 2.2
Kresoxim-methyl 6929 14 0.2 0 0.0 0.0
Lenacil 13837 183 1.3 0 0.0 0.0
MCPA 12773 1687 13.2 2 0.0 0.1
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Table B.5 Continued.

Name No. No.
>LOQ

%
>LOQ

No.
RQ >1

% RQ >1 % RQ >1

| >LOQ

Mecoprop 12521 1552 12.4 0 0.0 0.0
Metalaxyl 14460 299 2.1 0 0.0 0.0
Metamitron 15390 613 4.0 0 0.0 0.0
Metazachlor 21906 2015 9.2 55 0.3 2.7
Methamidophos 1303 0 0.0 0 0.0
Methobromuron 14968 24 0.2 1 0.0 4.2
Metribuzin 15411 192 1.2 15 0.1 7.8
Napropamid 9914 269 2.7 1 0.0 0.4
Nicosulfuron 5172 288 5.6 77 1.5 26.7
Penconazol 4846 159 3.3 0 0.0 0.0
Pendimethalin 16997 328 1.9 4 0.0 1.2
Pethoxamid 3102 37 1.2 0 0.0 0.0
Phoxim 1492 0 0.0 0 0.0
Picolinafen 8901 11 0.1 2 0.0 18.2
Picoxystrobin 3620 7 0.2 0 0.0 0.0
Pirimicarb 11330 232 2.0 27 0.2 11.6
Prochloraz 5795 33 0.6 0 0.0 0.0
Propiconazol 14250 818 5.7 7 0.0 0.9
Propyzamid 11937 453 3.8 0 0.0 0.0
Prosulfocarb 5001 126 2.5 0 0.0 0.0
Pyrimethanil 8136 122 1.5 0 0.0 0.0
Quinmerac 7291 989 13.6 0 0.0 0.0
Rimsulfuron 1240 2 0.2 0 0.0 0.0
Spiroxamin 2469 109 4.4 1 0.0 0.9
Tebuconazol 16584 1024 6.2 26 0.2 2.5
Terbuthylazin 22568 3370 14.9 35 0.2 1.0
Thiacloprid 3540 85 2.4 85 2.4 100.0
Thiamethoxam 1853 39 2.1 7 0.4 17.9
Triadimenol 3067 51 1.7 0 0.0 0.0
Triazophos 3588 2 0.1 1 0.0 50.0
Trifloxystrobin 3674 10 0.3 1 0.0 10.0
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Figure B.8.: Cumulative distribution of sites exceeding RAC. Dotted lines indicate fraction of sites
exceeding a RQ of 1 and 0.1. 23% of the sites showed no detection of compounds
with available RAC values and are not shown due to logarithmic x-axis.
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Figure B.9.: Proportion of samples with detects in small streams. Only Compounds with more than 100 samples and 15% of detects are shown.
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Figure B.10.: Distribution of the number of quantified compounds in the samples.
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catchment size - stream width relationship

We studied the relationship between catchment size based on three datasets containing this informations:
Data delivered by the federal state Thuringia, Voß et al. (2015) and Fernández et al. (2015) (both from
Rhineland-Palatinate). We fitted to each dataset separately and to the combined dataset a power-function.
The resulting models are shown in Figure B.11.
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Figure B.11.: Relationship between catchment size and stream width. A power function has been
fitted to each dataset separately (colored dashed lines) and the combined dataset
(black line and equation). The gray rectangle marks the estimated catchment size
for a width of 1 m (=7 km2).
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C SUPPLEMENTAL MATER IAL FOR :

TAX IZE : TAXONOMIC SEARCH AND

RETR I EVAL

a complete reproducible workflow - from a

species list to a phylogeny, and

distribution map.

If you aren’t familiar with a complete workflow in R, it may be difficult to visualize the process. In R,
everything is programmatic, so the whole workflow can be in one place, and be repeated whenever necessary.
The following is a workflow for taxize, going from a species list to a phylogeny.

First, install taxize

R> install.packages("taxize")

Then load it into R

R> library(taxize)

Most of us will start out with a species list, something like the one below. Note that each of the names is
spelled incorrectly.

R> splist <- c("Helanthus annuus", "Pinos contorta",

"Collomia grandiflorra", "Rosa california",

"Mimulus bicolour", "Nicotiana glauca", "Maddia sativa")

There are many ways to resolve taxonomic names in taxize. Of course, the ideal name resolver will do
the work behind the scenes for you so that you don’t have to do things like fuzzy matching. There are a few
services in taxize like this we can choose from: the Global Names Resolver service from EOL (see function
gnr_resolve) and the Taxonomic Name Resolution Service from iPlant (see function tnrs). In this case let’s use
the function tnrs.

# The tnrs function accepts a vector of 1 or more

R> splist_tnrs <- tnrs(query = splist, getpost = "POST",

source_ = "iPlant_TNRS")

# Remove some fields

R> (splist_tnrs <- splist_tnrs[, !names(splist_tnrs) %in%

c("matchedName", "annotations",

"uri")])

# submittedName acceptedName sourceId score

# 5 Helanthus annuus Helianthus annuus iPlant_TNRS 0.98

# 1 Pinos contorta Pinus contorta iPlant_TNRS 0.96

# 7 Collomia grandiflorra Collomia grandiflora iPlant_TNRS 0.99

# 6 Rosa california Rosa californica iPlant_TNRS 0.99

177
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# 4 Mimulus bicolour Mimulus bicolor iPlant_TNRS 0.98

# 3 Nicotiana glauca Nicotiana glauca iPlant_TNRS 1

# 2 Maddia sativa Madia sativa iPlant_TNRS 0.97

# Note the scores. They suggest that there were no perfect matches,

# but they were all very close, ranging from 0.77 to 0.99

# (1 is the highest).

# Let’s assume the names in the ’acceptedName’ column

# are correct (and they should

# be).

# So here’s our updated species list

R> (splist <- as.character(splist_tnrs$acceptedName))

# [1] "Helianthus annuus" "Pinus contorta" "Collomia grandiflora"

# [4] "Rosa californica" "Mimulus bicolor" "Nicotiana glauca"

# [7] "Madia sativa"

Another thing we may want to do is collect common names for our taxa.

R> tsns <- get_tsn(searchterm = splist, searchtype = "sciname",

verbose = FALSE)

R> comnames <- lapply(tsns, getcommonnamesfromtsn)

# Unfortunately, common names are not standardized like species

# names, so there are multiple common names for each taxon

R> sapply(comnames, length)

# [1] 3 3 3 3 3 3 3

# So let’s just take the first common name for each species

R> comnames_vec <- do.call(c, lapply(comnames,

function(x) as.character(x[1, "comname"])))

# And we can make a data.frame of our scientific and common names

R> (allnames <- data.frame(spname = splist, comname = comnames_vec))

# spname comname

# 1 Helianthus annuus common sunflower

# 2 Pinus contorta lodgepole pine

# 3 Collomia grandiflora largeflowered collomia

# 4 Rosa californica California wildrose

# 5 Mimulus bicolor yellow and white monkeyflower

# 6 Nicotiana glauca tree tobacco

# 7 Madia sativa coast tarweed

Another common task is getting the taxonomic tree upstream from your study taxa. We often know
what family or order our taxa are in, but it we often don’t know the tribes, subclasses, and superfamilies.
taxize provides many avenues to getting classifications. Two of them are accessible via a single function
(classification): the Integrated Taxonomic Information System (ITIS) and National Center for Biotechnology
Information (NCBI); and via the Catalogue of Life (see function col_classification):
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# As we already have Taxonomic Serial Numbers from ITIS, let’s just

# get classifications from ITIS.Note that we could use uBio instead.

R> class_list <- classification(tsns)

R> sapply(class_list, nrow)

# [1] 12 11 12 12 12 12 12

# And we can attach these names to our allnames data.frame

R> library(plyr)

R> gethiernames <- function(x) {

temp <- x[, c("rankName", "taxonName")]

values <- data.frame(t(temp[, 2]))

names(values) <- temp[, 1]

return(values)

R> }

R> class_df <- ldply(class_list, gethiernames)

R> allnames_df <- merge(allnames, class_df, by.x = "spname",

by.y = "Species")

# Now that we have allnames_df, we can start to see some

# relationships among species simply by their shared taxonomic names

R> allnames_df[1:2, ]

# spname comname Kingdom Subkingdom

# 1 Collomia grandiflora largeflowered collomia Plantae Viridaeplantae

# 2 Helianthus annuus common sunflower Plantae Viridaeplantae

# Infrakingdom Division Subdivision Infradivision

# 1 Streptophyta Tracheophyta Spermatophytina Angiospermae

# 2 Streptophyta Tracheophyta Spermatophytina Angiospermae

# Class Superorder Order Family Genus

# 1 Magnoliopsida Asteranae Ericales Polemoniaceae Collomia

# 2 Magnoliopsida Asteranae Asterales Asteraceae Helianthus

# Ah, so Abies and Bartlettia are in different infradivisions, but

# share taxonomic names above that point.

However, taxonomy can only get you so far. Shared ancestry can be reconstructed from molecular data,
and phylogenies created. Phylomatic is a web service with an API that we can use to get a phylogeny.

# Fetch phylogeny from phylomatic

R> phylogeny <- phylomatic_tree(taxa = as.character(allnames$spname),

taxnames = TRUE,

get = "POST", informat = "newick", method = "phylomatic",

storedtree = "R20120829",

taxaformat = "slashpath", outformat = "newick", clean = "true",

parallel = TRUE)

# Format teeth-labels

R> phylogeny$tip.label <- capwords(phylogeny$tip.label,

onlyfirst = TRUE)
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# plot phylogeny

R> plot(phylogeny)

Helianthus annuus

Madia sativa

Bartlettia scaposa

Datura wrightii

Nicotiana glauca

Mimulus bicolor

Collomia grandiflora

Rosa californica

Pinus contorta

Abies magnifica

Figure C.1.: A phylogeny created using taxize.

Using the species list, with the corrected names, we can now search for occurrence data. The Global
Biodiversity Information Facility (GBIF) has the largest collection of records data, and has a API that we can
interact with programmatically from R. First, we need to install rgbif.

# Install rgbif from github.com

R> install.packages("devtools")

R> library(devtools)

R> install_github("rgbif", "ropensci")

Now we can search for occurrences for our species list and make a map.

R> library(rgbif)

R> library(ggplot2)

# get occurences

R> occurr_list <- occurrencelist_many(as.character(allnames$spname),

coordinatestatus = TRUE,

maxresults = 100, removeZeros = TRUE,

fixnames = "changealltorig")

# Make a map
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R> p <- gbifmap_list(occurr_list) +

guides(col = guide_legend(title = "", nrow = 3,

byrow = TRUE)) + theme(legend.position = "bottom",

legend.key = element_blank()) +

coord_equal()

R> p

Collomia grandiflora Helianthus annuus Helianthus annuus ...

Madia sativa Mimulus bicolor Nicotiana glauca

Nicotiana  glauca Pinus contorta Rosa californica

Figure C.2.: A map created using taxize.

matching species tables with different

taxonomic resolution

Trait-based approaches are a promising tool in ecology. Unlike taxonomy-based methods, traits may not be
constrained to biogeographic boundaries (Baird et al., 2011) and have potential to disentangle the effects of
multiple stressors (Statzner and Bêche, 2010).

To analyse trait-composition abundance data must be matched with trait databases like (Usseglio-Polatera
et al., 2000). However these two datatables may contain species information on different taxonomic levels
and perhaps data must be aggregated to a joint taxonomic level.

taxize can help in this data-cleaning step, providing a reproducible workflow. Here we illustrate this on a
small fictitious example.

Suppose we have fuzzy coded trait table with 2 traits with 3 respectively 2 modalities:

(traits <- read.table(header = TRUE, sep = ’;’, stringsAsFactors=FALSE,

text = ’taxon;T1M1;T1M2;T1M3;T2M1;T2M2

Gammarus sp.;0;0;3;1;3

Potamopyrgus antipodarum;1;0;3;1;3
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Coenagrion sp.;3;0;1;3;1

Enallagma cyathigerum;0;3;1;0;3

Erythromma sp.;0;0;3;3;1

Baetis sp.;0;0;0;0;0

’))

taxon T1M1 T1M2 T1M3 T2M1 T2M2

1 Gammarus sp. 0 0 3 1 3

2 Potamopyrgus antipodarum 1 0 3 1 3

3 Coenagrion sp. 3 0 1 3 1

4 Enallagma cyathigerum 0 3 1 0 3

5 Erythromma sp. 0 0 3 3 1

6 Baetis sp. 0 0 0 0 0

And want to match this to a table with abundances:

(abundances <- read.table(header = TRUE, sep = ’;’, stringsAsFactors=FALSE,

text = ’taxon;abundance;sample

Gammarus roeseli;5;1

Gammarus roeseli;6;2

Gammarus tigrinus;7;1

Gammarus tigrinus;8;2

Coenagrionidae;10;1

Coenagrionidae;6;2

Potamopyrgus antipodarum;10;1

xxxxx;10;2

’))

taxon abundance sample

1 Gammarus roeseli 5 1

2 Gammarus roeseli 6 2

3 Gammarus tigrinus 7 1

4 Gammarus tigrinus 8 2

5 Coenagrionidae 10 1

6 Coenagrionidae 6 2

7 Potamopyrgus antipodarum 10 1

8 xxxxx 10 2

First we do some basic data-cleaning and create a lookup-table, that will link taxa in trait table with the

abundance table.

# first we remove ’ sp.’ from out trait table:

traits$taxon_cleaned <- tolower(gsub(" sp.", "", traits$taxon))

# since abundance tables can be very long with repeating taxa, we look only

# at unique taxon names This will be a lookup-table linking taxon names

# between both tables

lookup <- data.frame(taxon = tolower(unique(abundances$taxon)),

stringsAsFactors = FALSE)

The we query the taxonomic hierarchy for both tables, this will be the backbone of this procedure:
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library(taxize)

traits_classi <- classification(get_uid(traits$taxon_cleaned))

lookup_classi <- classification(get_uid(lookup$taxon))

First we look if we can find any direct matches between taxon names:

# first search for direct matches

direct <- match(lookup$taxon, traits$taxon_cleaned)

# and add the matched name to our lookup table

lookup$traits <- tolower(traits$taxon[direct])

lookup$match <- ifelse(!is.na(direct), "direct", NA)

lookup

taxon traits match

1 gammarus roeseli <NA> <NA>

2 gammarus tigrinus <NA> <NA>

3 coenagrionidae <NA> <NA>

4 potamopyrgus antipodarum potamopyrgus antipodarum direct

5 xxxxx <NA> <NA>

We found a direct match - potamopyrgus antipodarum - so nothing to do here.
Next we look for species which are on a higher taxonomic resolution than our trait table. For these species

we will take directly the trait-data since no better information is available.

# look for cases where taxonomic resolution in abundance data is higher

# than in trait data: here we take the trait-values for the lower

# resolution.

for (i in which(is.na(lookup$traits))) {

if (is.data.frame(lookup_classi[[i]])) {

matches <- tolower(lookup_classi[[i]]$ScientificName) %in%

traits$taxon_cleaned

if (any(matches)) {

lookup$traits[i] <- tolower

(lookup_classi[[i]]$ScientificName[matches])

lookup$match[i] <- lookup_classi[[i]]$Rank[matches]

}

}

}

lookup

taxon traits match

1 gammarus roeseli gammarus genus

2 gammarus tigrinus gammarus genus

3 coenagrionidae <NA> <NA>

4 potamopyrgus antipodarum potamopyrgus antipodarum direct

5 xxxxx <NA> <NA>

So our abundance data has two Gammarus species, however trait data is only on genus level.
The next step is to search for species were we have to aggregate trait-data, since our abundance data is

on a lower taxonomic level. We are walking the taxonomic latter for the species in our trait-data upwards
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and search for matches with out abundance data. Since we’ll have many taxa in the trait-data belonging to
one taxon, we’ll take the median modality scores as an approximation. Of course also other methods may be
used here, e.g. weighting by genetic distance.

# look for cases taxonomic resolution in abundance data is lower than in

# trait data, here we need to aggregate the trait-values (eg. median value

# for modality)

for (i in which(is.na(lookup$traits))) {

# find matches

agg <- sapply(traits_classi, function(x) any(

tolower(x$ScientificName) %in%

lookup$taxon[i]))

if (sum(agg) > 1) {

# add taxon as aggregate to trait-table

traits <- rbind(traits, c(paste0(lookup$taxon[i], "-aggregated"),

apply(traits[agg,

2:6], 2, median), paste0(lookup$taxon[i], "-aggregated")))

# fill lookup table

lookup$traits[i] <- paste0(lookup$taxon[i], "-aggregated")

lookup$match[i] <- "aggregated"

}

}

lookup

# taxon traits match

# 1 gammarus roeseli gammarus genus

# 2 gammarus tigrinus gammarus genus

# 3 coenagrionidae coenagrionidae-aggregated aggregated

# 4 potamopyrgus antipodarum potamopyrgus antipodarum direct

# 5 xxxxx <NA> <NA>

Finally we have only one taxon left - clearly an error. We remove this from our dataset:

abundances <- abundances[!abundances$taxon == lookup$taxon[is.na(

lookup$traits)],

]

Now we can create species x sites and traits x species matrices, which could be plugged into methods to
analyse trait responses [28].

# species (as matched with trait table) by site matrix

abundances$traits_taxa <- lookup$traits[match(tolower(abundances$taxon),

lookup$taxon)]

library(reshape2)

# reshape data to long format and name rows by samples

L <- dcast(abundances, sample ~ traits_taxa, fun.aggregate = sum,

value.var = "abundance")

rownames(L) <- L$sample

L$sample <- NULL

L
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# coenagrionidae-aggregated gammarus potamopyrgus antipodarum

# 1 10 12 10

# 2 6 14 0

# traits by species matrix

Q <- traits[, 2:7][match(names(L), traits$taxon_cleaned), ]

rownames(Q) <- Q$taxon_cleaned

Q$taxon_cleaned <- NULL

Q

# T1M1 T1M2 T1M3 T2M1 T2M2

# coenagrionidae-aggregated 0 0 1 3 1

# gammarus 0 0 3 1 3

# potamopyrgus antipodarum 1 0 3 1 3

# check

all(rownames(Q) == colnames(L))

# [1] TRUE

This is just an example how taxonomic APIs (via taxize) could be used to search for matches up- and
downwards the taxonomic ladder. We are looking forward to integrate other databases into taxize, which
will facilitate trait-based analyses in R.
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