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Abstract

The Web contains some extremely valuable information; however, often poor quality, inac-
curate, irrelevant or fraudulent information can also be found. With the increasing amount
of data available, it is becoming more and more difficult to distinguish truth from specula-
tion on the Web. One of the most, if not the most, important criterion used to evaluate data
credibility is the information source, i.e., the data origin. Trust in the information source is a
valuable currency users have to evaluate such data. Data popularity, recency (or the time of
validity), reliability, or vagueness ascribed to the data may also help users to judge the validity
and appropriateness of information sources. We call this knowledge derived from the data the
provenance of the data.

Provenance is an important aspect of the Web. It is essential in identifying the suitability,
veracity, and reliability of information, and in deciding whether information is to be trusted,
reused, or even integrated with other information sources. Therefore, models and frameworks
for representing, managing, and using provenance in the realm of Semantic Web technologies
and applications are critically required.

This thesis highlights the benefits of the use of provenance in different Web applications
and scenarios. In particular, it presents management frameworks for querying and reasoning
in the Semantic Web with provenance, and presents a collection of Semantic Web tools that
explore provenance information when ranking and updating caches of Web data.

To begin, this thesis discusses a highly flexible and generic approach to the treatment
of provenance when querying RDF datasets. The approach re-uses existing RDF modeling
possibilities in order to represent provenance. It extends SPARQL query processing in such a
way that given a SPARQL query for data, one may request provenance without modifying it.
The use of provenance within SPARQL queries helps users to understand how RDF facts are
derived, i.e., it describes the data and the operations used to produce the derived facts.

Turning to more expressive Semantic Web data models, an optimized algorithm for reason-
ing and debugging OWL ontologies with provenance is presented. Typical reasoning tasks over
an expressive Description Logic (e.g., using tableau methods to perform consistency checking,
instance checking, satisfiability checking, and so on) are in the worst case doubly-exponential,
and in practice are often likewise very expensive. With the algorithm described in this thesis,
however, one can efficiently reason in OWL ontologies with provenance, i.e., provenance is
efficiently combined and propagated within the reasoning process. Users can use the derived
provenance information to judge the reliability of inferences and to find errors in the ontology.

Next, this thesis tackles the problem of providing to Web users the right content at the
right time. The challenge is to efficiently rank a stream of messages based on user prefer-
ences. Provenance is used to represent preferences, i.e., the user defines his preferences over
the messages’ popularity, recency, etc. This information is then aggregated to obtain a joint
ranking. The aggregation problem is related to the problem of preference aggregation in So-
cial Choice Theory. The traditional problem formulation of preference aggregation assumes a



fixed set of preference orders and a fixed set of domain elements (e.g. messages). This work,
however, investigates how an aggregated preference order has to be updated when the domain
is dynamic, i.e., the aggregation approach ranks messages ’on the fly’ as the message passes
through the system. Consequently, this thesis presents computational approaches for online
preference aggregation that handle the dynamic setting more efficiently than standard ones.

Lastly, this thesis addresses the scenario of caching data from the Linked Open Data (LOD)
cloud. Data on the LOD cloud changes frequently and applications relying on that data — by
pre-fetching data from the Web and storing local copies of it in a cache — need to continually
update their caches. In order to make best use of the resources (e.g., network bandwidth for
fetching data, and computation time) available, it is vital to choose a good strategy to know
when to fetch data from which data source.

A strategy to cope with data changes is to check for provenance. Provenance information
delivered by LOD sources can denote when the resource on the Web has been changed last.
Linked Data applications can benefit from this piece of information since simply checking on it
may help users decide which sources need to be updated. For this purpose, this work describes
an investigation of the availability and reliability of provenance information in the Linked Data
sources.

Another strategy for capturing data changes is to exploit provenance in a time-dependent
function. Such a function should measure the frequency of the changes of LOD sources. This
work describes, therefore, an approach to the analysis of data dynamics, i.e., the analysis of
the change behavior of Linked Data sources over time, followed by the investigation of different
scheduling update strategies to keep local LOD caches up-to-date.

This thesis aims to prove the importance and benefits of the use of provenance in different
Web applications and scenarios. The flexibility of the approaches presented, combined with
their high scalability, make this thesis a possible building block for the Semantic Web proof
layer cake - the layer of provenance knowledge.
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Zusammenfassung

Das Internet enthalt duflerst nutzbringende Informationen, allerdings st68t der Nutzer hiufig
auch auf unwichtige Daten oder solche, die ungenau, von geringer Qualitit oder sogar mit
betriigerischer Absicht verfialscht worden sind. Mit der stetig wachsenden Menge an Daten, die
im Internet verfiigbar ist, wird es zunehmend schwieriger zwischen Wahrheit und Spekulation
zu unterscheiden. Eines der wichtigsten, wenn nicht das wichtigste Kriterium zur Analyse der
Glaubwiirdigkeit der Daten ist die Informationsquelle oder in anderen Worten, die Herkunft der
Daten. Das Vertrauen in die Informationsquelle ist fiir den Nutzer entscheidend zur Beurteilung
der Information. Dariiber hinaus kénnen ihm die Popularitdt, Aktualitdt, die Zuverlissigkeit
der Daten als Anhaltspunkte fiir die Eignung und Aussagekraft der Informationsquelle dienen.
Die oben genannten Eigenschaften einer Datenquelle werden als “Provenance” bezeichnet.

Die Betrachtung der “Provenance” der Information gewinnt zunehmend an Bedeutung im
Semantic Web. “Provenance” ist entscheidend fiir die Bestimmung der Eignung, des Wahr-
heitsgehaltes und der Zuverlissigkeit der Information und damit fiir die Beurteilung, ob der
Information vertraut werden, sie weiterverbreitet oder sogar mit anderen Informationsquellen
verkniipft werden kann. Demzufolge ist die Entwicklung von Modellen und Strukturen, die
computergestiitzte Reprédsentation, Verwaltung und Nutzung der “Provenance” erméglichen,
sehr wichtig.

Diese Doktorarbeit untersucht und hebt die Vorteile der Nutzung der “Provenance” der
Daten in verschiedenen Webanwendungen und Szenarien hervor. Insbesondere werden Rah-
menkonzepte zum Abfragen und zum Schlussfolgern mit “Provenance” im Semantic Web und
eine Reihe von Semantic Webtools préisentiert, die die “Provenance” von Daten wahrend der
Klassifizierung und der Aktualisierung des Webdatencaches untersucht.

Zun#chst wird ein flexibler Ansatz zur Verarbeitung von “Provenance” bei dem Abfragen
von RDF Datensétzen diskutiert. Dieser Ansatz nutzt existierende RDF Modellierungsmoglich-
keiten um “Provenance” darzustellen. Er erweitert die SPARQL Abfrageverarbeitung derart,
dass es moglich ist “Provenance” zu erfragen ohne die Abfrage zu verdndern. Die Nutzung von
“Provenance” in SPARQL Abfragen hilft dem Nutzer zu verstehen, wie RDF Fakten hergeleitet
wurden, d.h. es beschreibt die Daten und Verarbeitungsschritte, die benutzt wurden die Fakten
herzuleiten.

Im weiteren Verlauf beschéftigt sich diese Arbeit mit einer ausdrucksstirkeren Modellie-
rungssprache und présentiert einen optimierten Algorithmus fiir das Schlussfolgern und Feh-
lersuchen mit Hilfe von “Provenance” in OWL Ontologien. Typische Schlussfolgerungsauf-
gaben mit einer ausdrucksstarken Beschreibungslogik (z.B. Tableau Methoden nutzend um
Konsistenzpriifungen durchzufiihren, Instanzenpriifung, Erfiillbarkeitspriifung, etc.) sind im
ungiinstigsten Fall doppelt exponentiell und in der Praxis oft auflerordentlich teuer. Der in
dieser Dissertation erarbeitete und beschriebene Algorithmus erlaubt effiziente Schlussfolge-
rungsunterstiitzung mit “Provenance” in OWL Ontologien, d.h. “Provenance” wird im Schluss-
folgerungsprozess effizient kombiniert und verbreitet. Der Nutzer kann die hergeleiteten “Pro-
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venance” Informationen verwenden um die Zuverlissigkeit der Inferenzen zu beurteilen und
Fehler in der Ontologie zu finden.

In einem weiteren Schritt wird das Problem den Internetnutzer mit dem richtigen Inhalt
zum richtigen Zeitpunkt zu versorgen untersucht. Die Herausforderung ist hierbei, den Nutzer
laufend und effizient mit den wichtigsten Nachrichten im Einklang mit dessen Vorlieben zu ver-
sorgen. “Provenance” wird genutzt um Vorlieben darzustellen, d.h. der Nutzer definiert seine
Vorlieben iiber die Popularitdt und Neuigkeit von Nachrichten. Diese Daten werden dann ag-
gregiert und klassifiziert. Diese Aggregationsproblemstellung basiert auf Praferenzaggregation
in der “Social Choice Theory”. Infolgedessen prisentiert diese Dissertation Ansétze fiir online
Priferenzaggregation, die das dynamische Setting effizienter als die Standardansétze handhabt.

Schliefllich beschiftigt sich diese Arbeit mit dem Szenario des Cachens von Daten aus der
Linked Open Data (LOD) Cloud. Die Daten in der LOD Cloud &ndern sich haufig und An-
wendungen, die von diesen Daten abhéingen (beim vorherigen Abrufen von Daten aus dem
Internet und dem lokalen Speichern von Kopien im Cache), miissen laufend ihre Caches ak-
tualisieren. Eine gute Strategie, die bestimmt, wann Daten von welchen Datenquellen vorher
abgerufen werden, zu wéhlen, ist wesentlich um die Ressourcen (z.B. Netzwerkbandbreite und
Berechnungskapazititen) bestmoglich zu nutzen. Eine Strategie ist die Uberpriifung der “Pro-
venance” Information, die LOD Quellen zur Verfiigung stellen. “Provenance” kann anzeigen,
wann die Ressource im Internet zuletzt gedindert worden ist. Linked Data Anwendungen kénnen
von dieser Information profitieren, da eine einfache Uberpriifung der “Provenance” die Ent-
scheidungsfindung des Nutzers, welche Datenquellen aktualisiert werden miissen, unterstiitzen
kann. Zu diesem Zweck enthélt diese Dissertation eine Untersuchung der Verfiigbarkeit und
Zuverléssigkeit von “Provenance” Informationen in den Linked Data Quellen. Eine weitere
erarbeitete Strategie ist, die Datenverdnderungen mit zeitabhéngigem Maf}, das die Frequenz
der Anderung der LOD Quellen erfasst, zu messen. Deshalb beschreibt diese Arbeit einen An-
satz der Analyse von Datendynamik, d.h. der Analyse des Anderungsverhaltens von Linked
Data Quellen iiber der Zeit. Auf dieser Analyse baut die Untersuchung von unterschiedlichen
Strategien zur Aktualisierungsplanung, um den lokalen LOD Cache auf einem aktuellen Stand
zu halten, auf.

Diese Dissertation hat das Ziel die Wichtigkeit und den Vorteil der Nutzung von “Pro-
venance” in unterschiedlichen Webanwendungen und Szenarien zu belegen. Die Flexibilitdt
der erarbeiteten Ansédtze in Kombination mit ihrer hohen Skalierbarkeit macht diese Disser-
tation zu einem moglichen Baustein fiir eine Semantic Web Nachweisebene — die Ebene des

“Provenance”-Wissens.
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1. Introduction

1.1. Motivation

The Web is a global information space and has become in recent years one of the most impor-
tant communication platforms of our daily life. Today’s digital economy is developing rapidly
and the information being spread on the Web has a great impact on the way we live and do
business.

Indeed, the Web contains some extremely valuable information; however, often poor quality,
inaccurate, irrelevant, or fraudulent information can be found. This is due to its liberal nature;
anyone is allowed — and without any control — to generate and spread information.

In particular, popular online social sites such as Twitter and Facebook have become impor-
tant news and marketing channels as people and entities are willing to take part in opinion-
building processes. In such channels, misinformation is rapidly spread, intentionally or uninten-
tionally, which can lead to undesirable effects such as discrediting and conflicting information
or supporting false conclusions.

In 2014, Farida Viz expressed her concerns on misinformation being spread on Web in the
theguardian.com! and described two real cases of it: (1) near to the anniversary of the 2013
Boston Marathon bombings, information posted on Reddit led to the New York Post printing
images of two suspects on its front page, who ultimately had nothing to do with the bombings.
(2) Just following the disappearance of Malaysia Airlines flight MH370 in March 2014, NBC
news highlighted various false reports having been spread on social media alleging that the
plane had made a safe landing.

Due to these and many other cases where inaccurate information has been spread over
the Web, information seekers are experiencing difficulties in filtering correct information from
contradictory and/or questionable sources. With the increasing amount of data available on
the Web, it is becoming more and more difficult to distinguish truth from speculations.

One of the most valuable tools in verifying data authenticity and credibility is knowledge
of its information source, that is, the data origin. Trust in the information source is a valuable
currency users have to assess the data [Adler and de Alfaro, 2007a, Flock and Acosta, 2014].
Furthermore, data popularity, the recency (or the time of validity), the credibility, or the
vagueness ascribed to the data may also help users to judge the validity and appropriateness
of information sources. We call this knowledge derived from the data the provenance of the
data.

Provenance is an important piece of information used to identify the validity of informa-
tion, and to decide whether information is to be trusted, reused or even integrated with other
sources. Provenance information has been used for many years in database and scientific work-
flow management systems [Buneman et al., 2006, Simmhan et al., 2005], and more recently to
access the value of the data on the Web of Data [Cappiello, 2015, Moreau, 2010].

! Article: To tackle the spread of misinformation online we must first understand it http://www.theguardian.
com/commentisfree/2014/apr/24/tackle-spread-misinformation-online
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Figure 1.1.: When querying the Web of data we are confronted with a large number of diverse
data sources of varying quality. Provenance helps in identifying, selecting, and
reasoning with high quality data.

The Web of Data, as an interlinked data space, provides an environment to exploit the
Web as a platform for data and information integration as well as for searching, querying, and
reasoning. Semantic Web technologies promote common data formats and exchange protocols
on the Web such as the Resource Description Framework (RDF), the SPARQL Query Language
(SPARQL) and Web Ontology Language (OWL). Typically, many data sources in the Web
provide points of access for RDF data through data portals (i.e. SPARQL query endpoints)
that allow for selecting and re-using data (see Figure 1.1). RDF plays the role of a common
model, as data can easily be integrated and combined with other data published on the Web,
which is basically done by establishing links between Web resources.

In such an open and interlinked data space where querying goes beyond simple keyword
searches and reasoning beyond data mining, provenance seems to be not only an important but
an essential piece of information to establish trust between data providers and data consumers.
Provenance is an important aspect of the Web, and therefore models and frameworks for
representing, managing, and using provenance in the realm of Semantic Web technologies and
applications are critically required.

This thesis will examine the benefits of using provenance in different Web applications and
scenarios. In particular, it presents management frameworks for querying and reasoning with
provenance in the Semantic Web, and presents a collection of Semantic Web tools that explore
provenance information when ranking and updating caches of Web data.

Provenance Management in the Semantic Web:

When querying and reasoning with data on the Web, we are faced with a highly variable
quality of information. With the increasing amount of data available on the Web and
more sophisticated processing through query and reasoning engines, users encounter
challenging questions linked to provenance about the data such as:
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Where is this data from?
Who provided the data?
e When was this data provided?

e Was the provider certain about the truth of this data?
e Was the data believed by others?

Therefore, when querying and reasoning in the Semantic Web, techniques to extract
the relevant information from Web data should include ways to investigate the value of
information. Provenance provides knowledge that can be used to quantify this value. For
instance, the use of provenance within SPARQL queries may help users to understand
how an RDF fact has been derived, that is, provenance describes the data and the
operations used to produce the derived fact as illustrated in Figure 1.1. Analogously, the
use of provenance within OWL reasoning may help users to understand how an OWL
axiom is entailed.

Furthermore, provenance may be used to tackle the problem of debugging OWL ontolo-
gies as it allows users to use the derived provenance information to judge not only the
reliability of inferences but also to find errors in the ontology.

Querying for and reasoning with data and provenance on the Semantic Web requires
a highly flexible and generic approach to the treatment of provenance that is able to
adapt to its many dimensions and adjust to new dimensions when the need arises. These
approaches will be addressed in this thesis.

Using Provenance in Semantic Web Applications

Nowadays, the Web is an almost continuous flow of information. Data is constantly being
produced, shared, and consumed by a diversity of stakeholders. With so much data on the
Web, users want to be assure not to miss anything of interest. Methods and algorithms
dealing with Web data require an understanding of the data dynamicity.

For instance, social media sites rely on news feed ranking algorithms. The goal of such
algorithms is to deliver the right content to the user at the right time, i.e., they determine
which messages are important for the user (based on their preferences), and from those,
they decide which one should be shown first. Given the assumption that messages come
‘on the fly’, the challenge is to efficiently process the user’s preferences to provide the most
relevant messages first. Such “dynamic” preference aggregation algorithm is addressed
in this work, where users define their preference over provenance, i. e., the messages’
popularity, over their recency, etc.

Further, quite often, Web applications pre-fetch data from the Web and store local copies
of it in a cache for faster access at runtime. As data evolves over time, local copies of
such data need to be updated from time to time to ensure the quality (or freshness) of
such copies.

In order to grab the changes of the Web sources and make best use of the resources
available, it is vital to choose a good scheduling strategy to know when to fetch data from
a given data source. So far, there is no work addressing strategies to efficiently keep local
copies of Web sources up-to-date. Nevertheless, the effectiveness of well-known update
scheduling strategies for maintaining indices of web documents, such as the PageRank
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algorithm [Page et al., 1999], could be evaluated for updating local copies of Web sources.
Provenance may be used within such strategies to cope with cache updates since a simple
check on it may support their decision process of determining which sources need to be
updated. A novel and different strategy to perform cache updates could be done via
change behavior analysis. A metric which captures the change behavior of a Web source
over time, i. e., the intensity of how the data evolved in this period, is then necessary
and therefore addressed in this work.

1.2. Research Questions

In order to show the benefits of the use of provenance information for different Semantic Web
applications and scenarios, the following research questions are to be addressed. These research
questions are individually tackled in the chapters of this thesis as follows.

PART IlI: Provenance Management in the Semantic Web

Provenance of data can be represented in existing standard Semantic Web data modelling
and query languages such as RDF, OWL and SPARQL. However, we must distinguish
the notation of such languages with only ¢mplicit notation of provenance, but no seman-
tic consequences specifically due to this provenance, from a formally extended model of
RDF, OWL, and SPARQL with ezplicit notation of provenance. Such provenance model
should ideally retain upward compatibility with existing usage of the language and corre-
sponding tools and methods. In the following, we tackle the research challenges we faced
with the development of a framework for querying for data and provenance, as well as
for reasoning with data and provenance in the Semantic Web.

Chapter 3: Querying RDF Datasets with Provenance

Querying for RDF data and provenance with SPARQL requires a more sophisticated
query processing that adapts to the treatment of provenance. RDF plays the role
of a common model, as data can easily be integrated and combined with other
data published on the Web, which is basically done by establishing links between
Web resources. Provenance should then be embedded in RDF in such a way that
it retains upward compatibility with existing language usage and corresponding
tools and methods, being a major concern for Semantic Web approaches. These
requirements lead us to the first research question:

RQ 1.I Can RDF be used to represent provenance in its different dimensions e. g.,
source, certainty, and timestamp?

Further, the SPARQL query language enables querying in interlinked data space
that goes beyond simple keyword searches. SPARQL mechanisms, however, do not
include techniques to find the relevant information out of the Web data. Therefore
query engines require mechanisms to track provenance in its many dimensions when
exploring data, guiding us to our next research question:

RQ 1.IT Does the treatment of provenance within the SPARQL query language al-
low for changing the existing SPARQL semantics (it is thus not supported by
existing query engines)?
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Moreover, in general, provenance information can grow to be larger than the data
it describes if the data is fine-grained and provenance information rich. Hence, the
manner in which the provenance is propagated along the computation is crucial to
its scalability, which leads to the following research question:

RQ 1.III Does the exploitation of provenance lead to computation overhead?
Chapter 4: Reasoning and Debugging Evolving OWL Ontologies with Provenance

Provenance can be used within reasoning to help users to judge the reliability of
inferences and to find errors in the ontologies. OWL is, however, heavily based
on Description Logic (DL), i.e. its model-theoretic semantics is compatible with
the semantics of Description Logics. Typical reasoning tasks over an expressive DL
(e. g. using tableau methods to perform consistency checking, instance checking,
satisfiability checking, etc. [Baader et al., 2003, Rudolph, 2011]) are in the worst
case doubly-exponential, and in practice often likewise very expensive.

In [Schenk et al., 2011] Schenk et al. proposes a generic formalization of prove-
nance (in its multiple dimensions) and a debugging framework for provenance in
OWL based on pinpointing. Pinpointing means identifying relevant axioms where
an axiom is defined as relevant if an incoherent ontology becomes coherent once
this axiom is removed, or if a previously unsatisfiable concept turns satisfiable.

Pinpoiting as well as standard algorithms for debugging ontologies poorly support
the user in answering provenance questions and also require expensive reasoning.
For these reasons, even though the exploitation of provenance helps users to find
undesired inferences and inconsistencies in evolving ontologies, such algorithms are
not applicable for expressive and large-scale real-world ontologies. These challenges
lead to the following research question:

RQ 1.IV Does the exploitation of provenance when reasoning and debugging OWL
ontologies lead to computation overhead?

PART Ill: Using Provenance in Semantic Web Applications

Dealing with the data dynamicity on the Web is crucial as it has a great impact on the
way people live and do business. Methods and algorithms dealing with Web data require
an understanding of the data changes over time. Provenance information and models
as studied and proposed in this thesis may be used within such algorithms, methods
and strategies to support the process of data quality and change behavior assessment
of dynamic information sources. In the following, we discuss the research challenges we
experiencing when using provenance information to filter relevant information from the
Web to Web consumers, and to verify change behavior and metadata conformance of
such dynamic information sources.

Chapter 5: An Efficient Provenance-Aware News Feed Ranking Algorithm via Pref-
erence Aggregation

Due to the continuous flow of information produced and available on the Web, the
challenge is to efficiently process the user’s preferences to provide the most relevant
and correct information first.
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The traditional problem of preference aggregation assumes a fixed set of prefer-
ence orders and a fixed set of domain elements (static setting). Using the standard
aggregation algorithms, whenever a new element is added to the domain, a new
aggregation has to be re-built. This operation requires expensive computation and
cannot be adopted in real use case scenarios. Therefore, it is essential to investigate
how preference aggregation methods can be modified in order to assure efficiency
in a dynamic setting as pointed out in the next research question:

RQ 2.1 Can the preference aggregation problem be efficiently solved in a dynamic
setting?

Chapter 6: Managing Data Changes in the Linked Open Data Sources

As Web data evolves over time, that is, as RDF Graphs change when information
is added and removed, local copies of Web sources need to be updated from time
to time to ensure the quality of such copies.

Mainly, the naive approach for detecting changes of a resource in a LOD source
consists of downloading two (arbitrarily-sized) RDF descriptions of that resource
and further comparing them [Kéfer et al., 2013, Volkel and Groza, 2006, Zeginis
et al., 2011]. As these descriptions can be of significant size, Linked Data appli-
cations would benefit if Linked Data servers provided provenance information. A
simple check on this provenance could support their decision process of determining
which sources need to be updated.

However, it is crucial that Linked Data servers provide correct and valid provenance
values; otherwise, they are of no use in any practical application:

RQ 2.II Can the provenance delivered by Linked Data servers support applications
for detecting changes of the resources in a LOD source?

Further, when considering the change analysis of a dataset over a period of time,
state-of-the-art metrics can be used. State-of-the-art metrics for change detection
of RDF datasets [Ding and Finin, 2006, Dividino et al., 2013, Kéfer et al., 2013]
mainly quantify changes between any two datasets. Nevertheless, such metrics do
not include a mechanism to exploit the dynamics of a dataset , i.e. to consider a
time interval described by more than two points in time. A time-dependent function
could capture the frequency degree and regularity of the changes of the data, which
leads to the following research question:

RQ 2.III Does the consideration of changes within a time interval improve change
analysis?

Often applications relying on that dynamic data (by pre-fetching data from the Web
and storing local copies of it in a cache) need to continually update their caches.
Instead of continually visiting all of the LOD sources at brief intervals, a good
scheduling strategy is essential to know when to fetch data of which data source in
order to grab most of the changes.

To the best of our knowledge, there is no work addressing strategies to efficiently
keep local copies of LOD source up-to-date. In the literature, however, many up-
date scheduling strategies for maintaining indices of web documents, such as the
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Figure 1.2.: This thesis shows the benefits of using provenance information in different Seman-
tic Web applications and scenarios. This figure illustrates the Semantic Web tools
presented and the chapters where they are discussed.

PageRank algorithm [Page et al., 1999], and metrics for quantifying the changes of
LOD sources have been proposed. To determine their adequacy and effectiveness
in the context of updating local copies of LOD sources, as pointed out in the next
research question, an extensive evaluation is required.

RQ 2.IV Which is the most adequate update scheduling strategy to manage caching
copies of the LOD sources?
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1.3. Thesis Outline

The thesis consists of three parts. The first part describes the motivation and foundations
of data provenance and the Semantic Web. The second presents a framework for provenance
management in the Semantic Web. The last part presents different Semantic Web tools and
scenarios that benefit from the use of provenance information. An outline of this thesis is
described in Figure 1.2.

PART I: Foundations

Chapter 1: Introduction This chapter describes the motivation for using provenance
information when querying, filtering, debugging or repairing, and updating caches
of Web data. It presents the thesis’ structure and lists the research publications.

Chapter 2: Foundations This chapter presents the fundamental concepts of Provenance
and the Semantic Web technologies and analyzes state-of-the art approaches.

PART Il: Provenance Management in the Semantic Web

Chapter 3: Querying RDF Datasets with Provenance

Querying for data and provenance in the Semantic Web requires a highly flexible
and generic approach to the treatment of provenance that is able to adapt to its
many dimensions and is open to accommodate new dimensions when the need arises.
Such a principled, original framework is worked out in this chapter. This approach
re-uses existing RDF modeling possibilities in order to represent provenance.

Based on the modeling proposed by Schiiler et al. [Schueler et al., 2008], provenance
is modeled in existing RDF structures by embedding a slightly more expressive lan-
guage, which is called RDF™, into RDF. This embedding implies that the different
provenance dimensions, e. g. source, certainty, and timestamp, may be defined using
RDF snippets in their literal sense, and further their intended semantics in order to
facilitate query processing with complex expressions and pattern combinations. (see
RQ 1.I- Can RDF can be used to represent provenance on its different dimensions,
e. g. source, certainty, and timestamp?)

Further, SPARQL query processing is extended in such a way that given a SPARQL
query for data, one may request provenance without modifying the query properly.
This extension allows the user to expand a given conventional SPARQL query by
a keyword for provenance, triggering the construction of provenance by the query
processor. The evaluation of SPARQL with provenance provides the user additional
access to valuable provenance that can be used for relevance ranking, conflict reso-
lution, or other applications in connection with retrieved knowledge. Nevertheless,
standard evaluation of SPARQL queries is still fully supported. This is an impor-
tant advantage for compatibility with existing applications and interfaces (see RQ
1.IT Does the treatment of provenance within the SPARQL query language afford
changing the existing SPARQL semantics, leaving it unsupported by existing query
engines?).

This thesis outlines how the construction of annotations influences the complexity
of the decision problem related to SPARQL. Hence, it shows the time complexity

10
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and space complexity analysis of evaluating SPARQL with provenance (see RQ 1.111
Does the exploitation of provenance lead to computation overhead?).

Chapter 4: Reasoning and Debugging Evolving OWL Ontologies with Provenance

This chapter presents an algorithm for reasoning and tracking undesired inferences
and inconsistencies using provenance when answering queries upon evolving ontolo-
gies in the Semantic Web. Debugging inconsistent ontologies both diagnoses and
repairs them. When provenance information is attached to the diagnosis, it can
help users to understand why inconsistencies exist, emphasizing who created them,
from what location, and when they were created. Provenance information can thus
guide repairs.

With this algorithm one can efficiently reason in OWL ontologies with provenance.
This debugging approach with provenance supports users in coping with the com-
plexity and dynamics of evolving ontologies and to understand why inconsistencies
exist (or have been created) as well as how to fix them.

The work presented in this chapter is the result of the author’s joint work with
Simon Schenk [Schenk et al., 2011]. Simon Schenk’s main contribution consists
of the formalization of provenance. His formalization allows for the computation
of provenance of inferred knowledge in description logics and includes reasoning
with conflicting and incomplete provenance. My main contribution consists of an
optimized algorithm for computing provenance and its evaluation.

Correspondingly, Schenk proposed a debugging framework for provenance based
on pinpointing. Pinpointing means identifying relevant axioms where an axiom is
defined as relevant if an incoherent ontology becomes coherent once this axiom is
removed, or if a previously unsatisfiable concept turns satisfiable. As pinpointing
summarizes explanations for axioms in a single Boolean formula, it then can be
evaluated using a provenance algebra as described in Chapter 3. The algorithm
presented in Chapter 4 computes explanations of the answer and uses pinpointing
to compute provenance in an algebraic way.

However, the computation of all pinpoints may become very expensive and inappli-
cable if users need to interact with dynamically changing knowledge in real time.
The optimized algorithm proposed in this work enables the use of provenance for
debugging in real time even for very large and expressive ontologies.

Lastly, this chapter presents a discussion on the algorithm complexity (see RQ 1.IV
Does the exploitation of provenance lead to computation overhead?).

PART Ill: Using Provenance in Semantic Web Applications

Chapter 5: An Efficient Provenance-Aware News Feed Ranking Algorithm via Pref-
erence Aggregation

This chapter tackles the problem of providing the most relevant messages according
to the user’s preferences. Users state their preferences on different aspects of the data
(e.g., on information source, recency, reliability, location, etc.), and this information
is then aggregated to obtain a joint ranking. The aggregation problem is related to
the problem of preference aggregation in Social Choice Theory [Kelly, 1988]. The

11



1. Introduction

12

traditional problem formulation of preference aggregation assumes a fixed set of
preference orders and a fixed set of domain elements. This thesis investigates how
an aggregated preference order has to be updated when the domain is dynamic, i.e.,
the aggregation approach ranks messages ’on the fly’ as the message passes through
the system. In order to efficiently handle the dynamic setting, Chapter 5 presents
a computational approach for online preference aggregation (see RQ 2.I Does the
preference aggregation problem can be efficiently solved in a dynamic setting?).

Chapter 6: Managing Data Changes in Linked Open Data Sources

This chapter presents two techniques for dealing with data dynamics in the LOD
sources using provenance information. The first one describes an investigation of
availability and conformance of provenance information for detecting changes of
LOD sources. More precisely, it describes an investigation on the availability, con-
formance and reliability of the HT'TP Header Last-Modified field, which indicates
the date and time at which the origin server interprets the resource was last mod-
ified. The HTTP header is a textual part of the HT'TP response message which is
sent by any Linked Data server when dereferencing a resource.

Naive approaches for detecting changes in a resource in a LOD source mainly down-
load two arbitrarily-sized descriptions of an RDF resource and further compare
them. The main idea here is to use available provenance information to speed up
change detection and avoid such comparisons (see RQ 2.1 Can provenance delivered
by Linked Data servers support applications for detecting changes of the resources
in a LOD source?). Linked Data applications benefit from this information since
simply checking them may help users to decide which caches or sources need to be
updated.

However, it is crucial that Last-Modified field provides correct values, otherwise it
has no use in any practical application. To this end, this chapter presents an analysis
of a large-scale dataset obtained from the LOD cloud by weekly crawls over almost
two years. In these weekly snapshots, the author checked to see if the HT'TP header
field Last-Modified was available and if the date provided for the last modification
aligned with the observed changes in the data itself.

The second part of this chapter formalizes and evaluates a strategy for capturing
data changes based on a time-dependence measure that captures the frequency,
degree, and regularity of the changes of the LOD sources. While state-of-the-art
metrics [Ding and Finin, 2006, Dividino et al., 2013, Kéfer et al., 2013] quantify
changes between two sets, e.g. two versions of the same dataset captured at two
different points in time, the dynamics function proposed in this work involves the
analysis of the dataset’s development over a period of time, i.e. a time interval
beginning at an initial point in time up to a final one. (see RQ 2.III Does the
consideration of changes within a time interval instead of between two points in
time improve change analysis?). The proposed dynamics function is defined as an
aggregation of changes over time, built on top of contemporary change metrics and
may be extended to incorporate the use of different decay functions for stressing or
weakening periods within a time interval. This notion intends to establish a method
for capturing the behaviour of the LOD sources and evolution over a certain period
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of time.

Lastly, this chapter discusses the effectiveness of the dynamics function for the
purpose of caching maintenance. In order to identify which is/are the most adequate
update scheduling strategy(ies) to manage caching copies of the LOD sources (see
RQ 2.1V Which is the most adequate update scheduling strategy to manage caching
copies of the LOD sources?), an evaluation on different scheduling strategies is
conducted. The evaluation is done on a large-scale LOD dataset that is obtained
from the LOD cloud by weekly crawls over the course of three years. The evaluation
is divided in two different setups: (i) in the single step setup, the quality of update
strategies for a single and isolated update of a local data cache is evaluated, while (ii)
in the iterative progression setup, the quality of the local data cache is measured
when considering iterative updates over a longer period of time. The evaluation
indicates the effectiveness of each strategy for updating local copies of LOD sources,
i.e. it demonstrates, for given limitations of bandwidth, the strategies’ performance
in terms of data accuracy and freshness.

1.4. Publications and Exploitation

The research discussed in this thesis has been presented in conference papers, journal papers,
conference posters, and workshop papers. The following is a list of scientific publications where
portions of chapters may be found.

Chapter 3: Querying RDF Datasets with Provenance

[Dividino et al., 2009b] Renata Queiroz Dividino, Sergej Sizov, Steffen Staab, Bernhard
Schueler: Querying for provenance, trust, uncertainty and other meta knowledge in RDF.

J. Web Sem. 7(3): 204-219 (2009)

This journal paper has been written in collaboration with Bernhard Schiiler, Sergej
Sivoz, and Steffen Staab on a framework for querying with provenance in RDF. It is a
completely revised and extended version of the work proposed by Schiiler et al. [Schueler
et al., 2008]. My contributions include proofs showing that the provenance evaluation
of SPARQL queries is equivalent to the standard SPARQL evaluation, a discussion of
soundness and completeness, as well as an extended empirical evaluation section.

[Dividino et al., 2009a] Renata Queiroz Dividino, Simon Schenk, Sergej Sizov, Steffen
Staab: Provenance, Trust, Explanations— and all that other Meta Knowledge. KI 23(2):
24-30 (2009) Querying for data and provenance in the Semantic Web

This journal paper summarizes different approaches for querying with provenance in the
Semantic Web. My contribution was to summarize the work done in [Dividino et al.,
2009b].

Chapter 4: Reasoning and Debugging Evolving OWL Ontologies with Provenance

[Schenk et al., 2009] Simon Schenk, Renata Queiroz Dividino, Steffen Staab: Reasoning
With Provenance, Trust and all that other Meta Knowlegde in OWL. SWPM 2009

This workshop paper was written in collaboration with Simon Schenk and Steffen Staab.
It describes our initial work towards reasoning with provenance in description logics.

13
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My contributions include providing a detailed grammar for provenance annotations in
OWL-2 and comparisons to other approaches.

[Schenk et al., 2011] Simon Schenk, Renata Queiroz Dividino, Steffen Staab: Using prove-
nance to debug changing ontologies. J. Web Sem. 9(3): 284-298 (2011)

This journal paper has been written in collaboration with Simon Schenk and Steffen
Staab. Simon Schenk’s main contribution consists of the formalization of provenance
which allows for the computation of provenance of inferred knowledge in description
logics (and includes reasoning with conflicting and incomplete provenance). My contri-
bution consists of an optimized algorithm for computing provenance and a comprehensive
evaluation.

Chapter 5: An Efficient Provenance-Aware News Feed Ranking Algorithm via Preference
Aggregation

[Dividino et al., 2012] Renata Queiroz Dividino, Gerd Groner, Stefan Scheglmann, Matthias
Thimm: Ranking RDF with Provenance via Preference Aggregation. EKAW 2012: 154-
163

This conference paper has been written in collaboration with Gerd Groner, Stefan
Scheglmann, and Matthias Thimm. My main contribution was to provide the algorithms
and complexity analysis for the Borda and sequential pairwise aggregators, as well as a
comprehensive evaluation for all aggregators proposed.

Chapter 6: Managing Data Changes in Linked Open Data Sources

[Dividino et al., 2014b] Renata Queiroz Dividino, Andre Kramer, Thomas Gottron: An
Investigation of HT' TP Header Information for Detecting Changes of Linked Open Data
Sources. ESWC (Satellite Events) 2014: 199-203

This workshop paper has been written in collaboration with Andre Kramer, and Thomas
Gottron. My contributions include the evaluation and analysis of HT'TP header data
provided by [Kéfer et al., 2013].

[Dividino et al., 2013] Renata Queiroz Dividino, Ansgar Scherp, Gerd Gréner, Thomas
Gottron: Change-a-LLOD: Does the Schema on the Linked Data Cloud Change or Not?
COLD 2013

This workshop paper has been written in collaboration with Ansgar Scherp, Gerd Groner,
and Thomas Gottron. This work was inspired by Ansgar Scherp’ and Thomas Gottron’s
previous work [Konrath et al., 2012] on an approach and tool for a stream-based in-
dexing and schema extraction of Linked Open Data (LOD) at web-scale. Using their
formalization of Abstract Schema e.g., the combinations of sets of properties and sets
of types to describe the resources in a specific domain, my contributions include the
evaluation of the use of the vocabularies in the LOD cloud, and the analysis how the use
of vocabularies on the LOD cloud changes over time.

[Dividino et al., 2014b] Renata Queiroz Dividino, Thomas Gottron, Ansgar Scherp, Gerd
Groner: From Changes to Dynamics: Dynamics Analysis of Linked Open Data Sources.
PROFILES@QESWC 2014

This workshop paper has been written in collaboration with Ansgar Scherp, Gerd Groner,
and Thomas Gottron. Together with Thomas Gottron, I have proposed the dynamic
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function which can compute the dynamics or evolution of any RDF dataset over a period
of time. Additionally, I applied our dynamics function to real world LOD data sources in
order to illustrate how the proposed function works and related its results to temporal
change patterns.

[Dividino et al., 2015] Renata Queiroz Dividino, Thomas Gottron, Ansgar Scherp: Strate-
gies for Efficiently Keeping Local Linked Open Data Caches Up-To-Date. International
Semantic Web Conference (2) 2015: 356-373

This conference paper has been written in collaboration with Ansgar Scherp, and Thomas
Gottron. My contributions include the research and implementation of update strategies
proposed in the literature, and the analysis of their effectiveness for updating local copies
of the LOD sources, i.e. which strategy performs better in terms of data accuracy and
freshness for given restrictions of bandwidth.
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2. Foundations

2.1. Provenance Foundations

According to the Oxford English Dictionary, provenance means:

1. the fact of coming from some particular source or quarter; origin, derivation

2. the history or pedigree of a work of art manuscript, rare book, etc.; concr., a record of
the ultimate derivation and passage of an item through its various owners.

In the past, database and data repositories were mainly under centralized control to serve all
of the organization’s needs. Such databases and repositories were assumed to be reliable and
trustworthy sources of information.

Today, data is often stored in different repositories (such as on the Web) with no central-
ized control. In an open and collaborative environment, external agents are involved in the
process of publishing and sharing data — data is created, copied, moved around, and combined
indiscriminately.

With the increasing amount of data available on the Web, data quality assessment becomes
more and more important as it allows the user to ascertain the veracity, credibility and validity
of the information. Information about Provenance is essential as it provides context which can
help end users judge the validity of the knowledge derived from such information sources, such
as

Where the data is from,

Who has provided the data,

When was the data provided,

Proof from the provider about the truth of this data,

External validation of the credibility of the data.

The provenance of the information can help data consumers make judgments and seek for
validation as it describes the data’s origins and its derivation in its life cycle. Provenance in-
formation (also called lineage) is a record that describes the recentness, reputation, and degree
of confidence in the piece of data as well as the people, institutions, entities, and activities
involved in the data transformation process. Provenance has been used in many data manage-
ment tasks for checking the integrity of data in databases or repositories.
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2.1.1. Workflow and Data Provenance

Provenance has been extensively studied both in database [Buneman et al., 2012, Cheney
et al., 2009, Kostylev and Buneman, 2012, Boulakia and Tan, 2009, Buneman et al., 2006,
Cheney et al., 2014, Buneman, 2013] and workflow [Bose and Frew, 2005, Simmhan et al.,
2005, Davidson and Freire, 2008] management.

Database provenance, also called fine-grained provenance [Tan, 2007], has been designed for
relational data and is modeled as annotations on data. Provenance models define mechanisms
for evaluating queries over annotated relations with a focus on understanding the transport of
annotations from the input relation to the output data. Particularly, provenance in databases
has been successfully used in a wide range of applications such as in confidence computa-
tion [Archer et al., 2013, Agrawal et al., 2006], view maintenance and update [Buneman et al.,
2002], annotation and propagation [Buneman et al., 2008, Bhagwat et al., 2005, Wang and
Madnick, 1990}, and viualization [Hoekstra and Groth, 2014, Deutch et al., 2015a).

Workflow provenance — or coarse provenance — aims to capture a complete history of the
workflow execution that resulted in a data item. Workflow provenance captures a notion of a
causal graph, explaining how the output data was derived in an execution. This may involve
tracking the interaction of programs, external devices as well as human interaction with the
process when such components of the system are treated as black boxes. Workflow prove-
nance is crucial to verification and validation in many scientific applications such as workflow
management [Bao et al., 2012, Huang et al., 2015, Murta et al., 2014], upgrades and evolu-
tion [Koop et al., 2010, Koop and Freire, 2014, Simmhan et al., 2008], privacy [Davidson et al.,
2011b, Davidson et al., 2011c, Davidson et al., 2011a] and a number of tools for capturing
provenance have been developed such as myGrid/Taverna [Oinn et al., 2004, Kepler [Bowers
and Ludéscher, 2005] and VisTrails [Callahan et al., 2006].

New approaches work towards marrying database-style and workflow-style provenance [Deutch
et al., 2015¢, Chirigati and Freire, 2012, Amann et al., 2013, Amsterdamer et al., 2011a]. They
enable different levels of granularity in provenance querying, i.e., they support tracking and
querying fine-grained workflow provenance.

This dissertation focuses on provenance within databases (i.e. data provenance); therefore,
in the next sections we introduce the most common notions of provenance for database queries.

2.1.2. Why, Where, and How Provenance

Provenance was initially studied as an extension for relational databases (i.e., data management
systems based on relational algebra), probabilistic databases [Fuhr and Rolleke, 1997], and was
later adopted for RDF knowledge bases (i.e., for semantics of SPARQL query language).

In the area of database systems, provenance is often represented using an extension of the
relational data model, coined annotated relations. Its purpose is primarily the description of
data origins (provenance) and the process by which it arrived as a query answer [Cui and
Widom, 2000, Buneman et al., 2000, Buneman et al., 2001, Ding et al., 2005]. Basically they
define custom (possibly different) interpretations for algebraic operations of Boolean formulas
(built on tuple identifiers as Boolean variables) for particular dimensions of provenance (e.g.,
agent, timestamp, source, certainty) to obtain the m-dimensional record (i.e., query result).
Indeed, a Boolean expression of the result set built from tuple identifiers does not only carry
the information which triples have contributed to a variable assignment (why-provenance) but
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’ Movie Theater \ Movie Provenance
Cinemark Palace 1 Star Wars: Episode VII | bl
Cinemark Palace I The Revenant b2
Cinemark Palace 1 Man on a Ledge b3
Prado Cafe & Cinema | Start Wars: Episode VII | b4
Prado Cafe & Cinema | Mistress America b5
Cineplex Star Wars: Episode VII | b6
Cineplex The Revenant b7

Table 2.1.: Our example (annotated) database M: Movie Theaters and Movies

’ Movie ‘ Genre ‘ Provenance
Star Wars:Episode VII | Action | cl
Mistress America Comedy | ¢2
Man on a Ledge Action | c3
The Revenant Action | c4

Table 2.2.: Our example (annotated) database G: Movies and Movie Genres

also how they contributed (how-provenance). This draws a distinction between the three main
notions of provenance:

e Where-provenance [Wang and Madnick, 1990, Buneman et al., 2001]: where the given
pieces of data are physically serialized in database tuples,

e Why-provenance [Cui et al., 2000, Buneman et al., 2001]: which subset of database tuples
contributed to the result), and

e How-provenance[Green et al., 2007]: how particular tuples were used for constructing the
result.

Here we provide some examples of these three notions. For more details, please refer to [Ch-
eney et al., 2009]. Cheney et al. [Cheney et al., 2009] provide a high-level overview of why,
how, and where provenance, and describe the relationships among these three main notions of
database provenance.

Example 2.1.1 As a matter of example, Table 2.1 and Table 2.2 show two relations with
annotated tuples respectively. The first relation describes movie theaters and the mouvies they
display. The second relation describes the movie genres.

The notion of why-provenance was formally introduced by Buneman et al. [Buneman et al.,
2001]. Suppose an annotated relation V = Q(D) is constructed by a query @ applied to source
annotation relations D, why-provenance of an output tuple ¢ in V is defined as the witness
basis of t, i. e. which are all the combinations of the source tuples which justify the existence
of t. Buneman et al. [Buneman et al., 2001] also introduce the notion of where-provenance.
While why-provenance describes the source tuples that had some influence on the existence of
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’ Result of @ \ Why-Provenance ‘
Cinemark Palace 1 {{bl,cl},{b2,c4},{b3,c3)}
Prado Cafe & Cinema | {{b4,cl}}

Cineplex {{b6,c1},{b7,c4}}

Table 2.3.: Example of Why-Provenance

’ Result of @

Cinemark Palace
Prado Cafe & Cinema®*
Cineplex?6:t7

L5203

Table 2.4.: Example of Where-Provenance

the output tuples, where-provenance describes locations in the source databases from which
the data was extracted. In the relational setting, location is a column of a tuple in a relation.

Example 2.1.2 We construct a SQL Query to retrieve all movie theaters that play action
movies.

SELECT m.MovieTheater
FROM m M, g G

WHERE m.Movie = g.Movie
AND g.Genre = ’Action’

And in relational algebra notation:

T’ Mowie Theate'r’(MO'Uie X Ugem"e:’Action’( Gem’e))

Why- and where- provenance leave out some information about how an output tuple is
derived according to the query. How-provenance fills this gap by describing the source data
and the operations used to produce the derived data. In the next section, we formally describe
the notion of how-provenance which has been introduced by Green et al. [Green et al., 2007]
for relational algebra in terms of an appropriate provenance semirings.

Example 2.1.3 Using the relations presented in Table 2.1 and Table 2.2 in which tuples
are tagged with their own id. Applying to it the query from Example 2.1.2, where- and why-
provenance is shown in Table 2.4 and Table 2.3 respectively.

The why-provenance of “Cinemark Palace 17 is the set {{bl,cl},{b2,c4},{b3,¢3}}. This
tells us that the output source is witnessed by the sources tuples in three different ways: the
first uses the tuples bl and cl, the second b2 and c4, and the last b3 and c3.

The where-provenance of “Cinemark Palace 1” is the location (b1, Movie Theater), (b2,
Mowie Theater), and (b3, Movie Theater) since “Cinemark Palace I” was copied from the
Mowie Theater attribute of the tuples bl, b2,and b3 in the relation M, according to the query.
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2.1.3. Provenance Semirings

The notion of how-provenance for positive relational algebra (RA") was introduced by Green
et al. [Green et al., 2007]. Suppose an annotated relation V' = Q(D) is constructed by a query
(@ applied to source annotation relations D, how-provenance models how each output tuple
in V was actually derived as a result of applying a relational query @ from sources tuples in
D. Green et al. show that many of the mechanisms for evaluating queries over such annotated
relations can be unified in a general framework based on K-relations, which are relations whose
tuples are annotated with elements from a commutative semiring K.

They used the perspective [Fuhr and Rolleke, 1997] of the relational model in which tuples
t:U — D with U a finite set of attributes and D a domain of values, e. g. it considers relations
in which the tuples are annotated (tagged) with tuples ids. Formally, let K be a set containing
a distinguished element 0. A K-relation models a relation as a function R on all possible tuples,
where R maps tuples in the relation to nonzero elements of K, and tuples that are not in the
relation to the special element 0. Here, U-Tuples denotes the set of all tuples with attributes
U. A K-relation R : U-Tuple » K corresponds to a finite relation whose elements are tagged
with elements of K.

Definition 2.1.1 Let K be a set containing a distinguished element 0. A K-relation over a
finite set of attributes U is a function R : U-Tuples — K such that its support defined by
supp(R) = {t|R(t) = 0} is finite.

Basically, the semiring framework distinguishes two basic operations that may be applied
to the source tuples in D by @) to derive the output tuples in V': source tuples can be either
joined together as an effect of a join, or merged together via union or projection. The basic
relational algebra operators are mapped into operations on an algebraic structure (K,0,1,A,V)
as follows.

Definition 2.1.2 Let (K,0,1,A,V) be an algebraic structure with two binary operations A and
v and two distinguished elements 0 and 1. The operations of the positive K-relational algebra
are defined as follows.

e Empty relation. For any set of attributes U, there exists @ : U-Tuples — K such that
a(t) = 0.

e Selection. Let R:U-Tuples = K and P be a selection predicate that maps each U-Tuple
to either 0 or 1. Then op(R) : U-Tuples — K is defined by

(op(R))(t) = R(t)P(1).
That is, (cp(R))(t) is R(t) if P holds on t and 0 otherwise.

e Projection. Let R:U-Tuples = K and J cU. Then wj(R) : V-Tuples — K is defined by:

(m(R))(t) = 2 R(1).

t=t/[J] andR(t")#0
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y | Result of Q |

Cinemark Palace 1 (b1 Acl) v (b2Acd) v (b3 Ac3)
Prado Cafe & Cinema | (b4 Acl)
Cineplex (b6 Acl) v (b7 Ac4)

Table 2.5.: Provenance Polynomials

e Union. Let Ry, Ry : U-Tuples — K. Then R1 U Ry : U-Tuples — K is defined by:

(R1 @] Rg)(t) = Rl(t) N Rz(t).

e Natural Join. Let Ry : Ui-Tuples = K and Ry : Us-Tuples — K. Then Ri »x Ry : Ui uUs-
Tuples = K is defined by:

(Rl X RQ)(t) = Rl(tl) \Y% Rg(tg), where t1 = t[Ul] and to = t[UQ]

If we assume that K-relational semantics satisfies the same equivalence laws as RA* op-
erators over bags (i.e. union (A) is associative, commutative and has identity @, join (V) is
associative, commutative and distributive over union, and projection and selection commute
with each other, as well as with union and join), Green et al. conclude that (K,0,1,A,v) must
be a commutative semiring. An algebraic structure (K,0,1,A,v) is a commutative semiring if
(K,0,A) and (K,1,v) are commutative monoids, v distributes over A and Ova =aVv0 = 0,
Vae K.

Example 2.1.4 Using again the relations in Table 2.1 and Table 2.2 in which tuples are
tagged with their own id. Applying to it the query from Example 2.1.2 and evaluating in the
provenance semiring, we obtain the relation shown in Table 2.5.

The provenance of “Cinemark Palace 1”7 is (b1 Acl) v (b2 A cd) v (b3 A ¢3) which can be
understood as follows: “Cinemark Palace 1” is derived by joining the input tuples bl and cl or
b2 and c4, or b3 and c3.

Green et al. propose polynomials (N[ X ], +, *,0,1), the most general commutative semiring,
as a suitable provenance model for RA+. If each source tuple in a database D is annotated
with a distinct tuple id, the semiring gives us the how-provenance for each output tuple in the
form of a polynomial with coefficients from the set N of natural numbers and indeterminate
(or variables) from the set of source tuple ids.

The classical semiring algebraic structure is used in devising a general framework for uni-
formly treating various extensions to relational algebra such as handling bag semantics or
incomplete and probabilistic databases.

Examples of commutative semirings:

e (B, false,true, v, A)
e (P(Q),,Q,u,n), used for event tables which is also an example of distributive lattice.

e (N,0,1,+, *), the natural numbers
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y | Result of Q |

Cinemark Palace I (I*1)+(1*x1)+(1x1)=3
Prado Cafe & Cinema | (1*1)=1
Cineplex (I*x1)+(1x1)=2

Table 2.6.: Bag semantics example: We evaluating the provenance polynomials given in Ta-
ble 2.5 in (N, 0,1, +, *), with b1,...,b7=1,cl,...,c4 =1 which represent the multi-
plicity of the tuples in the multiset.

e (N* 00,0, min,+), the tropical semiring [Kuich, 1997]
e ([0,1],0,1,max, min) is related to fuzzy sets [Zadeh, 1965], called the fuzzy semiring.

e The semiring of confidentiality policies [Foster et al., 2008] (C, P,0, min, max), where
the total order C' = P < C' < S <T <0 describes levels of security clearance: P public, C
confidential, S secret, and T' top-secret.

Example 2.1.5 To illustrate instances of communitative semirings, consider the provenance
polynomials in Table 2.5. Suppose the annotations are natural numbers which represent the
multiplicity of the tuples in the multiset. (A tuple not listed in the table has multiplicity 0.)
Evaluating the provenance formula from Example 2.1.4 of “Cinemark Palace I” in (N,0,1,+, x)
forbl,....b7=1,cl,...,cd =1, we get 3 which is indeed the multiplicity of “Cinemark Palace
I” in Table 2.6.

The concept of provenance semirings has been extended [Kostylev and Buneman, 2012,
Amsterdamer et al., 2012, Amsterdamer et al., 2011c, Amsterdamer et al., 2011b, Kostylev
and Buneman, 2012] to deal with update, aggregation, and negation, as well as has been
successfully used in a wide range of database applications such as in confidence computation,
view maintenance and update, debugging, and annotation propagation, and summarization.

In Chapter 3 we propose a framework for querying RDF with provenance. Our methodology
follows the same idea and adopts the notion of provenance semirings which was introduced
here and also allows the same distinction between where-, how-, and why-provenance.

2.2. Semantic Web Foundations

The traditional World Wide Web is a global information space comprising linked Web docu-
ments. The Semantic Web can be seen as an extension of the traditional Web which goes from
linked documents to linked data.

The Semantic Web provides a common framework that makes Web data available in a well-
structured and machine-readable format such that it can be published, reused, combined, and
automatically integrated with other machine-readable data. Essentially, it is a paradigm that
facilitates discovery and interoperability of structured Web data spread in the many different
Web sources. There is no doubt that one of the key benefits of Semantic Web technology is
the better support of decentralized, self-organizing knowledge exchange between users.

The remaining sections outline the core Semantic Web standards, starting with the Re-
source Description Framework (RDF) data-model and related ones such the SPARQL query
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language for querying RDF, and representing ontologies with the Web Ontology Language
(OWL). Lastly, we briefly introduce Linked Data which aims to provide a set of principles by
which the Semantic Web standards can be effectively deployed on the Web.

2.2.1. Resource Description Framework

We introduce the necessary notions about RDF. For more information please refer to [Manola
et al., 2014, Klyne et al., 2014, Gutierrez et al., 2011].

The RDF standard provides the basis for a core data model for data interchange on the
Semantic Web. RDF is a graph-based knowledge representation language that provides a flex-
ible way to describe resources (i.e., entities in the world) and the relationships between them.
The nodes in a graph are represented by Internationalized Resource Identifier (IRIs) [Durst
and Suignard, 2005], blank nodes (a kind of existentially quantified variables) or literals. IRIs
serve as global identifiers that can be used to identify any resource. A literal is used to identify
values such as numbers and dates by means of a lexical representation. Arcs between the nodes,
labeled with IRIs, represent their relationships. In the following definitions, we simplify the
RDF graph model in order to come up with a more concise formal characterization like [Arenas
et al., 2009].

Definition 2.2.1 (RDF Terms, Triple and Variables) Let I be the set of IRIs, L the set
of RDF Literals and B the set of Blank Nodes as defined in [Patrick J. Hayes and Peter F.
Patel-Schneider, 2014]. I, L and B are pairwise disjoint. A statement is an RDF triple in
(IuB)xIx(IuLuB).IfS=(s,p,0) is a statement, s is called the subject, p the predicate
and o the object of S. We denote the union IuLu B by T (RDF terms). Assume additionally
the existence of an infinite set V' of variables disjoints from sets aboves.

Example 2.2.1 Table 2.7 presents some of the RDF data about mowvies from our toy sce-
nario. In this example there are five prefiz declarations and four triples (# denotes a comment
line in Turtle). Fach triple is comprised of a subject, a predicate, and an object. The sub-
ject describes the resources (identified by IRIs or blank nodes) which of our scenario (e.g.
, dbr: Star_Wars: _The_ Force_ Awakens and dbr: Man_ on_ a_Ledge ). The predicate de-
scribes the relation or attributes of the resources (e.g. , foaf:name, rdf:types) using an IRI.
Lastly, the object represents the value for that relation (e.g. , 6120, dbo: Film) and is repre-
sented by an IRI or literal (and potentially a blank node).

Definition 2.2.2 (RDF Graph) An RDF graph G is a set of statements. If G is an RDF
graph, then term(QG) is the set of elements of T appearing in the triples of G, and blank(G) is
the set of blank nodes appearing in G (blank(G) = term(G) nB). For every two RDF graphs G
and Gy the sets of blank nodes used in Gy and in Gy are disjoint, i.,e. blank(G1) n blank(G2)
=g.

Figure 2.1 renders a diagram of the RDF graph presented in Table 2.7 as a directed labeled
graph.

Named graphs [Carroll et al., 2005, Carroll and Stickler, 2004] offer a means to group a set
of statements in a graph and to refer to this graph using a IRI. This way, information about
the graph can be expressed in RDF using its name as subject or object:
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# PREFIX DECLARATIONS

@prefix dbo: <http://dbpedia.org/ontology/> .

@prefix dbr: <http://dbpedia.org/resource/> .

Q@prefix dbp: <http://dbpedia.org/property/> .

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix foaf: <http://xmins.com /foaf/0.1/> .

#RDF TRIPLES

dbr:Star_Wars:_The_Force_Awakens rdf:type dbo:Film

dbr:Star_Wars:_The_Force_Awakens foaf:name Star Wars: The Force Awakens (en).
dbr:Man_on_a_Ledge rdf:type dbo:Film

dbr:Man_on_a_Ledge dbp:runtime 6120.

Table 2.7.: The following example presents some of the RDF data about movies from our toy
scenario (# denotes a comment line in Turtle):

foaf:name ”Star Wars: The Force Awakens” Qen

dbr:Star_Wars:_The_Force_Awakens I rdf:type

dbo:Film
df:type

dbp:runtime

| dbr:Man_on_a_Ledge | ”6120”

dbo = |http://dbpedia.org/ontology/|

abbreviations{ rdf = |http://WWW.W?).org/1999/02/22—rdf—syntax—ns#|

foaf = |http://xmlns.com/foaf/o.l/name|

Figure 2.1.: Diagram of the RDF graph presented in Example 2.2.1 as a directed labeled graph.

Definition 2.2.3 (RDF Named Graph) A named graph is a pair (i,G) of a IRI i, called
name, and an RDF graph G, called the extension.

Example 2.2.2 Following up with our toy scenario, we extended the RDF graph presented in
Table 2.8 to a RDF Named Graph by adding a name in the form of a IRI reference (e.g. ,
ex: FilmsISaw). The example is serialized in TriG [Bizer and Cyganiak, 2014] which extends
Turtle by introducing curly brackets to group triples into multiple graphs, and to precede each
by the name of that graph.

Finally, RDF datasets can be defined as followed:

Definition 2.2.4 (RDF Dataset) An RDF dataset D is a set of RDF graphs in which every
graph is identified by an IRI, except for a distinguished graph in the set called the default
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# PREFIX DECLARATIONS

@prefix dbo: <http://dbpedia.org/ontology/> .

@prefix dbr: <http://dbpedia.org/resource/> .

@prefix dbp: <http://dbpedia.org/property /> .

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
Q@prefix foaf: <http://xmlns.com/foaf/0.1/> .

Q@prefix ex: <http://www.mythesis.de/ToyScenario /> .

#RDF TRIPLES

ex:FilmsISaw{

dbr:Star_Wars:_The_Force_Awakens rdf:type dbo:Film
dbr:Star_Wars:_The_Force_Awakens foaf:name Star Wars: The Force Awakens (en).
}

ex:FilmsIWantToSee{

dbr:Man_on_a_Ledge rdf:type dbo:Film

dbr:Man_on_a_Ledge dbp:runtime 6120.

}

Table 2.8.: Example of a RDF Named Graph containing some of the RDF data about movies
from our toy scenario:

graph. Formally, D ={(Gy), (u1,G1), ..., (un,Gn)}, where each Gy,...,G, are RDF graphs
and ug, ..., u, distinct IRI, n > 0. Gy is called the default graph of D, and each pair (u;,G;)
is a named graph, with u; being the name of G;; defined gr(u;) = G; if (Gi,u;) € D, gr(u;) =0
otherwise. e. Additionally, name(D) stands for the set of IRIs that are names of graphs in D,
and term(D) and blank(D) stand for the set of terms and blank nodes appearing in the graphs
of D, respectively. For every two RDF graphs G1 and G2 in D the sets of blank nodes used in
G1 and in Go are disjoint, i.,e. blank(G1) n blank(G2) = 0.

Figure 2.2 renders a diagram of the RDF graph presented in Table 2.8 as a directed labeled
graph.

The semantics of RDF is defined in as a model theory [Patrick J. Hayes and Peter F. Patel-
Schneider, 2014]. Model theory assumes that the language refers to a world, and describes the
minimal conditions that a world must satisfy in order to assign an appropriate meaning for
every expression in the language. Worlds serve as interpretations of RDF data. Basically, the
idea is to provide an abstract and formal foundation for stating what the IRIs used in the RDF
data identify in the world, what things in the world are related through which properties, and
so forth.

Definition 2.2.5 Let U be a vocabulary containing all names (IRIs and literals) occurring in
RDF triples. An RDF interpretation Z of U consists of:

e IR: a non-empty set of resources (domain or universe) of T
e TP: a set of properties of T

e Is: U~ (IRUIP): a function mapping resources (with each symbol from U a resource
is associated).
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ex:FilmsISaw

foaf:name ”Star Wars: The Force Awakens” @Qen

dbr:Star_Wars:_The_Force_Awakens I rdf:type dbo:Film

ex:FilmsIWantToSee

dbp:runtime »6120"

dbr:Man_on_a_Ledge I dbo:Film

rdf:type

dbo = |http://dbpedia.org/ontology/|

abbreviations{ rdf = |http://www.w3.0rg/1999/02/22—rdf—syntax—ns# |

foaf = |http://xmlns.com/foaf/O.1/name|

Figure 2.2.: Diagram of the RDF dataset presented in Table 2.8 as a directed labeled graph.

o LexT:IP 2IRXIR . g function mapping properties (each property is a binary relation).
e I, : a partial mapping from literals into TR

Then:

o An literal | is true in T if and only if L €0 , Zp(l) € IR.
e A IRIi is true in T if and only if i €0 , Ts(i) € IR.

e An RDF triple (s,p,o0) is true in L if and only if s,p,0 €U , Zs(p) € IP and (Zs(s),Zs(0)) €
Zeat(Zs(p))-

o An RDF triple is false in I if it is not true in T.

e An RDF graph is true in I if and only if every triple of it is true in Z. In particular, it
is false in T if some triple is not true in T.
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The RDF Schema (RDFS) provides a data-modeling vocabulary for RDF data. RDF
Schema is an extension of the basic RDF vocabulary and allows for attaching semantics to

user-defined classes and properties. For details, please refer to [Dan Brickley and R.V. Guha,
2014].

2.2.2. Querying RDF: The SPARQL Query Language

SPARQL is a query language for RDF based on graph pattern matching. Its syntax and
semantics is specified in [Prud’hommeaux and Seaborne, 2008]. Essentially, SPARQL is a
graph-matching query language. Query results in SPARQL are given by partial substitutions
(mapping) of the query variables by RDF terms, i.e., given a RDF dataset D, a query consists
of a pattern which may contain a variable instead of an RDF term in the subject, predicate
or object positions. The query is matched against D, and the RDF terms obtained from this
matching are processed to give the results.

Syntax of SPARQL

On a high level, a SPARQL query can consist of up to five main parts:
e Prefix Declarations: define URI prefixes (in a similar fashion to Turtle).

e Dataset Clause: specifies the dataset over which the query should be executed. A SPARQL
query is evaluated against a dataset consisting of a set of named graphs (declared using
FROM NAMED clauses) and a default graph, which is the union of one or more named
graphs (declared using FROM clauses).

e Query Forms: specifies what type of SPARQL query is being executed. In this work we
are only interested in SPARQL SELECT and CONSTRUCT query forms. which allow
us to specify how resulting variable bindings or RDF graphs, respectively, are formed
based on the solutions from graph pattern matching [Prud’hommeaux and Seaborne,
2008].

e Query Clause: specifies the query patterns that are matched against the data and used
to generate variable bindings.

e Solution Modifiers: used for projection, ordering, slicing and paginating the results.

In the following definitions, we lay out the core features of a query clause, and describe the
existing foundations of SPARQL introduced in [Pérez et al., 2009, Arenas et al., 2009].
A SPARQL graph pattern expression is defined recursively as follows:

1. A tuple from (JULUV)x(IuV)x(IuLuV) is a graph pattern (a triple pattern).

2. If P1 and P2 are graph patterns, then expressions (P1 AND P2), (P1 OPT P2), and
(P1 UNION P2) are graph patterns.

3. If P is a graph pattern and R is a SPARQL built-in condition, then the expression
(P FILTER R) is a graph pattern.
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A SPARQL built-in condition is constructed using elements of the set V uT and constants,
logical connectives (-, A,V), inequality symbols (<,<,>,>), the equality symbol (=), unary
predicates like bound, isBlank, and isIRI, plus other features (refer to [Prud’hommeaux and
Seaborne, 2008] for a complete list).

In the rest of this chapter, we use var(P) to denote the set of variables occurring in the
graph pattern P. In particular, if P is a basic graph pattern, then var(P) denotes the set of
variables occurring in the triple patterns that form P. Additionally, for a built-in condition R,
we use var(R) to denote the set of variables occurring in R, and the condition var(R) ¢ var(P)
holds. We conclude the definition of the algebraic framework by describing the formal syntax
of the SELECT query result form. A SELECT SPARQL query is simply a tuple (W, P), where
P is a SPARQL graph pattern expressions and W is a set of variables such that W ¢ var(P).

Example 2.2.3 Here is a brief example of a SPARQL query. Comment lines are prefized with
#. The query first defines prefizes that can be re-used later in a similar fashion to that allowed
by Turtle. The # DATASET CLAUSE selects the dataset over which the query should be run.
The # RESULT CLAUSE states what kind of results should be returned for the query: in this
case, a unique (i.e. DISTINCT) set of pairs of RDF terms matching the ?film and ?dura-
tion variables respectively. Next, the # QUERY CLAUSE states the graph patterns that the
query should match against: we are looking for the title and runtime of all entities of rdf:type
dbo:Film. Finally, the # SOLUTION MODIFIER section allows for putting a limit on the
number of results returned, to order results, or to paginate results: in this case, a mazximum
(i.e. LIMIT) of two results is requested from the query

# PREFIX DECLARATIONS
@prefix dbo: <http://dbpedia.org/ontology/>
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
@prefix dbp: <http://dbpedia.org/property/>
# DATASET CLAUSE
FROM <http://www.mythesis.de/ToyScenario/FilmsIWantToSee.rdf>
# RESULT CLAUSE
SELECT DISTINCT 7film ?duration
# QUERY CLAUSE
WHERE { ?film rdf:type dbo:Film ;
dbp:runtime ?duration.}
# SOLUTION MODIFIER
LIMIT 2

If we assume that the triples presented in Table 2.8, we expect a result like:

?film ?duration
dbr: Man_on_ a_Ledge 6120

SPARQL Semantics

Definition 2.2.6 (Triple and Basic Graph Patterns) A tuple t in (IULUV)x(IuV)x
(TuLuV) is a triple pattern. A Basic Graph Pattern (BGP) is a finite set of triple patterns.
Given a triple pattern t, var(t) is a set of variables occurring in t. Similarly, given a basic
graph pattern P, var(P) = Uwpvar(t), i. e. var(P) is the set of variables occurring in P.
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In triple patterns, blank nodes are considered as existential variables, i.e., as query variables
whose bindings cannot be used outside of the query clause (and thus that cannot be returned
in results). Therefore, we do not consider blank nodes in SPARQL query patterns since they
can be treated analogously to non-distinguished query variables: variables that cannot be used
elsewhere outside of the query-clause scope.

Thereby, a variable assignment is defined by a mapping:

Definition 2.2.7 (Mapping) A mapping p from V to T is a partial function p:V - T.
The domain of u, dom(u), is a subset of V where u is defined. The empty mapping pg is a
mapping such that dom(ug) = (i.e. py=0). Two mappings p1 and po are compatible when
for all z € dom(py ) ndom(uz), it is the case that py () = pe(x), then pyUpe is also a mapping.

Let Q1 and Qo be set of mappings; join, union, the difference, and left outer-join between

Q1 and Qo are defined as:

Q1w Qg = {1 Upz | 1€ Q,p2 € Qo are compatible mappings},

QuQo={p|pne or pes},

U NQo={pe | forall u €Qs, pand p' are not compatible},

Ql :NQQ = (Ql X QQ) @] (Ql AN QQ)

The operation 1 x s is the set of mappings that result from extending mappings in 4
with their compatible mappings in 29. 1 U €9 is the usual set theoretical union. 21 \ Qg is
the set of mappings in 2; that cannot be extended with any mapping in (2. A mapping p is
in 1 Qg if it is the extension of a mapping of {2; with a compatible mapping of s, or if
it belongs to 21 and cannot be extended with any mapping of (2o. These operations resemble
the relational algebra operations but over sets of mappings (partial functions).

A set of mappings can be represented by a relation ) over the domain T|V|, where the
variables V are the attributes and assignments are the tuples of this relation.

Definition 2.2.8 (Basic Graph Pattern and Mappings) Given a basic graph pattern P
and a mapping p such that var(P) < dom(u), we have that p(P) = Uwep{u(t)}, i. e. u(P) is
the set of triples obtained by replacing the variables in the triples of P according to p.

We can now define the semantics for basic graph patterns as a function [[P]]2 that given
a basic graph pattern P returns a set of mappings.

Definition 2.2.9 (Basic Graph Pattern Matching) Let G be an RDF graph over a RDF

dataset D, and P a basic graph pattern. The evaluation of P over G, denoted by [[P]|Z is
defined as the set of mappings:

[PNE = {u:V - T | dom(p) = var(P) and u(P) c G} (2.1)
If pe [[PIE, we say that p is a solution for P in G.

The evaluation of complex graph patterns is defined recursively:
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Definition 2.2.10 (Complex Graph Pattern Matching) Let G be an RDF' graph over a
RDF dataset D, and P, Py and P> basic graph patterns. The evaluation of P, P, and P> over
G is defined recursively as follow:

o [[P]Z is given by definition 2.2.9,

Py AND RJIg = [A]lg = [P]8,
Py OPT Rl = [PIG ==[[P]G,
[P ]E vP]E.
{[AJEIkECY,
u GRAPH P2 = [P]P2

gr(u)p

[[?X GRAPH P:Hg = Uvénames(D)([[P]]
that dom(p) = X and pu(X) =v.

P FILTER CT)8

I
I
I
[P UNION P,J2
I
I

3(U)D =MUX ) Where (x .y 15 a mapping such

Finally, [Arenas et al., 2009] defines the notion of equivalence for graph patterns.

Definition 2.2.11 (Equivalence of Graph Patterns) Two graph pattern expressions P1
and P2 are equivalent, denoted by P1= P2, if [P1]|5 = [P2]) for every graph G and RDF
dataset D.

Proposition 2.2.1 Let P1, P2 and P3 be graph pattern expressions and R a built-in condition
then:

e AND and UNION are associative and commutative.

(P1 AND (P2 UNION P3)) = ((P1 AND P2) UNION (P1 AND P3))

(P1 OPT (P2 UNION P3)) = ((P1 OPT P2) UNION (P1 OPT P3)).

((P1 UNION P2) OPT P3) = ((P1 OPT P3) UNION (P2 OPT P3)).

((P1 UNION P2) FILTER R) = ((P1 FILTER R) UNION (P2 FILTER R)).

2.2.3. The Ontology Web Language

The Web Ontology Language (OWL) is a W3C Recommendation ontology language for the
Semantic Web with more expressive semantics than RDFS [Dan Brickley and R.V. Guha,
2014] and a formally defined meaning [Deborah L. McGuinness and Frank van Harmelen,
2004, Christine Golbreich and Evan K. Wallace and Peter F. Patel-Schneider, 2012]. OWL
can also be serialized as RDF triples. In fact, OWL re-uses the core RDFS vocabulary, but
adds new vocabulary for defining classes, properties, individuals, and data values. In the next
table we summarize a small subset of DL description that can be formed with OWL (2). The
first column gives OWL abstract syntax for the construction, while the second column gives
the equivalent Description Logic syntax. Note that the letters A and R represent, respectively,
names for classes (concepts) and object properties (abstract roles); C, possibly subscripted,
represents an arbitrary class description.
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’ DL Syntax ‘ Abstract Syntax

A A
T owl:Thing
1 owl:Nothing

Cyn...nCy | intersectionOf(C;...Cy,)
Cu...uCy, | unionOf(C;...Cy,)

-C complementOf(C')

VR.C restriction(R allValuesFrom(C))
iR.C restriction(R someValuesFrom(C'))
>nhk restriction(R maxCardinality(n))
<nR restriction(R minCardinality(n))

Later in this thesis, we present an approach for reasoning with provenance information (see
Chapter 4). Even though it is generic enough to be applicable beyond OWL, we focus on an
extension of the description logic DL, called SRZQ(D), underlying OWL lite and OWL DL.
Hence, we briefly revisit the definition of SRZQ(D), and the fundamental reasoning problems
related to DLs. For a complete definition of SRIQ, refer to Horrocks et al. [Horrocks et al.,
2005, Horrocks et al., 2006], and for Description Logics refer to [Baader et al., 2003].

Definition 2.2.12 (Vocabulary) A vocabulary V = (N¢, Ng, N1) is a triple where
e N¢ is a set URIs used to denote classes,
e Npg is a set URIs used to denote roles and

e Ny is a set URIs used to denote individuals.

N¢g, Ngr, N; need not be disjoint.
An interpretation grounds the vocabulary in objects from an object domain.

Definition 2.2.13 (Interpretation) Given a vocabularyV, an interpretation Z = (AT, 2o Ir 1)
18 a quadruple where

o AT is a nonempty set called the object domain;

e L¢ s the class interpgetation function, which assigns to each class a subset of the object
domain I¢ : No - 28

o IR s the role interpretation J;uncztion, which assigns to each role a set of tuples over the
object domain TP : Np — (ATXAT).

e Li s the individual interpretation function, which assigns to each individual a € Ny an
element a** from AZT.

Let C,D e N¢o, let R,R;,S € Ng and a,a;,b € N;. We extend the role interpretation function
IR to role expressions:

(R = {({,9)|({y,2)) € R""}

We extend the class interpretation function £¢ to class descriptions:
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top

bottom

disjuction
conjuction
negation

value restriction
exist restriction
self restriction
atleast restriction

atmost restriction

TIC = AI

1%e =

(CnD)fe  =C%nDk

(CuD)fe  =ctouDle

(—|C)IC = AI N CIC

(VR.C)Ie  ={x e AT|(x,y) e RTR - y e CTc}

(AR.C)c  ={xe AT|Fye Al : (x,y) e RIR}
(EIR.Seéf)IC ={xe A?(a,a) e RT} .
(znR)* ={z e A"y, ..., ym € AT :

($7y1>>"'7<$7ym> GRIR /\mZn}
(< nR)%e = {ze A|Ay1,....,ym € AT :

($>y1>> ey (':Uaym> € RZR Am > n}

Class expressions are used in axioms.

Definition 2.2.14 (Axiom) An axiom is one of the following:

e A general concept inclusion of the form C € D for concepts C and D;

e An individual assertion of one of the forms a:C, (a,b): R, (a,b): =R, a=b ora+b for
individuals a,b and a role R.

e A role assertion of one of the forms Rc S, Ryo...oR,c S, Asy(R), Ref(R), Irr(R),
Dis(R,S) for roles R, R;, S.

The following table shows a small subset of the features provided by OWL (2) associated
with the equivalent Description Logic syntax.

’ DL Syntax ‘ Abstract Syntax ‘

RiERy SubPropertyOf(R; Rs)
Cl c CQ SubClassOf(Cl CQ)
oeC ClassAssertion(C' o)

o1 =...

= 0, | Samelndividual(o; ...op,)

Example 2.2.4 Continuing with our running example about movies, here we present a simple
exhibition of some features of OWL. The first statement defines that the entity named : Star_
Wars: _The_ Force_ Awakens is a film. The second one stated that the entity : Harrison_ Ford
1s an actor. With the following statements, we specify relationships between the entities by
indicating that : Harrison_ Ford has acted in the Star_ Wars: _The_ Force_ Awakens movie.

ClassAssertion(: Film : Star_ Wars: _The_ Force_ Awakens )

ClassAssertion(: Actor : Harrison_ Ford )

ObjectPropertyDomain(: act :Film )

ObjectPropertyRange(: act : Actor )

ObjectPropertyAssertion(: act : Star_ Wars: _The_ Force_ Awakens : Harrison_ Ford )

We now define satisfaction of axioms.
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Definition 2.2.15 (Satisfaction of Axioms)
Satisfaction of axioms in an interpretation T is defined as follows. With o we denote the
composition of binary relations.

(Rc S)?
(Rl o...oR,C S)I

(z,y) e RT > (2,y) e S*
V($,y1> € R%» <y1)y2> € R%v ceey
(Yn-1,2) € R% (w,z) € st

(Asy(R))* = 3(z,y) e R*: (y,x) ¢ R
(Ref(R))Y = VaeATl:(x,z)eR?
(Dis(R,8))t = RInst=g
(Irr(R))* = VoeAT:(x,z)¢R*
(ceD)Y! = zec?T>zeD?
(a:C) = dtec?
((a,b): R)YY = (af,b*) e R?
((a,b) :=R)* = (a®,b7) ¢ RF
a=b = af =0t
a+b = at#0br.

An ontology is comprised of a set of axioms.

Definition 2.2.16 (Ontology) A SRZQ(D) ontology O is a set of axioms as defined in
definition 2.2.14.

In this work we make use of two basic reasoning mechanisms for SRZQ(D), i.e. consistency
checking and axiom entailment.

Definition 2.2.17 (Reasoning with SRZQ(D)) We say an interpretation T of an ontology
O is a model of O (Z = O), if all axioms in O are satisfied in I. We say an ontology O is

consistent if there exists a model of O. We say an aziom A is entailed by an ontology O
(O A), if A is satisfiable in all models of O.

Obviously, a subontology again is an ontology. Moreover, if O’ € O and O’ £ A, then also
OEA.

Reasoning is important for using and working with ontologies. The reasoning task of com-
puting the individuals that belong to a given (set of) class(es) is called instance retrieval.
Instance checking is used when one wants to find out whether one particular individual be-
longs to the given class, and subsumption checking to check whether one particular individual
is subsumed by the given class — computing all subclass relationships between a set of classes
is called classification, and checking a particular subclass relationship is called subsumption
checking.

Another important reasoning task is consistency checking which is used to check whether
an ontology is logically consistent or contradictory. An inconsistent ontology entails every
axiom, and is therefore of no practical use. In the following we show an inconsistency detection
example.
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Example 2.2.5 Suppose we start out with the ontology from our Example 2.2.4. We extend
this initial example extended with the axiom:

DisjointClasses(: Actor : FilmProducer)

1. e. Film producers and Actors are disjoint. This ontology is logically consistent. Now we
add the axiom:

ClassAssertion(: FilmProducer :Harrison_ Ford)

stating that the entity : Harisson_ Ford is a film producer. Obviously, this results in an
inconsistent ontology, since we have stated that actors and film producers are disjoint.

2.2.4. Linked Data: Principles and Best Practices

Linked Data, the publication of data on the Web, refers to a set of principles and best practices
by which the Semantic Web standards (RDF, OWL, SPARQL, etc) can be effectively deployed
on the Web. Linked Data aims to facilitate access to structure data on the Web and the easy
reuse of this data. We will briefly introduce some concepts related to Linked Data; for more
information please refer to [Hogan, 2014, Bizer et al., 2009]

Linked Data relies on two technologies that are fundamental to the Web: Uniform Resource
Identifiers (URIs) [T. Berners-Lee, 2005] and the Hypertext Transfer Protocol (HTTP) [R.
Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, T. Berners-Lee, 1999]. The HTTP
protocol is used to access a resource identified by an Uniform Resource Identifier (URI) (simply
by dereferencing the URI over the HTTP protocol) and to retrieve structure data (RDF) about
this resource. The structure data about that resource can provide links to other resources
enabling further discovery, thus forming the Web of Data.

Example 2.2.6 The data used in our toy example so far has been taken from DBpedia:

# http://dbpedia. org/data/Man_on_ a_Ledge. zml

dbr: Man_ on_ a_ Ledge rdfs: label "Man_on_a_Ledge"Qen ;
dbp : runtime 6120;
rdf: type dbo: Film;

The first document, obtained from the Linked Data source DBpedia looking up the URI
http: //dbpedia. org/data/Man_on_a_Ledge. zml using dereferencing, is about the movie
dbr: Man_ on_a_Ledge. This means the resource dbr:Man_ on_a_Ledge is of type dbo:
Film. Information about the resource dbo: Film is available in a different document displayed
below. Thus, the rdf: type describes a link between these documents. By looking up the URI
using dereferencing, we can retrieve this document about dbo: Film.

# http: // dbpedia. org/data/Film. zml
dbo: Film rdfs: label "Film"Qen;
owl: sameds de_dbo: Filme ;
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Berners-Lee introduced the Linked Data principles in the initial W3C Design Issues docu-
ment [Berners-Lee, 2006]. The four Linked Data principles are as follows:

1. Use URIs as names for things.
2. Use HTTP URIs, so that people can look up those names.

3. When someone looks up a URI, provide useful information, using the standards (RDF,
SPARQL).

4. Include links to other URIs, so that they can discover more things.

In summary, the Linked Data best practices lay the foundations for extending the Web
with a global data space based on the same architectural principles as the classic document
Web and connecting data from diverse domains such as people, companies, books, scientific
publications, films, music, television and radio programmers; genes, proteins, drugs and clinical
trials; online communities, statistical and scientific data.

2.3. The Use of Provenance in Semantic Web Applications

On the Semantic Web, a large amount of work on provenance has already been carried out
and has been quite diverse. In a 2007 publication, Sergej Sizov pointed out in [Sizov, 2007] the
importance of provenance information in the Semantic Web as a tool to assess the veracity of
knowledge. Sizov [Sizov, 2007] argued that provenance information contributes to the Semantic
Web layer cake’s proof layer as it delivers explanations of where the presented knowledge comes
from and how the resulting conclusions have been constructed (see Figure 2.3). Many surveys
on provenance have been published since then which highlight the foundations, challenges
and opportunities of managing provenance in the Semantic Web [Moreau, 2010, Freire, 2009,
Lakshmanan et al., 2011, Bienvenu et al., 2012]. In the next section, we present a literature
review of the work on provenance on the Semantic Web.

2.3.1. Recent Work on Provenance in the Semantic Web

Representation and Querying: Recent work on provenance in the Semantic Web domain in-
cludes representational mechanisms for provenance and ways of using it. For example,
in [Carroll et al., 2005] the authors propose an application of so-called Named RDF
Graphs for publishing information on the Semantic Web. Information providers publish
information together with provenance about its intended assertional status. An infor-
mation consumer may accept some of these claims and reject others. In [Ding et al.,
2005] the authors describe the use of provenance and trust information in the context of
homeland security analysis. Their work concentrates on the description of an inference
framework addressing the use of provenance to evaluate the trustworthiness of derived
facts, and to prune search on the Semantic Web.

Provenance mechanisms for RDF datasets have been investigated by Udrea et al. [Udrea
et al., 2010] where the authors provide a semantics for RDF augmented with a partially
ordered set and algorithms for query processing and view maintenance. The literature
describes several approaches to extract data provenance/annotated information from
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Provenance and Semantic Web Layer Cake

User Interface & Applications I ¢ Proof layer aka

Provenance
Trust : :
* Trustis derived from
rovenance
Proof p g
information
Unifying Logic | Provenance of a resource is a record that describes

lfoundation for assessing authenticity, enabling trust,
Ontology:
OowL Rule:

RDFS | i

Query:
SPARQL

Data interchange:
RDF

URI/IRI

Figure 2.3.: Provenance and the Semantic Web Layer Cake. Taken from the presentation
“Provenance Analysis and RDF Query Processing: W3C PROV for Data Quality

and Trust” from Satya Sahoo and Praveen Rao, October 2015 .

RDF(S) data [Straccia et al., 2010, Zimmermann et al., 2012] supporting RDFS en-
tailment. Lopes et al. [Lopes et al., 2010] go behond supporting RDFS entailment and
provide a query language extending many of the SPARQL features in order to deal
with annotated data, exposing annotations at query level via annotation variables, and
including aggregates and subqueries.

Kwasnikowska et al. [Kwasnikowska et al., 2015] specify a formal account of the open
provenance model (OPM) [Moreau et al., 2011]. The OPM is a data model for prove-
nance that is designed to facilitate the meaningful interchange of provenance information
between systems. OPM graphs are directed graphs where nodes represent data products
and processes involved in past computations and edges represent dependencies between
them. Kwasnikowska et al. propose the formal semantics for the OPM, by viewing OPM
graphs as temporal theories on the temporal events represented in the graph. Hartig [Har-
tig, 2009a] proposes a specialization of the OPM, referred to as provenance vocabulary,
to describe the provenance of Linked Data over the Web. His model accounts for the
creation and access of RDF data. Fabrizio Orlandi and Alexandre Passant [Orlandi and
Passant, 2011] use the OPM to represent provenance (in RDF) about DBpedia state-
ments. Aldeco-Perez et al. [Aldeco-Pérez and Moreau, 2010] proposes a provenance-based
compliance framework, based on the OPM. The framework provides a processing view
(represented as a provenance graph for a specific execution time) and usage policy defini-
tion (UPD). It uses the UPD to validate against the processing view for compliance. The
framework lacks the integration with the commercial applications and policy standard
such as XACML.

The PROV data model (PROV-DM) has recently become a recommendation of the
World Wide Web Consortium to represent provenance information. The PROV data
model will be covered in more detail later in this chapter.

Relational Provenance Models Extensions for SPARQL Queries: In [Theoharis et al., 2011,
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Geerts et al., 2013, Karvounarakis et al., 2013] Theoharis et al. and Karvounarakis et
al. discuss the need for extending the relational provenance models to be leveraged for
SPARQL queries over RDF. In particular, they discuss that the use of semiring models
for SPARQL has been shown inadequate to handle the OPTIONAL construct, and ad-
vocate the need for a new abstract provenance model capturing the full expressiveness
of SPARQL. In addition, Geerts et al. [Geerts et al., 2016] identify SPARQL fragments
for which provenance models for positive relational queries can be leveraged, despite
the subtle differences between the semantics of SPARQL and relational algebra opera-
tors. In [Amsterdamer et al., 2011c], the authors show particular semirings for which an
extension for supporting difference is impossible. The consideration of extended prove-
nance models for capturing the semantics of both explicit and scoped weak negation
is also considered in [Analyti et al., 2014]. In [Damdsio et al., 2012], Damasio et al.
proposed a provenance model for a significant fragment of SPARQL 1.1, based on the
relational annotated provenance models including for non-monotonic constructs under
multiset semantics.

Amsterdamer et al. [Amsterdamer et al., 2012, Amsterdamer et al., 2011b] propose the
notion of core provenance that is defined in a very general way (using the semiring prove-
nance model), and its representation is minimal and compact. They study algorithms
that,given a query, compute an equivalent query that realizes the core provenance for all
tuples in its result. In [Deutch et al., 2015b], Deutch et al. describe an approach for web
scale provenance tracking. Their approach allows selective tracking of how-provenance,
where the selection criteria are partly based on the metadata itself (and significantly
reducing provenance size).

Provenance Dimensions : Hartig [Hartig, 2009b] presents a trust-aware extension to SPARQL,
the tSPARQL. Hartig first proposes a trust model that associates RDF statements with
trust values and extends the SPARQL semantics to access these trust values in tSPARQL.
In [Bonatti et al., 2011], Bonatti et al. formalize a logical framework for determining trust
to perform robust reasoning. In [Schenk, 2008], Schenk models multiple levels of trust
on Web data to resolve inconsistencies arising from connecting multiple data sources.

The version control aspect of provenance such as temporal RDF [Gutiérrez et al., 2005]
and querying time in RDF and OWL [Motik, 2012] has been tackled by attaching tem-
poral annotations to RDF facts and OWL axioms.

Summarization : Luc Moreau et al. [Moreau, 2015] present a summarization technique for
provenance graphs. Provenance summaries can be considered as “compact users views”
and have a good potential to detect anomalies and outliers. Summaries can be displayed
using a minimally adapted version of the PROV Working Group diagrams [PRO, 2012].
Richardson et al. [Richardson and Moreau, 2016] have shown how the use of more so-
phisticated architectures for natural language generation can be applied to the task of
explaining provenance graphs.

Evolving RDF datasets: Some work such as that of Flouris et al. [Flouris et al., 2009], Av-
goustaki et al. [Avgoustaki et al., 2016], and Halpin et al. [Halpin and Cheney, 2014]
consider evolving RDF datasets. Particularly Flouris et al. [Flouris et al., 2009] consider
the problem of how to maintain provenance information for RDF'S inferences when tuples
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are inserted or deleted, using coherence semantics. Avgoustaki et al. [Avgoustaki et al.,
2016] introduce a provenance model that borrows from both where and how provenance
models and is suitable for encoding both triple and attribute level provenance of quadru-
ples obtained via INSERT updates, and allows the reconstructability of such updates
from their provenance. Halpin et al. [Halpin and Cheney, 2014] consider a provenance
model for SPARQL queries and updates to data stores involving named graphs, whose
purpose is to provide a record of how the raw data in a dataset has changed over time,
and then tackle the problem of recording and providing (queryable) access to the detailed
change history of an RDF graph that is updated over time via SPARQL updates.

Crowdsourcing : In order to handle Linked Data quality problems, different approaches have
been proposed in the literature. See [Dragan et al., 2015, Keshavarz et al., 2014, Zhao
and Hartig, 2012, Huynh et al., 2013]. Basically, they make use of metadata which are
captured by provenance frameworks (using specific provenance vocabulary) or by crowd-
sourcing. Such kinds of metadata are often provided by agents (applications and/or
users) which manually analyze the data on the basis of given criteria.

Storage : In [Wylot et al., 2014, Wylot et al., 2015a], Wylot et al. present the TripleProv,
a native RDF store that allows tracking and querying provenance over Web Data. In
later work [Wylot et al., 2015b], Wylot et al. use the TripleProv store to investigate the
effectiveness of different query execution strategies for provenance-enabled queries.

Provenance in workflow systems : Eckert et al. [Eckert et al., 2014] present a framework
which integrates all phases of a typical workflow lifecycle, including the specification
of services, their composition to workflows as well as the execution of the workflows.
With the specified ontology, all resources in this lifecycle are described. Provenance of
all resources can be tracked and to expose the provenance using W3C PROV-DM [Belha-
jjame et al., 2013a]. The RDFProv [Chebotko et al., 2010] system focused on managing
and enabling querying over provenance that results from scientific workflows. Biton et
al. [Biton et al., 2007] showed how user views can be used to reduce the amount of infor-
mation returned by provenance queries in a workflow system. In [Hoekstra and Groth,
2015], Hoekstra et al. propose Sankey diagrams that are used to represent provenance in
a process-centric way.

2.3.2. An Introduction to PROV standard

PROV, the provenance standard, is a family of specifications which has recently been released
by the Provenance Working Group. PROV aims to define a generic data model for provenance
that can be extended in a principled way to suit many application areas. Here we provide a
short overview of PROV. For more details, please refer to [Moreau and Groth, 2013, Moreau
et al., 2015].

The PROV family of documents is a set of specifications allowing provenance to be mod-
eled, serialized, exchanged, accessed, merged, translated, and reasoned over, i.e., they define
a data model and an OWL ontology, along with a number of serializations for representing
aspects of provenance. The term provenance, as understood in these specifications, refers to
information about entities, activities, and people involved in producing a piece of data or
thing, which can be used to form assessments about its quality, reliability or trustworthiness
(PROVOverview [Groth and Moreau, 2013]).
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Recommendation documents include (i) the main PROV data model specification (PROV-
DM [Belhajjame et al., 2013a]), with an associated set of constraints and inference rules
(PROV-CONSTRAINTS [Nies, 2013]); (ii) an OWL ontology that allows a mapping of the
data model to RDF (PROV-O [Belhajjame et al., 2013b]), and (iii) a notation for PROV with
a relational-like syntax, aimed at human consumption (PROV-N [Cheney and Soiland-Reyes,
2013]). All other documents are Notes documents. These include PROV-XML, which defines
a XSD schema for XML serialization [Moreau, 2013]. PROV-AQ), the Provenance Access and
Query document [Moreau et al., 2013], which defines a Web-compliant mechanism to associate
a dataset to its provenance; PROV-DICTIONARY [Missier et al., 2013], for expressing the
provenance of data collections defined as sets of key-entity pairs; and PROV-DC [Miles et al.,
2013], which provides a mapping between PROV-0O and Dublin Core Terms.

PROV-DM provides an operational definition of provenance for the community to use and
is organized into six components respectively, dealing with: (1) entities and activities, and the
time at which they were created, used, or ended; (2) derivations of entities from entities; (3)
agents bearing responsibility for entities that were generated and activities that happened; (4)
a notion of bundle, a mechanism to support provenance of provenance; and, (5) properties
to link entities that refer to the same thing; (6) collections forming a logical structure for its
members.

The purpose of standardization of PROV was to specify a comprehensive and minimum
set of constructs that could easily address many areas of application. PROV is designed to
be extensible; therefore, it is expected that with more implementations of, and application
using, the PROV standards, more concepts (such as dictionary, mention, representation and
mappings) may appear. For instance, Trung Dong Huynh et al. [Huynh et al., 2016] propose
a new representation for PROV based on JSON-LD. Given its compatibility with both JSON
and the RDF data model, in addition to being amenable to stream processing, PROV-JSONLD
has a vast range of useful applications. PROV-JSONLD enables the adoption of PROV as the
provenance standard of choice in Linked Data and Web applications alike. Furthermore, in
previous work, Trung Dong Huynh et al. [Huynh and Moreau, 2014] presented the ProvStore -
a public provenance repository. ProvStore is an online public provenance repository supporting
the PROV standards. It allows users and applications to store and (optionally) publish the
provenance of their data on the Web.

In this thesis we do not use the PROV data model and ontology for representing and
exchanging provenance. This work focuses on providing a semantics for querying, reasoning
and efficiently handling provenance data within RDF database systems as well as dynamics
ontologies. Indeed, we provide representational mechanisms for provenance, nevertheless our
work could incorporate (parts of) the PROV standards.
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3. Querying RDF Datasets with Provenance

Overview

The Semantic Web is based on accessing and reusing RDF data from many different sources,
which one may assign different levels of authority and credibility. Existing Semantic Web query
languages, like SPARQL, have targeted the retrieval, combination, and reuse of facts, but have
so far ignored all aspects of provenance, such as origins, authorship, recentness or certainty of
data. In this chapter, we present an original, generic, formalized and implemented approach
for managing many dimensions of provenance, like source, authorship, certainty, among others.
The approach re-uses existing RDF modeling possibilities in order to represent provenance.
Then, it extends SPARQL query processing in such a way that given a SPARQL query for
data, one may request provenance without modifying the query proper. Thus, our approach
achieves highly flexible and automatically coordinated querying for data and provenance, while
completely separating the two areas of concern.

Structure

The structure of this chapter is as follows: Section 3.2 presents a motivation scenario that em-
phasizes the need for provenance within the query processing. In Section 3.3, we start to explain
our approach with a discussion of important design choices. We model provenance in existing
RDF structures by embedding a slightly more expressive language, which we call RDF*, into
RDF. Later, we define the abstract syntax of RDF*, its semantics and its embedding in RDF.

In Section 3.4, we present our approach to the treatment of provenance when querying
Semantic Web data by extending the SPARQL syntax and semantics to work on data and
provenance of RDF*. The extension allows the user to extend a given conventional SPARQL
query by a keyword for provenance, triggering the construction of provenance by the query
processor. We demonstrate in Section 3.5 the equivalences holding between the standard eval-
uation of SPARQL queries and the evaluation with provenance. Section 3.6 summarizes the
previously discussed steps of provenance representation and utilization for the sample scenario
that was introduced in Section 3.2.

We report on initial promising results for provenance processing from a theoretic point of
view in Section 3.7 and provide pointers to the prototype implementation of the system and
initial experimental testing in Section 3.8. Section 3.9 reviews existing research on querying
and ranking RDF data and the use of provenance in the Semantic Web. Section 3.10 concludes
this chapter.
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3.1. Introduction

Integrating and re-using Semantic Web data is proving to be a more and more fruitful method
of answering questions and delivering results. Typically, engines like Glimmer!, Swoogle?, and
Datahub 2 provide points of access for RDF data, and query languages like SPARQL with
their corresponding query engines allow for selecting and re-using data in the appropriate
format. When querying the Web, however, we are faced with a highly variable quality of
information. However, with the increasing data available on the Web and more sophisticated
processing through query and reasoning engines, one now encounters challenging questions
linked to provenance about the data like:

e Where is this data from?

Who provided the data?

e When was this data provided?

Was the provider certain about the truth of this data?

Has the data been verified by others?

Provenance provides knowledge that can be used to quantify this value, and may come
in different forms, e.g., trustworthiness of a source, time of validity, certainty and absence of
vagueness. Therefore, techniques to find the relevant information out of the Web data should
include ways to investigate the value of information.

For instance, when querying the Semantic Web with the help of SPARQL for the occupa-
tion of a person named ’James Cameron’, one finds (at least) two answers: 'Film Producer’
and ’Truck Driver’. Without further indication as to where, by whom, when, etc. such
information was given, it is impossible to decide which of the two occupations is still valid.

The problem might be remedied in several ways. First, an idiosyncratic solution by the
search engine, such as returning the corresponding RDF files or links to sources of knowl-
edge extraction (say http://dbpedia.org/data/James_Cameron.xml and http://www.myspace.
com/deprecated.doc), might help in this special case. However, an idiosyncratic solution may
not be appropriate in a second case in which the when was more relevant than the where
or even in a third case where such a piece of information had to be aggregated from several
resources and multiples where, who, and when have been retrieved.

Second, the person or system requesting the provenance information might manually extend
the SPARQL query formalizing the request for the occupation in order to return the where,
the who and the when. Such a modification will, however, be very tedious, as it will include
a number of additional optional statements, and expressing it manually will be error prone.
Also, it will not help in delivering provenance that arises from joining several statements, e. g.
provenance that was extracted from several statements with different provenance values.

Therefore, querying Semantic Web data requires a principled, generic approach to the
treatment of provenance that is able to adapt to its many dimensions and that is open to

"YAHOO!Glimmer:http: //glimmer . research.yahoo.com/
2Swoogle Semantic Web Search: http://swoogle .umbc . edu/
3Datahub: https://datahub.io/dataset
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accommodate itself to new dimensions when the need arises. Such a principled, original frame-
work is given in this chapter. The approach re-uses existing RDF modeling possibilities in
order to represent provenance. Then, it extends SPARQL query processing in such a way that
given a SPARQL query for data, one may request provenance without modifying the query
proper. Thus, our approach achieves highly flexible and automatically coordinated querying
for data and provenance, while completely separating the two areas of concern.

Research Questions
This chapter addresses the following research questions:

RQ 1.I Can RDF be used to represent provenance on its different dimensions e. g., source,
certainty, and timestamp?

RDF plays the role of a common model, as data can easily be integrated and combined with
other data published on the Web, which is basically done by establishing links between Web
resources. Provenance should then be embedded in RDF in such a way that it retains upward
compatibility with existing usage of the language and corresponding tools and methods, which
is a major concern for Semantic Web approaches.

RQ 1.IT Does the treatment of provenance within the SPARQL query language allow for
changing the existing SPARQL semantics (thus leaving it unsupported by existing query
engines)?

The SPARQL query language enables querying in interlinked data space (RDF graphs)
that goes beyond simple keyword searches. SPARQL mechanisms, however, do not include
techniques to find the relevant information out of the Web data. Therefore, query engines
need mechanisms to track provenance in its many dimensions when exploring data.

RQ 1.IITI Does the exploitation of provenance lead to computation overhead?

In general, provenance information can grow to be larger than the data it describes if the
data is fine-grained and provenance information rich. So the manner in which the provenance
is propagated along the computation is crucial to its scalability.

3.2. Motivation Scenario

In our scenario, the sample user aims to explore the knowledge and provenance information
by querying knowledge extracted from the Web. Here, we assume that he aims to find movies
and movie directors. Example 3.2.1 shows the relevant facts that may have been obtained from
different websites.

Example 3.2.1 Relevant facts obtained from different websites

Site | JamesCameron’s occupation is Film Producer.
A JamesCameron produces Avatar.

Site | JamesCameron’s occupation is Truck Driver.

B JamesCameron produces Battle Beyond the Stars.
Martin Scorsese’s occupation Film Producer.
Martin Scorsese produces Taxi Driver.
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In addition, the user wants to exploit provenance information for obtaining results with
best certainty and for analyzing contradicting answers (e. g. different occupations for the same
person ’James Cameron’ in Example 3.2.1). An example of provenance associated with the
extracted facts is presented in Example 3.2.2 and shows that the facts have been extracted
from different data sources, at different timepoints, and with different degrees of extraction
confidence.

Example 3.2.2 Associated provenance of facts presented in Example 3.2.1

Site | source = dbpedia.org/data/JamesCameron.zml
A certainty degree = 0.9

timestamp = 5/5/2014

Site | source = myspace.com/deprecated.doc

B certainty degree = 0.6

timestamp = 6/6/1980

3.3. Syntax and Semantics for RDF with Provenance

In order to adapt our sample application scenario to our framework, we formalize it using the
notion of Named RDF Graphs [Carroll et al., 2005, Carroll and Stickler, 2004]. We assume that
the user utilizes knowledge which has been initially extracted from different Web pages and
stored in form of RDF triples locally. Example 3.3.1 shows the relevant facts already presented
in Example 3.2.1 in RDF triple language TriG [Bizer and Cyganiak, 2014] with Named Graphs
in a simplified form that abstracts from (default) namespaces.

Example 3.3.1 Fuacts of Example 3.2.1 represented in TriG with Named Graphs

G1 | {JamesCameron occupation FilmProducer.
JamesCameron produces Avatar}

G2 | { JamesCameron occupation TruckDriver.
JamesCameron produces BattleBeyondtheStars.
Martin Scorsese occupation FilmProducer.
Martin Scorsese produces TaziDriver}

Likewise, the provenance associated to the extracted knowledge presented in Example 3.2.2
is stored into the same RDF repository using the notion of Named RDF Graphs.

Example 3.3.2 Provenance of Example 3.2.2 represented in TriG with Named Graphs

G3 | { G1 prov:source <dbpedia. org/ data/ James_ Cameron. zml >.
G1 prov:certainty ’0.9°.

G1 prov:timestamp “5/5/2014" }

G4 G2 prov:source <www. myspace. com/ deprecated. doc>.

G2 prov:certainty ’0.6°.

G2 prov:timestamp “6/6/1980" }
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In the examples above we have used existing RDF modeling possibilities in order to repre-
sent provenance. However we must distinguish the notation of RDF with only implicit notation
of provenance, but no semantic consequences specifically due to this provenance, from a for-
mally extended model of RDF with ezplicit notation of provenance.

In the course of representing and reasoning with provenance we embed a language with
provenance reasoning, i.e., RDF*, into a language without such specific facilities, i. e., in RDF.
This embedding implies that we may consider an RDF snippet in its literal sense and we may
possibly interpret it as making a provenance statement. Embedding provenance in RDF is
not the most expressive means to deal with all the needs of provenance processing, but it
retains upward compatibility with existing usage of the language and corresponding tools and
methods, which is a major concern for Semantic Web approaches. The following definition
of RDF*helps us to draw this line very clearly and concisely. The abstract syntax for this
embedded language, RDF*, is given in Section 3.3.2 and its semantics in Section 3.3.3. Then
we show how to embed RDF*in RDF with named graphs.

3.3.1. RDF Design Choices

This section summarizes and shortly motivates the design choices for our provenance frame-
work.

Reification

Establishing relationships between knowledge and provenance requires appropriate reification
mechanisms for supporting statements about statements. Our general objective is to execute
queries on original data (i.e. without provenance) directly without complex transformations.
For compliance with existing applications that access the repository in a common way (e.g.
using SPARQL queries), we do not modify existing user data. This requirement does not allow
us to use mechanisms like RDF reification, which decompose existing triples and fully change
the representational model. In our framework described in section 3.3, we adopt the notion of
Named RDF Graphs for provenance representation [Carroll et al., 2005, Carroll and Stickler,
2004].

Storage Mechanisms

Following the overall philosophy of RDF, we do not separate provenance from user knowledge in
the repository. Following this paradigm, a user or developer has unlimited access to all contents
of the triple store and can manipulate provenance directly. In other words, the user can directly
access provenance (e.g. using suitable SPARQL queries). Beyond explicitly designed queries
for provenance access, in Section 3.4 we describe the extension of SPARQL that allows us to
access provenance about the result set automatically without user intervention.

Provenance Dimensions

An important point for the application design is the definition of relevant provenance dimen-
sions and their suitable interpretation for arbitrarily complex query patterns. In general, these
dimensions are application dependent and must be carefully chosen by the system admin-
istrator. In our scenario (Section 3.2 and Section 3.6) we discuss common and widely used
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dimensions, such as timestamp, source, and (un)certainty, and show ways of defining and
utilizing them in our framework.

Syntax Extensions

Seamlessly integrated access to provenance requires corresponding extensions of existing query-
ing mechanisms. These can be realized at different levels, for instance at the level of query
languages (e.g. SPARQL) or at the level of application-specific interfaces (e.g. Sesame API).
In Section 3.4 we describe our SPARQL extension for constructing query results with associ-
ated provenance. It is system-independent and not related to some particular implementation
of the RDF repository. Furthermore, it fully supports the existing SPARQL syntax and se-
mantics. Compliance with existing established standards makes the integration with existing
applications and interfaces substantially easier.

3.3.2. Syntax for RDF with Provenance

The abstract syntax of RDF*is based on the same building blocks as RDF:
e U are Uniform Resource Identifiers (URISs).
o [ are all RDF literals.
e GG c U is the set of graph names.

e P c U is the set of properties.

In addition, we must be able to refer to statements directly without use of reification. For
this purpose, we exploit the notion of (internal) unique statement identifiers:

e O is a set of statement identifiers, which is disjoint from U and L.

Now, we may define RDF *literal statements that are placed in named graphs and have, in
addition to RDF, a globally unique statement identity.

Definition 3.3.1 (RDF* Literal Statements) The set of all RDF* literal statements, S,
is defined as quintuples by: & :={(g,s,p,0,0) | ge G, seU, pe P, oeUUL, 0 €©}. Thereby,
6 and (g,s,p,0) are keys such that there exists a bijection fi with fi(g,s,p,0) =0 A f71(0) =
(g,8,p,0). Moreover, we define the overloaded function f5 to return the complete quintuple

The reader may note that we assume that f; is fixed and given before any statement is
defined. Furthermore, this definition of literal statements and the rest of this work abstracts
from RDF blank nodes in order to keep the formalization more concise. However, there is no
conceptual problem in extending our treatment to blank nodes, too. The two statements of
Graph G1 of Example 3.3.1 may now be represented in RDF*in the following way:

Example 3.3.3 Knowledge statements in RDF*
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G2 K2of
(G1, JamesCameron, occupation, FilmProducer, 61 ),
(G1, JamesCameron, produces, Avatar, 02)}

Thereby, the exact form of statement identifiers in © is up to the implementation, as they
are only used for internal processing.

Having represented the literal interpretation of RDF statements in RDF*, we may now
address the representation of selected RDF statements as RDF*provenance. This is done using
a structure of RDF*provenance statements, 91, that is separate from the set of RDF*literal
statements:

Definition 3.3.2 (RDF* Provenance Statements) Let I' ¢ P be the set of provenance
dimensions (with designated semantics that is defined later). Let )., with v € I', be sets pro-
viding possible value ranges for the provenance dimension vy € I'. Then, the set of all RDF*
provenance statements, MM, is defined by: M= {(0,v,w) | 0 € O,ve,we,}.

The following example illustrates the target representation of the first two provenance
statements of graph G8 from Example 3.3.3.

Example 3.3.4 Provenance statements in RDF*

M2 M2 {
(01, prov:source, <dbpedia. org/ data/ James_ Cameron. zml>).
(01, prov:certainty, 0.9°)}

Together we may now define a RDF*dataset.

Definition 3.3.3 (RDF*Dataset) A RDF*dataset D™ of literal statements and associated
provenance statements is a pair D = (K, M) referring to a set of literal statements K ¢ &
and a set of provenance statements M c 9.

A (partial) example for such a dataset given by the pair (K, M) with definitions for K ¢ &
and M < 9 has been given in Example 3.3.3 and Example 3.3.4, respectively. Finally, we
define a RDF*dataset.

3.3.3. Semantics for RDF with Provenance

We now have an abstract syntax for representing RDF triples like “JamesCameron occupation
FilmProducer” as part of G1 and provenance statements like “the source of the statement that
James Cameron’s occupation is Film Producer is found in the document dbpedia. org/data/
James_ Cameron. xml 7.

However, such an abstract syntax may remain remarkably ambiguous if it cannot be linked
to a formal semantics. Assume two provenance statements:

(61, prov:source, <dbpedia.org/data/James_Cameron.xml>)
(01, prov:source, <http://www.imdb.com/name/nm0000116.xm1>)
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For the same literal statement identified by 6, the question may arise whether this means
a disjunction, i.e. one of the two documents has provided the fact, or a conjunction, i.e. both
documents have provided the fact, or a collective reading, i.e. the two documents together
gave rise to the fact, or whether this situation constitutes invalid provenance. In order to
prevent such ambiguities we introduce a generic semantic framework for provenance in RDF™*.
However, the framework must also be able to reproduce the literal interpretations found in
RDF. For the latter purpose, we first define a ’standard’ model for a RDF*dataset.

Definition 3.3.4 (Standard Interpretation and Model) A standard interpretation I :
& - {T,1} for a dataset D* = (K, M) assigns truth values to all statements* in K. A standard
interpretation for K is a standard model for K if and only if it makes all statements in K
become true. This is denoted by I s (K, M).

For instance, any standard model I for (K, M) in Example 3.3.3 would include
(G1, JamesCameron, occupation, FilmProducer, 6;)
in its set of literal statements evaluating to T. In order to address the level of provenance we
foresee an additional model layer that provides a different interpretation to each provenance
dimension.

Definition 3.3.5 (I'-Interpretation and Model) A T'-interpretation I, : & - Q, for a
dimension v € ' is a partial function mapping statements into the allowed value range of .

A T-interpretation 1, is a I'-model for (K,M) if and only if for all provenance state-
ments (0,v,w) € M where f1(0) = (g,$,p,0) the value of the interpretation equals to w, i. e.
I,((g,8,p,0,0)) =w. This is denoted by I =~ (K, M).

As an example, consider the literal statement (G1, JamesCameron, occupation, FilmPro-
ducer, 01) from Example 3.3.3, and the provenance statement (61, certainty, 0.9) from Exam-
ple 3.3.4. A T'-interpretation Iccrtainty, that is a I'-model, would map the literal statement onto
0.9.

The ’standard’ interpretation and I'-interpretation may now be combined to define what
an overall, unambiguous model is:

Definition 3.3.6 (Provenance Interpretation) A provenance interpretation J is a set in-
cluding a standard interpretation Is and the I'-interpretations 1., for all provenance dimensions
vyel.

Definition 3.3.7 (Provenance Model) A provenance interpretation J is a model for a
RDF*dataset D* = (K, M) if and only if all its interpretations I € J are a standard model
or I'-models for (K, M). This is denoted by J = (K, M).

3.3.4. Mapping between RDF and RDF+

The mapping between RDF and RDFneeds to be defined in two directions. First, one must be
able to map from RDF, as given in the examples from Section 3.2, to RDF*. Second, one must
be able to map from RDF*to RDF. Because RDF*is more fine-grained than RDF the first
direction will be easy. For the second a compromise on the granularity of the representation
has to be made.

“Note that because f; is fixed there are no two tuples (g, s,p,0,01), (g, s,p,0,02), where 01 # 05. This
implies that the standard interpretation is independent of the identifiers 61, 65.
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From RDF to RDF*

The examples of Section 3.2 reify groups of statements, i.e. the ones found in G1 and G2, in
order to associate provenance, such as given in G3 and G4. In order to allow for an interpre-
tation of the provenance as defined in the preceding section, we map RDF into RDF*. For all
RDF statements, including statements in graphs GI and G2 of Example 3.3.1, the mapping
performed is close to an identity mapping. One only needs to add statement identifiers. The
result for G1 in RDF*is:

Example 3.3.5 Representing graph G1 in RDF*
K2 {

(G1, JamesCameron, occupation, FilmProducer, 6, ),
(G1, JamesCameron, produces, Avatar, 02)}

with

01 := f1(G1, JamesCameron, occupation, FilmProducer)
and

02 := f1(G1, JamesCameron, produces, Avatar)

The same mapping — close to the identity mapping — is performed for provenance statements
like statements of graph G3, resulting in their representation as literal statements:

Example 3.3.6 Representing graph G3 in RDF*

K2 {
(G3, G1, prov:source, <dbpedia. org/ data/ James_ Cameron. zml>, 03),
(G3, G1, prov:certainty, '0.9’, 04),

!

Note that this step is necessary in order to achieve upward and limited downward com-
patibility between RDF* and RDF. The interpretation of statements, like the ones found in
G3, also require an interpretation as provenance. This is achieved by mapping RDF state-
ments with designated dimensions from I' like prov:source and prov:certainty to the additional
provenance layer:

Example 3.3.7 Provenance representation of statements in G3

M2 {
(01, prov:certainty, 0.9°),
(01, prov:source, <dbpedia. org/ data/ James_ Cameron. zml>),

!

The mapping of predicates of these provenance statements from RDF to RDF*is obvi-
ous, they are mapped to itself. Objects are mapped to the corresponding elements of the
value ranges (),. For the subjects, however, there arise modeling choices. For instance, if
prov:certainty were interpreted using probability theory, one might assign a distributive or a
collective reading. In the distributive reading, each fact in G1 receives the probability value
of 0.9 and, eventually, the distributive reading will assign a joint probability of close to 0 for
a large number of n stochastically independent facts, i.e. the joint probability 0.9". In the
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collective reading, the collection of facts in G1 as a whole will receive the probability value
0.9. Therefore, the collective reading will assign an individual certainty close to 1 for each
individual fact, when the number of facts is high and each fact is independent from the others,
i. e. the individual probability would be ¥/0.9. A priori, none of the two (and more) modeling
choices is better than the other, but they constitute different modeling targets.

The mapping from RDF to RDF™ for the distributive reading of a provenance ~ is easy to
achieve.

Definition 3.3.8 (Distributive Embedding) Given an RDF statement “G {s p o}” and
an RDF provenance statement “H {G v w}”, a distributive embedding of RDF" in RDF adds
the provenance statement

{(9,’7,(0) | 0 = fl(Ga 57p70) N f5(9) € K}
to M.

This means that such a provenance statement is applied individually to all statements in
the graph to which it refers in RDF, as indicated in the example above. For certain v there
might be several RDF provenance statements H {G v w;} which attach different values w;
to a graph G via a single provenance dimension . In that case set-valued ranges have to be
elements of {1, in order to be consistent with Definition 3.3.5.

From RDF" to RDF

The serialization of RDF* data in an RDF knowledge base is straightforward. Each quintuple
(g,8,p,0,0) is realized as a corresponding triple in a named graph and the tuple identifier 6 is
discarded.

Example 3.3.8 Serialization of some RDF* statemtents in G5 in RDF
(G5, JamesCameron, occupation, FilmProducer, 6)
-is mapped to-

G5 {JamesCameron occupation FilmProducer}

For provenance statements the situation is more challenging, because literal statements
with different statement identifiers may belong to only one named graph. Their corresponding
provenance statements may differ, but the realization of the provenance statements in RDF
does not allow for retaining these fine-grained distinctions — unless one chooses to change the
modeling approach drastically, e.g.. by assigning each literal statement to a named graph of
its own, which is undesirable (cf. discussion in Section 3.3.1).

We have preferred to pursue a more conventional modeling strategy for RDF with named
graphs. Therefore, we weaken the association between provenance statements and their cor-
responding literal statements when mapping to RDF, that is, we group sets of provenance
dimension values into one complex value.

Definition 3.3.9 (Grouped Provenance) Given an RDF* dataset (K, M), RDF prove-
nance is generated by grouping RDF* provenance statements as follows:
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Add the triple (g v w") to the RDF graph ¢’ := hashGraph(g) for each
W' = W1 Ve oo Ve wp

where (6,v,w;) € M A (g,S,P,0,0) € K. Further, hashGraph is a function mapping existing
graph names onto graph names suitable for associating provenance and v~ is an operation
defined on (1.

If W' is set-valued then a set of triples is added to ¢’ in order to represent w’. The suitability
of hashGraph may be application specific. A general strategy may map graph names g to
graph names prefixed by http://provenance.semanticweb.org in a deterministic manner.
Operations on provenance dimensions are discussed in Section 3.4.2. In the following example
the grouping of provenance values is illustrated.

Example 3.3.9 Group of provenance values

K:={

(G5, JamesCameron, occupation, FilmProducer, 01 ).

(G5, JamesCameron, produces, Avatar, 03)}

M:={

(01, prov:source, <http: //www. imdb. com/name/nm0000116. zml >).
(02, prov:source, <dbpedia. org/ data/ James_ Cameron. zml>)}

-1s mapped to-

G5 { JamesCameron occupation FilmProducer,
JamesCameron produces Avatar}
G6 { G5 prov:source <http: //www. imdb. com/name/nm0000116. zml >,
<dbpedia. org/ data/ James_ Cameron. zml >}

In Example 3.3.9, the resulting grouped value is the set consisting of the two documents
http://www.imdb.com/name/nm0000116.xml and dbpedia.org/data/James_Cameron.xml

which is represented by two triples. For specific provenance dimensions, an additional func-
tion may be necessary to provide a mechanism for representing grouped values in an appro-
priate RDF data structure.

3.4. Syntax and Semantics for SPARQL for Querying RDF
Datasets with Provenance

For querying RDF repositories with provenance awareness, we exploit the capabilities of the
SPARQL query language. In this section we first introduce a small extension to standard
SPARQL syntax [Prud’hommeaux and Seaborne, 2008] 5 and then define how SPARQL can
be applied to an RDF*knowledge base. The objective of our considerations is the derivation
of provenance about query results.

®In this thesis, we work with the version of SPARQL query language defined in [Prud’hommeaux and Seaborne,
2008]. The SPARQL Working Group has, however, produced a W3C Recommendation in 2013 for a new
version of SPARQL which adds features to this 2008 version.
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3.4.1. SPARQL Syntax Revisited

In our scenario, we assume that the user aims to explore the knowledge and provenance using
the RDF query language SPARQL. The following SPARQL query shown in Example 3.4.1
enables the user to find out about movies and movie producers on the RDF dataset presented
in Example 3.3.1.

Example 3.4.1 SPARQL query to be evaluated on the RDF knowledge base in Example 3.5.1

CONSTRUCT {?x occupation 7z}
FROM NAMED G1
FROM NAMED G2
WHERE { GRAPH ?7g {7x produces 7z .
?x occupation ’FilmProducer’}}

When using SPARQL to query RDF* we introduce one additional expression “WITH
META MetaList’. This expression includes the named graphs specified in MetaList for treat-
ment as provenance. This statement is optional. When it is present the SPARQL processor
may digest the RDF* provenance statements derivable from the RDF named graphs appear-
ing in the MetaList. The SPARQL processor will then use this meta knowledge to compute
and output all the provenance statements derivable by successful matches of RDF* literal
statements with the WHERE pattern.

According to SPARQL semantics, FROM g expressions replicate all RDF triples of g into
the default triple space of the query. When the same triple appears in multiple source graphs
(say (s,p,0) appears in both G1 and G2, and the query contains a clause FROM NAMED
G1 FROM NAMED G2), its provenance may become ambiguous. As an intermediate step of
our query processing, this provenance is aggregated using RDF *interpretations as introduced
in Section 3.3.3. We note that this intermediate step is not necessary for queries with WITH
NAMED g clauses, which are also fully compatible with our framework.

Thus, SPARQL queries on RDF™ have one of the two following overall forms:

Definition 3.4.1 (SPARQL SELECT Query) The structure of a SPARQL SELECT query
has the following form:

SELECT SelectExpression
(WITH META MetaList)?
(FROM GraphName)+
WHERE P

Definition 3.4.2 (SPARQL CONSTRUCT Query) The structure of a SPARQL CON-
STRUCT query has the following form:

CONSTRUCT ConstructExzpression
(WITH META MetaList)?

(FROM GraphName)+

WHERE P

In these definitions, P refers to a graph pattern that explains how RDF™ literal statements
from named graphs specified using FROM statements are matched. Matches bind variables that
are used for providing results according to the SelectFExpression or the ConstructExpression.
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3.4.2. SPARQL Semantics Revisited

In this subsection we define the semantics of SPARQL queries evaluated on an RDF* theory.
For our definitions we use two building blocks: algebraic semantics of SPARQL [Pérez et al.,
2009, Arenas et al., 2009] and the how-provenance calculated via annotated relations (cf. [Green
et al., 2007]).

The algebraic semantics of SPARQL queries are given based on set-theoretic operations
for sets of variable assignments. Such a set of assignments may be assigned information about
the so-called how-provenance [Green et al., 2007], i.e., the assignments may be annotated
with formulae describing the individual derivation tree used to assign the variables. The how-
provenance annotation may be represented by a function ® : (U u L)|V| — §, where (U U L)'V‘
is the set of all tuples of the length |V| over the domain U u L and § is the set of formu-
lae annotating variable assignments. The set of formulae § is given by all Boolean formulas
constructed over the set of literal statements & and including a bottom element 1 and a top
element T. The formulae constitute an algebra (F,A,V, 1, T). The special element 1 is used as
an annotation of variable assignments which are not in the result set. The special element T
may be omitted, but it allows for the simplification of complex formulas.

The following definition shows how a set of variable bindings is generalized to SPARQL
queries of arbitrary complexity by a recursive definition of simultaneous query evaluation
and computation of the annotations. The first step in evaluating a graph pattern is to find
matches for the triple pattern contained in the query. Because the RDF* dataset D* consists
of quintuples, we need to adapt the SPARQL evaluation procedures. The statement identifiers
do not need to be matched, as they depend functionally on graph name, subject, predicate
and object. Therefore, we consider that the matching of triple patterns P = («, 3,0), given a
graph name \ € U, is always defined by the following SPARQL grammar (GRAPH \ P). As a
simplification of our formalization we assume that the keyword GRAPH together with a URI
or a graph variable is used in any given SPARQL query. If it is not used, we may expand a
given SPARQL query to include it.

Definition 3.4.3 (Basic Graph Pattern Matching) Given a basic graph pattern P = (a 56),
a graph name X € U and a mapping p such that var(P) ¢ dom(u). Let D* be an RDF* dataset,

G = gr(X\) a RDF graph in D*, and pu(P) is the set of triples obtained by replacing the variables
in the triples of P according to . The (meta) evaluation of P over G, denoted by [[[P]]]g+ is
defined as the set of annotated mappings ®, p € dom(®) : [PNE" = {po (®(n)) | p:V -
UuL A®: (UuL)VI 5§ andom(p) =var(P) A3 6 (name(G) o u(P)o (0) € Kg) }

where Kg := a#lzmme(g)(K), i. e. the selection of statements in K belonging to graph G
and o denotes vector concatenation. If pio(®(u)) € [[[P]]]g+, we say that po(P(w)) is a solution
for P in G.

0 if n(P)=(g,5,p,0) A
(g7s7p7070) e KG /\
fl(._(]vS?pvo) = ‘9’

L else

D) =

Assume, for the next SPARQL queries example, the following RDF knowledge base D*:

Example 3.4.2 RDF* dataset D" = (K, M)
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K ={

(G1, JamesCameron, occupation, FilmProducer, 6 ),

(G1, JamesCameron, produces, Avatar, 02),

(G2, JamesCameron, occupation, TruckDriver, 03 ),

(G2, JamesCameron, produces, BattleBeyondtheStars, 04),
(G2, MartinScorsese, occupation, Film Producer, 05 ),
(G2, MartinScorsese, produces, TaxiDriver , 6g)}

For corresponding M, see Example 3.4.14
Let the SPARQL query in Example 3.4.3 be evaluated on the dataset D™:

Example 3.4.3 SPARQL query to be evaluated on the knowledge base D*

SELECT ?7g 7x 7y
WITH META G3, G4
FROM NAMED G1
FROM NAMED G2
WHERE {
GRAPH 7g {?x occupation 7y} }

For the query of Example 3.4.3, we may find the following variable assignments in Exam-
ple 3.4.4 using standard SPARQL processing and we may indicate, which atomic formulae, i. e.
RDF* quintuples in this simple example, led to these variable assignments. This indication is
given by the statement identifiers representing their statements.

Example 3.4.4 Variable assignments for query of Example 3.4.3

’ 29 %z 2y ‘ 5 ‘
G1  JamesCameron FilmProducer | 61
G2  JamesCameron TruckDriver | 03
G2 MartinScorsese  FilmProducer | 05

Basic pattern matching is not directly applicable, if an expression '"GRAPH X\’ appears
outside a complex triple pattern. In such a case, we first need to distribute the expression
"GRAPH X\’ appropriately to atomic triple patterns in order to prescribe atomic SPARQL
expressions accessible by basic pattern matching. Because named graphs cannot be nested,
this distribution is always possible and unambiguous.

In the following we use the function quads(P) to denote the query resulting from this
transformation. In example 3.4.5 this transformation is demonstrated on a conjunction of two
triple patterns.

Example 3.4.5 Distributing the expression 'GRAPH X\’ in a complex triple pattern with the
function quads(P)

P1=

GRAPH ?src {
{ ?x occupation ?y .}
{ ?x produces 7z .}}
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quads(Py) =
GRAPH ?src { ?x occupation 7y .}
GRAPH ?src { ?7x produces 7z .}

Now we define the evaluation of complex graph patterns by operations on sets of variable
assignments similar to [Pérez et al., 2009, Arenas et al., 2009]. Note that we restrict to SPARQL
fragments for which provenance models will be used for positive relational queries. For more
details about the limitations of relational provenance models for capturing the semantics of
the SPARQL OPTIONAL operator, see [Geerts et al., 2013].

Definition 3.4.4 (Complex Graph Pattern Matching) Given the basic triple graph pat-
terns P, Py, Py and a graph name A € U. Let D* be an RDF*dataset, G = gr(\) a RDF graph
in D*. The meta evaluation of P, Py, and Py over G, denoted by [[.]N2", is defined recursively
as follow:

P D is given by definition 3.4.3,

[P AND RJIG = [[Ale = [IP:00E
[P, UNION RJIg" = [T vRI0E
(B!

UC([[[PI]]]5+

The definition uses the operation AND. In standard SPARQL the operation AND is denoted
by the absence of an operator. Like [Pérez et al., 2009, Arenas et al., 2009] we still use the
explicit term AND in order to facilitate referencing to this operator.

The recursion in the SPARQL query evaluation defined in Definition 3.4.3 is indeed identical
to [Pérez et al., 2009, Arenas et al., 2009] (the work of [Pérez et al., 2009, Arenas et al., 2009]
on the SPARQL semantics is briefly summarized in Chapter 3.4). Only the basic pattern
matching has been changed slightly. Basic pattern matching now considers the basic pattern
triple with named graph matching, and it annotates variable assignments ®(u) from basic
matches with atomic statements from & and variable assignments from complex matches with
Boolean formulae F' € § over these statements.

The following definition specifies how complex formulae from §, which are used to construct
formulas representing the how-provenance and serve as annotations for results of matching
complex graph pattern, are derived using algebraic operations on sets of annotated variables
bindings.

FILTER CT2’

Definition 3.4.5 (Algebra of Annotated Relations) Let ®, ®; and Py be sets of anno-
tated variable assignments. We define w, U, o, and ¥ via operations on the annotations of the
assignments (the two binary operations A and V) as following:

o (D1 xDo)(p) = P1(u1) A Po(p2), where Vo € dom(pug) Nndom(ug) : pi(x) = pa(x) and
where 1 and po are compatible and pn = puy U pa®,

5Two mappings p1 and pp are compatible when for all z € dom (1) ndom(p2), it is the case that 1 (z) = 2 (x),
then w1 U p2 is also a mapping.
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o (D1 U Po)(p) = Pup) v Pop), pePyor peds

o (0.(®(p))) = ®(p)A fe(p), where fo(p) denotes a function mapping p to either T or L
according to the condition c.

* (Z/JX(@(M))) = Vugu,dom(,u):X,'I)(u)atJ_ (I)(V)

Furthermore, following the algebraic definition of how-provenance formula, we present the
set of laws for annotated relations.

Definition 3.4.6 (Laws of Annotated Relations) Let ®1, ®o and P3 be sets of annotated
variable assignments. We define the laws for annotation relations via operations on the anno-
tations of the assignments as follows:

e Idempotency:

@y (p1) A P1(p1) = P1(pa)
@y (p1) v @1(p1) = P1(pa)

o Commutativity:
D1 (p1) A Pa(p2) = Po(p2) A P1(p1)
D1 (p1) v P2(p2) = P2a(p2) v @1 (1)

o Associativity:
Dy (p1) A (Pa(p2) A P3(u3)) = (P1(p1) A P2(p2)) A P3(3)
D1 (p1) v (Pa(p2) v @3(u3)) = (P1(p1) v P2(p2)) v @3(u3)

o Distributivity:
Dy (p1) A (P2(p2) v @3(13)) = (P1(p1) v P2(p2)) A (P1(p1) v @3(p3))
Dy (p1) v (Pa(p2) A P3(p3)) = (P1(p1) A P2(p2)) v (P1(p1) A P3(p3))

e Absorption:

1 (p1) A (Pr(p1) v P2(p2)) = P1(pn)
1 (p1) v (P1(p1) A Pa(p2)) = P1(p1)

In order to show the evaluation of a SPARQL query, we consider the query from Exam-
ple 3.4.6 to be evaluated on the knowledge base D™.

Example 3.4.6 SPARQL query to be evaluated on the knowledge base D*

SELECT 7hl 7h2 7x 7y
WITH META G3, G4
FROM NAMED G1
FROM NAMED G2
WHERE {
{GRAPH 7h1l {?x produces ?y}} AND
{GRAPH 7h2 {?x occupation ’FilmProducer’}}
FILTER {?x=’JamesCameron’}}
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Let P be the graph pattern contained in the WHERE clause of the query. Then the eval-
uation of P is defined by an algebraic expression:

[[{P1 AND P,}

FILTER {?x = JamesCameron} ][|5"
= 0rxcgumesCameron ([[P1 AND PRJ[E"

= oncJamesCameron ([LPUE = [P216

= U?x:JamesCameron(q)l X (1)2)

[rPme

where ®; and ®, are relations representing variable assignments and their annotations.
In this example and in the preceding definition we have used algebraic operations on sets of
annotated bindings. In order to evaluate the expression 7= jamesCameron (®1 % ®2) we need to
determine ®; and ®2 using Definition 3.4.3. The intermediate result is shown in Example 3.4.7.

Example 3.4.7 Determining ®1 and ®s - intermediate result of the expression o7x-JamesCameron (1%
Dy)

(701 7x 7y | & |
By = G1  JamesCameron Avatar 0
G2  JamesCameron BattleBeyondtheStars | 64
G2  MartinScorsese  TaxiDriver O¢
[7h2  7x | S |
®y =| G1 JamesCameron | 6,

G2  MartinScorsese | 05

To evaluate the conjunction of two patterns, the operation x is applied, and the result
is shown in Example 3.4.8. The annotation 61 A 0y of the first row represents that this as-
signment has been derived from the conjunction of the two literal statements 6; and 6y (see
Example 3.4.2).

Example 3.4.8 Determining ®1x®y - intermediate result of the expression o7x-jamesCameron (P1

Dy)

(I)l X (I)Q =
[7h1 7h2 7x 7y | S5 |
Gl G1 JamesCameron Avatar 01 A 0o
Gl G2 JamesCameron BattleBeyondtheStars | 61 A6,
G2 G2 MartinScorsese  TaxiDriver 05 A Og

Application of the o-operation to the intermediate results gives the annotated relation
shown in Example 3.4.9.

Example 3.4.9 Result of 07x=JamesCameron (P1 % P2)

0?x=JamesCameron(®1 X (PQ) -
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[7h1 72 7x 7y \ S, \
Gl Gl JamesCameron Avatar (01 A02) AT
Gl G2 JamesCameron BattleBeyondtheStars | (61 A64) AT
G2 G2 MartinScorsese  TaxiDriver L

The annotations ® (1) can now be used to assign truth values for each tuple binding p. I
(cf. Definition 3.3.4) assigns truth values to all atomic statements s; € K ¢ &. We extend the
interpretation I to capture all the Boolean formulae over statements &.

Definition 3.4.7 (Standard Interpretation of Formulae) Let F,Fy,Fy € § be Boolean
formulae over G, let F, € & be an atomic formula. We define the standard interpretation of
formulae Isf as follows:

d Ig(Fa) = Is(Fy);
o II(Fi ARy is T if II(Fy) = II(Fy) = T, otherwise 1
o Ig(Fl v Fy) is T if I!(Fl) =T or IJ(FQ) =T, otherwise L.

For instance, Isf returns T for the assignment shown in the first row of ®; x ®5 from
Example 3.4.8, because the statements 6; and 0, are in the knowledge base.

Basically, the standard interpretation of formulae [ f assigns truth values for all variable
bindings that are in the knowledge base, as well as captures all the Boolean formulae over
these statements bindings. For producing the result set, we dismiss all variable bindings with
L value assigned.

Analogously to I sf , we can extend a I-interpretation I, over RDF" statements to a I'-
interpretation I%t over formulae. Similar to the definition of the standard interpretation of
formulae, the I'-interpretation assigns values which represent provenance dimensions for all
variable bindings which are not in a set of bindings annotated with L. Thus we do not con-
sider provenance interpretations of such bindings over formulae. Remember that provenance
interpretations allow for only one w per § € © and «y € I' (cf. Definition 3.3.5). In order to make
use of the how-provenance represented by the annotations we require that for each provenance
dimension v an algebra (£2,,A,Vy, T, Ly) with two operations A, and v, and two special
elements T,, Ly € €2, is defined. The definition of the algebras can be supplied by a modeler
according to the intended semantics of the different provenance dimensions.

Definition 3.4.8 (I'-Interpretation of Formulae)
Let F, Fy, F5 € § be Boolean formulae over G, let F, € & be an atomic formula. We define the
interpretation L{ as follows:

o I’{(Fa) = Iw(Fa);
o (F\AF) is I(F) ny I (F);
o (F\VvF)is I(F) v, II(F);

The definition of knowledge dimensions can be supplied by the administrator of the knowl-
edge base, according to the intended semantics of particular provenance dimensions. For il-
lustration we consider in Example 3.4.10 the definition of fuzzy logic operations to calculate
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a possibility measure on variable assignments, operations defined on timestamps which calcu-
late the time of the last modification, and set operations defined for source documents that
construct the combined "how-provenance’.

Example 3.4.10 Fuzzy logic operations for provenance dimensions

chrtainty = [07 1]

I(J:ertamty(xl A ‘TZ) = min([fertamty(xl)? I({ertainty(xz))
I({ertamty(xl v ‘TQ) = maX(Igertamty(xl)’ Igertainty(x2))
thime = [07 oo) f F

Itime(xl A x2) = maX(Itime(xl)’ Itime(xz))

I (z1vas) = min(I{ime(:cl),Ifime(xg))

time

Qsource = 2P, D the set of document URIs
I!ource(l'l A 552) = Igource(xl) U Igource(l?)
I!ource(ml 4 1’2) = Igource(-rl) U Igource(l?)

As discussed earlier, the graph pattern queries evaluation with provenance algorithm pro-
posed here follows a compositional semantics, i.e. for each P’ sub-pattern of P the result of
evaluating P’ can be used to evaluate P. In order to solve this problem algorithmically, we
have implemented, analogously to [Pérez et al., 2009, Arenas et al., 2009], a depth-first strategy
algorithm for evaluating SPARQL query patterns with provenance. This algorithm, denoted
by Fwval*, has been implemented so that it emulates exactly the recursive definition of [[[.]]]
for well-designed pattern as defined in [Polleres, 2007]. Formally, given an RDF*dataset D*,
we define the evaluation of pattern P with the set of mappings 2, denoted by Ewvalj,.(P,$2)
as follows:

Algorithm 1 Evaluation Algorithm: Evalf,. (P, )

1: if Q = @ then

2: return (@)

3: end if

4: if P is a triple pattern ¢ then

5: return (Q x [[t]]]p+)

6: end if

7. if P = (P1 AND P2) then

8: return Eval},. (P2, Eval},.(P1, Q))

9: end if

10: if P = (P1 UNION P2) then

11: return Eval},. (P1, Q) u Evalf. (P2, ))

12: end if

13: if P = (P1 FILTER R) then

14: return { ®(u) € Evaly (P1, Q) A fr(p) } where fr(u) denotes a function mapping u to
either T or 1 according to the condition R

15: end if

Then, the evaluation of P against a dataset D", which we denote simply by Eval},. (P), is
Eval},. (P, ®(1t)g), where ®(p1)g is the mapping with empty domain.
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3.4.3. SPARQL Query forms

As mentioned before, in this work we are only interested in standard SPARQL SELECT and
CONSTRUCT query forms. The evaluation of SPARQL queries on RDF*data differs from the
standard evaluation in that provenance is attached to the results.

The evaluation of SELECT queries on an RDF*dataset is based on 1x ([[PI]5") (see
Definition 3.4.5), where X denotes the set of variables specified in the SelectExpression (see
Definition 3.4.1). If X forms a proper subset of the variables used in the graph pattern then
the annotations of all bindings v are grouped. This grouping is analogous to the generation
of grouped provenance described in Definition 3.3.9. As an example consider the query shown
in Example 3.4.11, which is a slight modification of the query from Example 3.4.6, applied to
the data shown in Example 3.4.2. For the result see Example 3.4.12. In contrast to Example
3.4.8 there is only one row for JamesCameron.

Example 3.4.11 SPARQL query to be evaluated on knowledge base D*

SELECT ?7x
WITH META G3, G4
FROM NAMED G1
FROM NAMED G2
WHERE {
{GRAPH 7h1 {?x produces ?y}} AND
{GRAPH ?7h2 {?x occupation ’FilmProducer’}}}

The result of a SELECT query is a set of extended bindings. Such an extended binding
contains values for the specified variables and values for each provenance dimension v € I
which can be regarded as additional variables.

Example 3.4.12 Determining ¢{?x}(‘1’1 x ®g) - intermediate result of the expression defined
in Example 3.4.11

= = |
V201 (P1 % P2) = [ JamesCameron | (6, A62) v (01 A6y)
MartinScorsese | 65 A Og

For each binding p of query from the Example 3.4.11, the variables v are bound to
IJ; (Wx(MIPME ) (1)) (see Example 3.4.13). For this result the provenance from Example
3.4.14 has been used. For instance Igertainty((gl AB2) Vv (01 AB4)) =0.9. If no provenance state-
ment (6, v,w) exists for a particular RDF* literal statement f5(6) and a particular provenance
dimension «y then 1, serves as default value. For the result of a SELECT query all bindings

from ¢ x ([[PIN5") are extended in this way.

Example 3.4.13 Variable bindings for Ig(z/zx([[[P]]]gU(,ui)) - results of the expression de-
fined in Example 3.4.11

’ 7x \ certainty time ‘
L{(?ﬁx([[[P]]](D; )(1:)) = [ JamesCameron '0.9° “5/5/20014”
MartinScorsese ’0.6’ “6/6/1980”

62



3.4. Syntax and Semantics for SPARQL for Querying RDF Datasets with Provenance

Example 3.4.14 Provenance statements, D* = (K, M)
M = {

(01, prov:certainty, ’0.9°)
(01, prov:time, “5/5/2014”)
(62, prov:certainty, ’0.9°)
(62, prov:time, “5/5/2014”)
(03, prov:certainty, ’0.6°)
(03, prov:time, “6/6/1980”)
(04, prov:certainty, ’0.6°)
(04, prov:time, “6/6/1980”)
(05, prov:certainty, ’0.6°)
(05, prov:time, “6/6/1980”)
(0g, prov:certainty, ’0.6°)
(B¢, prov:time, “6/6/19807)}

Analogously to standard evaluation, the evaluation of a CONSTRUCT query on an RDF*dataset
results in a single RDF* graph which is built using the graph template specified in the Con-
structExpression (see Definition 3.4.2). This is in line with the fact that the graph template
consists of a conjunction of triple patterns and a named graph thus quadruple patterns cannot
be stated.”

Similar to the evaluation of SELECT queries, the evaluation of CONSTRUCT queries is
based on ¢x ([[PTE"), where X denotes the set of variables specified in the ConstructExpres-
sion. The RDF™ graph is constructed as described in the following:

Let t; be the triple pattern j specified in the ConstructEzpression, P denote the graph
pattern specified in the WHERE-clause, (s;j,pi,j,0:,j) denote the triple obtained by replacing
the variables in ¢; according to a mapping u; and g denote a new graph name. Then, for each
binding p; € ¢X([[[P]]]g+) and for each t; the quintuple (g, s;,pij,0i,0i;) is added to &,
where 6; ; is the statement identifier f1(g,si ;,pij,0i;). Further (6;;,v,w; ;) is added to M,
where wij = I (x (PTG ) (10))-

Each new quintuple inherits the provenance dimensions v associated with the binding which
has been used to create that quintuple. The value of w; ; is determined by applying I,{ to the
formula which annotates the binding. Note that since ¥ x ([[[ P ]]]g+) and the interpretations
I%c are functions and further the graph template in ConstructEzpression is a set of triples the
provenance dimensions (6; ;,7,w; ;) are unique for a given 6; ;.

As an example for a CONSTRUCT statement consider Example 3.4.15. Provenance for
some of the RDF™ statements presented in Example 3.4.2 is specified in Example 3.4.14. For
graph pattern P contained in this query the result of ¢x ([[P]]2") is identical to the annotated
relation shown in Example 3.4.8 except for the first two columns. Based on the single triple
pattern (?x occupation ?y) contained in the graph template and the two bindings contained in
Yx(MIPME") two quintuples are constructed and added to the RDF* literal statements K.
as shown in Example 3.4.16. M, contains the corresponding provenance statements resulting

from I (¢x (LPTE") (1))

Example 3.4.15 SPARQL query CONSTRUCT

"Standard SPARQL does not allow for giving this graph a name. In order to associate provenance, mul-
tiple named graphs as outputs are convenient. In order to remain standard compliant, the SPARQL
engine may however also return data and provenance in two different batches distinguished by some
implementation-specific mechanism.
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CONSTRUCT {?x occupation 7y}
WITH META G3, G4
FROM NAMED G1
FROM NAMED G2
WHERE {
{GRAPH 7h1l {?x produces ?7y}} AND
{GRAPH ?7h2 {?x occupation ’FilmProducer’}}}

Example 3.4.16 Variable binding for query of the Example 3.4.15

Kres = {

(Gpew, JamesCameron, occupation, FilmProducer, Oeys)
(Gpew, JamesCameron, occupation, TruckDriver, O,cyu2)
(Gpew, MartinScorsese, occupation, FilmProducer, Opeyus)}
Mies = {

(Opews s prov:certainty, ’0.9’)

(Bnews » prov:time, “5/5/20147)

(Onew2, prov:certainty, ’0.67)

(Bnewz, prov:time, “6/6/19807)

(Onews, prov:certainty, ’0.67)

(Onews , prov:time, “6/6/19807)}

3.4.4. Advanced Query Forms

The SPARQL query forms presented so far can be seen as a straightforward adaptation of
querying capabilities to a knowledge base with associated provenance. Beyond this, the pre-
sented framework can potentially be extended for more complex query forms with provenance
awareness.

Queries with conditions on provenance

A possible interesting extension of our framework is the support for additional selection and/or
ranking conditions on associated provenance attributes. From the conceptual point of view,
this functionality can be seen as an extension of the WHERE clause. In our example introduced
in Section 3.2, the query about affiliations of researchers (Example 3.4.1) may also require that
only certain facts (say with associated certainty values greater 0.8) shall be used. This restric-
tion would result in exclusion of triples from graph G2 (with insufficient certainty of 0.6) from
evaluation. Consequently, the result set would only contain the statement <JamesCameron oc-
cupation FilmProducer> which is completely constructed using triples from remaining graph
G1, with its high certainty of 0.9. This idea is reflected in [Carroll et al., 2005], which gives
examples of querying RDF through SPARQL queries with provenance constraints, using the
notion of Named Graphs. Such functionality can be realized in our framework in a straight-
forward manner, using nested queries (or querying with provenance from views).

We note that integration of nested queries with our approach would result in a substantially
more flexible and powerful solution than the approach from [Carroll et al., 2005]. In particular,
our framework potentially allows to express filtering and/or ranking conditions on provenance
of query results. Conceptually, this functionality can be seen as an extension of the HAVING
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clause (in the common SQL-like sense). For instance, for our sample query from Example
3.4.1 we may require the minimum overall certainty of each result to be greater than 0.8. The
resulting filter condition is then applied to query results from Example 3.4.16, which contain
complex interpretations of meta knowledge for possible variable bindings.

Beyond this, the exploitation of SPARQL on RDF*would allow for specifying conditions
on aggregated provenance of the query result in a natural way. Conceptually, this functionality
can be established in a quite straightforward manner using nested queries (or querying with
provenance from views). The necessary formalization for built-in functions and aggregates by
means of external predicates can be found in [Polleres et al., 2007].

Nested provenance

The nested provenance (i.e. provenance about provenance) can potentially be expressed through
RDF capabilities. Following our example from Section 3.2, in the nested setting we would be
able to specify conditions regarding recentness or reliability of associated provenance. For in-
stance, we may require that only query results with high certainty of their extraction sources
shall be returned. These kinds of queries were not yet a concern in our framework presented
so far. However, the required adaptation is not too difficult. As discussed in Section 3.3.1,
there is no conceptual separation between knowledge and provenance in our repository. For
this reason, complex queries may treat provenance as knowledge and obtain its meta annota-
tion (i.e., nested provenance) in a quite straightforward manner. Likewise, advanced querying
mechanisms with nested provenance support can easily be supported. As a consequence of the
preceding discussion, we note that advanced conditions with nested provenance can also be
specified both for repository contents (i.e., kind of advanced WHERE clause) and for results
of complex queries (i.e., kind of advanced HAVING clause).

3.5. Equivalences for SPARQL expressions with Provenance

The main goal of this section is to show the equivalence holding between the standard evalua-
tion of SPARQL queries, denoted by [[.]] (see Section 3.4), and the evaluation with provenance,
presented in this work denoted by [[[.]]]. For this purpose, we first define the provenance pro-
jection operator ¥ as following:

Definition 3.5.1 (Provenance Projection)
Let & be an annotated relation representing the set of tuples of variable assignments and their
annotations, then

U(®) = yor(py(0(1,57)(P))

where var(P) is the set of variables occurring in P, and Iy — T denotes the standard interpre-
tation Is of an annotation formula evaluated to T .

Basically, the provenance projection operator selects all the statements corresponding to
the variables bindings of the evaluation and ignores the provenance dimensions assigned to
the statements in the knowledge base. As discussed earlier, the standard interpretation I of
an annotation formula evaluates to T if and only if the statements in the knowledge base are
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elements of the variable assignments obtained via evaluation, i.e. the corresponding variable
assignment is in the set of variable assignments obtained via standard SPARQL evaluation
extended with identifiers (see Definition 3.4.3). Based on this, the next proposition defines
the equivalence holding between the evaluation with provenance and the standard SPARQL
evaluation.

Proposition 3.5.1 Given a graph pattern expression P, we say that the meta projection on the
results of evaluation with provenance of the graph pattern expression P over a RDF* dataset D*
is equivalent to the standard evaluation of P over the RDF dataset D, denoted by W[[PT]”" =

[P,

Proof: (sketch) For sets of variable assignments obtained via basic pattern, this follows
immediately from Definition 3.4.3 and the application of operator ¥ over ®, so that for each
substitution ®(u) obtained by evaluation over a dataset D*, [P]]”", can be reduced to a
substitution y obtained from the evaluation P over a RDF dataset D, [P]]”, defined in [Pérez
et al., 2009, Arenas et al., 2009] by selecting all u where I, of an annotation formula evaluates
to T and dropping all remaining substitutions of §. For complex graph patterns, the evaluation
defined (see Definition 3.4.3) is indeed identical to [Pérez et al., 2009, Arenas et al., 2009].m

For relations annotated with Boolean formulae and standard relational algebra a proof for
Proposition 3.5.1 can be found in [Fuhr and Rélleke, 1997].

Now, we can define the equivalence holding between equivalence graph pattern expressions
with respect to the evaluation with provenance, i.e. show that the evaluation of equivalent
queries are annotated with equivalent provenance dimensions. By equivalence we mean that the
interpretation of formulae used to annotate bindings contained in the results of the equivalent
queries are equivalent.

We use for the algebra of annotation formulae as syntactic objects (§,A,V, L, T) (see Sec-
tion 3.4). The elements of § are Boolean formulae built over the set of all literal RDF*statements
G. Instead of the statements themselves we use their identifiers. In the tagged tuple model
which we adopt here a relation is represented by a function mapping all tuples of a domain
to an annotation. Since we use § only as a placeholder we could just as well directly an-
notate variable bindings with elements of different provenance algebras. Therefore, first we
need to define restrictions on the algebra for provenance interpretation for each provenance
dimension v, (€24, Ay,V~, Ty, Ly) as defined in Section 3.4, so that the equivalence holds. As
a motivation for the reader, before presenting the restrictions for the provenance algebra,
in the next example we show one case where the equivalence holds and another where the
equivalence does not hold when the provenance dimensions are defined using the fuzzy logic
operations as presented in Example 3.4.10. Let P = (P; AND P,) and P’ = (P> AND P;) be
equivalent complex graph pattern expressions. The annotation results for P and P’ consist of
(F1 A Fy), and (Fy A FY), respectively, where F} and F» denote annotation Boolean formulae.
We are going to evaluate P and P’ with the provenance dimension time. The I'-interpretation
for Iijme for the (Fy A Fy) formulac is I, (Fi A Fy) = maz(IL  (F\) Aime I, (F2)) =
max(It’;me(Fl),It’;me(Fz)). Likewise, the I'—interpretation for Iy, for the (Fy A Fy) formu-
lae is Itéme(Fg ANF1) = mam([lf;me(Fg),Itéme(Fl)). As shown in this example the provenance
evaluation for P and P’ leads to the same result; thus it is equivalent.

In the following we summarize some of the restrictions on the provenance algebra. Let P1,
P2 and P3 be graph pattern expressions and the built-in condition P:

66



3.5. Equivalences for SPARQL expressions with Provenance

1. [[[P1 AND P2])5" = [[P2 AND P1]]|3", and [ P1 UNION P2]|5" = [[P2 UNION P1]]5"

Since annotations for results of graph pattern of the form P, AND P, are of the form
Fiy A Fy, where Iy and F5 denote annotation formulae, and annotations for results of
graph pattern of the form P, UNION P; are of the form Fj v F, we require that:

A and V are associative and commutative.

for annotation formulae in order to guarantee that results of equivalent queries are as-
sociated with equivalent provenance.

2. [[(P1 AND (P2 UNION P3))|2" = [((P1 AND P2) UNION (P1 AND P3))[|&"

In order to satisfy this equivalence, the annotation formulae and algebras used to inter-
pret these formulae need to satisfy the equivalence:

I(Fy A (Fyv Fy)) = I ((FL A Fy) v (F1 A Fy))

3. [[[[((Pl UNION P2) FILTER R)]]]é’+ = [[[((Pl FILTER R) UNION (P2 FILTER R))]]]g,
and
[I((((P1 FILTER R1) FILTER R2)))JZ" = [[[(((((P1 FILTER (R1 A R2))G -

Now we look at equivalences in the context of FILTER expressions. Equivalence requires:
H((Fyv B) ar) = I((Fuar)) vII(Fyar))

which follows from (7) and (i7).
Analogous:
I,g((Fl A Tl) A ’1”2) = I,J:(Fl A ’r‘g)

where r3 =11 AT9.

4. [[I(P1 AND PG = [PNE
Equivalence requires idempotency:

IJ(FAF)=II(F)

Based on the restrictions presented above, we see evidence for requiring the provenance
algebra to form such a commutative semiring [Green et al., 2007] since the laws of commu-
tative semirings are forced by certain expected identities in the provenance algebra. For this
purpose, we define in the next theorem that the provenance algebra has to take the form
of a commutative ring algebraic structure in order to hold the equivalences presented above
for provenance interpretations. With the commutative ring approach, the extendability of our
approach increases due to the low restriction level on the provenance algebra required for the
equivalences.

Theorem 3.5.1 Let P1 and P2 be equivalent graph pattern expressions using AND, OR, and
FILTER operator and D* a RDF*dataset. We have that [[P1]]"" = [[P2]]"" if and only if
all provenance dimensions form a commutative semiring.
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Proof:(sketch) This proof is an immediate consequence of the laws of commutative semirings
defined in [Green et al., 2007]. Suppose that the provenance algebra (£, Ay, V4, T, L) is not a
commutative semiring with the following identities (see Definition 3.4.5, and Definition 3.4.6):
union is associative, commutative and has identity; and is associative, commutative and dis-
tributive over union; projections and selections commute with each other as well as with
unions and joins. However, according to [Green et al., 2007] these identities hold for prove-
nance algebra if and only if (£, A, V4, T, 1y) is a commutative semiring, which contradicts
our assumption. Hence the provenance algebra is a commutative semiring, i. e. algebraic struc-
ture (24, Ay, Vo, T4, Ly) such that (£2,,A,,T,) and (£2,,V,, L,)) are commutative monoids, A
is distributive over v and Va,0, an0=aA0=0m

To illustrate an instance of this theorem, consider the provenance formula FiAFy and FonFy
for the graph pattern expressions P = (P, AND P,) and P’ = (P, AND Py). Evaluating them
in any of the provenance dimensions, we indeed get the same value from the interpretation.

3.6. Tasks and Benefits

This section summarizes the discussed steps of provenance representation and utilization for
the sample scenario that was introduced in Section 3.2.

Tasks for Administrators

In order to represent and utilize provenance, the system administrator has to make some design
choices. In particular, the application-specific provenance dimensions must be defined. In our
sample scenario, we consider three provenance dimensions: source, certainty, and timestamp.
In the next step, the administrator defines the intended semantics of these dimensions in
order to facilitate query processing with complex expressions and pattern combinations. For
evaluating graph pattern expressions, we use the definition from Section 3.4.2, and we assume
that the corresponding definitions for provenance dimensions are defined, e.g., the fuzzy logic
operations presented in Example 3.4.10.

Finally, data and available associated provenance are represented in RDF using named
graphs [Carroll et al., 2005, Carroll and Stickler, 2004], and are imported into our RDF*-
based repository.

Processing Performed by the System

We assume that the system imports the small sample dataset introduced in Section 3.2. The
knowledge base is transformed into the RDF* quintuples shown in Example 3.4.2 as discussed
in Section 3.3. Associated provenance is transformed into further RDF™ literal statements and
RDF™ provenance statements. For the dimensions prov:time and prov:certainty an example is
presented in Example 3.4.14.

Following our sample scenario, the query from Example 3.4.1 can be reformulated as the
query from Example 3.4.15 which retrieves names of movie experts together with their occu-
pations and the associated provenance.

Internally, the query processor evaluates this query using graph patterns as discussed in
Section 3.4.2. If P denotes the graph pattern from this query then all matches for all variables
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in P are given by the evaluation [[[P]]]. The resulting set of annotated variable assignments
is shown in Example 3.4.8. It contains possible variable assignments, and the how-provenance
(&3) that explains how these source statements have been used.

By combining this information with definitions for provenance dimensions and available
provenance statements, the query processor constructs the result shown in Example 3.4.16.
This result is then serialized in RDF.

Benefits for Users and Developers

The user or application developer can access the knowledge stored in the RDF*-based repos-
itory in different ways. On one hand, the repository does not change the existing SPARQL
semantics and thus fully supports common SPARQL queries. This is an important advantage
for compatibility with existing applications and interfaces. On the other hand the repository
supports the SPARQL with provenance (Section 3.4.2). Thus, the user obtains additional ac-
cess to valuable provenance that can be used for relevance ranking, conflict resolution, or other
applications in connection with retrieved knowledge.

In our application scenario, the user may realize that the query answer is potentially contra-
dictory (James Cameron is a film producer and a truck driver). By inspecting the associated
provenance, he would realize that the second fact was generated by mistake. In fact, it is
based on outdated information (knowledge from the document myspace.com/deprecated.doc
with timestamp 6/6/1980 that was wrongly combined with knowledge from a more recent
source (namely document dbpedia.org/data/JamesCameron.xml with timestamp 5/5/2014. It
turns out that the occupation of James Cameron has actually changed from truck driver to
film producer, and the erroneous tuple can be safely excluded from further processing.

3.7. Complexity

In this section we analyze how the construction of the annotations influences the complexity of
the decision problem related to SPARQL. The decision problem associated with the standard
evaluation of a SPARQL query can be stated as following [Pérez et al., 2009]: Given an RDF
dataset D, a graph pattern P and a mapping p, determine whether i is in the result of P applied
to D. For this decision problem, which we denote by Fvalp(P), an analysis of the complexity
is presented in [Pérez et al., 2009, Arenas et al., 2009]. In the context of RDF* datasets
and annotated variable assignments we have a slightly different decision problem: Given an
RDF* dataset D, an RDF* graph pattern P, a variable assignment . and an annotation o
determine whether « is the correct annotation of . We denote this problem by Eval® p+(P).
An annotation is correct if the formula is equivalent (in the logical sense) to the formula
obtained by evaluation as defined in Section 3.4.

With the following theorems we show the time complexity and space complexity of Eval™.
Note that the RDF*dataset D" is built over a set of RDF literal statements and provenance
statements of the RDF dataset D (see Section 3.3.4). For D* = (K, M), we assume that the
size of |D*| = |K|-|M| < 1/2 |D|?, and consequently the time complexity of building D" is the
order of O(|D|?).

The RDF counterparts of both theorems have been established by [Pérez et al., 2009, Arenas
et al., 2009]. Likewise we restrict to graph patterns which do not contain blank nodes. In
the first theorem we consider graph patterns which use only AND and FILTER operations.
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Bindings obtained by such patterns are annotated with formulae which do not contain any
other operator besides A according to Definition 3.4.4.

Theorem 3.7.1 Eval® can be solved in time O(|P|-|D*|) for graph pattern expressions con-
structed by using only AND and FILTER operators and for annotation formulas using only
the operation A.

Proof: The proof consists of two parts: In the first part we construct a correct annotation
& for p and in the second we check whether o and & are equivalent. In the following let p;
denote pattern ¢ from P and p(p;) denote the triple obtained by replacing the variables in the
pattern p; according to p.

In order to construct & we start by evaluating [[p;]]°" for all pattern using Definition 3.4.3.
In order to achieve this D" needs to be searched for all u(p;). This can be performed in
O(|P| - |D*[). Then, we construct the algebraic expression ® by evaluating [[P]]"”" using
definition 3.4.4. This can be performed by traversing P. The correct annotation & of y in the
result of evaluating on D* is defined as ®(u) ( see Definition 3.4.5). We can construct & = ®(u)
in a depth-first traversal of ® as following;:

Let @1, ®5 be algebraic expressions part of ®. For each join operation in ® the annotation
of (®1 » Po)(p) is given by ®1(pu) A Po(p). For each select operation o.(®)(p) is given by
®(p) if condition c is fulfilled otherwise it is given by L. Since traversing and ® each has time
complexity O(|P|) the evaluation of & = ®(u) remains in O(|P|-|D*|).

Now we determine whether for a given annotation a holds o = &. We transform both
formulas into a normal form in O(|P|-log|P|) using associativity, commutativity and idem-
potency of A. First, we remove all brackets then establish an order among atomic formulas
(identifiers and T, 1) and finally remove duplicates. For a and & normalized this way syntactic
equality bi-implies logical equivalence. Assuming |P| < |D*| the overall complexity remains in
o(|p|-|D™[). m

Theorem 3.7.2 FEval® is NP-complete for graph pattern expressions constructed by using
only AND, FILTER and UNION operators.

Proof: The proof consists of two parts: In the first part we show that Fval® is contained
in NP and in the second we establish NP-hardness of Eval®. As above, let p; denote triple
pattern ¢ from P and pu(p;) denote the triple obtained by replacing the variables in the pattern
p; according to p.

The first part consists of two steps as well: first we construct a correct annotation & for
1 and then we check whether o and & are equivalent. In order to construct & we start by
evaluating [[[p; ]]”" for all patterns using definition 3.4.3. In order to achieve this D* needs to
be searched for all ;(p;). Then, we construct the algebraic expression ® by evaluating [ P]?"
using Definition 3.4.4. This can be performed by traversing P. The correct annotation & of
in the result of evaluating P on D™ is defined as ®(u), see definition 3.4.5. We can construct
& =®(p) in a depth-first traversal of ® as following;:

Let @1, @2 be algebraic expressions part of ®. For each join operation (®1x®9)(p) is given
by ®1(p) A Po(p). For each union operation (®1U®5)(p) is given by @1 (u) v ®o(u). For each
select operation o.(®)(u) is given by ®(u) if condition c is fulfilled otherwise it is given by 1.

Time complexity for evaluating ®(u) is O(|P|-|D*|). The evaluation of o = & is more
difficult if UNION operations are contained in P. But it is subsumed by checking equivalence
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of Boolean formulae which is a NP-complete problem. Thus, the decision problem FEwval™ is
contained in NP.

We can deduce that Eval® is an NP-complete problem if Eval, which has been shown to
be NP-complete [Pérez et al., 2009, Arenas et al., 2009], can be reduced to it. Fval can be
reduced to Eval® if the evaluation defined in Section 3.4 results in an annotation « = 1 exactly
for such bindings which are not in the result of standard SPARQL evaluation. m

3.8. Evaluation

The framework metaK described in this work has been implemented in Java language, using
libraries from the Sesame Project®.

From a practical point of view, the framework can easily be customized for new prove-
nance aspects. Dimension-specific interpretations of provenance dimensions are implemented
separately as small Java classes. For defining a new provenance aspect, the corresponding
interpretation function must be implemented with respect to framework interfaces.

In order to evaluate the overhead produced by the evaluation of provenance dimensions for
results of SPARQL queries, we carried out two experiments based on the well-known LUBM
benchmark [Guo et al., 2005]. Our main aim was to find out whether the evaluation of SPARQL
queries remained feasible if provenance was provided within the query results, i.e., conduct a
family of experiments to validate the theoretical results of Section 3.7.

A key question is how to separate the additional effort for the evaluation of provenance
and provenance from standard SPARQL processing. Triples describing provenance receive an
additional provenance interpretation according to section 3.3. At the same time they are also
treated as ordinary RDF triples (and thus can be queried using standard SPARQL). Thus,
adding provenance to a knowledge base increases its overall size which also increases the work-
load for standard query processing. In order to account for this we compare query evaluations
performed on the same knowledge base which includes provenance. Our implementation is
built on top of Sesame? 2.0 (beta 6) using query rewriting. The triple store is used to store
both, knowledge and provenance. We expect that a native implementation of the provenance
framework can achieve an increased performance.

3.8.1. Methodology

For the evaluation of SPARQL on RDF*we defined the results of SELECT queries to be
set-valued (see Section 3.4.2). For standard SPARQL [Prud’hommeaux and Seaborne, 2008],
however, a SELECT query returns a solution sequence which may contain duplicate elements.
All 14 queries of the LUBM benchmark are SELECT queries. To allow for a consistent com-
parison of extended evaluation on one side and standard evaluation on the other we added
the keyword DISTINCT to the queries for standard evaluation. This tells the query proces-
sor to eliminate duplicates. Since the evaluation of individual provenance dimensions can be
arbitrarily complex we compare the following three kinds of query evaluation:

e Standard evaluation with additional duplicate elimination (SD), as performed by Sesame,

8Sesame Project: <http://www.openrdf.org>
9Sesame: open source framework for storage, inferencing and querying of RDF data (www.openrdf .org)
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e Evaluation of provenance formulae for each query result (PF) and

e Evaluation of four basic provenance dimensions (M4), namely agent, confidence, creation
time and source, see Example 3.4.10 (we evaluate agent analogously to source).

Only the last type of query processing actually makes use of the additional triples.

3.8.2. Data

We added artificial provenance to the LUBM data. Amount and granularity of the additional
provenance are key dimensions of the resulting dataset.

We created two datasets containing a different percentage of provenance triples. The first
dataset (MK29) was created based on LUBM OWL data for ten universities. We added the
provenance by putting groups of ten consecutive original triples into one named graph and
associating random values of the provenance dimensions agent, confidence, creation time and
source with this graph name, see Example 3.8.1. As a consequence the dataset contains 29
percent of provenance which might be reasonable in a real-world scenario. The resulting dataset
consists of 1.8 million triples of which 1.3 million triples were created by the LUBM generator
to which we added 0.5 million provenance triples. It contains 0.3 million (additional) graph
URIs.

Example 3.8.1 Original triples of dataset MK29 in one named graph associated with prove-
nance dimensions

<graph>
<uri>http ://www. x—media—project.org/
ontologies/someGraph#0-0_30</uri>
<triple>
<uri>http ://www. Department0. University0 .
edu/FullProfessorl </uri>
<uri>http://www. lehigh . edu/%7Ezhp2/2004/
0401/univ-bench.owl#doctoralDegreeFrom
</uri>
<uri>http ://www. University882 . edu</uri>
</triple>
<triple>
<uri>http ://www. University882 . edu</uri>
<uri>http ://www. ws. org/1999/02/
22—-rdf-syntaz—-ns#type</uri>
<uri>http://www. lehigh . edu/%7Ezhp2/2004/
0401/univ-bench.owl#University </uri>
</triple>
<graph>
<uri>http ://www. provenance. semanticweb .
org0-0-30</uri>
<triple>
<uri>http ://www. x—media—project.org/
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ontologies/someGraph#0-0-30</uri>
<uri>http ://www. x—media . org/ontologies/
metaknow#source </uri>
<uri>http ://www. x—media—project.com/
ex#source30</uri>
</triple>
<triple>
<uri>http ://www. x—media—project.org/
ontologies/someGraph#0-0-30</uri>
<uri>http ://www.z—media. org/ontologies/
metaknow#confidence_degree </uri>
<typedLiteral datatype="http://www.ws.org/
2001/XMLSchema#double '>0.7</typedLiteral>
</triple>

The dataset MK400 was created based on LUBM OWL data for three universities and we
assigned each triple to a different graph and the four provenance dimensions are associated with
it. This way the knowledge base contains four times as many provenance triples as knowledge
triples. The resulting dataset consists of 1.7 million triples of which 0.35 million are original
LUBM data and 1.4 million are additional metadata. Note that the overall sizes of the two
datasets are comparable. As indicated above, the overall size of the knowledge base influences
the workload for query processing. In fact, main memory consumption appeared to be a key
factor. By choosing similar sizes for the two datasets we reduce the influence of factors related
to the size of the knowledge base and concentrate on how the different evaluations influence
the processing time.

SD PF M4
MK?29 313 894 1382
MK400 || 196 104 425

Table 3.1.: Random query sequence experiments: average processing time (ms)

3.8.3. Discussion and Results
Random Query Sequence.

We conducted two experiments with each of the two datasets. One experiment aims at sim-
ulating behavior of a query engine in a real- life scenario: first a dataset is loaded and then
a sequence of queries is submitted to the query engine. We measured the average processing
time of these queries. The query sequence was created based on 8 of the 14 queries from the
LUBM benchmark. Query 2 was not included since we were not able to obtain results for this
query with this version of Sesame, this dataset and an average machine. Five more queries
were discarded since they require OWL inferencing or hierarchy information to obtain com-
plete results and Sesame 2 was not able to obtain bindings using plain SPARQL processing.
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Since no provenance needs to be calculated if the result set is empty, using these queries would
bias the evaluation in favor of the provenance processing. The authors of the benchmark iden-
tified three main characteristics of queries with respect to plain SPARQL processing: input
size, selectivity and complexity. The remaining 8 queries still cover different settings for these
features. Experiments with single queries will be presented below.

The query sequence consisted of a random shuffle of 20 copies of each of the remaining
queries. For each query in the sequence we measured the time which elapsed during issuing
the query, obtaining the result and traversing the result sequentially. This measure is similar
to the query response time defined in [Guo et al., 2005]. The only difference is that in [Guo
et al., 2005] each query was performed ten times after the knowledge base had been loaded to
measure the caching performance of the query engine. For each run we determined the average
of the execution times of the queries in the sequence in question. The results are summarized
in Table 3.1.

Evaluation of provenance formulae (PF) given dataset MK29 almost tripled the average
query execution time. On average, the evaluation took about half a second longer than standard
evaluation (SD). The evaluation of four provenance dimensions (M4) adds again half a second
to the evaluation of provenance. The overall overhead to obtain provenance was about a second,
given a non-trivial dataset. We consider this to be an indication for the feasibility of our
approach. Since these numbers are average values the question remains whether reasonable
processing times may be achieved for all individual queries as well. This question will be
analyzed below.

For the dataset MK400 the computations were faster for all three kinds of evaluations. This
can be explained by the fact that this dataset contains a smaller number of knowledge triples
and therefore the result sets for some of the queries contain fewer bindings as we will see below.
Surprisingly, evaluation of provenance formulas needed less time than standard evaluation. A
possible explanation is optimization performed by the query processor of Sesame 2. Since our
implementation uses query rewriting, different queries are evaluated for the different kinds of
evaluations. Optimization techniques might be easier to apply to some of them. Why does
the evaluation of MK29 not show similar characteristics? Here a possible explanation is the
larger number of bindings involved in the evaluation. Main memory consumption was quite
large in both cases. Possibly there was no space left for caching of (intermediary) results given
dataset MK29. The calculation of the four provenance dimensions did result in an increase in
processing time, as expected.

Single LUBM Queries.

We also measured processing times for single queries. As stated above, we measured the time
which elapsed during issuing the query, obtaining the result and traversing the result sequen-
tially. In contrast to the previous experiment and to the definition of the query response time
from [Guo et al., 2005] the application was restarted before each single query execution. That
way each query was evaluated against a newly loaded knowledge base since we wanted to
measure the effort it takes to evaluate the queries and not the caching strategy of the query
engine. This procedure was repeated ten times for each query and each method of query evalu-
ation. The average values from these runs are summarized in tables 3.2 and 3.3. The standard
deviations estimated from these ten runs are less than or equal to 10 percent for all queries
and methods evaluated on the two datasets.
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y Query | Q1 Q4 Q5 Q6 Q7 Q8 Q10 Q14| Av. |

# bindings 5 10 411 24019 3 1874 4 75547
processing | SD | 127 163 211 357 135 1619 127 977 | 465
time (ms) | PF | 324 347 38 995 337 691 325 2320 | 716
M4 | 340 375 426 2187 346 878 326 10501 | 1922

Table 3.2.: Processing time of query evaluation with and without provenance and provenance
for individual queries and the MK29 dataset. Processing times are average values
of 10 runs each.

y Query | Q1 Q4 Q5 Q6 Q7 Q8 Q10 Q14| Av. |

# bindings 5 10 411 6390 3 1874 4 19868
processing | SD | 137 189 204 217 131 1596 124 379 | 372
time (ms) | PF | 367 350 367 517 316 676 300 769 | 458
M4 | 346 359 440 859 321 1083 306 1953 | 708

Table 3.3.: Processing time of query evaluation with and without provenance and provenance
for individual queries and the MK400 dataset. Processing times are average values
of 10 runs each.

On average the calculation of provenance formulas (PF) increases processing time by factor
1.5. In absolute numbers the average increase is about 0.2 seconds. The largest increase (1.3
seconds for the MK29 dataset) can be observed for query 14 which also gives the largest result
set. We attribute this to the main memory consumption of our implementation. For query 8
there is even a decrease in processing time. A random query sequence evaluated on MK400
may possibly be explained by optimizations of the query processor. The additional querying
for provenance might guide the optimization of the query execution.

Calculation of the four basic provenance dimensions (MD4) causes an average increase of
factor 4.1 (1.5 seconds) for the MK29 dataset and factor 1.9 (0.3 seconds) for the MK400
dataset compared to standard evaluation. We ascribe the larger increase for the runs based
on dataset MK29 to the larger number of results for queries 6 and 14 and the non-optimized
memory consumption of our implementation. These results are in line with the results from
the experiments using a random query sequence shown in table 3.1. For query 8 the processing
time decreases for query evaluation including provenance which might be explained by query
optimization of the underlying triple store as stated above.

Discussion.

At first we consider the experiments with individual queries. From the estimated standard
deviations of the 10 runs for each query, kind of evaluation, and dataset we conclude that the
measurements are reliable enough to draw two general conclusions: On the one hand we can
observe a noticeable increase of processing time using our implementation and on the other
hand the amount of this increase can be described by a small linear factor.

The results of the experiments using a random sequence of queries indicate that similar
results also hold for real-world scenarios. Here caching can be applied by a query processor.
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Several evaluations of the same query were repeated directly one after another in the sequence.
The resulting average processing times were smaller but still comparable to the average values
for the evaluations of single queries. A key insight is that the overall processing times remain
feasible for evaluations on a dataset of up to 1.8 million triples and results of up to 75,000
bindings.

If we compare the processing times obtained for the two different datasets we might expect
that for dataset MK400 processing times would increase by a larger factor if provenance were
involved. MK400 contains a larger number of provenance triples which need to be processed
in order to evaluate provenance — especially compared to the number of knowledge triples.
However, at least with our implementation, the dominant characteristic of query evaluation
appears to be the size of the result set.

3.9. Related Work

Better understanding the ways by which results came about is fundamental to many Seman-
tic Web applications and scenarios. The specification of the Semantic Web proof layer was
discussed in [Murdock et al., 2006, da Silva et al., 2006, McGuinness and da Silva, 2004].

Provenance in Data Management Systems based on Relational Algebra

Provenance has been initially studied as an extension for relational databases (i.e. data man-
agement systems based on relational algebra), probabilistic databases [Fuhr and Rélleke, 1997],
and later adopted for RDF knowledge bases (i.e. for semantics of SPARQL query language).
In the area of database systems, provenance is often represented using an extension of the
relational data model, coined annotated relations. Their purpose is primarily the description
of data origins (provenance) and the process by which it arrived as a query answer [Cui and
Widom, 2000, Buneman et al., 2000, Buneman et al., 2001, Ding et al., 2005]. The authors
define custom (possibly different) interpretations for algebraic operations of Boolean formulas
(built on tuple identifiers as Boolean variables) for particular dimensions of provenance (e.g.,
agent, timestamp, source, certainty) to obtain the m-dimensional record (i.e., query result).
Indeed, a Boolean expression of the result set build from tuple identifier not only tells us
which triples have contributed to a variable assignment (why-provenance) but also how they
contributed (how-provenance). This information draw a distinction between where-provenance
(where the given pieces of data are physically serialized in database tuples), why-provenance
(which subset of database tuples contributed to the result), and how-provenance (how partic-
ular tuples were used for constructing the result).

Basically, our methodology follows the same idea and adopts the notion of provenance
semirings which was introduced as a generalization framework in [Green et al., 2007] and
also allows the same distinction between where-, how-, and why-provenance. In contrast to
other approaches discussed in [Cui and Widom, 2000, Buneman et al., 2000, Buneman et al.,
2001, Ding et al., 2005] (based on the notion of annotated tuples in a relational schema),
our solution is customized for RDF graphs (i.e. annotated RDF quadruples). The same holds
for the corresponding query language (basically, SPARQL vs. SQL) and its semantics. An
important conceptual difference to the relational model is the natural ability of RDF /SPARQL
repositories for result serialization and thus seamless exchanging and utilization of knowledge
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and provenance from our framework across multiple Semantic Web nodes without additional
schema integration efforts.

Provenance and the Semantic Web

In the Semantic Web field, provenance has been recently considered in applications for assess-
ing the trustworthiness of information [Carroll et al., 2005, Ding et al., 2005]. Hartig [Hartig,
2009b] presents a trust-aware extension to SPARQL, tSPARQL. Hartig first proposes a trust
model that associates RDF statements with trust values and allows us to extend the SPARQL
semantics to access these trust values in tSPARQL. In [Bonatti et al., 2011], Bonatti et al.
formalise a logical framework for determining trust to perform robust reasoning. In [Schenk,
2008], Schenk models multiple levels of trust on Web data to resolve inconsistencies aris-
ing from connecting multiple data sources. The version control aspect of provenance such as
temporal RDF [Gutiérrez et al., 2005] and querying time in RDF [Tappolet and Bernstein,
2009, Gutierrez et al., 2007] and OWL [Motik, 2012] has been tackled by attaching temporal
annotations to RDF facts and OWL axioms.

Our approach is focused on an RDF language model and provides fine-grained provenance
management for retrieval queries with SPARQL that is not directly comparable with proof
traces for OWL reasoning.

The use of Named Graphs for provenance management and querying RDF with provenance
constraints is introduced in [Carroll et al., 2005]. As discussed in Section 3.4.4, this functionality
can be realized in our framework in a straightforward manner by the means of nested queries (or
querying from views), which are expected features of the upcoming SPARQL2 query language.
Moreover, our framework potentially allows us to express filtering and /or ranking conditions on
provenance of query results and thus is more expressive and flexibe than the solution presented
in [Carroll et al., 2005].

Provenance mechanisms for RDF datasets have been investigated by Udrea et al. [Udrea
et al., 2010] where they provide a semantics for RDF augmented with a partially ordered set
and algorithms for query processing and view maintenance. As our approach does not con-
sider the OPTIONAL SPARQL constructor, follow-up approaches to ours [Theoharis et al.,
2011, Karvounarakis and Green, 2012, Geerts et al., 2013, Karvounarakis et al., 2013], discuss
the need for extending the relational provenance models to be leveraged for SPARQL queries
over RDF. In particular, they state that the use of semiring models for SPARQL has been
shown inadequate to handle the OPTIONAL construct, and advocated the need for a new
abstract provenance model capturing the full expresiveness of SPARQL. Geerts et al. [Geerts
et al., 2016] identify SPARQL fragments for which provenance models for positive relational
queries can be leveraged, despite the subtle differences between the semantics of SPARQL and
relational algebra operators. In [Amsterdamer et al., 2011c|, Amsterdamer et al. show particu-
lar semirings for which an extension for supporting difference is impossible. The consideration
of extended provenance models for capturing the semantics of both explicit and scoped weak
negation is also considered in [Analyti et al., 2014]. In [Damaésio et al., 2012], Damasio et
al. proposed a provenance model for a significant fragment of SPARQL 1.1, based on the re-
lational annotated provenance models including for non-monotonic constructs under multiset
semantics.
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3.10. Findings and Research Contribution

In this chapter, we have presented an original, generic, formalized and implemented approach
for the management of many dimensions of provenance, like source, authorship, certainty, and
others, for RDF repositories. Our method re-uses existing RDF modeling possibilities in order
to represent provenance. Then, it extends SPARQL query processing in such a way that given
a SPARQL query for data, one may request provenance without modifying the query proper.
We achieve highly flexible and automatically coordinated querying for data and provenance,
while completely separating the two areas of concern. Our approach remains compatible to
existing standards and query languages and can be easily integrated with existing applications
and interfaces.
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4. Reasoning and Debugging Evolving OWL
Ontologies with Provenance

Overview

For many tasks, such as the integration of knowledge bases in the Semantic Web, one must
not only handle the knowledge itself, but also characterizations of this knowledge, e.g.: (i)
where did a knowledge item come from? (ii) what level of trust can be assigned to a knowledge
item? or (iii) what degree of certainty can be associated with it? We refer to all such kinds of
characterizations as provenance of the information. Approaches exist for providing provenance
for query answers in relational databases and RDF repositories, based on algebraic operations.
As query answering in description logics in general does not boil down to algebraic evaluation
of tree-shaped query models, these formalizations do not easily carry over. In this chapter,
based on a formalization of provenance proposed in [Schenk et al., 2011], which is still alge-
braic, but allows for the computation of provenance of inferred knowledge in description logics
(and includes reasoning with conflicting and incomplete provenance), we present an optimized
algorithm for computing provenance. Our black-box algorithm for reasoning with provenance,
which uses pinpointing to come up with provenance formulas for description logics, enables
the use of provenance for debugging in real time even for very large and expressive ontologies,
such as those used in biomedical portals.

Structure

The remainder of this chapter is structured as follows: In Section 4.2 we formalize a use-case
scenario to motivate the use of provenance for tracking changes in ontologies. Section 4.3
introduces the foundations for provenance computation: first we briefly introduce an extension
of the description logic DL, called SRZQ(D), underlying OWL lite and OWL DL, followed by
the formalization of pinpointing and existing algorithms for pinpoint computations, and the
formalization of provenance orders.

In Section 4.4 we define the semantics of provenance, including the composition of prove-
nance dimensions (to model complex provenance) and merging of conflicting provenance. In
Section 4.5 we define the computation of provenance for a query answer based on pinpointing
and propose an optimized algorithm for debugging with provenance. We discuss the issue of
complexity in Section 4.6. Section 4.7 presents the evaluation results. Our evaluation shows
that this algorithm performs orders of magnitude better than a naive implementation. A review
of related work and a comparison of this work with our approach is presented in Section 4.8.
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4.1. Introduction

Ontologies often evolve in open, multi-user ontology editing environments. Examples of open,
evolving ontologies are the Open Biomedical Ontologies repository of the US National Cancer
Institutes Center for Bioinformatics [Smith et al., 2007] or the Ontology for Biomedical In-
vestigations (http://obi-ontology.org), which is an integrated ontology for the description of
life-science and clinical investigations. Many similar projects exist in varying domains. They
are characterized by an open community with contributions at various points in time and from
various sources, which might not be equally reliable.

In such open settings conflicting changes can occur that may be contributed by various users
and knowledge sources at different points in time, and it is desirable to track two unwanted
situations:

1. Undesired inferences and

2. Inconsistencies

In order to judge the reliability of inferences and to find errors in the ontology when debug-
ging ontologies, it is hence necessary to ask questions such as “When has this inconsistency
been introduced and who is responsible for this change?” as well as “Can I trust this infer-
ence?”. Provenance information is used to answer these questions.

Provenance can be tracked in many dimensions: knowledge source, last recently modified
dates, degrees of trustworthiness, or the experience level of the editor. In all these cases,
we have provenance labels, which are attached to axioms (e.g. timestamps) and orders over
these labels, such as the ascending or descending order of timestamps or a partial order of
trust among sources. This provenance information must be combined and propagated to a
conclusion in order to answer the above-mentioned questions.

Standard algorithms for debugging ontologies poorly support the user in answering prove-
nance questions and require expensive reasoning. For these reasons they are not applicable for
expressive and large-scale real-world ontologies. With the approach presented in this paper we
will show how to represent provenance and efficiently reason in OWL with provenance. Our
approach supports the user in coping with the complexity and dynamics of evolving ontologies.

Various approaches to the problem of debugging with provenance have been proposed. They
can be grouped into three categories: (a) Extensions of given logical formalisms that deal with
a particular type of provenance. Examples include extensions for debugging with uncertainty,
such as fuzzy and probabilistic [Lukasiewicz and Straccia, 2008] or possibilistic [Qi et al., 2011]
description logics. In [Schenk, 2008] generalize such works to consider partial trust orderings.
(b) Flexible extensions for systems allowing for algebraic query evaluation (e.g. as relational
databases and SPARQL engines), as discussed in [Dividino et al., 2009b], [Buneman et al.,
2001] and [Lopes et al., 2010], allow for many kinds of provenance, but are limited to lower
expressiveness of the underlying logical formalism. (c¢) [Tran et al., 2008] provides a two-step
evaluation for provenance, which is very expressive, but which does not assign a uniform
semantics to the definition and composition of provenance in the knowledge base.

Expressive descriptions of provenance combined with less expressive base languages (such
as SPARQL and SQL) [Dividino et al., 2009b, Buneman et al., 2001, Lopes et al., 2010] make
use of the fact that the base languages can be evaluated bottom-up using relatively simple
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algebraic expressions. However, debugging frameworks frequently have non-tree-based deriva-
tions used for consistency checking and querying. In order to be able to debug with algebraic
provenance on top of such expressive base languages, Schenk et al. [Schenk et al., 2011] pro-
pose a debugging framework for provenance based on pinpointing. Pinpointing summarizes
explanations for axioms in a single Boolean formula, which then can be evaluated using a
provenance algebra. Consequently, provenance for query answers can be computed by comput-
ing the explanations of the answer and using the pinpointing formula to compute provenance
in an algebraic way.

Unfortunately, the computation of pinpoints may become very expensive and inapplicable
if users need to interact with dynamically changing knowledge in real time. Therefore, we
provide an optimized black-box algorithm, which does not need to compute all pinpoints .
Our evaluation shows that our algorithm performs significantly better than the naive algo-
rithm, based on both real-world and synthetic datasets. We restrict ourselves to a fragment of
description logics and of OWL-2, called SRZQ(D), and use OWL-2 as a base language and
consistency checks as debugging task.

Finally, we will show an evaluation of our approach using real-world data from evolving
ontologies. For the sake of example, we present our framework restricted to ontology diagnosis
scenarios. This work, however, introduces an approach for provenance querying under a variety
of scenarios such as restrictions of access rights [Baader et al., 2009], knowledge validity when
the truth of knowledge changes with time [Motik, 2012], and inferring trust value [Hartig,
2009b).

Research Questions

This chapter addresses the following research questions.
RQ 1.IV Does the exploitation of provenance lead to computation overhead?

OWL is heavily based on Description Logic (DL), i. e. its model-theoretic semantics is com-
patible with the semantics of Description Logics. Typical reasoning tasks over an expressive DL
(e. g. using tableau methods to perform consistency checking, instance checking, satisfiability
checking, etc. [Baader et al., 2003, Rudolph, 2011]) are in the worst case doubly-exponential,
and in practice are often likewise very expensive.

Standard algorithms for debugging ontologies poorly support the user in answering prove-
nance questions and also require expensive reasoning. For these reasons, even though the ex-
ploitation of provenance helps users to find undesired inferences and inconsistencies in evolving
ontologies, such algorithms are not applicable for expressive and large-scale real-world ontolo-
gies.

4.2. Motivation Scenario

We use as toy-example a scenario based on a serious faux pas, which actually happened to the
German Press Agency DPA.

nitial work towards the approach presented in this chapter has been published in [Schenk et al., 2009,
Schenk et al., 2011]. We extend this work with an optimized algorithm for computing provenance and a
comprehensive evaluation.
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On September 10" 2009, a person called the German Press Agency (DPA) and notified
them that a terrorist attack had just taken place in Bluewater, CA. In order to check the
accuracy of this information, DPA did a short Internet research and found a website for Blue-
water’s local TV station (VPKTYV) and for the town itself. Additionally, they found Wikipedia
entries for both the town and the local TV station. DPA announced the attack as breaking
news.

Unfortunately for DPA, the information was fake. No terrorist attack had happened in
Bluewater; in fact, the town Bluewater, CA, does not even exist. The breaking news had been
spread and the fake background information had been set up by the marketing agency Neverest
to support guerrilla marketing for the new movie Shortcut to Hollywood.

Even though DPA relied on the information found on web pages and Wikipedia entries to
make the decision on announcing as breaking news a supposed terrorist attack, DPA did not
take into account the dynamics and the provenance of the information retrieved when checking
the plausibility of the news. The new Wikipedia article had been created by the same author
and modified multiple times shortly before the call. Moreover, all related websites as well as
the Wikipedia articles had been set up by the same marketing agency at roughly the same
time.

This situation is common, as Wikipedia is used nowadays as an information source by
many people every day. However, since Wikipedia entries can be edited by anyone, people
have begun to question their quality. The validity and quality of Wikipedia entries depend on
the community knowledge, and unfortunately, Wikipedia cannot assure the reliability of its
sources.

When exploiting knowledge found in external sources, such as the Semantic Web, the
user must be able to judge the appropriateness of such knowledge, i.e. he must discriminate
knowledge and its validity based on where it comes from, how much he trusts the knowledge
sources, and the degree of (un)certainty in such knowledge. We refer to all such kinds of
characterizations as provenance.

To illustrate our method in a concise fashion, Table 4.1 shows the instantiation of our
scenario. We suppose that the webpages of Bluewater and VPKTV are described by axioms
of ontologies from a single source, data from Wikipedia corresponds to an open, Wiki-like
ontology editing system such as Freebase?, and the provenance consists of modification dates
and respective degrees of trustworthiness based on the information source.

The axioms of Table 4.1 describe that a RealCity is a City with at least one Broadcaster
(# 1) and a Broadcaster has its headquarters in a City (# 2). Additionally it defines that for
any Broadcaster that has its headquarters in a City then this City hasCompany which is the
Broadcaster (#3), that bluewater is a City (#4), vpktv is a Broadcaster (#5), and vpktv has its
headquarters in the city bluewater (#6). Furthermore the columns provenance and asserted
of Table 4.1 show provenance associated with each axiom. For instance, DPA, the German
Press Agency, created axiom #1, Newv, the marketing agency Neverest, created axiom #4
and NevWP, their Wikipedia user, created axiom #5. The rightmost column indicates, when
axioms have been asserted, for instance, the axiom #1 has been last asserted on September
10" 2009.

DPA needs to verify that Bluewater indeed is a city in CA. Hence, they need to answer
the query “bluewater: RealCity?” and to obtain provenance for the answer. In the rest of this

*http://freebase.org

82



4.3. Foundations: Pinpointing

’ ID \ axiom \ source \ date ‘
#1 | RealCity c City n 3hasCompany.Broadcaster | DPA 2009-09-10
#2 | Broadcaster c JhqIn.City DPA 2009-09-09
#3 | inverseProperty(hasCompany, hqIn) DPA 2009-09-10
#4 | bluewater : Clity Neverest 2009-09-09
#5 | vpktv : Broadcaster Neverest WikiP | 2009-09-10
#6 | hqIn(vpktv,bluewater) NeverestWikiP | 2009-09-09

Table 4.1.: Ontology axioms describing our scenario and their provenance.

chapter we will explain how this is done.

To come up with a flexible mechanism, which at the same time supports expressive logics
and multiple kinds of provenance, a suitable formalization of provenance in a semantically
precise manner is needed. Moreover, such a mechanism must be supported with a suitable
operationalization. The DPA example above illustrates that varying provenance such as au-
thorship, timestamp, and trust in individual sources must be exploited and combined to arrive
at an accurate assessment of information value. In the following sections we introduce such a
mechanism.

4.3. Foundations: Pinpointing

The term “pinpointing” has been coined for the process of finding explanations for concluded
axioms or for a discovered inconsistency. A pinpoint is a minimal subset of an ontology, which
makes the concluded axiom true or the theory inconsistent, respectively. Such an explanation
is called a pinpoint. While there may be multiple ways to establish the truth or falsity of an
axiom, a pinpoint describes exactly one such way.

Definition 4.3.1 (Pinpoint) A pinpoint P for an axiom A wrt. an ontology O is a set of
azioms, such that P< O, P= A, and VBe P: P~ {B} ¥ A.

Analogously, we can define a justification for a refuted axiom (O = -A) as P < O, Pk -A,
and VB € P: P~{B} ¥ - A. Hence, finding pinpoints for a refuted axiom corresponds to finding
the Minimum Unsatisfiable Subontologies (MUPS) for this axiom [Kalyanpur et al., 2006]. In
this work we will focus on entailed axioms (O & A). However, all definitions and algorithms
can be modified to justifications as well.

Pinpointing is the computation of all pinpoints for a given axiom A and ontology O. The
pinpointing formula [Baader and Penaloza, 2010] describes, which axioms need to be present
for O to entail A.

Definition 4.3.2 (Pinpointing Formula) Let A be an aziom, O an ontology and P, ..., P,
with Py = A; 1, ..., Aim;} the pinpoints of A wrt. O. Let id be a function assigning a unique
identifier to an axiom. Then V;f‘:l/\;flid(Ai,j) is a pinpointing formula of A wrt. O.

A pinpointing formula of an axiom A describes, which (combinations of) axioms need to
be true in order to make A true (or inconsistent respectively).
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Algorithms for finding pinpoints can be grouped into three groups:

Finding one Pinpoint Algorithms for finding one pinpoint can either derive a pinpoint
by tracking the reasoning process of a tableaux reasoner, or use an existing reasoner as a black
box. In the latter case, a pinpoint is searched for by subsequently growing (or shrinking) a
subontology, until it starts (or stops) entailing the axiom under a searched-for pinpoint. Based
on the derived smaller ontology the process is refined, until a pinpoint has been found. The
advantage of blackbox algorithms is that they can support any DL, for which a reasoner is
available [Kalyanpur et al., 2006].

Finding all Pinpoints using a Tableaux Reasoner Baader and Penaloza have shown
how tableaux reasoners for DLs such as OWL can be extended to find pinpointing formu-
las [Baader and Penaloza, 2010]. In their approach a tableaux reasoner is extended to find
not only one, but all pinpoints. Special care needs to be taken in order to ensure termination
of the tableaux algorithm. As an advantage, the overhead for pinpointing is lower compared
to a black-box algorithm. Moreover, this approach can derive a compact representation of
the pinpointing formula, which however might still have worst-case exponential size in normal
form.

Finding all Pinpoints using Blackbox Algorithms The most performant black-box
algorithms extract a relevant module from the overall ontology, ensuring that this module
yields the same inferences with respect to the axiom in interest. Then, starting from a single
pinpoint, Reiter’s Hitting Set Tree algorithm [Reiter, 1987] is used to compute all pinpoints
by iteratively removing one axiom from the pinpoint at hand and growing it to a full pinpoint
again [Kalyanpur et al., 2007, Ji et al., 2009].

For both tableaux-based and black-box algorithms, the worst case complexity of finding all
pinpoints is rather high, as there can be exponentially many pinpoints for any given ontology.
Our approach is based on this third group. Basically, we need to find all pinpoints to derive the
provenance for a (refuted) piece of knowledge. However, since finding all pinpoints is a very
expensive operation, we present an optimized algorithm for computing pinpointing formula
and deriving provenance.

4.4. Syntax and Semantics for OWL with Provenance

The following section presents the formalization of provenance that allows for the computation
of provenance of inferred knowledge in description logics (and includes reasoning with conflict-
ing and incomplete provenance). The formalization of provenance has mainly been developed
by Simon Schenk. To aid in understanding, the formalization of provenance will be repeated
in this dissertation. The results of our joint work have been published in [Schenk et al., 2011].

4.4.1. Syntax for OWL with Provenance

Provenance in OWL-2 can be expressed as annotations on axioms. Annotations are of im-
portance since the management of ontologies as annotations may be used to support analysis
during collaborative engineering.

Basically, an axiom annotation assigns an annotation object to an axiom. For instance,
in our scenario the axiom “RealCity & City n JhasCompany.Broadcaster” is assigned the
information source annotation object DPA.
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A provenance annotation consists of an annotation URI and a provenance object specifying
the value of the annotation. In our case, the provenance object is a constant-value representing
who asserted the axiom, when the axiom was last asserted, the degree of trustworthiness of the
axiom, or a combination thereof. We provide a detailed grammar for provenance annotations
in [Schenk et al., 2009]. The grammar for provenance annotations as an extension of OWL-2
annotations® is as follows. For the sake of clarity we use the prefix provenance for extensions

to the OWL-2 grammar, which uses prefix OWL.

OWLAnnotation := ProvenanceAxiomAnnotation

ProvenanceAxiomAnnotation := 'ProvenanceAxiomAnnotation’ "'TRI ~ ProvenanceAnnota-
tion*’)’

ProvenanceAnnotation := ProvenanceCertainty Annotation | ProvenanceDateAnnotation |
ProvenanceSourceAnnotation

ProvenanceCertainty Annotation := ’ProvenanceCertainty Annotation’ ’("Value’)’
ProvenanceSourceAnnotation := "ProvenanceSourceAnnotation’ ’("Value’)’
ProvenanceDateAnnotation := 'ProvenanceDateAnnotation’ ’("Value’)’

An example of how provenance is represented and associated with OWL axioms is presented
below. We consider the axioms #4 and #5 from our scenario:

OWLAxiomAnnotation(ClassAssertion(bluewater City)
ProvenanceAxiomAnnotation(annotl ProvenanceSourceAnnotation(Nev)))

OWLAxiomAnnotation(ObjectPropertyAssertion(hqIn vpktv bluewater)
ProvenanceAxiomAnnotation(annot2 ProvenanceDateAnnotation(09.09.2009)))

4.4.2. Semantics of Provenance

Provenance assignments are syntactically expressed in OWL-2 using axiom annotations. An-
notations, however, have no semantic meaning in OWL-2. All annotations are ignored by the
reasoner, and they may not themselves be structured by further axioms.

Furthermore, such an abstract syntax may remain remarkably ambiguous if it cannot be
linked to a formal semantics. Assume that the following provenance axioms are part of our
scenario:

’ 1D \ axiom \ trust ‘
#1 | RealCity c City n FJhasCompany.Broadcaster | oo
#1 | RealCity c City n FhasCompany.Broadcaster | Nev

Table 4.2.: Example of multiple provenance assignments to the same axiom.

30WL 2 Web Ontology Language: Spec. and Func.-Style Syntax: http://www.w3.org/TR/2008/WD-owl2-
syntax-20081202
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For the same axiom identified by #1 presented in Table 4.4.2, the question may arise
whether this means a disjunction, i.e. one of the two sources has provided the fact, or a
conjunction, i.e. both sources have provided the fact, or a collective reading, i.e. the two sources
together gave rise to the fact, or whether this situation constitutes invalid provenance. In order
to prevent such ambiguities, we introduce a generic semantic framework for provenance.

Provenance Order

Provenance may be established through various complex dimensions such as knowledge source,
editors, modification data, and degrees of trustworthiness. Provenance dimensions must be
exploited and combined to arrive at an accurate assessment of information value [Halpin,
2009]. Provenance dimensions are defined in detail in the next section.

First we take a closer look at the two specific dimensions of provenance used in examples
in this work: time and source. Provenance is expressed using provenance labels. An example
for a provenance label is a timestamp or a source name.

The label alone is not sufficient for the tracking of provenance when debugging an ontology.
We need a provenance order on the provenance labels. For example, suppose that an user has
introduced an inconsistency during his last change. We might be interested in when the oldest
axiom leading to an inconsistency has been added, or when the youngest has been added.
The oldest axiom tells us when this particular topic was first addressed and the newest one
tells us when the inconsistency was introduced. We use an ascending or descending order of
timestamps.

Not all types of provenance labels have a natural order. There are, for example, many ways
in which degrees of trustworthiness can be computed. Often simplifications are used, such as
assuming trust to be measured on a scale from 1 to 10. Such simplifications usually are not
easily justifiable [Halpin, 2009] when trust should be established using provenance labels such
as the knowledge source.

In particular, trust (and provenance in general) can not always be measured on a total
order, but there may be agents which are incomparable. Please note that even though we use
trust in our running example, the same principle applies, e.g., when modeling access rights,
roles in an editing workflow or comparing world views of users participating in an ontology
editing platform. Access right systems are a good analogy, which usually introduce some kind
of ordering of users and groups. This ordering always is artificial and usually also partial (not
in every pair of users or groups one is more powerful than the other) [Baader et al., 2009].

We provide a generic formalization of provenance orders here, which subsumes others such
as [Golbeck and Hendler, 2004] and enables us to use any kind of order over provenance labels
in the following. The following formalization has been used in similar form in [Schenk, 2008].

Definition 4.4.1 (Provenance Order) A provenance order T is a lattice over a finite set
of provenance labels. oo is the label used for the mazximal element of the lattice.

If two provenance labels a and b are not comparable, we introduce virtual provenance label
infqp and supg, such that:

o infu <a<supg and infuy < b < supep;

b Vc<a,c<b ic< 2‘nfab and
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’ source \ trust ‘
DPA o
Neverest Nev

Neverest WP | NevWP

Table 4.3.: Correspondences between source and degrees of trustworthiness.

® Visadsh:d > supg

To understand the importance of the last two steps, assume that ¢ >a >d and ¢> b > d and
a,b are incomparable. Then the provenance label of anb would be the provenance label of c,
as c¢ is the supremum in the provenance order. Obviously this escaping to a higher provenance
label is not desirable. In our trust example, it would mean escaping to a higher trust level.
Considering roles as a workflow, we might end up with the wrong role. Instead, the virtual
provenance labels represent that we need to pick at least one, a or b. For convenience, we will
write {a,b} for inf,; in the following.

Note that in practice, these values need not be pre-computed, so exponential blowup is not
an issue. If they are needed, they can be encoded as lists of atomic labels.

Provenance orders subsume strict orders (such as [0..1], xsd:datetime and numeric trust
degrees computed for Wikipedia [Adler and de Alfaro, 2007b]). A provenance order also allows
for incomparable provenance labels, which are common on the Web due to its sheer size and
usually incomplete knowledge.

We assign degrees of trustworthiness to axioms based on the expertise of the user by whom
they have been modified. Hence, the knowledge source of a piece of information is used to
establish trust. In our running example, we use the following correspondences between source
and degrees of trustworthiness presented in Table 4.3.

Figure 4.1 illustrates a trust order for the sources shown in Table 4.1 from the perspective
of DPA. oo is assigned to the most trustworthy source which is DPA and Nev, NevWP are
incomparable.

(o,¢]

SUPNev,NevWP

/N

Nev NevWP

NS

ianev,NevVVP

1l

Figure 4.1.: Provenance order of the knowledge sources.
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Provenance Dimension

Provenance can have atomic and complex dimensions such as knowledge source, modification
date or a combination thereof. We assume that these (and possible further) dimensions are
independent of each other. In the next section, we generalize from this assumption.

Definition 4.4.2 (Provenance Dimension) A provenance dimension D is an algebraic struc-
ture (Bp,Vp,Ap), such that (Bp,Vp) and (Bp,Ap) are complete semilattices. We denote the
minimal element of D by Lp.

Bp represents the labels the provenance can take, e.g. all valid timestamps for the mod-
ification date. As (Bp,Vvp) and (Bp,Ap) are complete semilattices, they are, in fact, also
lattices. Hence, a finite set of provenance labels always has a join (supremum, least upper
bound) and a meet (infimum, greatest lower bound) with respect to the corresponding order.

In contrast to provenance orders defined in Section 4.4.2 the join and meet operators in a
provenance dimension need not be dual as they can come from two different lattices, which
share the same values but have different orders. An example of a provenance dimension where
this may become important is where provenance [Buneman et al., 2001]: which only tracks who
contributed in any way to a certain inference. In this case, join and meet would coincide and
would both be set unions of information sources. In all dimensions discussed in this chapter,
join and meet are dual. In this case, provenance dimension and provenance order directly
correlate.

Example 4.4.1 To illustrate the meaning of A and v, let I be the provenance interpretation
that is a partial function mapping axioms into the label range of trust, and A and B be axioms
of an ontology such that A + B. When combining two provenance labels from D, which are
assigned to A and B, the intuitive meaning of v is “I need to trust one of A and B” (cor-
responding to a logical “or”). The intuitive meaning of A is “I need to trust both A and B”
(corresponding to a logical “and”)). Hence, trust can be modeled as:

o Iirust(AVB) = sup(Itrust(A), ltrust(B))

o Lipust(AAB) = inf(Itrust(A), ltrust(B)

Likewise, the modification date as well as the creation date can be modeled as:
o Liate(AVB) = min(laate(A), Laate(B))

® Liate(AAB) = maz(lgate(A), Laate(B))

As we have seen in the Example 4.4.1, provenance is assigned to ontology axioms. Within a
single assignment, the provenance must be uniquely defined.

Definition 4.4.3 (Provenance Assignment) A provenance assignment M is a set {(D1,d;
D1),....(Dyn,dy € Dy)} of pairs of a provenance dimension and a corresponding provenance
label, such that D; = Dj = d; = d;. As default label for a provenance assignment in dimen-
sion Dj we choose the minimal element Lp.. By ProvAss(A) we denote the set of provenance
assignments for an axiom A.

m
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Example 4.4.2 As an example, for the axiom “bluewater: City” of our running example, we
have the following provenance assignment:

ProvAss(bluewater: City) = {(trust, Nev), (date, 2009-09-09)}

Without loss of generality we assume a fixed number of provenance dimensions.

Next, we formalize how provenance assignments are composed. To obtain a logical formula
which express how provenance assignments are composed, called provenance formula, we make
use of pinpointing formulas (discussed in Section 4.3) and of the how- provenance strategy.
How provenance [Green et al., 2007] is a strategy, which describes how an axiom A can be
inferred from a set of axioms {Ai,...,A,}, i.e. it is a Boolean formula connecting the A;.
As pinpointing summarizes explanations for axioms in a single Boolean formula, and thus it
provides how-provenance, we use it to come up with a provenance formula.

Example 4.4.3 Consider the query “for each city, find all companies located in that city”:

z:City A hasCompany(x,y).

The result of this query and the corresponding pinpointing formula are based on the example
data from Table 4.1:

’ x ‘ Y ‘ pinpointing formula ‘

’ bluewater \ vpktv \ HINHANHG ‘

The associated provenance formula for this query result is:

’ provenance formula ‘

’ ProvAss(#3) A ProvAss(#4) A ProvAss(#6) ‘

To evaluate the corresponding provenance formula, we need to define the operators for prove-
nance dimensions.

Definition 4.4.4 (Provenance Operations) Let A, B be arioms. Let ProvAss(A) = {(D1,x1), ...

(Dpn,xn)} and ProvAss(B) = {(D1,y1),-..,(Dn,yn)} be provenance assignments. Then the
provenance operations v and A are defined as follows:

ProvAss(A)V ProvAss(B) = {(D,zVvpy)|(D,x) € ProvAss(A) and (D,y) € ProvAss(B)}.
ProvAss(A)AProvAss(B) = {(D,zApy)|(D,x) € ProvAss(A) and (D,y) € ProvAss(B)}.

Example 4.4.4 To illustrate how provenance is derived, for instance, the provenance assign-
ment for the aziom “bluewater: City” is {(trust, Nev), (date, 2009-09-09)}, and the provenance
assignment for the axiom “hqln (vpktv,bluewater)” it is {(trust, Neverest WikiP), 2009-09-
09)}. We assume the provenance order described in Table 4.3. The provenance for bluewater:
City v hqln(vpktv, bluewater) is determined as follows:
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ProvAss(bluewater : City)v ProvAss(hgIn(vpktv, bluewater)) =
{(trust, Nev), (date, 2009-09-09) }v{(trust, NevW P), (date, 2009-09-09) }.

Note that, due to the defaults introduced in Definition 4.4.3, the operations on provenance
assignments are defined even in the presence of incomplete provenance from a domain. In our
framework, just as v and A correspond to a logical “or” and “and”, default corresponds to a
default truth value of “unknown” in a default logic. With a default assignment, we provide
a uniform treatment of axioms in case of absence of provenance, and thus we are able to
combine arbitrarily provenance assignments. In any case, as illustrated in Example 4.4.1, the
interpretation of provenance and defaults assignments as well as the interpretation of the
provenance operations are domain application dependent. Such considerations are orthogonal
to our framework.

While axioms in the underlying description logic may contain negation, these negations are
not visible and not needed at the level of the provenance. Hence, the provenance algebra does
not need to contain a negation operator.

Finally, we define how to retrieve the provenance assigned to an axiom A within a prove-
nance dimension. The provenance of an axiom A within a provenance dimension is obtained
by evaluating the corresponding provenance formula in the dimension under consideration.

Definition 4.4.5 (Provenance Evaluation) Let prov(A) be a function mapping from an
axiom A to a provenance assignment in dimension D. The provenance of an axiom A wrt.
O in D is obtained by computing a pinpointing formula ¢ of A wrt. O and obtaining ¥ by
replacing each axiom in ¢ with its provenance assignment in D and the logical operators v and
A with their corresponding operators in D. Then prov(A) is computed by evaluating 1).

Example 4.4.5 In our running example, for the query “for each city find all companies”,
x:City A hasCompany(x,y), we have the result bluewater, vpktv and the following provenance
formula:

ProvAss(#3)AProvAss(#4)AProvAss(#6)

The corresponding provenance evaluation for the dimension trust is:

(trust, oo) A(trust, Nev)A(trust, NevWP) = (trust,coANevANevWP) = (trust, infye, neywp)-

Complex Provenance Dimensions

In the previous section we have described how provenance can be computed in a single dimen-
sion. This focus on a single dimension is useful if independence of dimensions can be assumed.
Sometimes, however, this is not the case. For example, when a group of users collaboratively
edits an ontology, the time an axiom was asserted and the user responsible for the modification
will often correlate. In this case, two knowledge dimensions can be composed into a complex
provenance dimension:
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Definition 4.4.6 (Composition of Dimensions) Let D1 = (Bp,,Vp,,Ap,) and
Dy = (Bp,,Vp,,Ap,) be provenance dimensions. Then D = (Bp,Vp,Ap) is a composed prove-
nance dimension, such that

e Bp = Bp, x Bp,,
e (Bp,Vvp) ={((z,y)(v,w))|z,v e Bp, and y,we Bp, and x <y, v andy<y, w}, and
e (Bp,Ap) ={((z,y), (v,w))|z,v e Bp, and y,w € Bp, and x <, v andy <, w}

We will refer to the elements of Bp as complex provenance labels and to the elements of
Bp, and Bp, as atomic provenance labels.

Example 4.4.6 As an example of composition of dimensions, we compose the dimensions
trust and modification date and compute the provenance for x:City A hqln(y,x). We have the
provenance formula:

ProvAss(#4)AProvAss(#6)

If we treat the trust and modification date dimensions separately, the results are
{(trust, Nev)) } A{(trust, NevWP)} = {(trust, infye, nevwp) }
{(date, 2009-09-09) } A{ (date, 2009-09-10)} = {(date, 2009-09-10) }

If we combine them into one dimension as shown in Figure 4.2, however, the result is

{(trust, Nev), (date, 2009-09-09) } A
{(trust, NevWP), (date, 2009-09-10)} =
{(trust, infye, Newwp), (date, 2009-09-10) }

Having composed the interdependent dimensions into one, one may use the composed
provenance dimension just as an atomic one. Definition 4.4.5 applies exactly as for simple
provenance dimensions.

Semantics for Conflicting Provenance

In the following section we extend our model to support conflicting provenance which can arise
from conflicting changes or provenance assignments by multiple users at different times. A new
operator is needed for this merging, as the merge operator need not coincide with one of v
and A.

Definition 4.4.7 (Conflict Tolerant Dimension) A conflict tolerant provenance dimen-

sion D is an algebraic structure (Bp,Vp,Ap,®p), such that (Bp,Vp), (Bp,Ap) and (Bp,®p)
are complete semilattices. The minimum of (Bp,®p) is Lp.
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2009-09-10,8upney NevwP

N\

2009-09-10,Nev 2009-09-10,NevWP
SUPNev,NevWP \ /
/ \ 2009-09-10 2009-09-10,infyey NevwP
Nev NevWP x =
NS 2009-09-09 2009-09-09SUPN e Nevivp
ianev,NevWP / \
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N

2009-09-09,infyey NevwP

Figure 4.2.: Provenance order of the knowledge sources.

Example 4.4.7 To illustrate how to support conflicting provenance by multiple provenance
assignments, let I be a provenance interpretation and let A be an axiom of an ontology, for
which there exist multiple provenance assignments. We use A" and A" to represent the axiom
A with different provenance assignments. Let us compare the already known provenance di-
mension modification date with the creation date. For modification date, @& needs to be the
maximum (we are interested in the last assertion), while for creation date, @ needs to be the
minimum (we are interested in the first assertion). In contrast to example 4.4.1 the opera-
tors for creation date and modification date do not coincide. The modification date could be
modeled as:
Idate(A, @ A") = maw(Idate(A,)a Idate(A”))

The creation date could be modeled as:
Lere(A"® A") = min(lere(A"), Lere(A”))
Likewise, the trust could be modeled as:
Tirust(A"® A”) = sup(Lrust(A"), Ttrust (A”))

To show how the support to conflicting provenance by multiple provenance assignments
can be applied to our scenario, we slightly extend our running example in Example 4.4.8:

Example 4.4.8 We assume that aziom (#1), RealCity © City n IhasCompany. Broadcaster,
has been modified by two sources at different times:
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’ D \ trust\ date ‘

#1 | oo 2009-09-10
#1 | Nev | 2009-09-09

Then the provenance assignment for axiom #1 is

{(trust, o), (date, 2009-09-10) } & {(trust, Nev), (date, 2009-09-09)} =
{(trust, oo ® New), (date, 2009-09-09® 2009-09-10)} =
{(trust, 0), (date, 2009-09-10) }.

In contrast, if first Neverest and then DPA assert the same axiom, we would have
{(trust, o0), (date, 2009-09-09)} & {(trust, Nev), (date, 2009-09-10)}

As 00 >pust Nev, but 2009-09-09 < gare 2009-09-10, these labels are incomparable and can
not be further simplified.

In order to accommodate such potentially conflicting provenance assignments about ontol-
ogy axioms, we extend the semantics of provenance, which we have introduced in Section 4.4.2.
For this purpose, we redefine the prov function of Definition 4.4.5, such that it uses @ to merge
provenance assignments in a preprocessing step. Afterwards, we have a unique provenance as-
signment again and apply Definition 4.4.5 as before.

Definition 4.4.8 (Provenance Extended) Let allprov: azioms — 28D be a function map-
ping from an axiom to all provenance assignments to that axiom in a provenance dimension

D.

Let prov be a function mapping from an axiom to a provenance assignment in dimension
D. The provenance of an axziom A wrt. O in D is obtained by computing a pinpointing formula
¢ of A wrt. O and obtaining 1 by replacing each axiom A in ¢ with @(allprov(A)) and the
logical operators v and A with their corresponding operators in D. Then prov(A) is computed
by evaluating 1.

Example 4.4.9 Consider the provenance assignment of axiom #1 with conflicting provenance
presented below and the provenance formula:

ProvAss(#1)AProvAss(#2)

the derived provenance is:

{(trust, 00), (date, 2009-09-10) } &{ (trust, Nev), (date, 2009-09-09) } A{ (trust, o), (date, 2009-09-09)} =
{(trust, oo & Nev)A(trust,oo), (date, 2009-09-10 & 2009-09-10)A(date, 2009-09-09)} =
{(trust, coAoo), (date, 2009-09-10A2009-09-10)} = {(trust, o), (date, 2009-09-10)}.

This definition of prov not only allows to aggregate provenance from multiple sources, but
also to gracefully handle unknown provenance, i.e. situations where a knowledge source does
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not provide a label for some provenance dimension, in which case 1p is assumed as a default,
as introduced in Definition 4.4.3
Example 4.4.10 shows how our approach can be applied to our use case scenario.

Example 4.4.10 Back to our scenario, DPA needed to verify that Bluewater indeed is a city
in CA. Hence, they need to answer the query “bluewater: RealCity?” and to obtain provenance
for the answer. The query results in the following provenance formula:

ProvAss(#3)AProvAss(#4)AProvAss(#6)

The resulting provenance label 1s:

{(trust, o), (date, 2009-09-10) } A{(trust, Nev), (date, 2009-09-09) } A
(trust, NevWP), (date, 2009-09-09) } = {(trust, infye, newwp), (date, 2009-09-10) }.

Note that in Example 4.4.10 the labels of the modification date dimension are comparable,
while the labels of the trust dimension are not. Hence, the resulting provenance label is a tuple
of the infimum of Nev and NevWP in the trust dimension and the maximum of the dates in
the assertion date component.

4.5. Using Provenance to Debug Changing Ontologies

We now use our definitions of provenance in order to track down what recent addition to
the knowledge base led to a desired or undesired effect. In the case of our collaborative on-
tology editing scenario, we may want to identify who was the least authoritative source that
contributed most recently to an inconsistency.

The algorithms discussed in this section fulfill this purpose, i.e. given a query (an axiom), an
ontology and a provenance dimension, they extract a subontology as explanation and compute
the provenance label of the query.

As we can see above, Definition 4.4.5 relies on a pinpointing formula for the computation
of provenance. Hence, we need to find all pinpoints to compute a pinpointing formula. Then
we can immediately derive the provenance label.

4.5.1. Naive Approach

A naive evaluation of provenance for an axiom might compute all pinpoints and then evaluate
the pinpointing formula. This strategy is illustrated in Algorithm ProvNaive. ProvNaive takes
as parameters an ontology O, an axiom A and a provenance dimension D. It returns the
provenance label of A wrt. O and a subontology containing all pinpoints for O = A.

However, finding all pinpoints is a very expensive operation and this approach is not appro-
priate in real-use cases. Finding a pinpoint using a black-box approach may need an exponen-
tial number of consistency checks in the underlying DL. Moreover, there can be exponentially
many pinpoints.

94



4.5. Using Provenance to Debug Changing Ontologies

Algorithm 2 Evaluation Algorithm: ProvNaive(O, A, D)

1: pinpoints < GetAllPinpoints(A, O)
2: labels < {lJEIp € pinpoints: I = Approv(p)}
3: labels < {V/p lab| lab € labels}
4: M « Upepinpointsp
5: return M, lab
(?YCcD
7YCcD
|[4) CcE|<{(3) CcF |(3) FD||(1) Ge D] @
7
|(5) EcG [(2) FeG|
[(3) He I——{(4) Tc J| (5) Ec@
(a) Dependencies of Axioms (b) Step 1

(7Y CceD

(1) CeE||[(3) CcF|

(3) Fe D
G)EcG
(c) Step 2
Figure 4.3.: Selection of Axioms by Optimized Algorithm.

4.5.2. Debugging with Provenance - An Optimized Algorithm

We present an optimized algorithm for deriving provenance which performs significantly better
in the average case than naive implementations. It does not need to compute all pinpoints,
nor even one precise pinpoint. Instead, we compute an approximation which is sufficient for
deriving provenance.

The optimization is based on the assumption that the provenance dimension is a lattice
(Bp,Vp,Ap) such that avpb = sup(a,b) and aApb = inf(a, b) for a,b € Bp (or vice versa). Note
that in the general case the interpretation of vp and Ap is independent as shown in Definition
4.4.2, i.e., they do not need to be dual. However, for optimization issues we assume that vp and
Ap are no longer independent. This assumption is true for all provenance dimensions discussed
above, such as modification date, degree of trustworthiness, and for all total orders. In this
case, the pinpointing formula has the structure of a supremum of infima when expressed in
disjunctive normal form.

Considering this assumption, we make the evaluation more efficient since we can exploit
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monotonicity properties of our provenance dimensions where applicable.

For instance, for a provenance dimension with a total order, once we find the pinpoint with
the highest provenance label, we have also found the overall maximal provenance label. Thus,
in many cases, we do not need to compute all pinpoints and we may restrict the computation
of the pinpointing formula to those parts of an ontology that are relevant for the provenance
computation given its particular lattice structure.

If the provenance dimension is a partial order, several pinpoints with incomparable prove-
nance labels may be found. Thus, we need to find all pinpoints with maximal (or minimal)
provenance labels and merge the corresponding provenance labels to determine the resulting
provenance label.

Without loss of generality, we only consider for our optimized algorithm the case that the
corresponding pinpointing formulas have the structure of a supremum of infima. In this case
the provenance label of a single pinpoint is the infimum of the labels of the axioms it contains,
and the overall provenance label is the supremum of the labels of all such pinpoints. As a
result, we do not need to take into account any axiom, which has a provenance label less than
the infimum of the labels of the greatest pinpoints. For the case of a infimum of suprema, we
simply need to invert all comparisons and replace min by max in Listings 3 and 4.

Likewise, we only consider consistent ontologies. The proposed algorithms handle inconsis-
tent ontologies equally well, if the entailment check in line 10 of Listing 3 is negated.

The algorithm starts with a query of the form “O £ A?”, as we focus on entailment checking
here. In order to find those axioms that are relevant for the provenance computation given the
query, the algorithm iteratively grows a subontology around A based on the syntactic relevance
selection function [Ji et al., 2009] (see Definition 4.5.1). Intuitively, an axiom is syntactically
relevant for another axiom, if it contributes to the definition of one of the concepts or properties
in the other axiom. In Figure 4.3, a small example ontology is shown. The arrows represent
syntactic relevance relationships between axioms. Assume the query is C & D?. Then the two
axioms at the bottom can not be relevant to the answer, because they are neither directly

nor indirectly relevant to the query. The rest of the ontology contains three justifications for
Cc D,namely {Cc E,EcG,GcD},{CcF,FcG,GeD} and {CcF,Fc D}

Definition 4.5.1 (Syntactic Relevance [Ji et al., 2009]) An aziom B is directly syntac-
tically relevant for an axiom A, if their clusters overlap, i.e. if they share a concept, role or
individual. B is syntactically relevant for A, if it is directly syntactically relevant for A, or if
B is syntactically relevant for C, which is syntactically relevant for A.

We define a convenience function o: Given A and an ontology O, o(A,0) = {B € O|B
is directly syntactically relevant for A}. The definition carries over to sets of axioms M :
o(M,0)={BeO|3A e M : B is directly syntactically relevant for A}

Using the syntactic relevance selection function, the algorithm Prov(0, A, D) computes
the provenance label of O £ A in dimension D, if O = A. We start by determining the set of
syntactically relevant axioms for A=Cc D inline3 (Cc E,Cc F, Fc D and Gt D). Then
we add the ones with the greatest provenance label to the module in line 4 (C' € F in stepl;
C c F in step 2). In the inner loop we recursively add all syntactically relevant axioms for the
new module which do not decrease the provenance degree of the overall solution (E € G in
step 2). Note that this is just an optimization step to avoid unnecessary entailment checks. It
can be omitted to compute a more precise approximation of the pinpoint. The trade-off is a
possibly higher number of iterations and entailment checks.
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In each iteration we add axioms until we have found a module which contains a pinpoint
in line 10 (this is the case after step 2 of the example). The provenance label for A is the
smallest provenance degree of the axioms in the module (hence, 3). We work with a set for
labels to account for the fact that in the presence of partial orders, minimum and maximum
are not unique. Hence, the min function used in line 11 is the set version, which returns the
set of smallest elements of a set. For total orders, label always is a singleton.

Note that our optimization strategy is strongly related to two issues: (a) the syntactic
relationships among the pinpointing axioms, and (b) the size of pinpoints. The closer the
pinpointing axioms are syntactically correlated and the smaller the pinpoints are, the faster
the module can be built and the provenance label be derived. By growing only a small module
of the ontology and avoiding the use of instantiated ontology as a whole for approximating
pinpoints, we save lots of entailment checks which are very expensive.

Algorithm 3 Evaluation Algorithm: Prov(O, A, D)
: M« {A}
repeat
syn < o(M,0)
add < {By € syn|ABs € syn:prov(By) <p prov(Bz2)}
repeat
M <~ M uadd
syn < o(M,0)
add < {By € syn|3Bz € M : prov(By) 2p prov(Bs)}
until add ¢ M
until M - AE A;
: labels := minp({prov(B)|B e M})
: return M, labels

_ = =

Theorem 4.5.1 Let O be an ontology, A an axiom such that O = A and D a provenance
dimension, which is a total order. Prov(0, A, D) computes the provenance degree of O £ A
i dimension D.

Proof: First we show that Prov terminates. The inner loop terminates when M-A £ A.
At each iteration add is assigned to a subset of O, which is syntactically relevant to module
and has the greatest provenance degree. Consequently, module is a subset of O. As O is finite
and O E A, the loop must eventually terminate. In this case M-A indeed = A and labels =
minp({prov(B)|B € M}).

It remains to show that if Prov terminates, it returns the correct provenance degree of
OEA.

Remember that we are looking for the pinpoint with the highest provenance label and that
the provenance label of the pinpoint is the infimum of the provenance labels of its axioms.

M contains only axioms which are syntactically relevant for A. When the outer loop termi-
nates, M contains a (superset of a) greatest pinpoint of A wrt. O. Assume there is a pinpoint
P, which has not been found and has a greatest provenance label. Then it must already be
part of module: All axioms in a pinpoint of A must be syntactically relevant for A. Moreover,
VB € P :prov(B) >p labels. M contains all such axioms which are directly syntactically rel-
evant for A, or which are indirectly syntactically relevant via axioms with provenance labels
>p labels. Hence, M must already contain P. Refutation.
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Figure 4.4.: Justifications with incomparable provenance.

For partial orders the resulting label may contain multiple elements which need to be
merged. Figure 4.4 illustrates a case where we have a complex dimension composed of numbers
and letters and their natural orders and multiple relevant pinpoints which together result
in a provenance label of inf; 4. ProvPartial computes accurate labels for partial orders. It
uses Prov to compute an approximation first. Although there might be multiple pinpoints
with incomparable provenance labels, Prov stops after the first pinpoint is contained in the
approximation. Therefore, we need to further extend the approximation, such that all possibly
relevant axioms are included. If the label returned by Prov is a singleton, there is a unique
maximal pinpoint (lines 2 and 3). Otherwise, we compute the minimum of all elements of lab
(line 4), which is the lower bound D we need to consider. For example, as numbers and letters
are incomparable, the lower bound for a and 2 is inf; ,. This means we could ignore any axiom
which does not have a provenance label (and hence defaults to 1), but need to consider G € D.
Every pinpoint with a provenance label equal to or less than min is also less than the label of
the pinpoint we have already found in Prov, and hence we can ignore it. We now extend our
approximation with all axioms which are syntactically relevant to A and, if they are indirectly
relevant, are connected to A only through axioms which have a provenance label greater than
min. The loop in lines 5 to 9 works analogously to lines 5 to 9 in Prov. Finally, we compute
the correct label using ProvNaive.

Algorithm 4 Evaluation Algorithm: ProvPartial(O, A, D)

1: (M,labels) < Prov(O, A, D)

2: if (|labels| = 1) then return (M, labels)
3: end if

4: min < Ajapetaperslab;

5: repeat

6: N:=M

7 syn :=o(M,0)

8: M := M u{B € syn|prov(B) >p min}
9: until M =N

._.
@

return ProvNaive(M, A, D)

Theorem 4.5.2 Let O be an ontology, A an axiom such that O = A and D a provenance
dimension, which is a partial order. ProvPartial (0, A, D) computes the provenance degree
of O & A in dimension D.
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In line 9 we use the naive algorithm. Therefore we only need to show two things: (a) If
Prov returns a singleton, it is indeed correct also for partial orders and (b) lines 4 to 9 indeed
compute a module, which contains all axioms relevant for computing the correct solution using
the naive algorithm.

(a) In line 3 and 4 of Prov exactly those axioms are added to M, which are minimal in
the current syntactic relevance set syn. Hence, if incomparable provenance degrees occur, all
of them are selected. They are also preserved in line 11, as there is no unique minimum in this
case. Thus, if a unique minimum is returned, then it must in fact be equal or greater than the
provenance labels of all other pinpoints.

(b) Assume there is an axiom B, which is contained in some pinpoint P, which is relevant
for labels and missing in M. We consider two cases:

(b1) /\pepprov(p) < min. That means some prov(p) is less or equal min. Then P is not
relevant. Refutation.

(b2) Hence, prov(p) must be greater than min for all p € P. Then all p and hence also B
have been selected in lines 5 to 9. Refutation.

Figure 4.7 presents a diagram showing the relations between the set of axioms of the
ontology (set O), the set of axioms of the relevant pinpoints (set P), and the set of axioms
of the module retrieved by our algorithm (set R). Note that the algorithm retrieves some of
the pinpoint axioms. Axioms that are part of the pinpointing formula and are retrieved by
the algorithm (the overlap of the sets P and R) correspond to those that are relevant and
necessary for deriving provenance.

Figure 4.5.: Algorithm with optimization

Figure 4.6.: Algorithm without optimization

)

Figure 4.7.: Relations between the set of axioms of the ontology (O), the axioms in all pinpoints
(P) and the axioms retrieved by the algorithm (R).
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4.6. Complexity

The worst case complexity of both the naive and the optimized approach for computing prove-
nance is equivalent to the computation of all pinpoints in the underlying logic as the pinpointing
formula can be evaluated in polynomial time. If it is expressed in normal form, however, the
size of the formula can blow up exponentially.

Approaches for computing pinpoints like [Baader and Penaloza, 2010] which, rather than
representing pinpoints formula in a normal form, derive a compact representation of the pin-
points formula, benefit the computation of provenance since they avoid exponential blow-up.

While in the worst case the complexity of computing provenance is the same as the com-
plexity of finding all pinpoints and hence quite high, in the average case we can do much better
using the optimized algorithm as shown in Section 4.7.

4.7. Evaluation

The prototype of the optimized provenance computation algorithm (Prov) has been imple-
mented in Java 1.6 using Pellet 2.0.0* and OWL API trunk revision 1310°.

4.7.1. Data

We have performed our experiments using two groups of ontologies. The first experiment is
composed of standard ontologies for debugging ontologies that have already been used for test-
ing the computing time of laconic justifications in [Horridge et al., 2008]. These ontologies have
been used in [Horridge et al., 2008] to demonstrate the efficiency of traditional computation of
pinpoints. The main goal of this experiment is to show that our optimized algorithm speeds
up the performance of provenance computations compared to the standard computation of
pinpoints.

The second experiment uses real-world living ontologies from Bioportals containing real
change logs with timestamps and editors. The main goal of this experiment is to test the
applicability and scalability of our approach for computing provenance in real time. For both
experiments we use a virtual machine with 2GB RAM and a single Intel(R) Xeon(TM) CPU
core with 3.60GHz.

4.7.2. Methodology

1. We compare our optimized algorithm to the naive approach (baseline) based on full
axiom pinpointing using the ontologies shown in Table 4.4. The ontologies used already
have been taken in [Horridge et al., 2008] to demonstrate the efficiency of traditional
computation of pinpoints, and offer a range of varying complexities and pinpoint sizes.

2. We evaluate if our approach is fast enough to support user assessments of the reliability
of inferences in real time also for real-world, large-scale data. For this experiment, we
have used the two real-world ontologies shown in Table 4.6.

*Pellet: OWL 2 Reasoner for Java (http://clarkparsia.com/pellet)
®The OWL API (http://owlapi.sourceforge.net/)
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Ontology Expressiveness | Total No.Unsat. | Av. of Pinpoints
Axioms Classes | per Unsat. Class

1,7 People ALCHOIN 372 1 1
2,8 MiniTambis ALCN 400 30 1
3,9 University SOIN 92 9 1
4,10  Economy ALCH(S) 2.330 51 1
5,11  Chemical ALCHF 192 37 11
6,12 Transport ALCH 2.178 62 2

Table 4.4.: Ontologies used in the experiments.

3. We compute the precision and recall of our approximation using all ontologies described
above. Precision is defined here as the number of retrieved axioms that are relevant for
deriving provenance divided by the total number of retrieved axioms. Recall is defined
as the number of retrieved axioms that are relevant for deriving provenance divided by
all relevant axioms in the ontology.

4.7.3. Discussion and Results
Experiment | - Debugging Ontologies

In this experiment, we compare our optimized algorithm to the naive approach (baseline) based
on full axiom pinpointing. For this experiment, we have used the ontologies from Table 4.4.

Since for these ontologies no provenance information is available, we have generated artifi-
cial provenance in two ways:

random - ontologies 1-6 We have augmented the original ontologies by randomly assigning
timestamp values and degrees of trustworthiness to the axioms.

cluster - ontologies 7-12 We have augmented the original ontologies by assigning similar
timestamp values and degrees of trustworthiness to such clusters of axioms which are
syntactically relevant to each other. This reflects the fact that a user usually does not
do random modifications, but changes a part of the ontology focused around a certain
class or property.

As the ontologies 1 to 12 are inconsistent, our implementation focuses on pinpoints for
inconsistencies instead of subsumptions. For this reason, the termination condition in line 8 of
Prov has been changed to a consistency check, i.e. M - A -A.

For each ontology, we have measured the time needed to compute the provenance for an
inconsistency in average over all inconsistent classes of an ontology. In order to investigate the
influence of composing dimensions, we have performed the experiment for each ontology with
a single and with two provenance dimensions (see Section 4.4.2).

We use as a baseline the naive approach based on full axiom pinpointing the black-box
algorithm implementation in the OWL API for computing all pinpoints.

The results of the evaluation are presented in Figure 4.8 and Table 4.5. In Figure 4.8, we
have normalized the results to the processing time of the naive approach and used a logarithmic
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Ontology Base | Av.Size Date Av.Size Date and Av.Size
line | Pinpoints | Dimension | of Module Trust Module
Uns.Class Uns.Class | Dimensions | Uns.Class

1 People R. 312 4 141 15 141 15
2 MiniTambis R. | 141 7 18 22 22 22
3 University R. 53 4 8 18 8 18
4  Economy R. 395 3 23 57 27 58
5  Chemical R. 3239 7 32 126 38 126
6  Transport R. 1165 ) 23 70 29 71
7  People C. 141 4 16 15 16 15
8 MiniTambis C. 127 7 11 22 11 22
9  University C. 52 4 7 18 7 18
10 Economy C. 386 3 4 19 5 19
11  Chemical C. 3236 7 32 126 37 126
12 Transport C. 1121 ) 28 99 34 102

Table 4.5.: Average time to compute provenance for an inconsistency of an ontology (ms).

scale. The absolute numbers ranged over three orders of magnitude. Our optimized algorithm
performs significantly better for all cases and scales very well. Note that in some ontologies we
can find some very large pinpoints and some entailments with high numbers of pinpoints. In
contrast, some other ontologies contain relatively small and few pinpoints.

As shown in Figure 4.8 ontology 5, which is an annotated version of the Chemical ontology,
required the most computation time in the naive approach as it contains some very large
pinpoints and some entailments with high numbers of pinpoints. Especially for such cases, our
approach has shown its potential.

As already expected, the optimized cluster ontology group (ontologies 7-12) has performed
better than the optimized random ontology group (ontologies 1-6). The reason is that for the
optimized cluster group we have assigned similar provenance labels to syntactically related
axioms. Since in our approach, axioms that are syntactically relevant to the query are selected
first, for the optimized cluster group the module could be built faster than for the random
group. This increases the performance for computing provenance since axioms belonging to
a common pinpoint are in general syntactically related to each other. As instance, ontology
10 has shown better performance than ontology 4 since the relevant axioms could be selected
first, and thus a smaller module could be built.

Furthermore, we observe that debugging with many independent dimensions can have a
negative performance impact due to lots of incomparable labels in the composed dimension,
but in most cases still performs significantly better repeating the computation for two atomic
dimensions.

Experiment Il - Living Ontologies

In our second experiment, we evaluate if our approach is fast enough to support user assess-
ments of the reliability of inferences in real time also for real-world, large-scale data. For this
experiment, we have used the two real-world ontologies shown in Table 4.6.

The BIO ontology is a mapping ontology for the Open Biomedical Ontologies (BIO) repos-
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Figure 4.8.: Average time to compute provenance for an inconsistency of an ontology (in log-
arithmic scale). The computation of provenance for ontology 5, 10 and 13 scales
orders of magnitude better than a naive implementation algorithm and for that
reason, they are not displayed on the graph.

Ontology | Expressivity | Total No. Unsat. | Av. of Pinpoints
Axioms Classes | per Unsat. Class

13  BIO SHOIN (D) | 660.915 1 1
14  OBI SHOIN(D) | 16.415 1 1

Table 4.6.: Ontologies used in the experiments.

itory of the US National Cancer Institutes Center for Bioinformatics [Smith et al., 2007],
ontology 13. The BIO ontology comes with real change logs containing timestamps and editor
information for each axiom, which we use to evaluate our approach.

The OBI ontology is the Ontology for Biomedical Investigations®, ontology 14. This is an
integrated ontology for the description of life-science and clinical investigations. It supports the
consistent annotation of biomedical investigations, regardless of the particular field of study.
The OBI ontology has been developed in collaboration with groups representing different bio-
logical and technological domains involved in Biomedical Investigations. In the OBI ontology,
changes are tracked in change logs with timestamps and provenance information.

For both ontologies, we mapped information about editors to degrees of trustworthiness as
defined in Section 4.4.2, and extracted the timestamps for the modification dates.

We compared our approach to the naive approach for computing all pinpoints. For each
ontology, we have evaluated the time needed to compute the provenance for an inconsistency
in average over all inconsistent classes of an ontology.

Since ontology 13 and 14 are consistent, we have generated random queries as follows: For
randomly selected disjoint classes A and B we introduced a new class C' such that A € C' and
B £ (' and used these new axioms as queries. For this reason, we could use exactly the same
implementation as for Experiment I. We have performed the experiment for each ontology
with a single and with two dimensions to investigate the influence of composing dimensions.

SOBI: The Ontology for Biomedical Investigations (http://obi-ontology.org/)
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Ontology Base Av.Size Date Av.Size Date and Av.Size
line Pinpoints | Dimension Module Trust Module
Uns. Class Uns. Class | Dimensions | Uns. Class
13 BIO 1.273.281 3 7.514 33 7.306 33
14 OBI 24.474 3 660 150 717 150

Table 4.7.: Absolute times needed for the experiments (ms).

The results of the evaluation are presented in Figure 4.8 and Table 4.7. For ontology 13
and 14 our algorithm is 97-99% faster than the baseline. For the BIO ontology, which contains
660.915 axioms, provenance can be computed in under 8 seconds with our algorithm, which
is fast enough for interactive applications. In contrast, the baseline approach takes almost 22
minutes.

The missing bars for ontology 13 in Figure 4.8 are due to the extreme differences in runtime.
For the relatively small ontologies used for experiments 1 to 12, existing pinpointing algorithms
perform pretty well. However, for the extremely large ontologies 13 and 14, our optimizations
show their full potential.

Using our approach, the time needed to compute provenance mainly scales with the size
of pinpoints, rather than with the size of the ontology. Compared to the size especially of
ontology 13, our machine had a rather small main memory (most of it was already necessary
to just classify the ontology using Pellet). We expect even better performance, when memory
management is less of an issue.

Debugging with many independent dimensions can have a negative performance impact
due to lots of incomparable labels in the composed dimension. Results for the real-world
data from the BIO and the OBI ontologies show that in reality this is less of a problem, as
modification dates and editors are not independent there. In fact, the lack of independence
of the provenance dimensions is an advantage in practice. The results for ontology 13 are
even better for the complex dimension than for the atomic dimensions. This shows that our
assumption for the clustered random data obviously is correct.

Precision and Recall

In the final part of our experiment, we have analyzed the precision and recall of our approxima-
tion. Precision is defined here as the number of retrieved axioms that are relevant for deriving
provenance divided by the total number of retrieved axioms. Recall is defined as the number
of retrieved axioms that are relevant for deriving provenance divided by all relevant axioms in
the ontology.

The recall clearly always is 1.0, as assured by the inner loop in lines 5 to 9 in Prov and
ProvPartial. We retrieve all axioms of the pinpoint(s) that are relevant and necessary for
computing the provenance label (see Figure 4.7). However, we have to tolerate a certain per-
centage of false positives (low precision), since not all retrieved axioms are relevant for deriving
provenance.

Table 4.8 shows that for ontologies 1-3 and 7-9 our approach leads to high precision.
However, for the ontologies 4-6, 10-12, as well as for both real-world ontologies 13 and 14, our
approach achieves low precision. The reason for this discrepancy is that the latter ontologies are
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highly axiomatized ontologies with many syntactic dependencies among axioms. Thus, using
the syntactic relevance function our algorithm also retrieves many irrelevant ones. As we have
mentioned before, we can trade the runtime optimization in the inner loop of the algorithm
for higher precision of the module. In other words, we have a trade-off between (low) precision
and (high) performance.

Table 4.8 shows the relation between the size of the module retrieved by the algorithm Prov
presented in Section 4.5.2 and the total number of relevant axioms for deriving provenance.
We measure the average module size for computing the provenance and the average number
of axioms in all relevant pinpoints for an inconsistency. The numbers are averaged over all
inconsistent classes of an ontology.

Ontology Average Average Precision
Axioms | Module Size
1 People Random 4 15 0.3
2 MiniTambis Random 7 22 0.3
3 University Random 4 18 0.2
4 Economy Random 3 Y 0.05
5 Chemical Random 7 126 0.06
6 Transport Random 5 70 0.07
7 People Cluster 4 15 0.3
8 MiniTambis Cluster 7 22 0.3
9 University Cluster 4 18 0.2
10 Economy Cluster 3 19 0.16
11 Chemical Cluster 7 126 0.06
12 Transport Cluster 5 102 0.05
13 BIO 3 33 0.09
14  OBI 3 150 0.02

Table 4.8.: Average of the relevant axioms for deriving provenance vs the average of the module
size.

4.8. Related Work

In [Baader et al., 2009] the authors propose an approach for computing boundaries for rea-
soning in sub-ontologies to enforce access restrictions. Provenance is used as criterion for pre-
computing sub-ontologies during the development phase where the consequences still follow
for pre-determined axioms. Two optimizations for reasoning are proposed: An extension of the
hitting set tree (HST) algorithm for general lattices, which is close to state of the art pinpoint-
ing algorithms and binary search for total orders. For large ontologies, [Baader et al., 2009]
uses a modularization step, before applying the actual reasoning. The evaluations of [Baader
et al., 2009] and our approach are not directly comparable, as [Baader et al., 2009] focuses on
either large ontologies with low expressivity (££+) or small ontologies with high expressivity.
Moreover, the modularization step is not included in the evaluation. [Knechtel and Penaloza,
2010] extends the approach towards explanations and debugging of access rights.
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In contrast, our approach is built on modularization at its core without a need for pre-
processing and generates explanations while computing provenance. We have shown that our
approach scales very well even for large and very expressive (SHOZN (D)) ontologies. Besides
a single access rights dimension, we discuss the management of the various provenance di-
mensions relevant for the tracking of ontology dynamics. The two approaches might be joined
in future work by using the HST algorithm from [Baader et al., 2009] to replace the naive
algorithm used in ProvPartial. Such a combined algorithm would have desirable features of
both approaches.

[Sensoy et al., 2013] propose an approach to resolve conflicts before performing reasoning.
They combine DL-Lite with the Dempster-Shafer theory of evidence (DST) to allow scalable
reasoning over uncertain semantic knowledge bases. [Dong et al., 2009] propose to resolve
conflicts in information from multiple sources by a voting mechanism. Our approach does not
requires that inconsistencies or uncertain information should be resolved before the reasoning
process. More similar to our approach, in [Golbeck and Halaschek-Wiener, 2009] Golbeck
et al. present a belief revision algorithm for ontologies which is based on trust degrees of
information sources to remove conflicting statements from a knowledge base. The authors use
axiom pinpointing for detecting conflicts. There are two main differences between our approach
and Golbeck’s : (1) our approach allows for arbitrary dimensions of provenance, (2) we present
an optimized algorithm for computing provenance which uses pinpointing to come up with
provenance formulas for description logics.

In [Baader et al., 2009], Baader et al. propose a method for access control to inferences
from OWL ontologies. Access rights are modeled using a lattice and pinpointing is used to
compute access rights in a way similar to the approach proposed here. Our approach allows
for arbitrary dimensions of provenance and hence subsumes the special case of access rights.
[McGuinness and da Silva, 2004] propose infrastructure for trust on the semantic web such as
portable explanations and service registries. While [McGuinness and da Silva, 2004] and our
approach can augment each other, ours is significantly different, because we provide a flexible
framework for arbitrary provenance dimensions. Furthermore, we do not need to generate
accurate proofs to track provenance.

[Fokoue et al., 2010] introduces a trust framework based on Bayesian Description Logics
that allows us to compute a degree of inconsistency over a probabilistic knowledge base. They
consider pinpoints as possible worlds for an axiom and derive for each possible word a proba-
bility measure. The degree of inconsistency of a knowledge base is then computed as the sum
of the probabilities associated with possible worlds that are inconsistent. Due to scalability
reasons, the proposed trust computation model operates on a random sample of justifications.
Our optimized algorithm does not deal with the sum of all justifications, and thus we do not
need to compute all justifications to determine the degree of inconsistency for a query. We are
interested in deriving the provenance labels of the changes which led to the inconsistency.

In [Shchekotykhin et al., 2011], the authors propose a framework which allows us to se-
lect the most probable diagnosis (pinpoint) to repair an inconsistency. Basically, it creates a
sequence of queries which is used to reduce the set of diagnosis until it identifies the target
one. The target diagnosis is the one which contains all entailments of the target ontology. To
select the best queries to be posted next, the algorithm predicts the information gain of a
query result, i. e., the result which minimizes the entropy. Our approach has a different goal
when using provenance information for reasoning. Since we do not aim to compute the most
probable possible world over all possible worlds but we want to select some specific axioms
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based on their provenance, we do not need to compute all pinpoints to track provenance.

Further related work can be grouped into the following categories: (i) Extensions of de-
scription logics with a particular provenance dimension, especially uncertainty. (ii) General
provenance for query answering with algebraic query languages. (iii) Extensions of description
logics with general provenance and (iv) Provenance for other logical formalisms.

ad (i) Several multi-valued extensions of description logic have been proposed: [Lukasiewicz
and Straccia, 2008] propose fuzzy and probabilistic extensions of the DLs underlying the web
ontology language OWL. [Qi et al., 2011] describe an extension towards a possibilistic logic.
[Jung and Lutz, 2012] show an approach for querying probabilistic databases in the presence
of an OWL2 QL ontology. Each assertion is assumed to be stored in a database and associ-
ated with probabilistic events. Answer probabilities to conjunctive queries can be computed.
[Riguzzi et al., 2015b] compute the probability of queries from uncertain DL knowledge bases
following the DISPONTE semantics presented in [Riguzzi et al., 2015a]. DISPONTE is a pro-
totype of an expressive DL which minimally extends the language to which it is applied and
allows both assertional and terminological probabilistic knowledge. Another extension towards
multi-valued logic is presented by [Schenk, 2008]. They aim at trust and paraconsistency in-
stead of uncertainty. OWL-2 is extended to reasoning over logical bilattices. Bilattices, which
reflect the desired trust orders, are then used for reasoning. The approach allows for para-
consistent reasoning with OWL taking into account trust levels. [Ma et al., 2007] provide an
extension to reasoning in OWL with paraconsistency by reducing it to classical DL reasoning.

On the level of RDF, [Flouris et al., 2009] “color” triples to track information sources. All of
these approaches have in common that they modify the character of models in the underlying
description logic, e.g. to fuzzy or probabilistic models. In our approach in contrast, we reason
on a meta level: While the underlying model remains unchanged, we compute consequences of
annotations on axioms. This meta level reasoning is not possible in the approaches proposed
above. Unlike general provenance, these approaches are tailored to a specific need and most of
them do not respect the provenance dimensions needed for tracking ontology dynamics.

In [Lutz et al., 2008, Artale et al., 2007, Artale et al., 2009, Artale et al., 2013, Gutiérrez-
Basulto and Klarman, 2012] extend classical DLs by temporal operators, which then occur
within the knowledge base. However, most of these logics yield high reasoning complexities,
even if the underlying atemporal DL has tractable reasoning problems In [Artale et al., 2007],
the authors propose a temporal extension of description logics which is a combination of
the epistemic modal logic S5 with the standard DL ALCQOZ. S54rcoz that can represent
rigid concepts and roles and allows one to state that concept and role memberships change
in time (but without discriminating between changes in the past and future). This approach
weakens the temporal dimension to the much simpler S5, but can nevertheless show that adding
change (i.e., timestamping on entities, relationships and attributes) pushes the complexity
of ALCQT from ExpTime-complete to 2-ExpTime-hard. Likewise in [Artale et al., 2009] the
authors propose a temporal extension of description logic T, DL — Litey,,; that can additionally
capture some form of evolution constraints. Both works aim at analyzing the satisfiability
problem (decidable or undecidable) for temporal extensions of DL. [Baader et al., 2013]’s
temporal query language is based on conjunctive queries. Since we do not work with any
temporal extension of DL, our problem is restrict to the underlying logic. In [Gutierrez et al.,
2007], temporal query answering over temporalized RDF triples and OWL axioms [Motik,
2012, Batsakis et al., 2015, Tappolet and Bernstein, 2009] using an extension of the SPARQL
query language is considered.
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ad (ii) Provenance for algebraic base languages has been proposed by various authors,
for example for the Semantic Web Query Language SPARQL [Geerts et al., 2016, Theoharis
et al., 2011, Karvounarakis and Green, 2012, Geerts et al., 2013, Karvounarakis et al., 2013,
Dividino et al., 2009b, Hartig, 2009b, Lopes et al., 2010] and for relational databases [Cui
and Widom, 2000, Buneman et al., 2000, Buneman et al., 2001, Ding et al., 2005]. While the
actual provenance formalisms are comparable to ours, the underlying languages are of lower
expressivity, typically Datalog. Provenance in these languages can be evaluated directly using
the tree shaped algebraic representations of a query, which is not possible in description logics.

ad (iii) [Tran et al., 2008] propose a provenance extension of OWL, which is also based
on annotation properties. Even though provenance can be expressed in ways comparable to
ours, it has a rather ad-hoc semantics, which may differ from query to query. In our approach,
provenance and classical reasoning take place in parallel. Hence, we can answer queries such
as “Give me all results with a confidence degree of > x”. In contrast, reasoning on the ontology
and meta level is separated in [Tran et al., 2008]. As a result, [Tran et al., 2008] allows for
queries such as “Give me all results which are based on axioms with a confidence degree of
> z”. Although this difference might seem quite subtle, depending on the provenance dimension
these queries may have dramatically different results.

ad (iv) [Bistarelli et al., 2008] propose an extension of Datalog with weights, which are
based on c-semirings and can be redefined to reflect various notions of trust and uncertainty.
Our provenance dimensions are similar to c-semirings, but additionally allow to handle con-
flicting provenance using a third operator. C-semirings have been investigated in great detail
and have some desirable properties, such as the fact that the cartesian product of two c-
semirings again is a c-semiring. Although based on a less strictly defined algebraic structure,
our composition of provenance dimensions described in Section 4.4.2 follows a similar idea.

4.9. Findings and Research Contribution

When reasoning with knowledge from different sources on the Semantic Web, applications need
to track the provenance of axioms in living ontologies. Users need tool support for judging the
usability and trustworthiness of ontological data, as well as engineering tools supporting the
collaborative development of living ontologies. In dynamic ontologies ever-changing criteria
may be necessary to establish trust or locate bugs.

We propose a black-box algorithm for optimized reasoning with provenance, which our
evaluation with real-world ontologies shows performs significantly better than existing general
pinpointing algorithms, scales well, and is applicable for interactive applications. The flexibility
of our approach combined with the high scalability makes it a possible building block for a
semantic web proof and trust layer.

In this chapter we present our framework restricted to ontology diagnosis scenarios. Our
work, however, introduces an approach for provenance querying under a variety of scenarios
that consider many of the dimensions of provenance such as restrictions of access rights,
knowledge validity when the truth of knowledge changes with time, and inferring trust value.

We have shown that provenance information does not only provide value to the end user, it
can be further used to significantly speed up debugging processes by rapidly approximating a
solution. In future work, we will apply our approach to provenance to other logical formalisms
beyond DL SRZQ(D).
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5. An Efficient Provenance-Aware News Feed
Ranking Algorithm via Preference
Aggregation

Overview

Popular online social media sites such as Twitter and Facebook have also become important
news and marketing channels. These sites rely on news feed ranking algorithms as they deliver
the most relevant messages to the users. In this chapter, we tackle the problem of providing
the most relevant messages according to the user’s preferences. Users state their preferences on
different aspects of the data (e.g., on information source, recentness, reliability, location, etc.),
and this information is then aggregated to obtain a joint ranking. We relate our aggregation
problem to the problem of preference aggregation in social choice theory. The traditional prob-
lem formulation of preference aggregation assumes a fixed set of preference orders and a fixed
set of domain elements. In this work, however, we investigate how an aggregated preference
order has to be updated when the domain is dynamic, i.e., our aggregation approach ranks
messages ‘on the fly’ as the message passes through the system. We establish a framework for
online preference aggregation. Our analysis shows that, for all aggregation methods proposed,
our approach can handle the dynamic setting more efficiently than standard ones.

Structure

This chapter is organized as follows. Following the introduction, in Section 5.2, we provide
a motivation for the use of the different dimensions of provenance information when ranking
highly dynamic data (e.g., a news feed ranking scenario). Section 5.3 introduces the foundations
for aggregation computation: we briefly introduce the basic concepts of social theory and
present three different preference aggregation methods, namely, the plurality, Borda count, and
sequential pairwise aggregation methods. Section 5.2 describes the formalization of the online
aggregators. Section 5.5 presents some general relationships between the original aggregated
preference order and the updated aggregated preference order. Section 5.6 shows a framework
for computational approaches to online preference aggregation. Concrete online aggregation
algorithms and complexity analyses are presented in Section 5.7. We compare our work with
related ones in Section 5.9 and conclude the work in Section 5.10.
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5.1. Introduction

Nowadays, most information on the Web is an almost continuous flow of information. Data
is constantly being produced, shared, and consumed by a diversity of stakeholders. With so
much data on the Web, users want to be sure they won’t miss anything they want to see. The
goal of a news feed algorithm is deliver to the user the right content at the right time, i.e.,
it determines which stories are important to the user, and from those, it decides which one
should appear first.

One common way to identify the most relevant stories is scoring all of them based on some
scoring function, for instance, by showing stories in chronological order. However, even though
the newest stories will be displayed to the user, this procedure does not assure us that the
stories displayed are also the ones the user is interested in. It is essential that such an algorithm
considers a set of features where the score of each element is given according to each feature,
and the total score for each element is defined as a combination over its partial scores.

Our problem deals with the task of selecting the set of most relevant messages, given the
assumption that messages come ’on the fly’, i. e. deriving their rankings that are available upon
their arrival. The user’s preferences are used to specify which messages are the most relevant
to the user. Users state their preferences on different aspects of provenance information (in-
formation source, recentness, reliability, location, etc.), i.e., “I am primarily interested reading
the most recent messages, the ones which are written by friends, and those which describe
events happening near to where I live”.

There are many different ways in which preferences can be combined. Preferences have
been a long studied subject across many fields including philosophy [Hansson, 2002], artificial
intelligence [Brafman and Domshlak, 2009], and databases [Chomicki, 2011]. In the realm of
the Semantic Web, Querying the Semantic Web with preferences is also considered in [Guer-
oussova et al., 2013, Siberski et al., 2006]. Both articles have proposed extensions to SPARQL
that support the expression of preferred query results. They illustrated the realization of ag-
gregation with respect to skyline and conditional preference queries. In [Pahlevan et al., 2015],
Pahlevan et al. investigate the dynamics of web services in a recommendation scenario. They
use well-established database techniques, such as scoring functions to determine an ordering
over the results and skyline returning a set of undominated tuples.

We relate the problem of ranking stemming from an aggregation of different provenance di-
mensions to the problem of preference aggregation (or judgement aggregation) in social choice
theory [Kelly, 1988]. Social choice theory studies the problem how to reach collective consent
between a group of people. Judgment aggregation investigates how to aggregate individual
judgments on logically related propositions to a group judgment on those propositions. We
translate the aggregation problem to the problem of aggregating provenance rankings. By
adopting methods from preference aggregation, we formulate a general framework for prove-
nance dimension aggregation that is based on solid formal grounds.

We have established a framework for computational approaches to online preference aggre-
gation. Concretely, we propose three algorithms that iteratively update the aggregated ranking
when new results are available, namely for the plurality, the Borda count, and the sequential
pairwise voting methods. Finally, we discuss the time complexity analysis of the proposed on-
line preference aggregation and the standard methods and conduct a feasibility study of our
algorithms.
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Message ID \ Movie \ Friendship Date Popularity ‘
01 Star Wars: Episode VII | Family 02.01.16 | Low

09 The Revenant Workmate 03.01.16 | Medium

03 Mistress America Close friend | 01.01.16 | High

Table 5.1.: List of messages about movies posted in a social media application by friends,
workmates and family members of our sample user. This list is used in our scenario
presented in Section 5.2

Research Questions

This chapter addresses the following research question.
RQ 2.I Can the preference aggregation problem be efficiently solved in a dynamic setting?

The traditional problem of preference aggregation assumes a fixed set of preference orders
and a fixed set of domain elements. Using the standard aggregation algorithms, whenever a
new element is added to the domain, a new aggregation has to be re-built. This operation
requires expensive computation and cannot be adopted in real use case scenarios. Therefore,
it is essential to investigate how preference aggregation methods can be modified in order to
assure efficiency in a dynamic setting.

5.2. Motivation Scenario

In our scenario, our sample user, Peter, wants to read messages from his friends and other
subscribed sources using a social media application. An example of such messages is shown in
Table 5.1.

Our user feels like watching a movie. Therefore, he checks for all messages about movies he
received lately in his social media network application. He prefers to read the messages sent
from his closest friends first since their interests are more related. Recentness is an important
consideration to him since Peter has not been in a movie theater for a long time. Still he
would rather read messages that have been recently posted than the most popular ones (e.g.
popularity is given by how often a message has been liked and/or shared by other users). So
he sets up his preferences: he prefers messages from friends which should not be too old, but
recentness is more important than the message’s degree of popularity.

Usually, ranking algorithms select the most relevant query results according to each ranking
criterion separately, e.g., they return the most recent ones, the most popular ones, and the ones
provided only by very close friends, displaying all of them. Since ranking criteria separately
may lead to different ranking orderings of the answers, ranking in terms of multiple ranking
criteria often delivers an even larger amount of information instead of filtering it. For example,
in Table 5.1, a ranking algorithm may return to Peter the messages 0109, 03 in order 09, 01, 03
if it only considers recentness. The ordering o3, 01, 02 if it considers the friendships degree, and
03, 09,01 if it considers the popularity degree.

Our user, however, wishes to have just one ranking ordering of answers with respect to an
aggregation of his preferences (a personalized aggregation). Additionally, as such messages are
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permanently being posted, a ranking mechanism should compute the most relevant messages
‘on the fly’ as the messages pass through the system.

In order to provide Peter with an optimal user experience, we need a ranking algorithm
that scales for real data and assures that Peter constantly receives updates with the most
relevant messages with respect to his preferences.

5.3. Foundations: Preference Aggregation

In social choice theory [Kelly, 1988], there are various investigations on the aggregation of
multiple preference relations in order to come up with a single preference order. The traditional
application for these methods lies in the field of wvoting theory. In the following, we describe
the foundations of aggregating preferences.

Let X = {x1,...,x,} be a set of elements. A preference order <€ X x X is a total preorder,
i.e., < is a relation that satisfies transitivity

(r <y and y <z imply x < z for all z,y,2 € X)
and is total
(x=<yory=<zxforall z,yeX).

If <y then we say that y is at least as preferred as = for x,y € X'. Let Ry be the set of all
possible preference orders over elements of X. A vector of preference orders < = (<1,...,%p,
) € R% is called a preference profile. A preference aggregator © is a function © : R} - Ry,
which maps a preference profile < to its aggregated preference order <. Specific approaches for
preference aggregators are, for instance, plurality, Copeland, and single transferable vote and
the Borda preference aggregator [Walsh, 2007].

Example 5.3.1 Let X = {01,02,03} be the messages presented in Table 5.1 and % = (<1, <2, <3)
be the preference profile, where <1 defines the friendship order (workmate <1 family <1 friend
<1 close friend), <9 the recentness order, and <3 the popularity order. Then:

03 X1 01 X1 02
02 <2 01 22 03

03 X3 02 23 01

Preference aggregators can be classified according to the dimensions they satisfy. Let < e R}
be a preference profile and <= ©(X) an aggregated preference order. Some properties that are
usually considered as desirable for a preference aggregator © are as follows:

Freeness (FR) O is surjective.

Non-dictatorship (ND) There is no i € {1,...,m} such that <; = < for every profile.

Independence of irrelevant alternatives (I1A) If for every two profiles (<1,...,<,,) and (<]
..., <1y and every i = 1,...,m it holds o <; o' implies o < o’ then o < o’ implies o <’ o’
(with <'=O©(=],...,<))).
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Monotonicity (MON) If for every two profiles (<i,...,<,,) and (<],...,<],) and every i =
1,...,m we have that Yo,0’ € O o %; o' implies 0 <} o/, under the condition that the
relative order of other elements remains the same, then o < o' implies o <’ o' (with
<=0(21,...,%p) and <= O(<],...,<0)).

The main intuitions behind these properties are as follows. Freeness (FR) says that an
aggregator can produce any relation order. Non-dictatorship (ND) says that there is no single
preference relation <; that alone can determine the outcome of the aggregated preference
relation <. Independence of irrelevant alternatives (ITA) states that the preference relation
between any pair of elements x and 2z’ depends only on their preferences in <i,...,<,, (the
preference relations of any other pairs of elements y,y’ are irrelevant). Monotonicity (MON)
requires that if an element is the most preferred under a profile X and if under a new profile
<’ every preference order ranks that candidate at least as highly as under 2, without changing
the other elements, then the candidate should still be the most preferred one. According to
Arrow’s famous impossibility result [Arrow, 1950], there is no preference aggregator © that
satisfies all four properties at once.

In this chapter, we focus on the plurality aggregator, the Borda count aggregator, and
sequential pairwise voting (see [Walsh, 2007]). Definitions for these aggregators are given for
total orders as well as for total preorders. We adapt the definitions for total preorders (see [Pini
et al., 2005]).

The plurality preference aggregator ©, is defined as follows.

Definition 5.3.1 (Plurality aggregator) Let <= (<y,...,<,,) € R} be a preference profile.
For each x,2" € X define

§(z)={i|Va' e X a2’ <; 2}
Then the plurality preference aggregator ©,, is defined via O, (<1, ...,y ) =< with
r<a iff  8(x) <o(x")

The plurality preference aggregator defines the set of most preferred elements to be the set of
elements with the most first place votes.

Example 5.3.2 Let £ be the preference profile defined in Example 5.8.1 over X = {01,02,03},
the messages presented in Table 5.1. Using the plurality aggregator, we obtain that 6(o1) =0,
d(02) =1, and 6(o3) = 2.

X|l=i]=s|=|6
or||0 |0 |0 |0
09 0 1 0 1
03 1 0 1 2

For <= ©,(%) it follows
01 202 03

The plurality aggregator ranks the messages as follows: The most relevant message is the
message o3 which, even though it is the oldest of them, it has been delivered by a close friend
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and has the highest popularity degree. At second place, it ranks the message oo which has been
recently provided by a family member. At last, it ranks the message o1, the most recent one,
but delivered by a colleague and with a medium popularity degree.

The Borda preference aggregator Oy, is defined as follows.

Definition 5.3.2 (Borda aggregator) Let 2 = (<1,...,%,,) € RY be a preference profile.
For each x,z' € X we define 6(x) via’

d(x) = nﬁ; /; [2" <; 7]

Then the Borda preference aggregator Oy is defined via Op(<1,...,<y) =< with
r<a iff  0(x) <o(a)

The Borda preference aggregator defines the aggregated preference relation by ordering
outcomes by scores. The score of an element is obtained by summing up the positions of the
element in each preference relation. More precisely, an element x is at least as preferred as an
outcome z’ (z' < x), if the sum of all positions over all considered preference orders for x’ is
smaller or equal to the sum for x.

Example 5.3.3 Let < be the preference profile defined in Example 5.3.1. The positions of all

outcomes in the preference relations <1, . .., <3 and the values 6(01),(02), and §(03) are given
as

X[ =1 | == 0]

o1 || 1 1 0 |2

oo || 0 |2 |1 |3

osll2 10|24

For <= 0y(2) 1t follows
01 209 203
Just like plurality, the Borda aggregator ranks os at first, followed by oo and then o1.

As a remark, note that both the plurality and the Borda preference aggregator are instances
of scoring rule voting rules [Walsh, 2007]. Both plurality and Borda preference aggregators
satisfy FR, ND, and MON, but fail ITA.

Lastly, we present the Sequential pairwise voting. A nice property of sequential pairwise
voting is that is satisfies ITA.

Definition 5.3.3 (Sequential pairwise voting) Let X = (<1,...,%,,) € R} be a preference
profile. For each x,x' € X define

6(z,2") =) 2"z

! Note that [A] is the Iverson bracket defined via [A] =1 if A is true and [A] = 0 otherwise.
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Then the Sequential pairwise voting ©,, is defined via ©4(<1,...,<y) =< with
e ) = {z1 222} UO(x2,...,20) if §(x1,22) < (22, 271)
SASLy s ssa S {zo w1} UO(1,...,2p) if 6(x2,21) <I(x1,22)

Sequential voting is similar to single elimination procedures. First, it picks the two first
elements of the agenda. An agenda is a pre-defined fixed order on the elements for proceeding
with the comparisons. If one element is more preferred than another, it wins the current
comparison. This element is taken to face the next element on the preordered agenda. The
winner of the last pairwise comparison is the winner of the competition.

Example 5.3.4 Let 2 be the preference profile defined in Example 5.3.1, and an agenda
01,02,03. We start with o1 vs. 03. 09 wins since it is preferred twice, and o1 just once. Then
02 vs 03 and oz wins. For <= ©4(Z) it follows

01 202 203

5.4. Preference Aggregation in a Dynamic Setting

5.4.1. Online Preference Aggregator

The standard usage of preference aggregation, as introduced in Secttion 5.3, assumes a static
setting, i.e., the elements of the set X' (the domain) and the preference profile < = (z1,...,%,,)
are known when the aggregated relation <= ©(<) is constructed.

In contrast, in a dynamic setting where the set X is not available at once, we rather
receive the messages continuously. Whenever a new message comes,the preference profile £ =
(<1,...,=m) has to be extended to consider this element, and that may affect the aggregated
relation <= ©(2).

In the following discussion, we move towards preference aggregation with domain changes.
We start with the formal introduction of the dynamic preference aggregation problem under
domain changes, followed by a formal specification of required updates of the aggregated
preference relation <.

We assume that & is the universal set of outcomes and we restrict our attention to a subset
O ={01,...,0,} € X. Let Rp be the set of all preference orders on O, i.e., Ro =0 xO < Ry.
For <e Ry, we denote with <© the projection of < on O, i.e. <®=<nO x O and the preference
profile on O with 20 = (9,...,<9). Let e € X\ O be a new element in the domain of the
preference orders and let O u {e} be the set of all elements we consider after adding e to the
setting.

Example 5.4.1 Let 29 be q preference profile on the elements in O, as defined in Eram-
ple 5.8.1. Assume now a new element e € X N\ O is added to our setting such as illustrated in
Table 5.2. The preferences orders <1,<9,<3 are updated to incorporate e within the orders as
follows:

09 X101=X103%X1€
03 X901 %9209 =%9€

01 X3 02 <3 € X3 03
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’ Message ID \ Movie \ Friendship \ Date ‘ Popularity ‘
01 Star Wars: Episode VII | Family 02.01.16 | Low
09 The Revenant Workmate 03.01.16 | Medium
03 Mistress America Friend 01.01.16 | High
e Man on a Ledge Close friend | 04.01.16 | Medium

Table 5.2.: Extended list of messages about movies that have been posted by our user’s friends
in a social media application

O O _ O O
O,<7,...,55, 5 =0(f,...,5n
eeX\0O e, A
O Oue Oue o [y Oue Oue
U{e}vﬁl 7"'75m - <= (51 ) aﬁm

Figure 5.1.: Commuting diagram for online preference aggregation

In this work, we aim to investigate the relationship between <= @(ﬁb) and <'= @(ﬁoa{e})
for a given preference aggregator ©. More precisely, we want to investigate whether there exists
a mapping A from < to <" as depicted in Fig. 5.1.

Definition 5.4.1 (Online Preference Aggregator) An online preference aggregator A is
a function A : Ry x X - Ry.

In other words, we want to find a function A that extends an aggregated preference order
<e Rp with an additional element e directly to a new aggregated preference order <’e Roufe)
such that A mimics the behavior of the underlying preference aggregator.

The idea behind the online preference aggregator A is as follows: A works directly on the
new element e and <, and it delivers the same result as by first updating the preference orders
<1,...,<mn and then aggregating again to <’. This is formalized in the following definition.

Definition 5.4.2 (O-compliant representation) Let © be a preference aggregator and A

be an online preference aggregator. We say that A is a ©-compliant representation if and only
if it holds

O <O S A 0(<9,...,<9) ¢)

forallOc X andee X\ O.

Figure 5.1 illustrates the relationship between a preference aggregator © and its ©-compliant
representation A. The definition of a ©-compliant representation is very restricting as it re-
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quires a functional dependency between the old (<) and the new aggregated relation (<), i.e.,
it requires that <’ is functional dependent from (and determined by) <. In general, this demand
is not always satisfiable.

Example 5.4.2 Let O ={o01,...,03} and % be a preference profile as defined in Example 5.5.1.
By using plurality aggregation (O ):

X||=1]|=]|=s]0]
o1 1| 0 0 0 0
oy || 0 1 0 1
o3 || 1 0 1 2

We obtain the same result when we aggregate ©p(=1,<2) =<1 2 with (01 <12 {02,03}) and
@p(ﬁg, Sg) ==23 with (01 <23 {02,03}).

Now consider a new set of elements {01,02,03,¢e} and we extend <1,<9,<3 as in Ex 5.4.1.
By using plurality aggregation (0, ), we obtain:

X =1|=|=]d]
o1 ||l0 |0 |0 |0
oo ||l 0O |0 |0 |0
o3 || 0 |0 |1 1
e 1 1 0 | 2

Op(21,%2) =<1, is defined via ({o1,02,03} <1, €), and ©y(22,%3) =<y is defined via
({o1,02} <55 {03,€}). In summary, we get <12=<93 but <} %<3 4. This shows that <’ can-
not be uniquely determined by <.

However, when we consider the sequential pairwise aggregator g, we obtain the results
when we aggregate ©,(=<1,<2) =<12 with ({o01,02,03} <12 @) and O,(=2,<3) =<3 with (01 <23
{02,03}), and considering a new set of elements {01,02,03,e} and the extended <i,<3,<3 as in
Ex 5.4.1, we obtain ({01,02,03} <12 €) and O,(=2,<3) =<23 with ({01} <23 {02,03} <23 €).

In summary, the inclusion of the new element e does not change the preferences of the

elements 01,02, and o3 in <] 5 and <}, 5. This shows that in some cases <" could be determined
by <.

The above example shows that there is not always a direct functional dependency between
< and <’. Therefore, in Section 5.5 we analyze the relationships of the properties described in
Section 5.3 with the online preference aggregation setting.

5.4.2. State-based Online Preference Aggregator

In order to update the aggregated preference order, we need some additional information to
be carried on from one update (the addition of one element) to the next one. Consequently, we

explore state descriptions within our online aggregator (see Definition 5.4.3). A state describes
the current aggregated relation.

Definition 5.4.3 Let S be a set of states. A state-based online preference aggregator A is a
pair A = (1, A) such that

1. v is function t : Ry - S xRy and
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2. A is afunctionA:SxR;\gXX%SX’RX

The function ¢ is the initialization function that delivers ¢(X) = (s,<), where < is the
aggregated preference order of < and s € S some initial state. The set of states might be
defined differently depending on the actual preference aggregator (in Section 5.6 we propose
concrete stated-based online preference aggregators). Given a state s € S, an element e € X\ O,
A(s,=,€) = (s',<"), then the updates from state s to s” are used for computing the updates
from the aggregated preference order < to <’ when adding the element e to the set of elements

0.

Definition 5.4.4 Let © be a preference aggregator and A = <L,/~\> be a state-based online
preference aggregator. We say that A is a state-based ©-compliant representation if and only
if for all profiles = = (%1,...,%p) € RY and all elements {e1,...,ex_1} € X\ O, there are states
8$1,...,8; €S such that

1(29) = (51,0(29))
]\(Sj, @(EOU{el,...,ej_l})’ €j) _ <Sj+1, @(gou{eh...,ej}))

forj=2,... k.

Example 5.4.3 In Example 5.3.2 <= @p(ﬁb) is defined via 01 < 09 < 03. A new element e €
X N0 is added to the set of elements and the preference orders <1, <9, <3 are updated to consider
e within the orders as in FExample 5.4.1. The updated aggregated relation <'= GP(EOU{G}) is
defined via {01,020} <" 03 <" e. The previous and updated aggregated relations are defined based
on the § function. The values of § for each element describe, for example, its state in the
current aggregated relation. The online aggregator for plurality 1~\p explores the states of each
element to update ©,(2°) to @p(ZOU{e}).

The state of each element in O for the previous aggregated relation < is defined by 6(o1) =0,
d(02) =1, and 6(o3) = 2. The next state of the elements in O U{e} for the updated preference
profile is defined by §(01) =0, 6(02) =0, 6(03) =1 and d(e) = 2.

5.5. Aggregators Property Analysis

5.5.1. Independence of Irrelevant Alternatives

First, we consider aggregators that satisfy the independence of irrelevant alternatives (ITA)
property. Basically, ITA specifies that if x is preferred to 2’ out of the set of elements O = {z, 2"},
then adding a new element e to the set of elements {x,z’, e}, must not make ' preferable to
z. In other words, preferences for x or 2’ should not be changed by the insertion of e, i.e., e is
irrelevant to the choice between x and z'. If © satisfies ITA, any element that is not x or z’ is
irrelevant to the preference order of any pair z and z’.

Proposition 5.5.1 Let O c X, e € X~ O, <= ©(29) and <'= (%), If © satisfies 1IA
then

! 4 ! !
Ve,o e O,z <x<x
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Corollary 5.5.1 Let Oc X, ec X~ O, <= O(2°) and <'= @(Eou{e}). If © satisfies IIA then:
<=<"n0Ox O.
The next example shows, for sequential voting, an update from < and <'.

Example 5.5.1 In Example 5.3./ <= @S(Sb) s defined via 01 < 09 £ 03. A new element
e e X\ O is added to the set of elements, and the preference orders <1,<9,<3 are updated to
consider e within the orders as Example 5.4.1 and an agenda (01,02,03,€e). We start with o
vs. 09 and oy wins. Then oo vs 03 and o3 wins, and finally o3 vs. e, where e wins. The updated
aggregated relation <'= @S(Zou{e}) is defined via 01 <" 09 <’ 03 <’ e. Note that <’ does not
change, and thus the relative orders of the elements in O is maintained.

Furthermore, since all previous relations between every two elements from < are maintained
in </, the number of changes from < to <" are limited to the number of the preference relations
that have been created due to the insertion of the element e.

Corollary 5.5.2 Let OCc X, e € X\ O, <= O(29) and <'= @(Eou{e}). If © satisfies IIA then?
|<"A<|<2/0u{e}

Example 5.5.2 In Examples 5.5.4 and 5.5.1, we have computed the aggregated preference
relations wrt. the sequential voting for the sets {01,02,03}, and {o1,02,03,e}. Thus, it is | <

D1y - 703}A ﬁ;)m’m’og’e} ‘ = ‘{(676)7 (0176)7 (0276)7 (0376)‘ =4= ’{01;0270376}"

5.5.2. Monotonicity

We turn to aggregators that satisfy monotonicity (MON). Briefly, if an element x gets more
preferred without changing the order of other elements, then the position of  cannot decrease.
Thus, a monotone aggregation leaves the ordering of the elements unchanged.
Given a monotone aggregation, we can distinguish between the following cases after the
insertion of a new element e.
1. If e is positioned arbitrarily in every preference relations </, then a monotone aggregation
leaves the ordering unchanged of those elements O that are more preferred than e in every
<l

2. If e is positioned arbitrarily in every preference relation <}, then a monotone aggregation

leaves the updated ordering in <" at least as good as in < of those elements in O that are
less preferred than e in every <.

Following these observations we state the propositions:
Proposition 5.5.2 Let © satisfy MON and let O ¢ X, <= ©(2°) and <'= ©(2°°1}). Then

(Vee XNO:(Vi: (AT cO:(Va,a' e T:(e<jzne L a"))) = (zz2' >z <" 2" nes
xne<"x"))

2The symmetric set difference A is defined as follows: <’ A <= {(z,2")|(z,z’) €<’ Az, 2’) ¢=< v(z,z’) ¢<
ANz, z") e<}
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Proposition 5.5.3 Let © satisfy MON and let (9 c X, <= 9(29) and <'= @(”Ou{e}) Then
(Vee X\NO:(Vi: (IBcO: (Yo, 2" eB: (<l ena’ )))):>(x<x sz Ax<ena’ <
€))

Note that both plurality and Borda aggregators satisfy monotonicity. The next example
shows an update from < to <’ for the plurality aggregator.

Example 5.5.3 In Example 5.3.2 <= GP(Sb) is defined via 01 < 09 < 03. A new element
e e X\ O is added to the set of elements, and the preference orders <1,<9,<3 are updated to
consider e within the orders as Example. 5.4.1. The updated aggregated relation <'= @p@(’)u{e})
is defined via {01,020} <" 03 < e. Note that Prop. 5.5.3 holds for element 01 and os.

These observations state that there are cases in which the aggregated preference order only
changes minimally when adding a new element to the domain. Thus, it would seem beneficial
to investigate the computational issue of online preference aggregation.

5.6. Online Ranking Algorithms

In the following discussion, we consider how to effectively update preference order in the light
of a newly-introduced element.

5.6.1. Naive Algorithm

The standard approach for ranking over streams starts with an empty top-k message set. As
messages arrive, they are added to the list until it is full (k messages). We suppose that the k
messages are sorted with respect to the user’s preferences. As a new message arrives, a simple
(naive) algorithm, the naive online preference aggregator, just applies the original preference
aggregation on every change.

Definition 5.6.1 Let O ¢ X, e € X N O, © be a preference aggregator and Snawe = RY%.
The naive online preference aggregator A"a“’e for © is a pair A"a“’e = (L%‘”“e A”a“’e) with
L?éawe : m - Snawe X 7?'X and Anawe Snawe x RX x X - Snawe x RX deﬁned via

(29) = (2°,0)
Ag™e(22,0(29),¢) = R, 0z

Example 5.6.1 Let 29 be a preference profile on O as defined in Example 5.3.1. For the
plurality aggregator ©, we obtain

nawe( ) <{<03 <101 X1 02>, <02 <9 01 X9 03>, <03 <3 02 <3 01>},01 < {02,03}>

Assume the preferences orders <1,%92,%3 are updated to consider a new element e € X' ~ O as
described in Algorithm 5. Then A”‘””e just applies the original preference aggregation © on the

profile <09},

AE™e({{03 <1 01 <1 02), {09 <2 01 <3 03), (03 <3 02 <3 01)},01 < {02,03}),€) =

({(02 <101 X103%Xq 6), (03 <9 01 X9 02 X9 6), <01 <3 02 X3 € <3 03)}, {01,02} SI 03 S’ 6)
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Algorithm 5 Plurality Online Aggregator - Naive Algorithm (see Definition 5.3.1)

1: function PLURALITYAGGREGATIONNAIVE(elements[], preferences[], newElement)
2 for j = 0 tom do

3 newPref[j]= computePreference(elements, newElement, preferences][j]);
4 winner[] = getElement(newPref(j], 0);

5: for i = 0 to winner.size do

6: winner = winner[i];

7 score[winner] = score[winner]+ 1;

8 elementRank.add(winner, score);

9 end for

10: end for

11: return elementRank;

12: end function

Algorithm 6 Borda Online Aggregator - Naive Algorithm (see Definition 5.3.2)

1: function BORDAAGGREGATIONNAIVE (elements|[], preferences[], newElement)
2 for j = 0 to m do

3 newPref[j]= computePreference(elements, newElement, preferences|[j]);
4: end for

5: for j = 0 to m do

6 fori =0ton do

7 element|] = getElement(newPref(j], 1);

8 for k= 0 to element.size do

9 score=elementRank.get (element[k]) +

10: (elementRank.size() - newPref.getPosition(element[k]);
11: elementRank.add(element[k], score);

12: end for

13: end for

14: end for

15: return elementRank;

16: end function

Algorithms 5, 6, and 7 present the naive version of the plurality, Borda count, and sequential
pairwise voting aggregators respectively based on the Definitions 5.3.1, 5.3.2, and 5.3.3.

The following proposition and theorem follows by construction of the naive online preference
aggregator.

Proposition 5.6.1 Let © be a preference aggregator. Then A%“i”e is a stated-based ©-compliant
representation.

Theorem 5.6.1 Let © be a preference aggregator of time complezity O(n*m). Then L’é‘"”e has
time complexity O(n*m) and AZ""¢ has time complexity O(n+(nx*m)). The space complexity
for storing a state in Spaive 18 O(n *m).

Our goal is to investigate if the time complexity of O(n * m) can be improved.

5.6.2. Optimized Algorithm

In the following, we are going to define the online aggregator for two popular voting aggrega-
tors, namely plurality (©,) and Borda (©}). For these algorithms we explore the monotocity
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Algorithm 7 Sequential Pairwise Online Aggregator - Naive Algorithm (see Definition 5.3.3)

1: function SEQUENTIALAGGREGATIONNAIVE (elements|[], preferences]], newElement, agendal])
2 for j=1tomdo

3 newPref[j]= computePreference(elements, newElement, preferences][j]);

4 end for

5: for k = 0 to agenda.size() -1 do

6 element]l = agendalk];

7 element2 = agendalk+1];

8 for j=1tomdo

9 scorel = scorel + newPreflj].getPosition(elementl);

10: score2 = score2 + newPreflj].getPosition(element2);
11: end for

12: if scorel < score2 then

13: elementRank.add(elementl, k);
14: elementRank.add(element2, k+1)
15: end if

16: if scorel > score2 then

17: elementRank.add(element2, k);
18: elementRank.add(element1, k+1)
19: end if

20: if scorel = score2 then

21: elementRank.add(elementl, k);
22: elementRank.add(element2, k);
23: end if

24: end for

25: return elementRank;

26: end function

property: if an element = gets more preferred without changing the order of other elements,
then the position of x cannot decrease. Thus, a monotone aggregation leaves the ordering of
elements unchanged (see Section 5.5).

The Online Plurality Aggregator

For the plurality preference aggregator, the status of an aggregated relation is defined by the
function pos that maps each element z € X to a m-dimensional vector. For each dimension
i €1,...,m, the value is equal to 1 if z is the winner on the ith-preference relation, and 0
otherwise, e.g., pos(o03) is {1,0,1} (see Example 5.3.2). The §-plurality score of an element
is given by summing up all values in its vector. Accordingly, we define the plurality online
preference aggregator as follows:

Definition 5.6.2 Let O ¢ X, e € X \ O, ©, be the plurality preference aggregator and S :
{0,13™1¥ s o function which maps an element to the m-dimensional vector on {0,1}. The
online plurality preference aggregator Aoe’llme for ©, is a pair A%’;lme = (L%Z“”G,Aoe’llme) with
Lg;li”e :RY - SxRx and A‘é’;””e :SxRx x X > SxRx defined via

1BI(20) = (5,0,(29))

ARG (5,05(27),€) = (5, ©,(271Y))
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Algorithm 8 Online Plurality Aggregator ©, - Optimized Algorithm

1: function PLURALITYAGGREGATIONOPT(element, preference[])
2 for j =1tom do

3 winner[] = getElement(preferencelj], 0);

4: comp = compare(preference[j|, winner[0], element);
5: if comp = 0 then

6 scoref[element| = score[element]+ 1;

7 elementRank.add(element, score);

8 elsecomp =1

9: score[element] = score[element]+ 1;

10: elementRank.add(element, score);

11: for int i= 0 to winner.size do

12: winner = winnerf[i;

13: score[winner| = score[winner] - 1;

14: elementRank.add(winner,score);

15: end for

16: end if

17: end for

18: return elementRank;

19: end function

For the plurality aggregation, the elements with the most first places win. Therefore, it is
essential to check how often the new element e gets the first place in the preference relations
<1,...,%n. Whenever e gets the first place in <;,7 = {1,...,n}, we have to update <; by adding
e as the new winner, i.e., the ith-value in its m-dimensional vector to 1. It is not necessary
to update the states of any element where e is not the winner, since (1) the previous winner
remains the winner in the updated relation and (2) we assume that the state of e is initially
set to a vector of 0s.

In case the element e gets the most first places, it will be the new winner in the updated
aggregated relation. Following monotonicity, if e gets to be the winner, it does not change the
order of the other elements in the aggregated relation i.e., it leaves the ordering of the less
preferred elements unchanged; therefore to update the new aggregated relation, we only have
to add e in the first place.

In the optimized algorithm, instead of updating each preference relation <; (comparing all
elements with each other), the online plurality algorithm compares only the new element e with
the winner in <;. The winner in each <; is given by the element’s state. Note that a preference
relation can have multiple winners, but as we assume that the preference relations are total
preorders (the preorder is called total if any two elements x,y € X can be compared, i.e., either
x <y, or y <z (or both), see Section 5.3), for every two winners they must be equivalent in
<; . Therefore, we only have to check the value of one of the winners. In case the element e is
the only winner of the updated preference relation, then we add 1 to its d-plurality score (9)
and decrease the d-plurality score of the previous winners in 1. In case the element e is one of
the winners, we only add 1 to its plurality score. The optimized online plurality algorithm is
presented in Algorithm 8.

Example 5.6.2 Let 20 pe preference profile on O as defined in Example 5.3.1. For the online
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plurality aggregator we obtain:

onlme( ) =({{0,0,0},{0,1,0},{1,0,1})),<)

and Y,z € O,z <2’ if Y% pos(x)[i] < Xy pos(x’)[i], therefore < is defined via 01 < 03 < 03.
Assume we know the winner of each preference order (by checking the state function), then we
compare the winner of each preferences orders <1,<9, <3 with the element e € X — O. If e is the
winner, then we update its plurality score i. e. its state as described in Algorithm 8. Then we
have,

Acgl™(({{0,0,03,{0,1,0},{1,0,1})),%,¢) =
(({0,0,0},{0,0,0},{0,0,1},{1,0,1})),<)

we update the states of those elements that were winners in <, but e is currently the winner in
<, therefore <" is defined via {01,092} <" 03 < e.

Proposition 5.6.2 A, is a state-based ©,-compliant representation.

The Online Borda Count Aggregator

Now we turn our discussion to the online Borda count preference aggregator. Similar to the
plurality aggregator, we describe a state by the function pos that maps each element z € X to
an m-dimensional vector. For each dimension i € 1,...,m, the value is the score of the Borda
rule of element z in the ith-preference relation, e.g., pos(os) is {2,0,2} (see Example 5.3.3).
The §-Borda score of an element is given by summing up all values in its vector.

Definition 5.6.3 Let O ¢ X, e € X ~ O, Oy be the Borda preference aggregator and S :
{0,...,1&| = 1Y™¥ is o function which maps an element to the m-dimensional vector on
{0,..,]X| = 1}. The Borda online preference aggregator Agﬁme for ©y is a pair A%’Z””e =
(cgitine, AgUine) with 121" : R > 8 x Rx and AZV"™: S,Rx x X - 8 x Ry defined via

onlzne( ) (8, @b(gO»
Aonlme (S, @b(ﬁ )’ 6) — (S,, @b(gou{e}»

For the Borda count aggregation, only the elements those §-Borda score is the same or
bigger than the current §-Borda score of e have to be updated (increased by 1). Therefore, we
have to check, for each preference relation <;,7 = {0,...,n}, the position of the new element e.
For each x;, whenever e gets the first place, we need to update only its m-dimensional vector
of itself, i.e., the i-value changed from 0 to its 6-Borda score (the total number of elements).
The vectors of the other elements remain the same. Whenever e gets the last place, we need to
update the §-Borda score of all other elements by adding 1 to their previous scores. Note that
the relations between every pair of elements remains also the same in the updated relation x;.
Additionally, it is not necessary to update the state of e when it is the least preferred element,
since we assume that the state of e is initially set to a vector of Os.

In case the element e gets the highest d-Borda score in all preference relations, it turns
out to be the new winner in the updated aggregated relation. Again, following monotonicity,
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Algorithm 9 Borda Online Aggregator Oy - Optimized Algorithm

1: function BORDAAGGREGATIONOPT(element, preference|])

2 for j=1tomdo

3: positionOf(element, preference[j], 0 , preference[j].size);
4: end for

5 return elementRank;

6: end function

if e gets to be the winner, it leaves the ordering of the less preferred elements unchanged;
therefore, to update the new aggregated relation, we only have to add e in the first place.

We want to avoid to make unnecessary comparisons as the naive algorithm does, i.e., update
the preference relations by comparing all elements with each other. However, in order to know
the position of the new element e in each of the relations, we need to do more comparisons as
we did by plurality (only comparing with the winners), since e can be placed everywhere.

The online Borda count algorithm uses the divide and conquer method to recursively break
down the search space. At the first step, it checks in <; if e is more or less preferred as the
element placed in the middle, m. If e is less preferred m (e <; m), we already know that we
need to update the §-Borda score of all the elements equally or more preferred than m by
adding 1 to their previous score. The algorithm continues the search considering now only
the elements less preferred than m in <;. If e is more preferred than m (m <; e), then none
of the states have to be updated and the algorithm continues to search the position of e by
considering only the elements more preferred than m in <;. Whenever we find the position of
e, we update its 6-Borda score and the one of the remaining elements that are more preferred
than e.

Note that any preference relation 7 can have multiple elements placed in one position, but
as we assume that all preference relations are total preorders (see Section 5.3), such elements
must be equivalent in <;. Therefore, we only have to check the value of one of the elements in
each position. The optimized online Borda count algorithm is presented in Algorithm 9 and
the search method is presented in Algorithm 10.

Example 5.6.3 Let 29 pe preference profile on O as defined in Example 5.3.1. For the online
Borda count aggregator we obtain:

(21me(29) = (({1,1,0},{0,2, 1}, {2,0,2}), <)

and Vz,x' e O,z <2’ if Yt pos(x)[i] < X% pos(x’)[i], therefore < is defined via 01 < 03 < 03.
Assume now the new position of the element e € X — O is found in each <1,<9,<3, and the
preferences orders <1,<9,<3 are updated to consider the element e as described in Algorithm 9.
Then we have,

AZme(({1,1,0},{0,2,1},{2,0,2}),<,¢)
=(({1,1,0},{0,2,1},{2,0,3},{3,3,2}),<")

we update the states of those elements that their 6-Borda scores in < is the same or bigger
than the current Borda score of e for the same dimension, and therefore <' is defined via
01 <" 09 <" 03<"e.
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Algorithm 10 Search for the Position of the New Element - Optimized Algorithm

1: function POSITIONOF(element, preference, start, end)

2 if preference.size = 0 then

3 score = elementRank.get(element) + (elementRank.size() - start);
4: elementRank.add(element, score);

5: return

6 end if

7 index = start + (end - start) /2;

8 elements|] = getElement(preference, index);

9: comp = compare(element, elements[0]);

10: if comp = 0 then

11: for i = start to (index - 1) do

12: e = preference.getElement (i);

13: score = elementRank.get(e) + 1;

14: elementRank.add (e, score);

15: end for

16: score = elementRank.get(element) + (elementRank.size() - index);
17: elementRank.add(element, score);

18: return ;

19: end if
20: if comp | 0 then
21: for i = start to index do
22: e = preference.getElement (i);
23: score = elementRank.get(e) + 1;
24: elementRank.add (e, score);
25: end for
26: return positionOf(element, preference, index + 1 , end);
27: else
28: return positionOf(element, preference, start, index - 1);
29: end if

30: end function

Proposition 5.6.3 Ay is a state-based Oy-compliant representation.

The Online Sequential Pairwise Aggregator

At last, we propose an optimized algorithm for the online sequential pairwise aggregator (©s).
This aggregator follows the ITA property (see Section 5.5), which means that the preferences
between the elements do not change by the insertion of e, i.e., e is irrelevant to the choice
between any pair of elements.

Since the insertion of a new element into the element set does not change the preference
order between any two other elements, it follows that < is a projection of <" (see Collolary 5.5.1).
Consequently, we can avoid re-computing the preference relations (as the naive algorithm) since
it is given that the relation between the pairs of elements cannot change, and thus we can copy
them. Nevertheless, we need to compute the preference relation between the new element e
with all other elements.

For the sequential pairwise aggregator, we describe a state by the function § that maps each
pair of element x,z’ € X to a value which described the preference between x,z’. If z is more
preferred than z’, then it wins the current comparison and 6(z,z") = 1, otherwise §(x,z') =0
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Algorithm 11 Online Sequential Pairwise Aggregator O, - Optimized Algorithm

1: function SEQUENTIALPAIRWISEAGGREGATIONOPT (element, preference|], agenda)
2 for j=1tomdo

3 lastElement = getElement(agenda, agenda.size);

4: position = preference[j].getPosition(lastElement)

5: comp = compare(element, lastElement);

6 if comp = 0 then

7 elementRank.add(element, position);

8

9

end if

: if comp > 0 then
10: elementRank.add(element, position + 1);
11: else
12: elementRank.add(element, position - 1);
13: end if
14: end for
15: return elementRank;

16: end function

(for an example see Example 5.3.4).

Definition 5.6.4 Let O ¢ X, e e X N\ O, Oy be the sequential pairwise preference aggregator
and § : R is a function which maps two elements to a real number. The online sequential
pairwise preference aggregator A‘gihm for ©4 is a pair A"@Zlme = (LO@Z“”'B,AO@Z“”‘B) with L‘é’i“”e :

RY - SxRx and /ig’:li"e :SyRx x X - S xRx defined via

Lgilme(g(')) — (S, @5(30»

AgI((5,05(39), €) = s(s', 0,7

An important property of the sequential pairwise aggregator is that it uses a fixed agenda.
An agenda is a pre-defined fixed order on the elements for proceeding the comparisons. If an
element is more preferred than the other, then it wins the current comparison. This element
is taken to face the next element on the preordered agenda. The winner of the last pairwise
comparison is the winner of the competition.

As the aggregation results may depend on the order in which the elements are compared, for
two different agendas, we may get two different aggregated relations. Consequently, in order to
preserve the aggregation ordering (ITA), when adding a new element e in the system, the order
between the elements in the agenda cannot be changed. Therefore we are only allowed to add
e at the top of the agenda. For instance, in Example 5.3.4, the agenda is defined as {01, 02,03},
in order to assure that o7 will be compared with o2, and o3 with o3, the new element e cannot
be placed at first because if it wins the comparison with o1, then the comparison 01 vs. 09
cannot be taken in place anymore. The same phenomenon occurs when e is placed in between
any two elements. This implies that in order to update the aggregated relation, the optimized
algorithm needs to conduct the comparison of e with only the last element in the agenda,
and updates their d-sequential pairwise scores. The optimized online plurality algorithm is
presented in Algorithm 8.

Example 5.6.4 Let 20 pe preference profile on O as defined in Example 5.3.1. For the online
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sequential pairwise aggregator we obtain:

(&hme(29) = (({0,1}), <)

and Vxi,29 € O,x1 < x9 if §(x1,22) < 6(x2,21) U Os(22,...,2,) , therefore < is defined via
01 £ 09 < 03. Assume now the preferences orders <1,=<9,<3 are updated to consider the element
ee X — O as described in Algorithm 11. Then we have,

AZIe(({1,0}), %, €)
= (<{17 0, 0}>a 5,>

we update the state of the last element of the agenda and the one from e, and therefore < is
defined via o1 <" 09 <" 03 <" e.

5.7. Complexity

Our main goal is to find a procedure that updates the current state to the next and thus
to update < to <’ such that is done more efficiently than recomputing the scores () of the
elements in O.

As stated already in Theorem 5.6.1, the time complexity of the naive algorithm, Lg“ive, is
O(n*m) and ]X%‘””e has time complexity O(n + (n *m)). The space complexity for storing a
state in Spaive is O(n * m).

We first investigate the time complexity of the online plurality aggregator following the
algorithm presented in Algorithm 8.

Theorem 5.7.1 Lo@’lli"e has time complexity O(m). The space complexity for storing a state
in Sy is O(m*n).

Proof:(sketch)

We assume that the position (winner or loser) of each element in each (not updated) preference
relation is obtained in one step (O(1)), since this value is given in pos(z) (z € X'). Given that
the preference relations are total preorders (see Section 5.3), we only have to check the value
of one of the winners, and therefore we avoid the conduction of multiple comparisons.

For each preference relation <;,7=1,...,m, we compare e with the current winner x, i. e.
if x < e; this step can be obtained in one step (O(1)). At each comparison, we update the state
values of e if it gets to be the winner. Since this comparison is done m-times (for all preference
orders), this operation has time complexity O(m).

Once all m-comparisons are done, the plurality scores of all elements are also updated, and
the new aggregated relation is built. Consequently, the time complexity of the online plurality
algorithm is O(m).m

We turn our investigation to the online Borda count aggregator.

Theorem 5.7.2 L"@’:}i"e has time complexity O(m * logn). The space complexity for storing a
state in Sp is O(m *n).

Proof:(sketch)
We need to insert the new element e in the right position of the preference relations <;,i =
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{1,...,m}. We assume that the position of each element in each (not updated) preference
relation is obtained in one step (O(1)), since this value is given in pos(z) (x € X).

Again, since the preference relations are total preorders (see Section 5.3), whenever we
compare the element e with elements placed in the same position in <;, we only have to check
the value of one of the elements in this position, and therefore we can avoid conducting multiple
comparisons.

In order to find the position of the new element e in a preference relation <;, e is first
compared with the element, x, placed in the middle in <; . If e is less preferred than z, e < z,
it is then compared with the element in the middle from the ones that are least preferred than
z in =;. If e is more preferred than x, it is compared with an element in the middle from the
ones that are more preferred than x in <;. This process continues until we find the position
where the new element should be inserted. The search algorithm can be seen as recurrences of
dividing n in half with a comparison. The time complexity of this operation is O(logn).

Since we have to find the position of the new element e in each preference relation <;,4 =
1,...,m, the time complexity of the online Borda algorithm is O(m * logn).m

At last, we investigate the time complexity of the online sequential pairwise aggregator.

Theorem 5.7.3 L‘éi”"e has time complexity O(m). The space complexity for storing a state
in Sy is O(m*n).

Proof: (sketch)

Following the Algorithm 11, the new element e is compared with only the last element of the
agenda, x, in each preference relation <;,7 = 1,...,m. We assume that the position of each
element in each (not updated) preference relation is obtained in one step (O(1)), since this
value is given in pos(z) (x € X).

The comparisons are done for all preference orders. After the m-comparisons, the new
aggregated relation is built. Therefore, the time complexity of the online sequential pairwise
algorithm is O(m).m

To finish our analysis, and based on the results from Section 5.5, we can state the following
proposition:

Proposition 5.7.1 If© satisfies I1A, then A"@"li”e has complezity time O(m) (see Prop 5.5.1).

Proposition 5.7.2 If © satisfies MON, and the proposition 5.5.2 holds, then A%"lme has
complexity O(m). If © satisfies MON, and proposition 5.5.3 holds, then A"@”lme has complexity
O(m).

These propositions state that the online preference aggregator only has to compute the
state of the new element since e, and thus with time complexity O(m), for the following cases:

1. if O satisfies ITA then the ordering of the elements in < remains unchanged in < after
the insertion of e,

2. if © satisfies MON and and e is placed in the update profile such that all elements are
more preferred than e in every preference relation, then the ordering of the elements in
< remains unchanged in </,

3. if © satisfies MON and e is placed in the update profile such that all elements are less
preferred than e in every preference relation, then the ordering of the elements is at least
as good in <" as it was in <.
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Figure 5.2.: Borda and Plurality Aggregation Methods: Execution time comparison between
the standard versus the online approaches

5.8. Evaluation

In this section, we evaluate the plurality and Borda online voting aggregation methods. We
conducted a feasibility study to demonstrate the execution time of the proposed algorithms and
compare them with the execution time of the standard approaches (baseline). The prototype of
the optimized online aggregation algorithms (Online Voting Systems) has been implemented
in Java 1.7.

5.8.1. Data

We have performed our experiments using a four datasets (of different sizes) which have been
created by randomly generating messages and their provenance values. We randomly assigned
timestamp values (ranging from anytime between Sep. 1st 2016 to Sept. 3rd 2016), degrees
of trustworthiness (ranging from 1 to 10), and degree of popularity (ranging from 1 to 10) to
the messages. For this experiment we use a machine with 4GB RAM and a single Intel(R)
Core(TM) CPU core with 1.70GHz.

5.8.2. Methodology

We compare our optimized algorithms to the naive (standard) approaches. We evaluate how
effective they behave when preference orders are updated in the light of a newly-introduced
element. We want to demonstrate that our approach is fast enough to support real time
applications.

5.8.3. Discussion and Results

We consider four different datasets containing 1, 10, 100, 1000 messages respectively. For each
setting, we have measured the time needed to re-compute the message rankings based on the
provenance dimensions after adding a new message to the system. We conducted 10 runs and
we consider only the average runtime.

Figure 5.2(a) and Figure 5.2(b) show the execution time of the Borda (standard vs. online)
and plurality (standard vs. online) approaches. The z-axis represents the different messages
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Figure 5.3.: The experiment confirms that the execution time of Borda aggregation decreases
from polynomial to linearithm time, and the execution time of plurality aggrega-
tion is linear.

considered in the system before updating the preference orders, and the algorithm runtime
in nanoseconds is placed on the y-axis. As expected, the execution time of the standard ap-
proaches increases as the number of messages in the systems increases. As stated already in
Proposition 5.6.1, the expected time complexity of the naive algorithm is O(n * m) while the
plurality online approach is O(m) and Borda online approach is O(m * logn). Note that for
the online plurality, the execution time almost does not change in all settings. Therefore, the
incontestably lower execution time of the online plurality makes it feasible to be used in real
use case (streaming) scenarios.

Again, as expected, the experiment confirms that the execution time of Borda aggregation
decreases from polynomial to linearithm time. For instance, Figure 5.3(a) and Figure 5.3(b)
show the execution time increase order of the Borda (standard vs. online) and plurality (stan-
dard vs. online) approaches respectively. Figure 5.3(a) shows that by re-computing the ranking
when considering only 11 messages, the time execution of the standard algorithm is about 4
times longer, and with 111 messages, more than 5 times longer.

5.9. Related Work

Preference reasoning and preference aggregation are very active areas within artificial intelli-
gence research, economics, and other fields. Changes on the set of elements, i.e., the successive
elimination of candidates, is often used to make manipulation intractable to compute. The
work [Davies et al., 2012] studies the relation between eliminating candidates and the compu-
tational complexity of manipulation. For many voting rules, such as the elimination version
of Borda and Plurality, adding elimination rounds can increase the computational complexity.
Although manipulation with successive elimination of candidates also deals with dynamics on
the domain, this setting considers flexible preference relations (the preference relation defined
by the manipulator), which is not the case for the online setting.

Some work deals with changes on the preference orderings instead of domain changes.
In [Thimm, 2013}, Thimm considers updates in settings for preference aggregation under pref-
erence changes. Thimm investigates how an aggregated preference order has to be updated
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when the input orders are dynamic and shows that even for some simple aggregation rules, i.e.,
for the plurality and the Borda rule, the dynamic setting can be handled more efficiently than
recomputing the aggregated preference order from scratch. The work of [Maudet et al., 2012]
deals with influence of one agent’s preferences to other agents’ preferences. Preference relations
might be changed through influence. They are mainly interested in computational properties in
this framework. The work [Can and Storcken, 2013] explicitly considers updates to input pref-
erence orders and their influence to aggregation. The author introduces the property of update
monotonicity for (static) preference aggregators as a novel property to assess the quality of an
aggregator. An aggregator satisfies update monotonicity if under changes of one input pref-
erence order towards the aggregated order, the aggregation does not change. Therefore, [Can
and Storcken, 2013] do not consider general updates and computational approaches.

Furthermore, there are approaches in belief revision that deal with dynamics of epistemic
states given in form of preorders. For example, the work [Booth et al., 2006] considers it-
erated belief revision based on enriched preference states. There, a preference state is basi-
cally a preference order on possible worlds that is revised upon newly received evidence. The
work [Chomicki and Song, 2005] deals with revising a given preference relation with another
(partial) one such that the former is modified in a minimal way to incorporate the latter.
Although these works also deal with issues related to temporal evolution of preference orders,
they do not address the expansion of the set of elements in the setting.

In the realm of the Semantic Web, we compare our work to annotated RDF data in general,
and to aggregation principles in particular. Based on semirings [Green et al., 2007], Buneman
and Kostylev [Buneman and Kostylev, 2010] and Straccia et al. [Straccia et al., 2010] present
an algebra for RDF provenances. Their approaches are for provenances in general, but they
do not consider multiple dimensions simultaneously. Zimmermann et al. [Zimmermann et al.,
2012] present a combination of multiple provenance dimensions. They combine two dimensions
by a composition into one dimension, modeled as a compounded provenance dimension. An
aggregation function maps provenance dimensions into a set of pairs of provenances. Kostylev
et al. [Kostylev and Buneman, 2012] also consider the problem of combining various forms
of provenance that, analogous to the previous discussion, map provenance dimensions into
a set of vectors. They introduce restrictions to semirings in order to define containment and
equivalence of combined provenance relations. The latter ones are different from our work since
we aggregate provenance dimensions considering aggregation functions, which do not rely on
the structure of the provenance dimensions and can be generalized to the aggregation of every
ordered set.

Querying the Semantic Web with preferences is also considered in [Gueroussova et al., 2013,
Siberski et al., 2006]. In [Gueroussova et al., 2013], Gueroussova et al. propose an extension
to SPARQL 1.1 that supports the expression of preferred query results. Their language builds
on established work on SQL preferences and on an earlier effort by Siberski et al. [Siberski
et al., 2006, Gueroussova et al. show that preference queries can be directly expressed in both
SPARQL1.0 and SPARQL1.1 using OPTIONAL queries or novel features of SPARQL1.1, such
as NOT EXISTS. The authors have not implemented any aggregation but they illustrate such
a realization with respect to skyline and conditional preference queries.

More related to the online setting are approaches for preference querying over data stream.
Continuous top-k querying [Mouratidis et al., 2006] uses a preference function to determine
the best k answers to a (relational) query. Continuous skyline querying approaches [Sarkas
et al., 2008] consider the dominance relationship between tuples where tuples are represented

134



5.10. Findings and Research Contribution

as points in a multi-dimensional space. These works do not focus on the aggregation, but are
mainly interested in exploring different data structures to improve performance and decrease
memory consumption of preference querying. Furthermore, ranking in streaming data is an
emerging problem when querying large data collections as on the Web, and it is therefore
considered for RDF querying and reasoning.

For instance, SPARQL extensions allow ranking query results on streams [Barbieri et al.,
2010a, Bolles et al., 2008], as well as general reasoning frameworks incorporate the management
of streaming data [Barbieri et al., 2010b]. However, ranking with aggregation of multiple
provenance dimensions is not studied in streaming RDF data so far.

From the ranking perspective, several approaches consider also the problem of combining
several dimensions of ranking criteria [Bruno et al., 2002, Kieflling, 2002, Xin et al., 2006,
Hristidis et al., 2001]. Preferences are specified in terms of partial orders on attributes and
they can be accumulated and aggregated to build complex preference orders. In [Bruno et al.,
2002], the general idea is to rank query results when there is no exact match, but some results
are similar to the query. They compute the distance of attribute values of the relation with
respect to the query attributes. In [Hristidis et al., 2001], linear sums of attributes are used
to rank preferences (assigned to attributes). Likewise, Li et al. [Li et al., 2005] present top-k
ranking for different dimensions for relational databases. Compared to our work, none of them
considers the ranking of semi-structured data like RDF and their focus is not on ranking with
respect to provenances of data.

5.10. Findings and Research Contribution

In this chapter, we have proposed three algorithms that provide the most relevant news feeds
according to the user’s preferences. Our algorithms rank messages ’on the fly” as the message
passes through the system.

We have introduced the concept of online preference aggregators and investigated the con-
sequences of adding a new element to the preference orders. We have studied the relationships
between the original aggregated preference order and the updated aggregated preference order,
and established a framework for computational approaches to online preference aggregation.
Concrete online aggregation algorithms and complexity analysis have been presented for the
plurality, Borda count, and sequential pairwise voting methods. Our complexity analysis has
shown that the online aggregator performs better than the original aggregators after the do-
main changes. The computation of the original aggregators has time complexity O(n * m),
and we have shown that the online plurality aggregator has time complexity O(m), the online
Borda count aggregator O(m * logn), and the sequential pairwise aggregator O(m).

We conducted a feasibility study to demonstrate the execution time of the proposed al-
gorithms. Our execution experiments show that our approach runs extremely faster than the
standard ones and therefore are more suitable to be used in real world applications.
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6. Managing Data Changes in Linked Open
Data Sources

Overview

The Linked Open Data (LOD) cloud changes frequently. Quite often, LOD applications pre-
fetch data from the Web and store local copies of it in a cache for faster access at runtime.
This chapter presents two techniques for dealing with data dynamics in the LOD sources
using provenance information. The first one describes an investigation of availability and con-
formance of provenance information for detecting changes of LOD sources. Given the HTTP
basis recommended in the Linked Data guidelines, the natural way of detecting changes would
be to use HTTP header information, such as the Last-Modified field as it describes when the
resource has been changed last. For LOD applications that operate on local caches of Linked
Data, a simple check on this provenance could support the decision process of determining
which sources need to be updated. The second part of this chapter formalizes a strategy for
capturing data changes also based on a time-dependence measure that captures the frequency,
degree, and regularity of the changes of the LOD sources.

Structure

The structure of this chapter is as follows: Section 6.3.1 presents a motivation scenario that
emphasizes the importance of knowledge about data changes and especially about the change
behavior of a LOD data source over time for the purpose of data caching. Then, this chapter
describes two different techniques to capture data changes of the LOD sources: (1) Section 6.3
describes an investigation of availability and conformance of provenance information for detect-
ing changes of LOD sources, (2) Section 6.4 formalizes and evaluates a strategy for capturing
data changes based on time-dependence a measure that captures the frequency, degree, and
regularity of the changes of the LOD sources. The structure of Section 6.3 and Section 6.4 is
described in the subsequent sections.
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6.1. Introduction

The Linked Open Data (LOD) cloud is a global information space which structurally repre-
sents and connects data items. The LOD principles provide a flexible publishing paradigm
to integrate and interlink any kind of data from arbitrary datasets published by various data
providers (or data sources) on the Web. From the time the Linked Open Data (LOD) principles
have been created until now, the LOD cloud has grown significantly.

Recent investigations [Schmachtenberg et al., 2014, Auer et al., 2012, Hausenblas et al.,
2009, Alexander and Hausenblas, 2009, Dividino et al., 2014a, Dividino et al., 2013, Hartig,
2011, Umbrich et al., 2012, Dehghanzadeh et al., 2014] have shown that data published and
interlinked on the LOD cloud is subject to frequent changes. As the data in the cloud changes,
these caches or indices no longer reflect the current state of the data anymore and need to
be updated. Kéfer et al. [Kéfer et al., 2013] observed a subset of the LOD cloud over a
period of 29 weeks and concluded (among other things) that the data of 49.1% of the LOD
sources changes. Likewise, Gottron et al. [Gottron and Gottron, 2014] observed LOD data
over a period of 77 weeks and described that the accuracy of indices built over the LOD
sources drops by 50% after only 10 weeks. These outcomes indicate that almost half of the
LOD sources are not appropriate for long-term caching or indexing. Unquestionably, data on
the LOD cloud changes and knowledge about these changes, i.e., about the change behavior
of a dataset over time, is important as it affects various different LOD applications e., g.
data caching [Umbrich et al., 2012], indexing of distributed data sources [Konrath et al.,
2012], searching in large graph databases [Gottron et al., 2013b], optimizing the execution
of queries [Neumann and Moerkotte, 2011] and recommending appropriate vocabularies to
Linked Data engineers [Schaible et al., 2013].

In particularly, the distributed, Web-based nature of the data motivates many applications
to keep local copies of the data. Mainly, data is fetched live from the Web only in those cases
where the data is missing or known to be highly dynamic [Umbrich et al., 2010, Umbrich et al.,
2012]. However, local copies of LOD data sources still need to be updated from time to time.
Thus, the question is when to perform such an update.

LOD applications that operate on local caches of Linked Data need to be aware of these
changes. In this way they can update their cache to ensure operating on the most recent version
of the data. However, due to limitations of the available computational resources (e. g., network
bandwidth for fetching data, and computation time) LOD applications may not be able to
permanently visit all of the LOD sources at brief intervals in order to check for changes. With
the increasing amount of data available on the Cloud, LOD applications encounter challenging
questions when conducting updates of local caches of LOD sources.

In this chapter, we exploit two different techniques to capture data changes of the LOD
sources:

Provenance Information for Detecting Changes of Linked Open Data Sources The first part
of this chapter discusses the use of provenance within LOD resources. Provenance infor-
mation about the owner, creation date, and modification author can be used to verify
(to a certain degree), the quality and the level of trustworthiness of such information.
Additionally, modification date can denote when the resource has been changed last. A
simple check on this provenance can support the decision process of determining which
sources need to be updated.
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Given the HTTP basis recommended in the Linked Data guidelines, the most intuitive
way of detecting changes would be to to exploit the HT'TP header information provided
on the Web. According to the Linked Data guidelines, resources should be modeled using
dereferenceable HTTP Uniform Resource Identifiers (URIs). Whenever a client applica-
tion invokes an HTTP request to a server (i.e. an SPARQL endpoint) for a particular
URI on the LOD cloud, the server should respond by providing useful information about
the resource represented by this URI. Naturally, this response will make use of the HT'TP
protocol itself. The HTTP header of this response can contain provenance information
about the resource (e.g. owner, creation date, etc.) [Fielding et al., 1999]. Provenance
information about the owner, creation date, and modification data can be used to verify
(to a certain degree), the quality and the level of trustworthiness of such information.
Additionally, there is a field which can denote when the resource behind this URI has
been changed last. In combination with an HTTP header response, this Last-Modified
field is intended for probing a resource for whether or not it has been changed since its
inclusion in the cache of a Web or Linked Data application.

Nevertheless, even with the existing W3C specifications which define rules and conditions
to be followed by the LOD servers, the information contained in the HT'TP headers may
in practice be inaccurate or wrong [Rula et al., 2012]. Therefore, applications relying on
such information are susceptible to drawing wrong conclusions. In this work, we empir-
ically evaluate the conformance of time-related HTTP header metadata information on
the LOD cloud. In particularly, we check for the conformance of the Last-Modified field.
Knowledge about the reliability of this field is important for applications which intend
to make use of it.

To this end, in this chapter we analyze a large-scale dataset that is obtained from the
LOD cloud by weekly crawls from the period between May 2012 and January 2014.
The dataset contains 84 snapshots. For each pair of subsequent snapshots, we check for
changes in the data and compare the observations to the information provided by the
Last-Modified HT'TP header field. Using the results of our experiments, we discuss the
benefits of the availability and conformance of the HT'TP header fields in real-world
scenarios.

Capturing the Dynamics of Linked Open Data Sources LOD applications relying on data
from the LOD cloud need to cope with constant data updates to be able to guarantee
a certain level of quality of service. In an ideal setting, a cache or an index is kept up-
to-date by continuously visiting all data sources, fetching the most recent version of the
data and synchronizing the local copies with it. However, in real-world scenarios, LOD
applications must deal with limitations of the available computational resources (e.g.,
network bandwidth, computation time) when fetching data from the LOD cloud. These
limitations imply the necessity to prioritize which data sources should be first considered
for retrieving their data. In order to make best use of the resources available, it is vital
to choose a good scheduling strategy for updating local copies of the LOD data sources.
While there exists research on the freshness analysis of the cached data for answering
SPARQL queries in a hybrid approach such as Umbrich et al [Umbrich et al., 2012], to
the best of our knowledge, there is no work addressing strategies to efficiently keep local
copies of LOD sources up-to-date.
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Intuitively, a strategy dedicated to update data caches built out of data from the LOD
cloud would make use of the HT'TP protocol. The Last-Modified HT'TP header field de-
notes when a LOD source behind this URI has been changed last. However, in a previous
chapter (Section 6.3.3), we showed that a very few LOD sources (on average only 8%)
provide correct update values. Consequently, applications relying on such information
are susceptible to draw the wrong conclusions. Thus, this method is inappropriate for
probing a LOD source for whether or not it has been changed since the last retrieval of
its data. The only alternative is to actually retrieve the data from the sources and check
it for changes.

Scheduling strategies aim for deriving an order for data sources and suggesting when
they should be visited. Consequently, the application updates its local copy by fetching
data from the data sources following this order. The simplest strategy is to visit the data
sources in an arbitrary but fixed order, which guarantees that the local copy of every
data source is updated after a constant interval of time. Alternative strategies explore the
different features provided by the data sources, e.g., their size, to assign an importance
score to each data source, and thus derive an order. An established scheduling strategy
for the Web leverages the PageRank algorithm [Page et al., 1999], where a score of
importance is given to each data source regarding its centrality in the link network with
other data sources.

When considering a set of LOD sources, certainly some of them change more or less
often than others [Kéfer et al., 2013]. For example, it is not likely that in a short time
interval every LOD source changes. Thus, many sources may provide the same informa-
tion during this entire interval. Therefore, it is not necessary to fetch data from such
sources. However, whenever data of a source changes, an update is required. Accordingly,
some sources should be fetched at shorter or longer time-intervals. This implies that each
LOD source could be given a different update importance, which is based on its change
behavior. The change behaviour or dynamics of a dataset involves a notion of how fluid
a dataset is, i. e. how it behaves and evolves over a certain period of time. In the context
of this work, we understand a period of time to be a continuous time interval beginning
at an initial point in time up to a final one. Due to this time-dependence a measure for
dynamics should capture the frequency, degree, and regularity of the changes of the data.
In this chapter, we present a formal notion of dynamics for LOD datasets. We define
dynamics as an aggregation of changes, built on top of contemporary change metrics. We
further extend this notion to incorporate the use of different decay functions for stressing
or weakening periods within a time interval.

We evaluate the effectiveness of the dynamics function for conducting updates local
copies of LOD sources, and of different scheduling strategies for maintaining indices of
web documents on a large-scale LOD dataset from the Dynamic Linked Data Observa-
tory (DyLDO) [Kéfer et al., 2013] that is obtained via 149 weekly crawls in the period
from May 2012 until March 2015. We investigate two different setups: (i) in the single
step setup we evaluate the quality of update strategies for a single and isolated update
of a local data cache, while (ii) the iterative progression setup involves measuring the
quality of the local data cache when considering iterative updates over a longer period
of time. Quality is measured in terms of precision and recall with respect to the gold
standard, i.e., we check the correctness of data of the (updated) local copy with respect



6.2. Motivation Scenario

to the data actually contained in the LOD cloud. We assume that only a certain band-
width for fetching data from the cloud is available, and we investigate the effectiveness
of each strategy for different bandwidths. Therefore, in the first setup, we can observe
the relation between strategies and restrictions of bandwidth (i.e., if the strategies show
comparatively uniform performance over all restrictions or if better or worse performance
depends on a given restriction), and use such findings as parameters for the second setup.
The second setup evaluates the behavior of the strategies in a realistic scenario (e.g., a
LOD search engine updating its caches). Our evaluation indicates the most effective
strategies for updating local copies of LOD sources, i.e., we demonstrate for given re-
strictions of bandwidth, which strategy performs better in terms of data accuracy and
freshness.

6.2. Motivation Scenario

As an example, suppose we are maintaining local copies of data which comes from three
different data sources: dbpedia.org, bbc.co.uk, and musicbrainz.com.

Suppose our local copy has been last updated on May 8th, 2015, and we want to again
update our local copy on June 10th, 2015. Usually, we would update our cache by visiting all
three data sources, fetching the most recent version of the data and synchronizing the local
copies with it.

However, in real-world scenarios LOD applications must deal with limitations of the avail-
able computational resources (e.g., network bandwidth, and computation time). With such
limitations in mind, we suppose our network bandwidth enables only K = 12,000 triples to be
fetched per time slice.

Under such constraints, suppose we cannot fetch data from all the data sources. These
limitations imply the necessity to prioritize which data sources should be first considered
for retrieving their data. Ideally, we want to update first the data sources whose data has
definitively changed since the last update. Therefore, we need a strategy which enable us to
identify these resources, and thus to conduct such updates efficiently.

In the next section we introduce two different techniques for updates strategies coupled
with the following-up events of our motivation scenario.
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6.3. An Investigation of Provenance Information for Detecting
Changes of Linked Open Data Sources

Overview

Data on the Linked Open Data (LOD) cloud changes frequently. LOD applications that operate
on local caches of Linked Data need to be aware of these changes. In this way they can update
their cache to ensure operating on the most recent version of the data. Given the HT'TP basis
recommended in the Linked Data guidelines, the natural way of detecting changes would be
to use HTTP header information, such as the Last-Modified field. The Last-Modified field is
provenance-like information which is intended for probing a resource to determine whether or
not it has been changed since its inclusion in the cache of a Web or Linked Data application.
However, it is uncertain to which degree this field is currently supported on the LOD cloud
and how reliable the provided information is. In this chapter, we check for the availability
and conforming use of the time information in the HTTP header of Linked Data sources. We
analyze a large-scale dataset obtained from the LOD cloud by weekly crawls over almost two
years. In these weekly snapshots, we check if the HT'TP header field Last-Modified is available
and if the date provided for the last modification aligns with the observed changes in the data
itself. Finally, we discuss the benefits of the availability and conformance of the HT'TP header
fields in a real-world scenario.

Structure

The structure of Section 6.3 is a follows: Section 6.3.1 presents a motivation scenario that
emphasizes the need for and use of provenance for the purpose of data caching. Section 6.3.2
introduces provenance information included in the HTTP header of an HTTP response typ-
ically obtained when dereferencing or retrieving resources from the LOD cloud. We evaluate
the conformance of LOD data source to provide a valid and correct Last-Modified HTTP
header field, which indicates the date and time at which the resource was last modified in Sec-
tion 6.3.3. Section 6.3.4 reviews existing works for providing and using provenance in the LOD
cloud. Section 6.3.5 then concludes and summarizes the most indicative experiment results.

Research Questions

This chapter addresses the following research question:

RQ 2.IT1 Can the provenance delivered by Linked Data servers support applications for detect-
ing changes of the resources in a LOD source?

As Web data evolves over time, that is, RDF Graphs change as information is added and
removed, local copies of Web sources need to be updated from time to time to ensure the
quality or freshness of such copies.

Mainly, the naive approach for detecting changes of a resource in a LOD source consists
of downloading two arbitrary-size RDF descriptions of that resource and further comparing
them [Kéfer et al., 2013, Vélkel and Groza, 2006, Zeginis et al., 2011]. As these descriptions
can be of significant size, Linked Data applications would benefit if Linked Data servers could
provide provenance information. A simple check on this provenance could support our decision
process of determining which sources need to be updated.

142



6.3. An Investigation of Provenance Information for Detecting Changes of Linked Open Data Sources

However, it is crucial that Linked Data servers provide correct and valid provenance values;
otherwise, it has no use in any practical application.

6.3.1. Motivation Scenario

Following up our motivation scenario described in Section 6.2, as a matter of example, we
illustrate a request done by a browser (or the user behind the browser) of the RDF description
representing the state of California to the DBpedia server '. As presented in Chapter 2.2.4,
one of the fundamental LOD principles is that every resource (representing an entity in the
real world) is uniquely identified and referenced by Universal Resource Identifiers (URI). A
Semantic Web application or a browser uses mechanisms of the HT'TP protocol to look up
information upon those URI (called dereferencing).

First, the user sends an HT'TP request for http://dbpedia.org/resource/California
to the server. The HTTP request includes a textual header that specifies what format (here,
the RDF notation) in which the user wants to receive the description of the resource, and
should look like this:

Example 6.3.1 (Scrap of a HTTP request for http://dbpedia.org/resource/California)

GET/ resource/California HTTP/1.1 Host:hitp://dbpedia.org
Accept: text/html;q=0.5, application/rdf+xml

The 'Accept’ header indicates that the user accepts either HTML or RDF, but prefers
RDF. This preference is indicated by the quality value q=0.5 for HTML. This process is called
content negotiation.

As it’s generally held to be good practice when publishing Linked Data, DBpedia uses
different URIs to distinguish between the identity of the resource itself and its descriptions
(which can come in different formats). Therefore, in a response to the GET requested as shown
in Example 6.3.1 we get a redirect response which tells the user that the description of the
requested resource, in the requested format, can be found at other URI http://dbpedia.org/
data/California.rdf.

Example 6.3.2 (Scrap of a HTTP redirect response to http://dbpedia.org/data/California)

HTTP/1.1 303 See Other
Location: http://dbpedia.org/data/California.rdf
Vary: Accept

Next, the user has to make a new GET request for looking up the new URI delivered by the
server. Afterwards, the server then selects the best match from its file system or generates the
desired content on demand and sends it back to the client. The answer for the GET request
could be for example:

!dbpedia.org is a community effort to extract structured information from periodic Wikipedia dumps and
to make this information available on the Web. It is served to the public via a live instance of OpenLink
Virtuoso, and also offers Faceted Browsing and Exploration
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Example 6.3.3 (Scrap of a HTTP response to http://dbpedia.org/data/California)

HTTP/1.1. 2000K Content-Type rdf/zml
Content-Language: en
Content-Location: http://dbpedia.org/data/California.rdf

This response header tells the user that the response contains the representation of the
information resource in the requested RDF /XML format, and the rest of the message contains
its representation in RDF /XML notation. This description can be of significant size, in this
particular case it weighs about two megabytes (1,708KB).

The HTTP response header is composed of a set of fields, not all of which were illustrated in
this example. Without a doubt, the HT'TP response header delivers valuable provenance infor-
mation about the availability, format, and location of the requested resources. In the following,
we explore the header field Last-Modified which indicates when the requested resources have
been modified last for the purpose of performing updates of local caches of the LOD sources.

6.3.2. Foundations: The HTTP Header

The LOD cloud is composed of various data servers which enable data access via the HTTP
protocol. A client application invokes an HTTP request to a server by, for instance, sending
a HTTP GET message for a particular URI. The Linked Data server responds via HT'TP
response message. Mainly, both HTTP request and response messages consist of headers (zero
or more header fields), and possibly a message-body. A message-body is used to carry the
entity-body, i. e. the description of the represented resource, ideally using RDF as data format.

The first line of a HT'TP Response message is the Status-Line, consisting of the protocol
version followed by a numeric status code and its associated textual phrase. The Status-Code
element is a 3-digit integer result code of the attempt to understand and satisfy the request.
The first digit of the Status-Code defines the class of response:

Ixx Informational - Request received, continuing process

2xx Success - The action was successfully received, understood, and accepted
3xx Redirection - Further action must be taken in order to complete the request
4xx Client Error - The request contains bad syntax or cannot be fulfilled

5xx Server Error - The server failed to fulfill an apparently valid request

The individual values of the numeric status codes defined for HT'TP /1.1, and an example set
of corresponding associated textual phrase are: 7202” - Accepted, ”301”- Moved Permanently,
7400”7 - Bad Request, and ”505” - HTTP Version not supported.

The header fields allow the server to pass additional information about the response which
cannot be placed in the Status-Line. These header fields give information about the server, pro-
vide further access to the resource identified by the Request-URI, and define metainformation
about the entity-body. Some of the headers fields are:
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1. Content-Language describes the natural language(s) of the intended audience for the
enclosed entity, Content-Length indicates the size of the entity-body, in decimal number
of OCTETs ,

2. Content-Type indicates the media type of the resource sent,

3. Content-MDS5 for the purpose of providing an end-to-end message integrity check of the
entity-body,

4. Date represents the date and time at which the message was originated,
5. Expires gives the date/time after which the response is considered stale,

6. Last-Modified indicates the date and time at which the origin server believes the variant
was last modified, and

7. Server contains information about the software used by the origin server to handle the
request.

For more detailed information about HT'TP messages, please refer to the Hypertext Trans-
fer Protocol — HTTP/1.1 Specification [R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Mas-
inter, T. Berners-Lee, 1999].

In this work, we focus on the analysis of the header field Last-Modified. This field is intended
for a date when the requested objects have been modified last. In the context of Linked Data,
this should correspond to the most recent date at which some part of the resources’ RDF
description has changed. Following the HTTP/1.1 specification [Fielding et al., 1999], the
Last-Modified value must not be later than the time of the server’s response message. In such
cases, where the resource’s last modification would indicate some time in the future, it is
to be considered invalid. Furthermore, the server should obtain the Last-Modified value as
close as possible to the time that it generates the Date value of its response. This allows a
recipient to make an accurate assessment of the entity’s modification time, especially if the
entity changes near the time that the response is generated. Finally, HTTP /1.1 servers should
send a Last-Modified value whenever feasible.

6.3.3. Evaluation of the Conformance of the Last-Modified HTTP Header Field

In this section, we evaluated the conformance of LOD data source to provide a valid and correct
Last-Modified HTTP header field, which indicates the date and time at which the resource
was last modified.

Data

We work with data from the Dynamic Linked Data Observatory (DyLDO) [Kéfer et al., 2013].
The DyLDO dataset has been created to monitor a fixed set of Linked Data documents (and
their neighborhood) on a weekly basis. For the sake of consistency, we use only the kernel seed
documents of DyLDO. Our test dataset is composed of 84 snapshots corresponding to a period
of almost two years (from May 2012 until January 2014). Furthermore, the DyLDO dataset
contains (parts of ) various well-known and large LOD sources, e.g., dbpedia.org, musicbrainz.com,
and bbc.co.uk. For more detailed information about the DyLDO dataset, we refer the reader
to [Kéfer et al., 2013].
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Figure 6.1.: Ratio of the Linked Data resources (in percentage) that provide the field Last-
Modified in their header (in green).
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Methodology

The main goal of our experiments is to measure the degree of how often the Last-Modified
field in HTTP header of LOD resources is available and how often it is used correctly. We
consider the use to be correct if this field returns a date and time which does not violate the
observations of when the data for a resource has changed last, and therefore, to assure that
the Last-Modified field from HTTP header could be used by client applications to verify if any
change event has occurred for this resource, or even in the LOD cloud.

Discussion and Results

Fach version of the DyLDO dataset consists of a set of RDF triples retrieved from different
LOD sources. Furthermore, the data provides also information about the HT'TP headers re-
ceived when retrieving the data. From the 84 snapshots available in the dataset, we took each
pair of subsequent snapshots from the same data source and computed the set difference over
their set of triples. If we observe a difference we consider the data to have changed, otherwise
we treat it as unchanged. This means if two snapshots have the same set of triples, they are
equivalent and no changes occurred. If not, i. e., a deletion or addition of triples has occurred,
we consider the data changed. A change should be reflected by a Last-Modified date which lies
in the time range between the two snapshots of the data.

Figure 6.3.3 illustrates that on average only 15% of the resources actually do provide some
value for the Last-Modified field in the HTTP header. Towards the end of the time period
covered by the data set, we observe that the number of resources providing this value slightly
grows.

Subsequently, we checked for those resources which provide a value for the Last-Modified
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Figure 6.2.: Ratio of the resources (in percentage) providing a Last-Modified that is correct (in
green), or incorrect or invalid (in red).
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field, how many of them return a correct or an incorrect value (see Figure 6.3.3). As mentioned
above, correct values are the ones where the last modified data aligns with actual changes in
the RDF data. Incorrect values include (1) values that indicate changes but no change has been
observed (2) values that indicate no changes but changes have been observed and (3) invalid
values. Invalid values are the ones which indicate a time in the future relative to the time of
the HTTP response or which indicate a time of last modification which actually precedes the
time at which the resource was created. On average, we observe that only 52% of the resources
which provide a value for the Last-Modified field provide also a correct value for it. The slight
growth of both ratios in Figure 6.3.3 towards the end of the time period covered by the dataset
is an artifact caused by data sources going offline, i.e. not responding or providing a 400 or 500
status code as response. It seems that more data sources providing no or wrong Last-Modified
results went offline during the covered time span.

Our experiment shows that overall and on average only 8% of the resources in the datasets
provide correct values for this field. This number is far too low to be of use for any practical
application. It is, however, not clear why LOD sources do not provide valid information. We
conjecture that some default configuration of LOD servers leads to this misbehavior.

6.3.4. Related Work

Similar to our study, Kjernsmo [Kjernsmo, 2015] investigates many of the HTTP caching
implementations (i. e. LOD servers) and examine the availability and conformance of the
HTTP headers that may allow caching. Even based on different datasets as in our study, the
authors conclude that the headers do not reflect the standards compliant freshness lifetimes
advertised by servers, and therefore they are not helpful for applications relying on caching.
Besides HTTP headers, there exist several vocabularies, methods, and tools that can be
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used to describe or summarize LOD datasets on different levels. Basically, these levels are
characterized by (1) information about the dataset (release, updates, access points, licensing),
(2) statistical information about the data types and patterns in the dataset, and (3) information
about the topic or domain described in the dataset.

Alexander et al. [Alexander and Hausenblas, 2009, Keith Alexander and Richard Cyganiak
and Michael Hausenblas and Jun Zhao, 2011] designed the Vocabulary of Interlinked Datasets
(VoID). Along with other vocabularies such as Dublin Core, FOAF, etc.), VoID contains
a number of useful and recommended properties for providing basic metadata about RDF
datasets. VolD is used to formally describe linked RDF datasets, and it allows us to discover
datasets over which queries are distributed over. Mainly, the VoID intends to help users judge
the appropriateness of the dataset for their purposes. Similar to the HTTP Response header
Last-modified field, VoID provides the Dublin Core term dcterms:modified which specifies the
date on which the dataset was changed. There are two reasons why we choose to investigate
the conformance of the Last-modified field instead of the dcterms:modified : (1) there are
numerous sources in today’s LOD cloud that do not provide any VolD description and, when
VoID description is available, it is often incomplete or represents only a part of the entire
contents of a dataset [Jentzsch et al., 2011], (2) it is recommended that the dcterms:modified
date should correspond to the HTTP 1.1 Last-modified date [Croome, 2000].

Another vocabulary for describing a dataset is the Data Catalog Vocabulary (DCAT) [Maali
and Erickson, 2014]. DCAT is an RDF schema vocabulary designed to facilitate interoperability
between datasets published on the Web.

In [Béhm et al., 2011] the authors propose metainformation generation algorithms which
automatically generate VolD description for RDF datasets deduced by the resources in the
dataset. The authors also introduced new ideas extending the current scope of VolD. make-
void? is a different tool for generating VoID statistics for RDF files.

RDFStats [Langegger and W68, 2009] is a generator for statistics of RDF sources that
combines several analyses and provides statistical information for datasets behind SPARQL
endpoint and RDF documents. These statistics include different types of histograms, the num-
ber of anonymous subjects, the total number of instances for a given class, or a set of classes
and methods to obtain the URIs of instances.

LODStats [Auer et al., 2012] provide several statistics about the usage of vocabularies, types
and properties of LOD data sets. These statistics include number of triples, triples with blank
nodes, labeled subjects, number of owl:sameAs links, class and property usage, class hierarchy
depth, and cardinalities, among other things. These statistics are then represented using VoID
and Data Cube Vocabulary [Cyganiak and Reynolds, 2014]. Data Cube vocabulary is focused
purely on the publication of multi-dimensional data on the web. It is an RDF vocabulary for
describing statistical datasets.

Roomba [Assaf et al., 2015b] automatically validats and generats descriptive metadata for
RDF datasets. The extracted metadata are grouped into four categories: general (e.g., title,
ID), access, ownership, and provenance (temporal and historical information).

Loupe [Mihindukulasooriya et al., 2015] extracts more detailed characteristics of classes and
properties used in a dataset as well as common triple patterns. ABSTAT [Palmonari et al.,
2015] provides a summary of the most commonly used abstract knowledge patterns.

The ExpLOD [Khatchadourian and Consens, 2010] adopts bisimulation and contraction to

2make-void: https://github.com/cygri/make-void
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find common patterns in data. The tool is based on a mechanism that combines text labels
assigned to the RDF graphs and bisimulation contractions. The bisimulation contractions are
applied to subgraphs defined via queries, providing for summarization of arbitrary large or
small graph neighborhoods. Also, ExpLOD can generate SPARQL queries from a summary.

ProLOD++ [Abedjan et al., 2014] is a web-based tool which includes statistics on fre-
quencies and distributions of distinct subjects, properties, and objects, as well as statistics
on data types and value pattern distributions of particular properties. It discovers positive
and negative association rules and calculates the keyness measure for each property along the
ontology class hierarchy. GraphLOD [Jentzsch et al., 2015], which is a set of new features of
ProLOD++, allows exploring the graphical structures of Linked Datasets by visualizing the
connected components and the graph patterns mined from them. It identifies graph patterns
such as paths, cycles, stars, siamese stars, antennas, caterpillars, and lobsters.

SchemEX [Konrath et al., 2012] extracts schema information for large data sets, by consid-
ering the co-occurrence of types and properties, to construct a schema-based index structure.
This index allows for answering schema-oriented queries. The SchemEx index structure is fur-
ther used for a theoretic analysis on the interdependencies between explicit and implicit schema
information of RDF data [Gottron et al., 2013a]. Beck et. al. integrate in LinDA the compu-
tation of a VoID description [Keith Alexander and Richard Cyganiak and Michael Hausenblas
and Jun Zhao, 2011, Gorlitz and Staab, 2011], SchemEX index [Konrath et al., 2012], the
analysis on schema interdependencies [Gottron et al., 2013a], and the construction of a formal
concept lattice of the data [Wille, 2009] in order to derive descriptive meta data.

Datasets’ descriptions and statistics are important to make the dataset findable and us-
able, however, for many LOD datasets there is no good, complete and descriptive meta data
available [Jentzsch et al., 2011, Assaf et al., 2015a).

6.3.5. Findings and Research Contributions

We evaluated the conformance of LOD data source to provide a valid and correct Last-modified
HTTP header field, which indicates the date and time at which the resource was last modified.
Our experiment shows that overall and on average only 8% of the resources in the datasets
provide correct values for this field. This number is far too low to be of use for any practical
application. It is, however, not clear why LOD sources do not provide valid information. We
conjecture that some default configuration of LOD servers leads to this misbehavior.

Our analysis is restricted to the Last-Modified field, however, it could be easily extended
to check the conformance verification of others HT'TP header fields.

The reliable provision of provenance information in the context of the established HTTP
protocol would be beneficial to the entire Web of Data. Many base technologies such as Linked
Data caches and indexes may benefit from this information since simply checking on may help
them to decide which sources need to be updated.

We believe that publishing correct the HT'TP header information is a step towards quality-
oriented data usage in the LOD cloud. Therefore, with this work we point out the dimensions
of the problem of erroneous and missing information of the HI'TP header for Linked Data.
Thereby, we motivate LOD sources to publish correct and valid values to support application
needs. For now, since we cannot rely on HT'TP header information for change detection, we
need ways to recognize and quantify changes in the LOD sources. In the next chapter we dicuss
metrics to capture such changes.
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6.4. Capturing the Dynamics of Linked Open Data Sources

Overview

Quite often, Linked Open Data (LOD) applications pre-fetch data from the Web and store
local copies of it in a cache for faster access at runtime. Yet, recent investigations have shown
that data published and interlinked on the LOD cloud is subject to frequent changes. As
the data in the cloud changes, local copies of the data need to be updated. However, due
to limitations of the available computational resources (e. g., network bandwidth for fetching
data, and computation time) LOD applications may not be able to permanently visit all of
the LOD sources at brief intervals in order to check for changes. These limitations suggest the
need to prioritize which data sources should be considered first for retrieving their data and
synchronizing the local copy with the original data. In order to make best use of the resources
available, it is vital to choose a good scheduling strategy to know when to fetch data from which
data source. In this chapter, we first present a general framework to analyze the dynamics of
linked datasets within a given time interval. We propose a function to measure the dynamics
of a LOD dataset, which is defined as the aggregation of absolute, infinitesimal changes. i.
e. it captures the intensity of how the data evolved in this period. Later, we investigate the
effectiveness of the dynamics function for conduction updates of LOD sources, against different
strategies proposed in the literature and evaluate them on a large-scale LOD dataset that is
obtained from the LOD cloud by weekly crawls over the course of three years. We investigate
two different setups: (i) in the single step setup, we evaluate the quality of update strategies
for a single and isolated update of a local data cache, while (ii) the iterative progression setup
involves measuring the quality of the local data cache when considering iterative updates
over a longer period of time. Our evaluation indicates the effectiveness of each strategy for
updating local copies of LOD sources, i.e., we demonstrate for given limitations of bandwidth,
the strategies’ performance in terms of data accuracy and freshness. The evaluation shows
that the measures capturing change behavior of LOD sources over time are most suitable for
conducting updates.

Structure

The structure of Section 6.4 is a follows: We motivate capturing the change behavior of a
fictional LOD source with a hypothetical scenario in Section 6.4.1. Section 6.4.2 describes
the foundations of change metrics upon which our notion of dynamics is based. Section 6.4.3
presents a formal notion of dynamics for LOD datasets and its extension using different decay
functions.Section 6.4.4 formalizes the need for and of scheduling strategies to efficiently keep
LOD caches up-to-dated. Section 6.4.5 discusses the effectiveness of the dynamics function
and a set of existing scheduling strategies for data updates strategies. We review some existing
works on index/caches updates in Section 6.4.6, and conclude this chapter in Section 6.4.7.

Research Questions

This chapter addresses the following research question:

RQ 2.III Does the consideration of changes within a time interval instead of between two
points in time improve change analysis?
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State-of-the-art metrics for change detection of RDF datasets [Ding and Finin, 2006, Di-
vidino et al., 2013, Kéfer et al., 2013] mainly quantify changes between the two datasets.

When considering the change analysis of a dataset over a period of time, such state-of-the-
art metrics can be used to compare any two versions of the same dataset each version being
fetched at different points in time. Nevertheless, such metrics do not include a mechanism to
exploit the dynamics of a dataset i.e. to consider a time interval described by more than two
points in time.

RQ 2.1V Which is the most adequate update scheduling strategy to manage caching copies of
the LOD sources?

Data on the Linked Open Data (LOD) cloud changes frequently and applications relying
on that data (by pre-fetching data from the Web and storing local copies of it in a cache) need
to continually update their caches. Instead of permanently visiting all of the LOD sources
at brief intervals, a good scheduling strategy could help us to know when to fetch data from
which data source in order to grab (most of) the changes.

So far, there is no work addressing strategies to efficiently keep local copies of LOD source
up-to-date. Nevertheless, the effectiveness of well-known update scheduling strategies for main-
taining indices of web documents, such as the PageRank algorithm [Page et al., 1999], and
metrics for quantifying the changes of LOD sources could be evaluated in the context of up-
dating local copies of LOD sources.

6.4.1. Motivation Scenario

Following up our motivation scenario described in Section 6.2, we illustrate the differences
between change and dynamics analysis on LOD datasets. In this example, we describe three
snapshots of a dataset captured at three distinct points in time: ¢1, to, and t3.

We are using the dbpedia and the FOAF vocabulary for describing headquarters and their
broadcasters in cities located in the state of California. For instance, there are entities like
dbr:Los Angeles and dbr:California that are connected via a dbo:isPartOf property. Table 6.1 sum-
marizes the RDF triples published in the first snapshot of the dataset at time ;.

At time to, the same data is visited again. Table 6.2 shows the RDF triples of this new
snapshot. We can directly observe changes in the triples between these two snapshots. In
the second snapshot, we observe four new RDF triples (see highlighted triples in Table 6.2).
Table 6.3 summarizes the RDF triples of the third and last snapshot at time ¢3. This snapshot
contains the same set of triples as the first one.

Existing metrics proposed in the literature are able to quantify changes for every pair
of snapshots of a dataset. For the sake of simplicity, we apply a very simple metric in this
example, which only counts the additions, deletions and changes between the set of triples
from the first and the second snapshot. In this case, there are four new triples over the total
of all triples. The same number of changes is observed when comparing the second and third
snapshot. However, since the first and the third snapshot contain the same set of triples, we
cannot observe any changes under the considered metric. The direct comparison of the first
and third snapshot of the dataset ignores the changes in the second snapshot.

In this work, we argue that the consideration of the changes in the second snapshot is of
great importance to the analysis of the dataset dynamics in the time period ranging from t;
to t3. Otherwise, when ignoring this evolution the true dynamic character of the dataset is
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Table 6.1.: Scenario: Example dataset at time ¢;.

@prefix dbo: <http://dbpedia.org/ontology/> .

@prefix dbp: <http://dbpedia.org/property/> .

Q@prefix dbr: <http://dbpedia.org/resource/> .

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

dbr:California rdf:type dbo:Location.

dbr:California foaf:homepage “http://www.ca.gov/".

dbr:Los Angeles  dbo:isPartOf dbr:California.

dbr:Los Angeles  dbp:headquarters dbr:Fox Sports 1.

dbr:Fox Sports 1  dbo:broadcastNetwork — dbr:Fox Sports (United States).

Table 6.2.: Scenario: Example dataset at time £9.

@prefix dbo: <http://dbpedia.org/ontology/> .
@prefix dbp: <http://dbpedia.org/property /> .
@prefix dbr: <http://dbpedia.org/resource/> .
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
dbr:California rdf:type dbo:Location.

dbr:California foaf:homepage “http://www.ca.gov/".

dbr:Los Angeles  dbo:isPartOf dbr:California.

dbr:Los Angeles  dbp:headquarters dbr:Fox Sports 1.

dbr:Fox Sports 1 dbo:broadcastNetwork dbr:Fox Sports (United States).
dbr:Bluewarter dbo:isPartOf dbr:California.

dbr:Bluewarter dbp:headquarters dbr:vpktv.

dbr:vpktv dbo:broadcastNetwork dbr:VPK(United States).
dbr:VPK foaf:homepage “http://www.vpktv.com/".

Table 6.3.: Scenario: Example dataset at time t3.

@prefix dbo: <http://dbpedia.org/ontology/> .

@prefix dbp: <http://dbpedia.org/property/> .

Q@prefix dbr: <http://dbpedia.org/resource/> .

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

dbr:California rdf:type dbo:Location.

dbr:California foaf:homepage “http://www.ca.gov/".

dbr:Los Angeles  dbo:isPartOf dbr:California.

dbr:Los Angeles  dbp:headquarters dbr:Fox Sports 1.

dbr:Fox Sports 1  dbo:broadcastNetwork  dbr:Fox Sports (United States).
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neglected. In the following sections, we systematically introduce metrics of changes and present
a formalization of how to incorporate them into our notion of dataset dynamics.

6.4.2. Foundations: Change Metrics

In this section, we introduce a formal specification of dynamics and the dynamics function for
LOD datasets. In the literature, many change metrics have been proposed for analyzing RDF
data of LOD [Kéfer et al., 2013, Dividino et al., 2013, Ding and Finin, 2006, Gottron and
Gottron, 2014]. These metrics essentially quantify the changes that occurred in a dataset by
comparing two snapshots of this dataset. Our goal is to re-use such metrics and to incorporate
them as a parameter in our framework for measuring dynamics of a LOD dataset.

We will denote a change metric as a function A. Basically, such a A-function is a metric that
quantifies changes between two datasets, i. e. it is a function that determines the difference
(or distance) between two datasets. Without loss of generality, in this chapter, we restrict A-
metrics to determine the difference between two RDF datasets. For instance, changes between
two datasets can be measured by the number of differences between the set of triples of these
datasets (such as additions and deletions of RDF triples). Please note that our framework
for measuring the datasets dynamics can be parametrized to make use of any existing change
metrics that satisfies the formal requirements listed below.

Definition 6.4.1 Let S be the set of all possible RDF datasets. A change metric is a function
A: S xS - R that maps two RDF datasets to a real number and satisfies the following
conditions (for X1, Xo and X3 being RDF datasets).

1. positivity: A(X71,X2) >0

2. symmetry: A(X1, X2) = A(X2, X1)

3. identity of indiscernibles: A(X1,X1) =0 and

4. triangle inequality: A(X1, X3) < A(X1, X2) + A(X2, X3)

Example 6.4.1 (Jaccard distance as change metric) The Jaccard Distance A juccard be-
tween two RDF sets satisfies the requirements of Definition 6.4.1. Let X1 and Xo be the two
RDF datasets presented in Table 6.1 and Table 6.2, then the Jaccard distance between the set
of triples of X1 and Xo evaluates to:

XinX
AJaccard(XhXZ) =1- H
1
-1 (5/9) (6.1)
=0.44

6.4.3. Dynamics Analysis of Linked Open Data Sources
Dynamics Function

The dynamics function aims at quantifying the evolution of a dataset over a specific period of
time and takes into consideration the changes occurring in this period.
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Figure 6.3.: The dynamics of a dataset is obtained by integration over its change rate over
time.

For the sake of simplicity, we model time as a real value. We are looking for a function
©: SxR - R, which assigns to a dynamic RDF dataset X consisting of a concrete set of triples
X € S at any point in time ¢ a value which models the quantity of evolution it has undergone?.
© is a monotone, non-negative function. This implies that there cannot be negative evolution.
To measure the dynamics as the amount of evolution a dataset exhibited in a given time
interval [¢1,t2], it is sufficient to compute ©(X, t2) - O (X, 1) > 0. For ease of notation, we will
in the following abbreviate X; for the dataset X at time ¢ and ©(X,t) by ©(X}).

While it is difficult to define the function © directly to provide meaningful values, we will
define it indirectly. To this end, we assume that the change rate of a dataset X; at time ¢ is
given by a function ¢(X;). Then, we define the difference for two values of the function © to be
obtained by accumulating the dataset change rate function over a time interval. This means,
we integrate the change rate function of a dataset over a given period of time. More formally,
the dynamics of a dataset is given by:

O(X.,) - O(Xy,) = ftl (X))t (6.2)

The idea of integrating over a change rate function is depicted in Fig. 6.3 where the area
under the curve ¢(X;) corresponds to a quantification of a dataset evolution and thus the
dynamics of the dataset.

However, also the function ¢ is not explicitly known, and cannot be used for the computa-
tion, i. e. it is not possible to determine the change rate of a dataset for a given point in time.
Thus, our idea is to use an approximation for ¢(X;) based on discrete points in time and the
changes between the datasets at these times.

So, we can effectively assume X = (X, Xy,,...,Xy,) to be a set snapshots of the RDF
dataset X at points in time ¢;, for ¢ = 1,...n. For any two snapshots of a dataset, we can
measure changes using a A-metric, such as the ones presented in Section 6.4.2. Our assumption
is that for small time intervals (ideally intervals tending towards zero) the change between

3This quantity of evolution is an abstract value but can serve for relative comparisons of datasets.
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Figure 6.4.: Dataset dynamics defined as aggregation of absolute, infinitesimal A-metrics
changes.

datasets is a good enough approximation of the change rate. This corresponds to the idea
that:

A(Xti s Xti_l ) ti—1—t;
t; —ti-1

o(X0) = S0(Xy,) (6.3)
dt
Therefore, instead of using the change rate function ¢, we can use its approximation, namely
the A-metric of (ideally) small time intervals of each pair X;, and Xy, , € X. This corresponds
to approximating the change rate function using a step function as depicted in Fig. 6.4. Com-
puting the integral given in Eq. 6.2 over this approximated function corresponds to:

@(X)if m Y A(Xyy, X)) (6.4)
i

In the following example, we illustrate the computation of the dynamics of the dataset
presented in our motivation scenario.

Example 6.4.2 (Computing dynamics based on a Jaccard distance change metric)
Let X = (X4, X4, Xt5) be a set of snapshots of a RDF dataset X at three distinct points in
time t1, to, and t3 presented in Table 6.1, Table 6.2, and Table 6.3, respectively. Then the
Jaccard distance between the set of triples from X;, and X,, and from X, and Xy, are given
as follows:

AJaccard(thaXt1) = 044> AJaccard(thv th) =0.44 (65)
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Figure 6.5.: Dynamics function with decay to strengthen the recent changes.

Then the dynamics of X is:

Q(X)ZL = Z AJaccard(Xti s Xti_l )
=2
:AJaccard(th 5 th ) + AJaccard(‘th 5 th)
=0.88

Decay Function

So far, we proposed a general framework in which we can compute the dynamics or evolution of
any RDF dataset over a period of time and which incorporates any change metric A that follows
the requirements mentioned above. Applications such as caching and index maintenance benefit
from the analysis of the change history of datasets, since update strategies can incorporate the
evolution of a dataset in their computation, instead of only the quantification of changes with
respect to the last two snapshots.

However, for such applications changes tend to vary in importance as time passes, e. g.
if a dataset used to change much but does not anymore, its index update strategy may need
to be adapted (e.g., it should be less aggressive than it used to be). Therefore, it may be
important that changes that took place a longer time ago are weakened and that recent ones
are strengthened, or the other way around. For this purpose, the dynamics function should be
flexible to incorporate such requirements.

Accordingly, we extend the dynamics function with a decay function f(t¢). Fig 6.5 illustrates
the influence of the decay function when combined with the dynamics function. In the upper left
side of the figure, the dynamics function is shown. In the lower left side the decay function (in
this example, the exponential decay function) is presented. In the right side, the combination
of both is depicted. Please note that in this example we want to weaken older changes and
strengthen the recent ones.

Based on these considerations, we introduce the following modifications to the definition
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of dynamics: Let X be a dynamic RDF dataset and ¢(X;) be a function which measures the
change rate of a dataset at time ¢, and f(¢) be a decay function. Then the decayed dynamics
function of X is defined as:

®decay(Xt2) - ®decay(Xt1) = _/t\lt2 f(t) ’ C(Xt)dt' (67)

Consequently, the discretization is given by:
: n
@decay(X)tT N Z f(ti)A(th Xti—l ) (6'8)
i=2

Example 6.4.3 (Dynamics involving a decay function) We continue our Example 6.4.2
where we compute the Jaccard distances A joccard(Xty, Xty) and A jaccard(Xtg, Xt,). We want
to compute the dynamics of X using the dynamics with a decay function. In this example, we
chose the exponential decay function f(t;) = e Mtn=ti) 1o be our ezample decay function. For
sake of simplicity, we set the parameter \ to 1. Then @demy(/‘() 18:

Z f(ti)AJaccard(Xti ) Xti_l )
i=2

:e—)\-(tg—tz) : AJa,cca,rd()(tz ) Xt1) + 6_/\.(t3_t3) : AJa,ccotrd(‘XtB’ Xt2) (69)
=0.38-0.44+1-0.44
=0.607

6.4.4. Efficiently Keeping Local Linked Open Data Caches Up-To-Date
Update Scheduling Strategies

Linked Data that is crawled from the cloud can be represented in the form of N-Quads?.
Technically, a quad (s,p,0,c) consists of an RDF triple where s, p, and o correspond to the
subject, predicate and object and the context c, i.e., the data source on the Web where this
RDF triple was retrieved.

We assume that data from the various LOD sources is retrieved at some fixed point in time
t. We consider that an application visits and fetches data of LOD sources at a regular interval
(say, once a week). Consequently, a LOD data source is defined by a context ¢ and the data it
provides at points in time ¢, i.e. the set of RDF quads X, ;. Furthermore, we denote the size
of a data set with | X, | to indicate the number of triples contained in the data set at context
c at the point in time .

We rely on local copies of the LOD sources. Such a copy typically covers several data
sources. Given a set C' = {c1,c2,...,cn} of contexts of interest, we can define the overall
dataset as:

Definition 6.4.2 Dataset

X = U Xe (6.10)
ceC

W3C Recommendation http://www.w3.org/TR/n-quads/
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Example 6.4.4 As a matter of example, we consider that data comes from three different data
sources: dbpedia.org, bbc.co.uk, and musicbrainz.com, and data is retrieved at two different
points in time, on May 8th, 2015 and on June 10th, 2015.

X2015-05-08 = {Xdbpedia.org,2015-05-08, X musicbrainz.com,2015-05-08, X bbe.co.uk,2015-05-08 ) »
X2015-06-10=  { Xdbpedia.org,2015-06-10, X musicbrainz.com,2015-06-105 X bbe. co.uk,2015-06-10}

Finally, for distinct points t1, %o, ...,t, in time, we define a series of datasets over time:

Definition 6.4.3 Series of Datasets

X = (X, Xtgy- -, Xt,) (6.11)

Example 6.4.5 Our example dataset is composed by data retrieved at two different points in
time (866 Example 644) such that X = (X2015_05_08,X2015_05_10).

Due to limitations such as bandwidth restrictions and the frequent data changes in the
LOD cloud, LOD applications relying on data from the LOD cloud need to prioritize which
data sources should be considered first in order to achieve an optimal accuracy of their local
copies under the given constraints. Therefore, applications make use of a scheduling strategy
for data updates. A scheduling strategy aims to derive an order of importance for data sources
based on a set of data features. In the ideal case, a strategy would derive an order such that the
application would visit only the subset of LOD sources which have actually been changed. In
this section, we introduce a formal specification of update functions and a set of data features
used by update strategies for deriving such an order.

Whenever an application needs to update a local copy covering the data sources in c € C,
at time ¢;,1, it would technically be sufficient to fetch the complete dataset X, ,. However,
this would require us to visit all data sources ¢, retrieve their most recent version of the data
X, and integrate it into one dataset Xy,,,. Due to limitations such as network bandwidth
capacity for downloading data or computation time, we assume that only a certain fraction
of the data can actually be retrieved fresh from the cloud and processed in a certain time
interval.

Thus, applications need to apply a scheduling strategy to efficiently manage the accuracy
of the data. Based on features extracted from the dataset retrieved at an earlier point in time
t;, a scheduling strategy indicates which data sources ¢ should be visited (i.e., visit the URI ¢
and fetch the latest version of the data made available at this URI) in the time slice between
t; and t;,1. The update strategy can be seen simply as a relation:

Definition 6.4.4 Update Strategy

UcCx{l,...,n} (6.12)

A tuple (¢,4) in this relation indicates a point in time ¢; at which data from a data source
¢ should be updated.

Furthermore, we define the constraint of the bandwidth as a restriction to download at
most up to K triples.
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Definition 6.4.5 Constraint of the Bandwidth

For a giveni: Y [X.u,|<K (6.13)
(c,i)eU

For any given constraint of the bandwidth, it is possible to retrieve data from the sources

in their order of preference until the limit has been reached.

Example 6.4.6 Suppose our dataset has been updated most recently on May 8th, 2015 (see
Ezample 6.4.4), and we want to update our local copy again on June 10th, 2015. However,
due to limitations, the constraints of the bandwidth enables only K = 12,000 triples to be
fetched per time slice. For such constraints, we suppose we cannot fetch all the data since

| X dbpedia. org,2015-05-08] + | X musicbrainz. com,2015-05-08| + | Xbbe. co.uk,2015-05-08] > 12,000. Nevertheless,
without violating these restrictions, we can entirely fetch data from the first two data sources:

dbpedia.org and musicbrainz.com.

We define a last update function lu to identify for a specific data source and a given point
in time when its data was updated last:

Definition 6.4.6 Last Update Function

lu(e,i) = argmax;;{(c,j) e U} (6.14)
This function can be used recursively to identify, for instance, the update prior to the last
update by lu(c,lu(c,i) - 1).

Example 6.4.7 In the previous example, we updated our local copy by fetching data from
dbpedia.org and musicbrainz.com, then the last update time of the data sources are given as:
lu(dbpedia.org, 2015-06-10) = lu(musicbrainz.com, 2015-06-10) = 2015-06-10,

lu(bbc.co.uk,2015-06-10) = 2015-05-08

Using the last update function lu at time ¢;, we can define the aggregated data set according
to an update strategy, i.e., which version of which data source is part of the current local copy.
This aggregated data set Xt'i is defined as:

Definition 6.4.7 Aggregated Data Set

thz = U Xcvtlu(c,i) <615)
ceC

Example 6.4.8 Following Example 6.4.7, our updated dataset for June 10th, 2015 is given
as: X5015.06-10 = 1 X dbpedia. org,2015-06-10 X bbe. co.uk, 2015-05-08s X musicbrainz.com,2015-06-10

Finally, using this notation, we can easily construct the history of a particular data source
in the course of execution of an update plan over time up to time #;:

Definition 6.4.8
H(ce,t;) = {Xc,tj

Example 6.4.9 The history of our sample data source dbpedia.org is given as:

(c,j) €U, tj <t} (6.16)

H(dbpedia.org, 2015-06-10) = { X abpedia. org,2015-06-10> X dbpedia. org,2015-05-08
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Update Function

As a large number of LOD sources are available but only a limited number of sources can be
fetched per run, it is required to determine which sources should be visited first. By using the
vector of features of each data source, we define an update function p: f — R, which assigns
a preference score to a data source based on the observed features at time ¢;.

An update strategy is defined by ranking the data sources according to their preference
score in descending or ascending order, and fetching them starting from the top ranked entry
to some lower ranked entry. For instance, if we consider fg;,. to be the feature observed at
time t; for all ¢ € C, p could be defined as the rank of the data sources in ascending order
(from the smallest to the biggest ones).

Furthermore, the bandwidth defines the amount of data that can be fetched per run.
Consequently, at some point in time t¢;, data of a set of data sources is updated until the
bandwidth constraint has been consumed completely. For the sake of clarity, we discard a
data source when its data cannot completely be fetched, i.e., when the last started fetch
operation cannot be entirely executed because of the bandwidth limit being violated while
reading the data. We consider that the tuple (¢,7) is considered to be in the update relation
U defined above, if the data from ¢ can be entirely fetched based on the given order and the
available bandwidth. Without loss of generality, we assume that the data sources are visited
in a sequential order. However, it is left to the implementation to decide whether data from
the different data sources should be fetched in sequential or parallel processing.

6.4.5. Evaluation

In this section, we evaluate the dynamics function and different scheduling strategies presented
in the literature and analyze their effectiveness for updating local copies of the LOD sources.
We evaluate these strategies on a large-scale and real world LOD dataset. Our evaluation goal
is to show which of the update strategies produce better updates of the LOD sources, i.e, we
demonstrate for given restrictions of bandwidth, which strategy performs better in terms of
data accuracy and freshness.

Data

Our evaluation dataset is obtained from the Dynamic Linked Data Observatory (DyLDO). The
DyLDO dataset has been created to monitor a fixed set of Linked Data documents (and their
neighborhood) on a weekly basis®. Our evaluation dataset is composed of 149 weekly crawls
(in the following we will refer to a crawl as a snapshot) corresponding to a period over the
last three years (from May 2012 to March 2015). Furthermore, the DyLDO dataset contains
various well known and large LOD sources, e.g., dbpedia.com, musicbrainz.com, and bbc.co.uk as
well as less commonly known ones, e.g., advogato.org, statistics.data.gov.uk, and uefa.status.net.
For more detailed information about the DyLDO dataset, we refer the reader to [Kéfer et al.,
2013]. As we use weekly crawls obtained from the DyLDO dataset, we are only able to grab
changes occurring between consecutive weeks (e.g., daily changes are not considered).

To gain a better insight into our evaluation dataset, let us first look at the evolution of the
snapshots. The number of data sources per snapshot ranges between 465 and 742. On average,

SFor sake of consistency, we use only the kernel seeds of LOD documents
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a snapshot is composed of 590 data sources. During the period studied, the number of data
sources per snapshot slightly decreased, due to data sources going temporarily or permanently
offline. Looking at consecutive snapshots, on average 1.05% of the data sources per snapshot are
new and previously unseen (data sources birth rate), and 1.36% of the data sources disappear
each week (death rate). On average, 99.3% of the data sources remain in existence between
consecutive snapshots, and 37.3% of them change on a weekly basis. Taking the first snapshot
as reference, only 13.9% of the data sources remain unchanged over the entire interval studied.
This overview confirms prior findings [Kéfer et al., 2013] indicating that a high portion of the
data on the LOD cloud changes.

To provide better insights into how changes are distributed over the data sources, we
randomly sampled an arbitrary point in time (June 1st, 2014) and check for the distribution of
triples over data sources. We observe that most of the data sources, 78.3%, are small (containing
less than 1,000 triples) and they contribute only 0.5% of all triples retrieved at this point in
time. The few big data sources (0.6%) that are left (up to 1,000,000 triples), contribute more
than 49.2% of all triples. Furthermore, we observe that most of the changes (66.7%) take place
in the data sources with more than 1,000,000 triples.

Evaluation Methodology

Ideally, scheduling strategies should prioritize an update of data sources which provide modified
data. Note that we do not consider the task of discovering new data sources for inclusion into
the data cache. Rather, we want to maintain an as fresh-as-possible local copy of a fixed
predefined set of LOD sources. To be able to evaluate different scheduling strategies, we use
the following scenarios:

Evaluation Strategies

Single-Step We evaluate the quality of update strategies for a single and isolated update of a
local data cache, i.e., starting from a perfectly accurate data cache at time t;, our goal is
to measure which quality can be achieved with different update strategies at time t;,1,
for varying settings of bandwidth limitations.

Iterative Progression We evaluate the evolution of the quality of a local data cache when
considering iterative updates over a longer period of time, i.e., starting from a perfect data
cache at time ¢;, our goal is to measure how good is an update strategy in maintaining
an accurate local copy at subsequent points in time ¢;,1,%;19,..., t;j+pn, When assuming a
fixed bandwidth. In our experiment, we consider four iterations.

Data Features In the following, we present features that will be used in our experiments.
Please note that the set of features of a data source can always be extended.

Age provides the time span since the data source has been last visited and updated [Cho and
Garcia-Molina, 2000]. It captures the age of the data provided by a data source:

nge(C, thl) =1; - tlu(c,i) (617)
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PageRank provides the PageRank of a data source in the overall dataset at the (last known)
time [Page et al., 1999]:

fPageR(mk(C? thz) = PR(XC’tlu(c,i)) (618)

Size provides the (last known) number of triples provided by a data source:

fSize(C7 thl) = |Xcvtlu(c,i)‘ (619)

ChangeRatio provides the absolute number of changes of the data in a data source between
the last two (known) observation points in time [Cho and Ntoulas, 2002].

fRatiO(C7 thz) = |Xc’tlu(c,i) N chtlu(c,lu(c,i)—1)| + |Xc7tlu(c7lu(c,i)—1) N Xcvtlu(c,i)l (620)

ChangeRate provides the change rate between the observed data in the two (last known)
points in time of a data source (see Section 6.4.2).

fChange(C’ Xt,z) = A(‘chvtlu(c,i) ’ Xcvtlu(c,lu(c,i)—l) ) (621)
In this case, the change rate A is a function (metric) to measure the change rate between
two data sets. We will use two A functions:
Jaccard distance:

X ) -1- |(Xcvtlu(c,lu(c,i)fl)) n (Xcvtlu(c,i) )|
tlu(c,lu(c,i)fl)’ Cvtlu(c,i) - |Xc, U (Xc,

A (XC7

tlu(c,lu(c,i)—l)) tlu(c,i))|

Dice Coeflicient:

2% |(Xc»tlu(c,lu(c,i)—l)) n (Xc»tlu(c,i) )|
|Xc7tlu(c,lu(c,i)71) )| + |(Xcvtlu(c,i) )|

A(Xcvtlu(c,lu(c,i)—l)’chtlu(c,i)) =1-

Dynamics measures the behavior of the data source observed over several points in time (see
Section 6.4.3), where the dynamics of a data source is defined as the aggregation of
absolute changes, as provided by A-metrics.

A(‘)(Cvtlu(c,lu(c,'L)71) ) Xcvtlu(c,i) ) J <i

P >

J
nynamic(Q ng) = Z
1=0 tlu(c,i)v tlu(c,lu(c,i)fl)

We implemented the following update strategies:

1. Age updates from the last to the most recently updated data source.

2. Size-SmallestFirst updates from the smallest to the biggest data source.
3. Size-BiggestFirst updates from the biggest to the smallest data source.

4. PageRank updates from the highest to lowest PageRank of a data source.
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5. ChangeRatio updates from the most to the least changed data source based on set
difference applied to the last two retrieved versions of the data.

6. ChangeRate-J updates from the most to the least changed data source based on Jaccard
distance applied to the last two retrieved versions of the data.

7. ChangeRate-D updates from the most to the least changed data source based on Dice
Coefficient applied to the last two retrieved versions of the data.

8. Dynamics-J updates from the most to the least dynamic data source based on Jaccard
distance and previous observed snapshots of the data.

9. Dynamics-D updates from the most to the least dynamic data source based on Dice
Coefficient and previous observed snapshots of the data.

Please note that we analyze the strategy Age only for the [terative Progression scenario. Age
cannot be used in the Single Step scenario. Since we build the follow-up copy from a perfect
local copy, the feature Age would assign the same value to each data source.

The data features used by the strategies are extracted based on the available history infor-
mation. In our experiment, the history is composed of the last four updates. In the first setup,
the task to be accomplished by the strategies is to compute an update order for all data sources
at the point in time #;,1. For the strategies Size and PageRank, we use information about data
retrieved from the last update time t;. ChangeRatio and ChangeRate are calculated over the
last two updates t;_1 and t;, and Dynamics is calculated over the complete history for points
in time t;_4 to t;. For the Iterative Progression setup, we start with a perfect data cache at
t;. The task is to compute the updates iteratively at the next points in time t;.; to t;14. In
the first step, the history setup is the same as the single-step setup and the size of the history
increases along with the iterations.

In order to make the results of the different setups comparable, and due to the fact that the
iterative setup considers four iterative updates, the snapshots used in the single step evaluation
are the same ones which are evaluated in the first place in the iterative evaluation setup (every
fifth snapshot of the dataset). Additionally, we simulate network constraints by limiting the
relative bandwidth, i.e., that only a certain ratio of triples can be fetched for updating a local
copy at a given point in time. In the simulation, we stepwise increase the bandwidth constraint
from 0% to 5% in intervals of 1%, from 5% to 20% in intervals of 5%, and from 20% to 100%
in intervals of 20% of all available triples.

LOD sources are from time to time unavailable, i.e., some LOD sources cannot be reached
by any application at a certain point in time, but may be again reachable at a later point
in time. Nevertheless, the implemented strategies do not differentiate whether a source is
unavailable for a period of time, or if it is deleted from the cloud. Whenever a LOD source
is deleted or unavailable at point in time ¢;, no triples are delivered and the empty set is
considered for further computations.

Metrics The quality of an update strategy is measured in terms of micro average recall and
precision over the gold standard, i.e., the perfect up-to-date local copy:

2t [ Xep 0 X 4]
Xl

pmicro(Xt,aXt) = (622)

ZCECxé
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Figure 6.6.: Quality Outcomes for the Single Step Setup
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Tmicro(Xé)Xt) = (623)

Discussion and Results

Single-Step Evaluation Figure 6.6(a) and Figure 6.6(b) show the average precision and recall
over all snapshots the single-step setup. The z-axis represents the different levels of constraints
of relative bandwidth (in percent) and the quality in terms of precision and recall is placed
on the y-axis. We observe that precision ranges from 0.862 to 1 and recall from 0.892 to 1
for bandwidth from 0% to 100% (see Figure 6.6(a) and Figure 6.6(b)). This implies that if no
updates are executed (no bandwidth is available), our dataset is on average 87% correct (F
measure) after one update. This value can be interpreted as the probability of getting correct
results when issuing an arbitrary query on the data.

Overall, the Dynamics strategies outperform all other strategies. First, we look at the
precision curve. For very low relative (see Figure 6.7(a)) bandwidth (from 0% to 10%) the
Dynamics strategies perform best, followed by the ChangeRate strategies. With only 3% avail-
able bandwidth, precision improvements is from 0.862 to 0.873 for Dynamics, and to 0.869 for
ChangeRate. With 10% bandwidth the improvement rises to 0.888 for Dynamics and 0.879
for ChangeRate while the third best strategy, SmallestFirst, achieves 0.877 while the other
strategies do not achieve scores higher than 0.862. For the higher relative bandwidths, the
ChangeRate and Dynamics strategies are comparable and show only small differences in per-
formance. Turning to recall (see Figure 6.7(b)), ChangeRate and Dynamics perform quite
similarly over the entire interval and clearly outperform all strategies and all bandwidth con-
straints. Even with only 15% bandwidth available, the recall values are above 0.957 while all
other strategies achieve at most 0.93.

LOD sources vary in their sizes. As shown, most of the big data sources change frequently
and, consequently, they are in the top-ranked entries for strategies such as the Dynamics and
ChangeRate. Also, some of the smaller data sources have a high change frequency. Therefore,
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Figure 6.7.: Quality Outcomes for the Single Step Setup Setup at Low Bandwidth Level (5%).

in the ranking list provided by the Dynamics and ChangeRate strategies, a mix of big and
small sources can be found in the top entries. For strategies such BiggestFirst and ChangeRatio
only/most of the biggest sources are top ranked. In contrast, by the strategy SmallestFirst only
the smallest sources are top ranked. When updating the smallest data sources first, even for a
very small bandwidth, a great number of data sources can be fetched and consequently data
changes can also be retrieved. This can be observed in the recall curve of the SmallestFirst
strategy. When only low bandwidth is available, it is not possible to fetch data from big
data sources since there is not enough bandwidth. This can be clearly seen for the BiggestFirst
strategy, where updates are observed only when 20% or more bandwidth is available. The more
bandwidth is available, the more changes can be retrieved. Due to the mix of data sources sizes
in the ranking list of the Dynamics and ChangeRate strategies, they are able to retrieve data
when only a very small bandwidth is available and overall are able to retrieve more modified
data than the other strategies for all bandwidths. The other strategies narrow in quality when
more bandwidth is available.

In general, the single-step experiments show that update strategies based on dynamics
followed by change rate make best use of limited resources in terms of bandwidth. For very
low relative bandwidth, the strategies based on data source dynamics tend to provide better
results.

Iterative Progression Evaluation In this evaluation, we look at evolving quality when consid-
ering iterative updates. This setup simulates real-use case scenarios such as of a LOD search
engine continuously updating its caches. In our experiments, we look at how precision and
recall behave over the iterations. First, we fix the bandwidth constraints. We choose a low
(5%), mid (15%), and high (40%) bandwidth which provided low, average, and good outcomes
based on the previous experiments (single-step evaluation).

Figure 6.8(a) and Figure 6.8(b) show precision and recall for bandwidth fixed at 5%. The
x-axis represents the iterations (points in time) and the y-axis the quality in terms of precision
and recall. Note that quality decreases along the iterations. This is expected, since only at the
first iterations the update process starts from a perfect data cache. For low relative bandwidths,
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Figure 6.8.: Quality Outcomes for the Iterative Progression Setup at Low Bandwidth Level
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Figure 6.9.: Quality Outcomes for the Iterative Progression Setup at Mid-Level Bandwidth
(15%).

the negative impact on the quality of iterative updates is quite similar for all strategies.
Nevertheless, the plot confirms the previous discussion that the Dynamics strategies followed
by ChangeRate are the more appropriate ones, if we need to predict the next best steps and
not only the first step anymore. Nevertheless, the strategies show a uniform loss of quality.

A similar output is observed for bandwidth fixed at 15% (see Figure 6.9(a) and Fig-
ure 6.9(b)). Here again, fetching data from the source that changes more than others ensure
more accurate updates. Even if we can observe that the loss of quality is comparable, the
Dynamics strategies followed by ChangeRate maintain a higher level of quality after the four
iterations. Dynamics precision and recall decreases from 0.92 to 0.846 and 0.953 to 0.929 and
ChangeRate from 0.908 to 0.841 and 0.939 to 0.918 after the four iterations, while the quality
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Figure 6.10.: Quality Outcomes for the Iterative Progression Setup at High-Level Bandwidth
(40%).

of the other strategies are mostly lower after only one or even no iteration.

Precision and recall under a relative high bandwidth (fixed at 40%) are shown in Fig-
ure 6.10(a) and Figure 6.10(b). The recall values of the Dynamics strategies and ChangeRate
hardly change over the iterations (above of 0.947). The precision values decrease with a max-
imum of 0.889. Over all iterations, these strategies outperform all the others even when only
one-step update is applied. Interestingly, at this bandwidth level, the strategies which fetch
data from the big data sources first show good performance since—up to that bandwidth
level—it is possible to load a big data source entirely. As most changes concentrate in the
big data sources, they are also able to fetch most of the changes. For instance, precision and
recall of the ChangeRatio strategy reaches values of 0.888 and 0.923, respectively, after the
iterations.

Overall, the results of this experiment setup confirm the discussion from the previous one,
i.e, the strategies based on the dynamics features followed by the ones based on change rate
are the more appropriate ones if we need to predict iterative updates. Certainly, the more
bandwidth is available, the more changes can be grabbed, and therefore the rate of quality
lost over the iterations is lower for all strategies. Still, even after four iterations, Dynamics
strategies (followed by ChangeRate) were able to better maintain an up-to-date local copy for
all different bandwidth levels. From our experiments and for low relative bandwidth, these
strategies could definitely better support applications to fetch the most changed data, and
thus to avoid fetching unchanged data, than the other strategies.

6.4.6. Related Work

Various related work have investigated the characteristics of the LOD cloud. Their goal is to
apply these characteristics for the purpose of different applications such as query recommen-
dations and indices updates. Some works conducted structural analysis of the LOD cloud such
as [Auer et al., 2012, Hausenblas et al., 2009, Alexander and Hausenblas, 2009] in order to ob-
tain statistical insights into the characteristics of the data. In addition, there is related work on
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analyzing the LOD cloud in order to verify its compliance with established guidelines and best
practices how to model and publish data as Linked Data [Hogan et al., 2012, Schmachtenberg
et al., 2014]. Other works such as Neumann et al. [Neumann and Moerkotte, 2011] analyze
LOD in order to obtain statistics like its distribution in the network. The goal is to apply these
statistics for the purpose of query recommendation. Although these works provide interesting
insights into the characteristics of LOD, they typically do not consider the dynamics of the
cloud, and how it changes.

Ding and Finin [Ding and Finin, 2006]. crawled about 300 million triples from different
so-called Semantic Web documents (SWDs) in 2006. The authors have conducted different
analyses such as extracting the age of the SWDs based on the last-modified time informa-
tion contained in the HTTP response header of the SWDs. The data exhibits an exponential
distribution, which indicates that many new SWDs have been added or that many old ones
are actively modified. Overall, their analysis also shows that the volume of the Semantic Web
documents available on the web is growing, an observation which is consistent with and well-
known from other sources like the LOD cloud web site®. However, it remains unknown at which
point in time the different snapshots of the SWDs have been captured; the time span starting
from the initial to the final snapshot is also unknown.

An analysis of temporal information in LOD is presented in [Rula et al., 2012], i.e. tem-
poral information available in document headers and in triples. The experiments on the BTC
2012 dataset show that only 10% of all triples explicitly provide temporal information. Thus,
we have decided to apply our analysis not on this dataset but on the DyLDO dataset that
provides weekly snapshots of a selected set of crawled resources. Among those works that are
dedicated on the study of the Linked Data dynamics, with a dedicated focus on the update
frequencies of LOD search engine indices, Umbrich et al. [Umbrich et al., 2010] compare the
dynamics of Linked Data and the dynamics of Linked datasets with HTML documents on the
Web. Their change detection uses (i) HT'TP metadata monitoring (HTTP headers including
timestamps and ETags), (ii) content monitoring, and (iii) active notification of datasets. These
three detection mechanisms are compared by several aspects like cost, reliability, and scala-
bility of the mechanism. Similar to our approach, the content monitoring applies a syntactic
comparison of the dataset content, i. e. a comparison of RDF triples (but ignoring inference).
Change detection is a binary function which is activated whenever changes are found. In our
evaluation, we consider more complex change metrics to allow fine-grained ranking.

The Dynamic Linked Data Observatory is a monitoring framework to analyze dynamics
of Linked Data [Kafer et al., 2013]. Snapshots of the Web of data are regularly collected and
then compared in order to detect and categorize changes. Using these snapshots, the authors
study the availability of documents, the links being added to the documents, and the schema
signature of documents involving predicates and values for rdf:type to determine their change
rate. Only 25% of the documents change frequently and they contain a balance of documents
with additions and deletions. Moreover, they showed that the rate of fresh links being added to
the documents is very low. Finally, regarding the types of changes occurring on an RDF triple
level, the authors conclude that the schema signature of documents involving predicates and
values for rdf:type changed very infrequently. Motivated by this work, Dividino et al. [Dividino
et al., 2013] analyzed the changes on the usage of the vocabulary terms in the DyLDO dataset.
The authors show that the combination of vocabulary terms appearing in the LOD documents

Shttp://www.lod-cloud.net/, last accessed: 23 March, 2013
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changes considerably.

In this work we conducted an evaluation of different baseline and state-of-the-art approaches
of crawling strategies to improve cache maintenance. Certainly, we could not cover the wide
rage of strategies existing in the literature. For instance, the PageRank metric, which is in-
cluded in our evaluation, has been the subject of extensive research and different variation have
been proposed so far [Gyongyi et al., 2004, Haveliwala, 2003, Jeh and Widom, 2003, Haveli-
wala, 2003, Wu et al., 2006]. Nevertheless, a lot of research has been done in covering the
different aspects of crawling web documents. In this section we describe the work that is the
most relevant to ours.

Crawling the Web Wolf et al. [Wolf et al., 2002] discuss re-crawling strategies in order to

maintain the freshness of the materialized data or search index. Similar to Pandey and
Olston [Pandey and Olston, 2005], they explore page relevance (how much influence a
page content has on search queries) to crawling optimization.

Change frequency (how often the content of a page is updated by its owner) is considered
in many studies. Cho and Garcia-Molina [Cho and Garcia-Molina, 2003b] estimate change
frequencies of Web pages when the complete change histories of the pages is not available.
Brewington and Cybenko [Brewington and Cybenko, 2000a, Brewington and Cybenko,
2000b] estimate the distribution of change frequencies based on experimental data. Cho
and Garcia-Molina [Cho and Garcia-Molina, 2003a] proposed a crawl policy which focuses
only on the probability of change for pages that do not change very frequently. They
claim that recrawling pages that change very frequently may dominates crawl resources
and actually does not guarantee cache freshness.

Olston and Pandey [Olston and Pandey, 2008] present the concept of information longevity,
i. e. the lifetime of the content that appears and disappears from the Web. They show
that there is no correlation between information longevity and change frequency, and
present a generative model combining the longevity and change profile.

Some works [Fetterly et al., 2004, Cho and Ntoulas, 2002, Tan and Mitra, 2010] exploit
the correlation between content change with the top-level domains of web pages. Cho
and Ntoulas use this correlation to estimate the change probability of any page from the
website. Tan and Mitra designed a crawling algorithm that clusters Web pages based on
features that correlate to the change frequencies obtained by examining past history.

Radinsky and Bennett [Radinsky and Bennett, 2013] propose an expert predictive frame-
work for predicting content changes on the Web using past history and based on features,
such as relatedness to other pages and similarity in the types of changes.

Calzarossa and Tessera [Calzarossa and Tessera, 2015] studied the temporal patterns of
Web content changes as time series whose analysis provides models able to explain their
dynamics. Their approach reproduces the dynamics of the empirical change patterns and
provides extrapolations into the future to be used for forecasting.

Time series analysis is applied in [Zhang et al., 2009] to develop models for the analysis of
Web searchersa€™ behaviors over time. The predictive models are based on the dynamic
patterns of the interactions between users and search engines.

LOD Cloud Many of the works dedicated to crawling the LOD cloud such as LDSpider [Isele

et al., 2010Jand LOD Laundromat [Beek et al., 2014] focus on different issues, such as
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the crawler architecture, topic coverage, crawler parallelization [Lasek et al., 2012], etc.

The importance of caching for efficient querying linked data is analyzed by Hartig et
al. [Hartig, 2013]. Query execution is based on traversing RDF links to discover data
that might be relevant for a query during the query execution itself. Data is cached
and it is used for further queries. Caching show some beneficial impact to improve the
completeness of the results.

In [Lampo et al., 2011] the authors investigate which type of SPARQL queries can benefit
from caching data during query execution or warming up cache. They demonstrate that
caching can have a positive effect on complex SPARQL queries.

Umbrich et al. [Umbrich et al., 2012] propose a hybrid approach for answering SPARQL
queries, i.e, deciding which parts of a query are suitable for local or remote execution.
They estimate the freshness of cached data using the notion of coherence for triple pat-
terns against the live engine. Only static data is kept locally and they determine which
parts of the query should be evaluated remotely and locally. Dehghanzadeh et al. [De-
hghanzadeh et al., 2014] extend this approach by extending the statistics of cardinality
estimation techniques that are used in the join query processing phase.

Roussakis et al. [Roussakis et al., 2015] proposes an approach that copes with automatic
identification of deltas between versions which prescribes (i) the definition of custom,
application-specific changes and their management (definition, storage, detection) in a
manner that ensures the satisfaction of formal properties, like completeness and un-
ambiguity, (ii) the flexibility and customization of the considered changes, via complex
changes that can be defined at run-time, and (iii) the easy configuration of a scalable
detection mechanism, via a generic algorithm that builds upon SPARQL queries easily
generated from the changes definitions.

6.4.7. Findings and Research Contribution

We proposed and evaluated scheduling strategies for updating on a large-scale LOD dataset
that was obtained from the cloud by weekly crawls over the course of three years. In a first
setup, where we evaluated the quality of update strategies for a single and isolated update
of a local data cache, we observed that update strategies based on dynamics or change rate
made best use of limited resources in terms of bandwidth. For very low relative bandwidth,
the strategies based on data source dynamics provided better results. With only 15% available
bandwidth, we observed improvements of precision and recall for dynamics from 0.862 to 0.924
and from 0.892 to 0.957, respectively.

In a second evaluation setup, we evaluated the behavior of the strategies in a realistic
scenario (e.g., a LOD search engine updating its caches) which involves measuring the quality
of the local data cache when considering iterative updates over a longer period of time. Overall
the results of this experiment setup confirmed the discussion from the previous one: Especially
for low relative bandwidth, update strategies based on dynamics or change rate are more
appropriate to support applications to fetch the most changed data (and thus avoid fetching
unchanged data) than the other strategies.

In future work, we plan to investigate the impact on performance when combining different
update strategies as well as to consider further evaluation setups such as the cold start setup,
that is, we will measure how good is an update strategy starting from an empty cache and
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considering iterative updates over a longer period of time. Furthermore, we plan to extend
these strategies to consider the availability of the LOD sources over time, namely, to be able
to differentiate whether a source is unavailable for a period of time or has been definitively
deleted from the cloud.
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7. Conclusion and Further Directions

My work demonstrates by examples the importance and benefits of the use of provenance in
different Web applications and scenarios. In particular, this dissertation presents mechanisms
to manage and use provenance in its many dimensions when querying, debugging or repairing,
ranking and updating caches of Web data. The approaches presented show clearly the value of
provenance as it enables new kinds of data analysis and quality assessment on top of the raw
data. The flexibility of these approaches combined with their high scalability makes my work
a possible building block for a Semantic Web proof and trust layer.

Furthermore, this dissertation can be seen as a motivation to Web sources to publish
correct and valid provenance values to support application needs. I believe that publishing
correct provenance information is a step towards quality-oriented data usage in the Web.

In the following, the findings and future directions for this research are listed.

7.1. Findings

Provenance Management in the Semantic Web

Querying RDF Datasets with Provenance

This chapter presented an original, generic, formalized and implemented approach
for the management of many dimensions of provenance, like source, authorship, cer-
tainty, and others, for RDF repositories. This method re-uses existing RDF model-
ing possibilities in order to represent provenance. Then, it extends SPARQL query
processing in such a way that given a SPARQL query for data, one may request
provenance without modifying the query proper.

This approach remains compatible to existing standards and query languages and
can be easily integrated with existing applications and interfaces. It achieves highly
flexible and automatically coordinated querying for data and provenance, while
completely separating the two areas of concern.

Reasoning and Debugging Evolving OWL Ontologies with Provenance

This chapter described a black-box algorithm for optimized reasoning with prove-
nance. With the algorithm proposed, one can efficiently reason in OWL ontologies
with provenance, i.e., provenance is efficiently combined and propagated within the
reasoning process. Therefore, the black-box algorithm for reasoning with provenance
enables the use of provenance for real time for very large and expressive ontologies.

The algorithm presented computes the explanations of the answer and using the
pinpointing formula to compute provenance in an algebraic way. However, it does
not need to compute all pinpoints as the computation of pinpoints may become
very expensive and inapplicable if users need to interact with dynamically changing
knowledge in real time. The optimized algorithm for deriving provenance performs
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significantly better in the average case than naive implementations. It does not
need to compute all pinpoints, and in fact does not even need to pinpoint precisely.
Instead, it computes an approximation which is sufficient for deriving provenance.

The evaluation has shown that my approach performs significantly better than
existing general pinpointing algorithms, scales well, and is applicable for interactive
applications. It has demonstrated that the algorithm performs orders of magnitude
better than a naive implementation. Therefore, provenance information does not
only provide value to the end user, it can be further used to considerably speed up
debugging processes by rapidly approximating a solution.

The framework presented was restricted to ontology diagnosis scenarios. It, however,
introduces an approach for provenance querying under a variety of scenarios that
consider many of the dimensions of provenance such as restrictions of access rights,
knowledge validity when the truth of knowledge changes with time, and inferring
trust value.

Using Provenance in Semantic Web Applications
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An Efficient Provenance-Aware News Feed Ranking Algorithm via Preference Ag-

gregation

In this chapter, we have proposed three algorithms that provide the most relevant
news feeds according to the user’s preferences. Provenance is used to represent
users preferences. Our algorithms rank messages ’on the fly’ as the message passes
through the system.

We have introduced the concept of online preference aggregators and investigated
the consequences of adding a new element to the preference orders. We have studied
the relationships between the original aggregated preference order and the updated
aggregated preference order, and established a framework for computational ap-
proaches to online preference aggregation. Concrete online aggregation algorithms
and complexity analysis have been presented for the plurality, Borda count, and
sequential pairwise voting methods. Our complexity analysis has shown that the
online aggregator performs better than the original aggregators after the domain
changes. The computation of the original aggregators has time complexity O(nx*m),
and we have shown that the online plurality aggregator has time complexity O(m),
the online Borda count aggregator O(m * logn), and the sequential pairwise aggre-
gator O(m).

Managing Data Changes in the Linked Open Data Sources

This chapter presented two techniques for dealing with data dynamics in the LOD
sources using provenance information. First, it presented an evaluation of the con-
formance of LOD data sources to provide a valid and correct Last-Modified HT'TP
header field, which indicates the date and time at which the resource was last mod-
ified. The experiment shows that overall and on average only 8% of the resources
in the datasets provide correct values for this field. This number is far too low to
be of use for any practical application. It is, however, not clear why LOD sources
do not provide valid information. We conjecture that some default configuration of
LOD servers leads to this misbehavior.



7.1. Findings

This analysis is restricted to the Last-Modified field; however, it could be easily
extended to check the conformance verification of other HTTP header fields.

The reliable provision of provenance information in the context of the established
HTTP protocol would be beneficial to the entire Web of Data. Many base tech-
nologies such as Linked Data caches and indexes may benefit from this information
since a simple check on this provenance could support their decision process of
determining which sources need to be updated.

We believe that publishing correct HT'TP Header information is a step towards
quality-oriented data usage in the LOD cloud. Therefore, with this work we point
out the dimension of the problem of erroneous and missing information from the
HTTP header for Linked Data. My work, therefore, motivates LOD sources to
publish correct and valid values to support application needs.

Then, this chapter presented a general and flexible framework for analyzing data
dynamics on the LOD cloud. Different from quantifying changes of datasets, the
dynamics capture the evolution of a dataset over time. The dynamics function is
defined as the aggregation of absolute, infinitesimal changes, where such changes
may be quantified by the different existing change metrics in the literature. Further-
more, this method can be parameterized to make use of different decay functions
for stressing or weakening changes as time passes.

The dynamics function is evaluated for the purpose of data caching on a large-scale
on a large-scale LOD dataset that was obtained from the cloud by weekly crawls over
the course of three years. The evaluation includes different scheduling strategies and
investigates two different setups: (i) in the single step setup, the quality of update
strategies for a single and isolated update of a local data cache is evaluated, while
(ii) in the iterative progression setup, the evaluation involves measuring the quality
of the local data cache when considering iterative updates over a longer period of
time.

Mainly, the evaluation shows that the measures capturing change behavior of LOD
sources over time are most suitable for conducting updates. In the first setup, it was
observed that the update strategies based on dynamics or change rate make best
use of limited resources in terms of bandwidth. For very low relative bandwidth,
the strategies based on data source dynamics provide better results. With only 15%
available bandwidth, we observed improvements of precision and recall for dynamics
from 0.862 to 0.924 and from 0.892 to 0.957, respectively.

In the second evaluation setup, the overall results confirm the discussion from the
previous one. The strategies based on the dynamics features followed by the ones
based on change rate are the more appropriate ones if one needs to predict (it-
erative) updates. Certainly, the more bandwidth is available, the more changes
can be grabbed; and therefore the rate of quality lost over the iterations is lower
for all strategies. Still even after four iterations, Dynamics strategies (followed by
ChangeRate) were able to better maintain an up-to-date local copy for all differ-
ent bandwidth levels. From the experiments and for low relative bandwidth, these
strategies could definitely better support applications to fetch the most changed
data (and thus to avoid fetching unchanged data) than the other strategies.
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7.2. Future Directions

Querying RDF Datasets with Provenance

Management of provenance incurs costs for its collection and for its storage. In general,
provenance information can grow to be larger than the data it describes if the data is
fine-grained and provenance information rich. So the manner in which the provenance is
propagated along the computation is crucial to its scalability.

Recent works tackle some of these issues. In [Wylot et al., 2014, Wylot et al., 2015a], the
authors present the TripleProv, a native RDF store that allows tracking and querying
provenance over Web Data. Later in [Wylot et al., 2015b], Wylot et al. use the TripleProv
store to investigate the effectivess of different query execution strategy for provenance-
enabled queries. In [Deutch et al., 2015b], Deutch et al. describe an approach for web
scale provenance tracking. Their approach allows selective tracking of how-provenance,
where the selection criteria are partly based on the meta-data itself (thus significantly
reducing provenance size). Summarization technique for provenance graphs haven been
presented by Luc Moreau et al. [Moreau, 2015]. Provenance summaries can be considered
as “compact users views” and have a good potential to detect anomalies and outliers.

In order to extend our approach to fully capture expressiveness of SPARQL (includ-
ing the OPTIONAL construct), the provenance model has to be extended or changed.
In [Theoharis et al., 2011, Geerts et al., 2013, Karvounarakis et al., 2013] Theoharis et al.
and Karvounarakis et al. discuss the need for extending the relational provenance models
to be leveraged for SPARQL queries over RDF. Particularly, they discuss that the use
of semiring models for SPARQL have been shown inadequate to handle the OPTIONAL
construct, and have advocated the need for a new abstract provenance model captur-
ing the full expressiveness of SPARQL. In addition, Geerts et al. [Geerts et al., 2016]
identify SPARQL fragments for which provenance models for positive relational queries
can be leveraged, despite the subtle differences between the semantics of SPARQL and
relational algebra operators. In [Amsterdamer et al., 2011c], the writers show particular
semirings for which an extension for supporting difference is impossible.

Reasoning and Debbuging Evolving OWL Ontologies with Provenance

This work has introduced an optimized algorithm for tracking undesired inferences and
inconsistencies using provenance when answering queries upon evolving ontologies on the
Semantic Web. Further optimizations on the provenance selection criteria are possible
such as an extension towards a possibilistic logic, e.g. based on [Knechtel and Penaloza,
2010, Baader et al., 2009] and on integration with a system for tracking ontology changes.
Future plans include applying this approach to provenance to other logical formalisms
beyond DL SRZQ(D).

An Efficient Provenance-Aware News Feed Ranking Algorithm via Preference Aggregation
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Standard voting methods require in the worst case the complete re-computation of the
aggregation after changes in the domain. This chapter has shown, however, that for the
plurality, Borda count, and sequential pairwise voting aggregators, the dynamic setting
can be better handled.

Future work includes the undertaking of an empirical evaluation to analyze how the
proposed algorithms behave in real use case scenarios.



7.2. Future Directions

Managing Data Changes in the Linked Open Data Sources

This chapter first presented an analysis of the availability and conformance of the HT'TP
Header’s Last-Modified field. This analysis is restricted to the Last-Modified field, how-
ever, in future work, it could be extended to check the conformance verification of others
HTTP header fields.

Then, it presented a function to measure the dynamics of a RDF dataset that capture the
evolution of a dataset over time. This research could be further explored to approximate
the change rate function based on piecewise linear functions, polynomial interpolation
and cubic splines over the observations of changes at discrete points in time. However,
the benefit of these more sophisticated approximations needs to be evaluated in different
real- world scenarios.

At last, this chapter described an evaluation of different update scheduling strategies in
two different setups. Future work includes the investigation of the impact on performance
when combining different update strategies as well as to consider further evaluation
setups such as the cold start setup in order to measure how good is an update strategy
starting from an empty cache and to consider iterative updates over a longer period of
time.
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