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Zusammenfassung

Mit dem Aufkommen von Head-Mounted Displays (HMDs) der aktuellen Ge-
neration erlangt Virtual Reality (VR) wieder großes Interesse im Feld von me-
dizinischer Bildgebung und Diagnose. Exploration von CT oder MRT Daten in
raumfüllender Virtual Reality stellt eine intuitive Anwendung dar. Allerdings gilt
in Virtual Reality, dass das Aufrechterhalten einer hohen Bildwiederholungsrate
noch wichtiger ist als bei konventioneller Benutzerinteraktion, die sitzend vor ei-
nem Bildschirm erfolgt. Es existieren starke wissenschaftliche Hinweise, die na-
helegen, dass geringe Bildwiederholungsraten und hohe Latenzzeit einen starken
Einfluss auf das Auftreten von Cybersickness besitzen. Diese Abschlussarbeit un-
tersucht zwei praktische Ansätze, um den hohen Rechenaufwand von Volumenren-
dering zu überkommen. Einer liegt in der Ausnutzung von Kohärenzeigenschaften
des besonders aufwändigen stereoskopischen Rendering Set-ups. Der Hauptbeitrag
ist die Entwicklung und Auswertung einer neuartigen Beschleunigungstechnik für
stereoskopisches GPU Raycasting. Zudem wird ein asynchroner Renderingansatz
verfolgt, um das Ausmaß von Latenz im System zu minimieren. Eine Auswahl von
Image-Warping Techniken wurden implementiert und systematisch evaluiert, um
die Tauglichkeit für VR Volumenrendering zu bewerten.

Abstract

With the emergence of current generation head-mounted displays (HMDs), virtual
reality (VR) is regaining much interest in the field of medical imaging and diag-
nosis. Room-scale exploration of CT or MRI data in virtual reality feels like an
intuitive application. However in VR retaining a high frame rate is more critical
than for conventional user interaction seated in front of a screen. There is strong
scientific evidence suggesting that low frame rates and high latency have a strong
influence on the appearance of cybersickness. This thesis explores two practical ap-
proaches to overcome the high computational cost of volume rendering for virtual
reality. One lies within the exploitation of coherency properties of the especially
costly stereoscopic rendering setup. The main contribution is the development and
evaluation of a novel acceleration technique for stereoscopic GPU ray casting. Ad-
ditionally, an asynchronous rendering approach is pursued to minimize the amount
of latency in the system. A selection of image warping techniques has been im-
plemented and evaluated methodically, assessing the applicability for VR volume
rendering.
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1 Introduction

1.1 Motivation

In recent years, efficient stereoscopic rendering has become a field of interest again.
Various new consumer products of head-mounted displays (HMDs) for virtual re-
ality (VR) applications are driving this interest. Many VR applications are aimed
at entertainment or gaming based interaction and common acceleration methods
for polygonal meshes are implemented. In the medical field VR is regaining in-
terest where in many cases, volumetric medical data needs to be displayed [31, 2].
Volumes are commonly rendered directly using GPU accelerated image-based ray
casting techniques in which the volume is sampled along rays shot from the eye’s
center. Intuitively to produce a stereo pair of images the volume is rendered once
from the left and once from the right eye, effectively doubling the rendering time.
Volume rendering is computationally very expensive as it is. In VR applications
requirements for constant and high frame rate is stronger than ever. Exposure to
low frame rate and high latency might have direct negative physiological effects on
the user. The condition, also called virtual reality sickness or cybersickness, causes
symptoms like headache and nausea. Best practices for volume rendering in vir-
tual reality have yet to be established, therefore this property is often overlooked.
This thesis is motivated by the eagerness to expedite the potential of VR volume
rendering with the determination to leverage the risk of cybersickness therein.

1.2 Goals

The driving question of this thesis is: How is it possible to do interactive volume
rendering in virtual reality without exposing the user to low frame rates and la-
tency? The hypothetical use-case this thesis aims for is the inspection of medical
volume data in a room-scale VR environment. The goals to the identified problems
in this context are:

• Find ways to maintain a constant, head-tracked image stream of (optimally)
90 frames per second.

• Find ways to accelerate ray casting while maintaining overall interactivity of
the system.

• Find ways to accelerate the stereoscopic image generation process.

To meet the first goal of a constant low-latency image stream, this thesis evaluates
the implementation of image warping. With this a low frame rate is compensated
for by generating in-between frames from the last rendered image. To meet the
second goal of fast, yet interactive rendering a selection of acceleration methods
that do not rely on pre-computations and elaborate data-structures is implemented.
The third goal arised from the very specific setup imposed by rendering for a virtual
reality HMD. That is rendering two images per frame, one for each eye. More
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often in stereoscopic rendering some sort of coherency between the views allows
for accelerated rendering. To this end, this thesis proposes a novel technique to
speed up stereoscopic GPU ray casting.

1.3 Outline

This thesis is structured as follows. In Section 2 the fundamental principles and
methods to this work are established. It establishes terminology that is tightly
linked to the field of virtual reality and recapitulates fundamental aspects of vol-
ume rendering. Section 3 gives an overview of current advancements and related
work concerning virtual reality in a medical environment, volume rendering ac-
celeration, image warping and stereoscopic rendering techniques. Additionally,
a brief introduction to the condition of cybersickness and current research on the
topic is given. Following this, Section 4 introduces the novel stereoscopic GPU ray
casting technique. The proposed method is thoroughly described, also discussing
its limitations. Section 5 describes a system design for volume rendering in vir-
tual reality that employs the knowledge gathered before. The concept describes an
asynchronous rendering system which on one hand consists of an accelerated vol-
ume rendering component and on the other hand of a programmable display layer
that handles the image warping. Section 6 evaluates implementations of both the
stereo method and the described VR volume rendering system. Finally, Section 7
concludes the thesis, first discussing areas for future work and lastly summarizing
the work.

2 Fundamentals

2.1 Virtual Reality Terminology

Ivan Sutherland [61] described the idea of using advanced display technology to
immerse users in virtual worlds. However, the current field of virtual reality (VR)
is broad and finding a universal definition is still difficult. Adapting the definitions
by Rebenitsch [53], virtual reality (VR) refers to a simulated environment whose
visual content is entirely created by a computer and the appearance of the environ-
ment is altered by the participant’s real-world actions. Furthermore, only the usage
of a position-tracked head-mounted display (HMD), a visor display that places a
small screen that renders two seperate images of a stereoscopic view before the
eyes, is considered. Latency, in the context of this thesis, refers to the motion-
to-photons latency, which is the time it takes for a user motion to become visible
on screen. This latency comprises the time until the hardware reports the updated
tracking information, the time until the rendering component finishes using this
information and the time until the display finally lights up (emitting photons) to
show the image. For current generation HMDs that have a very high update rate
for tracking information, the largest portion of latency is likely to arise from the
rendering component.
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HMD OR DK1 OR DK2 OR CV HTC Vive
Resolution (eye) 640×800 960×1080 1080×1200 1080×1200
Update rate 60 Hz 75 Hz 90 Hz 90 Hz
Field of view ∼ 90◦ 100◦ 110◦ 110◦

Tracking Rotation Position Room-scale Room-scale
Year 2013 2014 2016 2015

Table 1: Summary of technical specifications of recent consumer product HMDs.

VR hardware historically consisted of complicated setups with expensive equip-
ment. However, state-of-the-art VR HMDs are now affordable enough for the mass
market. The current consumer products vary in functionality, but the overall trend
shows increasing display resolution per eye, update rate, horizontal field of view
and positional tracking capabilities. Table 1 summarizes these for a selection of
popular, recent HMD products: the successive Oculus Rift (OR) development kits
(DK1 and DK2) and consumer version (CV) and a competing product, the HTC
Vive. The trend is suggesting that future HMDs will aim for room-scale positional
tracking with six degrees of freedom. In this type of VR setup, the user is able to
walk freely in a room-sized area while the head movement is tracked and mapped
to the virtual camera. This thesis uses the exemplary HMD specifications of the
HTC Vive, however the presented techniques are generally agnostic of the actual
HMD employed.

2.2 Volume Rendering Fundamentals

Volume rendering is a broad and generally well-researched field. Over the years,
works of reference have been compiled [36, 26, 28, 21] time and again.
Generally, volume data is simply scalar values arranged in a 3D grid. Cells of the
grid are refered to as voxels. Slicewise inspection by mapping the scalar values
to a grayscale is often possible, but unintuitive and may require special training
and experience. With indirect volume rendering, the volume is processed to gen-
erate an intermediate surface representation of the volume that can be visualized
using common polygonal rendering methods [28]. A notable example of this is the
marching-cubes algorithm by Lorensen and Cline [42]. With direct volume render-
ing, much more of the information contained within the data can be visualized, by
evaluating an optical model for the data [21].

2.2.1 Emission-Absorption Model

The most common optical model for direct volume rendering is the emission-
absorption model by Kajiya and Von Herzen [27] (cf. Figure 1). It aims at solving
the volume rendering integral (Equation 5), a physically-based optical model. In
this model, the volume is assumed to consist of particles that emit light, and absorb
incoming light. However, there is no scattering of incoming light.
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Figure 1: Partial absorption of emitted energy c along the distance d.

Let ~x(t) denote a ray that is parametrized by the distance t from the eye. The
scalar value that corresponds to a position along the ray is denoted by s(~x(t)). In
the emission-absorption model, absorption coefficients κ(s) and emissive colors
c(s) are integrated. For simplicity, coefficients are denoted as functions of the eye
distance t:

c(t) := c(s(~x(t))) (1)

κ(t) := κ(s(~x(t))) (2)

The absorption along a ray is modeled such that once emitted energy c is con-
tinously absorbed such that only a remainder c′ reaches the eye. For a constant
absorption parameter κ , this amounts to the following equation where d denotes
the distance the emitted light travelled through this medium.

c′ = ce−κd (3)

Taking into account that absorption may change along the ray, it is calculated as
the integral over the absorption coefficients in the interval of d, also called optical
depth.

τ(d1,d2) =
∫ d2

d1

κ(t̂)∂ t̂ (4)

Thus, the total amount of radiant energy C that reaches the eye from this direction
resolves to the following.

C =
∫

∞

0
c(t)e−τ(0,t)

∂ t (5)

In practice, this integral is solved numerically, to which ray casting is one of the
most direct and straight forward methods.

2.2.2 Volume Ray Casting

The idea of ray casting [38] is to substitute the integral of Equation 5 by a Rie-
mann sum to evaluate it numerically. To do so, the optical depth (Equation 4), is
approximated by

τ(0, t)≈ τ̃(0, t) =
b t

∆t c
∑
i=0

κ(i∆t)∆t, (6)
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Figure 2: Ray casting scheme. Rays are traversed in parallel between tstart and tend and
may be terminated early (dark gray circles).

where ∆t denotes the distance between successive samples taken along the ray. In
presented algorithms ~Xi =~x(i∆t) denotes the position of sample i.

Ai = 1− e−κ(i∆t)∆t (7)

Ci = ci(i∆t)∆t (8)

With Equation 7 defining the opacity and Equation 8 defining the color of a sample,
the volume rendering integral can be approximated as follows, where n denotes the
total number of samples.

C̃ =
n

∑
i=0

Ci

i−1

∏
j=0

(1−Ai) (9)

This equation can be evaluated iteratively by alpha blending, using Ai as the re-
spective α-value. In front-to-back order, an iterative formulation that evaluates
Equation 9 by stepping i from 1 to n is given by

C′i =C′i−1 +(1−A′i−1)Ci (10)

A′i = A′i−1 +(1−A′i−1)Ai. (11)

At each iteration, the new values of C′i and A′i are calculated from the color Ci and
opacity Ai at the current location i, and the composited color C′i−1 and opacity A′i−1
(cf. [21, Chap. 1.2.4]). Additionally, it is C′0 = 0 and A′0 = 0, and the colors Ci

are pre-multiplied with their associated opacity Ai. For the sake of brevity, in pre-
sented algorithms equations 10 and 11 are implemented by the function blend(C′,
C) which returns the updated, composited color, while the opacity is assumed to be
included as a color component Cα . The big advantage of front-to-back composit-
ing over the alternative back-to-front compositing is the potential to implement
the early ray termination optimization. With this, the traversal along a ray is ter-
minated when the cumulative α-value reaches 1, allowing to skip the remaining
samples that can’t influence the final color anymore. Conversely, the space leap-
ing optimization skips empty space between the eye and the first non-transparent
position along the ray.
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Figure 3: Texture coordinates of front faces (left) and back faces (right) of the volume
bounding box determine the entry and exit points of each ray. [36, Fig. 4].

For hardware-accelerated volume rendering, usually the volume data is loaded into
a 3D texture and fragments are generated by rasterizing a proxy geometry with in-
terpolated texture coordinates. For image-order volume rendering, like ray casting,
this may simply be the volume’s bounding box. GPU implementations of ray cast-
ing as proposed by Roettger et al. [54] and Krüger and Westermann [36] use the
fragment shader to evaluate the colors of many rays in parallel. For each fragment,
a ray is traversed through the volume, iteratively evaluating the equations above
(cf. Figure 2). The basic approach that is used throughout this thesis, is split into
two passes.

1. Entry and exit point determination: The volume’s bounding box is ren-
dered to write the 3D texture coordinates of the front and back faces to
seperate 2D RGBA textures (cf. Figure 3).

2. Fragment shader ray casting: The proxy geometry is rasterized again and
entry and exit points of the rays are retrieved, to determine the ray direction
and number of samples. These are fetched from the textures of the front faces
(entry point) and back faces (exit point). Iteratively evaluating equations 10
and 11, the rays are traversed.

2.2.3 Transfer Function

A transfer function assigns optical properties to the abstract data values of a vol-
ume. Generally, the purpose of a transfer function is to help identify regions of
interest, classify features and distinguish between different regions or matter. it is
a function that maps the domain of the input data, e.g. Hounsfield scale of CT data,
to the range of RGBA colors. The input can be of arbitrary dimensionality [32],
however 1D or 2D transfer functions are often most manageable. Furthermore, a
transfer function is commonly implemented as a simple lookup table.

f : [smin,smax] 7→ [0,1]4 (12)
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Throughout this thesis, a 1D transfer function is used that maps the data range
to a range of colors, as defined by Equation 12. Here, [smin,smax] ⊂ R describes
the dynamic range of the volume data. In the implementation, the transfer func-
tion is represented by a 1D RGBA texture and data values are mapped linearily
to the texture coordinate range [0,1]. Then, the color is retrieved by a texture
lookup, making use of hardware texture filtering. This approach is also referred
to as post-classification, as data is first interpolated, then optical properties are
assigned. Additionally, pre-integration [16] can be used to further improve the
accuracy, however post-classification has been sufficient for the purposes of this
thesis.

2.2.4 Shading Techniques

The transfer function provides a way to assign optical properties to abstract data
of a volume, but doesn’t take light conditions into account. Basic local illumina-
tion models like the Phong illumination model [52] require the calculation of the
gradient vector of a given position in the volume. This vector is used as the sur-
face normal to calculate the diffuse and specular terms of the illumination model.
Considering light transport through the volume adding shadows can further im-
prove the visual quality of the rendering. Volumetric shadows can be added to the
emission-absorption model (cf. Section 2.2.1) by interpreting the emission coeffi-
cient as an isotropic reflection term that is evaluated with the incoming radiation of
a light source.

C =
∫

∞

0
c(t)e−τ(0,t) · cle−τ(t,~ωl ,ll) ∂ t (13)

In Equation 13 the function τ(t, ~ω, l) evaluates the optical depth of length l for a
ray beginning at point ~x(t) in direction ~ω , otherwise analogously to Equation 4.
Here, ~ωl represents the direction towards the light source with color cl at distance
ll . In the implementation, for each sample point an additional ray towards the
light source is cast to evaluate τ(t, ~ω,d) analogously to Equation 6. A constant
~ωl simulates a collimated light source and l is set to a short distance to reduce the
computational costs per sample. Other advanced shading techniques involve more
efficient ways to simulate volumetric shadows, such as deep shadow maps [22] or
the usage of pre-computed data structures for efficient dynamic illumination [35].

2.3 Fast Stereo Volume Rendering

The work by Adelson and Hansen [1] and the extension by He and Kaufman [23]
describe an efficient method to generate stereoscopic views of a volume using soft-
ware ray casting. It lays the foundation of the novel GPU approach presented in
Section 4.

The method produces a stereo pair of images by rendering the left view using
conventional ray casting from the left eye’s center. At the same time, the right view
is produced by re-projecting each sample point along the left view’s rays to the
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Figure 4: Scan-line order re-projection of samples along rays (based on [1, Fig. 2]). li:
left view’s ray, colored circles: sample colors, r j: right image’s pixel. The
projective pixel boundaries are indicated by the light gray dashed lines. [9, Fig.
2]

right view’s image and accumulating the color. The right image is thus produced
in a fraction of the time, since the computationally expensive sampling and shading
part is only performed once. Given that the angle between two corresponding rays
is generally small, multiple consecutive samples are re-projected to the same right
view’s image pixel. The segment composition scheme [23] first accumulates a
segment of a left view’s ray which corresponds to the range of one right view’s
image pixel before re-projecting its color.

The key observation is illustrated in Figure 4. If rays are evaluated in the correct
order, the right view’s rays will accumulate the values in the same order. If the left
view’s rays are processed right to left and each sampled front to back, then the
right view’s rays will inherently accumulate the values from front to back aswell
[1]. This geometric property is also true if perspective projection is used and the
image planes are chosen to be coplanar and parallel.

Figure 5 illustrates the most relevant stereoscopic perspective projection ge-
ometry properties using the pinhole camera model. A segment between two points
P(x,y,z) and P′(x′,y′,z′) with h≤ z′ ≤ z on a ray that is emitted from the left eye El
is re-projected to a segment of at most length d on the epipolar line. This length is
equivalent to the distance between the re-projected start and end points Pr(xr,yr,h)
and Pr

′(x′r,yr,h) with

d =
eh
z
− eh

z′
. (14)

Equation 14 is derived from the observation that for any point on a left view’s ray,
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Figure 5: Stereoscopic perspective projection geometry. Dashed rectangle: projection
plane, El: left eye, Er right eye, h: focal length, e: eye distance, P,P′: sam-
ple points on left view’s ray, Pr,Pr

′: re-projected sample points, yr: height of
epipolar line, d: distance between re-projected points. [9, Fig. 3]

for its re-projected x-coordinate xr it yields

xr =
hx
z

(15)

=
h(z tanα− e)

z

= h tanα− eh
z

(16)

where α is defined by the horizontal angle of the ray to the z-axis. The views are
setup such that both images lie on the same projection plane and are only offset
along the x-axis by eye distance e. If the distance e between the two eyes is small
enough, the images can overlap. In any case, for every left view’s ray the corre-
sponding epipolar line runs parallel to the x-axis at height yr on the image plane.

3 Related Work

3.1 Virtual Reality in Medical Applications

The applications for virtual reality in medicine are manifold [55], with use-cases
including medical data inspection [19, 31], medical training and teaching [49],
surgical planning [10] and others. King et al. [31] proposed a concept for a VR ap-
plication using an HMD, in which a virtual radiology room is simulated to inspect
multiple CT volumes at a time. The volumes are visualized as slices arranged in a
semicircle around the user, floating in virtual space. In this setup, typical radiology
room tasks, such as finding areas of lesion, are achievable at a fraction of the cost
and accessibility of a real radiology room. Gallo et al. [19] use a Nintendo Wi-
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imote controller to present interaction methods for virtual 3D volumes. The user-
friendly 3D interaction allows to extract volumes-of-interest by intuitively manip-
ulating the cropping box of the volume. The VR setup does not use an HMD, but
a semi-immersive stereoscopic projection setup. In this thesis, the fictitious VR
application aims at intuitive medical data inspection using an HMD and handheld
controllers for 3D interaction, but using 3D volume rendering techniques.

3.2 Volume Rendering Acceleration Techniques

The current state-of-the-art method to visualize volumetric data in 3D at interactive
frame rates is GPU ray casting (cf. Section 2.2.2). Many acceleration techniques
have been presented, generally addressing different aspects of the rendering pro-
cess. Additionally, techniques also differ in the requirements on the rendering
method and volumetric data at hand. Factors such as whether voxels have a pre-
defined color and transparency mapping or to which extent ray traversal can be
altered also influence their applicability.

One of the most advanced data structures for large uncompressed volume data
sets is the GPU voxel database structure by Hoetzlein [24]. It aims at “combining
features for efficient simulation, dynamic topological changes, sparse compres-
sion, fast raytracing and very large addressable spaces” [24]. The underlying data
structure is based on a sparse hierarchical octree representation of the volume that
is closely linked to the Gigavoxels data structure by Crassin et al. [12] that also
powers the Voxel Cone Tracing [13] algorithm. Visualization of large volume data
is an active research field for which an overview is given by Beyer et al. [6].

Another popular way to accelerate ray casting is to adaptively reduce the sam-
pling rate based on the volume’s density distribution. To some extent, this includes
empty space skipping and early ray termination as the sampling rate is reduced to
zero for fully transparent and fully occluded segments of the ray. A more sophisti-
cated technique was presented by Suwelack et al. [62]. Applying a Fourier analysis
to the volume, its local frequencies can be used to adaptively change the sampling
distance along the ray. At high-frequency changes in the volume, i.e. borders, the
sampling distance must be short and at low-frequency changes in the volume, i.e.
homogeneous areas, the sampling distance can be longer.

The work by Wang et al. [67] aims at incorporating the notion of GPU hard-
ware to increase memory access times by factoring in low-level texture caches.
Due to the fact that memory on a GPU is not layed out in 3D, but nearby mem-
ory access on 2D textures is optimized, some sampling directions utilize the GPUs
cache better than others. The proposed sampling strategy that requires a GPGPU
ray casting implementation is called 3D warp marching. It adapts the ray traver-
sal such that a warp of shader invocations reads samples for rays that are most
favorable concidering the memory layout.

Another promising approach is foveated rendering [20] which is based on the
idea that rendering quality can be distributed over the image by adapting to the
user’s gaze. The work by von Mammen et al. [65] provides an adaptive ray tracing
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algorithm that decreases quality driven by the limitations of human perception.
Using an eye tracker, only pixels that lie within a 10◦ field of view around the
center of view are rendered at high quality. Pixels outside a 20◦ field of view are
rendered at lower quality.

In general, acceleration techniques for volume rendering have different prereq-
uisites, make different assumptions and generate memory or computational over-
head of their own. While the asynchronous rendering system proposed in Section 5
reduces the importance of a fast volume renderer, it is still highly advantageous.
For this reason, the ray caster implemented for this thesis incorporates two selected
acceleration techniques that are easy to implement, provide on-the-fly acceleration
and have very lenient and common prerequisites. One is the space leaping tech-
nique by Mensmann et al. [46], the other is the level-of-detail (LOD) technique
based on the proposed algorithm by Weiler et al. [69]. LOD rendering techniques
are useful to trade visual quality for performance in accordance to some importance
factor, like the proximity to the camera. The work by Weiler et al. [69] proposes
to generate multiple levels of the 3D texture of a volume. This hierarchical ap-
proximation of the volume data allows to increase the sampling step size with each
incremental level. This allows to dynamically adjust the sampling step size and
sampled texture level based on the ray’s sampling position. In the implementation,
the hierarchy construction is handled by hardware 3D texture mipmapping. As vol-
ume data often consists of an object of interest within space that would be mapped
to transparent matter like air, enclosing the volume as tightly as possible with a
proxy-geometry other than the volume’s bounding box is often useful. Using the
proxy-geometry to define the start and end points of the rays, big areas of samples
that are known to be uninfluential are skipped. Mensmann et al. [46] present a
method that uses the geometry shader to generate a proxy-geometry on the fly. The
proxy-geometry called occlusion frustums is generated view-dependently from the
preceding frame’s first-hit map which saves the texture space position at which
each ray first hit a non-transparent voxel, similar to a depth map. A geometry
shader then generates grid of view-aligned frusta that tightly enclose these posi-
tions and rasterizes them from the new view configuration. Thus, the ray starting
points are advanced to the fragment’s corresponding texture positions.

3.3 Image Warping and Temporal Upsampling

Image warping in the context of HMDs is a technique that can be used to reduce the
perceived latency. More generally, image warping can be used for (spatio-)temporal
upsampling of image streams of rendered content [15, 70, 8, 41]. The frame rate
is improved at very low computational costs by extrapolating information from the
last frame. Specifically designed as an image warping VR-architecture, Smit et
al. [58] presented the programmable display layer (PDL) architecture. The multi-
GPU-based system decouples the rendering and displaying tasks, such that render-
ing runs on one GPU while the other warps the last result to generate intermediate
display frames. The technique was further advanced by Smit et al. [57] and adapted
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to a single-GPU implementation. The paper by Peek et al. [50] incorporates the
same architectural design in a simplified and very efficient image warping tech-
nique to improve the appearance of head tracking on HMDs. In subsequent work
[51] the technique has been adapted such that it runs the image warping component
on an integrated GPU, concurrent to the rendering running on the dedicated GPU.
As this form of warping is used to compensate for latency between rendering and
displaying the term asynchronous time warp may also be used. The paper by van
Waveren [63] discusses “the various challenges and different trade-offs that need to
be considered when implementing an asynchronous time warp on consumer hard-
ware”. One posed challenge is that by the time of writing there has been lacking
support for context priorities by OpenGL. Thus, it is difficult to preempt one graph-
ics task (rendering) to run the other (warping). Context priority support has been
added to drivers for a small subset of available graphics hardware with exactly this
use-case in mind [47]. By now, some of the popular consumer HMD companies
have incorporated these notions into their respective HMD driver software in one
way or another [4, 37, 5]. However, currently the functionalities are not fully ex-
posed and are instead designed to compensate automatically for frames that are
missed by the main application. The asynchronous rendering system described
in Section 5 poses a solution to this problem, while exploring multiple suitable
warping techniques in the context of volume rendering.

3.4 Stereoscopic Rendering Techniques

One way to efficiently generate alterative views from existing data is image-based
rendering. A notable technique commonly used with polygonal rendering are lay-
ered depth images (LDI) that were first introduced by Shade et al. [56]. For volume
rendering where continious transparency attenuation is a key factor to the result
image layered surface representations are not as expedient. An LDI adaptation for
volumes is volumetric depth images (VDI) presented by Frey et al. [18]. The view
is subdivided into a sliced representation based on depth. Subsequent frames are
produced by rendering frusta that approximate the volume’s color and opacity be-
tween slices. The frusta must be sorted before rendering which poses the need to
perform GPU-CPU synchronization. The recent work by Lochmann et al. [40]
yields a similar approach in which the old view is encoded in a piece-wise ana-
lytic representation of emission and absorption coefficients. Subsequent frames
are produced by sampling this representation along the new rays. In principle, the
above methods may be classified as gathering approaches in which the resulting
image is produced by gathering colors from an intermediate representation of the
first view. In contrast, the fast stereo volume rendering technique (cf. Section 2.3)
may be classified as a scattering approach in which the resulting image is produced
by scattering colors to the target image. Additionally, stereo rendering poses just
one of many use-cases for the above methods. They address more generally the
efficient generation of frames from arbitrary views in a common single-view setup.
The work by Hübner and Pajarola [25] addresses the particular case of multi-view
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rendering for auto-stereoscopic displays. They refrain from adopting the approach
by He and Kaufman [23] as significantly more and stronger artifacts would be ex-
pected for N views. Also, the volume is rendered using a texture-based method
using viewport-aligned quadrilaterals. The work by Wan et al. [66] implements
ideas of Shade et al. [56] and He and Kaufman [23], while extending them to a
stereoscopic perspective projection model. However, the volumetric environment
is rendered opaquely resulting in a well-defined depth value per pixel.

3.5 Order-Independent Transparency

Direct volume rendering acquires pixel colors by tracing paths through matter of
varying optical properties and integrating the changes as they appear along the ray.
There is also the research field of order-independent transparency (OIT), refering
to the order in which surfaces are rasterized. Rendering surfaces in the correct
front-to-back or back-to-front order to achieve the correct blend-result is the key
challenge. Seasoned techniques like Depth Peeling [17] aim at first buffering the
color of each intersected surface along a viewing ray. The original method re-
quired multiple rendering iterations, with each acquiring the surfaces that lie one
position behind the ones acquired by the preceding iteration. Since then, methods
to buffer the surface colors in a single-pass have been developed [3, 64] without
knowing their final blending-position up-front. The values can later be retrieved,
sorted and composed on a per-pixel basis. However, usually only a limited num-
ber of the front-most surface colors is available due to memory restrictions. Also,
racing conditions between fragments are an emminent issue to this kind of parallel
memory access. Alternatively, other work focusses on defining blending operators
that are independent of order, but look plausible for phenomena like smoke or non-
refractive glass [45]. In a sense, ray casting is feasible because it is a streaming
process that does not need to memorize and sort the intersected matters at all. Nev-
ertheless, Section 4 will seize upon many mutual ideas and issues, such as buffering
colors to off-screen memory and composing them correctly in a subsequent step.

3.6 Cybersickness

A prevailing problem of virtual reality usage is the so called cybersickness [44]
which is related to simulator sickness [34], however has been considered to be
unique to virtual reality applications and possibly more severe [60]. These terms
and some others, including visually induced motion sickness (VIMS), virtual sim-
ulation sickness or virtual reality-induced symptoms and effects are often used
interchangably. The condition that may occur during and after experiencing virtual
environments through an HMD shows similar symptoms to motion sickness, in-
cluding nausea, headaches and dizziness [53]. An established method to quantify
the condition is the simulator sickness questionnaire [30], in which probands as-
sess the severity of the known symptoms after using a VR application. The causes
of cybersickness are versatile, including inexact alignment of the virtual camera
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with the eyes, lengthy duration of exposure, increased field of view and sensory
mismatch between the visual input and the vestibular system [53, 39]. The last of
which is related to the amount of latency in the rendering system. Visual lag (la-
tency) and frame rate were identified as factors of simulator sickness by Kolasinski
et al. [34]. The research field on latency reduction for HMDs had already been
established [48], however more recent work has been specifically motivated by the
link to cybersickness [39, 50]. Additionally, Chen et al. [11] concluded that head-
controlled 6-DoF navigation in virtual environments is better than using a joystick.
It improves user performance, the sense of immersion and yields a lower occurence
of cybersickness. This finding is also reinforced by the results of [39]. There is also
other conspicuous research effort, such as the work of von Mammen et al. [65]
which deliberately amplifies cybersickness inducing effects in a user study, finding
that the users considered their experience in VR to outweigh the negative effects of
cybersickness. In the context of this thesis, cybersickness is considered one of the
driving motivations why tight latency and frame rate constraints must be upheld
with diligence.

4 Single-Pass Stereoscopic GPU Ray Casting

(a) Left View and Re-projection Tex-
ture Array

(b) Image-based
Compositing

(c) Composed
Right View

Figure 6: Principle of the single-pass stereoscopic GPU ray casting method. The left view
is rendered via ray casting. (a) Vertical scan-lines of rays re-project ray seg-
ments to specific layers of a texture array. (b) Subsequently, the layers are
blended in an image-based compositing pass. (c) This results in the right view.
[9, Fig. 1]

This section includes content that has also been published in Buchacher and
Erdt [9], which has been compiled in unison with this thesis.

4.1 Proposed Method Using Re-Projection Layers

The proposed method is split into two phases, as illustrated in Figure 6. First,
the left view is rendered using regular ray casting during which accumulated col-
ors of ray segments are re-projected and stored in layers of a texture array buffer.
Second, the textures are blended in the correct per-pixel order such that the right
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Figure 7: Fragment order related artifacts for GPGPU ray caster using the fast stereo
method by He and Kaufman [23].

view is composed. The approach builds upon the fast stereo method outlined in
Section 2.3. Following the previous approach, ray casting is only executed for
the left view and the right view is essentially produced by means of ray segment
re-projection. However, a GPU adaptation of the method is not trivial, as the par-
allelization of ray traversal is opposed to the requirement of sequential processing
of rays.

Attempting to control the order of fragment shader instances using the vertex
shader or altering the shape of the blocks to resemble scan-lines using a GPGPU
ray caster is not universally applicable. One such attempt is to reduce the raster-
izer’s influence on the fragment order by arranging vertices in scan-line order in
the vertex buffer and rendering each as a point. Another idea is to use a GPGPU
implementation of a ray caster and to invoke scan-lines of pixels as local work
groups. In both cases some hardware might in fact process the rays in scan-line
order, whereas other processes multiple scan-lines or multiple pixels in parallel.
As a result flickering artifacts occur, as the order of writes to the right image pixels
is arbitrary (cf. Figure 7).

The solution presented here lies within decoupling the compositing from the
acquisition of segment colors by introducting a texture array buffer. Instead of
reading, compositing and writing the segment colors to the right image directly,
each scan-line of rays is assigned a layer of a texture array instead. These layers
are referred to as re-projection layers. Following the ray casting phase, the layers
are composited to obtain the final right view’s image. Thus, a pixel’s final color
is now independent of the order in which horizontally adjacent rays are processed.
Instead it depends on the order in which the layers are blended which is fixed. The
re-projection layers can be filled in parallel.

The approach is illustrated in Figure 8a. Based on the horizontal image coor-
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dinate, each ray is assigned a layer of the texture array. The re-projection to the
right image coordinates is performed as before. The segment color is written to the
corresponding position in the layer texture. When all rays have been processed the
final image is composited by blending the layers.

(a) Full Array Length [9, Fig. 4] (b) Reduced Array Length [9, Fig. 5]

Figure 8: Re-projection of samples along rays to layers of a texture array. layerk: texture
array layer. The blend order is front-to-back.

The naive implementation would require as many textures as the image is wide
in pixels, i.e. rays. To reduce the number of layer textures it is possible to share
them between multiple rays.

The key observation is that each ray has a start and end point and thus only
writes to a bounded horizontal segment of the texture. The space outside of this
segment could be used by another ray which writes the corresponding image co-
ordinates, but initially on a different layer. In turn, this ray also only writes to a
bounded segment of the texture. Following this pattern, the same texture could be
assigned to rays in equal regular steps. The required step size can be estimated
using the epipolar geometric properties between the left and right view and the
rays.

When re-using layer textures for multiple rays the compositing phase must to
be modified. Before, a layer’s index indicated its spatial relationship to the other
layers and thus the blend order. The fully transparent areas in each texture simply
corresponded with the empty space that is not covered by the rays. Now, for each
pixel the index of the texture must be identified in which the color of the outmost
sample can be found. The problem originates from the re-usage of textures for
multiple rays. Texture space that would otherwise be free is now filled with colors
from a ray that is actually further in the back regarding the re-projection. The
correct entry layer to the compositing loop is the one that potentially yields the
front-most re-projected color-sample. Details on a possible implementation are
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given in Section 4.3.
The described structure is illustrated in Figure 8b. The segment each ray tra-

verses is indicated in orange. In this example each segment is approximately two
pixels wide. The second index of each left view’s ray li,k identifies the layer it
writes to. The second index of each right view’s pixel rj,k identifies the entry layer
at which the front-most color is to be found. From this layer, as many layers are
blended as the epipolar line segments are wide. A modulo operation using the
number of layers is applied to the current index each time it is incremented.

4.2 Estimating Texture Array Buffer Size

Depending on which parameters can be set to a constant, the suitable number of
layers or rendering parameters may be calculated. For example, using one of the
current consumer VR headsets, such as the HTC Vive, some of the properties can
be fixed. It has a display resolution with a width of w = 1080 pixels per eye, a
recommended field of view of 2α = 110 degrees and a default eye distance of
e = 0.065 metres.

It is possible to estimate the minimal number of textures that still ensures that
no two rays will interfere with each other. This is achieved by estimating the max-
imal pixel range dp that any ray could write to. For quick reference, the following
equations will be used in the subsequent descriptions. They comprise the pixel
space transformation (Eq. 17, 18), finding the maximal segment lengths for infi-
nite ray length (Eq. 19), for finite ray length (Eq. 20) and for known bounding
sphere radius (Eq. 21) and finding the minimal focal length given the other param-
eters (Eq. 22).

s =
w

2h tanα
(17)

dp = ds (18)

d∞ = e (19)

dz = e− eh
z

(20)

dr = e− eh
h+2r

(21)

h =−r+

√
r2 +

edw
2dp tanα

(22)

It is sufficient to first estimate the maximal epipolar line segment length d. The
subsequent transformation to pixel space is achieved by a scalation by s using the
constants, following equations 17 and 18.

The optimal, i.e minimal, value of dp can be approximated through different
approaches. One approach is to assume that any given ray ranges from the left
camera’s near plane all the way to infinity. Given that both view directions are
parallel, any point at the horizon is re-projected to the same position as in the left
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Figure 9: Pixel range dp plotted against focal length h for different object sizes 2r (colored
lines). dp calculated with e = 0.065m, 2α = 110◦, w = 768px. [9, Fig. 6]

image. A point on the near plane will be re-projected to a point which lies one eye
distance e away on the image plane. Thus, the segment on the epipolar line from
start to end will have length d∞ = e (cf. Equation 19).

The distance to the far plane or outmost exit point of all rays can also be taken
into account. Equation 20 holds true for a ray that begins at the near plane at
distance h and ends at distance z, resulting in the estimate dz. This is suitable for
the case in which a volume might enclose the entire view frustum, for example a
volumetric terrain.

Considering the case in which the inspected volume has a fixed or maximal
size, the range can be computed by finding the longest possible ray that enters the
volume at the image plane. Commonly, volumes are represented by a bounding
box, thus the longest distance between two points on the bounding box is defined
by its diagonal with length 2r. The end point of the longest possible ray then lies
at the distance z = h+2r, which corresponds to the ray that is emitted through the
center of the view. Thus, the estimate dr is found following Equation 21.

In this case the re-projected segment on the epipolar line changes with the dis-
tance to the volume. Refering to Figure 5, imagine the volume stretches between P′

and P. As the entry and exit points move away from the near plane the re-projected
points P′r and Pr drift to the right while d becomes shorter. As stated above the
entry layer to each right view’s pixel needs to be identified to ensure the correct
blend order. The corresponding left view’s ray lies at an offset of eh

z′ − e to P′r . The
index is determined by calculating the corresponding left view’s image coordinate.
Furthermore, the compositing loop can be stopped after fewer iterations as d is also
shorter.

Lastly, the minimal focal length h, given all the other parameters including the
maximal pixel distance dp can be found following Equation 22. The plot in Figure
9 exemplifies how the focal length maps to the number of layers at different object
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sizes. The upper bound is given by an object infinite in size, which relates to the
case of a ray cast to infinity.

4.3 Implementation

In this section, notable details to a possible OpenGL implementation are high-
lighted. First of all, the OpenGL implementation of the technique requires func-
tionality of at least version 4.3. Most notably, the image load store functionality
[7], for arbitrary access to texture memory. The texture memory can be initialized
as a floating point texture array, with the user defining the texture resolution and
number of layers. As a consequence, the near plane distance h should be calculated
following Equation 22. One straight-forward way to assign fragments of the ray
caster to a texture layer index is to use a modulo operation on the x-coordinate.
The shader function listed in Algorithm 1 assigns indices incrementally from right
to left.

Algorithm 1 Assignment of Fragment~x to Layer Index k

1: procedure GETLAYERIDX(~x)
2: x← getFragCoordX(~x)
3: k← dp− (x mod dp)−1 . dp : total number of layers
4: return k
5: end procedure

Algorithm 2 Ray Casting with Ray Segment Re-Projection

1: procedure RAYCASTANDREPROJECT(~x)
2: k← getLayerIdx(~x)
3: xr← reprojectCoords(~x(tstart))
4: S′←~0 . S′r: composite segment color
5: for t ∈ [tstart, tend] do
6: x′r← reprojectCoords(~x(t))
7: if xr 6= x′r then
8: for x ∈ [xr . .x′r−1] do
9: Lk,x← S′ . Lk,x: color at position x in layer k

10: end for
11: S′←~0 . reset segment color
12: end if
13: C′← blend(C′,Ci)
14: S′← blend(S′,Ci)
15: xr← x′r
16: end for
17: Lk,xr ← S′

18: end procedure
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Algorithm 2 depicts the extended ray casting procedure to be implemented in a
fragment shader. First the target texture index for the fragment is determined, then
the running variables for the segment color and texture coordinates are initialized
(lines 2 to 4). During the ray traversal loop (lines 5 to 16), the current position
is re-projected to the right view and the pixel coordinate is updated (Line 6). If a
change is detected, the color of the traversed ray segment is stored at the covered
texture positions and the segment color is reset (lines 7 to 12). At the same time, the
standard ray casting procedure accumulates the fragment color (Line 13) and the
segment color (Line 14). Lines 9 and 17 are implemented using arbitrary memory
access functionality, such as the OpenGL imageStore function, given the texture
array is available as an image2DArray uniform variable.

1 / / view s p a c e ( v ) s t a r t ( n ) and end ( f ) p o i n t s
2 / / f o r l e f t ( l ) and r i g h t ( r ) view
3 vec4 vn_ l = vec4 ( 0 . 0 , 0 . 0 , z S t a r t , 1 . 0 ) ;
4 vec4 v f _ l = vec4 ( 0 . 0 , 0 . 0 , zEnd , 1 . 0 ) ;
5 vec4 vn_r = v i e w M a t r i x _ r ∗ i n v e r s e ( v i e w M a t r i x _ l ) ∗ vn_ l ;
6 vec4 v f _ r = v i e w M a t r i x _ r ∗ i n v e r s e ( v i e w M a t r i x _ l ) ∗ v f _ l ;
7

8 / / t r a n s f o r m t o r e s p e c t i v e p r o j e c t i v e s p a c e ( p )
9 vec4 pn_ l = p e r s p e c t i v e M a t r i x _ l ∗ vn_ l ;

10 vec4 pn_r = p e r s p e c t i v e M a t r i x _ r ∗ vn_r ;
11 pn_ l /= pn_ l .w;
12 pn_r /= pn_r .w;
13 vec4 p f _ l = p e r s p e c t i v e M a t r i x _ l ∗ v f _ l ;
14 vec4 p f _ r = p e r s p e c t i v e M a t r i x _ r ∗ v f _ r ;
15 p f _ l /= p f _ l .w;
16 p f _ r /= p f _ r .w;
17

18 / / t r a n s f o r m t o r e s p e c t i v e p i x e l s p a c e ( s )
19 vec4 r e s o l u t i o n = vec4 ( fWidth , f H e i g h t , 1 . 0 , 1 . 0 ) ;
20 vec4 s n _ l = ( ( pn_ l ∗ 0 . 5 ) + 0 . 5 ) ∗ r e s o l u t i o n ;
21 vec4 s n _ r = ( ( pn_r ∗ 0 . 5 ) + 0 . 5 ) ∗ r e s o l u t i o n ;
22 vec4 s f _ l = ( ( p f _ l ∗ 0 . 5 ) + 0 . 5 ) ∗ r e s o l u t i o n ;
23 vec4 s f _ r = ( ( p f _ r ∗ 0 . 5 ) + 0 . 5 ) ∗ r e s o l u t i o n ;
24

25 / / p i x e l c o o r d i n a t e s o f f s e t ( d )
26 vec4 sdn = ( s n _ r − s n _ l ) ;
27 vec4 s d f = ( s f _ r − s f _ l ) ;
28 f l o a t p i x e l O f f s e t N e a r = abs ( sdn . x ) ;
29 f l o a t p i x e l O f f s e t F a r = abs ( s d f . x ) ;

Source 1: Offset Calculation for Entry Layer Determination

Concerning the compositing phase, the entry layer to each right view’s pixel
needs to be identified when working with Equation 21. That is, ray segments are
considered to be confined to the volume’s bounding sphere and the volume’s dis-
tance may change dynamically. Working with current generation HMDs it may be
the case that exposed projection matrices are not symmetrical for the stereoscopic
views. Thus, essential assumptions about the two pixel coordinate systems might
not hold. To preclude possible problems space transformations can simply be made
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using the exposed matrices instead. Source 1 shows the offset calculation using the
HMD matrices. The values for zStart and zEnd are calculated from the current
distance to the front and back side of the bounding sphere of the volume. The
resulting values pixelOffsetNear (dn) and pixelOffsetFar (df) are used to calculate
the pixel position of the left view’s ray that intersected the front-most position of
a right view’s ray. The offsets need to be computed only once whenever the view
changes and can be provided to the compositing shader as a uniform variable.

Finally, the compositing shader is a simple blend shader that composes the re-
projection layers in a front-to-back manner. Algorithm 3 depicts the compositing
procedure to be implemented as a fragment shader. The layer index is retrieved,
that corresponds to the calculated left view’s pixel (lines 3 and 4). This determines
the initial layer index, potentially containing the first color along the virtual right
view’s ray. In Line 5, the number of consecutive layers to blend is calculated.

Algorithm 3 Second View Compositing of Fragment~x

1: procedure COMPOSEVIEW(dn,df,~x)
2: x← getFragCoordX(~x)
3: xl ← x+dn

4: k← getLayerIdx(~xl) .~xl: left image pixel
5: n← dn−df

6: for i ∈ [0 . .n−1] do
7: j← (k+ i) mod dp . dp : total number of layers
8: C′← blend(C′,L j,x) . L j,x: pixel color in layer j
9: end for

10: end procedure

5 System Design for Virtual Reality Volume Rendering

5.1 Concept

The concept of the rendering system picks up on the idea of an asynchronous data
flow and is inspired by the approach by van Waveren [63]. The rendering data
flow is divided into two swap-chains that run concurrently to each other (cf. Fig-
ure 10). Using framebuffer objects (FBOs), the ray casting swap-chain consists
of two FBOs that resemble the common front and back buffers. The back buffer
represents the current rendering target to which the ray caster component writes
its results. Meanwhile, the front buffer represents the currently presented image.
However, instead of presenting the image to the user by submitting it to the display,
it is used as the current source for the image warper component. The display swap-
chain then resembles the common double buffer of the display. The front buffer is
the image that the user currently sees, while the back buffer is the render target to
which the image warper writes its result for the next frame.
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Figure 10: Asynchronous Data Flow

Asynchronicity in the system occurs when the ray caster component and the
image warper component operate at different frequencies. As stated by van Wav-
eren [63], this is desirable, as the display swap-chain can reliably be synchronized
with the display refresh rate. With this, the perceived frame rate can be increased
and inconsistent frame rates can be smoothed out by appropriately warping the
last results using the latest head tracking information. As the motion-to-photons
latency should be as low as possible, the image warper component needs to be
able to execute within milliseconds before the display refreshes. The performance
requirements for the ray casting component can thus be relaxed. Instead of aggres-
sively trading image quality for performance improvements, more practical accel-
eration techniques can be employed. Either way, new images should be produced
at least at interactive rates, as image warping should only be used to compensate
for missing frames.

5.2 Asynchronous Rendering

Using OpenGL on systems that are equipped with a single GPU, special consider-
ations have to be made to enable an asynchronous data flow. Even though vertex
and fragment processing is generally executed in parallel, draw calls are processed
sequentially. Additionally, there is no direct way to pause the current execution of
one task at a particular time to execute another. The task that poses the problem
here is ray casting a view in one draw call. It takes presumedly longer than one dis-
play refresh cycle to finish, thus the instant of time at which image warping should
be executed is potentially missed.

To overcome this problem, the ray casting task is split into multiple sub-tasks of
managable execution times that can be distributed across multiple frames. Another
challenge arises from the fact that a running task cannot be stopped at a particular
time, but instead only after execution of all queued rendering tasks has finished. As
much time of a frame as possible should be spent on ray casting and only as little
time as necessary on image warping, as close to the display refresh as possible.
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Figure 11: Splitting the viewport into uniform grid of cells and tracing the render time for
each cell over time. The portrayed numbers indicate the last measured render
time in milliseconds.

The solution employed by the proposed system is to split the ray casting viewport
into a grid of uniformly sized cells and to render only a subset of cells per frame,
always leaving sufficient time for image warping at the end. As the execution time
for a cell is largely incomputable beforehand, it is traced over time (cf. Figure 11)
and predicted conservatively for the next frame. With this design choice, the ray
caster adapts dynamically to the computational workload.

Algorithm 4 depicts a simplified progress of a frame’s rendering iteration. It
is initialized with the frame time Tf , the time reserved for warping Tw, the last
drawn cell index i′, and the total number of cells n. As many cells are drawn as the
remaining render time T allows, however at least one cell is rendered each frame
(lines 4 to 12). If the draw call for the last cell has been comitted, the ray casting
front and back buffers are swapped and rendering for this frame is stopped (lines 8
to 11). Either way, the last drawn index is saved for the next frame (Line 13).

The prediction of the render time of a cell is largely arbitrary. For example,
the render time recorded from the last frame could simply be reused, scaled, or
extrapolated from the last couple of frames. The implemented algorithm (cf. Al-
gorithm 5) predicts with regards to the cell’s neighborhood using the render times
from the last frame. The prediction is the result of a relaxed maximum filter and
average. This heuristical approach aims at compensating for head movement be-
tween consecutive frames. Render times are slightly overestimated (Line 6) to
prevent missing the critical time for image warping.

Achieving asynchronicity in this way comes at the price of inherently reducing
the ray casting update rate. As Figure 12 illustrates, the rendering task (R) is split
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Algorithm 4 Chunked Adaptive Rendering

1: procedure RENDERITERATION(Tw,Tf , i′,n)
2: T ← Tf −Tw

3: i← i′ mod n
4: do
5: T ← T −predictTimeForCell(i)
6: renderCell(i) . ray cast pixels in cell
7: i← (i+1)
8: if i = n then
9: swapBuffers() . ray casting swap-chain

10: break
11: end if
12: while T > predictTimeForCell(i)
13: i′← i
14: end procedure

Algorithm 5 Cell Render Time Prediction
1: procedure PREDICTTIMEFORCELL(i)
2: T̄ ← 0
3: for j ∈N (i) do . N (i): indices of cells in neighborhood
4: T̄ ← T̄ +max(Ti,Tj) . Ti/ j: cell render time from last frame
5: end for
6: T̄ ← bT̄/|N (i)| . b: bias factor ≥ 1
7: return T̄
8: end procedure

WR

Rendering (R)

R W WR R W R W R W

Classic

Async

t

Figure 12: Timeline overview of classical rendering versus asynchronous rendering.
Dashed vertical lines indicate display updates of the 90Hz display. After a
task finishes, the results are submitted to the display on the next update.

in multiple frames. Even though the total time spend with ray casting is identical to
the classical approach, the time until the frame is finished is longer. This is due to
the additional time reserved for warping (W) and idle time until the display updates
which results from conservative prediction. Ideally, both are as small as possible,
allowing to spend as much time with ray casting as possible.
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5.3 Programmable Display Layer

The programmable display layer (PDL) is a component of the architecture de-
scribed by Smit et al. [58, 57]. It is an image warping architecture specifically
designed for VR applications and is very similar to the system described here. Es-
sentially, the PDL is the image warper component that updates the view at the
refresh rate of the display. The display layer program is customizable and in this
section, multiple warping techniques are explored.

The first warping technique, presented in Section 5.3.1, represents the most ba-
sic approach to achieve very low-latency head tracking. While this technique com-
pensates nearly entirely for rotation, it undercompensates for translation which is
especially noticable in the near field. Hence, Section 5.3.2 describes an experimen-
tal technique inspired by depth-image-based warping that addresses this problem.
Finally, Section 5.3.3 describes a state-of-the-art volumetric warping technique and
performance critical alterations.

5.3.1 Simple Image Warping

This method is based on the algorithm proposed by Peek et al. [50]. It aims at pro-
viding a practical and fast warping algorithm that efficiently smooths (rotational)
head tracking on HMDs. Essentially, the image data of the last ray casting result
is mapped as a texture to a quad that is aligned with the location of the far clip-
ping plane of the corresponding view frustum. This quad is then rendered with the
updated view transformation that holds the most recent head tracking information.
In an image-based implementation, the image texture is sampled by re-projecting
the fragment positions from the far plane to the image space of the old view (cf.
Source 2 & 3).

1 i n vec2 pos ; / / quad v e r t e x p o s i t i o n s from −1 t o 1
2 o u t vec4 p a s s P o s ;
3 vo id main ( )
4 {
5 / / s e t z ,w t o 1 t o p r o j e c t t o t h e f a r p l a n e
6 p a s s P o s = vec4 ( pos , 1 , 1 ) ;
7 g l _ P o s i t i o n = p a s s P o s ;
8 }
9

Source 2: Simple Warp Vertex Shader
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1 un i fo rm mat4 u P r o j e c t i o n ;
2 un i fo rm mat4 uViewOld ;
3 un i fo rm mat4 uViewNew ;
4

5 un i fo rm sampler2D color_map ;
6

7 i n vec4 p a s s P o s ;
8 o u t vec4 f r a g C o l o r ;
9

10 vo id main ( )
11 {
12 / / u n p r o j e c t f r a g m e n t p o s i t i o n , t h e n r e p r o j e c t t o o l d view
13 vec4 viewPos = i n v e r s e ( u P r o j e c t i o n ) ∗ p a s s P o s ;
14 viewPos /= viewPos .w;
15 vec4 p r o j P o s = u P r o j e c t i o n ∗ uViewOld ∗ i n v e r s e ( uViewNew )

∗ viewPos ;
16 p r o j P o s /= p r o j P o s .w;
17 vec2 t e x P o s = p r o j P o s . xy ∗ 0 . 5 + 0 . 5 ;
18

19 f r a g C o l o r = t e x t u r e ( color_map , t e x P o s ) ;
20 }
21

Source 3: Simple Warp Fragment Shader

5.3.2 Experimental First-Hit Map Mesh-Warping

The method is closely related to the works presented by Mark et al. [43] and Shade
et al. [56]. As a by-product of the computations for the occlusion frustums (cf.
Section 3.2), the so called first hit map is produced. For each ray it contains the
first depth at which a semi-transparent voxel is hit. For a binary transfer function
that produces only fully transparent and fully opaque voxels this essentially relates
to a common depth buffer. By projecting a polygonal mesh through the original
viewport using this depth and color information the scene can be approximated
and then efficiently be rendered from another view point.

There are apparent drawbacks to this simple view synthesis method that will
be discussed later. However, it is very efficient, compensates for rotation and pre-
sumably improves on the perceived effect of translational stuttering. Thus, it has
been implemented as an experimental technique. In fact, the method can emulate
the method presented in Section 5.3.1 by using a cleared depth map and the last
ray casting result.
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1 un i fo rm mat4 u P r o j e c t i o n ;
2 un i fo rm mat4 uViewOld ;
3 un i fo rm mat4 uViewNew ;
4

5 un i fo rm sampler2D depth_map ;
6

7 i n vec2 uv ; / / g r i d v e r t e x uv c o o r d i n a t e s from 0 t o 1
8 o u t vec2 passUV ;
9

10 vo id main ( ) {
11 passUV = uv ;
12 f l o a t d e p t h = t e x t u r e ( depth_map , uv ) . x ;
13

14 / / u n p r o j e c t from d e p t h map , t h e n r e p r o j e c t t o new view
15 vec4 p r o j P o s = vec4 ( uv , depth , 1 . 0 ) ∗ 2 . 0 − 1 . 0 ;
16 vec4 viewPos = i n v e r s e ( u P r o j e c t i o n ) ∗ p r o j P o s ;
17 viewPos /= viewPos .w;
18 vec4 wor ldPos = i n v e r s e ( uViewOld ) ∗ viewPos ;
19 g l _ P o s i t i o n = u P r o j e c t i o n ∗ uViewNew ∗ wor ldPos ;
20

21 / / clamp t o f a r p l a n e
22 i f ( g l _ P o s i t i o n . z < −g l _ P o s i t i o n .w) { g l _ P o s i t i o n . z = −

g l _ P o s i t i o n .w; }
23 }
24

Source 4: Grid Warp Vertex Shader

There are problems to be expected with this method that will be especially
apparent for volume rendering. The per-pixel color that results from solving the
volume rendering integral is only valid for the original ray direction. Mapping the
colors as a texture to a mesh essentially paints this volumetric, directional infor-
mation onto a surface. The surface color and the volumetric information coincide
for every pixel only from the original view. Using the first hit map, all information
that lies behind the first non-transparent voxel will be painted to the surface. This
is especially noticable in missing or unexpected parallax effects.

5.3.3 Novel-View Synthesis for Volume Rendering

The novel-view synthesis algorithm presented by Lochmann et al. [40] was specif-
ically designed for volume rendering. The paper pre-eminently adresses client-
server systems in which the server-side handles volume rendering and the client-
side generates intermediate images using the last result. It is assumed that in any
case the server takes orders of magnitues longer to render the volume compared to
the client-side generating novel views. The server compresses the view into a lay-
ered piecewise-analytic emission-absorption representation. The client receives the
result textures and synthesizes a new image by efficiently ray casting this structure.
Typically, a low and fixed number of layers suffices to produce novel views in the
matter of milliseconds. The compressed representation consists of depth textures
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that mark the start and end points of the layers and RGBA-textures. For the latter,
emission coefficients are written to the RGB-channels and absorption coefficients
are written to the α-channel.

For the source data generation, also called original view synthesis, each ray is
split into a small number of segments during the ray traversal. Utilizing the Beer-
Lambert law, emission and absorption coefficients are calculated analytically from
the segment length and the accumulated color and opacity values, by inversion of
Equation 3. Essentially, the ray segment is compressed to these coefficients as if it
ran through a matter of uniform, homogeneous color and density. For each layer,
the coefficients are packed into one target while the layer depth is stored in an-
other, utilizing multiple render target (MRT) functionality. Accumulated color and
opacity are reset for each ray segment. When a view has finished to be encoded, all
textures and the original view matrix are sent to the client to be used for novel-view
synthesis. To generate a novel view, the client re-projects its hypothetical rays to
the source’s pixel space. Each ray is traversed by intersecting it with pixel borders
and layers. For each segment, the layer’s corresponding emission and absorption
values are read. With emission, absorption and segment length, color and opacity
values can be calculated. In turn, these can be accumulated in the common ray
casting manner, before the ray traversal is advanced. The straight forward conver-
sion between the respective values can be implemented as depicted in Algorithm 6.

Algorithm 6 Beer-Lambert Conversions
1: procedure GETEMISSIONABSORPTION( C,Cα ,d)
2: κ ←− log(1−Cα)/d
3: c←C/(1−κ)
4: return c,κ
5: end procedure
6: procedure GETCOLOR( c,κ,d )
7: T ← e−κd

8: C← cT
9: Cα ← 1−T

10: return C,Cα

11: end procedure

For the sake of real-time feasibility, some alterations were made to the original
algorithm. For the original view synthesis, some simplifications were applied to
the layering process (cf. Algorithm 7). In the original paper, layer borders are
produced at regular intervals of the normalized transmittance which is calculated as
the transmittance (i.e. 1−α) along the ray divided by the transmittance of a point
at infinity. However, this implies that, before the thresholds can be determined, the
final transmittance must be computed which requires to march the entire ray once
to accumulate it. The implemented algorithm splits rays at user-defined thresholds
y1, . . . ,yk which requires only one pass along the ray instead of two.
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(a) Original View (b) Novel View

(c) Layer 1 (d) Layer 2

(e) Layer 3 (f) Layer 4

Figure 13: Example emission-absorption results for original view synthesis using k = 4
layers and opacity thresholds 0.001, 0.05, 0.5 and 1.0. Textures hold un-
bounded floating point emission and absorption values. Figure (b) shows a
generated image from a novel view offset by 0.2m and 32 steps.

For the novel view synthesis, some simplifications were applied to the ray
traversal. The paper suggests using a modified 3D-DDA algorithm to traverse and
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Algorithm 7 Original View Synthesis

1: procedure RAYCASTEMISSIONABSORPTIONLAYERS( y1, . . . ,yk,~x )
2: d0← tstart
3: j← 1 . j: current layer
4: S′←~0 . S′: composite segment color
5: for t ∈ [tstart, tend] do
6: C′← blend(C′,Ci)
7: S′← blend(S′,Ci)
8: if C′α ≥ y j then
9: d j← t

10: d← d j−d j−1
11: c̄ j, κ̄ j← getEmissionAbsorption(S′,S′α ,d) . write to MRT
12: j← j+1
13: S′←~0 . reset segment color
14: end if
15: end for
16: end procedure

sample the slice textures. This is very precise, but with the degree of novelty of
the viewing angle in relation to the original view, the number of intersected pixels
quickly increases. The original paper states computation times for a novel view at
a 1024×1024 resolution that range between 21.8ms (k = 2, 5◦ offset) and 55.4ms
(k = 8, 15◦ offset). As the target time window for warping is only a few mil-
liseconds, a different sampling method is used. A quasi-uniform sampling method
is implemented instead (cf. Algorithm 8). The novel ray is traversed in a fixed
amount of steps n (lines 5 to 23). The methods getTextureCoord and getDistance
return values with respect to the original view. At each step the ray segment is
intersected with the layer information from the current texture position (lines 9 to
14). Colors and opacities are recovered using the resulting distances and emission-
absorption coefficients (lines 15 to 20). This way, the original view is accurately
reconstructed and the computational complexity can be controlled. As a trade-off,
reconstruction quality is reduced for increasing degree of novelty. Figure 13 shows
an exemplary result for the emission-absorption layers and the novel view synthesis
using the alterations stated above.

6 Evaluation

6.1 Single-Pass Stereo Ray Casting Experiments

The performance experiments were conducted on a Windows 10 PC equipped with
a Nvidia GTX 1080 graphics card, an Intel Core i7-6700K CPU and 64 GB of
RAM. A variety of CT, MRI, DTI and synthetic sample data sets of varying reso-
lutions and density properties were used for the experiments. An overview is given
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Algorithm 8 Novel View Synthesis

1: procedure NOVELVIEWSYNTHESIS(n,~x)
2: ~u← getTextureCoord(~X0)
3: j,m← 0 . j: current layer, m: previous layer
4: d′1← dm(~u) . read texture dm at position~u
5: for i ∈ [1 . .n] do
6: j,m← 0
7: d′2← getDistance(~Xi)
8: ~u← getTextureCoord(~Xi)
9: while d′2 ≥ d j(~u) do . find layer of current sample

10: j← j+1
11: end while
12: while d′1 ≥ dm(~u)∧m≤ j do . find layer of previous sample
13: m← m+1
14: end while
15: while m < j∧d′1 < d j(~u) do . intersect and composite layers
16: Si← getColor(c̄m(~u), κ̄m(~u),dm(~u)−d′1)
17: C′← blend(C′,Si)
18: d′1← dm(~u)
19: m← m+1
20: end while
21: Si← getColor(c̄ j(~u), κ̄ j(~u),d′2−d′1)
22: C′← blend(C′,Si)
23: end for
24: end procedure

in Table 2. A volume is loaded into a single-component floating point 3D texture.
The ray caster is implemented as a fragment-shader. Each ray samples the

3D texture at a step size of 1
2 v between the front and back faces of the volume’s

bounding box where v is defined as the minimal voxel extent in texture space.
The sample color is retrieved using a 1D transfer function texture lookup. Early
ray termination is implemented with an opacity-threshold of 0.99. The volume
is scaled such that r = 1 metre. The focal length h is calculated according to
Equation 22.

The structural dissimilarty measure (DSSIM) is used to assess the image qual-
ity of the result image. it is a measure derived from the structural similarity mea-
sure (SSIM) first introduced by Wang et al. [68]. Luminance, structure and contrast
differences between the images influence its value. It ranges from 0 to 1 where a
value of 0 indicates equality. For the experiments, standard SSIM stabilization pa-
rameters and a window size of 8×8 were used. The definition for speed-up (time
saving) is adopted from He and Kaufman [23]:

V = 1− Tl+r−Tl

Tr
. (23)
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Volume Size Voxels
Solid Box 64×64×64 262,144
DTI 128×128×58 950,272
CT Head 256×256×113 7,405,568
Visibile Male 128×256×256 8,388,608
Engine 256×256×256 16,777,216
Sheep Heart 352×352×256 31,719,424
Piggy Bank 512×512×134 35,127,296
Bonsai 512×512×154 40,370,176

Table 2: Overview of volume data sets used for experiments.

Here, Tl+r is the total time for rendering of a stereo pair in one pass, Tl is the time
for rendering the left image, and Tr is the time for rendering the right image. Thus,
the definition reflects that the technique does not produce a speed-up for rendering
the left image, but only that time can be saved on generating the right image. The
stated values for DSSIM, Tl+r and V are the averages over a 50-step 360◦ rotation
of the volume around the y-axis.

6.1.1 Qualitative Results

For a qualitative evaluation Figure 14 gives an overview of generated views of
the sample volumes. For each ray sample a shadowing effect is applied by ac-
cumulating the opacities of 24 samples in direction of a parallel light source and
multiplying the result with the sample’s color (cf. Section 2.2.4). Additionally, an
ambient occlusion effect is applied by averaging the opacitites of 14 samples on a
sphere around the sample and multiplying the result with the sample’s color.

DSSIM values are generally low, but not zero. Part of the error is due the
fact that distances between samples on the left rays are slightly different from the
right. Therefore the emission and absorption integral is slightly different aswell.
Similar to the approach in [40] the error could potentially be reduced by encoding
emission-absorption-coefficients in each layer and calculating the distance between
layers during the compositing phase. Another approach would be adapting the
linearly-interpolated re-projection scheme [23]. Note that neither approach would
be able to achieve full equality.

Due to early-ray termination of left view’s rays, some information might be
missing near high opacity structures. For example, missing samples become evi-
dent near the bonsai tree’s trunk in Figure 14g. However, more often not all rays
that run across the same image region are terminated early. Thus, the effect is not
as drastic as in common LDI rendering where hole-filling strategies [59] become
necessary. Also note that in the experimental VR setup with a high field of view the
volumes generally did not cover the entire viewport, arguably affecting the DSSIM
values in a favorable way.
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(a) Solid Box (b) DTI (c) Engine

(d) CT Head (e) Visible Male (f) Sheep Heart

(g) Bonsai (h) Piggy Bank

Figure 14: Experimental results for different volumes. Detail views from top to bottom
(resp. left to right): Result, reference, per-channel DSSIM image (on white
background). Rendered at resolution 7682, 32 layers, e = 0.065m, 2α = 110◦,
h = 0.435m.

6.1.2 Quantitative Results

Figure 15 illustrates the arbitrary shading method used to parametrize shading com-
plexity on a continuum. The method is inspired by Monte Carlo Volume Rendering
[14] in that a sample’s color results from additional samples taken from random di-
rections around it. Each direction is traced for up to 4 steps to estimate the amount
of light coming through from that direction. Increasing the amount of directions
and number of additional samples increases image quality and reduces noise. Thus,
the number of additional texture reads is used as an indicator for shading complex-
ity in general.
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Figure 15: Shading method using random directional vectors as directional light sources.
The (x,y,z) coordinates of a vector are used as the (r,g,b) light intensities
coming from that direction. Additional samples along a direction accumulate
the occlusion towards that light source. Left to right: 1 direction totaling 0
samples, 1 direction totaling 4 samples, 4 directions totaling 16 samples, 16
directions totaling 64 samples.
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Figure 16: Recorded speed-up V plotted against shading complexity, represented by num-
ber of additional samples required to shade a ray sample.

Figure 16 depicts the measurements of the average speed-up versus the number
of additional shading samples. All experiments were conducted at a resolution of
7682 pixels using 32 layers. Generally, the break-even point at which the overall
cost of shading outweighs the memory access overhead is reached at relatively low
shading complexities. For example, with only 4 shading samples, a stereo image
pair of the Visible Male volume is produced at 10.75 milliseconds, 10.2% speed-
up. For experiments with lower sampling densities for reasons such as regions of
fully transparent samples, lower volume resolution, frequent early ray termination,
positive speed-up is reached at slightly higher shading complexity. In either case,
positive speed-up is reached at real-time rendering times of 10 to 20 milliseconds
per stereo image pair. At high shading complexity, speed-up of well above 75% is
achieved.
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The speed-up V depends on many factors. Most notably the sampling and
shading complexity and the relation between the computational overhead to the
total render time. The time needed each frame for clearance and compositing is
nearly constant for a given size and number of layers. Figure 17 depicts measured
overhead computation times. Note that while compositing is generally quick, tex-
ture clearing is more prone to become a bottleneck at short rendering times. For
example, an average of 1.65 milliseconds of the 7.91 milliseconds recorded for the
DTI data set (cf. Figure 14b) were spent on texture clearing. Additionally, the
arbitrary image write performance is generally not as optimized as the fragment
shader output pipeline. In fact, for simple volume rendering using only a transfer
function look-up, but no additional shading samples, the proposed method could
generally not out-perform rendering the two views seperately. The minimal focal
length h dictates the near plane distance used for rendering. Fortunately for VR
applications, current generation HMDs generally have a high field of view such
that h is relatively small even at high resolutions.
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Figure 17: Plots of overhead computation times against number of layers for different
image resolutions. Texture clearing perfomed by copying data from a pixel
buffer object (PBO).

The texture array creates a memory overhead that is not insignificant. Given an
image size of w2, layer count l, bit depth b and number of channels c the consumed
memory M can simply be calculated as M = w2lbc. Table 3 exemplifies the mem-
ory consumption for different image sizes and number of layers. Using higher bit
depths and floating point formats reduces the effect of quantization on the values
produced by ray segments.

6.2 Programmable Display Layer

The perceptive quality of the warping technique is most important. In human per-
ception, some aspects have a stronger impact than others. The displayed image
should have a very low motion-to-photons latency. Thus, what is displayed should
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Size [px] 32 layers 64 layers 96 layers
5122 64 MB 128 MB 192 MB
7682 144 MB 288 MB 432 MB
10802 284.76 MB 569.53 MB 854.29 MB
15122 558.14 MB 1116.28 MB 1674.42 MB

Table 3: Memory consumption for different combinations of number of layers and image
sizes. Each pixel holds four 16 bit floating point components (RGBA).

be as close to the actual head-movement as possible. To evaluate and compare
this property each mode was used to compensate for virtual head-movements in a
simple HMD simulation. At any given time, this allows to calculate the ideal view
configuration which should be displayed on the HMD. Using this information the
actual output produced by the PDL can be compared.

Tracing the DSSIM value over time gives an indication for the perceptive qual-
ity of the image stream. The closer the displayed image is to the reference view,
the lower is the DSSIM value. Latency is indicated by growing DSSIM values as
the reference view diverges from the displayed image. Stuttering, that occurs when
due to a translational parallax effect parts of the image suddently jump to another
position, usually occurs at points of large drops of the DSSIM value. However, the
values don’t directly reflect how pleasant or unpleasant it actually feels to the user.
Still, none of the mentioned effects should be present in an ideal system.

For the simulation the HMD model by Peek et al. [50] was adopted which
takes into account that a head can only rotate around its neck. This introduces
small translational changes to the eye positions. Using a cosine-interpolation the
model’s origin at the base of the neck is either rotated or translated. For translation,
the head moves a set horizontal distance. For rotation, the head rotates a set number
of degrees around the y-axis. The cosine-interpolation simulates the intertia of
mass as it smooths out the start and end of the animation. The duration and extents
are set such that they are realistic, but relatively fast, as this is when the effects
become the most noticible.

The graphs in Figure 18 show the results for the three implemented warping
techniques and using none at all. Based on the last buffer swap time the ray caster
renders an image using the predicted head-position. As the animation and inter-
polation model is known, the prediction is optimal with regards to position. The
warping component in each mode uses the last result and the time for the next
display update to create a warped result.

For both head movements the mode that uses no image warping (None) the
DSSIM value does not drop back to zero which might indicate the latency between
displayed image and head position. Regardless of simulation state each image
is shown for the duration of approximately two display updates before the next
rendering result becomes available. Note that with no latency the DSSIM value
would oscillate between zero and close to the current values as only the first frame
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Figure 18: Trace of displayed left image compared to reference view for implemented
warping techniques. The animation lasts one second.

coincides while the following diverge.
For the Quad warping mode (cf. Section 5.3.1) the error trace of rotational

head movement (Figure 18a) shows that at any time the displayed image is much
closer to the reference view. Over the course of a couple of frames the error slightly
rises before the next ray casting result becomes available and the error drops close
to zero. The Grid warping mode (cf. Section 5.3.2) shows even lower error, possi-
bly by compensating for the translational changes induced by the head movement
around the neck. The trace of the Volumetric warping mode (cf. Section 5.3.3) is
the smoothest compared to the others indicating that frame updates might not be
noticible at all. This smoothness may result from the reconstructed parallax effects
inside the volume. The Grid warping method is unable to reproduce such effects.

These properties become more apparent in the error trace of translational head
movement (Figure 18b). In this trace the Quad mode shows almost no difference
to not using a warping technique at all. The Grid mode compensates much of the
translation, but diverges from the reference as the parallax effects become more
severe. However, drops are lower than with the Quad mode. The Volumetric mode
again is the smoothest, but yields the longest update times. The same result is used
for warping for up to five consequtive frames. Surprisingly, the DSSIM value still
ranges below 5.2%.

Figure 19 shows details of a frame in the middle of the animation. In modes
None and Quad the latency problem is most noticible. The None mode displays
the last result which is already out-dated. The Quad mode cannot compensate for
the translational difference and thus essentially also shows an image that is already
more than one frame old. These deviations show in the high DSSIM values near the
contours of the volume. The Grid mode noticibly compensates for the translation,
however there are visible artifacts at the neck. Here, the grid was projected to a
semi-transparent voxel in front of the neck, but painted with the color information
of rays that originally ran through the neck. Yet, the average error is much smaller

37



(a) Warping Results (b) DSSIM Image

Figure 19: Details of frame 35 (0.583s) of translation simulation. A blue vertical line has
been added to the warping results for reference. From top to bottom: Refer-
ence, None, Quad, Grid and Volumetric warping mode.

than with the first two modes. The Volumetric mode is able to compensate for a
great deal of the translational changes, even inside the volume. Thus, the same
neck area is warped more accurately than with the other modes. However, the ray
marching implementation of the warping shader does not always reconstruct the
correct opacity which leads to the more transparent areas near the chin and bottom
of the neck.

The results show that for compensating rotation any of the implemented warp-
ing methods is well suited as the error is generally low. Most importantly, latency
can always be reduced and intermediate frames are tracked. For translation the
lack of parallax compensation of the Quad mode becomes an issue. At a similar
update rate, the Grid mode is generally able to compensate for a big part of it. Even
though the update rate doubles compared to the others, the Volumetric warp mode
achieves the smoothest and closest results.

7 Conclusion

7.1 Future Work

In future work, the single-pass stereo technique is to be further enhanced regard-
ing several shortcomings of the current implementation. Firstly, the size of the
re-projection layer texture array is currently directly determined by the number of
covered pixels of a re-projected ray. it is interesting to explore ways to employ

38



the idea of interleaved sampling [29] in one way or another. The general idea is to
provide comparable image quality at lower sampling rates, by interleaving samples
from several regular grids. In the context of the proposed stereo technique, there
could be ways to reduce the number or the resolution of required textures. The
sampling rate, in this context, refers to the number of layers that compose the right
view. Interleaving could be established by changing the pattern in which left view’s
rays are assigned to layers and segments are re-projected. Possibly, the number of
required textures could be further reduced. Another point of investigation is the
texture clearing routine. In the current implementation, the texture is cleared by
copying the content of a pre-cleared PBO. However, alternative methods exist to
clear the content of a texture array, such as the OpenGL 4.4 function glClearTexIm-
age [33]. it is interesting to compare execution times of these methods to evaluate
whether the performance overhead can further be reduced. Additionally, it is inter-
esting to compare the performance of the technique against state-of-the-art image
warping algorithms, such as Lochmann et al. [40]. In this thesis it has been im-
plemented as part of the PDL however using it to generate the stereoscopic view is
just as viable.

Regarding the proposed asynchronous rendering system, one of the biggest
concerns of the current implementation is the problem of insuring not to miss a
frame. As one GPU is shared between the rendering tasks and preemption is not
supported, the computation times within a frame are predicted, leaving a window
of idle time for possible fluctuations. Preferably, this time window is as small as
possible. Thus, it is interesting to implement the system on a multi-GPU system
which would drastically simplify the problem, as both GPUs could keep render-
ing independently. Following the remarks of [51], the warping system could be
implemented on the integrated GPU instead of a dedicated graphics card which
facilitates wide-ranging applicability. However, as the OpenGL runtime generally
loads only one installable client driver (ICD) at a time, an implementation could
require a setup running multiple processes with shared memory. Furthermore, once
the functionality of task preemption becomes available at the API level, the predic-
tion approach could be replaced by a preferable just-in-time solution. With this,
the ray casting would simply pause and switch to the warping task based on the
time left until the next frame needs to be sent to the display.

Finally, the presented asynchronous rendering approach has essentially been
evaluated heurisitcally, while the targeted benefits actually lie in the physiological
domain. Therefore, it is interesting to evaluate it also by means of user studies, to
assess to what extent the VR experience is improved with regards to the appearance
of cybersickness.

7.2 Summary

This thesis has addressed the acceleration of volume rendering in the context of
virtual reality applications. Accommodating current trends in consumer hardware,
it specifically covers a distinctive set of problems related to HMD-based VR. The
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non-negligible risk of appearance of cybersickness is countered by minimizing the
magnitude of known driving factors, i.e. low frame rates and high latency. An
asynchronous rendering system has been proposed which seperates the expensive
ray casting task from the high-frequency displaying task. With this, the display-
ing task uses image warping techniques to retain a smooth frame rate and gen-
erate closely tracked views. A set of three warping techniques of varying com-
plexity have been compared regarding their capabilities to smooth out rotational
and translational movement of the head. The results suggest that even the sim-
ple image-warping technique is sufficiently capable to smooth out head rotation.
The volumetric approach yields the most compelling results, while the grid-based
mesh-warping technique makes for a viable, more capable alternative to the sim-
ple image-warping technique. Furthermore, a novel single-pass stereo rendering
technique for GPU ray casting has been presented. To this end, the ray casting
fragment shader is extended by a re-projection phase in which ray segment colors
are written to layers of a texture array. The second view is efficiently produced
in a fast compositing pass in which the buffered colors are accumulated. Multiple
factors such as resolution, array size and field of view constrain the applicable near
plane distance. Speed-up over rendering views seperately depends largely on the
sampling and shading complexity. In future work, the single-pass stereo method
could be enhanced to further reduce the computational overhead and to improve the
image quality and the minimal near plane distance. Regarding the asynchronous
rendering system, driver-level features for context switching and task preemption
would be greatly beneficial for future implementations. Futhermore, a user study
could reinforce the practical effect of the implemented systems.

In conclusion, the implementation of costly volume rendering in virtual reality
requires special considerations regarding a users wellbeing, such that the accel-
eration of the stereoscopic image generation and domain-specific image-warping
techniques for spatio-temporal upsampling should be considered, to secure a com-
fortable HMD experience.
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