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Zusammenfassung
Semantische Daten zusammen mit General-Purpose-Programmiersprachen zu ver-
wenden stellt nicht die einheitlichen Eigenschaften bereit, die man für eine solche
Verwendung haben möchte. Die statische Fehlererkennung ist mangelhaft, ins-
besondere der statischen Typisierung anbetreffend. Basierend auf vorangegan-
gener Arbeit an λDL, welches semantische Queries und Konzepte als Datentypen
in ein typisiertes λ-Kalkül integriert, bringt dieses Werk dessen Ideen einen Schritt
weiter, um es in eine Echtwelt-Programmiersprache zu integrieren. Diese Arbeit
untersucht, wie λDLs Features erweitert und mit einer existierende Sprache vere-
inigt werden können, erforscht einen passenden Erweiterungsmechanismus und pro-
duziert Semantics4J, eine JastAdd-basierte Java-Sprachintegration für semantis-
che Daten für typsichere OWL-Programmierung, zusammen mit Beispielen für ihre
Verwendung.

Abstract
Using semantic data from general-purpose programming languages does not pro-
vide the unified experience one would want for such an application. Static error
checking is lacking, especially with regards to static typing of the data. Based on
the previous work of λDL, which integrates semantic queries and concepts as types
into a typed λ-calculus, this work takes its ideas a step further to meld them into
a real-world programming language. This thesis explores how λDL’s features can
be extended and integrated into an existing language, researches an appropriate
extension mechanism and produces Semantics4J, a JastAdd-based Java language
semantic data extension for type-safe OWL programming, together with examples
of its usage.
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Chapter 1

Introduction

Semantic data is a way to turn knowledge into an operable format. Ontologies
in formats such as OWL [MVH+04] or RDF [BG00] are used to describe the
conceptualizations of the data and the known facts about their relationships. From
this, new knowledge can be inferred via reasoning. There are many varied use cases
for semantic data, such as the collaborative knowledge base of Wikidata [VK14],
the linking of knowledge as done by the BBC [KSR+09] or the enhanced internet
search and personal assistance services of Google and Microsoft.

However, when it comes to integrating this multitude semantic data into a type-
ful programming language, much of the distinction of the semantic data is lost.
When using some interface such as SPARQL [PS08] or OWL API [HB11], indi-
viduals are represented as some generic Value or NamedIndividual instance, which
does not represent the actual semantic concept that the individual belongs to. And
while approaches exist to map a semantic data model into a class model [KPBP04],
the large number of concepts and possible interactions between them makes this
infeasible when applied to real-world ontologies. The resulting type error mes-
sages may be difficult to understand, as they refer to the generated names for the
mapping, rather than the actual names in the ontology.

To address this issue, λDL has been developed: a typed λ-calculus that inte-
grates semantic concepts as types of the language itself [LLS16]. It allows defi-
nition of semantic concept type constraints using a description logic syntax and
verifies these types at compile-time by forwarding the checks directly to a knowl-
edge system. Additionally, it uses the same description logic to execute queries and
projections, as well as allowing for type distinctions based on specific individuals
at run-time.

However, while it proves the concept, λDL is not useful for practical application.
Being just a λ-calculus at its core, it does not provide any interface to the outside,
such as user input, output and libraries that real-world languages make available.

That is the problem this thesis intends to address: taking the core ideas from
λDL– semantic concepts as types built from description logic, using a knowledge
base for type-checking, integrated queries and projections – and building an exten-
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sion for a real-world, general-purpose language with them. This tight integration
of semantic data into the type system and syntax of the language would allow for
more comfortable development of programs dealing with semantic data, leverag-
ing the possibilities of type checking and other static analysis to prevent common
errors.

Language extension like that is of course not a new problem. There are vari-
ous different language workbenches [SSV+], extensible compilers [EH07a, NCM03,
Zen04] or type systems [MME+10, SBT+13] and many other technologies that
make customizing programming languages possible using well-defined interfaces,
rather than making ad-hoc compiler modifications or building custom preproces-
sors.

There are several questions raised by this endeavor. How can structural seman-
tic concepts as types fit into a hierarchical type system? How can the description
logic syntax be integrated into the existing language’s syntax without changing its
semantics? What is an appropriate language for extension and what technology
should be used for doing so? And what advantages over conventional methods of
programming with semantic data does this extension bring? Over the course of
this thesis, these issues are be addressed, discussed and attempted to be answered.

The work is structured as follows. Chapter 2 lays out the syntax and semantics
of λDL, upon which the rest of the thesis is built. Chapter 3 points out related work
with regards to existing practices of programming with semantic data. Chapter 4
examines the design requirements of a semantic data language extension, chapter
5 seeks out an appropriate platform to build the extension on and chapter 6 shows
the workings of the eventual implementation. Chapter 7 shows the extension’s
features in action and chapter 8 concludes with a list of limitations and possibilities
for future work.



Chapter 2

Background

In the following sections, the basics of the λDL language are laid out, with a focus
on its semantic data features. The information about the language is taken from
the preliminary report on λDL [LLS16] and the prototypical implementation by
Martin Leinberger1.

All semantic data examples in this thesis, including source code listings, refer
to the Wine Ontology2, published in the W3C OWL Guide [WMS04].

2.1 Description Logic
Description logic (DL) is responsible for the latter part of λDL’s name. The lan-
guage uses a kind of DL for specifying its semantic concept types and for describing
queries and projections over semantic data. This section describes the theory of
the flavor of description logic that λDL uses, while the next section deals with the
practical aspects of using it for programming with OWL data.

A knowledge base’s signature is made up of a triple (A,Q,O), where A is a
set of concept names, Q is a set of role names and O a is set of object names.
DL uses interpretation-based semantics. Interpretations I are pairs consisting
of a non-empty set ∆I (the domain or universe) and an interpretation function.
The function maps each object from O to an element in ∆I , and assigns each
concept name from A to a set AI ∈ ∆I and each role name from Q to a relation
QI ⊆ ∆I ×∆I [Baa03, LLS16].

The particular dialect of DL that λDL uses is an attributive language with
complements, nominal concepts and inverse role expressions (ALCOI). Table 2.1
describes the syntax and semantics of this particular dialect of DL [Baa03, LLS16].

1http://west.uni-koblenz.de/sites/default/files/research/software/lambdadl/
precompiled.zip, accessed 2017-08-18

2https://www.w3.org/TR/owl-guide/wine.rdf, accessed 2017-08-18
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Concepts are built from atomic concepts, nominal concepts, > (everything or
universal concept) and ⊥ (nothing or bottom concept). They can be negated or
composed by intersection, union and existential or universal quantification [LLS16].

Role expressions are atomic roles, O (top role, relating all possible pairs of
individuals) and M (bottom role, relating no pair of individuals). Role expressions
can be inverted. [LLS16, PC12, MPSP+09].

A knowledge base is compromised of a set of terminological axioms (the TBox),
which defines the conceptualizations of the data, and a set of assertional ax-
ioms (the ABox), which represents actual data as assertions over named indi-
viduals [Baa03, LLS16].

The knowledge base can check if concepts are equivalent and if a concept
subsumes another. It can also check if an object is a member of a concept and if
two objects are equivalent, as well as relate an object to another via a role [LLS16].
From these primitives, operations such as queries and projections can be built.

This thesis elides further discussion on how to construct a knowledge base like
that, as building ontologies is outside of its scope.

Expression Syntax Semantics
Everything > ∆I

Nothing ⊥ ∅
Top Role O ∆I ×∆I

Bottom Role M ∅ × ∅
Atomic Concept A AI ⊆ ∆I

Atomic Role Q QI ⊆ ∆I ×∆I

Nominal Concept {a}
{
aI
}

Negation ¬C ∆I \ C
Inversion R− {

(b, a) ∈ ∆I ×∆I | (a, b) ∈ RI}
Intersection C uD CI ∩DI

Union C tD CI ∪DI

Existential
Quantification ∃R.C

{
aI ∈ ∆I | ∃bI : (aI , bI) ∈ RI ∧ bI ∈ CI}

Universal
Quantification ∀R.C

{
aI ∈ ∆I | ∀bI : (aI , bI) ∈ RI ∧ bI ∈ CI}

Table 2.1 Syntax and semantics of DL expressions.
With definitions A ∈ A, Q ∈ Q and a, b ∈ O. C and D stand in for concept expressions.
R stands for a role expression. [Baa03, LLS16, PC12]
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2.2 OWL API for Knowledge Base Access
In practice, a knowledge base is represented as an ontology, for example in the OWL
format. As with the theoretical foundation described in the previous chapter, these
ontologies contain the conceptualizations and assertions over the semantic data.
To interact with this data, a semantic reasoner is used.

In the prototype implementation for λDL, the OWL API interface [HB11] has
been used to provide knowledge base functionality, in conjunction with the HermiT
reasoner [SMH08]. It operates on ontologies in various formats, such as OWL and
RDF.

While its terminology relating to DL is slightly different due to using OWL’s
names for them (concepts are referred to as classes and roles are referred to as
object properties), it supports all of description logic and reasoning capabilities
required for λDL. See table 2.2 for the equivalences between OWL API and λDL’s
description logic.

Expression λDL OWL API
Everything > Thing()
Nothing ⊥ Nothing()
Top Role O3 TopObjectProperty()4

Bottom Role M3 BottomObjectProperty()4

Atomic Concept C Class(C)
Atomic Role R ObjectProperty(R)4

Nominal Concept {a} ObjectOneOf(a)
Negation ¬C ObjectComplementOf(C)
Inversion R− ObjectInverseOf(R)
Intersection C uD ObjectUnionOf(C, D)
Union C tD ObjectIntersectionOf(C, D)
Existential Quantification ∃R.C ObjectSomeValuesFrom(R, C)
Universal Quantification ∀R.C ObjectAllValuesFrom(R, C)

Table 2.2 Description logic syntax and OWL API equivalencies.

3λDL itself does not make use of top and bottom roles, so they are only listed here for
completeness. Section 4.4.4 explains what these roles are to be used for.

4OWL API also has DataTypeProperty, but the knowledge base implementation only
uses ObjectProperty.
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2.3 λDL Language Features
The λDL language is at its core a simply-typed λ-calculus [Loa98]. It includes
features such as let-bindings, function definition and application, if-else expres-
sions and operations cons, head, tail and null to operate on lists. For recursive
functions, a fixed point operator is included.

The semantic data features are based on the DL described in section 2.1. Con-
cept and role literals are represented by a kind of abbreviated Internationalized
Resource Identifiers (IRIs). Parentheses may be used for grouping DL expressions.

λ(wine:Wine ⊓ ∃hasMaker.Winery) . doSomethingWith wine

Listing 2.1 Concept type definition example in λDL.

Semantic concepts can be used as types in λDL, and are specified with the DL
syntax described previously. For instance, the concept atom Wine describes a type,
as does the structural concept expression Wine u ∃ hasMaker.Winery. Subtyping is
resolved by the knowledge base: a concept is a subclass of another if that fact is
known to be true. For example, RedWine is a subtype of Wine, as is defined by the
ontology. Importantly, the type hierarchy is not calculated ahead of time, subtype
relationships are checked by the knowledge base at the point that compilation
requires it. Listing 2.1 shows an example of a type specification on a function.

query RedWine ⊓ (DryWine ⊔ OffDryWine)

Listing 2.2 Querying example in λDL.

Another application of the DL is to retrieve individuals from the knowledge
base using the query operator. Given a concept expression, it queries the knowledge
base and returns an appropriately-typed list of all known individuals that are
members of the concept. If a query is deemed unsatisfiable by the knowledge base,
it is rejected at compile-time. Listing 2.2 shows an example query that searches
for all red wines that are also dry or off-dry wines. The query is satisfiable and
therefore accepted at compile time. It returns a list with individuals of the same
type as the DL expression it was given, i.e. RedWine u (DryWine t OffDryWine).

let getWineColor = λ(wine:Wine ⊓ ∃hasColor.Color) . head wine.hasColor

Listing 2.3 Projection example in λDL.

To retrieve properties of an individual, the projection operator . followed
by a DL expression describing a role is applied to the individual. It queries the
knowledge base for the given projection and returns a list of matching individuals.
Listing 2.3 shows an example of retrieving the color of a wine by projecting the
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hasColor role onto it. As a wine is expected to only have one color, the head
operator is applied to the result to retrieve it.

case head query Wine of
type ∃hasBody.{Full} as full -> "full, strong body"
type ∃hasBody.{Medium} as medium -> "medium, balanced body"
type ∃hasBody.{Light} as light -> "light, soft body"
default "you found an incorporeal wine"

Listing 2.4 Type casing example in λDL.

In cases where the ontology cannot prove a type relationship, a run-time type
disambiguation may be necessary that checks the type membership of a specific
individual. For this, λDL provides a type casing statement, of which an example
can be seen in listing 2.4. The individual given in the case clause is checked against
each of the type cases in order. As soon as one of the cases matches, the value is
bound to the name after the as keyword and the associated expression is executed.
If none of the cases match, the default expression is executed instead.

2.4 Sample Program

let getWines = λ(producer:Winery) . producer.hasMaker⁻ in
let producedWines = (getWines head query {ChateauChevalBlanc}) in
if null producedWines
then
"no wine is known for this winery"

else
case head producedWines of
type RedWine as red -> "red wine for meat"
type WhiteWine as white -> "white wine for fish"
type RoseWine as rose -> "rose wine for rice"
default "don't drink colorless wine at all!"

Listing 2.5 λDL example program.

This section walks through the program shown in listing 2.5. The program’s
intent is to recommend a pairing of food for a wine from a specific winery.

The program begins by defining a function getWines that retrieves the wines
of a Winery by performing a projection of hasMaker− onto it. This will return a
list of what the given winery produces according to the Wine Ontology.

It then queries for the nominal ChateauChevalBlanc and retrieves the head of
the result, which is expected to be the only result of the query. It then calls the pre-
viously defined getWines function with this individual as a parameter. This passes
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the type checking phase as the knowledge base can determine that the nominal
ChateauChevalBlanc is a Winery. The retrieved list is bound to producedWines.

It is then checked if the list is empty by use of the null operator. If this is the
case, the program returns a string describing the issue: the given winery does not
produce any wines. While this would be a strange occurrence in the real world,
an open-world ontology can reasonably have such deficiencies.

If the list is not empty, a type case is performed on the first individual of the list.
If this individual is a red, white or rosé wine, an appropriate food recommendation
is given for it. If the wine is of an unknown color, which is once again probably
just a shortcoming of the data, an appropriate warning is given to the user.

While this program is sound, the limitations of λDL become apparent when
one wishes to extend it. In particular, to receive a recommendation for a wine
from a different winery than Chateau Cheval Blanc, one would have to modify the
program’s source code and replace the winery’s IRI with something else. Given a
real-world application where such recommendations need to be given according to
user input, λDL quickly becomes infeasible.

This is the point where the work in this thesis takes off from. To make the
ideas brought forth by λDL viable in practical applications, it attempts to integrate
them into an existing general-purpose language. This will combine the features
of λDL– type-safe, integrated handling of semantic data – with the vast array of
libraries and functionality of a real-world programming language.



Chapter 3

Related Work

This work is associated with programming with semantic data and integrating
ontologies as foreign data models into programming languages as types. This
chapter shows work that relates to these topics in four different ways: the classical
way of programming with semantic data using generic representations for virtually
typeless access, mapping ontology data models to the programming language’s
types, integrating query facilities into the language and, finally, extending the
language’s type system.

As this thesis builds upon research and development done for λDL, further
related work can be found in the preliminary language report [LLS16]. While the
implementation in this work deals with language extension, extensible compilers
and language workbenches, it is merely a user of these tools and therefore does
not include them as related work. The relevant discussion about these platforms
can be found in chapter 5.

3.1 Generic Representation
The classical way to program with semantic data does not integrate the ontology
model into the type system at all. Instead, generic types like Individual are
used. This is analogous to the generic Node types of XML’s DOM [WLHA+98].
As described in chapter 1, this almost typeless approach does not fit well into
statically typed languages. The advantages of compile-time type-checking are lost
when dealing with the semantic data.

SPARQL1 [PS08] is a common way to access semantic data this way. Libraries
such as RDF4J2 (formerly Sesame), ARQ for Apache Jena3, RDF::Query4 and
many others provide a programmatic interface to querying a triple store using

1Standing for the recursive acronym “SPARQL Protocol and RDF Query Language”
2http://rdf4j.org/, accessed 2017-08-18.
3https://jena.apache.org/documentation/query/index.html, accessed 2017-08-18.
4https://metacpan.org/pod/RDF::Query, accessed 2017-08-18.

9

http://rdf4j.org/
https://jena.apache.org/documentation/query/index.html
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SPARQL queries. The queries are generally represented as strings in the program,
which brings with it the same injection issues that similar SQL interfaces suffer
from [OAA+10]. Individuals retrieved from query result sets use some generic
Individual type or similar.

A method of dealing with semantic data without using a separate query lan-
guage can be found in the OWL API [HB11], which the λDL protoype uses for its
knowledge base implementation. The OWL API library provides access to ontol-
ogy data in various formats, such as OWL and RDF, and enables querying that
data via pluggable reasoners such as HermiT [SMH08]. Queries are built by instan-
tiating a description-logic-like object model, which is then handed to the reasoner
to perform the actual operation. While this method precludes injection issues,
compared to a domain-specific language intended for semantic queries, manually
building the description logic object model is comparatively clunky. The generic
type for individuals is OWLIndividual.

3.2 Mapping Approaches
A common approach to integrating foreign data with the type system of statically
typed languages is by mapping the hierarchy of the data into regular types of the
language, such as classes. However, this approach has several downsides. For one,
it requires generating all type information ahead of time, which in the case of large
ontologies can be a prohibitively large amount.

This is especially the case with λDL’s types, as it allows constructing new
concepts via description logic expressions on a whim, leading to a nigh-infinite
amount of possible types. It can also lead to confusing type errors, as the mapping
of a generated type to the original data is not necessarily obvious from the type
name, and may require mapping the name back to the original description. The
information in the original data model is duplicated by the mapping, rather than
using it directly.

Jastor5 [KPBP04], agogo [PSW+09] and RDFReactor [VS05] generate a class
model of the ontology data ahead of time via code generation of a class model
for the ontology data. LITEQ [LSL+14] uses a similar approach, but instead of
directly generating code, it uses type providers of the F# language [SBT+13] to
accomplish creation of the types instead. ActiveRDF [ODG+07] generates the
necessary classes dynamically at run-time, but at the expense of deferring type
checking to run-time as well.

5http://jastor.sourceforge.net/, accessed 2017-07-18

http://jastor.sourceforge.net/
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3.3 Query Integration
There have been efforts to integrate semantic queries into the C# language via
LINQ [MBB06]. While this language integration provides some assistance in re-
gards to well-formedness of queries and can aid in proper parametrization to pre-
vent possible injection, the results received from these queries once again fall back
to using generic representations. However, while they lack result types, using
SPARQL gives them a more fully-featured query language than λDL’s description-
logic-based queries and projections provide.

LINQ to RDF6 is a prototypical example for this technique, giving an overview
of integrating semantic queries via LINQ. LINQtoSPARQL 7 is a library implemen-
tation for performing SPARQL queries through LINQ. There also exists a JSON-
view-based approach [KAK15], which provides an abstraction over constructing
raw SPARQL queries.

3.4 Type System Extension
Semantic concepts as types are one of the most significant aspects of λDL. The
closest analog to this is Zhi# [PV11], which provides integration of OWL and
XSD data models as types into the C# programming language. It is implemented
via a custom compiler framework [Paa09]. Like λDL, Zhi# does not perform any
mapping of the new types to a class hierarchy or similar, but instead performs
type-checking directly by using a semantic reasoner. However, it does not allow
for structural types like λDL does, so a type like ∃hasMaker−.> is not directly
constructible using Zhi#’s types. It also lacks integrated query facilities, instead
deferring this to existing APIs to be used in conjunction with the language.

While not directly related to semantic data, the XJ Java language exten-
sion provides an integration of XML Schema types and XPath queries [HRS+05].
Rather than attempting to map schemas to a Java class hierarchy, it uses an XPath
engine to type-check the XML Schema types, similar to how λDL uses a knowledge
base to do its type checking. XJ is implemented using the Polyglot extensible Java
compiler [NCM03].

6https://virtuoso.openlinksw.com/whitepapers/rdf%20linked%20data%20dotNET%
20LINQ.html, accessed 2017-08-18

7https://github.com/Efimster/LINQtoSPARQL, accessed 2017-08-18

https://virtuoso.openlinksw.com/whitepapers/rdf%20linked%20data%20dotNET%20LINQ.html
https://virtuoso.openlinksw.com/whitepapers/rdf%20linked%20data%20dotNET%20LINQ.html
https://github.com/Efimster/LINQtoSPARQL


Chapter 4

Language Extension Design
and Requirements

The following chapter details the specifications of the λDL language extension. It
explains the goals, shows some exploratory implementation work and then dissects
the requirements for the features of the language extension, the language it is to
be based on and the extension mechanism to be used. Finally, the findings are
summarized in a requirement catalog.

4.1 Goal
The intent of this thesis is to design and implement an extension to an exist-
ing general-purpose programming language, which aims to integrate the central
concepts of λDL into that language. The goal is not to integrate λDL itself as a
domain-specific language into the existing language.

Concretely, the key features and principles of λDL [LLS16] should be integrated
into the base language, and should act like built-in features of that language:

• Using semantic concepts as native types, specified by a description logic
syntax that allows for structural type specifications.

• Inferring the subtype relationship between these types when the type check
occurs during compile-time, rather than computing them ahead of time.

• Allowing the user to distinguish semantic concept types at run-time as well,
in cases where the ontology provides insufficient information and a decision
must be based on specific individuals.

• Querying the knowledge base and performing projections on individuals re-
trieved via these queries, also using the description logic syntax used for
semantic concept types.

12
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4.2 Prototyping

use Semantics "wine.rdf";

sub getWines($producer where (* ⊑ <:Winery>)) {
$producer → <:hasMaker>⁻

}

my @producedWines = getWines((query <:ChateauChevalBlanc>).first);

say do if !@producedWines {
"no wine is known for this winery"

}
else {
given @producedWines.first {
when * ⊑ <:RedWine> { "red wine for meat" }
when * ⊑ <:WhiteWine> { "white wine for fish" }
when * ⊑ <:RoseWine> { "rose wine for rice" }
default { "don't drink colorless wine at all!"}

}
}

Listing 4.1 Equivalent Perl 6 example for listing 2.5.

For exploring how a language extension would look like and which kinds of ap-
plications there would be for it, a prototype implementation was created, using the
Perl 6 programming language1. As it supports gradual typing, custom operators
and run-time type constraints, building a compiler extension was not necessary to
create the prototype.

While it has an imperfect syntax and defers most type-checking to run-time, the
prototype is still very useful to create sample applications and explore functionality
beyond what λDL itself is capable of. For instance, λDL has no facilities for external
input, which is a necessity to create any kind of interactive application.

Differences in the description logic syntax compared to λDL are as follows:

• Semantic concept type constraints are checked via a custom ⊑ subtype op-
erator, as description logic expressions on their own do not trigger a type
check.

1This implementation is available at https://github.com/hartenfels/Semantics, ac-
cessed 2017-08-18.

https://github.com/hartenfels/Semantics
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• Concept atoms, role atoms and nominal concepts are strings referencing a
proper, optionally abbreviated IRI. To make them visually distinct from
regular strings, the code examples delimit them with angle brackets (<>)2.

• The dot operator is already used for method calls in Perl 6 and cannot
easily be overloaded. Therefore, instead of a dot, quantifiers use the pair
constructor operator => and projections use a new → projection operator.

The semantics however, remain identical to the way these operations work in
λDL. Listing 4.1 shows the sample program from section 2.4 translated to the Perl
6 prototype implementation. It tries to stick very close to the λDL example to
make the equivalences clear, and as such is not an example of idiomatic Perl 6
code.

4.3 Knowledge Base Service

Request: ["wine.rdf","query",["C",":Wine"]]
Response: [
"http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#BancroftChardonnay",
"http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#RoseDAnjou",
"http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#TaylorPort",
// more results follow…

]

Listing 4.2 Request and abbreviated response for a query <:Wine> operation.

To perform type checking, queries, projections et cetera, a semantic reasoner
is required. However, reasoner implementations are based on various different
languages [MK11], which are not necessarily directly accessible from whatever
language the extension is eventually created in.

To mitigate this, a knowledge base server application has been built3, which
provides the necessary reasoner functionality via a TCP connection over network
sockets, much like a relational database management system would. As sockets
are standard I/O functionality available by default in virtually any programming
language, this should provide an interface accessible by any kind of platform. As
the server is able to run persistently, it can also provide in-memory and on-disk
caching for repeated queries to improve performance.

2Angle brackets are actually the quote-words operator, rather than regular string de-
limiters. However, as none of the IRIs used contain whitespace, the operator effectively
produces a single string.

3The implementation of the knowledge base server is available at https://github.com/
hartenfels/Semserv, accessed 2017-08-18.

https://github.com/hartenfels/Semserv
https://github.com/hartenfels/Semserv
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The implementation is roughly based on the prototypical implementation of
λDL

4 It is written in the Scala programming language [OAC+04a] and uses the
HermiT reasoner [SMH08] via the OWL API interface [HB11].

The server uses a simple line-delimited JSON [Bra14] protocol: the client sends
a line of JSON requesting a certain action to be performed, such as a query or a
subtype check. Each request also contains the data source the operation is to be
performed on (see section 4.4.1). The server then executes the requested operation
and returns the results encoded in a line of JSON. See listing 4.2 for an example.

A JSON schema document [GZ+13] specifies the structure of the request op-
erations. The structure of the responses is either a simple boolean value in the
case of subtype or membership checks or an array of IRIs (represented as strings)
in case of queries or projections. In case of error, an object is returned containing
the exception details.

4.4 Features
The following sections discuss the individual features that the language extension
will have to implement: specification of an ontology as data source, semantic
concepts as types, semantic concept type casing, queries and projections. Where
applicable, it shows an example of the feature using the Perl 6 prototype from
section 4.2.

4.4.1 Data Sources

use Semantics "wine.rdf";

Listing 4.3 Prototype data source specification.

Operations on semantic data require an ontology to operate on to make any
sense. A query such as <:RedWine> ⊓ <:WhiteWhine> does not have any meaning on
its own, it is also necessary to specify that this query is supposed to be performed
on the semantic data of the ontology described in "wine.rdf". Similarly, concept
types also require a knowledge base to reason about them when performing type-
checking.

Listing 4.3 shows how the Perl 6 prototype accomplishes this: the semantic
data module receives a data source in the form of a path to an ontology file as
an argument upon importing it. All operators and subroutines imported into the
current scope will close over this argument and pass it to the knowledge base as

4Available under “Prototypical implementation” at https://west.uni-koblenz.de/
lambda-dl, accessed 2017-08-18.

https://west.uni-koblenz.de/lambda-dl
https://west.uni-koblenz.de/lambda-dl
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the context for all operations. The scope of the specification is lexical, inner scopes
can override it by importing the module again with a different argument.

Ideally, a full implementation would handle this similarly by attaching a data
source specification to a lexical scope, such as file scope or class scope. This
way, both a compiler and a human reading the code would be able to discern the
ontology context simply by the enclosing scope.

Alternatively, a data source could be attached to each semantic concept type
declaration, query statement and projection operator. However, specifying it sep-
arately on every single operation would be too fine-grained and add much unnec-
essary clutter.

Another alternative would be to specify the data source as an option to the
compiler. The disadvantage of this approach is that the contextual information
would be outside of the code that uses it, hampering readability and adding com-
plexity to the compilation invocation. It may also impede projects that want to
use multiple different ontologies, as restricting a compiler option to a subset of
source files could be a tricky task for the user, depending on the build system
used.

4.4.2 Semantic Concepts as Types
Semantic concept types are the defining feature of λDL. They are constructed
from description logic expressions describing conceptualizations of semantic data.
These types are to be integrated into the base language’s type system so that they
can be used, for instance, in function parameter declarations. Where appropriate,
they should also integrate in whatever other aspects of the language that types
are involved in, such as pattern matching, type casts, generic type arguments or
run-time type assertions.

A particular challenge for the integration of these types into a language is
that subtype inference and type identity must be performed by a knowledge base.
Attempting to map these types to a type hierarchy or a set of implicit type con-
versions is infeasible due to the exorbitantly high amount of possible concepts that
can be constructed using a description logic expression [LLS16]. This means a
language extension needs to go deeper than simply extending the surface syntax of
the language, and instead must also augment the compiler’s type checking rules.

A possible alternative to extending the typing rules themselves would be to ana-
lyze all conceptual types that are actually used within a program and only generate
a type mapping for those types. While such a mapping is possible [KPBP04], it
has the drawback of requiring whole-program analysis: all semantic concept types
that are used within a program need to be known before compilation to generate
the necessary type mapping. This leads to limited modularity, as two different
program modules will generate a different set of types, which will be incompatible
with each other even if they refer to the same ontology. The resulting type errors
would potentially cause usability issues, since error messages would refer to the
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generated types, rather than the actual description logic expression the program-
mer used. And finally, this approach goes against the philosophy of λDL, which
explicitly rejects mapping in favor of using the knowledge base directly [LLS16].
As such, the method is heavily disfavored.

Another unusual property of these types is that they do not possess a source
definition: they are simply declared as a description logic expression and spring
into existence as needed. This is opposed to the usual case, where types are defined
as structures, classes et cetera, which are then later referred to. This may require
further adjustment to the type system that expects definitions to exist before the
types they define are accessed.

To catch typos and otherwise incorrect types, all concept atoms, role atoms
and nominal concepts in types should be validated against the ontology’s signa-
ture [BCM99]. Any concepts, roles or nominals that are not part of the ontology
are likely to be invalid, and therefore should be diagnosed at compile-time. As
there may be valid cases of using elements that do not exist in the ontology, such
as the ontology being a work in progress, the diagnosis should either be a warning
or a suppressible error.

4.4.3 Type Casing

multi sub getProduction($producer where (* ⊑ ∃<:hasMaker>⁻ => ⊤)) {
return join ", ", $producer → <:hasMaker>⁻;

}

multi sub getProduction($winery where (* ⊑ <:Winery>)) {
return "{$winery.name} is a winery without wines!";

}

multi sub getProduction(Any $) {
return "There's only sour grapes here.";

}

Listing 4.4 Multiple dispatch via run-time pattern matching on concept types.

Type casing is λDL’s facility for run-time type dispatch. Its semantics are
simple and very similar to a switch construct or a chain of if/else statements.
In fact, the prototype does not provide any special construct for it at all. Instead,
Perl 6’s switch-like given/when statement (see listing 4.1) or multiple dispatch
functions based on run-time pattern matching (see listing 4.4) can be used.

However, even in a language that provides built-in features that could replace
type casing, having a dedicated construct for semantic concept types would add
more chances for static checks that may not be possible with generic type dispatch
constructs.



4.4. FEATURES 18

The cases can be checked for proper ordering at compile-time. If earlier types
subsume later types, the later cases will never be executed and should therefore
be reported as invalid.

Cases with useless type constraints can be detected as well. For example, a
case with type ⊤ would match every time, and an unsatisfiable type like ⊥ would
never match any individual. Those cases can then trigger appropriate errors.

Finally, the existence of a default case can be checked, ensuring that all possi-
ble types are handled and control cannot accidentally pass through the type casing
block.

This feature should not be a challenge for any language extension framework,
as it is simply adding to the language, not integrating into an existing facility. It
requires the addition of some new syntax, static checks and code generation of a
regular if-else chain or similar for execution.

4.4.4 Queries

sub searchWines(Str %input) {
my $dl = <:Wine>;
# possibly amend expression with strings from user input
$dl ⊓= {%input<body> } if defined %input<body>;
$dl ⊓= {%input<color>} if defined %input<color>;
return query $dl;

}

Listing 4.5 Dynamic queries in the prototype implementation.

To actually retrieve any individuals to interact with, a means to query the
knowledge base must be provided. The prototype handles this like λDL does: a
query operator is provided that takes a concept expression as its argument and
returns a list of matching individuals.

There is a major difference to λDL however: query expressions can be dy-
namic, rather than being fixed at compile-time. This is necessary to allow for
queries based on user input, which is a much more useful and interesting feature
in real applications than static queries. However, this poses several problems not
addressed by λDL itself.

There needs to be some way to construct description logic expressions at run-
time. A simple example would be a search function that looks up a concept
and returns the matching individuals. The prototype implementation therefore
allows using strings to construct concept atoms, role atoms and nominal concept
expressions. These strings can come from literals, variables or anywhere else. It
also allows using description logic expressions as values, which lets one construct a
dynamic query expression incrementally by, for instance, storing it into variables.
See listing 4.5 for an example of this.
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These kinds of dynamic description logic expressions should of course not be
available for semantic concept types, as those must be known at compile-time to
check them in the first place. While the prototype implementation does not pay
attention to this as it performs all type-checking at run-time, the final implementa-
tion needs to enforce that its types are constant. This may either be accomplished
by ensuring that the strings used in types are literals, or by using a different form
of literal altogether.

Expression Inferred Type
? > or O

¬C? >
R−

? O
∃ ?. C ∃O.C
∀ ?. C ∀M.C
∃R . ? ∃R .>
∀R . ? ∀R .>
C t ? C t >
C u ? C u >

C and R stand for a concept and a role expression respectively. C? and R? stand for
a concept or role expression that contain any unknown elements anywhere in them. ?

stands for an unknown element not known at compile-time, such as a reference to a
variable.

Table 4.1 Query type inference.

As dynamic query arguments are not known at compile-time, the type of values
that the query will return cannot be completely inferred. However, depending on
which parts of the expression are unknown, an upper bound can be calculated
regardless, see table 4.1 for an overview of the rules for it. If no better type can
be inferred, the upper bound of a query is >.

To improve typing of dynamic queries where quantifiers with unknown roles
are involved, the top role O and bottom role M defined in section 2.1 are used to
provide a more precise upper bound. Without them, the entire expression would
be bounded only by >.

For example, assuming that x is some variable whose value is not known at
compile-time, a query for <:Wine> ⊓ {x} would have an upper bound of <:Wine>
⊓ ⊤. A query for ¬x would have an upper bound of >, as the negation of a concept
with unknown constituents yields an unknown value.

Queries should return lists or sets of the appropriate inferred type. This type
should also be used to check if the query is unsatisfiable at compile-time, yielding
an error if that is the case, as happens in λDL. This check should not happen
with dynamic queries at run-time, as they may be unsatisfiable for valid reasons.
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For example, a search query initiated through user input may be unsatisfiable
simply because the user searched for something that does not exist, which is not
an exceptional or erroneous circumstance.

As with description logic expressions for types, concept atoms, role atoms
and nominal concepts that are not part of the ontology’s signature [BCM99] are
likely to be errors when queried for. However, as queries may be dynamic, these
potential errors should be diagnosed at compile-time where possible and at run-
time when the query is actually executed. The diagnosis must not be a fatal error,
as dynamic query arguments can come from anywhere, and should not require
additional validation to prevent the program from crashing.

4.4.5 Projection
Projection is a similar case to querying from the previous section: a data source
must be in scope to type the projection properly and there must be some sort of
projection operator that receives a role expression as its argument.

The type of a projection of the form i.R, where i is some individual of concept
type C and R is some role type, is a collection of ∃R−.C as its type. As with
queries, if the projection’s role argument contains elements not known at compile-
time, they are resolved to an upper bound as described in table 4.1. In particular,
a role that is entirely dynamic resolves to a collection of ∃O.C, again making use
of the top role defined in section 2.1.

In λDL, satisfiability of projections is not checked like it is for queries [LLS16].
According to the authors, this is an unintentional shortcoming. Therefore, it would
make sense to at least apply the same satisfiability requirements as for queries,
which means that the resulting type of ∃R−.C must not be unsatisfiable.

However, this is a weak condition, which is unlikely to be possible to discern
as unsatisfiable unless the ontology defines this relatively specific case. A more
useful condition would be to ensure that C is a subtype of ∃R.>. This condition is
of course also more restrictive and may exclude valid projections, so there would
need to be a way to get around this somehow and execute a projection regardless.
For example, by using a type case to check if the individual has the correct type or
replacing the projection with an equivalent query using the individual as a nominal
concept.

Projections should also return lists or sets as collections for their resulting
individuals. Signature validation should behave as it does for queries as well:
a non-fatal diagnosis at compile-time where possible using the inferred upper-
bounded type, as well as at run-time when the projection is executed with its
eventual values.
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4.5 Extension Considerations
This section deals with the requirements of the language extension internals: the
language it is based on and the mechanism by which that language is extended.
Special care is taken to discuss backward compatibility issues, to ensure that the
language extension does not break the semantics of existing and working code.

4.5.1 Base Language
There are some considerations to make in regards to the language to extend. The
concepts and ideas from λDL should mesh properly with the base language, as
well as with the general ecosystem of semantic data programming, to eventually
provide a usable and cohesive unit.

As integrating semantic concepts into the type system is the primary thesis of
λDL (see section 4.4.2), the base language should have an appropriate type system
to integrate into. A strong static type system, which is what λDL itself uses,
would be preferred for this, since the language would already have the necessary
type checking in place that could be amended by the new semantic concept types.

Other methods of checking types at compile-time may be an option as well,
such as typed extensions of dynamically typed languages. Examples include Typed
Clojure [BSDTH16], Typed Lua [MMI14] or TypeScript [BAT14]. However, as
these type systems are still built upon dynamically typed languages, the type
integration would not be as complete as with a static type system.

As this type-checking should occur at compile-time, a language that has a
separate compilation phase is required. An interpreted language that provides
run-time type checks only is insufficient.

Much of the ecosystem of semantic data software is centered on the Java lan-
guage and it’s Java Virtual Machine (JVM) platform [SET09]. To allow for the
best interoperability with these existing programs and libraries, using Java or some
other JVM-based language would be the most fitting approach. Languages that
can interface with Java in some other manner are to be considered as well.

Since λDL is based on the functional λ calculus [LLS16], the base language
for the extension should ideally also provide a degree of functional programming
support. This way, already existing example programs for λDL could be more
easily and directly ported to the new environment.

4.5.2 Extension Platform
To allow for a clean implementation with possible future developments, the exten-
sion should be built upon a platform that is intended for such a task. It should
allow for a structured and documented approach to adding the necessary features
to the base language.
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Ad-hoc solutions, such as modifying compiler internals or constructing an im-
promptu source-to-source compiler, are disfavored, and only considered as a last
resort if no appropriate platform can be found.

Due to the many different aspects of the language that are to be affected
by the extension, a sufficiently powerful mechanism for creating this extension is
necessary. Based on the discussion in section 4.4 above, the following aspects of the
language will need to be augmented, and the extension platform therefore needs
to be able to support these augmentations:

• Attaching contextual information to a scope at compile-time, to allow for
specification of a data source (section 4.4.1).

• Description logic expression syntax, in particular support for adding prefix,
infix, postfix and circumfix operators, and semantics. See sections 4.4.4 and
4.4.5.

• Description logic type syntax. This is a separate concern to the above point,
as a language may allow definition of custom operators, but may not allow
these operators to be used to construct structural types at compile-time. See
section 4.4.2.

• New syntactical constructs with custom static checking, to implement type
casing (section 4.4.3) and querying (section 4.4.4).

• Integrating a new set of types into the existing type system and specifying a
custom way of specifying their subtype relationship without mapping them
to some explicit hierarchy, to implement semantic concepts as types checked
by the knowledge base (section 4.4.2).

4.5.3 Backward Compatibility
As the language being extended will have an ecosystem of existing code, some
thought will need to be given in regards to compatibility with that code. For
instance, introducing a new keywords to a language like Java would break any
existing code that uses this word as an identifier. Especially common words such
as query or type that are present in λDL would cause conflicts, to the point of
requiring a re-write of the affected code – a major usability issue.

To avoid such issues, any code that is valid in the base language should retain
its semantics even when the extension is in use. Code that is syntactically or
otherwise statically invalid in the base language may be given different semantics
in the extension. This approach should not cause any breakage, as existing code is
unlikely to use constructs deemed invalid at compile-time, lest it would not compile
and function in the first place.

A possible strategy for this is to simply use symbols that are unused in the base
language. For example, Java does not use the symbol ⊔ in its syntax, therefore it
could freely be added as a new infix operator without causing any conflicts.



4.6. REQUIREMENTS CATALOG 23

Similarly, existing keywords of the language can be re-used in contexts where
they are not valid in the base language. For example, the case keyword in Java
is only valid inside of a switch statement block. To implement syntax for a type
casing feature (see section 4.4.3), the case keyword could be used at the beginning
of a statement to introduce the type case. There are no conflicts with existing
code, as the keyword is never valid at the beginning of a statement in the base
language.

A different strategy would be to use compiler pragmas that are restricted to
some scope. The compiler would only enable the extension functionality where
the pragma is in scope, and otherwise behave normally. Since only new code
intended for use with the extension would enabling the behavior, existing code
would continue to function as before. However, this method makes more sense
if pragmas are already part of the language, as otherwise there also needs to be
additional syntax using the above method to allow for specifying pragmas in the
first place.

4.6 Requirements Catalog
The following catalog summarizes the results from the discussion in this chapter
into a set of requirements. They lay out the prerequisites for the language being
extended, into which the features are integrated, the extension mechanism, which
is used to implement these integrations, and the extension itself, which concerns
the functionality of the final product.

The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL
NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OP-
TIONAL” in this section are to be interpreted as described in RFC 2119 [Bra97].
Relevant sections that discuss the reason behind a requirement are given in paren-
theses.

• The language being extended…

– …MUST have a separate compile-time phase, during which static
checking can be performed. (Section 4.5.1.)

– …MUST have the ability to check types at compile-time, and ideally
SHOULD have a static type system for this. (Section 4.5.1.)

– …SHOULD provide support for functional programming. (Section
4.5.1.)

– …SHOULD be compatible with the Java Virtual Machine (JVM). (Sec-
tion 4.5.1.)

• The extension mechanism MUST provide facilities to implement syntax for…
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– …description logic expressions. Their syntax SHOULD be analogous
to the one used in λDL. (Section 4.4.4.)

– …semantic concept type declarations. Their syntax SHOULD be anal-
ogous to the one used in λDL. (Section 4.4.2.)

– …a query operator. This MAY be the keyword query, as in λDL.
(Section 4.4.4.)

– …type casing with semantic concept types. This MAY use the keywords
case, type and default, as in λDL. (Section 4.4.3.)

– …projection with a semantic role. This MAY use a dot operator fol-
lowed by a description logc expression, as in λDL. (Section 4.4.5.)

• The extension mechanism…

– …SHOULD be a well-defined interface intended for extending the lan-
guage. (Section 4.5.2.)

– …MUST enable semantic concept type inference of queries and check-
ing of their satisfiability at compile-time. (Section 4.4.4.)

– …MUST enable compile-time checking of static projections. (Section
4.4.5.)

– …MUST enable compile-time checking of type casing, to ensure that
the cases are satisfiable and ordered properly. (Section 4.4.5.)

– …MUST enable code generation for queries, projections and type cas-
ing. This SHOULD NOT require source-to-source translation, and in-
stead SHOULD be embedded in the compiler’s regular code generation
pass. (Sections 4.4.4, 4.4.5, 4.4.3 and 4.5.2.)

• Either the language being extended or the extension mechanism SHOULD
provide facilities for attaching a data source specification to a lexical scope.
This scope MAY be one of file scope, class scope, module scope or package
scope. (Section 4.4.1.)

• The extension mechanismMUST allow for compile-time checking of semantic
data types. This checking SHALL NOT be in the form of a mapping ap-
proach, but instead SHALL use the knowledge base to perform these checks.
(Section 4.4.2, see also [LLS16].)

• The extension…

– …MUST provide run-time communication with the knowledge base for
execution of queries, projections and type casing. (Sections 4.3, 4.4.4,
4.4.5 and 4.4.3.)
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– …SHOULD diagnose concept and role atoms used by description logic
describing type, queries and projections that are not part of the ontol-
ogy’s signature. If the concept and role atoms are known at compile-
time, the diagnosis SHOULD occur at compile-time. Otherwise, the
diagnosis SHALL occur at run-time. This SHALL NOT be a fatal er-
ror, but instead SHALL be a warning or a suppressible error. (Section
4.4.2, 4.4.4 and 4.4.5.)

– …SHOULD retain compatibility with the language being extended.
Specifically, the semantics of valid code in that language SHOULD
NOT change between the original and the extended language. Code
that is invalid at compile-time in the base language MAY be repurposed
freely. (Section 4.5.3.)

– …SHOULD allow semantic concept types to be used in the same way
that other types are used in the language. (Section 4.4.2.)

– …SHOULD represent results from queries and projections as a form of
list or set. (Sections 4.4.4 and 4.4.5.)

– …MUST trigger a compile-time error when an unsatisfiable query or
projection is detected. They SHALL NOT be validated at run-time.
(Sections 4.4.4 and 4.4.5.)



Chapter 5

Platform Research

In this chapter, possible languages and extension mechanisms to build the language
extension on are presented. An overview of each is given and the most suitable
technologies are discussed in detail and compared against each other. From these
options, the most appropriate platform is chosen to base the implementation on.

5.1 Language and Technologies Overview

Type
System

Primary
Platforms

JVM
Interop

Extension
Mechanisms

Perl 6 gradual MoarVM,
JVM

JNI,
natively

slangs, custom operators,
custom type checking

Scala static JVM natively compiler plugins, custom
operators

Java static JVM natively Polyglot, ExtendJ, JaCo,
SugarJ, JavaCOP

Clojure dynamic JVM,
JavaScript

natively Lisp macros

F# static .NET JNI type providers
Haskell static Native JNI Template Haskell

Table 5.1 Languages considered as an extension base.

Table 5.1 shows the languages considered as a base for being extended. As
described in the previous chapter, the focus lies on JVM-based languages with
support for functional programming, but other platforms were also considered.
For languages from different platforms, JVM compatibility still exists via the Java
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Native Interface (JNI), which would at least make it possible to communicate with
existing software on that platform.

The table also lists the typing discipline of these languages. From these, only
Clojure is excluded from being an appropriate extension base, as it heavily relies
on dynamic typing and prefers specifying the structure of data to types1, which
does not fit in with λDL’s types. Perl 6 supports gradual types, a discussion of
which follows in section 5.2. Static type systems should meld well with concepts
as types, if they can be extended as such.

Kind Syntax
Extension

Type
System
Extension

Perl 6 extensible
language

yes partial

Scala extensible
language

partial partial

SugarJ (Java) language extension
framework

yes no

JavaCOP pluggable
type system

no yes

Polyglot (Java) extensible
compiler

yes yes

ExtendJ (Java) extensible
compiler

yes yes

JaCo (Java) extensible
compiler

yes yes

F# type providers no only mapping
Template Haskell compile-time meta

programming
yes no

Table 5.2 Extension mechanisms considered.

The actual mechanisms for implementing the extension are summarized in table
5.2. The primary features such a mechanism is required to support (see section
4.6) are adding new syntax, for describing concept types, type cases, queries and
projections, and extending the type system to implement type checking using a
knowledge base.

As described in section 4.5.2, only platforms intended for language extension
were considered. Performing ad-hoc preprocessing, modifying compiler internals or

1https://clojure.org/about/spec, accessed 2017-08-18.

https://clojure.org/about/spec
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creating a new, custom compiler – while virtually always possible – were therefore
excluded.

In the case of Perl 6 and Scala, the languages already provide some level of
extensibility without any additional technologies. For instance, both languages al-
low defining custom operators and extending the compiler via a plugin mechanism.
They are discussed in detail in sections 5.2 and 5.3 respectively.

SugarJ for Java enables the necessary syntax extensions, but does not allow
extending the type system enough. This may be mitigated by using it in conjunc-
tion with JavaCOP, which in turn only deals with type system extension. The
discussion for this set of technologies follows in section 5.4.

There also exist several compilers for Java that are intended to provide a
framework for extending the language cleanly: Polyglot (section 5.6), ExtendJ
(section 5.5) and JaCo (section 5.7). As they all provide direct access to the
compiler, syntax and type system can be extended directly.

The F# language’s type providers [SBT+13] are intended for integrating ex-
ternal data as types into the program. However, in the end they result in types
that are native to the language, and are therefore closer to a mapping approach
than extending the type system itself. On top of that, there is no clean way to
extend the F# language with description logic syntax to spell out these types,
making it an unsuitable approach.

Template Haskell [SJ02] is intended for compile-time meta programming in
the Haskell language. While it allows for extension of syntax and creating domain-
specific languages, it does not provide any well-defined mechanism to extend the
type checking phase. Because of this, the approach is not pursued further.

5.2 Perl 6
Given that it was already used to prototype the language extension, it is worth
considering to use the existing Perl 6 implementation as a basis for a full Perl-6-
based language extension.

The Rakudo Perl 6 compiler provides a JVM backend2, which allows compiling
Perl 6 code to JVM class files. Static type checking is supported as well, as long
as the compiler can evaluate types at compile-time. Additional type specialization
would need to be added to the compiler to support this for semantic concepts as
types, as their evaluation is non-trivial.

The language also provides comprehensive functional programming facilities,
amongst many other paradigms. It also supports additional features useful in
conjunction with semantic concepts as types, such as multiple dispatch via pattern
matching at run-time (see listing 4.4 in section 4.4.3).

Perl 6’s syntax is malleable enough to allow for the creation of a description
logic syntax without requiring any special extensions, it is simply a matter of

2https://perl6.org/compilers/, accessed 2017-08-18.

https://perl6.org/compilers/
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defining new operators. If any syntax modification would turn out to be necessary,
so-called slangs are available that allow extending the parser’s grammar itself3.

However, Perl 6 is still a very new language with a limited user base. The
JVM backend in particular is not production-ready yet and does not perform very
well4. While static type checking is possible to a degree, the intent is not to provide
comprehensive type-checking at compile time, leaving many places where types are
only checked at run-time. In particular, all method calls are resolved at run-time
by design, which makes static type-checking virtually impossible when objects are
involved. This philosophy does not mesh well with the intentions of λDL.

5.3 Scala
On the surface, Scala already fulfills several of the requirements with built-in
features: it runs on the JVM and interoperates well with Java, it has good sup-
port for functional programming and it supports the definition of custom opera-
tors [OAC+04a, OAC+04b]. The remaining functionality of static checking and
code generation could be added in the form of plugins for the Scala compiler5.

However, compiler plugins do not have a stable and documented interface –
there hardly exists any documentation at all. There is also no public interface to
extend a compiler phase, such as extending the type checking phase to support
semantic concepts as types. Therefore, it would either require implementing the
semantic concept type check as a separate phase, which would cause issues with
features such as generic types that use semantic data types as one of their com-
pounds, or to extend the type checking phase in the compiler itself, modifying the
internals directly.

Structural description logic types pose a significant obstacle in this regard. The
Scala language does not allow an expression where a type is expected, which rules
out using custom operators for them, which only function in expressions. Instead,
the parser would need to be extended to recognize description logic types as a new
syntactic construct.

This in turn is not supported. It would either require modifying the internals
of the existing parser phase, or performing a pre-processing step that transforms
description logic types in the input into something that the regular Scala parser
can understand.

In the end, this would effectively result in ad-hoc modifications to compiler
internals, which are not intended to be augmented in that way and do not provide
an appropriate interface. This is something the implementation should avoid (see
section 4.6), making Scala an unfavorable choice.

3https://mouq.github.io/slangs.html, accessed 2017-08-18.
4http://rakudo.org/2017/07/24/announce-rakudo-star-release-2017-07/, accessed

2017-08-18.
5http://www.scala-lang.org/old/node/140, accessed 2017-08-18.

https://mouq.github.io/slangs.html
http://rakudo.org/2017/07/24/announce-rakudo-star-release-2017-07/
http://www.scala-lang.org/old/node/140
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5.4 SugarJ and JavaCOP
SugarJ is a library-based language extension framework [ERKO11]. Aside from
Java, Haskell is also supported in the form of SugarHaskell [ERRO12].

As the intention of the framework is to embed domain-specific extensions into
the host language, syntax modifications are supported well. Implementing features
such as operators for description logic expressions or a type case statement would
be easily possible in SugarJ. As sugar libraries are only enabled where they are
imported, the issue of backward compatibility would already be solved as well.

However, semantic concepts as types once again prove to be a major hurdle.
While the syntactical aspects are achievable, performing proper type-checking is
exceedingly difficult. As the name implies, SugarJ functions by desugaring the
extended input into something the original language’s compiler can understand,
which is not possible with semantic concept types, as they cannot be directly
represented in a hierarchical type system.

Instead, the type checking of semantic concept types would need to occur
before desugaring, which would require re-implementing all type checking of the
base language to make it function properly with, for instance, generic types in
Java. This would of course be an excess amount of work, and not what SugarJ is
intended for.

A possible mitigation strategy for this would be to integrate JavaCOP, a frame-
work for pluggable types in Java [MME+10], into the build pipeline. The SugarJ
layer would desugar the syntax of the semantic concept type declarations into reg-
ular Java annotations, and not perform any semantic type checking on its own.
The JavaCOP layer would then parse these annotations and perform the necessary
type checks using the knowledge base.

While this is a possible solution, it is clunky at best. It would require sepa-
rating the extension into two parts and constructing a metadata-based protocol to
communicate information forward. As no prior work exists that combines SugarJ
and JavaCOP, their interoperability is questionable as well. Therefore, to avoid
the split in two and the additional effort of communicating between them, a more
integrated solution would be preferred over this one, where the parsed representa-
tion can be operated on directly.

5.5 JastAdd/ExtendJ
JastAdd is a meta-compilation system [HM03], and built upon it there is an ex-
tensible Java compiler called ExtendJ (formerly JastAddJ) [EH07a]. It is based
on reference attribute grammars [Hed00] and is extensible via aspect-oriented pro-
gramming [KLM+97]. Comprehensive documentation exists on JastAdd and Ex-
tendJ, including tutorials and source code examples.

ExtendJ is a full Java compiler, with its own backend to produce JVM byte-
code. It supports Java 8 [Hog14], which adds sufficient support for functional
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programming to the Java language in the form of lambda functions, method ref-
erences and functional interfaces [GJS+15]. It is under active development as of
the time of writing6.

The compiler allows augmentation of syntax and semantics, including exten-
sions to the type system. This interface has been used to add non-null types to
Java [EH07b] and implement multitudes of objects [SÖH14], showcasing the inclu-
sion of new categories of types, analyzing data flow at compile-time and adding
new operators. These extensions are similar in nature to features such as semantic
concept types and description logic expressions. The extensions’ source code is
publicly available7, thereby providing an ideal sample for the areas that will need
to be touched by the semantic data extension.

As it fulfills all necessary requirements, and is widely used and supported, the
ExtendJ compiler appears to be an ideal platform to build upon.

5.6 Polyglot
Polyglot is an extensible Java compiler framework [NCM03]. It has similar capabil-
ities to ExtendJ [EH07a], but uses traditional compiler phases and tree rewriting
instead of a reference attribute grammar. It supports extensions to its parser
and type system, and a similar non-null type extension has been developed for
it [MJ]. The XJ language extension mentioned in section 3.4, which implements
similar type system and querying extensions for XML processing, is implemented
in Polyglot as well.

However, there is no extension to Polyglot to support Java 8. Therefore, an ex-
tension built on it would not support many of the functional programming features
from that version of Java.

Additionally, Polyglot is a source-to-source compiler. While it performs all
necessary static checks, including type checks, before translation, it still relies on
an existing Java compiler for code generation. Custom bytecode generation is
therefore not possible.

ExtendJ supports Java 8 [Hog14], as well as providing its own backend for
code generation [EH07a]. As it has no obvious drawbacks otherwise, it is simply
preferrable over Polyglot.

6As evidenced by regular commits in the ExtendJ repository under https://bitbucket.
org/extendj/extendj, accessed 2017-08-18.

7Under https://bitbucket.org/jastadd/jastaddj-nonnullinference and https://
bitbucket.org/joqvist/multiplicities, accessed 2017-08-18.

https://bitbucket.org/extendj/extendj
https://bitbucket.org/extendj/extendj
https://bitbucket.org/jastadd/jastaddj-nonnullinference
https://bitbucket.org/joqvist/multiplicities
https://bitbucket.org/joqvist/multiplicities
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5.7 JaCo
JaCo is a Java compiler based on extensible algebraic data types [Zen04]. Like
ExtendJ, it is a full compiler, including a backend for bytecode generation. It is
intended for experiments with extensions to the Java language.

However, opposed to ExtendJ and Polyglot, there is relatively little informa-
tion on JaCo. Existing extension implementations are primarily exploratory ex-
amples [ZO01]. Their source code is difficult to come by.

The compiler supports Java 1.4, which means generics and annotations from
Java 5, and the functional programming features of Java 8 are unavailable. Version
2 of the compiler is written in Keris, a custom experimental programming language,
which also only has few resources available for it8. The most recent release of JaCo
and Keris has been in 2004.

Due to this lack of documentation and support, JaCo is not preferable over
more prevalent options, such as ExtendJ (section 5.5) and Polyglot (section 5.6).

5.8 Results
Given the requirements gathered in section 4.6, the ExtendJ compiler (section 5.5)
appears to be the most appropriate platform to build upon. It is powerful enough
to support the necessary extensions to syntax, semantics and code generation,
provides a well-documented interface and sports several existing extensions that
can be used as a guideline for the implementation. The host language Java 8
supports functional programming to a sufficient degree, has an appropriate, static
type system and is native to the JVM.

Therefore, the implementation of the language will be based on JastAdd, and
constructed as an extension to the Java language via the ExtendJ compiler.

8http://lampwww.epfl.ch/~zenger/keris/index.html, accessed 2017-08-18.

http://lampwww.epfl.ch/~zenger/keris/index.html


Chapter 6

Java Language Extension
Implementation

In this chapter, the various aspects of Semantics4J, the JastAdd-based Java se-
mantic data language extension, are presented and discussed1.

Each of the individual features is given an overview of their syntax and seman-
tics from a user perspective. This is the only part that is necessary to understand
how to use these features.

Implementation details follow under subsections where appropriate. The Syn-
tax sections describe how the scanner and parser were extended to support the
feature, and how possible incompatibilities with existing Java syntax were dealt
with. The Frontend sections explain how the extension is integrated into the
ExtendJ compiler’s referenced abstract syntax tree, and how static checks are im-
plemented. The Backend sections deal with the task of bytecode generation for
the executable class files.

6.1 Class Library
To provide the necessary functionality at run-time, such as communication with
the knowledge base or query construction, a library of classes is provided that
must be available to programs using the extension at compile- and run-time. They
are plain Java classes used to implement some of the extension’s features. A class
diagram summarizing the most relevant aspects can be seen in figure 6.1.

The semantics.KnowBase class provides an interface to the knowledge base
server (see section 4.3). Each instance of this class carries with it its data source as
its path member (see section 6.2) and abstracts away the low-level details dealing
with socket connections. This class is used to, for example, perform subtype

1This implementation is available at https://github.com/hartenfels/Semantics4J,
accessed 2018-08-18.
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semantics.model

Individual
-iri: String
-source: String

+getSource(): String
+getIri(): String
+getName(): String

semantics

KnowBase
-path: String

+of(String): KnowBase
+isSatisfiable(Conceptual): boolean
+isSubtype(Conceptual,Conceptual): boolean
+isMember(Conceptual,Individual): boolean
+query(Conceptual): Set<Individual>
+project(Individual,Roleish): Set<Individual>
+cast(Conceptual,Object): Individual
+isInstanceOf(Conceptual,Object): boolean

Conceptual

Concept
-iri: String

One
-iri: String

Negation
-c: Conceptual

1

Union
-cs: Conceptual[]

Intersection
-cs: Conceptual[]

2..*

Roleish

Role
-iri: String

Inversion
-r: Roleish

1

Existence
-r: Roleish
-c: Conceptual

Universal
-r: Roleish
-c: Conceptual

Everything Nothing

1

Full Empty

Figure 6.1 Simplified class diagram of the implementation model.

checking at compile-time (see section 6.3) and querying at run-time (see section
6.5).

To represent individuals returned from queries or projections against the knowl-
edge base, the class semantics.model.Individual is used. Each instance is simply
a wrapper around its IRI and a reference to the data source it originated from.
Individuals implement the Serializable and Comparable interfaces. They can be
hashed and compared for equality as well.

To represent description logic expressions at run-time, the interfaces seman-
tics.model.Conceptual and semantics.model.Roleish are used. They form the
supertype for all concept and role expressions respectively. When communicating
with the knowledge base, the instances of the concrete children of these classes
serialize themselves into the appropriate JSON representation.

The class semantics.model.Concept represents a concept atom, while seman-
tics.model.Role represents a role atom. The exact mapping of description logic
expressions to these classes can be found in table 6.2 in section 6.5.

6.2 Data Source Specification
The data source is specified on a per-class level. Within its scope, the knowledge
base will use the ontology from the data source as context for all semantic concept
types (section 6.3), type casing (section 6.4), queries (section 6.5) and projections
(section 6.6).

Syntactically, the keyword from is used, followed by a string that specifies the
path to the data source for the knowledge base (see listing 6.1). The keyword must
be placed after any possible extends or implements specifications.

The data source propagates lexically and do not participate in inheritance.
Inner classes inherit their data source from the first outer class that specifies one.
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public class Outer extends Object implements Cloneable from "music.rdf" {
// data source is music.rdf
static class Inner {
// still music.rdf
static class Shadow from "wine.rdf" {
// now it is wine.rdf

}
// back to music.rdf

}
// still music.rdf

}

class Child extends Outer {
// no data source, propagatation is only lexical

}

Listing 6.1 Data source specification and propagation.

A from declaration of an inner class shadows those of its outer classes (see listing
6.1).

It is legal to use multiple different data sources in the same program, but they
behave as if they were separate instances of the λDL model. See the following
sections on the effects this entails.

6.2.1 Syntax
As from is a valid identifier in normal Java code, turning it into a reserved word
would break any existing code that uses it as a name. To prevent this, instead of
recognizing it as a token in the scanner, the word is parsed as an identifier and
manually compared to the expected keyword.

As the normal Java grammar does not normally allow an identifier to be placed
in that position, this setup does not cause any conflicts with existing code. No
new reserved words are introduced and from remains a valid identifier.

6.2.2 Frontend
The data source is used every time communication with the knowledge base is
performed, as the context of a database is necessary for it to perform any of its
functions. A missing data source specification causes a compile-time error, while
an invalid data source will cause an error as soon as any actual communication
with the knowledge base is attempted.
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6.2.3 Backend
While the data source is used in code generation of other features to communicate
with the knowledge base, the from declaration itself is not needed at run-time.
Therefore no code is generated for it.

6.3 Semantic Concepts as Types

Expression Syntax Texas
Version2

λDL

Everything (Top Concept) ⊤ #T >
Nothing (Bottom Concept) ⊥ #F ⊥
Full (Top Role) ▽ #t —
Empty (Bottom Role) △ #f —
Atom «A» <<<A>>> A

Nominal Concept ⎨«a»⎬ {|<<<a>>>|} {a}
Negation ¬C -.C ¬C
Inversion R⁻ Rˆ- R−

Intersection C ⊓ D C &&& D C uD

Union C ⊔ D C ||| D C tD

Existential Quantification ∃R·C #ER...C ∃R.C

Universal Quantification ∀R·C #AR...C ∀R.C

Grouping […] (...)

Table 6.1 Semantic concept type syntax.

Semantic concept type specifications look very similar to how they do in λDL,
as can be seen in table 6.1. The reason they are not identical is to avoid conflict
with existing Java syntax. These types can be used in any place that regular Java
types can be used, including variable declarations, method arguments, generics
parameters, wildcard parameters, casts and instanceof checks (see listing 6.2 for
an example).

In case a user has trouble inputting the Unicode characters used in the type
syntax, Texas variants2 that do not require non-ASCII characters to be input are
provided. There is merely a visual difference, both variants provide the exact same
functionality.

2“ Texas Operator: The ASCII variant of a non-ASCII Unicode operator or symbol. So
described because "Everything’s bigger in Texas."” – the Perl 6 glossary, https://docs.
perl6.org/language/glossary#Texas_operator, accessed 2017-08-18.

https://docs.perl6.org/language/glossary#Texas_operator
https://docs.perl6.org/language/glossary#Texas_operator
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All semantic concept types are subtypes of semantics.model.Individual, as if
they extend the class. Subtype relationships between semantic concept types are
resolved by the knowledge base. A pair of semantic concept types is considered
equivalent if they are subtypes of each other, regardless of their structure.

Type-checking uses the data source of the enclosing class for reasoning about
subtypes (see section 6.2). If no data source is in scope, a compile-time error
is raised. Attempting to pass a concept-typed individual between classes that
specify different data sources is a compile-time error. To intermix individuals from
different ontologies, it is instead necessary to combine them ahead of time, for
example by performing an ontology mapping [KS03, ES04], and specify the new,
combined data source for both classes.

Implicit assignment of semantic concept types is possible if the appropriate
subtype relationship exists. Otherwise, a cast or type case (see section 6.4) is
necessary. This works analogously to regular polymorphic Java types.

Casts with semantic concept types work as expected: a run-time type check is
performed and in case of failure an exception is thrown. The thrown object is an
instance of java.lang.ClassCastException.

Similarly, instanceof tests with semantic types perform a run-time type check.
If the given value is an Individual and the knowledge base determines it to be a
member of the given type, the expression evaluates to true. Otherwise, it evaluates
to false.

Semantic concept types undergo type erasure, they are turned into specifi-
cations of semantics.model.Individual during bytecode generation. The same
limitations on method overloading apply as do with generic types.

public static Set<? extends ⊤> example(«:RedWine» ⊓ «:DryWine» redAndDry) {
Set<«:Wine»> wines = new HashSet<>();
wines.add(redAndDry);
return wines;

}

Listing 6.2 Concept type arguments, wildcards, generics and implicit assignment.

6.3.1 Syntax
As the entire syntax of the semantic concept types uses tokens that do not exist
in the regular Java types, there is no conflicts to worry about. The scanner was
simply extended to recognize the new tokens and the parser to recognize semantic
concept types where any other type access is allowed.

Both the Unicode and Texas variants of the various symbols used in the type
specifications are resolved to the same token in the scanner. The parser sees no
difference between them, making the implementation of these aliases trivial. The
only exception is the ... Texas operator, which Java already uses for variadic
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arguments. However, in the place where it is used, namely in the middle of a
quantifier separating the role and concept arguments, a variadic argument operator
would not make sense, as it can only appear at the end of a type parameter. As
such, there is no ambiguity as to the meaning of the operator.

There is however potential conflict between semantic concept types and de-
scription logic expressions (see section 6.5). Especially type casts may look very
similar to parenthesized DL statements. This issue is alleviated by using square
brackets to group type expressions instead of parentheses and giving concept and
role literals special delimiters instead of using, for instance, string literals or bare
identifiers.

In a few cases where the parser would commit to an incorrect interpretation
of ⊤, ⊥ and quantifiers involving ▽ or △ as a partial DL expression instead of a
concept type and does not backtrack out of them, the scanner must disambiguate
the tokens beforehand. For that, tokens are stored in a lookahead buffer until
a definitive decision can be made. This is analogous to how ExtendJ’s Java 8
disambiguates, for instance, intersection casts from bit-and expressions [Hog14].

6.3.2 Frontend
In the ExtendJ compiler, semantic concept type declarations are defined as a
subclass of class declarations. This means that only the relevant behaviors need to
be specified: structural type identity, subtype relations using the knowledge base,
access control (to make them accessible from anywhere) and type erasure.

As the compiler itself uses this interface to implement generic types [EH07a],
this extension is simple and works in all contexts types may be used. Features
such as type checking, wildcard types and method overload resolution simply fall
out of the existing facilities of the compiler.

Semantic concept types are never actually declared like a class would, they
are only reified upon access. However, due to JastAdd using the abstract syntax
tree to hold all information [HM03], the declarations still need to be attached
somewhere in the tree. To solve this, a similar approach to the ExtendJ non-
null type extension [EH07b] is used: the declarations are attached to the class
declaration of semantics.model.Individual as a non-terminal attribute.

6.3.3 Backend
As semantic concept type specifications undergo type erasure, there is little code
generation work done with them. They are simply resolved to be specifications of
semantics.model.Individual instead.

Casts and instanceof tests however do require some code to be generated so
that their run-time checks can be performed during execution. A similar technique
as described in [ÖH13] is used for code generation: instead of manually generating
bytecode or rewriting the tree when it is first accessed, a new abstract syntax
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if (x instanceof «:Wine») {
getWineColor((«:Wine») x);

}
// ...is transformed into:
if (KnowBase.of("wine.rdf").instanceOf(new Concept(":Wine"), x)) {
getInfluences(KnowBase.of("wine.rdf").cast(new Concept(":Wine"), x));

}

Listing 6.3 Tree transformation of casts and instanceof tests.

tree as a non-terminal attribute, containing only plain Java expressions. Bytecode
generation is then delegated to that generated tree.

In this case, the expressions are simply transformed into method calls that
implement the appropriate run-time behavior, an example of which can be seen
in listing 6.3. The semantic concept types are transformed into an equivalent
run-time object model compatible with the knowledge base.

Note that this transformation only happens during code generation, all static
checks still operate on the proper, untransformed tree. This allows for errors to
refer to their proper origin, as well as for full de-parsing of the tree with the original
syntax intact [ÖH13].

6.4 Type Casing

switch-type (individual) {
∃«:hasMaker»⁻·⊤ producer {
System.out.println(getWines(producer));

}
«:Winery» winery {
System.out.println(winery.getName() + " is a winery without wines!");

}
default {
System.out.println("There's only sour grapes here.");

}
}

Listing 6.4 Type case example.

Type cases allow for cleaner run-time checks of several semantic concept types
than a chain of instanceof tests and casts would. It also provides additional
compile-time checking to ensure the cases are valid and ordered properly.

The keyword switch-type is used to introduce type casing, followed by the
expression whose type is supposed to be checked and a block that contains the
cases themselves. Each type case consists of a semantic concept type, an identifier
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to bind to and a block to execute when the type matches. The last block must be
a default case, which takes neither a type nor an identifier. See listing 6.4 for an
example.

There may be zero or more type cases, which are checked in order they are
declared. If an earlier case’s type subsumes a later case’s type, a compile-time
error is raised, as the later block would be unreachable.

When a type case matches the result of the given expression, its value is bound
to a final variable with the given identifier and the block is executed. If none
of the cases match, the default block is executed. There must be exactly one
default case, and no other cases may be declared after it.

Only one case is ever executed, there is no fall-through like there is with a
regular switch statement. Blocks cannot be exited by using break, as is the case
with any non-loop block in Java.

Checking against ⊤ or any equivalent value would always match, thereby mask-
ing the default case. It is therefore disallowed. Checking against a type that is
unsatisfiable would never match, and the associated block would never be executed.
It is therefore also disallowed, which is consistent with the way Java handles dead
code in other places.

6.4.1 Syntax
As opposed to the from keyword in section 6.2, the sequence switch-type is simply
a keyword. As the only thing that can legally follow a switch keyword in regular
Java code is an open parenthesis, no existing code could make use of this sequence
in any other way. Therefore, full compatibility is retained.

Note that the word type is not a keyword on its own, the scanner recognizes
it only as part of the switch-type token.

Anything inside the block of the type casing statement is simply new syntax
that only exists in that context. Therefore extending the parser for it is simple, as
it does not need to touch existing rules.

6.4.2 Frontend
While type casing introduces several new node types to the grammar, the static
checks on them are very much straightforward and simply follow the rules given
by the usage overview above.

Each type case carries a final variable declaration with it that is only visible to
its associated block. The type check for binding this variable happens at run-time.

A type casing statement performs completability analysis similar to how a chain
of if-else statements would: a type casing statement can complete normally if any
of its blocks can complete normally. This information is also used in reachability
analysis by the ExtendJ compiler.
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6.4.3 Backend

switch-type (wine) {
«:RedWine» red { return "pair " + red .getName() + " with meat"; }
«:WhiteWine» white { return "pair " + white.getName() + " with fish"; }
«:RoseWine» rose { return "pair " + rose .getName() + " with rice"; }
default { return "don't drink colorless wine at all!"; }

}
// ...is transformed into:
{
Individual #topic = wine;
KnowBase #kb = KnowBase.of("wine.rdf");

if (#kb.isMember(new Concept(":RedWine"), #topic)) {
final Individual red = #topic;
return "pair " + red.getName() + " with meat";

}
else if (#kb.isMember(new Concept(":WhiteWine"), #topic)) {
final Individual white = #topic;
return "pair " + white.getName() + " with fish";

}
else if (#kb.isMember(new Concept(":RoseWine"), #topic)) {
final Individual rose = #topic;
return "pair " + rose.getName() + " with rice";

}
else {
return "don't drink colorless wine at all!";

}
}

Listing 6.5 Tree transformation of type cases.

Code generation uses the same tree transformation as described in section 6.3.3.
An example can be seen in listing 6.5.

To hold the value of the result of the given expression and the knowledge base
connection, variables with names that cannot appear in regular Java code are used.
This ensures they do not shadow any user-defined identifiers in the surrounding
scope. This technique is used in a similar fashion in the Java 8 extension for
ExtendJ [Hog14].

Otherwise, code generation is simply a matter of building a chain of if-else
statements whose tests communicate with the knowledge base. As a degenerate
case, a type casing statement that contains only a default block will simply eval-
uate the topic and then execute that block unconditionally.



6.5. QUERIES 42

6.5 Queries

Set<? extends «:Wine»> wines = query-for(":RedWine" ⊓ ":DryWine");

Listing 6.6 Query and description logic syntax.

Querying the knowledge base involves building a description logic expression
first. The syntax is analogous to the description logic syntax for types from sec-
tion 6.3, but in place of concept and role literals enclosed in «», any expression
that evaluates to a String can be used. For convenience, instances of seman-
tics.model.Individual used in DL expressions are turned into nominal concepts.
Texas variants of the symbols may be used as well (see table 6.1).

Description logic operators are part of the normal set of Java operators. This
means description logic expressions can appear anywhere any other expression can
appear and dynamic queries can be constructed incrementally. As with any other
expression, parentheses are used for grouping.

The intersection operator ⊓ has higher precedence than the union operator ⊔.
Both these operator’s precedence is just lower than shift operators. In particular,
this means that + has higher precedence, allowing for string concatenation within
an intersection or union expression.

The negation operator ¬ has the same precedence as the logical not operator
!. The inversion operator ⁻ has the same precedence as postfix increment ++. ⊤,
⊥, ▽ and △ are treated as literals.

Quantification operators ∃ and ∀ apply to the entire expression that is to their
right. Parentheses around the entire expression may be used to delimit them.
Atomic concept delimiters ⎨⎬ simply act as a bracketing construct, similar to
parentheses.

All concept expressions extend from semantics.model.Conceptual and all role
expressions extend from semantics.model.Roleish. The types for all description
logic operations can be seen in table 6.2. Literal concepts and roles may be
constructed by using semantics.model.Concept and semantics.model.Role, but
this should generally not be necessary, as Strings are automatically wrapped at
compile-time.

The query-for operator is perform the actual query. It receives a concept ex-
pression as its argument in parentheses and returns a java.util.Set that contains
the found elements as instances of semantics.model.Individual. See listing 6.6
for an example.

The knowledge base uses the ontology from the data source of the current scope
as context for the query operation. See section 6.2 for details on that.

The actual type of the query operation depends on the expression it is given.
Constant-foldable expressions, such as ":RedWine" ⊓ ":WhiteWine", will return a
set of the equivalent semantic concept type, Set<«:RedWine» ⊓ «:WhiteWine>» in
this case. Non-constant parts of the query are given an upper bound as described
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Expression Resulting Type
⊤ semantics.model.Everything
⊥ semantics.model.Nothing
▽ semantics.model.Full
△ semantics.model.Empty
⎨C⎬ semantics.model.One
¬C semantics.model.Negation
R⁻ semantics.model.Inversion

C ⊓ D semantics.model.Intersection
C ⊔ D semantics.model.Union
∃R·C semantics.model.Existence
∀R·C semantics.model.Universal

query-for(C) java.util.Set<? extends
semantics.model.Individual>

Table 6.2 Types of description logic expressions.

in table 4.1. For example, a query-for(":Wine" ⊓ ⎨wineId⎬), where wineId is
some variable of type String, will have a type of Set<«:Wine» ⊓ ⊤>3.

If a query is detected to be unsatisfiable at compile-time, an error is raised,
as it would not be useful. At run-time when the entire query argument is known,
satisfiability is not checked again. It is not considered an exceptional circumstance
that dynamic queries may be unsatisfiable, they are simply executed.

6.5.1 Syntax
The description logic syntax re-uses the same tokens from semantic concept types
(see section 6.3.1), just in expression context, rather than as type specifiers. There
are no syntax limitations where the operators may be used, invalid usage is detected
during type checking instead.

As the ExtendJ parser has only limited extensibility [ÖH13, Hog14], some
patches are necessary for the operators to have the correct precedence. These ad-
just the operator precedence table, as well parser rules to fit union and intersection
operations just before shift operations.

The query-for keyword works the same as the switch-type keyword from
section 6.4.1: the entire sequence is recognized as a new token by the scanner. As
the for keyword could never occur in a subtraction expression and query on its
own is not a keyword, there are no conflicts with existing Java code.

3Which can be written as just Set<«:Wine»>, as the types are equivalent.
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6.5.2 Frontend
As they are simply expressions, type-checking of description logic expressions and
query arguments is straightforward and functions much like other operators in
ExtendJ.

Recognizing constant parts of a query also simply fits into the existing compiler
facilities: ExtendJ allows declaration of synthetic attributes to recognize constant
expressions, as well as retrieving the constant value from such an expression.

Partial query types are given an upper bound by replacing non-constant parts
of the query with special unknown concept or unknown role instances and later
reducing them according to the rules set out in table 4.1.

This type is then used by the knowledge base to check if the query is unsat-
isfiable, and an error is raised if that is the case. The expression’s resulting type
becomes a java.util.Set parametrized with the partial, upper-bounded type.

6.5.3 Backend

«:Winery» winery = ...;
Set<? extends «:Wine»> wines = query-for(":Wine" ⊓ ∃":hasMaker"·winery);
// ...is transformed into:
Individual winery = ...;
Set<? extends Individual> wines = KnowBase.of("wine.rdf").query(

new Intersection(new Concept(":Wine"), new Existence(
new Role("hasMaker"), new One(winery.getIri()))));

Listing 6.7 Tree transformation of query and description logic expressions.

Once again, code generation uses the same kind of tree transformation as can
be seen in section 6.3.3. An example for queries is shown in listing 6.7.

The generated code is simple: description logic expressions turn into construc-
tors of the appropriate types. Expressions that would evaluate to Strings are
wrapped into semantics.model.Concept and semantics.model.Role respectively.
Expressions evaluating to semantics.model.Individual have their IRI retrieved
by calling getIri on them, which is then wrapped into semantics.model.One.

Operators turn into a construction of the appropriate model class, as listed in
table 6.2. The arguments to these operators are not otherwise modified, as they
are simply normal expressions.

The query-for operator itself is turned into a query method call against the
knowledge base specified by the data source that is in scope (see section 6.2).
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public static Set<∃«:hasMaker»·«:Winery»> getWines(«:Winery» winery) {
return winery.(":hasMaker"⁻);

}

Listing 6.8 Projection with description logic syntax.

6.6 Projection
Projections are applied by using a dot operator, followed by an expression in
parentheses. The expression must either be of type semantics.model.Roleish or
a String, which will be implicitly wrapped into a role analogous to how it is done
in queries. See listing 6.8 for an example.

A projection of the form i.(e), where i is an individual of concept type C and e
is an expression evaluating to a role R, has a result type of java.util.Set<∃R⁻·C>.
To ensure the projection is valid, C must be a subtype of ∃R·⊤. If necessary, this
restriction can be circumvented by using an equivalent query instead of a projection
(see listing 6.9).

private static Set<? extends Individual> getWinesFor(«:Winery» winery) {
// Fails at compile-time, as «:Winery» is not a subtype of ∃":hasMaker"⁻·⊤:
return winery.(":hasMaker"⁻);
// An equivalent query may be used instead:
return query-for(∃":hasMaker"·winery);

}

Listing 6.9 Circumventing projection check with an equivalent query.

Inference of upper bounds for non-constant role expressions works as described
in table 4.1. As with queries, satisfiability of projections is checked at compile-time
in that the expression ∃R⁻·C must not be unsatisfiable.

The data source currently in scope (see section 6.2) is used by the knowledge
base for performing the projection. No data source being in scope causes a compile-
time error to be raised.

6.6.1 Syntax
Parsing a projection simply involves adding the option of a parenthesized expres-
sion to the right-hand side productions of the dot operator. As normally only
identifiers are allowed here, there is naturally no conflict with any existing Java
code.
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6.6.2 Frontend
The static checking of projections is simple: their left-hand side is checked to be
an instance of the appropriate concept type and the result type of is inferred via
the same mechanism as is done for queries. The result type of the expression is
simply filled in from those two types as described above.

6.6.3 Backend
Code generation is yet another case of tree transformation from section 6.3.3. See
listing 6.10 for the way a projection is transformed.

The generated code simply involves a method call on the knowledge base with
the data source that is currently in scope (see section 6.2). The description logic
expressions are turned into their equivalent constructors (see section 6.5.3), with
strings wrapped into semantics.model.Role constructors.

return wine.(":hasColor");
// ... is transformed into:
return KnowBase.of("wine.rdf").project(wine, new Role(":hasColor"));

Listing 6.10 Tree transformation of projection expressions.



Chapter 7

Applying the Language
Extension

After the last chapter explained the inner workings, this one shows the Semantics4J
language extension in action. It presents a sample application that makes use of
several of the extension’s features of an interactive environment, lays out a set of
common errors relating to this application that static checking is able to detect at
compile-time, and finally validates that backward compatibility with existing Java
code is retained.

7.1 Sample Application
To test out the Semantics4J language extension in the context of a program inter-
acting with a user and other systems, the wineseλrch application has been created1.
It is a single-page web application, implemented using Aurelia2 on the frontend
and Spark3 on the backend.

Figure 7.1 shows wineseλrch in use. The application allows users to find wines
and information about them. Detailed information about a wine is given by press-
ing its entry in the list of results. Users can specify which wines they want to
search by selecting a set of criteria that the wines should match, such as color,
sweetness and the region they come from. For example, a selection of Color: Red,
Color: White and Region: Italian Region will find all red and white wines from
Italy.

As with all previous examples, the application is based on the W3C Wine
Ontology. Semantic data is accessed via a Semantics4J-based model, which makes
pervasive use of semantic concept types, queries and projections. Queries for wines

1The source code for wineseλrch can be found at https://github.com/hartenfels/
winesearch, accessed 2017-08-18.

2http://aurelia.io/, accessed 2017-08-18.
3http://sparkjava.com/, accessed 2017-08-18.
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7.1. SAMPLE APPLICATION 48

Figure 7.1 The wineseλrch application.

are dynamically constructed based on user input, as a combination of unions,
intersections and nominal concepts.

To show the interaction of semantic data with other data sources, wineseλrch
also implements two additional features. One of them is retrieving additional
information about wineries and regions via the Wikipedia REST API4. While
there is also DBpedia5, which provides a semantic ontology over Wikipedia’s data,
the REST API allows for fuzzy search and retrieving a simple summary of the
most fitting page. This is used to show the user information about the winery or
region they selected without knowing the exact title of the page.

The other feature is rating and reviews of wines. Users can log in by specifying
their name and assign a score to wine and optionally leave a text reviewing it.
The ratings are aggregated and their average shown with each wine. For this, a
typical relational SQL database is used for storing and querying the data. When
the application retrieves details about a wine, the information from the Wine
Ontology and the SQL database are simply put together into the response.

For comparison, a SPARQL-based model has been constructed as well. It uses
the Stardog 4.2.4 SNARL interface6. Stardog supports the necessary reasoning
capabilities and is able to process OWL ontologies.

As there are no semantic concept types in regular Java code, this interface does
not enable any static type checking, instead passing generic String and Value in-

4https://en.wikipedia.org/w/api.php, accessed 2017-08-18.
5http://wiki.dbpedia.org/, accessed 2017-08-18.
6http://www.stardog.com/docs/4.0.5/#_java_programming, accessed 2017-08-18.

https://en.wikipedia.org/w/api.php
http://wiki.dbpedia.org/
http://www.stardog.com/docs/4.0.5/#_java_programming
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stances to methods. Code size is notably different: the Semantics4J-based model’s
source7 consists of 91 non-whitespace, non-comment lines of code, whereas the
SPARQL-based model’s source8 takes up 172. The Stardog implementation also
proved significantly slower, taking up to 15 minutes to load details for a single wine,
whereas the Semantics4J implementation takes only around 3 seconds. Queries are
cached by both Stardog and Semserv, so subsequent access is within a few seconds
for both implementations.

7.2 Feature Comparison
This section shows, via a set of examples based on the wineseλrch application9,
how the Semantics4J language extension is able to catch several common errors
at compile-time, while conventional semantic data interfaces in programming lan-
guage do not provide any such assistance.

7.2.1 Typed Individuals

public static Map<String, ∃▽·«:Wine»> getWineInfo(«:Wine» wine) {
Map<String, ∃▽·«:Wine»> info = new HashMap<>();
info.put("body", head(wine.(":hasBody" )));
info.put("color", head(wine.(":hasColor" )));
info.put("flavor", head(wine.(":hasFlavor")));
info.put("maker", head(wine.(":hasMaker" )));
info.put("region", head(wine.(":locatedIn")));
info.put("sugar", head(wine.(":hasSugar" )));
return info;

}

Listing 7.1 Method to retrieve properties of a wine, such as its body and color.

As one of wineseλrch’s capabilities, users must be able to retrieve information
about a specific wine, such as its color, flavor or region of origin. The users
specifies the wine that they wish to receive the information about and the model
is expected to return this information as a map. If no appropriate wine can be
found, the model should return null.

Listing 7.1 shows a method getWineInfo for the Semantics4J interface, which
retrieves the properties of a wine. Both its parameter and return value are as-

7https://github.com/hartenfels/winesearch/blob/0c928ab26d/backend/src/main/
java/semantics/example/SemanticsModel.java, accessed 2017-08-18.

8https://github.com/hartenfels/winesearch/blob/d6374884ab/backend/src/main/
java/semantics/example/SparqlModel.java, accessed 2017-08-18.

9…and actual errors the author made developing it.

https://github.com/hartenfels/winesearch/blob/0c928ab26d/backend/src/main/java/semantics/example/SemanticsModel.java
https://github.com/hartenfels/winesearch/blob/0c928ab26d/backend/src/main/java/semantics/example/SemanticsModel.java
https://github.com/hartenfels/winesearch/blob/d6374884ab/backend/src/main/java/semantics/example/SparqlModel.java
https://github.com/hartenfels/winesearch/blob/d6374884ab/backend/src/main/java/semantics/example/SparqlModel.java
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signed the appropriate semantic concept types. The properties are retrieved via
projections on the given wine.

Assuming that user input is given as a String in some variable wineId. Naively,
one would do a query-for(⎨wineId⎬), returning null if there is no result and oth-
erwise passing the element to getWineInfo. However, this is erroneous: the user
input may be any IRI, and therefore the query could return an element that is
not actually a wine. Instead of returning the appropriate null value, the func-
tion would instead return a map containing useless wine-related information for
something that is not a wine.

Semantics4J catches this mistake at compile-time: the return type of the query
is a java.util.Set<⊤>, and ⊤ is not a subtype of «:Wine». To fix this mistake,
one should query-for(":Wine" ⊓ ⎨wineId⎬), which will correctly return an empty
set if the given IRI does not represent a wine. The return type of the query is a
Set<«:Wine» ⊓ ⊤>, whose elements are correctly subtypes of «:Wine» and therefore
pass the type check.

For the SPARQL interface, one would perform a set of queries10 of the for-
mat SELECT ?body WHERE { ?wine :hasBody ?body }, where ?wine is bound to the
wineId. Inputs and outputs are not typed, they consist of Strings and generic se-
mantic data Values.

In this case, a missing check of ?wine rdf:type :Wine is not detected at all.
While defensive checks before executing the query could ensure that the input is
a wine as a pre-condition, it would still defer the programmer error to run-time,
rather than detecting the mistake at compile-time.

7.2.2 Injection Safety
SPARQL interfaces in general-purpose programming languages have potential for
injection [OAA+10], analogously to the common issue of SQL injection. The im-
plementor must take care that untrusted input is correctly sanitized, usually via
parametrized queries or escaping mechanisms. This way, data can safely cross the
language barrier from the programming language (such as Java) to SPARQL with-
out changing its meaning to something potentially erroneous or even malicious.

Semantics4J on the other hand does not require any explicit parametrization
or escaping. As the description logic syntax is integrated into Java, there is no
language barrier to cross in the first place. Queries and projections are constructed
directly using operators of the programming language. Injection safety naturally
falls out of this, as variables in the code cannot expand and change the meaning
of surrounding code like it happens in a SPARQL injection situation.

An example for this are the wine properties from the previous chapter. The
SPARQL query SELECT ?body { ?wine :hasBody ?body } requires parametriza-

10A single query would require accounting for wines with missing properties, which do
exist in the Wine Ontology. It causes Stardog to cancel the query due to an exceeded GC
limit though, which is why the query is separated in the wineseλrch implementation.
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tion of the ?wine with the wineId. Simply concatenating the wineId into the
query would seemingly work as well, but as it is untrusted, uncontrolled input to
the program, it presents an injection vulnerability. For instance, concatenating a
string with a value such as "#" into the query string would comment out the rest
of the line and surely trigger a syntax error.

With Semantics4J on the other hand, the query-for(":Wine" ⊓ wineId) is
already safe from injection by default, as wineId cannot somehow transform the
syntax of the query expression, it is always just a variable. Subsequent projections
on the retrieved wine, such as wine.(":hasBody") are safe as well, for the same
syntactical reason.

7.2.3 Signature Validation
Semantics4J will automatically warn the user about concept atoms, role atoms
and nominal concepts that are not part of the ontology’s signature. Warnings are
given at compile-time if possible, and always at run-time when they occur during
execution.

This feature is able to catch various typos. For instance, take the query-
for("Wine" ⊓ ⎨wineId⎬) – it is missing the prefixing colon on the wine concept
IRI, it should be ":Wine" instead. An appropriate warning will be emitted, telling
the user that the concept Wine is not in the signature of wine.rdf. When the query
is executed, an appropriate warning will be logged as well.

Conveniently, this feature compounds semantic type checking nicely as well.
When presented with two almost identical-looking types in an error message that
only differ in a forgotten colon, having a warning point to the mistake aids in
finding the source of the error.

With the SPARQL interface on the other hand, no such signature checking
occurs, the query will simply not find any matching elements and silently return
an empty result set. This is compounded by the lack of static type safety: while
Semantics4J would detect an attempted assignment of «Wine» to «:Wine», a generic
Value type will simply allow such an operation.

Signature validation could potentially be implemented in a plain SPARQL
interface without any additional compile-time support, but the warnings would of
course occur at run-time, even if the IRIs are actually constant in the query strings
themselves.

7.2.4 Dynamically Constructed Queries
To search for the wines that match the user-specified criteria, wineseλrch must
construct a query dynamically, based on user input. The searching function takes
a list of criteria categories, each associated with a list of values for the category.
The function is expected to return a set of wines that match the intersection of the
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// From the following user input (formatted as JSON):
{":hasBody": [":Full"], ":hasColor": [":Red", ":White"]}
// The following query should be constructed:
query-for(":Wine" ⊓ (∃":hasBody"·":Full") ⊓ (∃":hasColor"·":Red" ⊔ ":White"))

Listing 7.2 Sample for a query constructed from user input.

union of each category’s values. Listing 7.2 shows a sample input and expected
resulting query.

As Semantics4J simply uses Java expressions to construct its queries, build-
ing a dynamic query works much like one would construct a dynamic numeric
calculation. Partial queries can be stored in variables and incrementally built by
amending to them. As queries are never translated into a query language string,
no explicit parameter escaping is necessary. Listing 7.3 shows how one could build
a query like that, while still retaining enough type information to ensure a return
type of a Set<«:Wine»>.

For the SPARQL interface, query construction is much more complex, as can be
seen in listing 7.4. To construct the query itself, the SPARQL query must be built
by concatenating its pieces as strings. This can very easily lead to accidentally
producing syntactically invalid queries that are only detected at run-time when
they actually occur. Additionally, to avoid SPARQL injection from malicious user
input, one must also construct a set of parameters to apply to the resulting query
string, which are not validated at all.

public Set<«:Wine»> findWines(Map<String, String[]> searchArgs) {
Conceptual dl = ⊤;
// Iterate over each category.
for (Map.Entry<String, String[]> arg : searchArgs.entrySet()) {
String[] values = arg.getValue();
// Build a union from all given values.
Conceptual union = ⎨values[0]⎬;
for (int i = 1; i < values.length; ++i) {
union ⊔= ⎨values[i]⎬;

}
// Aggregate the category and union.
dl ⊓= ∃arg.getKey()·union;

}
// The result can still be typed by intersecting with a constant concept.
return query-for(":Wine" ⊓ dl);

}

Listing 7.3 Dynamic query construction for wine searching.
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A common alternative to manual string concatenation is the use of a query
builder, such as the Apache Jena Query Builder11 or LINQtoSPARQL12, which
hides the string concatenation behind a nicer interface. However, while it is harder
to accidentally create syntactically invalid SPARQL queries, one must still take
care of user-supplied inputs being escaped correctly.

7.3 Compatibility
The Semantics4J language extension is intended to purely extend the Java lan-
guage, not incompatibly alter its existing semantics. Therefore, backward compat-
ibility is intended to be kept in the sense that valid Java code retains its semantics
even when using the Semantics4J compiler for it. No restrictions are made on
invalid code, as no working code base should contain such code anyway.

To validate this goal, ExtendJ’s regression test suite is used13. As of the current
version of ExtendJ14 and the regression test suite15, all 1510 tests pass with the
Semantics4J compiler. Therefore, despite having made significant modifications to
ExtendJ, one can be reasonably sure that it still behaves in its intended way.

A consequence of this is that future updates to ExtendJ can be integrated into
Semantics4J simply by rebuilding it on top of the new version. The regression test
suites of ExtendJ and Semantics4J16 can then be used again to validate that the
upgrade went smoothly and did not break any functionality.

11https://jena.apache.org/documentation/extras/querybuilder/index.html, ac-
cessed 2017-07-09.

12https://github.com/Efimster/LINQtoSPARQL, accessed 2017-08-18.
13The test suite can be found at https://bitbucket.org/extendj/regression-tests,

accessed 2017-08-18.
14Commit 8900768 from 2017-07-27.
15Commit 5b34037 from 2017-07-27.
16Semantics4J’s test suite can be found at https://github.com/hartenfels/

Semantics4J/tree/master/src/test, accessed 2017-08-18.

https://jena.apache.org/documentation/extras/querybuilder/index.html
https://github.com/Efimster/LINQtoSPARQL
https://bitbucket.org/extendj/regression-tests
https://github.com/hartenfels/Semantics4J/tree/master/src/test
https://github.com/hartenfels/Semantics4J/tree/master/src/test
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public Set<Value> findWines(Map<String, String[]> searchArgs) {
// Accumulator for the query string.
List<String> lines = new ArrayList<>();
lines.add("SELECT ?wine WHERE {");
lines.add(" ?wine rdf:type :Wine .");
// Accumulator for the parameter values.
List<String> params = new ArrayList<>();
// Iterate over each category.
for (Map.Entry<String, String[]> arg : searchArgs.entrySet()) {
// Concatenate the union.
String union = Arrays
.stream(arg.getValue())
.map(v -> {
// Add the necessary parameters.
int index = params.size();
params.add(arg.getKey());
params.add(v);
// Construct a union entry with numbered parameters.
return String.format("?wine ?param%d ?param%d", index, index + 1);

})
.collect(Collectors.joining(" UNION "));

// Concatenate the union into the query string.
lines.add(String.format(" { %s } .", union));

}
// Remember to close all delimiters.
lines.add("}");
// Prepare the query and then apply all parameters in the correct places.
SelectQuery sq = prepareSparqlQuery(String.join("\n", lines));
for (int i = 0; i < params.size(); ++i) {
sq.parameter("param" + i, Values.iri(params.get(i)));

}
// Actually execute the query and extract the retrieved wines.
return executeSparqlQuery(sq)
.map(m -> m.get("wine"))
.distinct()
.collect(Collectors.toSet());

}

Listing 7.4 Dynamic SPARQL query construction.



Chapter 8

Concluding Remarks

In this final chapter, the work presented in this thesis is summarized, its limitations
pointed out and possibilities for future work discussed.

8.1 Summary
In this thesis, the core concepts of the λDL language have been explored: semantic
concepts as types, queries, projections and type casing. To integrate these features
into a real-world general-purpose programming language, several extension mech-
anisms were considered, from which the JastAdd-based Java compiler ExtendJ
was chosen as the most appropriate base to build upon. An extension has been
developed that integrates the λDL concepts into the Java language, and extends
them with additional features, such as signature validation, type casting and dy-
namic queries. Finally, this extension has been shown off in regards to how its
features compare to conventional semantic data access via SPARQL, how it could
be used in a practical application and shown to remain compatible with existing
Java projects.

8.2 Limitations
Similar to λDL itself, types in the Semantics4J language extension are directly tied
to the state of the ontology at the time of compilation. Therefore, modification
of the semantic data requires the program to be re-compiled to ensure type-safety
again. In particular, modification of the ontology from within the program, while
desirable, is not available in the current implementation [LLS16].

Since semantic concept types undergo type erasure (see section 6.3), they cease
to exist when the program is compiled into bytecode. Therefore, if the source code
is not available to the compiler, semantic data types are not available in that
module either. A possible mitigation for this would be to include metadata, such
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as annotations, into the compiled bytecode, from which the Semantics4J compiler
could reconstruct the semantic data type information. A possible implementation
would be to apply tree rewrites that transform the annotated metadata to semantic
concept type accesses.

As the language extension is based upon the ExtendJ compiler, it inherits its
features as well as limitations. As of the time of writing, the ExtendJ issue tracker1
lists, for instance, several problems with regards to Java 8 type inference and
lambda functions. However, when these issues are eventually fixed for ExtendJ,
the language extension can simply be re-compiled against that new version as
described in section 7.3 and in turn inherit these fixes as well.

Queries and projections make use of ExtendJ’s existing constant folding fea-
tures to determine their resulting type. However, this only distinguishes literal
constant expressions and treats most variable references as non-constant, even if
they are effectively final and assigned a constant value. This could be improved
either by analyzing program flow leading up to query and projection operators, or
by amending the ExtendJ constant folding algorithm itself.

8.3 Future Work
Support for using the language extension in an integrated development environ-
ment (IDE) could be developed, enabling features such as syntax highlighting and
code completion for semantic concept types. A way that this could be accomplished
is shown by the JModelica IDE [Mat09]: the compiler can serve as a baseline for
an IDE plugin and additional static analysis functionality could be added easily,
as JastAdd allows for further extension of the language extension itself [HM03].

As the query language is relatively limited in comparison to, for example,
SPARQL, it could be another point of extension. As suggested for λDL, a simple
addition would be allowing queries for roles in addition to concepts, returning a
set of predicate-object pairs as a result. More complex query features are possible
too, but it must be possible to properly assign a type to their results [LLS16].

Finally, a case study would be useful to explore the practical usability of the
language extension. This could either be accomplished by developing a full appli-
cation with it, or by modifying an existing application that makes use of semantic
data via some other interface and replacing that aspect of it.

1https://bitbucket.org/extendj/extendj/issues?status=new&status=open&page=1,
accessed 2017-08-18.

https://bitbucket.org/extendj/extendj/issues?status=new&status=open&page=1
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