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Abstract

Part-of-Speech tagging is the process of assigning words with similar gram-
matical properties to a part of speech (PoS). In the English language, PoS-
tagging algorithms generally reach very high accuracy. This thesis under-
takes the task to test against these accuracies in PoS-tagging as a qualitative
measure in classification capabilities for a recently developed neural network
model, called graph convolutional network (GCN). The novelty proposed in
this thesis is to translate a corpus into a graph as a direct input for the
GCN. The experiments in this thesis serve as a proof of concept with room
for improvements.

Zusammenfassung

Part-of-Speech Tagging bezeichnet die Zuordnung von Woértern, die dhnli-
che grammatikalische Eigenschaften aufweisen, zu Wortarten (Abk. PoS). Im
englischen erreichen PoS-Tagger im Allgemeinen sehr hohe Genauigkeiten.
Diese Arbeit nimmt sich zur Aufgabe die Klassifizierungsfahigkeiten eines
neuen Neuralen Netzwerks, das Graph Convolutional Network, qualitativ an-
hand dieser Genauigkeiten in PoS-Tagging zu messen und zu vergleichen. Der
neuartige Ansatz dieser Arbeit ist hierbei die Umwandlung eines Textcorpus
in einen Graphen als direkte Dateneingabe fiir das GCN. Die Experimente
dieser Arbeit dienen als Machbarkeitsnachweis mit Raum fiir Verbesserun-
gen.
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1 Introduction to Part-of-Speech Tagging

Part-of-Speech (PoS) tagging, in various literature also found as word-category
disambiguation or grammatical tagging, is the process of tagging a PoS, also
called word class or linguistic unit, by assigning it to a PoS-marker in a text
or in a large structured set of texts (corpus).

A PoS is a category of words with similar grammatical properties. Be-
cause PoS-tags are not limited to words but can also include, for example,
punctuation, part-of-word punctuation (such as e.g., i.e. and etc.), numbers,
alpha-numerics, compound words (e.g. "San Francisco”), some way of seg-
mentation of the text is needed. As the listed examples suggest — even
though commonly applied — segmentation through whitespace might not
always be the first choice. In general, a text is segmented semantically,
morphologically or syntactically. The process of segmentation is called to-
kenization, which is a preprocessing state or a part of the tagging process.
Basically, tokenization is performed as preferred or performed dependent on
the chosen tagset.

From the perspective of Natural Language Processing (NLP), the tagging
of the particular PoS requires knowledge of the definition and context, i.e.
its relationship with adjacent and related words in a phrase, sentence, or
paragraph. Tagging can therefore be viewed as a disambiguation task: PoS
are ambiguous, meaning there are more than one possible PoS-tags, and the
goal is to resolve these ambiguities by choosing the proper tag in the context.
For example, the word "dogs”, which is usually thought of as a plural noun,
is instead a verb in the sentence "The sailor dogs the hatch.”.

Nowadays PoS-tagging is a part or a preprocessing step of various NLP
tasks because of the large amount of information they give about a word
and its neighbors (Jurafsky and Martin 2009). Knowledge about what kind
of PoS a word is helps in the prediction of neighboring words and about the
syntactic structure around the word, which makes PoS-tagging an important
component of syntactic parsing, such as in the works of Chen and Manning
(2014). Jurafsky and Martin (2009) further describe, that PoS is "a useful
feature for finding named entities like people or organizations in text and
other information extraction tasks” and influences possible morphological af-
fixes and therefore also affects stemming for informational retrieval. Another
use is to improve pronunciation in speech synthesis and recognition.

In the English language, eight PoS are taught, which can be divided into
two word metaclasses (Francis and Kucera 1979; Jurafsky and Martin 2009),
as follows:

content words: noun, verb, adjective, adverb'; the open lexical classes

function words: article, preposition, conjunction, pronoun; the closed lex-

'nterjections as a 9™ PoS do not occur within this thesis and are therefore negligible.



ical classes?

Open classes are continually being created or borrowed, while closed classes
only occasionally occur (Jurafsky and Martin 2009). However, as most es-
tablished tagsets suggest, there are many more (sub-)classes. This thesis will
focus on the well known Brown corpus with a tagset of 82 PoS-tags (Francis
and Kucera 1979).

Tag ambiguity is responsible for the difficulty of the tagging problem.
Though not tagged with the original Brown tagset but with a similarly well
established tagset called Treebank-3, which has 45 PoS-tags, table 1.1 still
depicts the problem of tag ambiguity: Most vocabulary (85%) in the Brown

Unambiguous (1 tag)  Ambiguous (2+ tags)
Types 45,799 (85%) 8,050 (15%)
Tokens 384,349 (33%) 786,646 (67%)

Table 1.1: Amount of tag ambiguity for word types in the Brown corpus with
Treebank-3 tagging

corpus is unambiguous, however, the rest of the words are some of the most
common in the English language, thus 67% of word tokens are ambiguous
(Jurafsky and Martin 2009).

Usually, the input to a tagging algorithm is a corpus and a tagset, and
the output is a sequence of tagged linguistic units (Jurafsky and Martin
2009). This thesis takes a highly new approach on PoS-tagging with a Neural
Network (NN) by converting the corpus first into a graph as an input for
the newly developed Graph Convolutional Network (GCN) machine learning
algorithm by Kipf and Welling (2016). GCNs are one of the very first in
the category of NNs to take graphs as input without prior conversion into
another input form and are a very promising concept in the field of machine
learning. State-of-the-art algorithms, such as the Dynamic Feature Induction
algorithm by Choi (2016) used in NLP4J3, reach around 97% accuracy in
PoS-tagging, hence the goal of this thesis is not to improve the accuracy of
PoS-tagging but to give a qualitative measure of the capabilities of GCNs in
terms of classification.

The remainder of this chapter gives an in-depth description of the Brown
corpus design (section 1.1) as a comprehension base for subsequent chapters
and further motivates the idea of using a GCN as a PoS-tagger (section 1.2).

ZSome literature make a distinction between open-closed classes and content-function
words, which makes sense for other than the English language. This thesis does not make
a distinction.

Shttps://emorynlp.github.io/nlp4j/
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1.1 The Brown Corpus and Tagset

As described by Francis and Kucera (1979), the Brown corpus consists of
1,014,312 words of running text of edited varieties of English prose. It is
divided into 500 samples. A sample begins at the beginning of a sentence
regardless of being the beginning of a paragraph or other larger division, and
ends after roughly 2000 words. A sentence is a string of words beginning with
a capital and ending with a final mark (., ! or ?; abbreviations excluded)
followed by space. In some cases, the final mark of a sentence not followed
by space, e.g. when quotation marks are used. The tagged version of the
corpus provides each individual word a brief PoS-tag which assigns it to a
specific word class. Following example extracted from the Natural Language
Toolkit (NLTK)* demonstrates the structure of the tagged corpus, which will
become important in chapter 4:

The/at Fulton/np-tl County/nn-tl Grand/jj-tl Jury/nn-tl
said/vbd Friday/nr an/at investigation/nn of/in Atlanta’s/np$
recent/jj primary/nn election/nn produced/vbd ¢‘/‘‘ no/at
evidence/nn ’’/>’ that/cs any/dti irregularities/mns took/vbd
place/nn ./.

Figure 1.1: An example of a tagged sentence taken from the Brown corpus

A complete explanation of every tag is of secondary importance for this
thesis. Readers are referred to the complete list of tags and their explanations
found in the Brown Corpus Manual by Francis and Kucera (1979).

1.2 PoS with Neural Networks on Graphs

With increasingly larger real-world datasets, the common trend goes towards
forms of graphs: social networks, knowledge graphs, protein-interaction net-
works, the World Wide Web, to name a few. However, despite the rapidly
advancing research of NNs, little attention was dedicated to the generaliza-
tion of NN models to work on arbitrarily structured graphs, until recently,
when a number of researchers started to revisit this problem (Defferrard et
al. (2016), Duvenaud et al. (2015), Kipf and Welling (2016), and Parisot
et al. (2017) among others) with promising results.

The focus on the solution to this problem in this thesis is on approaches
that use graph convolutions, generally known from spectral graph theory.
Defferrard et al. (2016) use Chebyshev polynomials with free parameters
to approximate smooth filters in the spectral domain learned in a NN-like
model. The research of Kipf and Welling (2016), on which the main focus
remains, takes a similar approach with simplifications (see section 3.3), al-

‘http://www.nltk.org/
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lowing for higher predictive accuracy, reaching state-of-the-art classification
results on a number of benchmark graph datasets, and faster training times.

It stands to reason that these results are tested against tasks that can
be considered as fairly solved® in their domain, as is the case with PoS-
tagging in the English language. The question arises how a text corpus
can be imagined as a graph to act as an input for a GCN. To anticipate
the answer, we adduce the Convolutional Neural Network (CNN) before its
proper introduction in section 3.3.1: GCNs originate from CNNs, which
proved themselves as powerful models, primarily on images, that exploit
features (e.g. image intensities) and neighborhood information (e.g. pixel
grid) to solve problems like image segmentation and classification (Parisot
et al. 2017). The task of PoS-tagging is, as implied before, a classification
problem and can be compared to image segmentation, and the per-pixel
classification afterwards. This context leads to the analogy between an image
pixel plus intensity and a PoS with corresponding feature vectors, while the
generated text graph, depicting neighborhood structure, equates to the pixel
grid.

1.3 Thesis Overview

This thesis is structured as follows:

Chapter 2 reviews several general approaches in state-of-the-art PoS-
tagging.

In chapter 3, a huge part of this thesis is devoted to understand the basics
of machine learning with NNs. This is important for the comprehension
of GCNs, which is also covered in the same chapter. This chapter also
introduces the used notation.

Chapter 4 covers the core contribution of this thesis. This chapter de-
scribes how the PoS-Graph is constructed, how it is fed as an input to the
GCN and which hyperparameters we optimize.

The evaluation of the implementation is found in chapter 5, where its
performance in practice is analyzed.

Finally, chapter 6 concludes the thesis and discusses future work.

®Giesbrecht and Evert (2009) point out that this statement is very arguable, since most
PoS-taggers only reach high accuracies in artificial conditions. Also, a per-word accuracy
of 97%, for example, still means that there is a probability of around 50% to find one
or more tagging errors in a 20-word sentence, which is the length of the average Brown
corpus sentence.



2 Related Work

Many PoS-tagging algorithms participate in a head-to-head race on which
algorithm can be considered the "best”. The answer to this question is not
straightforward, as it highly depends on the taken measurements. Therefore,
this chapter provides a general brief overview over four types of PoS-tagging
approaches and gives examples of well evaluated state-of-the-art algorithms
for English corpora. Motivation or justification of their origin will not be
given, since they are highly differentiable to the approach taken in this thesis
and have only secondary significance to the contribution of this thesis. In-
stead, the interested reader is hereby referred to the primary sources. Since
GCNs emerged very recently and research is still actively ongoing while this
thesis is written, there are no scientific works that actively do PoS-tagging
with GCNs — at least not to the author’s knowledge.

The used notation in this chapter is for this chapter only. It is dropped
as soon as the chapter ends.

2.1 Types of PoS Taggers

Generally, the types of approaches in PoS-tagging can be divided into two
categories: rule and stochastic based, where the former tags based on rules
and the later based on probability models (Tian and Lo 2015). We proceed
to present these types in the following. For a comparative analysis of the
types, we refer to Giesbrecht and Evert (2009) and Tian and Lo (2015).

2.1.1 Unigram Tagger

A unigram PoS tagging algorithm is rule based and assigns a marker to a
word that is most likely based on the training corpus. It computed and
stored the likelihood of a tag for each word before and assigns, for instance,
the word "dogs” to the tag moun if the tag has the highest count for the
specific word in the training examples. Unknown words are automatically
tagged as moun, i.e. the context of the word is ignored. This approach is
simple and fast and achieves acceptable accuracy when the training corpus
is large enough (Tian and Lo 2015).

2.1.2 Hidden Markov Model Based Tagger

A Hidden Markov Model (HMM) based tagger also marks a word with a
tag with the highest likelihood. However, a HMM tagger computes a tag
sequence for a sentence as a whole instead of having a tag for each word sep-
arately. A HMM tagger chooses a tag sequence t = t1 ...t, that maximizes
the joint probability

Plt,w) = P(t)P(wlt), (2.1)



with w = w; ... w, as a sequence of words. The computation of P(t) proved
itself as impractical, which is why it is generally simplified (Tian and Lo
2015). Trigrams’n’Tags (TnT) by Brants (2000) proposes the assumption
that the tag of a word is determined by the tags of the previous two words,
by using second order Markov models. The tree tagger by Schmid (1995)
leverages decision trees to get more reliable estimates in Markov models.

2.1.3 Maximum Entropy Based Tagger

Maximum entropy based tagger provide a principled way to incorporate com-
plex features to maximize the entropy of a probability model, originally pro-
posed by (Ratnaparkhi et al. 1996):

N
P(tlw) ~ [[PlC), (2.2)

i=1

where Cj ... C, are the corresponding contexts for each word w appearing in
the sentence, including previous assigned tags before the word w (Tian and
Lo 2015). Feature-functions are a real-valued concept in maximum entropy,
which encode elements of C useful for predicting the tag of a word by rep-
resenting constraints (Tian and Lo 2015). The Stanford Tagger (Toutanova
et al. 2003) improves the original algorithm by considering two more types
of feature-functions affected by stylization of characters (e.g., whether the
first letter of a word is capitalized or not).

2.1.4 Transformation Based Tagger

Transformation based tagger (Brill 1995) tag words based on linguistic knowl-
edge in form of rules. A stochastic-based tagger is used first to get an initially
tagged corpus to correct the errors afterwards. The rules needed to correct
are then learned automatically from a training corpus (Tian and Lo 2015).



3 Machine Learning and Artificial Neural Networks

An Artificial Neural Network (ANN), is a connectionist computational sys-
tem, which is composed of a collection of simple processing units, or neurons,
connected to each other, loosely modeled after the biological brain. Haykin
(1998) defines NNs in resemblance of the brain in two respects: first is the
ability to acquire knowledge from real-world data — be it images, sound,
text or time series — through a learning process, second is the ability to
store the acquired knowledge by strengthening or weighting the interneu-
ron connections, or synapses. We split the first two sections of this chapter
accordingly: the first section formalizes the learning problem and discusses
different paradigms of learning that have arisen to deal with different situa-
tions and different assumptions. In the second section, we further describe
the inner workings of a NN. The remaining section assumes comprehension
of NNs and is dedicated to the formalization of GCNs.

3.1 The Learning Problem

Learning from data is applied whenever it is difficult to express an analytical
solution to a problem through a traditional procedural system, but where it is
possible to provide an empirical solution. Thus, the basic premise of learning
from data is to uncover an underlying process through observation. To keep
structural integrity, we introduce a common terminology that is retained
throughout the thesis. Whenever several terms to an idea are introduced,
we use them synonymously, detached from the fact that other (machine
learning) publications may assign special meaning to some of these terms.
The following notation for sections 3.1 and 3.2 mirrors that of Abu-Mostafa
et al. (2012). Other publications may differ in used designation and notation.

3.1.1 Components of Learning

A learning problem consists of the following main components: an input
example or feature vector x, where each entry z() is called a feature, an
output example y, which may be also called label or target vector, with
entries y(¥, an unknown target function f : X — Y, where X is the input
space and ) is the output space, a (labeled) data set D of input-output or
training examples (X1,¥y1), -+, (Xm,¥Ym), wherey; = f(x;) forj=1,...,m,
and the learning algorithm that uses the data set D to pick a formula g :
X — Y that approximates f. Note that the superscript ”(i)” in the notation
is simply an index into the entries of the vector, and has nothing to do with
exponentiation. A second superscript sitting on the right to the first one
denotes the index of the vector: z(%) is the ith entry to the vector x;. To
generalize, the input and the output example are stated as vectors, for easier
understanding though, the output example can be thought of as a vector



with one entry or as a simple scalar. H is called the hypothesis set, a set
of candidate formulas h € H the learning algorithm A chooses g from. The
choice of ¢ is good when it is able to faithfully replicate f. This is done
by choosing a g that is the best match for f based on the given training
examples, in hope that it continues to match f on new input data, which is
also called generalization. The data set D and the unknown target function
f are dictated by the learning problem itself, the learning model, which is the
combination of the learning algorithm A and the hypothesis set H, however,
is not, but is free to be chosen (Abu-Mostafa et al. 2012).

3.1.2 Types of Learning

The most studied and utilized learning paradigm is supervised learning,
which we have covered so far. Other variations may mostly differ in the
nature of the provided data set. In this subsection, we introduce the most
important variations.

Supervised learning algorithms experience a training data set with ex-
plicit examples of what the correct output should be for given inputs (Abu-
Mostafa et al. 2012). In other words, supervised learning involves observing
several randomly selected feature vectors x and the associated or annotated
label y, and learning to predict y from x, usually by estimating the unknown
joint distribution P(x,y) (Goodfellow et al. 2016; Subramanya and Taluk-
dar 2014). This is usually known as a regression task. Similar to regression
is the task of classification, introduced in chapter 1, where an algorithm is
asked to specify which of the k categories an input belongs to (instead of pre-
dicting a numerical value). For this, the algorithm is prompted to produce
the function f : RY — {1,...,k} (Goodfellow et al. 2016). Note that even
though the k-classes are denoted as scalars, they could also act as vectors.

In unsupervised learning, the training data is unlabeled and only con-
tains information about the features. It can be viewed as the task of finding
useful properties of the structure and patterns of a given dataset. Roughly
speaking and in contrast to supervised learning, unsupervised learning in-
volves observing several randomly selected feature vectors x, and attempting
to implicitly or explicitly learn the unknown probability distribution P(x),
or finding interesting properties of that distribution (Goodfellow et al. 2016;
Subramanya and Talukdar 2014). Another role of unsupervised learning is
clustering, which divides datasets into clusters of similar examples. How-
ever, the correct clustering, in comparison to the same but supervised task,
becomes less obvious, and even the number of clusters may be ambiguous
(Abu-Mostafa et al. 2012). Unsupervised learning can be considered as a
standalone technique or as a way to create higher-level representation of data
to become a precursor to supervised learning (Abu-Mostafa et al. 2012).

Semi-supervised learning combines both supervised and unsupervised
learning. The training set is only partly labeled and largely unlabeled.



The goal is to approximate the target function f given a training set D =
(Dy, Dy), where D = {(xj,y;)} for j = 1,...,m; represents the labeled
samples and D, = {x;} for j = 1,...,m, represents the unlabeled sam-
ples (Subramanya and Talukdar 2014). The assumed number of training
samples is N = N; + N,. As in supervised learning, each labeled training
sample (x;,y;) is predicted from the joint distribution P(x,y), and as in
unsupervised learning, the unlabeled samples are predicted from the proba-
bility distribution P(x), while both distributions are kept unrevealed to the
learning algorithm (Subramanya and Talukdar 2014).

Reinforcement learning does not force the training data to contain the
correct output for each input. It instead uses a feedback loop between the
learning system and its experiences in the interaction with an environment.
Again in comparison to supervised learning, where the examples were of
the form (input, correct output), reinforcement learning examples do
not contain the target output, but instead include some possible output
with a grading of how good this output is, in the form of (input, some
output, grade for this output), reinforcing the better actions and even-
tually learning what to do in similar situations (Abu-Mostafa et al. 2012).

3.2 Training a Neural Network

To be processed by the neurons of a network, all real-world data must be
translated into numerical values beforehand, contained in vectors. Neurons
are organized in several layers and each layer is a row of neurons. The
output of a layer is the input of the subsequent layer, starting from an
initial input layer that receives the data®. Hidden layers are intermediate
layers between the input and the output layer, which usually enables the
network for more complex computation and models. There is no general
definition for a Deep Neural Network (DNN) but it is safe to assume that a
neural network is considered deep if it at least consists of two hidden layers
or more. NNs working in this manner, namely forwarding the signal from
the input space to the output space through the several layers, are also
summarized as feedforward (neural) networks. To further understand NNs,
we first introduce the simplest type, the perceptron, and move to newer ones
from there on.

3.2.1 Understanding the Basics: The Perceptron

A perceptron is usually portrayed with two layers, as seen in figure 3.1, with
one computational unit in the second or — in this case — output layer. The
perceptron takes several inputs from the input layer and produces a single
binary output. The units are combined with coefficients, or weights, which

5Technically, the input layer contains neurons that only forward the input without any
computation.
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Figure 3.1: A diagram of a simplistic neural network: the perceptron

either amplify or dampen the input of the next layer according to their im-
portance to the respective output (Nielsen 2015). The input-weight product
is then passed through the perceptron’s activation function — the binary
step; a given threshold that determines whether the signal is propagated
further, with 1 as the perceptron’s output if the product is greater than the
threshold, and 0 if it is not (Haykin 1998; Nielsen 2015). For clarification
and anticipation, the difference between a perceptron and a neuron as a com-
putational unit lies in the activation function. Usually and in contrast to a
perceptron’s, the neuron’s activation function always propagates the signal,
but to a certain extent, further explained in section 3.2.2.

Exemplary to linear classification, we introduce the perceptron learning
model. We define the input space of a perceptron as X = R%, where R? is
the d-dimensional Euclidian space, and the output space as Y = {0,1}. The
functional output form h(x), that all hypotheses h € H share, gives different
weights w) from the weight vector w to the different features z(® of the
feature vector x. The weighted features are then summed and checked upon
the threshold:

output = 0 if Z?ﬂw(i)x(i) < threshold
g N 1 if Z?:l w®z(®) > threshold

More compactly, this formula can be written as

d
h(x) = sign <<Z w(i)x(i)> —l—b) , (3.1)
i=1

10



where function sign(s) = 1 if s > 0, and sign(s) = 0 if s < 0 formalizes the
if-condition; bias b = —threshold to move the threshold to the left side of
the equation. The bias can be thought of as a measure of how easy it is for
the perceptron to “fire”. A big positive bias makes the perceptron output
a 1 easily; vice versa, a big negative bias makes it difficult (Nielsen 2015).
Further simplifying the perceptron formula, we treat the bias b as a weight
w® = b, extending the weight vector to w = [w(® w® ... w®]T where
T denotes the transpose of a vector. Accordingly, we also have to extend the
feature vector to x = [z(0), 2 . (D] while (9 = 1. Lastly, we write
Z?:o w®z(®) as w'x, which is the equivalent matrix product to the sum.
With these changes, we can rewrite equation 3.1:

h(x) = sign(w'x) (3.2)
X
X
X
(a) Missclassified data (b) Correctly classified data

Figure 3.2: Classification of linearly separable data in a 2D input space
The separating line is defined by the chosen weights and biases of the
hypothesis. As seen in (a), training examples might be misclassified (blue
points in red region and vice versa). The final hypothesis of the perceptron
that separates the training data correctly is seen in (b), with o being 1 and
X being 0 (figure analogous to Abu-Mostafa et al. (2012)).

In regards to the learning model, the perceptron provides H, outputting
different hypotheses h. The Perceptron Learning Algorithm (PLA) searches
for the optimal choice of a weight vector in H to produce the final hypothesis
g € H. To explain how the choices are made, we assume that the input data
is linearly separable in a two dimensional case, as illustrated in figure 3.2.
Linear separability implies the existence of a w, which converges to a correct
h(x;) = y; on all training examples (Abu-Mostafa et al. 2012; Mitchell
1997). The algorithm would fail to converge when the training examples
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are not linearly separable, as there is no satisfying weight vector w that can
separate the data (Mitchell 1997). The search for w works as described in
algorithm 3.1. The binary separation is corrected by the update rule in the

Algorithm 3.1 The Perceptron Learning Algorithm

1: procedure PLA(x,y,T)

2 w0 > weight vector initialized with zero vector
3 fort=0to T do > T being the maximum count of iterations
4 update < false

5: for j =0 tom do > iterate through all training examples
6 hj < sign(waj) > apply perceptron equation
7 if h; # y; then > find misclassified example
8 W W+ y,X; > update rule for weight
9: update + true

10: if update == false then

11: break > stop when no misclassified examples found
12: return w

direction of a correctly classified x;. The algorithm continues with further
iterations until there are no longer misclassified examples in the data set or
until the maximum count of iterations of the outer loop is reached (Abu-
Mostafa et al. 2012).

3.2.2 From Perceptron to Neuron

Whenever we need to make small adjustments to the weights or biases to
get the desired behavior, the output of the perceptron might completely
flip, which can lead to aforementioned convergence issues (Nielsen 2015). To
overcome this problem, neurons were introduced. Neurons can be seen as
modified perceptrons, especially in regards to the aforementioned activation
function; small changes in weights and biases cause small changes in the
overall output of a neuron, which allows gradual improvements towards the
final hypothesis (Nielsen 2015).

As does a perceptron, a neuron has several units 2z 2@ in the
input layer, which forward floating-point numbers, weights w(®, w®, ... and
a bias b. The output h(x), however, is defined by o(w'x) (cf. equation 3.2),
where o is the sigmoid or logistic activation function of a neuron. The linear
binary step only produced 0 or 1 as an output, whereas the sigmoid function
allows floating-point numbers bounded by 0 and 1, taking on a curvature
that is basically a smoothed out version of the binary step (Nielsen 2015).
The sigmoid function o is defined as

1

E ]-_’_?7 (3-3)

()
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resulting in

1
Poveuren(X) = T T )) (3:4)

by inserting (w'x) as z. The output of the sigmoid function can be in-

terpreted as a probability of an event occurring, reducing the problems of
convergence on non-linear separable data.

Similarly to perceptrons, training a NN means that we try to find a
hypothesis h(x)” that is close to the target y by learning the correct weights
w on the given data set. To formalize this supervised approach, we define a
cost function or error function E(w) that measures for each weight how close
the hypotheses h(x;) are to their corresponding labels y; (Mitchell 1997):

—_

E(w) = §Z(h(xj)_)’j)2 (3.5)

Jj=1

This familiar function is known as the least-squares cost function in linear
regression, and gives rise to the Least Mean Squares (LMS) algorithm to
minimize the cost function via gradient descent.

3.2.3 Optimization: Gradient Descent

As Mitchell (1997) describes, the Gradient Descent Algorithm (GDA) lets us
quantify the quality of any particular weight vector w. The goal of optimiza-
tion is to minimize the error function E(w) by starting with an arbitrary
inital weight vector and repeatedly performing the update®

w®  — w4 Ap® (3.6)
where
Aw® = —775E(v.v) (3.7)
Sw®

on it. Here, n is a constant called learning rate, which determines the step
size in the GDA. To help understanding the GDA, the general idea with
explanation is visualized in figure 3.3. In order to implement this algorithm,
we need to efficiently calculate the gradient at each step by figuring out what

the partial derivative 5(5”((‘?;) is. By differentiating E(w) from equation 3.5

"For the sake of brevity, we drop the subscript tag as soon as one is introduced, such
as NEURON in hnguron (X). Unless otherwise stated, we use the latest introduced definition
in the continuity of this thesis.

8The left arrow denotes an operation (in a computer program), in which we override
the left side of the arrow with the right side.
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Figure 3.3: Visualization of the GDA on a convex graph
Error of different hypotheses in a two-dimensional example. The space of
all hypotheses is the w-axis. The vertical axis indicates the error of the
weight vector hypothesis, relative to a fixed set of training examples. The
dotted line shows the gradient of the error graph. The error graph itself
summarizes the desirability of every weight in the hypothesis space by
showing the local minimum, or in this case even global minimum of the
graph with a straight line, which corresponds to the desired hypothesis
with minimum error. The big dot illustrates the initial chosen weights w(®.
The arrows indicate the direction, in which the weights must be updated to
produce the steepest descent along the graph.

in a few mathematical relations, formulated in Mitchell (1997), we have the
following:

5(5,%) = jzl(h(Xj)—yJ-)(—:v“j)) (3.8)

Substituting equation 3.8 into equation 3.7 yields the weight update rule for
the GDA:

Aw®D = 0> (h(x;) - y;) 27 (3.9)
j=1

Training with the GDA is summarized as follows:
1. Pick an initial random weight vector.

2. Compute the initial hypotheses for all training examples, then compute
Aw for each weight according to equation 3.9.
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3. Update each weight w® by adding Aw®, then repeat.

This variation of the GDA, which is also known as batch GDA, has two
difficulties: first, converging to a local minimum can be slow; second, there
is no guarantee that the global minimum will be found if there are multiple
local minima (Mitchell 1997). Another variation of the GDA, the stochastic
GDA, intends to mitigate these problems. Instead of updating weights after
summing over all training examples, the stochastic GDA updates weights
incrementally, followed by the calculation of the error for each individual
example (Mitchell 1997).

3.3 Graph Convolutional Networks

The advancements by Kipf and Welling (2016) generalize a CNN (Krizhevsky
et al. 2012) to learn on arbitrary graph-structured data in a semi-supervised
fashion, first introduced in chapter 1 as a GCN. We take a small detour to
CNNs, explaining them on a surface level first, to pave the way for a better
understanding of GCNs.

3.3.1 Convolutional Neural Networks

CNNs are able to extract statistical patterns in high-dimensional datasets by
revealing local features, which are shared across the data domain (Defferrard
et al. 2016). To identify these features, Krizhevsky et al. (2012) use filters or
kernel. known from the field of computer vision, to convolve regular grids,
such as matrices. A filter can be imagined as a window function, i.e. focusing
only on values inside the window at a time. For instance, we take an image as
a representation of a matrix with color values for each pixel. The stride is the
number of pixels by which we move our window over the input matrix, each
time performing a mathematical operation with neighboring pixels inside
the window. This convolution step outputs a feature map, usually smaller in
dimension than the original image. The size of the feature map is predefined
by three parameters:

e Depth: the depth of the feature map is the amount of different fil-
ters used on the input. Using three different filters on an image, for
example, produces three stacked 2D-feature maps.

e Stride: as defined before.

e Zero-padding: to apply the filter on bordering elements of the input
matrix, the outer border is "padded” with zeroes.

The convolution of a matrix is a linear process. To introduce non-
linearity, an activation function is applied on each element (or each pixel
in an image). The Rectified Linear Unit (ReLU) is defined as

oreru(2) = max(0, z), (3.10)

15



replacing all negative values in the feature map by zero (cf. equation 3.3).

Spatial Pooling (also called subsampling or downsampling) reduces the
dimensionality of the rectified feature map while retaining the most impor-
tant information. Similar to a filter, a window moves over the feature map
and takes, for example, the largest element within the window. This is called
Max Pooling, but there are also techniques such as averaging the values or
to take the sum of all elements in the window.

At last, a fully connected layer, which is just another term in this context
for a neural network, takes the high-level feature extractions of the convolu-
tion and pooling layers as an input. The sum of output probabilities from
the connected layer is 1, ensured by using the softmaz activation function in
the output layer. The softmax equation, defined as

ez(i)
USOFTMAX(Z) - W, (311)
2

takes a vector z of arbitrary values and maps it to a vector of values between
zero and one, as defined in the softmax equation 3.11. After training, the

connected layer is able to classify the input matrix into various classes based
on the training dataset (Krizhevsky et al. 2012).

3.3.2 Generalizing CNNs to Graphs

The generalization of CNNs to graphs is not straightforward as convolution
and pooling operators only work on regular grids (Defferrard et al. 2016).
However, a CNN can be formulated in terms of spectral graph theory, with
graph signal processing (Shuman et al. 2012) as a basis, which uses harmonic
analysis for a signal defined on irregular graph structures, resulting in a
Spectral Graph Convolution (SGC) or localized graph filter (Parisot et al.
2017).

As described by Kipf and Welling (2016), the goal for a GCN is to learn
a function of signals/features on a graph G = (V,€). G takes a feature
vector x; for every node i, summarized as an input feature matrix (signal)
X € RV*C and a graph structure description as an input, usually in the form
of an adjacency matrix A, and produces an output feature matrix (convolved
signal) Z € RV*F . N denotes the number of nodes, while C' and F' denote
the number of input and output features, respectively.

A neural network layer can be defined as the function

HT' = f(H',A), (3.12)
and a simple layer-wise propagation rule as

FH,A) = a(AHlWl>, (3.13)
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where HY = X, HY = Z (with 1 = 0,..., L denoting the layer count), W'is a
weight matrix for layer [ and o(+) is an activation function, for example ReLU
(equation 3.10). There are two major improvements to equation 3.13: first is
A=A+ Iy, Iy being the identity matrix to add a self-connection to every
node; the second improvement is to normalize A. Without, multiplication
with A would change the scale of the feature vectors, as Kipf and Welling
(2016) explain, and to get rid of this problem, we introduce the diagonal node
degree matrix D. The multiplication of the inverse of D with A corresponds
to taking the average of neighboring node features. Empirically estimated, it
is better to use a symmetric normalizatioln, as tlhis no longer results in only
averaging the neighboring nodes, i.e. D72 AD ™2 (Kipf and Welling 2016).
Both these enhancements bring us to the final propagation rule

FH, A) = a(b—%AD—%HlWl), (3.14)

with D as the diagonal node degree matrix of A.

We introduced the propagation rule of a multi-layer GCN, which draws
similarities to the propagation rule of regular NNs, in the preceding para-
graphs. The following gives a very shallow overview of how the propagation
rule is originated from a first-order approximation of localized spectral filters
on graphs. The reader is encouraged to consult the primary and secondary
sources (Defferrard et al. 2016; Kipf and Welling 2016; Parisot et al. 2017,
Shuman et al. 2012) for an in-depth discussion of how the propagation rule
is approximated, as its genesis is only of peripheral importance for under-
standing the contribution of this thesis.

The convolution theorem states that a convolution in one domain equals
the point-wise multiplication in another domain (Arfken et al. 2005). This
is exploited by SGCs for a Fourier transform in the frequency domain. As
Parisot et al. (2017) explain, the graph Fourier transform is defined by anal-
ogy to the Euclidian domain from the eigenfunctions of the Laplace operator.
The eigenfunctions of the eigendecomposition of the graph Laplacian asso-
ciated with low frequencies vary slowly across the graph, which translates
to the realization that vertices connected by an highly weighted edge have
similar values in the corresponding locations of these eigenvectors (Parisot
et al. 2017). A spatial signal can be defined as a graph Fourier transform
on a graph, being a base for spectral convolutions of a signal with a filter.
By taking the preceding information and following the mathematical trans-
formations of Kipf and Welling (2016), we arrive at the propagation rule in
equation 3.14.

17



4 Implementation

In this chapter, we will explain the main scientific contributions of this thesis.
As briefly described in chapter 1, we will process the Brown text corpus with
its tagset into a graph and feed it into a GCN to perform supervised node
classification.

Kipf and Welling (2016) provide an implementation of their GCN? to
accompany their research paper, which makes use of the machine learning li-
brary TensorFlow (Abadi et al. 2016) with the high-level Keras API (Chollet
et al. 2015) on top of it. We will use this implementation as our base mostly
as is. The preset hyperparameters in the default implementation showed
the best results in the experiments of Kipf and Welling (2016). We start
with these hyperparameters, which are also used for examples and explana-
tions throughout this chapter unless stated otherwise, and optimize them as
needed.

We structure this chapter by illustrating how we construct the graph and
then show by way of example, how a 2-layer GCN implementation is used
for supervised classification on the built graph.

4.1 Constructing the Graph

In figure 1.1, we exemplarily showed a tagged sentence from the Brown cor-
pus. The NLTK (Bird et al. 2009) provides a preprocessed version of said
corpus and makes words and corresponding tags easily accessible. We also
want to equip the words with features, which we get from pre-trained word
(feature) vectors (also called word embeddings) provided by GloVe (Penning-
ton et al. 2014). Machine learning algorithms are in general unable to process
strings in raw form and therefore require a conversion of strings to numbers.
The GloVe algorithm does exactly this by producing word vectors. Word
vectors are vector representations for words in a word-word co-occurrence
matrix, which indicates how frequently words co-occur with one another in a
given corpus. When positioned in the word vector space, words with common
contexts in the corpus are located in close proximity to one another.

We assume that these vector representations are suitable as features for
our graph as word vectors usually improve NLP tasks (Ling et al. 2015). We
proceed to build our data as shown in algorithm 4.1. There a two immediate
limitations within this approach, which are caught by the algorithm: first,
it is not guaranteed that every word in the brown corpus is included in the
GloVe lookup table. Line 5 in the algorithm excludes these words. Second,
because GloVe is treated as a lookup table, we cannot guarantee that the
context correct word vector is chosen as features in the graph. In this context,
the algorithm treats every word undifferentiated from other possible senses.

“https://github.com/tkipf/keras-gcn
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Algorithm 4.1 Construction of the Brown Graph

Input: Brown word-tag tuple from NLTK as brownTuple
Input: GloVe word feature vectors look-up table as gloveT able
Output: Content file as contentFlile
Output: Neighborhood file as nhFile

1: prevWord <~ NULL

2: for every brownTuple do

3: currWord < word in brownTuple > extract current word
. into variable
4: currTag <+ tag in brownTuple > extract current tag

. . into variable
if currWord in gloveT able then

5
6 currFeatures < features for currWord in gloveT able
7 write in contentF'ile : currWord + currFeatures + currlag
8 if prevWord not NULL then
9 write in nhF'ile : prevWord + currWord

10: prevWord < currWord

However, as every word is correctly tagged, we assume that this problem is
negligible when we train the GCN.

In figures 4.1 and 4.2, we show snippets of the generated files. The way
the files are constructed is predetermined by how the GCN is implemented,
which was with the classification of citation networks in mind. The structure
is easily transferable to the task of PoS-tagging. Word features can be found
in between the word on the left and the PoS-tag on the right in the content
file. The number of features per word is defined by the GloVe word vector
size, which is the same for every word. The neighborhood file indicates that
for every word, we write a line with the word itself separated with a whites-
pace from the next word. Note that a "word” in this context could also stand
for characters other than alphabetic ones or punctuation (cf. chapter 1), for
instance. Also note that in the actual implementation of our algorithm, we
mapped the word strings to index numbers, for reasons mentioned in the
beginning of this section.

implementation 0.68404 -0.5835 ... 1.6217 0.015818 0.41272 NN

of 0.70853 0.57088 ... -0.22562 -0.093918 -0.80375 IN
automobile -0.41195 0.069058 ... 0.16543 0.89073 -0.060983 NN
title -1.2383 0.99487 ... -0.97966 0.20244 -0.36069 NN

law -1.2328 -0.11042 ... 0.10342 0.20543 0.36536 NN

Figure 4.1: A snippet from the generated content file
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The GCN treats the words as nodes with features and the neighborhood
file as (undirected) edges between words in a graph and constructs a binary,
symmetric adjacency matrix. When visualized, the graph can be imagined
as a chain with a maximum of two edges per node, i.e. an edge from the word
in focus to the previous and to the next word in the corpus. This means that
every word in the corpus is treated as a node, independent of the fact that
the same word with the same tag is multiply included in the graph. We
reason this graph structure as follows: when chained, every word keeps its
correct label. For PoS-tagging, other graph structures might lead to loss of
information, e.g. one node for every word would make it unclear which tag
is supposed to be used and falsify the classification process. We assume that
multiply occurring nodes do not have a negative impact.

implementation
implementation of
of automobile
automobile title
title law
law ...

Figure 4.2: A snippet from the generated neighborhood file

4.2 Examplary Multi-Layer GCN Used for Training

In the following, we outline a 2-layer GCN for supervised classiﬁcatiAon,
based on Kipf and Welling (2016). The symmetric adjacency matrix A =

D=3AD73 is calculated in a preprocessing step to simplify the forward
model:

Z = [(X, A) = Osorma (/1 TReL (AXW@)) W(1>), (4.1)

where W) € RE*H is an input-to-hidden weight matrix for a hidden layer
with H feature maps and W1 e RHXF ig a hidden-to-output weight ma-
trix. The softmax activation function (equation 3.11) is applied row-wise.
For supervised classification, the cross-entropy error is evaluated over all
examples:

F
ECROSSENT = - Z Z YZfanlfa (42)
=1 f=1

with L as the number of node indices and Y as the correct label at position

If.
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The neural network weights W(® and W) are trained using an opti-
mizer, such as Adam (Kingma and Ba 2014) or batch GDA, on the dataset
for every training iteration.

4.2.1 Experimental Setup

We run our experiments on a virtual machine operating Ubuntu 16.04.3 LTS
with 72 GB RAM, using TensorFlow 0.12.0 and Keras 1.2.0. What follows
is a list of exhaustive hyperparameters with their default values and alter-
native values. We tried to test every reasonable configuration and look for
improvements. However, we do not adjust all hyperparameters, as improve-
ments were not affected by these in our experiments.

Parameter Default | Alt. Val. | Definition

Layers 2 3 Count of hidden layers + output
layer

Hidden Units | 16 32 Count of hidden units per hid-
den layer

Features 50 none Count of features per word. De-
pendent on the chosen word vec-
tors.

Dataset size n/a 4000, Count of examples in content

40000, list
80000

Splitsets n/a 80/20 Ratio between training and val-
idation set.

Optimizer Adam none Used Optimizer with learning

(0.01) rate

Epochs 200 400 Count of training iterations

Early  stop- | 10 20 Consecutive epochs without de-

ping window crease in validation loss

size

Dropout rate | 0.5 — Dropout rate to prevent overfit-

for all layers ting

L2 regular- | 5-107% - Applied on weights to prevent

ization for overfitting

first layer

Table 4.1: Table of hyperparameters for our experimental setup
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Table 4.1 shows the list of hyperparameters. The keyword "none” in-
dicates no changes to the default value, whereas "’ is used whenever the
hyperparameter is removed and ”n/a” when the default values are not appli-
cable or unknown. The set size is chosen according to the memory, further
explained in chapter 5. The splitsets describe, how the dataset is split into
training, validation and test data and the ratio between these. We only focus
on the ratio between training and validation data, which we chose by Pareto
principle. Usually, when supervised learning is performed, the training set
is split into two, where one of the sets is the validation set, which is, simply
put, unlabeled data (Yang et al. 2016). Informally described, the model we
train is applied to the validation data, which is a way to measure how well
the trained model performs to tweak the hyperparameters. Validation loss is
hereby the cross-entropy error applied on the validation set. The dataset size
and splits deviate from the defaults by Kipf and Welling (2016), as we handle
much larger datasets. The dropout (Srivastava et al. n.d.) and L2 regular-
ization (Schmidhuber 2014) are ways to prevent a model from overfitting.
The weights are initialized randomly with a specific probability distribution,
described in (Glorot and Bengio 2010).
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5 Results

In order to evaluate our results, we first want to refer to limitations of the
GCN that negatively impact our experiments, described by Kipf and Welling
(2016). One major problem of the GCN is the memory requirement, which
grows linearly in the number of edges. Our full generated dataset with a file-
size of 445MB consists of 1071201 edges and exceeds the RAM-size of 72GB
when loaded into the GCN. We had to limit the amount of nodes and there-
fore edges in the dataset. The reduction is depicted in table 4.1. We chose
the biggest dataset that fit into the RAM and took a reasonable long compu-
tation time. We assume that the chosen dataset sizes are sufficient enough
to represent our model. We also experiment on a smaller tagset provided by
NLTK with 12 different PoS-tags'?, as a smaller tagset — empirically stated
— improves classification results.

Results are summarized in table 5.1 for the chosen sizes of datasets and
another row of the small dataset with small tagset. Reported numbers denote
mean classification accuracy in percent for 10 consecutive runs.

Parameter | Small Small w/ 12 Medium Large
tags

Default 16.12 39.94 15.29 13.35

Alternative 20.45 39.54 16.47 15.85

Table 5.1: Summary of results in terms of classification accuracy (in percent).

5.1 Evaluation

During testing, every dataset was terminated prematurely by the early stop-
ping window size, either because the validation loss did not decline or because
of a divide-by-zero error, which causes infinite validation loss. The genera-
tion of output predictions for the input samples causes a divide-by-zero when
calculating the cross-entropy error. It is not entirely clear why and how this
happens.

As we can see in table 5.1, a change of the listed hyperparameter improves
the accuracy, alas only slightly. The biggest contributor is the removal of the
hyperparameters affecting overfitting. Generally speaking, a bigger dataset is
supposed to better the accuracy, while the opposite happens in our case. The
main reason for this is the described early termination caused by the divide-
by-zero error. The biggest dataset terminated after 12-20 epochs, which is
not enough ”time”, speaking in terms of epochs, to improve the accuracy.
However, even removing the window did not result in better accuracy, which

Ohttp://www.nltk.org/book/ch05 . html
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is also true for the other dataset sizes. It can be speculated that the datasets
converge in local minima, unable to escape for improvements. Changing the
setsplit randomly did not either result in betterment.

For comparative reasons, we also experimented with the smaller tagset.
Even though it suffers under the same problems as the other datasets, its
results still shed some light on the effectiveness of the model with almost
40% accuracy. Still, the low accuracy prohibits us from instancing other
measures, such as found & actual, precision & recall and the F-measure,
which considers the latter tuple, to analyze the tagger coverage.

To summarize, the model fails to generalize and vastly underfits the data,
since the underlying probability distribution is not properly estimated. The
targeted adjustments of hyperparameters do not bring expected enhance-
ments but merely bring consolation in an unsalvageable situation — at least
when we speak of the current state of the model. In the following section,
we will discuss ideas to improve the model.

5.2 Discussion

Our believe is that the biggest issue in the model is the graph itself. The
chain graph does not seem to be exactly fit for the GCN. We thought of other
graph structures that built on the chain, basically adding more edges to an
already too large perceived graph, which is not desired. In their paper, Kipf
and Welling (2016) state that GCNs are not limited to the assumption that
edges merely encode similarity of nodes. However, this statement seems not
to consider the task at hand. A structure of the graph that displays similarity
of nodes could improve our model.

Even though our model failed to impress, we still believe that the smaller
tagset acts as proof-of-concept and that the model will work when the graph
construction is adjusted.
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6 Conclusion and Future Work

We demonstrated how a GCN is potentially suited for solving the PoS-
tagging task, when a text corpus is converted into a graph. Our model
drastically underfits the data. We see the problems of our approach but also
the room for optimization, which is arguably the biggest in the graph struc-
ture, as discussed in section 5.2. As we write this chapter, a very similar
approach to our model to a similar task was proposed by (Marcheggiani and
Titov 2017), which uses a GCN for semantic role labeling with very promis-
ing results. We see this as an additional affirmation to our proof-of-concept
and are motivated for further development of our model. We are currently
analyzing, how far their proposed concept is applicable to ours.

In more general terms, GCNs proved to be a good and easily applicable
way to provide NN features to graph structures. We believe that there
are other, more difficult NLP tasks that could be solved with GCNs, such
as Word sense disambiguation, where the trend of recent research goes to
graph-based approaches.
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