
Masterarbeit

Mapping ORM to TGraph

Alicia Owen
November 30, 2017

Gutachter: Prof. Dr. Jan Jürjens
Dr. Volker Riediger

Prof. Dr. Jan Jürjens
Institut für Softwaretechnik
Institut für Informatik
Universtität Koblenz
Universitätsstraße 1
56070 Koblenz
https://rgse.uni-koblenz.de

Alicia Owen
owen@uni-koblenz.de
Matrikelnummer: 207110010
Studiengang: Master Informatik
Prüfungsordnung: PO2012

Thema: Mapping ORM to TGraph

Eingereicht: November 30, 2017

Betreuer: Katharina Großer

Prof. Dr. Jan Jürjens
Institut für Softwaretechnik
Institut für Informatik
Universtität Koblenz
Universitätsstraße 1
56070 Koblenz

i

ii

iii

Ehrenwörtliche Erklärung

Hiermit bestätige ich, dass die vorliegende Arbeit von mir selbständig verfasst wurde
und ich keine anderen als die angegebenen Hilfsmittel – insbesondere keine im Quel-
lenverzeichnis nicht benannten Internet-Quellen – benutzt habe und die Arbeit von
mir vorher nicht in einem anderen Prüfungsverfahren eingereicht wurde. Die ein-
gereichte schriftliche Fassung entspricht der auf dem elektronischen Speichermedium
(CD-ROM).

Koblenz, den 30. November 2017

Alicia Owen

iv

v

Abstract

Object Role Modeling (ORM) ist eine semantische Modelliersprache, die Objekte
und deren Beziehungen untereinander beschreibt. Sowohl die Objekte als auch ihre
Beziehungen können bestimmten Regeln (constraints) unterliegen.

TGraphen sind geordnete, attributierte, typisierte und gerichtete Graphen. Der
Typ eines TGraphen und seiner Bestandteile, der Kanten und Knoten, wird in
Form eines graph UML (grUML) Schemas definiert. GrUML ist eine durch Pro-
file erweiterte Form von UML Klassendiagrammen. Das Ziel dieser Arbeit ist es
ORM-Schemata in grUML-Schemata umzuwandeln um anschließend Instanzen eines
ORM-Schemas in Form eines TGraphen darstellen zu können.

Bis zu diesem Zeitpunkt ist die bevorzugte Darstellung und Speicherung von
Instanzen eines ORM-Schemas in Form von relationalen Tabellen. Obwohl es Regeln
für die Umwandlung von ORM-Schemata in relationale Schemata gibt, unterstützen
die öffentlich verfügbaren Umwandlungstools nur wenige der in ORM definierbaren
constraints.

Diese constraints können in einem grUML-Schema mithilfe der TGraphen-
Anfragesprache GReQL formuliert werden. GReQL erlaubt eine effiziente Überprü-
fung, ob TGraphen die definierten Regeln erfüllen oder nicht.

Die Graphbibliothek JGraLab liefert eine effiziente Implementation von TGraphen
und ihrer Anfragesprache GReQL und unterstützt das Erstellen von grUML-Schemata.

Das erste Ziel dieser Arbeit ist es, eine vollständige und korrekte Umwandlung
eines ORM-Schemas in ein grUML-Schema zu definieren. Das zweite Ziel ist es
ORM-Schema-Instanzen als TGraphen darzustellen.

Im Rahmen dieser Arbeit wird ein Überblick über ORM, TGraphen, grUMl
und GReQL sowie über die theoretische Transformation eines ORM-Schemas in ein
grUML-Schema gegeben. Des weiteren wird die Implementation der Transforma-
tion vorgestellt. Außerdem befasst sich diese Arbeit mit der Repräsentation von
ORM-Schema-Instanzen als TGraphen und der Frage, wie die im grUML-Schema
definierten constraints überprüft werden können.

vi

vii

Abstract

Object Role Modeling (ORM) is a semantic modeling language used to describe
objects and their relations amongst each other. Both objects and relations may be
subject to rules or ORM constraints.

TGraphs are ordered, attributed, typed and directed graphs. The type of a
TGraph and its components, the edges and vertices, is defined using the schema
language graph UML (grUML), a profiled version of UML class diagrams. The goal
of this thesis is to map ORM schemas to grUML schemas in order to be able to
represent ORM schema instances as TGraphs.

Up to this point, the preferred representation for ORM schema instances is
in form of relational tables. Though mappings from ORM schemas to relational
schemas exist, those publicly available do not support most of the constraints ORM
has to offer.

Constraints can be added to grUML schemas using the TGraph query language
GReQL, which can efficiently check whether a TGraph validates the constraint or
not. The graph library JGraLab provides efficient implementations of TGraphs and
their query language GReQL and supports the generation of grUML schemas.

The first goal of this work is to perform a complete mapping from ORM schemas
to grUML schemas, using GReQL to sepcify constraints. The second goal is to
represent ORM instances in form of TGraphs.

This work gives an overview of ORM, TGraphs, grUML and GReQL and the
theoretical mapping from ORM schemas to grUML schemas. It also describes the
implementation of this mapping, deals with the representation of ORM schema
instances as TGraphs and the question how grUML constraints can be validated.

viii

CONTENTS ix

Contents

Table of Figures xiv

1 Introduction 1
1.1 Motivation . 1
1.2 Research Question . 1
1.3 Thesis Outline . 2
1.4 Information Modeling . 3

1.4.1 Information Model . 3
1.4.2 Information System . 4

1.5 Object Role Modeling . 7
1.5.1 Basic Components . 8
1.5.2 Constraints . 13
1.5.3 Independent Object Types . 22
1.5.4 Objectifications . 22
1.5.5 Subtyping . 22
1.5.6 Reference Schemes . 23
1.5.7 Derivations and semiderivations 25

1.6 TGraphs . 29
1.7 grUML . 29

1.7.1 Main components . 30
1.7.2 grUML metamodel . 32
1.7.3 Example grUML schema . 33
1.7.4 Validating grUML constraints 33

1.8 GReQL . 34
1.8.1 Quantified expressions . 35
1.8.2 Conditional expressions . 35
1.8.3 FWR expressions . 36

1.9 Event-Condition-Action (ECA) rules 38
1.10 Summary . 38

2 Mapping ORM to grUML 41
2.1 Prerequisites . 41
2.2 Naming conventions in grUML . 42
2.3 Entity Type mapping . 42
2.4 Reference Mode mapping . 44
2.5 Value Type mapping . 45

x CONTENTS

2.5.1 Mapping of value type domains 48
2.6 Objectification mapping . 48
2.7 Fact Type mapping . 49

2.7.1 Mapping unary Relations . 50
2.7.2 Mapping binary relations containing only entity types or ob-

jectifications . 51
2.7.3 Mapping binary relations containing value types 55
2.7.4 Mapping ternary and higher arity relations 58

2.8 Constraint mapping . 60
2.8.1 Example mapping of an exclusion constraint 62

2.9 Independent Object Type mapping 63
2.10 Subtype mapping . 64

2.10.1 Subtype relations without constraints 64
2.10.2 Exclusive subtypes . 65
2.10.3 Exhaustive subtypes . 66
2.10.4 Partition of subtypes . 67
2.10.5 Further subtype definitions . 68
2.10.6 Subtype definitions between value types 68

2.11 Reference Scheme mapping . 69
2.11.1 Preferred reference schemes 69
2.11.2 Other reference schemes . 69

2.12 Derivation and semiderivation mapping 70
2.13 Summary . 70

3 Implementation 73
3.1 Overview . 73
3.2 Mapping ORM schemas to grUML schemas 74

3.2.1 ORM schema file . 75
3.2.2 ORM schema file parser . 77
3.2.3 Mapping the data to grUML 80

3.3 Generating TGraphs . 84
3.3.1 Adding ECA rules . 84
3.3.2 Validating TGraphs . 86

3.4 Final result . 87

4 Discussion 89
4.1 Theoretical mapping from ORM to grUML 89

4.1.1 Mapping entity types to attributes 90
4.1.2 Mapping value types to vertex classes 91
4.1.3 Constraints . 92
4.1.4 Derivations . 93
4.1.5 Mapping to a composition relationship 93
4.1.6 grUML elements that could not be included 94
4.1.7 What is lost during mapping 94
4.1.8 Completeness and Correctness 95

4.2 Implementation . 96

CONTENTS xi

4.2.1 ORM schema parser . 96
4.2.2 Mapping the data to grUML 96

4.3 Generating instances . 97
4.4 Outlook . 98

5 Conclusion 99

Appendices 101
A ORM notation . 103
B Mapping ORM to grUML . 115

Bibliography 121

xii CONTENTS

LIST OF FIGURES xiii

List of Figures

1.1 Entity and value types in ORM . 11
1.2 Basic elements of ORM notation . 13
1.3 ORM schema with n:1, 1:1, n:1 and m:n intrapredicate uniqueness

constraints . 14
1.4 ORM schema with an interpredicate uniqueness constraint between

two roles from different predicates. 15
1.5 ORM schema with a mandatory role constraint 16
1.6 ORM schema with a disjunctive mandatory role constraint 17
1.7 ORM schema with a subset constraint 18
1.8 ORM schema with an equality constraint 19
1.9 ORM schema with an exclusion constraint 19
1.10 ORM schema with an exclusive-or constraint 20
1.11 ORM schemas with subtype constraints 23
1.12 ORM schema with explicated reference mode. 24
1.13 ORM schema with compound reference scheme. 25
1.14 ORM schema with a derived fact type 26
1.15 ORM schema with a semiderived fact type 27
1.16 Example TGraph . 30
1.17 The simplified grUML metamodel. 32
1.18 The grUML domain metamodel. 33
1.19 Example grUML schema . 34
1.20 Overview of the main concepts used in this work 39

2.1 ORM schema with an entity type . 43
2.2 Mapping entity types . 43
2.3 ORM schema of a binary relation between an entity type and a value

type . 47
2.4 Mapping of a binary relation between an entity type and a value type 47
2.5 ORM schema containing an objectification 49
2.6 Mapping of an objectified fact type 49
2.7 ORM schema of a unary relation of an entity type 52
2.8 Mapping of a unary relation in ORM to grUML 52
2.9 ORM schema of a ternary relation of entity types 59
2.10 Mapping of a ternary relation in ORM to grUML 59
2.11 ORM schema of a ternary relation of entity and value types 60
2.12 Mapping of a ternary relation including value types 61

xiv LIST OF FIGURES

2.13 Exclusion constraint . 62
2.14 Mapping of an ORM exclusion constraint to grUML 63
2.15 Subtype relation with an exclusion constraint 66
2.16 Mapping of a subtype relations with an exclusion constraint 66
2.17 Subtype relation with a disjunctive mandatory role constraint 67
2.18 Mapping of a subtype relation with a disjunctive mandatory role con-

straint . 67
2.19 Subtype relations with exclusion constraint affecting only some relations 68

3.1 Overview of implementation of mapping 74
3.2 Simplified model for ORMGraphs . 78
3.3 GReQLConstraintVariable class diagram 82
3.4 ORM schema of a compound reference scheme 84
3.5 GrUML schema as a result of mapping a compound reference scheme 85

4.1 Entity types participating in exactly one 1:n relation might map to
attributes . 90

4.2 ORM schema where a value type may map to a vertex class 91
4.3 GrUML schema as a results from mapping a n:1 relation between a

value type and an entity type . 91

CHAPTER 1. INTRODUCTION 1

1 Introduction

1.1 Motivation

The semantic modeling language Object Role Modeling (ORM) [Hal09] views

the world in terms of objects which play roles. It is well established in the con-

ceptual design of relational databases. Relational schemas, which define relational

tables, have a considerable drawback: while a modeler can define numerous differ-

ent constraints in ORM, these do not translate easily to relational schemas. ORM

also offers the possibility of deriving information from the relations between objects

through derivations. Though it is possible, their implementation in relational tables

is tedious and error-prone.

Still, relational tables are the established format to store ORM schema instances.

But having a rich modeling language one side and a schema language which struggles

to keep up on the other side, seems wasteful.

For this reason, this thesis attempts a different approach to the representation

of ORM schema instances.

1.2 Research Question

The goal of this master thesis is to represent instances of schemas supplied in the

modeling language ORM as graphs, more specifically TGraphs [EF95].

In a first step to achieve this goal, the ORM schemas need to be mapped to

a TGraph schema language, graph UML (grUML)[BHR+10]. ORM provides an

extensive constraint notation which also needs to be represented in grUML schemas.

This can be achieved by using the graph query language GReQL [KK01][EB10] to

formulate grUML constraints and adding these to the grUML schemas.

Besides the definition and implementation of this mapping from ORM to grUML

schemas, the second goal is the representation of ORM instances as TGraphs. This

involves checking whether TGraph instances violate the grUML constraints gener-

ated from the ORM schema during mapping.

2 1.3. THESIS OUTLINE

The Java library JGraLab developed at the University of Koblenz-Landau im-

plements TGraphs, their schema language grUML and the TGraph query language

GReQL and will be used throughout this project.

1.3 Thesis Outline

This thesis is structured as follows.

Within the introduction to this work, chapter 1, ection 1.4 will give a brief

introduction into information modeling and information systems in general, while

section 1.5 will introduce a specific method for information modeling called Object

Role Modeling (ORM). In this section, basic concepts of ORM and their notation

will be explained, followed by constraints and more complex constructs. Section

1.6 is dedicated to the introduction of TGraphs followed by their schema language

grUML in section 1.7 and the graph querying language GReQL in section 1.8.

Chapter 2 introduces the proposed mapping from ORM schemas to grUML

schemas. Chapter 3 is concerned with giving an overview of the Java code im-

plemented to realize the mapping defined in chapter 2 and to generate ORM schema

instances in form of TGraphs. Chapter 4 discusses the results of chapters 2 and 3

and finally, chapter 5 concludes this work.

CHAPTER 1. INTRODUCTION 3

1.4 Information Modeling

In a digital world, each person constantly produces data: when posting on social

media, when tracking steps on a smartwatch, when transferring money or buying

a book at a shop. At first, the data we provide may seem useless, but consider

the process of buying a book. Not only could the choice of book give information

on what genres I may be interested in, where I’m traveling to, what health issues

I have or what I’m interested in professionally, but the place and time at which I

buy it might indicate where I live and what I do for a living. The more pieces of

data can be placed together, the more reliable the information gets. Connecting

the data (title of a book) with meaning or semantics (it’s a book about hiking in

New Mexico) provides information (the person buying the book has some interest

in hiking and/or New Mexico).

In the example above, the generation of information from data is difficult since

the exact meaning of the data isn’t known. However, there are many areas or

domains in which data is produced and its semantics are well defined. In such cases

it is possible to create a system which stores this information, a so-called information

system. Its key component is the information model [HM08, ch. 1].

1.4.1 Information Model

The information model contains general knowledge about the domain: it describes

the different kinds of pieces of data and their relationships amongst each other,

rules that apply to these relationships and how new information can be gained from

existing information. While the information model retains the semantics of the data,

data can be added to a database or information base1. Adding data to a database

is referred to as populating the database. The information model should serve as

a blueprint for storing data along with its semantics and can allow the automatic

generation of databases, object models and user interfaces.

Each information model represents a business domain or Universe of Discourse

(UoD), which is often based on a part of the real world but may contain simpli-

fications or ignore facts that play no role for the intended use of the information

system.

An information model is created by a modeler who works in cooperation with a

domain expert who is familiar with the domain that is being modeled.

1Please note that the term ‘database’ refers to a collection of data without specifying a certain
format. The meaning of the data added to such a collection is provided by the information model.

4 1.4. INFORMATION MODELING

In order to build a clear, concise and unambiguous model of the UoD, the modeler

needs to have or obtain a deep understanding of its structure.

Information modeling is the process of creating an information model. An ad-

vantage of using information models is that they represent data along with rules for

its interpretation in an organized fashion and can be shared, reused or extended.

Multiple languages are available to formally represent information models, such

as IDEF1X [IDE12], EXPRESS [EXP04], Unified Modeling Language (UML) [RJB04],

Entity Relationship (ER) [sC76] or Object Role Modeling (ORM) [Hal09]. While ER

is a very popular high-level approach to database design, UML is the dominant lan-

guage for an object-oriented approach to information modeling.

Since the design process for an information model requires a great amount of care,

there are modeling methods such as the Object Role Modeling method (described

in the next section) which consist of both a language for representation of the model

as well as a procedure describing how to use the language to build it.

1.4.2 Information System

An information system is used to collect, store, process and distribute information

[Oli07]. Four different levels can be distinguished within it: the conceptual, logical,

physical and external level [HM08, ch. 2].

Conceptual level

The conceptual level is the most fundamental and thus most important level of

an information system. In this level, the system’s business domain is described in

terms of basic, easily understandable concepts and rules that apply to them. This

description is also known as the conceptual schema. It is of great importance for

clear communication between modelers and domain experts. The conceptual schema

is designed without taking implementation concerns into account.

The conceptual schema defines the structure of the UoD while the conceptual

database provides information about concrete instances that populate the UoD at

a given time. The conceptual schema provides a high-level overview over the UoD

and is mapped to a logical data model for implementation.

Logical level

The logical schema describes the abstract structures in which data will be stored and

operations that can be applied to it. Two examples of logical data models are the

relational (table-oriented) or the object-oriented data model. The logical schema is

CHAPTER 1. INTRODUCTION 5

tailored to the programming language that is used for the actual implementation of

the information system.

Physical level

At the physical level, the logical schema is transformed into a physical schema. This

includes information about physical data storage and how the data is accessed within

the system (e.g. using an index or file clustering).

External level

At the external level, the so-called external schema specifies what kind of facts can

be read, added or removed by users and how they are displayed. The availability

of these operations and general access rights can be customized for specific user

groups. Furthermore, different user groups may be provided with interfaces to the

information system that are tailored to their expertise levels.

Amongst all these levels, the conceptual level is the most stable. Each conceptual

schema can be mapped to several different logical schemas and each logical schema

itself can have several realizations on the physical level. Due to the profound impact

the conceptual level has on the implementation and maintenance of an information

system, it is of great importance that the conceptual schema be generated with great

care.

6 1.4. INFORMATION MODELING

CHAPTER 1. INTRODUCTION 7

1.5 Object Role Modeling

Object Role Modeling (ORM) is a semantic modeling approach. It has its origins

in the early 1970s and exists in various variations. Since 2009, the second generation

of ORM, ORM2, is available for use. In this thesis the term “ORM” refers to ORM2

if not stated otherwise.

ORM considers the UoD in terms of objects that play roles.

In order to construct a conceptual schema, the interactions between objects are

stated in the form of facts which are statements that are assumed to be true in the

UoD. For this reason, ORM is categorized as a fact oriented modeling method.

In ORM, a conceptual schema can be represented as a diagram or in textual

form. The textual form is based on the ORM language FORML (Formal ORM

Language). Depending on the complexity of the schema, the diagrammatic form may

not be as expressive as the textual form and thus, diagrams can be complemented by

text. The schemas used for this thesis were provided in a graphical representation

generated in the ORM modeling software NORMA (Natural ORM Architect for

Visual Studio)2. In the further course of this work, the term ‘ORM schema’ will

refer to the diagrammatic form of a conceptual ORM schema which will be supported

by text only when necessary.

The most profound difference between ORM and other modeling approaches

such as UML, ER, IDEF1X or EXPRESS, is that ORM works without the use of

attributes. While this causes bloating of ORM diagrams compared to diagrams

from other languages, this renders ORM models more stable in the face of schema

evolution, i.e. when a model undergoes changes. ORM has several advantages over

the other languages: its diagrams can be verbalized in controlled natural language

which makes them easier to understand for people without a modeling background

and facilitates communication about the UoD. In addition, the circumstance that

each relationship is explicitly formulated as a fact type makes it easier to validate the

conceptual schema. Furthermore, ORM has a simple yet highly expressive constraint

notation which will be introduced in section 1.5.2.

Compared to other modeling languages, ORM considers semantic domains rather

than syntactic domains (e.g. string, integer): modeling a ‘Person’ in ER, it might

have the attributes ‘weight’ and ‘height’ with values from the domain Integer. This

allows a direct comparison between values for weight and height since they are from

2available at: http://www.ormfoundation.org/files/folders/norma_the_software/

default.aspx

http://www.ormfoundation.org/files/folders/norma_the_software/default.aspx
http://www.ormfoundation.org/files/folders/norma_the_software/default.aspx

8 1.5. OBJECT ROLE MODELING

the same domain. This comparison, however, does not make much sense. In ORM,

a ‘Person’ would be modeled as having a height which is recorded as a ‘Length’ (e.g.

measured in meters) and as having a weight recorded as a ‘Mass’ (e.g. measured in

kilograms). The semantic domains in this example are ‘Length’ and ‘Mass’. Since the

domains are not the same, it is not possible to compare a Person’s height and weight

if he is modeled in this way. Although comparing values from the domains ‘Length’

and ‘Mass’ is not permitted by the ORM model, their underlying representation is

of the same data type (Integer).

Conceptual schemas formulated in ORM can be transformed into ER or UML

class diagrams (see [HM08, ch. 8 and 9]). This can be useful in order to e.g. generate

a more compact view of the conceptual schema or in database applications, where

logical and physical schemas tend to be attribute-based.

An ORM conecptual schema displays fact types, constraints, derivations and

concept definitions. The following sections should familiarize the reader with these

concepts and their notations.

1.5.1 Basic Components

This section will begin by introducing the concept of facts which will later be

abstracted to fact types which can be expressed in ORM conceptual schemas.

Facts

When building a conceptual schema in ORM, the modeler and domain expert gen-

erate examples of the kind of information that should later be represented in the

information system. These examples are stated in the form of facts. A fact is a

proposition that is taken to be true within the relevant UoD. A fact either declares

that some individual exhibits a property, that one or more individuals take part in

a relationship, or that an individual exists [HM08, ch. 3].

Assume the information model should represent information regarding students

at a university. Consider the following example facts:

Fact 1 Sophie lives on campus.

Fact 2 Sophie lives in ’307’ .

These facts state that an object (Sophie) plays roles (living on campus, living in a

room). Fact 1 expresses, that ‘Sophie’ has the property of living on campus while

fact 2 expresses the relationship between ‘Sophie’ and her room ‘307’. In ORM, an

object is an individual thing of interest that is of importance in the UoD. It can

CHAPTER 1. INTRODUCTION 9

either be a value or an entity . In facts 1 and 2, ‘Sophie’ stands for “the student

named ‘Sophie”’ and ‘307’ stands for“the room with number ‘307”’ which are entities

while the strings ‘Sophie’ and ‘307’ are values.

Entities and Values

In general an entity is an object (e.g. a specific student, a specific room) which

can unambiguously be referenced by its value (e.g. ‘Sophie’ or ‘307’) [HM08, p. 65

f]. In the example facts 1 and 2, the student ‘Sophie’ is a specific student that can

unambiguously be referenced by her name (assuming, that in the UoD every possible

first name occurs at most once). The same applies to the room with number ‘307’.

Entities may change over time.

Predicates

In first order logic, a predicate is a relation over objects and either assigns a property

to a single object or describes how two or more objects relate to each other. In

ORM, a predicate is a proposition in which the objects of interest are replaced by

placeholders [HM08, p. 67 ff]. Each predicate has a reading, in which the placeholder

is an ellipsis (“...”).

In fact 1 the predicate reading is “... lives on campus”. This predicate assigns the

property of living on campus to the entity ‘Sophie’. In fact 2, the predicate reading

is “... lives in ...” and describes the relation between Sophie and the room she lives

in.

The arity of a predicate is the number of objects that take part in a relation

[HM08, p. 68]. In the example fact 1, only one object can take part in the relation.

Thus, the arity of the predicate “.... lives on campus” is 1 and it is called a unary

predicate.

In the case of fact 2, the predicate is“... lives in ...” and describes the relationship

between the entity ‘Sophie’ and her room. Since two objects take part in this

relationship, the arity of the predicate is 2 and it is also called a binary predicate.

In ORM, predicates of any arity n (n ∈ N) are allowed but usually relationships

don’t span more than 3 objects which corresponds to a ternary predicate.

Elementary Facts

An ORM schema is generated from example facts. It is important to note that these

need to be elementary facts, meaning that the information conveyed by such facts

cannot be represented by using a set of smaller fragments of each fact (with the same

10 1.5. OBJECT ROLE MODELING

objects) [HM08, p. 64]. An example of a non-elementary fact instance is shown in

the following example:

Fact 3 Sophie lives on campus and Robert lives on campus.

In this case, the fact can be split into two individual elementary facts (Sophie lives

on campus. Robert lives on campus.) which is indicated by the word “and”. Further

words that indicate that a fact may not be elementary are “not”, “or”, “if”.

Example facts 1 and 2 are concrete facts about concrete objects. Since a con-

ceptual schema displays information about concepts rather than concrete objects,

these example facts are abstracted to fact types in order to model them in an ORM

schema.

Fact Types

Fact types describe properties and relationships of object types [HM08, ch. 3]. Facts

1 and 2 are of the following fact types:

Fact type 1 Student (.name) lives on campus.

Fact type 2 Student (.name) lives in Room (.nr).

In order to get from the facts to the fact types, the entities “student named ‘Sophie”’

and “room with number ‘307”’ are abstracted to the entity types Student and Room.

The mode in which specific instances of these entity types are referenced is defined

by the parenthesized string appended to the entity type names.

Entity Types

In an information model, the entity type specifies what kind of entity is recorded.

The entity type denotes the set of all instances of entities of this type that may

be relevant throughout the lifetime of the information system. In our example, the

entity type Student is the set of all people that are identified by their name and

‘Sophie’ is an instance [HM08, p. 66].

In an ORM schema, entity types appear as named, soft rectangles containing

the name of the entity type. Figure 1.1 shows how a Student identified by its name

would be represented in an ORM schema.

CHAPTER 1. INTRODUCTION 11

Student

(.name)

(a)

StudentName

RoomNr

(b)

Figure 1.1: Figure a) displays how the entity type “Student” that can be identified by
its StudentName is represented in ORM. Figure b) shows the representation of two value
types, here of StudentName and RoomNr.

Reference Mode and Value Types

An entity type’s reference mode describes how a single value refers to an entity

[HM08, p. 67] and is placed in parentheses after the entity type’s name. The

entity type and reference mode “Student (.name)” explicitly means “Student has

StudentName” where StudentName is a value type [HM08, p. 75] and the string

‘Sophie’ is a value type instance. Value types appear as named, soft dashed rectangles

containing the name of the entity type in an ORM schema. Figure 1.1 shows the

value types StudentName and RoomNr represented in ORM notation.

Object Types

In line with the definition of objects at the instance level, at the conceptual level

an object type is either an entity type (e.g. Student, Room) or a value type (e.g.

StudentName, RoomNr). Note that value types are mapped to data types, so in the

example fact types StudentName and RoomNr are represented as strings.

Fact types can be populated by inserting concrete instances in place of the object

types (thus creating a fact instance).

Population

A conceptual schema can be populated with object instances that play the roles

defined by the ORM schema. For any given state of the resulting database, the

population of an object type T , pop(T), is the set of all instances of T in that given

state. It is also possible to define the population of a role. For any given state of a

database, the population of a role r, pop(r) is the set of object type instances that

play this role r [HM08, p. 161 ff].

Using the additional information contained in fact types 1 and 2 (the entity types,

reference modes and value types), the example facts 1 and 2 could be reformulated

as:

12 1.5. OBJECT ROLE MODELING

Fact 1 (extended) The Student with StudentName ‘Sophie’ lives on campus.

Fact 2 (extended) The Student with StudentName ‘Sophie’ lives in the Room

with RoomNr ‘307’.

The fact blueprint represented by fact types 1 and 2 clearly defines what kind of

objects play roles in facts 1 and 2 and by what means they can be identified. This

allows storing the information about ‘Sophie’ and other students in an organized

manner and allows computer processing without loss of information.

Summary

Table 1.1 gives an overview of the most important concepts covered in this section

by analyzing an example fact. Note that the predicate in this example is binary.

Table 1.1: The most important basic ORM concepts extracted from an example fact.

fact The Student named ‘Sophie’ lives in Room number ‘307’.

entities
The Student with StudentName ‘Sophie’,

The Room with RoomNr ‘307’

entity types Student, Room

values ‘Sophie’, ‘307’

value types StudentName, RoomNr

reference schemes Student(.name), Room(.nr)

predicate lives in

fact type Student(.name) lives in Room(.nr)

ORM is used to generate conceptual schemas which capture the semantics of

data, but not the data itself. Although example facts are important for the gen-

eration of such schemas and help validating their correctness, they are not part of

them. ORM schemas merely represent concept definitions, fact types, constraints

that may apply to them and derivations that can be made from these fact types.

Figure 1.2 shows how the example fact type from table 1.1 would be represented

in an ORM schema. Note that this figure shows a simplified version of an ORM

schema, since it is missing uniqueness constraints which will be introduced in 1.5.2.

Without uniqueness constraints it is an invalid schema.

N-ary predicates are displayed as a named sequence of n adjacent squares or role

boxes. Each role box is connected to exactly one object type which indicates that

CHAPTER 1. INTRODUCTION 13

only objects of this type can play this specific role. A predicate must be provided

with at least one reading, which indicates how the objects playing the roles relate

to one another.

Student

(.name)

Room

(.nr)

lives in / is home of

Figure 1.2: The fact type“Student(.name) lives in Room(.nr)” is displayed in a simplified
ORM diagram. The reference mode is abbreviated by placing it in parentheses after the
entity type name.

An overview of the most important ORM diagram elements is provided in ap-

pendix A.

1.5.2 Constraints

The previous section introduced the basic building blocks for ORM schemas and

their notation. With diagrams like figure 1.2 it is possible to model a relationship

between two entity types (Student, Room) and define their value types but it is not

possible to express any rules that apply to their relationship. For example, it may

be desirable to express that a Student can only live in one Room at any given point

in time. Or that for each Student a Room must be recorded in the database. This

is handled by constraints. In general, constraints are used to restrict the possible

states and state transitions within the database [HM08, p. 110]. This section will

introduce the various types of constraints that can be expressed graphically in ORM.

Intrapredicate Uniqueness Constraints

A basic kind of constraint that applies to every fact type in ORM is the intrapredicate

uniqueness constraint or internal uniqueness constraint which specifies, for a given

predicate, which roles or combinations of roles are played by unique objects or unique

combinations of objects [HM08, p. 111 ff]. An intrapredicate uniqueness constraint

is indicated by placing a bar above or below the fact role(s) it applies to.

Figure 1.3 shows all possible intrapredicate uniqueness constraints for binary

predicates. Note that Students are now identified by their StudentIDs rather than

their StudentNames, because the university allows students with identical names to

enroll.

14 1.5. OBJECT ROLE MODELING

Student

(.ID)

Room

(.nr)

Username

StudentName

Course

(.code)

lives in / is home of

[housing]

has

has

attends

Figure 1.3: ORM schema showing (counter-clockwise beginning with the left predicate)
n:1, 1:1, n:1 and m:n intrapredicate uniqueness constraints on binary predicates. This
schema combines four fact types about Student(.ID) into one diagram.

Populating a fact type produces a so-called fact table [HM08, p. 85]. A fact

table has a number of columns equal to the arity of the fact type’s predicate. Each

column stands for a role of this predicate and each row is filled with a combination

of objects (entities or values) playing these roles.

The 1:1 uniqueness constraint means that for each role of the predicate the

entries in the corresponding column of the fact table need to be unique. In figure 1.3

this uniqueness constraint is applied to the predicate of the fact type “Student(.ID)

has Username”. It indicates that each Student is given exactly one unique Username

which corresponds to a 1:1 mapping. Thus, the Username could also be used to

uniquely identify a Student but in this case the domain expert and/or modeler

preferred referencing the entity type Student by their StudentID.

From the 1:n uniqueness constraint it follows that the entries in the fact table

column corresponding to the left role need to be unique while the right column may

contain duplicates. In figure 1.3 this constraint on the fact type “Student(.ID) has

StudentName” means that each Student can have at most one (1) StudentName but

multiple (n) Students can have the same StudentName.

With the n:1 uniqueness constraint the opposite is true: the entries in the fact

table column corresponding to the right role need to be unique while the left column

may contain duplicates. In the example schema from figure 1.3, this constraint on

the fact type “Student(.ID) lives in Room(.nr)” means that each Student lives in at

most one Room but multiple Students (n) may live in the same (1) Room.

The m:n uniqueness constraint indicates that the combination of entries in

a row of the fact table must be unique, i.e. no two rows of the fact table shall be

CHAPTER 1. INTRODUCTION 15

identical. The fact type “Student(.ID) attends Course(.code)” in figure 1.3 is subject

to an m:n uniqueness constraint which specifies that a Student can attend several

Courses (m) but it is also possible that several Students (n) attend the same Course.

The m : n uniqueness constraint is always assumed and must be stated explicitly

if none of the other intrapredicate uniqueness constraints apply to the predicate in

question.

Intrapredicate uniqueness constraints can be applied to predicates of any arity

and for a given predicate of arity n must span at least n − 1 of its roles. It is

allowed to place multiple uniqueness constraints on the same predicate and they

may overlap (but not completely). If no uniqueness constraints of length n − 1

apply to an n-ary predicate, then the uniqueness constraint spanning all n roles is

required. Further examples for uniqueness constraints are shown in appendix A).

Since verbalization is an integral part of ORM which facilitates the understanding of

ORM schemas, NORMA provides verbalization of fact types (including constraints

applying to them) in controlled natural language. For example, the m:n unique-

ness constraint on the fact type “Student(.ID) attends Course(.code).” in figure 1.3

verbalizes in the following manner:

It is possible that some Student attends more than one Course and that for some Course,

more than one Student attends that Course. In each population of Student attends Course,

each Student, Course combination occurs at most once.

Interpredicate Uniqueness Constraints

Like intrapredicate uniqueness constraints, interpredicate or external uniqueness

constraints make requirements to the uniqueness of objects populating roles, but

now these roles are from different predicates [HM08, p. 128 ff]. The constraint is

indicated by a circle containing a horizontal line which is connected to the role boxes

it applies to by a dashed line. An example for this kind of constraint is shown in

figure 1.4. In this case, the external uniqueness constraint expresses that it is not

Grade

(.code)

Student

(.ID)

Exam

(.code)

is achieved byis achieved in

Figure 1.4: ORM schema showing an interpredicate uniqueness constraint roles from
different predicates. It conveys that at most one Grade can be achieved by a certain
Student in a certain Exam.

16 1.5. OBJECT ROLE MODELING

possible that two Grades are achieved by the same Student in the same Exam which

verbalizes as:

For each Student and Exam, at most one Grade is achieved by that Student and is achieved

in that Exam.

The interpredicate uniqueness constraint can connect more than two predicate

roles.

Mandatory Role Constraint

The mandatory role constraint is used to specify which object types must play a

certain role [HM08, p. 162 ff]. Each constraint applies to exactly one role (but

may apply to multiple roles in one predicate) and entails that for each state of the

database, each instance of an object type playing this role must play it. So, for a

given object type o and its role r, a mandatory role constraint on r means that for

each state of the database the following holds:

pop(r) = pop(o) (1.1)

When a role is mandatory for an object type, this is symbolized by a filled circle

that is either attached to the role box or to the object type that plays this role.

Figure 1.5 contains a mandatory role constraint on the role “was born on” which

is connected to Student(.ID). This means that every instance of Student that is

recorded in the database, must have a birthdate but does not need to have informa-

tion on its Room or Courses stored.

Student

(.ID)

Room

(.nr)

Course

(.code)

Date

(mdy)

lives in / is home of

attends

was born on

[birthdate]

Figure 1.5: An ORM schema showing a mandatory role constraint. Whenever an instance
of the entity type Student is created, the Date on which they were born must be recorded
since the role “was born on” is mandatory.

As a general rule, any primitive object type that plays only one role in a global

schema and any primitive entity type that plays only one fact role has a mandatory

CHAPTER 1. INTRODUCTION 17

role constraint on this role. Due to this rule, the mandatory role constraint notation,

i.e. the dot, can be omitted in these cases.

Disjunctive Mandatory Role Constraint

The disjunctive mandatory role constraint or inclusive-or constraint is applied to two

or more roles and requires that at least one of these roles is played by instances of

the associated object type [HM08, p. 168 ff]. It is represented as a circle containing

a violet dot which is connected to the constrained roles through dashed lines.

Figure 1.6 shows an example for a disjunctive mandatory role constraint.

Student

(.ID)

TelephoneNumber

EmailAddress

has

has

Figure 1.6: ORM schema showing a disjunctive mandatory role constraint. A Student
must provide a TelephoneNumber, EmailAddress or both.

This schema specifies that a Student must provide TelephoneNumber or EmailAd-

dress or both.

Value Constraint

A value constraint applies to a value type or a role and limits the values that these

can take on [HM08, p. 216 ff]. The set of valid values is displayed in curly brackets

which either contain an enumeration or the range of valid values.

In an enumeration the valid values are listed within brackets as in {′M ′,′ F ′} or

{2, 4, 8, 16}. Ranges have an upper or lower bound or both and may contain ordinal

values, such as positive or negative integers, real numbers or strings. For integer

and string values ranges may take on the following forms: {1..10}, {1..}, {.. − 9},
{′June′..′December′}. When using real values, a square bracket next to the value

indicates its exclusion from the range, e.g. {[1.05..5]}. It is also possible to insert

ranges into an enumeration, e.g. {−9..4, 10..16, 24..86} or {[−1..5], [6..9]}.
A value constraint on a value type is displayed by placing the set of permitted

values either next to the constrained value type or next to the entity type that is

referenced by this value type. A value constraint for a role is placed next to the role

in question and provides the set of values that must be used to reference the entity

type that plays this role.

18 1.5. OBJECT ROLE MODELING

Subset Constraint

The subset constraint is applied between two roles that are played by the same

object type [HM08, p. 225]. It is used to indicate that the population of one role

is a subset of another role. For two roles r1 and r2 and for each database state this

means that pop(r1) ⊆ pop(r2).

In an ORM schema this constraint is presented as a circle containing a subset

symbol (⊆) which is connected to the subset role by a dashed line and to the superset

role by a dashed line with an arrow. An example is shown in figure 1.7 where the

instances of Students passing a Course are a subset of the Students attending the

Course.

Student

(.ID)

Course

(.code)

attends

passes

Figure 1.7: ORM schema showing a subset constraint between two roles. The instances
of Students passing a Course are a subset of those attending it.

Equality Constraint

The equality constraint is used between two or more roles played by the same object

type to ensure that the population of these roles is equal [HM08, p. 226 f]. If an

equality constraint applies to n roles {r1, r2, ..., rn} and n ∈ N, then the following

must hold for each database state : pop(r1) = pop(r2) = ... = pop(rn).

This constraint is indicated by a circle containing an equality symbol (=) which

is connected to the constrained roles through dashed lines. Figure 1.8 shows an

example of this constraint. The instances of Students that have a Username (e.g.

for the university’s web platform) also have an EmailAddress (e.g. provided by the

university after registering for the web platform).

CHAPTER 1. INTRODUCTION 19

Student

(.ID)

Username

EmailAddress

has

has

Figure 1.8: ORM schema showing an equality constraint between roles from different
predicates. The instances of Students that have a Username are exactly the same that
have an EmailAddress.

Exclusion Constraint

The exclusion constraint is used between two or more roles played by the same object

type to ensure that the populations of these roles are mutually exclusive [HM08, p.

228]. If an exclusion constraint applies to n roles {r1, r2, ..., rn} and n ∈ N, then the

following must hold for each database state : pop(r1) ∩ pop(r2) ∩ ... ∩ pop(rn) = ∅.
In terms of notation, this constraint appears as a circle with a cross symbol (‘X’)

which is connected to the constrained roles by dashed lines. An example for this

constraint is displayed in figure 1.9 which shows that a Student can either live in a

(dorm) Room or arrive at university by Car.

Student

(.ID)

Room

(.nr)

Car

(.code)

Date

(mdy)

lives in

arrives by

was born on

Figure 1.9: ORM schema showing an exclusion constraint between roles from different
predicates. A Student may either live in a (dorm) Room or arrive (at university) by Car.

Exclusive-or Constraint

The exclusive-or constraint is a combination of the inclusive-or and exclusion con-

straint [HM08, p. 229]. Like these, it constrains two or more roles which are hosted

by the same object type. It indicates that the object type’s instances play exactly

one of the constrained roles.

20 1.5. OBJECT ROLE MODELING

In an ORM diagram this constraint appears as the overlay of the inclusive-or and

exclusion constraint which can be seen in figure 1.10. This models that Students

must either eat vegetarian food or non-vegetarian food when visiting university.

Student

(.ID)

eats vegetarian food

eats non-vegetarian food

Figure 1.10: ORM schema showing an exclusive-or constraint between roles from differ-
ent predicates. A Student must either eat vegetarian or non-vegetarian food.

The subset, equality, exclusion and exclusive-or constraints introduced previously

restrict the populations of multiple roles played by the same object type. It is

possible to extend the population restriction to a sequence of two or more roles

using tuple-subset, pair-equality and pair-exclusion constraints [HM08, p. 232 f].

Frequency Constraint

ORM distinguished two kinds of frequency constraints on fact roles: internal and

external frequency constraints [HM08, p. 272 ff]. Both are used to indicate that, for

each state of the database, the population of the constrained fact role or set of fact

roles must contain an object or tuple of objects a certain number of times. While

internal frequency constraints apply to one or more roles within one predicate, the

external frequency constraints applies to one role within two or more predicates.

The requirement can either be in the form of a specific number (e.g. 5) or a range

with an upper or lower bound or both (≤ 5,≥ 5, 3..7).

The internal frequency constraints can be further divided into simple and com-

pound frequency constraints. The simple internal frequency constraint is used to

specify how many times a single fact role should be played by an object. The re-

quired frequency is noted next to the constrained role.

This constraint can be extended to more than one role and is then called com-

pound frequency constraint. It is used to specify how many times tuples of objects

must play the constrained roles.

The external frequency constraint is used to constrain single fact roles from

multiple predicates. In an ORM diagram this is noted by connecting the circled

frequency or frequency range to the constrained roles by a dashed line.

CHAPTER 1. INTRODUCTION 21

Ring Constraints

In ORM, a ring is a binary relation between compatible object types. Constraints on

this kind of relation are called ring constraints and define properties of the relation,

such as reflexivity, symmetry, asymmetry, transitivity, and more. For a comprehen-

sive list of all ring constraints, see appendix A or refer to [HM08, p. 278 ff]

Cardinality Constraints

Cardinality constraints can be applied to objects or roles in order to restrict the

cardinality of their respective population [HM08, p. 289]. The constraint is noted

as a “#” , followed by an expression indicating the allowed number or range (e.g.

= 2, # ≥ 2).

Value Comparison Constraints

The value comparison constraint is used to compare the values of role instances

using <,≤, >, or ≥ operators [HM08, p. 290]. The values of the role instances must

be compatible in order to allow comparisons.

Alethic and Deontic Constraints

In general, ORM distinguishes between two different kinds of constraints. The

constraints introduced up to this point were alethic constraints [HM08, p. 408].

This means that these constraints must be met in every state of the information

model. Any attempt to update an information model with data that violates alethic

constraints is denied.

The second kind of constraints are so-called deontic constraints [HM08, p. 408

ff]. These constraints are not enforced and may be violated. If an update to an

information model causes a conflict with this kind of constraint, the update is ac-

cepted and ideally the user should be informed that he violated a deontic constraint

and should avoid this behavior in the future. Deontic constraints appear in blue

rather than violet and mostly include an “o” which stands for “obligatory”. Deontic

ring constraints have a dashed line instead of a solid line.

If a constraint cannot be modeled using the concepts and notation introduced

in this section, ORM allows the specification of textual rules in controlled natural

language. The diagram elements involved in the constraint are marked with a foot-

note and the constraint rule is provided in a text box that appears in the diagram

[HM08, p. 290 f].

22 1.5. OBJECT ROLE MODELING

This concludes the introduction of ORM constraints. Sections 1.5.3 through

1.5.5 introduce further concepts that can be used for concise modeling of the UoD,

while section 1.5.6 will go into more detail on how entity types may be identified

using reference schemes. Finally, section 1.5.7 will introduce the idea of derivations

and conclude the introduction to ORM conceptual schemas.

1.5.3 Independent Object Types

An independent object type is a primitive object type which either hosts no fact

roles or only optional fact roles [HM08, p. 219 ff]. This means that instances of

these objects can exist which play no fact roles at all. This term is not used for

value types that do not play any fact roles, or for subtypes. In an ORM diagram,

independent object types are indicated by appending an exclamation mark (“!”) to

their name.

1.5.4 Objectifications

Objectification or reification describes the process of turning a relationship into

an object [HM08, p. 88 f]. The type of object formed by this process is an objectified

association. In an ORM schema, this is depicted as a named, soft rectangle placed

around the predicate that is objectified. The name of the objectified association is

stated in double quotes. The objectified association can participate in fact types in

the role of an object type.

1.5.5 Subtyping

When an object type is further classified into more specific object types, this

is called subtyping and the resulting specialized object types are called subtypes

[HM08, p. 238 ff]. The object type from which the subtype originated is referred to

as the supertype.

In ORM it is possible for one subtype to have two or more supertypes, which is

known as multiple inheritance. Furthermore, one supertype can have many subtypes

and may have instances that are not instances of any of its subtypes. Given a

supertype A and its subtype B, the following expression must be satisfied for each

state of the database:

A 6= B ∧ pop(B) ⊆ pop(A) (1.2)

B is then called proper subtype of A and A is the proper supertype of B.

CHAPTER 1. INTRODUCTION 23

In an ORM schema, a line between two object types with an arrow at its end

indicates that the object type at its origin is the subtype of the object type (the

supertype) the arrow points to.

Figure 1.11 shows three constraints that can be applied to the population of

subtypes of one supertype. Figure 1.11 a) shows an exclusion constraint between the

subtypes which means that the intersection between Seminar and Lecture is empty

(but other Courses may exist). In figure 1.11 b) there is a disjunctive mandatory

role constraint between the subtypes, meaning that each Student must be a Bachelor

Student, Master Student or PhD Student or any combination thereof. There can be

no instances of Student that aren’t instances of one or more of its subtypes. Figure

1.11 c) displays an exclusive-or constraint between the subtypes meaning that each

instance of Student must be either a Commuting Student or a Campus-dwelling

Student.

Course

(.code)

Seminar Lecture

(a)

Student

(.ID)

Bachelor Student

Master Student

PhD Student

(b)

Commuting Student

Campus-dwelling Student

Student

(.ID)

(c)

Figure 1.11: Figure a) displays exclusive subtypes, figure b) shows exhaustive subtypes
and figure c) represents a partition of the supertype.

1.5.6 Reference Schemes

In ORM, each entity type must have a preferred reference scheme which indicates

the manner in which entities can be referred to by values. In ORM, entities can be

identified by values from both semantic and syntactic domains.

Two different reference schemes can be distinguished: in a simple or 1 : 1 ref-

erence scheme, each entity can be identified by exactly one value. In a compound

reference scheme the identification of an entity takes two or more values [HM08, ch.

5.3].

Simple Reference Scheme

If an entity is identified by exactly one value, it has a simple 1 : 1 reference scheme.

The reference mode provides information on how an entity is related to its value and

24 1.5. OBJECT ROLE MODELING

can be abbreviated by placing the value type in parentheses after the entity type’s

name. A reference mode is always the preferred reference scheme for the entity type.

This kind of reference scheme is shown in figure 1.3 where each Student is uniquely

identified by his/her StudentName. This means that the UoD cannot contain more

than one Student who is called ‘Sophie’. Any other facts recorded about ‘Sophie’ in

this UoD (e.g. that she owns a Car) must refer to the same Student ‘Sophie’.

NORMA distinguishes three kinds of reference modes: popular reference modes,

unit-based reference modes and general reference modes.

The most often used reference modes are listed as popular reference modes

in NORMA and include name, code, id, title, #. If popular reference modes are

parenthesized, they are preceded by a dot, e.g. Student(.name). The value type

which is represented by the reference mode has a name which is a combination of

the entity type name followed by the reference mode name starting with a capital

letter. So, “Student(.name)” has the value type “StudentName”.

Unit-based reference modes are also included in NORMA in the form of

a list which contains physical and monetary units. If unit-based reference modes

are parenthesized, the unit is followed by a colon, e.g. Weight(kg:). The value

type is derived from only the reference mode by appending the string ‘Value’, i.e.

Weight(kg:) has the value type kgValue.

General reference modes don’t have additional punctuation when parenthe-

sized and their value type is identical with their names, e.g. Book(ISBN) has the

value type ISBN.

Each entity type has a preferred reference scheme. If a simple 1 : 1 reference

mode exists, this is the preferred reference scheme. The reference mode can also be

formulated explicitly as seen in figure 1.12. The double uniqueness constraint is used

to indicate that this is the preferred reference mode for the entity types Student and

Room.

Student RoomStudentName RoomNr

lives in / is home ofis of / has has / is of

Figure 1.12: ORM schema explicitly showing the preferred reference mode for the entity
types Student and Room. The double uniqueness constraint is used to indicate that this
is the preferred reference mode which necessitates the mandatory role constraints.

Compound Reference Scheme

If the definite identification of an entity requires the use of two or more values, this is

called a compound reference scheme. If it is the primary source of identification, it is

CHAPTER 1. INTRODUCTION 25

called a preferred compound reference scheme. When an entity type is identified by

two or more of its roles, these roles must be included in an interpredicate uniqueness

constraint. If the thus defined reference scheme is the preferred reference scheme for

the entity type in question, the circle indicating the constraint has two horizontal

lines. An example for an interpredicate uniqueness constraint defining a preferred

reference scheme for an entity type is displayed in figure 1.13.

In the modeled UoD, a Student can be uniquely identified by the combination

of his StudentName and the Date he was born on. By placing the double bar in the

interpredicate uniqueness constraint, it is clear that this is the preferred reference

scheme for this entity type. Note that the interpredicate uniqueness constraint

defining Student’s preferred reference scheme affects two different kinds of roles. One

is played by the value type StudentName but the second is played by the entity type

Date. Instances of StudentName are values while instances of Date are entities - in

turn identified by their reference mode“mdy”which represents a specific date format

and is most likely a string value. In conclusion, Student’s preferred identification is

through the value of StudentName and the value of Date’s preferred identifier.

Additionally, note that Student has a second, simple reference scheme in which

a Student is identified by its StudentID.

Student
Date

(mdy)
StudentName

StudentID

was born on

[birthdate]

has

is of / has

Figure 1.13: ORM schema showing a preferred compound reference scheme for the entity
type Tournament. The interpredicate uniqueness constraint with the double bar implies
that Tournament can be uniquely identified by the host City and the Tournament’s Date
and that this is the preferred way to reference Tournament.

1.5.7 Derivations and semiderivations

In ORM, fact types are either asserted, derived or semiderived [HM08, p. 98 ff].

A fact type is asserted or primitive if it is not defined in terms of other fact types.

Its population consists of asserted facts.

26 1.5. OBJECT ROLE MODELING

A fact type is derived, if it is defined in terms of other fact types (asserted

or derived). A derived fact type is marked with an asterisk “*” appended to its

reading. The derivation rule can be supplied in textual form within the diagram

and is preceded by an asterisk. Whenever the derived fact type is queried, the

derived information is computed (derived-on-query). An example is shown in figure

1.14. Using this schema, the value for the value type “NrCourses” is deduced by

counting the number of courses a student attends instead of requiring the user to

explicitly state this number for each student. This reduces the likelihood of errors

and inconsistencies.

A double asterisk “**” indicates that a fact type is derived and the derived in-

formation is stored in the information system which reduces response time (derived-

on-update).

Figure 1.14: This ORM schema shows the derived fact type“Student attends NrCourses”.
This is indicated by the asterisk appended to the predicate “attends”. The derivation text
isn’t displayed in the ORM schema, but reads as *Student attends NrCourses if and only if
that Student attends some Course where NrCourses = count(each Course for that Student)., i.e.
it counts the number of Courses each Student attends and stores the result in “NrCourses”.

A fact type is semiderived, if its population contains asserted and derived facts.

Semiderived fact types are marked with a “+” appended to their reading. The

derivation rule can be stated in textual form within the diagram with a leading

“+” symbol. An example is shown in figure 1.15. Here the fact type “Person is

grandparent of Person” is a semiderived fact. One the one hand this information

can be derive. In cases where a person A is a parent of a person B and this person B

is a parent of a person C, it is derived that person A is a grandparent of person C. But

on the other hand it is possible to explicitly state that some person is a grandparent

of another person without necessarily constructing the parenting hierarchy.

Just as fact types, subtypes can also be asserted, derived or semiderived. A

derivation is denoted by“*”and a semiderivation is denoted by“+” following the sub-

CHAPTER 1. INTRODUCTION 27

Figure 1.15: This ORM schema displays the semiderived fact type“Person is grandparent
of Person”. This is indicated by the “+” appended to the predicate reading of this fact
type. The derivation rule isn’t displayed in the ORM schema, but reads as +Person1 is
grandparent of Person3 if and only if that Person1 is parent of some Person2 and that Person2
is parent of that Person3.

type’s name. The derivation rule can be supplied in the diagram as with (semi)derived

fact types.

28 1.5. OBJECT ROLE MODELING

CHAPTER 1. INTRODUCTION 29

1.6 TGraphs

TGraphs were introduced by Ebert et al. in [EF95] as a very general class

of graphs. These graphs can be used as conceptual models, formal mathematical

structures and efficient data structures.

The basic elements of TGraphs are vertices and edges. TGraphs are

directed, i.e. each edge has a start and an end vertex also referred to as alpha and

omega of the edge,

typed, i.e. vertices and edges can be divided into distinct classes,

attributed, i.e. both vertices and edges can have attribute-value pairs attached to

convey additional information,

ordered, i.e. edges, vertices and edges incident to a vertex have a consistent order-

ing,

graphs.

Figure 1.16 shows an example of a TGraph which shows two vertices of type

Student and one vertex each of the type Seminar and Lecture. The vertices are

connected via edges of the type StudentAttendsCourse. These edges are directed,

starting at instances of Student and ending at instances of Seminar or Lecture.

The vertices are attributed: Seminar and Lecture have an attribute courseCode

and Student has the attributes name and studentID amongst others.

The edges and vertices are ordered. e1 is the first and e3 is the last edge. The

vertices are ordered beginning with v1 and ending with v4. The ordering if the edges

incident to a vertex class is indicated by the numbers at the beginning and end of

edges: for e.g. v3 e1 is the first and e2 is the second incidence.

Which types of vertexes and edges and which attributes are allowed in a certain

class of TGraphs can be defined in a TGraph schema. This schema can be provided

using the modeling language graph UML, short grUML [BHR+10], which is a profiled

version of UML 2 class diagrams.

1.7 grUML

Graph UML (grUML) is a profiled version of UML 2 class diagrams and can be

used to define TGraph classes.

A grUML diagram, also called a grUML schema, defines the structure and con-

straints that apply to instances of the thus defined TGraph class.

30 1.7. GRUML

Figure 1.16: An example TGraph showing two vertices of type Student (v1,v2) and one
each of the type Seminar (v3) and Lecture (v4). The vertices are attributed and ordered.
The edges are directed, ordered and of type StudentAttendsCourse. Edges incident to a
vertex are also ordered.

Unlike UML 2 class diagrams, grUML classes may not contain method declara-

tions. The main components of a grUML schema and an example grUML schema,

which defines the TGraph in figure 1.16, will be introduced in the following sections.

1.7.1 Main components

The main components of a grUML diagram and their meaning for the definition

of a TGraph class are as follows:

classes Each class (with the exception of association classes) within a grUML dia-

gram represents a vertex class that may be used in the defined TGraph.

The attributes of a grUML class will map to attributes of the graph class in

the TGraph. Classes in grUML diagrams don’t have method declarations.

Generalizations between classes of the grUML diagram translate into general-

izations between the defined TGraph classes.

Abstract classes in the grUML diagram (indicated by classifier’s name written

in italic or the use of the stereotype 〈〈abstract〉〉) mean that the set of instances

of this class in the TGraph will be empty.

Multiple inheritance is allowed in grUML diagrams.

associations An association in a grUML diagram represents an edge class in the

TGraph class. The source and target of an association define the direction of

the edge class in the TGraph class. Aggregations (composite or shared) define

composition or aggregation classes at the TGraph level.

CHAPTER 1. INTRODUCTION 31

association classes An association class in a grUML diagram also represents an

edge class within a TGraph. Abstract association classes map to empty edge

class instances in a TGraph. Generalizations between association classes in

the grUML diagram are represented as associations between edge classes in a

TGraph.

attributes Attributes of classes in a grUML diagram are mapped to attributes in

the corresponding classes of a TGraph. There is a predefined set of attribute

domains in grUML.

domains attributes can be from the following domains: boolean, integer, long,

double or string values; lists or sets of any of the previous value types; maps

where keys and values can be from an arbitrary domain; enumerations of values

defined by the schema designer; records with values from arbitrary domains.

stereotype Four stereotypes are used in grUML schemas:

1. 〈〈abstract〉〉 The stereotype 〈〈abstract〉〉 is used to specify that a vertex

or edge class is abstract. The stereotype can be used instead of the

italicized class name to indicate this circumstance.

2. 〈〈enumeration〉〉 The stereotype 〈〈enumeration〉〉 is used in the same

way it is in UML 2. In grUML diagrams its purpose is the definition of

an enumeration domain. The values listed in the enumeration type need

to adhere to the rules for Java enumeration identifiers, i.e. may only

consist of uppercase letters, numbers and underscores.

3. 〈〈record〉〉 The stereotype 〈〈record〉〉 is used in classes in grUML dia-

grams to define a record domain. The attributes of this class define the

components of the record. The components can be from any valid grUML

domain, including nested records, but these may not contain any cyclic

dependencies.

4. 〈〈graphclass〉〉 a grUML diagram requires the existence of exactly one

class with the 〈〈graphclass〉〉 stereotype. This class contains the name and

the attributes of the TGraph class defined by the schema. The stereo-

typed class may not have any associations to other classes within the

schema.

packages Each grUML schema contains exactly one default package which has an

empty name. If vertex or edge classes or the valid grUML domains are not

contained in any other package, they are automatically in the default package.

32 1.7. GRUML

constraint Since UML only provides limited support for a diagrammatic repre-

sentation of constraints, grUML uses GReQL, the Graph Repository Query

Language [KK01], to specify them. The following section will provide a brief

introduction to GReQL. Within grUML schemas, the constraints can be at-

tached to vertex classes, edge classes or the graph class itself. A constraint

consists of three parts: a textual description of the constraint in natural lan-

guage; a GReQL expression that evaluates to the boolean true if the expres-

sion holds and false if not; an optional GReQL query that can be used to

retrieve a set of elements that conflict with the constraint.

comments Comments can be attached to the graph class, vertex classes, associ-

ations, domains and packages. Comments that don’t have a specific link are

automatically assigned to the graph class.

1.7.2 grUML metamodel

The grUML metamodel, which formally defines the elements of a grUML schema

and their interactions, is shown in Figures 1.17 and 1.18.

Figure 1.17: The simplified grUML metamodel.

CHAPTER 1. INTRODUCTION 33

Figure 1.18: The grUML domain metamodel.

1.7.3 Example grUML schema

Figure 1.19 shows the grUML schema that defines the TGraph in figure 1.16

on page 30. The vertex class Student has four attributes from the grUML domains

Integer and String. The edge class StudentAttendsCourse is directed from Student

to the vertex class Course. Course has an attribute courseCode and is the superclass

of the two vertex classes Seminar and Lecture. As subclasses of Course, they

inherit the attribute courseCode and the ability to form connections to Student

via the edge class StudentAttendsCourse. The multiplicity 1..* at the source of

the edge class relates that an instance of Course must be associated with at least

one instance of Student and the multiplicity * at the end of the edge class indicates

that an instance of Student does not have to have a connection to an instance of

Course.

Looking at the TGraph in figure 1.16 (p. 30), there are no violations in terms

of multiplicity. Each instance of Course is connected to an instance of Student by

an edge. The instances of Seminar and Lecture, v3 and v4, inherit the attribute

courseCode from their parent vertex class Course.

1.7.4 Validating grUML constraints

For this work, generating grUML constraints that correspond to the constraints

defined in ORM will be one of the most important and most challenging tasks. As

mentioned at the beginning of this section on grUML, it is possible to define grUML

constraints within grUML schemas. Although they are added at the schema level,

34 1.8. GREQL

Figure 1.19: An example grUML schema. It defines the vertex class Student with various
attributes. It also defines the vertex class Course with the attribute courseCode and its
child vertex classes Seminar and Lecture. Lastly it connects the two vertex classes via
the directed edge class StudentAttendsCourse and further defines the number of vertices
that can be linked through the multiplicity values at each end (1..* and *).

they actually apply to TGraphs, i.e. instance level. In order to check whether a

TGraph is in accordance with the constraints defined in its schema, JGraLab pro-

vides the class GraphValidator.java. Its constructor takes a TGraph as argument

and subsequently applying the validate method will result in the evaluation of the

constraints applying to this TGraph. Additionally, this method also checks that

there are no violations of the multiplicity values defined in the schema. The vali-

date method returns a sorted set of ConstraintViolations which provide further

information on the kind of violation and the elements which are in violation of the

constraint.

1.8 GReQL

After defining a TGraph schema using grUML and generating a TGraph instance,

the graph querying language GReQL [KK01][EB10] can be used to query this graph

and store the results. GReQL (currently in version 2) is designed to extract informa-

tion from TGraphs but doesn’t allow graph manipulation. Each GReQL query can

contain expressions of various kinds: variable declarations and definitions, GReQL

functions, the selection of edges and vertices of certain types, and many more.

For this work, GReQL expressions are necessary in order to define grUML con-

straints. In this context, the most important expressions are quantified, conditional

and FWR (from-with-report) expressions. These will be introduced in the following

sections.

CHAPTER 1. INTRODUCTION 35

1.8.1 Quantified expressions

In GReQL, the quantified expression is used to check whether a certain amount

of element(s) within a defined set of elements satisfy an expression or not. The

general structure of a quantified expression is as follows:�
<q u a n t i f i e r > <v a r i a b l e dec l a ra t i on> @ <expre s s ion>
� �
GReQL provides three different quantifiers to use in quantified expressions: forall,

exists and exists!. Depending on these quantifiers, these kinds of expressions

check whether all (forall), at least one (exists) or exactly one (exists!) el-

ement(s) fulfill the expression stated after the @. Quantified expressions return

boolean values as result.

Listing 1.1 shows an example for a quantified expression. This expression can be

applied to any TGraph instantiating the grUML schema in figure 1.19. Following

the quantifier forall, the variable declaration s:V{Student} defines a variable s

which represents an instance of a vertex class (V) of type Student. Finally the

expression after the @ symbol checks, whether for the variable s the value of the

attribute birthdate is smaller than the value of the attribute dateOfEnrollment.

In conclusion, the quantified expression in listing 1.1 evaluates, whether for each

instance of the vertex class Student the value of birthdate is smaller than the

value ofdateOfEnrollment. If this query were evaluated on the TGraph from figure

1.16, the return value would be true (“02031998” < “01042017” and “28091997” <

“01102017”).

Listing 1.1: A quantified GReQL expression.�
f o r a l l s :V{Student} @ s . b i r thda te < s . dateOfEnrol lment
� �
Throughout this thesis, quantified expressions are often used in grUML constraints

to guarantee that all instances (forall) of a specific vertex or edge class satisfy a

certain condition.

1.8.2 Conditional expressions

Conditional expressions are structured in the following manner:�
<expre s s ion> ? <exp r e s s i on 1> : <exp r e s s i on 2>
� �
If the expression before the question mark (?) returns true, expression 1 is

evaluated next; if it returns false, expression 2 is processed. The return value

for the entire expression is true or false.

36 1.8. GREQL

Listing 1.2 shows an example for a conditional expression. In this case, the con-

ditional expression is nested within a quantified forall expression. The forall

expression validates whether, for every instance e of an edge class (E) of type Stu-

dentAttendsCourse, the following conditional expression holds true.

The conditional expression starts with omega(e).courseCode = ``WIR17''. This

checks whether an instance e of the edge class StudentAttendsCourse has a target

vertex (omega) which has the attribute courseCode with the value “WIR17”. If this

is the case, i.e. the condition evaluates to true, it continues by evaluating whether

this edge e’s source vertex has the attribute dateOfEnrollment with a value which

is smaller than “01102017”. If the expression preceding the question mark returns

false, the conditional expression will return true.

If the expression from listing 1.2 is evaluated on the TGraph from figure 1.16,

it will return false, since e2’s target vertex (v3) has the attribute courseCode

with the value “WIR17” but its source vertex’ (v2) attribute dateOfEnrollment is

“01102017” which is not smaller than “01102017”.

Listing 1.2: A conditional GReQL expression nested in a forall expression.�
1 f o r a l l e :E{StudentAttendsCourse} @

2 omega (e) . courseCode = ``WIR17 ' ' ?

3 alpha (e) . dateOfEnrol lment < ` `01102017 ' ' : t rue
� �
During this work, conditional expressions are used in grUML constraints if a con-

straint has a precondition that needs to be met. In the example above, the precon-

dition is that the target vertex of the edge defined in e has the attribute courseCode

with the value “WIR17”.

1.8.3 FWR expressions

Within a grUML constraint, FWR expressions can be used to retrieve elements

which are conflicting with the GReQL expression defined in the constraint. FWR

have the following general structure:�
1 from <v a r i a b l e dec l a ra t i on>

2 with <expre s s ion>

3 repor t <output d e f i n i t i o n >

4 end
� �
Listing 1.3 shows an example for an FWR expression. It can be used to extract the

elements which violate the condition formulated in listing 1.2.

CHAPTER 1. INTRODUCTION 37

Listing 1.3: A from-with-report GReQL expression.�
1 from e :E{StudentAttendsCourse}
2 with omega (e) . courseCode = ``WIR17 ' ' and

3 not (alpha (e) . dateOfEnrol lment < ` `01102017 ' ')
4 r epor t e

5 end
� �
from clause

The from clause is the first part of an FWR expression and is used to declare

variables and their domains for use in the with and report clauses. Variable names

are typically stated in camel case. Multiple variables can be declared in a single step

if provided as a comma separated list. The variables can be from various domains:

string, boolean, signed integer or float values, or edges and vertices of a certain type.

The type is appended to the domain name in curly brackets.

During the evaluation of the FWR expression, the variables declared in the from

clause will be bound to all possible values, forming all possible combinations of

values.

In listing 1.3, line 1 is used to define the variable e representing an edge (E) of

type StudentAttendsCourse.

with clause

The with clause is an optional part of the FWR expression. It is used to define

constraints on variable combinations generated in the from clause. These constraints

appear as predicates and can take on various forms which must evaluate to true,

false or null.

In listing 1.3, lines 2-3 define an expression which is evaluated for all values of

e. So for each e it evaluates whether the edge’s target has the attribute courseC-

ode with value “WIR17” and the source vertex’ attribute dateOfEnrollment is not

smaller “01102017”.

report clause

The final part of the FWR expression is the report clause. This part is used to set

up the output format for the query. It is possible to fill tables, sets, maps or bags

with the elements which violate the expression defined in the with clause.

38 1.9. EVENT-CONDITION-ACTION (ECA) RULES

In listing 1.3, line 4 defines which values to return (the instances of e) and in

which form (all instances are returned). If this GReQL expression were applied to

the TGraph from figure 1.16, it would return the edge e2:StudentAttendsCourse.

During this work, the elements returned from FWR queries are typically collected

in a set by using the keyword reportSet instead of report.

The FWR expression is completed by the statement end.

1.9 Event-Condition-Action (ECA) rules

JGraLab provides the possibility of defining Event-Condition-Action rules which

can be added to TGraphs.

These rules define an action that is performed if a certain event takes place.

Additionally, the rule may contain a condition which is checked if the defined event

has taken place and the action is only performed if the outcome of the check is

positive. Examples for predefined events are changing, creating or deleting edges

or vertices in a TGraph or changing an attribute value. The three components

- event, condition, action - are combined in ECARules which are collected in an

ECARuleManager. This manager listens for changes in the TGraph and fires events

in response to the kinds of changes specified above.

In comparison to grUML constraints, ECARules are added to a TGraph, so are

added at instance level rather than schema level. They provide the possibility of

reacting to changes in the TGraph directly and thus could be used to realize deriva-

tions and semiderivations in TGraphs. They can also be used to check whether an

updated attribute value is valid, e.g. if it is required to be unique.

1.10 Summary

Figure 1.20 provides an overview of the concepts introduced in this chapter.

Both grUML and ORM are schema languages. While ORM already includes a large

number of constraints, grUML provides the possibility of defining grUML constraints

and adding them to the schema. These grUML constraints are formulated in GReQL

rendering them very flexible. ORM instances are commonly represented in the form

of relational tables (not pictured in the overview figure). The instances of grUML

schemas are TGraphs - ordered, attributed, typed and directed graphs. ECA rules

can be added to TGraphs in order to respond to graph changes with user specified

actions.

CHAPTER 1. INTRODUCTION 39

Figure 1.20: An overview of the main concepts used in this work: ORM, TGraphs
and grUML. The schema language grUML can be extended by using gruML constraints
formulated in the TGraph query language GReQL. GrUML schema instances are TGraphs,
which can contain ECA rules to react to graph changes. The ORM schema language
containt numerous constraints.

40 1.10. SUMMARY

CHAPTER 2. MAPPING ORM TO GRUML 41

2 Mapping ORM to grUML

This chapter introduces the reader to the conceptual mapping that was defined in

order to transform an ORM schema into a grUML schema. Initially, the reader

will be familiarized with some general considerations about mapping schemas from

ORM to grUML. This is followed by a step-by-step approach in which for each ORM

element or group of elements, its correspondence in grUML is presented along with

the considerations that led to the mapping. Finally this chapter will conclude with

a summary of the mapping in form of a table that lists the ORM elements and their

proposed representation in grUML.

Although the naming of the mapped elements is actually an implementation

concern and doesn’t play a role at the conceptual mapping level, the grUML naming

conventions and the details on how names for grUML elements were constructed, will

be introduced within this chapter in order to have a consistent naming scheme for the

mapping examples. This mapping attempts to transfer all of ORM’s constructs to

grUML while largely maintaining their semantics by choosing adequate counterparts

in grUML. The goal is to define a complete mapping by considering all possible

combinations of ORM components. Details on the implementation of this mapping

can be found in the following chapter 3.

2.1 Prerequisites

In order for the mapping from ORM to grUML to work, the global, i.e. full,

ORM schema must be available. Mapping separate parts of one ORM schema to

grUML and adding these parts together may lead to a different result compared to

mapping the entire ORM schema. It could also cause conflicts, since role, vertex

class and edge class names must be unique within a grUML schema.

Furthermore, it is assumed that the ORM schemas provided for the mapping

procedure are semantically correct.

42 2.2. NAMING CONVENTIONS IN GRUML

2.2 Naming conventions in grUML

The names of the elements mapped from an ORM schema to a grUML schema

must be compliant with grUML’s naming conventions. The conventions relevant to

the mapping procedure presented in this work are detailed below.

Edge class names While predicate readings in ORM schemas are generally writ-

ten in lower case and may consist of multiple words separated by whitespaces,

grUML expects the association or edge class names to begin with an upper

case letter (A-Z) and contain only alphanumeric characters1. Each edge class

must have a name.

Vertex class names The naming conventions applying to the edge class names

also apply to vertex class names. Each vertex class must have a name.

Attribute names Attribute names in grUML are required to begin with a lower

case letter (a-z) and consist of only alphanumeric characters 1. Attribute

names may not be empty.

In addition, edge class and vertex class names need to be unique within a grUML

schema and attribute names must be unique within the vertex or edge class they

are associated with.

2.3 Entity Type mapping

ORM element: Entity type

Corresponding grUML element: Vertex class

Description: ORM entity types are the abstraction from entities which are con-

crete objects that are uniquely identifiable through their relations to other

objects. Entity types provide a way of grouping concrete objects based on

a commonality, so “Spain” and “Italy” may be instances of an entity type

“Country” or “EUMember”. Due to these semantics the grUML counterpart

for ORM’s entity types are vertex classes. Vertex classes in grUML represent

concepts. Therefore, ORM entity types are always mapped to vertex classes

in a grUML schema.

1(a-z,A-Z, ,0-9)

CHAPTER 2. MAPPING ORM TO GRUML 43

Name: The name of the vertex class is generated from the name of the ORM entity

type. ORM entity type names must be unique within an ORM schema, so this

requirement for vertex class names is met automatically. All characters which

are not allowed in a grUML vertex class name are removed from the entity

type name and its first letter is transformed to upper case to create the name

of the vertex class.

Reference scheme: Every entity type in ORM must be uniquely identifiable by

one or multiple values which are its preferred identifiers. The reference scheme

defines the connection between the entity type and the value type(s) whose

instances identify the entity. The mapping of 1:1 preferred reference schemes

or reference modes specifically and reference schemes in general is detailed

in sections 2.4 and 2.11 respectively. In brief, each vertex class receives an

attribute “preferredIdentifiers” which stands for a record. Within this record

there are components that represent the value types necessary to uniquely

identify an entity.

Figure 2.1: An entity type from an
ORM schema.

Figure 2.2: The mapping of the ORM
entity type “Student” on the left to a
grUML vertex class “Student”.

Example: The mapping of the ORM entity type “Student” to a grUML vertex

class “Student” is shown in figures 2.1 and 2.2. The reference mode “ID”

of the entity type “Student” maps to the component “studentID” from the

domain Integer. This component is stored as an attribute in a class with

the stereotype 〈〈record〉〉 that has the same name as the vertex class. The

vertex class “Student” has an attribute “preferredIdentifiers” which links to

this record. The record is placed in a package “preferredIdentifiers” in order

to avoid duplicate class names and better organize the grUML schema. The

44 2.4. REFERENCE MODE MAPPING

specifics on the mapping of reference modes will be introduced in the following

section.

Exceptions -

2.4 Reference Mode mapping

ORM element: Reference mode of an entity type

Corresponding grUML element: Each grUML vertex class has an attribute“pre-

ferredIdentifiers” which is from the record domain and contains the reference

mode name and domain from the ORM entity type which is represented by

this vertex class.

Description: The reference mode is an example of a simple or 1:1 preferred ref-

erence scheme and is used to identify entities in ORM. The mapping of more

complex reference schemes will be discussed in section 2.11. The reference

mode of an entity type is an abbreviation for a mandatory 1:1 relation be-

tween the entity type and the preferred value type used to identify it (recall

Figure 1.12 on page 24). The role of the entity type is mandatory, since each

entity must be uniquely identifiable and the relation to a value is the only way

to achieve this.

Each entity type must have at least one unique identifier, and since the iden-

tifier is a value, it will map to an attribute of the vertex class generated from

the entity type. But how can an attribute that represents a unique identifier

for a vertex class be distinguished from its other attributes?

This mapping proposes that each vertex class originating from an entity type’s

mapping receives an attribute“preferredIdentifiers”which is used to collect the

unique identifier(s) for this entity type. The attribute “preferredIdentifiers”

specifies a value from grUML’s record domain. In the grUML schema, the

record is represented as a class with the stereotype 〈〈record〉〉. It has the same

name as the vertex class and is placed into the package “preferredIdentifiers”

within the grUML schema for a clearer schema structure. As explained pre-

viously, each reference mode can be expanded to a relation between an entity

type and its value type. The 〈〈record〉〉 class’ attributes represent the compo-

nents of the record. Each component’s name is generated from the name of the

value types that uniquely identify the mapped entity type and the component

domains are derived from their domains.

CHAPTER 2. MAPPING ORM TO GRUML 45

Every reference mode, which actually resembles a value type, comes with a

predefined domain. In appendix B table 4 displays ORM’s reference modes,

their value domains and the mapping of these domains to grUML domains. In

the case of the reference mode “ID”, which is from the ORM domain “Numeric:

Auto Counter” the mapping is to the grUML domain “Integer”.

Name: The name of a record domain component is generated from the reference

mode name and the name of the entity type which is referenced by it. The

prefix of the name is the entity type name (first letter is transformed to lower

case), followed by the name of the reference mode (its first letter is transformed

to upper case). So the reference mode “ID” of an entity type “Student” is

mapped to a record domain component named “studentID”.

Two reference modes in ORM require renaming because their names are not

valid grUML names: “#” and “%”. “#” is named “No” in grUML and “%” is

named “Percent”.

Example: Figures 2.1 and 2.2 show an example of an entity type“Student”with the

reference mode“ID”which maps to the attribute“StudentID” from the domain

“Integer”. The preferred identifier is stored in the record domain “Student” in

the package “preferredIdentifiers”.

Note: The package“preferredIdentifiers”that contains the record domains for mapped

entity types (and objectifications, see 2.6) will be omitted in most further ex-

ample grUML schemas in this chapter in order to keep the schemas more

compact. Keep in mind, that the attribute “preferredIdentifier” does however

always map to this package even if it is not displayed.

Exceptions: -

2.5 Value Type mapping

ORM element: Value types

Corresponding grUML element: Attribute of a vertex class

Description: ORM value types are used to identify or further define entity types.

This is realized through relations between value types and entity types. An

entity type that has a relation to a value type in ORM maps to a vertex class

46 2.5. VALUE TYPE MAPPING

(corresponding to the entity type) that contains an attribute (corresponding

to the related value type).

The reason for this decision is that value types in ORM primarily define values

and their domains. This corresponds to the concept of attributes in UML and

concordantly in grUML.

Mapping value types to vertex classes is a bad practice since the class would

hold just one attribute representing the actual value and no further informa-

tion. Besides defining the domain of values, ORM value types are also intended

to represent semantic domains, i.e. it should not be possible to compare values

from the value types “Length” and “Height” because the values have different

semantics. This cannot be represented when mapping value types to attributes

in grUML. However, this property would equally be lost if value types mapped

to vertex classes. Although semantic domains can be modeled on schema level,

their correct handling is ultimately a task to be performed at the implemen-

tation level.

Name: The name of the attribute generated from the ORM value type varies,

depending on whether the value type is a preferred identifier of the entity type

(or objectification) it is related to or not.

If the value type is not a preferred identifier, the attribute name is generated

as follows: all characters which are not allowed in a grUML attribute name are

removed from the value type name and its first letter is transformed to lower

case. If an ORM object type has multiple relations with the same value type,

the attribute name generated from this value type is qualified with an integer

value since duplicate attribute names aren’t allowed in grUML.

If the value type is a preferred identifier of the related entity type or objec-

tification, the vertex class representing the latter receives an attribute “pre-

ferredIdentifiers” from the grUML domain record. In analogy to the reference

mode mapping in the previous section the attribute name then consists of the

entity type or objectification name with the value type name (reduced to only

characters valid in grUML attribute names) as suffix.

Attribute domain: Value types in ORM must have a data type which defines

their value domain. Value types can either be represented through reference

modes (see previous section) or be user-defined. In the latter case, the user

can select from various domains which are listed in appendix B table 5 along

with their correspondences in grUML. The data type of an ORM value type

CHAPTER 2. MAPPING ORM TO GRUML 47

can’t be determined by looking at the ORM schema graph but is stored in the

ORM schema file.

Example: Figures 2.3 and 2.4 show an example of an ORM schema with an en-

tity type “Student” in a relation with a value type “StudentName” and its

mapping to the vertex class “Student” with the attribute “studentName” in

grUML. The data type of the value type “StudentName” was defined as “Text:

Variable Length” in the ORM schema file. This maps to the domain “String”

for the attribute “studentName” in grUML. The entity type “Student” has the

reference mode “ID” which is its preferred identifier, so the value type name

“StudentName” is merely adjusted to meet the grUML naming conventions

without prefixing it with the entity type’s name. The preferred identifier of

“Student” is stored in its attribute “preferredIdentifiers” while the attribute

“studentName” which is no preferred identifier is simply added to the class.

Figure 2.3: An ORM schema of an en-
tity type and a value type taking part in
a binary fact type. Figure 2.4: The mapping of the ORM

schema on the left to a grUML schema.
The value type “StudentName” maps to
the attribute “studentName” of the ver-
tex class “Student”. Preferred identi-
fiers can be clearly distinguished from
attributes generated from relations with
value types.

Exceptions: Not all value types can be mapped to attributes since an attribute

requires the existence of a vertex class. Value types which either have no

relations at all or have relations that are exclusively with other value types

can’t be mapped to attributes for this reason. ORM schemas containing these

constellations are rejected.

48 2.6. OBJECTIFICATION MAPPING

2.5.1 Mapping of value type domains

Not all ORM value domains could be mapped to a precise equivalent in grUML

and ORM’s raw value types cannot be represented in grUML at all. This is due to

the fact that ORM supports a wider range of domains compared to grUML.

Some of the ORM value type domains are highly specific. For example, the

domain “Numeric: Float (Custom Precision)” allows the definition of the precision

of the float value. In a grUML schema, this domain is represented by the “Double”

domain with the additional requirement of cropping attribute values inserted into

a TGraph to match the defined precision. Other numeric ORM value domains

don’t have an exact equivalent in grUML: e.g. “Numeric: Unsigned Integer” (32 bit

unsigned integer) is represented as a “Long” (64 bit signed integer) in grUML, but

the “Long” domain needs to be restricted to values ≥ 0.

For this thesis, the mapping of value type domains was implemented as defined

in appendix B table 5 without taking into account the additional demands regarding

precision or value ranges.

2.6 Objectification mapping

ORM element: Objectification

Corresponding grUML element: Vertex class

Description: ORM allows the objectification of predicates and the participation

of the resulting objectified association in further fact types. This behavior

is mapped to grUML by generating a new vertex class, that represents the

objectification. This mapping both reflects the conceptual character of an

ORM objectification and includes the possibility for it to participate in fur-

ther relations. Objectifications, just as entity types, have preferred identifiers,

which are stored in the attribute “preferredIdentifiers” of the vertex class gen-

erated from the objectification. The preferred identifiers of objectifications

are generated automatically from the objectified fact type and the unique-

ness constraints applying to it. These preferred identifiers cannot be defined

explicitly.

Name: The name of the vertex class representing the objectification is based on the

name of the objectification within the ORM schema. If necessary, this name

is modified in the same way as entity type names (see section 2.3) to match

grUML convention. .

CHAPTER 2. MAPPING ORM TO GRUML 49

Example: The mapping of an ORM objectification to a grUML vertex class is

shown in figures 2.5 and 2.6.

Figure 2.5: An example of an objectification. The fact type “University offers FieldOf-
Study” is objectified and given the name “UniversityOffersFieldOfStudy”.

Figure 2.6: The mapping of the ORM schema containing an objectification. The objec-
tification “UniversityOffersFieldOfStudy” has become a vertex class with its own preferred
identifiers.

Exceptions: -

2.7 Fact Type mapping

ORM element: Fact type

Corresponding grUML element: Edge class connecting vertex classes (mapping

of relations between entity types) or vertex class containing an attribute (map-

ping of relations between entity types and value types)

Description: Fact types in ORM describe relationships between entity types, ob-

jectified facts and/or value types. The equivalent for relations between entity

types or objectified facts in ORM are associations between vertex classes in

grUML.

50 2.7. FACT TYPE MAPPING

Relations between entity types and value types have a different semantic since

they form the link between an entity and the value which is required for the

identification of this entity or which is used to further describe it. In grUML

this is mirrored by mapping the value type to an attribute of the vertex class

representing the related entity type or objectification.

Associations in grUML schemas must be binary. Thus, ORM unary as well as

ternary and higher arity relations require special handling in order to transform

them into binary associations in grUML. Concordantly, the mapping of ORM

fact types will first be introduced based on their arity in the following sections.

Name: If an edge class is created as a result of mapping a fact type, the edge

class name is generated from the fact name stored in the ORM schema file.

The fact name is the predicate reading of a fact type with the object type

names inserted into the “holes”. For one fact type, multiple predicates can

be provided in a single ORM schema. The mapping presented in this work

makes use of the first name listed in the ORM schema file. From this name

all invalid characters are removed, the first letter is transformed to upper case

and if necessary the name is qualified with an integer value since edge class

names must be unique throughout the grUML schema.

If the fact type is defined between entity types and value types, each value

type becomes an attribute of each of the involved entity types. The attribute

name is created as described in section 2.5.

Exceptions: In this mapping ORM schemas containing fact types which consist

only of value types are rejected. The reasons for this were presented in 2.5 but

can be summarized as the inability to map such value types to attributes.

2.7.1 Mapping unary Relations

ORM element: Unary relation involving an entity type

Corresponding grUML element: vertex class with a boolean attribute which

represents the unary relation. If an entity plays a unary role, the attribute has

the value “true” and otherwise “false”.

CHAPTER 2. MAPPING ORM TO GRUML 51

Description: Unary relations bring up the question of what happens if an object

type hosting a unary relation doesn’t play this role. In ORM and modeling in

general, there are two different concepts to answer this question.

With the “closed world” assumption [HM08, ch. 3.3, p. 65], the absence of

an information, i.e. an object type does not play its unary role, implies the

negative of this information. So for a fact type “Person drinks alcohol.” and

an instance of Person “Penny” which does not play the role “drinks alcohol” it

is implied that Penny does not drink alcohol.

With the“open world” assumption [HM08, ch. 3.3, p. 65], negative information

can be modeled explicitly. If this is not the case and “Penny” does not play

her role “drinks alcohol”, then it is not possible to conclude that Penny does

not drink alcohol.

In this work, the “closed world” assumption is used. The information whether

the entity type participates in a unary fact type can be represented by adding

a boolean attribute to the vertex class representing the entity type.

Example: Figures 2.7 and 2.8 show an example of this mapping. The predicate of

the unary relation “paid tuition fees” is transformed into the boolean attribute

“paidTuitionFees” of the vertex class “Student”. Again, “Student” has an at-

tribute “preferredIdentifiers” but the boolean attribute is not included in the

record since it does not identify instances of “Student”.

Exceptions: -

2.7.2 Mapping binary relations containing only entity types or objectifications

ORM element: Binary relation between entity types or objectifications

Corresponding grUML element: Edge class connecting vertex classes that rep-

resent the entity types or objectifications

Description: A binary relation between entity types or objectifications maps to

two vertex classes connected by an edge class.

In analogy to UML associations, edge classes in grUML are directed, have a

name, and each end has an optional role name and multiplicity value. The

direction of the edge class depends on the predicate reading which is selected.

52 2.7. FACT TYPE MAPPING

Figure 2.7: An ORM schema display-
ing a unary relation hosted by the entity
type “Student”.

Figure 2.8: The grUML schema as a re-
sult of mapping the ORM schema on the
left. The unary relation is transformed
into the boolean attribute “paidTuition-
Fees”.

Name: The edge class name is generated from the fact name stored in the ORM

schema file. The fact name is the predicate reading of a fact type with the

object type names inserted into its “holes”. For one fact type, multiple pred-

icates can be provided in a single ORM schema. The mapping presented in

this work uses the first name listed in the ORM schema file. From this name

all invalid characters are removed, the first letter is transformed to upper case

and if necessary the name is qualified with an integer value since edge class

names must be unique throughout the grUML schema.

Role name: The ORM schema can optionally contain a role name for a fact type

role. This role name can be mapped directly to a grUML edge class role name

because no naming conventions apply to it except that a role name needs to

be unique throughout the entire grUML schema. So it may be necessary to

qualify a role name with an integer value to ensure this.

Multiplicity: The multiplicity of the edge class is determined through internal

mandatory and internal uniqueness constraints applying to the relation for-

mulated in ORM. Table 2.1 shows how binary ORM relations between entity

types are mapped.

Consider the first ORM schema: here A’s role has a uniqueness constraint.

This means that over all relations between instances of A and B, the instances

of A need to be unique with respect to their unique identifier. This means,

CHAPTER 2. MAPPING ORM TO GRUML 53

that any instance of A can participate in at most one relation with an instance

of B. This is represented in the corresponding grUML schema by placing the

multiplicity of 0..1 on the end opposite A. If A’s role in this fact type were

mandatory, the multiplicity would be 1. In this fact type, B has no uniqueness

constraint and thus no restrictions as to how many times a single instance of

B can participate in a relation with an instance of A. This translates into a

multiplicity of *. If B’s role in this fact type were mandatory, its multiplicity

would be 1..*.

Determining the multiplicity values for fact types with other combinations

of single-role uniqueness constraints and mandatory constraints requires the

same considerations. The results can be seen in table 2.1.

A spanning uniqueness constraint (as seen e.g. in the fourth entry of the

table) means that all combinations of instances of A and B must be unique

with respect to their unique identifiers. This provides information on the

multiplicity: A and B both must have multiplicity * in this relation, since the

only requirement is that their combinations be unique. However, multiplicity

alone would allow duplicates of A-B instance pairs, so the grUML schema

shown in the table contains a note which demands that the combinations are

unique. During mapping this requirement is turned into a grUML constraint.

Section 2.8 will go into more details about the mapping of ORM constraints.

Example: Table 2.1 shows the mapping of binary relations in ORM in which only

entity types participate.

Table 2.1: The mapping of ORM binary relations to grUML binary associations.

ORM schema Mapping to grUML

Continued on next page

54 2.7. FACT TYPE MAPPING

Table 2.1 – continued from previous page

ORM schema Mapping to grUML

Continued on next page

CHAPTER 2. MAPPING ORM TO GRUML 55

Table 2.1 – continued from previous page

ORM schema Mapping to grUML

Exception: -

2.7.3 Mapping binary relations containing value types

ORM element: Binary relation containing one value type and one entity type or

objectification

Corresponding grUML element: The entity type or objectification maps to a

vertex class which contains an attribute representing the related value type.

The attribute is either single-valued or multi-valued (in form of a set).

Description: As with binary relations between entity types/objectifications, the

mapping of binary relations between entity types/objectifications and value

types depends on the internal uniqueness constraints and internal mandatory

constraints defined within them. In this situation however, the mapping re-

quires more considerations, since the constraints can’t be represented as mul-

tiplicity values.

Firstly, the mapping of value types to attributes always depends on the exis-

tence of the vertex class they belong to. This is a problem if the value type

doesn’t play a role with a mandatory constraint because this means that a

56 2.7. FACT TYPE MAPPING

value type instance may exist without the related entity type or objectifica-

tion instance. This is of course not possible using a grUML schema that maps

the value type to an attribute since a vertex class needs to be generated before

an attribute can be set. But it is also debatable how often such a situation

will come up during modeling and of what importance it is. From the author’s

point of view the generation of values without directly linking them to entities

or objectifications is a very rare use case. For this reason, table 2.2 only shows

the mapping of binary relations between entity types and value types, where

the value types play mandatory roles. If the mapping procedure encounters an

ORM schema with a binary relation containing a value type that plays a role

which is not mandatory, it will map it as if it were mandatory and provide the

user with a warning of this behavior.

Secondly, the uniqueness and mandatory constraints influence the attribute’s

domain. Consider the first example in table 2.2: The instances of A must be

unique with respect to A’s preferred identifier and each instance of A can be

related to at most one instance of Value. This means, that the attribute“value”

is single-valued (and in this case modeled to be from the domain Integer) and

is optional. This requirement doesn’t need to be added to the grUML schema

as a grUML constraint.

Now consider the second example in the table: An instance of A can be re-

lated to any number of instances of Value but Value’s instances must be unique

over all instances of A. Since one instance of A can be related to multiple in-

stances of Value, A’s attribute“value” is now multivalued and from the domain

Set<Integer>. The choice of a set instead of a list to store multiple values was

made because the instances of Value must be unique over all instances of A

which implies the uniqueness within each instance of A. This guaranteed when

using a set. The requirement that A.value be unique over all instances of A

needs to be added to the grUML schema as a grUML constraint (details can

be found in section 2.8).

The third example in table 2.2 means that each instance of A can have at most

one Value instance attached to it but each instance of Value must be related to

an instance of A. In addition, an instance of A can exist without an instance

of Value, so A.value is optional. Since each instance of A can have at most

one instance of Value which is related to it, the attribute A.value is optional

and single-valued. The requirement that A.value be unique over all instances

CHAPTER 2. MAPPING ORM TO GRUML 57

of A needs to be added to the grUML schema as a grUML constraint (details

can be found in section 2.8).

Finally, the fourth example in the table contains a spanning uniqueness con-

straint. This indicates that the combination of instances of A and Value must

be unique. So one instance of A could have any number of instances of Value

related to it and thus, the attribute “value” is multivalued and defined to be

from the domain Set<Integer>. The requirement, that each instance of A has

unique combinations with instances of Value is guaranteed by storing instances

of Value in a set. This mapping doesn’t require a grUML constraint.

The other cases listed in table 2.2 are analogous to the four previous ones, but

the attribute“value”is no longer optional due to A’s role now being mandatory.

All mappings for these cases require additional grUML constraints to ensure

the requirements stated in the notes.

Example: Table 2.2 shows the mapping of binary relations in which an entity type

and a value type participates.

Table 2.2: The mapping of ORM binary relations between an entity type and a
value type.

ORM schema Mapping to grUML

Continued on next page

58 2.7. FACT TYPE MAPPING

Table 2.2 – continued from previous page

ORM schema Mapping to grUML

2.7.4 Mapping ternary and higher arity relations

ORM element: Ternary or higher arity relations containing only entity types or

objectified types

Corresponding grUML element: An additional vertex class is introduced to

represent the ternary (or higher arity) fact type. The other vertex classes

(generated from mapping of the entity types or objectified types participating

in the fact type) have binary associations with this additional vertex class.

Description: In contrast to UML, grUML only supports binary associations. In

order to map ternary and higher arity relations, an additional vertex class is

introduced and each vertex class participating in the ternary (or higher arity)

relation has an association with this additional vertex class. The additional

vertex class’ name is generated from the ternary fact’s name. As all other

vertex classes that result from this mapping, the additional vertex class has

the“preferredIdentifiers”attribute. The names of the edge classes leading from

the vertex classes participating in the relation to the additional vertex class

are generated from the vertex class’ name, followed by “InvolvedIn” and the

CHAPTER 2. MAPPING ORM TO GRUML 59

additional vertex class’ name. Each instance of the additional vertex class

stands for a single ternary relation between three object types in ORM.

Since each object type must participate in the relation for it to exist and at

most one object of each type can participate in each relation, the multiplicity

of the association at the end of the participating vertex classes is 1. As each

vertex class, i.e. object type in ORM, can participate in multiple ternary

relations of the same type, the multiplicity of the association at the end of the

additional vertex class is * and may be 1..* if the role is declared mandatory

in the schema.

Figure 2.9: An ORM schema displaying a ternary relation hosted by three entity types.

Figure 2.10: The grUML schema as a result of mapping the ORM schema above (figure
2.9). The ternary fact type “Student has Exam on Date” is transformed into the addi-
tional vertex class “StudentHasExamOnDate”. The package containing the records for the
preferred identifiers of the involved vertex classes was omitted in favor of compactness.

Example: Figures 2.9 and 2.10 show the mapping of a ternary relation containing

only entity types. In order to ensure that the uniqueness constraint in figure 2.9

60 2.8. CONSTRAINT MAPPING

is met, the additional vertex class “StudentHasExamOnDate” needs a grUML

constraint which is informally stated in the note attached to it in figure 2.10.

During the mapping process the uniqueness constraint is transformed into a

grUML constraint and added to the grUML schema (details can be found in

section 2.8).

Exceptions: -

Variation: Ternary and higher arity relations which contain value types are mapped

by creating the additional vertex class which represents the relation but each

value type is mapped to an attribute of the vertex classes representing each of

the entity types or objectifications participating in the fact type.

Variation example: Figure 2.11 is a variation of the previous ORM schema. Now

“Date” is modeled as a value type instead of an entity type because “Date”

doesn’t take part in any other relations and only serves as a storage container

for a value. Figure 2.12 shows the mapping of this modified ternary relation.

The uniqueness constraint verbalized in the note in this schema needs to be

translated into a grUML constraint during mapping (details can be found in

section 2.8). Furthermore, it needs to be ensured that instances of “Student”

and “Exam” which are related via a ternary relation receive the same values

for “date”.

Figure 2.11: An ORM schema displaying a ternary relation hosted by both entity types
and value types.

2.8 Constraint mapping

ORM element: ORM constraint

Corresponding grUML element: GrUML constraint

CHAPTER 2. MAPPING ORM TO GRUML 61

Figure 2.12: The grUML schema as a result of mapping the ORM schema shown in
figure 2.11. The value type “Date” is now an attribute of the two vertex classes created
from the entity types which “Date” was related to. The uniqueness constraint still involves
“Date” but required modification compared to figure 2.10 since “Date” is no longer a vertex
class.

Description: The ORM constraints that have a graphical notation were introduced

in chapter 1.5.2. The constraints will be transferred to grUML in form of

grUML constraints which are formulated in GReQL syntax.

ORM offers a large assortment of constraints and one constraint may find

application in various different schemas. For example, an exclusion constraint

may apply to roles played by only entity types in one schema but constrain

roles played by value types and entity types in another schema. Since these

schemas will map in different ways to grUML (the value types will become

attributes and not vertex classes), each constraint needs to be adapted to the

individual situation.

To map all the constraints that ORM has to offer to grUML, it is necessary to

consider all possible scenarios in which they may be used. Then each constraint

can be formulated as a grUML constraint. Though grUML constraints consist

of three parts, this section will be limited to the second part: creating the

GReQL expression that represents the constraint which can be used to check

whether a given TGraph corresponds to this constraint or not. The GReQL

62 2.8. CONSTRAINT MAPPING

expression is based on the semantics of the ORM constraint and the schema

it applies to.

The generation of the first and third part of a grUML constraint - the verbaliza-

tion and the GReQL expression to retrieve violating elements - are addressed

in chapter 3. The finished grUML constraint is added to the grUML schema

and can be validated at the implementation level.

Due to the large number of constraints and the even larger number of schema

constellations in which they could be used, it isn’t possible to introduce all the

GReQL constraints designed for each constraint and each scenario during this

thesis. Instead, this section will give an example mapping for ORM’s exclusion

constraint applied to a specific schema.

In this chapter about mapping, the ORM constraint modalities “alethic” and

“deontic” are not addressed. They take effect at the implementation level and

don’t play a role for the manner in which the constraints are mapped, so they

can be omitted at this point but will be mentioned in chapter 3.

Example: see section 2.8.1

Exceptions: -

2.8.1 Example mapping of an exclusion constraint

Figure 2.13: ORM schema containing an exclusion constraint.

Figure 2.13 shows an ORM schema with an exclusion constraint. Figure 2.14

shows the mapping of this ORM schema to grUML. Table 2.3 gives an example of a

grUML constraint that expresses the ORM exclusion constraint from figure 2.14. It

contains the GReQL expression which is applied to instances of the grUML schema

from figure 2.14 to ensure they don’t violate the constraint. It also contains the

GReQL query that can optionally be added to a grUML constraint to retrieve those

TGraph elements which are in violation of the constraint defined in the GReQL

CHAPTER 2. MAPPING ORM TO GRUML 63

Figure 2.14: The grUML schema as a result of mapping the ORM schema above (figure
2.13). The note verbalizes the constraint that needs to be added to the grUML schema.

Table 2.3: grUML constraint corresponding to the exclusion constraint in figure 2.13.
All three components of the grUML constraint are displayed.

Verbalization
For each Student, at most one of the following holds:
that Student arrives by some Car;
that Student lives in some Room.

GReQL expression
forall s:V{Student} @

degree{StudentArrivesByCar}(s) < 1

or degree{StudentLivesInRoom}(s) < 1

GReQL query
from s:V{Student} with not(

degree{StudentArrivesByCar}(s) < 1

or degree{StudentLivesInRoom}(s) < 1) report s end

expression. And lastly, it contains the verbalization of the constraint in natural

language.

2.9 Independent Object Type mapping

ORM element: Independent object type

Corresponding grUML element: Vertex class (possibly requires adjustment of

association multiplicities to a lower bound of 0). Independent vertex classes

receive a note “independent” within the grUML schema

Description: In ORM, entity types, objectifications and value types can be de-

clared independent. Independent object types can exist without participating

in fact types. In UML and in grUML, classes can exist without participating in

associations - either because they aren’t attached to an association or because

the multiplicity of the association allows this. Concordantly, the mapping of

entity types and objectified types to vertex classes also works if these elements

are declared independent in ORM. It may only necessary to adjust the multi-

plicity (lower bound must be 0) of the associations in which these vertex classes

64 2.10. SUBTYPE MAPPING

take part. To clarify for the user that the generated vertex classes actually

stem from an entity type or objectification that was declared independent, the

note “independent” is added to these elements in the grUML schema.

Exceptions: Using the proposed mapping, the independence of value types cannot

be represented in grUML and ORM schemas containing independent value

types are rejected. In this mapping procedure value types map to attributes

so their existence requires the existence of the vertex class they belong to.

But, although it is not possible to create an attribute that can exist without

a class in grUML, it is questionable what role independent value types might

play in modeling in general.

2.10 Subtype mapping

As introduced in section 1.5.5, ORM allows subtyping with multiple inheritance.

Additionally it allows an object type instance to be a member of multiple subtypes

at once. It is also possible to define constraints on subtype relations which may not

affect all subtypes of one supertype.

The following sections will first portrait how subtype relations with and without

constraints are mapped when they refer to entity types or objectifications. Finally,

one section will discuss the mapping of subtype relations between value types.

2.10.1 Subtype relations without constraints

ORM element: Subtype definition (between entity types or objectifications) with-

out constraints

Corresponding grUML element: The subtype hierarchy is copied to grUML.

The user is given a warning that a vertex class instance in grUML can’t be a

member of multiple subclasses at once which is possible in ORM.

Description: A subtype definition between entity types (or objectifications) in

ORM without additional constraints allows multiple realizations at the in-

stance level. A supertype instance can be a member of (multiple) subtypes or

of none. The subtypes may be exhaustive for their supertype, meaning that

their union makes up the supertype, or not.

The first circumstance (one instance belonging to multiple subtypes) cannot

be represented in grUML because it isn’t possible that a vertex class instance

is an instance of multiple vertex classes at once. When mapping schemas with

CHAPTER 2. MAPPING ORM TO GRUML 65

non-constrained subtype relations the user is given a warning, that vertex

class instances cannot be members of two subclasses at once and thus that

this mapping reduces ORM’s expressiveness.

The second case (subtypes can be exhaustive of their supertype or not) is rep-

resented in grUML by simply mapping the type hierarchy to a vertex class

hierarchy. This allows the instantiation of both the superclass and the sub-

classes but doesn’t prevent instantiation of only subclasses (which makes them

exhaustive for their superclass).

Note: At this point it should be noted that top-level object types, i.e. object types

which aren’t subtypes, are always mutually exclusive in ORM. The difficulty

that an object type instance can belong to multiple subtypes only arises at the

subtype level.

Exceptions: -

2.10.2 Exclusive subtypes

ORM element: Exclusion constraint between subtype relations

Corresponding grUML element: The subtype hierarchy is copied to grUML.

Description: An exclusion constraint between subtypes indicates that instances of

the supertype can only be instances of at most one of the subtypes.

This behavior can be transferred to grUML by simply mapping the subtype

relations, i.e. creating subclass relations between the vertex classes that result

from mapping the entity types to grUML. This suffices, since vertex class

instances in grUML are disjoint by definition.

Example: Figure 2.15 shows the ORM schema with exclusive subtypes first intro-

duced in the chapter about ORM, 23. Figure 2.16 next to it shows how the

subtype definition is simply transferred to grUML.

Exceptions: -

66 2.10. SUBTYPE MAPPING

Course

(.code)

Seminar Lecture

Figure 2.15: ORM schema of a subtype
relation with an exclusion constraint (ex-
clusive subtypes).

Figure 2.16: The grUML schema as a result
of mapping the ORM schema on the left.

2.10.3 Exhaustive subtypes

ORM element: Disjunctive mandatory constraint between subtype relations

Corresponding grUML element: The subtype hierarchy is copied to grUML.

The superclass is declared abstract. The user is warned that a vertex class

instance in grUML can’t be a member of multiple subclasses at once which is

possible in ORM.

Description: An inclusive-or constraint between subtypes indicates that each su-

pertype instance must be an instance of at least one of its subtypes. This

implies that the subtypes are exhaustive for their supertype.

These semantics can’t be fully transferred to grUML. The reason being that

ORM allows an instance to belong to multiple subtypes which isn’t possible

for vertex class instances grUML. In this case, the subtype relation is copied

to grUML and the superclass is declared abstract to account for the super-

types being exhaustive for their supertype. The user receives a warning that

a subtype relation with this constraint will behave in the same manner as a

subtype relation with an exclusive-or constraint (see next section).

Example: Figure 2.17 shows an ORM schema with exhaustive subtypes which was

also introduced on page 23. Figure 2.18 next to it the mapping to grUML,

where the subtype hierarchy remains unchanged but the superclass is defined

as abstract.

Exceptions: -

CHAPTER 2. MAPPING ORM TO GRUML 67

Student

(.ID)

Bachelor Student

Master Student

PhD Student

Figure 2.17: ORM schema of a subtype
relation with a disjunctive mandatory
role constraint (exhaustive subtypes).

Figure 2.18: The grUML schema as a result
of mapping the ORM schema on the left.

2.10.4 Partition of subtypes

ORM element: Exclusive-or constraint between subtype relations

Corresponding grUML element: The subtype hierarchy is copied to grUML.

The superclass is declared abstract.

Description: An exclusive-or constraint between subtypes means that these sub-

types are mutually exclusive and exhaustive for their supertype, creating a

partition of the supertype. This is easily transferred to grUML by main-

taining the subtype relations as defined in ORM and making the superclass

abstract. By defining the superclass as abstract, it cannot be instantiated so

all instances of the superclass’ type must be instances of its subclasses. This

reflects the aspect of this constraint, that the union of the subtypes in ORM

should equal their supertype. The second aspect, the mutual exclusiveness, is

automatically met in grUML, since an instance can only be a member of one

class.

Example: For an example ORM schema with a subtype partition, please see figure

1.11 on page 23. The mapping of this schema works in analogy to the mapping

for exhaustive subtypes (see the previous section) with the exception that it

does not require a warning for the user.

Exceptions: -

68 2.10. SUBTYPE MAPPING

2.10.5 Further subtype definitions

The cases of subtype definitions containing constraints as introduced in the last

sections discussed constraints that applied to all of the subtype relations. In ORM

it is possible that a constraint only applies to a subset of the subtype relations for

one supertype.

An example for this behavior can be seen in 2.19. Here a Course can either

be a Lecture or a Seminar but not both. However, in addition it can also be an

OnlineCourse. Given such a schema, there is the possibility that subtype instances

belong to multiple types and this situation can not be represented in grUML. In

these probably quite rare cases, the subtype hierarchy is mapped to grUML based

on the constraints that apply to it and the user receives a warning that vertex class

instances cannot be members of two subclasses at once and thus that this mapping

reduces ORM’s expressiveness.

Figure 2.19: A subtype definition where the constraint (here an exclusion constraint)
does not affect all subtypes.

2.10.6 Subtype definitions between value types

ORM also allows the definition of hierarchies between value types. This makes

sense seeing that value types can be used to further describe the domain of the

actual values. Adding hierarchies to value types increases their information content.

Since value types are treated as placeholders for values and thus are transformed

to attributes in the course of this mapping, there is no way to represent any subtype

relations that may be stated in ORM. For this reasons, ORM schemas that contain

hierarchy information for value types are rejected during the mapping process.

CHAPTER 2. MAPPING ORM TO GRUML 69

2.11 Reference Scheme mapping

In ORM, each entity type must be uniquely identifiable and may have multiple

sources for identification. One way of unique identification must be declared as the

preferred mode.

2.11.1 Preferred reference schemes

In ORM, entity types can have a reference mode which allows their unique iden-

tification through a single value. The reference mode is an abbreviation for a 1:1

preferred reference scheme. The mapping of reference modes was discussed in section

2.4.

If an entity type doesn’t have a reference mode or an explicitly stated preferred

1:1 reference scheme, it must be uniquely identified by multiple values which is then

referred to as a compound reference scheme. If no other reference schemes exist, it

must be the preferred reference scheme.

In ORM this is indicated through an interpredicate uniqueness constraint with

a double bar that affects roles neighboring the roles played by the entity type in

question. The constrained roles are either played directly by value types whose

values are used for identification or by entity types (or objectifications). In the

latter case the preferred identifiers of these neighboring entity types become part

of the set of preferred identifiers for the entity type in question. This concept was

introduced along with an example in section 1.5.6.

The value types that are preferably used to uniquely identify the entity type

(or even an objectification) are stored in the attribute “preferredIdentifiers” in the

vertex class generated from mapping the entity type/objectification. The record

“preferredIdentifiers” receives a new component for each of the value types that is

part of the preferred compound reference scheme.

Note that only preferred identifiers are stored in the record “preferredIdentifiers”.

2.11.2 Other reference schemes

Other, non-preferred reference schemes (indicated by an interpredicate unique-

ness constraint with a single bar) don’t have an explicit representation as such in

grUML. The interpredicate uniqueness constraint is formulated as a grUML con-

straint and added to the schema which ensures the uniqueness of the values at

instance level.

70 2.12. DERIVATION AND SEMIDERIVATION MAPPING

2.12 Derivation and semiderivation mapping

This far, the mapping of subtypes and fact types was introduced for their as-

serted versions. As explained in section 1.5.7, fact types and subtypes can also be

semiderived or derived.

The mapping procedure does not yet include a transformation for derivations and

semi-derivations to grUML. There are mainly two reasons for this. Firstly, the gener-

ation of derivations in NORMA is not very intuitive and requires a deep knowledge

of both ORM and the software to create a derivation which has the intended se-

mantics. Although the outcome can be checked by viewing NORMA’s verbalization

of the derivation rule, this quickly becomes tedious due to non-transparent genera-

tion process and the sometimes unexpected behavior of the software. And secondly,

NORMA allows the definition of arbitrarily complex derivations. As an example,

derivation rules contain variables which represent object types and NORMA pro-

vides 28 functions to manipulate or combine these defined variables.

These two aspects increased the complexity to an extent that the mapping of

derivations had to be dismissed as not to overstretch the scope of this work.

2.13 Summary

This section provides an overview of the ORM elements and their mapping to

grUML. A summary of the mappings described to this point can be found in table

2.4.

CHAPTER 2. MAPPING ORM TO GRUML 71

Table 2.4: This table contains a brief summary of the mapping of ORM elements to
grUML.

ORM element grUML correspondence

entity type vertex class
objectification vertex class
value type attribute of a vertex class

reference scheme
(incl. reference mode)

each vertex class has an attribute ”preferredIdentifiers”
which links to a record containing components that
represent those values necessary to uniquely identify the
vertex class instances

unary relations
the unary relation is represented as a boolean attribute
of the vertex class participating the relation
(”closed world” assumption)

binary relations
binary relations between entity types become associations.
Binary relations between an entity type and a value type map
to a vertex class with an attribute.

ternary and higher
arity relations

the ternary or higher arity fact type is represented as a
vertex class in grUML. This vertex class has associations
with all participants of the fact type.

independent
object types

independent value types can’t be mapped. Independent entity
types and objectifications map in the same way as
non-independent elements but might require multiplicity
adjustments.

subtyping

the subtype hierarchy is maintained in grUML. In some
cases the possibilities for creating subtypes from a
grUML schema are reduced compared to ORM because
instances of a grUML vertex class can’t be members of
multiple vertex class at once.

derivations -

72 2.13. SUMMARY

CHAPTER 3. IMPLEMENTATION 73

3 Implementation

The mapping described in the previous chapter presented the theoretical groundwork

necessary to implement a mapping from ORM schema files to grUML schema files.

Using the resulting grUML schema files, it should be possible to create TGraph

instances that are in concordance with the ORM schema.

At the beginning of this chapter you will find a broad overview of the imple-

mentation tasks attempted in this thesis. It will then continue to go into more

detail concerning the concrete implementation of the mapping and the TGraph in-

stance generation. It will also touch one some of the difficulties encountered during

implementation.

3.1 Overview

The following enumeration will give an overview of the intended scope of the

implementation section of this work.

1. Mapping ORM schemas to grUML schemas

(a) Input: valid ORM schema in NORMA’s “.orm” file format

(b) Parse this file to retrieve all information contained in it

(c) From the parsed data, dismiss unnecessary information and compute ad-

ditional information as needed

(d) Create a grUML schema using the parsed data by performing the trans-

formations described in chapter 2

(e) The resulting grUML schema should convey the same information as the

ORM schema or, if this is not possible in certain cases, warn the user that

the mapping has reduced the expressiveness or changes the semantics of

the ORM schema

(f) Output: valid grUML schema in “.tg” format

74 3.2. MAPPING ORM SCHEMAS TO GRUML SCHEMAS

2. Generating and processing TGraphs generated from mapped grUML

schemas

(a) Provide a framework which automatically adds ECAs (see section 1.9) to

TGraphs and performs validity checks

(b) The validity of TGraph’s should be checked using JGraLab’s GraphVal-

idator (see section 1.7.4)

3.2 Mapping ORM schemas to grUML schemas

The key steps for implementating the mapping defined in chapter 2 are visualized

in figure 3.1.

Figure 3.1: A diagram to give an overview of the implementation of the mapping defined
in this thesis. The class ORMParser.java is responsible for parsing an ORM schema
file in “.orm” format. Using the parsed data which is stored in the form of a TGraph,
Orm2Tg.java performs the actual mapping step. GrUML constraints are generated by
classes specializing GrUMLConstraintGenerator.java and added to the grUML schema
file that is stored in “.tg” format.

CHAPTER 3. IMPLEMENTATION 75

3.2.1 ORM schema file

The starting point for the mapping procedure is a file of an ORM schema which

is assumed to be semantically correct. For this work, these schema files need to be

in “.orm” format which is the file format utilized by NORMA.

The “.orm” schema files are XML-based. Unfortunately, the schema files do not

contain a reference to an XSD (XML Schema Definition) or DTD (Document Type

Definition) to help understand the files’ structure for the upcoming parsing step.

As a result, the file structure had to be decoded empirically. On that account

several ORM schemas displaying several possible combinations of object types, fact

types, subtype definitions, constraints and objectifications were created. Using these

many example schemas and the knowledge of ORM terminology, it was possible to

quite reliably predict the structure of ORM schema files generated in NORMA.

Core elements

At the top level, ORM schema files are divided into the following key elements:

Objects, Facts, Constraints and DataTypes. This section will give a very brief

overview of these elements and their roles in the file.

Objects This element can contain any number of the three types of objects, that

can appear in an ORM schema diagram: EntityType, ValueType and Ob-

jectifiedType. Within these elements lies most of the information about

them: e.g. what roles they play, whether they are part of a type hierarchy,

but also type specific data like reference mode names, preferred identifiers or

conceptual data type definitions.

For each schema, the Objects element lists all objects which can participate in

relations. Besides the objects defined by the schema’s modeler, the schema may

contain additional objects which NORMA generates as auxiliary structures.

Facts ORM fact types are referred to as “facts” in the ORM schema file. Within

the Facts element, three different kinds of facts can be distinguished: Fact,

ImpliedFact and SubtypeFact. They each contain an element FactRoles

that holds the list of roles which participate in the fact represented by the

element.

Fact ORM relations which are not objectified and are not subtype relations

are represented by this element.

76 3.2. MAPPING ORM SCHEMAS TO GRUML SCHEMAS

ImpliedFact Some facts, e.g. with arity three or above, are not only stored

as a Fact in the ORM schema file but are also stored in an objectified

form. In such cases, the relation in question is transformed into an Ob-

jectifiedType bearing the name of the original relation. This element is

connected to the participants of the transformed relation through an Im-

pliedFact (this process is analogous to the proposed mapping of ternary

and higher arity relations in section 2.7.4).

SubtypeFact This element stands for a subtype definition between a super-

type and its subtype. It consists of SubtypeMetaRoles and Super-

typeMetaRoles. These roles can be subject to disjunctive mandatory

constraints, exclusion constraints and exclusive-or constraints which rep-

resent the subtype constraints introduced in section 1.5.5.

The Facts element lists all relations between the objects defined in the Ob-

jects element. These relations can be user-defined or implied, e.g. when

ternary or higher arity relations are objectified for representation in the schema

file.

Constraints This element can contain any of ORM’s constraints which apply to

fact roles. This leaves the exception of CardinalityConstraints that apply to

ObjectifiedTypes or EntityTypes and ValueConstraints that apply directly

to ValueTypes.

The remaining constraints contain at least one element called RoleSequence

which holds the references to those Roles which are affected by the constraint.

Some constraint elements will contain additional data, e.g. a FrequencyCon-

straint has the attributes MinFrequency and MaxFrequency which define the

lower and upper bound of the frequency range.

For a given ORM schema, the Constraints element contains all ORM con-

straints which apply to roles within this schema. This also includes implied

constraints.

DataTypes This element is an enumeration of all the data types which can be

assigned to value types in NORMA. A ValueType defined in Objects will

refer to these elements to specify its ConceptualDataType.

CHAPTER 3. IMPLEMENTATION 77

3.2.2 ORM schema file parser

After gaining a better understanding of the general structure of ORM schema

files, the implementation of a parser ensued.

The parser, implemented in OrmParser.java, takes a “.orm” file as input and

reads and processes the information contained in it. OrmParser.java extends

JGraLab’s class Xml2Tg.java. This class reads an XML file and generates a specific

TGraph, an XMLGraph, from it which represents the file in a fashion similar to a DOM

(Document Object Model) tree. Besides various general methods giving access to

TGraph components, JGraLab also provides the class XmlGraphUtilities.java

that contains methods specific to retrieving the elements of an XMLGraph.

The information contained in the ORM schema file is gathered using these tools

and is finally stored in form of a TGraph in an ORMGraph. Doing this has the

advantage of not needing to implement a data structure to hold the information

and allows access to the data through methods provided by JGraLab. Defining the

structure of an ORMGraph was a part of this work an will be explained in section

3.2.2.

Before or during parsing the ORM schemas are checked for constellations which

cannot be mapped using the previously described transformation rules, e.g. schemas

containing independent value types.

The parser does not only read the information contained in an ORM schema file

but will also compute additional data. For example, it computes multiplicity values

based on mandatory, uniqueness and internal frequency constraints to simplify the

task of the mapper (see section 3.2.3).

ORM schema file model

This section introduces the model which defines the grUML schema for TGraphs of

the type ORMGraph, which are used to hold the information contained in an ORM

schema file.

Figure 3.2 shows a simplified version of the model designed for this thesis. For

the most part, the model represents the key components of the ORM schema file as

introduced in section 3.2.1. It is however a simplified version of the model actually

used to define the structure of ORMGraphs. This model was generated with IBM

Rational® Software Architect.

The elements in an ORM schema file have the attribute id which is used to

uniquely reference them within the file. Concordantly, most vertex classes in figure

78 3.2. MAPPING ORM SCHEMAS TO GRUML SCHEMAS

Figure 3.2: A simplified model representing the grUML schema for ORMGraphs. It rep-
resents the main object types, facts and constraints used in ORM.

3.2 have an attribute xmlId which holds this identifier in order to maintain the link

between the ORMGraph elements and the schema file elements.

Object Type The model defines the three object types that can appear in ORM

schemas: ValueTypes, EntityTypes and ObjectifiedTypes.

The last two specialize the class EntityObject which represents elements that

may have a reference mode or a role that uniquely identifies them.

Each ValueType has an association with the vertex class ConceptualDataType

which represents the ORM value type domains (see appendix B table 5) in its

attribute dataType but also stores further information regarding the length

and scale of values. ConceptualDataTypeKinds is an enumeration which con-

tains all possible value type domains but it could not be included in the model

due to its large size.

The instances of the classes specializing ObjectType can participate in the

SpecializesObject relation which represents the relation between sub- and

supertypes.

CHAPTER 3. IMPLEMENTATION 79

Fact ORM relations are represented by the vertex class Fact. Each Fact has an

attribute factKind that defines the type of fact it represents. The attribute

representsComposition can be used to indicate whether a modeler specified

a relation within the ORM schema to be a composition or not. Furthermore,

a Fact has the attribute readingOrder which holds a string that contains

the predicate reading with placeholders for the involved object types. This is

important for the verbalization of the constraints applying to the fact.

Facts can imply each other: As mentioned previously, a ternary fact type is

stored in the ORM schema file but additional implied facts are generated to

represent the relations between the fact’s participants and the objectified type

created from the fact.

Role and RoleProxy Each Fact must contain at least one RoleKind. The vertex

class RoleKind was introduced as a generalization of the two kind of roles that

are used in an ORM schema file: the RoleProxy and the Role.

The vertex class Role represents an ORM fact role. The vertex class RoleProxy

on the other hand also represents a fact role but within a relation between an

object type and an objectified fact (represented as an ObjectifiedType). If

an ORM schema contains an objectified fact, the ORM schema file will include

both the objectified fact and the same fact without its objectification. Each

RoleProxy links to the corresponding Role in the fact that is not objectified.

Using this link is the only way of finding the player of the RoleProxy.

The order of the RoleKind elements in the Fact later defines the direction of

the edge class generated from it. The readingOrder corresponds to this order

too.

Constraint Finally, Facts include at least one Constraint each. Constraint is

an abstract vertex class that represents all constraints that may appear in an

ORM schema. Its attribute isInterpredicateConstraint indicates whether

a constraint is an interpredicate constraint, applying to multiple fact types at

once, or not.

This vertex class is specialized by the abstract class RoleSequenceConstraint.

This class subsumes all the ORM constraints which apply to at least one Role-

Sequence. The RoleSequence in turn consists of at least one Role which is

played by exactly one ObjectType. For simplicity reasons, the model is missing

all specializations of Constraint and RoleSequenceConstraint and further

aspects that were included in preparation for the mapping of derivations.

80 3.2. MAPPING ORM SCHEMAS TO GRUML SCHEMAS

Using JGraLab’s Rsa2TG.java class, the model introduced in this section can be

transformed into a TGraph which serves as a grUML schema to define the TGraph

type ORMGraph.

3.2.3 Mapping the data to grUML

The data extracted from the ORM schema is transformed to grUML step-by-

step. The mapping process is implemented in Orm2Tg.java. Its method transfor-

mOrm2TG takes the file path of the ORM schema that should be transformed as input,

initializes the parser (OrmParser) and processes the data contained in the resulting

ORMGraph. Here it starts by generating vertex classes from entity types and objecti-

fications, then proceeds to generate attributes from preferred reference schemes and

relations with value types and finally generates grUML constraint where necessary.

Once the mapping is completed, the grUML schema file can be stored in“.tg” format.

Orm2TG has two maps which link the XML IDs of ORM elements in the ORM

schema file to the names these elements receive after mapping and vice versa: xm-

lIdTogrUMLNameMap and grUMLNameToXmlIdMap. These maps are important when

generating grUML constraints, because they create the link between the ORMGraph

elements affected by a constraint and the names of these elements after mapping

them to a grUML schema.

Generating grUML constraints

ORM constraints need to be transformed into grUML constraints. This task is per-

formed by subclasses of the abstract class GrUMLConstraintGenerator.java. This

class is specialized by constraint-specific classes such as AcyclicRingConstraint-

Generator.java or MandatoryConstraintGenerator.java. GrUMLConstraint-

Generator.java has three key methods: createGReQLMessage, createGReQLEx-

pression and createGReQLOffendingElements. These generate the three com-

ponents of a grUML constraint (recall section 1.7). Another important method is

createGReQLConstraintVariables which creates the variables for use in GReQL

expressions.

Verbalizing ORM constraints A grUML constraint requires a verbalization to

return to the user if a TGraph is in violation of it. The best way to ap-

proach the task of generating a constraint verbalization was to base it off the

texts provided by NORMA. Since the verbalization depends on the structure

of the schema, it was once again necessary to consider numerous applications

of the same constraint to different schemas in order to extract a blueprint for

CHAPTER 3. IMPLEMENTATION 81

the verbalization. The text also contains the name of the ORM constraint.

Assuming that people who use this mapping tool will have a good understand-

ing of ORM, the constraint name should help pinpoint the TGraph elements

causing a violation. The generation of these verbalization strings is handled

by the class GrUMLConstraintMessageGenerator.java which was written in

the context of this work.

Representing variables in GReQL expressions As explained in section 1.8, most

GReQL expressions require the definition of variables which represent edges

or vertices of specified types in a TGraph. When creating GReQL expressions

that check a TGraph’s correspondence to an ORM constraint, the variables

that are defined often refer to the edges or vertices that are directly affected

by the constraint.

Within a GReQL expression it may be necessary to not only access the variable

itself, but its type, attributes it may have etc. In order to collect all information

surrounding these variables, the class GReQLConstraintVariable.java (see

figure 3.3) was implemented and instances of this class are created during

constraint generation.

On the grUML side, a GReQLConstraintVariable has a name (variableName),

knows the name of the grUML type it instantiates (grUMLTypeName) and can

be set to mute (isMute) meaning that it won’t show up in a GReQL variable

declaration.

On the ORM side, a GReQLConstraintVariable has access to the object

type (involvedObjectType) and the role (involvedRole) affected by the con-

straint. Furthermore, the position of this role within the fact type it partici-

pates in is recorded in positionInFact.

Finally, the attribute variableKind indicates the kind of grUML element the

variable represents, i.e. an edge or vertex class element.

The methods are mostly getters but include declareType and printObject-

Type which return strings in GReQL syntax providing access to the variable’s

type or the player of the role from which they were created.

Creating GReQL expressions The createGReQLConstraintVariables method

needs to be implemented for each class specializing GrUMLConstraintGener-

ator.java. Since each constraint requires a different GReQL expression for

82 3.2. MAPPING ORM SCHEMAS TO GRUML SCHEMAS

Figure 3.3: The class GReQLConstraintVariable.java used to represent variables for
use in GReQL expressions. Each variable holds its name, the name of the grUML type
it instantiates and its type, so whether it represents an edge class or a vertex class. Fur-
thermore, each variable knows the role from which it was generated, the object type
which plays this role and this role’s position within the fact type it belongs to. GReQL-

ConstraintVariables can also be muted so they do not appear in GReQL expressions.
The methods are mostly getters but also provide access to the variables properties using
GReQL syntax.

validation and most constraints can apply to multiple scenarios, these two

factors greatly influence which variables need to be declared.

The classes generating specific GReQL expressions use a template expression

which was established in the theoretical mapping step and adjust this template

by inserting the appropriate variables and types.

Listing 3.1 shows an example for such a template. This is a template for the

following scenario: an ORM exclusion constraint which applies to two roles

played by the same entity type or objectification where the neighboring roles

too are played by entity types or objectifications.

Listing 3.1: A template for a GReQL expression expressing an ORM exclusion

constraint between two roles played by an entity type where the neighboring roles are

played by entity types or objectifications too. <e1> through <e5> are placeholders

for variable declarations and GReQL expressions.�
f o r a l l <e1> @ degree{<e2>}(<e3>) < 1 or

degree{<e4>}(<e5>) < 1
� �

CHAPTER 3. IMPLEMENTATION 83

The ORM schema from figure 2.13, page 62, is an example for such a scenario.

A class to generate this exclusion constraint displayed in this example would

create variables from the two constrained roles - one mute and one non-mute.

The first placeholder <e1> is replaced with the GReQL syntax for declaring the

non-mute variable: s:V{Student}. The remaining placeholders are replaced

with the names of the grUML edge class generated from the constrained fact

types (StudentArrivesByCar and StudentLivesInRoom) and the variable’s

name (s) to finally produce the GReQL constraint in listing 3.2.

Listing 3.2: GReQL expression as a result of mapping the ORM exclusion con-

straint from figure 2.13 (page 60) using the previously defined template.�
1 f o r a l l s :V{Student} @ degree {StudentArrivesByCar }(s) < 1

2 or degree {StudentLivesInRoom }(s) < 1
� �
Expression for retrieval of violating elements The third, optional part of a

grUML constraint, is an expression which retrieves the elements violating the

GReQL expression defined in part two. To avoid long explanations, the term

“GReQL expression” will refer to the second part of the grUML constraint

until the end of this section.

Generating an expression to retrieve violating grUML elements is the final

step of generating a grUML constraint, i.e. the GReQL expression is already

available at this point. The GReQL expressions used in this work are designed

in a way, that this third expression can be created using the template shown

in 3.3.

Listing 3.3: A template for an expression to retrieve elements violating the GReQL

expression that replaces <e2>.�
from <e1> with not(<e2>) r epo r tSe t <e3> end
� �
The first placeholder, <e1>, is filled with the variable declaration from the

GReQL expression created previously. Then <e2> is replaced with the part of

the GReQL expression that follows the @ symbol. Finally, <e3> is an enumer-

ation of the variable names declared in <e1>.

Listing 3.4 shows an example which uses the GReQL expression introduced in

listing 3.2. This expression is added to the grUML constraint representing the

exclusion constraint to retrieve elements violating this constraint.

84 3.3. GENERATING TGRAPHS

Listing 3.4: The third part of a grUML constraint: an expression to retrieve

elements violating the specified constraint (here an exclusion constraint).�
1 from s :V{Student} with

2 not (degree {StudentArrivesByCar }(s) < 1

3 or degree {StudentLivesInRoom }(s) < 1)

4 r epo r tSe t s end
� �

3.3 Generating TGraphs

Besides defining a mapping from ORM to grUML schemas, another very impor-

tant goal for this work was to provide the possibility of creating instances from the

mapped grUML schemas (in form of TGraphs) and to ensure their correspondence

with the constraints defined in the ORM schema. This section will talk about the

programming performed to take steps towards this goal.

3.3.1 Adding ECA rules

Besides constraints, there are other requirements which ORM schema instances

must meet. Consider the ORM schema shown in figure 3.4 which maps to the grUML

schema in figure 3.5. If the value of the preferred identifier “dateMdy” of “Date”

changes, this also has an influence on the vertex class “Student” since “dateMdy”

is one of its preferred identifiers too. The old value of “dateMdy” in the preferred

identifiers of “Student” must be replaced with the new value defined for “Date”.

This scenario cannot be solved using grUML constraints, since these do not ma-

nipulate TGraphs but only query them. This situation can be dealt with using

ECA rules. To address this kind of problem, each vertex class instance (irrespective

of the original ORM schema file) will receive an ECA rule that reacts to changes

of the “preferredIdentifiers” attribute. An event is generally defined in the form

Figure 3.4: An ORM schema defining a preferred compound reference scheme for the
entity type “Student”.

CHAPTER 3. IMPLEMENTATION 85

Figure 3.5: The grUML schema that results from mapping the ORM schema from figure
3.4.

of an EventDescription, which in this case is a more specific ChangeAttribu-

teEventDescription that monitors a specified attribute of a defined vertex class

for changes. If this attribute is changed, the event is fired and the PreferredIden-

tifierAttributeChangedAction is performed. Note that there is no condition that

is checked before the action is performed. The reason being that there are multiple

conditions that need to be checked, so they are included into the PreferredIden-

tifierAttributeChangedAction.

PreferredIdentifierAttributeChangedAction which implements JGraLab’s

Action interface, does one of two things: it either accepts the change within a

“preferredIdentifiers” record and may propagate this change to further records that

contain the same component (compare to “dateMdy” whose change needs to be

propagated to the “preferredIdentifiers” record of “Student”) or it might reject the

change. In order to decide on one of the two actions, PreferredIdentifierAt-

tributeChangedAction first checks two conditions: whether the graph is valid at

the moment the change occurs (implemented in GraphValidityCondition.java)

and whether the change is valid with respect to the uniqueness of the value of the

updated preferred identifier component (implemented in PreferredIdentifier-

AttributeChangedCondition.java). If both conditions are met, the component

within the “preferredIdentifier” record is updated and the change is propagated if

necessary. Whether a propagation is necessary or not is determined during con-

struction of PreferredIdentifierAttributeChangedAction. The constructor al-

86 3.3. GENERATING TGRAPHS

lows the definition of a neighboring vertex class and the edge class connecting it

to the vertex class of the vertex in question. Using this information, it is possible

to access the neighboring instances of this defined vertex class and to update their

“preferredIdentifiers” records.

If a change is invalid, the “preferredIdentifier” record is restored to the state

before the change.

Though the code for the ECA rules is available, there is no framework to auto-

matically add them to the vertices of growing TGraphs or TGraphs which are loaded

from file. Furthermore, to this point there is no method in place to automatically

extract the vertex and edge class that will be needed for the correct propagation of

“preferredIdentifiers” components.

3.3.2 Validating TGraphs

TGraphs’ correctness with respect to grUML constraints and edge class multi-

plicity can be validated using JGraLab’s GraphValidator and its method validate.

Since there is no framework for TGraph generation in place, this too needs to be

added manually by anyone generating instances from grUML schemas created by

the ORM to grUML mapper Orm2Tg.

It is also necessary to briefly consider the way in which TGraphs are generated

at the moment. JGraLab provides two APIs for graph generation. Both involve

Java code that defines a TGraph and subsequently stores it in “.tg” format. The

second option involves specifying the TGraph’s components, i.e. edges and vertices,

in csv files and generating a TGraph from this using JGraLab’s Csv2Tg.java. This

approach too will produce a “.tg” file containing the TGraph.

One question to address with respect to validating TGraphs, is when to validate

the TGraph. This is also the point at which the differentiation between deontic and

alethic constraints will come into play. The following sections will provide a few

thoughts on both aspects.

When to validate a TGraph

There are two situations in which validation is warranted: when loading or saving

a TGraph, it is important to know the status quo in order to be able to work with

or store a valid TGraph. Since none of the approaches for generating TGraphs is

interactive in nature, there is no way of validating the TGraph during its creation

(apart from generating it in small increments).

CHAPTER 3. IMPLEMENTATION 87

If at some point there should be an interactive TGraph editor, ECA rules would

provide a way of continually validating the graph. An ECA rule could respond to

changes in the graph by running the validate method of GraphValidator. How-

ever, this may be time consuming if TGraphs grow large and constraint violations

that are found cannot interfere with a TGraph editor’s execution.

Alethic and deontic constraints

Alethic constraints are constraints which must be met. One way of implementing

this behavior would be refusing to save a TGraph if the validate method of Graph-

Validator returns a set of size ≥ 0. The error message would have to be expansive

enough so the user knows what to correct within the graph. If a TGraph contains

violations after loading, this should have no influence on the ability to make changes

to the graph. The user should however be informed of the violations.

Deontic constraints are suggestions which don’t have to be followed. In this case,

it would suffice to provide the user with a list of constraint or multiplicity violations

upon loading and saving the TGraph.

3.4 Final result

Orm2Tg performs the mapping of ORM schema files created in NORMA to

grUML schemas in “.tg” format. To achieve this, it uses an OrmParser which parses

an ORM schema file and stores the data in form of a TGraph. This data can

subsequently be used by Orm2Tg to generate a grUML schema by following the

transformation steps detailed in chapter 2. The mapping procedure implemented

during this thesis correctly maps entity types, objectifications, value types, subtype

relations and fact types to grUML. To this point, the ORM constraints that can

be successfully mapped to grUML constraints are the following: ring constraints,

internal uniqueness constraints, internal mandatory constraints, value constraints

and inclusive-or constraints.

At TGraph level, ECA rules which perform the actions defined in PreferredI-

dentifierAttributeChangedAction can be added manually to each vertex class.

This ensures that changes in preferred identifiers maintain their uniqueness and are

propagated if necessary.

Lastly, the constraints added to a grUML schema can be validated upon loading

or storing a TGraph created from this schema by using JGraLab’s GraphValidator.

88 3.4. FINAL RESULT

CHAPTER 4. DISCUSSION 89

4 Discussion

This chapter will discuss the results presented in the chapters 2 and 3. The discussion

will begin with the theoretical mapping and then move on to the implementation.

4.1 Theoretical mapping from ORM to grUML

Defining the mapping from ORM to grUML on a theoretical basis was ap-

proached one ORM element at a time. This ensured that each element would

have a correspondence in grUML. The only requirement for this approach was a

good understanding of the semantics of both the ORM elements and the candidate

grUML elements. However, as the mapping evolved, it became apparent that this

path alone was misleading. During the generation of example schemas to better

understand the ORM schema file format, more and more possibilities of combining

ORM elements were discovered, which required additions and changes to the first

drafts of the mapping.

In [HM08], chapter 9.8, Halpin describes a mapping from ORM schemas to UML

class diagrams called UMLmap. Since UML provides notation to express some of

ORM’s constraints (e.g. exclusive-or constraint) which grUML does not, this pro-

cedure could only serve as inspiration for the mapping defined in chapter 2.

Intriguingly Halpin’s mapping will turn entity types into attributes and value

types into classes in specific cases. The first will happen if an entity type A has an

n:1 or 1:1 relation with an entity type B (that plays no further fact roles), then A

maps to a class and B becomes A’s attribute. The second case arises if a value type

plays an explicitly mandatory role, is independent or takes part in a n:1 relation.

The following two sections will expand on these two cases and show examples for

each of them. Further examples for Halpin’s mapping process from ORM to UML

can also be found in [HM08], chapter 9.8. In this chapter, the process is not discussed

in great detail, so the mapping for certain situations, e.g. relations containing only

value types or subtype definitions between value types, remain unspecified.

90 4.1. THEORETICAL MAPPING FROM ORM TO GRUML

4.1.1 Mapping entity types to attributes

If an entity type has an n:1 or 1:1 relation with another entity type which plays

no further fact roles, then Halpin suggests turning the latter into an attribute of the

class created from the former.

In the mapping proposed in this work, entity types never map to attributes.

Although it makes sense in the cases presented in Halpin’s book, there are two

reasons why these exceptions were not introduced in this thesis.

Firstly, the semantics of entity types are different from the semantics of an at-

tribute. An entity type represents a group of concrete objects that are subsumed by

the entity type. Entity types may participate in several relations apart from those

that are required to uniquely identify them. An attribute on the other hand only

serves the purpose of defining a value by giving it a name and a domain and binding

this information to a class. Attributes cannot participate in any other relations.

The second reason for consistently mapping entity types to vertex classes is

the aim to keep the mapping a simple as possible. This has several advantages.

Understanding a mapping in which each rule has at least one exception makes it

considerably more complex and thus harder to understand, implement and finally

also to maintain (both at the theoretical and the implementation level).

Figure 4.1 shows an adaptation of a situation in which Halpin proposes mapping

an entity type to an attribute. In this case, he proposes mapping both “Date” and

“Gender”to attributes of the related entity type“Student”. For this specific scenario,

mapping these entity types to attributes does seem to be the preferred solution. But

possibly it would be a better choice to remodel these entity types as value types,

since in this schema, they only serve the purpose of carrying information in form of

Figure 4.1: This ORM schema depicts a situation in which Halpin proposes to map
“Date” and “Gender” to attribute of the class generated from the entity type “Student”.
The schema is based on the schema in figure 9.56 from [HM08].

CHAPTER 4. DISCUSSION 91

values (the gender code or the date in a specific format). Maybe it would be a good

idea to generally revise schemas in which entity types only play a single fact role and

remodel these as value types. But in the end, it must be assumed that the ORM

schemas going into the mapping process are generated carefully and intentionally in

order for the mapping process defined in this work to make sense.

4.1.2 Mapping value types to vertex classes

Halpin proposes turning a value type into a vertex class in specific situations,

e.g. when it participates in an n:1 relationship or it plays an explicitly mandatory

role. Unfortunately the author doesn’t expand on the reasoning for this mapping.

Figure 4.2: An ORM schema with a value type that plays a role in a n:1 relationship
with an entity type. In this case Halpin proposes transforming the value type into a class
and the entity type is mapped to an attribute of this class. This example is based on the
schema in figure 9.57 from [HM08].

Figure 4.2 is a variation on one of the examples Halpin gives in his book in

which the value type “Name” takes part in an n:1 relationship. The mapping he

suggests is to create the class “Name” from the value type which holds an optional

attribute“specificToGender”that is generated from the entity type“Gender”. Figure

4.3 shows the way this schema is mapped using the mapping procedure suggested

in this work. The outcome is very similar to Halpin’s transformation but without

requiring an exception to the rule of always mapping value types to attributes.

Figure 4.3: The mapping of the schema presented in figure 4.2 according to the procedure
described in this work. The value type “Name” becomes an attribute of the vertex class
“Gender” which results from mapping the entity type “Gender”. The package containing
the records for the preferred identifiers is not shown for simplicity reasons.

The third scenario in which Halpin maps a value type to a vertex class is a case

with which the mapping defined in this thesis struggles: independent value types.

92 4.1. THEORETICAL MAPPING FROM ORM TO GRUML

However, as mentioned in section 2.9 this is considered to be a case which rarely

occurs. Seeing that schemas with independent value types need to be rejected at this

point, it may nevertheless be desirable for the future to make an exception for these

ORM elements. This would still align with the general requirement for a simple

mapping since this situation is most likely very rare.

4.1.3 Constraints

ORM is a highly flexible modeling language and concordantly, each constraint

has a variety of applications - e.g. in one schema it might apply to roles of a binary

fact type and in another it might constrain roles of a ternary fact type. The schemas

resulting from mapping a fact type with arity 2 differ substantially from that of a

schema with arity 3. Thus, the difficulty in mapping the ORM constraints lies in

the question whether all possible application scenarios can be anticipated. Each

scenario comes with its own mapping to grUML which might call for a modification

or redesign of the GReQL expressions within the grUML constraint. Due to the

complexity of this undertaking, only a subset of ORM’s constraints were included

in the implementation for this work.

With a growing understanding of the possibilities ORM has to offer, it is difficult

to assess to what extent the possible scenarios for each constraint were considered.

In addition, the fact that there is no fast or easy way of creating example TGraphs

from grUML schemas made the process of defining GReQL constraints and testing

them a very tedious endeavor.

Although it is unlikely that all situations were foreseen for each constraint, it

is probably safe to say that the most common situations were taken into account.

Certainly all relevant schemas in [HM08] were taken into consideration.

Halpin doesn’t go into details about the mapping of the constraints in his UMLmap

procedure. He suggests adding the constraints to the UML class diagram in tex-

tual form and does not elaborate on how they could be realized. Chapter 11 of his

book [HM08] is concerned with the mapping procedure from ORM to the relational

schemas. Within this chapter, he mentions that outlining the process of mapping

the ORM constraints to a relational schema would exceed the scope of the book.

Furthermore, none of the tools that are publicly available (e.g. NORMA) provide

support for more than the mapping of uniqueness and mandatory constraints. This

supports the notion that mapping ORM constraints is a complex endeavor.

CHAPTER 4. DISCUSSION 93

4.1.4 Derivations

The main arguments for dismissing the mapping of derivations and semideriva-

tions are mentioned in section 2.12. In brief, the low user-friendliness of NORMA’s

interface for creating (semi-) derivations, along with the large number of possibilities

ORM has to offer in this respect and the missing XSD to help interpret the ORM

schema file, rendered this task too time-consuming.

Although this aspect of ORM could not be included in this thesis, it should

easily be possible to extend the parser and mapping software that resulted from this

work in order to include (semi-) derivations. A new approach could be to collect

models created by professionals that work with ORM in order to get an overview of

the most commonly used derivations and to categorize these. Like this it may still

not be possible to cover all the possibilities ORM has to offer but at least the most

commonly used cases.

4.1.5 Mapping to a composition relationship

GrUML offers three kinds of relationships between class instances: the associa-

tion, the aggregation and the composition. In the mapping procedure described in

chapter 2, fact types that did not exclusively contain value types were defined to be

mapped to associations between vertex classes by default.

The association is the most general form of relation. Both aggregation and com-

position are used to define a whole/part relationship but the composition reflects a

stronger form of ownership where deletion of the composite, i.e. the whole, will lead

to the deletion of its parts. This is the theoretical understanding of a composition

and it is a question of implementation whether or not the members of the composi-

tion behave in this way. As for grUML, a composition defined in a schema can be

instantiated within a TGraph and deleting the composite from the graph has the

effect of removing the components too.

ORM’s notation does not provide a way for a modeler to explicitly define a

whole/part relation. This information is implied by the uniqueness and manda-

tory constraints and the predicate reading of a fact type. Concordantly, automatic

mapping to compositions or aggregations is not possible.

One possibility to still use these elements grUML provides is for the modeler to

attach notes to a fact type within his model stating “composition” or “aggregation”

and the direction of this relation. Of course, this only applies to binary fact types.

94 4.1. THEORETICAL MAPPING FROM ORM TO GRUML

4.1.6 grUML elements that could not be included

This section briefly lists the grUML elements which could not be included as a

result of mapping. Firstly, grUML’s packages are only used to organize the records

holding vertex class’ preferred identifiers. Beyond this task, they could not be used

since there was no way of categorizing ORM elements based on their semantics in

an automated fashion.

As discussed in the previous section, aggregations and compositions are currently

not included in the mapping but could be included in later versions.

Lastly, some of grUML’s domains are not included in the mapping, like the map

domain or the enumeration domain. While there is no obvious application for the

map domain, the enumeration domain could be used as an alternative to a grUML

constraint for value constraints which define a limitation to a small number of values.

In these cases, it would be possible to restrict the values of an attribute generated

from a constrained value type to the values defined within the enumeration.

4.1.7 What is lost during mapping

After discussing which grUML elements could not be used during the mapping

process, it is also important to discuss what is lost during mapping. ORM is a

semantic modeling approach and concordantly its schemas contain a lot of informa-

tion. Although the mapping was carefully designed with the aim of being able to

map as many schemas as possible and at the same time minimizing the amount of

information that is lost during the mapping process, the result is a compromise.

Not all ORM schemas can be mapped because for some situations there is no way

of transferring the semantics to grUML without making the mapping much more

complicated - e.g. subtype definitions between value types.

ORM relations can have multiple predicates - one for each reading order or even

multiple predicates for one reading order. Since grUML edges are directed, one of

these predicate readings has to be selected as the name for the edge class (or vertex

class) that results from mapping. Seeing that there is no simple way of establishing

which predicate reading contains the most information, the mapping procedure just

selects the first listed in the ORM schema file. If multiple predicate readings are

provided, this will lead to loss of information. One idea to reduce this information

loss might be to add a note to the grUML schema containing the additional predicate

readings.

CHAPTER 4. DISCUSSION 95

The relations between entity types and value types map to vertex classes that

hold attributes. The relation’s predicate is not used to generate the attribute’s name,

so this information is lost too. This also holds true for role names that might apply

to such a relation. In terms of the predicate reading, please consider the following

relation “Student(.ID) has Name” where “Name” is a value type. Including the

predicate reading in the attribute name would lead to the attribute “hasName” for

the vertex class “Student”. This raises the expectation that this attribute represents

a boolean value, although it is actually a string. Since relations between value types

and entity types often express the ownership or the connection between the entity

type and the value type, and this is expressed using a rather fixed set of predicates,

it was considered acceptable to drop the predicate reading.

Although this may appear to be a rather big number of losses, it is important to

question how often these situations arise and how grievous the consequences really

are.

Not being able to map certain schemas and loosing additional predicate readings

are considered to be the worst of the losses discussed above. However, extensions to

the mapping definition provided in this work can increase the amount of accepted

ORM schemas. And the additional predicate readings can be stored in the grUML

schema in form of a note - possibly granting the user a choice of which predicate

reading he deems most meaningful.

4.1.8 Completeness and Correctness

The requirements for the mapping from ORM to grUML were completeness and

correctness.

Completeness

The mapping defined in chapter 2 is incomplete. It is missing derivations and

semiderivations for reasons discussed previously. It might also be incomplete with

respect to ORM constraints and the many scenarios they can apply to.

Correctness

From a theoretical viewpoint, the mapping as defined in chapter 2 is correct. Each

ORM element was analyzed with respect to its semantics and it was attempted

to find an equivalent for this in grUML. Finding a match was not always possible

(see e.g. subtype constraints) but these exceptions are few and they were made

96 4.2. IMPLEMENTATION

deliberately. Additionally, the user receives a warning, whenever the expressiveness

of grUML does not suffice.

However, as discussed in the previous section, it could be that some scenarios

were not considered rendering the mapping incomplete and thus incorrect.

4.2 Implementation

4.2.1 ORM schema parser

One result of this work is an ORM schema parser which consistently parses

ORM schema files and sets the foundation for the actual mapping procedure. It is

able to read all the information contained in an ORM schema with the exclusion of

derivation rules. If the parser encounters a derivation rule, it rejects the schema.

Seeing that the parser is based on a possibly incomplete understanding of the

structure of ORM schema files, there is no guarantee that it will function for every

possible ORM schema without derivations. It has however been tested using over a

hundred schema files and for these, it worked without problems.

A major difficulty with writing the ORM schema parser was the fact that there

was no XSD file available. And even after understanding the file format through

the generation and analysis of numerous example files, the ORM schema files still

showed some unexpected behavior. A few examples of unexpected behavior are

listed below.

• Binary relations with a spanning uniqueness constraint were represented by

objectifying the binary relation. But binary relations with uniqueness con-

straints that applied to only single roles were represented as binary relations

without an objectification.

• Unary relations are represented as binary relations between the player of the

unary role and a second, pseudo value type that stands for a boolean value to

indicate whether the role is played or not.

Ultimately, this work and the task of writing an ORM schema parser would definitely

have profited from a XML schema definition for the “.orm” file format but the most

value would have been added through a good documentation of the file format.

4.2.2 Mapping the data to grUML

The mapping process generates grUML schemas using the data parsed from an

ORM schema file. Due to the very simple nature of the mapping proposed in this

CHAPTER 4. DISCUSSION 97

thesis, the main components like object types, fact types and subtype relations can

be mapped reliably. Problems may arise when mapping constraints.

Generating grUML constraints

In this section, various aspects that posed problems during the generation of grUML

constraints will be discussed.

Verbalization The first part of grUML constraints is a message which can be

returned to the user whenever a TGraph is in violation of this constraint.

For the grUML constraints generated in this work, the wording was extracted

from NORMA by creating constraints in various different schema constellations

and finding rules by which the verbalization was generated. This means that

the verbalization of constraints will work for many situations (namely those

which were tested) but in other cases it may fail to adequately express the

meaning of the constraint at hand. For these cases the verbalization always

includes the name of the ORM constraint which still can help the user find the

source of the violation.

Going forward, it will be difficult to create a flexible framework for generat-

ing constraint verbalizations in the way NORMA does without knowing more

about their verbalization implementation.

GReQL expression As mentioned in the chapter on mapping, the GReQL expres-

sions for a specific kind of constraint may change substantially if the context

of the constraint is changed.

Which constraints need to be explicated? The final task regarding grUML con-

straints was identifying which constraints even required an explicit grUML

constraint. In order to do this, it is necessary to establish the context in which

the ORM constraints can be applied. Considering the way in which these con-

texts are mapped, it has to be determined whether the constraint needs to be

explicated or is already implicitly handled through e.g. multiplicity values or

the use of sets for multivalued attributes.

4.3 Generating instances

After being able to map an ORM schema to a grUML schema, one of the main

goals for this work was to be able to generate TGraphs from such a schema and to

validate their correspondence to the rules provided in the ORM schema.

98 4.4. OUTLOOK

This goal is reached but still requires a lot of know-how from the user since there

is no comprehensive framework which provides e.g. graph validation when loading

or saving a graph or which automatically adds ECA rules where needed.

4.4 Outlook

There are several aspects that could be improved and some of them were already

discussed throughout this chapter. This section should give a short outline of the

most important steps that need to be taken moving forward.

The first step should be implementing the remaining grUML constraint gener-

ating classes. ORM’s set comparison constraints, the value comparison constraints

and the interpredicate constraint are not yet handled.

The second major step would be the establishment of a framework that auto-

matically adds ECA rules to a TGraph an makes validity checks.

A minor point might be the extension of the domains supported by grUML in

order to be able to handle raw data value types. In terms of value type domains,

another minor improvement might be the implementation of grUML constraints that

ensure a certain length or precision of values.

Finally, a new version of ORM was announced to be released later this year.

In light of this development, it might be necessary to reevaluate the next steps

once the extent of the changes is known. This change may be accompanied by an

improved documentation or even the release of the ORM2 metamodel. The latter

could help improve this project by clarifying the possible relationships between ORM

schema elements, especially derivations and their components, but also by providing

a vocabulary which is possibly used in the ORM schema files too.

CHAPTER 5. CONCLUSION 99

5 Conclusion

The goal of this master thesis was to represent instances of schemas supplied in the

modeling language ORM in the form of graphs and more precisely TGraphs. In a

first step to achieve this goal, the ORM schemas needed to be mapped to the TGraph

schema language grUML. Defining the mapping between ORM schema elements and

the elements of grUML, a profiled version of UML 2 class diagrams, required a deep

understanding of both schema languages.

Chapter 2 introduced the rules for mapping ORM schemas to grUML. Though

this mapping is not complete - it does not handle derivations and semiderivations

and some scenarios simply can not be represented in grUML - it still defines a way

to map the most common ORM schemas to grUML.

Chapter 3 gives insight into the challenges and problems implementing this map-

ping and generating grUML schema instances. At the implementation level, not all

ORM constraints could be translated into grUML constraints. The reason lies in

ORM’s flexibility: each constraint can apply to many different scenarios which re-

sults in different GReQL expressions and verbalizations.

The goal for this thesis of representing ORM schema instances in form of TGraphs

was reached for a reduced set of ORM schema files.

In conclusion, this work shows that it is possible to map ORM schemas to grUML

schemas and to generate TGraph instances that are in accordance with the original

ORM schemas. Although this is momentarily only true for a subset of ORM schemas,

the reason lies in the limited time frame for this work and not in the lack of feasibility

of this approach.

A widely accepted vehicle for representing ORM schema instances is relational

tables. Besides their static format, the major drawback of relational tables is the

insufficient support for ORM constraints. Although Terry Halpin mentions a map-

ping for ORM constraints to relational schemas, he considered it too elaborate to

include in his book ([HM08]) and it is not featured in NORMA, which provides a

mapping from ORM to relational schemas.

100

Storing ORM instances in TGraphs allows the definition of grUML constraint

using the TGraph query language GReQL. Although not all constraints could be

implemented within the scope of this thesis, the reason lies in ORM’s high complexity

and not in an insufficient expressiveness of GReQL. Furthermore JGraLab provides

methods to efficiently access TGraph elements.

The results of this thesis provide support for an alternative, graph-based ap-

proach to storing ORM schema instances which also provides a powerful way of

representing ORM constraints in the form of grUML constraints. Using TGraphs

and their query language GReQL to realize these constraints, allows quick access to

TGraph elements and a fast evaluation of constraints.

Appendices

101

103

A ORM notation

This section provides a summary of the graphical notation for the modeling ele-

ments introduced in sections 1.5.1 to 1.5.7. The notation shown here is the notation

currently provided by the NORMA tool. Table ?? gives an overview of the basic

notation elements as introduced in 1.5.1.

Table 1: Table of the basic elements of ORM’s notation as used in NORMA.

Name Example Description

entity type

Language

Person Institution

Restaurant

An entity type is shown as

a named, soft rectangle

value type
PersonName

kmValue PassportNr

ISBN
A value type is shown as a

named, soft, dashed rectan-

gle

entity type with

popular

reference mode

Person

(.name)

Passport

(.nr)

Town

(.code)

Employee

(.title)

Abbreviated 1:1 reference

scheme for frequently

used value types. Ex-

plicitly looks like e.g.

entity type with

unit-based refer-

ence mode

Length

(cm:)

Weight

(kg:)

Salary

(EUR:)

Temperature

(Celsius:)

Abbreviated 1:1 reference

scheme for unit value types.

Explicitly looks like e.g.

entity type with

general reference

mode

Book

(ISBN)

Server

(IP)

Interface

(MAC)

Abbreviated 1:1 refer-

ence scheme for gen-

eral value types. Ex-

plicitly looks like e.g.

Continued on next page

104 A. ORM NOTATION

Table 1 – continued from previous page

Name Example Description

n-ary predicates

Here:

n ∈ {1, 2, 3}

speaks

jogs

… speaks … fluently

… speaks … at … … eats … at …

A predicate is a sequence of

role boxes that correspond

to roles which are played

by object types. It must

have at least one reading

which can be in mixfix no-

tation. If there is no ob-

ject type placeholder “...”,

unary predicates are in pre-

fix and binary predicates in

infix notation.

predicate read-

ings

is cooked by

cooks / is cooked by cooks
[role2][role1]

[cook] [meal]

Predicates can have a for-

ward and a backward read-

ing. At least one reading

needs to be provided. If

both are provided, they are

separated by a ‘/’. The

reading direction is typi-

cally left to right or top to

bottom. If this doesn’t ap-

ply, an arrow symbol indi-

cates the reading direction.

Roles can be annotated with

role names in blue color and

square brackets.

unary fact type Person

jogs Displays the fact type ‘Per-

son jogs’

Continued on next page

105

Table 1 – continued from previous page

Name Example Description

binary fact type

Person

teaches / is taught by

[teacher] [student]

Person Surface

runs on

Restaurant

Person

owns

Examples of binary fact

types.

ternary fact type

Person

Race

City

… ran … in …

[runner]

Person

Restaurant

Date

… visited … on …

PersonRestaurant

Date

[Person] visited [Restaurant] on [Date]

Person

… was introduced to … by …

Examples of ternary fact

types. If a predicate read-

ing doesn’t use the object

types in the order of their

role boxes, the object type

placeholder “...” is replaced

by the object type name in

square brackets.

Table 2: Table of further elements of ORM’s notation as used in NORMA.

Name Example Description

Independent ob-

ject type

Instances of these object

types can exist without

playing a role in a fact

Continued on next page

106 A. ORM NOTATION

Table 2 – continued from previous page

Name Example Description

duplicate object

type or predicate

An object type or predicate

can appear in a schema mul-

tiple times and is displayed

with an underlying shadow

to indicate this.

objectification

A fact type can be objec-

tified and the resulting en-

tity type (here “Universi-

tyOffersFieldOfStudy”) can

take part in further rela-

tions (unless it is declared

independent)

derived fact

types (deriva-

tion rule not

included)

Facts types are either as-

serted, derived or semi-

derived. Derived fact types

are indicated by an asterisk

”*” following the predicate

reading. A double asterisk

”**” indicates that the fact

type is derived and stored.

Semiderived fact types are

indicated by a ”+” sym-

bol after the predicate read-

ing. ”++”stands for a semi-

derived fact that is stored.

Continued on next page

107

Table 2 – continued from previous page

Name Example Description

subtyping

An arrow going from one en-

tity type to another indi-

cates a subtype relation be-

tween the origin entity type

and the target entity type.

A solid arrow means that

the subtype has the same

preferred identifier as its su-

pertype. A dashed arrow

indicates that the subtype’s

preferred identifier differs

from that of its supertype.

derived subtypes

Subtypes can be asserted,

derived or semi-derived.

Their derivation status is

indicated by a ”+”(semi-

derived) or a ”*” (fully

derived) following the

subtypes name. In this

example, the subtype

Grandchild is semiderived.

It can be defined directly or

through derivation (Each

derived Child is a Person who

is a child of some Person who

is a child of some Person.).

Table 3: Table of ORM constraints as used in NORMA.

Name Example Description

Continued on next page

108 A. ORM NOTATION

Table 3 – continued from previous page

Name Example Description

internal unique-

ness constraint

on unaries

Internal uniqueness con-

straints are displayed as

lines above the roles they

apply to. The uniqueness

constraint on unary rela-

tions is implied and thus

not displayed here, since

facts are not allowed to be

duplicated.

internal unique-

ness constraint

on binaries

An internal uniqueness con-

straint must span at least

n − 1 roles of a fact

type. This makes 4 possi-

ble combinations of unique-

ness constraints on binary

fact types.

mandatory role

constraint

The mandatory role con-

straint indicates that the

constrained role must be

played by the object type

hosting it. It is indicated

through a purple dot on the

role box.

inclusive-or con-

straint (disjunc-

tive mandatory

role constraint)

The inclusive-or constraint

is a purple dot within a cir-

cle that is connected to two

or more roles played by the

same object type. It means

that this object type must

play at least one of these

roles.

Continued on next page

109

Table 3 – continued from previous page

Name Example Description

preferred inter-

nal uniqueness

constraint

The second bar above

the internal uniqueness

constraint bar indicates

that the value type hosting

this role it the preferred

reference scheme for the

entity type playing the

other role.

external unique-

ness constraint

This constraint indicates

that the combination of the

constrained roles is unique

for all instances of Restau-

rant. The double bar indi-

cates that the combination

of Address and Code is the

preferred reference scheme

for Restaurant.

object Type

value constraint

Objects may only take on

the values defined in the

value constraint. The values

can be provided in the form

of an enumeration (1,2,3) or

a range (50..100) or a com-

bination of both.

role value con-

straint

Objects playing the con-

strained roles may only take

on the defined values.

Continued on next page

110 A. ORM NOTATION

Table 3 – continued from previous page

Name Example Description

subset con-

straint

This constraint is directed

and points from the subset

to the superset. Subset and

superset instances must be

compatible. This constraint

can also apply to role se-

quences of compatible ob-

ject types.

exclusion con-

straint

Student

(.ID)

Room

(.nr)

Car

(.code)

Date

(mdy)

lives in

arrives by

was born on

This constraint is used to in-

dicate that the constrained

roles exclude each other –

i.e. it is not possible to play

all constrained roles.

exclusive-or con-

straint

Student

(.ID)

eats vegetarian food

eats non-vegetarian food

This constraint is the

combination between the

disjunctive mandatory role

constraint and the exclusion

constraint: at least one role

must be played and not

all roles can be played.

This constraint can also

apply to role sequences of

compatible object types.

equality con-

straint

Student

(.ID)

Username

EmailAddress

has

has

This constraint indicates

that the populations of the

constrained roles must be

equal. This constraint can

also apply to role sequences

of compatible object types.

Continued on next page

111

Table 3 – continued from previous page

Name Example Description

subtype con-

straints

Course

(.code)

Seminar Lecture

Student

(.ID)

Bachelor Student

Master Student

PhD Student Commuting Student

Campus-dwelling Student

Student

(.ID)

The circled ”X” indicates

that the subtypes are mutu-

ally exclusive. The circled

dot indicates that the super-

type is the union of its sub-

types. The combination of

the two previous constraints

is an XOR constraint and

indicates that the subtypes

partition the supertype.

internal fre-

quency con-

straint

This constraint limits the

number of times a certain

instance of a role or role

sequence can occur in the

role/role sequence’s popula-

tion. In this case each Em-

ployee works for at least two

restaurants.

external fre-

quency con-

straint

This constraint limits the

number of times a certain

combination of instances of

a roles or role sequences can

occur with respect to the

existence of their common

object type. In this case

this means that there can

be at most two enrollments

by the same combination of

student and course. This

means that a student can

only enroll into a specific

course at most two times. 1

Continued on next page

1Source of figure: http://www.orm.net/pdf/ORM2GraphicalNotation.pdf

http://www.orm.net/pdf/ORM2GraphicalNotation.pdf

112 A. ORM NOTATION

Table 3 – continued from previous page

Name Example Description

ring constraints

Ring constraints are used to

further define the ring rela-

tion. 2

value compari-

son constraints

This constraint is used to

enforce certain relations be-

tween the values of the

objects playing the con-

strained roles. In this ex-

ample, the release date of

a book must be ≤ the pur-

chase date. The other oper-

ators that can be used are

≤, ≥, ≥, = and 6=.

object cardinal-

ity constraint

This constraint limits the

number of instances an ob-

ject type can have.

Continued on next page

2Source of figure: http://www.orm.net/pdf/ORM2GraphicalNotation.pdf

http://www.orm.net/pdf/ORM2GraphicalNotation.pdf

113

Table 3 – continued from previous page

Name Example Description

role cardinality

constraint

This constraint limits the

number of instances that

can play a certain role. This

schema indicates that there

can only be at most one

pope at any point in time.

deontic con-

straints

Deontic constraints are

obligatory but not manda-

tory. They are colored blue

rather than violet and con-

tain an ”o” for obligatory.

Deontic ring constraints

have a dashed line. 3

3Source of figure: http://www.orm.net/pdf/ORM2GraphicalNotation.pdf

http://www.orm.net/pdf/ORM2GraphicalNotation.pdf

114 A. ORM NOTATION

115

B Mapping ORM to grUML

This section provides additional information concerning the mapping of ORM

schemas to grUML schemas. The basics of this mapping were introduced in chapter

2.

Table 4 shows the mapping of ORM reference mode value domains to grUML value

domains.

Table 5 shows the mapping of the ORM value type domains to grUML value do-

Table 4: ORM reference modes and their value domains mapped to grUML value domains

ORM reference mode ORM value domain
corresponding domain
in grUML

.ID/.Id/.id Numeric: Auto Counter Integer

.# Numeric: Signed Integer Integer

.code/.Code Text: Fixed Length String

.name/.Name Text: Variable Length String

.nr/.Nr Numeric: Signed Integer Integer

.title/.Title Text: Variable Length String
AUD: Numeric: Money Double
CE: [common era] Temporal: Date String
Celsius: Numeric: Decimal Double
cm: Numeric: Decimal Double
EUR: Numeric: Money Double
Fahrenheit: Numeric: Decimal Double
kg: Numeric: Decimal Double
km: Numeric: Decimal Double
mile: Numeric: Decimal Double
mm: Numeric: Decimal Doube
USD: Numeric: Money Double

mains.

116 B. MAPPING ORM TO GRUML

Table 5: ORM reference modes and their value domains mapped to grUML value domains

ORM value domain
corresponding domain
in grUML

Logical: True or False Boolean
Logical: Yes or No Boolean
Numeric: Auto Counter Integer
Numeric: Decimal Double
Numeric: Float (Custom Precision) Double 1

Numeric: Float (Double Precision) Double 1

Numeric: Float (Single Precision) Double 1

Numeric: Money Double
Numeric: Signed Big Integer Long
Numeric: Signed Integer Integer
Numeric: Signed Small Integer Integer 2

Numeric: Unsigned Big Integer Long
Numeric: Unsigned Integer Long 2

Numeric: Unsigned Small Integer Integer 2

Numeric: Unsigned Tiny Integer Integer 2

Other: Object ID Integer
Other: Row ID Integer
Raw Data: Fixed Length -
Raw Data: Large Length -
Raw Data: OLE Object -
Raw Data: Picture -
Raw Data: Variable Length -
Temporal: Auto Timestamp String
Temporal: Date String
Temporal: Date & Time String
Temporal: Time String
Text: Fixed Length String
Text: Large Length String
Text: Variable Length String

1An additional constraint is required to adjust the values to the specified precision. This is not

implemented in the current mapping procedure
2An additional constraint is required to adjust the value range. This is not implemented in the

current mapping procedure

Glossary 117

Glossary

arity in reference to a predicate, the arity or degree indicates the number of object

term holes in the predicate . 9

entity an object that is referenced by an unambiguous description which relates this

object to other objects, e.g. the entity “Country that has the CountryCode

’AU”’, “City named ’Auckland”’, “Course with code ’CS2017”’. Entitites can

change with time. 8, 12, 36

entity type a kind of entity, e.g. Country, Person, Language, Phone. It’s the set

of all possible type instances (used in an information system). 9, 12

fact a proposition that is taken to be true within the relevant business community.

A fact either declares that some individual exhibits a property (e.g. Pam is

lost), that one or more individuals take part in a relationship (e.g. Pam speaks

Spanish, Pam is in France) or that an individual exists (Pam exists).. 8, 12

fact role role in an elementary fact type. Each entity type in a completed ORM

schema plays at least one referential role and one fact role (unless the entity

type is declared independent). 17

fact table is the result of populating fact types. Each fact type has its own fact

table. A fact table has as many columns as the arity the of fact type’s predicate.

Each column of the table stands for a role that is played by the object type

connected to the role box. When populating a fact type, the objects are placed

into the columns corresponding to the roles they play and one row equals one

fact.. 14

fact type a kind of fact which includes all instances of this kind of fact. It is an

abstraction of a fact instance. E.g. Person is lost is the fact type of the fact

instance “Pam is lost”, Person speaks Language is the fact type of the fact “Pam

speaks Spanish”, Person is in Country is the fact type of the fact “Pam is in

France”. 10, 12

118 Glossary

global schema in modeling, large business domains are often divided into smaller

segments to simplify the modeling process. Each segment is transformed into

a subschema. The global schema is the product of merging all subschemas and

covers the entire UoD. 17

object individual thing of interest, e.g. a specific person or language. In ORM,

objects are either entities or values.. 8

object type concept that classifies objects, e.g. Person or Language. 10

predicate in logic a predicate is a declarative sentence with holes in it that can be

filled by object terms (object terms refer to a single object in the UoD). E.g.

“The Person with Surname ’Walker’ has a Weight of 80 Kilograms.” contains

the predicate “... has...”. The ellipses are filled with the object terms “The

Person with Surname ’Walker”’ and “a Weight of 80 Kilograms”. This is an

example of a binary predicate but they can also be unary (one hole for object

term), ternary (three holes for object terms), Note that there is an ordering

of the object term holes. 9, 12

primitive entity type see primitive object type. 17

primitive object type is an object type that is not a proper subtype of any other

object type within the schema. Primitve object types are mutually exclusive

and can define subtypes. Object types can be entity types or value types. 17

reference mode is the manner in which a value refers to an entity. In the example

fact “Person with Surname ‘Walker’ has a Weight of 80 Kilograms.” the entity

types Person and Weight are referenced by the values ‘Walker’ and 80, through

the reference mode Surname and Celsius. Each entity type has a preferred

reference scheme. If a 1:1 reference scheme exists, this is the preferred reference

scheme. 10

reference scheme each entity type has at least one reference scheme and exactly

one preferred reference scheme. When an entity is identified by a single value,

this is called a simple reference scheme. If the entity is uniquely identified by

a single value, this is a simple 1:1 reference scheme and the reference mode

describes how the value relates to the entity. In general a reference scheme

describes how an entity type can be identified through its relations . 12, 23

Glossary 119

value constant which does not require a description since its reference is clear from

the context it is used in. E.g. character strings such as ’AU’ or numbers such

as 42. 9, 12, 36

value type a kind of value, e.g. CountryCode, PersonName, LanguageName, Pho-

neNumber. 12

120 Glossary

BIBLIOGRAPHY 121

Bibliography

[BHR+10] D. Bildhauer, T. Horn, V. Riediger, H. Schwarz, and S. Strauß. grUML

- A UML based modelling language for TGraphs. Technical report, Uni-

versity of Koblenz-Landau, 2010.

[EB10] Jürgen Ebert and Daniel Bildhauer. Reverse Engineering Using Graph

Queries, pages 335–362. Springer Berlin Heidelberg, Berlin, Heidelberg,

2010.

[EF95] J. Ebert and A. Franzke. A declarative approach to graph based model-

ing. In G. Tinhofer E. Mayr, G. Schmidt, editor, Graphtheoretic Concepts

in Computer Science, chapter LNCS 903, page 38–50. Springer, 1995.

[EXP04] ISO 10303-11:2004, Industrial automation systems and integration –

Product data representation and exchange – Part 11: Description meth-

ods: The EXPRESS language reference manual. 11 2004.

[Hal09] T. Halpin. Object-role modeling. In Ling Liu and M. Tamer Özsu,

editors, Encyclopedia of Database Systems. Springer US, 2009.

[HM08] T. Halpin and T. Morgan. Information Modeling and Relational

Databases, Second Edition. Morgan Kaufmann Publishers, 2008.

[IDE12] ISO/IEC/IEEE 31320-2:2012 Information technology – Modeling Lan-

guages – Part 2: Syntax and Semantics for IDEF1X97 (IDEFobject). 09

2012.

[KK01] Manfred Kamp and Bernt Kullbach. GReQL - Eine Anfragesprache für

das GUPRO-Repository - Sprachbeschreibung (Version 1.3). Technical

Report 8/01, Universität Koblenz-Landau, Institut für Softwaretechnik,

Koblenz, 2001.

[Oli07] Antoni Olivé. Conceptual Modeling of Information Systems. Springer-

Verlag Berlin Heidelberg, 1 edition, 2007.

122 BIBLIOGRAPHY

[RJB04] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Modeling

Language Reference Manual, The (2nd Edition). Pearson Higher Educa-

tion, 2004.

[sC76] Peter Pin shan Chen. The entity-relationship model: Toward a unified

view of data. ACM Transactions on Database Systems, 1:9–36, 1976.

	Table of Figures
	Introduction
	Motivation
	Research Question
	Thesis Outline
	Information Modeling
	Information Model
	Information System

	Object Role Modeling
	Basic Components
	Constraints
	Independent Object Types
	Objectifications
	Subtyping
	Reference Schemes
	Derivations and semiderivations

	TGraphs
	grUML
	Main components
	grUML metamodel
	Example grUML schema
	Validating grUML constraints

	GReQL
	Quantified expressions
	Conditional expressions
	FWR expressions

	Event-Condition-Action (ECA) rules
	Summary

	Mapping ORM to grUML
	Prerequisites
	Naming conventions in grUML
	Entity Type mapping
	Reference Mode mapping
	Value Type mapping
	Mapping of value type domains

	Objectification mapping
	Fact Type mapping
	Mapping unary Relations
	Mapping binary relations containing only entity types or objectifications
	Mapping binary relations containing value types
	Mapping ternary and higher arity relations

	Constraint mapping
	Example mapping of an exclusion constraint

	Independent Object Type mapping
	Subtype mapping
	Subtype relations without constraints
	Exclusive subtypes
	Exhaustive subtypes
	Partition of subtypes
	Further subtype definitions
	Subtype definitions between value types

	Reference Scheme mapping
	Preferred reference schemes
	Other reference schemes

	Derivation and semiderivation mapping
	Summary

	Implementation
	Overview
	Mapping ORM schemas to grUML schemas
	ORM schema file
	ORM schema file parser
	Mapping the data to grUML

	Generating TGraphs
	Adding ECA rules
	Validating TGraphs

	Final result

	Discussion
	Theoretical mapping from ORM to grUML
	Mapping entity types to attributes
	Mapping value types to vertex classes
	Constraints
	Derivations
	Mapping to a composition relationship
	grUML elements that could not be included
	What is lost during mapping
	Completeness and Correctness

	Implementation
	ORM schema parser
	Mapping the data to grUML

	Generating instances
	Outlook

	Conclusion
	Appendices
	ORM notation
	Mapping ORM to grUML

	Bibliography

