UNIVERSITAT
KOBLENZ - LANDAU VyedSng &% EYEVIDO

Faculty 4: Computer Science Institute for Web Science and Technologies =~ EYEVIDO GmbH

Intelligent Mapping of Eye-Tracking
Gaze-Data on Fixed Web Page Elements

Master’s Thesis

in partial fulfillment of the requirements for
the degree of Master of Science (M.Sc.)
in Web Science

submitted by
Hanadi Tamimi

First supervisor: Prof. Dr. Steffen Staab
Institute for Web Science and Technologies

Second supervisor: Raphael Menges
Institute for Web Science and Technologies

External supervisor: Christoph Schaefer
EYEVIDO GmbH

Koblenz, December 2017

Statement

I hereby certify that this thesis has been composed by me and is based on my own
work, that I did not use any further resources than specified — in particular no
references unmentioned in the reference section — and that I did not submit this
thesis to another examination before. The paper submission is identical to the
submitted electronic version.

Yes No

I agree to have this thesis published in the library. o O
I agree to have this thesis published on the Web. o O
The thesis text is available under a Creative Commons

License (CC BY-SA 4.0). O 0O
The source code is available under a GNU General Public

License (GPLv3). o 0O
The collected data is available under a Creative Commons

License (CC BY-SA 4.0). o 0O

(Place, Date) (Signature)

1ii

Zusammenfassung

Abstract

The output of eye tracking Web usability studies can be visualized to the analysts as
screenshots of the Web pages with their gaze data. However, the screenshot visu-
alizations are found to be corrupted whenever there are recorded fixations on fixed
Web page elements on different scroll positions. The gaze data are not gathered on
their fixated fixed elements; rather they are scattered on their recorded scroll posi-
tions. This problem has raised our attention to find an approach to link gaze data
to their intended fixed elements and gather them in one position on the screenshot.
The approach builds upon the concept of creating the screenshot during the record-
ing session, where images of the viewport are captured on visited scroll positions
and lastly stitched into one Web page screenshot. Additionally, the fixed elements
in the Web page are identified and linked to their fixations. For the evaluation, we
compared the interpretation of our enhanced screenshot against the video visual-
ization, which overcomes the problem. The results revealed that both visualizations
equally deliver accurate interpretations. However, interpreting the visualizations of
eye tracking Web usability studies using the enhanced screenshots outperforms the
video visualizations in terms of speed and it requires less temporal demands from
the interpreters.

Contents

(1._Introductioni

[2. Background and Related Work|

2.1. Technical details|.
[2.2. Eye tracking research| . .

2.3. Web Elements Extraction]

[2.4. Image processing|

3. Hesearch Problem|

{4. Methodology]|
|4_l.1. Challenge§|

4.1.2. Screenshots| . . .
4.2. Approach conceptf. . . .
4.3. Implementation|

|§.1.3. Results analeis| .
E.I.Z. Equipments] . . .

[7._Bibliographyj

ADD 0

|A. Detailed Experts’ Tasks|

-—h

N OO B

12
13
13
14
16
18

28
28
29
32
38
38
38
44

46
48
50
50

vii

List of Figures

TestWebpagel 0 . 8

|2 Stitched screenshot withoutscrolling] 9
B. Stitched screenshot withscrolling]. 9
4. Facebook newsfeedpagel 10
b. Stitched screenshot of Facebook news feed page| 11
6. The mechanism of the Stitched-Viewport Screenshot method and the |
[Enhanced Stitched-Viewport Screenshot| 13
i 20

8. The St1tched Vlewport Screenshot output of the gpen source browseti 22
0. The Stitched-Viewport Screenshot output of the Recording Tool] . . . 22
10. Classdiagram| 23
[11. Fixed elements identification and creation activity diagram|. 25
12. Mouse data activity diagram| 26
[13. Gaze dataactivity diagram| 27
[14. Stitched-Viewport Screenshot and image saving activity diagram| . . 27
15. First Phase of the evaluation| 29
16. The fixed elements of the evaluation Web pages| 31
17. Creative Commons screenshot in the Analytical Tooll. 33
[18. Jimdo video in the Analytical Tool 34
19. Second Phase of the evaluation| 35
luation m IeSl . .o 36

21. 'I-Test results for the recorded timings| 40
2. T-Testresultsforaccuracy] 40
3. Quantitative results of experts groups| 41
4. The difference of the mean values of the timings in both visualizations| 42
5. The qualitative NASA TLXresults] 43

ix

1. Introduction

Over time, Web design technologies have flourished to provide Web developers the
freedom of design to build new generations of interactive websites for more au-
thentic and engaging Web experiences. A satisfying Web experience comes from
remarkable Web usability as the ISO defines Web usability to be concerned with the
“effectiveness, efficiency and satisfaction with which specified users achieve speci-
tied goals in particular environments” [7], while the Web experience is concerned with
“all aspects of the user’s experience when interacting with the product, service, en-
vironment or facility” [9]. Therefore, it is crucial to understand the importance of
measuring Web usability to assist in creating a better Web experience. Detecting the
overt behavior of users, information about clicks, mouse moves, and scrolls, ques-
tionnaires, and “Thinking-aloud” methods are examples of traditional and success-
ful strategies for examining the quality of usability.

Eye tracking technology has significantly improved in recent years. It plays an
important role in the Human-computer interaction (HCI) field [17]. Eye tracking is
used to assess search efficiency [14], online advertisements [11], navigation usabil-
ity [15], overall design and other site components. Moreover, eye tracking provides
analytical information about the user interaction between click events. Such infor-
mation is shaped to deduce valuable knowledge concerning the significance of Web
elements; i.e.,, which elements are the most eye-catching, which cause indecision
and which elements are ignored. This knowledge is interpreted and then utilized as
a modern strategy to investigate Web usability.

The interpretation of the eye tracking results on the Web can be achieved through
analyzing the visualized output results. The results are represented with either a
static screenshot of the Web page with users’ fixations or a video representation of
the Web interface from the user’s perspective, where the Web page is shown with
users’ fixations in sequence. So far static representations cannot capture the dynamic
transitions or event changes on the Web page. Inactive screenshots allocate less stor-
age than the same session recorded as a video. Furthermore, static images demon-
strate a full representation of the gazed Web page with fixations and time-stamped
scan-paths, which implies less time for investigators to analyze user activity. Ad-
ditionally, in static screenshots, it is possible to visualize data of multiple users on
the same image to analyze the overall or individual user behavior on the Web page.
On the other hand, video illustrations capture users’ sessions with a detailed step
by step user action, which reveal the current viewport with its Web elements and
functionalities such as dynamic transitions and event changes. However, videos al-
locate more system storage, and they are recorded for each participant in the study,
which implies that the investigator has to watch every user session to conclude the
entire analysis of the study. Another time-consuming drawback of videos is that the
investigator has to inspect the complete video to understand the user interaction
during their session.

There are two methods for image creation in static screenshots; the first one is

to capture a screenshot of the entire Web page when it is loaded, which will not
only produce an image of the current viewport; rather the complete page content
(Expanded-Viewport Screenshot), and the second method is to take multiple snap-
shots of the current viewport on either a timeout or a page event, such as win-
dow scrolling, and eventually combine all captured images in one single screenshot
(Stitched-Viewport Screenshot). We argue that the latter method to be more robust
than the first one for the reasons explained in the following paragraphs.

First of all, in the Stitched-Viewport Screenshot method, the images of the view-
port are captured on page events, which indicates that the Web page is processed
step by step within the recording session. The final stitched screenshot will guide
the investigator to where the user lost interest, for example, stopped scrolling, with-
out revealing the unseen parts of the Web page. On the other hand, the created im-
age in the Expanded-Viewport Screenshot method will result in acquiring regions
that are unseen by the user, which are of no importance to the investigator, as well
as the trouble of producing extra stored pixels in the system.

Secondly, several different types of technologies are used in Web development
and design. Some Web pages are static, which means that their components are
available on page load, and others are dynamic in the sense that not every part of
the Web page is visible when the page is loaded, and the Web page will only acquire
the dynamically added parts on user interaction. For example; when the user clicks
on something or endless scrolling as in infinite Web pages. In the dynamic case, the
Stitched-Viewport Screenshot method wins the debate for maintaining the ability to
capture the dynamically created elements on the page, since the images are taken
on page scroll events. In contrast, the Expanded-Viewport Screenshot method might
fail in obtaining the complete rendered Web page with the dynamic parts on page
load, since they are not generated at the moment of page load.

Finally, Web elements are diverse in style. While some elements are always visi-
ble in the same position of the viewport on window scrolling such as fixed header
menus and fixed footer, others are scrolled. The fact that these fixed positioned
components are always visible in the viewport proposes that their gaze data on the
screenshots will be equivalent to the scroll position of their appearances. This point
has raised an issue in both argued strategies (Expanded-Viewport Screenshot and
Stitched-Viewport Screenshot) with some differences. In the Expanded-Viewport
Screenshot method, the fixed located element is placed on the output image by its
first appearance on the viewport, and whenever the user is scrolling the Web page,
the gaze data of the fixed element will have their position as they were recorded on
scroll positions and not on their intended fixed element. In this case, the represen-
tation of the results will have separated gaze data from their fixated fixed elements.
Which causes difficulty for the investigators to assume which gaze data refer to
which Web elements. Likewise, the same issue appears on the Stitched-Viewport
Screenshot method, except that rather than only having the separated gaze data on
several scroll positions, the fixed elements themselves are replicated on the final
screenshot beneath their intended gaze data.

The focus of this master thesis is to establish a solution for the problem of lack-
ing the intelligent linking between the gaze data and their intended fixed elements
on scrollable Web pages, which produces corrupted visualization results. Similarly,
the problem is associated with cursor movements since the fixed elements are also
traced with the mouse on different scroll positions. Accordingly, the approach in this
thesis applies the Stitched-Viewport Screenshot method and proposes to bind gaze
data and mouse trails to their intended fixed elements. The association provides the
ability to locate gaze data, mouse trails and fixated fixed elements in a better visual-
ization without having duplicate appearances in the final analytical representation
of the Web page. The objective of the approach is to assist in forming enhanced out-
comes for more beneficial interpretation and analysis using our proposed Enhanced
Stitched-Viewport Screenshot.

Until our Enhanced Stitched-Viewport Screenshot, the problematic behavior was
produced in the screenshot visualizations when gaze data are created on fixed ele-
ments on different scroll positions. However, it is not the case in the video visual-
ization since it displays the viewport with the fixed elements on their all-session po-
sition. Therefore, the gaze data lay on their intended fixed elements throughout the
video. Consequently, in the evaluation, we held a comparison between the two ap-
proaches that master the problem of this research (our Enhanced Stitched-Viewport
Screenshot and the Video). The evaluation results assisted in gaining better insights
on which method is more efficient, which one produces greater effectiveness in data
visualization and higher interpretation satisfaction.

Initially, we hypothesized that our Enhanced Stitched-Viewport Screenshot al-
lows faster interpretations for the investigators than the Video visualization ap-
proach. After studying 10 experts while they’re analyzing both visualization meth-
ods of a gaze dataset, we concluded that the Enhanced Stitched-Viewport Screen-
shot is more time-efficient than the Video method in analyzing the second partici-
pant since there was a big time difference between both used methods for the second
participant investigation. Therefore, we accept our hypothesis with a more accurate
detail: our Enhanced Stitched-Viewport Screenshot allows faster interpretations for
the investigators in analyzing non-initial participants than the Video approach. Fur-
thermore, our results have shown that the Video approach is more effective in un-
derstanding the users” demands in accomplishing their tasks using behavioral ana-
lytics since experts were closer to the ground truth values in interpreting the level
of difficulty that the participants had while completing their tasks using the Video
approach. In addition, the results have reported same level of effectiveness in both
visualizations since there were no significant differences in the accuracy of the re-
ported statistical values of the gaze data in both methods.

The results of the evaluation are the key contribution of this master thesis. We
also provide two additional technical contributions: first of all, we have imple-
mented our methodology of the Enhanced Stitched-Viewport Screenshot that deals
with mouse moves only (gaze data recognition is not yet added) as an open source
Web browser example. Secondly, we have combined our methodology with the sup-

port of gaze data recognition in a crowd eye tracking software provided by Eyevido
in order to use the software in the evaluation.

2. Background and Related Work

This chapter is split into the following topics: Technical work, eye tracking research,
Web elements extraction, and image processing.

2.1. Technical details

There are a few technologies and technical terms that we used along with this master
thesis:

Cascading Style Sheet (CSS) is a styling language to describe the presentation
of the document. There are three different ways to attach CSS properties to Web ele-
ments: External, internal, and in-line. To extract the values of all the CSS properties
of an element after applying the active style-sheets and resolving any basic com-
putation those values may contain we need to use the getComputedStyle() JavaScript
method. We focus on the "position" property to catch the fixed positioned elements,

and the "visibility", "display"”, and "opacity" properties to confirm that the element
is visible to the viewer eye in the viewport.

Fixed Elements are theoretically all Web elements that are always visible in the
same position in the viewport even when the viewer scrolls the Web page. Practi-
cally, there are many ways to assign an element to be always visible in the viewport;
one option is to assign the “position” CSS property to “position:fixed;”, another option
is to manipulate the element by scripts to keep it in the same position on onscroll
events. In the Methodology section of this master thesis, we discuss ways to handle
the aforementioned techniques, however, we have only implemented the algorithm
to handle the elements with “position:fixed;” CSS property. Therefore, all future no-
tations of fixed elements indicate the ones with a CSS property of “position:fixed;”.

JavaScript (JS) is a programming language, which we used to extract the prop-
erties of the fixed elements in Web pages. By injecting our own JavaScript file in
the viewed Web pages, we are able to query the Document Object Model (DOM)
for fixed elements and get their properties with the getBoundingClientRect() method,
that returns the size of an element and its position relative to the viewport. The
properties are passed on with a call back function in the C++ browser implemen-
tation, which are then used to locate the fixed element in the viewport renderer to
crop them out from the image. Furthermore, we use the mouse move event to log
the coordinates of the mouse trails in a call back function in the browser implemen-
tation.

Qt is a C++ framework. We use an example implementation of Chromiumlﬂ to
implement our methodology (Enhanced Stitched-Viewport Screenshot with mouse
trails). The Qt WebEngine provides functionality for rendering Web content. Our
implementation utilizes two main classes of the engine. First is the QWebEngineView;

a Web engine view is the main widget component of the Qt WebEngine, and it is
used to display Web content live from the Internet. The second is the QWebEnginePage;
A Web engine page holds the contents of an HTML document, the history of navi-
gated links, and actions.

Eyevido GmbH is a crowd eye tracking company, that provides two software in-
frastructures in Eyevido Lab to conduct Web-based eye tracking studies; the first
one is the Recording Tool, which is used to record the gaze and mouse data on Web
pages as well as creating a screenshot of the Web page using the Stitched-Viewport
Screenshot method. We have contributed our Enhanced Stitched-Viewport Screen-
shot to the Recording Tool. Secondly, the Analytical Tool, which is a client portal
that visualizes the gaze and mouse data for the analysts to use for interpretation on
screenshot or video visualizations. We have used both tools to record gaze data and
analyze it in the evaluation of this master thesis.

2.2. Eye tracking research

Recent research in eye tracking systems is directed towards the implicit interpreta-
tion of the eye movements [10] or focused on the explicit interaction of the target
objects by the gaze [16], while this master thesis focuses on improving the interpre-
tation of the gaze data, precisely on Web pages, for perceptible analysis that pro-
vides easier interpretations. Moreover, eye tracking plays a significant implicit role
in diverse Web applications; in some scenarios, it is used to test the Web usability,
while in others it is used to understand the user attention in online advertisements
and search services analysis. The results of the studies were significant for decision
makers in various scenarios.

Eye tracking has recently been used in various research fields such as in online
advertisements. Studies were conducted using eye tracking technologies to capture
the effect of certain types of advertisements on customer behavior [11] “Do users
look at banner ads on Facebook?”. The results have raised the level of understand-
ing on which kinds of advertisements get the most attention and the reason behind
that attention. Such analysis helps in figuring out how to successfully publish ads
on the Web page layout, taking into consideration important principles that were
withdrawn from the research to draw customers awareness. In this particular study
area, accurate visualization of the gaze data of user attention is crucial. The rep-
resentation of the gaze data and the analyzed ad would be corrupted if the ad is
fixed positioned on the Web page. When users scroll the page while gazing the
ad, the output screenshot will have duplicate images of the ad and its gaze data

!Chromium: http://www.chromium.org/

on several scroll positions. Therefore, this master thesis develops an approach for
generating the Stitched-Viewport Screenshot with the gathered gaze data and cur-
sor movements on the fixed positioned ads without duplications or separated gaze
data.

Furthermore, eye tracking technologies were also utilized in Web usability and
design field. Web usability is an essential factor in user satisfaction and, sequentially,
business success. It aims to increase the ease of use of websites for users which is
achieved by learning users’ behavior on the website via eye tracking tools, for exam-
ple. Studies were conducted to understand how users allocate their visual attention
when observing Web pages [8]. Acquiring such knowledge on users’ response helps
in diagnosing usability problems and enables different roles to make changes to im-
prove users’ experience and performance, such as developers, designers, publishers,
advertisers and advertising agencies, depending on their perspective. However, to
reach the improvements phase, the data visualization analysts need to have com-
plete results that cover all of the Web page elements efficiently, where many Web
pages have different kinds of layouts and used technologies. Therefore, the visual-
ization of the results should include all types of possible Web elements (hence, fixed
elements) in an organized way for the analysts to have an accurate interpretation
without any complications.

A gaze-controlled Web browser was developed to allow users to interact with the
Web through eye movements [16]. The explicit eye tracking research of GazeTheWebE]
mentioned a major challenge is the identification of the interactive Web elements
and the ability to control them with eye tracking. The difficulty was tackled by ex-
tracting the location of selectable objects on Web pages, such as text input fields,
hyperlinks, scrollable sections, select fields, etc. and attach the gaze-control to it. In
respect to our research topic, identifying Web elements is a vital challenge. Partic-
ularly, part of this research centers on the recognition of the fixed elements and the
extraction of their positions to be utilized in the screenshot stitching process.

2.3. Web Elements Extraction

The “Web Block Extraction System Based on Client-Side Imaging for Clickable Im-
age Map” [19] project describes an extraction system of Web elements that are most
appealing to users. Users recognize Web elements by selecting a cropping area on
the Web page, and then the system extracts the selected Web element with their
image and HTML content. Afterwards, the system gathers the selected elements
including hyperlinks and images in a cloud storage system for later user access.
The extraction in the Web Block Extraction System is a client-side process, whereas
a browser extension was implemented to allow users to select the cropping areas.
The extension has constituents for capturing a full Web page screenshot, cropping
the image, and obtaining hyperlinks for the selected areas. The final generated prod-
uct is a clickable image map of the selected element. However, the approach imple-

2GazeTheWeb: A Gaze-Controlled Web Browser

mented in this master thesis handles the extraction of the Web elements automati-
cally on page events with no user interaction, and then their positions and images
are stored in a data structure for later usage.

2.4. Image processing

Furthermore, the ghosting problem has elevated for its difficulty of elimination in
image stitching procedures. Ghosting represents the overlap of a dynamic region
in multiple images when they are combined into one image. Many de-ghosting al-
gorithms were implemented to exclude the replicated artifact from the main frame.
A proposed algorithm in “De-ghosting Method for Image Stitching” [20] plans to
find a stitching line that passes around the ghost artifact with an image subtrac-
tion method and later on stitch the images respectively to that line. The issue of
the ghosting artifact also occurs in this master thesis approach, where some content
on the Web page is scrollable, and other content is constantly in a fixed positioned
relatively to the viewport. The suggested solution for this challenge relies on the
inspection of the scroll position and the locations and dimensions of the fixed el-
ements. The previous properties are acquired by traversing the Document Object
Model (DOM) of the Web page, which makes the de-ghosting process handled dif-
ferently by identifying the properties of the ghost artifact (the fixed element) when
stitching the multiple screenshots into one screenshot. The replicated artifacts are
cropped on each image creation, and finally, they are stitched in one position.

Many Internet browser extensions have applied a different concept of capturing
a full Web page screenshot than our pursued method [2]. For example, FireShot
[1] provides an option to capture the entire Web page image. The extension injects
the existing fixed Web elements with absolute positioning style and scrolls down
the page to capture an image of each visible viewport on scroll positions. Hence,
the originally fixed positioned elements will not be visible in each viewport image.
Therefore, the full screenshot is made by stitching all captured viewport images. In
our proposed method, it is not possible to adjust the style of the fixed elements to be
absolute since the page is viewed by the user at the time of capturing the viewport
images. Modifying the design of the elements on the Web page does not provide an
authentic Web experience. Therefore, we propose to identify the fixed elements on
each scroll position in order to crop them out from the viewport image when it is
captured. This technique prevents the duplication of fixed elements when stitching
all captured viewport images.

In conclusion, to assemble our solution for the research problem, we have com-
bined together the previous ideas of the introduced research works; recording the
gaze on Web pages, identifying and extracting fixed elements, as well as the stitch-
ing method in image processing. To the extent of our knowledge, we do not know
of any research that explores the tackled topic. Therefore, we believe that this work
is the first research on the pursued problem.

3. Research Problem

Eye tracking is a powerful tool used in Web usability studies. However, the analysis
of gaze data on scrollable Web pages can be difficult, for the reason that some Web
elements are positioned relatively to the viewport and remain visible for the users
during the recording session on a fixed position.

The research problem is a combination of two main factors: fixated fixed Web
elements, and scrollable Web pages. Capturing gaze data on the fixed elements in
scrollable Web pages is challenging to visualize because the gaze data are created
on various scroll positions on real-time recordings, and are not combined into one
location. This behavior is considered problematic since it presents duplicate fixed
elements on recorded scroll positions with their intended gaze data on the created
screenshot of the Web page.

An example on a test Web page is shown in Figure (I, which identifies possible
different components a Web page may consist of. Figure [1|illustrates four main ele-
ments of the Web page. Elements 1 presents a scrollable header with an absolute top
position, elements 2 presents a scrollable content, where on page scroll the content
will be scrolled over, element 3 presents a fixed element as a <div> container, and 4
shows a fixed footer.

Iam a scrollable header

2 | am a scrollable content.

Pellentesque habitant morbi tristique senectus et netus et

malesuada fames ac turpis egestas. Vestibulum tortor quam,

feugiat vitae, ultricies eget, tempor sit amet, ante. Donec eu

libero sit amet quam egestas semper. Aenean ultricies mi

vitae est. Mauris placerat eleifend leo. 3

Pellentesque habitant morbi tristique senectus et netus et
malesuada fames ac turpis egestas. Vestibulum tortor quam,
feugiat vitae, ultricies eget, tempor sit amet, ante. Donec eu
libero sit amet quam egestas semper. Aenean ultricies mi
vitae est. Mauris placerat eleifend leo.

Pellentesque habitant morbi tristique senectus et netus et
malesuada fames ac turpis egestas. ellentesque habitant
morbi tristique senectus et netus et malesuada fames ac
turpis egestas. ellentesque habitant morbi tristique senectus
et netus et malesuada fames ac turpis egestas. ellentesque
habitant morbi tristique senectus et netus et malesuada
fames ac turpis egestas.

4 12mafixed footer

Figure 1: A test website to identify four parts of the Web page; Element 1 a scrollable header,
element 2 a scrollable content, element 3 a fixed <div>, and element 4 a fixed footer

To reveal the issue visually, two more figures are created to demonstrate the
scrolling issue on fixed elements using the Stitched-Viewport Screenshot method.
Figure 2| displays the created screenshot of the examined Web page, where the par-
ticipant has not scrolled the page. Therefore, all elements are in their initial position.
Figure [3]illustrates the created screenshot of the experimented Web page, where the
participant has scrolled the page. Accordingly, the fixed elements are replicated
along the length of the stitched screenshot.

I am a scrollable content.

4 1 am a fixed footer

Figure 2: The created stitched screenshot for the test Web page (using the Stitched-Viewport
Screenshot method) without page scrolling. Hence, the user did not scroll while
participating in the study. Notice the stability in the fixed elements positions.

2
I am a scrollable content.
pel

fames ac turpis egestas.

I'am a scrollable content

libero sit amet quam egestas semper. Aenean ul

4 1am a ixed footer

Figure 3: The created stitched screenshot for the test Web page (applying the Stitched-
Viewport Screenshot method) with scrolling activity. Hence, the user scrolled
the page while participating in the study. Notice the duplicate blue fixed footer
number 4, and the fixed red <div> number 3.

An example on Facebookﬂ the online social media website, was chosen to visual-
ize a real-life scenario of the research problem. Figure ddepicts three fixed elements
in the Facebook main Web page (the news feed page): 1. header, 2. left side naviga-
tor, 4. sponsored advertisements area, and 5. the chat sidebar. In addition, the figure
shows a non-fixed scrollable content in number 3, that represents the news feed.

il 1. header oo

2 left side| xu oy e
ix 3. scrollable content =

(news feed)

naﬁwgator g -

o

B e
g5- chat
4. sponsered ads Esidebar
Fuchs dichmit ns durh e B8 o
Steue -

m:: -
o

oimEn

Figure 4: The viewport of Facebook news feed page with numbered sections. (1) A fixed
header, (2) A fixed left side navigator, (3) Scrollable content —the news feed —,
(4) Fixed sponsored ads and (5) A fixed chat sidebar.

The Facebook example was analyzed with eye tracking. Figure |5 depicts the gaze
data on a created stitched screenshot of Facebook taken with the naive Stitched-
Viewport Screenshot approach using a heat-map representation, where the form of
the gaze data is painted as warm and cold rainbow colors based on the intensity and
duration of the gaze. Starting with blue being the coldest to red being the warmest,
the more strong the gaze is the warmest the color is. In the same figure, notice
the clutter that resulted when the participant has scrolled down the page, where
all the before-mentioned fixed elements are replicated along the expanse of the cre-
ated stitched screenshot with their gaze data scattered on different recorded scroll
positions.

In the first section of the Web page, one may notice that the chat sidebar is du-
plicated throughout the range of the image with its gaze data in various scroll
positions. The reason behind the image replication of the fixed elements is the
used methodology in creating the screenshot (Stitched-Viewport Screenshot). The
stitched images constantly have the viewport representation and they are taken on
scroll events. The header has its position set to a fixed location with specified (top,
left, right, bottom) pixels relatively to the viewport, which indicates its first and all-
session-long location. The same explanation goes for elements two, four and five of
the figure, where the header, the left side navigator, and sponsored advertisements
are also replicated with their scattered recorded gaze data. The mouse trails in the
screenshot would show the same behavior as the gaze data.

3Facebook: https:/ /www.facebook.com

10

B T L e

- T - e Amare
p— a [——
— " Vishmerarstind Devey W-_}
po— =
i H -
- - -

Figure 5: Illustrates the created stitched screenshot of a participant in a Facebook eye track-
ing study (using the Stitched-Viewport Screenshot method). Notice the replica-
tion of the fixed elements (left side navigator, sponsored ads, header, and the chat
sidebar.). The gaze data are scattered on each duplicated fixed element as were
recorded in the session.

11

In order to enhance the visualization of the created screenshot by eliminating the
replication of fixed elements and the sparse gaze data, we suggest that the expected
behavior regarding the fixed elements is to place them on final fixed calculated po-
sitions in the final stitched screenshot, as we have defined the final calculated po-
sitions to be the following: if the element is shown in the first half of the viewport,
the fixed position for it should be in the top of the final created screenshot, however,
if the element appears in the second half of the viewport, its last position should be
the bottom of the final screenshot. Furthermore, when the expected behavior of the
fixed elements is applied, the gaze data would still be scattered on their recorded
scroll position. Therefore, the expected behavior of the gaze data is to be gathered
throughout the complete Web page and positioned on their intended fixed element
area. Lastly, the anticipated behavior of the mouse trails is to be assembled and
pointed to the positions of the fixed elements.

The difficulties in accomplishing the desired behavior lay in the following mat-
ters: identifying fixed elements in the Web page since they possess various design
patterns, handling the gaps in the screenshot that are caused by the never seen con-
tent underneath the fixed elements in fast scrolling, the final positioning of the gath-
ered gaze data and their fixed elements on the final stitched screenshot, and many
other challenges that are discussed in details in the Challenges 4.1| subsection and
their proposed solutions in the Approach concept |4.2| subsection of the following
Methodology [chapter.

The aim of this master thesis is to improve the visualization of the gaze data on
Web pages taking into consideration a special case of fixed elements appearance
on scrollable Web content. For efficiently collecting and analyzing gaze data, it is
important to deliver the most reliable output of the recordings on Web pages.

4. Methodology

The followed methodology will be discussed in the sequence of the challenges to
be faced, the theoretical concept of the proposed approach to solving the research
problem as well as overcoming the reported challenges, and the technical imple-
mentation of the algorithm. Figure [p| presents mechanism of the Stitched-Viewport
Screenshot method that was first discussed in the Introduction, as well as the ex-
pected output of our enhancements on the method. The first infographic on the left
shows the input, which are multiple viewport screenshots on different scroll off-
sets. As seen, the viewport has a dashed-line fixed rectangle and a scrollable text.
The second illustration shows the final screenshot of the stitched captured viewport
screenshots, where the fixed rectangle is replicated in two scroll positions. The third
part represents the expected output, which is achieved by the Enhanced Stitched-
Viewport Screenshot method that is described further on in this chapter.

12

Viewport Screenshot 1

""" i ABC

The Stitched-Viewport The Stitched-Viewport The Enhanced
Screenshot Method Input Screenshot Method Output Stitched-Viewport Screenshot
Method Output

Figure 6: Illustrates the mechanism of the Stitched-Viewport Screenshot method, as well
as the Enhanced Stitched-Viewport Screenshot method. The first part on the left
shows the input; three viewport screenshots on different scroll positions that in-
clude a dashed-line fixed element and a scrollable text, the middle part shows the
output of the Stitched-Viewport Screenshot method, which has two duplicated
fixed rectangles on two scroll positions, and the last part on the right presents the
expected behavior which we have implemented.

4.1. Challenges

There are several challenges to overcome in order to reach our expected behavior.
The following points conclude the difficulties in two different areas, which will be
discussed with suggested solutions in the Approach concept[d.2}

4.1.1. Fixed Elements

Fixed Elements are designed and created in various ways. Therefore, identifying
them is a hard task. The following are different cases of fixed element presentations:

1. Dynamic change in dimensions: Fixed elements are often transformed via
scripts during the viewing time of the page. They are initially rendered with
certain dimensions and during special events, their dimensions are modified
by scripts.

For example, in some Web pages, the header is initially designed with a (50px)
height, and after scrolling vertically for some pixels, the header is magnified
with a (20px) height. The dynamic change in the dimension of the header
influences our used approach in identifying the overall-session dimension of
the element to be cropped out of the viewport on each scroll position.

2. Dynamic change in visibility: Some fixed elements are created out of the view-
port when the page is first loaded, and after a certain timeout or event, they
appear in the viewport via a script. Other elements are designed to be viewed

13

with minus dimensions out of the viewport but still parts of them are visible in
the viewport. Another scenario is when elements are designed in the viewport
but with a hidden visibility or with an opacity of zero.

As an example, many news feed websites have a timeout newsletter subscrip-
tion box. The subscription box is a fixed element that is either designed to be
hidden or out of the viewport. After a specific timeout, a script makes the box
visible. This issue impacts our method of recognizing the elements that are
truly in the viewport during the viewing time.

3. Dynamic fixed elements: Web elements can also be designed to be fixed on
the Web page without having the CSS property (position:fixed). In this case, a
dynamic script manipulates the positioning of the element by setting its posi-
tion to a fixed amount of pixels on each window scroll event. This technique
produces a fixed element in the perspective of the viewer.

For instance, a "contact us" <div> on the right side of the Web page that changes
its position gradually when the user scrolls the Web page, which makes it vi-
sually as a fixed element. This point is challenging when the running query
to identify the fixed elements is searching for elements with the CSS property
(position:fixed) instead of checking the previous and current position of each
element on each scroll event.

4. The overflow of fixed elements: The returned bounding rectangle of a Web
element does not include the bounds of any child element that might happen
to overflow. Some fixed elements have sub-elements (children) that are not
fixed which leads to the overflow.

For example, many header menus are fixed and contain sub menus that are not
fixed; rather with an absolute position in relation to their fixed parent, which
makes them appear to be fixed. In our implementation, we only capture the
fixed element itself without being concerned with its children. The issue is
only visible if an overflow happens.

4.1.2. Screenshots

Screenshots of the viewport are captured on each scroll position. In each captured
image, the fixed elements are cropped, then all images are stitched together into one
complete Web page image. The last part is to add the fixed elements on the Stitched-
Viewport Screenshot with their gaze data and mouse moves in a suitable location.
However, there are many difficulties in handling the screenshots capturing, stitching
images, and cropping out fixed elements. The following are the possible cases of the
challenges:

1. Gaps in screenshots: In some Web pages anchors are used, where users can
jump from one location to another in the Web page without seeing the jumped-
over areas. In these cases, it is impossible to fill the regions underneath the

14

fixed elements when the user has never seen them while scrolling. This issue
is also produced when the user uses the scrolling slider of the Web browser to
scroll the page, which resembles fast scrolling and the areas under the fixed
elements are never visualized.

. The final position of the gathered data (gaze data, mouse trails, and their fix-
ated fixed elements): when the Web page is accessed with an anchor. In these
cases, the first appearance of the fixed element will be the position of the tar-
get anchor. However, their final position will be computed as their position
(top, bottom) in the viewport. Visually, the image will have black gaps for the
unseen sections of the Web page, and the fixed elements will be positioned
based on their calculated final position (top or bottom) depending on their
appearance in the viewport.

For example, a Web page which has a fixed header was reached with an anchor
in the middle of the Web page. The final image of the Web page will have a
black gap in the areas that were not seen by the user (over scrolled). The
header will be cropped and added at the top of the final image.

. Fixed elements overlay other page content: After determining the final posi-
tion of the gaze data, mouse moves, and fixed elements in the final image, it
might occur that their final position overlays other content of the image. This
case is noticed when the element initially has a non-fixed position and is set
to a fixed position after a certain amount of scrolling. Because in this scenario,
the fixed element will be recognized once it is set to be fixed, its properties will
be saved, and the final position will be determined based on its fixed position.

For instance, when a Web page has a header that is initialized as a non-fixed
element with these properties in relation to the viewport (Opx top , Opx left,
1000px width, 400px height), and the header becomes fixed after scrolling
(200px). The fixed header has the same properties (Opx top, Opx left), and
its final position will be the same values. In this case, the fixed header will
overlay the initial header.

. Replicated surrounding design: In some cases, fixed elements hold surround-
ing design effects on their CSS Box Model that consists of margins, borders,
padding, and the content. The return value of the bounding rectangle of the
fixed element does not take into account such effects, for example, the box-
shadow, which creates a shadow of the desired color vertically or horizontally
around the element. In this scenario, the cropped fixed elements will leave
behind their surrounding effects in the image, which will lead to duplications
of the design along the screenshot.

15

4.2. Approach concept

The aim of the approach is to create a connection between gaze data and their fix-
ated elements to assemble them together and place them in one position in the final
stitched screenshot. To achieve this goal, the following steps are followed:

Step One: Fixed elements identification and screenshot creation In the first
step, an identification of fixed elements in the Web page is essential. The fixed el-
ements are collected from the Document Object Model (DOM) of the HTML page.
Their properties (position, dimension) are stored along with their XPath as a unique
identifier in a data structure. While capturing the screenshots of the viewport (ap-
plying the Stitched-Viewport Screenshot method), the bounding boxes (rectangles)
of the fixed elements are cropped out of the screenshots, and the cutout pixels of the
fixed elements are saved along with their properties. The milestone of the first step
is to achieve a final stitched screenshot of the Web page without its fixed elements.
The following paragraphs note the challenges of the first step in both previously
mentioned challenging areas (fixed elements and screenshots) and discuss the pos-
sible solutions for them.

Fixed Elements [4.1.1; Dynamic change in visibility 2] Elements with hidden visibil-
ity property or an opacity of 0 are excluded from the query results since they are not
truly visible to the user. Nonetheless, whenever they are visible they will be recog-
nized and added to the query results. Furthermore, if any fixed element is added
or created in the DOM by a script, it will be recognized. The dynamic identification
of fixed elements is possible since the query is fired on every DOM mutation event,
which notifies about DOM changes, and on a constant timeout.

Fixed Elements [4.1.1; Dynamic change in dimensions (1] Itis possible to identify an
element to be newly or previously added by the use of XPath, which plays a role of
a unique ID for each element based on their hierarchal location in the DOM. This
characteristic is useful for checking the changes in old elements (their dimensions)
in order to update them.

Screenshots [4.1.2; Replicated surrounding design[4] To handle the extra margins,
the dimensions of the acquired rectangle of the corresponding fixed element could
be manipulated in order to cover the area outside the bounding box, by expanding
it to the size of the margin. In the same concept, we can cover other examples such
as the box-shadow CSS attribute, which creates a shade for the element.

Fixed Elements [4.1.1; Dynamic fixed elements 3| In order to capture such behavior,
there exists a mutation observer that could be attached to the page elements. The
observer is able to notify about the changes made on elements and the type of the
change. One can obtain the transformation occurring and check whether it is a shift

16

in the position of an element while knowing the previous position of the element.
The developer can then comprehend when the element is being positioned in the
same location on each scroll event, hence, a fixed element behavior.

Fixed Elements [4.1.1} The overflow of fixed elements[4] We are able to capture the
changes in the child nodes of the fixed element by the mutation observer and handle
them as fixed elements once they are displayed in the viewport.

Step Two: Gathering gaze data and mouse moves on fixed elements The
second step of reaching the desired outcome is to find the gaze data and mouse
moves that were recorded on the fixed elements to link them together. Gaze data are
stored in a data structure as coordinates that represent the positions of user fixations
on the Web page. Therefore, the gaze points that intersect with the created fixed
rectangles are considered to be associated with those fixed elements.

Step Three: Inserting the data in their final computed position Finally, after
the recording session is over, the created stitched screenshot is completed and filled
with the fixed elements in their computed final position with their gathered gaze
data and mouse moves from different scroll positions laying on them.

The last positioning of the gaze data and mouse moves among their fixed ele-
ments is handled as follows: the elements that are visible on the second (bottom)
half of the viewport are located in the bottom of the final stitched screenshot, for
example, a footer. Whereas the elements that appear in the first (upper) half of the
viewport are placed in the top of the screenshot such as a header. The following
paragraphs note the challenges of the last step of the approach and discuss possible
solutions for them.

Screenshots[4.1.2} The final position of the gathered data[2and gaps in screenshots1]
Landing on an anchor area in a page will create an image with a height and width
of the current position. If the user never scrolls to the top of the page then the area
will remain black, to indicate no viewing. Moreover, the last positioning of the fixed
elements remains the same. all fixed elements will be cropped and added to their
computed last position, whether it was at the top of the image or bottom.

Screenshots [4.1.2} Fixed elements overlay other page content 3| It is possible to
create separate images of each fixed element with their own gathered gaze data and
mouse moves, with a transparent background, which could bring better visualiza-
tion results by laying them on the original final stitched screenshot when needed.

17

4.3. Implementation

The implementation will carry on a modified open-source browser example based
on Chromium from Qt. The used framework provides full control over the Web
browser as well as the full access to the Web page renderer. In C++, we are able to
acquire the pixels of the viewport to process them as required, while in JavaScript,
we inject functions to collect data from the DOM and log the mouse moves. In-
tegrating both technologies (C++ and JavaScript) helps us to run a Web browser
that produces screenshots of the surfed Web pages with the mouse trails using our
Enhanced Stitched-Viewport Screenshot. Furthermore, in order to add the sup-
port of eye tracking, we have contributed our implementation into the Recording
Tool, which used the naive Stitched-Viewport Screenshot method. The output of
the Recording Tool are screenshots of the fixated Web pages with the gaze data and
mouse moves using our method.

Implementation Challenges The following are the technical challenges that we
faced in our implementation:

1. Capturing fixed elements: In order to identify Web elements with their last
calculated properties, they have to be fully loaded in the Web page. The onload
is a JavaScript event that can be attached to Web objects (Window, Document,
Element) and is fired when a resource and its dependent resources have fin-
ished loading. For example, the window.onload event is fired when the entire
Web page loads, including its content (images, CSS, scripts, etc.). However,
in our initial experiment, the window.onload event was not profoundly robust
since on some Web pages it was fired before the pixels are rendered or long
after the page is visible to the user due to other running technologies like Ajax
calls, for example. This issue makes it difficult to capture the fixed elements at
the exact time when the user observes them.

2. Utilizing the runtime efficiency: of the algorithm when determining the data
structure to store the properties of the fixed elements; positions, dimensions,
image, gaze data, mouse moves, and XPath.

3. Memory optimization: is a big challenge since we are dealing with images,
image processing methods, a large amount of gaze data as well as mouse data
on frequent script calls.

There are three technical steps in this approach:

Step One: Fixed elements identification and screenshot creation In this step,
fixed elements are extracted using a JavaScript function, that returns their properties
(position, dimension, XPath). The properties are then passed to the C++ world in
order to capture the pixel of the fixed elements and execute the Stitched-Viewport
Screenshot method. The following points give further details on this step:

18

1. A JavaScript function (getFixedElements()) is injected to query the DOM for
fixed positioned elements. The query returns the computed style properties
of the fixed elements (bounding rectangles — the size of an element and its
position) regardless of the CSS Modal Box effects such as the margins. All
fixed elements are logged into the console of the Web page by JavaScript and
captured in C++ by the javaScriptConsoleMessage() function provided by the
QWebEnginePage class or are captured by a callback function in the QWebEngineView.

2. The JavaScript function (getFixedElements()) is called whenever the following
events are triggered:

a) Window.onload: is a JavaScript event that is fired when the entire page is
loaded, including its content (images, CSS, scripts, etc.), which is cru-
cial to get the latest computed style properties. However, this event
was found inconsistent for our needs since sometimes the window.onload
event is fired before the pixels are fully rendered or long after the page is
viewed by the user. Figure [7/| shows a column chart of five access tri-
als that we made to check the consistency of the window.onload event.
We have tested it on three different Web pages (www.google.de, www.
9gag.com, www.eyevido.de) that uses different kinds of technologies.
In the Google Web page, the window load was fired once on each ac-
cess. Twice out of three accesses the pixels were fully rendered before
the window.onload was fired. While in the 9gag Web page, the event was
fired (53, 87, 53, 52, 42) times, respectively to access trials. Many el-
ements were clearly visible before the first event was fired, and some
were not rendered after the first event was noticed. However, after the
last window.onload event, all elements were fully rendered on the Web
page. In Eyevido Web page, the event was noticed three times. The
page had fully rendered elements before the first window.onload event was
recorded. Therefore, we have realized that the event is not consistent
enough in our implementation since it profoundly relies on the technolo-
gies used in the tested Web page. Consequently, we have also included
the next event trigger for more robustness.

b) Window.onscroll: triggered when the scroll position is changed. On each
scroll position that the user hits while viewing the Web page, the get-
FixedElements() function will be executed. However, it is possible that the
user remains on a certain scroll position and a fixed element is created
dynamically after a timeout in the viewport. In that case, the fixed ele-
ment will not be recognized on that scroll position because the function
to identify it was called before the creation of that element. Therefore, we
create a timer that is triggered every 200 ms to check the current scroll
position and execute the (getFixedElements()). Introducing the timer helps
in capturing more cases of fixed element creations on timing bases in-
stead of scroll event based. The timeout of the timer could be adjusted

19

www.google.de
www.9gag.com
www.9gag.com
www.eyevido.de

Timings of window.onload event execution
8

o B 4th access

B 5th access

Time in seconds
IS

www.google.de www.9gag.com www.eyevido.de

Web Page

Figure 7: Time measurements of the window.onload event on 3 Web pages. Each column
group shows the statistics of 5 access trials.

as wished. However, it was tested on many Web pages that the 200 ms
timer produces higher quality of images than the slower timers such as
400 ms, which produces gaps in the screenshot on fast scrolling since the
scrolling can be faster than the timeout.

3. After receiving the fixed elements” properties in C++, corresponding fixed el-
ement objects are created. Each object has a rectangle, an image filled with
the pixels of the fixed element position in the Web page, an XPath for unique
identification, mouse data vector, gaze data vector (explicit for the Recording
Tool implementation), and a visibility boolean that tracks the current visibility
of the element in the viewport.

4. Then the Stitched-Viewport Screenshot method is executed to create images
of the viewport with an extra step of cutting off the previously created fixed
elements. The created images are stitched together on the scroll position offset
of each newly captured image.

Step Two: Gathering gaze data and mouse moves on fixed elements Gaze
data and mouse moves that cross the bounding box of a fixed element throughout
the Web page are linked together and added to their vectors in the fixed element
object. Gaze data are collected from the eye tracker (explicit for the Recording Tool),
while the mouse moves are logged in JavaScript and captured in C++, as were the
properties of the fixed elements.

Step Three: Inserting the data in their final computed position The final step
describes the reassembling of the fixed elements pixels on the final screenshot with
their gaze data and mouse moves. Fixed elements with their gaze data and mouse
moves are gathered from various scroll positions and placed on their computed last

20

position. This step is executed on page leave, i.e. when a link is clicked. The final
stitched screenshot is saved and the algorithm starts from the beginning with a new
image.

Technical Contributions Our first contribution is an open source project based
on a Qt Chromium example using the Qt WebEngine to prove our algorithm. Ini-
tially, the example had a lot of features that we have excluded for simplicity. We
ended up with basic classes provided in the Qt WebEngine such as WebView and
WebPage, which are inherited from QWebEngineView and QWebEnginePage, respec-
tively. Our code is open sourced and pushed into a GitHub repository https:
//github.com/hanadi92/demobrowser under the project name of The Mouse-
tracker Browser[3]. The browser handles the mouse moves and not the gaze data,
however, it is possible to adapt the implementation with eye tracking technology,
which we have achieved in the Recording Tool.

Figure (8| shows an example of the output image using our implemented open
source program, where a test Web page was created (used in the Research Prob-
lem section) with two fixed elements (the red <div> and the footer). The user was
hovering on (Hover me) occurrences then clicked on (Click me) link to end the ses-
sion. The program exports two image files; the first image is Web page output of the
Stitched-Viewport Screenshot method, and the second one shows the mouse trails
with a transparent background. This feature allows users to merge both images into
one frame using an image editor or use them individually.

Our second technical contribution was improving the Recording Tool. We in-
tegrated our implementation with the support of eye tracking into the Enhanced
Recording Tool. The Enhanced Recording Tool was then used in the Evaluation [5|of
this thesis. Figure [J represents an example output of the test Web page, where the
circles represent the fixations, which are generated by maintaining the visual gaze
on a single location, and the lines represent the mouse trails.

Structure Diagram In order to assemble our implementation, we have created
a JavaScript function to query the DOM for fixed elements (getFixedElements()), a
JavaScript event listener for mouse moves, a C++ class called (FixedElement) to main-
tain the fixed element objects, and a class called (ScreenShotter) to handle the creation
of the screenshots. We have also made some editions in the WebView class to handle
computations of cropping fixed elements from the viewport images, and we have
overridden the function responsible for catching console messages in the WebPage
class. Furthermore, in the Recording Tool, we have utilized the implemented (Eye-
tracker) class, where a function is triggered with the gaze point coordinates when-
ever a fixation is captured. As shown in the descriptive structure diagram in Figure
where the relations between the five classes are illustrated, and each class is
shown with its own operations and members. The following paragraphs explain
the diagram in different areas.

21

https://github.com/hanadi92/demobrowser
https://github.com/hanadi92/demobrowser

1am a scrollable header ok now continue reading ...

W w VV
A1 "
I'am g scroltable ¢optent. Read me... w Frn g
Fihabi T Wy w Fuugy
oy
turpis egestas. Vestibulun oMoy Gulimevigt yitae, ulticies egat, Bmoreit ®

G ¥ LR .
amet, ante. Donec eu libero it ametaumieg33tas semper. Aenean ultrcies mF; w o
vitas est. Mauris gidterat elsifend leo.
o e o w Vx'k'x“k?%’s,(w:wﬁ‘i\:\}\:\}w
& ac w B
- nes " ot i ¥ w ¥ ow o
turpis egestas. Vestibulum torforayam, feugiat vitae, ultricies eget, tempor sty w ¥ " %
amet, ante. Donec eu libero sit ametequam egestas semper. Aenean ultricigs Fi
vitae est. Maurls placerat eleifend I, w

% w
w
" =
%
=
w
%
habitant morbi ctus et netus fames ac
turpis egestas. rtpr quam, feugiat vitas, ultricies egat, tempor sit

amet, ante. Donec eu libero stk amet quam egestas semper. Aenean ultricies mi
vitae est. Maurls placerat elejfend leg,

que habitant chus ot netus fames ac

t st quam, feugizg vit: icieseget, tampor sit

amet, ante. Donec eulibero’sit amet quam egestas semper. ABnean ulticies mi
vitae est. Mauris placerat elgifend leo. w

w %
que habitant morbF tus et netus mes ac

t tas. ellentesque FBbi i netus et

malesuada fames ac turpis estas. ellentesque habitnt mgrbi tristique senectus
et netus et malesuada fameac turpis egestas. ellentebgua habitant morbi
tristique fames

Ok click me to e‘:ad this session =%,
Y ow
&-E-q}mgwmél;qg;{}mel

Figure 8: Illustrates the combined image (of the two output images) of our implemented
browser using a test Web page. The first image represents the Web page using
the Enhanced Stitched-Viewport Screenshot method and the second one has the
mouse trails with a transparent background.

fames ac
fes bget, tempor st

ultricies mi

et ffégus edalesuada fameat
{ Aenegrultricies mi
o5t Mauris placerat eleifend leo.

q i fames ac

amet, ante. Donec eu libero sit amet quam sgestas Semper. Aenean ultricies mi

vitae est. Mauris placerat eleifend leo.

que habi i tristiq famegac
turpis egestas. ellentesque habitant fafbi tristique senectus et netus et
ac turpls ege; 4 ts

et netus et malesuada fames ac'tusgis egestas. ellentesque habitag¥morhi

tristique senectus et netus et malesuada fames ac turpis egest:

Figure 9: Displays the output of the Enhanced Recording Tool using a test Web page. The
circles illustrate the fixations, and the dashed lines represent mouse trails.

22

£ FixedElement £ webView

[E3, image (stores pixels) : [1] webViewsToFixedElements| E& screenshotter (an object of the screenshotter) : ScreenShotter [1]

[E3, rectangle (stores position and dimension) : [1] = fixedElements\Vector (a vector of fixed element objects) : FixedElement [*]
L xpath {used for unique identification) : [1] . = {zeq) . .

[E3, gazeData (stores fixation coordinates): [*){seq} flxedEIements_“]wEbwewsw Ed sarollPositionTimer : Timelnterval [1] = 200

scrollPositionTimeout (fired on scrollPositionTimer timeout, fires the
I f i _ e script of getFixedElements(), and createFixedElements)
(1 isvisible [Elementisinithevenport I 4 createFixedElements (creates Fixed Elment objects){fixedElementsData:)

iﬁ} renderView (returns the current image of the viewport)()

[E3, mouseData (stores mouse coordinates): [*]{seq} iﬁ}

_________ SSUSCERe . cna: oaas s ona b & isCoordinatelnFixedElement (checks if coordinates are in a Fixed
" Element){gazeMowve :) &
£l WebPage | | £ Eyetracker | T T
I I
JjavaScriptConscleMessage captureGazePoint ! !
(captures the logged messages on (returns the __ _Sxusexs .
@ the web browser's console) ﬁ coordinates of the : SNeE
(gazePoint:) fixation){gazePoint :) !
I
<susess | Y
:] ScreenShotter
£ JavaScript
Q [EZ, stitchedimage (the current image of the web page): [1]
addMextimage (stitches the viewportlmage into the stitchedlmage member
| Q script.js | on the scrollPosition offset)scrollPosition @ |, viewportimage :)

" = " n paintlmagesCfFixedElements (paints the images of the fixed elements on
53} g;t;g:?sillements {returns the properties of the fixed 53} the final full stitched image))
- S T paintMouseData (paints the mouse moves on the final full stitched image)(

ﬁ‘ eventlistenerForMouseMoves (returns the &

coordinates of the mouse moves)] {ii paintGazeData (paints the gaze data on the final full stitched image)()

saveFinalStitchedimage (saves the final full stitched image on the local
&

drive)()

Figure 10: Presents a structure diagram of the implemented algorithm that contains the
WebView and WebPage classes among two newly introduced classes (FixedEle-
ment and ScreenShotter). The Eyetracker class is only used in the Recording Tool
integration.

Fixed Elements Identification Initially, the JavaScript file is injected into the loaded
Web page through a higher class than the WebView called the QTabWidget, which
holds into a stack of tabbed widgets, where the widgets are the user interface ob-
jects of the application. There are two approaches of retrieving fixed elements’” prop-
erties: a JavaScript event initializer (window.onload), and a C++ callback function
(scrollPositionTimeout()).

JavaScript Event In this method, the getFixedElements() function is fired when the
event listener window.onload is fired when the page is loaded with all of its content.
The function logs the properties through a console message, which are captured by
the WebPage function javaScriptConsoleMessage(). The passed string is filtered and
the WebView function createFixedElements() is called to create fixed element objects
and push them into the member vector of fixed elements. Hence, this way is fired
only once, on window.onload event.

C++ callback Function The WebView loads the Web content in the Web browser,
and holds the timer parameter (scrollPositionTimer). On each timeout, the ScrollPosi-
tionTimeout() runs a script call to execute the getFixedElements() function, that returns
the fixed element properties. The callback of the ScrollPositionTimeout() captures the
properties and runs the createFixedElements() function to create fixed element objects
corresponding to the passed properties.

23

Elements Visibility The visibility of an element is determined in JavaScript by cal-
culating the appearance of its rectangle (position, dimension, opacity) in the view-
port. However, the determination in C++ is achieved by checking the console logged
XPath property of the existing fixed elements against the returned fixed elements
in the callback function scrollPositionTimeout. If the XPath of the existing element
matches any of the XPaths of the returned elements, then they are marked as visible
using the Boolean isVisible. Otherwise, if the XPath of the existing element does not
occur in the returned elements, then they are marked as invisible.

Stitched-Viewport Screenshot Additionally, the ScrollPositionTimeout() function
fires a series of activities in order to achieve the Stitched-Viewport Screenshot method:
renderView(): to capture an image of the viewport, crop out the visible fixed element
regions, and send it with the scrollPosition to the ScreenShotter object, which holds
a member of the so-far stitched Web image. The ScreenShotter is created with each
WebView and it is responsible for maintaining the image stitching process. It re-
ceives the current viewport in addNextImage() function, and stitches it to the member
stitchedImage on the offset of the passed scrollPosition parameter.

Mouse Data The mouse moves are logged through console messages through the
injected JavaScript file and captured in the WebPage function javaScriptConsoleMes-
sage(). They are then passed to the WebView class in order to check if they are in
relation to the fixed elements or not. In isCoordinatelnFixedElement() function, we
access the vector of fixed element objects and check on each received mouse move
if the coordinates are reported to be inside the rectangle of the object. Mouse moves
that cross the rectangles are stored in the mouseData series member of the intended
object. In the Recording Tool, gaze data are captured through the Eyetracker class
function captureGaze() and then passed to the WebView class in order to check if the
coordinates lay in the fixed rectangle or not using the same function isCoordinateln-
FixedElement(). When the fixation lays in the fixed object, it is stored in the gazeData
series member of that object.

Final Position and Gathering of Mouse data Before saving the final Stitched-
Viewport Screenshot, in the ScreenShotter function savelmage(), we access the fixed
element objects and check their position in relation to the viewport size in order
to calculate their final position on the final image. Furthermore, we manipulate
the mouse data coordinates (paintMouseData()) in order to collect them over their
intended fixed elements by checking the position of the fixed element that owns the
data, when the element is in the top, its data coordinates stays the same since the
reported coordinates have an (x) and (y) relatively to the viewport. However, when
the fixed element is in the bottom, the coordinates are manipulated by adding the
last recorded maximum scroll position in the Web page in order to show the data
in the bottom of the final image. The same logic is adapted to the gaze data in the
Recording Tool (paintGazeData()).

24

Image Saving The ScreenShotter savelmage() function is fired on three conditions:
when the session is over i.e. if the user hits the (x) button to close the tab, or on an
accepted navigation request i.e. on success hyperlink click, or if the user requests to
save an image by clicking on the save image icon in the toolbar (an old floppy disk
icon).

Algorithm Workflow There are four activities in the workflow of the algorithm.
The following points explain each activity with a reference diagram figure. The
order of this list is not important for the implementation, however, they were listed
in this order for better understanding;:

¢ Fixed elements Identification and Creation: In Figure |11} the workflow of cap-
turing fixed elements methods is illustrated. Where it states the JavaScript
Event method starting with the loading event that calls the function to query
for fixed elements and logs the data as a console message. The WebPage cap-
tures the console message and send it to the WebView, where the creation of
fixed element objects is executed.

2 Fixed Elements Identification and Creation

= JavaScript =C++ WebView Class

JavaScript Event C++ Callback Function

ScrollPositionTimer

"Window Loaded
Event Fired

I

Identify Fixed ‘

" scroll Position
Timeout

(" call Identify
ElemL Fixed Elements
Log a Console (
M 9 | Callback of Scroll
essage Position Timeout
(Captures Properties)
= C++ WebPage Class
apture Console | =
= Fixed Element
Message
i 'Create Fixed Set Properties

Send to ‘

) | . Element Objects
WebView

Figure 11: The workflow of fixed elements identification and creation in both implemented
methods; through the JavaScript event window.onload and the C++ callback func-
tion ScrollPositionTimeout().

¢ Capturing Mouse Data: Figure[I2]shows the workflow of the previous activity
in gray color (inactive) and the mouse data capturing activity in yellow color
(active). Both activities are independent from each other. In mouse detec-
tion, the initial trigger starts with a JavaScript event listener for mouse moves

25

which logs the coordinates into the console log. The WebPage captures the log
messages and forwards it to the WebView in order to check if the coordinates
are inside a fixed element, which will be added to the intended fixed element
object, otherwise, the move is stored regardless of fixed elements.

2 Capturing Mouse Data

= JavaScript =C++ WebView Class

. X
Window Loaded Scroll Position <
Event Fired Timeout

!

! v
Identify Fixed _ Call Identify Fixed
Elements Elements

i ! Mouse Move Detection
Log a Console Callback of Scroll
Message Position Timeout
(Captures

Properties)

| Report Mouse

Move
| Coordinates

= Fixed Element

. Create Fixed

= C++ WebPage Class :
Elements Set Properties

Capture Console

Message Store Outside

Fixed Elements Data | p1ovac

) No P
Send to A, Mouse Moves Coordinates T Yes Store in Fixed
WebView . Elements
Move or

Update Properties

Data Check if Move in Fixed Element

Figure 12: The workflow of mouse data capturing in JavaScript and storing in C++. The

26

active workflow is illustrated in yellow color and blue initial node with black
title, while the gray color shows the previous inactive activity of fixed elements
identification and creation.

e Capturing Gaze Data (only in the Recording Tool): This activity deals with

fixation detection, which is reported to the WebView by the Eyetracker class.
The gaze coordinates are then handled in the same way the mouse data is.
Figure|13|shows the workflow of the gaze data reporting in active colors.

Applying the Enhanced Stitched-Viewport Screenshot Method and Image Sav-
ing: Figure (14| reveals the workflow of the stitching method and the image
saving in active colors, which are of the ScreenShotter responsibility. The stitch-
ing starts on each timeout of the scrollPositionTimer to capture an image of the
viewport and crop out fixed elements, if available. Then it sends the image
to the ScreenShotter, which stitches the received image into its own member
image of the Web page on the passed scrollPosition parameter offset. Image
saving is triggered by session ending, navigation, or on request. The trigger is
sent to the ScreenShotter, which first adjusts the data for final positioning, saves
the image on local disk, and the stitching method resets to an empty image.

= JavaScript

Window Loaded
Event Fired

Identify Fixed
Elements

Log a Console o

 Capturing Gaze Data

=C++ WebView Class

Scroll Position %

Timeout

Call Identify Fixed
Elements

Callback of Scroll

Message | Position Timeout
(Captures
Properties)
Report Mouse
Move Coordinates
i = Fixed Element
=+ + WebPage Class [Create Fixed
Elements Set Properties
(" Capture Console
Message Store Outside
Data
Fixed E\eme‘ms Data
P f Py B
Send to — Ne Yes Store in Fixed Update Properties
WebView Mouse Move Goordinates Elements ["
Move or Data Check if Coordinates in Fixed Element
= Eyetracker
Fixation Detection R
eport gaze Gaze Coordinates
" data 1

Figure 13: The workflow of gaze data where the Eyetracker class captures the fixation coor-

dinates and report them to the WebView. The active workflow is shown in yellow

colors and a blue initial

node with black title.

5 Stitched-Viewport Screenshot and Image Saving

Trigger Image

= JavaScript =C++ WebView Class = ScreenShotter
C++ Callback Function
. .*% ScrollPosition Timer
v Stitch the Viewport
Window Loaded Scroll Position < Render Viewport Image into the So-
Event Fired Timeout image Far Image on Scroll
) Postion Offset
¥ X ¥ f
Identify Fixed Call Identify Fixed Crop Out Fixed
Elements. Elements Elements Save Image on
Local Disk
{ v
Log a Console Callback of Scroll Send Current Image
Message Position Timeout to ScreenShotter Ll
. (ZLETD with Scroll Position Adjust Fixed
opertie:) I Elements and Data
Report Mouse for Final Positioning
" Move Coordinates
Image Saving

| Report Gaze Data

Gaze Coordinates

0 Saving
_ ¢ = Fixed Element
=C++ WebPage Class pE——
. Elements. Set Properties
Capture Console
Message
Store Outside
Moves
pa— Fixed Elefngn; Data b Store in Fixed Update Properties
R Wiouse Wiove Coordinates Yes _Element
Move or Data Checkif Move Ih Fixed Element
= Eyetracker

Figure 14: The Stitched-Viewport Screenshot and image saving workflow is illustrated in
the active color. Starting from the blue node with black title.

27

In summary, we were able to achieve our expected behavior by applying the
previously described methodology in practice. We have faced and overcame the
challenges that were mentioned in Challenges Furthermore, there are some
improvements that can be contributed to our approach for a better sense of visual-
ization, that were described in theory (in Approach concept but not yet imple-
mented: the dynamic fixed elements, the overlaying of fixed elements on other page
content, the overflow of fixed elements, and the replicated surrounding design.

5. Evaluation

In this chapter, we are going to introduce our used methods in the evaluation, the
outcome of the evaluation, and the interpretations of our results and discussions on
further explanations. Since we were able to overcome the research problem using
our Enhanced Stitched-Viewport Screenshot, we want to compare it against another
visualization method that also overcomes the problem. Therefore, we chose the
Video visualization method, where the videos display the viewport of the user ses-
sion that has the fixed elements on their all-session position with their gaze data. It
was inconvenient to choose the naive Stitched-Viewport Screenshot because the re-
sults would have been too obvious and more biased towards the enhanced method.
Also, the Expanded-Viewport Screenshot method would not have made a good can-
didate since it still has the issue of sparse gaze data on several scroll positions that
are not connected to their fixed elements. The evaluation studied experts evalu-
ating both visualizations and recorded their response timings to some tasks. The
results of the evaluation are shaped as quantitative and qualitative forms, which
are then interpreted and analyzed to confirm the following suggested hypothesis:
our Enhanced Stitched-Viewport Screenshot allows faster interpretations for the
investigators than the Video visualization approach. Furthermore, we explain the
results and note down important remarks on further research.

5.1. Methods

The plan is to conduct an eye tracking study using the Recording Tool, which was
extended by our implemented Enhanced Stitched-Viewport Screenshot method. The
output of the study forms a dataset of interactive data (gaze and mouse data) on Web
pages, which will be analyzed by experts in both studied visualization methods us-
ing the Analytical Tool. The Analytical Tool presents both screenshots and videos in
the same design in terms of time controls, scan-path, statistical parameters such as
fixation duration, and the ability to create areas of interest (AOIs).

The study proceeds through two phases in order to complete the assessment and
be able to accept or reject the hypothesis. There are three roles contributing through-
out the two phases; the first phase revolves around the participants, who join the
eye tracking study to provide interactive data on several Web pages while complet-
ing different tasks. The second phase is covered by the experts, who analyze the

28

gathered dataset while accomplishing tasks on data analysis, and by the evaluator,
who engages with the experts to present an introductory workshop and report the
responses of the given tasks.

5.1.1. Phase one

The first phase includes conducting a study using the Recording Tool in order to
collect the eye tracking dataset of several Web pages. The ground truth is also de-
termined in this step; by the participants, through answering a questionnaire, and
by the evaluator, through observing the dataset.

Creating the eye tracking dataset The aim of the first phase is to collect the
dataset of interactive data on four different Web pages. Two participants are asked
to join the study using the Recording Tool while a screen recording application is
running in the background to capture the user session on each Web page. The
Recording Tool uses an Eyetracker to capture the fixations of the participants on
the Web pages and produces screenshots using our Enhanced Stitched-Viewport
Screenshot, while the screen recorder produces videos of user sessions on the Web
pages. Since static screenshots have the advantage to combine all participants of the
same Web page in one screenshot, we end up with a total of 4 screenshots of the 4
Web pages. Each Web page has the interaction data of the two participants. How-
ever, the combination is not possible in the Video approach, because of different
user behavior on the Web page, scrolling behavior, for example. Therefore, there are
8 videos in the dataset, each video represents each user session on each Web page.
Figure|15|illustrates an infographic of phase one.

Phase One

~E

-y evid
<,
L0 -
Screenshots screen
with gaze data recordings with
gaze data

Study environment of phase one Qutput

Figure 15: The study environment [left]: Participants join the study using the Recording
Tool while a screen recording tool is recording their session in the background.
The output [right]: The outcome of this phase is the dataset of screenshots and
videos.

29

Choosing two participants is sufficient for our dataset formulation since it will
produce an adequate amount of interactive data on a satisfactory number of screen-
shots and videos of each Web page. It is crucial to understand that the focus of this
evaluation is not the gathered dataset; rather it is the interpretation of the interactive
data and visualizations in the dataset, which is discussed in more details later on in
the second phase, where we distribute the dataset among the experts to analyze
them.

Web pages We have chosen to run the study on four different Web pages: Cre-
ative Commonshttps://creativecommons.orqg/licenses/by/2.0/which al-
lows people to easily and legally share knowledge and creativity, Yelp https:
//www.yelp.com/search?find_loc=koblenz to connect people with great lo-
cal businesses, Jimdo https://www. jimdo.com/ which is a Web hosting ser-
vice, and Digg http://digg.com/ that delivers news and most interesting sto-
ries on the Internet. These Web pages were chosen for their visiting ranks noted on
https://moz.com/top500 as well as the appearance of different types of fixed
elements in their design which we want to evaluate.

The fixed elements that appear in the aforementioned Web pages are shown in
Figure Creative Commons Web page can be considered as a complex page in
terms of having two fixed elements that appear in the viewport after a timeout by
a script, see sub-figures and Yelp can be considered as less complicated
since it has a fixed column on the right that is set to (position: fixed) by a script
on scroll, see sub-figure Jimdo can be considered as a less complex design in
regards to fixed elements since it has a fixed header on scroll, see sub-figure
and finally, Digg can be considered as the least complicated one since it has a fixed
header, shown in sub-figure[16€}

Our focus is centered on analyzing fixed elements because it is hard to investigate
an AQOI on a scrollable content in the Video method. The expert has to draw the
AOQI on the first appearance of the scrollable content, enclose the time where that
element has appeared, and keep a pen and paper to note down the statistical values
of the area at that time. Whenever the viewport is scrolled, the expert has to drag
the AOI to cover the new position and do the same steps again. However, when in-
vestigating a fixed element in a video, it will be always visible in the viewport on the
same position. On the other hand, maintaining scrollable content in the Enhanced
Stitched-Viewport Screenshot method requires no more effort than creating the AOI
on the static screenshot, which is the same case for fixed elements.

Tasks for the participants The tasks are designed to cover the whole page ver-
tically, in order to assure the correctness of the used stitching method that we have
implemented. The participants are asked to freely navigate through the page to
accomplish the following tasks:

e Creative Commons: The participants are asked to find the Frequently Asked
Questions (FAQs) link and click on it.

30

https://creativecommons.org/licenses/by/2.0
https://www.yelp.com/search?find_loc=koblenz
https://www.yelp.com/search?find_loc=koblenz
https://www.jimdo.com/
http://digg.com/
https://moz.com/top500

creative Share your work | Use & remix ‘ What wedo | Blog

commons

(a) A fixed header on https://creativecommons.org/licenses/by/2 .0 Web page that appears
on scroll up.

< Mo' Map) Redo search when map moved

+ Wi
- o Urbar

This content is freely available under
simple legal terms because of Creative e 8 P
Commons, a non-profit that survives Kobhas L
on donations. If you love this content, 48 esznse 4
and love that it"s free for everyone,

Eirs 9 A A4 e L

; ks i -
please consider a donation to support \ = I),(;’
our work. - d oA 2. L~
o agie " | MapData Terms of Use
Ads by Google
o Il hometego.com »
Contribute tOday to 683 Vacation Rentals Koblenz - Up to 75%

Creative Commons Discount
Book the Perfect Vacation Rental in Koblenz.

Enjoy your Stay Starting from $461
$100 Ower 10 Million Rentals - Lowest Prices
Mo Hidden Cosis Pet Friendly Rentals
—_— Last Minute Rentals Search Vacation Ren...

Offers under 199w, ..
$25 $ Amount

il trivago.de v

Top Hotels in Koblenz - Schnell. Einfach.
Gratis.

Donate Now Gunstige Hotels in Koblenz entdecken. 200
Hotelportale im Preisvergleichl
Weekend Deals - Vergleichen & Sparen

Typen: Stadthotel, Flughafenhotel, Luxushotel

(b) A fixed element on (c) A fixed element on the right

[https://creativecommons. | side of the viewport on
lorg/licenses/by/2.0 Web https://www.yelp.com |
page that appears on the left side |[search?find_loc=koblenz|
of the viewport after a timeout by Web page.
a script.
". TEMPLATES PRICING BLOG SUPPORT @ SIGN UP.

(d) A fixed header on'https: //www. jimdo . com/|Web page that appears after a certain scroll position.

A HOME P VIDEO & EDITIONS @ STORE ﬂl!g ® SEARCH SIGN IN / SIGN UP

(e) A fixed header on|http ://digg. com/lWeb page.

Figure 16: The fixed elements that appear on the Web pages in the first phase.

31

https://creativecommons.org/licenses/by/2.0
https://creativecommons.org/licenses/by/2.0
https://creativecommons.org/licenses/by/2.0
https://www.yelp.com/search?find_loc=koblenz
https://www.yelp.com/search?find_loc=koblenz
https://www.jimdo.com/
http://digg.com/

e Yelp: The participants are asked to choose the 10th result of the search results.

e Digg: The participants are asked to find the Frequently Asked Questions (FAQs)
link and click on it.

e Jimdo: The participants are asked to find the (work with us) link and click on.

The participants are well informed about the possibility to terminate the study at
any point if they felt unpleasant or unable to complete the requested task by press-
ing the (ESC) key on the keyboard or closing the tab window simply by selecting
the (x) button on the browser tab.

Ground Truth The ground truth is assembled in two strategies:

e By the participants: reporting the answers of the questionnaire “How chal-
lenging was the task for you?” after viewing each Web page.

e By the evaluator: documenting the results from the participants and the true
statistical values in the dataset, for example, the total number of fixations on
the fixed elements.

Technical Details The video produced of each participant session by the screen
recording software has all four Web pages. Therefore, we need to manually crop the
video in order to get a recording of each Web page interaction. The gaze data for
the videos will be collected from the connected Eyetracker through the Recording
Tool which is running in parallel to the screen recorder. This will guarantee to have
the exact same gaze data of the same Web page in the video and on the Enhanced
Stitched-Viewport Screenshot.

5.1.2. Phase two

The gathered dataset in the first phase is used as an input in the second phase for
the experts investigations. The experts are asked to attend a workshop, that will
bring them to better understanding of eye tracking metrics and introduce them to
the Analytical tool that will be used for interpreting both data visualizations. They
will learn how to interpret the gaze data on screenshots and videos to be able to
participate in our evaluation. After the workshop, the dataset is distributed among
the experts, and tasks are assigned to them. Meanwhile, the evaluator observes their
response time of the tasks and communicates with them for answers. The output of
this phase is a full report on the results of the experts” investigations on the dataset.

The Environment Set-Up in The Analytical Tool Both evaluated data visual-
izations are represented in the Analytical Tool with equal designs, such as: the gaze
scan-path, the mouse dashed-lines, a timeline to play the interactive data, zooming

32

tools, and AOI drawing. At the first sight of the visualization, the overall interac-
tive data is displayed on the screenshot or video, and the timeline is used to play
the scan-path or the dashed-lined trails. Also, the visualization is initially fitted
into a frame, and can be zoomed in or out, where the video has the visual of the
viewport with the scrolling behavior and the screenshot remains static. Further-
more, The screenshot has a combination of all participants interactive data, which
can be switched between to show or hide the data of the participant. Figure(l7|and
Figure (18 show examples of both visualizations in the Analytical Tool. The first vi-
sualization is a screenshot of the Creative Commons Web page that has the overall
interactive data of two participants displayed. The AOI was selected on the fixed
element in that Web page. The second visualization is a video of one participant
session on the Jimdo Web page that has the overall of their interactive data. The
video starts with the loading of the Web page, and ends at the end of the session.
The AOI was selected on the header of the Web page that is visible once the video
is played. In both visualizations, the AOI calculates the fixations that were made in
the defined timespan on the timeline.

AP L

Figure 17: Shows the screenshot visualization in the Analytical Tool, where the overall in-
teractive data of both participants are displayed on it. The scan-path of the gaze
data and the dashed-lines of mouse data are played on the screenshot by press-
ing the play button of the timeline.

Workshop The second phase starts with collecting 10 experts, whom we are
going to study while they are examining our dataset. The experts are defined by
their knowledge in the topics which we present in a planned workshop. The top-
ics include: the analysis of gaze data on screenshots and videos, the Analytical Tool,
and important eye tracking concepts like Area of Interest (AOI) and fixation-derived
metrics such as Time to First Fixation, Total Fixations, and Fixation Duration as de-
scribed in table (1, which are concluded from various references [18][13][12]. During
the workshop, experts are asked to use the Analytical Tool freely and perform some
tasks in order to assure their understanding and their capabilities of using the tool
in the proposed evaluation.

33

> QAR ¢

f |
(o]

Figure 18: Shows the video visualization in the Analytical Tool, where the overall interac-
tive data of one participant are initially displayed on it. The video starts from
the loading time of the Web page till the end of the session. The video and the
scan-path of the gaze data is played by pressing the play button of the timeline.
The mouse data is also shown in the video frame.

Metric Definition

Time to First Fixation (TTFF) | indicates the amount of time that a respondent
takes to look at a particular Area Of Interest (AOI).

Total Fixations (TF) indicates the sum of fixations on a single area of
interest.
Fixation Duration (FD) indicates the duration of maintaining the gaze on

an area of interest.

Average Duration of Fixations | indicates the average sum of all selected fixation
durations within an Area of Interest

Table 1: Eye tracking fixation-derived metrics and their definitions.

Dataset Distribution After the introductory presentation, the experts are asked
to analyze the dataset while the evaluator measures their timings in solving the re-
quired tasks, see Figure [19| for a visual demonstration. The dataset is distributed
among the experts in the following manner: The first group of 5 experts is respon-
sible for studying 2 videos (of each participant on websites X, Y) and 2 screenshots
(of all participants on websites Z, W). The second group of 5 experts is responsible
for analyzing 2 videos (of each participant on websites Z, W) and 2 screenshots (of
all participants on websites X, Y). For more clarification, the distribution is shown
in Table

Utilizing this combination allows us to compare the results of each Web page in
both groups in the two visualization methods (Enhanced Stitched-Viewport Screen-
shot and Video) in a fair way without repetition since each expert will observe at
least one element (either S or V) of each Web page. Additionally, it eliminates the

34

Phase Two

@0 8

@
/0 .

v

4 v

expert v

(XX] @
“ _ tasks results

and timings

evaluator)

Phase two Qutput

Figure 19: Phase two set-up [left]: Experts analyzing the dataset using the Analytical Tool
while the evaluator observes their response timing using a stopwatch. The out-
put [right]: The outcomes of this phase are the statistical answers and reported

timings.
Web Page | Group A Group B
X Videos(Vyi, Vx2) | Screenshot(Sy)
Y Screenshot(Sy) Videos(Vy1, Vy2)
Z Videos(V,1, V,2) | Screenshot(S,)
W Screenshot(Sy,) | Videos(Vy1, Vy2)

Table 2: The distribution of dataset between the two groups of experts, where each group
is responsible to analyze a different kind of element on a Web page than the other

group.

possibility of already knowing the solutions of the tasks, which could occur when
the expert views a video of a Web page to complete a task and then views the screen-
shot of the same Web page to run the same task again.

Tasks For The Experts In order to examine the effectiveness, efficiency, and
satisfaction of each method, two main types of measures are designed; quantitative
and qualitative measures. The ground truth for all quantitative measures was sat in
the initial trial. Figure [20|illustrates an infographic of the measures, the tasks, and
the leading purpose of each measure.

The quantitative measures include tasks of objective and subjective sorts. The
objective ones measure numerical values in relation to the fixation-derived metrics
that were mentioned in table(l} whereas the subjective tasks measure the impression
of the experts towards the studied participant behavior. These assignments are dis-
tributed to identify the effectiveness and efficiency of the tested methods. Further-
more, the fixed element to be analyzed is displayed to the experts before viewing

35

Evaluation
measures

Quantitative Qualitative
measures measures

AN

Measures

Objective Subjective Subjective
tasks tasks tasks Tasks
Effectiveness and Experts’
- 5 p Purpose
efficiency satisfaction

Figure 20: Types of evaluation measures and their assigned tasks each reaching a different
value of determination. Quantitative measures justify the efficiency and effec-
tiveness, while qualitative measures verify the satisfaction.

the visualization. When the experts view either of the visualizations, their task is to
find the assigned fixed element and draw an AQOI to cover it, that will measure the
answers of the following questions:

e How long was the time until the subject made their first fixation on the fixed
element? (an objective task)

e How many fixations are on the fixed element in total? (an objective task)

Afterwards, the experts are asked to interpret the difficulty level that the partici-
pant experienced while completing their task by playing the scan-path of gaze data
and mouse trails on the screenshot or the video in order to answer the following
question:

e Rate the following sentence: It was challenging for the participants to solve
the task. (a subjective task on a scale of “Absolute agreement” to “Absolute
disagreement”)

The “fixed element” in each question represents one of the fixed elements that
were shown in Figure [16/ based on the analyzed Web page. For example, on the
Creative Commons Web page screenshot or video, the questions are as follows: (for
a detailed list of tasks on each Web page please visit Appendix[A)

e How long was the time until the subject made their first fixation on the fixed
element shown in sub-figure (an objective task)

e How many fixations are on the fixed element, that is shown in sub-figure
in total? (an objective task)

36

e Rate the following sentence: It was challenging for the participants to solve
the task. (a subjective task on a scale of “Absolute agreement” to “Absolute
disagreement”)

In the moment when the experts are answering the questions, the evaluator starts
recording their response time using the stop-watch for each of the previous objective
tasks. The timing starts when the expert displays a visualization and holds when the
expert has finished selecting the AOI and found the first statistical result (first fixa-
tion), then it continues for the next objective result (total fixation). The timer resets
when the expert investigates the second participant. Therefore, the timing includes:
noting the fixed element, selecting it with an AOI, and reporting the statistical value.

The qualitative measures are applied using the NASA Task Load Index (TLX) [6]
technique. The NASA TLX is utilized to assess the subjective tasks concerning the
experts’ feedback on the analyzed methods. It provides an overall workload aver-
age of ratings based on six sub-scales: mental demand, physical demand, temporal
demand, performance, effort, and frustration level. The following scales are pre-
sented to the experts for each analyzed method:

Rating Scale Tasks Based on NASA TLX

The following tasks are in regards to the analyzed visualization.
Please choose an accurate scale for each question based on your own experience.

Please answer the following questions:

1. How mentally demanding was the task? (Mental Demand)
very low 0—0O—0O—0O—0—0O—0 very high
2. How physically demanding was the task? (Physical Demand)
very low 0—0O—0—0O—0—0O—0 very high
3. How hurried or rushed was the pace of the task? (Temporal Demand)
very low O—O—0O—0O—0O—0O—0 very high
4. How successful were you in accomplishing what you were asked to do? (Per-
formance)
perfect 0—O—0O—0—0O—0O—0 failure
5. How hard did you have to work to accomplish your level of performance?
(Effort)
very low 0—0O—0—0O—0—0O—0 very high
6. How insecure, discouraged, irritated, stressed, and annoyed were you? (Frus-
tration)

very low 0—0O—0—0O—0—0O—0 very high

37

5.1.3. Results analysis

After both evaluation phases are completed, we, as the evaluator, collect and inter-
pret the results of phase two, which represent the answers and response timings to
the given tasks. The analysis includes comparisons between the results of each vi-
sualization method on each Web page, taking into consideration the ground truth
values. Furthermore, we use the T-Test to find the level of significance in the results
by analyzing the two (experts groups) populations mean. Our aim is to accept or
reject our hypothesis, as well as finding other trend-lines in the results.

5.1.4. Equipments

The following tools are required in order to complete the evaluation:

e An eye tracker (myGaze n Iﬂ): an eye tracking device using a sampling rate
of 30Hz and producing the following data: Time-stamp, and gaze data (x/y
screen coordinate). (in Phase One5.1.1)).

e A screen recording tool: an open-source third-party screen recording tool is
used to record participants’ sessions called the Open Broadcaster Software [4]
(in Phase One5.1.1).

e A video editor software: the open-source third-party software OpenShot [5]
is used to crop the produced videos in order to get a video clip for each Web
page of each user session separately (in Phase One5.1.1).

e The Recording tool: a gaze recording software provided by the Eyevido Lab,
used to collect the dataset from the study participants (in Phase One5.1.1).

e The Analytical tool: a portal for data visualization provided by the Eyevido
Lab, used by the experts to examine the dataset (in Phase Two[5.1.2).

e A stopwatch: used to measure the time that the experts require to solve the
tasks (in Phase Two(5.1.2).

5.2. Results

The research problem of this master thesis is the lacking of intelligent linking be-
tween the interactive data and their intended fixed elements in static screenshot vi-
sualization method, which leaves duplicate images of fixed elements on the screen-
shot and sparse interactive data along the length of the screenshot. We have achieved
an approach to overcome the problem by connecting the interactive data and their
fixed elements to gather them in one location on the static screenshot using our
Enhanced Stitched-Viewport Screenshot. In the Video approach, the problem does

4myGaze nhttp://www.mygaze.com/products/mygaze-n/

38

http://www.mygaze.com/products/mygaze-n/

not occur since the video has the visual of the viewport and the fixed elements are
always together with their interactive data.

In the evaluation, we hypothesized that our Enhanced Stitched-Viewport Screen-
shot allows faster gaze interpretations for the investigators than the Video visual-
ization approach. Therefore, we compared both visualization methods (Enhanced
Stitched-Viewport Screenshot and Video) by collecting a dataset of interactive data
on 4 different Web pages and assigning 10 experts to analyze the dataset in both
visualizations. The dataset was gathered from two participants (2 Females) with a
mean age of (32) and a standard deviation of (8.48). The 10 studied experts were of (2
Females and 8 Males) with a mean age of (25.4) and a standard deviation of (1.77).
The results of the experts” interpretations emerged in quantitative and qualitative
forms.

Significance Tests First of all, we have run an independent two-paired T-Test on
the response time of the answers of the two experts groups using a threshold for p-
value of (0.05), where each group of experts had interpreted one of the visualizations
of each Web page. See Figure 21| for detailed statistics. The significance test showed
a high difference level among the data of interpreting the second study participant
in the dataset, which confirms that the results did not originate by chance and the
use of a certain visualization method affects the experts” interpretation speed. For
example, the results of the T-Test on the Creative Commons that was visualized as
a screenshot in experts group A and as a video in group B show a non-significant
p-value of (0.7836) in the response time of finding the Time to First Fixation (TTFF)
between the first participant interpretation in group A and the first participant in-
terpretation in group B. However, the results show a very high significant p-value of
(0.0001) for the TTFF response time between interpreting the second participant in
group A and interpreting the second participant in group B. The significant differ-
ence is also realized in the interpretation of Yelp visualization, where it is higher for
the second participant interpretation than the first for the TTFFE. Also, on the Jimdo
visualization, where the TTFF for the second participant is higher than the first and
the same for the Digg visualization.

Additionally, we ran a second independent two-paired T-Test on the accuracy of
the reported statistical answers from the experts in both groups. We calculated the
accuracy by finding the difference between the reported answers and the ground
truth values. We also used (0.05) as a threshold for the p-values. The test has re-
vealed that there were no significant difference between the two ranges, which im-
plies that there were no affects on the experts” interpretations using either of the
visualizations and that both visualizations recorded the same level of accuracy. Fig-
ure 22|shows the calculated differences between the reported values and the ground
truth. The last row presents the p-values of each interpretation in group A and
group B. For example, the first interpretation of the Creative Commons is exactly
the same in both groups, which is noted as a # symbol, and the second interpreta-
tion recorded a high p-value of (0.3739).

39

TTEST (recorded timings)

T-Test on Creative Commons visualizations
TTFF for 1st participant in S and V' TF for 1st participantin S and V. TTFF for 2nd participant in S and V = TF for 2nd participant in S and V
0.7836 0.7836 0.0001 0.00013
T-Test on Yelp visualizations
TTFF for 1st participantin S and V' TF for 1st participant in S and V| TTFF for 2nd participant in S and V= TF for 2nd participant in S and V
0.57546 0.54831 0.00015 0.00011
T-Test on Jimdo visualizations
TTFF for 1st participant in S and V' TF for 1st participantin S and V. TTFF for 2nd participant in S and V TF for 2nd participant in S and V
0.78604 0.86446 0.0000000626 0.0000000226
T-Test on Digg visualizations
TTFF for 1st participantin S and V' TF for 1st participant in S and V| TTFF for 2nd participant in S and V= TF for 2nd participant in S and V
0.14852 0.13501 0.01117 0.01213

Figure 21: T-Test results (p-values) of the recorded timings of answering the assigned tasks
in both experts groups. Each group had to analyze two participants on both
evaluated visualizations on four Web pages. TTFF denotes Time to First Fixation,
TF denotes Total Fixations, S denotes screenshot visualization, and V denotes
video visualization. The T-Test has the first range of the recorded timings on a
screenshot of a Web page and the second range was the recorded timing on the
video of the same Web page for each participant.

TTEST (accuracy)
Creative Commens Yelp Jimdo Digg

Group A 1st part. 2nd part 1st part 2nd part 1st part 2nd part 1st part 2nd part

Expert 1 0 0 0 1 485 1 0 0 0 5 0 3 0 2 587 2
Expert 2 0 0 0 0 0 0 0 0 0 0 0 0 556 1 587 3
Expert 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 166 0
Expert 4 0 0 0 0 0 0 0 0 0 4 0 1 0 0 166 1
Expert 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Group B st part 2nd part. 1st part. 2nd part. 1st part. 2nd part 1st part 2nd part.

Expert 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 166 0
Expert 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 166 0
Expert 3 0 0 0 0 0 0 0 0 0 0 0 0 0 2 587 3
Expert 4 0 0 0 0 455 1 0 0 0 0 0 0 0 0 0 0
Expert 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
P-Value # # # 0.3739 1 1 # # # 0.1813 # 0.24198 0.3739 073281 048816 0.46124

Figure 22: Presents the calculated differences between the reported values and the ground
truth. The last row presents the p-values of each interpretation in group A and
group B. The # symbol implies that both sets were exactly the same.

Quantitative Results The quantitative results consist of the experts’ statistical an-
swers of the assigned tasks, the recorded timings of response, and the interpretation
of the participant difficulty level in completing their tasks on a Likert-scale.

The reported statistical answers, the recorded timings, the difficulty interpreta-
tions, and their ground truth values can be seen in sub-figures and For
example, in Group A, the first expert had the Creative Common Screenshot as the

40

first visualization, and as they investigated the first participant, they gave the an-
swer for the Time to First Fixation: (7451ms), recorded (26.19s) before answering,
and interpreted that the analyzed study participant had a difficulty of scale 4 (from
1-5, 5 being the highest) in solving their task. The red marked values might be
classified as outliers, however, they were taken into account in all comparisons and
statistical tests.

Creative Commons Screenshot

Yelp Video

Group A TTFF 1stpart. TF 1stpart. Interpreted diff. 1st part. TTFF 2nd part. TF 2nd part. Interpreted diff. 2nd part. TTFF 1stpart. TF 1stpart. Interpreted diff. 1st part. TTFF 2nd part. TF 2nd part. Interpreted diff. 2nd part.
ANS Time ANS Time Ans ANS Time ANS Time Ans ANS Time ANS Time Ans ANS Time ANS Time Ans
Expert1 7451 2619 3 2679 4 9912 2.22 9 2.83 3 3449 142 5 1472 3 0 15.9 0 16.2 2
Expert2 7451 184 3 19.3 4 9912 504 10 575 3 3914 1858 4 196 2 0 1542 15.75 1
Expert3 7451 1221 3 12.82 4 9912 159 10 25 4 3914 235 4 2439 2 0 1771 0 17.9 2
Expert4 7451 17.85 3 18.5 2 9912 47 10 5.5 2 3914 1561 4 16.8 1 0 1206 0 1277 1
Expert5 7451 1852 3 19.5 4 9912 338 10 4.7 4 3914 2713 4 2794 1 0 1855 0 18.99 1
Ground
Truth 7451 16.023 3 17.03 2 9912 3.573 10 4.467 2 3914 1676 4 17.823 1 0 14587 0 1531 1
Jimdo Screenshot Digg Video
TTFF 1stpart. TF 1stpart. Interpreted diff. 1st part. TTFF 2nd part. TF 2nd part. Interpreted diff. 2nd part. TTFF 1stpart. TF 1stpart. Interpreted diff. st part. TTFF 2nd part. TF 2nd part. Interpreted diff. 2nd part
ANS Time ANS Time Ans ANS Time ANS Time Ans ANS Time ANS Time Ans ANS Time ANS Time Ans
Expert1 556 17.14 10 1745 5 495 344 6 3.75 4 540 8.59 6 89 3 2442 1014 11 10.32 4
Expert2 556 1828 5 18.71 4 495 42 3 4.84 3 1096 7.41 3 7.62 2442 1258 12 12.98 2
Expert3 556 2068 5 2098 4 495 32 3 3.44 5 540 127 4 12,9 3 3195 1954 9 1967 2
Expert4 556 11.83 9 1275 3 495 22 4 3.33 2 540 9.65 4 1055 2 3195 6.44 8 6.98 4
Expert5 566 2592 5 26.4 3 495 22 3 2.93 2 540 122 4 1289 2 3029 14.99 10 1571 4
Ground
Truth 556 15.3¢ 5 16.453 2 495 4297 3 5.26 2 540 1041 4 11.297 1 3029 10433 9 11.07 1
(a) The quantitative results of group A.
Creative Commons Video Yelp Screenshot
Group B | TTFF 1stpart. TF 1st part Interpreted diff. 1stpart TTFF 2nd part. TF 2nd part Interpreted diff. 2nd part. TTFF 1stpart TF 1stpart Interpreted diff. 1stpart. TTFF 2nd part. TF 2nd part. Interpreted diff. 2nd part.
ANS Time ANS Time Ans ANS Time ANS Time Ans ANS Time ANS Time Ans ANS Time ANS Time Ans
Expertt1 7451 1568 3 16.66 3 9912 1628 10 1679 4 3914 918 4 9.85 3 0 2.32 0 287 2
Expert2 7451 18.46 3 19.12 4 9912 1894 10 19.67 3 3914 3568 4 36.38 4 0 34 0 389 3
Expert3 7451 28.01 3 28.98 3 9912 25 10 2594 5 3914 13.56 4 13.98 4 0 256 0 323 2
Expert4 7451 18.96 3 19.83 3 9912 1779 10 1846 2 3449 1291 5 135 4 0 158 0 197 2
Expert5 7451 16.51 3 18.13 3 9912 1887 10 207 2 3914 1168 4 1251 2 0 243 0 312 1
Ground
Truth 7451 17663 3 18.303 2 9912 18313 10 19.157 2 3914 9.193 4 9.787 1 0 343 0 4.083 1
Jimdo Video Digg Screenshot
TTFF 1stpart TF 1stpart Interpreted diff. 1stpart TTFF 2nd part. TF 2nd part. Interpreted diff. 2nd part. TTFF 1stpart TF 1st part Interpreted diff. 1stpart. TTFF 2nd part. TF 2nd part. Interpreted diff. 2nd part.
ANS Time ANS Time Ans ANS Time ANS Time Ans ANS Time ANS Time Ans ANS Time ANS Time Ans
Expert 1 556 17.01 5 17.87 4 495 13.18 3 13.82 3 540 2225 4 22.87 3 3195 319 9 384 4
Expert2 556 13.61 5 1437 3 495 1268 3 13.38 540 10.18 4 10.78 3 3195 2.1 9 287 4
Expert3 556 17.28 5 18.11 4 495 12 3 12,68 2 540 943 6 9.97 3 2442 29 12 365 4
Expert4 556 235 5 2414 4 495 13.97 3 1472 3 540 1363 4 144 3 3029 31 9 387 3
Expert5 556 185 5 19.38 3 495 13.03 3 13.89 2 540 16.48 4 17.44 2 3029 359 10 442 3
Ground
Truth 556 14.113 5 14977 2 495 1424 3 15127 2 540 1267 4 13307 1 3029 3.02 9 386 1

Figure 23:

(b) The quantitative results of group B.

For each visualization in both groups there are answers for the TTFF
(Time to first fixation) and TF (Total Fixations) for each participant data, a
recorded response time in seconds, and a difficulty interpretation answer
on scale from 1-5 (denoted as Interpreted diff. n part.). Every value is
presented with its ground truth at the end of the column.

The findings of the quantitative results are threefold:

1. The accuracy of the statistical answers of the experts (Time to First Fixation,
Total Fixations) did not show any significant difference in the interpretations

of both visualizations since they have the exact same interactive data.

2. Experts were faster in interpreting the second study participant using the En-
hanced Stitched-Viewport Screenshot than when using the Video approach.
The results have shown an average of (12s) difference between interpreting
the second participant using the screenshot and the second participant using

41

the video visualization. As shown in Figure 24}, where the average timings of
each visualization (V - Video) were deducted from the other visualization (S
- Screenshot) to show the faster method. One may notice that the Enhanced
Stitched-Viewport Screenshot is not always faster in the first participant inter-
pretation as it is in the second participant interpretation. For example, in the
Digg visualization interpretation, the screenshot took on average 4.284 sec-
onds longer than the video in interpreting the first participant. While the
screenshot took on average 0.89 seconds less in interpreting the first partici-
pant on the Creative Commons Web page than the video.

S-V MEAN
Creative Commons S-V Mean Yelp S-V Mean
TTFF 1stpart. TF 1stpart. TTFF 2nd part. TF 2nd part. TTFF 1stpart. TF 1stpart. TTFF 2nd part. TF 2nd part
-0.89 -1.162 -15.906 -16.056 -3.202 -3.446 -13.47 -13.306
Jimdo S-V Mean Digg S-V Mean
TTFF 1stpart. TF 1stpart. TTFF 2nd part. TF 2nd part. TTFF 1stpart. TF 1stpart. TTFF 2nd part. TF 2nd part
0.79 0.484 -9.924 -10.04 4284 452 -9.762 -9.402

Figure 24: The difference of the mean values of the recorded response timings in both visu-
alizations for the four Web pages. The mean of the recoded timings in the video
visualizations is subtracted from the mean of the recoded timings in the screen-
shot visualizations. The minus mean values reveal how fast were the screenshot
interpretations than the videos.

3. Experts were closer to the ground truth values using the Video approach in in-
terpreting the difficulty in the participant behavior when accomplishing their
tasks.

Qualitative Results The qualitative results consist of the NASA TLX survey an-
swers of the experts, that represent their Mental Demand, Physical Demand, Tem-
poral Demand, Performance, Effort, and Frustration of each interpreted method.
The results are visualized as column charts in Figure 25 to present the possible
trend-lines. The first chart [top-left] shows the experts’ survey answers on the Cre-
ative Commons visualizations, the second one [top-right] is for the Yelp visualiza-
tions, the third [bottom-left] is for Jimdo visualizations, and the fourth [bottom-
right] is for Digg visualizations. In every chart, the blue columns represent the ex-
perts” responses on the Enhanced Stitched-Viewport Screenshot visualization, the
red columns for the first participant Video visualization, and the yellow columns
for the second Video visualization. Our findings on the qualitative results are out-
lined as follows:

e The results have shown a higher temporal demand for each first Video visu-
alization of each Web page than the Enhanced Stitched-Viewport Screenshot.
Experts felt more hurried or rushed while viewing the first video element of

42

each Web page than when viewing an Enhanced Stitched-Viewport Screenshot
of that same participant. Closer rates were shown on the Creative Commons
Web page, however, all other Web pages show a high difference between the
temporal rate of the first video and the screenshot. Note the third column set
(Temporal) of each sub-figure in Figure 25|

e The second trend-line of the NASA TLX results is that the second-viewed
video of each Web page requires lower or equal rates of the workload com-
pared to the first-viewed video. The results show that the Video method
requires less physical, mental, temporal demands among with performance
and effort from the experts once they have viewed at least the first-participant
video.

Creative Commons Yelp v

AVG NASA Scale
AVG NASA Scale

& d @ & & & F 3 ¢ & S
¥ Q\\"‘; & N\\‘\} & & @ Q\\"\?L Q@Q'o 5\“@0 & ;}‘\
A% O & X IS &
< QQ
(a) The qualitative NASA TLX results on Cre-(b) The qualitative NASA TLX results on Yelp
ative Commons visualizations. visualizations.
Jimdo Digg v
v
25 ! 6
Vi
2 \al \al V1 ° Vi
o 15 v o 14
2 2
a a
< <
2 2 V1 Vi V1 V1
5 0.5 i 12
2 S |
0 T ! A "
& & & & & & W@ $ @ & & &
§ o g & 4 & 5 3 $ & & S
& < & < < W o & & © e
q <& Qq{@ & < <% . z‘@ &

(c) The qualitative NASA TLX results on(d) The qualitative NASA TLX results on Digg
Jimdo visualizations. visualizations.

Figure 25: NASA TLX results of experts’ responses on four Web pages in screenshot visu-
alization (blue column), first participant video visualization (red column), and
on second participant video visualization (yellow column). The x-axis shows
the workload type of NASA TLX, y-axis shows the recorded average scale of the
workload by the experts.

The results have shown that both visualizations recorded same levels of accu-

racy in the reported statistical values. Additionally, the results revealed that the En-
hanced Stitched-Viewport Screenshot is more time-efficient than the Video approach

43

since it provided faster interpretations of the second observed participant than the
Video approach. However, the Enhanced Stitched-Viewport Screenshot was found
to be less effective in interpreting the difficulty of the participant’s behavior since
it provided less accurate rates of interpretations than the Video approach. The En-
hanced Stitched-Viewport Screenshot gave higher interpretation satisfaction and us-
ability rates since it recorded lower temporal demands than the Video approach for
all analyses. Nevertheless, the results reported that viewing the second participant
video recorded stable or lower rates of the workload after the first participant video.
After acquiring these results, we confirm our initial hypothesis and attach a more
accurate detail to it: our Enhanced Stitched-Viewport Screenshot allows faster in-
terpretations for the investigators in analyzing non-initial participants than the
Video approach.

5.3. Discussion

In this section, we will reveal our interpretations of the results and explain possible
causes for them. Also, we will theoretically expand our results on bigger datasets,
and select suitable visualizations for different scenarios.

The Accuracy The accuracy of the statistical answers was found to be the same
in both visualization methods. Each Web page representations (as a video and as
a screenshot) had the same interactive data. However, it was noticeable in the re-
ported answers that some experts did not report the exact value but there were no
trend-lines in the reported mistakes. The explanation for such mistakes is that some
experts failed to accurately draw an AOI on the fixed element. Therefore, the AOI
calculated more or fewer fixations and that ended up with a wrong statistical value.

The Timing The Enhanced Stitched-Viewport Screenshot recorded faster timings
in interpreting the second participant than the Video visualization. We discuss this
result in the following paragraphs.

The visualizations are initially shown in the Analytical Tool fitted in a frame and
can be zoomed in or out based on the desire. All analyzed screenshot visualizations
were long enough for the participant to require zooming in to locate the analyzed
fixed element, which consumed some of the time. For instance, the screenshot inter-
pretation took more time in the Jimdo Web page, which has a header that becomes
fixed when the scroll position is more than zero, and Digg Web page, which has
an apparent fixed header. In the fitted Video of both Web pages, the headers are
obvious enough for the expert to select them with an AOIL However, in the large
screenshot of the Web page, the expert had to zoom in carefully to be able to see the
headers and select them accurately.

Furthermore, the difference in the presentations of the fixed elements in the four
Web pages is also a factor of the recorded time. The interpretation of the first partic-
ipant in the screenshot took less time in the Creative Commons, which has a fixed

44

element that appears after a certain timeout, and the Yelp, which has an element
that appears to be fixed on a certain scroll position. Therefore, it took longer time
for these elements to appear in the video session for the experts to select an AOI
on them, however, they were visible from the very first sight on the screenshot, and
clear enough for the experts to select an AOI on them.

While the interactive data in the Enhanced Stitched-Viewport Screenshot method
of each participant can be viewed on a combined screenshot, it is not the case in the
Video approach. There is a screen recorded video of each participant session with
the interactive data because the videos cannot be combined due to different partici-
pants interaction. Therefore, the interpretation of the second participant takes only
the time to switch between the interactive data of the participants on the screenshot.
However, for the video approach, it requires the expert to view the video of the sec-
ond participant whilst the expert who is interpreting the screenshot of the same Web
page in that time has finished interpreting both participants.

In the Enhanced Stitched-Viewport Screenshot approach, the expert has to mark
the AQOI on the fixed element only once to analyze all the participant on that Web
page. However, in the Video scenario, the expert has to draw an AOI on each video
of each participant that they are viewing. If we cloned the AOI from the first video
to all other videos, it would not give accurate results since the visibility of the Web
elements could change based on the participant interaction.

The Participants’ Difficulty Level Interpretation The possible effective differ-
ence between the two visualization approaches which could produce the results of
the Enhanced Stitched-Viewport Screenshot being less efficient in interpreting the
difficulty in the user behavior is that in the Enhanced Stitched-Viewport Screenshot
approach, experts see the Web page with all interactive data on it, which creates an
overview of the behavior, then they play the gaze scan-path and mouse moves to in-
terpret the user behavior. However, in the Video approach, experts initially observe
the video of the Web page with the overall interactive data, they play the video to
view the viewport with its dynamics (ads, transitions, etc) with the interactive data,
and the scrolling experience. Our understanding of the results reveals that experts
were closer to interpret the difficulty in the user behavior observing their scrolling
experience along with the interactive data.

Based on our results that we have gathered from 10 experts on a dataset of 2
participants, we discuss the possible results of an expanded dataset with 10 partici-
pants. Our evaluation has shown a significant time difference between interpreting
the second participant using the Enhanced Stitched-Viewport Screenshot and using
the Video approach. Analyzing the 10th participant will not take much time using
the Enhanced Stitched-Viewport Screenshot as it will take using the Video approach.

As we have concluded, the Enhanced Stitched-Viewport Screenshot is the faster
choice since for only two participants it showed a high timing significance, which
means that it will save a lot of time that is consumed while observing videos of 10
participants. Moreover, the Enhanced Stitched-Viewport Screenshot gives higher

45

user satisfaction for the analyst as it showed lower temporal demands in our evalu-
ation. Therefore, if the analysts are looking for a fast method without feeling hurried
or rushed, they should choose the Enhanced Stitched-Viewport Screenshot method.

On the other hand, the Video approach has recorded higher rates in understand-
ing the difficulty in the participant behavior. In addition, even though Videos have
shown higher temporal rates in the NASA TLX analysis, our results reveal that after
observing the first video, the workload for the next video is either stable or lower.
Which means that the results could converge to a normal workload rate that would
not disturb the expert anymore. Therefore, if the analysts need to focus on the user
behavior interpretation and can invest more time and workload in analyzing the
visualizations, they should choose the Video approach.

6. Conclusion and Future Work

In this thesis, we addressed the problem of lacking the intelligent linking between
gaze data and their intended fixed elements in static screenshot data visualizations.
We have combined different kinds of research (eye tracking, Web, and image pro-
cessing) in order to solve the problem. Initially, we have built up our proposed
solution on the naive Stitched-Viewport Screenshot method, which was first intro-
duced by the Eyevido Lab. With our enhancements, we were able to achieve the
expected behavior that puts together gaze data and their intended fixed elements
in one position on the screenshot without duplications or sparse data. Later on, we
hypothesized that our Enhanced Stitched-Viewport Screenshot allows faster inter-
pretations for the investigators than the Video visualization approach. Using our
Enhanced Stitched-Viewport Screenshot in the Recording Tool of the Eyevido Lab,
we conducted an evaluation that compares the visualization of our approach against
the Video visualization method.

The evaluation was based on experts interpretations of a dataset that consists of
interactive data on both visualization methods on four Web pages. The experts were
asked to accomplish analysis tasks and report statistical values, meanwhile, their
response time was being recorded. The results were of quantitative and qualita-
tive forms. The quantitative statistical results were used to interpret the accuracy
of the visualization methods by the experts, which have appeared to be equal in
both methods. Furthermore, the response timings have shown that the Enhanced
Stitched-Viewport Screenshot recorded faster rates in interpreting the second par-
ticipant than the Video method. In addition, we have also examined the expert’s in-
terpretation of the level of difficulty in the participant behavior in completing their
tasks, which has revealed that the Video approach brings higher accuracy in inter-
preting the difficulty level than the Enhanced Stitched-Viewport Screenshot.

The qualitative results were produced from the NASA TLX survey that was dis-
tributed to the experts during the evaluation. The interpretations of the results
showed that interpreting video visualization produced higher temporal rates than
interpreting screenshot visualization. However, the results pointed out that every

46

second video has a stable or lower temporal rate than the previous one. Which could
eventually yield to a normal temporal rate after an n number of videos. Neverthe-
less, it could happen that by the time the expert is interpreting the nth video, the
expert who is interpreting the screenshot of the same Web page is already done by
viewing the one and only screenshot with the participants” interactive data.

Further research could be established to gain better insights on how screenshot
visualizations were not as close to the ground truth as videos in interpreting the
level of difficulty by studying the user behavior. Our research adds better insights
on Web structure which in its way improves Web usability. The implementation
covers the specific case of fixed elements on scrollable Web pages, however, the
theory can be adapted to fit further research on scrollable content in the Web page
such as a <div> with the CSS property overflow:scroll since it shares the same problem
that we had on the unlinked gaze data with content. Furthermore, this research is
the first step to identify and extract Web elements, which can be used as a lead to
further research on detecting other types of technologies that run in the Web page
like the dynamic changes of Web elements via asynchronous calls.

In conclusion, we were able to overcome the research problem by introducing our
Enhanced Stitched-Viewport Screenshot as a solution. We compared our work with
the Video approach. Our results have shown that our Enhanced Stitched-Viewport
Screenshot has recorded faster interpretations than the Video approach for the sec-
ond user analysis. The future work of this research focuses on further research in
the path of enhancing the outcome screenshots of our approach by including possi-
ble dynamic changes in the Web page, and collecting further explanations on user
behavior interpretation in screenshots for higher improvements.

47

7. Bibliography

All infographics were designed using Piktochart https://piktochart.com/.

References

[1] Fireshot. https://getfireshot.com. Accessed: 24-08-2017.

[2] Full page screen capture chrome extension. http://mrcoles.com/
full-page-screen—-capture-chrome—extension/. Accessed: 24-08-

2017.

[3] The mousetracker browser. https://github.com/hanadi92/
demobrowser. Accessed: 26-11-2017.

[4] The open broadcaster software. https://obsproject.com. Accessed: 02-
09-2017.

[5] Openshot video editor. http://www.openshot.org/. Accessed: 02-09-
2017.

[6] NASA Task Load Index (TLX). Volume 1.0; Paper and Pencil Package. Technical
Report, NASA Ames Research Center, Jan 1986.

[7] Ergonomic requirements for office work with visual display terminals (VDTs)
—Part 11: Guidance on usability. ISO 9241-11, ISO, March 1998.

[8] What Do You See When You're Surfing? Using Eye Tracking to Predict Salient Re-
gions of Web Pages. Association for Computing Machinery, Inc., April 2009.

[9] Ergonomics of human-system interaction — Part 210: Human-centred design
for interactive systems. ISO 9241-210, ISO, March 2010.

[10] Eyevido crowd eyetracking. http://eyevido.de, 2015. Accessed: 02-09-
2017.

[11] A. M. Barreto. Do users look at banner ads on facebook? Journal of Research in
Interactive Marketing, 7(2):119-139, 2013.

[12] Z. Bylinskii. Eye fixation metrics for large scale analysis of information visual-
izations. 2015.

[13] Z.Bylinskii, M. A. Borkin, N. W. Kim, H. Pfister, and A. Oliva. Eye Fixation Met-
rics for Large Scale Evaluation and Comparison of Information Visualizations, pages
235-255. Springer International Publishing, Cham, 2017.

48

https://piktochart.com/
https://getfireshot.com
http://mrcoles.com/full-page-screen-capture-chrome-extension/
http://mrcoles.com/full-page-screen-capture-chrome-extension/
https://github.com/hanadi92/demobrowser
https://github.com/hanadi92/demobrowser
https://obsproject.com
http://www.openshot.org/
http://eyevido.de

[14]

(18]

[19]

[20]

E. Cutrell and Z. Guan. What are you looking for?: An eye-tracking study of
information usage in web search. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI '07, pages 407-416, New York, NY,
USA, 2007. ACM.

C. Ehmke and S. Wilson. Identifying web usability problems from eye-tracking
data. In Proceedings of the 21st British HCI Group Annual Conference on People and
Computers: HCI...But Not As We Know It - Volume 1, BCS-HCI '07, pages 119-128,
Swinton, UK, UK, 2007. British Computer Society.

R. Menges, C. Kumar, D. Miiller, and K. Sengupta. Gazetheweb: A gaze-
controlled web browser. In Proceedings of the 14th Web for All Conference on The
Future of Accessible Work, W4A "17, pages 25:1-25:2, New York, NY, USA, 2017.
ACM.

A. Poole and L. J. Ball. Eye tracking in human-computer interaction and us-
ability research: Current status and future. In Prospects”, Chapter in C. Ghaoui
(Ed.): Encyclopedia of Human-Computer Interaction. Pennsylvania: Idea Group, Inc,
2005.

A. Poole and L. J. Ball. Eye tracking in human-computer interaction and us-
ability research: Current status and future. In Prospects”, Chapter in C. Ghaoui
(Ed.): Encyclopedia of Human-Computer Interaction. Pennsylvania: Idea Group, Inc,
2005.

H. Sano, S. Shiramatsu, T. Ozono, and T. Shintani. Web block extraction system
based on client-side imaging for clickable image map. Journal of Communication
and Computer 10, pages 1-8, 2013.

Y. Tang, J. Shin, and H.-C. Liao. De-ghosting method for image stitching. In-
ternational Journal of Digital Content Technology and its Applications, pages 1-8,
2012.

49

Appendices

A. Detailed Experts’ Tasks

1. Creative Commons Web page tasks:

e How long was the time until the subject made their first fixation on the
fixed element shown in sub-figure[16bf? (an objective task)

e How many fixations are on the fixed element, that is shown in sub-figure
in total? (an objective task)

e Rate the following sentence: It was challenging for the participants to
solve the task. (a subjective task on a scale of “Absolute agreement” to
“Absolute disagreement”)

2. Yelp Web page tasks:

e How long was the time until the subject made their first fixation on the
fixed element shown in sub-figure[16c¢ (an objective task)

e How many fixations are on the fixed element, that is shown in sub-figure
16d| in total? (an objective task)

e Rate the following sentence: It was challenging for the participants to
solve the task. (a subjective task on a scale of “Absolute agreement” to
“Absolute disagreement”)

3. Digg Web page tasks:

e How long was the time until the subject made their first fixation on the
fixed element shown in sub-figure (an objective task)

e How many fixations are on the fixed element, that is shown in sub-figure
in total? (an objective task)

e Rate the following sentence: It was challenging for the participants to
solve the task. (a subjective task on a scale of “Absolute agreement” to
“Absolute disagreement”)

4. Jimdo Web page tasks:

e How long was the time until the subject made their first fixation on the
fixed element shown in sub-figure (an objective task)

¢ How many fixations are on the fixed element, that is shown in sub-figure
16e} in total? (an objective task)

e Rate the following sentence: It was challenging for the participants to
solve the task. (a subjective task on a scale of “Absolute agreement” to
“Absolute disagreement”)

50

	Introduction
	Background and Related Work
	Technical details
	Eye tracking research
	Web Elements Extraction
	Image processing

	Research Problem
	Methodology
	Challenges
	Fixed Elements
	Screenshots

	Approach concept
	Implementation

	Evaluation
	Methods
	Phase one
	Phase two
	Results analysis
	Equipments

	Results
	Discussion

	Conclusion and Future Work
	Bibliography
	Appendices
	Detailed Experts' Tasks

