
A Rule-based Approach for the
Automatic Extraction of Mega

Models

Masterarbeit
zur Erlangung des Grades eines Master of Science

im Studiengang MSc. Informatik

vorgelegt von

Frederik Rüther

Erstgutachter: Prof. Dr. Ralf Lämmel
Institut für Informatik

Zweitgutachter: Msc. Johannes Härtel
Institut für Informatik

Koblenz, im Februar 2018

Erklärung

Ich versichere, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt habe

Ja Nein

Mit der Einstellung der Arbeit in die Bibliothek bin ich einver-
standen.

� �

Der Veröffentlichung dieser Arbeit im Internet stimme ich zu. � �

. .
(Ort, Datum) (Frederik Rüther)

B

Zusammenfassung

Moderne Softwaresysteme bestehen aus verschiedenen Programmiersprachen, Software-
technologien und Artefakten. Dadurch wird es für Entwickler komplexer, den Quelltext
sowie die enthaltenen Abhängigkeiten zu verstehen. Entsprechend muss ein größerer
Aufwand in die Erstellung von Dokumentation gesteckt werden. Eine Möglichkeit
zur Dokumentation einer Software mit dem Fokus auf die benutzten Technologien
stellen linguistische Architekturen dar. Diese können z. B. durch die MegaL Ontolo-
gie beschrieben werden. Da die Erstellung einer solchen linguistischen Architektur
für ein beliebiges Softwareprojekt kompliziert ist, beschreibt diese Arbeit einen Ansatz
zur automatischen Erstellung einer solchen linguistischen Architektur. Dafür wird das
Open Source Framework Apache Jena verwendet, welches Semantic Web Technologien
wie RDF und OWL benutzt. Mit diesem können spezifische Regeln definiert werden,
welche aus existierenden RDF-Triplen neue ableiten. Dieser Ansatz wird schließlich in
einer Case Study an zehn verschiedenen Open Source Projekten getestet. Dabei soll eine
linguistische Architektur in MegaL extrahiert werden, welche die Nutzung von Hiber-
nate beschreibt. Mit der Hilfe von spezifischen Metriken wird das Ergebnis dann mit
einem internen und externen Ansatz evaluiert.

Abstract

Modern software projects are composed of several software languages, software tech-
nologies and different kind of artifacts. Therefore, the understanding of the software
project at hand, including the semantic links between the different parts, becomes a dif-
ficult challenge for a developer. One approach to attack this issue is to document the
software project with the help of a linguistic architecture. This kind of architecture can
be described with the help of the MegaL ontology. A remaining challenge is the creation
of it since it requires different kind of skills. Therefore, this paper proposes an approach
for the automatic extraction of a linguistic architecture. The open source framework
Apache Jena, which is focusing on semantic web technologies like RDF and OWL, is
used to define custom rules that are capable to infer new knowledge based on the de-
fined or already extracted RDF triples. The complete approach is tested in a case study
on ten different open source projects. The aim of the case study is to extract a linguistic
architecture that is describing the use of Hibernate in the selected projects. In the end,
the result is evaluated with the help of different metrics. The evaluation is performed
with the help of an internal and external approach.

i

Acknowledgement

I would like to thank my supervisors Prof. Dr. Ralf Lämmel and Johannes Härtel for
their support during the progress of creating this thesis. Furthermore, I want to thank
the complete Softlang team for their advice, tips and learning opportunities during my
studies in the MSc. Computer Science program of the University of Koblenz.

CONTENTS ii

Contents

1 Introduction 1

2 Related Work 3

3 Background 5
3.1 Ontologies . 5
3.2 Linguistic Architectures . 5
3.3 Entities in MegaL . 5
3.4 Relations in MegaL . 7

4 A Rule-based Approach for Mega Model Extraction 9
4.1 Overview . 9
4.2 Preparations . 10
4.3 Rule-based Inference of Mega Models . 11

5 Case Study 15
5.1 Methodology for Technology and Project Selection 15
5.2 Target Mega Model for Hibernate . 18
5.3 Iterative Rule Development . 24
5.4 Evaluation . 36
5.5 Discussion . 45

6 Concluding Remarks 47
6.1 Summary . 47
6.2 Threat to Validity . 47
6.3 Future Work . 48

7 Appendix 50
7.1 SQL commands . 50
7.2 Further MegaL Definitions . 52
7.3 API description of Hibernate . 54

References 55

List of Tables

4 Basic entities of MegaL . 6
5 MegaL relations used by our approach . 8
6 Software projects that fulfill the criteria . 18
7 Shows the methods used to identify a language 25
8 Services that can be used by the built-ins 35
9 The developed metrics for the evaluation 37
10 Summary of the result for the internal validation 40
11 Comparison of the results between the tool and naive approach 42

LIST OF FIGURES iii

12 The value of the metric and the result of the search of the DAO files with
the naive (N) approach . 43

13 Shows how many files, not covered by the naive approach, are correctly
and wrongly classified by the tool . 43

14 Table statement, correspondences and mapping definitions of the projects 46
16 Entities depending on the ecosystem used by software engineering 52

List of Figures

1 Links between O/R-Mapping related artifacts 1
2 Logical process for the extraction of a linguistic architecture 9
3 Most used APIs of maven projects on GitHub according to [14] 16
4 The extraction process used by our approach 24
5 The relation between rules, built-ins and services 35

Listings

1 Encoding of a MegaL Role and Language entity into RDF 10
2 Definition of artifacts found in the project folders 10
3 Packages encoded into MegaL vocabulary 11
4 Example of a rule with a body built-in . 12
5 Content of an exemplary XML file . 12
6 Example of another rule with a body built-in 13
7 Example of a rule with a head built-in . 13
8 Triples added by the built-in . 13
9 Backward rule for the finding of no values 14
10 An exemplary patient class . 18
11 Definition of mappable objects in MegaL 19
12 An exemplary create statement for a patient table 20
13 Definition of the relational model in MegaL 20
14 Relation of interest . 20
15 Definition of the specific mapping function 20
16 An example of a Hibernate mapping description 21
17 Definition of the object specific mapping function 21
18 The annotated patient class . 22
19 Definition of the specific mapping function with Java annotations 22
20 Example of a service which is executing a patient mapping function . . . 22
21 The service data encoded into MegaL . 23
22 The different roles found by using the Hibernate technology 23
23 Identification of the language of an artifact 25
24 Fragment extraction and parsing for a SQL create statements 26
25 Result of the rule shown in Listing 24 . 26

LISTINGS iv

26 Checking if a XML file conforms to a XSD file 26
27 Extraction of the Java class URI . 27
28 Hibernate role identification with the help of a built-in 27
29 Hibernate role identification with the help of a built-in 28
30 Mapping definitions with the help of annotations 29
31 The result of the execution of the rule shown in Listing 30 29
32 Definition of the OLang for each annotated class 30
33 Definition of the mapping function . 30
34 The linking of the function to its input and output 31
35 The linking of the function to its input and output 32
36 Detection of inheritance between different persistable objects 34
37 This fragment is an example for a false positive error 45
38 This fragment is an example for a false negative case 45
39 Getting final hibernate versions . 50
40 Getting projects with fitting versions and classes 50
41 SQL for linking projects with API usage 50
42 Multiple persons should work on a Hibernate project 51

1

1 Introduction

Motivation:
Modern software systems are composed of different technologies, languages and frame-
works. This leads to technology specific artifacts in software projects like for example a
Hibernate O/R-Mapping description file. A developer working on a system can quickly
loose the overview about the dependencies between different artifacts established by
the used technologies. Especially, in the context of software maintenance the process
of understanding a software system becomes a main challenge. The importance is un-
derlined by the estimation that up to 50 % of the maintenance effort is spend on under-
standing source code [10].
One approach to address this problem is to create a linguistic architecture that illus-
trates the used technologies, languages and artifact of a software system [5, 9]. This
way a software system can be comprehended regarding the usage of a specific tech-
nology and finally show the semantic links between different files. Let’s for example
consider a software system that is using a Hibernate mapping description to map an
object to a relational table. The latter one is defined in a SQL file. In this usage scenario,
a semantic connection, as shown in Listing 1, between the Java and SQL file exists since
both describe the same data but with a different language. In addition, the mapping
file is indirectly connected to the files since it is referencing their class and table name.
These kind of relations and others describing the language and technology usage can
be illustrated with the help of a linguistic architecture and finally help the developer to
understand the software system.

Figure 1 Links between O/R-Mapping related artifacts

The manual creation process of a linguistic architecture is time consuming and re-
quires domain knowledge of the project. In addition, a developer would need experi-
ence with linguistic architectures and their ecosystem [8]. Still we believe that models
of a linguistic architecture can serve as a documentation of software technologies and
software projects. In other contexts, ontologies were already automatically extracted for
the documentation and summary of software project [17, 10]. In fact, that field is known
as ontology-enabled development (OED) and it aims to support developers while cod-
ing [7]. A linguistic architecture can be described by an ontology. The remaining chal-
lenge is the quick and correct creation of it, though.
Research questions:
Therefore, this paper tries to automatically extract the linguistic architecture of a software

2

system with the focus on documenting and describing the use of a specific technology.
The key concept here is that the model should be automatically extracted. For the ex-
traction of the linguistic architecture, a rule based approach is developed, that is using
technologies and techniques from the semantic web context to define custom rules that
infer new knowledge based on existing information. The linguistic architecture is for-
malized in the mega modelling language MegaL. The technology we are focusing on is
Hibernate. In the end, this approach tries to answer the following two related research
questions:

1. Can a linguistic architecture automatically be extracted?

2. Is it possible to find and investigate valuable characteristics of the software sys-
tems with the extracted model?

A case study on open source projects will be performed to answer these questions. It
is focusing on the extraction of Hibernate related information on several open source
projects.
Contributions:
This thesis has several contributions to the research community which are listed below:

• Creation of a linguistic architecture with the language MegaL for the description
of the O/R-mapping process with the Hibernate framework.

• Development of an approach, based on RDF triples and rule based reasoning, for
the automatic extraction of a linguistic architecture.

• A code base that supports the approach by providing functionality for the extrac-
tion of information from source files.

• An evaluation of the approach with the help of a case study on ten Java based
open source projects that are using the Hibernate framework.

Structure of the thesis:
The roadmap of the paper is as following: First related work is discussed. Chapter
3 gives an introduction about required knowledge which is mainly focused on the
term ontology and the mega modelling language MegaL. Afterwards, the rule based
approach is introduced with the help of a placeholder technology. In Chapter 4 a
case study with Hibernate as technology is performed. The case study does include
a methodology for technology and project selection and in the end the result is eval-
uated and summarized. The thesis closes with concluding remarks about threats and
future work.

3

2 Related Work

Ontologies in the context of software engineering:
An ontology is used in this paper for the representation of the linguistic architecture.
There exist different scenarios in the research field of software engineering and software
maintenance were ontologies are used. Happel and Seedorf [7] present some examples
of ontology applications throughout the software engineering life cycle. As a result, a
classification is discussed based on the roles the ontology is playing. Inspired by their
classification schema our approach could serve as an example of ontology-enabled devel-
opment since the extracted linguistic architecture should support developers with their
tasks by providing descriptions about the technology usage in the system.
Meng et al. [10] are using an ontology and description logic to support the comprehen-
sion of a software system. Their approach aims to query a previous populated ontology
and to apply formal reasoning to it. Anquetil et al. [2] see the challenges of software
maintenance as a knowledge management issue or rather the lack of knowledge as a
prominent problem. Therefore, they developed an ontology for software maintenance
that is populated by the maintainers. Both papers are related to our approach since they
are using an ontology to formalize knowledge about a software engineering related do-
main and finally enable reasoning based on the encoded information.
Our approach encodes as well information into an ontology to support developers and
enables reasoning on the formalized information. In contrast, our approach is con-
cerned with a different kind of ontology and tries to automatically populate it. The
mentioned papers were manually populating an ontology.

Linguistic architectures:
The approach developed in this thesis is defining and extracting a linguistic architecture
related to the usage of the Hibernate framework. A linguistic architecture is concerned
with the usage scenarios of software technologies in terms of the involved software lan-
guages, related technologies and the linguistic relation they are having. Favre et al. [5]
are demonstrating the creation of such a linguistic architecture for Object/XML map-
ping with the help of mega modelling. Based on this work Lämmel and Varanovich [9]
are extending the mega modelling approach to provide a general facility to apply mega
models to actual systems and to validate the claims that are made by the mega models.
Finally, Härtel et al. [8] are trying to make MegaL, a proposed language for creating a
linguistic architecture, more useful for developers by adding further features to it.
Inspired by these papers, we developed an approach for the automatic extraction of a
linguistic architecture from a software system. Furthermore, the mega modelling lan-
guage MegaL described in these papers is used for the formalization of the linguistic
architecture. However, our focus is different since it lays on the automatic extraction of
a linguistic architecture and does neither improve its concepts nor its ecosystem.

Semantic web technologies and software engineering:
The rule based approach we use for the population of the ontology is relying on se-
mantic web technologies. Other papers in the field of software engineering are exploit-

4

ing these technologies in a similar way. For instance were semantic web technologies
mapped by Witte et al. [16] to the field of software maintenance. Their approach created
an united representation, which enables to explore, query and reason about a multitude
of software artifacts. In the end, this should ease the work of software maintainers that
have to deal with documentations, source code and their semantic connections. A key
component was the automatic population of the ontology. This approach was extended
by Zhang et al. [17] to improve the links between documentation and source code files
by using text mining techniques. Finally, Al-Qahtani et al. [1] mapped the approach to
the domain of software security. There they tried to automatically extract traceability
links between APIs and software vulnerabilities.
These papers are related to our approach since they are as well using semantic web
technologies, like RDF, to represent an ontology. On top of this, they are as well auto-
matically populating an ontology based on the artifacts of a software system. However,
there are two differences. On the one hand, the domain differs since we are applying the
semantic web technologies to extract an ontology that focuses on technology usage and
the semantic relations caused by it. On the other hand, they are not using rule based
reasoning to populate the ontology.

API and technology focused analysis of software:
A linguistic architecture is one way to analyze and summarize the usage of technolo-
gies and languages in a software project. Several other techniques and research papers
exist that are concerned with technologies and API usage in software projects. Nagy
et al. [11] determined where a SQL statement was executed in a software project that is
using the Hibernate framework. This paper is related since it is as well focusing on the
technology Hibernate and on top of this tries to trace where a SQL query was created in
the source code. This is a similar task to finding the usage of O/R-mapping functions
that we want to perform.
Ratiu et al. are extracting a domain model in the form of an ontology by analyzing the
relations inside a domain specific API. In contrast, our approach is as well extracting an
ontology to analyze the relations in the software system but does not focus on domain
specific APIs.
The evaluation of the approach described in this thesis relies on technology specific
metrics that summarize the usage of the technology. This is related to the approach of
Roover et al. [13] that is analyzing with the help of metrics the usage of APIs in software
projects, e.g., the amount of found API elements.
A linguistic architecture of a software system is as well extracted by Favre et al. [4]. In
fact, their approach is extracting from source files of a software chrestomathy relevant
information and finally assigns those as meta data to the artifacts. In contrast, this the-
sis focuses on an approach that works on arbitrary open source projects and develops a
rule based approach to extract a linguistic model for a Hibernate use case.

5

3 Background

Before the approach can be explained in detail an explanation and definition of the used
terms and vocabulary has to be provided to clarify what is meant and how they relate
to each other. Therefore, a definition for the term ontology and linguistic architecture is
given in chapter 3.1 and 3.2 . Finally, the vocabulary used by the language MegaL is
explained in detail in chapters 3.3 and 3.4.

3.1 Ontologies

Ontologies can be used for the definition of a linguistic architecture. An ontology is
defined by Uschold and Gruninger [15] as a term used "to refer to the shared understanding
of some domain of interest". In the context of this research, the domain is the field of soft-
ware engineering. They continue that an ontology is often "conceived as a set of concepts,
their definitions and their inter-relationships" [15]. This means that the different concepts
can exist in an ontology like for example a Person and a Car. Both concepts can now be
connected by defined relations. A relationship that could connect these two concepts
could be named owns, which would indicate that a specific instance of a person is own-
ing an instance of the concept car, e.g., a Person called Peter could be connected to the
car Audi-A6 by this relationship: Peter owns Audi-A6.

3.2 Linguistic Architectures

A linguistic architecture is concerned with the usage of software languages, software
technologies and artifacts in a software system and tries to lay out the relations between
those different components [5]. The models of linguistic architectures can be referred to
as mega models. One language to describe a mega model is called MegaL and it builds
an ontology that defines a set of entities/concepts and relation types [5].
There are several concerns a linguistic architecture wants to address. On the one hand,
it can be used as a documentation for developers to understand how to use a tech-
nology in a different scenario. On the other hand, it can be used to understand how
technologies are used in a software project.

3.3 Entities in MegaL

The language MegaL is composed of several entities. An entity in MegaL can be seen
as a concept of an ontology as it was introduced in Chapter 3.1. Each of the explained
elements in this chapter are sub elements of an Entity in MegaL. The official Megalib1

repository and the published papers [9, 5] serve as a reference for the details explained
in this chapter.
Artifacts in the MegaL ontology are elements with a physical manifestation. An example
of an artifact could be a file or a folder. Artifacts can further be splitted into different
Fragments. A Fragment refers to a continues range of an artifact, e.g., a method definition

1https://github.com/softlang/megalib

3.3 Entities in MegaL 6

could be an example of a fragment of a Java file. Some Artifact have a special purpose
or task in a software system. This is described by the entity Role.
Another important entity is Language, which is conceptually a special type of a set. Java
is an example for an instance of such an entity but also domain specific or embedded
languages can exist.
A software project is in the MegaL context described as a System. Other notable exam-
ples of Systems are technologies, libraries, APIs, frameworks and applications.
One aim of mega modelling is to describe technologies and their implemented features.
A way to do this is to define a Function that describes the meaning of and the operations
performed by the technology. This is enabled by MegaL with the corresponding entity
name. A Function can take several Artifacts of a specific language as input and returns
an Artifact of a defined language. Table 4 is showing the discussed entities of MegaL.
The language itself defines more. However, just the ones necessary for this approach
were introduced.

Name Description Origin Hyperlink
Artifact This is any kind of digital

entity created during the
software engineering pro-
cess.

MegaL [9] Wikipedia

Language In simple terms it is may
described as a set

MegaL [9] Wikipedia

Fragment Is a continues region of
a given artifact, e.g., line
number 10 to 20.

MegaL [9] Wikipedia

System Is a reusable third party
software. Technologies,
APIs, libraries and even
normal applications are ex-
amples of a System

Megalib repository Wikipedia

Function The meaning of a program
or system, e.g, a certain
feature or operation that a
system is able to perform.
Usually it is composed of
input elements and returns
a result.

MegaL [9] Wikipedia

Role The purpose, task or classi-
fication of a software arti-
fact. Usually it is describ-
ing the special purpose the
artifact is playing in the
technology.

Megalib repository Wikipedia

Table 4 Basic entities of MegaL

https://en.wikipedia.org/wiki/Artifact_(software_development)
https://en.wikipedia.org/wiki/Computer_language
https://en.wikipedia.org/wiki/Snippet_(programming)
https://en.wikipedia.org/wiki/Software_system
https://en.wikipedia.org/wiki/Function_(engineering)
https://en.wikipedia.org/wiki/Artifact_(software_development)

3.4 Relations in MegaL 7

3.4 Relations in MegaL

The different entities that are defined in the MegaL ontology can be connected with re-
lations. The most important relations are explained inside Table 5.
The most generic relation is named partOf and it describes the composition of two ele-
ments, e.g., a Fragment is partOf an Artifact.
Language specific: If an Artifact is written in a specific Language both instances of the
entities are connected by the relation elementOf. An example would be a Java file which
is an elementOf the language Java. A Language itself has to be defined, e.g., by a gram-
mar specification or source code. This is described by the relation called defines, which
connects an Artifact to the Language it specifies. If an Artifact is not just the element of
a Language but it is also following a certain schema, it conformsTo the artifact describing
the schema. A XML file would usually conformTo XSD.
Content specific: Other relations are linking entities based on the content of artifacts.
This can happen if either the content is referencing another artifact e.g., by an URI or
when the content is specifying a certain construct of the language like a class or a table.
The most interesting relation for this thesis is correspondsTo. This relationship indicates
that both entities describe the same data but with a different language or abstraction
level. Take for example an employee of a company with all its properties. This data
could be described by a XML or JSON file. If both files exists they would correspondTo
each other since they are describing the same data, an employee, but with a different
encoding.
Technology specific: If technologies are used in a project they usually lead to specific
relations. A technology quite often manifests Artifacts that play a certain Role in a sce-
nario. An example would be a file having the Role of a Driver. The relation hasRole
would connect the file to its specific Role. A technology is usually implementing a func-
tion. In the context of MegaL, such a function is just accepting input of a certain kind.
Therefore, the Languages expected as input and output are defined. A concrete scenario
can be described by specifying the Artifacts involved in the function execution as argu-
ment and the result. However, they have to be an elementOf the required Language.

Name Type definition Description Origin

partOf Artifact # System
Function # System

Fragment # Artifact
Function # Function

Basically indicates that an el-
ement is composed of other
elements.

MegaL
[5]

elementOf Artifact # Language An artifact that is written in
a certain language is an el-
ement of this particular lan-
guage.

MegaL
[5]

defines Artifact # Language
Artifact # Function

An artifact can define a lan-
guage

MegaL
[5]

3.4 Relations in MegaL 8

conformsTo Artifact # Artifact An artifact may follows a
certain schema. If this
schema is defined in another
artifact the artifacts conform
to each other.

MegaL
[5]

corresponsTo Artifact # Artifact This link indicates that both
objects describe the same
data or facts but with differ-
ent a encoding

MegaL
[5]

hasRole Artifact # Role An artifact may has a certain
purpose in this context

MegaL
[5]

Table 5 MegaL relations used by our approach

9

4 A Rule-based Approach for Mega Model Extrac-

tion

This chapter aims to explain the rule based approach that is used for the extraction of a
linguistic architecture. The approach is explained with the help of the placeholder tech-
nology XML and the linguistic architecture it manifests. In a case study the approach
will later be executed and evaluated with a specific technology.

4.1 Overview

The linguistic architecture is extracted with the help of developed rules. These rules
derive new knowledge based on the already existing information.
The execution and reasoning process is supported by the open source framework Apache
Jena 2, which is designed for working with linked data in the RDF or OWL format. One
part of Jena is a generic rule reasoner 3, that enables to build user defined rules to in-
fer new RDF triples based on the already existing RDF triples. The existing triples are
loaded to the reasoner as initial models. Since Jena is working on RDF triples the MegaL
ontology has to be encoded into RDF. This is possible since MegaL uses mostly the En-
tity, Relation, Entity format, which can easily be encoded into RDF triples that support
the subject–predicate–object layout. Furthermore, the Entities are encoded into an URI
that starts with http://softlang.com/.
The overall approach for the extraction of the mega model is composed of three separate
phases. Each phase is executed by a tool, which is developed by us and is manifesting
an incremental architecture. The first step is to load an initial model for the reasoning
process composed of RDF triples that are representing the software project and tech-
nologies at hand. It contains information like the Artifacts in a software project and Role
definitions of the technologies. Chapter 4.2 gives an in depth explanation regarding
this step of the approach. Afterwards, these triples will be used to extract the linguistic
architecture with the help of custom rules. In the end, the complete linguistic architec-
ture is summarized with the help of custom metrics and the mega model is displayed.
Chapter 4.3 explains the Jena rule inference which is used for both phases. Figure 2
illustrations the logical steps of the approach.

Figure 2 Logical process for the extraction of a linguistic architecture

2https://jena.apache.org/
3https://jena.apache.org/documentation/inference/rules

4.2 Preparations 10

4.2 Preparations

A model, basically a set of triples on which the reasoning should begin, has to be cre-
ated. This model is composed of RDF triples, which can be distributed over different
files. These triples are either added manually or automatically to the corresponding
files. For each technology, like Hibernate, Spring or Jaxb, a specific folder exists where
related files and basic triples are stored. Another directory exists for the software project
to be analyzed. The files defining RDF triples in these folders will be loaded to build the
initial model.
The Roles that appear in a technology are added manually in the form of RDF triples
by the developers. Therefore, the name of the role itself as well as the MegaL relation
and entity have to be encoded into an URI to form a valid triple. In the context of XML
an example of a Role would be a Schema. A XSD file would have such a role since it
defines the schema of specific XML files. Both information are encoded into an URI
and as RDF triples. The type of an entity will be defined by the RDF related verb type.
Another example of a triple that has to be added manually would be the definition of
the language itself. Listing 1 illustrates the added RDF triples. Further, entities can be
added by following the same steps.
Packages, that are part of the technology, are added manually to a JSON file that sum-
marizes the packages of a technology.

Listing 1 Encoding of a MegaL Role and Language entity into RDF

1 @prefix sl: <http://softlang.com/> .
2 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema> .
3

4 sl:Role/Schema rdfs:type sl:Role .
5 sl:Language/XML rdfs:type sl:Language .

The Artifacts of a software system or technology are added automatically as triples
to the corresponding file. This is possible since the software system to be analyzed is
located at the local file system. Therefore, the program iterates over the folders and
extracts RDF triples defining the contained files of the project. For example would a
XML file of the project with the name employee.xml be encoded into RDF triples as shown
in Listing 2.
Technology specific artifacts, as for example the XSD or DTD schema files, are located
in a previous defined technology folder. Accordingly the RDF triples for those files are
created and stored automatically. The JSON file with the packages will be translated to
RDF triples that define a Package, which is a sub-type of an Artifact, and be added to a
model file. In the ecosystem of XML the technology Jaxb can be used for the mapping
of XML data to Java objects. One of its Packages serves as an example. The result is
illustrated in Listing 3.
The process closes by loading all the relevant files, containing the manual and automatic
created RDF triples, to the Jena reasoner. These loaded triples are referred to as initial
model.

4.3 Rule-based Inference of Mega Models 11

Listing 2 Definition of artifacts found in the project folders

1 @prefix sl: <http://softlang.com/> .
2 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema> .
3

4 sl:Project/Path/To/employee.xml rdfs:type sl:Artifact.
5 sl:Project/Path/To/employee.xml sl:partOf sl:Application/Project.
6 sl:Application/Project rdfs:type sl:System.

Listing 3 Packages encoded into MegaL vocabulary

1 @prefix sl: <http://softlang.com/> .
2 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema> .
3

4 sl:Package/javax.xml.bind rdfs:type sl:Package.
5 sl:Package/javax.xml.bind sl:partOf sl:Technology/Jaxb.
6 sl:Technology/Jaxb rdfs:type sl:System.
7 sl:Package sl:subtype sl:Artifact.

4.3 Rule-based Inference of Mega Models

Once the RDF triples, as explained in chapter 4.2, are loaded into the reasoner the in-
ference of further triples can start. This is performed by custom defined rules, that are
depending on the (software) technology usage that should be described by the mega
model. A mega model that focuses on the usage of the technology Hibernate manifests
different rules than when the usage of the Spring framework should be documented.
This chapter uses the XML ecosystem as a running example to explain the general ap-
proach and concepts used for the definition of the rules. A concrete definition of rules
for a certain technology are described in the case study.
Rule Engine: The general purpose rule engine of Jena can be used to define rules that
reason about existing RDF triples. These rules will have a body and a head that is com-
posed of a list of terms. The body is defining the premises for the execution of a rule
whereas the head defines the conclusions of a rule. A term can either be a triple or a
built-in, that executes Java source code.
Forward engine: Jena has a forward and a backward engine for the execution of the
rules. The forward engine is used for the inference of new triples and is based on the
RETE algorithm [6]. Therefore, the rules are executed incrementally based on the in-
ferred triples. A forward rule separates the body and head by a right arrow→.
Sticking to our running example of XML, the first step would be to identify all files that
are actually encoded into XML. The normal triple based reasoning is itself not expressive
enough to extract such a complex relation. Therefore, Jena provides the possibility to
develop built-ins in Java that can be used in the header or body of a forward-rule. This
enables Jena to express difficult conditions. The built-ins are separated based on their
position in the rule into head and body built-ins. A body built-in would be suitable to
solve the described issue.
Body built-ins: These built-ins are part of the body of a rule. They are either returning

4.3 Rule-based Inference of Mega Models 12

true or false and help to decide whether the list of triples in the head of the rule should
be appended to the resulting set of triples.
For the described scenario a built-in, called ParseXML, could be coded, that takes a pa-
rameter as input and returns true if the referenced file could be parsed as XML. The
parameter is the path of an Artifact encoded in an URI as shown in Listing 2. Listing
4 shows the complete rule for such a scenario. If the built-in returns true the triple in
the conclusion is added to the set of triples in the model. This may enables the firing of
another rule that was was requesting in the premise that a certain Artifact is an element
of XML.

Listing 4 Example of a rule with a body built-in

1 (?a rdfs:type sl:Artifact)
2 ParseXML(?a)
3 −>
4 (?a sl:elementOf sl:Language/XML)

The next thing that is might interesting in a linguistic architecture is to define the
Role of a certain Artifact. An approach for this could be to extract the name of a root
element of a XML file and append the word Description to it. The result would be a
meaningful name for a Role. Listing 5 shows the layout of a XML file that is describing
an employee. Its root element is called employee as well. This name should be extracted
by the built-in and be processed in a way that the output is http://softlang.com/Role/Em-
ployeeDescription.
For this scenario it is not enough to just return true or false. It would in addition be
good to bind the result to a variable so that it can be used in the rule afterwards. This
should of cause just happen for XML files that are having a root element. Otherwise
nothing should happen. This scenario can be realized with a body build-in since it al-
lows to bind for example an URI to a variable that is given as an argument. Usually,
this means that a previous empty variable does afterwards contain a certain URI.
A possible built-in with the name CreateRoleName would take two arguments. One
would specify the path of a certain XML file and into the second argument the result is
written. In case the XML file is empty, the premises are not true and the conclusion will
not be added to the set of triples. Otherwise a new URI containing the Role is added.
This rule is executed after the one defined in Listing 4 since the required triple is added
there.

Listing 5 Content of an exemplary XML file

1 <employee snumber = 12>
2 <firstname> Hans </firstname>
3 <lastname> Mueller </lastname>
4 ...
5 </employee>

4.3 Rule-based Inference of Mega Models 13

Listing 6 Example of another rule with a body built-in

1 (?a sl:elementOf sl:Language/XML)
2 CreateRoleName(?a, ?role)
3 −>
4 (?a sl:hasRole ?role)
5 (?role rdfs:type sl:Role)

Head built-ins: A lot scenarios exist where more than one value has to be obtained
and added as a result. Imagine the XML file should be split into different fragments
where each fragment represents a XML-Element contained in the root. Looking at List-
ing 7 this would be the element firstname and lastname. This would may lead to multiple
fragments that have to be added in the conclusion. This cannot be archived with a body
built-in. Therefore, Jena provides another type of built-ins, that are executed in the head
of a rule. Those will neither return true nor false but rather add calculated triples to the
triple set. If the body found the requested triples, the head built-in will be executed,
eventually with parameters bound by the body of the rule. For the realization of the
described scenario the built-in ExtractFragments can be used that will extract all the ele-
ments of the XML file and adds them in the form of triples to the set. This way a XML
file can easily be split into fragments. Listing 7 shows the complete rule and Listing 8
shows the expected result for the employee XML file.

Listing 7 Example of a rule with a head built-in

1 (?a sl:elementOf sl:Language/XML)
2 −>
3 ExtractFragments(?a)

Listing 8 Triples added by the built-in

1 (sl:Project/Path/To/employee.xml:28#57 rdfs:type sl:Fragment)
2 (sl:Project/Path/To/employee.xml:62#92 rdfs:type sl:Fragment)
3 (sl:Project/Path/To/employee.xml:28#57 sl:partOf sl:Project/Path/To/employee.xml)
4 (sl:Project/Path/To/employee.xml:62#92 sl:partOf sl:Project/Path/To/employee.xml)

4.3.1 Evaluation Based on Metric Extraction

The last phase of the process tries to collect different metrics for the evaluation. The
rule engine or Jena API can be used for the extraction of metrics. Those metrics depend
on the chosen technology and linguistic architecture that should be extracted. They
should answer questions about the analyzed software system and are developed with
the specialties of a technology in mind. Eventually, it should be used to evaluate the
quality of the developed rules for the extraction of the linguistic architecture. In the
case of XML it would be of interest to count how many files do not conform to a certain
schema. This metric will be extracted with the help of the backward engine of Jena.
Backward engine: The backward engine uses logic programming similar to the language
Prolog. Its goal is to enable the querying of data. It is executed after the forward engine

4.3 Rule-based Inference of Mega Models 14

finished its execution. This is especially useful if questions regarding the complete set
of triples should be answered. In the XML example it could be of interest to count how
many files exist, that have no conformsTo relation. In fact, a triple should be added to the
set which identifies such files by tagging it with an object of the type NoConformation.
This enables the counting of the elements with the help of the Jena API.
The Jena framework already provides a built-in called noValue which checks if a triple
exists in the data set. Since this is executed after the forward engine all the existing
triples of the forward engine should exist. As a result, it is safe to say that all possible
triples were already inferred by the forward engine. Listing 9 shows the complete rule.
A rule that is executed in the backward engine is identified by a left arrow←. However,
only body and not head built-ins can be used in this kind of rule.
In the end, these triples can be counted by the method listSubjectsWithProperty of the
Jena API and populate a metric called NotConformingFiles.

Listing 9 Backward rule for the finding of no values

1 (?a sl:elementOf sl:Temp/NoConformation)
2 <−
3 (?x sl:elementOf sl:Language/XML)
4 noValue(?x, sl:conformsTo)

15

5 Case Study

5.1 Methodology for Technology and Project Selection

The approach we selected should be executed and evaluated in a case study which re-
quires two different inputs. On the one hand, it has to be decided what technology
should be focused on for the extraction of the linguistic architecture. On the other hand,
sample projects using this technology have to be selected for the evaluation of the ap-
proach. This chapter describes how and with what criteria those elements have been
selected. Its goal is to enable the reproducebility of the case study.

5.1.1 Technology Selection

The technology that should be selected for the case study has to fulfill the following two
criteria:

1. The technology should be frequently used by projects.

2. Several languages should be used during the usage of the technology.

The first criteria ensures that the technology is popular and the extracted mega model is
useful for a large group of developers. Furthermore, this supports the finding of sample
projects for the evaluation since the corpus of possible projects is larger. The second
criteria tries to make assumptions regarding the complexity of a linguistic architecture.
Since a linguistic architecture is concerned with the usage of software languages and
technologies, multiple languages could lead to a more interesting linguistic architecture
which will finally provide a larger value to a developer. Furthermore, the approach
is stressed by a complex example which should lead to more confidence regarding the
usability of it.
Sawant and Bacchelli are providing a dataset that is describing API usage on GitHub.
This paper is taken as a starting point. Their approach is scanning GitHub for projects
that are using maven for dependency management. The pom files of those projects are
used to extract the dependencies. This helps to build a list of the most popular APIs of
maven projects on GitHub. To this long list the following criteria were applied by the
authors to select API’s for a more fine grained analysis:

• Reasonable code base of the API: more than 150 classes

• API is still maintained: more than 10 commits in a certain period of time

Five APIs are kept by the authors after the criteria have been applied. Since their criteria
also make sense for this case study only these filtered APIs are investigated in depth for
the selection. The result can be seen in Figure 3.

5.1 Methodology for Technology and Project Selection 16

Figure 3 Most used APIs of maven projects on GitHub according to [14]

The selected technologies are used frequently as the scan of GitHub proves and
hence match the first criteria. The next step is to examine each of the proposed technolo-
gies and verify if they are also matching the second criteria. This is done in an informal
way by looking at the tutorials of the technologies and identify if multiples (domain
specific) languages appear. Further details about the technologies are collected to find
reasons for the selection or exclusion of a technology. The following paragraph lists an
explanation for the selection or exclusion of each technology. In the end, one should
remain for the execution of the case study:

Guava is a collection of useful functions that facilitates best coding practices. In our
opinion, it lacks the amount of different classes of artifacts. Furthermore, it fo-
cuses on the Java stack and lacks the use of different languages, e.g., XML. Hence,
we do not consider this technology as input for this work.

Guice is used for dependency injection in Java projects. The use of annotations in
this technology is very interesting and provides non trivial connections between
artifacts. For this work we discard this technology because it is not using several
languages in a sufficient way. Nevertheless, it is interesting for future work.

Hibernate uses languages like XML and Java including annotations. Furthermore,
there are several kind of artifacts like mapping descriptions, configuration files
and finally classes that are involved in performing the transactions. This tech-
nology is further interesting for the research community. For example Nagy et al.
were doing research using Hibernate as a core technology. Hence, this technology
fulfills all criteria.

Spring is an open source frameworks that has the goal to simplify development with
JavaEE. It uses XML as well as Java annotations and got quite a few different ar-
tifacts like Java beans, XML files describing those beans and web content. On top
of this, researchers like Arthur and Azadegan already made a case study concerned
with the benefits of using it. Hence this technology fulfills all criteria. However,
it does not have a correspondence relation of MegaL like Hibernate. Therefore,
this technology will be moved to future work as well.

5.1 Methodology for Technology and Project Selection 17

Easy Mock is a mocking framework for Java. It is widely used but as well lacks the use
of several language. Furthermore, there are no artifacts with different roles since
all are basically mocked objects. Hence this technology is too simple to extract a
non trivial mega model .

Conclusion: The elaboration shows that Hibernate and Spring would be a good choose
for the case study. We decided to focus our work on Hibernate since a lot Spring projects
depend on Hibernate for object-relation mapping. In addition, Hibernate promises a
more interesting linguistic architecture since a correspondence between an object and a
table can appear.

5.1.2 Project Selection

The evaluation of our approach should take place by executing it on several projects
available on GitHub. The selection of Hibernate for the case study was explained by
the previous chapter. Since its usage was analyzed by Sawant and Bacchelli we get a
dataset with all the maven projects on GitHub that were using Hibernate in 2015. This
is taken as input to filter out the most interesting projects that are using Hibernate.
Based on the following criteria the projects were selected:

• The top ten of the most used version of Hibernate should be taken into account.
This condition helps to ensure that the version of Hibernate is relevant for several
projects.

• The project should at least contain 200 classes. As a result, the project has a certain
level of complexity and a non trivial linguistic architecture can be extracted.

• The GitHub project should have more than 10 contributors. This criteria ensures
that the extracted linguistic architecture could be useful as a documentation since
multiple developers are working on a project. Documentation is one of the pos-
sible concerns a linguistic architecture wants to address.

A list of projects that match all of these criteria are obtained with the help of SQL state-
ments on the dataset. The selected projects are listed in Table 6 whereas the SQL state-
ments that are applying the defined criteria to the dataset, provided by Sawant and
Bacchelli, are listed in the Appendix Chapter 7.1.

5.2 Target Mega Model for Hibernate 18

Hibernate projects
Oscar
Druid
projectforge-webapp
IBPMiddleware
eeg-database
mateo
ROMS
oltpbench
frontlinesms-core
iTests-Framework

Table 6 Software projects that fulfill the criteria

5.2 Target Mega Model for Hibernate

The case study should automatically extract a mega model from the source code of
the selected open source projects. The first step for this process is to define what ex-
actly should be extracted. Therefore, this chapter gives an introduction to the linguistic
architecture of a Hibernate use-case using the MegaL ontology. For the better under-
standing as a running example a Patient object is introduced. The mega model defined
here should then be extracted with the help of custom rules that are based on the mega
model. For simplification reasons the URI’s of the entities and relations will not be
shown in the Listings of this section. However, in the extracted mega model the triples
are composed of URI’s starting with http://softlang.com.

5.2.1 Basic Definitions

In a simple use case there exist at least two different Systems. One is Hibernate itself and
the other one is the project to be documented. For simplification reasons both will not
be discussed in detail with all their included Artifacts. The focus is rather on the artifacts
that are playing a role for the mapping of a Patient object to a corresponding table. Such
objects can be found in software systems as medical record databases and may look
similar to Listing 10. For the actual mapping the Hibernate framework is used.

Listing 10 An exemplary patient class

1 package org.openmrs.db;
2

3 public class Patient extends Person {
4

5 public static final long serialVersionUID = 93123L;
6 private Integer patientId;
7 private String allergyStatus = Allergies.UNKNOWN;
8 private Set<PatientIdentifier> identifiers;
9 }

https://github.com/scoophealth/oscar
https://github.com/alibaba/druid
https://github.com/micromata/projectforge-webapp
https://github.com/IBPlatform/IBPMiddleware
https://github.com/INCF/eeg-database
https://github.com/jdmr/mateo
https://github.com/RBC1B/ROMS
https://github.com/oltpbenchmark/oltpbench
https://github.com/frontlinesms/frontlinesms-core
https://github.com/CloudifySource/iTests-Framework

5.2 Target Mega Model for Hibernate 19

Java part: There exists a Java file in the project that contains the definition of the Pa-
tient class. In the context of the JVM, the object of this class is represented in a domain
specific language called PatientOLang. Other objects would be represented by different
OLangs. In fact, each Java class is defining its own OLang to which all objects of the
class at run time are encoded in.
In the context of Java, classes are identified by the combination of their package and
name. In the running example, we see that the Patient class can be identified by the
string org.openmrs.db.Patient, which represents the concatenation of the package and
class name. Since it follows the rules of a Java identifier, it is an elementOf the lan-
guage JavaClassUri. The patient file itself declares an identifier that is composed of the
package and class name and identifies the defined class. Hence in the context of Me-
gaL this file defines the reference. For this scenario the new MegaL relation decOccurs
was introduced. Its purpose is to describe that a specific identifier, e.g., a class or table
name, is defined by a certain Artifact. Afterwards this element exits in the ecosystem of
the project and can be referenced. Listing 11 shows the layout of the discussed content.

Listing 11 Definition of mappable objects in MegaL

1 patient.java elementOf Java
2 patient.java defines patientOLang
3 org.openmrs.db.Patient elementOf JavaClassURI
4 patient.java decOccurs org.openmrs.db.Patient

SQL part: The other side of the mapping is the relational model that is defining
the table to which the object is mapped. In the running example, a Patient object will
be mapped to a table called PatientTable. The table itself has to be created. There are
several ways to create a table but in this scenario it is assumed that the table is build by
a SQL create table statement like Listing 12 shows. This SQL command is part of a SQL
file. In fact, it is just the fragment of the SQL file that is containing exactly the range of
the create statement. The range is defined as the start and end position.
This fragment is defining the relational language of the table which is basically the rep-
resentation of the table in the relational database. The exact layout of the language
depends on the relational database in use. Hence, it is kind of an abstraction of a con-
crete table.
After the create statement was executed a table can be referred to with its table name.
Therefore, the actual table name, which is a QualifiedName, is declared by the create
statement. The newly introduced relation decOccurs of MegaL is used in this scenario as
well. The described content is encoded in Listing 13 in MegaL syntax.
In other scenarios, the table can be created by technologies like for example Liquibase4

or Hibernate is creating the schema itself.

4http://www.liquibase.org/

5.2 Target Mega Model for Hibernate 20

Listing 12 An exemplary create statement for a patient table

1 CREATE TABLE patientTable (
2 ID INT NOT NULL auto_increment,
3 Patient_Id VARCHAR(255) NOT NULL,
4 AllergyStatus TEXT NOT NULL,
5 FName TEXT NOT NULL,
6 LName TEXT NOT NULL,
7 BirthDate DATE NOT NULL
8);

Listing 13 Definition of the relational model in MegaL

1 tables.sql elementOf SQL
2 tables.sql#0:214 type Fragment
3 tables.sql#0:214 partOf tables.sql
4 tables.sql#0:214 elementOf SQLiteCreateTableStmt
5 tables.sql#0:214 decOccurs patientTable
6 tables.sql#0:214 defines patientRLang
7 patientTable elementOf QualifiedName

Final relation In the end, it has to be identified to what fragment of the SQL file the
Java file is corresponding to (Listing 14).

Listing 14 Relation of interest

1 patientFile correspondsTo tables.sql#12:30

The mapping function: Hibernate is basically translating the PatientOlang to the Pa-
tientRlang and vice verse. For simplification reasons the translation from the relational
to the object model is ignored. Eventually, it will be the same, only the input and output
are switched. Since MegaL is normally not encoded into RDF triples the two relations
input and output are introduced as properties in RDF. That way the function usage can
be encoded into RDF.
The translation itself can be described as a function that is transforming one language
to the other language. This function is different for each object and table pair but is still
a partOf the overall OR-Mapping function. A suggested MegaL layout is presented in
Listing 15.

Listing 15 Definition of the specific mapping function

1 patient−ORMapping type Function
2 patientOLang input patient−ORMapping
3 patient−ORMapping output patientRLang
4 patient−ORMapping partOf OR−Mapping.

How the object is mapped to the table is defined by a mapping description which is
either defined by a XML file or Java annotations. Both will be discussed separately.

5.2 Target Mega Model for Hibernate 21

5.2.2 XML Mapping

The mapping itself is described by the Patient-OR-Mapping XML file. In the context of
the MegaL ontology the mapping is represented as a function. Consequently, the XML
file defines a corresponding mapping function.
For the description of the mapping, the actual Java class that should be mapped as well
as the table it is mapped to has to be defined. Therefore, the file is pointing to both
references. This is described by the newly introduced MegaL relation called refOccurs.
This one is used when a file is using a reference. Usually this reference should be de-
fined with the help of the decOccurs relation by another file. An exemplary layout of
such a XML mapping file is shown in Listing 16. This file does conformTo a specific XSD-
schema. Therefore, Hibernate is able to read its content and to extract the mapping
information. Listing 17 shows such a definition in MegaL.

Listing 16 An example of a Hibernate mapping description

1 <?xml version="1.0"?>
2 <!DOCTYPE hibernate−mapping PUBLIC
3 "−//Hibernate/Hibernate Mapping DTD 3.0//EN"
4 "http://hibernate.sourceforge.net/hibernate−mapping−3.0.dtd" >
5

6 <hibernate−mapping package="org.openmrs.db">
7 <class name="Patient" table="PatientTable" mutable="false">
8 <property name = "allergyStatus" column = "AllergyStatus" type = "string"/>
9

10
11 </class>
12 </hibernate−mapping>

Listing 17 Definition of the object specific mapping function

1 patient.hbm.xml defines patient−ORMapping
2 patient.hbm.xml refOccurs patientTable
3 patient.hbm.xml refOccurs org.openmrs.core.Patient
4 patient.hbm.xml conformsTo hibernate−mapping.xsd

5.2.3 Hibernate annotations

Another possibility to describe the mapping between an object and a relational table is
to annotate the Java class with information regarding the mapping. An exemplary out-
line of such a class definition can be seen in Listing 18. In that scenario, a separate XML
file does not exist but the information are rather encoded in the patientFile. In fact, the
patientFile file is containing a fragment which is an element of the JavaAnnotatedElement
language. This fragment is defining the mapping function and hence basically plays the
role of the previous mentioned mapping XML file. The resulting MegaL model can be
seen in Listing 19.

5.2 Target Mega Model for Hibernate 22

Listing 18 The annotated patient class

1 package org.openmrs.db;
2

3 import javax.persistence.∗
4

5 @Entity
6 @Table(name="patientTable")
7 public class Patient extends Person{
8

9

10 }

Listing 19 Definition of the specific mapping function with Java annotations

1 patient.java#3:5 type Fragment
2 patient.java#3:5 partOf patient.java
3 patient.java#3:5 elementOf JavaAnnotatedElement
4 patient.java#3:5 refOccurs patientTable
5 patient.java#4:5 defines Patient−ORMapping

5.2.4 Service definition

The earlier defined mapping function should be executed by a Java file. Otherwise
the objects would never be persisted into the database and the mapping actually never
took place. The execution happens when a related Hibernate function, like for example
saveOrUpdate, is called with a persistable object as argument. An example for such a
function usage can be seen in Listing 20. The service itself is using the Java class in
question as well as a Hibernate package which enables the system to execute a function
that performs the mapping. There are several Hibernate packages and methods that
are capable of performing the mapping but with slightly different implementations and
results. The description of this scenario in MegaL is shown in Listing 21.

Listing 20 Example of a service which is executing a patient mapping function

1 import org.openmrs.db.Patient;
2 import org.hibernate.SessionFactory;
3 import org.hibernate.cfg.Configuration;
4

5 public class HibernatePatientDAO {
6 private SessionFactory sessionFactory;
7

8 public HibernatePatientDAO(Configuration config) {
9 sessionFactory = config.configure().buildSessionFactory()

10 }
11

12 public Patient savePatient(Patient patient) throws DAOException {
13 if (patient.getPatientId() == null) {
14 sessionFactory.getCurrentSession().saveOrUpdate(patient);

5.2 Target Mega Model for Hibernate 23

15 }
16 return patient;
17 }
18 }

Listing 21 The service data encoded into MegaL

1 hibernatePatientDAO.java elementOf Java
2 hibernatePatientDAO.java refOccurs org.openmrs.core.Patient
3 hibernatePatientDAO.java refOccurs org.hibernate.Session
4 hibernatePatientDAO.java uses patient−ORMapping

5.2.5 Role definition

Three of the artifacts have a special purpose in the Hibernate ecosystem. For these,
roles are introduced. For example a mapping file has the specific role HibernateMapping.
The object to be persisted in the relational database has the role HibernatePersistedOb-
ject. Last but not least, does the Java file, that executed the mapping, has the role of a
HibernateService. Listing 22 shows the roles manifested in the running example.

Listing 22 The different roles found by using the Hibernate technology

1 hibernatePatientDAO hasRole HibernateService
2 patient.java hasRole HibernatePersistedObject
3 patient.hbm.xml hasRole HibernateMapping
4 patient.java#3:5 hasRole HibernateMapping

5.3 Iterative Rule Development 24

5.3 Iterative Rule Development

The goal of the approach is to extract the mega model that was defined in Chapter
5.2. To extract that model several rules have to be developed which will extract the
necessary relations of the mega model for an arbitrary project. Those rules were created
in an iterative matter. The most basic knowledge was extracted first and then step by
step a in depth linguistic architecture was created. The execution of the rules by Jena
does not have to be in the same order but due to the dependencies between the triples
it will be close to it. Each of that creation steps are shown in Figure 4. At the end of the
process all the relations of the mega model should be extracted in form of RDF triples.
All of the rules including the source code for the built-ins are available on GitHub5.

Figure 4 The extraction process used by our approach

5.3.1 Language detection

The first step for the extraction of the MegaL model is to identify the languages of the
artifacts in the software system. In the context of the Hibernate mega model just a
few languages are used. This approach aims to just identify the artifacts that are an
elementOf these languages. Namely these languages are Java, SQL, XML, DTD and XSD.
In addition, the domain specific language SQLCreateStmt, a subset of SQL that covers
all the create table statements, is taken into account.

For the identification of the language of an artifact two approaches are at hand. On
the one hand, the suffix of the file gives an indication about the language the file is of.
On the other hand, parsing a file would identify the language without any doubt. Our
goal is to stick with the safe method of parsing as long as it is feasible. In the case of
DTD and SQL it is very difficult to create a working parser. This is the case for SQL
since it manifests in a lot different dialects. A SQL statement that is valid for a MySQL
database is may not valid for an Oracle database. Hence, it was decided to use parsing
for SQLCreateStmt commands, which represent a create statement. For DTD the suffix
identification was chosen since it was not possible to find a stable parser. A summary
of the methods used for each language can be found at Table 7. If both are selected then
the suffix is used to build a hypothesis which is then verified by parsing it.

5https://github.com/fruether/RuleEngine

5.3 Iterative Rule Development 25

Table 7 Shows the methods used to identify a language

Language Parsed Suffix

SQL x

Java x x

XML x x

XSD x x

DTD x

SQLCreateStmt x x

Artifact based language detection:
In the model creation phase all the existing Artifacts of the project were already loaded
as triples to an initial model. The Jena reasoner is not powerful enough to identify a
language. Therefore, the Parse built-in was coded in Java. This built-in will load the
content of a file and tries to parse it accordingly to its suffix. This means that a file
with the suffix .java will be parsed by a Java parser. In case the parser was successful
the built-in returns true and binds the variable to an URI identifying the language Java.
This works the same way for XML and XSD. The complete rule is presented by Listing
23.

Listing 23 Identification of the language of an artifact

1 [LanguageDetection:
2 (?file rdf:type Artefact)
3 Parse(?file, ?language)
4 −>
5 (?file sl:elementOf ?language)
6]

Fragment based language detection:
The identification of the domain specific language SQLCreateStmt, which represents a
create table statement in SQL, can’t be established by the previous introduced rule. This
is the case because a Fragment of a file is an element of this language. For instance
imagine a large SQL file that is composed of a create and multiple insert statements.
The latter ones are populating the previous created table. In this scenario, only the
fragment of the file containing the create statement is of the type SQLCreateStmt.
Yet we don’t want to scan every file for a create statement. Therefore, first all the artifacts
ending with .sql are identified. This is archived by the previous introduced rule, which
assigns those files the language SQL.
The extraction of the create statement is handled in the following way. First of all, a
regular expression extracts the create statement out of the file. The result is saved as
a fragment Entity that is identified by an URI composed of the file path, the start and
end position of it. Afterwards, this fragment is parsed with ANTLR6 and it is checked
if it really is a syntactically correct SQL create statement. Both steps are performed by a
specific built-in called CreateStmtExtraction that expects a SQL file as input. It is a head

6http://www.antlr.org/

5.3 Iterative Rule Development 26

built-in since it adds all the necessary triples to the resulting model. Listing 24 shows
the complete rule. The result of the rule is illustrated in Listing 25 where the variable
?statement is the fragment containing the URI that identifies the SQL create statement.
The extraction of the language JavaAnnoatedElement is similar but will be elaborated in
Chapter 5.3.3

Listing 24 Fragment extraction and parsing for a SQL create statements

1 [ExtractAndParseCreateStmts:
2 (?file sl:elementOf sl:Language/SQL)
3 −>
4 CreateStmtExtraction(?file)
5]

Listing 25 Result of the rule shown in Listing 24

1 (?statement rdfs:type sl:Fragment)
2 (?statement sl:partOf ?file)
3 (?statement sl:elementOf sl:Language/SQLCreateStmt)

5.3.2 Basic language based extractions

Before it is possible to extract all the Hibernate specific triples further basic extractions
based on the used Language have to take place. The languages of the files are known
since the triples using the property elementOf have been extracted by the previous rule.
Based on this, further steps can be performed to build knowledge about the system.
For example it is useful to know what schema a XML file is following. Another tough
problem is that in the context of Java a class is not identified by the file path but by the
canonical class name7, which is a combination of the package and class name.
ConformsTo extraction: XML files could follow a schema. Such a schema can be de-
fined either in XSD or in DTD. Since a project is maybe using XML files to describe
the mapping of an object to a table, it would be of interest to identify the conformation
between XML and Hibernate XSD files. A built-in called XSDCheck was implemented
in Java that is used in the body of a rule and returns true if a XML file is following
the requested XSD schema. The focus is mainly to find artifacts with the fingerprint
of a technology like Hibernate. Hence both files should be found in different Systems.
Listing 26 shows the rule that helps to achieve this.

Listing 26 Checking if a XML file conforms to a XSD file

1 [XSDCheck:
2 (?a sl:elementOf sl:Language/XML)
3 (?b sl:elementOf sl:Language/XSD)
4 (?a sl:partOf ?system1)
5 (?b sl:partOf ?system2)
6 notEqual(?system1, ?system2)

7https://docs.oracle.com/javase/8/docs/api/java/lang/Class.htmlgetCanonicalName–

5.3 Iterative Rule Development 27

7 XSDCheck(?a,?b)
8 −>
9 (?a sl:conformsTo ?b)

10]

Class extraction: In the context of Java, a class is identified by its canonical class name,
which is composed of the package and class name. It is important to know what Java
file is declaring which class since a Hibernate XML mapping file is referencing the class
and not the file, e.g., it contains org.package.Class and not /org/package/Class.java.
Therefore, one of the early steps is to extract what files declare (decOccurs) which class.
The class is identified with the help of the built-in RetrieveClass that takes a Java file as
argument, parses it and returns the combination of package and class name as an URI.
The complete rule is presented in Listing 27.

Listing 27 Extraction of the Java class URI

1 [JavaClassIdentification:
2 (?file sl:elementOf sl:Language/Java)
3 RetrieveClass(?file, ?classname)
4 −>
5 (?file sl:decOccurs ?classname)
6 (?classname sl:elementOf sl:Language/JavaClassURI)
7]

5.3.3 Hibernate mapping identification

XML Mapping discovery: One possibility to map an object to a relational table with
the Hibernate framework is to use a XML file to describe the mapping. This mapping
file conformsTo to a Hibernate specific XSD format. Those kind of triples were already
extracted in the previous phase.
MegaL introduces the entity Role, which describes the purpose of a file. The earlier
described file would have the role HibernateMapping. The built-in HibernateRoleIdentifi-
cation, usage shown in Listing 28, assigns to each XML file that conforms to a Hibernate
XSD file a valid role. The built-in checks the file name of the schema to identify the role.

Listing 28 Hibernate role identification with the help of a built-in

1 [HibernateRoleAssignment:
2 (?file sl:elementOf sl:Language/XML)
3 (?file sl:conformsTo ?schema)
4 (?schema sl:partOf sl:hibernate)
5 HibernateRoleIdentification(?schema, ?role)
6 −>
7 (?file sl:hasRole ?role)
8]

After the roles have been identified, the table and class that are referenced in the XML
file can be extracted. The obtained information will be translated to an URI and added

5.3 Iterative Rule Development 28

to the model.
The rules for the extraction are using two built-ins to establish their goals. One is called
HibernateMappingGetClassURI and its purpose is to extract the referenced class in the Hi-
bernate mapping file. This is possible because thanks to the schema defined by Hiber-
nate it is known with what XPath the reference to the class could be retrieved. Therefore,
the built-in is simply parsing the XML file and asking for the attribute by its id. This
process is called for each HibernateMapping XML file and linked to the extracted class
URI by the refOccurs relation. Since it is known by the previous defined rule (Listing 27)
which Java file is declaring this class a chain between both files exists.
The mapping file is not just referencing the mapped class but the table it should be
mapped to as well. Hence the similar built-in HibernateMappingGetTable is called to ex-
tract the table out of the XML file. This table is identified by an URI.
A SQL file may be declaring that table name by using a create statement. Therefore, this
URI is maybe linked to a SQL file by the relation decOccurs. Since a table name is just
a QualifiedName it can under circumstances not be identified as a table or another Qual-
ifiedName is by error seen as a table name. Therefore, a sub-property of refOccurs was
introuced that is specifying that in fact a HibernateMapping file is referencing a relational
table name. The name of this relation is HibernateMappingRefOccursRelationalTable. A
sub-property in RDF is doing the same as an inheritance of object oriented program-
ming.

Listing 29 Hibernate role identification with the help of a built-in

1 [HibernateMapping:
2 (?file1 sl:elementOf sl:Language/XML)
3 (?file1 sl:hasRole sl:HibernateMapping)
4 HibernateMappingGetClassURI(?file1, ?class)
5 −>
6 (?file1 sl:refOccurs ?class)
7]
8

9 [HibernateMappingReferencedTables:
10 (?file sl:hasRole sl:HibernateMapping)
11 (?file sl:elementOf sl:Language/XML)
12 HibernateMappingGetTable(?file, ?table)
13 −>
14 (?file sl:HibernateMappingRefOccursRelationalTable ?table)
15]

Annotation discovery:
The extracted MegaL model contains a fragment which represents, a with Hibernate
elements annotated, Java class. This fragment is as well defining an O/R-Mapping. In
order to extract the same relations as for the XML mapping file a new rule has to be cre-
ated. The rule is using a built-in called HibernateAnnotationExtraction, which is located
in the head and is extracting the table name that is referenced by the annotation. Of
course the extraction only takes place if the class was annotated with one of the valid
Hibernate annotations. Otherwise nothing is added to the model. This built-in is just

5.3 Iterative Rule Development 29

called on files that match certain pre conditions. First of all, the file has to be an element
of the language Java. Secondly, the file has to import the package that is defining the an-
notations. Those annotations are defined in the package "javax.persistence". Therefore,
a separate body built-in checks if it is included. Only if both conditions are met a scan
for the Hibernate annotations is taking place. After the rule is executed the fragment
is extracted, it was assigned as an element of JavaAnnotaedElement, the roles are set and
a reference to the table is manifested. Listing 30 shows the complete rule and Listing
31 illustrates the result of the successful execution of the head built-in. However, the
variables ?fragment and ?table would be concrete URIs.

Listing 30 Mapping definitions with the help of annotations

1 [CheckAnnotationHibernate:
2 (?file sl:elementOf sl:Language/Java)
3 CheckLiteralImported(?file, "javax.persistence")
4 −>
5 HibernateAnnotationExtraction(?file)
6]

Listing 31 The result of the execution of the rule shown in Listing 30

1 (?fragment rdfs:type sl:Fragment)
2 (?fragment sl:partOf ?file)
3 (?fragment sl:elementOf sl:Language/JavaAnnotatedElement)
4 (?fragment sl:HibernateMappingRefOccursRelationalTable ?table)
5 (?fragment sl:hasRole sl:Role/HibernateMapping)

5.3.4 Language definitions

The required MegaL model shows that there exist two specific languages that are de-
fined by a Java or SQL file. Those languages represent the object and relational table
during runtime. Those languages will not be defined for each Java and SQL file but
only for the ones that are relevant for the mapping process. The rule is similar for the
definition of the RLang and OLang. Only the definition of the OLang will be discussed;
the other rule is analogue except that the fragment of the create statement is defining
the language based on the table name.
Basically the HibernateMapping file, which is identified by its role, is used to retrieve the
class that should be mapped. When the class is known, the file itself can be derived
since it decOccurs the referenced class name. Finally, the language can be defined based
on the class name. For the extraction of the class name the GetClassLiteral built-in is
used. The extracted language is enriched with additional information in the conclu-
sion, for example that it is a subset of the language JVMObject. Listing 32 is showing
the rule that is defining the specific OLang. A similar rule exists for the RLang definition
and for the OLang definition, that is based on a XML mapping description.

5.3 Iterative Rule Development 30

Listing 32 Definition of the OLang for each annotated class

1 [HibernateObjectDefinitionJavaMapping:
2 (?fragment sl:hasRole sl:HibernateMapping)
3 (?fragment sl:elementOf sl:Language/JavaAnnotatedElement)
4 (?fragment sl:partOf ?file)
5 (?file sl:decOccurs ?class)
6 (?class sl:elementOf sl:Language/JavaClassURI)
7 GetClassLiteral(?class, ?classLanguage)
8 −>
9 (?file sl:defines ?classLanguage)

10 (?classLanguage rdf:type sl:Language)
11 (?classLanguage sl:subsetOf sl:JVMObject)
12 (?file sl:hasRole technologies:Hibernate/HibernatePersistedObject)
13]

5.3.5 Mapping function definition

The files that are describing the O/R-Mapping of an object with the help of the Hiber-
nate framework are defining specific mapping functions. These functions are respon-
sible for mapping the objects to the corresponding tables. A name for each of those
functions has to be created. Therefore, for each file with the role HibernateMapping a
built-in is used to create a valid function name, which is based on the class that should
be mapped, e.g., a Patient class mapping would lead to the function name Patient-
ORFunction. Two different rules are needed to handle on the one hand the Java an-
notations and on the other hand the XML description. The reason for this is, that in one
case a file and in the other case a fragment is defining the specific mapping function.
Both rules are laid out in Listing 33.

Listing 33 Definition of the mapping function

1 [HibernateMappingFunctionDefinitionXML:
2 (?file sl:hasRole sl:HibernateMapping)
3 HibernateGetMappingType(?file, ?function)
4 −>
5 (?file sl:defines ?function)
6 (?function rdf:type sl:Function)
7 (?function sl:partOf sl:OR−Mapping)
8]
9

10 [HibernateMappingFunctionDefinitionJava:
11 (?fragment sl:hasRole sl:HibernateMapping)
12 (?fragment sl:elementOf sl:Language/JavaAnnotatedElement)
13 (?fragment sl:partOf ?file)
14 (?file sl:elementOf sl:Language/Java)
15 HibernateGetMappingType(?file, ?function)
16 −>
17 (?fragment sl:defines ?function)
18 (?function rdf:type sl:Function)

5.3 Iterative Rule Development 31

19 (?function sl:partOf sl:OR−Mapping)
20]

5.3.6 Input and output of function detection

After the function triples for a specific object mapping were added to the model input
and output values have to be assigned to this function. The input is in this case the
object language that is defined by the Java file. Whereas, the generated output is the
relational language that is defined for example by a SQL create statement.

Listing 34 The linking of the function to its input and output

1 [HibernateMappingFunctionJavaInputDefinition:
2 (?fragment sl:hasRole sl:HibernateMapping)
3 (?fragment sl:elementOf sl:Language/JavaAnnotatedElement)
4 (?fragment sl:partOf ?file)
5 (?fragment sl:defines ?function)
6 (?function sl:partOf sl:OR−Mapping)
7 (?file sl:defines ?language)
8 −>
9 (?language sl:input ?function)

10]
11

12 [HibernateMappingFunctionSQLOutputDefinition:
13 (?file sl:hasRole sl:HibernateMapping)
14 (?file sl:defines ?function)
15 (?file sl:HibernateMappingRefersToRelationalTable ?table)
16 (?table sl:partOf ?sqlFragment)
17 (?sqlFragment sl:defines ?relationalLanguage)
18 −>
19 (?function sl:output ?relationalLanguage)
20]

Correspondence:
The correspondence between the SQL fragment and the Java file is now easy to retrieve.
The files that are linked by the mapping function in an indirect way need to be linked
by an explicit relation called correspondsTo.

5.3.7 Usage detection

Another interesting fact that should be extracted according to the required MegaL model
is what files are using the mapping functions that have been defined by the previous
rules. The identification is not trivial since under normal circumstances a type system,
which is identifying the exact types used in a function call, would be necessary. This
would be the only way to guarantee that for example the saveOrUpdate function of Hi-
bernate is in fact called with the object in question. Manifesting a type system is out of
scope for now since it would require the compilation of the projects. Therefore, another

5.3 Iterative Rule Development 32

may less precise heuristic is used.
For an object to be mapped either way the minimal condition that has to hold is that it
has to be declared somewhere in the service file. This condition can be checked with-
out a type system since the included packages, the declared objects and the complete
canonical names of the persistable classes in the Java ecosystem are known.
To summarize, the first condition is that a class is declared, which is connected with the
decOccurs relation to a Java file that has the role JavaPersistedObject. A rule called Hiber-
nateImportUsedDetection (see Listing 35) is responsible for checking this condition. For
performance optimization this is not checked for every file but only for the ones that are
using a Hibernate related package. Its performance intensive due to the built-in Check-
ClassReference which is parsing each file to extract the declaration. The aim is to just do
this for the files that have a high chance of using such a mapping function.
The second condition is that the file is executing a function that indicates that the map-
ping takes place. This property is as well used by the implementation of the first rule.
The first thing to check for this approach is that one of the packages is imported and
used which implements the methods that are required for performing the mapping.
The latter information is as well extracted by the built-in CheckClassReference. A list of
valid packages is existing in the Chapter 7.3 of the Appendix. In addition, it is secondly
checked if one of the methods, that are actually performing the mapping, is called in
the file. This condition is supported by the built-in CheckHibernateMethodUsage, which
is simply verifying that a function with one of the names in the appendix is called. Just
using the name is not type safe and hence wrong results can appear. Therefore, it is just
a heuristic.

Finally, HibernateServiceDiscovery is the rule that kicks in after the object and pack-
age usage describing RDF-triples are extracted. Now the information just have to be
gathered to create the use relation between a file and the mapping function. However,
it should be kept in mind that the approach uses a weak heuristic so that a lot false
positive cases could get extracted.

Listing 35 The linking of the function to its input and output

1 [ImportDetection:
2 (?file sl:elementOf sl:Language/Java)
3 (?package rdf:type sl:Package)
4 CheckClassReference(?file, ?package)
5 CheckHibernateMethodUsage(?file)
6 −>
7 (?file sl:uses ?package)
8]
9

10 [HibernatePersistedObjectUsedDetection:
11 (?file1 sl:elementOf sl:Language/Java)
12 (?package sl:partOf sl:hibernate)
13 (?file1 sl:uses ?package)
14 (?file2 sl:hasRole technologies:Hibernate/HibernatePersistedObject)
15 notEqual(?file1, ?file2)

5.3 Iterative Rule Development 33

16 (?file2 sl:decOccurs ?class2)
17 (?class2 sl:elementOf sl:Language/JavaClassURI)
18 CheckClassReference(?file1, ?class2)
19 −>
20 (?file1 sl:uses ?class2)
21]
22

23 [HibernateServiceDiscovery:
24 (?file sl:elementOf sl:Language/Java)
25 (?file sl:uses ?package)
26 (?package sl:partOf sl:hibernate)
27 (?file sl:uses ?class)
28 (?filePers sl:decOccurs ?class)
29 (?filePers sl:hasRole technologies:Hibernate/HibernatePersistedObject)
30 (?filePers sl:defines ?language)
31 (?language sl:input ?function)
32 (?function sl:partOf sl:OR−Mapping)
33 −>
34 (?file sl:uses ?function)
35 (?file sl:hasRole technologies:Hibernate/HibernateService)
36]

5.3.8 Rules for the support of special cases

Hibernate entity is using another entity: In the context of Hibernate, it can always be
the case that an object is using another object. For example the class Patient could have
an object of type Address as an attribute, which is itself composed of several strings that
store the city, address and country. Both are perhaps entities of Hibernate8. It is not
always necessary to have a specific service which maps the objects of the class Address
to a table. This operations can as well be handled by the PatientService, which maps all
the Patient objects to a table. Therefore, a rule is created that states that every time a
persisted object is using another persisted object, one of the mapping functions is using
the other mapping function. This is the case since there exist two different types of
objects to map. In the above scenario both would be mapped by the PatientService. It
would make no sense to have a AddressService since the address object just saves data
and would not exist without an object that uses it.
Parent class is using a package: One of the rules shown in Listing 35 is checking if
a certain package was used. However, there exist cases where a class inherits from a
super class. The super class is itself importing the package in question but not the child
class. The child class is using a class, which should be persisted, though. In that scenario
the importing of the package and the declaration of the object are separated. The rule
shown in Listing 36 is used to deal with that special case. In fact, each class that inherits
from a class will use the same packages as the parent class does. An exception exists
if javax.persistence is imported since then the inheritance is most likely because it is a

8https://docs.jboss.org/hibernate/annotations/3.5/reference/en/html/entity.htmlentity-
hibspec-entity

5.3 Iterative Rule Development 34

persisted object. The CheckExtension built-in simply validates if a class is extended by
another class declared in file2.

Listing 36 Detection of inheritance between different persistable objects

1 [ImportedByExtensionDetection:
2 (?package rdf:type sl:Package)
3 (?file sl:uses ?package)
4 (?file sl:decOccurs ?class)
5 (?file2 sl:elementOf sl:Language/Java)
6 notEqual(?file, ?file2)
7 CheckNotImported(?file2, "javax.persistence")
8 CheckExtension(?file2, ?class)
9 −>

10 (?file2 sl:uses ?package)
11]

5.3.9 Implementation details

So far just built-ins have been introduced. However, in the architecture of the system
several services are implemented that can be used by the built-ins and enable further
functionality. For example a FileRetrievementService exists which translates an URI to
the actual file path and further provides functionality to read a file from the disk. On
top of this, several services exist that deal with language specific functionality. As an
example, there exists a JavaService that provides functionality related to the parsing of
a Java file. The imported packages as well as the declared objects can be retrieved with
the help of methods that are implemented in it. This service is used by several built-ins
and since just one instance exists the parse tree can be cached and all the Java related
functionality is stored in one file, which is coherent. Figure 5 illustrates the layout. As it
can be seen, multiple rules are perhaps calling the same built-ins or a rule itself is calling
several built-ins. Nevertheless, the built-ins depend for a lot of their functionality on
general services that are independent of the Jena infrastructure. Multiple built-ins can
use the same Services. Therefore, routines that have to be used by multiple built-ins
should be aggregated into a coherent service. A list of all the services that can be used
by the built-ins can be found in Table 8.

Name Purpose

FileRetrievementService Manages the access of files on the file system. Especially
reading the content of a file and eventually caching it.

LanguageService This services is concerned with the identification of the
language of a file. Hence it is itself using other more
language specific services like the JavaService. However,
it provides a single interface for the identification of a
language.

5.3 Iterative Rule Development 35

JavaService The Java service encapsulates the functionality related
to parsing a Java file, e.g., getting the declared object,
methods or used packages.

SQLService Encapsulates SQL specific functions for example parsing
a statement, extracting the create statement or returning
the table name.

ValidationService This one is used to validate that a file is conforming to a
schema. All the functions related to this can be found in
this service.

URIService This service is mainly concerned with storing the names
of relation and concepts of the Ontology and combining
it with the URIs that are supposed to be used. This ser-
vice helps to avoid typos in an URI and hence destroying
an existing chain.

Table 8 Services that can be used by the built-ins

Figure 5 The relation between rules, built-ins and services

5.4 Evaluation 36

5.4 Evaluation

After the rules are developed they can be evaluated with open source projects. A sam-
ple of projects has been selected by the methodology described in chapter 5.1.2. The
next step is to execute the process on these projects. The evaluation is based on the
extraction of different metrics that summarize the result. These metrics are examined
by two fundamentally different approaches that are called internal and external eval-
uation. The difference between both is that the internal is just looking at the retrieved
data set whereas the external is comparing it to another data source:
(1) The internal approach checks if the previous defined constraints are holding. These
constraint are build with help of the introduced metrics and should ensure that the (in-
ternal) result itself is consistent. In fact, the constraints should reflect the result that is
expected by the target mega model. With the help of the constraints the approach vali-
dates if the retrieved result has any contradictions. A break of the constraint has to be
investigated. In case it is broken because the state of the project is reflecting this, it is
acceptable. Otherwise, our rules would contain an error that has to be fixed. Therefore,
for each break a reason has to be found.
(2) The external approach is validating the result against a different (external) data set.
This data set is provided by an oracle that is collecting the characteristics of the project
with a different method. Both data sets will be compared and an explanation for the
derivation has to be found. The found explanation should explore which of both clas-
sification were correct and finally show how good the developed approach performs
compared to an oracle. In an optimal scenario both approaches should calculate the
same result.

5.4.1 Metrics

The evaluation approach depends on metrics that summarize the extracted state of the
system. This paragraph aims to introduce these metrics and explains why they are nec-
essary. For the better understanding they are classified into different logical categories.
Mapping definitions: The most basic metric that provides a value is to count the Hi-
bernateMapping files that are identified. Furthermore, this metric introduces two sub
metrics which count how often the mapping was described with XML and annotations.
This metric is important because based on the mapping definitions further details are
extracted. Therefore, it is critical to get an overview about the number of mappings that
are detected.
Mapping functions: The mapping files itself introduce mapping functions. Those
functions are taking as input and output specific languages called RLang and OLang.
Another metric counts how many of those languages exist that are connected to a map-
ping function. That way missing input or output can be detected. This helps to validate
if a mapping function is well formed.
The mapping of the objects to the table is not performed automatically. At some point
those specific mapping functions should be used. Hence, each use relation that has a
Hibernate function as object increases a certain metric which counts how many func-

5.4 Evaluation 36

tions are used. In addition, it is counted how many different Java files are using this
functions. This enables to detect functions that are never executed.
Java and SQL relations: Overall there exist several relations between the SQL tables,
Java files and the mapping descriptions. In fact, a Hibernate mapping file is referencing
a table. How often this happens is stored by the metric HibernateMappingRefersToRela-
tionalTable. In the best case both files that are referenced by the Hibernate mapping file
do correspondsTo each other. Every correspondence is counted by the metric Hibernate-
Correspondence. This metric can be distinguished between XML and annotation based
correspondence.
So far the metrics focused on the Java part of the software project. However, the SQL
files that are contained in the project are as well containing details regarding the design
of the project. The metric TableStatement stores the number of tables in the project that
are created with the SQL create table statement. This enables the developer to compare
the amount of tables in the project with the number of persistable classes.
Final remarks: It should be mentioned that some metrics exist in two versions, e.g.,
with and without the suffix Distinct. This suffix defines that each element is just counted
ones and not multiple times. For example without the Distinct ending each create state-
ment with a table would be counted. With the according suffix each table name would
just be counted ones even when it is created by multiple statements.
A complete list of the defined and extracted metrics is presented in Table 9.

Name Description

HibernateMapping This metric counts how many files exist with the role
HibernateMapping

HibernateMappingJava Counts the amount of files that are an elementOf Java
and further having the role HibernateMapping

HibernateMappingXML Counts the amount of files that are an elementOf
XML and further having the role HibernateMapping

ImplementedFunctions This metric simply counts how often a function that
is partOf Hibernate is used by another artifact.

ImplementedFunctions
Distinct

This metric simply counts how often a function
that is partOf Hibernate is used by another artifact.
However, each function with the same name is just
counted once.

FunctionUsingFiles This metrics counts how many files are in fact using
a mapping function.

MappingFunctionWith
OLang

This metric counts the amount of OLangs that are the
input of a function.

MappingFunctionWith
RLang

This metric counts the amount of RLangs that are the
input of a function.

HibernateMappingRefers
ToRelationalTable

This metric counts how often there exists a reference
to a SQL table in a HibernateMapping file.

5.4 Evaluation 37

HibernateMappingRefers
ToRelationalTableJava

This metric counts how often there exists a reference
to a SQL table in a HibernateMapping file which is
elementOf a Java file.

HibernateMappingRefers
ToRelationalTableXML

This metric counts how often there exists a reference
to a SQL table in a HibernateMapping file which is
elementOf a XML file.

HibernateCorrespondence This metric counts how often a correspondsTo relation
exist between a XML and a Java file.

ReferencesToTable This element counts how many tables have been cre-
ated by SQL files.

Table 9 The developed metrics for the evaluation

5.4.2 Internal Evaluation

One way for the evaluation of the approach is to look at the result of the analysis and
to check if it is coherent or if there are any contradictions. If latter is the case they are
investigated in detail.
This approach does not discover missed relations but it should point out special prop-
erties of the system at hand. This is the case since broken constraints may hint a bug or
design flaw in the application.
To perform such an evaluation different constraints will be set based on the previously
introduced metrics. Those constraints are expected to hold in any project if there does
not seem to be a contradiction or unexpected result. A list for acceptable reasons for the
break of a constraint can be found in Chapter 5.4.2. If there is no way to explain a break
by the properties of the project then our rules contain a bug. Therefore, it is necessary
that a valid reason is found for each constraint that is broken.
The approach just looks at the metrics and the project files. No other results provided
by a separate source or tool are necessary to execute it. Therefore, it is called internal
validation.

Constraints:
(1) Checking for well defined functions: The previously defined metric HibernateMap-

ping counts how often a mapping definition exist. It should always be the case that ex-
actly the same number of RLangs and OLangs exist in the project as mapping definitions.
Otherwise a mapping function without input or output would exist. If this is not the
case either a table or an object will not be defined. This should not be the case.
(2) Correspondence restrictions: Different files may correspond to each other. Since
in the best case each HibernateMapping leads to at least one correspondsTo relation, the
number of this relations should never be lower than the amount of HibernateMapping-
Files. It is at least one because a table can be created by different SQL statements. This is
the case because different supported SQL vendors, like Oracle or Microsoft, may have a
separate init.sql file in the software project. As a result, there would be a correspondence

5.4 Evaluation 38

between a Java object and each of those SQL fragments.
(3) Function usage: Each mapping function in the Hibernate context should be executed
at least ones. Therefore, a reasonable constraint is to say that the metric Implemented-
FunctionsDistinct should be equal to HibernateMapping. Otherwise some functions seem
to be never called which would result in an odd state of the system at hand.
Summary:
(1)HibernateMapping = RLangs = OLangs

(2)HibernateMapping <= HibernateCorrespondence

(3)HibernateMapping = ImplementedFunctionsDistinct

White list of reasons
There exist two possible classes of allowed reasons for breaking the constraints. If the

specific reason can be argued to be part of one of the higher class reasons it is acceptable
that the constrain is broken.
Non existing properties: It can be the case that the constraint breaks since files are
missing that would be required for the constrain to hold. Hence, it is in fact a correct
behavior of the tool that the constraints does not hold. For the project itself it means
that it may contains a bug.
Out of scope: The coded tool made some assumptions to reduce the possible cases to
deal with. Therefore, our research defines a scope. That scope for example does not
include some Spring related packages for the execution of the O/R-Mapping. If the tool
does not detect a property because the file was out of scope it should be acceptable. To
cover the complete scope would need much more effort and hence it is restricted in the
case study.

Discussion of the result
The collected metrics of the tool that are related to the constraints are illustrated in

Table 10. A few constraints were broken in the projects but for all of those breaks a
reason corresponding to the explanations given in the whitelist chapter (5.4.2) exists.
Therefore, it can be said that the evaluation with this approach has been successful. A
detailed list of the analysis for each project is available on GitHub 9.

Well defined function constraint broken:
All of the not well formed mapping functions have missing RLangs. The following para-
graph explains the reasons for the absence of the language in the projects.

Partly missing SQL statements: Projects like Oscar and Eeg Database are defining sev-
eral RLangs but not as much as OLangs. The reason for this lies in two facts. On
the one hand, fifteen SQL files are missing so that in fact those tables are never
defined. On the other hand, some files are using not supported SQL elements
which would be out of scope to the parser, e.g., the ENABLE statement. This was

9https://github.com/fruether/RuleEngine/blob/master/Dataset/AnalysisOfMissingFunctions.xlsx

5.4 Evaluation 39

counted five times. Hence it is a combination of out of scope and missing files if we
consider the defined white list.

Hibernate based project setup: There exists a feature that empowers Hibernate to au-
tomatically create the database schema. This option can be enabled by setting the
property hibernate.hbm2ddl.auto to update or true in either the persistence.xml file or
another Hibernate related configuration file. This was done for frontlinems-core
and Oltpbench and as a result the missing RLangs are white listed according to
missing files.

Own technology: The project projectforge-webapp is using an own Java based frame-
work for the creation of the SQL tables, which is called projectforge-continuous-db.
Therefore, it seems to be reasonable that no SQL files were found in the project.
This counts as white listed according to out of scope.

Unknown database creation: Druid, IBPMiddleware, Mateo and iTest do not provide any
hint on how the database schema is created. There exists no single SQL file (with
a create statement for the requested tables) in the repository and hence our ap-
proach is not broken. However, Mateo is even setting in mateo.properties the prop-
erty hibernate.hbm2ddl.auto to none. For the other projects no proof was found that
it was set to update. Neither IBPMiddleware nor Mateo could pass the tests while
building them with maven. This may indicates a hidden bug in the system. The
broken constraints count as white listed according to missing files.

Function usage constraint broken:
This constraint is broken because the function usage is below the amount of defined
mappings. The following reasons were found in the projects for breaking the constraint.

Spring framework:
The Spring framework manifests different ways to save Java entities to the database,
e.g., by using org.springframework.jdbc.core.JdbcTemplate. Since our approach fo-
cuses on core Hibernate, it was not possible to detect all mapping operations
defined by other libraries. This is the case for the projects projectforge-webapp and
Druid and counts up to three missing detections of function usage. It can be clas-
sified as out of scope.

Missing files:
Some function usages were simply never implemented. Hence it is logical that
they are not found by our tool. This is the reason for broken constraints in Oscar,
ROMS, projectforge-webapp, Mateo, Oltpbench, frontlinesms-core and iTest. All in all,
this is the cause of sixteen breaks. It can be assigned to the white list element
named not existing.

Missing type system
There exists one case where a service is returning a List10 without specifying the
concrete elements stored in it. As a result, it is not possible without a type system
to detect the actual type. For this case our approach fails to detect the real value.
This was taking place for Oscar and it is not in our scope.

10https://docs.oracle.com/javase/8/docs/api/java/util/List.html

5.4 Evaluation 40

Correspondence constraint broken:
The reasons this is broken is caused by the missing RLangs which were explained in the
previous section.

Project
Hibernate
Mappings

OLangs RLangs
Corres

pondence
Implemented
functions

Oscar 484 484 475 1687 478

ROMS 35 35 35 36 34

Druid 2 2 - - 1

projectforge-webapp 67 67 - -
61

IBPMiddleware 71 71 - - 71

EEG Database 59 59 47 64 59

Mateo 100 100 1 1 97

Oltpbench 7 7 - - 3

frontlinesms-core 13 13 - - 12

iTest 1 1 - - -

Table 10 Summary of the result for the internal validation

5.4.3 External Validation

The result of the tool should reflect the state of the evaluated project. In this chapter,
certain properties are checked against another data set based on the summary provided
by the metrics. In case the project has a different state than the tool calculated, e.g., hav-
ing more or less mapping definitions than found by the tool, the rules seem to contain a
bug. This way it can be validated that no important file is missing which is not checked
by the internal approach explained in chapter 5.4.2. Otherwise, it does not look at the
relations and semantics between the extracted metrics itself. Hence both approaches
complement each other.
The approach calculates the state of the project with the help of a data set provided by
an external source, a coded python script. Since it is validated against a different source
it is called external validation.

Properties that should be checked
The mega model depends on the correctness of several relations. The most important

constructs are the mapping definitions because all the further extractions are based on
them. Without the identification of a mapping file no function would be identified and
no function usage could be observed. Therefore, all the mapping files should be found
by the tool. The second important property is itself related to the function usage. Each
use of a O/R-mapping function should be detected and it is assumed that a valid Hiber-
nate DAO service should implement at least one mapping function. The following list
of the questions is derived from this discussion and should be checked in this approach:

5.4 Evaluation 41

1. Are all the object mapping definitions found?

2. Are all the Hibernate DAO services identified (true negative)?

3. Are the identified function usages really taking place (false positive)?

Search base validation
The most optimistic and naive approach for the finding of a HibernateMapping def-

inition is to simply search for the files with the suffix .hbm.xml, which is the expected
ending of a XML based Hibernate mapping file11. Another possibility to identify map-
ping files is to search in Java files for the content @Entity12, which is the annotation the
Java file should contain. For the identification of the files that use one of the Hibernate
mapping functions, best practices are taken into consideration. Those practices assume
that the Java class, that is executing a mapping, ends with the suffix DAO or Dao.
This simple search base approach is of course not perfect since the content could also
exist in different scenarios that have no connection to Hibernate. However, the result
provided by this naive approach is a good oracle for the data that have been extracted.
In fact, if a file is found by the oracle approach but not by the tool an explanation for
the missing has to be provided. The files that were just found by the tool should as well
be examined. If the files are matched by both approaches confidence can be gained that
they were correctly classified and they are not further investigated.
The naive approach collects its data with the help of Python scripts that either scan the
file name or the content of a file.

Result
Mapping identification: The result of the performed naive approach for the identifi-

cation of HibernateMapping file can be seen in Table 11. It shows that both approaches
found exactly the same amount of mapping descriptions in the project. This supports
the correctness of our tool since there is no evidence that a file is missing.

11https://docs.jboss.org/hibernate/orm/3.6/quickstart/en-US/html/hibernate-gsg-tutorial-
basic.html

12https://docs.oracle.com/javaee/6/api/javax/persistence/Entity.html

5.4 Evaluation 42

Project Oracle XML Oracle Java Tool XML Tool Java

Oscar 47 437 47 437

ROMS 35 0 35 0

Druid 0 2 0 2

projectforge-webapp 0 67 0 67

IBPMiddleware 0 71 0 71

EEG Database 0 59 0 59

Mateo 0 100 0 100

Oltpbench 0 7 0 7

frontlinesms-core 0 13 0 13

iTest 0 1 0 1

Table 11 Comparison of the results between the tool and naive approach

Function usage identification (true negative and false negative):
The performing of the native approach on the repository found several files that are
according to their name a DAO. The metric FunctionsUsingFile, which contains files that
are using a mapping function, was used to get the result of the tool. Table 12 is show-
ing a comparison of the files found by both approaches. The files that were found by
the naive approach but not by the tool were examined and reasons were found for the
missing of the files. Some were in fact correctly not classified, others were not found
because of the limitations of our approach. In the end, the deviation could be explained
and more confidence regarding the behaviour of the approach was gained. The analysis
of the reasons for the not classification was performed and is documented in the next
paragraph.

Result:

• The file is defining an interface or the class itself is empty (150 files and is a true
negative case)

• The file is using another DAO and it not directly using the mapping functions of
Hibernate (22 files and true negative case)

• For some other reason there is no mapping performed (three times and true neg-
ative)

• The way the files is using the objects is impossible to detect without a type system,
e.g., they just return an object or a list without a template (seven times and it a
false negative)

• A Spring related package is imported by the file which is not supported by the
approach (six times and a false negative case)

Since the false negatives are the minority cases (7 %) and all are out of scope for this
version, it can be argued that there exist no heavy problems for this metric. However,
the found issues have to be tackled in future work.

5.4 Evaluation 43

Project FunctionsUsingFile N: DAOs N: DAOs (no interfaces)

Oscar 471 500 496

ROMS 19 40 20

Druid 1 6 2

projectforge-webapp 103 77 76

IBPMiddleware 81 74 74

EEG Database 48 80 45

Mateo 180 88 15

Oltpbench 1 0 0

frontlinesms-core 10 24 13

iTest 0 0 0

Summary 904 889 741

Table 12 The value of the metric and the result of the search of the DAO files with the naive (N)
approach

Function usage identification (false positive and true positive):
The other property that should be checked was to look for the false positive cases in the
identified function usages. Since it is to much work to check each of the retrieved files
manually, the manual check was restricted to the files that were only classified by the
tool but not by the naive (search base) approach. This reduced the amount of checked
files and the result of it can be seen in Table 13. It is notable that overall a lot wrong clas-
sifications happened. However, this is mostly driven by the project projectforge-webapp,
which included 80 per cent of false positives.

Project Correctly classified (TP) Wrongly classified (FP)

Oscar 1 0

ROMS 0 0

Druid 1 0

projectforge-webapp 0 42

IBPMiddleware 9 7

EEG Database 1 2

Mateo 1 0

Oltpbench 1 0

frontlinesms-core 0 0

iTest 0 0

Summary 14 51

Table 13 Shows how many files, not covered by the naive approach, are correctly and wrongly
classified by the tool

5.4 Evaluation 44

This project is special because all the test cases are extending a class called Ab-
stractTestBase. This abstract class is implementing some Hibernate related operations,
e.g., cleaning the database for the setup of a test case. Therefore, this file is using Hiber-
nate mapping functions. The issue is that based on our definition all classes that inherit
from AbstractTestBase are as well using the same packages. It happens to be that almost
all tests cases inherit from it and as a result all files that in addition using a persistable
object are classified as executing the mapping function. It is arguable if this is valid
since a class would also inherit the operation of its super class. However, a call tree in
combination with the type system would have to be implemented to solve this issue.
This is for now out of scope but yet those classifications are not correct.
The other error cases are more acceptable since the files use a DAO which as well is im-
plementing a method called saveOrUpdate. Furthermore, a session is declared. Hence
the classification is wrong but not complete noise since the files are still closely related
to the execution of a Hibernate mapping procedure.

5.4.4 Notable Examples

The limits of the extractions were illustrated by the evaluation. An example of a wrongly
classified Java file can be found by looking at Listing 37 which is part of the IBPMiddle-
ware13 project. The fragment of the source code is showing a function which is defining
a Session object. In addition, it is declaring an object that should be persisted, namely
of the type GermplasmList. Furthermore, a Dao service is declared which implements
and defines a method called saveOrUpdate. Although the file does not perform a direct
Hibernate mapping, all the conditions of the rule are matched and it gets wrongly clas-
sified. Eventually, the Hibernate mapping routines are executed in the called service
method. This false positive error could be fixed by implementing a (lightweight) type
system which is for now out of scope.
The other case that can happen is that a file is not indicating the use of a Hibernate map-
ping function but yet it is using one. This false negative error is for example the case for
the fragment shown in Listing 38 that is extracted of a file in the Oscar14 project. This
file is not declaring any persistent object since it is just returning an array of Objects.
The type of those objects is impossible to detect without using type system which is out
of scope. Therefore, it was not possible to detect that this file is in fact implementing a
certain Hibernate mapping function.

13https://github.com/IBPlatform/IBPMiddleware/blob/master/src/main/java/org/generationcp/
middleware/manager/GermplasmListManagerImpl.java

14https://github.com/scoophealth/oscar/blob/master/src/main/java/org/
oscarehr/common/dao/forms/FormsDao.javaL53

5.5 Discussion 45

Listing 37 This fragment is an example for a false positive error

1 private List<Integer> addOrUpdateGermplasmList(List<GermplasmList> germplasmLists,
2 Operation operation)
3 throws MiddlewareQueryException {
4 Session sessionForLocal = getCurrentSessionForLocal();
5 //
6 GermplasmListDAO dao = new GermplasmListDAO();
7 //
8 dao.saveOrUpdate(germplasmList);
9 //....

10 }

Listing 38 This fragment is an example for a false negative case

1 @NativeSql("formLabReq07")
2 public List<Object[]> findIdFormCreatedAndPatientNameFromFormLabReq07() {
3 String sql = "SELECT ID, formCreated, patientName FROM formLabReq07";
4 Query query = entityManager.createNativeQuery(sql);
5 return query.getResultList();
6 }

5.4.5 Limitations

One of the limitation of the evaluation is that not all the metrics can be checked easily.
For example the metric ImplementedFunctions could neither be validated by the internal
nor by the external validation. This is the case for different reasons for both approaches.
On the one hand, the number of function usages is to large to be manually checked. On
the other hand, the usage itself is difficult to identify by an oracle. A simple search for
content would be to broad to detect which function is used. Therefore, this property
could not be validated by this approach.

5.5 Discussion

5.5.1 Usage of XML and Annotations

The mega model as well as the metrics show that rather Java annotations are used than
XML files for the description of a mapping between an object and a table. Only the two
projects Oscar and ROMS out of the ten examined choose to describe some mappings
with the help of XML. Of those descriptions only ROMS exclusively relays on XML. For
Oscar the majority of the mappings is described by annotations. As a result, it can be
concluded that Hibernate is mostly used with the help of annotations. XML mapping
does not play a large role in the sampled projects that are using Hibernate.

5.5 Discussion 46

Project Table statements Correspondence Mappings
Oscar 2137 1687 484
ROMS 106 36 35
Druid 39 0 2

Projectforge-webapp 0 0 67
IBPMiddleware 0 0 71

Eeg Databse 103 64 59
Mateo 10 1 100

Oltpbench 499 0 7
Frontlinesms-core 0 0 13

iTest 0 0 1

Table 14 Table statement, correspondences and mapping definitions of the projects

5.5.2 Database Creation in the Hibernate Context

Hibernate is a powerful tool for the mapping of objects to tables. However, there are
several possibilities how the database schema with the required tables can be created.
Each approach has its advantages and disadvantages. Those are heavily discussed on
Stackoverflow, e.g., if Hibernate’s automatic schema creation is safe in production 15.
The approach shows, that six projects actually contain create table16 statements. How-
ever, the existing TableStatements have quite often a larger value than the metric counting
the MappingDefinitions. This shows that there exist more tables in the projects than re-
quired by the mapped objects. A conclusion could be that there are either unused tables
or some data are stored in another way than by executing O/R mappings.
Another notable property is that quite a few projects are using different non SQL based
approaches for the setup of the persisted objects in the database schema. This is indi-
cated by the fact, that not the same number of mappings and correspondence relations
exist. The tool of us could yet indicate which SQL files may be involved in the initial
process. In addition, it points out projects that use a different approach for the schema
creation. An in-depth analysis of the used approaches for the creation of the schema can
be found in the Evaluation chapter. Table 14 illustrates the usage of table statements,
found correspondences and mapping definitions in the different projects.
To summarize, it can be said that only a few projects use SQL files for the initialization
of the database and often there seem to be more tables than mapped objects.

5.5.3 Function Usage Identifications

The extracted mega model gives a hint about functions which have not been imple-
mented. Sixteen missing function executions could be identified by our approach and
were validated. In addition, the approach gave a good indication of the files that should
be checked by a developer, if he is looking for the execution of a certain mapping func-
tion. The false positive rate is with sixteen elements better compared to the naive ap-

15https://stackoverflow.com/questions/221379/hibernate-hbm2ddl-auto-update-in-
production

16https://www.w3schools.com/sql/sqlcreatetable.asp

47

proach. Therefore, our result gives a satisfying set of files that should be examined, to
find the execution of a specific mapping function.
However, the evaluation shows that the heuristic is far away from being perfect. There
exist some cases that could not be detected by the approach at all. This issues have to
be solved in future work.

6 Concluding Remarks

6.1 Summary

This work provides a rule based approach for the automatic extraction of a linguistic ar-
chitecture with the help of RDF triples that are encoding the MegaL ontology. The open
source framework Apache Jena is responsible for providing and executing the rule in-
frastructure. The complete approach is evaluated and tested with a case study.
In the case study a mega model using the MegaL ontology was created for the Hiber-
nate framework. The illustration of this model can be seen in the chapter 5.2 , which
lays out the required result of the extraction process. Afterwards, a set of rules was de-
veloped that should, with the help of built-ins, extract the relations of the mega model.
Those rules were explained in depth and afterwards executed on sample projects. Those
sample projects were selected with the help of a well defined methodology, which is
based on previous work. Finally, the extracted models are summarized with the help
of metrics which are then evaluated in depth with the help of an oracle and manual
verification. The case study shows that it is possible to extract mega models for a Hi-
bernate scenario with our rule based approach. In addition, knowledge about a projects
structure and it special cases can be gained.

6.2 Threat to Validity

6.2.1 Internal Validity

Internal validity is related to the execution of the experiment. To avoid this kind of
a threat all the samples were executed with the same version of the tool. That way a
change of the result based on a change of the source code is not possible. On top of this,
all project files were included as input. Hence only the input changed but nothing else.
The project files itself were downloaded from the GitHub master branch of the projects
repository. Therefore, there should be no confound variable during the execution. The
same project files were used for the naive approach.
One threat is that not all the metrics could be validated by the oracle. For example the
metric ImplementedFunctions could not be verified since there exists no easy approach to
check this condition. The oracle would have to parse the file itself which would itself
be prone to errors. Therefore, this condition could not be checked and hence there is
maybe a discrepancy between the calculated and real result for this metric.

6.3 Future Work 48

6.2.2 External Validity

External validity is concerned with the ability to generalize the results of the exper-
iment. The projects were selected from GitHub and hence all of those count as real
world projects. They are not small regarding contained classes and are developed in a
team with the help of the Hibernate technology. Therefore, those projects should be a
good selection to generalize on. However, it could be the case that due to unknown rea-
sons certain features of Hibernate were not used in any of those projects, e.g., a certain
mapping function. Therefore, a threat to the the external validity is that certain features,
e.g., a special create statement, could not be tested in this sample. As a result, the tool
may breaks on projects where those features are present.

6.2.3 Construction Validity

Construction validity is related to the design of the experiment. One of the goals is to
show that a mega model can automatically be extracted and interesting properties re-
lated to technology usage can be shown. Since the case study design is only considered
with Java projects and with the Hibernate framework, it can be argued that this is not
enough to conclude that a mega model can be extracted in different scenarios. After
all Hibernate and Java could be so specific in their characteristics that only this combi-
nation enables the extraction of a mega model. Therefore, a countermeasure would be
to run such an experiment in another setup that is independent of Hibernate, e.g., that
extracts a Spring related mega model.

6.2.4 Conclusion validity

Conclusion validity is related to the analysis. The analysis is performed by the metrics
and the tool. The coded tool is implemented in Java. It could happen that errors appear
in it which may lead to a wrong output or a wrong summary of the metrics. A counter-
measure for this validity threat was developed by implementing test cases that check
the result of the extensions and the services. Furthermore, the metrics were tested. As
a result, certainty can be gained that the analysis of the tool was correct and reflects the
intended behavior.

6.3 Future Work

Precision improvement for function usage:
There are several measurements that can be performed to achieve a better false posi-
tive rate. The most promising approach is to implement a type system that checks the
type of the object which is either the parameter or the return value of an O/R mapping
execution call. In addition, it would be checked if it is really the method in question
or if it just happens to have the same name. This way it should be possible to elimi-
nate a bunch of the classification errors. In addition, a call tree could help to make the
inheritance of package usage a bit more clear and detailed. Last but not least, the Me-
gaL model can be made more precise by splitting the Java files into different fragments

6.3 Future Work 49

that define a method. That way it could be investigated which method is calling which
mapping function. As a result, the developer can get a more in depth summary and
eventually more insights regarding the projects architecture.
Correspondence based improvements:
Another field of future work would be to add more SQL dialects and database manage-
ment systems to the approach. Alternatively the correspondence between tables and
classes could be sophisticated by showing the correspondence on the column and at-
tribute level. This would lead to an identification of deprecated SQL statements, that
do not create required columns. Since not all projects use SQL files for the creation of the
tables representing the objects the earlier described approach would be of more value.
Evaluation improvement:
Right now not all the metrics could be validated. For example, there is no approach
to check how high the precision of ImplementedFunctions is since there is no easy way
to validate if a file is implementing a Hibernate function. Therefore, in future work a
strategy for the validation of this metric has to be developed and applied. A possible
approach would be to count how many functions a certain file is implementing and then
validate the files that implement a high amount of different functions. If they wrongly
assign a function usage to a file the reason has to be systematically analyzed and docu-
mented. This could lead to the discovery of patterns and in the end lead to a strategy to
reduce the miss classifications .

50

7 Appendix

7.1 SQL commands

Listing 39 Getting final hibernate versions

1 Select
2 count(p_D.id) as elements,
3 a_v.version as longerversion
4 from
5 api_version as a_v, Project_Dependency as p_D
6 where
7 a_v.version like ’%Final’
8 and dp_D.version = a_v.version
9 group by(a_v.version) order by elements;

Listing 40 Getting projects with fitting versions and classes

1 Select
2 project_name as longername,
3 count(class_name) as classes
4 from
5 Project_Dependency as p_D1,
6 Projects as p1, Classes as c
7 where
8 p1.id = p_D1.id
9 and c.pr_id = p1.id

10 and p_D1.version in
11 (Select
12 p_D.versionfrom api_version as a_v,
13 Project_Dependency as p_D
14 where
15 a_v.version like ’%Final’
16 and p_D.version = a_v.version
17 group by(p_D.version)
18 order by count(p_D.id) DESC limit 10)
19 group by (project_name)
20 having count(class_name) > 200
21 order by classes DESC;

Listing 41 SQL for linking projects with API usage

1 Select
2 count(project_name) as longername
3 from
4 Project_Dependency as p_D1,
5 Projects as p1
6 where
7 p1.id = p_D1.id
8 and p_D1.version in

7.1 SQL commands 51

9 (Select
10 p_D.version
11 from
12 api_version as a_v,
13 Project_Dependency as p_D
14 where
15 a_v.version like ’%Final’
16 and p_D.version = a_v.version
17 group by(p_D.version)
18 order by count(p_D.id) DESC limit 10);

Listing 42 Multiple persons should work on a Hibernate project

1 Select
2 project_name,
3 count(class_name) as classes
4 from
5 Project_Dependency as p_D1,
6 Projects as p1, Classes as c
7 where
8 p1.id = p_D1.id
9 and c.pr_id = p1.id

10 and p_D1.version in
11 (Select
12 p_D.versionfrom api_version as a_v,
13 Project_Dependency as p_D
14 where
15 a_v.version like ’%Final’
16 and p_D.version = a_v.version
17 group by(p_D.version)
18 order by count(p_D.id) DESC limit 10)
19 and c.pr_id in
20 (Select DISTINCT
21 pr_id
22 from
23 Class_History as ch,
24 Classes as c1
25 where ch.cl_id = c1.id
26 group by pr_id
27 having 10 < count(DISTINCT ch.author_name))
28 group by (project_name) having count(class_name) > 100
29 order by classes DESC

7.2 Further MegaL Definitions 52

7.2 Further MegaL Definitions

7.2.1 Further Entities

Language Description Origin Hyperlink
SQLCreate-
TableStmt

A language that is defining the SQL
create table statement

SQL
standard

Wikipedia

JavaClassURI A class is a common concept in object
oriented programming. In the context
of Java a class is identified at runtime
by its name and its package. This is the
language the identifier is following.

Java
specification

Wikipedia

JavaAnnotated-
Element

The language that describes a Java an-
notation and the element it is con-
nected to.

Java
specification

Wikipedia

QualifiedName An unambiguous name that identifies
an element of the system. It is a special
reference language.

MegaL Wikipedia

Artifact Description Origin Hyperlink
Package Organizes Java packages. In the end, it

is usually a directory.
Java speci-
fication

Wikipedia

Table 16 Entities depending on the ecosystem used by software engineering

https://en.wikipedia.org/wiki/Table_(database)
https://docs.oracle.com/javase/specs/jls/se9/jls9.pdf
https://docs.oracle.com/javase/specs/jls/se9/jls9.pdf
https://en.wikipedia.org/wiki/Class_(computer_programming)
https://docs.oracle.com/javase/specs/jls/se9/jls9.pdf
https://docs.oracle.com/javase/specs/jls/se9/jls9.pdf
https://en.wikipedia.org/wiki/Java_package
https://en.wikipedia.org/wiki/Fully_qualified_name
https://en.wikipedia.org/wiki/Java_package

7.2 Further MegaL Definitions 53

7.2.2 Newly Added MegaL Relations

defOccurs Artifact # Artifact The content of a entity can
declare a reference name
to identify this artifact.
For example a Java class
file declares a class iden-
tifier.

New
in Me-
gaL

refOccurs Artifact # Artifact The content of a entity
can reference another ar-
tifact. Usually the identi-
fier should be declared by
a refOccurs relation.

New
in Me-
gaL

input Language # Function A function is taking input
in the form of a certain
language.

Used
only
for
this
ap-
proach

output Function # Language A function returns a cer-
tain language if a certain
input was given

Used
only
for
this
ap-
proach

7.2.3 Sub-properties in RDF

Name Parent Description Origin
HibernateMapping
RefOccuresRelationalTable

refOccurs Makes clear that a Hibernate
mapping file refers to rela-
tional table.

New

7.3 API description of Hibernate 54

7.3 API description of Hibernate

7.3.1 Required packages

1. org.hibernate.cfg.Configuration

2. org.hibernate.Session

3. org.hibernate.SessionFactory

4. javax.persistence.Query

5. org.springframework.orm.hibernate3.support.HibernateDaoSupport

6. javax.persistence.EntityManager

7. org.hibernate.Criteria

8. org.hibernate.Query

7.3.2 Required function calls for the mapping execution

1. createSQLQuery of org.hibernate.Session

2. iterate of org.hibernate.Query

3. createCriteria of org.hibernate.Session

4. list of org.hibernate.Query

5. executeUpdate of org.hibernate.Query

6. getFirstResult of org.hibernate.Criteria

7. getResultList of org.hibernate.Criteria

8. getSingleResult of org.hibernate.Criteria

9. unwrap

10. delete of org.hibernate.Session

11. findByNamedParam of org.springframework.orm.hibernate.HibernateTemplate

12. get of org.hibernate.Session

13. save of org.hibernate.Session

14. persist of org.hibernate.Session

15. refresh of org.hibernate.Session

16. replicate of org.hibernate.Session

17. saveOrUpdate of org.hibernate.Session

18. update of org.hibernate.Session

19. uniqueResult of org.hibernate.Criteria

REFERENCES 55

References

[1] Sultan S. Al-Qahtani, Ellis E. Eghan, and Juergen Rilling. “Recovering Se-
mantic Traceability Links between APIs and Security Vulnerabilities: An
Ontological Modeling Approach”. In: 2017 IEEE International Conference
on Software Testing, Verification and Validation, ICST 2017, Tokyo, Japan,
March 13-17, 2017. 2017, pp. 80–91. DOI: 10.1109/ICST.2017.15.
URL: https://doi.org/10.1109/ICST.2017.15.

[2] Nicolas Anquetil, Káthia Marçal de Oliveira, Kleiber D. de Sousa, and
Márcio Greyck Batista Dias. “Software maintenance seen as a knowledge
management issue”. In: Information & Software Technology 49.5 (2007), pp. 515–
529. DOI: 10.1016/j.infsof.2006.07.007. URL: https://doi.
org/10.1016/j.infsof.2006.07.007.

[3] J. Arthur and S. Azadegan. “Spring framework for rapid open source J2EE
Web application development: a case study”. In: Sixth International Con-
ference on Software Engineering, Artificial Intelligence, Networking and Par-
allel/Distributed Computing and First ACIS International Workshop on Self-
Assembling Wireless Network. 2005, pp. 90–95. DOI: 10.1109/SNPD-
SAWN.2005.74.

[4] Jean-Marie Favre, Ralf Lammel, Martin Leinberger, Thomas Schmorleiz, and
Andrei Varanovich. “Linking Documentation and Source Code in a Soft-
ware Chrestomathy”. In: WCRE. IEEE Computer Society, 2012, pp. 335–
344. ISBN: 978-1-4673-4536-1.

[5] Jean-Marie Favre, Ralf Lämmel, and Andrei Varanovich. “Modeling the
Linguistic Architecture of Software Products”. In: Model Driven Engineer-
ing Languages and Systems: 15th International Conference, MODELS 2012,
Innsbruck, Austria, September 30–October 5, 2012. Proceedings. Ed. by Robert
B. France, Jürgen Kazmeier, Ruth Breu, and Colin Atkinson. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2012, pp. 151–167. ISBN: 978-3-642-
33666-9. DOI: 10.1007/978- 3- 642- 33666- 9_11. URL: https:
//doi.org/10.1007/978-3-642-33666-9_11.

[6] Charles L. Forgy. “Expert Systems”. In: ed. by Peter G. Raeth. Los Alami-
tos, CA, USA: IEEE Computer Society Press, 1990. Chap. Rete: A Fast
Algorithm for the Many Pattern/Many Object Pattern Match Problem,
pp. 324–341. ISBN: 0-8186-8904-8. URL: http://dl.acm.org/citation.
cfm?id=115710.115736.

[7] Hans-Jörg Happel and Stefan Seedorf. “Applications of Ontologies in Soft-
ware Engineering”. In: International Workshop on Semantic Web Enabled

https://doi.org/10.1109/ICST.2017.15
https://doi.org/10.1109/ICST.2017.15
https://doi.org/10.1016/j.infsof.2006.07.007
https://doi.org/10.1016/j.infsof.2006.07.007
https://doi.org/10.1016/j.infsof.2006.07.007
https://doi.org/10.1109/SNPD-SAWN.2005.74
https://doi.org/10.1109/SNPD-SAWN.2005.74
https://doi.org/10.1007/978-3-642-33666-9_11
https://doi.org/10.1007/978-3-642-33666-9_11
https://doi.org/10.1007/978-3-642-33666-9_11
http://dl.acm.org/citation.cfm?id=115710.115736
http://dl.acm.org/citation.cfm?id=115710.115736

REFERENCES 56

Software Engineering (SWESE’06). Athens, USA, 2006. URL: http : / /
fparreiras/papers/AppOntoSE.pdf.

[8] Johannes Härtel, Lukas Härtel, Ralf Lämmel, Andrei Varanovich, and Mar-
cel Heinz. “Interconnected Linguistic Architecture”. In: CoRR abs/1701.08122
(2017). URL: http://arxiv.org/abs/1701.08122.

[9] Ralf Lämmel and Andrei Varanovich. “Interpretation of Linguistic Archi-
tecture”. In: Modelling Foundations and Applications: 10th European Confer-
ence, ECMFA 2014, Held as Part of STAF 2014, York, UK, July 21-25, 2014.
Proceedings. Ed. by Jordi Cabot and Julia Rubin. Cham: Springer Inter-
national Publishing, 2014, pp. 67–82. ISBN: 978-3-319-09195-2. DOI: 10.
1007/978-3-319-09195-2_5. URL: https://doi.org/10.1007/
978-3-319-09195-2_5.

[10] W. Meng, J. Rilling, Y. Zhang, R. Witte, and P. Charl. “An Ontological Soft-
ware Comprehension Process Model”. In: In Proc. of the 3rd International
Workshop on Metamodels, Schemas, Grammars, and Ontologies for Reverse En-
gineering. 2006.

[11] C. Nagy, L. Meurice, and A. Cleve. “Where was this SQL query executed?
a static concept location approach”. In: 2015 IEEE 22nd International Con-
ference on Software Analysis, Evolution, and Reengineering (SANER). 2015,
pp. 580–584. DOI: 10.1109/SANER.2015.7081881.

[12] D. Ratiu, M. Feilkas, and J. Jürjens. “Extracting Domain Ontologies from
Domain Specific APIs”. In: 12th European Conference on Software Mainte-
nance and Reengineering (CSMR 08). IEEE. 2008, pp. 203–212. DOI: http:
//dx.doi.org/10.1109/CSMR.2008.4493315.

[13] Coen De Roover, Ralf Lämmel, and Ekaterina Pek. “Multi-dimensional ex-
ploration of API usage”. In: IEEE 21st International Conference on Program
Comprehension, ICPC 2013, San Francisco, CA, USA, 20-21 May, 2013. 2013,
pp. 152–161. DOI: 10.1109/ICPC.2013.6613843. URL: https://
doi.org/10.1109/ICPC.2013.6613843.

[14] Anand Ashok Sawant and Alberto Bacchelli. “A Dataset for API Usage”.
In: Proceedings of the 12th Working Conference on Mining Software Reposi-
tories. MSR ’15. Florence, Italy: IEEE Press, 2015, pp. 506–509. ISBN: 978-
0-7695-5594-2. URL: http://dl.acm.org/citation.cfm?id=
2820518.2820599.

[15] M. Uschold and M. Gruninger. “Ontologies: principles, methods and ap-
plications”. In: The Knowledge Engineering Review 11.2 (1996), pp. 93–136.

http://fparreiras/papers/AppOntoSE.pdf
http://fparreiras/papers/AppOntoSE.pdf
http://arxiv.org/abs/1701.08122
https://doi.org/10.1007/978-3-319-09195-2_5
https://doi.org/10.1007/978-3-319-09195-2_5
https://doi.org/10.1007/978-3-319-09195-2_5
https://doi.org/10.1007/978-3-319-09195-2_5
https://doi.org/10.1109/SANER.2015.7081881
https://doi.org/http://dx.doi.org/10.1109/CSMR.2008.4493315
https://doi.org/http://dx.doi.org/10.1109/CSMR.2008.4493315
https://doi.org/10.1109/ICPC.2013.6613843
https://doi.org/10.1109/ICPC.2013.6613843
https://doi.org/10.1109/ICPC.2013.6613843
http://dl.acm.org/citation.cfm?id=2820518.2820599
http://dl.acm.org/citation.cfm?id=2820518.2820599

REFERENCES 57

[16] René Witte, Yonggang Zhang, and Juergen Rilling. “Empowering Soft-
ware Maintainers with Semantic Web Technologies”. In: The Semantic
Web: Research and Applications, 4th European Semantic Web Conference, ESWC
2007, Innsbruck, Austria, June 3-7, 2007, Proceedings. 2007, pp. 37–52. DOI:
10.1007/978-3-540-72667-8_5. URL: https://doi.org/10.
1007/978-3-540-72667-8_5.

[17] Yonggang Zhang, René Witte, Juergen Rilling, and Volker Haarslev. “On-
tological approach for the semantic recovery of traceability links between
software artefacts”. In: IET Software 2.3 (2008), pp. 185–203.

https://doi.org/10.1007/978-3-540-72667-8_5
https://doi.org/10.1007/978-3-540-72667-8_5
https://doi.org/10.1007/978-3-540-72667-8_5

	Introduction
	Related Work
	Background
	Ontologies
	Linguistic Architectures
	Entities in MegaL
	Relations in MegaL

	A Rule-based Approach for Mega Model Extraction
	Overview
	Preparations
	Rule-based Inference of Mega Models

	Case Study
	Methodology for Technology and Project Selection
	Target Mega Model for Hibernate
	Iterative Rule Development
	Evaluation
	Discussion

	Concluding Remarks
	Summary
	Threat to Validity
	Future Work

	Appendix
	SQL commands
	Further MegaL Definitions
	API description of Hibernate

	References

