Content i

Content

(OO 1\ I =1) I PR [

A B S T R A C T .o i

1. INTRODUCTION ..o e e 1

2. FUNDAMENTALS AND RELATED WORKovieieeeeieeiaiieae 2
2.1. FUNCTIONAL SIMULATION TOOLS. . cututeee et eeee e eeeeeeeeeeaenaenns 5
2.2. STRUCTURAL SIMULATION TOOLS .. e 8
2.3. SIMULATION OF BIOLOGICAL SYSTEMS....ueuirteineeaeneeaeneeaeneenenaeneens 17

3. REQUIREMENTS ...t eem e 19

. D E S GN . ———————— s 4.2
4.1. SUBSYSTEM CONNECTIQON. . cueueniueeeeeeeeeeeeeeeeeeeeneeaemermneneens 24
4.2, SUBSYSTEM HANDLEceutuiei ettt e e e e e e e e e e enaens 26
4.3. SUBSYSTEM CONTROL. ..uuiee ettt eaeaens 29
4.4, TRANSPORT OF VALUES . ..ottt e e 31
TR |V, Y =] =1 N TP 35
4.6. LOG AND STATISTIC UNIT cu ettt e e e e e 41
A.7. GLOBAL CONTROL - utie ettt et e e 46

. IMPLEMENTATION .. 50
5.1. GENERAL IMPLEMENTATION DETAILS .. cueinee e eeeeeeeeeeaenaen 50
5.2. GLOBAL CONTROL DETAILS. . euettt et 51
5.3, GROMP INTERFACE.. ... ettt e 56

0. RESULT S e e e e et 58
6.1. EXAMPLE ABCMODEL....cniiee e 59
6.2. EXAMPLE ROOT DEVELOPMENT. .. . ittt eeeeaeaaanaen 65

7. DISCUSSION . .. e e e e 73
7.1. IN COMPARISON TO EXISTING TOQLS.cutueneeeeeneeaeeeaeeeaeneenennenns 73
7.2, FERFORMANCE. ...ttt e 74
7.3 UTLOOK et 75

8. CON CLUSION L. e e 77
A O R O s 78

ACKNOWLED GMENT ..o e 79

LIST OF FIGURES ... e e 80

LIST OF TABLES ... oot 83

BIBLIOGRAPHY ... 84

Abstract ﬂ

Abstract

In Silico simulation of biological systems is anpantant sub area of computa-
tional biology (system biology), and becomes mare more an inherent part for
research. Therefore, different kinds of softwareldcare required. At present, a
multitude of tools for several areas exists, betgloblem is that most of the tools
are essentially application specific and cannotdmbined. For instance, a soft-
ware tool for the simulation of biochemical proa@sss not able to interact with
tools for the morphology simulation and vice verkaorder to obtain realistic
results with computer-aided simulations it is intpat to regard the biological
system in its entirety. The objective is to devebopoftware framework, which
provides an interface structure to combine exissimgulation tools, and to offer
an interaction between all affiliated systems. @guently, it is possible to re-use
existing models and simulation programs. Additibnatiependencies between
those can be defined. The system is designed éoopeerate as an extendable ar-
chitecture for various tools. The thesis showsus$ehility and applicability of the
software and discusses potential improvements.

Introduction 1

1. Introduction

The importance of modelling and simulation in natciences grows gradu-
ally. Especially in biology, simulation tools beceran inherent part of the work.
Scientists use a high variation of different totdsassist their daily scientific
work. Beside rather support-orientated tools, léeinstance data management
systems, document management systems or virtudldaks, biologists use more
and more simulation tools as an alternative to egpgkeriments. Additionally, the
simulation tools are used in parallel to the experits in order to control and
assist the models and the experiments in the saye w

The invention of powerful computer systems and meEagramming para-
digms allows creating powerful, but also complekware systems. These tools
enable the users to create more realistic moddighwcan use new calculation
intensive simulation methods. Some of these toods able to solve complex
mathematical equations, which are used in bioch&nnnodels, and others allow
the creation of realistic looking 3D simulations.

Before a scientist can use these new modellingsandlating techniques, he
has to understand what is necessary to know aheutetl system to transfer the
real world into a model. A model is always an adion and a concentration to
the important parts of a real system (world). Mbdgla real system means to
understand the system and to identify and to caiegohe mayor parts and dy-
namics. To model and simulate a biological systerm indispensable to have a
detailed knowledge about the following systemsgart

e biochemical processes
* physical structure
» dynamic of the system

* interaction with the environment

In the last decade, quite a few tools have beeeni®d to model and simu-
late biochemical processes as well as the struaftif@ological organism. To
simulate a complex system like a tree, a flower@an or an entire ecosystem it
is inadequately to simulate the biochemical prosegmrately from the structure.
As mentioned before, an entire simulation is onbggble when all four men-
tioned parts are combined in one simulation. Mdshese invented tools simulate
only the functional or structural part of the systeand currently, only some ap-
proaches exist which are able to combine the @iffeparts into one simulation.
Usually, scientists use hard coded simulation tamEmulate an entire system.

The goal of this thesis is to present a new sinaratramework approach,
which is able to reuse existing simulation toold anmbine the parts (simulation
tools) to an entire simulation. The framework shmdl able to interact with the
connected tools, and allows the administrator fondedependencies between the
different models.

Fundamentals and Related Work 2

2. Fundamentals and Related Work

Fundamental research in biology has concentrated fong time on specific
parts of a biological system. Biologists have mddhe molecular biology of a
single cell and have investigated how parts ofddié work. They have concen-
trated on DNA replication as well as on transcapfiDNA, RNA, protein and
membrane structure and function. The inventiones mechnology, like fluores-
cence labelling, sequence analysis, electron noopess or microarray analysis
revolutionise the research. A well known exampletifie capability of new meth-
ods is the sequencing of the human genome, knowmeasuman genome project
[VenO1].

Traditional techniques for the storage of experitakemnesults (data), e.g.
laboratory notebooks, simple text files or spreadsh are not adequate for the
multitude of data which are now available and aeceuery day. To handle this
data it has been necessary to collaborate withr oihieiral science and use com-
puter science techniques and methods. With thefalds interconnection, scien-
tists can concentrate more and more on the in\agiigof complex systems and
interaction between elementary elements. For iostanells, organs, organism
and how cellular processes are regulated as welkadions of changes in the
environment. This new field is called in literatusgstem biology or computa-
tional biology [KIi05].

One major task of system biology is to develop gcad algorithm for the
simulation and modelling of biological systems. e ikn other natural sciences
such as physics, where modelling and simulatioyspln important part of re-
search, theoretical approaches for the simulatiocomplex systems have been
developed. The models and simulations are basedathematical concepts like
differential equations, net theory, Markov procaesaad stochastic processes al-
gebrd. For example, metabolic network can be modelled &etri net [Red96].
Also, it is possible to analyse metabolic pathwagig high-level Petri nets
[Vos03]. Common tools use ordinary differential agons (ODE) for the simula-
tion of metabolic pathways. Therefore, the systandfers the metabolic network
in a set of equations which can be solved [Gor®Rjre information about model-
ling and simulation can be found in [KIi05] and [\08].

The knowledge we have about a biological systemltsefrom experiments.
Additionally, a model can only be as good as thevkedge about the real sys-
tem. Consequently, it is necessary to provide tif@ination in an easy and stan-
dardised way. For this reason, data integratiogspém important role here. The
majority of data integration tools are data waredeotools, which based on rela-
tional or object-oriented data bases, and allomtigrate and to visualise diverse
biological data sets. Currently, a few open sowtg commercial systems exist.
The ONDEX system [Koe06], developed at the bioinformatiasugr at Rotham-
sted Research Institdteuse data mining techniques to extract informatiahof
existing biological data bases, and text minindiégues to extract information
out of free text. The system combines, with thephefl data integration tech-
niques, information in a graph-based data formdt@ovides a visualisation and

! For instance, PEPA; http://homepages.inf.ed.astgkesearch/SIGNAL/; accessed 02.07.2007
2 http://www.rothamsted.ac.uk; accessed 02.07.2007

Fundamentals and Related Work 3

analysis functionality. Another open source todBM++>, developed at the Uni-
versity of Saarland [BN+07]. Companies usually ofée combination of data
warehouse tools and molecular biological toolsesvises.Biobasé for instance,
provides tools and data warehouse systems fordmatisn factors, gene regula-
tory networks, microarray analysis and proteomi8{7].

Data integration cannot explain the dynamic of slystem or replace the
mathematical modelling, but it helps to find thecessary information and de-
pendencies between the elements. It can avoid rivldgon of using erroneous
data or missing important side effects. Errors ocaour for instance, when the
gene identifiers are misspelled or different narfiesthe same gene are used,
which arises frequently.

To explain why models and simulations in biologg arevitable, it is indis-
pensable to define what a model is. Klipp et aliJ¥] define a model in the fol-
lowing way, ‘In the broadest sense, a model is Iastract representation of ob-
jects or processes that explains features of thbgects or processes’. In other
words, a model is a simplified and abstracted vedva part of the real world,
concentrated on the principal constituents. A masl¢he basic prerequisite for a
simulation of a system.

The advantages of computational modelling and stran can be divided into
two groups:

The first group contains the model's obvious vgagin comparison to tra-
ditional experiments. Modelling is cheap comparedrd¢al experiments. Each
model is reusable, whereas experiments are abditateeveral conditions like
weather, materials or chemical products. Simultaslg the model is independ-
ent from the real objects and causes no harm anasior plants. In addition, no
interaction with the environment nor with the mdelélsystem takes place. Con-
sequently, no falsification of results by unintentl interactions is feasible. The
experimental time can be compressed or enlargdteimodel at discretion. Thus,
a model is able to simulate different scenarioshwiairying parameters in a
shorter time then a real experiment. Moreover, mpmdational model (simula-
tion) produces more measured data and precisesemes. In contrast to a simu-
lation, in real experiments the scientist has tadecentrated on a couple of val-
ues to measure without disturbing the complete oreasent.

In the second place, modelling demands uniquemetbeiproblem specifica-
tion. Problem, hypothesis and general conditionstrbe defined in an unambi-
guously way in advance. Hence, modelling helpssitientist to follow a more
structured approach. Finally, a model can helpdiotput gaps in the knowledge
or understanding, which can be a trigger for nemdamental research. The rela-
tion between model and real experiment, and hoerdate a new model, will be
discussed in the next paragraph.

The development process for a biological modellimsoat identical as in
other natural sciences. First of all, creating aletds a complex iterative process.
Generally, a model relies on the data of experimastwell as the scientists’ ex-
perience. To give a first impression of the compjerf model development, |
will present a simplified common modelling workflow

® http://fred.bioinf.uni-sb.de:9180/BNPP; access2d©.2007
* http://www.biobase-international.com/pages/; ased€2.07.2007

Fundamentals and Related Work 4

1. Problem specification: In the first place, the problem must be specified
and it must be clear which questions shall be arexwith the model. In-
stantly, a hypothesis in written form shall be ded.

2. Evaluate available information: Use data integration tools and other
sources to collect and evaluate all available méttion. Maybe similar
models exist or parts of other models can be reused

3. Choose model typeDepending on the available information in poinbiw
choose the structure of the model. The model caadeterministic or sto-
chastic system. In addition, choose the level atralotion and the usage
of either continuous or discrete variables. Subsetiy, select the under-
lying mathematical formalism.

4. Create initial model: During the creation process of the model it i®oft
necessary to concretise the hypothesis or to ¢otiece data.

5. Verification of the model prediction: Try to verify the results of the
model with a real experiment.

6. Redefine the initial model: Generally, the model and the experiment re-
sults disagree. Consequently, the points one tonsist be repeated in an
interactive procedure in order to find out wherefrthe disagreements de-
rive. Hence, a model can be a trigger for new fumelatal research or new
experiments. After one iteration step and adapiatibthe initial model
the agreement should improves.

Figure 1 shows a flowchart of the iterative modektion process.

Create Model « Knowledge
v
Change Mode+ - > Trigger + » Research
v
)

no
) 4

Results equal

yes

A 4

Use Model

Figure 1: Iterative model creation process.

Fundamentals and Related Work 5

The major focus of system biology lies on the satinly of biological systemis
silico. Therefore, various software tools are developedeatly. These tools can
be classified in functional and structural tools.

2.1. Functional simulation tools

Different categories of functional simulation toagist. The first category
comprises standard mathematical tools beside leigtl-brogramming languages
and special modelling languages. First of all, iits¢s search for biochemical
networks in tools likeONDEX biological databases and other sources of informa
tion. In the next step, they develop the modelpaper and transfer those into a
set of equations. At least, they use tools M&TLAB®>, Mathematica®® or the
R’ environment to solve those equations. Alternayivetientists use high-level
programming languages in combination with open s®yrackages, for instance
the Open Source Physit9roject, which provides several algorithms to solv
equations. Additionally, numerous modelling langem@xist. For onePRSIM
allows the definition of systems of concurrent meses. When the processes are
synchronised, continuous time Markov chains casibmilated. Muffy Calder et
al. [Cal06] for instance, use continuous time sastie logic and th&@RSIMlan-
guage to model a signal transduction network witlexgample of th&KIP inhib-
ited ERK!®pathway. They compare this stochastic modellingragogh with an
ordinary differential equation model, usiMatLab® [Cal06].

The second category contains more biological sigesyfstems, which com-
bine stochastic and ODE simulation capabilitieshwvat tool associated control
language. In addition, these tools allow definihg tnodels, analysing them and
represent the results in one environment with oftemaphical user interface. For
example, tools like Jarnac, roadRunner or Dizzgnaa[Saur00] developed from
Sauro et at! is a scripting environment, implemented in C++d anly available
for Win32. The tool uses to solve ODE systems thygufar CVODE [Coh96] or
LSODA [Hin83] integrator, which can be selected indivatly by the user. For
stochastic simulations the tool uses an implemematf the Gillespie [Gil76]
algorithm. Later on Sauro et al. developed a nepl&fform independent C#
based software tool, called roadRunner. Unlike agrithis tool compiles the
models dynamically instead of interpreting them.a&8®unner uses for steady
state analysis the integrat@VODE and NLEQ [KonO7]. Furthermore, Stephen
Ramsey [RamO05] developed a tool for stochastic ksitins based ofillespie
GibsonBruck[Gib99] orTau-Leap[Man06] algorithm, called Dizzy.

Graphical modelling environment tools are combimedategory three. In
contrast to previous presented tools, these tdlae &0 draw the biological net-
work directly in the tools and to select the copasling kinetic laws. The first

® http://www.mathworks.com/

® http://www.wolfram.com/

" http://www.r-project.org/

8 http://www.opensourcephysics.org/

® http://sato-www.cs.titech.ac.jp/prism/

%1n place, only a brief overview, more details presented in [Cal06]. The ERK pathway (also
known as Ras/Raf or Raf-1/MEK/ERK pathway) descthm signals between cell membrane and
the nucleus. The protein RKIP inhibits the activatof Raf.

1 hitp://128.208.17.155//labmembers.htm; access207@007

Fundamentals and Related Work 6

tool, JDesigner[Saur07], developed at the Keck Graduate Insfituteses a
model of hyper-graphs to visualise the biochemmelvorks. The tool allows the
user to select predefined rate laws (between tfiereint species) or the user is
also enabled to define new rate laws. In additiba,tool uses the functionality of
Jarnac or roadRunner for time-course simulationsieddy state analysis via the
System Biology Workbench (SBW), which will be deked in detail in the next
paragraph. A further tool for modelling and grajgtiepresentation of biochemi-
cal networks is CellDesigner, which uses a proaiagram [Kit05] notation.
CellDesigner uses in the same way as JDesigneadamroadRunner, via the
SBWinterface, for the simulation. The tools in thteategory based on Hybrid
Functional Petri Nets with extensidiNag04+]. This net class enables the user to
model rule based biological processes in bio-payiswa.g. gene regulations as
well as ODE-based kinetics. Cell lllustrator [NayOés been developed by Ma-
sao Nagasaki at the University of Tokyo. Artem Lnjge and Tully Yates, from
the Rothamsted Research Institfitthave created an open source tool, named
OpenCl, which uses continuous Petri Nets to mduelsyystems. A screenshot of
a prototype implementation is shown in Figure 2e Thustration presents a GA20
oxidase pathway with a time course simulation \B&\Sand roadRunner.

[ene OpenCl Version 0.1a
File Model Wizard Windows He!p
866 ga20ox1h3.gon
GA12 GA15 GA24 GAg 3 AR
‘4_37 Reaction '.ﬂ Reaction '.a Reaction '.o E 1
seaz T Saas e B soms 55; T s.eas “
o1z 18, 13 ol =
0 - 0 S -
GA200x1_ 1 g - ; X |y
- e
E_GA200xT - ¥ o
cl7 cld clg
¥ o o 0
GA53 s GA44 ; GA19 GA20
.554 Reactio) ',ﬂ Reagtion '.o - - - _Reaction '.0
S GAs3 1!5‘:}[‘ NS T T s.eAls SE " s.GA20
TR
Simulation Plot Cptions
55
5.0
45 X Axis: | Time _:]
4.0 ¥ Axis: (Select None) (Select All)
g 35 5.GAs3 i ~
] - E_GA200x1]
W20 / ST T 5.GA9
£ 25 A Ty 5_GA20
S = S_GA12
iy \.\ S GAa?4
S Start time: 0
151 “‘-,_7_‘ End time: 90
51| \ H"‘—x.,_“ No. of Points: 90

= el (Reset) (Simulate)

0 5 10 15 20 25 30 35 40 45 50 55 B0 E5 70 75 g0 85 90

Time

‘ S_GAS3 —E_GA200x1 S_.CA9 S_.CA20 S_GAl2 S_.CA24 S _GA44 — 5_CAI9 7S_GA15|

Figure 2: OpenCl: GA20 oxidase simulation with timecourse simulation via SBW and road-
Runner.

2 http://www.kgi.edu/; accessed 02.07.2007

13 The extension is necessary to model and simulate more complicated biopahtway proc-
esses. The extensions are: first, an entity should contain more than one value, such as
list or pair. Secondly, HFPN should handle other primitive types, e.g. boolean, string.
Thirdly, the net should handle complex types, like objects.

% http://www.rothamsted.ac.uk; accessed 03.07.2007

Fundamentals and Related Work 7

Hitherto, all presented tools are more or lesspedéent. Accordingly, each
tool has to implement its own equation solver, mekwisualiser, data format et
cetera. In regards to the independent data forndafs)ing a model in tool ‘A’
and reuse the same model in tool ‘B’ require a detepremodelling in tool ‘B’.
Hence, data exchange formats have been developeduoe this problem. Cur-
rently, two exchange formats, based on XML, areosinstandard. First of all, the
System Biology Markup Language (SBME)s supported currently by over 110
software systems [Fin03]. Besides, the Cell Systerkup Language (CSMLES
exists. Both data formats allow representing mdiabsignalling and genetic
regulatory pathways. These exchange formats al@astientists to model a sys-
tem in different tools, without a direct interactidoetween these independent
tools. Therefore, the System Biology WorkbeHql$BW) has been developed by
Frank T. Bergmann and Herbert M. Sauro at the Kekduate Institute, Clare-
mont, USA. SBW is a modular framework, based orkérarchitecture, connect-
ing existing modelling and simulation tools. Thigpaoach allows a direct com-
munication between tools and a reuse of existingctfanality, e.g. equation
solvers or specific algorithms. The broker conttbls communication, based on a
message system over TCP/IP and provides bindingrids for the most common
programming languages (Figure 3).

Module Written
in Python
SBW Python Interface
£
g "
= | F]
= - o=
Module | & /SB “?\ 8 | Module
Wntlt:n E <1,::>1 Broker J< ,> : t\h-'rl?,tt:n
inJava | =S [~ \ _/ B inC
3 3 = T - 2 EC
a | . - 73]
v g

Figure 3: The individual models communicate via the&sBW broker (from [HucQ7]).

Moreover, the Bio-Spic& framework provides a similar functionality like
the SBW framework and uses the SBML format alsexa@hange format between
the different tools [Gar03]. The core of the systemmitten in Java, is called
‘Dashboard’ and allows the combination of connedtsals via a graphical user
interface to tool chains.

In conclusion, SBW as well as Bio-Spice affords riese and the combina-
tion of existing tools. However, not one of thenfiewvorks offers the functionality
to map parts of the simulation during runtime tbget Hence, it is only possible
to define chains of tools, and each tool simuléie®wn model and passes the
results as input to the next tool. The goal of ¢hieameworks is to create a con-
trol tool, which provides biologists a uniform asseto existing computational
tools.

'3 http://sbml.org/; accessed 03.07.2007

18 http://www.csml.org/; accessed 03.07.2007

7 http://128.208.17.155//research/sbwintro.htm; ased 03.07.2007
18 http://biospice.sourceforge.net/; accessed 03007.2

Fundamentals and Related Work 8

2.2. Structural simulation tools

Besides the modelling and simulation of biochempralcesses, it is neces-
sary for the simulation of the entire system towate the physical structure.
Therefore, different techniques have been develapdte last 40 years.

The first approach to simulate branching structagseared in 1966, based
on cellular automata. This approach has been thealrdeveloped from John von
Neumann (1903 - 1957). A cellular automaton is scrdite dynamic system in
time, space and state. The smallest unit, callegllacan have any one of a finite
number of states. The state of a cell dependssgorévious state and the state of
its neighbours’ at the previous time state. Allselpdate synchronously. An ex-
ample is shown in Figure 4. The left illustratidmows cellular automaton which
incipient with the starting celll®. All cells switch to active when they have ex-
actly one connection to an existing active celleTight illustration shows the
result of a modification of this basic rule. Alllisg which have a connection to a
cell that switch to active in the same time steptch back to invisible.

s

B

Figure 4 Cellular automata after Ulam [Ula66].

At present, a multiplicity of software tools forlicgar automata exists. A list
of tools and examples are present in the book, u&tion with Cellular Auto-
mata’ [Wei98]. A similar approach to Cellular Autata is agent based simula-
tions. The smallest unit is called agent here. Teshod is used for a wide range
of economic simulation, social complex environm&ntulations as well as natu-
ral science simulations. The user defines the hebaef each agent and rules for
the interaction. The current state of an agent midpen its previous state and its
neighbours’ state. Similar to cellular automatasttes update synchronously.

An easy to use, open source multi agent simuldtiohis MASON?, devel-
oped from Sean Luke et al. at the George Mason ddsity, Fairfax, Virginia.
MASON is a shortcut foMulti-AgentSimulator of Neighbourhoods. The tool is
completely implemented in Java and delineates lertvmeodel and visualisation.
Hence, it is possible to run a simulation withoutwath a visualisation. First of
all, the user defines a model with the help ofatiéht predefined field types. In
the next step, the user can assign a graphicatseptation to the field elements.
All agents in the system are controlled by a glahstrete event scheduler, and in

19 http://cs.gmu.edu/~eclab/projects/mason/; acce@361¥.2007

Fundamentals and Related Work 9

each time step the system can save the currergnsystiate (checkpoint). This
basic functionality is illustrated in Figure 5 (fng[Luk05]).

Visualization and GUI Tools

Controllers
(Manipulate the Schedulg)
2D and 3D Portrayals
2D and 3D Displays — Hold —m= (Draw Fields and the

Obijects they hold)

Simulation Model Utilities
- Discrete Event Schedule [
(Representation of Time) | Holda =iy Sgenks J
Disk Checkpoints —| (Rep) l'\.
Fields Any
(Representations of Space) | Hold _H: Object)

Figure 5: Basic elements of MASON (from [LukO5])

A good overview and example implementations of $athons using MA-
SON can be found in the publication, ‘MASON: A Malient Simulation Envi-
ronment’ [Luk05].

The breve simulation environméhis an alternative multi-agent simulation
tool. The emphasis rests upon 3D simulation andegagjon between calculation
and visualisation is not feasible. The tool inclsigdnysical simulation utilities as
well as collision detection and use OpenGL for visalisation. More informa-
tion can be found in the conference article, ‘brew@D simulation environment
for the simulation of decentralized systems andi@d life’ [Kle02].

First more or less realistic looking branching stanes were developed from
Dan Cohen with procedural techniques in FORTRAN®67 [Coh67]. He used
three basic procedural rules for the generatiaghestructure.

In 1968 Aristid Lindenmayer (1925 — 1989) introddca new technique
based on a string rewriting mechanism (L-Systeinsomparison to the impera-
tive programming paradigm, in the rule based pnognang paradigm no specific
execution order for the rules are defined. Thesrolely specify the changes of the
current system and are picked up from the contndl when they are applicable.
Familiar examples for the rule based programmingagigm are grammars of
natural language and formal grammar, developed bgnN Chomsky. In L-
Systems, all applicable rules are executed in lghrddeterministic L-Systems

consist of an ordered tripe= (V,«,P) . V is an alphabetwV "is a not empty
set over the alphabet aRIC V xV *is a not empty set of production rules.

20 http://www.spiderland.org/breve/; accessed 03 @72

Fundamentals and Related Work 10

A simple example:

vV =(F+=L])
w=F
P={F->F[-F]F[+F][F]}

A virtual drawing device, called the ‘turtle’ [Ab28 interprets the string and
produces a graphical representation of it. Eachadher in the string has a geo-
metrical meaning. Start with the initial string (), the system uses all applicable
rules in each step and produce (P) in each stgwestring (9. For the visualisa-
tion, the string isis scanned from left to right and the geometratalicture Tis
constructed by interpreting the occurring chara(gee Figure 6).

I £ v v

L

Figure 6: L-system and turtle interpretation.

Table 1 gives an overview of those geometrical nmggnwhich are neces-
sary for the understanding of the example above.

Table 1: Turtle geometry: Geometrical interpretation of characters in L-systems.
Character | Geometrical interpretation
F Moves forward and draw simultaneously a lineeoigith one
+ Rotates 45 degree anti clockwise
- Rotates 45 degree clockwise
[Saves current position on the stack
] Top element of the stack is the current state

Table 2 illustrates the relation between iterastep, string and geometrical form.

Fundamentals and Related Work 11

Table 2: lllustrate the relation between iterationstep, string and resulting geometrical form

for the example.

Iteration | String Geometrical form

step

0 F ‘

1 F[-F]F[+F][F]

2 F-FIF+FI[FI-F[-FIF[+FI{F]]
F[-F]F[+F][F][+F[-F]
FI+FIIFII[FI-FIF[+F][F]] /

Over the years, various extensions of the origomicepts have been de-
fined. For instance, stochastic L-Systems, degaobabilities to select the rules,
allow generating more natural looking structurethwmore variability or paramet-
ric L-Systems, which allow specifying length andardieter of the atomic ele-
ments. In the book, ‘The algorithmic beauty of péanLindenmayer and Prus-
inkiewicz describe all variation and extensionsLebystems [Pru90]. The rela-
tions between Chomsky classes of language and dgegclasses generated by L-
Systems are illustrated in Figure 7.

(D
Finite

IL

Regular
o

J
L Context-free)
Context-sensitive

Recursively enumerable

A vy

Figure 7: Relation between the Chomsky hierarchy agh L-System classes. OL stands for the
class generated by context-free L-Systems and ILf¢he class generated by context-sensitive
L-systems.

Figure 8 and Figure 9 show, to illustrate the powfet-systems, two simulated
flowers obtained form a context-sensitive L-System.

Fundamentals and Related Work 12

Figure 9: Lilac inflorescences from [Pru9Q].

L-Systems are based on well known theoretical qoiscand create realistic
looking models of plants. Nevertheless, even witlexensions, L-Systems have
some limitations. In the first place, an elementhia system can only be a direct
successor of another or it can be a branch elerfiéete relations are a too sim-
plified view of reality. In the second place, cias$ L-Systems are only appropri-
ate for the creation of one dimensional model witttle interpretation. Exten-
sions, like ‘map L-Systems’ and ‘cellwork L-Systér(gee [Pru90]) allow model-
ling realistic looking two and three dimensional dets, but the usage is fairly
complicated. Finally, the definition of L-Systemaries from common object-
oriented programming styles. The formalism is sen@hd supports no hierarchy
of objects and other OOP features.

With reference to this background, Winfried Kurtesgned a new formal-
ism, ‘relational growth grammars’ (RGG), to avoleese problems (see [Kur07]).
Together with Ole Kniemeyer, he defines a corredpan programming lan-

Fundamentals and Related Work 13

guage, ‘XL’ (eXtended L-systems languadeps an extension of the J&varo-
gramming language. RGG is based on a well develtdpeatetical concept about
graph grammars [Roz97]. Like L-Systems, RGG isveriteng system operating
on graphs instead of strings. The graph consistsodes and edges and allows
loops. Miscellaneous types of edges (relationsyvbéen the nodes are allowed,
and therefore, the formalism is called ‘relationdlhe RGG rules are defined in
XL and the graph is rewritten by the XL programmeiode in the graph can be a
geometrical object (structure and additional patemer a transformation object
(rotate, scaling, etc.) of a XL class.

The general syntactic structure of a RGG rule swshin Figure 10. The
whole RGG system consists of several RGG ruleschvhre usually applied in
parallel to the corresponding graph.

(*C *), L, (E) ==>R { P };

U

Condition
Context LHS proper (set of logical RHS Procedural
proper code

(set of (set of graphs, expressions, :
graphs) to bereplaced qntains para- (set of (list of

by R) meters referring ~ graphs) commands)

to node labels

Graphs: directed, with | from L and C)
edge- and node-labels

Figure 10: General syntactic structure of an RGG rie. Simplified, the rule replaced. by R
and executes Ffrom [Kur07]).

Figure 11 demonstrates an application of a sim@&Rule. The upper part
of the figure shows one RGG rule, where the lefichaide has to be replaced
with the right hand side. All nodésandB, which are connected via a direct edge
from A to B, have to be replaced by the node® andC. Two different types of
edges are used in the example (dotted and unbeokews). The lower part of the
figure illustrates the application of the rule. Thde is applicable to the red
marked and with an unbroken blue line framed are#he left side in the graph.
Attend that the rule is not applicable to the pHrthe graph surrounded by the
dotted blue line. The right lower part of the figishows the rewritten graph after
rule execution. New graph elements are highlighteded and surrounded by a
blue circle.

2L http://www.grogra.de/; accessed 03.07.2007
22 http://www.sun.com/: accessed 03.0702007

Fundamentals and Related Work 14

Figure 11: Relational growth grammar rule (upper pat) and corresponding graph (lower
part) (from [Kur07]).

A simple example of graph rewriting shows the cégadf RGGs against L-
Systems. For example, the so called ‘crossing guertess of two aligned DNA
strings in sexual reproduction can not be expressad L-System rule. Figure 12
illustrates this recombination process in a RG@.rlthe unbroken arrows repre-
sent the successor relation in base sequence of &idAthe dotted lines denote
the alignments between two homologous DNA strikgs(7].

A possible XL specification of the rule is:
ab,cd t a-algn-c*) ==>ad, cb;

Whereasa, b, c andd are objects of the corresponding user defined XL
classes. The standard successor edge is represeritedexample with a blank,
and the alignment edge is specified witlign-.

SESINCYC
CHOMMIOAC

Figure 12: RGG rule for genetic crossing-over (fronfKur07]).

To use relational growth grammar in practice, Krager developed an inte-
grated development environment named Grolmp (Grasdéimmar related Inter-
active Modelling Platform). The IDE contains an Eampiler, an extended editor
for XL, a 2D graph visualiser and a 3D modellingl@andering unit. Grolmp is a
platform independent tool under the GNU public tice. The system allows em-
bedding RGG rules in XL programmes, compile, exeautd visualise the results
of the simulation with help of OpenGL. For moreaikst a collection of RGG
examples and a XL tutorial, séétp://www.grogra.deTo clarify the dependen-
cies between XL, RGG and the visualisation, th&t faxample from the XL tuto-
rial is abbreviated present below.

Fundamentals and Related Work 15

In 1904 the Swedish mathematician Helge von Kodhoduced a simple
rule-based approach to model a snowflake. The isledp divide an initial line
into three parts and replace the middle part with lines as shown in Figure 13.

VAN

Figure 13: Koch construction step. Replace the midd part with two lines.

To generate a snowflake with this approach théainfigure has to be a tri-
angle. The transcription of Koch construction stap two RGG rules embedded
in a XL programme is shown in the following code:

public void derivation() [
Axiom ==> F RU(120) F RU(120) F;

F ==> F RU(-60) F RU(120) F RU(-60) F;
]

The used symbols at this point &giom F andRU, which are at the same
time the nodes of the corresponding grafkiomis the start symbol and the first
rule describes the initial triangle. WhereRglraws a straight line and RU turn the
orientation by the given angle. The second rulel@mgnts the Koch construction
replacement. Accordingly, all nodes from typewhich are created with the first
rule, have to be replaced with the right hand sidcihe second rule.

Table 3 shows the graph and the geometric outcdi@erasteps.

Fundamentals and Related Work

Table 3. Geometric outcome after n durations for tle snowflake example

Step Geometric outcome Graph
Axiom.68420
’ $
i
hiesiaal—— reouns
F.E9425
1
F.69422
i
F 3442 F 63430 F
F E9441 * F B3428
_— e
F B9444 F 59432
F 59446 F 69434
F B9435
3

Too complex to show

The pictures in Figure 13 and in Table 3 are ouhefXL tutorial from GrolMP.

Fundamentals and Related Work 17

2.3. Simulation of biological systems

The simulation of an entire biological system regsiia combination of func-
tional and structural simulation. Currently, a wideiation of models and simula-
tions for more or less complex biological systemiste Examples can be found in
medical and botanic area.

The first group of simulations has a medical oaéph. Scientists try to
simulate organs, organ systems or a musculoskalgsédm of human beings and
animals. The mayor focus in medical simulationghis virtual heart. Various
models for fluid dynamic, contraction, electrocagtam or drug effects have
been developed in the last decade. Scientiststhsanedical knowledge to create
an entire heart model based on biochemical prosesmsé 3D visualisation. All
existing tools are hard coded and optimised foy amle or two use cases. This
kind of specialisation is characteristic for themglation tools. For instance, some
tools use the MatLab fluid dynamic tool box for wienulation of the blood fluid
dynamic. In addition, the simulations use self-terittools to combine the struc-
tural and functional parts of the model in one r@mulation environment. An
overview of heart examples is shown in, ‘Computaiomodelling of biological
systems: tools and visions’, by Peter Kohl etkbH0O].

For other human organs similar simulation appros@hest. One example is
the ‘German HepatoS$scompetence network of system biology’, which tties
model a human liver.

Cornelia Kober et al. developed an anisotropic ftan of the human man-
dible. The simulation is based on computer topdgrabase data, organ geometry
and load distribution experiments (see [KonQ7]).

The mayor issue of the second group is to modekandlate flowers, crops,
trees and landscapes. Similar to the first groupstrof the software systems for
plant modelling are problem specific. One tool @niework is only applicable
for a particular plant or a group of similar plants

As an exception, Grolmp allows to model 3D struesuand to integrate the
biochemical process simulation into the model. $ygem uses the XL language,
an extension of Java programming language, to ntmdehemical processes like
in other high-level programming languages. The dliasatage is that all bio-
chemical processes have to be implemented in Xd tla@refore, no existing bio-
chemical simulation tools or models can be reugeat. instance, the barley
breeder simulation in GroIMP shows varied mutatainbarely, which is con-
trolled by various biochemical processes. The maodelbe found in the GrolMP
release (sebttp://www.grogra.de)

The modelling language LIGNUM represents a furésemple for a similar
approach. Functional and structural simulationscarabined in the tool with the
same disadvantages like in GrolMP. Information abkdGNUM can be found in
the thesis from Jeri Perttunen, ‘The Functional:@trral Tree Model LIGNUM’
[Per07].

Moreover, a huge quantity of non-generic simulatmols exists. Ming et al.
developed a framework for the simulation of biotagiinvasions in a heterogene-
ous landscape. The scientists integrate geogrdpméamation, biophysical
structures and diffusion dynamic in the workflowifi@a4].

2 http://www.systembiologie.de/en/index.html; acees83.07.2007

Fundamentals and Related Work 18

The correlation between atmospheric £fd crown development is simu-
lated in the model of Chen et al. The simulatioasua 3D model of a tree and a
3D model of the environment to simulate the relaslip between photosynthesis,
light interaction and growing. More information ca@ found in [Che97].

An overview of structural and functional plant misdare presented at the
5th international workshop, ‘Functional StructuPdant Models’, in Napier, New
Zealand. For more information visit the workshopbsies”.

Hitherto, all presented generic or non-genericdgobduce good simulation
results for specific areas. For each model thetfonal and structural part of the
model has to be completely re-implemented in tldstown formalism.

The thesis introduces a new software framework G, which combines
existing structural and functional simulation tod@onsequently, the system al-
lows the re-usage of already existing and definedets, without reimplementa-
tion.

4 http://algorithmicbotany.org/FSPMO7/index.htmlressed 03.07.2007

Requirements 19

3. Requirements

The basic idea for the new software system is tolione, in a generic way,
biochemical and structural simulation tools to dabel complex biological sys-
tems. In principle two possible solutions are covadge and will be discussed in
the following:

1. Create an entire software system and include atludised methods, like dif-
ferential equation, stochastic process, Petri Nedystem, RGG and agent-
based simulation (sdeundamentals and Related WhrKhe vantages of such
a system are: a uniform user interface, optimisedopmance and uniform
data storage. Disadvantages are: the complexitgeofystem, reimplementa-
tion of all methods, heavy maintainability, and thgossible reuse of exist-
ing models as well as the inflexibility for futuneodelling approaches.

2. Create a software mediator which is placed betvea#sting simulation tools.
Vantages of the mediator solution are: re-use ddtieg tools, no limitation
for adding system, relative small software systezasy to administrate and to
maintain as well as global control of the simulatidhe main disadvantages
are: no optimised performance, concerning the comeation between the
tools, no uniform user interface for the model digtn, various storage files.

Table 4: Vantages and disadvantages of the embeddadd the mediator approach. Plus sign
connote vantage and minus sign connote disadvantage

@ 2 =

[&] (0] (O] = =

R 8 (@) > o) [72] =
) e o & k=) cw
= — 4(7‘) - ® 1) U)-O
- o o +— ;) c O
(] [- +— — o0 —= O
0 (3] © o © mg <o 9
D o QO O = x| <E

Embedded approach

Mediator approach - - -

After having compared the advantages and disadgestaf both systems,
respectively, the decision was made to use the at@dapproach for the new
software system. The handicap of inconsistent irgerfaces will be compen-
sated by the reusability of existing models and @@miliar tools. The perform-
ance can be optimised with a good system and auerstructure design. The
general idea of the mediator approach is presentEayure 14. The software sys-
tem is placed in the middle and communicates whih adapted pathway and
structural simulation tools, respectively. A usegates the biochemical and struc-
tural models and initialises the mediator software.

Requirements 20

Software
System

User

Figure 14: Basic principle of the mediator conceptThe connections between the software
system and the simulation tools are bidirectional.

First of all, the new system must be able to adeh [N) independent mod-

elling and simulating tools. Therefore, a clear amdl defined interface structure
IS necessary. Adding a new tool means in this corlt&t a connection between
tool and mediator has to be established (see Fitfuraumber one) and informa-
tion can be transferred in a bidirectional way (5egure 15, number two). The
information, which are called values in the figuoeuld be current simulation
parameters, simulation element values, new valoeghe simulation or initial
configuration parameter values.

In the second place, the software system (BioSimded should have a ba-
sic control over all added modelling and simulatiagls, in the following called
subsystems. Basic control means here that the Bid8diator is able to start,
stop and reset all simulations in the connectedysibms. Furthermore, control
over simulation specific commands, liken a simulation (see Figure 15, number
three).

@

@

Values

Control commands

()

Figure 15: Connection and communication between BRimMediator and the subsystems.

Requirements 21

For an entire simulation, it is necessary to en#ideuser to define mappings
between the subsystems. That means, the userigpeaifiich subsystems are
allowed to communicate with each other and undeichviconditions. For in-
stance, a value from subsysténmas to be changed in the next step. SubsyBtem
calculates the value and the mediator knows, with lielp of the user defined
mapping, that the value has to be sent to subsyAteMl possible variations are
shown in Figure 16in principle, the mediator has to distinguish betwe direct
mapping and a threshold restricted mapping. Therdidllustrates six mappings
between the subsystems. All mappings are only ptesene direction; in reality
the reverse mappings are also possible.

Functional BioSimMediator Structural
simulation tools Mapping simulation tools

Tool B

Ifa<, = or> }
’ -

Tool D
o Tool E
Tool H

—C
o

Ifh<, = or>
threshold

Ifj<, = or>
threshold

$0 .
L

Figure 16: Mappings between the simulation subsystes. Capitals are synonym for the simu-
lation tools and the lower case letters stand fortaibute values inside these systems.

Requirements 22

A brief description of the six represented mappifayiews (see Figure 16):

1. Threshold restricted mapping: The attribute valia fsom tool A will sent to
tool B, if the condition is true.

2. Direct mapping: Attribute value will be sent in each mapping step to t&ol
without restriction.

3. Direct mapping: The attribute value bfrom tool D will be sent to toolC.
This tool recalculates the attribute valeeaqde’) and sends it back to the at-
tributef in tool D.

4. Direct mapping: Equal to point three, but the regkited value will be sent to
another subsystei

5. Direct or restricted mapping: The dark blue arcvghthe restricted mapping
and the azure picture the direct one. The pectyliarithat both tool$ andG
are functional simulation tools.

6. Direct or restricted mapping: in comparison to paix, tool H and | are
structural simulation tools.

Accordingly, the mapping unit of the mediator mhstgeneric enough to handle
all present mapping types.

The next requirement is a step size control foheabsystem. Step size con-
trol means, most of the subsystems work with speaiaulation methods and all
these methods uses its own internal representédion step in the simulation.
Some subsystems use a time step (minutes, secoud) land others use an ab-
stract step size independent from the time. Acogydb this, the BioSimMediator
must be able to save for each subsystem an ownsstepelative to its internal
step size representation. This requires an intedrstep size representation in the
mediator.

After the end of the simulation, the user requaesoverview of the previous
system states in each simulation step. Hence, adigs required. Therefore, the
system must save all attribute names and correspprdlues in each simulation
step. On top of that, the user should have the ypity to pre-elect the required
attributes. In this case, the system saves onlyske defined name value couples.
To associate the name value couples to the rigpt atd subsystem, the log file
has to contain the respective simulation step hadtbsystem’s name.

In addition, the system must include a basic statcalculation unit, which
assist the scientist. For instance, the calculatioan arithmetic average of a spe-
cial concentration or the biomass of the entirddgical system is conceivable.

To sum up, the core functional requirements austitate in the use case dia-
gram in Figure 17. The main scenario is the ‘ruhacimulation, which is ex-
tended by the control of the subsystems. To cotimIsubsystems, the mediator
has to be configured by the user. With referendbeqresented requirements, the
system must provide a mapping, a log unit and tessstaunit, which are also used
for the control process. Apart from that the figihastrates, the user’s responsi-
bility for the configuration of the mediator. Oretlother hand, the BioSimMedia-
tor can interact with any desired number of sulesyst

Requirements 23

Mediator Framework

Pathway toos

)

Structural tools

User "
1

" ((define statistics)

Figure 17: Use case diagram for the BioSimMediator.

Beside the functional requirements, the system isatstfy the following non
functional requirements.

To guarantee easy maintenances and further extengioe implementation
should use design patterns and a clear interfagetste. Also, the usage of well
knownJavaDoccomments improves the quality of the system.

The reliability of the system must be high; othessvthe complete simulation
process will fail. Reliability comprises availalyli probability of unavailability
and mean time to failure. To guarantee reliabiley,easy and well documented
program structure is recommended. In the same tayobustness of the system
must be ensured. In this case, a short restartdftee a failure and a low percent-
age of events, which cause failures, are preferable

The using of the high level programming languagea Jar the implementa-
tion guarantees a platform independent system.pbhiability of the system and
the compatibility to other programming languagessimbe considered. Most
simulation tools are implemented in C or C++, dmere¢fore, an interaction must
be possible.

The environment of the system will be in the fipddce a single processor
system. This necessitates no special requirementhdé system size or memory
usage.

In addition, the software speed is important fax #imulation process. The
mapping between the subsystems must be fast ertougiiisure a successful op-
eration. A fast mapping is procurable with the h&flp mapping structure without
overhead. For further extension, like running timeusation via a network or on a
computer cluster, a suitable data transport foshatl be defined.

The last requirement is the usability of the syst@reating a model in the
common modelling tools requires good computer skiBased on this fact, all
users of the system should be able to use a higl frogramming language.
Therefore, experienced users should be able tahessystem after reading the
documentation.

Design 24

4. Design

This chapter gives an overview of the system deaighthe primary system
parts with an emphasis on a conceptual and abstnaalt Implementation details
of the core units are presented in the next chapter

The basic idea of the system is to combine existiogelling and simulation
tools and to mediate between these tools (see d-igd). Also, like mentioned
before (see chapté&undamentals and Related Wyrk global control of all con-
nected subsystems and a storage of the simulasuits is necessary.

The system is based on an object-oriented desigonordingly, the funda-
mental components in the system represent objattstheir own state as well as
operations rather than functions. A precisely defiterface allows the objects
to provide their operations for the system. Tlmified Modelling Language
(UML) provides a range of notations to describe ititeraction and the dynamic
of the objects as well as the system design andvi@lr. Experience has shown
that objects are often too fine-grained for tharerdescription of the system de-
sign. Consequently, objects are combined to laggaired abstractions called
subsystem or framework (in Java called package)av@md a mix-up with the
names of the simulation subsystems in future, tfierdnt subsystems are called
simulation subsystem respectively mediator subrysfgtend that the synonym
subsystem is used in two ways. In the first casedéscription is used for an en-
tire software system (simulation subsystem) anthersecond case for a func-
tional unit inside a software system (mediator gatesn).

For a clear and intuitive system design the sydtemtionality is distributed
in packages. The mayor functionalities of the systge: connecting to subsys-
tems, handling of simulation values, mapping of shesystems and the logging
and statistic process. To obtain a high-qualityvgafe system, which is easy to
extend and to maintain, an abstraction layer fahaaediator subsystem is de-
fined. In addition, well known design patterns (f&b]) for the relationship and
interaction between objects and subsystems are used

The mediator subsystems are described in detéoviet by a brief descrip-
tion of the relationships.

4.1. Subsystem connection

The first mediator subsystem | will explain in matetail is the part of the
system, which is responsible for the connectioth® simulation tools. As men-
tioned before (Figure 15), the connection includedirect communication and
data transfer with the subsystems. For the sinoradif biological systems it is
necessary to combine functional and structural kitimn tools. Accordingly, the
mediator must be able to add and connect to as sw#rgystems as the user needs
for the simulation. Therefore, it should be possitd connectn (n N) subsys-

tems to the mediator. Also, the interface for tlmrection must be generic
enough to connect to different kinds of simulatsabsystems.

Currently, four functional simulation subsystemsl awo structural simula-
tion subsystems (as shown in Figure 18) are coaddotthe mediator. The func-
tionality of all these tools, with the exceptiontbe so calledCalculation tool,is
described in the chaptéundamentals and Related Woilhe Calculation toolis

Design 25

based on the open source Java libfaya math expression pars@EP5°, which
allows the handling of mathematical expressionghénmediator the tool is used
as a utility subsystem for basic mathematical datmns.

e A

Figure 18: Currently connected simulation tools.

The mayor problem in the interconnection betweerukition subsystem and
mediator is that nearly all tools provide differemterface. Furthermore, the tools
are implemented in various programming languagasjristance Java, C/C++,
FORTRAN or Perl. Another point is the start up @ss of the tools. Some tools
need special start up parameters, like simulatioe-tength or simulation step
size in advance, whereas other tools need thesenpéers after the start up.

In reference to these problems, the interconnedbieiiveen mediator and
simulation tools is split in two parts. The firsrpis only responsible for the con-
nection and identification of the tool during rung and called subsystem handle.
The communication with the simulation subsystentastrolled by the second
part and called subsystem control.

%5 http://www.singularsys.com/jep/; accessed 12.00720

Design 26

4.2. Subsystem handle

The design of the handle subsystem is illustratethe UML class diagram
in Figure 19 (all class diagrams in this thesisiacemplete. Only those elements
which are needed for comprehension are represenftedddd a new simulation
tool to the mediator a new class must be creatéd;haimplements the interface
Handle The interface contains five method declaratistart(), stop(), reset(),
updat€) and updateObjectValues(...tart() or ratherstop() starts or stops a
simulation, respectivelyReset()sets the simulation back to its initial state. The
update()method is responsible for updating the simulatratues in the subsys-
tems to read them (values) in the next step. Irtrashtoupdate()the method
updateObjectValues(..Writes new values into the simulation subsystem.

By virtue of similarities between all structuraldaall functional simulation
tools a differentiation between functional and stwwal handles is nevertheless
reasonable. Therefore, two abstract clasags#ionalHandleAbstracand Struc-
turalHandleAbstractwhich both implement the introduced interfatendle The
actual simulation classes inherit the correspondibgtract class. Both abstract
classes save a corresponding control object, wikicesponsible for the commu-
nication with the subsystem. In the class diagramr, examples for actual simu-
lation handle classes are presented. As converdlbthese class names end with
the string ‘Handle’.SbwMsimHandlas the handle class for a multi simulation
using Jarnac. Jarnac is not directly connected thithmediator. The System Bi-
ology Workbench (SBW) is used as a connection mamade workbench pro-
vides interfaces to various programming languageshis way, the problem to
connect tools which are implemented in differenbgpamming languages is
solved. For more information see chapt@ndamentals and Related Woikhe
other functional handle clagsunctionalCalculationHandlés responsible for the
mathematical utility subsystem. Besides, two stmatthandle classes exist. First
of all, AgentHandles the handle class for the multi agent simulatms Mason.
The last example handle clas$GiglmpHandlefor GrolMP.

In addition, the abstract classes contairSabSysteminformationbject.
These objects save all required information abbetsubsystem. The first attrib-
ute of this object saves a unique user defined rfamibe subsystem. The second
attribute saves a string which contains a systetm ipformation. Nearly all simu-
lation tools save the model definition in a fil@rknstance, Jarnac, roodRunner or
JDesigner use the SBML format, which is based onLXKrolMP uses a self
defined storage format. Other tools need class pHtiimation for loading the
models. This attribute is callestartinformationContainerlt saves the required
file path or class path for the start up in a strifihe next attribute dedicates the
simulation subsystem to the handle type. Only twtues are permitted: func-
tional or structural. Attribute four saves a unidwendle name. The last attribute
includes the step size for the subsystem relativee mediator step. For instance, a
value one means, in each mediator step one subsysép is executed. A value
four means, in four mediator steps one simulattep s preformed.

The creation of a handle class object is contrdigdhe clas€reateHandle
Beside the name convention, all handle class hdsetsaved in the package
uk.ac.rothmasted.mediator.handiBependent on the handle type (functional or
structural)newStructuralHandle(br newFunctionalHandle(search in the pack-
age for classes whose names ending with ‘Handld’ aall the corresponding
constructors. The respective return value of théhods is the handle object. For

Design 27

an easy access of these objects, a referencelieaccreated object is saved in
a collection (map) in the clastandleList These lists must be unique in the sys-
tem. Therefore, the classes must be implementadsagyleton (singleton pattern,
see [Gam95]) or must be static. It is possible thate than one instance of a sub-
system, which is represented by the correspondamglle class, is created during
runtime. Hence, the collection must save a mappetgveen handle name and a
list of object references. These lists are colediof the classStructureHan-
dleList or FunctionalHandleListdependent on the handle type (functional or
structural) HandleListoffer methods to add a name reference pair tonidyes and

to return a list iterator over the object referehsefor a given handle name.

Design

103E13Y @ QuojRIayisI|EInjanisia b

plon: (BSIM0| 3|pUEHPRE

101E13)| : (UojeIa}|sI|EUOljaun 4336

plos : (§SI0 | 3|pUEHPRE

uoloa||0g] § J53|pUBRH|EINIa NS

UBloE||0] ¢ 1S3 IPUEH|EUS ouny

EMR|pueH|Inangs

I3 PUEH|EUORaUN 4 ajpueqdw|oig

3|puEHuabiy

S|PUEHUORE[NS[EUGIRSIUR 4

BIPUEH WIS MY S

prosc (Xeiepdn gaoepaiuoaliqoaiepdn: ErbenyEaniesoalqoaiepdn

« 0 <0
plon : (uapas
yalqo :(uapeb
Tl i azsdaggep
3 I Guuis : aweya|pUEy
Bungs @ wagsigqnginadiy
uofaa|og @ 08| pUEHEIN}aMES | [viak Bunls @ 1aUIEII0 U 1E W0 JHELS
uajaa|on s pUEH|EUGaUR 4||w3ab Bums : wenywasis
103e1EY JRwepAgE | puUEH|EINanStat
1031y © DaWwENAgR|pUEH|EUORaUn 126 O IE L oUWHRiE gn g
plon: (Ja|pUEH|EINfanR}SppE 2o e LSRRI T e PR T b W LR R L I TS A= de uonEUIUpLEEAS NS [ealqoueREw oUW EEASqNE
plon : (Ja|pUEH|EUCI}2UN JpPE) s |OIRU O J[EINFANUES | IU0D . 2 .0 |oUUO[EUCIaUn g D [QUoD
uoyaa|ag : dejya|puUEH|FUGHaURY BENTH S PUSEIMERNS =0 RN A pUEH E gL R
uoas|on @ depya|pUEH|EIN}2 NS T
T UoaE |0 |EInlansE [I
1517 D Uaaa|og|EUa}aung e e ettty Hnd ittt r—--
ERLETE] EEL Al LTI BT B E2 T
EM2IPUEH alogs
i -
_ Vi
i 3
1

10 < a|pueH|eImangs buuys: sdepysey
alE dEWa|PUEH|EUGCaUN) pUE dE S|P UEH|EIN}a NI

3|pUEH = sWEHY dEW
“gJEIRIPURHIE O Raun S BumS

JOBNSTR|[PUEH[ENC2UN 4 : QR |PUEH|EUC AU JAal
JOEIEqya|PUEH|EINIANILE | ()3 |pUEH|EINDM}Sman

B|pUEHAIE AL

pron : J=jepdn

pron (jasa
proa: Ddoys
plos: CHEE

a|puEH
EFELTITETTESS

for the handle subsystem.

: Class diagram

Figure 19

Design 29

4.3. Subsystem control

In contrast to the handle subsystem, which is nesipte for the management
and start up of the simulation subsystem, the obrsubsystem comprises the
communication and interaction with the subsystehte subsystem handle class
describes only on an abstract level the subsysterctibns (start, stop, reset). In
contrast to the subsystem control classes, whigsleiment the interaction with
the subsystem in a tool specific way. The inteosctncludes updating the simu-
lation values in the modelling tools as well agha mediator internal data struc-
tures. Also, all necessary configurations after steat up of the simulation tool
will perform from the control class. Most of thenade class methods use the
methods of the corresponding control class.

In principle, the system consists of two abstractevels. The mediator in-
teracts with the handle class and uses the provitsttiods. These methods for-
ward the query to the control class method whiduitles the tool specific im-
plementation. Therefore, the control class interagth the real simulation sub-
system.

When a new simulation subsystem shall be connestédthe mediator, a
new control class has to be implemented. For &betterview, the recommenda-
tion is to create for each new simulation subsystemew package which includes
all subsystem relevant files.

To obtain a well defined control class designcalhtrol classes must inherit
form AbstractControllerand re-implement all five methods. The class diagiar
the control subsystem design is shown in Figure 20.

First of all the methodtart() is responsible for the simulation start. Next,
doStep()performs one simulation step in the simulation gstesn. The third
methodreset()sets the simulation back to its initial state. lishbe possible for
the mapping between various simulation subsystemsadout values from a sub-
system. Therefore, the methoehdValues(reads the values form the simulation
tool and updates the internal data structure ferrtapping. In contrast tead-
Values()the methodvriteValues(Jupdate the simulation values.

Generally speaking, there are three categoriesmflation subsystems in re-
spect of the connection with the simulation medialttence, these differences in
the interaction with the subsystems require thegegories of control classes.

1. The modelling tool provides an interface which aothe mediator to interact
directly with the modelling tool. Thus, it is posl to send values and control
commands to the tool. Also the mediator is ablsetiod a request and the tool
replies the required information.

2. The modelling tool provides no interface which denused by the mediator.
Therefore, a wrapper class for each tool is createtlall models must inherit
this class. Via the wrapper class an interactiath wie simulation is possible.
In principle, a third abstraction layer is addedwse=n mediator and subsys-
tem besides the handle and control layer.

3. Some simulation tools do not allow to using the ppex class approach. For
example, it is not possible for all required toédneents to inherit from a
wrapper class or the tool code is not open sourceachanges of the source

Design 30

code are allowed. The only alternative is to hadéca communication be-
tween mediator control class and simulation tool.

A
5
2 E
= ES =
=] 3
= o
H @ *
o W
] i
2
Ty
=5 FF------------4 -=4-
m A
] .,
== -
Z 2
= #
E
E
H
S
R _
b 2 i
@
2 H g
= H e
— o o E
_ = T g S
] @ w o
£ e 5 <
c m
3 - - 5]
= 4 =
] - =
= o E
= 3 22235 E]------+ -4-4
B Ry TEEES
g a
NQE =
= oa = m
W
‘] c
9% e
c c
552 -
ENCE
mmlomE
K]
E
E
H
o —
2
s
B
H
H
Z
N
E
£
]
8 E—— =
B o
B =z z
B o o o =y
S @z TZ - 8 3
A o
EEE-R=-A H =
Tigid = _ _ =
SoFr 22 = £
o - omom (&) g
oREgz3 E H
woa =1 i
m S B omE = 2]
PR 2 =
o [i1]
w w
M
i
_ 8
A
2 - =
H
(&)
o
=
H
Ll

o GrolMPControl) @ woid

callback

GrolmpCore

fetehGraphie @ GrolMPContral) : woid

rund) :waid

Figure 20: Class diagram: control subsystem.

The class diagram (see Figure 20) shows all theges\to interact with a sub-
system. In the bottom left corner (landscape fayriee diagram shows the inter-
action with GrolMP. By virtue of the internal sttuce of GrolMP it is only pos-

Design 31

sible to use approach three, to hardcode the mmerction between mediator and
tool. To guarantee the required quasi parallel et of the RGG rules, the sys-
tem uses various threads. A communication is onhaispecial system state,
which is called in GroIMRock protected runnabldeasible. The implementation
and a detailed description of the GrolMP interfémows in the next chapter. In
principle, the clas&rolMPControl uses a class which implements the interface
Visualisation Via a call-back method call the class sendseheired information
back to the mediator.

In the middle of the class diagram the interactioih Jarnac is presented. As
mentioned before, Jarnac is connected via SBW thighBioSimMediator. The
interface Simulation shows all provided methods which can directly ladled
from SbwMsimControl For instance, the methagetValue(name:String):double
returns a double value for the attribute with ttentifier name In addition, the
interface contains the methodsdoStep():void setValue(hame:String,
value:double):voidreset():voidand SBWinitialize():void.The characterdMsimin
SbwMsimControl stands for mult simulation. This meahat more than one
simulation of the same type can be executed inlipardherefore, the interface
includes a method to call the simulation identifgetModelld():long. This inter-
action is an example for using a provided interface

In the bottom right corner the connection with thelti agent simulation tool
Mason is shown. Mason consists of a control classali agents, calledgent-
Control. The functionality of the agents is defined ina@pe classes (in the class
diagram ‘Agent’). For the interaction with the BiaBvediator each agent class
implements théAgentinterfaceAgentControlhas to implemenfAgentAdapterAb-
stract Now, the mediatocan call these implemented methods and in thatamay
interaction between the agent simulation and théiaber is arranged.

4.4. Transport of values

For the interaction of different simulation toolsransport of values between
each other is essential. The transport is restricct@ttribute values. The challenge
is to transport all required values from one sutesysthrough the mediator, pos-
sibly change the values of the attribute in the iated in the meantime and over-
ride the values in another subsystem with the nawes. All primitive data types
are used in the various simulation tools. Thereftire mediator must be able to
store all primitive data type values. For a clead antuitive design, the transport
is split in two parts.

The first part is responsible for the transportrfrthe subsystem to the map-
ping unit. Regarding to the differences betweerctional and structural subsys-
tems this part is split in two sub areas. On thHeeiohand, the second part per-
forms the transport of values from the mapping tonthe subsystems.

An illustration of the transport between mediatod @imulation subsystems
is shown in Figure 21.

| Mediator

GlobalMapping

Structural
Object

Functional
Object

(____________________________ — T T
Simulation Subsystems

Functional Subsystem Structural Subsystem

I
[
I
I
I
I
I
(

Figure 21: Transport of attribute values between snulation subsystems.

Values from the simulation subsystems are storea Hinctional or Sruc-
tural Object,depending on the subsystem, and are transpor@&tbbalMapping
After the mapping proces§lobalMappingstores the new attribute valuesup-
dateobjects and redirects these objects to the simulaubsystems.

The class diagram in Figure 22 shows the objesselmand, where appropri-
ate, the relationships between these entitiesll lstart with the description of the
classAttribute, which implements the interfaddtributeTypelnterfaceThe corre-
sponding object saves one simulation attribute evalith name and type of the
attribute. This object contains three attributesne, type and value. The first two
attributes are from type string. The last attriboniest be able to save a primitive
numeric data type. In Java the wrapper cldasnberallows saving a numeric
value and returns the value in each primitive datanat. All attributes in the
class are private and can only be accessed or etlang the five methods which
are specified in the interface. The first metlygiName(returns the name of the
attribute as a string. The second methetilype(xeturns the type of the attribute
as a string. The value of the attribute is returae@Numberobject by the third
method. To chance the attribute value, the classtaocts the methodset-
Value(Number value)lt is possible that during runtime a copy of thigect is
required. Therefore, the methadpyAttributereturns a deep copy of the object
form typeAttributeTypelnterface

An Attributeinstance is the smallest storage unit for thesjart of values in
the mediator. In the simulation tools the simulatattributes are combined in
units. For instance, in an agent simulation alilaites belong to one agent or in a
biochemical simulation a gene concentration beladngene gene. To represent
this in the mediator design varioddtribute objects can be combined in an in-
stance of the classe&atructuralObject SimulationObjector UpdateObject The

Design 33

design of these object classes is also shown ircldes diagram in Figure 22.
These objects can be associated with the objeotsrsim Figure 21n the follow-
ing way. The class$tructuralObjectin the class diagram represents thteuc-
turalObject in the illustration. Also, the claddpdateObjecttypifies UpdateOb-
ject The name of the class which representRhecitonObjectis SimulationOb-
ject. The reason to name the corresponding GasailationObjects that objects
of this type are also used for the mapping process.

In the following, | describe at first the interfasgucture and afterwards the struc-
ture of the three transport object classes.

By a closer inspection of the interfatipdateObjectinterfacdears resem-
blance to the interfacklediatorObject This similarity is intended to get a clear
differentiation between objects which are corresiog for the transport of val-
ues from the simulation subsystems to the medatdrvice versa. An alternative
design solution could be to use one interface andréate two abstract classes
which implement this interface.

To avoid confusion between an instance of a classiobject-oriented sense
and the name for the objects for the transportimigation tool values, the last
mentioned objects are called in the following tr@ors objects. Both interfaces
MediatorObjectand UpdateObjectinterfaceontain the following four methods.
First of all the methodjetName()which returns the name of the corresponding
simulation tool unit (gene name, agent name,...)idBatify a transport object in
the mediator, each transport object gets a unideetification number (ID). The
methodgetID() returns this ID. As mentioned before, in one tpamsobject vari-
ous Attribute objects can be enclosed. All these objects aredsav an internal
data structure and the methgdtAttributeList()returns the data structure. Fur-
thermore, it must be possible to add a mgtvibute object to any existing trans-
port object. Therefore, the interface specifies tineethod addAttrib-
ute(attribute:AttributeTypelnterface)

The class specification dfjpdateObjectand SimulationObjectare equal.
Unlike the principle of object-oriented softwaresim, to reuse existing struc-
tures, | recommend two object classes with the shef@aviour. There are two
reasons for this decision. In the first place, l#tspy in two classes enhanced the
understandability of the system design. Moreovarindj runtime the system can
decide on the basis of the object type how to reatid object.

In matter of the equality of the two classes, dhly structure oSimulation-
Objectwill be explained in place of both. Each objecttyfe SimulationObject
has a name, a global unique identifier and can eaeeor morettribute objects.
SimulationObjectimplements the interfac&ediatorObject and UdpateObject
implementdJpdateObjectinterface

34

Design

joalgoaiepdn pue
1alqQIolEIpap Ul panES

I3qunp ; an(en
Bupys adig
Buimgs @ sweu

UL

T
£23Z|EAls s “
|

57

1alqouoleipagy (Buo) Aayguawa|g3a6
plon: jaslqouolEipap joe(qOiolEIpawjuals|Jppe

uagas||og : EEgeE

FIMyealqnieiEIpa e qe| S

aNEZS

<0

1a(qoeiniangs o Cguaie 4126
usa|0] Quaipyi3ak

UoaE||en o usIpya
1alqoeinangs @ pu=ied
uopaa|od s angqupe
Buap: qu

Bupys @ aweu

1oalqoEImangs

plon :QaquWnp @ 2N EAJRN|E MRS
aappau|ada) anqupy - QEnqupsido
laqunp : Q=neq3ab

Bunys @ Qadigyab

Giunys : QEwep}ab

aaEpaRda] BN quy
FECET-TPe

<aBZl|Eal==

BNES
« 0

UoRaa|ed En=nguye
Bua): q1
Bupps @ aweun

yoalqouone|nulg

ZaBZl|Ealz=

uao|0g

IT=nquRe
Buap: qu
Bupys @ aweu

tealqoaiepdn

T
|
ZZRZl|ERlz 2 1
|
|

kWi

plon : [3aEpaiu|adi | SINqUIY | 5INqUREIRINQUIYPPE
uaos||0] : (RS e g Uy e

Giuo) : Qigp=b
Bupys : Qawepab

plos s (RoEpapu|adi | a3nquipy @ SRqUREIRINqUTPPE
uonaa(|e] (RSN gupeet
Giuo) : Qigp=b

Bupys : Qawepab

aRlqOIciE PR Y
EECLI-STENTE

soEpaquaalqoepdn
ZLIEHEIULE

Figure 22: Mediator object classes for the transpdrof simulation attribute values.

Design 35

The object clasStructuralObjecttontains additionally two attributes in order
to save information about the simulation environtném this case, | mean with
environment other simulation elements which arenested in the simulation
with the actual object. Therefore, it is possib@ tsave in each object of type
StructuralObjecta list of objects from the same type. The metgetChildren()
returns all connected transport objects which ara lower hierarchy class. For
instance, objects which save attributes of the kitin subsystenmGrolMP,
which uses a graph for the storage of the simuladigiects (values), the method
return all successor nodes. On the other handntdteodgetParent()returns all
transport objects which are in a higher hierardags In the case of GrolMP this
means the return object isStructuralObject,saving the attributes of the parent
node.

During runtime, quite a few objects from ty@@mulationObjector Struc-
turalObjectare used for the transport of simulation values. Fgueck and ease
access, all MediatorObject are saved in a hash Mme@unique ID of each trans-
port object is used as a key element. The correpgriransport object with the
ID is the value element in the map. Therefore,sh é@cess to eadfiediatorOb-
jectvia the ID is feasible. As a matter of courseyamhe hash map can exits in
the system to guarantee a unique mapping. To rdeshthe clas§lobalMedia-
torObjectListhas to be implemented as a singleton. Hence, @myinstance of
the class, and for this reason, only one hash migseTo add a query forMe-
diatorObject,the class provides two methods:
addElement(mediatorObject:MediatorObjett)add a new object to the hash map
andgetElement(key:longp query for a object in the map.

4.5. Mapping

Beside the connection of the simulation subsystenthe mediator and the
transport of simulation values, the mayor functadrthe mediator is to allow the
users to define dependencies between existing atioaltools. In the following, |
present the design of the mapping package anddliffenapping categories.

In the first place, only the user can create a nmgppetween simulation tools
and the system can only assist him with a simpleelsas clear mapping struc-
ture. All varied mappings between simulation submys are described in the
chapterRequirementsn Figure 16. It is indispensable for the usekimow all
involved model details before he can create a nmappi

In general, the mediator provides two differentetymf mappings. | call the
first one pre—-mapping and the second one main-mgppioth mappings have the
same functionality. The only different is the timeexecution. A simplified de-
scription of one mediator step illustrates theatdhce. In first place, all required
information for the mapping is transported from gésystem to the mapping
unit. Then, the pre-mapping is executed. Afterwaitisonnected subsystems are
updated. Subsequently the main-mapping is perforieglace emphasis on this
difference, a simple statechart diagram clarifles ¢orrelation between mapping
and mediator step (see Figure 23). The diagranagmtwo main state§Vait for
user commandndPerform mediator step

In the first state the system waits in an idleestat a user's command to per-
form a mapping step or to end the simulation. Téeord state is composed of
five sub states. After the user triggers a new atedistep the system changes to
the statdUpdate simulation subsysten#s this point all involved simulation sub-

Design 36

system values in the mediator are updated. This\sndeat existing transport ob-
jects are updated, or if so far no transport olgects for the simulation attribute,
a new one must be produced. Afterwards, the systeitches over to thExecute
pre-mappingstate. Here, the system executes the user degdireethapping in the
user defined sequence. New instances of YpeateObjecsaves, after the map-
ping, the return values for the update proces$@fsimulation subsystems. The
update process is performed in the next systers Bfatlate simulation subsys-
tems The system behaviour in the next two statesndlai to the earlier states. In
Execute main-mappingll mappings of type main-mapping are accomplisiiadt
like before, the mapping unit creates new instatéfpdateObjectAfter updat-
ing the simulation subsystems, in the stapelate simulation subsystentise me-
diator goes back to the idle stafait for user command

Ferdorm mediator step
@ do meediaban stap Update simulation suhs;rslerns}
£ i J
end \I/
\ | Execute pre-mapping I
\@

I Update simulation subsyslems\l

| Execute main-mapping \I

|)
)

| Update simulation subsynems]

|)

-

Figure 23: Statechart diagram to illustrate the corelation between one mediator step and
the mapping.

Besides the global differentiation between pre-nragppand main-mapping in
both categories a further differentiation is neaegsin the simulations two cate-
gories of simulation attributes occur. The firsteggpry contains the unique attrib-
utes inside the simulation. Unique means heredhht one attribute of a special
type exists in the simulation. In analogy to a pamgming language these attrib-
utes can be called global or independent attribdtee name of the attribute suf-
fices to identify the attribute. The opposite of iadependent attributés a so
called dependent attributeln a simulation more then one attribute of thmea
type exists in different subcategories. To identfe of these attributes a set of
dependencies to other attributes must be definedemain in the analogy of pro-
gramming language, local attributes in differenttmes can be named identi-
cally. An explicit identification required the nanoéthe method in which the at-
tribute is defined. In the simulation, an attribeten depend on the environment,
the position of the corresponding object in thes#ulation or the position in the
used data structure (in GrolMP for instance a gralplis also possible that a de-
fined dependence fits to more than one attributentples for an independent

Design 37

simulation attribute are an attribute in a struakwsimulation which saves the
global concentration of a hormone, or a constatievan the simulation like a

gravitational constant. In addition, a global aiite which saves the branching
angle between the stem and branches. On the o#imel, lan example for a de-
pendent attribute is the concentration of a hormiona special segment in the
plant. For instance, a structural simulation, whigtbased on the XL approach,
separates an entire plant in various small elemé&mtsh element contains a vari-
able for the local gene concentration. In a mujera simulation a multitude of

agents of the same type exists and interacts \wilr environment. A possible

selection criterion for a set of agents could ke ¢bncentration of a special ele-
ment in the environment. Another selection criterfor a simulation attribute in

GrolMP is the position in the graph. A possible iyuean include the parent or
child nodes and their current attribute values.

Recapitulate the exigency of a differentiation begw dependence and inde-
pendence simulation attribute is that the mediatost be able to query the right
attribute. The query for an independent attribatquite simple. The mediator has
to know only the name of the simulation and the eainthe attribute. In the case
of a dependent object a query is more complicattste, the mediator has to
know beside the name of the simulation and the naintee attribute which de-
pendencies between the demanded and other attribxist. Furthermore, a query
for an independent attribute returns zero or otréate, in contrast to a query for
a dependent attribute, which can return zero amitdd attributes. The mapping
unit of the mediator must be able to handle thesekinds of mappings. They are
calleddependentindindependentnapping. By reason of the multitude of con-
ceivable dependencies between a simulation at&ribnd its surroundings, the
mediator can only provide a well defined structtorequery for a dependent ob-
ject. The actual dependency must be implementethéyser which is endued
with the simulations.

It is necessary for the simulation process thatntieeliator provides the user
an opportunity to control the mapping process. @quently, there are two possi-
bilities. First of all, the mapping is executedeiach mediator step. | call this kind
of mappingupdate dependenc&he reason therefore is that in each mediatqr ste
an attribute value is updated (overwritten) by heofattribute value via the map-
ping. In the second place, the user can definestgicgon under which the map-
ping will be executed. For instance, the user @sfia threshold and a mapping
will only be allowed, if the current attribute valin the pre-imadgé is lesser than
the threshold. This kind of mapping is caltedeshold dependence

In conclusion, for each new mapping between sinanasubsystems, the
user has to decide which mapping is required. e gin overview of all map-
pings Figure 24 illustrates all mapping types inraary tree. A complete mapping
between two simulation tools (both tools need ndbeé necessarily different) en-
folds all sub mappings in a path in the tree frdva toot Mapping’ to an end
node. For instance, a mapping between a strucam@la functional simulation
can be pre-mapping, independent and the way ofuéixecis threshold depend-
ence. Alternatively, the mapping can be a main-nmgpmependent and the way
of execution is update dependence.

%8 The mapping can be esteemed as a relation besimetation attribute values (pre-image side
of the relation) which are send to another simatatttribute values (image side of the relation).

Design 38

Mapping

Main-Mapping

Pre-Mapping

Dependent

Independent Independent

=

Threshold Update ‘

‘ Dependent

Threshold Threshold

dependence

Threshold Update

dependence

‘ Update ‘

Update ‘

Figure 24: All possible mapping categories. Each pla in the binary tree from the root ‘Map-
ping’ to an end node contains one mapping.

With reference to the various mapping combinatidhs,design of the map-
ping unit of the mediator is split in three parffie design of the object classes
and the relationship between these entities arenshio Figure 25. Before | will
describe the UML class diagram in detail, | wilvgia short outline of the map-
ping unit requirements. The user must be able timeledependent on the simula-
tion subsystems, any possible dependent mappirsp, Ate user must be able to
define the threshold dependencies with a threshotba relational operator. It is
also feasible that dependences between multiplepimge exist. The execution
order is important for the correctness. Therefarepllection is required which is
able to save the mappings in a user defined order.

The mediator is responsible for the managementexedution of the map-
pings. The clasMediatorSupervisiorassumed control of all mappings. To guar-
antee a unique control, the class must be implexdeaiter the singleton pattern.
The corresponding object includesviappingListobject In addition, the object
includes two methods to execute the pre-mappingsnaain-mappings, respec-
tively. Before | describe the relation betwedrediatorSupervisiorand Global-
Mapping,the storage of the mappings is described. JusMidiatorSupervision
the classMappingListhas to be implemented after the singleton pat#&snmen-
tioned before, the object is responsible to sal/@ral and main-mappings in a
sorted list. Therefore, the object contains onefdispre-mappings and one list for
main-mappings. In additiorgetter und setter methods for each object are pro-
vided. Thesettermethods allow the user to add a new mapping dt pkEce in
the sorted list. In this way, the scientists car #ee mappings and make sure that
the mappings are executed in the right order.

Design

proa: QEuiddepuiepyaing axs
pron: QBupdde =l 4ajnaaxe

pauyEqIasn

japucuapuadag

Jopuaqburdde

IIE2
= Guiddey @ s Buiddew
b
uopspaadnsbuydde
L
L ULE
=0

pron: QBuddepy=inoaxs

4g3Z||F3l: =

AV

223Z||E3sy) 223Z|EAsx

pron (Buiddepyeqo|a o pEIGu dde pymap=1ea10 2

pronc: (Bupddepyeqo|a - pyEEiuiddepyBugsig=epdn

Guiddepyeqo)s : Guiddepyeqojajuapuadap
aoppapu|opuonburddeyy joquoqbuiddew
uopaa)og : Bupddepuannag

Bunys @ spnquppywog

Buugs @ apnquiol

fiumg 1 jaaigoo)

Gupys : poalgowony

UOE L0 | WEEisqnsg [o}

UM L0 WEEASqNS | Wy

Guuys @ uoige|a
2|qnop : ploysaigy

sauapusdaqpoysaiy]

aauapuadagaiepdpn

EXi=

saepapu||opuonburdde
<BIEUBIUIL

Guiddepyeqo|a : Cpab
proa: (Guiddepyeqo) o : Guiddepy eqolppe

Guiddeweqoa

=0

uaaz|ey Enbuddepy=id
uaijaa) oy Enbuddepuiew

Erfuddey

aAnE:s

A

plon ; Jajnazxa
plon: fuapas
FELIL W WL LT

aappajuadi) apngqupy @ o}
ERLITETTEY: RN T e T T
fua) : pjoy

SOUSDUICHT

Guiddepyeqo)a sanes uaaa|og

faalqe

1oe(qo souspuadag «-- pluoy dEWYsEH
saalqo aauapuadag ||B saaes Guidde pusnna

t of tle mediator.

ing uni

for the mapp

: Class diagram

Figure 25

Design 40

The main part of the UML diagram is divided in threlasses: the abstract
classDependencethe classslobalMappingand the interfac&appingControlin-
terface | explain the functionality of these classes ftyibeforehand a detail de-
scription of each class follows. An object @foabalMappingstores all necessi-
tated information for a mapping. The execution led mapping is performed in
the child classes of the abstract clBependenceAll classes, which implement
the interfaceMappingControlinterfaceare used for the communication with the
transport unit of the mediator.

The object clas§&lobalMappingcombines all information which are manda-
tory for the mapping. For each mapping, the folfgywelements of the source and
destination simulation subsystem have to be identifFirst of all, the name of
source and destination system must be defined. Baalation subsystem is de-
scribed in the mediator with @ubSysteminformatioobject. In the second place,
the objects or system specific abstraction unitelwvkave the required simulation
attributes have to be known. Furthermore, the nanhdkese two attributes are
necessary for the mapping. The object cl@sbalMappinguses an attribute,
starting with the substring ‘from’, for the savimg all elements of the source
simulation subsystems. On the other hand, theébat&s which save the names of
the destination simulation subsystem elements wittitthe substring ‘to’. There-
fore, the class contains the following six attrémifrom, to, fromObject toObject
fromAttributeandtoAttribute

In principle, theGlobalMappingobjects save only the required information
for the mapping. The real execution of the mappsmgerformed in the classes
which are derived from the abstract clBspendenceAs mentioned before, there
are two ways to execute a mapping. In the first@léhe execution takes place in
each mediator step. This kind of mapping is callpdate dependence and is real-
ised in the clas®)pdateDependencayhich is inherited from Dependence. The
other execution way is the so called threshold deeece. In this place, a map-
ping is only executed if the user defined condii®irue. This kind of mapping is
mapped in the system design by the clHssesholdDependencd&hree attributes
are contained in the abstract cl@3pendenceThe first one saves the ID of the
destination simulation subsystem. Attribute ‘to'daifrom’ contain an object of
type AttributeTypelnterfaceln principle, the metho@xecutecalls the attribute
‘from’ and update the values in the attribute ‘o’ the case of update dependence
the method perform this in each method call. Carsig a threshold dependence,
the defined condition is tested in each methodarad if the result is true the ‘to’
attribute is updated. EachhresholdDependencebject contains two additional
attributes, ‘threshold’ and ‘relation’.

In eachGlobalMappingobject a list ofDependenc®bjects are enclosed. A
list is required, because in the case of dependeragping the subsystems can
contain more than one simulation attribute with $hene name. Therefore, for all
of these, a new Dependence object is created asd $a this list. In the case of
independent mapping, this list contains only ongyefMhis attribute inGlobal-
Mappingis called ‘currentMapping’. A dependent mappinguiees knowledge
about other simulation subsystem attributes andat®j The mediator has to iden-
tify the other elements in the simulations. TherefeachGlobalMappingobject
saves a list of othgBlobalMappingobjects in the attributdependentGlobalMap-
ping.

For the mapping process, a synchronisation of itinelation attributes val-
ues in the simulation subsystem and the correspgneilues in the mediator is
necessary. Synchronised means here that after mtoredtep the values in the

Design 41

mediator and in the simulation subsystem are ed\tdr a step in the simulation
subsystem all required values are read from thaatwdand stored in aAttrib-
ute object (see chaptérransport of valugs Also, after each mediator step, all
Attribute objects are sent to tl&ontrol object to update the corresponding simu-
lation subsystem attributes. In the case of indépehmapping it is quite easy.
The classMappingControlimplements the interfac®lappingControlinterface
This class is responsible for the identificatiortted requiredittribute objects and
for the interaction with the responsible controjeaits. Simplified, the application
flow is the following: In the first place, th&lobalMappingobject saves the in-
formation. TheMappingControlobject uses this information to find the required
simulation objects and attributes in the internaladstructure or in the case of a
not existing object, the system calls directly sh@ulation subsystem. These fil-
tered attribute values by tiMappingControlobject are saved in an object of type
Attribute By an independent mapping only two attributespargsible. The reason
therefore is that the names of the simulation sstiesy attributes have to be
unique for an independent mapping. Hence, onébat&ifor the source and one
attribute for the destination system should be fbdrhese are saved in the corre-
sponding object of typ&lpdateDependencdfter the execution of the update of
the ‘to’ attribute in this object, thlappingControlobject sends an object from
type UpdateObjectto the corresponding control object to updatedineulation.
The same process for a dependent mapping is maonpler. As mentioned be-
fore, more than one attribute with the same nameeg#s in the simulation sub-
system. Only the user knows the dependencies tuifig¢he required attributes.
Therefore, only the user can implement a class lwban find the attribute in the
simulation subsystems. To support the user byrieimentation the new class
shall realises the interfaddappingControlinterface In principle, the user can
copy the class definition fromlappingControland change only the behaviour of
the methods which are responsible to identify timeukation attributes. In this
way, the mediator supports all variations of degemdnappings. The only pre-
condition is the user’s ability to define the degemcy. Beside the identification
of the simulation subsystem attributes, the difieeebetween dependent and in-
dependent mapping in the mediator are infinitesiriile methodexecuteMap-
ping in GlobalMappingcalls in the case of an independent mapping oné/Om
pendencebject. Considering a dependent mapping, the rdetlas to call one or
moreDependencebjects.

4.6. Log and statistic unit

In the first place, | explain the log unit of theediator and afterwards a short
explanation of the statistic unit follows. The dalgoint is that the mediator’s
log unit is completely independent from the mappihbis means, each simula-
tion attribute from a current connected simulasabsystem can be recorded with
the log unit independent from the user defined nrays

Design

pron: Qfiunpgaie=o

[IE=

plos

D (Eanquppstaa) oo

pran : CEsaaal4BuGboquels

Bulls @ aWENa|Y

BEruenen|ea] : 2oupjsusoaiqobo)

Joauag o jonuagbio

Giums @ aWEpa|y

peaiy L Boagun,

r a|qeuuny suawa|dw)

Jaspuoqfioq I " Jospaadngbo
|E2
I I
=
sazn L0
3 [uaioa o] : seinqupeliioo] sanqupyles
uapaa|e] Qfioqo] sapngqupygiab
1 o0 .
uoaa|og Goqo | ssnqupe
uopaa(eg Epoaiqobog UOE WU WEEisqns o waEisqns
INES
casll EEulbifion Buiifoqeqaga
2 BT BRI

!

!

!

m
Vi

K.._”_
uopaa(e] :EmEnquUye
Buuls : sweu
anEs
}rafqpoboy

T
|
|
Zcaf||Ealz e |
|
|
|

7

uajaa|e] Raalqobuibboqeqaoyab
(uogaa)o] @ saalqobosaaiqobubbioqEqooppe
(BuiBbo|eqos @ jeaiqobeqoalqobubboyeqoappe

proa: (aaEpapuladi LS quipy | snquElanquRyppe

uoaa(es REmEnqu et
Buoy : Qgpab
Buuys : Qrwepab

Euonen|eny
EEL k] 1L TS

1oRlqOInEIpa gy
L BOEHEUE =

Figure 26: Class diagram for the log subsystem.

An overview of the log design of the mediator iswh in Figure 26. In order
to log an attribute in a simulation subsystem,rttegliator needs th&ubsystemin-

formationobject, and a corresponding object from tigogObjectwith name and

Design 43

type of the simulation attribute. They are stonecan object of typé&loballLog-
ging. A simulation subsystem can include more than abvject, and therefore, a
GlobalLoggingobject can save a list &bgObjects In addition, the object class
contains two methodgetAttriubtesToLo@ndsetAttributesToLoglhe clasd.og-
gingList stores all thes&lobalLoggingattributes. To guarantee a unique list in
the system, theoggingListclass must be implemented as a singleton. Thescla
implements the methods of the interfda&ealuationListand contains three meth-
ods. Method one adds @lobalLogging object to the internal collection, and
method two is able to add a collection to the d#tacture. The third method re-
turns the internal data structure. Simular to trepping unit, a communication
with the control classes for the connected simutaBubsystems is necessary to
extract the current system values. This functidpad implemented in the class
LogControl To get a direct access to the object, which séwvesttribute infor-
mation the user is interested in, thegControl class stores a referenceliog-
gingList This attribute is called ‘logObjectListinstanc&urthermore, the class
includes a methodollectAttribute In principle, this class calls all connected
simulation subsystem, which include a requirediatte for the log process. The
necessitated information are stored in @lebalLoggingobjects in the internal
collection ofLoggingList If the method finds the attribute in the simwatisub-
system, the correspondii@obalLoggingobject will be updated with the present
simulation attribute value. At this point, a difetiation between independent and
dependent objects is not necessary. The mediadds renly the values out of the
simulation system without changing the originalues (systems). In the log file,
the name of the corresponding simulation systemothject name and the attrib-
ute with name, type and value are listed.

The control over the logging process takes thelatiog object of the class
LogSupervisar For a direct access to the Ipgpcess a reference to thegCon-
trol object is saved ihogSupervisarTo save the log information to a file, the
user has to define a log file name. This namess ahved in.ogSupervisarBe-
side these two attributes, the class contains ong/ methodstartLoggingProc-
ess First of all, this method calls the methoadllectAttributein LogControl As
descriped before, this method searches the simanlatiributes in the simulations
and updates thlogObjectinstances. Afterwards, the methodlafgSupervisior
creates a new thread and calls the method inWriteLogThread By then, the
new thread writes all information, which are stomedhe GlobalLoggingobjects,
into a file. Beforehand, these information are exrin a user defined order. The
default sorting sequence is alphabetical for eatisection. A log subsection con-
tains the name of the simulation subsystem, theenainthe simulation object and
the corresponding attributes, with name, type aalde:

The statistic unit of the mediator allows the usercreate statistics of the
simulation. This enables the user to define his etatistics, and the mediator
calculates in each mediator step the results.sBtatican be for instance, the aver-
age of a gene concentration in a functional simaratthe average length of all
leaves in a structural simulation or the biomasthefsimulated biological system.
Most of the statistics are simulation specific, dimerefore, the mediator can only
provide a clear interface structure and basic fonetity for the statistic unit.

The calculation of the statistic results dependenthe simulation and the
used simulation subsystems. For instance, the lesilmo to get the biomass of a
tree is different in nature from the calculationvdfieat or flowers. Accordingly,
the user has to create for each new statistic daypew class for the calculation of

Design 44

this statistic. The mediator calculates in eachiatedstep all users’ defined sta-
tistics, and saves the results in a file.

Like the log unit, the statistic unit is in the samay completely independent
form the mapping unit. | have decided to use elémehthe log unit for the iden-
tification of the simulation attributes, which amqquired for the statistic process.
An overview over the statistic unit is presentedrigure 27. On the left hand side,
the interfaceMediatorObject,the classLogObjectand GlobalLoggingare well
known from the log unit. Similar to the log unitet statistic unit includes a class
which implements thé&valuationListinterface. This class is callestatisticList
and includes a collection to satoballLoggingobjects. All these objects are re-
quired to identify the necessitate simulation btites for the statistic process.
Therefore, the user defines a set of objects af kyyyObjectandGlobalLogging,
which are stored in the singleton object of typealuationList Beforehand, the
user has to create his own statistic calculatiass;lor he has to choose an exist-
ing one. All these classes have to implement therfecceStatisticFunctioninter-
face In the class diagram an example clBgsmassds shown. The interface de-
fines two methodsopperateStatistic()and addObjectList(statisticList: Statisti-
cList). In addition, each new statistic function classehtovprovide an attribute to
store the singleton object StatisticResultList

The application flow for a statistic process isatgd in the following. In
the first place, the user creates or chooses igtatdtinction. Afterwards, he cre-
ates the instance abgObjectandGlobalLogging.They are saved together with a
reference to the statistic function class in aredbpf typeGlobalStatistic It is
also possible, to execute in one mediator step Itih@ne one statistic calculation.
Therefore, the clasStatisticControlis necessary, which takes the control over the
statistic process, and can save more thanGlabalStatisticinstance in its inter-
nal collection. At the end of each mediator stép, singleton object of typsta-
tisticControl calls, for eachGlobalStatisticobject in its internal collection, the
methodopperateStatistiof the corresponding statistic function classtfie class
diagram onlyBiomassStatistics shown). This method creates for each calculatio
result an object of typStatisticResultObjectyhich saves the name of the statistic
function. The object saves the result in a string ia a double value attribute. All
these objects are stored $tatisticResultListAfter the execution of all statistic
calculations the collection iStatisticResultListncludes all results. In the next
step, all these results are output in a file wité help of the clas@/riteStatistic-
Thread This method implements the interfd@annable and the control object of
type StatisticControlcalls therun method. Multithreading is usable at this point
without concern. No changes on thmtisticResultLisbbjects are allowed before
the writing process is completed. Hence, ‘no Igetate’ or other synchronisation
errors can occur. In general, the writing procaessiuch faster than the next me-
diator step, and therefore a delay of the mainatthie unlikely. The same tech-
nique is used by the log unit.

Design

31qEuuny Fuawa|dw)

2

BNES
OBLBE o |Eqe 9 : (ReslqpBuiBoEqe|appe
plon: (Esnguisioaljoo
anes S9ENIUIUORIUR JIGSHELS | UDHUR JINSHELS
F080q0 AREREYSIEQO| S SBAES I EITOUSHELS | 2 usHERE
Faoalqo palqonsayansiels sanes Epaalqobio) T
1 1E1E(Eq01S
T 3 | 3
{ 1
1 3
plroa : (Ja1ISERS 2N 0axa
ploa : (aappaju|ueaun Ja0snes | adiansnels ueaa)o] @ gaalgobeays: jERI
LT aPas
it .o_o_wr& uonaa|e] ealqobubbio)eqe oak uonea(eq § S IEGES
e (aalqoynsayonsnels @ jaalqobiogoalqobuibboqeqe appe RS
Blqnop : 1agqunyjnsag SEs jeapuegay
Bums © Buisy L L
Bumgs : swenopspEs| 0 uogoR|e] : Empesiqobe)
1o2(qoHnsa Y2 RsnElS EIHNSRY IUERELS b Ea 3N L0
& am e 5 kb (uonoajje] : ssnquyelbion o L s3nqupy}
3 uonaa(eg : Qboo] saqnqupyab
3 <0
proac: Qiuuggaieaa uopaa(jog : Boqjosanquye 5
uapas|og : Epeelgobo uapEe EASNS | Wagsisg e
HONEEY: HoRsEE Buiys : awens feRIEa =D " Buug : aweu
anes
T E: BuiBBoqeqe
L ansneygssewnlg T — EnawEas hemEae 1aalqobie
ajERID : “ " T
1 I * 1
| I
ErLrAI-LTPe FELFA11-LTPSY “ “
1 anEs !
| I
I

r v

Plon: (Eransgey:

BOEHIUIUCRIUN A NENELS
FECLITES TP

uopaa(eg : QEealgobubboyeqoayat
(uonaaje] : geslqobomesiqobuibitioyeqoioppe
(onsnelsIEqo)o - joalgobiogaalqobuibioeqooppe

FECEENETTESS

pros: (asepaquiadi L 3nquiy | aInqupElsnqupyppe
uaiaa|e] EnEnqupaat

Buop : Qgpab

Bug : DRweNgel

1031 0I0IE PR
SZBOEHIIEE

igram.

UML class d

t design in a

. Statistic uni

Figure 27

Design 46

4.7. Global control

In this subsection | will explain the design modé&the object classes which
are responsible for the control of the mediatore €htrance point in the mediator
system is the clagSlobalSupervisionThis class creates and initialises all essen-
tial mediator elements. Therefore, the class iresuskeven attributes. First of all,
the class includes an object of ty@éobalControl After all initialisation proc-
esses thé&lobalSupervisiorobject gives the system control over to this abjec
With regard to a unique control of the entire systéhe GlobalControl class is
implemented according to the singleton pattern. fidnd six attributes o&lobal-
Supervisiorare used for the initialisation process and walldiscussed in detail in
the following.

In first place, the attribute ‘subSystemCreatiomtludes the object of the
classSubSystemInformationCreatiofhe function of this class is to create new
subSystemInformatioobjects. At this point, the fabric pattern is pardarly suit-
able for the design of the class and the relatipssbetween all participants’
classes. In second place, the attribute ‘mappirajion® stores the object of the
classGlobalMappingCreationAccording to the fabric pattern, this class inds
two methods to create a dependent or an indepemdapping. In addition, the
classDependentFactoryuses the same design pattern to creaiérasholdDe-
pendenceor anUpdateDependencebject. A reference to theependentFactory
instance is saved in the attribute ‘myDependenceé’aln the same line the class
GlobalLoggingCreatiorcreates neviGlobalLogginginstances. The creation of a
new GlobalLoggingobject needs the help of the clasgySupervisorand there-
fore, a reference is saved@lobalSupervisonin a similar way, the main class of
GlobalSupervisioruse the reference ttatisticControlto create nevlobalSta-
tistic objects.

To initialize the mediator, the main method of Gltsupervision calls the
objects in the following order. First of all, néSubSystemInformatiavbjects are
created. Afterwards, a set of mappings for the ystbms, which are represented
by theSubSystemInformatidnstances, are created. Eventually, the log aatsst
tic objects are defined optionally. The last comthan the main method of
GlobalSupervision calls the methddMediatorStepn GlobalControl

GlobalControlincludes the public methadbMediatorSte@nd three private
methods:updateValuesinsideAllSubsystermegecuteMappingand doSubSystem-
Step During the first call ofdoMediatorStephe user can define how often the
methoddoMediatorSteps executed in rotation. Therefore, a small greghcon-
trol window is used. In each execution, the metdoMediatorStegalls the pri-
vate methods in the same class in the followingeorBirst of all, the methodp-
dateValuesinsideAllSubsystemsscalled. AfterwardsexecuteMappings called.

In executeMappingfirst all pre-mappings are executed and subsecgplenain-
mappings. Between the executions, all subsysterd@iupdated. A statechart
diagram of this application sequence is shown gufa 23. After the last simula-
tion system update, the program flow jumps bacthexdoMediatorStepmethod,
and the methodoSubSystemStép called. The function of this method is to per-
form one simulation subsystem step in each condexttbsystem. Eventually, the
doMediatorStepnethod starts from the beginning until the usdmed iteration
number is reached. In the class diagram the glodratiol position ofGlobalCon-
trol become visible. The class is connected with aitr@d classes of the mediator

Design

c
I
>
m s3|pugH WasAgqng
2})
w Swspeang oRemUIS
— 1afifing
(&]
Q 5
c
c pioa : (dapawaisAaqngop -
(@] proa : (Buiddepysnoma -
(] plon : (Bwaisisqn g |[ya plsuisan e as1Epdn -
Q proa: Qdajgioieipaop + "
N 4 R 4
+— soszdngburddey |) L PR T = +
..m . —— jeuedIEq IS
3
I@ |anjuea 1288m
‘-hl =0
5 f N
y—
P 12681
7)) uiddepeqolg anes uogEWINWESiZNg
Q b
3 P
(%)) lIEa
()] BRI
(] anes
— B}EBID 3
C anes i
3 3 .
(D) pron : Quoge |wapsig angapEal _‘ <0
— 3
© R -
m anEs pros : (Buiddepguapuadagieqo|aaeaio SAES
furdd U0 E R0 U0 L 04U W n R 0 D1 E] QREREISIEQD
- proa: Qfurddepyeqoaeeas HE=IJUOn LI =L L] |2Ua]2RERELS HEREISIEqR| D losiuadngBon | ssn BuiBBoiEq0la
liea
— s B -
. B
a uopeaigbuiddewieqors EEETE] HUR 2ERELS
e ajEaln yun Baq
— L
d BERID AI0J0E JR0uapuadag | Qg Jasuspuadagiw
COBWBE
m L : 10U IONSIELS | [0QUODANERERE | | I L W BRI
= Hen 1

- - 1 uopeaAGubboEqols @ uoneaGubto)
v 0n aguapuadagaiepdn aguapuadagpoysany L BEEL voneaabuddeyEqo)o | voeaiabuiddew lea uopeadfuffioeqoa
m m ! ! - " proa: CRE oBERIJUONE |wejshgqns © uohERIJWasASq I
e e e ol ____ 1 * ploa : (zouspusdagaiepdnalesio |eiued(Eqo|S : [euo] Eqo| b
..& ..AM.v PRCETEETPSS &Wﬁu:mu_vv n . IS I i ol
=SS L funjor gasuapuadag IIea
0w un
b b souapusdag
w w ccnsepsiuls>

Figure 28: UML class diagram shows the global contd object classes of the mediator.

Design 48

To sum up the software design, Figure 30 showpaalkages of the media-
tor. The diagram shall give an overview of all pagés and not in the first place a
description of the relations between the diffeqgatkages. All arcs in the illustra-
tion are used only to highlight the central positiof the control package
(uk.ac.rothamsted.mediator.controiyhich includes the class&%ediatorSupervi-
sion, MediatorControland all fabric classes as described in the ldsdesttion. In
reality, a connection and dependence of nearlypatkages exists. For a better
overview, only the relationships between the cématrol package and the sub-
packages are shown. All packages beMediatorControlare packages for the
interaction with the simulation subsystems. AbdediatorControlall packages,
which are used for the internal functionality oétmediator, are shown. For in-
stance, a package for the mapping unit, one fotafpeunit as well as for the sta-
tistic unit or a package with utility classes, lilke writer or file reader.

In general, the software architecture of the systeia mixture of a compo-
nent based architecture and a variation of a theeerchitecture. The first layer
(Layer 0) includes the simulation subsystems. Térarmunication and the inter-
nal data storage of the simulation attribute valalesplaced in the middle layer
(Layerl). The third layer (Layer 2) includes thentrol unit and the mapping
units. The software system is split in differentmgmnents such as the mapping
unit, the log unit as well as statistic unit andsainulation subsystems. Adding a
new simulation subsystem or a new functionalityjiste easy, and can be per-
formed with only a few changes or settings in thisteng code. A simplification
of the system architecture is presented in FigQre 2

Global Control
Layer 2
Control

’ Log ‘ ’ Statistic
|
[

Handle classes

’ Mapping

MediatorObject
Lists

v v
Control classes UpdateObject Layer 1
List Data storage

/'//1 N

GrolMP } Mason

1

N/

Simulation
subsystems

Layer 0
RoadRunner

Jarnac

Figure 29: Three tier architecture of the mediatorframework.

Design

diois
I

JBUURYPE 01 10JEIP 3L PAISWE Y1) JEHN

UG} |NI|EAUOI}AUNYI0}E PRI PAISWE JJol 2By

Buiddew 10jEIpaW paSWEYL0 SE N

INCI0JE P a I PRSIl e yos 9 e yn

Ydio W Ia}EIpE W paSIWE Lol 9B _

P

1

A|PUEY I0}E|PE L pAJSIIE 0l 2B N
A

juafE 101E |pawpaEIWLE oo yn
|
|

- | 01304 10}E | PRI RIS Bl 2B A

T T
| |
| |

- | |
| |
|

AN I0E IpAW pASWEY0l D YN

o] 10jE P2 pagse W 9 yn

IE|A[|33qNSI0}E 1P AL’ PAISWE Yo 2B HN

MG I01E [P AW PESIWE ol DB qn

SOEUEIUIT0}E PRI PAISWE ol aE

QISR 10]E | P AL PAJEW E U012 E N

Figure 30: Package diagram of the mediator framewd«.

Implementation 50

5. Implementation

The implementation chapter highlights the used ogning techniques and
gives a more detailed view of the key elementhienrhediator framework. | start
with general information about the used programni@amguage and extension to
optimize the performance. Afterwards, the contralcgss of the clas&lobal-
Controlis explained in more detail than in the previobhapter. Finally, a detailed
description of the GrolMP interaction follows.

5.1. General implementation details

The mediator framework is completely implementedawa version 1.5.0.9.
The Java programming language allows creating astadnd platform independ-
ent software system. Furthermore, Java uses tygidtybes, which mean that all
data types are independent from the used operagistem and having the same
value ranges and fixed lengths. In addition, tregprmming language is safe in
reference to the memory management. Moreover, dhguage allows multi-
threaded programs. Nearly for all existing prograngrianguage a Java interface
or wrapper class exists so that Java can interglctprograms in these languages.
Nevertheless, the mediator framework has not ukedet Java extensions. The
System Biology Workbench is based on fast andbiglibroker architecture, with
interfaces for nearly all existing programming laages. For more information
about the SBW see the chapfemdamentals and Related Woilkhis framework
allows the mediator to add simulation tools, whéeck implemented in the differ-
ent programming languages.

As a consequence of the numerousness transpodi®ijstances in the me-
diator, a fast and effective data storage is reguifherefore, in the fist step each
object in the mediator contains a unique identiicza number. The ID is from
type long, with a value range of 2 * 9,223*{Qalues. The Java Collection-AP!I
offers various data structures for the storagebgéais. All these collections differ
in their complexity. In comparison to data struesutike Vector or LinkedList,a
HashMapincludes and extracts new values in the datatsir@in a constant time.
For example, the complexity to find a specific edgrnin an unsorted linked list is
O(n). With reference to these variations in theeasdimes the choice of the used
data structure has a mayor influence of the sygterformance. In general, it is
not possible to use only one type of data strudiural parts of the system. For
instance, for a small amount of entriesAarmayList or aLinkedListhave perform-
ance vantages in comparison télashMapdata structure. The other way round,
the optimal storage for a huge amount of objecth whique identifiers can be a
HashMap In addition, a type specific collection enhanttes performance of the
system. Therefore, the mediator framework doesisetthe standard Java collec-
tions. Fastutil is a collection of type-specific Java classescilaxtend the origi-
nal Java Collection Framework. More information atbthe Fastutil collection
framework can be found at http://fastutil.dsi.unithilaccessed 28.07.2007). Be-
sides the performance advantagesstutil collections provide additional features
(like bidirectional iterators) that are not avallabn the standard classes (see
http://fastutil.dsi.unimi.it/;accessed 28.07.2007).

Implementation 51

Finally, 1 will point to the fact that in the meda, especially in the log and
statistic unit, a few lists have to be sorted dyinantime. Therefore, objects of
type Attribute have to be compared. Each object in Java thatdheucompared
to other objects of the same type has to implenteatComparableinterface.
Therefore, the claséttribute implements the interfac€Eomparableand over-
writes the methodompareTo(Object o)The method compares the current object
(this) to the objectd’ (that), and will returns an integer value lesstharo ifthis
is smaller tharthat, zero ifthis andthat are equal and a integer value bigger than
zero ifthisis bigger tharthat The method uses the attribute values of the tijec
to decide which return value will be returned. E#iae the compare method is
overwritten, the object has to overwrite #guals()method ofObjectto guaran-
tee a error free compare method. Huygials(Object ojnethod tests the equality
of the current objecttlfis) and the object otlfat). For example, the method can
use an integer attribute to test the equality.othlobjects save the same value in
the integer attribute thequals() method returns true otherwise false. A new
equals() and a newcompareTo()method requires a new methbadshCode(),
which calculates for an object a unique integemu@also called ‘hashcode’).
Hence, each object has to overwrite the public oetiashCode(from Object.
The implementation of the method is not as simglatathe first glance. It is in-
dispensable to follow some rules by the implememtadf this method. A detailed
description of the right implementation ohashCode()nethod is represented by
Angelika Langer at her webpage

5.2. Global control detalls

As mentioned in the previous chapter, the instasfc&lobalControlis re-
sponsible for the global control of the mediat@anfiework. After the initialisation
of the system irGlobalSupervisiorthe subsystem handling, the execution of the
mappings and the log as well the statistic proessntrolled by thé&lobalCon-
trol object. A dynamic UML diagram is used to expldie behaviour of the sys-
tem after the initialisation process. For this msg, | use a sequence diagram. For
a better overview, | split the interaction betweglobalControl object and the
other mediator objects in two parts. The first d#g shows a global view of a
mediator step. In the second diagram the mappirngsuiustrated. Additionally,

a picture of the small graphical user interfacd thaised for the user control of
the step size is shown.

First of all, we concentrate on the sequence dmmgraFigure 31. At the be-
ginning of the diagram the object of ty@dobalControlis active and all simula-
tion subsystems are started as well as connectdte tmediator. In the sequence
diagram two alternative sections are shown. Whegdtisn is used depends on the
users’ input. The user can define how many medsttps shall be performed in a
row. Also the user can terminate the entire systemn.an easy control of the me-
diator during runtime a small graphical user irded allows the user to enter a
mediator step number, start the execution of theé mediator step(s) or to termi-
nate the simulation. Figure 32 shows an illustratbd the GUI. This Java swing
component includes a text field, where the userezdrar the mediator steps, and
two buttons (‘Step’ and ‘Exit’). Also, a small coat element is shown on the

27

http://www.angelikalanger.com/Articles/JavaSpektrum/03.HashCode/03.HashCode.html;
accessed 28.07.2007

Implementation 52

right side of the window. A red dot indicates thatrently a mediator step is run-
ning. A green dot shows that the mediator is wgitman idle state and can per-
form the next mediator step when designated. Ifuser presses the button with
the label ‘Step’ the mediator performs the methaliscwhich are shown in the
first section of the sequence diagram. If the gsesses the button ‘Exit’ the me-
diator system performs the commands that are niéfitexd in the second section of
the sequence diagram.

The first section includes a loop. The user defthesnumber of iterations of
this subsection with the input in the control GBaér instance, the user enters four
in the user interface the mediator performs foudiader steps in a row, which is
equal to four iterations of the subsection in teg@uence diagram. In the following
a single iteration is explained in detail.

First of all, theGlobalControl object calls all functional and structural sub-
systems to update the internal data structure.olject uses for the interaction
with the simulation subsystems the handle objeuéd are stored in thelan-
dleList

sd Mediator Step
GlobalControl MappingSupervisor LogSupervisor StatisticControl FunctionalHandle StructuralHandle
' | H T] T
| J 1 1 | |
alt ! | ! ! | |
] | I I | 1
! J 1 1 I I 1
[doStep] | J | | | |
T T T T
loop(0,userdefined) i i ' } |
|
| : | e 1 s
i ! update | | |
1 1] I I 1
] |]] 1 1
] | I I | 1
i ! | | | i
| ! | update | |
i ‘ ! : 1]
I startLoggingProcess I ! 1 !
|
| ! | i | |
] | I I I 1
] | I | 1
i | executeStatistic ! ! [I
! 1 I
i g | m i i
1 | I I I 1
] | I | 1
i executeMapping ! d ! ! !
i ﬂ] | | | i
] I I | 1
] I I | 1
: } doSt:ep i } :
1 H | | | |
1 | T T T 1
] | I I | 1
1 | 1 I I 1
i i | doStey | i i
! i | D | | |
H ; ! ! ! T
T | I I | |
]]] I
]]] 1 1
¥ . ¥ ¥ ' 4
| I | | | |
: | ! ! : !
alt] ; I I I 1
] | I I | 1
[exit] | I ! ! ! I
| ! | | | |
1 | 1 I I 1
| i 1 | | 1
X X X X X X

Figure 31: Sequence diagram illustrate the methodatls during a mediator step.

Afterwards, theGlobalControlinstance calls the methadartLoggingProc-
essfrom the clasd.ogSupervisiar All users’ desired simulation attributes are
identified in the simulation subsystems and stared comma separated file. In
the following iterations the log unit uses the sdilgefor the consistent storage of
the log elements and adds the new elements tonthefethis file. Following the
lifeline of GlobalControl the next method call isxecuteStatisticSimilar to the
log process, all desired statistics are calculaded, the statistic unit store the re-
sults by adding them to a CSV file. After the laglastatistic process, the method

Implementation 53

executeMappingn MappingSupervisors called and all mappings are executed. A
detailed description of the mapping process folldater. Finally, thedoStep
method in each handle object is called and all Eitran subsystems perform a
system step, if the user defined condition is title user can specify during the
initialisation process of the mediator in whichisdtetween subsystem simulation
system and mediator step a subsystem simulatignistperformed. The imple-
mentation of this condition is quite simple. Thetgyn saves for each simulation
subsystem an integer value and the current stagevall the mediator. For in-
stance, a simulation subsystem should perform tapeevery four mediator steps.
In this case the mediator saves for this subsystenstep size four. The method
doStepuses the operatanodulo to calculate the current mediator step value
modulothe step size of the subsystem. If the resulers the subsystem will per-
form a step, otherwise nothing will happen.

In the second alternative section of the sequemagram all lifelines end,
which is equivalent to the termination of the méaliaobjects. Consequently, the
entire simulation process will be terminated ane ¢lystem is closed when the
user presses the ‘Exit’ button.

Figure 32: GUI for the mediator steps size control.

The sequence diagram in Figure 33 illustrates yiséem dynamic during a
mediator step and after the calling of the metbgdcuteMappingFor a better
orientation in the application flow, the sequen@ghm repeats the mediator step
loop section with the method calkecuteMappingAll previous interactions are
indicated by the three dots in the graphic. Aftee method call, the instance of
MappingSupervisorexecutes first all pre-mappings and afterwards nadlin-
mappings.

To execute all pre-mappings tMappingSupervisoimstance sends a request
to MappingList,to get a reference to alblobalMapping objects in the pre-
mapping list.MappingListuses a type specifiobjectArryListout of theFastutil
collection framework to save thBlobalMappingobjects. The reason to use an
ObjectArrayListinstead of dlashMapimplementation at this point is that in each
mediator step all mapping have to be executed.efbie, a total iteration over all
elements is required and not a specific elementdbe called. EacBlobalMap-
ping object contains MappingControlobject.MappingControlis responsible for
searching the correspondigjmulationObjectind StructuralObjectinstances for
the mapping in the internal data structure. BsleppingControlobject saves for
an already existing mapping a reference to theimedBimulationObjectand
StructuralObjectinstances. The next method call in the sequenagraln,up-
dateExistingMappingsjses these references to test the already existpgpings.
For instance, a simulation subsystem deletes thresfmonding object in its simu-
lation; the reference object in the mediator iseté#l as well. Therefore, a map-
ping which uses this object is not valid anymord #re methodipdateExisting-
Mappingsdeletes the internal existing mapping that is dawvea Dependence
object. In the other way round, a simulation sutesyscreates a new object. This
object is used in a mapping definition @GlobalMapping The methodcreat-
eNewMappingqueries all simulation subsystem objects, which @ot already

Implementation 54

mapped of this type, creates a new mapping andssawve a newDependence
object. In this way, it is guaranteed that notdafiappings are deleted automati-
cally and a new mapping is created automaticallgnwhossible. Here it is impor-
tant to mention that there is a difference betwleectional and structural subsys-
tems. A new mapping can only be created, if aramst of a source and destina-
tion object, which is defined iGlobalMapping,exists in the internal data struc-
ture. If one of these objects is missing, the ntediereates autonomously a new
instance of the defined simulation subsystem. Thegeit is possible to simulate
a system which creates new objects during thematin one case the mediator
is not allowed to create a new instance of a sitimlasubsystem. If the destina-
tion mapping object is from typ®tructuralObjecta creation of a new instance of
a simulation subsystem can adulterate the wholaillairon. For example, the
structural simulation subsystem simulates a trdeglwis composed of small sub-
elements. Each of these sub-elements is includednrapping to update a hor-
mone concentration in the structural simulationp@ential mapping can be hor-
mone concentration in a functional simulation ispped to the corresponding
attribute value in the structural simulation. Natvs possible that four instances
of the functional subsystem exist, but only threk-slements in the tree. The me-
diator detects that the difference between sounckdestination objects is one,
and he creates a new instance of a structural atranl This is obviously false.
Now two trees exist; one tree with three sub-eldsiand one tree with only one
sub-element instead of one tree with four sub-etémad herefore, an autonomous
creation of instances, when the destination obpédhe mapping is from type
StructuralObject,is forbidden. Only the structural simulation ifsean create a
new instance of an internal object. In the exangileve, the mediator creates
only three mappings and if the structural simulatreates a new tree sub-
element on its own, the fourth mapping is creat#dmaatically from the media-
tor.

After the creation of new mappings and the updaexsting mappings, the
instance ofMappingSupervisorcan call the metho@xecuteMappindgor each
GlobalMappingobject. Depending on the definBépendencebject the mapping
Is executed. All these updates produce new instaat&pdateObjector if the
mapping already exists longer than one mediatqr, ste existing instance is up-
dated. The reason for using another abstractioer lengtead of writing the new
values directly in the corresponding simulationssigbems is that most of the sub-
systems allow a change in their internal data &ireconly in special system
states. Because of performance reasons, it wouldub®f the question to wait
after each single mapping of this special subsysttate to update the values.
Therefore, all mapping results are stored in atamze ofUpdateObjectand after
all pre- or main-mappings all values update at oiites update is performed in
the methodsipdateObjectValues theHandleobjects.

The next two method calls are optional. Some sitrariasubsystems require
an internal step after an update of the data strecOtherwise, during the next
update the previous one is lost. For each simulagigbsystem, the user uses a
Booleanattribute to declare the necessity of a systeqm ateer an update. If this
attribute value idrue the MappingSupervisoinstance callsloStepin the corre-
spondingHandleinstance.

Now exactly the same procedure is performed fomtlagn-mapping. As de-
scribed in the last chapter, a differentiation lestw pre- and main-mapping is
essential to realise all required mappings betveg@ulation subsystems. Specifi-
cally, a pre- and a main mapping are required enféllowing example. In a struc-

Impleme

ntation

tural simulation a transport from one object to theo should be realised in one
mediator step, and the transport process shouttbfieed via a mathematical for-
malism (an example can be a fluid dynamic tran3p®te user defines two map-
pings in this case. The first mapping is defineahfrthe source object in the struc-
tural simulation to another simulation subsysterniclv calculates for instance the
fluid dynamic. This mapping is called in the medrapre-mapping. The main-
mapping starts at the result attribute from thewation unit and links to the des-
tination attribute in the structure simulation. Waut the differentiation between

the two mapping classes such a mapping would redquwiv mediator steps.

’ sd Mediator Step ‘

!

’ GlobalControl MappingSupervisor HandleList MappingList | | GlobalMappin: MappingControl || EunctionalHandle || StructuralHandle
i i 1 1 i i | !
1 I 1 1 1 I I
alt 1 I | | | | | !
| I 1 1 1 | | |
| I 1 1 1 I I
[doStepl|] ! ! ! ! ! .
loop(0,userdefined) ‘] ! ! !] | i
1
! : | ! ! : | !
1 I 1 1 1 I I |
1 I 1 1 1 I I |
] I 1 1 1 I I |
1 I 1 1 1 I I |
] I 1 1 1 | | I
] I I 1 1 | | |
i i i i i i i !
! executeMapping } : : : } } :
1
T T 1 1 1 I I
1 : getPreMa!Ipping f I ! ! !
| | » | | | 0
] : preMapping objects) 1 ! [i
| | |
I | [dlem==—e=== I | | \
' = : ! : | | '
loop(for each preMapping object) | | | | | !
. : getMappingContro| | i i !
| | h h >l i i 1
! 4 MapipingControl objelct]] I 1
| [o | | | !
1 I 1 b . 1 I I
| | | updateExistingMappings | | | 1
1 I | | | I I i
i i i createNe\%\/Mappings i ‘} i !
1
i i eixecuteMapping i ! i i !
T T T 0
| | | | I | | !
] I 1 1 | | | I
1 I 1 1 | | '
: ‘ : : : : : :
loop(for each preMapping object ! ! | ! [i
p(l P e 'J) ! | updateObjectValjes] | i
] I 1 1 1 1 L
| H ! ! updatéObjectValues i /m i
i i 7 7 7 | i W '
1 I 1 1 1 I I |
] I 1 1 1 | |
1 I 1 1 1 I I |
I t t 1 t +]
opt ' i i i | | {
| | | doStep | | | !
[ifisPreMappingStep] | | . ; : : ‘ |
i i i i i i !
] I l 1 1 | I
: : ! ! dostep : ! !
1 i ! A ; I !
1 | | | | i I z ‘
1 I 1 1 1 I I
] I 1 1 1 | |
: i o ; ; i i :
! i getMainMapping 1 | i | !
] | 1 >l 1 I | |
! i mainMappin objects i i ! | !
: S L] : | | !
' ‘ : : : : | !
loop(for each mainMapping object) I | | | | :
: ; getMappingContro) !] ! !
1 I 1 1 »-L I I
i ' MagjpingControl objdct]] ! i
I | (I — A A i i |
| | = c | | |
! i | updateExistingMappings | i | 0
] I | 1 1 | |
1
i | ' createNeWMappings i i | !
] I | | | | |
|
i | e'xeculeMapping]] i) !
: : : : T ‘ | !
] | I 1 | | | |
I | I 1 ! | | I
| I | | I I |
T \ T T T T I L
loop(for each mainMapping object) i i i ; " i
00
G . e . : ! |updateObjectValjes] ! E
1 I 1 1 1 1 L
1
!] ! ! updatgObjectValues i H i
: : : : : : : T
1 I 1 1 1 I I |
I | I 1 1 | |
1 I] l 1+ 1 + T
1 I 1 1 1 I I |
i | i doSt i | i |
| L | ostep | | | !
1
: | | | : I !
1 I 1 1 I I
] I l 1 | I
: 1 1 : I |
| | | 1 | i
1
' | ! ! :]
| | 1 1 |

1
I
i
| doStep
|
I
1
|
1

Figure 33: UML sequence diagram illustrate the sygm dynamic during the mappings.

Implementation 56

5.3. GrolMP interface

To connect GrolMP with the mediator a new interfacemplemented. In
principle the system was not designed to shartuitstionality with external ap-
plications. In the first place, GrolMP is desigreed3D-modelling-plattform using
the potential of growth grammar. A new modellingdaage, called XL is defined
for GrolMP. The whole system is implemented in Jamd also the XL language
is an extension of the Java programming languagégJa normal wrapper or
adapter class approach to create an interfacedatM®Bris not feasible by reason
of the used XL language. The GrolMP framework idelsi a compiler, which
transfers the user defined XL model descriptioo imtJava compliant byte code
before the simulation starts. Beside the predefoiaslses, which relate to the ba-
sic L-systems commands and basic 3D shapes, thearselefine new classes. To
define a new simulation an integrated editor in @®IMP front-end is used.
Accordingly, to provide an interface to the exigticlasses in the system is insuf-
ficient. Together with Tully Yates | decided to useall-back method approach
and to use the Java Reflection APlto create an interface for the GrolMP sys-
tem. Additionally, GrolIMP does not allow changingernal values at any time.
To simulate the quasi parallel execution of the Ré@@mands a complex thread
handling is required. Only in a save system stageiriternal graph data structure
can be read or modified.

The design of the GrolMP interface is shown in Feg84. This approach re-
quires in each new simulation model in GrolMP theertion of a Java class defi-
nition in the model. After the compile process digect instance of this class al-
lows a communication with GrolMP. The class in G48l must implement the
interfaceVisualisation In the class diagram this class is calE@dIMPVis In the
first place, after the compile process the modebhias an object dérolMPVis
and calls the static methadgisterin the static clas&rolMPControlStart With
this method call a reference to tBeolMPVisinstance is sent to ttiieroIMPCon-
trolStart class, which creates a n€&volMPControlinstance. Now, each instance
of GrolIMPControl saves a reference to an object insideGnelMP simulation.

In this way, GrolIMPContol can call the methads, step fetchGraphandgraph-
Updatein the GrolMPVis class. To get the simulation attribute values auhe
simulation GroIMPControl calls the methodetchGraphin GrolMPVis Internal
thread handling processes and synchronisation ggeseare required to access the
graph structure iiGGrolMP. This access is only permitted in a class whicplém
ment theLockProtectedRunnabli&terface. An instance d@éraphReader which
implements this interface, queries the graph ardtes for each node in the graph
a new object from typ®rgNod.Afterwards, this object is saved in a collection in
GlobalControl EachOrgNodeobject saves a set of child nodes and its parent
node asOrgNodeinstances. Furthermore, the object saveagAttribute in-
stance, which includes for each simulation attebutthe node an object of type
Attribute to save the name, type and value of the simulaitmbute. ThisOr-
gNode object is transferred irGlobalControl to an object of typeStruc-
turalObject To sum up, updating the internal data structorthe mediator with

% Detailed information about the Java Reflection A€dn be found at the webpage:
http://java.sun.com/j2se/1.5.0/docs/guide/reflaviimdex.html; accessed 01.08.2007. Java Reflec-
tion API enables Java to discover objects durimgime to collect information about these objects.
Information can be attribute names and values, ogettames and information about the object
constructor.

Implementation 57

the values out of th&rolMP simulation requires the following steps. Firstly,
GrolMPControl calls fetchGraphin GrolMPVis. At this point, it is necessary to
stop the execution of the mediator thread until@relMP thread, for the graph
query, terminates. In the next stgprolMPVis calls therun method ofGra-
phReaderwhich creates th@®rgNode objects. The last command in then
method is to send a notification to the mediatoedd. Now, the mediator can
transfer thedrgNodeobjects intdStructuralObjecinstances.

To update the simulation objects@rolMP after a mediator stegrolMP-
Control calls the methodraphUpdatein GrolIMPVis Similar to the method call
of fetchGraph the mediator thread has to wait until tBeoIMP update process is
terminated. Beforehand, ti@rolIMPControl class changes th@rgNodeobjects
regarding to the mediator changes and s&ealeanflag true. Now, the method
graphUpdateupdates the internal data structureGmoIMP using all OrgNode
objects with a set flag. The update process isopedd in therun method of
GraphWriter To guarantee a thread save update, this methptenments the
LockProtectedRunnablmterface. After the update process this methodisea
notification to continue the mediator executiongass (main thread).

The Java Reflection API is used in this proceghenclasOrgFields Using
reflection to identifyGrolMP objects and the attributes’ names and values-is re
quired at this point by reason of tBeolMP modelling structure. In eachrolMP
model, predefined and user defined classes aretasdekcribe the model behav-
iour. Therefore, it is only possible to identifyetlused objects in the simulations
during runtime. The performance disadvantages @fdflection approach afford
to use the entire modelling power GfolMP. A restriction, which allows only
predefined classes for a model, restricts the nfiadgbower significant. Also, a
strict exception handling is required to catchpalésible exceptions, which can be
occur during the usage of the reflection API. A tamation of exception handling
and predefined conditions guarantee a save usagjeeofeflection classes and
methods.

The collection graphObject saves
StructuralObject instances: orgNodes
saves Orghode instances

<<interface>> <<interface>>
LockProtectedRunnable Visualisation

1nQ : void fetchGraph(grolMPControl : GrolMPControl) GrolMPControlStart
graphUpdate(grolMP Control : GrolMP Control)
1unQ : veid

reset() : woid

registenobject : Visualisation)| 1

|] 1
! ! call sreate
I
L I 1
[lizess
<<<<<<<<<<<<<<<< lizer> ! GrolMPControl

|

ST T T T s s 1 | 1

i

i

call I vis - Visualisation
GrolMPVis use graphObjects : collection
argNades - collection

) 4 |retumGraphiorgNode : collection)
11 I 1 start() : woid
L L reset) : void

GraphWriter GraphReader 1 1. | doStep : woid

control : GrolMPControl control : GrolMPControl readvalues) : vold
oreate wiiteValues) : void 1

i 1

OrgFields OrgAttribute Orghode

attributes : collection e internalField : OrgFields save globalld : long

getattiibute(field : Field) - 1 1
gefFieldcnode : Objech getAttribute(node : Object)

updateGrolMPNodel : void

L 1
‘anribules save a list of Attribute wnﬁancesﬁ The attiibute children save a set of OrgNode mstannur\celj

Figure 34: GrolMP interface design.

Results o8

6. Results

The introduced mediator approach allows differemtependent simulation
tools to interact with each other. The combinatainstructural and functional
simulation tools allow the scientist to simulatelbgical systems in a more realis-
tic way. This chapter includes a short recapitatatf the mayor system functions
and illustrates the general applicability with thedp of two examples.

The mediator software system is used for the coatiain of existing simula-
tion tools and to control those, to perform a cameldi simulation. Figure 35
shows the necessary steps to perform a simulatitn the mediator. It should
help to clarify the interaction between mediatod axisting simulation tools. The
illustration is split in a vertical and a horizohtection. On the left side in the
vertical segmentation all functional simulationsltoare combined. In the middle,
the control section composed of the user and thdéiatoe framework is placed.
Right aside the control components all structucahponents (simulation media-
tor and abstraction layer) are combined. The hataoalignment includes bot-
tom-up: the initialisation process, the user cdn&nod the framework with all
connected simulation tools itself.

In the first place the user has to select the strarl tools. Afterwards, he
creates in each tool a model with the help of thoé internal editors. For the crea-
tion process, the scientists use different soufdata integration tools, databases,
literature or personal knowledge). In the figurésthrocess is numbered with
number one. Next, the user has to define the oelstiips (mappings) between the
beforehand created models and to initialise theis@dframework (see label two
in the illustration). Now the user controls theiensimulation process. He de-
cides when the next simulation step is performetianen the simulation will be
terminated. In each simulation step the mediatomraanicates with all structural
simulation systems and all functional simulatiosteyns which are necessary for
the current simulation process. The figure highbgtme bidirectional connection
between the simulation tools and the mediator (ramttiree — eight).

Functional Component Structural Component

@ @
< (CDEJ L-System
£ @ | = = @)
£ N ® g 1] ®
= [Petri net) = E Simulation mediator 43- = GrolMP
5 \) £ = i)
) g1 o
E < <
& (Stochastic) Agent-Based
t@
pe User -
@® — O)
t®
Pathway models|
c?r::;rtw:l:ts Morphological models

Pathway modelling tools

Mapping of
pathway to
] modelling units, Morphological modelling tools|
Data Integration — ONDEX parameterisation

Figure 35: Mediator framework (illustration by Tull y Yates).

Modelling and simulation tools

Results o9

Regarding to the clear interface structure andver@us abstraction layers,
the system is easy to maintain and further extessiwe easy to realise. Different
interfaces allow adding nearly all existing simigattools to the mediator. Also,
the subsystem handle design does not restrict uhger of simulation subsys-
tems which can be connected simultaneously to tkdiator. Basic mapping
types between simulation systems are predefinede&ch complex mapping the
mediator assists the user with a clear interfasggdeand examples. Log and sta-
tistic files provide the user an insight into alhslation values after the simula-
tion to evaluate the results.

During the implementation, a score of test simalatimplementation has
shown good results for small and medium sized sitrarls. The mediator soft-
ware is able to control the subsystems in the nghy, and also the communica-
tion between the simulation subsystems and theaastftware is fast enough for
the simulation process. All required mapping corabons between the simula-
tion tools are assisted. Different tests with lasgaulation models in the simula-
tion tools adduced partly unsatisfactory resultee Gimulation step and the up-
date of the subsystems require a too long time.riédiator has only a small in-
fluence to this long execution time. In the firtaqe, the existing simulation tools
and the interaction with these tools are respoadin the delay times. Addition-
ally, the implemented examples show the advantajdebe usage of different
simulation tools. Each simulation tool can concatetron it own model, and with
the help of the mediator, each required additidoattionality is provided by
other tools. Accordingly, the several models arsiegaand the performance of
each simulation can be improved in this way.

The following two examples show the interactionwestn functional and
structural simulation tools on the basis of twoyw&mple biological systems. The
systems raise no claim of completeness or trugiginal. They should only illus-
trate the applicability of the mediator framewolk.addition, the examples show
the flexibility of the framework. Not only mappindgetween structural and func-
tional simulation tools or vice versa are allowAdnapping between a functional
and another functional tool as well as betweemcstral and another structural
tool is feasible.

6.1. Example: ABC model

This model uses the mediator framework to simuthee so called ABC
model of flower development. To define and visualilze structure of the flower
the modelling tool GrolMP is used. On the otherddor the simulation of the
gene concentrations in the flower, Jarnac is uSedsequently, this simulation is
an example for a mapping between a functional strar tool (Jarnac) and a
structural simulation tool (GrolMP).

The ABC model of flower morphology indicates thaffetent classes of
transcription factors, in different parts of thewer, are responsible for the speci-
fication of the different flower organ cells. Eadlass of genes and their combina-
tion is responsible for the development of the Bowlements. This model illus-
trates the flower development and different mutetiin a clear and easy way.
Figure 36 shows an illustration of a flower witth fadwer organs: carpel, stamen,
petal and sepal. In the third part of the illustnat the symmetry of the different
flower organs is visible. In the next figure (Figu87), the dependences between

Results 60

classes of genes and produced flower organs avenslt@@enes in clas& produce
the sepals. A combination 8fandB specifies the petal§ andC the stamens and
an occurrence of genes only of cl&she carpels. More details about the ABC
model of flower development can be found in [AlbO2]

stamen

petal

sepal —

sepal (Se) A

i stamen (St)\ T

R

- @
2 3 .———; carpel (Ca)
"

petal (Pe) : pi

-

midline
whorls

1 2 :;424 8.8 1
EIRE B

Figure 36: ABC model of flower development (from [W102]).

Results 61

sepals
petals
stamens
carpels
stamens
petals
sepals

Figure 37: Classes of genes are responsible for thevelopment of the different flower or-
gans (from [AIb02]).

To highlight the advantages of the mediator apgrotee model is based on
an already existing example in GrolIMP. The GrolMitlage includes an ABC
model example, defined in the XL modelling languafj@s model uses a regula-
tory network to simulate the transcription factarsl a visualisation of the corre-
sponding flower organs. The model of the regulatwtwork is presented in de-
tail in [KelO1]. To get an impression of this mod@ully Yates and | created a
continuous Petri Net model with inhibitor arcs. tig 38shows an abstract view
of this model, without tokens and without transitifunctions. All green places
save the gene concentration and the blue placesteavconcentration after the
transcription process. For the simulation the @acé andc are interesting. They
store the concentrations, which are responsibleh@rdevelopment of the flower
organs (see Figure 37). Attend, the Petri Net sgeall letters and the transcrip-
tion factors are labelled in Figure 37 with caplédters.

oy s e

gx’ a N /ﬁm— e be_act

I__Ll// - / - OE@ E\
@ = S

begene @

Figure 38: Petri Net model for the ABC model (by Tlly Yates, Rothamsted Research,
United Kingdome)

To reuse the existing model in GrolIMP for a latemparison, | separated the
definition of the regulatory network and the pdrtlee model which is responsible
for the 3D structure (visualisation). Consequertthg, new GrolIMP model is only
responsible for the visualisation of the simulati@n the other hand, the intro-
duced regulatory network is translated in a Jaonmagpatible notation, and due to
some mathematical solving limitations of Jarnampdified in some parts. After
the separation of the model into two models inedéht simulation tools, the me-
diator framework is used to combine these two sathahs again. To map the
current concentration of transcription facarB andC (in Jarnac) to the struc-
tural simulation (GrolMP) three independent mappiage created. GrolMP re-
quires (for the simulation) only the current corication and decides with simple

Results 62

if-statements which flower organ should be creaidterefore, all mappings are
from type update dependence and will be updatexhalm mediator step. The en-
tire calculation of the transcription factors arerfprmed in one simulation in-

stance and only a data flow in one direction (fiomal simulation to structural

simulation) is necessary. Because of this, all nmgsp are defined as main-
mappings. To illustrate the log functionality ofetlmediator, each transcription
factor value is saved during the simulation in e@tie step.

Three mappings are defined in the mediator. Thetional simulation in-
cludes three attributes, B andC. On the other side, in the GroIMP model three
attributesa, b and c exists. Figure 39 shows the dependences betweefuric-
tional simulation attributes and the structuraldetion attributes.

Functional BioSimMediator Structural
simulation tool Mapping simulation tool
Jarnac GrolMP

> Independent mapping;
update dependence
Independent mapping;
update dependence
Independent mapping;
@ > update dependence >

Figure 39: Mapping of the ABC model.

After each mediator step the simulation attrib@teb andc saves the current
transcription factor concentration of the biocheahisimulation in the GrolMP
model. The structural simulation uses these valoetecide which 3D structures
have to be created. As mentioned before, the oreati the different flower or-
gans depend on these values (concentrations). dlleving dependences are
used in the example:

if ¢ > 2.4thenterminate simulatioelse 2.

if b> 1.7then(if c>a create stameagisepetal)else 3.
if a> 1.8then(if c>1.8 create shoetsesepallkelse 4.
if c > 1.8 create carpel

PwpE

Table 5 illustrates the results of the simulatibdifierent time points.

Results 63

Table 5: Simulation results: ABC model of flower deelopment.

Gene classes concentration 3D structure

J < concentrations _ialx|

concentrations
concentrations

o0 —
00 05 10 15 20 25 30 85 40 45 50 655 60 85 70 75 80

—A—B—C

concentrations

£ concentrations =])
concentrations
concentrations

350
325
300

275

1+ 2 3 a4 & @ 7 8 © 1M M 12 18 14 15 18 1

—A—B C

concentrations =lolx|
concentrations
concentrations

0 1 2 3 4 5 8 7 & B 10 11 12 13 14 15 18 17 18 18 20 21 22 23 24 25 28

—A—B—C

Results 64

To explain the log unit results briefly, Figure difows the log values in three
mediator steps. The log file saves for each medstgp the current system time.
In the next line, the name of the used model isgted. Here, the file contains
the nameabcmodel’ The model does not differ between different olgen the
simulation. Therefore, the line object name is gmphe next six lines include
the names of the attributes and the correspondinigpiee values. A blank line
separates each mediator step blocks in the logHideinstance, in the first media-
tor step the attribut@ contains the value 0.635593@8contains 0.198,7417 and
C contains 0.016902354. If a log file contains mtiv@n one simulation subsys-
tem, each block is sorted in an ascending alphaddatrder using the subsystem
names.

Wed May 30 15:41:21 BST 2007

Sub system name: abcmodel
Object name:

Attribute narme: A,

Walue: 063559353
Attribute narme: B

alue: 019837417
Attribute name: L

alue: 0.016902354

Wed May 30 15:41:22 BST 2007

=ub system name: abcmodel
Object name:

Attribute narme: A,

alue: 0.85170054
Attribute name: B

alue: 0.30807 456
Attribute narme: C

Walue: 0.032679352

Wed May 30 15:41:23 BST 2007

=ub system name: abcmodel
Object name:

Attribute name: A,

alue: 1.1449325
Attribute narme: B

Walue: 0.445332452
Attribute narme: C

Walue: 0.05601516

Figure 40: Log file of the ABC model example.

This example shows how to use an existing modeafemulation with the
mediator. In comparison to the original model irpP a differentiation of the
functional and structural part of that model isdige the presented example. A
direct comparison between both model results is feasible, because of the
mathematical solving problems of the used funclisimaulation tool. Therefore,
an adaptation of both models (structural and fometi) was necessary, which
results in a slightly different simulation course.this example, the major advan-
tage of splitting a simulation is not obviously.i&ttists can work together in dif-
ferent tools on one simulation, following only sorbasic interface agreements
and naming convention. Hence, each scientist cak wo his area of expertise,
and an administrator can map these single simukatiogether to an entire simu-

Results 65

lation. Furthermore, the models can be implementedesigned in a model spe-
cific formalism. The author of the ABC model examph GrolMP uses the XL

language to model the regulatory network. Usingeti et approach for the bio-
chemical model should be much easier and famibarttie scientist instead of
transferring the entire process to object oriembechalism.

In conclusion, this example shows the applicabitifythe mediator frame-
work to combine structural and functional simulaido an entire simulation. The
next example illustrates the combination of twauatural simulation tools. In
addition, a dependent mapping is used and theststati unit of the mediator is
presented.

6.2. Example: Root development

Creating a realistic simulation of a root is quitificult and complex. The
root structure differs from plant to plant. Sometsogrow deep into the soil and
some grow near the surface to the sides. Alsohttéweching behaviour of the root
depends on the species and the soil. For instaiféerent densities or water con-
centration in the soil produces different root staues. In literature a multitude of
experiments and descriptions of the root developrpercess can be found (see
[Gas01)).

To focus on the interaction between different satioh tools, the presented
root example is quite simple. The branching factams defined in a GrolMP
model and the interaction with the soil is impleteehin an agent based model in
Mason. The agent model simulates the soil density the gravity. Hence, the
agent simulation is also responsible for the stmgcof the root. The default grow
direction of the root is downwards. If the densitythis direction is too high, the
root will have to change its direction and to greideward until it can grow again
downwards. This default growing direction is specifin a gravity value in the
agent simulation. A high gravity value affects thet to grow downwards when-
ever possible. A smaller value results in a radieeward growing root. First of
all, 1 will explain both models separately and eftards the interaction of both
tools with the necessary mappings.

The multi agent simulation tool Mason uses difféergqpes of matrixes to
save the agent and the environment. To simulate sthie | use a three-
dimensional matrix, which can save 64.000 integdues. All these fields include
an integer value between zero and six and reprabentensity of the soil.
Whereasthe integer value zero signifies a negligible snaghsity in the soil.
Furthermore, a density value of six indicates aaan the soil where the root is
not able to go through. All integer values betweero and six encode the soil
density in an ascendant order. Each of these femldsvisualised by a cube with
the side length of one. Regarding to this, the fatan simulates a soil area of
length, weight and height of forty cubes. During thitialisation process of the
simulation all fields get randomly a density value. addition, the agent simula-
tion includes a double variable to save the stahdeavity. The well known stan-
dard gravity of the earth is about 9.81 frdad is used as the default value for the
simulation. A higher value indicates a strongewigyaand a lower value a lesser
gravity. Furthermore, the agent simulation incluties types of agent®ootand
RootSegmenEachRootSegmentan save one or moRootagents. In principle
this kind of agent is used to combine varidsot agents into a category. Each
Rootagent in this category is able to interact wihahvironment, but only the

Results 66

last Rootagent, who is added to the category, is able rowy Interact with the
environment can mean, a transport of water, agetmauptake or a density ‘test’.
EachRootSegmentepresents in the simulation a part of the rooictvthas not
branched so far.

To sum up, all agents of tygeootare responsible for the growing process
and for the interaction with the environment. Tlgerats of typdRootSegemerire
only used to combine variolootagents, and to control which agent is ‘active’
(can grow and interact with the environment) andctvtone are ‘passive’ (can
only interact with the environment). Figure 41 skaavpart of the simulation area
in 2D. Grew rectangle illustrates the soil withfeifent density values (light grew
indicates a low density and a dark grew a high it@@ndn addition, twoRoot-
Segmentategories are visualised. The first, are bourimethe red line, includes
four Rootagents and the second blue bordered one inclbdss agents.

Figure 41: Root and RootSegment agents and the détysof the soil in 2D.

During a simulation step ea¢&tootSegmertties to grow. Nevertheless, only
the activeRoot agents in theRootSegmenare allowed to grow. Each of them
evaluates its environment and decides afterwardghich direction it grows. Of
course, it is not possible to grow backwards. Tloees each agent has to test
twenty three cubes (in 3D and five in 2D). The ondewhich the agent tests the
cubes depends on the gravity constant value. FRiiustrates this process in a
2D visualisation. With the default gravity valudetactive agent (with the red
border) tests in the first place the rectangleatiyedownwards (numbeong. If
the density in this field is lesser than the maximaensity, a neviRootagent will
be created by the system and placed to this poskilso, this new agent is added
to theRootSegmeragent and becomes the new acRaotagent in this category.
If the density in this area is to high too growtims direction, the activ®oot

Results 67

agent will test the fields left and right downwar@simbertwo). If one of these
fields has a density lower than the maximum densitg root will grow in this
direction. In the case of an equal density in rplétisections, the simulation de-
cides randomly in which direction to grow. If theoging process downwards is
impossible, the active agent will try to grow sided (numbetthregd. A maxi-
mum density in each direction results in a stagmadif the growing process of the
RootSegment

A future extension of the model can also includéewar mineral concentra-
tion in the soil, which influence the growing preseas well.

Figure 42: Agent root growing direction.

The agent simulation can only control the growimgcess and the interac-
tion of the root with the environment. As mentioneefore, different kinds of
plants have a characteristic branching structurgn@froot. This branching struc-
ture is encoded in the GroIMP model. In this wdye tgent model decides in
which direction the root can grow and the GrolMPdelodecides at which place
the root has to branch. With the help of the 3Drixah the agent simulation it is
easy to access each position in the grid direttlthe GrolIMP simulation sends
the command to branch at a special position, thstieg RootSegmenat this
point is split into twaRootSegmerdggents and a new side branch starts growing at
this place.

The GrolMP model uses basic L-System elementsdaterthe root structure.
In this basic example, the model uses the lengtkach root branch to decide at
which time (position) a new branch has to be ccealbe branching angle and the
position are predefined and depend also on thet aganlation. With the help of
these values, the user can change easily thesteust the root and simulate dif-
ferent kinds of root structures.

Results 68

To combine both models to an entire root simulatgx mapping definitions
in the mediator are necessary. In contrast toiteedxample, all these mappings
are from typeDependentmapping. All these mappings are defined betwean on
RootSegmenagent in the agent simulation and one root segr{&@niple L-
System element) in the GrolMP simulation. During tomplete simulation proc-
ess, the mediator has to ensure that always the RaotSegmerdagent and Gro-
IMP root segment are mapped together. Each instartbe simulation includes a
unique identifier and allows the mediator the idedtion. After the initialisation
process of the simulation, the agent simulationtaios oneRootSegmenagent
with one activeRootagent. The GroIMP simulation starts with one releiment.
Therefore, in the first mediator steps six mappibgsveen those both elements
exists. During branching, a ndRootSegmerdgent is created and also a new root
segment in the GrolMP simulation occurs. For eacthese new elements, the
mediator creates six new mapping instances ands dheeelement identifiers. A
mapping from typeDependenis mandatory to ensure that the mappings are al-
ways exists between the sarmReotSegmenagent and the root segment in the
GrolMP simulation. The six mappings are split ifitce pre-mappings and one
main-mapping. In Figure 43 all mappings for thewdation are shown.

All mappings inside the blue rectangle are pre-nreggpand the mapping in-
side the red rectangle is a main-mapping. The eecorder during the mapping
process is equal to the order in the illustrationthe first place, the pre-mapping
between the attributeranch-distancen the GrolMP simulation and the attribute
branch-distancen the agent simulation is from type update depend. The at-
tribute values are used to specify at which poinew side branch can grow. The
GrolMP simulation defines the value in each simatatstep for each root seg-
ment, and with the help of the mediator the vatugransferred to the correspond-
ing RootSegmerih the agent simulation. The next three mappimgs@sponsible
for the correct orientation in the 3D visualisationGrolMP. The orientation of
the different root segments is defined in the agémiulation. For instance, the
root has to grow sideward to avoid a high soil dgnand therefore, the orienta-
tion of the entireRootSegmenthanges. To transfer the new orientation from the
agent simulation to the coordination system in @] eachRootSegmentalcu-
lates the new orientation dependent form the onogimt as an angular misalign-
ment to the coordinate axis. With the help of thresppings, the angle values (X,
y and z) are transported to the GrolMP simulatibime last pre-mapping is used
to inform the agent simulation to create a new bidech. In the GroIMP model,
an integer attribute saves for each root segmenvalue zero for no new branch
and one for a new branch. If the simulation decimesreate a new branch, the
main-mapping will not be executed directly. Beftre next main-mapping can be
performed, six new mappings instances have to &&ted for the new (a total of
two) root segments in both simulations. Afterwattie, pre-mappings of this new
segment have to be performed, and then both mappimgs. The main-mapping
only transports the current length of fReotSegmeritom the agent simulation to
the corresponding root segment in GrolMP. In thaywboth root elements, in
Mason and GrolMP, have always the same lengthrddtegrows in both simula-
tions simultaneously.

Results 69

Structural BioSimMediator Structural
simulation tool Mapping simulation tool
Mason GrolMP

‘{ W | branch-distance
e f
— Sy e—
— ey o
% upiete doponcence. [

> Dependent mapping; }
update dependence

Figure 43: Root example mappings.

Figure 44 shows the visualisation of a root simatatn the agent simulation
tool Mason. The brown-grey globes illustrate aneathe soil with the maximum
density value of six, which cannot be penetratedhayroot. All other densities
are not visualised in the illustration. Each blyBnder represents Rootagent in
the simulation. Currently, twBootSegmerdre shown in the figure. The branch
ing point is dark blue. As a result of the usech@gad gravity in this example,
each root segment grows directly downwards. Fumbeeg, the current soil den-
sity has no effect on the root growing procesdntrast, the next figure (Figure
45) shows the influence of the soil density onribhat growing process. The root
starts growing sideward to avoid the high densigaaAfterwards, the root starts
growing downwards, until the next high level deypsiteas occur and a sideward
growing direction is necessary.

Results 70

-5
T 8l Scale:,1—|(') Skin:l1—|<')'
. = P

Figure 44: 3D visualisation of the root example ithe agent simulation Mason. The globes
highlight soil with the maximum density value of sk. All other soil densities are not shown in
the visualisation. The blue cylinder illustrates tle root. Each of them is on&Rootagent.

ER
= # Iy £ scae:t |€o» skip: |1 <>

Figure 45: Example visualisation of another root shulation. Here, the root growing is af-
fected by the soil density.

In the following figures the same simulation steeepresented. The first
figure (Figure 46) shows the visualisation of tlyert simulation. In the current
simulation state, the simulation consists of a miawt segment and various side
branches. Furthermore, all root segments avoichitje density areas and grow
around these areas. Figure 47 hides the high temdity visualisation to clarify
the root growing process around these areas. Tpaa@nthe simulated root struc-

Results 71

ture in the agent simulation with the GrolMP sintida, Figure 48 shows the

visualisation of the GrolMP simulation in the sasieulation state. The root

structure in both simulation tools looks quite $aniOnly the orientation of both

illustrations is slightly different. First of althis is affected by the problem that
both tools work with different coordination systemrsd the user has to write its
own transformation between both. In the secondeplde root elements in Gro-
IMP are only visualised by a straight line. Onlg tstart and end point of these
elements are the same than in the agent simuldtioally, the GrolIMP image is

rotated around the y-axes by a few degrees to dmttar overview of all root

segments in the simulation.

Figure 47: Root simulation example with various sid branches, without the density visuali-
sation.

Results 72

Figure 48: Root structure visualised with GrolMP.

The quite simple root model in GrolMP allows the ws the predefined bio-
mass static function of the mediator in this sirtiala This function calculates in
each simulation step the volume of the entire ayat multiplies the result with
the density of water by 10 degree Celsiug907 g /cm~3) The result of the statistic
function is presented for four simulation step&igure 49.

YWed May 09 11:04:30 EST 2007
Statistic calculation name: Biomass
Fesult: 0.0

Wed May 09 11:04:30 BST 2007

Statistic calculation name: Biormass

Result: 0.35926812778241314
YWed May 09 11:04:31 BEST 2007

Statistic calculation name: Biomass

Result: 1.85295835208000492
Wed May 09 11:04:32 BST 2007

Statistic calculation name: Biormass

Result: F.705288183116758

Figure 49: Biomass calculation of the root example.

In conclusion, the root example shows the applitgbof the mediator
framework to more complex examples. During the $athan process a multitude
of mapping instances are used for each root segpant TheDependenimap-
pings allow the correct mapping between belongmg segments. In addition,
the example highlights the exigencies for the déifgiation between pre-mapping
and main-mapping. Furthermore, the statistic uhithe mediator framework is
used in the example.

Discussion 73

7. Discussion

In this chapter, | discuss the advantages andiiaeleantages of the invented
framework, as well as problems which have been meduduring the system
tests. In addition, | point out the possible opsiation potential. At the end, | give
an outlook over planned increments.

The goal of the thesis is to introduce a new saweamework which com-
bines existing biological simulations tools. Thedis shows the design and the
implementation details of the system. In the presiohapter Results, the applica-
bility of the system by means of two examples isvai The focus is put on the
presentation of the different mediator functionaditand not on the biology.
Therefore, the examples have no qualify for biadaycorrectness. However, the
examples show the different mapping types anddbeuhit as well the static unit
of the mediator in use. Also, the independent bt each connected simulation
tool is presented in the examples. As mentionedrbefthe mediator is able to
interact with each simulation tool independentlyl @aves for each of them sepa-
rately information about the simulation step sizeh® required log and statistic
functions.

7.1. In comparison to existing tools

The mediator framework is the first software systehich allows combining
a multitude of different existing simulation todsd defining dependencies be-
tween those in the presented way. Furthermorefrémeework offers a log and a
statistic unit. In contrast to the introduced il chapteFundamentals and Re-
lated Work like the SBW workbench or the Bio-Spice framewadhe mediator
framework is able to control all connected toolsl atefine mappings between
different simulation attributes. With the help bktdifferent mapping types, the
system is nearly able to handle all possible oaugrdependencies between the
different models. Also, the user can, to avoid temtional dependences between
the mappings, define an order in which the mediassrto perform the mappings.
For the mapping process and the internal storagenadlation attribute values,
the mediator system uses performance optimisedatmhs, based on theastutil
collection API. Jan Taubert (see [Tau05]) showsim diploma thesis the per-
formance advantage of t@stutil collections in comparison to the standard Java
collections. Furthermore, the number of possibleneated simulation tools to the
mediator framework is (theoretical) unlimited. Témtire software system is im-
plemented in the Java programming language to erndatform independence. A
connection to simulation tools which are implemdrite other programming lan-
guages is easy possible by using the SBW workbéerod.SBW provides differ-
ent kind of interfaces for nearly all known prograing and scripting languages.
Via this software system the mediator is able teract with those tools.

In contrast to all current developed hard codedukation systems, the me-
diator approach allows different kinds of sciestist work on the same simulation
and to concentrate on their area of expertiseirfisdance, one scientist can model
the biochemical process with the help of Petri N@tsimilar graph based ap-

Discussion 74

proaches, and another scientist can focus on thetstal models of the biological
system. All developers work with familiar tools aadsupervisor can map all
those tools with the mediator system to an entimeiation together. It is not nec-
essary to re-implement all functionalities (modwgliabstractions, mathematical
solvers, etc.), which already exist in tools, likehard coded simulations. Nearly
all of them (like the virtual heart simulation, seleapterFundamentals and Re-
lated Worl re-implement for instance, fluid dynamic simubatiparts and algo-
rithms for the visualisation. All those re-impleni&ions are unnecessary by us-
ing the mediator framework. Instead of them, ther iis only to define the map-
pings between all involved and connected simulatots.

Additionally, the clear design and interface stowetof the system allows the
users to implement their own new mappings or statignctions to the mediator.
In principle, the framework only provides a setpoédefined functions and regu-
lations, and each user can add new elements cpstly €0 the system. The inter-
face structure, quite a few guidelines and examipddis the users with the imple-
mentation. With reference to the system architecttinree tier architecture and
component based architecture), a complete newmsystet can be added to the
framework quite easily. Furthermore, the systemhitgcture and the usage of
object instances, for the storage and transpothefsimulation attributes inside
the mediator, allow easy further changes.

The disadvantages of the mediator approach in cosgpato existing ap-
proaches are, besides the performance (which ¢sigied in the next subsection),
are limited control over the connected simulatiools, and the lack of a time cor-
relation.

Most of the current existing simulation tools carfreworks allow the user to
run their simulation for x time steps and to stibwe current system state persistent
(for instance, in a file). Next time, the user cdart the simulation at this time
point, and in that way, a time intensive simulatoam be interrupted and restarted
later on. The problem with this functionality inettmediator framework is the
missing functionality in some of the used simulatiools. For instance, the agent
simulation tools Mason offer this function, but &ional simulation tools like
RoadRunner or JDesigner do not offer such a funciiberefore, the current ver-
sion of the mediator is not able to save the erystem state and to restart the
simulation later on at this point. To avoid thi®lplem, the used simulation tools
have all to provide such functions and the medifstomework has to be modified.

Currently the mediator framework uses for the aamf the simulation pro-
gress an abstract step size unit. The user canedefuring the initialisation proc-
ess, how many simulation steps in the simulatiabstshall be performed in rela-
tion to the mediator steps. In biological simulasahe time plays nearly always
an important role. With this abstract step sizeoaeatation to the real time is
nearly impossible. Similar to the control problefrtte mediator, each simulation
tool uses a different internal simulation time tapssize unit. With regard to this,
it is not possible for the mediator to use a r&alisme unit for the simulation
progress control.

7.2. Performance

The mayor and most obviously disadvantage of thdiama framework, in
comparison to hard coded simulation tools, is taggomance. In a hard coded

Discussion 75

simulation system the designer and programmer baonse for the interaction of
all parts an optimised system design and implenientaThe mediator frame-
work has to be generic enough to communicate wighdifferent simulation tools
and for the mapping between them. Only the transpiovalues in the mediator,
the mapping process and the interaction of the a@dwith the simulation tools
can be optimised. The optimisations at this poiatlenited to a good system de-
sign and the usage of fast collections. Duringithplementation tests, the per-
formance bottle neck was always the interface ¢osimulation tools. In contrast
to the GrolMP system, all tools which are connestiedthe SBW framework in-
teract quite fast with the mediator. As mentionetble, the interaction with Gro-
IMP is not so easy, because the system has notde=egned for a communica-
tion with other tools in that way. The mediator anber simulation systems have
to wait until the GrolMP internal process is fingsh For more details of the inter-
action with GrolMP see chapt&rolMP interface

The mediator framework is applicable for small ameldium complex simu-
lations. The limitation at this point is not thenmioer of mappings or the number
of connected subsystems, but the speed of the ctathsubsystems itself and the
interaction with them. Simulations which use a comabon of only functional
simulation tools can be much more complex than kEtimns which use one or
more structural simulation tools. All used struatwsimulation tools are limited in
the simulation performance. In addition to high#yaulation intensive 3D visuali-
sations, the performance problem is based on dissidgeous system designs and
on the complexity of the simulations.

As mentioned in the last subchapter, the mediates wptimised collections
for the storage of simulation attributes. Furthemen@ unique identifier is dedi-
cated to each attribute and mapping. With the loélpptimised HashMaps the
mediator can find each of them in nearly constam t

Beside the performance problem, the mediator isinweampletely imple-
mented as a single thread system and optimised f&ingle processor system.
Only the log and statistic unit uses different #u® to accelerate the execution.
With the help of the SBW workbench some simulatioas be relocated to other
computer systems, but the most calculation intensiapping and storage of the
simulation attribute values processes are exealted one computer. The mayor
problem with a multi thread system is the synctsation of the different map-
pings. Most of the mappings depend on each othgrarallel execution of the
reading and writing process in each simulation gsiesn can improve the system
performance.

7.3. Outlook

The current version of the mediator system is apple for small simula-
tions. At the moment, six simulation tools (RoadRem Jarnac, JDesigner, Ma-
son, GrolMP and the mathematical utility tool) amnnected with the mediator.
One future task will be to add more simulation $o the mediator. More simu-
lation tools offer the users a wider range of tpalsd they would be able to
choose the optimised tool for a specific simulagpant. With respect to the inter-
face design of the mediator, new tools can be adplei easily. Especially, a
connection to a mathematical tool like MathematicaMatLab would be prefer-
able. These tools offer optimised toolkits for éifnt use cases. For instance,

Discussion 76

fluid dynamic processes can be calculated withhigtlp of the fluid dynamic tool
kit in MatLab, or equations can be solved with ghler precision than with other
tools. With the help of these new features, thargtas can be more realistic. For
example, with the fluid dynamic tool kit it is pdsie to simulate the water con-
centration in the soil and its dynamic, and usse tbr a more detailed root model
(see Example: Root development). Furthermore, lilnd tlynamic can also be
used for the simulation of nutrition transport ians or organism.

So far, only small and simple examples are tesiddtive mediator. The next
step would be to create a more realistic exammid, amparing the results of a
hard code simulation with a distributed simulatieing the mediator. Afterwards,
the model complexity should increase. Tully Yafesn the Rothamsted research
institute in Harpenden, is planning to use the wediframework to simulate
Arabidopsis thaliana with RoadRunner and GrolMP.

Additionally, the interaction and communication fwithe GrolIMP system has
to be revised. Together with the developer of ty&iesn the interface has to be
changed, and the mediator must be able to get s¢toabe internal thread han-
dling process of GrolMP to avoid the busy waititigisture. In the first place, the
mediator’s internal copy of the GroIMP RGG grapls labe replaced by a direct
access to the RGG graph in GrolMP. Also, the pdggilbo disable the visualisa-
tion and to use the XL language separately woulthka big performance benefit.

The current (mediator) version is optimised foiragke processor system. To
obtain a better performance, the system must betalbe used on a cluster or a
grid computer system. In the first place, all siatidns should be executed at dif-
ferent systems and only the mapping process shorilgerformed at a master
computer. Consequently, each subunit in the medmatgst use its own thread.
Also, a new system unit has to be created, to obalrthreads and guarantee the
synchronisation for the right execution order (esten of GlobalContro). The
current system design allows quite easy to incluaew layer or a kind of infor-
mation (object) transport between the existingdagro (simulation subsystems)
and layer one (data storage) (see Figure 29). ieifitekinds of approaches can be
used. Each of them has vantages and disadvantagespect of performance,
complexity and reliability, and therefore, the d#mn has to be elaborated.

The first possibility is to use the Java objeciadation and to transport the
object and control commands via a standard soaketection. The second ap-
proach is to use the Java remote method invocdRdl). RMI distinguishes
between local and remote objects. The calling neisonot able to distinguish
between a local and a remote object and handle dzpially. COBRA (common
object request broker architecture) uses, simidahé RMI approach, also an ob-
ject spreading. This approach, in comparison to RMhot mandatory bounded
to the Java programming language. The last posafipeoach uses the Java Mes-
sage Service (JMS) to communicate via messagesbptihe different subsys-
tems. A detailed introduction to all this metho@s de found in the book, ‘Mid-
dleware in Java’ [Hei05].

Finally, a graphical user interface has to be egaib allow the user an easy
configuration of the mediator. The configuratiorcludes the definition of the
mappings, the used log unit as well as the statistit, and also the required
simulation subsystems and models.

Conclusion 77

8. Conclusion

The mediator framework is a new approach to combiisting simulation
tools. With the help of the framework, scientistéé split a biological simulation
into parts, and use for each of them a specific @tdnised simulation system.
The main advantage, in comparison to existing s tools (hard coded
tools), is the reusability of existing tools ane treneric mapping between them.
A number of features, like the log and statisti@t,usr the various mapping types,
allow the scientists to use the mediator frameworkealistic simulations of bio-
logical systems.

Currently, the mediator framework is more or legsr@totype implementa-
tion, but completely usable. With all the proposedensions, the mediator ap-
proach could play an important role in the systaology in future. However,
each time a very complex and calculation intensiveulation are necessary, a
hard coded and specific optimized system is tls éhoice. The application area
for the mediator should be small groups of sciéstiwhich concentrate on small
and medium complex models.

Beside the invention of new tools and models, tlanngoal of biology and
especially the system biology, is to close exiskngwledge gaps in order to in-
crease the quality of the existing models. Alsdaduaining helps to order and to
categorise existing knowledge and assists the tsstieim future research.

The quality of computer models and simulations degeon the known
knowledge. Without the entire knowledge of the maatem (structure, biochemi-
cal processes, dynamic of the system and interagtith the environment), the
fastest computer system and the best simulaticiersys not able to simulate the
real system correctly.

Appendix

Appendix
A. CD-ROM
The CD-ROM contains:

» all required program sources as JAR archive files
» short installation manual

* the complete thesis in digital form

Acknowledgment 79

Acknowledgment

| am grateful to my supervisors Dr. Jacob Kéhlegf PDr. Kurt Lautenbach and
Dr. Stephan Philippi. | thank Tully Yates and Artérysenko for the fruitful dis-
cussions and their help. | also thank Prof. Dr.i€Rawlings, Jan Taubert, Paul
Verrier, Matthew Hindle, Rainer Winnenburg, NatkaBirooke and Sabrina Hol-
land. Finally, | thank Rothamsted Research and &etm Da Vinci (Trier, Ger-
many) for financial support.

List of figures

Figure 1: Iterative model creation ProCess.ouuvvveiiiiiieeeeeeeeiiiiiie e 4
Figure 2: OpenCl: GA20 oxidase simulation with time course simulation
via SBW and roadRUNNET.ooviiiiiiiiee e 6

Figure 3: The individual models communicate via the SBW broker (from

L0 T 0 | RSP 7
Figure 4 Cellular automata after Ulam [UIa66].ccooeeeeiiiiiiiiiiiiiinnenenn. 8
Figure 5: Basic elements of MASON (from [LUKO5])ccooeiviviiiiiiiiiiineeee. 9
Figure 6: L-system and turtle interpretation.ccccoeevviiiiiiiiiiiiieeeeee, 10

Figure 7: Relation between the Chomsky hierarchy and L-System classes.
OL stands for the class generated by context-free L-Systems and IL
for the class generated by context-sensitive L-systems.................... 11
Figure 8: Mycelis muralis, based on a context-sensitive L-System from
g 110 S 12
Figure 9: Lilac inflorescences from [Pru90]...........cccooiiiiiiiiiiiiiiiiiiiieeee, 12
Figure 10: General syntactic structure of an RGG rule. Simplified, the rule

replaces L by R and executes P (from [KurO7]).ccceeeiiiiniiiiinnnnns 13
Figure 11: Relational growth grammar rule (upper part) and corresponding
graph (lower part) (from [KUrO7]). ..cooeureeiiinieeiiiiieie e 14
Figure 12: RGG rule for genetic crossing-over (from [KurQ7]). 14

Figure 13: Koch construction step. Replace the middle part with two lines.

Figure 14: Basic principle of the mediator concept. The connections
between the software system and the simulation tools are
DIAIrECHIONAL ... e 20

Figure 15: Connection and communication between BioSimMediator and
the SUDSYSIEMS. ... e 20

Figure 16: Mappings between the simulation subsystems. Capitals are
synonym for the simulation tools and the lower case letters stand for

attribute values inside these Systems.ccccvvvviiiiiiie v, 21

List of figures 81

Figure 17: Use case diagram for the BioSimMediator.......................o..... 23
Figure 18: Currently connected simulation tools.cccc. 25
Figure 19: Class diagram for the handle subsystem.ccccccceeeeee. 28
Figure 20: Class diagram: control subsystem.cccccccevvviviiiiiiinneeee, 30

Figure 21: Transport of attribute values between simulation subsystems.32
Figure 22: Mediator object classes for the transport of simulation attribute
VAIUBS. Lottt 34
Figure 23: Statechart diagram to illustrate the correlation between one
mediator step and the MapPiNg.ccooveviiiiiiini s 36
Figure 24: All possible mapping categories. Each path in the binary tree

from the root ‘Mapping’ to an end node contains one mapping. 38
Figure 25: Class diagram for the mapping unit of the mediator................ 39
Figure 26: Class diagram for the log subsystem.ccccvviiiiiiinnenenn. 42
Figure 27: Statistic unit design in a UML class diagram...............cc.occe.... 45
Figure 28: UML class diagram shows the global control object classes of

the MEAIALOTeeiiiiiiiieieeeeeee e 47
Figure 29: Three tier architecture of the mediator framework. 48
Figure 30: Package diagram of the mediator framework. 49

Figure 31: Sequence diagram illustrate the method calls during a mediator

] (= o PP 52
Figure 32: GUI for the mediator steps size control...........ccccceeeeeiinn. 53
Figure 33: UML sequence diagram illustrate the system dynamic during

L[S g F= T o] o 1] o 1S 55
Figure 34: GrolMP interface desSign.cooeeeeeeeiieeiiiiiie e 57
Figure 35: Mediator framework (illustration by Tully Yates). 58
Figure 36: ABC model of flower development (from [Wol02]).................. 60
Figure 37: Classes of genes are responsible for the development of the

different flower organs (from [AIDO2]).....cccceeeeiriiiiiiiiiiee e, 61
Figure 38: Petri Net model for the ABC model (by Tully Yates, Rothamsted

Research, United KiNQAOME).........cooiiiiiiiiiiiiiiiiiiie e 61
Figure 39: Mapping of the ABC model. ... 62
Figure 40: Log file of the ABC model example........cccooeeveeiviiiiiiiiiiiineeenn, 64

Figure 41: Root and RootSegment agents and the density of the soil in 2D.

List of figures 82

Figure 42: Agent root growing dir€Ction.coeuuuiuiiiiiieeiiieeiiiiiee e 67
Figure 43: Root example MappPiNgS.oooeeeeeeiieeiiiiiiee e 69
Figure 44: 3D visualisation of the root example in the agent simulation
Mason. The globes highlight soil with the maximum density value of
six. All other soil densities are not shown in the visualisation. The blue
cylinder illustrates the root. Each of them is one Root agent. 70
Figure 45: Example visualisation of another root simulation. Here, the root
growing is affected by the soil density.ccccvvvviiiiiiiii i, 70
Figure 46: Root simulation example with various side branches.............. 71
Figure 47: Root simulation example with various side branches, without
the density ViSualiSatioN.ccovvvviiiiiiiii e 71
Figure 48: Root structure visualised with GrolMP.ccccevvviiiiieeeee. 72

Figure 49: Biomass calculation of the root example..........ccccvvviiinnnnen. 72

List of tables 83

List of tables

Table 1. Turtle geometry: Geometrical interpretation of characters in L-
)] (=] 1.1 T PP PRUPPI 10
Table 2: lllustrate the relation between iteration step, string and resulting
geometrical form for the example.cccoooiiiiiiiii 11
Table 3: Geometric outcome after n durations for the snowflake example

Table 4: Vantages and disadvantages of the embedded and the mediator
approach. Plus sign connote vantage and minus sign connote
QISAAVANTAGE. ...uniiiieiiiieeeee et e e 19

Table 5: Simulation results: ABC model of flower development............... 63

Bibliography 84

Bibliography

[Abe82]

[Alb02]

[BIBO7]

[BN+07]

[Calos]

[Che97]

[Cho03]

[Coh67]

[Coh96]

[Fin03]

[Gam95]

Abelson, H.; DiSessa, A. A.: Turtle GeomgetCambridge, MIT
Press. (1982)

Albert, Victor A.: Genetics of flower morghogy;
http://folk.uio.no/victoraa/MH_Ybk_Albert 2002.pddiccessed
0.1.08.2007

Biobase: Biological Databases; http://wwvelbase.de/; accessed
22.06.2007

Centre for Bioinformatics Saar: BN++; hitffred.bioinf.uni-
sb.de9180/BNPP/; 22.06.2007

Calder, Muffy; Vyshemirsky, Vladislav; Git, David and Orten,
Richard: Analysis of Signalling Pathways using Qmmbus Time
Markov Chains.Lecture Notes in Computer Scierd220:pp. 44-67.
(2006)

Chen, S.G.; Impens, I. and Ceulemans, Rdéling the effects of
elevated atmospheric CO2 on crown developmentt liglerception
and photosynthesis of poplar in open top chamligishal Change
Biology, Volume 3, Number 2, April 1997 , pp. 976100), (1997)

Cho, K.H.; Shin, S.Y.; Kim, HW.; Wolkenhlner, O.; McFerran, B.
and Kolch, W.: Mathematical modelling of the infhee of RKIP on
the ERK signalling pathway. Lecture Notes in Cormepubcience,
2602:127-141, (2003)

Cohen, D.: Computer Simulation of Biolodigaattern generation
processes, Nature, 216, 246-248, (1967)

Cohen, S.D. and Hindmarch, A.C.. CVODE, tidf/sonstiff ODE
solver. C. Computer in Physics, 10.2: 138-14396)9

Finney, A. and Hucka, M.: Systems BiologyaMup Language:
Level 2 and Beyond. Biochem. Soc. Trans. 2003, B472-
1473,(2003)

Gamma, Erich; Helm, Richard; Johnson, R&plDesign Patterns.
Elements of Reusable Object-Oriented Software, gatiWesley
Longman, Amsterdam; Edition: 1st ed., Reprint (1995

Bibliography 85

[Gar03]

[Gas01]

[Gib99]

[Gil76]

[Gor99]

[Hei05]

[Hin83]

[Huc07]

[Kel01]

[Kit05]

[Kle02]

[KIi05]

Garvey, Thomas D.; et.al.. BioSPICE: Accesghe Most Current
Computational Tools for Biologists; OMICS: A Jourad Integrative
Biology, Dec 2003, Vol. 7, No. 4 : 411 -420, (2003)

Gasparikova, O.; Ciamporova, M.; Mistrik, Baluska, F. (Eds.):
Recent Advances of Plant Root Structure and Fumctio
Proceedings of the 5th International Symposium tmicBire and
Function of Roots held August 31-September 4, 1938ta Lensna,
Slovakia, Springer Netherlands, (2001)

Gibson, M. A. and Bruck, J.: Efficient exatochastic simulation of
chemical sytems with many species and many chandeisnal of
Computional Physics, A 104, 1876-1889, (1999)

Gillespie, D. T.: A general method for nunmally simulating the
stochastic time evolution of coupled chemical sgeciJournal of
Computational Physics 22: 403-434, (1976)

Goryanin, |.; Hodgman, T.C.; Selkov, E.: tamatical simulation
and analysis of cellular metabolism and regulatiBrminformatics
15, (1999).

Heinzl, Steffen; Mathes, Markus: Middleware Java, 1. edition,
Vieweg Verlag, Wiesbaden, (2005)

Hindmarch, A. C..: ODEPACK: a systematizedllection of ODE
solvers. Scientific Computer, (1983)

Hucka, M.; Finney, A.; Sauro, H.; Boloutl. and Bergmann, F.:
Biology Workbench Jav¥ Programmer's;
http://128.208.17.155//caltechSBW/sbwDocs/docslapd/Java_API
.pdf; (2004) accessed 03.07.2007

Kelemen, Jozef; Sosik, Peter: Advance itif&sial Life (Proceedings
of the 8" European Conference of Artificial Life), 242-28pringer-
Verlag, Berlin-Heidelberg, (2001)

Kitano, Hiroaki; Funahashi, Akira; Matsuokaruhiko and Oda,
Kanae; Using process diagrams for the graphicalesgmtation of
biochemical networks. Nature Biotechnology 23.8,-966, (2005)

Klein, J.: breve: a 3D simulation environméor the simulation of
decentralized systems and artificial life. Procagdiof Artificial Life
VIII, the 8th International Conference on the Siatidn and Synthe-
sis of Living Systems. The MIT Press. (2002)

Klipp, Edda; Herwig, Ralf; Kowald, Axel; Warling, Christoph; Le-

Bibliography 86

[Koe06]

[Koh0O]

[Kon07]

[Kur07]

[LukO5]

[Man06]

[Min04]

[Nag04]

[Nag04+]

[Per07]

[Pru90]

hrach, Hans (2005): Systems Biology in Practiceintvam; Wiley-
VCH, 1. Edition, ISBN-10: 3-527-31078-9

Kohler, Jacob; Baumbach, Jan; Taubert, 3aecht, Michael; Skusa,
Andre; Riuegg, Alexander; Rawlings, Chris; VerriBgul and Phi-

lippi, Stephan: Graph-based analysis and visuabzaif experimen-

tal results with ONDEX; Bioinformatics 22(11) (2006

Kohl, Peter; Noble, Denis; Winslow, Raimond, Hunter, Peter
J..Computational modelling of biological systemsols and vi-
sions,The Royal Society, Volume 358, Number 176%/dsy 15,
576-610, (2000)

Konrad-Zuse-Zentrum; Kober et al.: Anisqtiosimulation of the
human mandible; http://www.zib.de/Publications/Rep@R-04-
12.pdf; accessed 05.07.2007

Kurth, Winfried: Specification of morpholagal models with L-
systems and relational growth grammars, Image,ndbwf Interdis-
ciplinary Image Science, Vol. 5, (2007)

Luke, Sean; et al.. MASON: A Multiagent Sitation Environment,
SIMULATION, 81: 517-527, (2005)

Manninen, T.; Makiraatikka, E.; Ylipaa, ARgttinen, A.; Leinonenm,
K. and Linne, M. L.: Discrete stochastic simulatimincell signaling:

comparison of computational tools, Engineering iadi¢ine and Bi-

ology Society, (2006). EMBS '06. 28th Annual Intranal Confer-

ence of the IEEE

Ming, P.; Albrecht, J.: Integrated Framewdor the Simulation of
Biological Invasions in a Heterogeneous Landscdpansactions in
GIS, Volume 8, Number 3, June 2004 , pp. 309-334(2004)

Nagasaki, M.; Doi, A.; Matsuno, H. and Miyg S.: Genomic Object
Net:l. A platform for modeling and simulating bidpavays, Applied
Bioinformatics 2:181-184,(2004)

Nagasaki, M.; Doi, A.; Matsuno, H. and Mno, S.: A Versatile Petri
Net Based Architecture for Modeling and Simulatioh Complex
Biological Processes, Genome Informatics, 13:18D-{Z004)

Perttunen, Jeri: The Functional-Structiirale Model LIGNUM,;
www.sal.hut.fi/Personnel/Homepages/JariP/thesisfsam_perttune
n, accessed 10.07.2007

Prusinkiewicz, Przemyslaw; Lindenmayer,stid: The Algorithmic

Bibliography 87

[RamO05]

[Red96]

[Roz97]

[Saur00]

[Saur07]

[Tau05]

[Ula66]

[Ven01]

[Vos03]

[Wei98]

[Wil06]

Beauty of Plants. New York, Springer, (1990)

Ramsey, S.; Orrel, D. and Bolouri, H.: Bizgtochastic simulation of
large-scale genetic regulatory networks. JournaBimfinformatics
and Computational Biology 3.2: 415-436, (2005)

Reddy, VN; Liebman, MN; Mavrovouniotis, MQualitative analysis
of biochemical reaction systems; Comput Biol Metl996) Jan;
26(1):9-24.

Rozenberg, Grzegorz: Handbook of Graph @Gmams by Graph
Transformations, Vol.1, Foundations. Singapore, M/@cientific,
(1997)

SAURO, H. M.:Jarnac: a system for intav@cimetabolic analysis.
(2000) Ch. 33, 221- 228, Animating the Cellular M2gh Interna-
tional BioThermoKinetics Meeting (eds: Hofmeyr, J$| Rohwer, J.
M, Snoep J. L) Stellenbosch University Press, ISBRB72-0776-7

Sauro Lab, University of Washington:JDesig A Biochemical Net-
work Layout Tool;http://128.208.17.155//softwaregigner.htm;
accessed 02.07.2007

Taubert, Jan: Database Integration and ysmalof Biological Ne-
works Methods and Optimisation of ONDEX, Diplomaegis, Uni-
versity Bielefeld, (2005)

Ulam, S.: Pattern of growth of figures: Matnatical aspects; Mod-
ule, Proportion, Symmetry, Rhythm, 64-74. Brazjllétew York,
(1966)

Venter, J. Craiget al. : The Sequence of the Human Genorgei-
ence291, 1304 (2001)

Voss, Klaus; Heiner, Monika and Koch, listeady state analysis of
metabolic pathways using Petri nets; Silico Biology 3, 0031
(2003).

Weimar, Jorg R: Simulation with Cellular faumata, Logos-Verlag,
Berlin, (1998). ISBN 3-89722-026-1

Wilkinson, Darren James (2006): StochasWiodelling for Systems
Biology: Mathematical and Computational Biology; CHPress Inc,
2006.

Bibliography 88

[Wol02] Wolpert, Lewis: Principles of Developmefxford University Press,
Oxford, (2002)

[Zus07] Zuse |Institute Berlin: Affin-invariant Neat Techniques NLEQ?2;
http://www.zib.de/Numerik/numsoft/ANT/nleq2.de.html accessed
22.06.2007

