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Abstract 

 
In Silico simulation of biological systems is an important sub area of computa-
tional biology (system biology), and becomes more and more an inherent part for 
research. Therefore, different kinds of software tools are required. At present, a 
multitude of tools for several areas exists, but the problem is that most of the tools 
are essentially application specific and cannot be combined. For instance, a soft-
ware tool for the simulation of biochemical processes is not able to interact with 
tools for the morphology simulation and vice versa. In order to obtain realistic 
results with computer-aided simulations it is important to regard the biological 
system in its entirety. The objective is to develop a software framework, which 
provides an interface structure to combine existing simulation tools, and to offer 
an interaction between all affiliated systems. Consequently, it is possible to re-use 
existing models and simulation programs. Additionally, dependencies between 
those can be defined. The system is designed to interoperate as an extendable ar-
chitecture for various tools. The thesis shows the usability and applicability of the 
software and discusses potential improvements. 
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1. Introduction 

The importance of modelling and simulation in natural sciences grows gradu-
ally. Especially in biology, simulation tools become an inherent part of the work. 
Scientists use a high variation of different tools to assist their daily scientific 
work. Beside rather support-orientated tools, like for instance data management 
systems, document management systems or virtual lab books, biologists use more 
and more simulation tools as an alternative to real experiments. Additionally, the 
simulation tools are used in parallel to the experiments in order to control and 
assist the models and the experiments in the same way.  

The invention of powerful computer systems and new programming para-
digms allows creating powerful, but also complex software systems. These tools 
enable the users to create more realistic models, which can use new calculation 
intensive simulation methods. Some of these tools are able to solve complex 
mathematical equations, which are used in biochemical models, and others allow 
the creation of realistic looking 3D simulations.  

Before a scientist can use these new modelling and simulating techniques, he 
has to understand what is necessary to know about the real system to transfer the 
real world into a model. A model is always an abstraction and a concentration to 
the important parts of a real system (world). Modelling a real system means to 
understand the system and to identify and to categorise the mayor parts and dy-
namics. To model and simulate a biological system it is indispensable to have a 
detailed knowledge about the following systems parts: 
 

• biochemical processes  

• physical structure 

• dynamic of the system 

• interaction with the environment 

In the last decade, quite a few tools have been invented to model and simu-
late biochemical processes as well as the structure of biological organism. To 
simulate a complex system like a tree, a flower, an organ or an entire ecosystem it 
is inadequately to simulate the biochemical process separately from the structure. 
As mentioned before, an entire simulation is only possible when all four men-
tioned parts are combined in one simulation. Most of these invented tools simulate 
only the functional or structural part of the system, and currently, only some ap-
proaches exist which are able to combine the different parts into one simulation. 
Usually, scientists use hard coded simulation tools to simulate an entire system. 

The goal of this thesis is to present a new simulation framework approach, 
which is able to reuse existing simulation tools and combine the parts (simulation 
tools) to an entire simulation. The framework shall be able to interact with the 
connected tools, and allows the administrator to define dependencies between the 
different models.  
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2. Fundamentals and Related Work 

Fundamental research in biology has concentrated for a long time on specific 
parts of a biological system.  Biologists have studied the molecular biology of a 
single cell and have investigated how parts of the cell work. They have concen-
trated on DNA replication as well as on transcription, DNA, RNA, protein and 
membrane structure and function. The invention of new technology, like fluores-
cence labelling, sequence analysis, electron microscopes or microarray analysis 
revolutionise the research. A well known example for the capability of new meth-
ods is the sequencing of the human genome, known as the human genome project 
[Ven01].  

Traditional techniques for the storage of experimental results (data), e.g. 
laboratory notebooks, simple text files or spreadsheets, are not adequate for the 
multitude of data which are now available and accrue every day. To handle this 
data it has been necessary to collaborate with other natural science and use com-
puter science techniques and methods. With the aid of this interconnection, scien-
tists can concentrate more and more on the investigation of complex systems and 
interaction between elementary elements. For instance, cells, organs, organism 
and how cellular processes are regulated as well as reactions of changes in the 
environment. This new field is called in literature system biology or computa-
tional biology [Kli05]. 

One major task of system biology is to develop tools and algorithm for the 
simulation and modelling of biological systems. Like in other natural sciences 
such as physics, where modelling and simulation plays an important part of re-
search, theoretical approaches for the simulation of complex systems have been 
developed. The models and simulations are based on mathematical concepts like 
differential equations, net theory, Markov processes and stochastic processes al-
gebra1. For example, metabolic network can be modelled as a Petri net [Red96]. 
Also, it is possible to analyse metabolic pathways using high-level Petri nets 
[Vos03]. Common tools use ordinary differential equations (ODE) for the simula-
tion of metabolic pathways. Therefore, the system transfers the metabolic network 
in a set of equations which can be solved [Gor99]. More information about model-
ling and simulation can be found in [Kli05] and [Wil06]. 

The knowledge we have about a biological system results from experiments. 
Additionally, a model can only be as good as the knowledge about the real sys-
tem. Consequently, it is necessary to provide the information in an easy and stan-
dardised way. For this reason, data integration plays an important role here. The 
majority of data integration tools are data warehouse tools, which based on rela-
tional or object-oriented data bases, and allow to integrate and to visualise diverse 
biological data sets. Currently, a few open source and commercial systems exist. 
The ONDEX system [Koe06], developed at the bioinformatics group at Rotham-
sted Research Institute2, use data mining techniques to extract information out of 
existing biological data bases, and text mining techniques to extract information 
out of free text. The system combines, with the help of data integration tech-
niques, information in a graph-based data format and provides a visualisation and 

                                                 
1 For instance, PEPA; http://homepages.inf.ed.ac.uk/stg/research/SIGNAL/; accessed 02.07.2007 
2 http://www.rothamsted.ac.uk; accessed 02.07.2007 
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analysis functionality. Another open source tool is BN++3, developed at the Uni-
versity of Saarland [BN+07]. Companies usually offer a combination of data 
warehouse tools and molecular biological tools or services. Biobase4 for instance, 
provides tools and data warehouse systems for transcription factors, gene regula-
tory networks, microarray analysis and proteomics [BIB07].  

Data integration cannot explain the dynamic of the system or replace the 
mathematical modelling, but it helps to find the necessary information and de-
pendencies between the elements. It can avoid the problem of using erroneous 
data or missing important side effects. Errors can occur for instance, when the 
gene identifiers are misspelled or different names for the same gene are used, 
which arises frequently. 

To explain why models and simulations in biology are inevitable, it is indis-
pensable to define what a model is. Klipp et al. [Kli05] define a model in the fol-
lowing way, ‘In the broadest sense, a model is an abstract representation of ob-
jects or processes that explains features of these objects or processes’. In other 
words, a model is a simplified and abstracted view of a part of the real world, 
concentrated on the principal constituents. A model is the basic prerequisite for a 
simulation of a system. 

 
The advantages of computational modelling and simulation can be divided into 
two groups: 

 The first group contains the model’s obvious vantages in comparison to tra-
ditional experiments. Modelling is cheap compared to real experiments. Each 
model is reusable, whereas experiments are abdicated to several conditions like 
weather, materials or chemical products. Simultaneously, the model is independ-
ent from the real objects and causes no harm on animals or plants. In addition, no 
interaction with the environment nor with the modelled system takes place. Con-
sequently, no falsification of results by unintentional interactions is feasible. The 
experimental time can be compressed or enlarged in the model at discretion. Thus, 
a model is able to simulate different scenarios with varying parameters in a 
shorter time then a real experiment. Moreover, a computational model (simula-
tion) produces more measured data and precise time series. In contrast to a simu-
lation, in real experiments the scientist has to be concentrated on a couple of val-
ues to measure without disturbing the complete measurement.  

In the second place, modelling demands uniqueness in the problem specifica-
tion. Problem, hypothesis and general conditions must be defined in an unambi-
guously way in advance. Hence, modelling helps the scientist to follow a more 
structured approach. Finally, a model can help to point out gaps in the knowledge 
or understanding, which can be a trigger for new fundamental research. The rela-
tion between model and real experiment, and how to create a new model, will be 
discussed in the next paragraph. 

 
The development process for a biological model is almost identical as in 

other natural sciences. First of all, creating a model is a complex iterative process. 
Generally, a model relies on the data of experiments as well as the scientists’ ex-
perience. To give a first impression of the complexity of model development, I 
will present a simplified common modelling workflow: 
 

                                                 
3 http://fred.bioinf.uni-sb.de:9180/BNPP; accessed 02.07.2007 
4 http://www.biobase-international.com/pages/; accessed 02.07.2007 
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1. Problem specification: In the first place, the problem must be specified 
and it must be clear which questions shall be answered with the model. In-
stantly, a hypothesis in written form shall be defined. 

 
2. Evaluate available information: Use data integration tools and other 

sources to collect and evaluate all available information. Maybe similar 
models exist or parts of other models can be reused. 

 
3. Choose model type: Depending on the available information in point two, 

choose the structure of the model. The model can be a deterministic or sto-
chastic system. In addition, choose the level of abstraction and the usage 
of either continuous or discrete variables. Subsequently, select the under-
lying mathematical formalism. 

 
4. Create initial model: During the creation process of the model it is often 

necessary to concretise the hypothesis or to collect more data. 
 
5. Verification of the model prediction: Try to verify the results of the 

model with a real experiment.  
 
6. Redefine the initial model: Generally, the model and the experiment re-

sults disagree. Consequently, the points one to six must be repeated in an 
interactive procedure in order to find out wherefrom the disagreements de-
rive. Hence, a model can be a trigger for new fundamental research or new 
experiments. After one iteration step and adaptation of the initial model 
the agreement should improves. 

 
Figure 1 shows a flowchart of the iterative model creation process. 
 

 
Figure 1: Iterative model creation process. 
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The major focus of system biology lies on the simulating of biological systems in 
silico. Therefore, various software tools are developed currently. These tools can 
be classified in functional and structural tools.  
 
 
2.1. Functional simulation tools 
 

Different categories of functional simulation tools exist. The first category 
comprises standard mathematical tools beside high-level programming languages 
and special modelling languages. First of all, scientists search for biochemical 
networks in tools like ONDEX, biological databases and other sources of informa-
tion. In the next step, they develop the models on paper and transfer those into a 
set of equations. At least, they use tools like MATLAB ®5, Mathematica ®6  or the 
R7 environment to solve those equations. Alternatively, scientists use high-level 
programming languages in combination with open source packages, for instance 
the Open Source Physics8 project, which provides several algorithms to solve 
equations. Additionally, numerous modelling languages exist. For one, PRSIM9 
allows the definition of systems of concurrent processes. When the processes are 
synchronised, continuous time Markov chains can be simulated. Muffy Calder et 
al. [Cal06] for instance, use continuous time stochastic logic and the PRSIM lan-
guage to model a signal transduction network with an example of the RKIP inhib-
ited ERK10pathway. They compare this stochastic modelling approach with an 
ordinary differential equation model, using MatLab® [Cal06].  

The second category contains more biological specific systems, which com-
bine stochastic and ODE simulation capabilities with a tool associated control 
language. In addition, these tools allow defining the models, analysing them and 
represent the results in one environment with often a graphical user interface. For 
example, tools like Jarnac, roadRunner or Dizzy. Jarnac [Saur00] developed from 
Sauro et al.11 is a scripting environment, implemented in C++, and only available 
for Win32. The tool uses to solve ODE systems the popular CVODE [Coh96] or 
LSODA [Hin83] integrator, which can be selected individually by the user. For 
stochastic simulations the tool uses an implementation of the Gillespie [Gil76] 
algorithm. Later on Sauro et al. developed a nearly platform independent C# 
based software tool, called roadRunner. Unlike Jarnac, this tool compiles the 
models dynamically instead of interpreting them. RoadRunner uses for steady 
state analysis the integrator CVODE and NLEQ [Kon07]. Furthermore, Stephen 
Ramsey [Ram05] developed a tool for stochastic simulations based on Gillespie, 
Gibson-Bruck [Gib99] or Tau-Leap [Man06] algorithm, called Dizzy.  

Graphical modelling environment tools are combined in category three. In 
contrast to previous presented tools, these tools allow to draw the biological net-
work directly in the tools and to select the corresponding kinetic laws. The first 

                                                 
5 http://www.mathworks.com/ 
6 http://www.wolfram.com/ 
7 http://www.r-project.org/ 
8 http://www.opensourcephysics.org/ 
9 http://sato-www.cs.titech.ac.jp/prism/ 
10 In place, only a brief overview, more details are presented in [Cal06]. The ERK pathway (also 
known as Ras/Raf or Raf-1/MEK/ERK pathway) describe the signals between cell membrane and 
the nucleus. The protein RKIP inhibits the activation of Raf. 
11 http://128.208.17.155//labmembers.htm; accessed  02.07.2007 
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tool, JDesigner [Saur07], developed at the Keck Graduate Institute12, uses a 
model of hyper-graphs to visualise the biochemical networks. The tool allows the 
user to select predefined rate laws (between the different species) or the user is 
also enabled to define new rate laws. In addition, the tool uses the functionality of 
Jarnac or roadRunner for time-course simulation and steady state analysis via the 
System Biology Workbench (SBW), which will be described in detail in the next 
paragraph. A further tool for modelling and graphical representation of biochemi-
cal networks is CellDesigner, which uses a process diagram [Kit05] notation. 
CellDesigner uses in the same way as JDesigner Jarnac or roadRunner, via the 
SBW interface, for the simulation. The tools in the next category based on Hybrid 
Functional Petri Nets with extension13 [Nag04+]. This net class enables the user to 
model rule based biological processes in bio-pathways, e.g. gene regulations as 
well as ODE-based kinetics. Cell Illustrator [Nag04] has been developed by Ma-
sao Nagasaki at the University of Tokyo. Artem Lysenko and Tully Yates, from 
the Rothamsted Research Institute14, have created an open source tool, named 
OpenCI, which uses continuous Petri Nets to model the systems. A screenshot of 
a prototype implementation is shown in Figure 2. The illustration presents a GA20 
oxidase pathway with a time course simulation via SBW and roadRunner. 
 

 
Figure 2: OpenCI: GA20 oxidase simulation with time course simulation via SBW and road-
Runner. 
 

                                                 
12 http://www.kgi.edu/; accessed  02.07.2007 
13 The extension is necessary to model and simulate more complicated biopahtway proc-
esses. The extensions are: first, an entity should contain more than one value, such as 
list or pair. Secondly, HFPN should handle other primitive types, e.g. boolean, string. 
Thirdly, the net should handle complex types, like objects. 
14 http://www.rothamsted.ac.uk; accessed 03.07.2007 
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Hitherto, all presented tools are more or less independent. Accordingly, each 
tool has to implement its own equation solver, network visualiser, data format et 
cetera. In regards to the independent data formats, defining a model in tool ‘A’ 
and reuse the same model in tool ‘B’ require a complete remodelling in tool ‘B’. 
Hence, data exchange formats have been developed to reduce this problem. Cur-
rently, two exchange formats, based on XML, are almost standard. First of all, the 
System Biology Markup Language (SBML)15 is supported currently by over 110 
software systems [Fin03]. Besides, the Cell System Markup Language (CSML)16 
exists. Both data formats allow representing metabolic, signalling and genetic 
regulatory pathways. These exchange formats allow the scientists to model a sys-
tem in different tools, without a direct interaction between these independent 
tools. Therefore, the System Biology Workbench17 (SBW) has been developed by 
Frank T. Bergmann and Herbert M. Sauro at the Keck Graduate Institute, Clare-
mont, USA. SBW is a modular framework, based on broker architecture, connect-
ing existing modelling and simulation tools. This approach allows a direct com-
munication between tools and a reuse of existing functionality, e.g. equation 
solvers or specific algorithms. The broker controls the communication, based on a 
message system over TCP/IP and provides binding libraries for the most common 
programming languages (Figure 3). 

 
Figure 3: The individual models communicate via the SBW broker (from [Huc07]). 
 

Moreover, the Bio-Spice18 framework provides a similar functionality like 
the SBW framework and uses the SBML format also as exchange format between 
the different tools [Gar03]. The core of the system, written in Java, is called 
‘Dashboard’ and allows the combination of connected tools via a graphical user 
interface to tool chains.  

In conclusion, SBW as well as Bio-Spice affords the reuse and the combina-
tion of existing tools. However, not one of the frameworks offers the functionality 
to map parts of the simulation during runtime together. Hence, it is only possible 
to define chains of tools, and each tool simulates its own model and passes the 
results as input to the next tool. The goal of these frameworks is to create a con-
trol tool, which provides biologists a uniform access to existing computational 
tools. 

                                                 
15 http://sbml.org/; accessed 03.07.2007 
16 http://www.csml.org/; accessed 03.07.2007 
17 http://128.208.17.155//research/sbwIntro.htm; accessed 03.07.2007 
18 http://biospice.sourceforge.net/; accessed 03.07.2007 
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2.2. Structural simulation tools 
 

Besides the modelling and simulation of biochemical processes, it is neces-
sary for the simulation of the entire system to simulate the physical structure. 
Therefore, different techniques have been developed in the last 40 years. 

The first approach to simulate branching structures appeared in 1966, based 
on cellular automata. This approach has been theoretical developed from John von 
Neumann (1903 - 1957). A cellular automaton is a discrete dynamic system in 
time, space and state. The smallest unit, called a cell, can have any one of a finite 
number of states. The state of a cell depends on its previous state and the state of 
its neighbours’ at the previous time state. All cells update synchronously. An ex-
ample is shown in Figure 4. The left illustration shows cellular automaton which 
incipient with the starting cell ‘1’. All cells switch to active when they have ex-
actly one connection to an existing active cell. The right illustration shows the 
result of a modification of this basic rule. All cells, which have a connection to a 
cell that switch to active in the same time step, switch back to invisible.  
 

 
Figure 4 Cellular automata after Ulam [Ula66]. 
 

At present, a multiplicity of software tools for cellular automata exists. A list 
of tools and examples are present in the book, ‘Simulation with Cellular Auto-
mata’ [Wei98]. A similar approach to Cellular Automata is agent based simula-
tions. The smallest unit is called agent here. This method is used for a wide range 
of economic simulation, social complex environment simulations as well as natu-
ral science simulations. The user defines the behaviour of each agent and rules for 
the interaction. The current state of an agent depends on its previous state and its 
neighbours’ state. Similar to cellular automata, all states update synchronously.  

An easy to use, open source multi agent simulation tool is MASON19, devel-
oped from Sean Luke et al. at the George Mason University, Fairfax, Virginia. 
MASON is a shortcut for Multi-Agent Simulator of Neighbourhoods. The tool is 
completely implemented in Java and delineates between model and visualisation. 
Hence, it is possible to run a simulation without or with a visualisation. First of 
all, the user defines a model with the help of different predefined field types. In 
the next step, the user can assign a graphical representation to the field elements. 
All agents in the system are controlled by a global discrete event scheduler, and in 

                                                 
19 http://cs.gmu.edu/~eclab/projects/mason/; accessed 03.07.2007 
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each time step the system can save the current system state (checkpoint). This 
basic functionality is illustrated in Figure 5 (from [Luk05]). 
 

    
Figure 5: Basic elements of MASON (from [Luk05]) 
 

A good overview and example implementations of simulations using MA-
SON can be found in the publication, ‘MASON: A Multiagent Simulation Envi-
ronment’ [Luk05]. 

The breve simulation environment20 is an alternative multi-agent simulation 
tool. The emphasis rests upon 3D simulation and segregation between calculation 
and visualisation is not feasible. The tool includes physical simulation utilities as 
well as collision detection and use OpenGL for the visualisation. More informa-
tion can be found in the conference article, ‘breve: a 3D simulation environment 
for the simulation of decentralized systems and artificial life’ [Kle02]. 

 
First more or less realistic looking branching structures were developed from 

Dan Cohen with procedural techniques in FORTRAN in 1967 [Coh67]. He used 
three basic procedural rules for the generation of the structure. 

In 1968 Aristid Lindenmayer (1925 – 1989) introduced a new technique 
based on a string rewriting mechanism (L-Systems). In comparison to the impera-
tive programming paradigm, in the rule based programming paradigm no specific 
execution order for the rules are defined. The rules only specify the changes of the 
current system and are picked up from the control unit when they are applicable. 
Familiar examples for the rule based programming paradigm are grammars of 
natural language and formal grammar, developed by Noam Chomsky. In L-
Systems, all applicable rules are executed in parallel. Deterministic L-Systems 
consist of an ordered triple ),,( PVG ω= . V is an alphabet, +∈Vω is a not empty 

set over the alphabet and +×⊆ VVP is a not empty set of production rules. 

                                                 
20 http://www.spiderland.org/breve/; accessed 03.07.2007 
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A simple example: 
 

]}][[][{

])[,,,,(

FFFFFFP

F

FV

+−>−=
=

−+=
ω  

 
A virtual drawing device, called the ‘turtle’ [Abe82], interprets the string and 

produces a graphical representation of it. Each character in the string has a geo-
metrical meaning. Start with the initial string (ω  ), the system uses all applicable 
rules in each step and produce (P) in each step a new string (si). For the visualisa-
tion, the string si is scanned from left to right and the geometrical structure Ti is 
constructed by interpreting the occurring character (see Figure 6).  
 
 

 
Figure 6: L-system and turtle interpretation. 
 
 

Table 1 gives an overview of those geometrical meanings which are neces-
sary for the understanding of the example above. 
 
 
Table 1: Turtle geometry: Geometrical interpretation of characters in L-systems. 
Character Geometrical interpretation 
F Moves forward and draw simultaneously a line of length one 
+ Rotates 45 degree anti clockwise 
- Rotates 45 degree clockwise 
[ Saves current position on the stack 
] Top element of the stack is the current state 

 
 
Table 2 illustrates the relation between iteration step, string and geometrical form. 
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Table 2: Illustrate the relation between iteration step, string and resulting geometrical form 
for the example. 
Iteration 
step 

String Geometrical form 

0 F  
 

 
1 ]][[][ FFFFF +−  

 

 
2 

]]][[][]][][[

][][][[][

]]][[][][][[][

FFFFFFFF

FFFFFFF

FFFFFFFFFF

+−+
−++−

+−−+−
 

 

 
 

Over the years, various extensions of the original concepts have been de-
fined. For instance, stochastic L-Systems, declare probabilities to select the rules, 
allow generating more natural looking structures with more variability or paramet-
ric L-Systems, which allow specifying length and diameter of the atomic ele-
ments. In the book, ‘The algorithmic beauty of plants’, Lindenmayer and Prus-
inkiewicz describe all variation and extensions of L-Systems [Pru90]. The rela-
tions between Chomsky classes of language and language classes generated by L-
Systems are illustrated in Figure 7. 

 

 
Figure 7: Relation between the Chomsky hierarchy and L-System classes. OL stands for the 
class generated by context-free L-Systems and IL for the class generated by context-sensitive 
L-systems.  
 
Figure 8 and Figure 9 show, to illustrate the power of L-systems, two simulated 
flowers obtained form a context-sensitive L-System. 
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Figure 8: Mycelis muralis, based on a context-sensitive L-System from [Pru90]. 
 
 

 
Figure 9: Lilac inflorescences from [Pru90]. 
 

L-Systems are based on well known theoretical concepts and create realistic 
looking models of plants. Nevertheless, even with all extensions, L-Systems have 
some limitations. In the first place, an element in the system can only be a direct 
successor of another or it can be a branch element. These relations are a too sim-
plified view of reality. In the second place, classical L-Systems are only appropri-
ate for the creation of one dimensional model with turtle interpretation. Exten-
sions, like ‘map L-Systems’ and ‘cellwork L-Systems’ (see [Pru90]) allow model-
ling realistic looking two and three dimensional models, but the usage is fairly 
complicated. Finally, the definition of L-Systems varies from common object-
oriented programming styles. The formalism is simple and supports no hierarchy 
of objects and other OOP features.  

 
With reference to this background, Winfried Kurth designed a new formal-

ism, ‘relational growth grammars’ (RGG), to avoid these problems (see [Kur07]). 
Together with Ole Kniemeyer, he defines a corresponding programming lan-
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guage, ‘XL’ (eXtended L-systems language)21, as an extension of the Java22 pro-
gramming language. RGG is based on a well developed theoretical concept about 
graph grammars [Roz97]. Like L-Systems, RGG is a rewriting system operating 
on graphs instead of strings. The graph consists of nodes and edges and allows 
loops. Miscellaneous types of edges (relations) between the nodes are allowed, 
and therefore, the formalism is called ‘relational’. The RGG rules are defined in 
XL and the graph is rewritten by the XL programme. A node in the graph can be a 
geometrical object (structure and additional parameter) or a transformation object 
(rotate, scaling, etc.) of a XL class.  

The general syntactic structure of a RGG rule is shown in Figure 10. The 
whole RGG system consists of several RGG rules, which are usually applied in 
parallel to the corresponding graph. 

 
Figure 10: General syntactic structure of an RGG rule. Simplified, the rule replaces L by R 
and executes P (from [Kur07]). 
 

Figure 11 demonstrates an application of a simple RGG rule. The upper part 
of the figure shows one RGG rule, where the left hand side has to be replaced 
with the right hand side. All nodes A and B, which are connected via a direct edge 
from A to B, have to be replaced by the nodes A, B and C. Two different types of 
edges are used in the example (dotted and unbroken arrows). The lower part of the 
figure illustrates the application of the rule. The rule is applicable to the red 
marked and with an unbroken blue line framed area on the left side in the graph. 
Attend that the rule is not applicable to the part of the graph surrounded by the 
dotted blue line. The right lower part of the figure shows the rewritten graph after 
rule execution. New graph elements are highlighted in red and surrounded by a 
blue circle.  

                                                 
21 http://www.grogra.de/; accessed 03.07.2007 
22 http://www.sun.com/: accessed 03.0702007 
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Figure 11: Relational growth grammar rule (upper part) and corresponding graph (lower 
part) (from [Kur07]). 
 

A simple example of graph rewriting shows the capacity of RGGs against L-
Systems. For example, the so called ‘crossing over’ process of two aligned DNA 
strings in sexual reproduction can not be expressed in an L-System rule. Figure 12 
illustrates this recombination process in a RGG rule. The unbroken arrows repre-
sent the successor relation in base sequence of DNA and the dotted lines denote 
the alignments between two homologous DNA strings [Kur07].  
 
A possible XL specification of the rule is: 
 

a  b,  c  d,  (*   a  - align -  c  *)  ==>  a  d,  c  b; 
 

Whereas a, b, c and d are objects of the corresponding user defined XL 
classes. The standard successor edge is represented in the example with a blank, 
and the alignment edge is specified with –align-. 

 

 
Figure 12: RGG rule for genetic crossing-over (from [Kur07]). 
 

To use relational growth grammar in practice, Kniemeyer developed an inte-
grated development environment named GroImp (Growth-grammar related Inter-
active Modelling Platform). The IDE contains an XL compiler, an extended editor 
for XL, a 2D graph visualiser and a 3D modelling and rendering unit. GroImp is a 
platform independent tool under the GNU public licence. The system allows em-
bedding RGG rules in XL programmes, compile, execute and visualise the results 
of the simulation with help of OpenGL. For more details, a collection of RGG 
examples and a XL tutorial, see http://www.grogra.de. To clarify the dependen-
cies between XL, RGG and the visualisation, the first example from the XL tuto-
rial is abbreviated present below. 
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In 1904 the Swedish mathematician Helge von Koch introduced a simple 
rule-based approach to model a snowflake. The idea is, to divide an initial line 
into three parts and replace the middle part with two lines as shown in Figure 13. 
 

 
Figure 13: Koch construction step. Replace the middle part with two lines. 
 

To generate a snowflake with this approach the initial figure has to be a tri-
angle. The transcription of Koch construction step into two RGG rules embedded 
in a XL programme is shown in the following code: 
 

public void derivation() [ 
Axiom ==> F RU(120) F RU(120) F; 
    F ==> F RU(-60) F RU(120) F RU(-60) F; 
] 

  
The used symbols at this point are Axiom, F and RU, which are at the same 

time the nodes of the corresponding graph. Axiom is the start symbol and the first 
rule describes the initial triangle. Whereas, F draws a straight line and RU turn the 
orientation by the given angle. The second rule implements the Koch construction 
replacement. Accordingly, all nodes from type F, which are created with the first 
rule, have to be replaced with the right hand side of the second rule. 
 
Table 3 shows the graph and the geometric outcome after n steps. 
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Table 3: Geometric outcome after n durations for the snowflake example 
Step Geometric outcome Graph 
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Too complex to show 

 
The pictures in Figure 13 and in Table 3 are out of the XL tutorial from GroIMP. 
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2.3. Simulation of biological systems 
 

The simulation of an entire biological system requires a combination of func-
tional and structural simulation. Currently, a wide variation of models and simula-
tions for more or less complex biological systems exist. Examples can be found in 
medical and botanic area. 

The first group of simulations has a medical orientation. Scientists try to 
simulate organs, organ systems or a musculoskeletal system of human beings and 
animals. The mayor focus in medical simulations is the virtual heart. Various 
models for fluid dynamic, contraction, electrocardiogram or drug effects have 
been developed in the last decade. Scientists used the medical knowledge to create 
an entire heart model based on biochemical processes and 3D visualisation. All 
existing tools are hard coded and optimised for only one or two use cases. This 
kind of specialisation is characteristic for the simulation tools. For instance, some 
tools use the MatLab fluid dynamic tool box for the simulation of the blood fluid 
dynamic. In addition, the simulations use self-written tools to combine the struc-
tural and functional parts of the model in one new simulation environment. An 
overview of heart examples is shown in, ‘Computational modelling of biological 
systems: tools and visions’, by Peter Kohl et al. [Koh00]. 

For other human organs similar simulation approaches exist. One example is 
the ‘German HepatoSys23 competence network of system biology’, which tries to 
model a human liver.  

Cornelia Kober et al. developed an anisotropic simulation of the human man-
dible. The simulation is based on computer topographic base data, organ geometry 
and load distribution experiments (see [Kon07]).  

The mayor issue of the second group is to model and simulate flowers, crops, 
trees and landscapes. Similar to the first group, most of the software systems for 
plant modelling are problem specific. One tool or framework is only applicable 
for a particular plant or a group of similar plants.  

As an exception, GroImp allows to model 3D structures and to integrate the 
biochemical process simulation into the model. The system uses the XL language, 
an extension of Java programming language, to model biochemical processes like 
in other high-level programming languages. The disadvantage is that all bio-
chemical processes have to be implemented in XL, and therefore, no existing bio-
chemical simulation tools or models can be reused. For instance, the barley 
breeder simulation in GroIMP shows varied mutation of barely, which is con-
trolled by various biochemical processes. The model can be found in the GroIMP 
release (see http://www.grogra.de).   

The modelling language LIGNUM represents a further example for a similar 
approach. Functional and structural simulations are combined in the tool with the 
same disadvantages like in GroIMP. Information about LIGNUM can be found in 
the thesis from Jeri Perttunen, ‘The Functional-Structural Tree Model LIGNUM’ 
[Per07]. 

Moreover, a huge quantity of non-generic simulation tools exists. Ming et al. 
developed a framework for the simulation of biological invasions in a heterogene-
ous landscape. The scientists integrate geographical information, biophysical 
structures and diffusion dynamic in the workflow [Min04].  

                                                 
23 http://www.systembiologie.de/en/index.html; accessed 03.07.2007 
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The correlation between atmospheric CO2 and crown development is simu-
lated in the model of Chen et al. The simulation uses a 3D model of a tree and a 
3D model of the environment to simulate the relationship between photosynthesis, 
light interaction and growing. More information can be found in [Che97].  

An overview of structural and functional plant models are presented at the 
5th international workshop, ‘Functional Structural Plant Models’, in Napier, New 
Zealand. For more information visit the workshop website24. 

 
Hitherto, all presented generic or non-generic tools produce good simulation 

results for specific areas. For each model the functional and structural part of the 
model has to be completely re-implemented in the tools own formalism.  

The thesis introduces a new software framework approach, which combines 
existing structural and functional simulation tools. Consequently, the system al-
lows the re-usage of already existing and defined models, without reimplementa-
tion. 

                                                 
24 http://algorithmicbotany.org/FSPM07/index.html; accessed 03.07.2007 
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3. Requirements 

The basic idea for the new software system is to combine, in a generic way, 
biochemical and structural simulation tools to simulate complex biological sys-
tems. In principle two possible solutions are conceivable and will be discussed in 
the following: 
 
1. Create an entire software system and include all discussed methods, like dif-

ferential equation, stochastic process, Petri Net, L-System, RGG and agent-
based simulation (see Fundamentals and Related Work). The vantages of such 
a system are: a uniform user interface, optimised performance and uniform 
data storage. Disadvantages are: the complexity of the system, reimplementa-
tion of all methods, heavy maintainability, and the impossible reuse of exist-
ing models as well as the inflexibility for future modelling approaches. 

 
2. Create a software mediator which is placed between existing simulation tools. 

Vantages of the mediator solution are: re-use of existing tools, no limitation 
for adding system, relative small software systems, easy to administrate and to 
maintain as well as global control of the simulation. The main disadvantages 
are: no optimised performance, concerning the communication between the 
tools, no uniform user interface for the model definition, various storage files.  

 
Table 4: Vantages and disadvantages of the embedded and the mediator approach. Plus sign 
connote vantage and minus sign connote disadvantage. 
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Embedded approach + + + - - - - 

Mediator approach - - - + + + + 

 
 

After having compared the advantages and disadvantages of both systems, 
respectively, the decision was made to use the mediator approach for the new 
software system.  The handicap of inconsistent user interfaces will be compen-
sated by the reusability of existing models and user familiar tools. The perform-
ance can be optimised with a good system and interface structure design. The 
general idea of the mediator approach is presented in Figure 14. The software sys-
tem is placed in the middle and communicates with the adapted pathway and 
structural simulation tools, respectively. A user creates the biochemical and struc-
tural models and initialises the mediator software. 
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Figure 14: Basic principle of the mediator concept. The connections between the software 
system and the simulation tools are bidirectional. 
 

First of all, the new system must be able to add n )( Nn∈ independent mod-
elling and simulating tools. Therefore, a clear and well defined interface structure 
is necessary. Adding a new tool means in this context that a connection between 
tool and mediator has to be established (see Figure 15, number one) and informa-
tion can be transferred in a bidirectional way (see Figure 15, number two). The 
information, which are called values in the figure, could be current simulation 
parameters, simulation element values, new values for the simulation or initial 
configuration parameter values. 

In the second place, the software system (BioSimMediator) should have a ba-
sic control over all added modelling and simulating tools, in the following called 
subsystems. Basic control means here that the BioSimMediator is able to start, 
stop and reset all simulations in the connected subsystems. Furthermore, control 
over simulation specific commands, like run a simulation (see Figure 15, number 
three). 

 

 
Figure 15: Connection and communication between BioSimMediator and the subsystems. 
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For an entire simulation, it is necessary to enable the user to define mappings 
between the subsystems. That means, the user specifies which subsystems are 
allowed to communicate with each other and under which conditions. For in-
stance, a value from subsystem A has to be changed in the next step. Subsystem B 
calculates the value and the mediator knows, with the help of the user defined 
mapping, that the value has to be sent to subsystem A. All possible variations are 
shown in Figure 16. In principle, the mediator has to distinguish between a direct 
mapping and a threshold restricted mapping. The figure illustrates six mappings 
between the subsystems. All mappings are only present in one direction; in reality 
the reverse mappings are also possible.  

 
Figure 16: Mappings between the simulation subsystems. Capitals are synonym for the simu-
lation tools and the lower case letters stand for attribute values inside these systems.  
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A brief description of the six represented mappings follows (see Figure 16): 
 
1. Threshold restricted mapping: The attribute value of a from tool A will sent to 

tool B, if the condition is true. 
2. Direct mapping: Attribute value c will be sent in each mapping step to tool B 

without restriction. 
3. Direct mapping: The attribute value of f from tool D will be sent to tool C. 

This tool recalculates the attribute value (e and e’) and sends it back to the at-
tribute f in tool D.  

4. Direct mapping: Equal to point three, but the recalculated value will be sent to 
another subsystem E. 

5. Direct or restricted mapping: The dark blue arc shows the restricted mapping 
and the azure picture the direct one. The peculiarity is that both tools F and G 
are functional simulation tools.  

6. Direct or restricted mapping: in comparison to point six, tool H and I are 
structural simulation tools. 

 
Accordingly, the mapping unit of the mediator must be generic enough to handle 
all present mapping types.   
 

The next requirement is a step size control for each subsystem. Step size con-
trol means, most of the subsystems work with special simulation methods and all 
these methods uses its own internal representation for a step in the simulation. 
Some subsystems use a time step (minutes, second, hours) and others use an ab-
stract step size independent from the time. According to this, the BioSimMediator 
must be able to save for each subsystem an own step size relative to its internal 
step size representation. This requires an integrated step size representation in the 
mediator. 

After the end of the simulation, the user requires an overview of the previous 
system states in each simulation step. Hence, a log unit is required. Therefore, the 
system must save all attribute names and corresponding values in each simulation 
step. On top of that, the user should have the opportunity to pre-elect the required 
attributes. In this case, the system saves only the user defined name value couples. 
To associate the name value couples to the right step and subsystem, the log file 
has to contain the respective simulation step and the subsystem’s name.  

In addition, the system must include a basic statistic calculation unit, which 
assist the scientist. For instance, the calculation of an arithmetic average of a spe-
cial concentration or the biomass of the entire biological system is conceivable.     

To sum up, the core functional requirements are illustrate in the use case dia-
gram in Figure 17. The main scenario is the ‘run’ of a simulation, which is ex-
tended by the control of the subsystems. To control the subsystems, the mediator 
has to be configured by the user. With reference to the presented requirements, the 
system must provide a mapping, a log unit and a statistic unit, which are also used 
for the control process. Apart from that the figure illustrates, the user’s responsi-
bility for the configuration of the mediator. On the other hand, the BioSimMedia-
tor can interact with any desired number of subsystems.  
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Figure 17: Use case diagram for the BioSimMediator.  
 

Beside the functional requirements, the system must satisfy the following non 
functional requirements.  

To guarantee easy maintenances and further extensions, the implementation 
should use design patterns and a clear interface structure. Also, the usage of well 
known JavaDoc comments improves the quality of the system.  

The reliability of the system must be high; otherwise the complete simulation 
process will fail. Reliability comprises availability, probability of unavailability 
and mean time to failure. To guarantee reliability, an easy and well documented 
program structure is recommended. In the same way, the robustness of the system 
must be ensured. In this case, a short restart time after a failure and a low percent-
age of events, which cause failures, are preferable. 

The using of the high level programming language Java for the implementa-
tion guarantees a platform independent system. The portability of the system and 
the compatibility to other programming languages must be considered. Most 
simulation tools are implemented in C or C++, and therefore, an interaction must 
be possible. 

The environment of the system will be in the first place a single processor 
system. This necessitates no special requirements for the system size or memory 
usage. 

In addition, the software speed is important for the simulation process. The 
mapping between the subsystems must be fast enough to ensure a successful op-
eration. A fast mapping is procurable with the help of a mapping structure without 
overhead. For further extension, like running the simulation via a network or on a 
computer cluster, a suitable data transport format shall be defined.    

The last requirement is the usability of the system. Creating a model in the 
common modelling tools requires good computer skills. Based on this fact, all 
users of the system should be able to use a high level programming language. 
Therefore, experienced users should be able to use the system after reading the 
documentation. 
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4. Design 

This chapter gives an overview of the system design and the primary system 
parts with an emphasis on a conceptual and abstract level. Implementation details 
of the core units are presented in the next chapter.  

The basic idea of the system is to combine existing modelling and simulation 
tools and to mediate between these tools (see Figure 14). Also, like mentioned 
before (see chapter Fundamentals and Related Work), a global control of all con-
nected subsystems and a storage of the simulation results is necessary.  

The system is based on an object-oriented design. Accordingly, the funda-
mental components in the system represent objects with their own state as well as 
operations rather than functions. A precisely defined interface allows the objects 
to provide their operations for the system. The Unified Modelling Language 
(UML) provides a range of notations to describe the interaction and the dynamic 
of the objects as well as the system design and behaviour. Experience has shown 
that objects are often too fine-grained for the entire description of the system de-
sign. Consequently, objects are combined to larger-grained abstractions called 
subsystem or framework (in Java called package). To avoid a mix-up with the 
names of the simulation subsystems in future, the different subsystems are called 
simulation subsystem respectively mediator subsystem. Attend that the synonym 
subsystem is used in two ways. In the first case the description is used for an en-
tire software system (simulation subsystem) and in the second case for a func-
tional unit inside a software system (mediator subsystem). 

For a clear and intuitive system design the system functionality is distributed 
in packages. The mayor functionalities of the system are: connecting to subsys-
tems, handling of simulation values, mapping of the subsystems and the logging 
and statistic process. To obtain a high-quality software system, which is easy to 
extend and to maintain, an abstraction layer for each mediator subsystem is de-
fined. In addition, well known design patterns ([Gam95]) for the relationship and 
interaction between objects and subsystems are used. 

The mediator subsystems are described in detail followed by a brief descrip-
tion of the relationships.   
 
 
4.1. Subsystem connection 
 

The first mediator subsystem I will explain in more detail is the part of the 
system, which is responsible for the connection to the simulation tools. As men-
tioned before (Figure 15), the connection includes a direct communication and 
data transfer with the subsystems. For the simulation of biological systems it is 
necessary to combine functional and structural simulation tools. Accordingly, the 
mediator must be able to add and connect to as many subsystems as the user needs 
for the simulation. Therefore, it should be possible to connect n )( Nn∈ subsys-
tems to the mediator. Also, the interface for the connection must be generic 
enough to connect to different kinds of simulation subsystems. 

Currently, four functional simulation subsystems and two structural simula-
tion subsystems (as shown in Figure 18) are connected to the mediator. The func-
tionality of all these tools, with the exception of the so called Calculation tool, is 
described in the chapter Fundamentals and Related Work. The Calculation tool is 
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based on the open source Java library Java math expression parser (JEP)25, which 
allows the handling of mathematical expressions. In the mediator the tool is used 
as a utility subsystem for basic mathematical calculations.  

 

 
Figure 18: Currently connected simulation tools. 
 

The mayor problem in the interconnection between simulation subsystem and 
mediator is that nearly all tools provide different interface. Furthermore, the tools 
are implemented in various programming languages, for instance Java, C/C++, 
FORTRAN or Perl. Another point is the start up process of the tools. Some tools 
need special start up parameters, like simulation time-length or simulation step 
size in advance, whereas other tools need these parameters after the start up.  

In reference to these problems, the interconnection between mediator and 
simulation tools is split in two parts. The first part is only responsible for the con-
nection and identification of the tool during runtime and called subsystem handle. 
The communication with the simulation subsystem is controlled by the second 
part and called subsystem control. 
 

                                                 
25 http://www.singularsys.com/jep/; accessed 12.07.2007 
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4.2. Subsystem handle 
 

The design of the handle subsystem is illustrated in the UML class diagram 
in Figure 19 (all class diagrams in this thesis are incomplete. Only those elements 
which are needed for comprehension are represented). To add a new simulation 
tool to the mediator a new class must be created, which implements the interface 
Handle. The interface contains five method declarations: start(), stop(), reset(), 
update() and updateObjectValues(…). Start() or rather stop() starts or stops a 
simulation, respectively. Reset() sets the simulation back to its initial state. The 
update() method is responsible for updating the simulation values in the subsys-
tems to read them (values) in the next step. In contrast to update() the method 
updateObjectValues(…) writes new values into the simulation subsystem. 

By virtue of similarities between all structural and all functional simulation 
tools a differentiation between functional and structural handles is nevertheless 
reasonable. Therefore, two abstract classes FuntionalHandleAbstract and Struc-
turalHandleAbstract, which both implement the introduced interface Handle. The 
actual simulation classes inherit the corresponding abstract class. Both abstract 
classes save a corresponding control object, which is responsible for the commu-
nication with the subsystem. In the class diagram, four examples for actual simu-
lation handle classes are presented. As convention, all these class names end with 
the string ‘Handle’. SbwMsimHandle is the handle class for a multi simulation 
using Jarnac. Jarnac is not directly connected with the mediator. The System Bi-
ology Workbench (SBW) is used as a connection manager. The workbench pro-
vides interfaces to various programming languages. In this way, the problem to 
connect tools which are implemented in different programming languages is 
solved. For more information see chapter Fundamentals and Related Work. The 
other functional handle class, FunctionalCalculationHandle is responsible for the 
mathematical utility subsystem. Besides, two structural handle classes exist. First 
of all, AgentHandle is the handle class for the multi agent simulation tool Mason. 
The last example handle class is GroImpHandle for GroIMP. 

In addition, the abstract classes contain a SubSystemInformation object. 
These objects save all required information about the subsystem. The first attrib-
ute of this object saves a unique user defined name for the subsystem. The second 
attribute saves a string which contains a system path information. Nearly all simu-
lation tools save the model definition in a file. For instance, Jarnac, roodRunner or 
JDesigner use the SBML format, which is based on XML. GroIMP uses a self 
defined storage format. Other tools need class path information for loading the 
models. This attribute is called startInformationContainer. It saves the required 
file path or class path for the start up in a string. The next attribute dedicates the 
simulation subsystem to the handle type. Only two values are permitted: func-
tional or structural. Attribute four saves a unique handle name. The last attribute 
includes the step size for the subsystem relative to a mediator step. For instance, a 
value one means, in each mediator step one subsystem step is executed. A value 
four means, in four mediator steps one simulation step is preformed. 

The creation of a handle class object is controlled by the class CreateHandle. 
Beside the name convention, all handle class has to be saved in the package 
uk.ac.rothmasted.mediator.handle. Dependent on the handle type (functional or 
structural) newStructuralHandle() or newFunctionalHandle() search in the pack-
age for classes whose names ending with ‘Handle’ and call the corresponding 
constructors. The respective return value of the methods is the handle object. For 
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an easy access of these objects, a reference to each new created object is saved in 
a collection (map) in the class HandleList. These lists must be unique in the sys-
tem. Therefore, the classes must be implemented as a singleton (singleton pattern, 
see [Gam95]) or must be static. It is possible that more than one instance of a sub-
system, which is represented by the corresponding handle class, is created during 
runtime. Hence, the collection must save a mapping between handle name and a 
list of object references. These lists are collections of the class StructureHan-
dleList or FunctionalHandleList dependent on the handle type (functional or 
structural). HandleList offer methods to add a name reference pair to the maps and 
to return a list iterator over the object reference list for a given handle name. 
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Figure 19: Class diagram for the handle subsystem. 
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4.3. Subsystem control 
 

In contrast to the handle subsystem, which is responsible for the management 
and start up of the simulation subsystem, the control subsystem comprises the 
communication and interaction with the subsystems. The subsystem handle class 
describes only on an abstract level the subsystem functions (start, stop, reset). In 
contrast to the subsystem control classes, which implement the interaction with 
the subsystem in a tool specific way. The interaction includes updating the simu-
lation values in the modelling tools as well as in the mediator internal data struc-
tures. Also, all necessary configurations after the start up of the simulation tool 
will perform from the control class. Most of the handle class methods use the 
methods of the corresponding control class. 

In principle, the system consists of two abstraction levels. The mediator in-
teracts with the handle class and uses the provided methods. These methods for-
ward the query to the control class method which includes the tool specific im-
plementation. Therefore, the control class interacts with the real simulation sub-
system.  

When a new simulation subsystem shall be connected with the mediator, a 
new control class has to be implemented. For a better overview, the recommenda-
tion is to create for each new simulation subsystem a new package which includes 
all subsystem relevant files. 

To obtain a well defined control class design, all control classes must inherit 
form AbstractController and re-implement all five methods. The class diagram for 
the control subsystem design is shown in Figure 20.  

First of all the method start() is responsible for the simulation start. Next, 
doStep() performs one simulation step in the simulation subsystem. The third 
method reset() sets the simulation back to its initial state. It must be possible for 
the mapping between various simulation subsystems to readout values from a sub-
system. Therefore, the method readValues() reads the values form the simulation 
tool and updates the internal data structure for the mapping. In contrast to read-
Values() the method writeValues() update the simulation values.  

 
Generally speaking, there are three categories of simulation subsystems in re-

spect of the connection with the simulation mediator. Hence, these differences in 
the interaction with the subsystems require three categories of control classes.  
 
1. The modelling tool provides an interface which allows the mediator to interact 

directly with the modelling tool. Thus, it is possible to send values and control 
commands to the tool. Also the mediator is able to send a request and the tool 
replies the required information. 

  
2. The modelling tool provides no interface which can be used by the mediator. 

Therefore, a wrapper class for each tool is created and all models must inherit 
this class. Via the wrapper class an interaction with the simulation is possible. 
In principle, a third abstraction layer is added between mediator and subsys-
tem besides the handle and control layer.  

 
3. Some simulation tools do not allow to using the wrapper class approach. For 

example, it is not possible for all required tool elements to inherit from a 
wrapper class or the tool code is not open source or no changes of the source 
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code are allowed. The only alternative is to hardcode a communication be-
tween mediator control class and simulation tool. 

 
 
 

 
Figure 20: Class diagram: control subsystem. 
 

The class diagram (see Figure 20) shows all three ways to interact with a sub-
system.  In the bottom left corner (landscape format) the diagram shows the inter-
action with GroIMP. By virtue of the internal structure of GroIMP it is only pos-
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sible to use approach three, to hardcode the interconnection between mediator and 
tool. To guarantee the required quasi parallel execution of the RGG rules, the sys-
tem uses various threads. A communication is only in a special system state, 
which is called in GroIMP lock protected runnable, feasible. The implementation 
and a detailed description of the GroIMP interface follows in the next chapter. In 
principle, the class GroIMPControl uses a class which implements the interface 
Visualisation. Via a call-back method call the class sends the required information 
back to the mediator. 

In the middle of the class diagram the interaction with Jarnac is presented. As 
mentioned before, Jarnac is connected via SBW with the BioSimMediator. The 
interface Simulation shows all provided methods which can directly be called 
from SbwMsimControl. For instance, the method getValue(name:String):double 
returns a double value for the attribute with the identifier name. In addition, the 
interface contains the methods doStep():void, setValue(name:String, 
value:double):void, reset():void and SBWinitialize():void. The characters Msim in 
SbwMsimControl stands for mult simulation. This means that more than one 
simulation of the same type can be executed in parallel. Therefore, the interface 
includes a method to call the simulation identifier (getModelId():long). This inter-
action is an example for using a provided interface. 

In the bottom right corner the connection with the multi agent simulation tool 
Mason is shown. Mason consists of a control class for all agents, called Agent-
Control. The functionality of the agents is defined in separate classes (in the class 
diagram ‘Agent’). For the interaction with the BioSimMediator each agent class 
implements the AgentInterface. AgentControl has to implement AgentAdapterAb-
stract. Now, the mediator can call these implemented methods and in that way an 
interaction between the agent simulation and the mediator is arranged.  
 
 
4.4. Transport of values 
 

For the interaction of different simulation tools a transport of values between 
each other is essential. The transport is restricted to attribute values. The challenge 
is to transport all required values from one subsystem through the mediator, pos-
sibly change the values of the attribute in the mediator in the meantime and over-
ride the values in another subsystem with the new values. All primitive data types 
are used in the various simulation tools. Therefore, the mediator must be able to 
store all primitive data type values. For a clear and intuitive design, the transport 
is split in two parts.  

The first part is responsible for the transport from the subsystem to the map-
ping unit. Regarding to the differences between functional and structural subsys-
tems this part is split in two sub areas. On the other hand, the second part per-
forms the transport of values from the mapping unit to the subsystems. 

An illustration of the transport between mediator and simulation subsystems 
is shown in Figure 21. 
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Figure 21: Transport of attribute values between simulation subsystems. 
 

Values from the simulation subsystems are stored in a Functional or Struc-
tural Object, depending on the subsystem, and are transported to GlobalMapping. 
After the mapping process, GlobalMapping stores the new attribute values in Up-
date objects and redirects these objects to the simulation subsystems. 

The class diagram in Figure 22 shows the object classes and, where appropri-
ate, the relationships between these entities. I will start with the description of the 
class Attribute, which implements the interface AttributeTypeInterface. The corre-
sponding object saves one simulation attribute value with name and type of the 
attribute. This object contains three attributes: name, type and value. The first two 
attributes are from type string. The last attribute must be able to save a primitive 
numeric data type. In Java the wrapper class Number allows saving a numeric 
value and returns the value in each primitive data format. All attributes in the 
class are private and can only be accessed or changed via the five methods which 
are specified in the interface. The first method getName() returns the name of the 
attribute as a string. The second method getType() returns the type of the attribute 
as a string. The value of the attribute is returned as a Number object by the third 
method. To chance the attribute value, the class contains the method set-
Value(Number value). It is possible that during runtime a copy of the object is 
required. Therefore, the method copyAttribute returns a deep copy of the object 
form type AttributeTypeInterface.  

An Attribute instance is the smallest storage unit for the transport of values in 
the mediator. In the simulation tools the simulation attributes are combined in 
units. For instance, in an agent simulation all attributes belong to one agent or in a 
biochemical simulation a gene concentration belongs to one gene. To represent 
this in the mediator design various Attribute objects can be combined in an in-
stance of the classes StructuralObject, SimulationObject or UpdateObject. The 
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design of these object classes is also shown in the class diagram in Figure 22. 
These objects can be associated with the objects shown in Figure 21 in the follow-
ing way. The class StructuralObject in the class diagram represents the Struc-
turalObject in the illustration. Also, the class UpdateObject typifies UpdateOb-
ject. The name of the class which represent the FuncitonObject is SimulationOb-
ject.  The reason to name the corresponding class SimulationObject is that objects 
of this type are also used for the mapping process.  

 
In the following, I describe at first the interface structure and afterwards the struc-
ture of the three transport object classes. 

By a closer inspection of the interface UpdateObjectInterface bears resem-
blance to the interface MediatorObject. This similarity is intended to get a clear 
differentiation between objects which are corresponding for the transport of val-
ues from the simulation subsystems to the mediator and vice versa. An alternative 
design solution could be to use one interface and to create two abstract classes 
which implement this interface.  

To avoid confusion between an instance of a class in an object-oriented sense 
and the name for the objects for the transport of simulation tool values, the last 
mentioned objects are called in the following transport objects. Both interfaces 
MediatorObject and UpdateObjectInterface contain the following four methods. 
First of all the method getName(), which returns the name of the corresponding 
simulation tool unit (gene name, agent name,…). To identify a transport object in 
the mediator, each transport object gets a unique identification number (ID). The 
method getID() returns this ID. As mentioned before, in one transport object vari-
ous Attribute objects can be enclosed. All these objects are saved in an internal 
data structure and the method getAttributeList() returns the data structure. Fur-
thermore, it must be possible to add a new Attribute object to any existing trans-
port object. Therefore, the interface specifies the method addAttrib-
ute(attribute:AttributeTypeInterface). 

The class specification of UpdateObject and SimulationObject are equal. 
Unlike the principle of object-oriented software design, to reuse existing struc-
tures, I recommend two object classes with the same behaviour. There are two 
reasons for this decision. In the first place, a splitting in two classes enhanced the 
understandability of the system design. Moreover, during runtime the system can 
decide on the basis of the object type how to handle the object.  

In matter of the equality of the two classes, only the structure of Simulation-
Object will be explained in place of both. Each object of type SimulationObject 
has a name, a global unique identifier and can save one or more Attribute objects. 
SimulationObject implements the interface MediatorObject and UdpateObject 
implements UpdateObjectInterface. 
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Figure 22: Mediator object classes for the transport of simulation attribute values. 
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The object class StructuralObject contains additionally two attributes in order 
to save information about the simulation environment. In this case, I mean with 
environment other simulation elements which are connected in the simulation 
with the actual object. Therefore, it is possible two save in each object of type 
StructuralObject a list of objects from the same type. The method getChildren() 
returns all connected transport objects which are in a lower hierarchy class. For 
instance, objects which save attributes of the simulation subsystem GroIMP, 
which uses a graph for the storage of the simulation objects (values), the method 
return all successor nodes. On the other hand, the method getParent() returns all 
transport objects which are in a higher hierarchy class. In the case of GroIMP this 
means the return object is a StructuralObject, saving the attributes of the parent 
node.  

During runtime, quite a few objects from type SimulationObject or Struc-
turalObject are used for the transport of simulation values. For a quick and ease 
access, all MediatorObject are saved in a hash map. The unique ID of each trans-
port object is used as a key element. The corresponding transport object with the 
ID is the value element in the map. Therefore, a fast access to each MediatorOb-
ject via the ID is feasible. As a matter of course, only one hash map can exits in 
the system to guarantee a unique mapping. To reach this, the class GlobalMedia-
torObjectList has to be implemented as a singleton. Hence, only one instance of 
the class, and for this reason, only one hash map exists. To add a query for a Me-
diatorObject, the class provides two methods: 
addElement(mediatorObject:MediatorObject) to add a new object to the hash map 
and getElement(key:long) to query for a object in the map. 
 
 
4.5. Mapping 
 

Beside the connection of the simulation subsystems to the mediator and the 
transport of simulation values, the mayor function of the mediator is to allow the 
users to define dependencies between existing simulation tools. In the following, I 
present the design of the mapping package and different mapping categories.  

In the first place, only the user can create a mapping between simulation tools 
and the system can only assist him with a simple as well as clear mapping struc-
ture. All varied mappings between simulation subsystems are described in the 
chapter Requirements in Figure 16. It is indispensable for the user to know all 
involved model details before he can create a mapping.  

In general, the mediator provides two different types of mappings. I call the 
first one pre–mapping and the second one main-mapping. Both mappings have the 
same functionality. The only different is the time of execution. A simplified de-
scription of one mediator step illustrates the difference. In first place, all required 
information for the mapping is transported from the subsystem to the mapping 
unit. Then, the pre-mapping is executed. Afterwards all connected subsystems are 
updated. Subsequently the main-mapping is performed. To place emphasis on this 
difference, a simple statechart diagram clarifies the correlation between mapping 
and mediator step (see Figure 23). The diagram contains two main states, Wait for 
user command and Perform mediator step.  

In the first state the system waits in an idle state for a user’s command to per-
form a mapping step or to end the simulation. The second state is composed of 
five sub states. After the user triggers a new mediator step the system changes to 
the state Update simulation subsystems. At this point all involved simulation sub-
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system values in the mediator are updated. This means that existing transport ob-
jects are updated, or if so far no transport object exists for the simulation attribute, 
a new one must be produced. Afterwards, the system switches over to the Execute 
pre-mapping state. Here, the system executes the user defined pre-mapping in the 
user defined sequence. New instances of type UpdateObject saves, after the map-
ping, the return values for the update process of the simulation subsystems. The 
update process is performed in the next system state Update simulation subsys-
tems. The system behaviour in the next two states is similar to the earlier states. In 
Execute main-mapping all mappings of type main-mapping are accomplished. Just 
like before, the mapping unit creates new instances of UpdateObject. After updat-
ing the simulation subsystems, in the state Update simulation subsystems, the me-
diator goes back to the idle state, Wait for user command. 
 

 
Figure 23: Statechart diagram to illustrate the correlation between one mediator step and 
the mapping.  
 

Besides the global differentiation between pre-mapping and main-mapping in 
both categories a further differentiation is necessary. In the simulations two cate-
gories of simulation attributes occur. The first category contains the unique attrib-
utes inside the simulation. Unique means here that only one attribute of a special 
type exists in the simulation. In analogy to a programming language these attrib-
utes can be called global or independent attributes. The name of the attribute suf-
fices to identify the attribute. The opposite of an independent attribute is a so 
called dependent attribute. In a simulation more then one attribute of the same 
type exists in different subcategories. To identify one of these attributes a set of 
dependencies to other attributes must be defined. To remain in the analogy of pro-
gramming language, local attributes in different methods can be named identi-
cally. An explicit identification required the name of the method in which the at-
tribute is defined. In the simulation, an attribute can depend on the environment, 
the position of the corresponding object in the 3D simulation or the position in the 
used data structure (in GroIMP for instance a graph). It is also possible that a de-
fined dependence fits to more than one attribute. Examples for an independent 
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simulation attribute are an attribute in a structural simulation which saves the 
global concentration of a hormone, or a constant value in the simulation like a 
gravitational constant. In addition, a global attribute which saves the branching 
angle between the stem and branches. On the other hand, an example for a de-
pendent attribute is the concentration of a hormone in a special segment in the 
plant. For instance, a structural simulation, which is based on the XL approach, 
separates an entire plant in various small elements. Each element contains a vari-
able for the local gene concentration. In a multi agent simulation a multitude of 
agents of the same type exists and interacts with their environment. A possible 
selection criterion for a set of agents could be the concentration of a special ele-
ment in the environment. Another selection criterion for a simulation attribute in 
GroIMP is the position in the graph. A possible query can include the parent or 
child nodes and their current attribute values.  

Recapitulate the exigency of a differentiation between dependence and inde-
pendence simulation attribute is that the mediator must be able to query the right 
attribute. The query for an independent attribute is quite simple. The mediator has 
to know only the name of the simulation and the name of the attribute. In the case 
of a dependent object a query is more complicated. Here, the mediator has to 
know beside the name of the simulation and the name of the attribute which de-
pendencies between the demanded and other attributes exist. Furthermore, a query 
for an independent attribute returns zero or one attribute, in contrast to a query for 
a dependent attribute, which can return zero or unlimited attributes. The mapping 
unit of the mediator must be able to handle these two kinds of mappings. They are 
called dependent and independent mapping.  By reason of the multitude of con-
ceivable dependencies between a simulation attribute and its surroundings, the 
mediator can only provide a well defined structure to query for a dependent ob-
ject. The actual dependency must be implemented by the user which is endued 
with the simulations.   

It is necessary for the simulation process that the mediator provides the user 
an opportunity to control the mapping process. Consequently, there are two possi-
bilities. First of all, the mapping is executed in each mediator step. I call this kind 
of mapping update dependence. The reason therefore is that in each mediator step 
an attribute value is updated (overwritten) by another attribute value via the map-
ping. In the second place, the user can define a restriction under which the map-
ping will be executed. For instance, the user defines a threshold and a mapping 
will only be allowed, if the current attribute value in the pre-image26 is lesser than 
the threshold. This kind of mapping is called threshold dependence. 

In conclusion, for each new mapping between simulation subsystems, the 
user has to decide which mapping is required. To give an overview of all map-
pings Figure 24 illustrates all mapping types in a binary tree. A complete mapping 
between two simulation tools (both tools need not to be necessarily different) en-
folds all sub mappings in a path in the tree from the root ‘Mapping’ to an end 
node. For instance, a mapping between a structural and a functional simulation 
can be pre-mapping, independent and the way of execution is threshold depend-
ence. Alternatively, the mapping can be a main-mapping, dependent and the way 
of execution is update dependence. 

                                                 
26 The mapping can be esteemed as a relation between simulation attribute values (pre-image side 
of the relation) which are send to another simulation attribute values (image side of the relation). 
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Figure 24: All possible mapping categories. Each path in the binary tree from the root ‘Map-
ping’ to an end node contains one mapping.  
 

With reference to the various mapping combinations, the design of the map-
ping unit of the mediator is split in three parts. The design of the object classes 
and the relationship between these entities are shown in Figure 25. Before I will 
describe the UML class diagram in detail, I will give a short outline of the map-
ping unit requirements. The user must be able to define, dependent on the simula-
tion subsystems, any possible dependent mapping. Also, the user must be able to 
define the threshold dependencies with a threshold and a relational operator. It is 
also feasible that dependences between multiple mappings exist. The execution 
order is important for the correctness. Therefore, a collection is required which is 
able to save the mappings in a user defined order.  

The mediator is responsible for the management and execution of the map-
pings. The class MediatorSupervision assumed control of all mappings. To guar-
antee a unique control, the class must be implemented after the singleton pattern. 
The corresponding object includes a MappingList object. In addition, the object 
includes two methods to execute the pre-mappings and main-mappings, respec-
tively. Before I describe the relation between MediatorSupervision and Global-
Mapping, the storage of the mappings is described. Just like MediatorSupervision, 
the class MappingList has to be implemented after the singleton pattern. As men-
tioned before, the object is responsible to save all pre- and main-mappings in a 
sorted list. Therefore, the object contains one list for pre-mappings and one list for 
main-mappings. In addition, getter und setter methods for each object are pro-
vided. The setter methods allow the user to add a new mapping at each place in 
the sorted list. In this way, the scientists can sort the mappings and make sure that 
the mappings are executed in the right order. 
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Figure 25: Class diagram for the mapping unit of the mediator. 
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The main part of the UML diagram is divided in three classes: the abstract 
class Dependence, the class GlobalMapping and the interface MappingControlIn-
terface. I explain the functionality of these classes briefly beforehand a detail de-
scription of each class follows. An object of GloabalMapping stores all necessi-
tated information for a mapping. The execution of the mapping is performed in 
the child classes of the abstract class Dependence. All classes, which implement 
the interface MappingControlInterface, are used for the communication with the 
transport unit of the mediator.  

The object class GlobalMapping combines all information which are manda-
tory for the mapping.  For each mapping, the following elements of the source and 
destination simulation subsystem have to be identified. First of all, the name of 
source and destination system must be defined. Each simulation subsystem is de-
scribed in the mediator with a SubSystemInformation object. In the second place, 
the objects or system specific abstraction units which save the required simulation 
attributes have to be known. Furthermore, the names of these two attributes are 
necessary for the mapping. The object class GlobalMapping uses an attribute, 
starting with the substring ‘from’, for the saving of all elements of the source 
simulation subsystems. On the other hand, the attributes which save the names of 
the destination simulation subsystem elements start with the substring ‘to’. There-
fore, the class contains the following six attributes: from, to, fromObject, toObject, 
fromAttribute and toAttribute. 

In principle, the GlobalMapping objects save only the required information 
for the mapping. The real execution of the mapping is performed in the classes 
which are derived from the abstract class Dependence. As mentioned before, there 
are two ways to execute a mapping. In the first place, the execution takes place in 
each mediator step. This kind of mapping is called update dependence and is real-
ised in the class UpdateDependence, which is inherited from Dependence. The 
other execution way is the so called threshold dependence. In this place, a map-
ping is only executed if the user defined condition is true. This kind of mapping is 
mapped in the system design by the class ThresholdDependence. Three attributes 
are contained in the abstract class Dependence. The first one saves the ID of the 
destination simulation subsystem. Attribute ‘to’ and ‘from’ contain an object of 
type AttributeTypeInterface. In principle, the method execute calls the attribute 
‘from’ and update the values in the attribute ‘to’. In the case of update dependence 
the method perform this in each method call. Considering a threshold dependence, 
the defined condition is tested in each method call and if the result is true the ‘to’ 
attribute is updated. Each ThresholdDependence object contains two additional 
attributes, ‘threshold’ and ‘relation’. 

In each GlobalMapping object a list of Dependence objects are enclosed. A 
list is required, because in the case of dependence mapping the subsystems can 
contain more than one simulation attribute with the same name. Therefore, for all 
of these, a new Dependence object is created and saved in this list. In the case of 
independent mapping, this list contains only one entry. This attribute in Global-
Mapping is called ‘currentMapping’. A dependent mapping requires knowledge 
about other simulation subsystem attributes and objects. The mediator has to iden-
tify the other elements in the simulations. Therefore, each GlobalMapping object 
saves a list of other GlobalMapping objects in the attribute dependentGlobalMap-
ping. 

For the mapping process, a synchronisation of the simulation attributes val-
ues in the simulation subsystem and the corresponding values in the mediator is 
necessary. Synchronised means here that after a mediator step the values in the 
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mediator and in the simulation subsystem are equal. After a step in the simulation 
subsystem all required values are read from the mediator and stored in an Attrib-
ute object (see chapter Transport of values). Also, after each mediator step, all 
Attribute objects are sent to the Control object to update the corresponding simu-
lation subsystem attributes. In the case of independent mapping it is quite easy. 
The class MappingControl implements the interface MappingControlInterface. 
This class is responsible for the identification of the required Attribute objects and 
for the interaction with the responsible control objects. Simplified, the application 
flow is the following: In the first place, the GlobalMapping object saves the in-
formation. The MappingControl object uses this information to find the required 
simulation objects and attributes in the internal data structure or in the case of a 
not existing object, the system calls directly the simulation subsystem. These fil-
tered attribute values by the MappingControl object are saved in an object of type 
Attribute. By an independent mapping only two attributes are possible. The reason 
therefore is that the names of the simulation subsystem attributes have to be 
unique for an independent mapping. Hence, one attribute for the source and one 
attribute for the destination system should be found. These are saved in the corre-
sponding object of type UpdateDependence. After the execution of the update of 
the ‘to’ attribute in this object, the MappingControl object sends an object from 
type UpdateObject to the corresponding control object to update the simulation. 
The same process for a dependent mapping is more complex. As mentioned be-
fore, more than one attribute with the same name can exits in the simulation sub-
system. Only the user knows the dependencies to identify the required attributes. 
Therefore, only the user can implement a class which can find the attribute in the 
simulation subsystems. To support the user by the implementation the new class 
shall realises the interface MappingControlInterface. In principle, the user can 
copy the class definition from MappingControl and change only the behaviour of 
the methods which are responsible to identify the simulation attributes. In this 
way, the mediator supports all variations of dependent mappings. The only pre-
condition is the user’s ability to define the dependency. Beside the identification 
of the simulation subsystem attributes, the difference between dependent and in-
dependent mapping in the mediator are infinitesimal. The method executeMap-
ping in GlobalMapping calls in the case of an independent mapping only one De-
pendence object. Considering a dependent mapping, the method has to call one or 
more Dependence objects. 
 
 
4.6. Log and statistic unit 
 

In the first place, I explain the log unit of the mediator and afterwards a short 
explanation of the statistic unit follows. The crucial point is that the mediator’s 
log unit is completely independent from the mapping. This means, each simula-
tion attribute from a current connected simulation subsystem can be recorded with 
the log unit independent from the user defined mappings.  
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Figure 26: Class diagram for the log subsystem.  
 

An overview of the log design of the mediator is shown in Figure 26. In order 
to log an attribute in a simulation subsystem, the mediator needs the SubsystemIn-
formation object, and a corresponding object from type LogObject with name and 
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type of the simulation attribute. They are stored in an object of type GlobalLog-
ging. A simulation subsystem can include more than one object, and therefore, a 
GlobalLogging object can save a list of LogObjects. In addition, the object class 
contains two methods getAttriubtesToLog and setAttributesToLog. The class Log-
gingList stores all these GlobalLogging attributes. To guarantee a unique list in 
the system, the LoggingList class must be implemented as a singleton. This class 
implements the methods of the interface EvaluationList and contains three meth-
ods. Method one adds a GlobalLogging object to the internal collection, and 
method two is able to add a collection to the data structure. The third method re-
turns the internal data structure. Simular to the mapping unit, a communication 
with the control classes for the connected simulation subsystems is necessary to 
extract the current system values. This functionality is implemented in the class 
LogControl. To get a direct access to the object, which saves the attribute infor-
mation the user is interested in, the LogControl class stores a reference to Log-
gingList. This attribute is called ‘logObjectListInstance’. Furthermore, the class 
includes a method collectAttribute. In principle, this class calls all connected 
simulation subsystem, which include a required attribute for the log process. The 
necessitated information are stored in the GlobalLogging objects in the internal 
collection of LoggingList. If the method finds the attribute in the simulation sub-
system, the corresponding GlobalLogging object will be updated with the present 
simulation attribute value. At this point, a differentiation between independent and 
dependent objects is not necessary. The mediator reads only the values out of the 
simulation system without changing the original values (systems). In the log file, 
the name of the corresponding simulation system, the object name and the attrib-
ute with name, type and value are listed.  

The control over the logging process takes the singleton object of the class 
LogSupervisor.  For a direct access to the log process a reference to the LogCon-
trol object is saved in LogSupervisor. To save the log information to a file, the 
user has to define a log file name. This name is also saved in LogSupervisor. Be-
side these two attributes, the class contains only one method: startLoggingProc-
ess. First of all, this method calls the method collectAttribute in LogControl. As 
descriped before, this method searches the simulation attributes in the simulations 
and updates the logObject instances. Afterwards, the method of LogSupervisior 
creates a new thread and calls the run method in WriteLogThread. By then, the 
new thread writes all information, which are stored in the GlobalLogging objects, 
into a file. Beforehand, these information are sorted in a user defined order. The 
default sorting sequence is alphabetical for each subsection. A log subsection con-
tains the name of the simulation subsystem, the name of the simulation object and 
the corresponding attributes, with name, type and value.  

The statistic unit of the mediator allows the user to create statistics of the 
simulation. This enables the user to define his own statistics, and the mediator 
calculates in each mediator step the results. Statistics can be for instance, the aver-
age of a gene concentration in a functional simulation, the average length of all 
leaves in a structural simulation or the biomass of the simulated biological system. 
Most of the statistics are simulation specific, and therefore, the mediator can only 
provide a clear interface structure and basic functionality for the statistic unit.  

The calculation of the statistic results dependent on the simulation and the 
used simulation subsystems. For instance, the calculation to get the biomass of a 
tree is different in nature from the calculation of wheat or flowers. Accordingly, 
the user has to create for each new statistic type a new class for the calculation of 
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this statistic. The mediator calculates in each mediator step all users’ defined sta-
tistics, and saves the results in a file.  

Like the log unit, the statistic unit is in the same way completely independent 
form the mapping unit. I have decided to use elements of the log unit for the iden-
tification of the simulation attributes, which are required for the statistic process. 
An overview over the statistic unit is presented in Figure 27. On the left hand side, 
the interface MediatorObject, the class LogObject and GlobalLogging are well 
known from the log unit. Similar to the log unit, the statistic unit includes a class 
which implements the EvaluationList interface. This class is called StatisticList 
and includes a collection to save GlobalLogging objects. All these objects are re-
quired to identify the necessitate simulation attributes for the statistic process. 
Therefore, the user defines a set of objects of type LogObject and GlobalLogging, 
which are stored in the singleton object of type EvaluationList. Beforehand, the 
user has to create his own statistic calculation class, or he has to choose an exist-
ing one. All these classes have to implement the interface StatisticFunctionInter-
face. In the class diagram an example class Biomasse is shown. The interface de-
fines two methods opperateStatistic() and addObjectList(statisticList: Statisti-
cList). In addition, each new statistic function class have to provide an attribute to 
store the singleton object of StatisticResultList.  

The application flow for a statistic process is descriped in the following. In 
the first place, the user creates or chooses a statistic function. Afterwards, he cre-
ates the instance of LogObject and GlobalLogging. They are saved together with a 
reference to the statistic function class in an object of type GlobalStatistic. It is 
also possible, to execute in one mediator step more than one statistic calculation. 
Therefore, the class StatisticControl is necessary, which takes the control over the 
statistic process, and can save more than one GlobalStatistic instance in its inter-
nal collection. At the end of each mediator step, the singleton object of type Sta-
tisticControl calls, for each GlobalStatistic object in its internal collection, the 
method opperateStatistic of the corresponding statistic function class (in the class 
diagram only BiomassStatistic is shown). This method creates for each calculation 
result an object of type StatisticResultObject, which saves the name of the statistic 
function. The object saves the result in a string and in a double value attribute. All 
these objects are stored in StatisticResultList. After the execution of all statistic 
calculations the collection in StatisticResultList includes all results. In the next 
step, all these results are output in a file with the help of the class WriteStatistic-
Thread. This method implements the interface Runnable, and the control object of 
type StatisticControl calls the run method. Multithreading is usable at this point 
without concern. No changes on the StatisticResultList objects are allowed before 
the writing process is completed. Hence, ‘no lost update’ or other synchronisation 
errors can occur. In general, the writing process is much faster than the next me-
diator step, and therefore a delay of the main thread is unlikely. The same tech-
nique is used by the log unit.  
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Figure 27: Statistic unit design in a UML class diagram. 
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4.7. Global control 
    

In this subsection I will explain the design model of the object classes which 
are responsible for the control of the mediator. The entrance point in the mediator 
system is the class GlobalSupervision. This class creates and initialises all essen-
tial mediator elements. Therefore, the class includes seven attributes. First of all, 
the class includes an object of type GlobalControl. After all initialisation proc-
esses the GlobalSupervision object gives the system control over to this object. 
With regard to a unique control of the entire system, the GlobalControl class is 
implemented according to the singleton pattern. The next six attributes of Global-
Supervision are used for the initialisation process and will be discussed in detail in 
the following.  

In first place, the attribute ‘subSystemCreation’ includes the object of the 
class SubSystemInformationCreation. The function of this class is to create new 
subSystemInformation objects. At this point, the fabric pattern is particularly suit-
able for the design of the class and the relationships between all participants’ 
classes. In second place, the attribute ‘mappingCreation’ stores the object of the 
class GlobalMappingCreation. According to the fabric pattern, this class includes 
two methods to create a dependent or an independent mapping. In addition, the 
class DependentFactory uses the same design pattern to create a ThresholdDe-
pendence or an UpdateDependence object. A reference to the DependentFactory 
instance is saved in the attribute ‘myDependenceFabric’. In the same line the class 
GlobalLoggingCreation creates new GlobalLogging instances. The creation of a 
new GlobalLogging object needs the help of the class LogSupervisor, and there-
fore, a reference is saved in GlobalSupervison. In a similar way, the main class of 
GlobalSupervision use the reference to StatisticControl to create new GlobalSta-
tistic objects. 

To initialize the mediator, the main method of GlobalSupervision calls the 
objects in the following order. First of all, new SubSystemInformation objects are 
created. Afterwards, a set of mappings for the subsystems, which are represented 
by the SubSystemInformation instances, are created. Eventually, the log and statis-
tic objects are defined optionally. The last command in the main method of 
GlobalSupervision calls the method doMediatorStep in GlobalControl. 

GlobalControl includes the public method doMediatorStep and three private 
methods: updateValuesInsideAllSubsystems, executeMapping and doSubSystem-
Step. During the first call of doMediatorStep the user can define how often the 
method doMediatorStep is executed in rotation. Therefore, a small graphical con-
trol window is used. In each execution, the method doMediatorStep calls the pri-
vate methods in the same class in the following order. First of all, the method up-
dateValuesInsideAllSubsystems is called. Afterwards, executeMapping is called. 
In executeMapping, first all pre-mappings are executed and subsequent all main-
mappings. Between the executions, all subsystems will be updated. A statechart 
diagram of this application sequence is shown in Figure 23. After the last simula-
tion system update, the program flow jumps back to the doMediatorStep method, 
and the method doSubSystemStep is called. The function of this method is to per-
form one simulation subsystem step in each connected subsystem. Eventually, the 
doMediatorStep method starts from the beginning until the user defined iteration 
number is reached. In the class diagram the global control position of GlobalCon-
trol become visible. The class is connected with all control classes of the mediator 
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subsystems, and with all handle classes for the control of the connected simulation 
subsystems.   

 

 
Figure 28: UML class diagram shows the global control object classes of the mediator. 
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To sum up the software design, Figure 30 shows all packages of the media-
tor. The diagram shall give an overview of all packages and not in the first place a 
description of the relations between the different packages. All arcs in the illustra-
tion are used only to highlight the central position of the control package 
(uk.ac.rothamsted.mediator.control), which includes the classes MediatorSupervi-
sion, MediatorControl and all fabric classes as described in the last subsection. In 
reality, a connection and dependence of nearly all packages exists. For a better 
overview, only the relationships between the central control package and the sub-
packages are shown. All packages below MediatorControl are packages for the 
interaction with the simulation subsystems. Above MediatorControl all packages, 
which are used for the internal functionality of the mediator, are shown. For in-
stance, a package for the mapping unit, one for the log unit as well as for the sta-
tistic unit or a package with utility classes, like file writer or file reader. 

In general, the software architecture of the system is a mixture of a compo-
nent based architecture and a variation of a three tier architecture. The first layer 
(Layer 0) includes the simulation subsystems. The communication and the inter-
nal data storage of the simulation attribute values are placed in the middle layer 
(Layer1). The third layer (Layer 2) includes the control unit and the mapping 
units. The software system is split in different components such as the mapping 
unit, the log unit as well as statistic unit and all simulation subsystems. Adding a 
new simulation subsystem or a new functionality is quite easy, and can be per-
formed with only a few changes or settings in the existing code. A simplification 
of the system architecture is presented in Figure 29. 
 

 
Figure 29: Three tier architecture of the mediator framework.  
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Figure 30: Package diagram of the mediator framework. 
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5. Implementation 

The implementation chapter highlights the used programming techniques and 
gives a more detailed view of the key elements in the mediator framework. I start 
with general information about the used programming language and extension to 
optimize the performance. Afterwards, the control process of the class Global-
Control is explained in more detail than in the previous chapter. Finally, a detailed 
description of the GroIMP interaction follows.  
 
 
5.1. General implementation details 
 

The mediator framework is completely implemented in Java version 1.5.0.9.  
The Java programming language allows creating a robust and platform independ-
ent software system. Furthermore, Java uses typed data types, which mean that all 
data types are independent from the used operation system and having the same 
value ranges and fixed lengths. In addition, the programming language is safe in 
reference to the memory management. Moreover, the language allows multi-
threaded programs. Nearly for all existing programming language a Java interface 
or wrapper class exists so that Java can interact with programs in these languages. 
Nevertheless, the mediator framework has not used these Java extensions. The 
System Biology Workbench is based on fast and reliable broker architecture, with 
interfaces for nearly all existing programming languages. For more information 
about the SBW see the chapter Fundamentals and Related Work. This framework 
allows the mediator to add simulation tools, which are implemented in the differ-
ent programming languages.  

As a consequence of the numerousness transport objects instances in the me-
diator, a fast and effective data storage is required. Therefore, in the fist step each 
object in the mediator contains a unique identification number. The ID is from 
type long, with a value range of 2 * 9,223*1018 values.  The Java Collection-API 
offers various data structures for the storage of objects. All these collections differ 
in their complexity. In comparison to data structures like Vector or LinkedList, a 
HashMap includes and extracts new values in the data structure in a constant time.  
For example, the complexity to find a specific element in an unsorted linked list is 
O(n). With reference to these variations in the access times the choice of the used 
data structure has a mayor influence of the system performance. In general, it is 
not possible to use only one type of data structure in all parts of the system. For 
instance, for a small amount of entries an ArrayList or a LinkedList have perform-
ance vantages in comparison to a HashMap data structure. The other way round, 
the optimal storage for a huge amount of objects with unique identifiers can be a 
HashMap. In addition, a type specific collection enhances the performance of the 
system. Therefore, the mediator framework does not use the standard Java collec-
tions. Fastutil is a collection of type-specific Java classes, which extend the origi-
nal Java Collection Framework. More information about the Fastutil collection 
framework can be found at http://fastutil.dsi.unimi.it/ (accessed 28.07.2007). Be-
sides the performance advantages, Fastutil collections provide additional features 
(like bidirectional iterators) that are not available in the standard classes (see 
http://fastutil.dsi.unimi.it/;accessed 28.07.2007). 
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Finally, I will point to the fact that in the mediator, especially in the log and 
statistic unit, a few lists have to be sorted during runtime. Therefore, objects of 
type Attribute have to be compared. Each object in Java that should be compared 
to other objects of the same type has to implement the Comparable interface. 
Therefore, the class Attribute implements the interface Comparable and over-
writes the method compareTo(Object o). The method compares the current object 
(this) to the object ‘o’ (that), and will returns an integer value less than zero if this 
is smaller than that, zero if this and that are equal and a integer value bigger than 
zero if this is bigger than that. The method uses the attribute values of the objects 
to decide which return value will be returned. Each time the compare method is 
overwritten, the object has to overwrite the equals() method of Object to guaran-
tee a error free compare method. The equals(Object o) method tests the equality 
of the current object (this) and the object o (that). For example, the method can 
use an integer attribute to test the equality. If both objects save the same value in 
the integer attribute the equals() method returns true otherwise false. A new 
equals() and a new compareTo() method requires a new method hashCode(), 
which calculates for an object a unique integer value (so called ‘hashcode’). 
Hence, each object has to overwrite the public method hashCode() from Object. 
The implementation of the method is not as simple as at the first glance. It is in-
dispensable to follow some rules by the implementation of this method. A detailed 
description of the right implementation of a hashCode() method is represented by 
Angelika Langer at her webpage27. 
 
 
5.2. Global control details 
 

As mentioned in the previous chapter, the instance of GlobalControl is re-
sponsible for the global control of the mediator framework. After the initialisation 
of the system in GlobalSupervision the subsystem handling, the execution of the 
mappings and the log as well the statistic process is controlled by the GlobalCon-
trol object. A dynamic UML diagram is used to explain the behaviour of the sys-
tem after the initialisation process. For this purpose, I use a sequence diagram. For 
a better overview, I split the interaction between GlobalControl object and the 
other mediator objects in two parts. The first diagram shows a global view of a 
mediator step. In the second diagram the mapping unit is illustrated. Additionally, 
a picture of the small graphical user interface that is used for the user control of 
the step size is shown.  

First of all, we concentrate on the sequence diagram in Figure 31. At the be-
ginning of the diagram the object of type GlobalControl is active and all simula-
tion subsystems are started as well as connected to the mediator. In the sequence 
diagram two alternative sections are shown. Which section is used depends on the 
users’ input. The user can define how many mediator steps shall be performed in a 
row. Also the user can terminate the entire system. For an easy control of the me-
diator during runtime a small graphical user interface allows the user to enter a 
mediator step number, start the execution of the next mediator step(s) or to termi-
nate the simulation. Figure 32 shows an illustration of the GUI. This Java swing 
component includes a text field, where the user can enter the mediator steps, and 
two buttons (‘Step’ and ‘Exit’). Also, a small control element is shown on the 
                                                 
27 
http://www.angelikalanger.com/Articles/JavaSpektrum/03.HashCode/03.HashCode.html; 
accessed 28.07.2007 
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right side of the window. A red dot indicates that currently a mediator step is run-
ning. A green dot shows that the mediator is waiting in an idle state and can per-
form the next mediator step when designated. If the user presses the button with 
the label ‘Step’ the mediator performs the method calls which are shown in the 
first section of the sequence diagram. If the user presses the button ‘Exit’ the me-
diator system performs the commands that are illustrated in the second section of 
the sequence diagram.  

The first section includes a loop. The user defines the number of iterations of 
this subsection with the input in the control GUI. For instance, the user enters four 
in the user interface the mediator performs four mediator steps in a row, which is 
equal to four iterations of the subsection in the sequence diagram. In the following 
a single iteration is explained in detail.  

First of all, the GlobalControl object calls all functional and structural sub-
systems to update the internal data structure. The object uses for the interaction 
with the simulation subsystems the handle objects that are stored in the Han-
dleList. 
 

 
Figure 31: Sequence diagram illustrate the method calls during a mediator step. 
 

Afterwards, the GlobalControl instance calls the method startLoggingProc-
ess from the class LogSupervisior. All users’ desired simulation attributes are 
identified in the simulation subsystems and stored in a comma separated file. In 
the following iterations the log unit uses the same file for the consistent storage of 
the log elements and adds the new elements to the end of this file. Following the 
lifeline of GlobalControl the next method call is executeStatistic. Similar to the 
log process, all desired statistics are calculated, and the statistic unit store the re-
sults by adding them to a CSV file. After the log and statistic process, the method 
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executeMapping in MappingSupervisor is called and all mappings are executed. A 
detailed description of the mapping process follows later. Finally, the doStep 
method in each handle object is called and all simulation subsystems perform a 
system step, if the user defined condition is true. The user can specify during the 
initialisation process of the mediator in which ratio between subsystem simulation 
system and mediator step a subsystem simulation step is performed. The imple-
mentation of this condition is quite simple. The system saves for each simulation 
subsystem an integer value and the current step value of the mediator. For in-
stance, a simulation subsystem should perform one step every four mediator steps. 
In this case the mediator saves for this subsystem the step size four. The method 
doStep uses the operator modulo to calculate the current mediator step value 
modulo the step size of the subsystem. If the result is zero the subsystem will per-
form a step, otherwise nothing will happen. 

In the second alternative section of the sequence diagram all lifelines end, 
which is equivalent to the termination of the mediator objects. Consequently, the 
entire simulation process will be terminated and the system is closed when the 
user presses the ‘Exit’ button.   
 

 
Figure 32: GUI for the mediator steps size control. 
 

The sequence diagram in Figure 33 illustrates the system dynamic during a 
mediator step and after the calling of the method executeMapping. For a better 
orientation in the application flow, the sequence diagram repeats the mediator step 
loop section with the method call executeMapping. All previous interactions are 
indicated by the three dots in the graphic. After the method call, the instance of 
MappingSupervisor executes first all pre-mappings and afterwards all main-
mappings. 

To execute all pre-mappings the MappingSupervisor instance sends a request 
to MappingList, to get a reference to all GlobalMapping objects in the pre-
mapping list. MappingList uses a type specific ObjectArryList out of the Fastutil 
collection framework to save the GlobalMapping objects. The reason to use an 
ObjectArrayList instead of a HashMap implementation at this point is that in each 
mediator step all mapping have to be executed. Therefore, a total iteration over all 
elements is required and not a specific element has to be called. Each GlobalMap-
ping object contains a MappingControl object. MappingControl is responsible for 
searching the corresponding SimulationObject and StructuralObject instances for 
the mapping in the internal data structure. Each MappingControl object saves for 
an already existing mapping a reference to the required SimulationObject and 
StructuralObject instances. The next method call in the sequence diagram, up-
dateExistingMappings, uses these references to test the already existing mappings. 
For instance, a simulation subsystem deletes the corresponding object in its simu-
lation; the reference object in the mediator is deleted as well. Therefore, a map-
ping which uses this object is not valid anymore and the method updateExisting-
Mappings deletes the internal existing mapping that is saved in a Dependence 
object. In the other way round, a simulation subsystem creates a new object. This 
object is used in a mapping definition in GlobalMapping. The method creat-
eNewMapping queries all simulation subsystem objects, which are not already 
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mapped of this type, creates a new mapping and saves it in a new Dependence 
object. In this way, it is guaranteed that not valid mappings are deleted automati-
cally and a new mapping is created automatically when possible. Here it is impor-
tant to mention that there is a difference between functional and structural subsys-
tems. A new mapping can only be created, if an instance of a source and destina-
tion object, which is defined in GlobalMapping, exists in the internal data struc-
ture. If one of these objects is missing, the mediator creates autonomously a new 
instance of the defined simulation subsystem. Therefore, it is possible to simulate 
a system which creates new objects during the runtime. In one case the mediator 
is not allowed to create a new instance of a simulation subsystem. If the destina-
tion mapping object is from type StructuralObject a creation of a new instance of 
a simulation subsystem can adulterate the whole simulation. For example, the 
structural simulation subsystem simulates a tree, which is composed of small sub-
elements. Each of these sub-elements is included in a mapping to update a hor-
mone concentration in the structural simulation. A potential mapping can be hor-
mone concentration in a functional simulation is mapped to the corresponding 
attribute value in the structural simulation. Now, it is possible that four instances 
of the functional subsystem exist, but only three sub-elements in the tree. The me-
diator detects that the difference between source and destination objects is one, 
and he creates a new instance of a structural simulation. This is obviously false. 
Now two trees exist; one tree with three sub-elements and one tree with only one 
sub-element instead of one tree with four sub-elements. Therefore, an autonomous 
creation of instances, when the destination object of the mapping is from type 
StructuralObject, is forbidden. Only the structural simulation itself can create a 
new instance of an internal object. In the example above, the mediator creates 
only three mappings and if the structural simulation creates a new tree sub-
element on its own, the fourth mapping is created automatically from the media-
tor.  

After the creation of new mappings and the update of existing mappings, the 
instance of MappingSupervisor can call the method executeMapping for each 
GlobalMapping object. Depending on the defined Dependence object the mapping 
is executed. All these updates produce new instances of UpdateObject, or if the 
mapping already exists longer than one mediator step, an existing instance is up-
dated. The reason for using another abstraction layer instead of writing the new 
values directly in the corresponding simulation subsystems is that most of the sub-
systems allow a change in their internal data structure only in special system 
states. Because of performance reasons, it would be out of the question to wait 
after each single mapping of this special subsystem state to update the values. 
Therefore, all mapping results are stored in an instance of UpdateObject, and after 
all pre- or main-mappings all values update at once. This update is performed in 
the methods updateObjectValues in the Handle objects. 

The next two method calls are optional. Some simulation subsystems require 
an internal step after an update of the data structure. Otherwise, during the next 
update the previous one is lost. For each simulation subsystem, the user uses a 
Boolean attribute to declare the necessity of a system step after an update. If this 
attribute value is true the MappingSupervisor instance calls doStep in the corre-
sponding Handle instance. 

Now exactly the same procedure is performed for the main-mapping. As de-
scribed in the last chapter, a differentiation between pre- and main-mapping is 
essential to realise all required mappings between simulation subsystems. Specifi-
cally, a pre- and a main mapping are required in the following example. In a struc-
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tural simulation a transport from one object to another should be realised in one 
mediator step, and the transport process should be defined via a mathematical for-
malism (an example can be a fluid dynamic transport). The user defines two map-
pings in this case. The first mapping is defined from the source object in the struc-
tural simulation to another simulation subsystem, which calculates for instance the 
fluid dynamic. This mapping is called in the mediator pre-mapping. The main-
mapping starts at the result attribute from the calculation unit and links to the des-
tination attribute in the structure simulation. Without the differentiation between 
the two mapping classes such a mapping would require two mediator steps. 

 

 
Figure 33: UML sequence diagram illustrate the system dynamic during the mappings. 
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5.3. GroIMP interface 
 

To connect GroIMP with the mediator a new interface is implemented. In 
principle the system was not designed to share its functionality with external ap-
plications. In the first place, GroIMP is designed as 3D-modelling-plattform using 
the potential of growth grammar. A new modelling language, called XL is defined 
for GroIMP. The whole system is implemented in Java and also the XL language 
is an extension of the Java programming language. Using a normal wrapper or 
adapter class approach to create an interface to GroIMP is not feasible by reason 
of the used XL language. The GroIMP framework includes a compiler, which 
transfers the user defined XL model description into a Java compliant byte code 
before the simulation starts. Beside the predefined classes, which relate to the ba-
sic L-systems commands and basic 3D shapes, the user can define new classes. To 
define a new simulation an integrated editor in the GroIMP front-end is used.  
Accordingly, to provide an interface to the existing classes in the system is insuf-
ficient. Together with Tully Yates I decided to use a call-back method approach 
and to use the Java Reflection API 28 to create an interface for the GroIMP sys-
tem. Additionally, GroIMP does not allow changing internal values at any time. 
To simulate the quasi parallel execution of the RGG commands a complex thread 
handling is required. Only in a save system state the internal graph data structure 
can be read or modified.   

The design of the GroIMP interface is shown in Figure 34. This approach re-
quires in each new simulation model in GroIMP the insertion of a Java class defi-
nition in the model. After the compile process the object instance of this class al-
lows a communication with GroIMP. The class in GroIMP must implement the 
interface Visualisation. In the class diagram this class is called GroIMPVis. In the 
first place, after the compile process the model creates an object of GroIMPVis 
and calls the static method register in the static class GroIMPControlStart. With 
this method call a reference to the GroIMPVis instance is sent to the GroIMPCon-
trolStart class, which creates a new GroIMPControl instance. Now, each instance 
of GroIMPControl saves a reference to an object inside the GroIMP simulation. 
In this way, GroIMPContol can call the methods run, step, fetchGraph and graph-
Update in the GroIMPVis class. To get the simulation attribute values out of the 
simulation GroIMPControl calls the method fetchGraph in GroIMPVis. Internal 
thread handling processes and synchronisation processes are required to access the 
graph structure in GroIMP. This access is only permitted in a class which imple-
ment the LockProtectedRunnable interface. An instance of GraphReader`, which 
implements this interface, queries the graph and creates for each node in the graph 
a new object from type OrgNod. Afterwards, this object is saved in a collection in 
GlobalControl. Each OrgNode object saves a set of child nodes and its parent 
node as OrgNode instances. Furthermore, the object saves an OrgAttribute in-
stance, which includes for each simulation attribute in the node an object of type 
Attribute to save the name, type and value of the simulation attribute. This Or-
gNode object is transferred in GlobalControl to an object of type Struc-
turalObject. To sum up, updating the internal data structure in the mediator with 

                                                 
28 Detailed information about the Java Reflection API can be found at the webpage: 
http://java.sun.com/j2se/1.5.0/docs/guide/reflection/index.html; accessed 01.08.2007. Java Reflec-
tion API enables Java to discover objects during runtime to collect information about these objects. 
Information can be attribute names and values, method names and information about the object 
constructor.  
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the values out of the GroIMP simulation requires the following steps. Firstly, 
GroIMPControl calls fetchGraph in GroIMPVis. At this point, it is necessary to 
stop the execution of the mediator thread until the GroIMP thread, for the graph 
query, terminates. In the next step, GroIMPVis calls the run method of Gra-
phReader which creates the OrgNode objects. The last command in the run 
method is to send a notification to the mediator thread. Now, the mediator can 
transfer the OrgNode objects into StructuralObject instances.  

To update the simulation objects in GroIMP after a mediator step, GroIMP-
Control calls the method graphUpdate in GroIMPVis. Similar to the method call 
of fetchGraph, the mediator thread has to wait until the GroIMP update process is 
terminated. Beforehand, the GroIMPControl class changes the OrgNode objects 
regarding to the mediator changes and sets a Boolean flag true. Now, the method 
graphUpdate updates the internal data structure in GroIMP using all OrgNode 
objects with a set flag. The update process is performed in the run method of 
GraphWriter. To guarantee a thread save update, this method implements the 
LockProtectedRunnable interface. After the update process this method sends a 
notification to continue the mediator execution process (main thread).  

The Java Reflection API is used in this process in the class OrgFields. Using 
reflection to identify GroIMP objects and the attributes’ names and values is re-
quired at this point by reason of the GroIMP modelling structure. In each GroIMP 
model, predefined and user defined classes are used to describe the model behav-
iour. Therefore, it is only possible to identify the used objects in the simulations 
during runtime. The performance disadvantages of the reflection approach afford 
to use the entire modelling power of GroIMP. A restriction, which allows only 
predefined classes for a model, restricts the modelling power significant. Also, a 
strict exception handling is required to catch all possible exceptions, which can be 
occur during the usage of the reflection API. A combination of exception handling 
and predefined conditions guarantee a save usage of the reflection classes and 
methods.  

 

 
Figure 34: GroIMP interface design. 
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6. Results 

The introduced mediator approach allows different independent simulation 
tools to interact with each other. The combination of structural and functional 
simulation tools allow the scientist to simulate biological systems in a more realis-
tic way. This chapter includes a short recapitulation of the mayor system functions 
and illustrates the general applicability with the help of two examples. 

 
The mediator software system is used for the combination of existing simula-

tion tools and to control those, to perform a combined simulation. Figure 35 
shows the necessary steps to perform a simulation with the mediator. It should 
help to clarify the interaction between mediator and existing simulation tools. The 
illustration is split in a vertical and a horizontal section. On the left side in the 
vertical segmentation all functional simulations tools are combined. In the middle, 
the control section composed of the user and the mediator framework is placed. 
Right aside the control components all structural components (simulation media-
tor and abstraction layer) are combined. The horizontal alignment includes bot-
tom-up: the initialisation process, the user control and the framework with all 
connected simulation tools itself. 

In the first place the user has to select the simulation tools. Afterwards, he 
creates in each tool a model with the help of the tool internal editors. For the crea-
tion process, the scientists use different sources (data integration tools, databases, 
literature or personal knowledge). In the figure this process is numbered with 
number one. Next, the user has to define the relationships (mappings) between the 
beforehand created models and to initialise the mediator framework (see label two 
in the illustration). Now the user controls the entire simulation process. He de-
cides when the next simulation step is performed and when the simulation will be 
terminated. In each simulation step the mediator communicates with all structural 
simulation systems and all functional simulation systems which are necessary for 
the current simulation process. The figure highlights the bidirectional connection 
between the simulation tools and the mediator (number three – eight). 

 

 
Figure 35: Mediator framework (illustration by Tull y Yates). 
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Regarding to the clear interface structure and the various abstraction layers, 

the system is easy to maintain and further extensions are easy to realise. Different 
interfaces allow adding nearly all existing simulation tools to the mediator. Also, 
the subsystem handle design does not restrict the number of simulation subsys-
tems which can be connected simultaneously to the mediator. Basic mapping 
types between simulation systems are predefined. For each complex mapping the 
mediator assists the user with a clear interface design and examples. Log and sta-
tistic files provide the user an insight into all simulation values after the simula-
tion to evaluate the results.  

During the implementation, a score of test simulation implementation has 
shown good results for small and medium sized simulations. The mediator soft-
ware is able to control the subsystems in the right way, and also the communica-
tion between the simulation subsystems and the control software is fast enough for 
the simulation process. All required mapping combinations between the simula-
tion tools are assisted. Different tests with large simulation models in the simula-
tion tools adduced partly unsatisfactory results. One simulation step and the up-
date of the subsystems require a too long time. The mediator has only a small in-
fluence to this long execution time. In the first place, the existing simulation tools 
and the interaction with these tools are responsible for the delay times. Addition-
ally, the implemented examples show the advantages of the usage of different 
simulation tools. Each simulation tool can concentrate on it own model, and with 
the help of the mediator, each required additional functionality is provided by 
other tools. Accordingly, the several models are easier and the performance of 
each simulation can be improved in this way.  

The following two examples show the interaction between functional and 
structural simulation tools on the basis of two very simple biological systems. The 
systems raise no claim of completeness or true to original. They should only illus-
trate the applicability of the mediator framework. In addition, the examples show 
the flexibility of the framework. Not only mappings between structural and func-
tional simulation tools or vice versa are allowed. A mapping between a functional 
and another functional tool as well as between a structural and another structural 
tool is feasible.  
 
 
6.1. Example: ABC model 
 

This model uses the mediator framework to simulate the so called ABC 
model of flower development. To define and visualize the structure of the flower 
the modelling tool GroIMP is used. On the other hand, for the simulation of the 
gene concentrations in the flower, Jarnac is used. Consequently, this simulation is 
an example for a mapping between a functional simulation tool (Jarnac) and a 
structural simulation tool (GroIMP). 

The ABC model of flower morphology indicates that different classes of 
transcription factors, in different parts of the flower, are responsible for the speci-
fication of the different flower organ cells. Each class of genes and their combina-
tion is responsible for the development of the flower elements. This model illus-
trates the flower development and different mutations in a clear and easy way. 
Figure 36 shows an illustration of a flower with all flower organs: carpel, stamen, 
petal and sepal. In the third part of the illustration, the symmetry of the different 
flower organs is visible. In the next figure (Figure 37), the dependences between 
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classes of genes and produced flower organs are shown. Genes in class A produce 
the sepals. A combination of A and B specifies the petals, B and C the stamens and 
an occurrence of genes only of class C the carpels. More details about the ABC 
model of flower development can be found in [Alb02]. 
 
 

 
Figure 36: ABC model of flower development (from [Wol02]). 
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Figure 37: Classes of genes are responsible for the development of the different flower or-
gans (from [Alb02]). 

 
To highlight the advantages of the mediator approach, the model is based on 

an already existing example in GroIMP. The GroIMP package includes an ABC 
model example, defined in the XL modelling language. This model uses a regula-
tory network to simulate the transcription factors and a visualisation of the corre-
sponding flower organs. The model of the regulatory network is presented in de-
tail in [Kel01]. To get an impression of this model, Tully Yates and I created a 
continuous Petri Net model with inhibitor arcs. Figure 38 shows an abstract view 
of this model, without tokens and without transition functions. All green places 
save the gene concentration and the blue places save the concentration after the 
transcription process. For the simulation the places a, b and c are interesting. They 
store the concentrations, which are responsible for the development of the flower 
organs (see Figure 37). Attend, the Petri Net uses small letters and the transcrip-
tion factors are labelled in Figure 37 with capital letters.   
 

 
Figure 38: Petri Net model for the ABC model (by Tully Yates, Rothamsted Research, 
United Kingdome)  
 

To reuse the existing model in GroIMP for a later comparison, I separated the 
definition of the regulatory network and the part of the model which is responsible 
for the 3D structure (visualisation). Consequently, the new GroIMP model is only 
responsible for the visualisation of the simulation. On the other hand, the intro-
duced regulatory network is translated in a Jarnac compatible notation, and due to 
some mathematical solving limitations of Jarnac, simplified in some parts. After 
the separation of the model into two models in different simulation tools, the me-
diator framework is used to combine these two simulations again. To map the 
current concentration of transcription factor A, B and C (in Jarnac) to the struc-
tural simulation (GroIMP) three independent mappings are created. GroIMP re-
quires (for the simulation) only the current concentration and decides with simple 
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if-statements which flower organ should be created. Therefore, all mappings are 
from type update dependence and will be updated in each mediator step. The en-
tire calculation of the transcription factors are performed in one simulation in-
stance and only a data flow in one direction (functional simulation to structural 
simulation) is necessary. Because of this, all mappings are defined as main-
mappings. To illustrate the log functionality of the mediator, each transcription 
factor value is saved during the simulation in each time step. 

Three mappings are defined in the mediator. The functional simulation in-
cludes three attributes A, B and C. On the other side, in the GroIMP model three 
attributes a, b and c exists. Figure 39 shows the dependences between the func-
tional simulation attributes and the structural simulation attributes. 

 
Figure 39: Mapping of the ABC model. 
 

After each mediator step the simulation attributes a, b and c saves the current 
transcription factor concentration of the biochemical simulation in the GroIMP 
model. The structural simulation uses these values to decide which 3D structures 
have to be created. As mentioned before, the creation of the different flower or-
gans depend on these values (concentrations). The following dependences are 
used in the example: 
 

1. if c > 2.4 then terminate simulation else 2. 
2. if b> 1.7 then (if c>a create stamen else petal) else 3. 
3. if a> 1.8 then (if c>1.8 create shoot else sepal) else 4.  
4. if c > 1.8 create carpel  

 
Table 5 illustrates the results of the simulation at different time points. 
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Table 5: Simulation results: ABC model of flower development. 
 

Gene classes concentration 3D structure 
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To explain the log unit results briefly, Figure 40 shows the log values in three 
mediator steps. The log file saves for each mediator step the current system time. 
In the next line, the name of the used model is presented. Here, the file contains 
the name ‘abcmodel’. The model does not differ between different objects in the 
simulation. Therefore, the line object name is empty. The next six lines include 
the names of the attributes and the corresponding attribute values. A blank line 
separates each mediator step blocks in the log file. For instance, in the first media-
tor step the attribute A contains the value 0.63559383, B contains 0.198,7417 and 
C contains 0.016902354. If a log file contains more than one simulation subsys-
tem, each block is sorted in an ascending alphabetical order using the subsystem 
names.  
 

 
Figure 40: Log file of the ABC model example. 
 

This example shows how to use an existing model for a simulation with the 
mediator. In comparison to the original model in GroIMP a differentiation of the 
functional and structural part of that model is used in the presented example. A 
direct comparison between both model results is not feasible, because of the 
mathematical solving problems of the used functional simulation tool. Therefore, 
an adaptation of both models (structural and functional) was necessary, which 
results in a slightly different simulation course. In this example, the major advan-
tage of splitting a simulation is not obviously. Scientists can work together in dif-
ferent tools on one simulation, following only some basic interface agreements 
and naming convention. Hence, each scientist can work on his area of expertise, 
and an administrator can map these single simulations together to an entire simu-
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lation. Furthermore, the models can be implemented or designed in a model spe-
cific formalism. The author of the ABC model example in GroIMP uses the XL 
language to model the regulatory network. Using a Petri Net approach for the bio-
chemical model should be much easier and familiar for the scientist instead of 
transferring the entire process to object oriented formalism.   

In conclusion, this example shows the applicability of the mediator frame-
work to combine structural and functional simulations to an entire simulation. The 
next example illustrates the combination of two structural simulation tools. In 
addition, a dependent mapping is used and the statistical unit of the mediator is 
presented.  
 
 
6.2. Example: Root development 

 
Creating a realistic simulation of a root is quite difficult and complex. The 

root structure differs from plant to plant. Some roots grow deep into the soil and 
some grow near the surface to the sides. Also, the branching behaviour of the root 
depends on the species and the soil. For instance, different densities or water con-
centration in the soil produces different root structures. In literature a multitude of 
experiments and descriptions of the root development process can be found (see 
[Gas01]). 

To focus on the interaction between different simulation tools, the presented 
root example is quite simple. The branching factors are defined in a GroIMP 
model and the interaction with the soil is implemented in an agent based model in 
Mason. The agent model simulates the soil density and the gravity. Hence, the 
agent simulation is also responsible for the structure of the root. The default grow 
direction of the root is downwards. If the density in this direction is too high, the 
root will have to change its direction and to grow sideward until it can grow again 
downwards. This default growing direction is specified in a gravity value in the 
agent simulation. A high gravity value affects the root to grow downwards when-
ever possible. A smaller value results in a rather sideward growing root. First of 
all, I will explain both models separately and afterwards the interaction of both 
tools with the necessary mappings.  

The multi agent simulation tool Mason uses different types of matrixes to 
save the agent and the environment. To simulate the soil, I use a three-
dimensional matrix, which can save 64.000 integer values. All these fields include 
an integer value between zero and six and represent the density of the soil. 
Whereas, the integer value zero signifies a negligible small density in the soil. 
Furthermore, a density value of six indicates an area in the soil where the root is 
not able to go through. All integer values between zero and six encode the soil 
density in an ascendant order. Each of these fields are visualised by a cube with 
the side length of one. Regarding to this, the simulation simulates a soil area of 
length, weight and height of forty cubes. During the initialisation process of the 
simulation all fields get randomly a density value.  In addition, the agent simula-
tion includes a double variable to save the standard gravity. The well known stan-
dard gravity of the earth is about 9.81 m/s2 and is used as the default value for the 
simulation. A higher value indicates a stronger gravity and a lower value a lesser 
gravity. Furthermore, the agent simulation includes two types of agents: Root and 
RootSegment. Each RootSegment can save one or more Root agents. In principle 
this kind of agent is used to combine various Root agents into a category. Each 
Root agent in this category is able to interact with its environment, but only the 
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last Root agent, who is added to the category, is able to ‘grow’. Interact with the 
environment can mean, a transport of water, a nitrogen uptake or a density ‘test’. 
Each RootSegment represents in the simulation a part of the root which has not 
branched so far.  

To sum up, all agents of type Root are responsible for the growing process 
and for the interaction with the environment. The agents of type RootSegement are 
only used to combine various Root agents, and to control which agent is ‘active’ 
(can grow and interact with the environment) and which one are ‘passive’ (can 
only interact with the environment). Figure 41 shows a part of the simulation area 
in 2D. Grew rectangle illustrates the soil with different density values (light grew 
indicates a low density and a dark grew a high density). In addition, two Root-
Segment categories are visualised. The first, are bounded by the red line, includes 
four Root agents and the second blue bordered one includes three agents.    
 

 
Figure 41: Root and RootSegment agents and the density of the soil in 2D. 
 

During a simulation step each RootSegment tries to grow. Nevertheless, only 
the active Root agents in the RootSegment are allowed to grow. Each of them 
evaluates its environment and decides afterwards in which direction it grows. Of 
course, it is not possible to grow backwards. Therefore, each agent has to test 
twenty three cubes (in 3D and five in 2D). The order in which the agent tests the 
cubes depends on the gravity constant value. Figure 42 illustrates this process in a 
2D visualisation. With the default gravity value, the active agent (with the red 
border) tests in the first place the rectangle directly downwards (number one). If 
the density in this field is lesser than the maximum density, a new Root agent will 
be created by the system and placed to this position. Also, this new agent is added 
to the RootSegment agent and becomes the new active Root agent in this category. 
If the density in this area is to high too grow in this direction, the active Root 
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agent will test the fields left and right downwards (number two). If one of these 
fields has a density lower than the maximum density, the root will grow in this 
direction. In the case of an equal density in multiple sections, the simulation de-
cides randomly in which direction to grow. If the growing process downwards is 
impossible, the active agent will try to grow sideward (number three). A maxi-
mum density in each direction results in a stagnation of the growing process of the 
RootSegment.  

A future extension of the model can also include water or mineral concentra-
tion in the soil, which influence the growing process as well. 
 

 
Figure 42: Agent root growing direction. 
 

The agent simulation can only control the growing process and the interac-
tion of the root with the environment. As mentioned before, different kinds of 
plants have a characteristic branching structure of the root. This branching struc-
ture is encoded in the GroIMP model. In this way, the agent model decides in 
which direction the root can grow and the GroIMP model decides at which place 
the root has to branch. With the help of the 3D matrix in the agent simulation it is 
easy to access each position in the grid directly. If the GroIMP simulation sends 
the command to branch at a special position, the existing RootSegment at this 
point is split into two RootSegment agents and a new side branch starts growing at 
this place.  

The GroIMP model uses basic L-System elements to create the root structure. 
In this basic example, the model uses the length of each root branch to decide at 
which time (position) a new branch has to be created. The branching angle and the 
position are predefined and depend also on the agent simulation. With the help of 
these values, the user can change easily the structure of the root and simulate dif-
ferent kinds of root structures. 
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To combine both models to an entire root simulation, six mapping definitions 
in the mediator are necessary. In contrast to the first example, all these mappings 
are from type Dependent mapping. All these mappings are defined between one 
RootSegment agent in the agent simulation and one root segment (simple L-
System element) in the GroIMP simulation. During the complete simulation proc-
ess, the mediator has to ensure that always the same RootSegment agent and Gro-
IMP root segment are mapped together. Each instance in the simulation includes a 
unique identifier and allows the mediator the identification. After the initialisation 
process of the simulation, the agent simulation contains one RootSegment agent 
with one active Root agent. The GroIMP simulation starts with one root element. 
Therefore, in the first mediator steps six mappings between those both elements 
exists. During branching, a new RootSegment agent is created and also a new root 
segment in the GroIMP simulation occurs. For each of these new elements, the 
mediator creates six new mapping instances and saves the element identifiers. A 
mapping from type Dependent is mandatory to ensure that the mappings are al-
ways exists between the same RootSegment agent and the root segment in the 
GroIMP simulation. The six mappings are split into five pre-mappings and one 
main-mapping. In Figure 43 all mappings for the simulation are shown.  

All mappings inside the blue rectangle are pre-mappings and the mapping in-
side the red rectangle is a main-mapping. The execution order during the mapping 
process is equal to the order in the illustration. In the first place, the pre-mapping 
between the attribute branch-distance in the GroIMP simulation and the attribute 
branch-distance in the agent simulation is from type update dependence. The at-
tribute values are used to specify at which point a new side branch can grow. The 
GroIMP simulation defines the value in each simulation step for each root seg-
ment, and with the help of the mediator the value is transferred to the correspond-
ing RootSegment in the agent simulation. The next three mappings are responsible 
for the correct orientation in the 3D visualisation in GroIMP. The orientation of 
the different root segments is defined in the agent simulation. For instance, the 
root has to grow sideward to avoid a high soil density, and therefore, the orienta-
tion of the entire RootSegment changes. To transfer the new orientation from the 
agent simulation to the coordination system in GroIMP, each RootSegment calcu-
lates the new orientation dependent form the origin point as an angular misalign-
ment to the coordinate axis. With the help of three mappings, the angle values (x, 
y and z) are transported to the GroIMP simulation. The last pre-mapping is used 
to inform the agent simulation to create a new side branch. In the GroIMP model, 
an integer attribute saves for each root segment the value zero for no new branch 
and one for a new branch. If the simulation decides to create a new branch, the 
main-mapping will not be executed directly. Before the next main-mapping can be 
performed, six new mappings instances have to be created for the new (a total of 
two) root segments in both simulations. Afterwards, the pre-mappings of this new 
segment have to be performed, and then both main-mappings. The main-mapping 
only transports the current length of the RootSegment from the agent simulation to 
the corresponding root segment in GroIMP. In this way, both root elements, in 
Mason and GroIMP, have always the same length. The root grows in both simula-
tions simultaneously.   
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Figure 43: Root example mappings. 
 
 

Figure 44 shows the visualisation of a root simulation in the agent simulation 
tool Mason. The brown-grey globes illustrate areas in the soil with the maximum 
density value of six, which cannot be penetrated by the root. All other densities 
are not visualised in the illustration. Each blue cylinder represents a Root agent in 
the simulation. Currently, two RootSegment are shown in the figure. The branch-
ing point is dark blue. As a result of the used standard gravity in this example, 
each root segment grows directly downwards. Furthermore, the current soil den-
sity has no effect on the root growing process. In contrast, the next figure (Figure 
45) shows the influence of the soil density on the root growing process. The root 
starts growing sideward to avoid the high density area. Afterwards, the root starts 
growing downwards, until the next high level density areas occur and a sideward 
growing direction is necessary.  
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Figure 44: 3D visualisation of the root example in the agent simulation Mason. The globes 
highlight soil with the maximum density value of six. All other soil densities are not shown in 
the visualisation. The blue cylinder illustrates the root. Each of them is one Root agent. 
 

 
Figure 45: Example visualisation of another root simulation. Here, the root growing is af-
fected by the soil density.  
 

In the following figures the same simulation state is represented. The first 
figure (Figure 46) shows the visualisation of the agent simulation. In the current 
simulation state, the simulation consists of a main root segment and various side 
branches. Furthermore, all root segments avoid the high density areas and grow 
around these areas. Figure 47 hides the high level density visualisation to clarify 
the root growing process around these areas. To compare the simulated root struc-
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ture in the agent simulation with the GroIMP simulation, Figure 48 shows the 
visualisation of the GroIMP simulation in the same simulation state. The root 
structure in both simulation tools looks quite similar. Only the orientation of both 
illustrations is slightly different. First of all, this is affected by the problem that 
both tools work with different coordination systems and the user has to write its 
own transformation between both. In the second place, the root elements in Gro-
IMP are only visualised by a straight line. Only the start and end point of these 
elements are the same than in the agent simulation. Finally, the GroIMP image is 
rotated around the y-axes by a few degrees to get a better overview of all root 
segments in the simulation. 
 
  

 
Figure 46: Root simulation example with various side branches.  
 
 

 
Figure 47: Root simulation example with various side branches, without the density visuali-
sation. 
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Figure 48: Root structure visualised with GroIMP.  
 

The quite simple root model in GroIMP allows the use of the predefined bio-
mass static function of the mediator in this simulation. This function calculates in 
each simulation step the volume of the entire root and multiplies the result with 
the density of water by 10 degree Celsius (0.9997 g /cm^3). The result of the statistic 
function is presented for four simulation steps in Figure 49. 
 

 
Figure 49: Biomass calculation of the root example. 
 

In conclusion, the root example shows the applicability of the mediator 
framework to more complex examples. During the simulation process a multitude 
of mapping instances are used for each root segment pair. The Dependent map-
pings allow the correct mapping between belonging root segments. In addition, 
the example highlights the exigencies for the differentiation between pre-mapping 
and main-mapping. Furthermore, the statistic unit of the mediator framework is 
used in the example.  
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7. Discussion 

 
In this chapter, I discuss the advantages and the disadvantages of the invented 

framework, as well as problems which have been occurred during the system 
tests. In addition, I point out the possible optimisation potential. At the end, I give 
an outlook over planned increments. 

 
The goal of the thesis is to introduce a new software framework which com-

bines existing biological simulations tools. The thesis shows the design and the 
implementation details of the system. In the previous chapter Results, the applica-
bility of the system by means of two examples is shown. The focus is put on the 
presentation of the different mediator functionalities and not on the biology. 
Therefore, the examples have no qualify for biological correctness. However, the 
examples show the different mapping types and the log unit as well the static unit 
of the mediator in use. Also, the independent control of each connected simulation 
tool is presented in the examples. As mentioned before, the mediator is able to 
interact with each simulation tool independently, and saves for each of them sepa-
rately information about the simulation step size or the required log and statistic 
functions.   
 
 
7.1. In comparison to existing tools 
 

The mediator framework is the first software system which allows combining 
a multitude of different existing simulation tools and defining dependencies be-
tween those in the presented way. Furthermore, the framework offers a log and a 
statistic unit.  In contrast to the introduced tools in chapter Fundamentals and Re-
lated Work, like the SBW workbench or the Bio-Spice framework, the mediator 
framework is able to control all connected tools and define mappings between 
different simulation attributes. With the help of the different mapping types, the 
system is nearly able to handle all possible occurring dependencies between the 
different models. Also, the user can, to avoid unintentional dependences between 
the mappings, define an order in which the mediator has to perform the mappings. 
For the mapping process and the internal storage of simulation attribute values, 
the mediator system uses performance optimised collections, based on the Fastutil 
collection API. Jan Taubert (see [Tau05]) shows in his diploma thesis the per-
formance advantage of the Fastutil collections in comparison to the standard Java 
collections. Furthermore, the number of possible connected simulation tools to the 
mediator framework is (theoretical) unlimited. The entire software system is im-
plemented in the Java programming language to ensure platform independence. A 
connection to simulation tools which are implemented in other programming lan-
guages is easy possible by using the SBW workbench. The SBW provides differ-
ent kind of interfaces for nearly all known programming and scripting languages. 
Via this software system the mediator is able to interact with those tools.  

In contrast to all current developed hard coded simulation systems, the me-
diator approach allows different kinds of scientists to work on the same simulation 
and to concentrate on their area of expertise. For instance, one scientist can model 
the biochemical process with the help of Petri Nets or similar graph based ap-
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proaches, and another scientist can focus on the structural models of the biological 
system. All developers work with familiar tools and a supervisor can map all 
those tools with the mediator system to an entire simulation together. It is not nec-
essary to re-implement all functionalities (modelling abstractions, mathematical 
solvers, etc.), which already exist in tools, like in hard coded simulations. Nearly 
all of them (like the virtual heart simulation, see chapter Fundamentals and Re-
lated Work) re-implement for instance, fluid dynamic simulation parts and algo-
rithms for the visualisation. All those re-implementations are unnecessary by us-
ing the mediator framework. Instead of them, the user has only to define the map-
pings between all involved and connected simulation tools.   

Additionally, the clear design and interface structure of the system allows the 
users to implement their own new mappings or statistic functions to the mediator. 
In principle, the framework only provides a set of predefined functions and regu-
lations, and each user can add new elements quite easily to the system. The inter-
face structure, quite a few guidelines and examples help the users with the imple-
mentation. With reference to the system architecture (three tier architecture and 
component based architecture), a complete new system unit can be added to the 
framework quite easily. Furthermore, the system architecture and the usage of 
object instances, for the storage and transport of the simulation attributes inside 
the mediator, allow easy further changes.     

 
The disadvantages of the mediator approach in comparison to existing ap-

proaches are, besides the performance (which is discussed in the next subsection), 
are limited control over the connected simulation tools, and the lack of a time cor-
relation.  

Most of the current existing simulation tools or frameworks allow the user to 
run their simulation for x time steps and to store the current system state persistent 
(for instance, in a file). Next time, the user can start the simulation at this time 
point, and in that way, a time intensive simulation can be interrupted and restarted 
later on. The problem with this functionality in the mediator framework is the 
missing functionality in some of the used simulation tools. For instance, the agent 
simulation tools Mason offer this function, but functional simulation tools like 
RoadRunner or JDesigner do not offer such a function. Therefore, the current ver-
sion of the mediator is not able to save the entire system state and to restart the 
simulation later on at this point. To avoid this problem, the used simulation tools 
have all to provide such functions and the mediator framework has to be modified.  

Currently the mediator framework uses for the control of the simulation pro-
gress an abstract step size unit. The user can define, during the initialisation proc-
ess, how many simulation steps in the simulation tools shall be performed in rela-
tion to the mediator steps. In biological simulations the time plays nearly always 
an important role. With this abstract step size a correlation to the real time is 
nearly impossible. Similar to the control problem of the mediator, each simulation 
tool uses a different internal simulation time or step size unit. With regard to this, 
it is not possible for the mediator to use a realistic time unit for the simulation 
progress control.  

 
 

7.2. Performance 
 

The mayor and most obviously disadvantage of the mediator framework, in 
comparison to hard coded simulation tools, is the performance. In a hard coded 
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simulation system the designer and programmer can choose for the interaction of 
all parts an optimised system design and implementation. The mediator frame-
work has to be generic enough to communicate with the different simulation tools 
and for the mapping between them. Only the transport of values in the mediator, 
the mapping process and the interaction of the mediator with the simulation tools 
can be optimised. The optimisations at this point are limited to a good system de-
sign and the usage of fast collections. During the implementation tests, the per-
formance bottle neck was always the interface to the simulation tools. In contrast 
to the GroIMP system, all tools which are connected via the SBW framework in-
teract quite fast with the mediator. As mentioned before, the interaction with Gro-
IMP is not so easy, because the system has not been designed for a communica-
tion with other tools in that way. The mediator and other simulation systems have 
to wait until the GroIMP internal process is finished. For more details of the inter-
action with GroIMP see chapter GroIMP interface.   

The mediator framework is applicable for small and medium complex simu-
lations. The limitation at this point is not the number of mappings or the number 
of connected subsystems, but the speed of the connected subsystems itself and the 
interaction with them. Simulations which use a combination of only functional 
simulation tools can be much more complex than simulations which use one or 
more structural simulation tools. All used structural simulation tools are limited in 
the simulation performance. In addition to highly calculation intensive 3D visuali-
sations, the performance problem is based on disadvantageous system designs and 
on the complexity of the simulations.  

As mentioned in the last subchapter, the mediator uses optimised collections 
for the storage of simulation attributes. Furthermore, a unique identifier is dedi-
cated to each attribute and mapping. With the help of optimised HashMaps the 
mediator can find each of them in nearly constant time.  

 
Beside the performance problem, the mediator is nearly completely imple-

mented as a single thread system and optimised for a single processor system. 
Only the log and statistic unit uses different threads to accelerate the execution. 
With the help of the SBW workbench some simulations can be relocated to other 
computer systems, but the most calculation intensive mapping and storage of the 
simulation attribute values processes are executed all at one computer. The mayor 
problem with a multi thread system is the synchronisation of the different map-
pings. Most of the mappings depend on each other. A parallel execution of the 
reading and writing process in each simulation subsystem can improve the system 
performance.  
 
 
7.3. Outlook 
 

The current version of the mediator system is applicable for small simula-
tions. At the moment, six simulation tools (RoadRunner, Jarnac, JDesigner, Ma-
son, GroIMP and the mathematical utility tool) are connected with the mediator. 
One future task will be to add more simulation tools to the mediator. More simu-
lation tools offer the users a wider range of tools, and they would be able to 
choose the optimised tool for a specific simulation part. With respect to the inter-
face design of the mediator, new tools can be added quite easily. Especially, a 
connection to a mathematical tool like Mathematica or MatLab would be prefer-
able. These tools offer optimised toolkits for different use cases. For instance, 
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fluid dynamic processes can be calculated with the help of the fluid dynamic tool 
kit in MatLab, or equations can be solved with a higher precision than with other 
tools. With the help of these new features, the examples can be more realistic. For 
example, with the fluid dynamic tool kit it is possible to simulate the water con-
centration in the soil and its dynamic, and use this for a more detailed root model 
(see Example: Root development). Furthermore, the fluid dynamic can also be 
used for the simulation of nutrition transport in plants or organism.  

So far, only small and simple examples are tested with the mediator. The next 
step would be to create a more realistic example, and comparing the results of a 
hard code simulation with a distributed simulation using the mediator. Afterwards, 
the model complexity should increase. Tully Yates, from the Rothamsted research 
institute in Harpenden, is planning to use the mediator framework to simulate 
Arabidopsis thaliana with RoadRunner and GroIMP. 

Additionally, the interaction and communication with the GroIMP system has 
to be revised. Together with the developer of the system the interface has to be 
changed, and the mediator must be able to get access to the internal thread han-
dling process of GroIMP to avoid the busy waiting structure. In the first place, the 
mediator’s internal copy of the GroIMP RGG graph has to be replaced by a direct 
access to the RGG graph in GroIMP. Also, the possibility to disable the visualisa-
tion and to use the XL language separately would bring a big performance benefit. 

The current (mediator) version is optimised for a single processor system. To 
obtain a better performance, the system must be able to be used on a cluster or a 
grid computer system. In the first place, all simulations should be executed at dif-
ferent systems and only the mapping process should be performed at a master 
computer. Consequently, each subunit in the mediator must use its own thread. 
Also, a new system unit has to be created, to control all threads and guarantee the 
synchronisation for the right execution order (extension of GlobalControl). The 
current system design allows quite easy to include a new layer or a kind of infor-
mation (object) transport between the existing layer zero (simulation subsystems) 
and layer one (data storage) (see Figure 29). Different kinds of approaches can be 
used. Each of them has vantages and disadvantages in respect of performance, 
complexity and reliability, and therefore, the decision has to be elaborated.  

The first possibility is to use the Java object serialisation and to transport the 
object and control commands via a standard socket connection. The second ap-
proach is to use the Java remote method invocation (RMI). RMI distinguishes 
between local and remote objects. The calling method is not able to distinguish 
between a local and a remote object and handle both equally. COBRA (common 
object request broker architecture) uses, similar to the RMI approach, also an ob-
ject spreading. This approach, in comparison to RMI, is not mandatory bounded 
to the Java programming language. The last possible approach uses the Java Mes-
sage Service (JMS) to communicate via messages between the different subsys-
tems. A detailed introduction to all this methods can be found in the book, ‘Mid-
dleware in Java’ [Hei05].  

Finally, a graphical user interface has to be created, to allow the user an easy 
configuration of the mediator. The configuration includes the definition of the 
mappings, the used log unit as well as the statistic unit, and also the required 
simulation subsystems and models. 
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8. Conclusion 

The mediator framework is a new approach to combine existing simulation 
tools. With the help of the framework, scientists can split a biological simulation 
into parts, and use for each of them a specific and optimised simulation system. 
The main advantage, in comparison to existing simulation tools (hard coded 
tools), is the reusability of existing tools and the generic mapping between them. 
A number of features, like the log and statistic unit, or the various mapping types, 
allow the scientists to use the mediator framework for realistic simulations of bio-
logical systems.  

Currently, the mediator framework is more or less a prototype implementa-
tion, but completely usable. With all the proposed extensions, the mediator ap-
proach could play an important role in the system biology in future. However, 
each time a very complex and calculation intensive simulation are necessary, a 
hard coded and specific optimized system is the first choice. The application area 
for the mediator should be small groups of scientists, which concentrate on small 
and medium complex models.  

Beside the invention of new tools and models, the main goal of biology and 
especially the system biology, is to close existing knowledge gaps in order to in-
crease the quality of the existing models. Also, data mining helps to order and to 
categorise existing knowledge and assists the scientists in future research.  

The quality of computer models and simulations depends on the known 
knowledge. Without the entire knowledge of the real system (structure, biochemi-
cal processes, dynamic of the system and interaction with the environment), the 
fastest computer system and the best simulation system is not able to simulate the 
real system correctly. 
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Appendix 

A. CD-ROM 
 
The CD-ROM contains: 
 

• all required program sources as JAR archive files 

• short installation manual 

• the complete thesis in digital form 
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