
People and Knowledge Networks
WeST

Faculty 4: Computer Science Institute for Web Science
and Technologies

How I Lost My OWL:
Retracting Knowledge from EL Concepts

Master’s Thesis
in partial fulfillment of the requirements for

the degree of Master of Science (M.Sc.)
in Informatik

submitted by
Holger Johannes Heinz

First supervisor: Prof. Dr. Steffen Staab
Institute for Web Science and Technologies

Second supervisor: Dr. Claudia Schon
Institute for Web Science and Technologies

Koblenz, May 2018

Statement

I hereby certify that this thesis has been composed by me and is based on my own
work, that I did not use any further resources than specified – in particular no
references unmentioned in the reference section – and that I did not submit this
thesis to another examination before. The paper submission is identical to the
submitted electronic version.

Yes No

I agree to have this thesis published in the library. � �

I agree to have this thesis published on the Web. � �

The thesis text is available under a Creative Commons
License (CC BY-SA 4.0). � �

The source code is available under a GNU General Public
License (GPLv3). � �

The collected data is available under a Creative Commons
License (CC BY-SA 4.0). � �

. .
(Place, Date) (Signature)

iii

Zusammenfassung

Ontologien sind wichtige Werkzeuge zur Wissensrepräsentation und elementare
Bausteine des Semantic Web. Sie sind jedoch nicht statisch und können sich über
die Zeit verändern. Die Gründe hierfür sind vielfältig: Konzepte innerhalb einer
Ontologie können fehlerhaft modelliert worden sein, die von der Ontologie reprä-
sentierte Domäne kann sich verändern oder eine Ontologie kann wiederverwendet
werden und muss an den neuen Kontext angepasst oder mit bestehenden Onto-
logien verbunden werden. Die Schwierigkeit dieses Prozesses hat zur Entstehung
des Forschungsfeldes der Ontology Change [1] geführt. Das Entfernen von Wissen
aus Ontologien ist ein wichtiger Aspekt dieses Änderungsprozesses, da selbst das
Hinzufügen neuen Wissens zu einer Ontologie das Entfernen bestehenden Wissens
notwendig machen kann, falls dieses mit den neuen Vorstellungen in Konflikt steht
[1]. Dieses Entfernen muss jedoch wohldurchdacht sein, da das Ändern bestehen-
der Konzepte leicht zu viel Wissen aus der Ontologie entfernen oder die seman-
tische Bedeutung der Konzepte auf eine potenziell unerwartete Weise verändern
kann [2]. In dieser Arbeit wird daher ein formaler Operator zum präzisen Entfernen
von Wissen aus Konzepten vorgestellt. Dieser basiert auf der Beschreibungslogik
EL und baut partiell auf den Postulaten für Belief Set und Belief Base Contracti-
on [3, 4, 5] sowie der Arbeit von Suchanek et al. [6] auf. Hierfür wird zunächst ein
Einstieg in das Thema Ontologien und die Ontologiesprache OWL 2 gegeben und
das Problemfeld der Ontology Change wird erläutert. Es wird dann gezeigt, wie
ein formaler Operator diesen Prozess unterstützen kann und weshalb die Beschrei-
bungslogik EL einen guten Ausgangspunkt für die Entwicklung eines solchen Ope-
rators darstellt. Anschließend wird ein Einblick in das Feld der Beschreibungslogi-
ken gegeben. Hierfür wird die Geschichte der Beschreibungslogik kurz umrissen,
Anwendungsgebiete werden genannt und es werden Standardprobleme in dieser
Logik erläutert. In diesem Zusammenhang wird die Beschreibungslogik EL formal
eingeführt. In einem nächsten Schritt werden verwandte Arbeiten untersucht und
es wird gezeigt, warum das Recovery- und Relevance-Postulat für das Entfernen
von Wissen aus Konzepten nicht unmittelbar anwendbar ist. Die hier gewonnenen
Erkenntnisse werden anschließend dazu genutzt, die Anforderungen an den Opera-
tor zu formalisieren. Diese basieren hauptsächlich auf den Postulaten für Belief Set
und Belief Base Contraction. Zusätzlich werden weitere Eigenschaften formuliert,
welche den Verlust des Recovery- bzw. Relevance-Postulates ausgleichen sollen. In
einem nächsten Schritt wird der Operator definiert und es wird gezeigt, dass die-
se Definition das präzise Entfernen von Wissen aus EL-Konzepten gestattet. Mittels
formaler Beweise wird zudem gezeigt, dass diese Definition alle zuvor aufgestellten
Anforderungen erfüllt. In einem weiteren Beispiel wird dargestellt, wie der Opera-
tor in Verbindung mit sogenannten Laconic Justifications [7] verwendet werden kann,
um einen menschlichen Ontology-Editor durch das automatisierte Entfernen von
unerwünschten Konsequenzen aus der Ontologie zu unterstützen. Aufbauend auf
Algorithmen, welche aus der formalen Definition des Operators abgeleitet wurden,
wird ein Plugin zum Entfernen von Wissen aus Ontologien für den Ontology-Editor

v

Protégé vorgestellt. Anschließend werden die bisherigen Erkenntnisse zusammen-
gefasst und es wird ein Fazit gezogen. Die Arbeit schließt mit einem Ausblick über
mögliche zukünftige Forschung.

Abstract

Ontologies are valuable tools for knowledge representation and important building
blocks of the Semantic Web. They are not static and can change over time. Changing
an ontology can be necessary for various reasons: the domain that is represented by
an ontology can change or an ontology is reused and must be adapted to the new
context. In addition, modeling errors could have been introduced into the ontology
which must be found and removed. The non-triviality of the change process has
led to the emerge of ontology change as an own field of research [1]. The removal
of knowledge from ontologies is an important aspect of this change process, be-
cause even the addition of new knowledge to an ontology potentially requires the
removal of older, conflicting knowledge [1]. Such a removal must be performed in a
thought-out way. A naïve change of concepts within the ontology can easily remove
other, unrelated knowledge or alter the semantics of concepts in an unintended way
[2]. For these reasons, this thesis introduces a formal operator for the fine-grained
retraction of knowledge from EL concepts which is partially based on the postu-
lates for belief set contraction and belief base contraction [3, 4, 5] and the work of
Suchanek et al. [6]. For this, a short introduction to ontologies and OWL 2 is given
and the problem of ontology change is explained. It is then argued why a formal op-
erator can support this process and why the Description Logic EL provides a good
starting point for the development of such an operator. After this, a general intro-
duction to Description Logic is given. This includes its history, an overview of its
applications and common reasoning tasks in this logic. Following this, the logic EL
is defined. In a next step, related work is examined and it is shown why the recovery
postulate and the relevance postulate cannot be naïvely employed in the develop-
ment of an operator that removes knowledge from EL concepts. Following this,
the requirements to the operator are formulated and properties are given which are
mainly based on the postulates for belief set and belief base contraction. Additional
properties are developed which make up for the non-applicability of the recovery
and relevance postulates. After this, a formal definition of the operator is given and
it is shown that the operator is applicable to the task of a fine-grained removal of
knowledge from EL concepts. In a next step, it is proven that the operator fulfills
all the previously defined properties. It is then demonstrated how the operator can
be combined with laconic justifications [7] to assist a human ontology editor by auto-
matically removing unwanted consequences from an ontology. Building on this, a
plugin for the ontology editor Protégé is introduced that is based on algorithms that
were derived from the formal definition of the operator. The content of this work is
then summarized and a final conclusion is drawn. The thesis closes with an outlook
into possible future work.

vi

Contents

Part I. Introduction and Motivation 1

1. Introduction 1

2. Motivation 2

Part II. Background 5

3. Description Logic 5
3.1. History . 5
3.2. Applications . 7
3.3. The Description Logic EL . 8

3.3.1. Syntax and Semantics . 8
3.3.2. Basic Definitions . 9
3.3.3. Canonical Extension and Complete Expansion 16
3.3.4. Reasoning . 19

3.4. Conclusion . 20

4. Related Work 20
4.1. AGM Belief Change . 20
4.2. Debugging Ontologies and Description Logic Knowledge Bases . . . 23

4.2.1. Justifications . 23
4.2.2. Resolving Inconsistencies at a Fine-grained Level 24

4.3. Computing the Difference between Concepts 25
4.3.1. Concept Contraction . 25
4.3.2. Other Difference Operations 26
4.3.3. The Subtraction Operator by Suchanek et al. [6] 28

4.4. Conclusion . 30

Part III. An Operator for Retracting Knowledge from EL Concepts 31

5. Preliminaries 31
5.1. Definitions . 31
5.2. Assumptions . 34

6. Outline 35
6.1. Problem Description and Relationship to Belief Revision 35
6.2. Requirements . 36

6.2.1. Properties Derived from Belief Contraction 36
6.2.2. Other Properties . 38

vii

6.2.3. Dismissed Property: Commutability 43
6.3. Conclusion . 48

7. Realization 48
7.1. Definition . 48
7.2. Remarks and Design Decisions . 49
7.3. Examples . 51
7.4. Proofs . 56
7.5. Conclusion . 81

Part IV. Implementation 83

8. Reasons for Protégé 83

9. Implementation 83
9.1. Structure . 84
9.2. Algorithms . 86

Part V. Conclusion and Future Work 93

10. Conclusion 93

11. Future Work 94

Acknowledgments 99

References 114

viii

Part I.
Introduction and Motivation
1. Introduction

Following Studer et al. [8], who build upon Gruber [9] and Borst [10], an ontology is
„[...] a formal, explicit specification of a shared conceptualisation“. Ontologies are
a crucial part of the semantic web [11]. They provide a frame of reference through
which machines can agree on common semantics of concepts and their relations and
even infer new knowledge from them. Projects like DBPedia1 aim at giving formerly
unstructured knowledge a well-defined, ontology based structure. Today, a broad
range of ontologies exists that aim at capturing the knowledge of different domains
ranging from medicine [12, 13] and biology [14, 15, 16] to e-commerce [17] and so-
cial networks [18]. Some of these ontologies are considerably large: SNOMED CT
is an ontology of medical and clinical terms. Its property holder, the International
Health Terminology Standards Development Organisation (IHTSDO), claims that it is
„[...] the most comprehensive, multilingual clinical healthcare terminology in the
world“ [19]. At the time of this writing, the International Edition of SNOMED CT
contained more than 300,000 classes [20]. The Gene Ontology (GO) [14, 21] on the
other hand is an ontology that is a part of The Open Biomedical Ontologies [22]. It
aims at unifying the knowledge about genes and gene products and provides sup-
port for the description of cellular components, molecular functions and biological
processes. At the time of writing, it contained more than 40,000 biological concepts
and more than 6 million annotations of gene and gene products [23, 24].

The OWL 2 Web Ontology Language [25] is a formal language for the description
of ontologies that was specifically tailored for the needs of the semantic web. It is
a recommendation of the World Wide Web Consortium (W3C) since 2009. OWL 2
provides two different semantics: the OWL 2 RDF-based Semantics and the OWL
2 Direct Semantics. In addition, there are three trimmed down versions of OWL 2
available [26]: OWL 2 EL, OWL 2 QL and OWL 2 RL. They are called OWL profiles
and contain only a specific subset of the full language. The removal of elements from
the language reduces the expressive power of the profiles, but it also reduces the
complexity of certain reasoning tasks.2 All OWL 2 profiles use Description Logics
as their formal underpinning which are a family of logic languages for knowledge
representation. One important Description Logic is the logic EL and its extension
EL++ [27, 28] which corresponds to the OWL profile OWL 2 EL. EL and its ex-
tensions behave rather well in reasoning tasks but are expressive enough to model
the content of several large ontologies, such as the aforementioned biomedical on-
tologies SNOMED CT and GO [27]. Catalyzed by its practical relevance, EL has

1See http://www.dbpedia.org.
2See Section 3.3.4 for an overview of common reasoning tasks.

1

attracted some attention in the scientific community. This includes the extension of
ELwith additional constructors [27, 28, 29, 30], its combination with temporal logic
[31, 32] and its usage in the field of ontology based data access (OBDA) [33, 34].

2. Motivation

Imagine a world where the vision [35] of the Semantic Web has to its full extend
become a reality. Most of the knowledge that is currently available on the World
Wide Web is not limited to human eyes anymore, but can also be processed and un-
derstood by machines. These machines, called agents, work autonomously and are
able to answer complex questions and perform sophisticated tasks by connecting a
variety of decentralized sources of knowledge. In this process, these agents can also
infer new knowledge through logical reasoning and share it with all participants of
this web, thereby extending the knowledge of humanity. The rise of the semantic
web as it was envisioned could therefore lead to a second dawn of the Information
Age with an impact on everyday life that is hard to imagine.

For this vision to become true, certain obstacles have to be overcome. Today, on-
tologies that are based on well-defined languages such as OWL are important tools
for knowledge representation and a cornerstone of the semantic web [11]. One of the
problems that must be faced is how the knowledge that is stored in these ontologies
can be modified [1, 36]. The reasons that make such a change necessary are mani-
fold. To give an example, the reuse of ontologies provides certain benefits3 and is of
practical relevance4. However, in the case of its reuse the ontology must be adapted
to the new context and the new users’ needs. In addition, if multiple ontologies are
merged together, it can be necessary to change them in order to base their content
on a common vocabulary [1]. To give another reason for the change of an ontology,
it can happen that the domain that is reflected by the ontology changes. Scientific
research for example could alter our understanding of the human body and result
in new medical knowledge. This knowledge would ultimately make its way into
medical ontologies such as SNOMED CT. Unfortunately, performing changes to an
ontology is sometimes far from trivial [1, 2].

The change of knowledge representation systems has been an active area of re-
search and some work has been done with focus on schema evolution [41, 42, 43].5

Unfortunately, methods for handling changes in database schemas cannot be ap-
plied offhandedly to the field of ontology change [45, 46, 47]. The problem of ontol-

3These benefits include a possible reduction of the development costs and the facilitation of a consis-
tent description of the new domain in terms of previously used concepts and properties. Moreover,
the reuse of an ontology can improve its quality as it facilitates its proofreading [37].

4Ochs et al. [38] for instance investigated ontology reuse in the National Center for Biomedical On-
tology (NCBO) BioPortal [39, 40]. More than the half of 355 analyzed ontologies reused classes or
properties from other ontologies.

5Rahm and Bernstein [44] provide an online bibliography with focus on schema evolution at
http://se-pubs.dbs.uni-leipzig.de/.

2

ogy change has therefore become an own field of research.6 Ontology change incor-
porates different aspects of the change process, such as ontology versioning, debug-
ging, integrating and merging [1]. In many cases, a change of the ontology can make
it necessary to remove existing knowledge [1, 36, 48]. Even a simple addition of new
knowledge can introduce an inconsistency into the ontology as it can conflict with
old beliefs [1]. If this is the case, the old knowledge that causes the conflict must be
found and removed. Given a more concept-centric view, this includes the removal
of knowledge from concepts that are stored in the ontology. Carried out by humans,
the change of an ontology is prone to errors. Cornet et al. [2] for instance studied
cases in which modifications of SNOMED CT lead to complex modeling problems
such as the introduction of nonsensical clinical concepts or the creation of seemingly
equal concepts which yet differed in their underlying logical representation.7

Given the non-triviality of this problem, it would therefore be desirable to have
a well-defined operator at hand that supports the removal of knowledge from con-
cepts. Such an operator would offer a clear semantics and could be defined in terms
of desirable properties. These properties could cover basic aspects of the removal.8

In addition, they could also include more sophisticated properties that limit the re-
moval of knowledge from concepts and let the operator work in a fine-grained way.
Furthermore, such an operator could assist a human editor in removing unwanted
consequences from the ontology. For this, a program that employs the operator
could first compute a set of laconic justifications9 for an unwanted entailment. These
laconic justifications identify the parts of the concepts that are responsible for the
presence of the consequence. The program could then apply the operator to the
concepts in order to automatically remove the concepts’ parts that have been iden-
tified to cause the entailment.

For these reasons, the following part of this work is concerned with the develop-
ment of an operator that supports a fine-grained removal of knowledge from con-
cepts. The Description Logic EL is chosen as a starting point. This is motivated by
the following: First, reasoning in EL and some of its extensions is tractable. This
stands in sharp contrast to other Description Logics and is further illustrated in Sec-
tion 3.3.4. Second, EL has a practical relevance since EL++, which is an extension of
EL, provides the logical base for the OWL profile OWL 2 EL and large biomedical
ontologies. This provides the opportunity for a future extension of the operator to

6Flouris et al. [1] define ontology change as „[...] the problem of deciding the modifications to per-
form upon an ontology in response to a certain need for change as well as the implementation of
these modifications and the management of their effects in depending data, services, applications,
agents or other elements“.

7Such errors can also stem from rather simple misconceptions of the ontology language. Rector et al.
[49] gives an overview of common errors that were observed during the teaching of OWL. These
errors included the misuse of concept names to express information about the domain and a wrong
understanding of quantified statements, such as the trivial satisfiability of allValuesFrom.

8Such properties could for example ensure a success of the operation in that it is made sure that
knowledge that is retracted is not present in the result anymore.

9Laconic justifications can be understood as fine-grained explanations for the entailment of a conse-
quence. See Section 4.2.1 for a more detailed description.

3

EL++ and its application to real-world problems.
The next chapter gives an introduction to Description Logic with a focus on the

Description Logic EL and examines related work.

4

Part II.
Background
In this chapter an introduction to Description Logic is given. For this, the history of
Description Logic is outlined and some application areas are shown. Then the De-
scription Logic EL is introduced and some additional definitions and examples are
given. Following this, related work is examined in order to judge its applicability
to the task of a fine-grained removal of knowledge from EL concepts. This includes
the AGM postulates for belief set contraction and the postulates for belief base con-
traction. In addition, work is analyzed that is concerned with the debugging of on-
tologies and work that aims at computing the difference between Description Logic
concepts.

3. Description Logic

This section gives an overview of the history of Description Logic and introduces
the logic EL. After this, some additional definitions are given. These definitions
include the TBox and the ABox which together make up the knowledge base of De-
scription Logic systems. It is then shown how the canonical extension and the complete
expansion of a TBox can be computed. This section closes with a short overview of
common reasoning tasks in Description Logic and their complexity in EL and some
of its extensions.

3.1. History

Description Logics are a family of logic-based, formal languages. Figure 1 gives an
overview of the evolution of Description Logic systems and reasoners. All dates in
this figure show the time of the first appearance of a system. The displayed De-
scription Logic is always the most recent logic that corresponds to a system or is
supported by a reasoner.10

Description Logics stem from semantic networks [50] and frames [51]. These early
ancestors differed from logic-based formalisms in that they had no well-defined for-
mal semantics [65, 66]. In the case of semantic networks, Woods [66] for example
criticized the ambiguity of links in these networks. They could be used to describe
different parts of a conceptual structure or to express a relationship between con-
cepts. To illustrate his critique, Woods gave the two concepts black and telephone and
defined a new concept from them. He then argued that the new concept could either
denote a black telephone or express the assertion that all telephones are black.

10Note that not all systems support ABox reasoning or provided sound and complete reasoning algo-
rithms.

5

Year

1970 1980 1990 2000

1967
Semantic Networks [50]

1974
Frame Systems [51]

1977
KL–ONE [52, 53]

1987
LOOM [54, 55]
(ALCQRIFO)

1985
BACK [56]
(ALQR−1)

1990
KRIS [57]
(ALCNF)

1995
CRACK [58]
(ALCRIFO)

1997
FaCT [59, 60]

(SHIQ)

2001
RACER [61]
(SRIQ(D))

2004
Pellet [62, 63]
(SROIQ(D))

2006
FaCT++ [64]

(SHOIQ(D))

No well-defined semantics
Structural subsumption algorithms

Tableau-based algorithms

Figure 1: From semantic networks to modern Description Logic systems and rea-
soners.

Around 1977, the first Description Logic system KL-ONE [52, 53] appeared. It
was based on the idea of structured inheritance networks by Brachman [67] and fol-
lowed, like modern Description Logics, an open-world assumption. A new property
of KL-ONE was that it, in contrast to its predecessors, could perform an automatic
classification of new concepts by determining the closest concepts in terms of con-
cept subsumption [68]. In Brachman and Levesque [69], the authors introduced a
so-called terminological component and an assertional component to separate assertions
about individuals from the concept definitions. This differentiation made its way
into KRYPTON [70] and into later Description Logic systems. In the following time,
the underlying semantics of these systems was explored which lead to the discov-
ery of several unfortunate results concerning the employed structural subsumption
algorithms [71, 72, 73]. These results included the finding that reasoning within ex-
pressive TBoxes is coNP-hard [73] and that the subsumption problem in KL-ONE
and NIKL [74] is undecidable [75, 71]. A consequence of this was that the employed
structural subsumption algorithms were sound but incomplete, i.e. they could not
always detect all subsumption relationships. The following time was marked by
the emerge of other systems like LOOM [54, 55] and CLASSIC [76] that tried to cope
with these findings. The CLASSIC system for example was developed with a focus
on a restriction of the expressive power in order to benefit reasoning [77].

In 1990, Schmidt-Schauß and Smolka [78] presented a tableau-based algorithm for
the Description Logic ALC. Following this work, a shift from structural subsump-
tion algorithms to tableau-based algorithms occurred with the emerge of systems

6

like KRIS [57] and CRACK [58]. These were followed by optimized tableau-based
systems like RACER [61] and FaCT [79, 59]. In addition, the link between Descrip-
tion Logics and other logics was explored. In 1991 it was shown by Schild [80] that
the Description Logic ALC is closely related to the modal logic K(m) and in 1996
Borgida [81] showed that all Description Logics build from a set of common con-
structors correspond to a fragment of first-order predicate calculus. Results like this
made it possible to transfer research results between the logics and led for instance
to the extension of FaCT to satisfiability checking in modal logics [82]. In addition,
other highly optimized systems like Racer [61] and Pellet [62, 63] emerged.

Since then, some work has been performed to enable Description Logics to deal
with uncertainty [83, 84]. Examples for this include a combination of fuzzy logic and
certain Description Logics such asALC [85] and SHOIN (D) [86, 87]. The introduc-
tion of probabilistic extensions to Description Logics gave rise to logics like ALCP
[88]. Moreover, other Description Logics were introduced particularly with a focus
on the complexity of reasoning tasks. An example for this is the Description Logic
family DL-Lite [89] where certain reasoning tasks, such as checking for concept and
role subsumption relationships, can be performed in polynomial time.

A more in-depth summary of the history of Description Logic is provided by
Baader et al. [90]. For current research on Description Logics the reader is referred
to the International Workshop on Description Logics and its proceedings.11

3.2. Applications

Description Logic systems have been used in a variety of application areas such as
information management [91], natural language processing [92], data mining [93], in
the management of disasters [94] and in configuration systems used by Ford [95, 96]
and AT&T [97, 98]. A large application area for Description Logics are ontology lan-
guages, especially OWL, where they provide the logical base: OWL 2 with direct
model-theoretic semantics is closely related to the Description Logic SROIQ [99],
OWL 2 EL corresponds to EL++ [27, 28], OWL 2 QL to DL-LiteR [89] and OWL 2 RL
to Description Logic Programs [100].12 A lot of biomedical ontologies exist that em-
ploy OWL or correspond to certain Description Logics, such as the NCI Thesaurus
[101] that contains vocabulary for cancer research and the aforementioned biomed-
ical ontologies SNOMED CT and GO [12, 14]. The BioPortal [39, 40], which is a web
portal provided by the National Center for Biomedical Ontology (NCBO), indexes
close to 500 OWL ontologies at the time of writing. Moreover, a variety of other
OWL ontologies can be found on the World Wide Web [102].

In the following section the Description Logic EL is introduced whose extension
EL++ has found an application in the modeling of the biomedical domain and per-
forms comparatively well in reasoning tasks.

11See http://dl.kr.org/workshops/ for an overview.
12See [26] for a more detailed overview of the OWL 2 profiles.

7

3.3. The Description Logic EL

This section introduces the Description Logic EL. After this, some additional defi-
nitions are given that include the TBox and the ABox of Description Logic systems.
Following this, the canonical extension and complete expansion of a TBox are defined.
This section then closes with an overview of common reasoning tasks in Description
Logic systems and compares the complexity of reasoning in EL to other Description
Logics.

3.3.1. Syntax and Semantics

In the following, the logic EL is defined based on Baader et al. [90]. The basic build-
ing blocks in EL are atomic concepts and atomic roles. The concepts in EL are build
as follows: Let A denote an atomic concept and let R denote either an atomic role
or the so-called universal role u. Let C and D denote concepts. Furthermore, let the
set of the atomic concept names and the set of the atomic role names be disjoint. A
concept C ′ can then be built using the following syntax rule:

C ′ ←> | universal concept
A | atomic concept
C uD | concept intersection
∃R.C existential quantification

The semantics of these concepts is then given by an interpretation I that consists of a
non-empty set ∆I , called the domain, and an interpretation function ·I :

I = (∆I , ·I)

This interpretation function assigns every atomic concept A a subset AI of the do-
main:

AI ⊆ ∆I

The semantics of the top concept is given by:

>I = ∆I

The interpretation function assigns every role nameR a relationRI over the domain:

RI ⊆ ∆I ×∆I

Moreover, the semantics of the universal role is as follows:

uI = ∆I ×∆I

8

Syntax Semantics
> ∆I

A AI

C uD CI ∩DI

∃R.C {a ∈ ∆I | ∃b ∈ ∆I with (a, b) ∈ RI and b ∈ CI}

Table 1: The semantics of EL.

In other words, the universal role connects all elements of the domain. In addition,
the interpretation function maps every individual a to an element aI of the domain:

aI ∈ ∆I

Table 1 shows how the semantics is extended over complex concepts.
Consider now the following EL concept that could represent cats:

Animal u ∃PreysOn.Mouse

Concepts like this can be used to model a domain. For this, they are given a name13

and aggregated within the so-called TBox. The TBox is a part of the knowledge base
of Description Logic systems which is introduced in the following section. The next
section further introduces other required definitions and explains the semantics of
ELmore in-detail.

3.3.2. Basic Definitions

In this section, some basic definitions are given that are mainly based on Baader and
Nutt [103]. First, some definitions are stated that make it possible to express facts
about concepts and axioms. Based on these definitions, the TBox and the ABox are
defined which make up the knowledge base of a Description Logic system.

Let C and C ′ be concepts and let A, B and D be atomic concepts. Moreover, let R
and S be roles. The definitions are then as follows:

Definition 1 (Trivial conjunction). A conjunction of concepts is said to be trivial iff it
consists of exactly one conjunct. It is said to be non-trivial iff it is not a trivial conjunction.

Definition 2 (Duplicate conjuncts). Let C = C1 u C2 u . . . u Cn be a concept such that
each Ci with i ∈ {1, 2, . . . , n} is a trivial conjunction. Then:

C contains duplicate conjuncts iff ∃i, j ∈ {1, 2, . . . , n} : i 6= j and Ci = Cj

In other words, a concept is said to contain duplicate conjuncts iff it contains a conjunct
that occurs more than once.
13More formally, concept equivalence and concept subsumption are used to model relationships be-

tween concepts. They are introduced in the next section.

9

Definition 3 (Symbols within a concept). The set Atoms(C) is defined to contain all
atomic concepts that occur within C, independent of the nesting depth of role restrictions
these atomic concepts occur under. In addition, the set Roles(C) is defined to contain all
roles that occur within C, including the universal role, and independent of the number of
role restrictions these roles occur under.

An example for this definition is given in the following:

Example 1 (Symbols within a concept).

Atoms(A u ∃R.(B uD)) = {A,B,D}
Roles(A u ∃R.(B u ∃S.D)) = {R,S}

Some additional definitions are needed concerning the semantics of concepts and
to express relationships between them. They are given in the following and are
based on Baader et al. [104]:

Definition 4 (Model of a concept). An interpretation I is said to be a model of a concept
C iff CI 6= ∅.

Definition 5 (Terminological axioms). Terminological axioms are used to express a rela-
tionship between concepts. These axioms consist of concept inclusion axioms, denoted by

C v C ′ (1)

and concept equivalence axioms, denoted by:

C ≡ C ′ (2)

In these axioms, C is said to occur left-hand whereas C ′ is said to occur right-hand. In
the case of a concept inclusion relationship the concept that occurs on the right-hand side
of the axiom is said to subsume the concept on the left-hand side. In the example of (1),
C ′ subsumes C. Concerning the semantics, an interpretation I is a model of the concept
inclusion axiom displayed in (1) iff:

CI ⊆ C ′I

In addition, I is a model of the concept equivalence axiom displayed in (2) iff:

CI = C ′I

Based on the type of concept that occurs on the left-hand side of an axiom different types of
concept relationship axioms are distinguished. These are as follows:

General concept inclusion (GCI): Every concept inclusion axiom is a general concept
inclusion axiom, i.e. a GCI axiom has the form:

C v C ′

10

Concept specialization: A concept specialization, sometimes also called primitive con-
cept definition [104], is a concept inclusion axiom whose left-hand side is an atomic
concept:

A v C

Concept definition: A concept definition is a concept equivalence axiom whose left-hand
side is an atomic concept:

A ≡ C

Example 2 (Terminological axioms). Consider the following two terminological axioms:

Mouse v Mammal (3)
Cat ≡ Animal u ∃PreysOn.Mouse (4)

The axiom displayed in (3) states that every mouse is a mammal and the axiom shown in (4)
states that every cat is an animal that preys on mice.

Axioms like these can be used to conceptualize a domain. For this, they are aggre-
gated within the so-called TBox which is a part of the knowledge base of Description
Logic systems. The TBox is defined in the following:

Definition 6 (Syntax and semantics of the TBox). The TBox is the part of a knowledge
base that contains terminological knowledge about a domain. Different types of TBoxes are
distinguished depending on their content:

Generalized TBox: A generalized TBox consists of a finite set of concept definitions and
concept specializations. Only a single axiom per definition is allowed, i.e. for every
atomic concept A in a TBox T there exists at most one axiom in T where A occurs
left-hand.

Normalized TBox: A normalized TBox contains a finite set of concept definitions. For
every atomic concept A there is at most one concept definition where A occurs left-
hand. In addition, a normalized TBox is called acyclic iff no definition contains any
direct or indirect cycles.14

Concerning the semantics of a TBox, an interpretation I is a model of a TBox iff it is a model
for every axiom in that TBox.

Example 3 (TBox). Consider again the axioms (3) and (4) from the previous example. A
TBox that contains both axioms is a generalized TBox whereas a TBox that only contains the
axiom (4) is a normalized TBox. Moreover, the latter TBox is also acyclic.

A more extensive example for a TBox is given at the end of this section. Before
this, some additional definitions concerning the concepts within a TBox are made.

14An example for a terminological axiom that contains a direct cycle is A ≡ ∃R.A.

11

Definition 7 (Unsatisfiable concept w.r.t. a TBox). A concept C is said to be unsatisfi-
able w.r.t. a TBox T iff for all models I of T it is implied that CI = ∅.

Definition 8 (Incoherent TBox). A TBox T is called incoherent iff T contains a concept
that is unsatisfiable w.r.t. T .15

Definition 9 (Consequence of a TBox). Let T be a TBox and let φ denote a concept
relationship between two concepts. φ is said to be a consequence of T iff all models of T
are also models of φ. To denote such a consequence one writes:

T |= φ

Example 4 (Consequence of a TBox). To express that a given TBox T entails the conse-
quence that Animal subsumes Cat , one can write:

T |= Cat v Animal

Definition 10. Let T be a TBox. Then the following definitions are made:

Set NT of name symbols: The set NT of name symbols of T is defined to consist of all
atomic concepts that occur left-hand of a terminological axiom in T .

Named concept: The term named concept is used in the following to express that a con-
cept is a member of the set NT , i.e.:

C is a named concept in T iff C ∈ NT

Set BT of base symbols: The set BT of base symbols is defined to contain all atomic
concepts that occur solely on the right-hand side of all terminological axioms in T .

SetRT of role names: The setRT of role names is defined to contain all role names that
occur within concepts in T , including the universal role u.

Definition 11 (Syntax and semantics of an ABox). The ABox of a Description Logic
knowledge base contains assertional knowledge about the domain. It comprises of a finite set
of concept assertions and role assertions:

Concept assertion: A concept assertion assigns an individual a to a concept C, written
as a : C. An interpretation I is a model of the concept assertion a : C iff aI ∈ CI .

Role assertion: A role assertion expresses the fact that an individual b is in the filler of a
role R w.r.t. another individual a, written as (a, b) : R. An interpretation I is a model
of the role assertion (a, b) : R iff (aI , bI) ∈ RI .

Concerning the semantics, I is a model of an ABox A iff I is a model for all axioms in A.

15See also Schlobach et al. [105].

12

Example 5 (Assertions). Consider again the concepts from Example 2:

Mouse v Mammal

Cat ≡ Animal u ∃PreysOn.Mouse

Examples for related concept assertions are:

jerry : Mouse

tom : Cat

An example for a role assertion is given by:

(tom, jerry) : PreysOn

Together, the ABox and the TBox make up the knowledge base of Description
Logic systems.

Definition 12 (Knowledge base of a Description Logic system). The knowledge base
of a Description Logic system consists of a TBox and an ABox. In other words, let T denote
a TBox and let A denote an ABox. Then a knowledge base K that consists of this TBox and
ABox is given by the pair:

K = (T ,A)

An interpretation I is said to be a model of K iff it is a model for both T and A.

The following example aims at clarifying the previous definitions.

Example 6 (Definitions). Consider the following set of axioms:

Cat ≡ Animal u ∃PreysOn.Mouse (5)
Mouse ≡ Animal u ∃hasPreference.Cheese (6)
Cheese ≡ Milk u ∃hasTreatment .Coagulation (7)

For reasons of simplification, it is assumed that cheese can be modeled as a special form of
milk that has undergone a treatment that lead to its coagulation.16 The atomic concepts that
occur in these axioms are given by the following set:

{Cat ,Animal ,Mouse,Milk ,Cheese,Coagulation}

In addition, all concepts that occur on the left-hand side are atomic concepts and only occur
once. The axioms (5) – (7) therefore make up a TBox T . T is a normalized TBox, because
it contains no concept specialization. Moreover, T is acyclic, because no concept definition

16In reality, the process is more complex and involves the separation of the solid part of the coagulated
milk from the whey.

13

contains a direct or indirect cycle. The concepts Cat , Mouse and Cheese are named con-
cepts, because they occur on the left-hand side of a concept definition. Since there are no
other named concepts, they make up the set NT :

NT = {Cat ,Mouse,Cheese}

The set of base symbols on the other hand consists of all symbols that occur only on the
right-hand side of all concept definitions:

BT = {Animal ,Coagulation,Milk}

The set of role names contains all role names that appear within the TBox:

RT = {PreysOn, hasPreference, hasTreatment}

Now consider the following assertional axioms:

tom : Animal (8)
jerry : Animal (9)
tom : Cat (10)
jerry : Mouse (11)
berkswell : Cheese (12)
gouda : Cheese (13)
sheepmilk : Milk (14)
cowmilk : Milk (15)
gouda : Milk (16)
berkswell : Milk (17)
rennetbasedcoagulation : Coagulation (18)
(tom, jerry) : PreysOn (19)
(jerry , gouda) : hasPreference (20)
(jerry , berkswell) : hasPreference (21)
(gouda, rennetbasedcoagulation) : hasTreatment (22)
(berkswell , rennetbasedcoagulation) : hasTreatment (23)

These axioms make up an ABox, which is denoted by A in the following. Together, the TBox
and the ABox form a knowledge base K:

K = (T ,A)

14

Now consider the following interpretation I :

∆I = {tom, jerry , gouda, berkswell ,

sheepmilk , cowmilk , rennetbasedcoagulation}
Animal I = {tom, jerry}

CatI = {tom}
MouseI = {jerry}
CheeseI = {gouda, berkswell}

Milk I = {sheepmilk , cowmilk , gouda, berkswell}
CoagulationI = {rennetbasedcoagulation}

PreysOnI = {(tom, jerry)}
hasPreferenceI = {(jerry , gouda), (jerry , berkswell)}
hasTreatmentI = {(gouda, rennetbasedcoagulation),

(berkswell , rennetbasedcoagulation)}
aI = a for all individuals a in A

This interpretation satisfies all the ABox axioms (8) – (23) and is therefore a model of the
ABox. Concerning the TBox, consider again the definition of Cheese in axiom (7):

Cheese ≡ Milk u ∃hasTreatment .Coagulation

I is a model of this axiom if and only if:

CheeseI = (Milk u ∃hasTreatment .Coagulation)I (24)

From the definition of I it follows that:

CheeseI = {gouda, berkswell} (25)

It is now shown that this is equivalent to the right-hand side of (24):

(Milk u ∃hasTreatment .Coagulation)I

≡Milk I ∩ (∃hasTreatment .Coagulation)I

≡ {cowmilk , sheepmilk , gouda, berkswell}
∩ {a ∈ ∆I | ∃b ∈ ∆I with (a, b) ∈ hasTreatmentI and b ∈ CoagulationI}

≡ {cowmilk , sheepmilk , gouda, berkswell} ∩ {gouda, berkswell}
≡ {gouda, berkswell}

This equals (25). It therefore follows that I is a model of axiom (7). In the same way, I is a
model of the concept definitions of Cat and Mouse , too. But this means that I satisfies all
the axioms in T . I is therefore a model of T and thus also for the knowledge base K.

15

Moreover, from set theory it follows that for every interpretation J that is a model of axiom
(7), CheeseJ only contains elements which are also elements of:

(∃hasTreatment .Coagulation)J

In other words, for all interpretations J which are models of axiom (7) it is implied that:

CheeseJ ⊆ (∃hasTreatment .Coagulation)J

Since every model of T must also be a model of axiom (7), it can be concluded that the
equation above is true for all models of T . It is therefore a consequence of the TBox:

T |= Cheese v ∃hasTreatment .Coagulation

In the following section the canonical extension and complete expansion of a TBox
are introduced.

3.3.3. Canonical Extension and Complete Expansion

In this section, the canonical extension and the complete expansion of a normalized
TBox are defined. The definitions are based on Nebel [73].

A normalized TBox T can be seen as a function that assigns every name symbol
the right-hand side of its definition. More formally, let L denote the set of all EL
concepts. Then T : L → L is defined as:

T (C) =

{
D if C ∈ NT and D is the right-hand side of the definition of C in T
C otherwise

For convenience reasons, T is defined to return the unchanged argument if it is
not an element of NT . The function T is then used in the following to define the
canonical extension and the complete expansion of a concept w.r.t. T :

Definition 13 (Canonical extension T̂ (C)). Let T be a normalized TBox. Then the
canonical extension C ′ of a concept C w.r.t. T is obtained from T by replacing all name
symbols A ∈ NT that occur in C with T (A). More formally, for all concepts C

C ′ = T̂ (C)

with T̂ defined as follows:

T̂ (B) = B for B ∈ BT
T̂ (A) = T (A) for A ∈ NT

T̂ (∃R.C1) = ∃R.T̂ (C1) for a role R and a concept C1

T̂ (C1 u C2 u . . . u Cn) =
nl

i=1

T̂ (Ci) for n > 1 and concepts C1, C2, . . . , Cn

16

In addition, let the ith canonical extension T̂i of a concept C w.r.t. T be defined as:

T̂i(C) = T̂ ◦ T̂ ◦ . . . ◦ T̂
i times

(C)

The complete expansion of a concept C w.r.t. an acyclic TBox is then defined as
follows:

Definition 14 (Complete expansion T ∗(C)). Let T be a normalized TBox that is acyclic.
Let the depth of C w.r.t. T be defined as follows:

depth(C) = min({i | i ∈ N\{0} and T̂i(C) = T̂i+1(C)})

Then the complete expansion T ∗(C) of a concept C w.r.t. T is defined as follows:

T ∗(C) = T̂depth(C)(C)

In addition, if the depth of every concept in a TBox equals one, then this TBox is said to be
completely expanded.

In other words, the complete expansion T ∗ of a concept C w.r.t. a TBox T can
be computed by exhaustively computing the canonical extension of C until its def-
inition contains only concepts that are built from base symbols. If one replaces the
definitions of all concepts of a TBox with their complete expansion, the resulting
TBox T ′ is called completely expanded. Following Baader and Nutt [103], T and
T ′ are equivalent and share the same name and base symbols. In the following an
example for these definitions is given:

Example 7 (Canonical extension and complete expansion). Consider again the TBox
shown in Example 6:

Cat ≡ Animal u ∃PreysOn.Mouse

Mouse ≡ Animal u ∃hasPreference.Cheese

Cheese ≡ Milk u ∃hasTreatment .Coagulation

First note that because Cat , Mouse and Cheese are members of NT , one can obtain the
right-hand side of their definition using the function T . This gives the same result as the
first canonical extension:

T̂ (Cat) = T (Cat) = Animal u ∃PreysOn.Mouse

T̂ (Mouse) = T (Mouse) = Animal u ∃PreysOn.Cheese

T̂ (Cheese) = T (Cheese) = Milk u ∃hasTreatment .Coagulation

Note that the concept Cat contains the two concepts Mouse and Animal within its defini-
tion. Since Mouse is a named symbol, the second canonical extension of Cat differs from

17

the first one in that Mouse is replaced by T (Mouse). Animal on the other hand is a base
symbol and is therefore not replaced:

T̂2(Cat) = T̂ (T̂ (Cat))

= T̂ (Animal u ∃PreysOn.Mouse)

= T̂ (Animal) u T̂ (∃PreysOn.Mouse)

= Animal u ∃PreysOn.T̂ (Mouse)

= Animal u ∃PreysOn.T (Mouse)

= Animal u ∃PreysOn.(Animal u ∃hasPreference.Cheese)

Since T̂2(Cat) still contains a named symbol, namely Cheese, the third canonical extension
of Cat returns a different result in which the concept Cheese is replaced by the right-hand
side of its definition:

T̂3(Cat) =T̂ (T̂ (T̂ (Cat)))

=T̂ (Animal u ∃PreysOn.(Animal u ∃hasPreference.Cheese))

=T̂ (Animal) u T̂ (∃PreysOn.(Animal u ∃hasPreference.Cheese))

=Animal u ∃PreysOn.T̂ (Animal u ∃hasPreference.Cheese)

=Animal u ∃PreysOn.(T̂ (Animal) u T̂ (∃hasPreference.Cheese))

=Animal u ∃PreysOn.(Animal u ∃hasPreference.T̂ (Cheese))

=Animal u ∃PreysOn.(Animal u ∃hasPreference.T (Cheese))

=Animal u ∃PreysOn.(Animal u ∃hasPreference.(Milk u
∃hasTreatment .Coagulation))

Since no more named symbols are present, the fourth canonical extension equals the third
one. The depth of the concept Cat is therefore three:

depth(Cat) = 3

The complete expansion of Cat is subsequently given by:

T ∗(Cat) = T̂depth(Cat)(Cat)

= T̂3(Cat)

= Animal u ∃PreysOn.(Animal u ∃hasPreference.(Milk u
∃hasTreatment .Coagulation))

The next section gives an overview of common reasoning tasks in Description
Logics.

18

3.3.4. Reasoning

The complexity of reasoning is an important aspect of Description Logics and ontol-
ogy languages. The OWL profiles have been intentionally designed in such a way
that the basic reasoning tasks are decidable [26]. Speaking of Description logics,
the main reasoning tasks w.r.t. the TBox are concept classification and determining
logical implications [106]. Classification requires the computation of the hierarchy of
concept subsumption relationships and determines the closest super and sub con-
cepts of a given concept. Logical implication tests are used to determine if a given
relationship between concepts is a consequence of the TBox. The main reasoning
task w.r.t. the ABox on the other hand is instance checking [106]. Instance checking
is used to determine if an individual is an instance of a concept. Other important
reasoning tasks can be reduced to it, such as checking the consistency of a knowledge
base by testing if every concept has a model.

The complexity of these reasoning tasks depends on the Description Logic. The
logic EL and some of its extension behave well in these tasks: The classification
problem in cyclic EL terminologies for example can be solved in polynomial time
[107, 108]. This is still true if general concept inclusions are allowed [29]. Brandt [29]
also showed that this complexity does not change even if EL is extended by simple
role inclusion of the form

R v S

whereR and S are roles. The resulting language is called ELH. Furthermore, Baader
et al. [27, 28] added the bottom concept ⊥, nominals and role inclusions of the form

R1 ◦R2 ◦ . . . ◦Rn v S

to EL, where R1, R2, . . ., Rn are roles. These role inclusions are a generalization of
simple role inclusions. By adding these constructors to EL one obtains the language
EL++. Baader et al. [27, 28] then showed that despite these new constructors the
subsumption problem in EL++ remains tractable.

These complexity results stand in sharp contrast to the reasoning complexity of
many other Description Logics. Adding universal quantification to EL results in the
logic ALE , where the concept subsumption problem is NP-complete. In the logic
ALC, subsumption is PSPACE-complete [109]. Reasoning in the very expressive
logic SROIQ, a logic that is closely related to OWL 2 with direct model-theoretic
semantics, turned out to be N2ExpTime-complete [110].

Today a variety of highly optimized Description Logic reasoners exists [63, 111,
112, 113] that have to compete with each other in these reasoning tasks.17 Some of
them provide only support for certain OWL profiles, such as ELK [113], which is a
reasoner that only supports the profile OWL 2 EL.

17See Parsia et al. [114] for a benchmark of reasoners that used OWL 2 EL and OWL 2 DL ontologies.

19

3.4. Conclusion

In this section, the history of Description Logic was summarized and application ar-
eas for this logic were shown. The Description Logic EL was introduced and some
basic definitions were given. Following this, the canonical extension and the com-
plete expansion of a TBox were defined. Common reasoning tasks for Description
Logics were listed and it was noted that the subsumption problem in EL and some
of its extensions is tractable. Based on this and the fact that EL and its extension
have a practical relevance, this logic is chosen as the base for the development of the
knowledge retraction operator. The next section gives an overview of related work.

4. Related Work

This section examines related work. First, the AGM postulates for belief set con-
traction and the postulates for belief base contraction are introduced. After this,
methods are analyzed that are concerned with the debugging of ontologies and De-
scription Logic knowledge bases. In a next step, work that deals with determining
the difference between concepts is examined and its applicability to the problem of
a fine-grained removal of knowledge from concepts is judged.

4.1. AGM Belief Change

The AGM postulates [5], named after their inventors Alchourrón, Gärdenfors and
Makinson, state general properties that an operator that changes the believes of a
system should follow. Their work includes postulates for the removal of knowledge
(belief contraction), the addition of new knowledge (belief expansion) and the revision
of existing knowledge (belief revision). The latter also deals with removing incon-
sistencies that can occur after the incorporation of new knowledge into the system.
The AGM postulates are formulated independent of the actual language that is used
to represent the knowledge. They are based on a set of propositions that expresses
one’s believes. More formally, a belief set is a set K of propositions that is closed
under the consequence relation Cn , i.e.:

K is a belief set iff K = Cn(K)

In the following, only the postulates for belief contraction are of interest. Let K de-
note a belief set, Cn(K) the deductive closure of K and φ a logical sentence. The six
basic AGM postulates for belief set contraction are then shown in Table 2. Each pos-
tulate covers a different aspects of the contraction operation. The closure postulate
ensures that the result of the operation is again a belief set and the inclusion postulate
ensures that no new knowledge is gained when knowledge is removed. The vacuity
postulate is arranged in such a way that knowledge is only removed from a belief
set if it is currently present. If this is not the case, then nothing is changed. Success
ensures that the operation can be trusted in that the knowledge which is sought to

20

Postulate Definition

Closure K − φ is a belief set

Inclusion K − φ ⊆ K

Vacuity If φ 6∈ Cn(K), then K − φ = K

Success If φ 6∈ Cn(∅), then φ 6∈ Cn(K − φ)

Preservation If Cn(φ) = Cn(φ′), then K − φ = K − φ′

Recovery K ⊆ Cn((K − φ) ∪ φ)

Table 2: The six basic AGM postulates for belief set contraction.

be removed is not present in the result anymore. The preservation postulate on the
other hand ensures that the contraction of semantically equivalent sentences gives
the same result. Last, the recovery postulate enforces some minimality of the contrac-
tion: adding back the sentence that was contracted must be sufficient to restore all
the previously present knowledge. Note that this postulate is the only one that lim-
its the removal of knowledge.18 For a more in-depth explanation of these postulates
the reader is referred to Alchourrón et al. [5].

Besides performing a contraction on belief sets, one can also perform the contrac-
tion on belief bases [4, 115]. These are sets of logical sentences which are not nec-
essarily closed under logical consequence. The name stems from the fact that they
provide an (usually finite) base for a belief set. They are defined as follows:

B is a belief base for a belief set K iff K = Cn(B)

Hansson [4, 115] lists some basic postulates that an operator for belief base contrac-
tion should fulfill. These postulates include, amongst others, the ones displayed in
Table 3. Note that inclusion, vacuity and success are quite similar to the correspond-
ing postulates for belief set contraction modulo their definition on belief bases. Note
further that the relevance postulate is related to the recovery postulate. From the
postulates shown in Table 3 only inclusion, relevance, success and uniformity are
needed as postulates. Vacuity is usually omitted, because it can be inferred from
these postulates [115].

The application of the recovery and relevance postulates to the logic EL are exam-
ined in the following. Since the aim of this thesis is the development of an operator
for retracting knowledge from concepts, the postulates will be analyzed for their
applicability at concept level. Consider both postulates again:

Recovery: K ⊆ Cn((K − φ) ∪ φ)

Relevance: If β ∈ B and β 6∈ B − φ, then there exists a set B′ such that B − φ ⊆
B′ ⊆ B and φ 6∈ Cn(B′) but φ ∈ Cn(B′ ∪ {β})

18See Section 6.2.2 for more details on this.

21

Postulate Definition

Inclusion B − φ ⊆ B

Vacuity If φ 6∈ Cn(K), then K − φ = K

Success If φ 6∈ Cn(∅), then φ 6∈ Cn(B − φ)

Uniformity If for all B′ ⊆ B: φ ∩ Cn(B′) = ∅ iff φ′ ∩ Cn(B′) = ∅
then: B − φ = B − φ′

Relevance If β ∈ B and β 6∈ B − φ, then there exists a set B′ such that
B − φ ⊆ B′ ⊆ B and φ 6∈ Cn(B′) but φ ∈ Cn(B′ ∪ {β})

Table 3: Some of the postulates for belief base contraction.

Recovery states that if a belief was removed from a belief set and is added back, the
resulting belief set must again contain all the previous beliefs. Relevance states that
if a belief β was present in a belief base and has been removed when some belief
φ was retracted, then it must have played some role in the entailment of φ. Conse-
quently, there must exist a belief base between B and B − φ such that adding back
β is sufficient to restore φ. Note that both of these postulates need an operation to
restore a lost entailment. This poses a problem in the application of these postulates
to EL concepts. In the case of the recovery postulate, it is easy to see that naïvely
adding back the lost belief is not possible. To give an example, assume there exists
an operator� that can be used to retract a consequence from an EL concept. Then
consider the following example result of a retraction operation:

∃R.(A uB)�∃R.A = ∃R.B

One could try to add back ∃R.A to the result ∃R.B using concept intersection. How-
ever, the result would differ from the minuend:

∃R.B u ∃R.A 6v ∃R.(A uB)

It is therefore not possible to naïvely employ the AGM recovery postulate at concept
level. Since the relevance postulate also needs an operation to restore a lost belief,
the same problem arises here.

In this section, the postulates for belief base contraction and belief set contrac-
tion were introduced. The application of the recovery and relevance postulates at
concept level was examined and it was found that these postulates cannot be ap-
plied naïvely. The next section analyzes approaches that are concerned with the
debugging of ontologies and the determination of the difference between Descrip-
tion Logic concepts.

22

4.2. Debugging Ontologies and Description Logic Knowledge Bases

Debugging and repairing inconsistent ontologies is an active area of research [116,
117, 118, 119, 120, 121]. It led to the development of tools such as Pellet [63] and
the NeOn19 plugin RADON [122] that can assist human ontology editors in explain-
ing inferences and computing repairs. Debugging an ontology includes to find the
cause of an unwanted entailment. An inconsistency in an ontology for example can
be caused by an incoherent TBox T . This means that the ontology contains an unsat-
isfiable concept. This incoherency in the TBox can be understood as the entailment
T |= ⊥. Removing this entailment therefore also resolves the incoherency. In this
section, work that deals with finding the reasons for inconsistencies and resolving
them is examined in order to judge its applicability to the task of retracting knowl-
edge from concepts. The first part introduces (laconic) justifications. These can be
used to identify axioms and axiom parts that are responsible for the entailment of a
consequence. The second part then examines research that deals with the resolution
of inconsistencies at a fine-grained level and shows why these approaches are not
immediately applicable to EL.

4.2.1. Justifications

This section introduces justifications and laconic justifications. Assume in the follow-
ing that one wants to retract an unwanted consequence from an ontology. In this
case it could happen that there exists more than one axiom or more than one com-
bination of axioms which cause the entailment of this consequence. Consider for
example the following axioms:

A v B uD (26)
A v C u E (27)
C v B (28)

If these axioms were part of the TBox T of an ontology, one could infer that:

T |= A v B (29)

If asked why this consequence is entailed, one could rightfully refer to either axiom
(26) or the combination of the axioms (27) and (28). This issue is captured by the con-
cept of justifications [123, 124]. Informally, every minimal set of axioms that entails a
given consequence is called a justification w.r.t. this consequence. After computing
all justifications for a consequence, for example by using a technique called axiom
pinpointing [120], they can be used to retract this consequence from the ontology.
This can be done by simply removing at least one axiom per justification from the
ontology. Using the previous example, the two justifications for the consequence

19See http://www.neon-project.org.

23

displayed in (29) are:

J1 = {A v B uD}
J2 = {A v C u E,C v B}

On the other hand, the set

{A v B uD,A v C u E,C v B}

is not a justification, because it is not minimal.
Not every part of an axiom that belongs to a justification for a consequence is nec-

essarily responsible for the entailment of this consequence. Consider again axiom
(27). Only the first conjunct of (27) is responsible for its presence in the justification
J2. If this axiom was to be removed, one would also remove the fact

A v E

from the ontology. To cope with this, Horridge et al. [7] defined so-called laconic
justifications. Informally, a laconic justification for a consequence is a justification
which is stripped of all parts that are not relevant for the entailment of this conse-
quence. More detailed, to decide if a set J of axioms is a laconic justification for a
consequence, a satisfiability-preserving structural transformation based on Plaisted
and Greenbaum [125] is applied. This transformation splits each axiom into a set of
flattened axioms. If these axioms contain no parts that are unnecessary in the entail-
ment of the consequence or can be weakened, then J is a laconic justification.20 To
give an example, consider again the axioms (26) – (28). A laconic justification for the
consequence displayed in (29) w.r.t. these axioms is:

{A v C,C v B}

It stems from the axioms (27) and (28).21

Since laconic justifications provide the means to identify the problematic parts of
an axiom, they can prove useful in the process of a fine-grained removal of con-
sequences from concepts. The next section examines other work that deals with
resolving inconsistencies at a fine-grained level.

4.2.2. Resolving Inconsistencies at a Fine-grained Level

This section lists some research that deals with resolving inconsistencies at a fine-
grained level. Schlobach and Cornet [120] introduced the method of concept pin-
pointing in the logic ALC. Given an incoherent TBox T , they use this method to

20In theory, the possible candidates for laconic justifications are obtained from the deductive closure
of the ontology. In practice, a filter is applied before the candidates are extracted.

21Note that both elements of this justification are present in the deductive closure of an ontology that
consists of the TBox axioms {A v B uD,A v C u E,C v B}.

24

identify the parts of axioms that cause this incoherency. For this, they derive a set of
new TBoxes from T by changing the axioms in T while preserving the incoherency.
To achieve this, their algorithm replaces the conjuncts in the axioms with syntacti-
cally related but more general conjuncts in terms of concept subsumption. They call
this process the weakening of conjuncts and argue that axiom parts that can only be
weakened to a certain degree are a possible cause of the incoherency.

Lam et al. [126] propose a method that is related to Schlobach and Cornet [120]
and builds upon the tableau algorithm by Meyer et al. [127]. This method also iden-
tifies the parts of the axioms that are responsible for an inconsistency. For these
parts they compute possible repairs which are split in so-called helpful and harmful
changes. This splitting is based on the impact that applying these repairs would
have on the entailment of other, unrelated consequences. They developed a plu-
gin for the ontology editor Protégé that assists the users in computing these helpful
changes.

Besides the work listed here, other work exists that deals with debugging incon-
sistent ontologies [121]. In general, all these approaches could be extended to the
task of removing a consequence P from a concept C. This could be done by intro-
ducing an incoherency into the ontology. Given that

C v P

one could temporarily add the axiom:

C v ¬P (30)

This could then be followed by the computation of changes that can be applied to
the ontology to recover from this incoherency. These changes would include a set of
changes that alter C in such a way that:

C 6v P

After changing C, one would again remove the axiom shown in (30) from the ontol-
ogy. Unfortunately, this approach is not possible in EL, because the logic lacks the
necessary constructors to create such an inconsistency [128].

4.3. Computing the Difference between Concepts

This section focuses on work that aims at computing the difference between con-
cepts. The employed methods are investigated and it is shown why they are not
applicable to a fine-grained retraction of knowledge from EL concepts.

4.3.1. Concept Contraction

Colucci et al. [129] define a concept contraction problem that is geared towards match-
making in electronic market places. It can be described as follows. For two concepts

25

C and P , such that T |= C, all splittings of C into two concepts G (for give-up) and
K (for keep) are searched such that K and P are both satisfiable in T . More formally,
all pairs (G,K) are searched that have the following properties:

1. C ≡ G uK.

2. K u P is satisfiable in T .

From the result they then choose the splitting (G′,K ′) where G′ is most general
w.r.t. concept subsumption. K ′ resembles the part of C that remains after the con-
cept contraction. However, in EL the result would always be the trivial splitting
(>, C). This is explained in the following. First, the splitting (>, C) has the afore-
mentioned properties and is therefore always a valid splitting, independent of the
actual content of C:

1. C ≡ > u C.

2. C u P is satisfiable in T for all concepts C and P .22

Second, (>, C) is always the most general splitting because > subsumes all other
concepts. The concept contraction by Colucci et al. [129] is therefore not offhandedly
applicable to the Description Logic EL.

4.3.2. Other Difference Operations

Teege [130] defines a difference operation between two concepts. In the following,
let this operation be denoted by� and let A and B be concepts such that:

B v A

The operation is then defined as follows, where L denotes again the set of all EL
concepts:

B�A := max
v

({C ∈ L : A u C ≡ B})

The result of this operation is the most general concept which in conjunction with A
again equals B. To give an example, consider the following concept definitions:

RedCar ≡ Car u ∃hasPainting .RedPaint

RedMetallicCar ≡ Car u ∃hasPainting .(RedPaint u ∃hasAdditive.MetalPigments)

RedCar resembles a car that has a red painting and RedMetallicCar defines the
concept of a car which has a polychromatic red-metallic painting. Such a paint is

22See Lemma 3 in Section 7.4.

26

obtained by adding metal flakes to the red paint. Now assume that one wants to
remove the red paint from the car. The following operation gives the intended result:

T ∗(RedCar)︸ ︷︷ ︸
B

�∃hasPainting .RedPaint︸ ︷︷ ︸
A

≡ Car︸︷︷︸
C

This happens because the concept of a red car can be obtained again by adding back
the concept Car to the subtrahend:

∃hasPainting .RedPaint︸ ︷︷ ︸
A

uCar︸︷︷︸
C

≡ T ∗(RedCar)︸ ︷︷ ︸
B

However, it is not possible to perform a fine-grained removal of concept parts. Con-
sider the operation:

T ∗(RedMetallicCar)�∃hasPainting .∃hasAdditive.MetalPigments

In this case one could expect to end up with a new concept that represents the same
car as above, with the only change that the car now lacks the metallic look:

Car u ∃hasPainting .RedPaint

However, the operation does not change the concept at all:

T ∗(RedMetallicCar)︸ ︷︷ ︸
B

�∃hasPainting .∃hasAdditive.MetalPigments︸ ︷︷ ︸
A

≡T ∗(RedMetallicCar)︸ ︷︷ ︸
C

The reason for this is that there does not exist a concept X such that:

1. X is at least as general as RedMetallicCar :

T ∗(RedMetallicCar) v X

2. X semantically differs from RedMetallicCar :

X 6≡ T ∗(RedMetallicCar)

3. Adding back the subtrahend to X restores RedMetallicCar :23

X u ∃hasPainting .∃hasAdditive.MetalPigments

≡Car u ∃hasPainting .(RedPaint u ∃hasAdditive.MetalPigments)

In addition, as Suchanek et al. [131] points out, the operator is undefined in the case
that B 6v A.

Brandt et al. [132] propose a difference operator related to Teege’s operator, but
instead of choosing the most general concept w.r.t. concept subsumption they define
an order based on the syntax of concepts. This operator behaves quite similar if the
subtrahend subsumes the minuend and subsequently gives the same results in the
previous two examples as Teege’s.
23Note that ∃R.A u ∃R.B 6≡ ∃R.(A uB).

27

4.3.3. The Subtraction Operator by Suchanek et al. [6]

Suchanek et al. [6, 131] propose a set of operators for the modification of EL con-
cepts. In their work they explore how these operators can be used to generate new
concepts in a creative way.24 One of their operators is a subtraction operator which
is denoted in the following by�. It removes the first conjunct within a concept’s
definition that is subsumed by the subtrahend. To make the operator deterministic,
they impose an order on concepts based on the lexicographical ordering of con-
cept names and role names. Before the subtraction is performed, they reorder all
conjuncts in the concept with respect to this order. Prior to this they simplify the
concept and remove redundant parts such as multiple occurrences of the same con-
junct. In the following, a more detailed explanation of this operator is given. This
is then followed by an example that shows that the operator is not applicable to the
task of a fine-grained removal of a consequence from a concept.

To compute C�P , where P is only a trivial conjunction,25 first

C ′ = norm(C)

is obtained from C by computing the so-called normal form of C.26 This includes
removing redundant conjuncts that occur within the definition of C, e.g.:

norm(A u ∃R.(B u >) uA) = A u ∃R.B

Assume in the following w.l.o.g. that norm(C) has the following form, where each
C ′i with i ∈ {1, 2, . . . , n} is a trivial conjunction:

norm(C) = C ′1 u C ′2 u . . . u C ′n

In addition, let ≺ denote a total order between the concepts in EL that contain no
redundant conjuncts. Assume that the conjuncts of norm(C) have been syntactically
rearranged such that:

∀i ∈ {1, 2, . . . , n− 1} : C ′i ≺ C ′i+1

The result of C�P is then given by the following case distinction:

Case 1: There exists at least one trivial conjunct in norm(C) that is subsumed by P .
Then it is possible to choose an index k of a conjunct in norm(C) such that:

C ′k v P and ∀i ∈ {1, 2, . . . , k − 1} : C ′i 6v P

24To determine the creativity of a new concept they conducted a small study where computer science
students had to rate the created concepts.

25The case where P is a conjunction of more than one concept is omitted here, because it is not needed
in the following examples.

26For a formal definition of the normal form of a concept the reader is referred to Suchanek et al. [131].

28

The result of the operation is then defined as:

C�P = norm((
k−1l

i=1

C ′i) u (
nl

i=k+1

C ′i))

In other words, the first conjunct that implies the subtrahend is removed from
the conjunction.

Case 2: There does not exist a conjunct in norm(C) that is subsumed by P . Then
the result of the operation is defined as:

C�P = C

It is now shown that this operator cannot be used for a fine-grained removal of
conjuncts. Consider again the concept of a red car as it was defined in Section 4.3.2:

RedCar ≡ Car u ∃hasPainting .RedPaint

If one wants to get rid of the red color, the operator of Suchanek et al. [6] can be used
to achieve this:

T ∗(RedCar)�∃hasPainting .RedPaint ≡ Car

However, there are situations in which the operator may not give the desired result.
Similar to Teege’s difference operation, the operator of Suchanek et al. [6] does not
support a fine-grained removal of conjuncts. Consider again the concept of a red
metallic car:

RedMetallicCar ≡ Car u ∃hasPainting .(RedPaint u ∃hasAdditive.MetalPigments)

Now assume again that one wants to remove the metallic look from the car. The
intended result is again:

Car u ∃hasPainting .RedPaint

To achieve this, one could try to apply the following operation:

T ∗(RedMetallicCar)�∃hasPainting .∃hasAdditive.MetalPigments

In contrast to Teege’s, the operation returns a concept that differs from the minuend.
But instead of returning the desired concept of a red car that lacks the metallic look,
the operation returns the concept of a car that has no color at all:

T ∗(RedMetallicCar)�∃hasPainting .(∃hasAdditive.MetalPigments) ≡ Car

This happens because the operator completely removes the first conjunct that is sub-
sumed by ∃hasPainting .(∃hasAdditive.MetalPigments). In the example case, this is
the painting of the car:

∃hasPainting .(RedPaint u ∃hasAdditive.MetalPigments)

v ∃hasPainting .∃hasAdditive.MetalPigments

The operator of Suchanek et al. [6] is therefore not applicable to the task of a fine-
grained removal of knowledge from EL concepts.

29

4.4. Conclusion

This section examined related work. First, the postulates for belief set contraction
and belief base contraction were analyzed and it was shown that the recovery and
relevance postulates cannot naïvely be applied to a removal of knowledge at con-
cept level. In a next step, an overview of research that aims at debugging and re-
pairing ontologies was given. This overview included laconic justifications as well
as other approaches that aim at resolving inconsistencies at a fine-grained level. Fol-
lowing this, methods that aim at computing the difference between concepts were
examined. As a result, it was shown that these approaches cannot be used for a fine-
grained removal of knowledge from concepts or cannot offhandedly be transferred
to EL.

The following chapter is therefore concerned with the development of an opera-
tor for the Description Logic EL that supports a fine-grained removal of knowledge
from concepts. Such an operator would also be beneficial in combination with la-
conic justifications. These could be used to identify the part of a concept’s definition
that is responsible for a certain entailment. In a second step the operator could then
be applied to the concept in order to retract this part.

30

Part III.
An Operator for Retracting
Knowledge from EL Concepts
In this chapter, an operator for the fine-grained removal of knowledge from EL con-
cepts is defined. For this, the normal form of a concept is introduced and an order
between concepts is defined. Building on this, the requirements to the retraction
operator are formalized. Here, the postulates for belief set contraction and belief
base contraction are used as a guidance and related properties are derived. As a
consequence from the findings of the previous section, additional properties are
developed to cope with the non-applicability of the recovery postulate and the rel-
evance postulate. After the fundamentals have been established a formal definition
of the operator is given. Following this, the decisions in the design of the operator
are explained and some example applications are shown. At the end of this section
it is proven that the operator fulfills all the formalized requirements.

5. Preliminaries

This section introduces some basic definitions and lists assumptions that are re-
quired in the following.

5.1. Definitions

Let L denote the set of all EL concepts. Following Suchanek et al. [131], the full
reduction of a concept and the normal form of a concept are defined as follows:

Definition 15 (Full reduction of a concept). Let the reduction of a concept C be a concept
C ′ such that:

• C ′ v C,

• C ′ does not introduce new conjuncts w.r.t. C,

• C ′ has less conjuncts than C.

The full reduction red(C) of a concept C is then given by a concept C ′ that has no reduction,
i.e.:

C ′ is the full reduction of C iff there exists no reduction of C ′

Suchanek et al. [131] show that every concept that does not contain duplicate
conjuncts has a unique full reduction. The normal form of a concept is given by the
following definition, based again on Suchanek et al. [131].

31

Definition 16 (Normalized concept). Let norm(C), the normal form of a concept C, be
defined as follows:

norm(C) =


red(

dn
i=1 norm(Ci))

if C is a non-trivial conjunction of n trivial
conjuncts Ci with i ∈ {1, 2, . . . , n}

∃R.norm(C ′) if C = ∃R.C ′ with a role R and a concept C ′

C otherwise

In the following, a concept C is called normalized iff C = norm(C).

Example 8 (Normalized concept). Consider the following example results of the complete
expansion of different concepts:

T ∗(RedCar) = Car u ∃hasPart .Engine u ∃hasPainting .Red

T ∗(MotorVessel) = Boat u ∃hasPart .(Engine u >)

Only T ∗(RedCar) is a normalized concept. T ∗(MotorVessel) is not in normal form. This
is shown in the following:

norm(T ∗(MotorVessel))

≡ norm(Boat u ∃hasPart .(Engine u >))

≡ red(norm(Boat) u norm(∃hasPart .(Engine u >)))

≡ red(Boat u ∃hasPart .norm(Engine u >))

≡ red(Boat u ∃hasPart .red(norm(Engine) u norm(>)))

≡ red(Boat u ∃hasPart .red(Engine u >))

≡ red(Boat u ∃hasPart .Engine)

≡ Boat u ∃hasPart .Engine

As Suchanek et al. [131] point out, concepts that are equivalent and do not contain
duplicate conjuncts have the same normal form. This is captured by the following
Lemma:

Lemma 1. Let C and C ′ be concepts. Then:

If C ≡ C ′, then norm(C) = norm(C ′)

For a proof of this reader is referred to Suchanek et al. [131]. In the following
an order ≺ between normalized concepts is defined, based on the order given by
Suchanek et al. [131].

Definition 17 (Order). Let all concepts be a part of a completely expanded and normalized
TBox. In addition, let all concepts be normalized.27 Let the base symbols in BT \{>} be

27Note again the difference between a normalized TBox (Definition 6 in Section 3.3.2) and the normal-
ization of a concept.

32

ordered by a complete order ≺BT and let the role names in RT \{u} be ordered by a com-
plete order ≺RT . Let A and B denote concept names in BT \{>} and let R and S denote
role names in RT \{u}. Let C and P denote arbitrary complex concepts. In addition, let
D,C1, C2, . . . , Cn, P1, P2, . . . , Pm denote concepts that are trivial conjunctions. The order
≺ is then defined as follows:

C ≺ > for C 6= >
A ≺ B for A ≺BT B

∃R.C ≺ A
∃R.C ≺ ∃S.P for R ≺RT S
∃R.C ≺ ∃R.P for C ≺ P
∃R.C ≺ ∃u.P
∃u.C ≺ ∃u.P for C ≺ P

(C1 u C2 u . . . u Cn) ≺ D for n > 1 and C1 ≺ D
D ≺ (C1 u C2 u . . . u Cn) for n > 1 and (D = C1 or D ≺ C1)

(C1 u C2 u . . . u Cn) ≺ (P1 u P2 u . . . u Pm) for m > 1 and n > 1

and (C1 ≺ P1 or (C1 = P1 and
(C2 u . . . u Cn) ≺ (P2 u . . . u Pm)))

It is assumed that the conjuncts in every conjunction are already ordered by ≺.

The introduction of the order ≺makes it possible to define a lowest conjunct of a
conjunction:

Definition 18 (Lowest conjunct). Let C = C1 u C2 u . . . u Cn be a normalized concept,
where each Ci with i ∈ {1, 2, . . . , n} is a trivial conjunction. Then the lowest conjunct of
C is defined as the conjunct Ci that is the smallest conjunct in C w.r.t. the order ≺. More
formally:

Ci is the lowest conjunct of C iff i ∈ {1, 2, . . . , n} and ∀j ∈ {1, 2, . . . , n} :

if i 6= j, then Ci ≺ Cj

In addition, the lowest conjunct of a concept C is denoted by C≺.

The proofs that are later given in Section 7.4 are often based on an induction over
the structure of a concept. To facilitate these proofs, the parts of a concept are now
defined.

Definition 19 (Parts of a concept). Let C be a concept. Then the parts of C are given by
the following case distinction:

Case 1: C is a non-trivial conjunction of the form C = C1 u C2 u . . . u Cn such that each
Ci with i ∈ {1, 2, . . . , n} is a trivial conjunction. Then the conjuncts C1, C2, . . . , Cn

are the parts of C.

33

Case 2: C is a role restriction of the form C = ∃R.C1 with a role R and a concept C1. Then
C1 is the only concept that is a part of C.

In the case that C is an atomic concept, the parts of C are undefined.

Example 9 (Parts of a concept). Consider the following example definitions:

C ≡ A u ∃R.B (31)
C ′ ≡ ∃R.(A uB) (32)

In the case of (31), the parts of C are given by the concepts A and ∃R.B. In the case of (32),
only the concept A uB is a part of C ′.

5.2. Assumptions

This section lists some assumptions which are required for the definition of the
knowledge retraction operator.

Normalized TBox: It is assumed that the TBox is normalized. If the TBox happens
to be a generalized TBox it can be transformed into a normalized TBox as fol-
lows, based on Baader and Nutt [103]: For every concept inclusion axiom

C v P

a new base symbol C is chosen. The axiom above is then replaced with the
new axiom:

C ≡ C u P

Acyclic TBox: It is assumed that the TBox is acyclic. Acyclic terminologies are still
expressive enough for certain real-world ontologies such as SNOMED CT.

Completely expanded concepts: It is assumed that all concepts are completely ex-
panded. Note that complete expansion is possible, because the TBox is re-
quired to be acyclic.

No duplicate conjuncts: No concept contains duplicate conjuncts. A conceptC that
contains the same conjunct P m times can be trivially transformed into an
equivalent concept C ′ that contains no duplicate conjuncts by removing m− 1
occurrences of P in C.

Normalized concepts: All concepts are normalized, i.e. for every concept C:

C = norm(C)

The normalization of all concepts is possible because no concept contains du-
plicate conjuncts. Note that the assumed normalization of all concepts to-
gether with the complete expansion of all concepts implies that a lowest con-
junct exists for every concept C.

34

TBox independent subsumption: In the following, the semantics of concept rela-
tionships ignores the underlying TBox. Note that this does not lead to a change
in the semantics, because all concepts are completely expanded [103]. More
formal, given an acyclic TBox T , a concept C and a concept P it is true that:

T |= C v P iff |= T ∗(C) v T ∗(P)

For convenience, |= is dropped if it is clear from the context that reasoning
w.r.t. an empty TBox is meant.

Exclusion of the universal role: In the following, the universal role is not allowed
to appear within the subtrahend of a contraction operation. Note that the uni-
versal role is still allowed to appear within the minuend and that this assump-
tion therefore imposes no restriction on the content of the ontology.

In this section some basic assumptions were made. The next section outlines the
requirements the operator must fulfill.

6. Outline

This section gives an overview of the requirements an EL contraction operator should
have. First, the aim of the operator is defined. After that, the relationship between
the operator and belief set and belief base contraction is analyzed. Based on this,
properties are defined which the operator must fulfill and it is explained why the
commutability of subtrahends conflicts with these properties.

6.1. Problem Description and Relationship to Belief Revision

The retraction operator has to support a fine-grained removal of consequences from
EL concepts. An example for such a fine-grained removal is given in the following:

Example 10 (Fine-grained removal). Let � denote the knowledge retraction operator.
Then consider again the example definition of a car with a red metallic appearance:

RedMetallicCar ≡ Car u ∃hasPainting .(RedPaint u ∃hasAdditive.MetalPigments)

The operator should allow the removal of the metallic effect without removing the knowledge
that the car is painted in red:

T ∗(RedMetallicCar)�∃hasPainting .∃hasAdditive.MetalPigments

≡ Car u ∃hasPainting .RedPaint

In addition, the operator should exhibit other properties such as a guaranteed
success of the retraction operation. In the following section, the postulates for belief
base and belief set contraction are used to infer these properties. Since the recovery
and relevance postulates cannot offhandedly be used in this task, additional prop-
erties are developed to make up for this loss.28

28See again Section 4.1 for an explanation of this.

35

6.2. Requirements

This section lists desirable properties that an operator for retracting knowledge from
EL concepts should have. First, properties are given that are derived from belief
base contraction and belief set contraction. This is followed by a list of additional
properties, such as properties that ensure a fine-grained removal of knowledge. At
the end of this section it is shown why the commutability of subtrahends conflicts
with these properties.

6.2.1. Properties Derived from Belief Contraction

The following properties are closely related to the AGM postulates for belief base
and belief set contraction.

Closedness:

Property 1 (Closedness). For concepts C and P :

C�P is a concept

This property ensures that the result of the knowledge retraction operation is
again a concept. It is related to the closure postulate of belief base and belief
set contraction.

Inclusion:

Property 2 (Inclusion). For concepts C and P :

C v C�P

This property guarantees that no new knowledge is gained when knowledge
is removed. To give an example, consider again the definition of a red car:

RedCar ≡ Car u ∃hasPainting .RedPaint (33)

Now assume that one wants to remove the red paint from the car:

T ∗(RedCar)�∃hasPainting .RedPaint

The inclusion property restricts the possible outcomes of the operation. With-
out this property the operator could introduce new knowledge as shown in
the following:

T ∗(RedCar)�∃hasPainting .RedPaint ≡ Car u ∃hasEquipment .SeatHeating

The property is related to the inclusion postulate of belief base contraction:

B − φ ⊆ B

36

In this postulate, the result of the contraction operation appears left of the
subset relationship whereas in the derived inclusion property, the result of
the retraction operation subsumes the concept. This difference stems from the
different semantics: if one removes some knowledge from the definition of
an EL concept C (e.g. the red paint from the red car), then the new concept
C ′ is more general than C w.r.t. concept subsumption. Contrary to this, a
belief set is a set of logical formulae. To give up a certain belief, one removes
the corresponding formulae from the set and ends up with a subset of the
previous belief base.

Vacuity:

Property 3 (Vacuity). For concepts C and P :

If C 6v P , then C�P = C

The vacuity property ensures that a concept is only changed if it is subsumed
by the subtrahend. Besides a change in the semantics of that concept this prop-
erty prevents a change of its syntax. To give an example for the vacuity prop-
erty, consider again the definition of a red car as shown in (33). Note that this
definition does not imply a blue painting of the car, i.e.:

T ∗(RedCar) 6v ∃hasPainting .BluePaint

From the vacuity property it follows that a removal of the blue paint is there-
fore not allowed to change the concept:

T ∗(RedCar)� hasPainting .BluePaint = T ∗(RedCar)

The property is related to the corresponding property of belief base contrac-
tion:

If φ 6∈ Cn(B), then B − φ = B

Success:

Property 4 (Success). For concepts C and P :

If > 6≡ P , then C�P 6v P

This property ensures that a knowledge retraction operation is successful in
that the result is not subsumed by the subtrahend. The top concept is ex-
cluded, because every concept is subsumed by > and thus a successful retrac-
tion of > is impossible. To give an example, consider again the definition of a
red car in (33) and consider the following operation:

T ∗(RedCar)�∃hasPainting .RedPaint (34)

Clearly:
> 6≡ ∃hasPainting .RedPaint

37

From the success property it therefore follows that the operation in (34) must
remove the red painting from the car:

T ∗(RedCar)�∃hasPainting .RedPaint 6v ∃hasPainting .RedPaint

It is related to the success postulate of belief base contraction:

If φ 6∈ Cn(∅), then φ 6∈ Cn(B − φ)

Analogous to the exclusion of the top concept, φ is excluded from the postulate
if it is a tautology and can therefore be inferred from an empty belief base.

Preservation:

Property 5 (Preservation). For concepts C, P and P ′:

If P ≡ P ′, then C�P ≡ C�P ′

The preservation property ensures that the retraction of semantically equiva-
lent concepts gives the same results. It is related to the preservation postulate
for belief set contraction:

If Cn(φ) = Cn(φ′), then K − φ = K − φ′

6.2.2. Other Properties

There exist some other properties that are desirable for a knowledge retraction op-
erator which have not been captured yet. This section discusses missing aspects of
the retraction operation and presents corresponding properties.

Destruction: In the previous section, it was not defined how the operator should
behave in the case that the subtrahend is equal to>. To satisfy all the previous
properties it would be sufficient to define the operator in such a way that the
subtraction of > has no effect. However, it can be beneficial to let > work like
a wildcard for every other concept C:

C�> ≡ > (35)

This is illustrated in the following. Consider again the definition of a red car:

RedCar ≡ Car u ∃hasPainting .RedPaint

If >worked like a placeholder, one could think of an operator that allows one
to get rid of the color of the car without knowing its actual color:

T ∗(RedCar)�∃hasPainting .> 6v ∃hasPainting .RedPaint

38

Note that this does not imply that an operator with such a property cannot be
used with > in a fine-grained way. The property in (35) does not conflict with
the following result:

T ∗(RedCar)�∃hasPainting .> v Car

The idea to let > work like a placeholder for every other concept is captured
by the destruction property, which is defined as follows:

Property 6 (Destruction). For a concept C:

C�> ≡ >

Minimality: In the case of belief set contraction, the minimality of contraction fol-
lows from the recovery postulate and in the case of belief base contraction, it
stems from the relevance postulate. As shown by Hansson [3], dropping the
recovery postulate allows one to define a destructive AGM contraction opera-
tor:

K − φ =

{
K ∩ Cn(∅) if φ ∈ Cn(K)

K otherwise

Analogously, it is easy to see that the following example definition of an EL
knowledge retraction operator would fulfill all the previously defined proper-
ties closedness, inclusion, vacuity, success, preservation and destruction:

C�P =

{
> if C v P
C otherwise

It is therefore necessary to define some additional properties that ensure that
the operator acts in a less destructive way. However, despite the fact that
the recovery postulate and the relevance postulate cannot be naïvely applied,
the idea behind these postulates can still be put into use. Consider again the
relevance postulate as shown in Section 4.1. B denotes again a belief base and
Cn denotes the consequence relation:

If β ∈ B and β 6∈ B − φ, then there exists a set B′ such that B − φ ⊆ B′ ⊆ B
and φ 6∈ Cn(B′), but φ ∈ Cn(B′ ∪ {β}).

The idea behind this postulate is that if some belief β is removed during the
contraction of a belief φ, then β must have played some role in the previous
entailment of φ. In the following, this idea is exploited to define a property that
enforces a conservative removal of knowledge. For this, the term independent
concepts is defined first.
Definition 20 (Independent concepts). Let C =

dn
i=1Ci and P =

dm
i=1 Pi be

concepts, such that Ci and Pj are trivial conjunctions with i ∈ {1, 2, . . . , n} and
j ∈ {1, 2, . . . , n}. Then C and P are independent iff ∀i ∈ {1, 2, . . . , n} and ∀j ∈
{1, 2, . . . ,m} : Ci 6v Pj and Pj 6v Ci.

39

Example 11 (Independent concepts). Consider the concept definitions of a red car,
a red metallic car and a blue plane:

RedCar ≡ Car u ∃hasPainting .RedPaint

RedMetallicCar ≡ Car u ∃hasPainting .(RedPaint

u ∃hasAdditive.MetalPigments)

BluePlane ≡ Plane u ∃hasPainting .BluePaint

Assume now that these axioms are the content of a TBox. T ∗(BluePlane) is then in-
dependent from T ∗(RedCar), because no conjuncts within their definitions subsume
each other. T ∗(RedCar) and T ∗(RedMetallicCar) are not independent, because they
contain conjuncts that subsume each other:

∃hasPainting .(RedPaint u ∃hasAdditive.MetalPigments)

v ∃hasPainting .RedPaint

By making use of this definition, the first property that enforces a conservative
removal of knowledge is defined as follows:

Property 7 (Independence). For concepts C, P and P ′:

If C v P ′ and P and P ′ are independent, then C�P v P ′

Independence guarantees that conjuncts that are not related to the subtrahend
are not removed. To give an example, consider again the definition of a red
car from Example 11:

RedCar ≡ Car u ∃hasPainting .RedPaint

Then consider the following operation:

T ∗(RedCar)�∃hasPainting .RedPaint

Every operator that fulfills the independence property must keep the conjunct
Car in the result, because it is implied by T ∗(RedCar) and independent from
the subtrahend. However, even with this property in place there is still a case
left that must be considered. Until now, it is not defined how the operator
should behave if the subtrahend is a non-trivial conjunction of concepts, such
as:

(A uB)� (A uB) (36)

The independence property does not apply here, because the concepts within
the subtrahend are clearly not independent from the concepts that occur left-
hand. Two different approaches are possible in this case. First, one could

40

define the operator in such a way that every conjunct that appears within the
subtrahend is removed by an own retraction operation. This is shown in the
following example definition where role restrictions are excluded for reasons
of simplification.
Definition 21 (Example definition of�). Let C =

dn
i=1Ci and P =

dm
j=1 Pj be

concepts where Ci and Pj with i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . ,m} are trivial
conjunctions. Then:

C�P =



> C and P are a trivial conjunctions
and C v P

C�P1�P2� . . .�Pm
P is a non-trivial conjunction
and C v P

(C1�P) u . . . u (Cn�P)
C is a non-trivial conjunction
and P is a trivial conjunction
and C v P

C otherwise

In addition, let� be left-associative.

Using this definition, the example in (36) would result in:

(A uB)� (A uB)

= (A uB)�A�B

= ((A uB)�A)�B

= ((A�A) u (B�A))�B

= (> uB)� B

≡ B�B

= >

This definition would have the drawback that a retraction of A u B would
have more impact than retracting one of the more general concepts A or B,
which would however have less impact than retracting the even more general
concept >. This is shown in the following:

(A uB)� (A uB) ≡ > (37)
(A uB)�A ≡ B (38)
(A uB)�> ≡ > (39)

For this reason another approach was considered. First it was noted that from
the normalization of all concepts it follows that to fulfill all the aforemen-
tioned properties, especially success, it is sufficient to remove only one of the
conjuncts which appear within the subtrahend.29 In other words, for every

29This is indirectly proven in Section 7.4.

41

normalized concept
dn

i=1Ci where each Ci with i ∈ {1, 2, . . . , n} is a trivial
conjunction:

∀i ∈ {1, 2, . . . , n} : C1 u C2 u . . . u Ci−1 u Ci+1 u Ci+2 u . . . u Cn

6v C1 u C2 u . . . u Cn

In the following, a property called informational economy is defined that makes
use of this finding. It is then shown that this property prevents results such as
shown in (37) – (39).

Property 8 (Informational economy). For concepts C and P :

If C v P , then C�P = C�P≺

This property guarantees that if a conjunction of concepts is retracted not all
concepts are removed but only enough to guarantee success of the operation.
In addition, it ensures that an order ≺ between concepts is taken into account.
Only the concept that is lowest w.r.t. this order is retracted. This property is
motivated by the principle of informational economy [133]. This principle states
that unnecessary losses of information should be avoided and reflects the un-
derlying motivation in the design of the AGM postulates for belief set contrac-
tion. Consider the following modified version of Definition 21 that follows the
informational economy property:30

Definition 22 (Second example definition of �). Let C =
dn

i=1Ci and P =dm
j=1 Pj be concepts, where each Ci and Pj are trivial conjunctions. Then:

C�P =



> C and P are a trivial conjunctions
and C v P

C�P≺
P is a non-trivial conjunction
and C v P

(C1�P) u . . . u (Cn�P)
C is a non-trivial conjunction
and P is a trivial conjunction
and C v P

C otherwise

In addition, let� be left-associative.

It is now shown that this property prevents the results shown in (37) – (39).
For this, let all concept names be ordered alphabetically, i.e. A ≺ B. Then:

(A uB)� (A uB) = (A uB)�A ≡ B
(A uB)�A ≡ B
(A uB)�> ≡ >

30Note that role restrictions are omitted again for reasons of simplification.

42

Here, the retraction of a more general concept has as least as much impact
as the retraction of a less general concept. In addition, this property makes
the definition of favored retraction candidates possible, based e.g. on the epis-
temic entrenchment of certain concepts.31 This is related to the computation of
a reject set in Fuhrmann [134] where the author defines a minimal theory contrac-
tion and a minimal base contraction. The sentences that are retracted are chosen
from a possible larger set of rejection candidates, based on an order between
them that reflects their so-called degree of retractability.

This section introduced some additional properties that are considered important
for a knowledge retraction operator and gave an explanation why they were cho-
sen. At first, the commutability of subtrahends was considered as an additional
property, but this idea was later discarded. The next section addresses this decision
and explains the reasons for it.

6.2.3. Dismissed Property: Commutability

The commutability of subtrahends was considered as an additional property for the
operator. However, it was dismissed when it turned out that this property conflicts
with other properties that were valued more important. In the following, a defi-
nition for a property is given that expresses commutability of subtrahends. After
this, it is proven that this property conflicts with some of the properties that were
introduced in the previous sections.

Property 9 (Commutability). For concepts C, P1 and P2:

(C�P1)�P2 ≡ (C�P2)�P1

It is now shown that this property conflicts with the properties closedness, inclu-
sion, vacuity, success and independence. For this, the proof first assumes that com-
mutability complies with these properties. During the proof it is then shown that
this assumption leads to a logical contradiction. To improve the readability of the
proof, the corresponding placeholder concepts from the definition of the properties
are displayed below the equation if one of these properties is used to infer a re-
sult. To give an example, if A, B and C were concepts, the commutability property
(Property 9) could be used to derive the following equivalence:

(A�B)�C ≡ (A�C)�B

In the proof this is then written as:

(A︸︷︷︸
C

� B︸︷︷︸
P1

) � C︸︷︷︸
P2

≡ (A︸︷︷︸
C

� C︸︷︷︸
P2

) � B︸︷︷︸
P1

31An example for this is given with Example 15 in Section 7.3.

43

Violation of Property 9. Let� denote an operator that follows closedness (Property 1),
inclusion (Property 2), vacuity (Property 3), success (Property 4), independence
(Property 7) and commutability (Property 9). Let P be a concept and let A and
B be atomic concepts. In addition, let

A 6≡ B

and let

A uB v P

Moreover, let all concepts be normalized. Then consider the following operation:

(A uB)� (A uB)

Depending on the actual definition of the operator different outcomes are possible.
This is handled by the following two cases:

Case 1: (A uB)� (A uB) ≡ >. Then from this it follows that:

((A uB)� (A uB))�P ≡ >�P (40)

From the inclusion property (Property 2) it follows that:

>︸︷︷︸
C

v >︸︷︷︸
C

� P︸︷︷︸
P

From this it is implied that:

>�P ≡ >

From this and (40) it can be concluded that:

((A uB)� (A uB))�P ≡ >�P ≡ > (41)

From the success property (Property 4) it follows that:

(A uB)︸ ︷︷ ︸
C

� A︸︷︷︸
P

6v A︸︷︷︸
P

(42)

Now let:

P = A

From this and (42) it is implied that:

(A uB)�P 6v A

44

From this, the semantics of EL and set theory it follows that:

(A uB)�P 6v A uB

From this and the vacuity property (Property 3) it follows that:

((A uB)�P)︸ ︷︷ ︸
C

� (A uB)︸ ︷︷ ︸
P

= (A uB)�P︸ ︷︷ ︸
C

(43)

Clearly:

A uB v B

From this, the fact that A and B are independent concepts (Definition 20) and
the independence property (Property 7) it follows that:

(A uB)︸ ︷︷ ︸
C

� A︸︷︷︸
P

v B︸︷︷︸
P ′

From this and P = A it follows that:

(A uB)�P v B

From this and (43) it is implied that:

((A uB)�P)� (A uB)︸ ︷︷ ︸
≡(AuB)�P

v B (44)

Note that the formula below the bracket shows the equivalence from (43).
From the commutability property (Property 9) it now follows that:

((A uB)︸ ︷︷ ︸
C

� (A uB)︸ ︷︷ ︸
P1

)� P︸︷︷︸
P2

≡ ((A uB)︸ ︷︷ ︸
C

� P︸︷︷︸
P2

)� (A uB)︸ ︷︷ ︸
P1

(45)

Note that the right side of (45) and the left side of (44) are equivalent. From
this it can therefore be concluded that:

((A uB)� (A uB))�P v B

This conflicts with (41). In this case, commutability of subtrahends is therefore
not possible if the other properties are kept.

Case 2: (A u B)� (A u B) 6≡ >. Then from the inclusion property (Property 2) it
follows that:

(A uB)︸ ︷︷ ︸
C

v (A uB)︸ ︷︷ ︸
C

� (A uB)︸ ︷︷ ︸
P

45

From this and the normalization of all concepts it follows that the result from

(A uB)� (A uB) (46)

contains no other conjuncts than A and B. From the success property (Prop-
erty 4) it follows that:

(A uB)︸ ︷︷ ︸
C

� (A uB)︸ ︷︷ ︸
P

6v A uB︸ ︷︷ ︸
P

This implies that the result of (46) cannot contain both A and B as conjuncts.
This only leaves A or B as a result. Assume w.l.o.g. that:

(A uB)� (A uB) = A (47)

Choose P equal to this result:

P = A

Note that from this and (47) it follows that:

(A uB)� (A uB) v P

Note also that from (47) it is implied that:

(A uB)� (A uB) 6v B

From (47) and P = A it follows that:

((A uB)� (A uB))�P = A�P = A�A (48)

From P = A and the success property (Property 4) it follows that:

(A uB)︸ ︷︷ ︸
C

� P︸︷︷︸
P

6v A︸︷︷︸
P

From this, the semantics of EL and set theory it is implied that:

(A uB)�P 6v A uB

Clearly:

A uB v B

From this, the fact that A and B are independent concepts (Definition 20) and
the independence property (Property 7) it follows that:

(A uB)︸ ︷︷ ︸
C

� A︸︷︷︸
P

v B︸︷︷︸
P ′

(49)

46

From the success property (Property 4) it follows that:

A�A 6v A

From the inclusion property (Property 2) it is implied that:

A︸︷︷︸
C

v A︸︷︷︸
C

� A︸︷︷︸
P

(50)

Clearly:

A 6v B

From this, (50) and set theory it follows that:

A�A 6v B (51)

From the success property (Property 4) it can be concluded that:

(A uB)︸ ︷︷ ︸
C

� A︸︷︷︸
P

6v A︸︷︷︸
P

From this and set theory it follows that:

(A uB)�A 6v A uB

From this and the vacuity property (Property 3) it is implied that:

((A uB)�A)︸ ︷︷ ︸
C

� (A uB)︸ ︷︷ ︸
P

= (A uB)�A︸ ︷︷ ︸
C

(52)

From the commutability property (Property 9) it again follows that:

((A uB)︸ ︷︷ ︸
C

� (A uB)︸ ︷︷ ︸
P1

)� P︸︷︷︸
P2

≡ ((A uB)︸ ︷︷ ︸
C

� P︸︷︷︸
P2

)� (A uB)︸ ︷︷ ︸
P1

(53)

Note that from P = A it follows that the left side of the equivalence in (52)
equals the right side of the equivalence in (53). It can therefore be concluded
that:

((A uB)� (A uB))� P ≡ (A uB)�A (54)

The left side of (48) is equivalent to the left side of (54). It therefore follows
that:

A�A ≡ (A uB)�A

Together with (51) it can be concluded that the left side of this equation is not
subsumed by B. However, from (49) it follows that the right side is subsumed
by B. This is a contradiction. The commutability of subtrahends is therefore
not possible if the other properties are kept.

47

6.3. Conclusion

In this section the requirements to an EL knowledge retraction operator were stated.
For this, the general aim of such an operator was defined. After that, the relation-
ship to belief set contraction and belief base contraction was analyzed and desirable
properties of the operator were defined. It was further shown why the commutabil-
ity of subtrahends conflicts with these properties.

In the next section, the findings from this section are used to define an operator
for the fine-grained retraction of knowledge from EL concepts.

7. Realization

In this section, an operator for the retraction of knowledge from EL concepts is de-
fined with respect to the assumptions that were made in Section 5.2. The operator is
based on the requirements that were given in the previous section. This includes the
properties closedness (Property 1), inclusion (Property 2), vacuity (Property 3), suc-
cess (Property 4), preservation (Property 5), destruction (Property 6), independence
(Property 7) and informational economy (Property 8). After this, the decisions in
the design of the operator are explained and some examples are given that show
that the operator behaves as intended. In addition, formal proofs are provided that
show that the operator fulfills the aforementioned properties.

7.1. Definition

Prior to the definition of the retraction operator�, the auxiliary function fcontract is
defined which is used to facilitate the formal proofs.32

Definition 23 (Contraction function fcontract). Let L denote the set of all EL concepts.
Then fcontract: L → L is defined as follows:

fcontract(C) =

{
> if there exists R ∈ RT such that C = ∃R.C ′ and C ′ ≡ >
C otherwise

If this function is applied to a role restriction whose filler is equivalent to the top
concept, then it replaces the whole role restriction with >. Otherwise the argument
is returned unchanged. Building upon this function, the retraction operator � is
defined as follows.

Definition 24 (Retraction operator�). Let C, P and P ′ be concepts and let P≺ denote
the lowest conjunct of P . The result of C�P is given by the following cases:33

32This is discussed more in-detail in Section 7.2. In addition, Section 7.2 gives an alternate definition
of the operator without an auxiliary function.

33Note that from the assumptions made in Section 5.2 it follows that the universal role is not allowed
to occur within P .

48

Case 1: C is an atomic concept. Then:

C�P =

{
> if C v P
C otherwise

Case 2: C is a non-trivial conjunction of concepts Ci such that C = C1 u C2 u . . . u Cn

and every Ci is a trivial conjunction. Then:

C�P =

{dn
i=1(Ci�P≺) if C v P

C otherwise

Case 3: C is a role restriction such thatC = ∃R.C1, with conceptsC1 and P1 andR ∈ RT .
Then:34

C�P =


fcontract(∃R.(C1�P1)) if C v P and P≺ = ∃R.P1

> if P ≡ >
C otherwise

In addition, the operator is defined to be left-associative:

C�P�P ′ = (C�P)�P ′

An explanation of the decisions that were taken in the design of the operator is
given in the next section. This includes an explanation why role restrictions are
removed if the filler of a role equals >.

7.2. Remarks and Design Decisions

This section explains the choices that were taken in the design of the operator and
gives some additional remarks. First note that the operator is well-defined:

Lemma 2 (Well-definedness of�). C�P is well-defined for all concepts C and P with
u 6∈ Roles(P).

Proof. Well-definedness of� follows immediately from its definition. The only case
that is less obvious is case 3. Here, P ≡ > and P≺ = ∃R.P1 are mutual exclusive,
because the universal role is not allowed to appear in the subtrahend.35

The removal of role restrictions posed a decision in the design of the operator.
The need to remove role restrictions follows from the success property (Property 4).
Consider the following example:

∃R.>�∃R.>
34Note that if P 6≡ > and C v P , then it always follows that P≺ is a role restriction with the role R.

This is later proven in Lemma 10 (Section 7.4).
35See also Lemma 10 (Section 7.4) and the definition of the order ≺ (Definition 17).

49

Here, from the success property it follows that:

(∃R.>�∃R.>) 6v ∃R.>
The filler of R cannot be changed, because it already equals >. To cope with this,
the decision was made that in this case the whole role restriction is replaced with
>. In addition, since the idea behind the allowance of > in the subtrahend was
to provide a placeholder for an arbitrary concept, it was decided that a retraction
of ∃R.> should not semantically differ from the retraction of some other concept
∃R.C. This led to the decision that if the filler of a role restriction is changed to >,
the whole role restriction is replaced with >.

The function fcontract prevents some unfortunate occurrences of the operator in its
own definition and therefore facilitates the formal proofs. It is however not needed,
as shown in the following:

Definition 25 (Alternate definition of�). Let� be defined as in Definition 24 with the
following modification: In the case that C is a role restriction such that C = ∃R.C1, with
concepts C1 and P1 and R ∈ RT , let C�P instead be defined as follows:

C�P =


∃R.(C1�P1) if C v P and P≺ = ∃R.P1 and C1�P1 6≡ >

> if C v P and (P ≡ > or (P≺ = ∃R.P1 and
C1�P1 ≡ >))

C otherwise

This case distinction is logically equivalent to case 3 in the definition of the oper-
ator. Note that in this definition the operator occurs on the right-hand side of the
case distinction.

In addition, the operator was defined to be left-associative to prevent counter-
intuitive results. A right-associative contraction operator would behave in a de-
structive way if an atomic concept is contracted multiple times. The following ex-
ample shows this:

Example 12 (Shortcomings of a right-associative operator). Consider again the defini-
tion of a red car:

RedCar ≡ Car u ∃hasPainting .RedPaint

If one would perform a multiple retraction of the concept Car from this concept, one would
expect to end up with a concept that still describe a class of things that are painted in red. A
right-associative operator would instead give the following result:

T ∗(RedCar)�Car�Car

= T ∗(RedCar)� (Car�Car)

≡ T ∗(RedCar)�>
≡ >

To further illustrate the definition of�, some example applications of the opera-
tor are given in the following section. This is followed by formal proofs that show
that the operator fulfills all the properties that were defined in Section 6.2.

50

7.3. Examples

This section presents some example applications of the operator. The first example
shows how the operator can be used for a fine-grained removal of consequences
from concepts. In the second example it is shown how conjunctions in the subtra-
hend are handled. Note that all concepts are normalized.36

Example 13 (Fine-grained removal). In the following, the contraction function fcontract
is abbreviated by f . Consider again the definition of a car with a red-metallic appearance:

RedMetallicCar ≡ Car u ∃hasPainting .(RedPaint

u ∃hasAdditive.MetalPigments)

It is now shown that the operator � can retract the knowledge that the car’s paint has a
metallic effect without removing the knowledge that the car is painted in red. First, the
retraction operation is applied to the completely expanded concept RedMetallicCar :

T ∗(RedMetallicCar)�∃hasPainting .∃hasAdditive.MetalPigments

≡ (Car u ∃hasPainting .(RedPaint u ∃hasAdditive.MetalPigments))

�∃hasPainting .∃hasAdditive.MetalPigments

Since the minuend is a non-trivial conjunction case 2 of the definition of� is applied leading
to:

(Car u ∃hasPainting .(RedPaint u ∃hasAdditive.MetalPigments))

�∃hasPainting .∃hasAdditive.MetalPigments

≡ (Car�∃hasPainting .∃hasAdditive.MetalPigments)

u (∃hasPainting .(RedPaint u ∃hasAdditive.MetalPigments)

�∃hasPainting .∃hasAdditive.MetalPigments)

Clearly:

Car 6v ∃hasPainting .∃hasAdditive.MetalPigments

The first conjunct is therefore not changed. The application of � to the second conjunct
leads to case 3, where the minuend is a role restriction. Note that the subtrahend subsumes
the minuend:

∃hasPainting .(RedPaint u ∃hasAdditive.MetalPigments)

v ∃hasPainting .∃hasAdditive.MetalPigments

The operation is therefore pushed inside the filler of the role restriction. In addition, the

36See Section 5 again for details on this.

51

outer role restriction in the subtrahend is dropped and the contraction function is applied:

(Car�∃hasPainting .∃hasAdditive.MetalPigments)

u (∃hasPainting .(RedPaint u ∃hasAdditive.MetalPigments)

�∃hasPainting .∃hasAdditive.MetalPigments)

≡ Car u f(∃hasPainting .((RedPaint u ∃hasAdditive.MetalPigments)

�∃hasAdditive.MetalPigments))

Since the minuend is a non-trivial conjunction, case 2 is applied again, leading to:

Car u f(∃hasPainting .((RedPaint u ∃hasAdditive.MetalPigments)

�∃hasAdditive.MetalPigments))

≡ Car u f(∃hasPainting .((RedPaint�∃hasAdditive.MetalPigments)

u (∃hasAdditive.MetalPigments�∃hasAdditive.MetalPigments)))

Since RedPaint is an atomic concept, case 1 is applied. It is not changed, because it is not
subsumed by ∃hasAdditive.MetalPigments . The second application of � leads again to
case 3, and the operation is pushed inside the filler of ∃hasAdditive :

Car u f(∃hasPainting .((RedPaint�∃hasAdditive.MetalPigments)

u (∃hasAdditive.MetalPigments�∃hasAdditive.MetalPigments)))

≡ Car u f(∃hasPainting .(RedPaint u f(∃hasAdditive.(MetalPigments

�MetalPigments))))

MetalPigments is changed to >, because it is an atomic concept and is subsumed by the
subtrahend. This leads to:

Car u f(∃hasPainting .(RedPaint u f(∃hasAdditive.(MetalPigments

�MetalPigments))))

≡ Car u f(∃hasPainting .(RedPaint u f(∃hasAdditive.>)))

The filler of the role restriction ∃hasAdditive.> equals >, and thus fcontract changes the
whole concept to >:

Car u f(∃hasPainting .(RedPaint u f(∃hasAdditive.>)))

≡ Car u f(∃hasPainting .(RedPaint u >))

≡ Car u f(∃hasPainting .RedPaint)

The filler of the role restriction differs from>, and thus the outer application of fcontract does
not change the concept. The result therefore is given by:

Car u f(∃hasPainting .RedPaint)

≡ Car u ∃hasPainting .RedPaint

This is the intended result which shows that the operator can be used for a fine-grained
removal of consequences.

52

The next example shows how the operator can be combined with laconic justifi-
cations which were introduced in Section 4.2.1.

Example 14 (Laconic justifications). Consider the following generalized TBox:

RedMetallicCar ≡ Car u ∃hasPainting .(RedPaint u ∃hasAdditive.MetalPigments)

RedPaint v Paint

HardRepairablePaint ≡ Paint u ∃hasAdditive.MetalPigments

This TBox differs from the previous example in that it contains the additional knowledge
that red paint is some special kind of paint and that paint which contains metal pigments is
harder to repair.37 This TBox corresponds to the following normalized TBox:38

RedMetallicCar ≡ Car u ∃hasPainting .(RedPaint u ∃hasAdditive.MetalPigments)

RedPaint ≡ RedPaint u Paint

HardRepairablePaint ≡ Paint u ∃hasAdditive.MetalPigments

The set of concept subsumption relationships that can be inferred from this TBox includes
the fact that a red metallic car has a paint that is hard to repair, i.e.:

RedMetallicCar v ∃hasPainting .HardRepairablePaint (55)

Assume now that one wants to remove this consequence from the TBox. For this, one could
first compute the set of laconic justifications for this entailment to identify the concepts’
parts which are responsible for it.39 This set includes the following laconic justification:40

L1 = {RedMetallicCar v ∃hasPainting .RedPaint ,

RedPaint v Paint ,

RedMetallicCar v ∃hasPainting .∃hasAdditive.MetalPigments,

Paint u ∃hasAdditive.MetalPigments v HardRepairablePaint}

One can now select one implication from this laconic justification and remove it from the
TBox to retract the consequence displayed in (55).41 The only reasonable implications to
37Such a paint can display stripes if it is applied incorrectly, which is also known as the venetian-blind

effect. This happens when the metal flakes take on a preferred orientation e.g. under the influence
of gravity if the paint is sprayed on a vertically placed part [135].

38See Section 5.2 for information about the transformation of a generalized TBox into a normalized
TBox.

39In the given case, the reasons for the entailment are admittedly obvious. However, one could think
of examples where the relationships between the concepts are more complex and much harder to
see.

40Remember that laconic justifications are defined based on the deductive closure of an ontology, as
described in Section 4.2.1.

41Note that in this example all elements of the laconic justifications for the entailment (55) are related
to the elements of the laconic justification L1, i.e. there exists no fundamentally different way to
infer (55).

53

remove are those following from RedMetallicCar and one could subsequently decide to use
� to remove the consequence:

RedMetallicCar v ∃hasPainting .∃hasAdditive.MetalPigments

This gives the following equation where the result is derived in a similar way as in the
previous example:

T ∗(RedMetallicCar)�∃hasPainting .∃hasAdditive.MetalPigments

≡ Car u ∃hasPainting .(RedPaint u Paint)

≡ Car u ∃hasPainting .RedPaint

With this result, the consequence displayed in (55) has been successfully removed.

The following example shows how the order ≺ between concepts can be used to
define preferred concepts for the retraction.

Example 15 (Non-trivial conjunctions as subtrahends). Imagine an ontology that is
used to orchestrate the daily activities in a hospital. This ontology contains nursing care
plans for different types of patients and includes specific diet plans and medication plans.42

Patients with diabetes for example have to follow a strict diet and are only served food with
a low glycemic index. On the other hand, patients with a depressive disorder are allowed a
full meal including white bread and cornflakes, but are given a morning dose of Nialamide,
a nowadays obsolete antidepressant from the hydrazine class.43 This is captured by the
following axioms:

DiabeticBreakfastMenu ≡ ∃hasDish.BlueCheese u ∃hasDish.Porridge

u ∃hasDish.WholeGrainBread u ∃hasDish.Eggs

FullBreakfastMenu ≡ ∃hasDish.BlueCheese u ∃hasDish.Cornflakes

u ∃hasDish.WhiteBread u ∃hasDish.Eggs

NursingPlanDepressionMorning ≡ ∃ServeMenu.FullBreakfastMenu

u ∃GiveMedicine.Nialamide

NursingPlanDiabetesMorning ≡ ∃ServeMenu.DiabeticBreakfastMenu

u ∃PerformProcedure.CheckBloodSugar

The morning distribution of medications is of higher importance than the availability of cer-
tain dishes. The ontology engineer reflected this in the arrangement of the order ≺ between
concepts and specified that:

ServeMenu ≺RT GiveMedicine

42For the sake of simplicity it is assumed that each patient only suffers from one disease at a time.
43See https://pubchem.ncbi.nlm.nih.gov/compound/Nialamide.

54

From the definition of ≺ (Definition 17) it follows that this order between role names is
extended over all concepts such that for all concepts C and P :

∃ServeMenu.C ≺ ∃GiveMedicine.P (56)

In the 1960s, it turned out that the combination of Nialamide and blue cheese is highly
dangerous: Nialamide, working as a monoamine oxidase inhibitor, hinders the metabolism
of tyramine, an amine that can be found in blue cheese [136]. Assume that this has only
recently become known. Reacting to this, the hospital now wants to remove the combination
of these two from all nursing plans and performs the following operations:

T ∗(NursingPlanDiabetesMorning)� (∃ServeMenu.∃hasDish.BlueCheese

u ∃GiveMedicine.Nialamide) (57)
T ∗(NursingPlanDepressionMorning)� (∃ServeMenu.∃hasDish.BlueCheese

u ∃GiveMedicine.Nialamide) (58)

In the case of (57), Nialamide is not a component of the nursing plan. It therefore follows
from the definition of the operator (Definition 24) that the plan is not changed:

T ∗(NursingPlanDiabetesMorning)� (∃ServeMenu.∃hasDish.BlueCheese

u ∃GiveMedicine.Nialamide)

= T ∗(NursingPlanDiabetesMorning)

However, in the case of (58) the combination can be found in the nursing plan:

T ∗(NursingPlanDepressionMorning) v ∃ServeMenu.∃hasDish.BlueCheese

u ∃GiveMedicine.Nialamide

Since T ∗(NursingPlanDepressionMorning) is a non-trivial conjunction of concepts, case
2 of the definition of the operator applies. The result of this case is given by:

C�P =

{dn
i=1(Ci�P≺) if C v P

C otherwise

Note that the operation is pushed inside the conjuncts of the minuend. Note further that
only the lowest conjunct of the subtrahend is retracted. From the previously defined order
(56) is follows that:

∃ServeMenu.∃hasDish.BlueCheese ≺ ∃GiveMedicine.Nialamide

The change of the nursing plan in (58) therefore results in the following equations, where for

55

reasons of readability the concepts are only expanded as much as necessary.

T ∗(NursingPlanDepressionMorning)� ∃ServeMenu.∃hasDish.BlueCheese

u ∃GiveMedicine.Nialamide

= (∃ServeMenu.T ∗(FullBreakfastMenu) u ∃GiveMedicine.Nialamide)

� (∃ServeMenu.∃hasDish.BlueCheese u ∃GiveMedicine.Nialamide)

= (∃ServeMenu.T ∗(FullBreakfastMenu)�∃ServeMenu.∃hasDish.BlueCheese)

u (∃GiveMedicine.Nialamide�∃ServeMenu.∃hasDish.BlueCheese)

The remaining steps of the operation are similar to the previous example and are skipped
here. The result is given by:

(∃ServeMenu.T ∗(FullBreakfastMenu)�∃ServeMenu.∃hasDish.BlueCheese)

u (∃GiveMedicine.Nialamide�∃ServeMenu.∃hasDish.BlueCheese)

≡ ∃ServeMenu.(∃hasDish.Cornflakes u ∃hasDish.WhiteBread u ∃hasDish.Eggs)

u ∃GiveMedicine.Nialamide

With this the combination of Nialamide and blue cheese has been successfully removed from
all nursing plans. In addition, the medication of all patients has been maintained while blue
cheese is still served to patients that don’t receive Nialamide.

In the following section, it is shown that the operator has all the properties that
were defined in Section 6.2.

7.4. Proofs

In this section it is proven that the operator fulfills all properties that were defined
in Section 6.2. For this, some basic statements about the subsumption relationship
between EL concepts are proven first. These are then used to show that the operator
has the required properties.

Lemma 3 (Existence of a model). For every concept C there exists an interpretation I
such that:

∅ 6= CI

Proof. It is not possible to construct conflicting concept descriptions, because EL
lacks negation [128]. Every concept has therefore a model.

Lemma 4. For concepts C, P and P ′:

If C 6v P , then C 6v P u P ′ (59)

Proof. Assume that:
C 6v P

56

From this it is implied that there exists an interpretation I such that:

CI 6⊆ P I

From set theory it follows that:

CI 6⊆ P I ∩ P ′I

This proves (59).

Lemma 5. For a concept C and an atomic concept A with A 6= > and R ∈ RT :

∃R.C 6v A

Proof by contradiction. Assume that:

∃R.C v A

Then for all interpretations M it follows that:

(∃R.C)M ⊆ AM (60)

From Lemma 3 (existence of a model) it follows that there exists an interpretation I
such that:

(∃R.C)I 6= ∅

This implies that:
CI 6= ∅

Now choose y ∈ CI and let x be a new individual that does not occur in ∆I . Then
construct a new model J as follows:

∆J = ∆I ∪ {x}
RJ = RI ∪ {(x, y)} if R 6= u

BJ = BI ∀B ∈ {Atoms(C) ∪A}\{>}
QJ = QI ∀Q ∈ Roles(C)\{u,R}

Note that:
AJ = AI (61)

Since no relations have been removed in J compared to I and no atomic concepts
have been changed, from the semantics of EL it follows that:

CI ⊆ CJ

But this means that:
y ∈ CJ

57

Note that J was designed in such a way that:

(x, y) ∈ RJ

This implies that:
x ∈ (∃R.C)J

From (61) and x 6∈ ∆I it can be concluded that:

x 6∈ AJ

But this means that:
(∃R.C)J 6⊆ AJ

This contradicts (60). Therefore, A cannot subsume ∃R.C.

Lemma 6. For a concept C and R ∈ RT :

∃R.C v ∃u.C (62)

Proof. The proof follows immediately from the semantics of EL and the definition
of the universal role. For every interpretation I :

RI ⊆ uI

From this it follows that:
(∃R.C)I ⊆ (∃u.C)I

This implies (62).

Lemma 7. For the roles C and P with R ∈ RT :

If C v P , then ∃R.C v ∃R.P

Proof. This follows immediately from the semantics of EL.

Lemma 8. For concepts C and P and a role R with u 6∈ Roles(P) ∪ {R}:

∃R.C v ∃R.P iff C v P (63)

Proof. For the direction “⇒”: Proof by contradiction. Assume that

∃R.C v ∃R.P (64)

and
C 6v P

Then there exists an interpretation I such that:

CI 6⊆ P I

58

Note that this implies that:
∅ 6= CI\P I

Construct J from I as follows, with x 6∈ ∆I and y ∈ CI\P I :

∆J = ∆I ∪ {x}
RJ = RI ∪ {(x, y)}
AJ = AI ∀A ∈ (Atoms(C) ∪Atoms(P))\{>}
QJ = QI ∀Q ∈ (Roles(C) ∪ Roles(P))\{R, u}

Note that:

y 6∈ P I

Then from y ∈ CI and the construction of J it follows that:

x ∈ (∃R.C)J (65)

In addition, it follows from y 6∈ P I and the construction of J that:44

y 6∈ P J

From this it is implied that:
x 6∈ (∃R.P)J

This together with (65) leads to the conclusion that:

(∃R.C)J 6⊆ (∃R.P)J

This contradicts (64). It therefore follows that:

If ∃R.C v ∃R.P , then C v P

For the direction “⇐”: This direction follows from Lemma 7. This proves (63).

Lemma 9. For concepts C and P and R ∈ RT \{u}:

∃u.C 6v ∃R.P (66)

Proof. Assume that:
∃u.C v ∃R.P (67)

From Lemma 3 (existence of a model) it follows that there exists an interpretation I
such that:

CI 6= ∅ (68)
44Note that the universal role is not allowed to occur in P .

59

Let x be a new individual that does not occur in ∆I . Then construct a new model J
as follows:

∆J = ∆I ∪ {x}
BJ = BI ∀B ∈ (Atoms(C) ∪Atoms(P))\{>}
QJ = QI ∀Q ∈ (Roles(C) ∪ Roles(∃R.P))\{u}

Then from the semantics of EL and R 6= u it follows that:

x 6∈ (∃R.P)J

From (68) and the construction of J it follows that:

CJ 6= ∅

From this and the semantics of the universal role it follows that:

x ∈ (∃u.C)J

This contradicts (67) and proves (66).

Lemma 10. For the concepts C,P, P ′1, P
′
2, . . . P

′
n and R ∈ RT with u 6∈ Roles(P):

∃R.C v P iff P = > or P =
nl

i=1

∃R.P ′i and ∀i ∈ {1, 2, . . . , n} : C v P ′i

Proof. For the direction “⇒”: Proof by contradiction. Assume that

∃R.C v P (69)

In addition, assume that
P 6= >

and P has not the form described above. Then P can have the following forms:

Case 1: P is an atomic concept with P 6= >,

Case 2: P = ∃S.P ′ with a role S 6= R,

Case 3: P = ∃R.P ′ with a concept P ′ and C 6v P ′,

Case 4: P =
dn

i=1 Pi with n > 1, where every Pi is a trivial conjunction and there
exists j such that one of the cases 1–3 can be applied to Pj .

The choice of these cases requires an explanation. First note that if P is only a trivial
conjunction, then the cases 1 – 3 cover all cases of P that contradict the right side of
the implication. The only case that then remains is the case that P is a non-trivial
conjunction. From the assumption that all concepts are normalized (Section 5.2) it
is ensured that in this case > can not occur as a conjunct of P . This means that P
can only contain conjuncts that are atomic concepts different from top and conjuncts
that are role restrictions. Now assume that P only consist of conjuncts Pi such that
for all i none of the cases 1 – 3 applies to Pi. Then choose one of these conjuncts and
denote it by X . X must be a role restriction, or else case 1 could be applied to X .45

45Remember that > cannot occur as a conjunct in P .

60

Second, the role of X must equal R or else case 2 could be applied to X . Last, if
the role of X is equal to R, then the filler of X must subsume C or else case 3 could
be applied to X . But this means that X = ∃R.P ′ with C v P ′. By an inductive
argument, this holds true for all conjuncts Pi and therefore

P =
nl

i=1

∃R.P ′i and ∀i ∈ {1, 2, . . . , n} : C v P ′i

with concepts P ′i . This case however is captured by the right side of the lemma and
cannot be used to disprove the implication. It can therefore be concluded that one of
the cases 1 – 3 must be applicable to at least one conjunct of P in order to disprove
the lemma. This is captured by case 4.
In the following, it is now shown that the cases 1 – 4, together with (69), lead to a
contradiction:

Case 1: P is an atomic concept with P 6= >. From Lemma 5 it follows that

∃R.C 6v P

This contradicts (69).

Case 2: P = ∃S.P ′ with
S 6= R (70)

From u 6∈ Roles(P) it follows that:

S 6= u (71)

From Lemma 3 (existence of a model) it follows that there exists an interpreta-
tion I such that:

∅ 6= CI

Choose
y ∈ CI (72)

and
x 6∈ ∆I (73)

i.e. x is a new individual that does not occur in the domain ∆I . Then construct
a new model J as follows:

∆J = ∆I ∪ {x}
RJ = RI ∪ {(x, y)} if R 6= u

AJ = AI ∀A ∈ (Atoms(C) ∪Atoms(P))\{>}
QJ = QI ∀Q ∈ (Roles(C) ∪ Roles(P))\{R, u}

From the construction of J it follows that:

SJ = SI (74)

61

From the construction of J and (72) it is implied that:

x ∈ (∃R.C)J (75)

From S 6= R (70), S 6= u (71), x 6∈ ∆I (73) and SJ = SI (74) it follows that:

x 6∈ (∃S.P ′)J

From this and (75) it and can be concluded that:

(∃R.C)J 6⊆ (∃S.P ′)J

With P = ∃S.P ′ this implies that:

∃R.C 6v P

This contradicts (69).

Case 3: P = ∃R.P ′ and C 6v P ′. From this, u 6∈ Roles(P) and Lemma 8 it follows
that:

∃R.C 6v ∃R.P ′

This contradicts (69).

Case 4: P =
dn

i=1 Pi with n > 1, where every Pi is a trivial conjunction and there
exists a j such that one case of the cases 1–3 can be applied to Pj . Then:
In the previous part of the proof it was shown that for all these cases it follows
that:

∃R.C 6v Pj

But that means there exists a conjunct in P that does not subsume ∃R.C. From
this and Lemma 4 it follows that:

∃R.C 6v P

This contradicts (69).

This proves the direction “⇒”.
For the direction “⇐”: Consider the possible cases of P :

Case 1: P = >. Then clearly ∃R.C v >.

Case 2: P =
dn

i=1 ∃R.P ′i and

∀i ∈ {1, 2, . . . , n} : C v P ′i (76)

Then the proof is given by a reductio ad absurdum argument. Assume that:

∃R.C 6v
nl

i=1

∃R.P ′i (77)

62

From u 6∈ Roles(P) it follows that:

R 6= u

From (77) it follows that there exists an interpretation I such that:

(∃R.C)I 6⊆
n⋂

i=1

(∃R.P ′i)I (78)

From (76) it is implied that:

∀i ∈ {1, 2, . . . , n} : CI ⊆ P ′Ii

From this and the semantics of EL it follows that:

∀i ∈ {1, 2, . . . , n} : (∃R.C)I ⊆ (∃R.P ′i)I

From this and set theory it follows that:

(∃R.C)I ⊆
n⋂

i=1

(∃R.P ′i)I

This contradicts (78).

This proves the direction “⇐” and completes the proof of the lemma.

Lemma 11. For concepts C and P :

If C v P , then C v fcontract(P).

Proof. This follows immediately from the definition of fcontract (Definition 23 in Sec-
tion 7.1), because the result of fcontract(P) is either P or >.

Theorem 1 (Closedness). For concepts C and P :

C�P is a concept

Proof. This follows immediately from the well-definedness of the operator (Lemma 2
in Section 7.2) and its definition.

63

Theorem 2 (Preservation). For concepts C, P and P ′:

If P ≡ P ′, then C�P ≡ C�P ′ (79)

Proof. Assume that:
P ≡ P ′

From this, the assumption that all concepts are normalized (Section 5.2) and the
existence of a unique normal form for equivalent concepts (Lemma 1 in Section 5.1)
it can be concluded that:

P = P ′

From this (79) follows.

Lemma 12. For concepts C1, C2, . . . , Cn and P , where P is only a trivial conjunction with
a single conjunct, with u 6∈ Roles(P):

If ∀i ∈ {1, 2, . . . , n} : Ci 6v P , then C1 u C2 u . . . u Cn 6v P (80)

Proof. Assume that:
∀i ∈ {1, 2, . . . , n} : Ci 6v P

Then for each Ci there exists an interpretation Ji such that:

CJi
i 6⊆ P

Ji

This implies that each CJi
i contains an element that does not occur in P Ji . Let these

elements be denoted by ai:

∀i ∈ {1, 2, . . . , n} ∃ai ∈ ∆Ji : ai ∈ CJi
i ∧ ai 6∈ P

Ji (81)

Let w.l.o.g.:
n⋂

i=1

∆Ji = ∅

If the domains are not disjoint, rename the elements of the interpretations accord-
ingly. Choose b such that b does not occur in the domain of any interpretation Ji,
i.e.:

b 6∈
n⋃

i=1

∆Ji

Let

Atoms = (

n⋃
i=1

Atoms(Ci) ∪Atoms(P))\{>}

denote all atomic concepts that occur in at least one of the concepts Ci and P , ex-
cluding the top concept. Let

Roles = (

n⋃
i=1

Roles(Ci) ∪ Roles(P))\{u}

64

denote all roles that occur in at least one of the concepts Ci and P , excluding the
universal role. Then construct a new interpretation L as follows:

∆L =
n⋃

i=1

∆Ji ∪ {b}

∀A ∈ Atoms : AL =

{⋃n
i=1A

Ji ∪ {b} if ∃i ∈ {1, 2, . . . , n} : ai ∈ AJi⋃n
i=1A

Ji otherwise

∀R ∈ Roles : RL =
n⋃

i=1

(RJi ∪ {(b, x) | x ∈ ∆Ji ∧ (ai, x) ∈ RJi})

First, note that:

∀i ∈ {1, 2, . . . , n} : b ∈ CL
i

This follows immediately from the construction of L and (81). Consequently:

b ∈
n⋂

i=1

CL
i (82)

On the other hand:
b 6∈ PL (83)

This follows again from the construction of L and (81) and is explained in the fol-
lowing: Assume that P is an atomic concept. Then b could only be present in PL if
an ai is present in P Ji .46 This is not possible because of the choice of ai in (81). The
same holds true if P is a role restriction.47 By an inductive argument, b is also not
an element of PL if P is a non-trivial conjunction. From (82) and (83) it then follows
that:

n⋂
i=1

CL
i 6⊆ PL

This proves (80).

Lemma 13. For concepts C1, C2, . . . , Cm, P1, . . . , Pn that are all trivial conjunctions, with
u 6∈

⋃n
i=1 Roles(Pi):

If ∃j ∈ {1, 2, . . . , n} ∀i ∈ {1, 2, . . . ,m} : Ci 6v Pj ,
then C1 u C2 u . . . u Cm 6v P1 u P2 u . . . u Pn

46Note again that the domains ∆Ji are disjoint.
47Note that the universal role is not allowed to occur within P .

65

Proof. Assume that:

∃j ∈ {1, 2, . . . , n} ∀i ∈ {1, 2, . . . ,m} : Ci 6v Pj

From Lemma 12 it follows that:

C1 u C2 u . . . u Cm 6v Pj

From this and Lemma 4 it can be concluded that:

C1 u C2 u . . . u Cm 6v P1 u P2 u . . . u Pn

Lemma 14. For concepts C1, C2, . . . , Cn, P1, P2, . . . , Pm with u 6∈
⋃m

i=1 Roles(Pi):

nl

i=1

Ci v
ml

j=1

Pj iff ∀j ∈ {1, 2, . . . ,m} ∃i ∈ {1, 2, . . . , n} : Ci v Pj

Proof by contradiction. For the direction “⇒”: Assume that

nl

i=1

Ci v
ml

j=1

Pj (84)

and
∃j ∈ {1, 2, . . . ,m} ∀i ∈ {1, 2, . . . , n} : Ci 6v Pj

From this and Lemma 13 it follows that:
nl

i=1

Ci 6v
ml

j=1

Pj

This contradicts (84) and proves the direction “⇒”.
For the direction “⇐”: Assume that

∀j ∈ {1, 2, . . . ,m} ∃i ∈ {1, 2, . . . , n} : Ci v Pj (85)

and
nl

i=1

Ci 6v
ml

j=1

Pj

Then there exists an interpretation I such that:

(
nl

i=1

Ci)
I 6⊆ (

ml

j=1

Pj)
I (86)

66

Let SC denote the set of all conjuncts Ci which are subsumed by a conjunct Pk, i.e.:

SC = {Ci | i ∈ {1, 2, . . . , n} and ∃k ∈ {1, 2, . . . ,m} : Ci v Pk} (87)

From this and (85) it follows that for all interpretations J :

∀j ∈ {1, 2, . . . ,m} ∃C ′ ∈ SC : C ′J ⊆ P J
j

From this and set theory it is implied that:

⋂
C′∈SC

C ′J ⊆
m⋂
j=1

P J
j

From this and (87) it follows that:

n⋂
i=1

CJ
i ⊆

⋂
C′∈SC

C ′J ⊆
m⋂
j=1

P J
j

This contradicts (86) and proves the direction “⇐”. This proves the lemma.

Definition 26 (Minimal subsumed set). Let C1, C2, . . . , Cn, P1, P2, . . . , Pm be concepts
that are trivial conjunctions and let

dn
i=1Ci v

dm
j=1 Pj . Then S is a minimal subsumed set

of
dn

i=1Ci w.r.t.
dm

j=1 Pj if S contains only indices of conjuncts Ci such that

l

i∈S
Ci v

ml

j=1

Pj (88)

and for every other set S′ such that
S′ 6= ∅

and
|S′| < |S|

i.e. S′ is not empty and has less elements than S, it follows that:

l

i∈S′
Ci 6v

ml

i=1

Pi

In other words, if the removal of one element from S turns S empty or destroys the subsump-
tion relationship in (88), then S is a minimal subsumed set of

dn
i=1Ci w.r.t.

dm
j=1 Pj .

67

Lemma 15. Let
dn

i=1Ci v
dm

j=1 Pj , where Ci and Pj are trivial conjunctions of concepts
and let S be a minimal subsumed set of

dn
i=1Ci w.r.t.

dm
j=1 Pj . Then:

∀j ∈ {1, 2, . . . ,m} ∃i ∈ S : Ci v Pj (89)

and
∀i ∈ S ∃j ∈ {1, 2, . . . ,m} : Ci v Pj (90)

In other words, every conjunct of C that is in the set S is subsumed by a conjunct
of P and there does not exist a conjunct of P which does not subsume a conjunct
that is in the set S.

Proof. From Definition 26 it follows that:

l

i∈S
Ci v

ml

j=1

Pj (91)

From this and Lemma 14 it follows that every conjunct in
dm

j=1 Pj subsumes at least
one conjunct Ci, with i ∈ S. This proves (89). The following part of the proof is
given by a reductio ad absurdum argument: Assume that there exists a conjunct Ck,
with k ∈ S, that is not subsumed by a conjunct in

dm
j=1 Pj . From this, Lemma 14

and (91) it follows that:
|S| > 1 (92)

Construct a new set S′ from S such that:

S′ = S\{k}

From this and (92) it follows that
S′ 6= ∅ (93)

and
|S′| < |S| (94)

From the construction of S′, (89) and Lemma 14 it is implied that:

l

j∈S′
Cj v

ml

j=1

Pj

But from this, (93) and (94) it follows that according to Definition 26 S cannot be
a minimal subsumed set, because it is not minimal. This is a contradiction and
therefore proves (90).

68

Theorem 3 (Inclusion). For concepts C and P :

C v C�P (95)

Proof by induction. The proof is given by an induction over the structure of C.

Induction base: C is an atomic concept. Then from the definition of the operator
(Definition 24) the inclusion property (95) follows immediately.

Induction hypothesis: The inclusion property C ′ v C ′�X holds for all parts C ′

of C, where X is a concept such that u 6∈ Roles(X).48

Induction step: It is now shown that the inclusion property holds for C. Consider
the following cases for C:

Case 1: C is a non-trivial conjunction of concepts C = C1 u C2 u . . . u Cn

such that each Ci with i ∈ {1, 2, . . . , n} is a trivial conjunction. Then
the induction hypothesis implies that for every concept P ′ such that u 6∈
Roles(P ′):

∀i ∈ {1, 2, . . . , n} : Ci v Ci�P ′ (96)

Consider the following case distinction between the results of C�P :

Case 1.1: C�P = C. Then from this (95) follows.

Case 1.2: C�P =
dn

i=1(Ci�P≺) where P≺ is the lowest conjunct in P .
Then from (96) it follows that every conjunct in C�P subsumes a
conjunct Ci of C. But this means that Lemma 14 can be applied and
it can be concluded that:

nl

i=1

Ci v
nl

i=1

(Ci�P≺)

From this the inclusion property (95) follows.

Case 2: C = ∃R.C1 with R ∈ RT and a concept C1. Then the induction hy-
pothesis implies that for every concept P ′ such that u 6∈ Roles(P ′):

C1 v C1�P ′ (97)

From the definition of� (Definition 24 in Section 7.1) it follows that the
following cases are possible:

Case 2.1: C�P = > or C�P = C. Then it immediately follows that:

C v C�P

48Note that from the assumptions in Section 5.2 it follows that the universal role is not allowed to
occur in P .

69

Case 2.2: C�P = fcontract(∃R.(C1�P1)) where P≺ = ∃R.P1. Then:
From (97) and Lemma 8 it follows that:

∃R.C1 v ∃R.(C1�P1)

From this and Lemma 11 it follows that:

∃R.C1 v fcontract(∃R.(C1�P1))

This proves (95).

Lemma 16. For a concept P with u 6∈ Roles(P):

>�P = >

Proof. This follows immediately from the definition of � (Definition 24 in Sec-
tion 7.1).

Theorem 4 (Destruction). For a concept C:

C�> ≡ > (98)

Proof. The proof is given by an induction over the structure of C.

Induction base: C is an atomic concept. Then:
Since C v > is true for every concept C, it follows from the definition of�
(Definition 24 in Section 7.1) that:

C�> = >

This implies (98).

Induction hypothesis: The destruction property C ′�> ≡ > holds for all parts C ′

of C.

Induction step: It is now shown that the destruction property holds forC. Consider
the following cases for C:

Case 1: C is a non-trivial conjunction of concepts Ci of the form C = C1uC2u
. . . u Cn, such that each Ci with i ∈ {1, 2, . . . , n} is a trivial conjunction.
The induction hypothesis implies that:

∀i ∈ {1, 2, . . . , n} : Ci�> ≡ > (99)

From the definition of � (Definition 24 in Section 7.1), C v > and the
fact that > is the lowest conjunct in > it follows that:

C�> =

nl

i=1

(Ci�>)

70

From (99) it follows that:
nl

i=1

(Ci�>) =
nl

i=1

>

From this it can be concluded that:
nl

i=1

> ≡ >

This implies (98).

Case 2: C = ∃R.C1, with a concept C1 and R ∈ RT . Then from ∃R.C1 v >
and the definition of� (Definition 24 in Section 7.1) it follows that:

∃R.C1�> = >

This implies (98).

This proofs the destruction property (98).

Theorem 5 (Vacuity). For concepts C and P :

If C 6v P , then C�P = C

Proof. The proof follows immediately from the definition of� (Definition 24 in Sec-
tion 7.1).

Lemma 17. For a concept C and the lowest conjunct C≺ of C:

If C 6≡ >, then C≺ 6≡ >

Proof. The proof follows from the semantics of EL and the definition of ≺ (Defini-
tion 17).

Theorem 6 (Success). For concepts C and P :

If > 6≡ P , then (C�P) 6v P (100)

Proof. Assume that:
> 6≡ P (101)

Then consider the following cases:

Case 1:
C 6v P (102)

From the vacuity property (Theorem 5) it follows that

C�P = C

From this and (102) the success property (100) follows.

71

Case 2:
C v P (103)

The proof is given by an induction over the structure of C.

Induction base: C is an atomic concept. Then from (103) and the definition of
� (Definition 24) it follows that:

C�P ≡ >

Together with > 6≡ P (101) this implies (100).

Induction hypothesis: The success property

If > 6≡ X , then (C ′�X) 6v X

holds for all parts C ′ of C, whereX is a concept such that u 6∈ Roles(X).49

Induction step: It is now shown that the success property holds for C. Con-
sider the following cases for C:

Case 1: C is a non-trivial conjunction of concepts C = C1 uC2 u . . .uCn,
such that each Ci with i ∈ {1, 2, . . . , n} is a trivial conjunction. Then
the induction hypothesis implies that for every conjunct Ci with i ∈
{1, 2, . . . , n} and every concept P ′ with u 6∈ Roles(P ′):

If > 6≡ P ′, then (Ci�P ′) 6v P ′ (104)

From the definition of � (Definition 24 in Section 7.1) and the as-
sumption C v P (103) it follows that

C�P ≡
nl

i=1

(Ci�P≺) (105)

where P≺ denotes the lowest conjunct in P . From > 6≡ P (101) and
Lemma 17 it follows that

P≺ 6≡ >

The application of (104) to (105) results in:

∀i ∈ {1, 2, . . . , n} : Ci�P≺ 6v P≺

But this means that there exists a conjunct in P that does not sub-
sume any conjunct of C�P . From this and Lemma 14 the success
property (100) follows.

49Note that from the assumptions in Section 5.2 it follows that the universal role is not allowed to
occur in P .

72

Case 2: C = ∃R.C1 with a concept C1 and R ∈ RT . Then the induction
hypothesis implies that for every concept P ′ with u 6∈ Roles(P ′):

If > 6≡ P ′, then C1�P ′ 6v P ′ (106)

From u 6∈ Roles(P), > 6≡ P (101), C v P (103) and Lemma 10 it
follows that:

P =

ml

i=1

∃R.Pi (107)

Assume w.l.o.g. that:
P≺ = ∃R.P1

From this, C v P (103) and the definition of� it follows that:

C�P = fcontract(∃R.(C1�P1))

Now consider the following cases for the result of C1�P1:

Case 2.2.1:
C1�P1 ≡ >

Then:
From this and the definition of fcontract (Definition 23 in Sec-
tion 7.1) it follows that:

fcontract(∃R.(C1�P1)) = >

From this and (101) the success property (100) follows.

Case 2.2.2:
C1�P1 6≡ > (108)

Then:
From the destruction property (Theorem 4) it follows that:

P1 6= >

From the normalization of all concepts and u 6∈ Roles(P1) it is
implied that:

P1 6≡ > (109)

From (108) and the definition of fcontract (Definition 23 in Sec-
tion 7.1) it follows that:

fcontract(∃R.(C1�P1)) = ∃R.(C1�P1)

From (109) and (106) it follows that:

C1�P1 6v P1

73

From this, (107), u 6∈ Roles(P) and Lemma 10 it follows that:

∃R.(C1�P1) 6v ∃R.P1

From this and Lemma 4 it follows that:

∃R.(C1�P1) 6v
ml

i=1

∃R.Pi

This together with (107) proves the success property (100).

Lemma 18. Let P =
dn

i=1 ∃R.Pi, and P ′ =
dm

j=1 ∃R.P ′j be concepts such that P and P ′

are independent, where R is a role including the universal role. Let k denote the index of the
lowest conjunct in

dn
i=1 ∃R.Pi. Then:

∀i ∈ {1, 2, . . . ,m} : Pk and P ′i are independent (110)

Proof by contradiction. Assume there exists an index l ∈ {1, 2, . . . ,m} such that Pk

and P ′l are not independent.50 Let w.l.o.g.:

Pk v P ′l

It follows that:
∃R.Pk v ∃R.P ′l

This contradicts the assumption that P and P ′ are independent and proves (110).

Lemma 19. For concepts C, P and P ′:

If C v P , then C u P ′ v P

Proof. The proof follows immediately from the semantics of EL.

Lemma 20. For the atomic conceptA and the concepts P and P ′, such that u 6∈ Roles(P)∪
Roles(P ′):

If A v P and A v P ′, then P and P ′ are not independent

Proof. Assume that:
A v P (111)

Assume also that:
A v P ′ (112)

From (111) it follows that P is either equivalent to A or P ≡ >.51 In the same way, if
A v P ′ (112), P ′ is either equivalent to A or P ′ ≡ >. In all these cases, P and P ′ are
not independent.
50See again Definition 20 in Section 6.2.2 for the definition of independent concepts.
51Note that all concepts are normalized.

74

Theorem 7 (Independence). For concepts C, P and P ′:

If C v P ′ and P and P ′ are independent, then C�P v P ′ (113)

Proof. Assume that:
C v P ′ (114)

Assume also that:
P and P ′ are independent (115)

In addition, let P w.l.o.g. be a possibly trivial conjunction of n conjuncts that are triv-
ial conjunctions. Let P ′ w.l.o.g. be a possibly trivial conjunction of m conjuncts that
are trivial conjunctions. For C 6v P it follows from the vacuity property (Theorem 5)
that:

C�P = C

From this and (114) the independence property in (113) follows. Assume now that:

C v P (116)

The proof is then given by an induction over the structure of C.

Induction base: C is an atomic concept. Then from this, (114), (115) and Lemma 20
it follows that:

C 6v P

From this and the vacuity property (Theorem 5) it follows that:

C�P = C

From this and (114) it can be concluded that:

C�P v P ′

Induction hypothesis: The independence property holds for all parts C ′ of C, i.e.:

If C ′ v X and X and X ′ are independent, then C ′�X ′ v X

where X and X ′ are concepts such that u 6∈ Roles(X ′).52

Induction step: It is now shown that the independence property holds for C. Con-
sider the following cases for C.

52Note that from the assumptions in Section 5.2 it follows that the universal role is not allowed to
occur in P .

75

Case 1: C is a non-trivial conjunction of concepts
dn

i=1Ci, where each Ci is a
trivial conjunction. Then the induction hypothesis implies that for inde-
pendent concepts X and X ′ such that u 6∈ Roles(X ′):

∀i ∈ {1, 2, . . . , n} : If Ci v X , then Ci�X ′ v X (117)

Let P ′i denote the ith conjunct of P ′. From (116) and the definition of�
it follows that:

C�P =
nl

i=1

(Ci�P≺) (118)

From C v P ′ (114) and Definition 26 it follows that there exists a set S of
indices with

(
l

j∈S
Cj) v P ′

that is minimal in size. But that means that Lemma 15 implies that:

∀i ∈ {1, 2, . . . ,m} ∃j ∈ S : Cj v P ′i (119)

Note again that m denote the number of trivial conjuncts in P ′. From
the assumption that P and P ′ are independent (115) and the definition of
independence (Definition 20 in Section 6.2.2) it is implied that:

∀i ∈ {1, 2, . . . ,m} : P≺ and P ′i are independent (120)

But this means that (117) can be applied to (120) and it can be concluded
that:

∀i ∈ {1, 2, . . . ,m} ∀j ∈ S : If Cj v P ′i , then Cj�P≺ v P ′i

From this and (119) it follows that every conjunct in P ′ subsumes a con-
junct in

d
j∈S(Cj�P≺). From this and Lemma 14 it is implied that:

l

j∈S
(Cj�P≺) v P ′

From this, the fact that S contains only indices in the range from 1 to n
and Lemma 19 it follows that:

nl

j=1

(Cj�P≺)︸ ︷︷ ︸
C�P

v P ′

This together with (118) implies that:53

C�P v P ′
53Note that n denotes the number of conjuncts in C.

76

Case 2: C is of the form C = ∃R.C1 with a role R and a concept C1. Then
the induction hypothesis implies that for independent concepts X and
X ′ such that u 6∈ Roles(X ′):

If C1 v X , then C1�X ′ v X (121)

From the fact that P and P ′ are independent (115) it is implied that

P 6≡ > (122)

and
P ′ 6≡ > (123)

From this and the definition of the order ≺ (Definition 17) it follows that:

P≺ 6= >

From P 6≡ > (122) and the normalization of all concepts it is implied that:

P 6= >

From this, C v P (114), C = ∃R.C1 and Lemma 10 it follows that

P =

nl

i=1

∃R.Pi (124)

and that
∀i ∈ {1, 2, . . . , n} : C1 v Pi

From P ′ 6≡ > (123) it is implied that:

P ′ 6= >

From this, C v P ′ (114), C = ∃R.C1 and Lemma 10 it follows that

P ′ =
ml

j=1

∃R.P ′j (125)

and
∀j ∈ {1, 2, . . . ,m} : C1 v P ′j (126)

Let w.l.o.g.:
P≺ = ∃R.P1 (127)

From this, C v P (116), P 6≡ > (122) and the definition of the operator
(Definition 24) it follows that:

C�P = fcontract(∃R.(C1�P1)) (128)

77

From the fact that P and P ′ are independent (115), (124), (125), (127) and
Lemma 18 it follows that:

∀j ∈ {1, 2, . . . ,m} : P1 and P ′j are independent (129)

This implies that:
∀j ∈ {1, 2, . . . ,m} : P ′j 6≡ > (130)

From (121), (126) and (129) it can be concluded that:

∀j ∈ {1, 2, . . . ,m} : C1�P1 v P ′j (131)

From this and (130) it follows that:

C1�P1 6≡ >

From this and the definition of� (Definition 24) it can be concluded that:

fcontract(∃R.(C1�P1)) = ∃R.(C1�P1) (132)

From (131) and Lemma 7 it follows that:

∀j ∈ {1, 2, . . . ,m} : ∃R.(C1�P1) v ∃R.P ′j

From this and (132) it follows that:

∀j ∈ {1, 2, . . . ,m} : fcontract(∃R.(C1�P1))︸ ︷︷ ︸
C�P

v ∃R.P ′j

From this and (128) it follows that:

∀j ∈ {1, 2, . . . ,m} : C�P v ∃R.P ′j

From this and P ′ =
dm

j=1 ∃R.P ′j (125) it follows that all conjuncts in P ′

subsume C�P . From this and set theory it can be concluded that:

C�P v P ′

Lemma 21. For concepts C, P and P ′:

If C v P u P ′, then C v P

Proof. This follows immediately from the semantics of EL.

78

Theorem 8 (Informational economy).
For concepts C and P :

If C v P , then C�P = C�P≺ (133)

Proof. Assume that:
C v P (134)

If P is a trivial conjunction then it follows that:

P = P≺

This implies (133). Assume in the following that P is a non-trivial conjunction. If

P ≡ >

then (133) follows immediately from the normalization of all concepts and the defi-
nition of the order ≺.54 Assume in the following that:

P 6≡ > (135)

In addition, assume w.l.o.g. that P has the form P = P1 u P2 u . . . u Pn where each
Pi is a trivial conjunction. Then:
From (134) and Lemma 21 it follows that:

C v P≺ (136)

Consider the following cases for C:

Case 1: C is an atomic concept. Then:
From (134) and the definition of� (Definition 24) it follows that:

C�P = > (137)

From (136) and the definition of� it follows that:

C�P≺ = >

From this and (137) it can be concluded that:

C�P = C�P≺

This implies (133).

54See again Definition 16 and Definition 17 in Section 5.1.

79

Case 2: C is a non-trivial conjunction C =
dm

i=1Ci where each Ci is a trivial con-
junction. Then:
From C v P (134) and the definition of� (Definition 24) it follows that:

C�P =

ml

i=1

(Ci�P≺) (138)

From C v P≺ (136), the fact that P≺ is the lowest conjunct of P≺ (sic!) and the
definition of� it follows that:

C�P≺ =

ml

i=1

(Ci�P≺)

From this and (138) it can be concluded that:

C�P = C�P≺

This implies (133).

Case 3: C = ∃R.C1 with a concept C1 and R ∈ RT . Then:
From P 6≡ > (135) it follows that:

P 6= >

From this, C = ∃R.C1, C v P (134), u 6∈ Roles(P) and Lemma 10 it follows
that:

P =
nl

i=1

∃R.P ′i

where P ′i are concepts. Assume w.l.o.g. that:

P≺ = ∃R.P ′1 (139)

From this, C v P (134) and the definition of� (Definition 24) it follows that:

∃R.C1�P = fcontract(∃R.(C1�P ′1)) (140)

From C v P≺ (136), P≺ = ∃R.P ′1 (139) and the definition of� it follows that:

C�P≺ = fcontract(∃R.(C1�P ′1))

From this and (140) it can be concluded that:

C�P = C�P≺

This proves (133).

80

7.5. Conclusion

In this chapter, an operator for retracting knowledge from EL concepts was de-
signed. For this, the AGM postulates for belief set contraction and the postulates for
belief base contraction were examined. These postulates were used as a guidance
to define properties an EL knowledge retraction operator should have. Additional
properties were developed to make up for the loss of the recovery and relevance
postulates which ensure a conservative removal of knowledge. Following this, it
was shown that the commutability of subtrahends would conflict with these prop-
erties. In a next step, a formal definition for the operator was given. It was then
shown that the operator can be used for a fine-grained removal of knowledge from
concepts. Moreover, it was also proven that the operator fulfills all the properties
from Section 6.2.

The goal of this thesis, the development of an operator for the fine-grained re-
traction of knowledge from EL concepts, has therefore been achieved. In the next
chapter, a plugin for the ontology editor Protégé is presented that builds upon these
results.

81

Part IV.
Implementation
This chapter introduces a plugin for the ontology editor Protégé55 that can be used
to retract knowledge from EL concepts. The first section explains the reasons behind
the choice of Protégé. The following section then gives an overview of the imple-
mentation details of the plugin, including its structure and the employed algorithms
that were derived from the definition of the operator.

8. Reasons for Protégé

Protégé [137] is a free and open-source ontology editor that provides full support for
OWL 2 ontologies. It is written in Java and is available under a license alike to the
FreeBSD License.56 Protégé can utilize Description Logic reasoners such as HermiT
[111] and Pellet [63] in a transparent way. This makes it possible to compute the
hierarchy of classes in the ontology, including inferred subclass relationships, which
can then be used to detect modeling errors. In a study conducted by Cardoso [138]
in 2007, Protégé was the most used ontology editor among the participants.

From a developer’s point-of-view, Protégé’s architecture allows programmers to
easily develop plugins that can be integrated into the IDE in various ways by using
tabs, widgets and menu items. Moreover, new plugins can be combined with exist-
ing components, leading to a seamless integration of new features and facilitating
the reuse of existing components such as Protégé’s class hierarchy viewer. Until today,
a variety of plugins for Protégé has been developed [126, 139, 140, 141, 142].

For these reasons, Protégé was chosen as the base for the implementation of a plu-
gin that realizes the findings of the previous chapter. For more in-depth information
about Protégé, the reader is referred to Musen [137] and the Protégé Wiki57.

9. Implementation

This section describes the implementation of the operator. First, the general struc-
ture of the plugin is explained. After this, an algorithm for retracting knowledge
from concepts is described which is based on the formal definition of the operator.

55See https://protege.stanford.edu/.
56See https://github.com/protegeproject/protege/blob/master/license.txt.
57See https://protegewiki.stanford.edu/wiki/Main_Page.

83

9.1. Structure

This section gives an overview of the structure of the plugin. It is added to Protégé
as an additional tab. This tab consists of three components as displayed in Figure 2.
Two of them are regular Protégé components: the class hierarchy viewer and the class

Figure 2: The plugin tab.

description viewer. The class hierarchy viewer is located in the left side of Figure 2 and
displays the hierarchy of the concepts that are stored in the ontology. In the example
case, it shows that the concept RedMetallicCar is subsumed by the concepts Car and
Vehicle . The class hierarchy viewer is also used to select a class. The information
about the selected class is then also available to other components. In the example,
the class RedMetallicCar is selected. The class description viewer displays more de-
tailed information about a class and is located in the right lower half of Figure 2.
It retrieves the current selected class from the class hierarchy viewer and shows,
amongst other things, its definition. In the current example, the class description
viewer displays the definition of RedMetallicCar . For this, a special syntax for de-
scribing OWL 2 concepts is used that is called Manchester Syntax.58 The description
of RedMetallicCar corresponds to the following definition:

RedMetallicCar ≡ Car u ∃hasPainting .RedMetallicPainting

The third component in the right upper half of Figure 2 is a new addition. It is
a component for retracting knowledge from concepts. Figure 3 provides a more
detailed view of this component. It can be used to compute the complete expansion
of concepts using the button labeled Compute T ∗. If this button is clicked, the plugin

58See https://www.w3.org/TR/owl2-manchester-syntax/.

84

Figure 3: The component for retracting knowledge from concepts.

executes the algorithm computeCompleteExpansion which is introduced in the next
section. To apply the retraction operation to the currently selected concept, one can
click the button labeled Compute T ∗ and apply �. The consequence one wants to
retract must be entered into the text field using Manchester Syntax. The plugin then
uses Protégé’s OWLExpressionChecker to perform a highlighting of keywords and a
syntax check on the text that is entered. This is shown in Figure 4. If the entered text

Figure 4: Highlighting keywords and checking the syntax of concept descriptions is
performed automatically.

does not correspond to a valid OWL concept, a red error marker is displayed and
helpful information to resolve the issue is shown. A click on Compute T ∗ and apply
� then executes the algorithm retractKnowledge and passes the currently selected
concept and the subtrahend to it. The employed algorithms are explained in the
following section.

85

9.2. Algorithms

In this section, the algorithms that are used by the plugin are explained. They were
derived from the findings of Part III. In the following, it is assumed that all assump-
tions from Section 5.2 are fulfilled.

Let role be a function that takes a role restriction and returns the role name and let
filler be a function that takes a role restriction and returns the filler. In addition, let
chooseOne be a function that takes a set and returns an arbitrary element of it. The
algorithm lookup is then used to look-up a concept’s definition within the TBox.

Algorithm lookup

Input: C, a concept and T , a TBox
Output: Cdef , the right-hand side of the definition of C within T if existent, or else

the unchanged concept
1: if C is not a named concept in T then
2: Cdef ← C
3: else
4: Cdef ← the right-hand side of the definition of C within T
5: end if
6: return Cdef

The algorithm computeCanonicalExtension computes the canonical extension of a
concept.59

Algorithm computeCanonicalExtension

Input: C, a concept and T , a TBox
Output: C ′, the canonical extension of C

1: Count← 0
2: for all trivial conjuncts D of C do
3: Count← Count+ 1
4: if Count > 1 then
5: C ′ ← C ′ u lookup(D, T)
6: else
7: C ′ ← lookup(D, T)
8: end if
9: end for

10: return C ′

The algorithm computeCompleteExpansion computes the complete expansion of a
concept.60 For this, it repeatedly computes the canonical extension of the concept

59See Definition 13 in Section 3.3.3.
60See Definition 14 in Section 3.3.3.

86

until the result does not change anymore. At this point, C∗ contains the complete
expansion of C.

Algorithm computeCompleteExpansion

Input: C, a concept and T , an acyclic TBox
Output: C∗, the complete expansion of C

1: C ′ ← C
2: repeat
3: C∗ ← C ′

4: C ′ ← computeCanonicalExtension(C ′, T)
5: until C∗ = C ′

6: return C∗

The algorithm getLowestConjunct computes the lowest conjunct of a concept where
an alphabetical ordering of concept names and role names was chosen as a starting
point. For an atomic concept or a role restriction this computation is trivial. For a
concept that is a non-trivial conjunction all conjuncts are inspected to find the lowest
one.

Algorithm getLowestConjunct

Input: Cnorm , a normalized concept
Output: the lowest conjunct of Cnorm

1: if Cnorm is an atomic concept or a role restriction then
2: return Cnorm

3: else //Cnorm must be a non-trivial conjunction
4: lowest ← > //> is the largest concept
5: for all trivial conjuncts D of Cnorm do
6: if isLower(D, lowest) then
7: lowest ← D
8: end if
9: end for

10: return lowest
11: end if

The algorithm normalize computes the normal form of a concept C. An atomic
concept is always in its normal form (line 1 – 2). If C is a role restriction, the opera-
tion is pushed into the filler of the role restriction (line 26 – 28). If C is a non-trivial
conjunction, then it is tested if conjuncts within C subsume each other. For this, all
conjuncts are compared to each other (line 4 – 18). If one conjunct is found that is
implied by another conjunct, it is added to the set S′ (line 14 – 15). If it happens that
a conjunct D1 is already in this set, checking if this conjunct implies other conjuncts
can be skipped (line 7–8): all conjuncts that are implied by D1 are already in the set
S′, because they are also implied by the concept that caused the inclusion of D1 in

87

S′. After the loop completed, all conjuncts that are in the set S′ are discarded (line
19) and the remaining conjuncts are normalized (line 20 – 25). The resulting concept
of this procedure fulfills the definition of a normalized concept.61

Algorithm normalize
Input: C, a concept
Output: Cnorm, the normal form of C

1: if C is an atomic concept then
2: Cnorm ← C
3: else if C is a non-trivial conjunction then
4: S ← all trivial conjuncts of C
5: S′ ← ∅
6: for all D1 ∈ S do
7: if D1 ∈ S′ then
8: continue
9: end if

10: for all D2 ∈ S do
11: if D1 = D2 then
12: continue
13: end if
14: if D1 v D2 then //Find redundant concepts
15: S′ ← S′ ∪ {D2}
16: end if
17: end for
18: end for
19: S ← S − S′ //Discard all conjuncts that subsume other conjuncts
20: D ← chooseOne(S)
21: Cnorm ← normalize(D) //Terminates, because D is a trivial conjunction
22: S ← S − {D}
23: for all D ∈ S do
24: Cnorm ← Cnorm+ “u“ +normalize(D)
25: end for
26: else //C is a role restriction
27: NewFiller ← normalize(filler(C))
28: Cnorm ← “∃“ + role(C) + “.“ + NewFiller
29: end if
30: return Cnorm

The algorithm isLower determines if a concept is lower than another one w.r.t. the
order ≺.62 It closely follows the definition of ≺.

61See Definition 16 in Section 5.1.
62See Definition 17 in Section 5.1.

88

Algorithm isLower (Part 1)

Input: Cnorm and Pnorm , normalized concepts
Output: true iff Cnorm ≺ Pnorm

1: if Cnorm is an atomic concept then
2: if Pnorm is an atomic concept then
3: if Pnorm = > then
4: return true
5: else if Cnorm = > then
6: return false
7: end if
8: return isLowerAlphabeticOrder(Cnorm , Pnorm)
9: else if Pnorm is a role restriction then

10: return false
11: else //Pnorm must be a non-trivial conjunction
12: P≺ ← getLowestConjunct(Pnorm)
13: if Cnorm = P≺ then
14: return true
15: end if
16: return isLower(Cnorm ,P≺)
17: end if
18: else if Cnorm is a non-trivial conjunction then
19: C≺ ← getLowestConjunct(Cnorm)
20: if Pnorm is a non-trivial conjunction then
21: P≺ ← getLowestConjunct(Pnorm)
22: if C≺ = P≺ then
23: C ′ ← Cnorm without the conjunct C≺
24: P ′ ← Pnorm without the conjunct P≺
25: return isLower(C ′,P ′)
26: else
27: return isLower(C≺,P≺)
28: end if
29: else //Pnorm must be a role restriction or an atomic concept
30: if C≺ = Pnorm then
31: return false
32: end if
33: return isLower(C≺, Pnorm)
34: end if

89

Algorithm isLower (Part 2)

35: else //Cnorm must be a role restriction
36: if Pnorm is an atomic concept then
37: return true
38: else if Pnorm is a non-trivial conjunction then
39: P≺ ← getLowestConjunct(Pnorm)
40: if Cnorm = P≺ then
41: return true
42: end if
43: return isLower(Cnorm ,P≺)
44: else //Pnorm must be a role restriction
45: if role(Cnorm) = role(Pnorm) then
46: return isLower(filler(Cnorm),filler(Pnorm))
47: else if role(Pnorm) is the universal role then
48: return true
49: else if role(Cnorm) is the universal role then
50: return false
51: else
52: return isLowerAlphabeticOrder(role(Cnorm), role(Pnorm))
53: end if
54: end if
55: end if

The algorithm retractKnowledge is a wrapper for retractKnowledgeEx . It accepts
concepts that have not been normalized or which are not completely expanded and
applies the necessary transformations before calling retractKnowledgeEx .

Algorithm retractKnowledge

Input: C, a concept and P , a concept that does not contain the universal role and
T , an acyclic TBox

Output: C�P , the result of retracting P from C
1: C∗ ← computeCompleteExpansion(C, T)
2: C∗norm ← normalize(C∗)
3: Pnorm ← normalize(P)
4: Result ← retractKnowledgeEx (C∗norm, Pnorm)
5: return Result

The algorithm retractKnowledgeEx computes the result of the retraction of a con-
cept Pnorm from a concept C∗norm . Both concepts must be normalized and C∗norm
must be completely expanded. The structure of the algorithm follows immediately
from the definition of the operator.63 Note again that if C∗norm is a role restriction

63See Definition 24 in Section 7.1.

90

such that C∗norm v Pnorm and Pnorm 6= >, then from the normalization of Pnorm ,
the exclusion of the universal role from Pnorm and Lemma 10 (Section 7.4) it follows
that the lowest conjunct P≺ of Pnorm is also a role restriction and has the same role
as C∗norm .

Algorithm retractKnowledgeEx

Input: C∗norm , a normalized and completely expanded concept and Pnorm , a normal-
ized concept that does not contain the universal role

Output: the normalized result of retracting Pnorm from C∗norm
1: if C∗norm 6v Pnorm then
2: return C∗norm
3: end if
4: if C∗norm is an atomic concept then
5: return >
6: else if C∗norm is a non-trivial conjunction then
7: Result ← > //Simplifies the generation of the result
8: P≺ ← getLowestConjunct(Pnorm)
9: for all trivial conjuncts D of C∗norm do

10: Result ← Result + “ u “ + retractKnowledgeEx (D,P≺)
11: end for
12: return normalize(Result)
13: else //C∗norm is a role restriction
14: if Pnorm = > then
15: return >
16: end if
17: P≺ ← getLowestConjunct(Pnorm) //Pnorm is a role restriction with the same

role as C∗norm
18: NewFiller ← retractKnowledgeEx (filler(C∗norm),filler(P≺))
19: if NewFiller ≡ > then //Replaces fcontract
20: return >
21: else
22: Result ← “∃“ + role(C∗norm) + “.“ + NewFiller
23: return normalize(Result)
24: end if
25: end if

In this section the algorithms that are used by the plugin were explained. In the
next chapter a final conclusion is drawn and an outlook into future work is given.

91

Part V.
Conclusion and Future Work
In this chapter the findings of the thesis are summarized and a final conclusion is
drawn. The chapter then closes with an outlook into possible future work.

10. Conclusion

In this work, a short introduction to ontologies and OWL, one of the major ontology
languages, was given.64 The problem of ontology change was introduced and it was
argued how a formal operator for the retraction of knowledge can support this pro-
cess. It was then explained why the Description Logic EL was chosen as a starting
point in the development of this operator. Following this, an introduction to De-
scription Logic was given and the logic EL was formally introduced. In a next step,
related work was examined to find approaches that could provide a guideline for the
development of the operator. This included research that is concerned with comput-
ing the difference between concepts as well as methods for debugging Description
Logic knowledge bases. It was found that these approaches cannot offhandedly be
transferred to EL or that they work in a too coarse-grained way and thus remove
too much knowledge from concepts. In addition, the AGM postulates for belief set
contraction and the postulates for belief base contraction were examined in order to
judge their applicability in the development of the operator. As a negative result,
it was found that the recovery and relevance postulates are not naïvely applicable
to this task. Based on these findings, general requirements for an EL knowledge
retraction operator were stated and formal properties were derived from the postu-
lates of belief base and belief set contraction. In addition, properties were formu-
lated which, amongst others, made up for the non-applicability of the recovery and
relevance postulates and the accompanied loss of mechanisms that ensure a mini-
mality of knowledge removal during retraction. Based on these requirements, the
operator � was defined and it was formally proven that the operator fulfills the
specified properties. It was further shown that the operator is applicable to the task
of a fine-grained removal of knowledge from EL concepts. In addition, an example
was given that showed how the operator can be combined with laconic justifica-
tions to possibly assist a human ontology editor in the process of ontology change.
To complete this work, a plugin for the ontology editor Protégé was developed. For
this, pseudo-code algorithms were derived from the formal definition of the oper-
ator to provide guidance in the programming of the plugin. Moreover, the plugin
was designed in such a way that it integrates well with Protégé’s user interface and
provides the possibility to enter the subtrahend using Manchester Syntax.
64D’Aquin et al. [102] automatically collected more than 25,000 semantic documents from the web in

2007, of which 6200 were OWL ontologies.

93

The aim of this thesis was the development of a formal operator that facilitates
the removal of knowledge from EL concepts. With the development of�, this goal
has been achieved. However, there is still room for future research. Possible starting
points for this are discussed in the next section.

11. Future Work

This section gives an overview of possible starting points for future work. Such
work could cover an analysis of alternative solutions to the design decision that
were made in the development of the operator. Moreover, future work could focus
on extending the plugin or it could be concerned with the development of a recovery
operator based on�. This is discussed in the following.

Properties: The development of the operator required the specification of desirable
properties of the retraction operation. This included properties that limit the
removal of knowledge since it was found that the recovery and relevance pos-
tulates are not naïvely applicable at concept level. For this, the properties in-
dependence and informational economy were introduced. Future work could
explore other properties that fulfill this purpose and compare them to the cur-
rent ones.

Scope: The Description Logic EL was used as a starting point in the development
of the operator. In a next step, the operator could be extended to EL++ [27, 28].
This extension would provide full support of all OWL 2 EL expressions and
would make it possible to apply the operator to large biomedical ontologies
such as SNOMED CT.

Plugin: Concerning the plugin, future work could extended it in such a way that the
order ≺ is defined on-the-fly the first time it is needed. It could inform the hu-
man ontology editor when a choice in the retraction of knowledge arises and
query him to select the concept he likes to give up first, hence incrementally
building the order ≺ at runtime. In addition, future work could explore the
possibility of a combination of the operator with plugins that compute laconic
justifications, such as the Explanation Workbench.65 Here the operator could be
used to automatically retract those parts from concepts that were identified to
cause an unwanted consequence.66

Recovery: The findings of this work could provide the base for the future develop-
ment of a recovery operator. Such an operator could make it possible to restore
knowledge that was once present in the ontology. To achieve this, one could
make use of axiom labels to annotate axioms with recovery information. The
usage of axiom labels would also have the benefit that it would be possible to

65See http://owl.cs.manchester.ac.uk/research/explanation/.
66See again Example 14 in Section 7.3.

94

store additional meta-knowledge about the retraction operation. This knowl-
edge could include the name of the user who authorized the change, the date
of the retraction operation and a human-readable description on why the op-
eration was performed. This meta-knowledge could then be used as an aid in
the recovery process and to compute provenance information [143] about why
certain knowledge is not present anymore.67 The technical fundamentals to
store this knowledge are available in OWL 2 through so-called annotations.68

A naïve approach to a recovery operator could look like the following. Let⊕
denote the recovery operator and let C and P denote concepts. Then assume
there exists a way to compute recovery informationRC�P to every operation
C�P , such that:

(C�P)⊕RC�P ≡ C

In addition, let A be an axiom and let labelA be the annotation of A. Initially,
let labelA = (), i.e. labelA is an empty sequence. Let _ denote sequence con-
catenation such that for two sequences with n and m elements:

(a1, a2, . . . , an) _ (b1, b2, . . . , bm) = (a1, a2, . . . , an, b1, b2, . . . , bm)

Given this, the process of removing knowledge from an EL concept can be
extended as follows. Every time a consequence is removed from A, the cor-
responding recovery information is computed. This information is then ap-
pended to the label of A together with additional meta-knowledge about the
operation. This is outlined by the following alternative version of the algo-
rithm retractKnowledge.

Algorithm retractKnowledge

Input: C and P , concepts and T , an acyclic TBox and Meta, meta-
knowledge about the operation

Output: C�P , the result of retracting P from C
1: C∗ ← computeCompleteExpansion(C, T)
2: C∗norm ← normalize(C∗)
3: Pnorm ← normalize(P)
4: LabelC ← getAxiomLabel(getAxiomOf (C, T))
5: Result ← retractKnowledgeEx (C∗norm, Pnorm)
6: Recovery ← computeRecoveryInformation(C∗norm, Result)
7: Label′C ← LabelC _ ((Recovery, P,Meta))
8: storeAxiomLabel(getAxiomOf (C, T), Label′C)
9: return Result

67Schenk et al. [143] make use of axiom labels to attach provenance information to axioms. This
information can then be used to debug the ontology and to judge the trustworthiness of inferred
knowledge.

68See https://www.w3.org/TR/owl2-syntax/#Annotations.

95

The functions getAxiomLabel and storeAxiomLabel are assumed to obtain and
update an axiom label, respectively. The function computeRecoveryInformation
is assumed to computeRC�P given a concept C and the result of C�P .
A subsumption relationshipC v P ′ could then be restored by traversing back-
wards over the label of the axiom that defines C. During this, one could undo
all previous knowledge retraction operations until C v P ′ is restored. How-
ever, at this point C could also contain other restored knowledge that is un-
related to P ′. This happens in the case that after the retraction of P ′ another
retraction operation was applied to C. To remove this knowledge again, one
could traverse forward over the label of the axiom and re-apply every retrac-
tion operation that does not destroy the subsumption C v P ′. This is outlined
by the algorithm restoreKnowledge.

Algorithm restoreKnowledge

Input: C and P , concepts and T , an acyclic TBox
Output: C ′, such that C ′ v P or the unchanged concept C

1: AxiomC ← getAxiomOf (C, T)
2: LabelC ← getAxiomLabel(AxiomC)
3: n← size(LabelC) //Get the number of elements in LabelC
4: i← n− 1
5: C ′ ← C
6: while i >= 0 do //Iterate backwards over the retraction operations
7: (Recovery,Operation,Meta)← getIthEntry(LabelC , i)
8: C ′ ← C ′⊕Recovery //Undo the ith retraction
9: if C ′ v P then //Test if the consequence P has been restored

10: i← i+ 1
11: C ′′ ← C ′

12: while i < n do//Redo as many retractions as possible
13: (Recovery,Operation,Meta)← getIthEntry(LabelC , i)
14: C ′ ← retractKnowledge(C ′′,Operation, T ,Meta)
15: if C ′ 6v P then
16: C ′ ← C ′′//Do not remove the entailment of P again
17: end if
18: C ′′ ← C ′

19: i← i+ 1
20: end while
21: return C ′

22: end if
23: i← i− 1
24: end while
25: return C

The algorithm returns a concept C ′ such that C ′ v P or the unchanged con-

96

cept C, if it was not possible to restore the subsumption relationship. In the
algorithm, the function size is assumed to return the number of elements of
a given sequence. Moreover, given an index i and a sequence S, the function
getIthEntry is assumed to return the ith entry of S. Note that for reasons of
simplicity, the algorithm does not update the axiom. In addition, one would
need to provide formal proofs to make sure that the outlined algorithms work
as intended.

This section gave an outlook into future work and discussed possible starting points.
It further sketched two algorithms that can be used to store meta-knowledge about a
retraction operation and to restore knowledge that was once present in an ontology.

97

Acknowledgments

Ich möchte mich bei all denjenigen bedanken, die mich während meiner Arbeit un-
terstützt haben. Mein Dank gebührt zunächst Herrn Professor Dr. Steffen Staab und
Frau Dr. Claudia Schon, die es mir ermöglicht haben diese Arbeit am WeST Institut
zu verfassen und mir während meiner Arbeit hilfreiche Anregungen und Feedback
gaben. Ausdrücklich bedanken möchte ich mich insbesondere bei Frau Dr. Schon,
welche stets die Geduld hatte, unzählige Fragen meinerseits zu beantworten und
mir hilfreich zur Seite zu stehen. Ohne Ihr breites Wissen im Bereich der Beschrei-
bungslogik wäre diese Arbeit für mich nicht denkbar gewesen.

Danken möchte ich auch meinen Freunden, die mich während der Arbeit immer
unterstützt haben, insbesonders meinem Mitbewohner Daniel. Besonderer Dank
gebührt auch meiner Freundin Michelle, die mich stets motiviert hat, aber bei der
ich auch immer die notwendige Ruhe finden konnte. Danken möchte ich zudem
meinen Eltern Gerhard und Judith Heinz, für ihre unbeschränkte Unterstützung
und für ihr unbegrenztes Verständnis, wodurch sie mir erst das Studium der In-
formatik ermöglicht haben. Danken möchte ich auch meinem Bruder Björn für die
zahlreichen Fragen, die er mir während meines Studiums beantwortet hat. Ich wün-
sche Dir weiterhin viel Erfolg bei Deiner Forschung an einem Magnonen-Computer!
Es ist toll, von solchen Menschen umgeben zu sein.

99

References

[1] G. Flouris, D. Manakanatas et al., “Ontology Change: Classification and Sur-
vey,” The Knowledge Engineering Review, vol. 23, no. 2, pp. 117 – 152, 2008.

[2] R. Cornet, M. Nyström, and D. Karlsson, “User-Directed Coordination in
SNOMED CT,” in Proceedings of the 14th World Congress on Medical and Health
Informatics (MEDINFO’2013), Copenhagen, Denmark, ser. Studies in Health
Technology and Informatics, C. U. Lehmann, E. Ammenwerth, and C. Nøhr,
Eds., vol. 192. Amsterdam, The Netherlands: IOS Press, 2013, pp. 72 – 76.

[3] S. O. Hansson, “Belief Contraction Without Recovery,” Studia Logica, vol. 50,
no. 2, pp. 251 – 260, 1991.

[4] ——, A Textbook of Belief Dynamics: Theory Change and Database Updating,
1st ed., ser. Applied Logic Series. Dordrecht, Netherlands: Springer Nether-
lands, 1999, vol. 11.

[5] C. E. Alchourrón, P. Gärdenfors, and D. Makinson, “On the Logic of The-
ory Change: Partial Meet Contraction and Revision Functions,” The Journal of
Symbolic Logic, vol. 50, no. 2, pp. 510 – 530, 1985.

[6] F. M. Suchanek, C. Menard et al., “Can You Imagine... A Language for Com-
binatorial Creativity?” in First Part of the Proceededings of the 15th International
Semantic Web Conference (ISWC’2016), Kōbe, Japan, ser. Lecture Notes in Com-
puter Science, P. T. Groth, E. Simperl et al., Eds., vol. 9981. Cham, Switzerland:
Springer International Publishing, 2016, pp. 532 – 548.

[7] M. Horridge, B. Parsia, and U. Sattler, “Laconic and Precise Justifications
in OWL,” in Proceedings of the Seventh International Semantic Web Conference
(ISWC’2008), Karlsruhe, Germany, ser. Lecture Notes in Computer Science, A. P.
Sheth, S. Staab et al., Eds., vol. 5318. Berlin & Heidelberg, Germany: Springer-
Verlag Berlin Heidelberg, 2008, pp. 323 – 338.

[8] R. Studer, V. R. Benjamins, and D. Fensel, “Knowledge Engineering: Princi-
ples and Methods,” Data & Knowledge Engineering, vol. 25, no. 1-2, pp. 161 –
197, 1998.

[9] T. R. Gruber, “A Translation Approach to Portable Ontology Specifications,”
Knowledge Acquisition, vol. 5, no. 2, pp. 199 – 220, 1993.

[10] W. N. Borst, “Construction of Engineering Ontologies for Knowledge Sharing
and Reuse,” Ph.D. dissertation, University of Twente, Enschede, The Nether-
lands, 1997.

[11] N. Shadbolt, T. Berners-Lee, and W. Hall, “The Semantic Web Revisited,” IEEE
Intelligent Systems, vol. 21, no. 3, pp. 96 – 101, 2006.

101

[12] R. A. Cote and S. Robboy, “Progress in Medical Information Management:
Systematized Nomenclature of Medicine (SNOMED),” Journal of the American
Medical Association, vol. 243, no. 8, pp. 756 – 762, 1980.

[13] A. L. Rector, J. Rogers et al., “OpenGALEN: Open Source Medical Terminol-
ogy and Tools,” in American Medical Informatics Association Annual Symposium
(AMIA’2003), Washington, District of Columbia, USA, M. A. Musen, C. P. Fried-
man, and J. M. Teich, Eds. Bethesda, Maryland, USA: American Medical
Informatics Association, 2003, p. 982.

[14] M. Ashburner, C. A. Ball et al., “Gene Ontology: Tool for the Unification of
Biology,” Nature Genetics, vol. 25 - 29, no. 1, p. 25, 2000.

[15] Y. Tzitzikas, C. Allocca et al., “Integrating Heterogeneous and Distributed In-
formation About Marine Species Through a Top Level Ontology,” in Proceed-
ings of the Seventh Conference on Metadata and Semantics Research (MTSR’2013),
Thessaloniki, Greece, ser. Communications in Computer and Information Sci-
ence, E. Garoufallou and J. Greenberg, Eds., vol. 390. Cham, Switzerland:
Springer International Publishing, 2013, pp. 289 – 301.

[16] C. J. Mungall, C. Torniai et al., “Uberon, an Integrative Multi-Species Anatomy
Ontology,” Genome Biology, vol. 13, no. 1, p. R5, 2012.

[17] M. Hepp, “Goodrelations: An Ontology for Describing Products and Services
Offers on the Web,” in Proceedings of the 16th International Conference on Knowl-
edge Engineering (EKAW’2008), Acitrezza, Italy, ser. Lecture Notes in Computer
Science, A. Gangemi and J. Euzenat, Eds., vol. 5268. Berlin & Heidelberg,
Germany: Springer-Verlag Berlin Heidelberg, 2008, pp. 329 – 346.

[18] D. Brickley and L. Miller, “FOAF Vocabulary Specification 0.99,” 2014, [On-
line]. Available: http://xmlns.com/foaf/spec/, accessed: 2018-01-07.

[19] SNOMED International, “What is SNOMED CT?” 2018, [Online]. Available:
https://www.snomed.org/snomed-ct/what-is-snomed-ct, accessed: 2018-01-
14.

[20] ——, “SNOMED International Edition,” vol. 20180131, 2018, [Online]. Avail-
able: http://browser.ihtsdotools.org, accessed: 2018-02-19.

[21] T. G. O. Consortium, “Expansion of the Gene Ontology Knowledgebase and
Resources,” Nucleic Acids Research, vol. 45 (Database-Issue), pp. D331 – D338,
2017.

[22] B. Smith, M. Ashburner et al., “The OBO Foundry: Coordinated Evolution
of Ontologies to Support Biomedical Data Integration,” Nature Biotechnology,
vol. 25, no. 11, pp. 1251 – 1255, 2007.

102

[23] Gene Ontology Consortium, “About The Gene Ontology Project,” 2018, [On-
line]. Available: http://www.geneontology.org/page/about, accessed: 2018-
03-17.

[24] ——, “AmiGO 2 Live Search,” 2018, [Online]. Available:
http://amigo.geneontology.org/amigo/search/annotation, accessed: 2018-
03-17.

[25] The OWL Working Group, “OWL 2 Web Ontology Language Document
Overview (Second Edition),” W3C Recommendation, World Wide Web Consor-
tium (W3C), 2012, [Online]. Available: https://www.w3.org/TR/2012/REC-
owl2-overview-20121211/, accessed: 2017-12-12.

[26] ——, “OWL 2 Web Ontology Language Profiles (Second Edition),” W3C Rec-
ommendation, World Wide Web Consortium (W3C), 2012, [Online]. Available:
https://www.w3.org/TR/owl2-profiles, accessed: 2018-01-02.

[27] F. Baader, S. Brandt, and C. Lutz, “Pushing the EL Envelope,” in Proceedings
of the 19th International Joint Conference on Artificial Intelligence (IJCAI’05), Edin-
burgh, Scotland, UK, L. P. Kaelbling and A. Saffiotti, Eds. Denver, Colorado,
USA: Professional Book Center, 2005, pp. 364 – 369.

[28] F. Baader, C. Lutz, and S. Brandt, “Pushing the EL Envelope Further,”
in Proceedings of the Fourth Workshop on OWL: Experiences and Directions
(OWLED’2008DC), Co-Located with the Second W3C OWL Working Group
Face-to-Face Meeting, Washington, District of Columbia, USA, ser. CEUR
Workshop Proceedings, K. Clark and P. F. Patel-Schneider, Eds., vol. 496.
RWTH Aachen, Aachen, Germany: CEUR-WS.org, 2008. [Online]. Available:
http://ceur-ws.org/Vol-496

[29] S. Brandt, “Polynomial Time Reasoning in a Description Logic with Existen-
tial Restrictions, GCI Axioms, and - What Else?” in Proceedings of the 16th
Eureopean Conference on Artificial Intelligence (ECAI’2004), Co-Located with the
Prestigious Applicants of Intelligent Systems (PAIS’2004), Valencia, Spain, R. L.
de Mántaras and L. Saitta, Eds. Amsterdam, The Netherlands: IOS Press,
2004, pp. 298 – 302.

[30] F. Baader, G. Brewka, and O. F. Gil, “Adding Threshold Concepts to the De-
scription Logic EL,” in 10th International Symposium on Frontiers of Combining
Systems (FroCoS’2015), Wroclaw, Poland, ser. Lecture Notes in Computer Sci-
ence, C. Lutz and S. Ranise, Eds., vol. 9322. Cham, Switzerland: Springer
International Publishing, 2015, pp. 33 – 48.

[31] V. Gutiérrez-Basulto, J. C. Jung, and T. Schneider, “Lightweight Description
Logics and Branching Time: A Troublesome Marriage,” in Proceedings of the

103

14th International Conference on Principles of Knowledge Representation and Rea-
soning (KR’2014), Vienna, Austria, C. Baral, G. D. Giacomo, and T. Eiter, Eds.
Menlo Park, California, USA: AAAI Press, 2014.

[32] S. Borgwardt and V. Thost, “Temporal Query Answering in the Description
Logic EL,” in Proceedings of the 24th International Joint Conference on Artificial
Intelligence (IJCAI’2015), Buenos Aires, Argentina, Q. Yang and M. Wooldridge,
Eds. Menlo Park, California, USA: AAAI Press, 2015, pp. 2819 – 2825.

[33] C. Lutz, D. Toman, and F. Wolter, “Conjunctive Query Answering in the De-
scription Logic EL Using a Relational Database System,” in Proceedings of the
21st International Joint Conference on Artificial Intelligence (IJCAI’2009), Pasadena,
California, USA, C. Boutilier, Ed. Menlo Park, California, USA: AAAI Press,
2009, pp. 2070 – 2075.

[34] P. Hansen, C. Lutz et al., “Efficient Query Rewriting in the Description
Logic EL and Beyond,” in Proceedings of the 24th International Joint Confer-
ence on Artificial Intelligence (IJCAI’2015), Buenos Aires, Argentina, Q. Yang and
M. Wooldridge, Eds. Menlo Park, California, USA: AAAI Press, 2015, pp.
3034 – 3040.

[35] T. Berners-Lee, J. Hendler et al., “The Semantic Web,” Scientific American, vol.
284, no. 5, pp. 28 – 37, 2001.

[36] F. Zablith, G. Antoniou et al., “Ontology Evolution: A Process-Centric Sur-
vey,” Knowledge Engineering Review, vol. 30, no. 1, pp. 45 – 75, 2015.

[37] E. P. B. Simperl, “Reusing Ontologies on the Semantic Web: A Feasibility
Study,” Data & Knowledge Engineering, vol. 68, no. 10, pp. 905 – 925, 2009.

[38] C. Ochs, Y. Perl et al., “An Empirical Analysis of Ontology Reuse in BioPortal,”
Journal of Biomedical Informatics, vol. 71, pp. 165 – 177, 2017.

[39] P. L. Whetzel, N. F. Noy et al., “BioPortal: Enhanced Functionality via New
Web Services from the National Center for Biomedical Ontology to Access
and Use Ontologies in Software Applications,” Nucleic Acids Research, vol. 39
(Web Server Issue), pp. 541 – 545, 2011.

[40] The Board of Trustees of Leland Stanford Junior University, “NCBO BioPor-
tal,” 2018, [Online]. Available: https://bioportal.bioontology.org, accessed:
2018-03-04.

[41] J. Banerjee, W. Kim et al., “Semantics and Implementation of Schema Evolu-
tion in Object-Oriented Databases,” in Proceedings of the 1987 ACM Special In-
terest Group on Management of Data Annual Conference (SIGMOD’87), San Fran-
cisco, California, USA, U. Dayal and I. L. Traiger, Eds. New York, New York,
USA: ACM, 1987, pp. 311 – 322.

104

[42] J. F. Roddick, “Schema Evolution in Database Systems - An Annotated Bibli-
ography,” SIGMOD Record, vol. 21, no. 4, pp. 35 – 40, 1992.

[43] E. Rahm and P. A. Bernstein, “A Survey of Approaches to Automatic Schema
Matching,” International Journal on Very Large Databases, vol. 10, no. 4, pp. 334
– 350, 2001.

[44] ——, “An Online Bibliography on Schema Evolution,” SIGMOD Record,
vol. 35, no. 4, pp. 30 – 31, 2006.

[45] N. F. Noy and M. Klein, “Ontology Evolution: Not the Same as Schema Evo-
lution,” Knowledge and Information Systems, vol. 6, no. 4, pp. 428 – 440, 2004.

[46] M. C. A. Klein, “Change Management for Distributed Ontologies,” Ph.D. dis-
sertation, Free University of Amsterdam, Amsterdam, The Netherlands, 2004.

[47] H. Kondylakis, G. Flouris, and D. Plexousakis, “Ontology and Schema Evo-
lution in Data Integration: Review and Assessment,” in Second Part of the
Proceedings of the Confederated International Conferences CoopIS, DOA, IS, and
ODBASE: On the Move to Meaningful Internet Systems (OTM’2009), Vilamoura,
Portugal, ser. Lecture Notes in Computer Science, R. Meersman, T. S. Dillon,
and P. Herrero, Eds., vol. 5871. Berlin & Heidelberg, Germany: Springer-
Verlag Berlin Heidelberg, 2009, pp. 932 – 947.

[48] P. Haase, F. van Harmelen et al., “A Framework for Handling Inconsistency in
Changing Ontologies,” in Proceedings of the Fourth International Semantic Web
Conference (ISWC’2005), Galway, Ireland, ser. Lecture Notes in Computer Sci-
ence, Y. Gil, E. Motta et al., Eds., vol. 3729. Berlin & Heidelberg, Germany:
Springer-Verlag Berlin Heidelberg, 2005, pp. 353 – 367.

[49] A. L. Rector, N. Drummond et al., “OWL Pizzas: Practical Experience of Teach-
ing OWL-DL: Common Errors & Common Patterns,” in Proceedings of the 14th
International Conference on Engineering Knowledge in the Age of the Semantic Web
(EKAW’2004), Whittlebury Hall, UK, ser. Lecture Notes in Computer Science,
E. Motta, N. Shadbolt et al., Eds., vol. 3257. Berlin & Heidelberg, Germany:
Springer-Verlag Berlin Heidelberg, 2004, pp. 63 – 81.

[50] M. R. Quillian, “Word Concepts: A Theory and Simulation of Some Basic Se-
mantic Capabilities,” Systems Research and Behavioral Science, vol. 12, no. 5, pp.
410 – 430, 1967.

[51] M. Minsky, A Framework for Representing Knowledge, 1st ed., ser. Computer Sci-
ence Series. New York, New York, USA: McGraw-Hill, 1975.

[52] R. J. Brachman, “A Structural Paradigm for Representing Knowledge,” Ph.D.
dissertation, Harvard University, Cambridge, Massachusetts, USA, 1977.

105

[53] R. J. Brachman and J. G. Schmolze, “An Overview of the KL-ONE Knowledge
Representation System,” Cognitive Science, vol. 9, no. 2, pp. 171 – 216, 1985.

[54] R. MacGregor and R. Bates, “The Loom Knowledge Representation Lan-
guage,” Ph.D. dissertation, Marina Del Rey Information Sciences Institute,
University of Southern California, Los Angeles, California, USA, 1987.

[55] R. M. MacGregor, “Inside the LOOM Description Classifier,” SIGART Bulletin,
vol. 2, no. 3, pp. 88 – 92, 1991.

[56] C. Peltason, “The BACK System - An Overview,” SIGART Bulletin, vol. 2, no. 3,
pp. 114 – 119, 1991.

[57] F. Baader and B. Hollunder, “KRIS: Knowledge Representation and Inference
System,” SIGART Bulletin, vol. 2, no. 3, pp. 8 – 14, 1991.

[58] P. Bresciani, E. Franconi, and S. Tessaris, “Implementing and Testing Expres-
sive Description Logics: Preliminary Report,” in Proceedings of the 1995 Interna-
tional Workshop on Description Logics (DL’95), Rome, Italy, A. Borgida, M. Lenz-
erini et al., Eds. Rome, Italy: Dipartimento di Informatica e Sistemistica,
Sapienza – Università di Roma, 1995, pp. 131 – 139.

[59] I. Horrocks, “FaCT and iFaCT,” in Proceedings of the 1999 International
Workshop on Description Logics (DL’99), Linköping, Sweden, ser. CEUR
Workshop Proceedings, P. Lambrix, A. Borgida et al., Eds., vol. 22.
RWTH Aachen, Aachen, Germany: CEUR-WS.org, 1999. [Online]. Available:
http://ceur-ws.org/Vol-22

[60] I. Horrocks, U. Sattler, and S. Tobies, “Reasoning with Individuals for the De-
scription Logic SHIQ,” in Proceedings of the 17th International Conference on Au-
tomated Deduction (CADE’17), Pittsburgh, Pennsylvania, USA, ser. Lecture Notes
in Computer Science, D. A. McAllester, Ed., vol. 1831. Cham, Switzerland:
Springer International Publishing, 2000, pp. 482 – 496.

[61] V. Haarslev and R. Möller, “RACER System Description,” in Proceedings of the
First International Joint Conference on Automated Reasoning (IJCAR’2001), Siena,
Italy, ser. Lecture Notes in Computer Science, R. Goré, A. Leitsch, and T. Nip-
kow, Eds., vol. 2083. Berlin & Heidelberg, Germany: Springer-Verlag Berlin
Heidelberg, 2001, pp. 701 – 706.

[62] E. Sirin and B. Parsia, “Pellet: An OWL DL Reasoner,” in Proceedings
of the 2004 International Workshop on Description Logics (DL’2004), Whistler,
British Columbia, Canada, ser. CEUR Workshop Proceedings, V. Haarslev and
R. Möller, Eds., vol. 104. RWTH Aachen, Aachen, Germany: CEUR-WS.org,
2004. [Online]. Available: http://ceur-ws.org/Vol-104

[63] E. Sirin, B. Parsia et al., “Pellet: A Practical OWL-DL Reasoner,” Journal of Web
Semantics, vol. 5, no. 2, pp. 51 – 53, Jun. 2007.

106

[64] D. Tsarkov and I. Horrocks, “FaCT++ Description Logic Reasoner: System
Description,” in Proceedings of the Third International Joint Conference on Auto-
mated Reasoning (IJCAR’2006), Seattle, Washington, USA, ser. Lecture Notes in
Computer Science, U. Furbach and N. Shankar, Eds., vol. 4130. Berlin &
Heidelberg, Germany: Springer-Verlag Berlin Heidelberg, 2006, pp. 292 – 297.

[65] P. J. Hayes, “The Logic of Frames,” in Readings in Artificial Intelligence, 1st ed.,
B. L. Webber and N. J. Nilsson, Eds. San Francisco, California, USA: Morgan
Kaufmann Publishers, 1981, pp. 451 – 458.

[66] W. A. Woods, “What’s In a Link: Foundations for Semantic Networks,” in
Representation and Understanding, 1st ed., D. G. Bobrow and A. Collins, Eds.
San Francisco, California, USA: Morgan Kaufmann Publishers, 1975, pp. 35 –
82.

[67] R. J. Brachman, “Structured Inheritance Networks,” Bolt Beranek and New-
man, Cambridge, Massachusetts, USA, Tech. Rep. 3742, 1978.

[68] W. A. Woods and J. G. Schmolze, “The KL-ONE Family,” Computers & Mathe-
matics with Applications, vol. 23, no. 2-5, pp. 133 – 177, 1992.

[69] R. J. Brachman and H. J. Levesque, “Assertions in KL-One,” in Proceedings of
the Second KL-ONE Workshop, Cambridge, Massachusetts, USA, J. G. Schmolze
and R. J. Brachman, Eds. Cambridge, Massachusetts, USA: Bolt Beranek and
Newman, 1982, pp. 8 – 17.

[70] R. J. Brachman, R. Fikes, and H. J. Levesque, “KRYPTON: A Functional Ap-
proach to Knowledge Representation,” IEEE Computer, vol. 16, no. 10, pp. 67
– 73, 1983.

[71] P. F. Patel-Schneider, “Undecidability of Subsumption in NIKL,” Artificial In-
telligence, vol. 39, no. 2, pp. 263 – 272, 1989.

[72] B. Nebel, Reasoning and Revision in Hybrid Representation Systems, 1st ed.,
ser. Lecture Notes in Computer Science. Berlin & Heidelberg, Germany:
Springer-Verlag Berlin Heidelberg, 1990, vol. 422.

[73] ——, “Terminological Reasoning is Inherently Intractable,” Artificial Intelli-
gence, vol. 43, no. 2, pp. 235 – 249, 1990.

[74] T. Kaczmarek, R. Bates, and G. Robins, “Recent Developments in NIKL,” in
Second Part of the Proceedings of the Fifth National Conference on Artificial Intel-
ligence (AAAI’86), Philadelphia, Pennsylvania, USA, T. Kehler and S. J. Rosen-
schein, Eds. San Francisco, California, USA: Morgan Kaufmann Publishers,
1986, pp. 978 – 985.

107

[75] M. Schmidt-Schauß, “Subsumption in KL-ONE is Undecidable,” in Proceed-
ings of the First International Conference on Principles of Knowledge Representation
and Reasoning (KR’89), Toronto, Canada, R. J. Brachman, H. J. Levesque, and
R. Reiter, Eds. San Francisco, California, USA: Morgan Kaufmann Publish-
ers, 1989, pp. 421 – 431.

[76] A. Borgida, R. J. Brachman et al., “CLASSIC: A Structural Data Model for Ob-
jects,” in Proceedings of the 1989 ACM International Conference on Management
of Data (SIGMOD’89), Portland, Oregon, USA, J. Clifford, B. G. Lindsay, and
D. Maier, Eds. New York, New York, USA: ACM, 1989, pp. 58 – 67.

[77] P. F. Patel-Schneider, D. L. McGuinness, and A. Borgida, “The CLASSIC
Knowledge Representation System: Guiding Principles and Implementation
Rationale,” SIGART Bulletin, vol. 2, no. 3, pp. 108 – 113, 1991.

[78] M. Schmidt-Schauß and G. Smolka, “Attributive Concept Descriptions with
Complements,” Artificial Intelligence, vol. 48, no. 1, pp. 1 – 26, 1991.

[79] P. F. Patel-Schneider and I. Horrocks, “DLP and FaCT,” in Proceedings of the
1999 International Conference on Automated Reasoning with Analytic Tableaux and
Related Methods (TABLEAUX’99), Saratoga Springs, New York, USA, ser. Lecture
Notes in Computer Science, N. V. Murray, Ed., vol. 1617. Berlin & Heidelberg,
Germany: Springer-Verlag Berlin Heidelberg, 1999, pp. 19 – 23.

[80] K. Schild, “A Correspondence Theory for Terminological Logics: Preliminary
Report,” in Proceedings of the 12th International Joint Conference on Artificial Intel-
ligence (JCAI’91), Sydney, New South Wales, Australia, J. Mylopoulos and R. Re-
iter, Eds. San Francisco, California, USA: Morgan Kaufmann Publishers,
1991, pp. 466 – 471.

[81] A. Borgida, “On the Relative Expressiveness of Description Logics and Predi-
cate Logics,” Artificial Intelligence, vol. 82, no. 1-2, pp. 353 – 367, 1996.

[82] I. Horrocks and P. F. Patel-Schneider, “Optimising Propositional Modal Satis-
fiability for Description Logic Subsumption,” in Proceedings of the Fourth Inter-
national Conference on Artificial Intelligence and Symbolic Computation (AISC’98),
Plattsburgh, New York, USA, ser. Lecture Notes in Computer Science, J. Calmet
and J. A. Plaza, Eds., vol. 1476. Berlin & Heidelberg, Germany: Springer-
Verlag Berlin Heidelberg, 1998, pp. 234 – 246.

[83] D. Koller, A. Y. Levy, and A. Pfeffer, “P-CLASSIC: A Tractable Probablistic
Description Logic,” in Proceedings of the 14th National Conference on Artificial
Intelligence (AAAI’97) and Ninth Innovative Applications of Artificial Intelligence
Conference (IAAI’97), Providence, Rhode Island, USA, B. Kuipers and B. L. Web-
ber, Eds. Menlo Park, California, USA: AAAI Press, 1997, pp. 390 – 397.

108

[84] T. Lukasiewicz, “Fuzzy Description Logic Programs Under the Answer Set
Semantics for the Semantic Web,” Fundamenta Informaticae, vol. 82, no. 3, pp.
289 – 310, 2008.

[85] U. Straccia, “Reasoning Within Fuzzy Description Logics,” Journal of Artificial
Intelligence Research, vol. 14, pp. 137 – 166, 2001.

[86] ——, “Towards a Fuzzy Description Logic for the Semantic Web (Prelim-
inary Report),” in Proceedings of the Second European Semantic Web Confer-
ence (ESWC’2005), Heraklion, Crete, ser. Lecture Notes in Computer Science,
A. Gómez-Pérez and J. Euzenat, Eds., vol. 3532. Berlin & Heidelberg, Ger-
many: Springer-Verlag Berlin Heidelberg, 2005, pp. 167 – 181.

[87] T. Lukasiewicz and U. Straccia, “Managing Uncertainty and Vagueness in De-
scription Logics for the Semantic Web,” Journal of Web Semantics, vol. 6, no. 4,
pp. 291 – 308, 2008.

[88] J. Heinsohn, “Probabilistic Description Logics,” in Proceedings of the 10th An-
nual Conference on Uncertainty in Artificial Intelligence (UAI’94), Seattle, Wash-
ington, USA, R. L. de Mántaras and D. Poole, Eds. San Francisco, California,
USA: Morgan Kaufmann Publishers, 1994, pp. 311 – 318.

[89] D. Calvanese, G. De Giacomo et al., “Tractable Reasoning and Efficient Query
Answering in Description Logics: The DL-Lite Family,” Journal of Automated
Reasoning, vol. 39, no. 3, pp. 385 – 429, 2007.

[90] F. Baader, D. Calvanese et al., The Description Logic Handbook: Theory, Imple-
mentation and Applications, 2nd ed. New York, New York, USA: Cambridge
University Press, 2010.

[91] A. Borgida, “Description Logics in Data Management,” IEEE Transactions on
Knowledge and Data Engineering, vol. 7, no. 5, pp. 671 – 682, 1995.

[92] H. H. Leitner and M. U. Freeman, “Structured Inheritance Networks and Nat-
ural Language Understanding,” in Proceedings of the Sixth International Joint
Conference on Artificial Intelligence (IJCAI’79), Tokyo, Japan, B. G. Buchanan, Ed.
San Francisco, California, USA: Morgan Kaufmann Publishers, 1979, pp. 525
– 530.

[93] R. J. Brachman, P. G. Selfridge et al., “Integrated Support for Data Archae-
ology,” in Proceedings of the 11th National Conference on Artifical Intelligence
(AAAI’93), Washington, District of Columbia, USA, K. Ford, Ed. Menlo Park,
California, USA: AAAI Press, 1993, pp. 197 – 211.

[94] M. Grathwohl, F. de Bertrand de Beuvron, and F. Rousselot, “A New
Application for Description Logics: Disaster Management,” in Proceedings
of the 1999 International Workshop on Description Logics (DL’99), Linköping,

109

Sweden, ser. CEUR Workshop Proceedings, P. Lambrix, A. Borgida et al., Eds.,
vol. 22. RWTH Aachen, Aachen, Germany: CEUR-WS.org, 1999. [Online].
Available: http://ceur-ws.org/Vol-22

[95] N. Rychtyckyj, “DLMS: Ten Years of AI for Vehicle Assembly Process Plan-
ning,” in Proceedings of the 16th National Conference on Artificial Intelligence
(AAAI’99) and 11th Conference on Innovative Applications of Artificial Intelligence
(IAAI’99), Orlando, Florida, USA, J. Hendler and D. Subramanian, Eds. Menlo
Park, California, USA: AAAI Press, 1999, pp. 821 – 828.

[96] N. Rychtyckyj, V. Raman et al., “Ontology Re-Engineering: A Case Study from
the Automotive Industry,” AI Magazine, vol. 38, no. 1, pp. 49 – 60, 2017.

[97] J. R. Wright, E. Weixelbaum et al., “A Knowledge-Based Configurator that
Supports Sales, Engineering, and Manufacturing at AT&T Network Systems,”
AI Magazine, vol. 14, no. 3, pp. 69 – 80, 1993.

[98] D. L. McGuinness and J. R. Wright, “An Industrial-Strength Description
Logic-Based Configurator Platform,” IEEE Intelligent Systems and their Appli-
cations, vol. 13, no. 4, pp. 69 – 77, 1998.

[99] I. Horrocks, O. Kutz, and U. Sattler, “The Even More Irresistible SROIQ,”
in Proceedings of the 10th International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR’2006), Lake District, United Kingdom, P. Doherty,
J. Mylopoulos, and C. A. Welty, Eds. Menlo Park, California, USA: AAAI
Press, 2006, pp. 57 – 67.

[100] B. N. Grosof, I. Horrocks et al., “Description Logic Programs: Combining
Logic Programs with Description Logic,” in Proceedings of the 12th Interna-
tional World Wide Web Conference (WWW’2003), Budapest, Hungary, G. Hencsey,
B. White et al., Eds. New York, New York, USA: ACM, 2003, pp. 48 – 57.

[101] F. W. Hartel, S. de Coronado et al., “Modeling a Description Logic Vocabulary
for Cancer Research,” Journal of Biomedical Informatics, vol. 38, no. 2, pp. 114 –
129, 2005.

[102] M. d’Aquin, C. Baldassarre et al., “Characterizing Knowledge on the Semantic
Web with Watson,” in Proceedings of the Fifth International Workshop on
Evaluation of Ontologies and Ontology-Based Tools (EON’2007), Co-Located with
the Sixth International Semantic Web Conference (ISWC’2007), Busan, Korea, ser.
CEUR Workshop Proceedings, R. Garcia-Castro, D. Vrandecic et al., Eds., vol.
329. RWTH Aachen, Aachen, Germany: CEUR-WS.org, 2007, pp. 1 – 10.
[Online]. Available: http://ceur-ws.org/Vol-329

[103] F. Baader and W. Nutt, “Basic Description Logics,” in The Description Logic
Handbook: Theory, Implementation and Applications, 2nd ed., F. Baader, D. Cal-
vanese et al., Eds. New York, New York, USA: Cambridge University Press,
2010, pp. 47 – 98.

110

[104] F. Baader, I. Horrocks et al., “A Basic Description Logic,” in An Introduction to
Description Logic, 1st ed. New York, New York, USA: Cambridge University
Press, 2017, ch. 2, pp. 10 – 49.

[105] S. Schlobach, Z. Huang et al., “Debugging Incoherent Terminologies,” Journal
of Automated Reasoning, vol. 39, no. 3, pp. 317 – 349, 2007.

[106] D. Nardi and R. J. Brachman, “An Introduction to Description Logics,” in The
Description Logic Handbook: Theory, Implementation and Applications, 2nd ed.,
F. Baader, D. Calvanese et al., Eds. New York, New York, USA: Cambridge
University Press, 2010, pp. 1 – 44.

[107] F. Baader, R. Küsters, and R. Molitor, “Computing Least Common Subsumers
in Description Logics with Existential Restrictions,” in Proceedings of the 16th
International Joint Conference on Artificial Intelligence (IJCAI’99), Stockholm, Swe-
den, T. Dean, Ed. San Francisco, California, USA: Morgan Kaufmann Pub-
lishers, 1999, pp. 96 – 103.

[108] F. Baader, “Terminological Cycles in a Description Logic with Existential Re-
strictions,” in Proceedings of the 18th International Joint Conference on Artificial
Intelligence (IJCAI’03), Acapulco, Mexico, G. Gottlob and T. Walsh, Eds. San
Francisco, California, USA: Morgan Kaufmann Publishers, 2003, pp. 325 – 330.

[109] F. M. Donini, M. Lenzerini et al., “The Complexity of Concept Languages,”
Journal of Information and Computation, vol. 134, no. 1, pp. 1 – 58, 1997.

[110] Y. Kazakov, “RIQ and SROIQ are Harder than SHOIQ,” in Proceedings of
the 11th International Conference on Principles of Knowledge Representation and
Reasoning (KR’2008), Sydney, Australia, G. Brewka and J. Lang, Eds. Menlo
Park, California, USA: AAAI Press, 2008, pp. 274 – 284.

[111] B. Glimm, I. Horrocks et al., “HermiT: An OWL 2 Reasoner,” Journal of Auto-
mated Reasoning, vol. 53, no. 3, pp. 245 – 269, 2014.

[112] A. Steigmiller, T. Liebig, and B. Glimm, “Konclude: System Description,” Jour-
nal of Web Semantics, vol. 27, no. 1, pp. 78 – 85, 2014.

[113] Y. Kazakov, M. Krötzsch, and F. Simancik, “The Incredible ELK - From Poly-
nomial Procedures to Efficient Reasoning with EL Ontologies,” Journal of Au-
tomated Reasoning, vol. 53, no. 1, pp. 1 – 61, 2014.

[114] B. Parsia, N. Matentzoglu et al., “The OWL Reasoner Evaluation (ORE) 2015
Competition Report,” Journal of Automated Reasoning, vol. 59, no. 4, pp. 455 –
482, 2017.

[115] S. O. Hansson, “Reversing the Levi Identity,” Journal of Philosophical Logic,
vol. 22, no. 6, pp. 637 – 669, 1993.

111

[116] H. Wang, M. Horridge et al., “Debugging OWL-DL Ontologies: A Heuristic
Approach,” in Proceedings of the Fourth International Semantic Web Conference
(ISWC’2005), Galway, Ireland, ser. Lecture Notes in Computer Science, Y. Gil,
E. Motta et al., Eds., vol. 3729. Berlin & Heidelberg, Germany: Springer-
Verlag Berlin Heidelberg, 2005, pp. 745 – 757.

[117] A. Kalyanpur, B. Parsia et al., “Debugging Unsatisfiable Classes in OWL On-
tologies,” Journal of Web Semantics, vol. 3, no. 4, pp. 268 – 293, 2005.

[118] S. Schlobach, “Debugging and Semantic Clarification by Pinpointing,” in Pro-
ceedings of the Second European Semantic Web Conference (ESWC’2005), Heraklion,
Crete, Greece, ser. Lecture Notes in Computer Science, A. Gómez-Pérez and
J. Euzenat, Eds., vol. 3532. Berlin & Heidelberg, Germany: Springer-Verlag
Berlin Heidelberg, 2005, pp. 226 – 240.

[119] P. Plessers and O. D. Troyer, “Resolving Inconsistencies in Evolving On-
tologies,” in Proceedings of the Third European Semantic Web Conference
(ESWC’2006), Budva, Montenegro, ser. Lecture Notes in Computer Science,
Y. Sure and J. Domingue, Eds., vol. 4011. Berlin & Heidelberg, Germany:
Springer-Verlag Berlin Heidelberg, 2006, pp. 200 – 214.

[120] S. Schlobach and R. Cornet, “Non-Standard Reasoning Services for the De-
bugging of Description Logic Terminologies,” in Proceedings of the 18th Inter-
national Joint Conference on Artificial Intelligence (IJCAI’03), Acapulco, Mexico,
G. Gottlob and T. Walsh, Eds. San Francisco, California, USA: Morgan Kauf-
mann Publishers, 2003, pp. 355 – 362.

[121] A. Kalyanpur, B. Parsia et al., “Repairing Unsatisfiable Concepts in OWL
Ontologies,” in Proceedings of the Third European Semantic Web Conference
(ESWC’2006), Budva, Montenegro, ser. Lecture Notes in Computer Science,
Y. Sure and J. Domingue, Eds., vol. 4011. Berlin & Heidelberg, Germany:
Springer-Verlag Berlin Heidelberg, 2006, pp. 170 – 184.

[122] Q. Ji, P. Haase et al., “RaDON-Repair and Diagnosis in Ontology Networks,”
in Proceedings of the Sixth European Semantic Web Conference on the Semantic Web
(ESWC’2009), Heraklion, Crete, Greece, ser. Lecture Notes in Computer Science,
L. Aroyo, P. Traverso et al., Eds., vol. 5554. Berlin & Heidelberg, Germany:
Springer-Verlag Berlin Heidelberg, 2009, pp. 863 – 867.

[123] A. A. Kalyanpur, “Debugging and Repair of OWL Ontologies,” Ph.D. disser-
tation, University of Maryland, College Park, 2006.

[124] M. Horridge, B. Parsia, and U. Sattler, “Explaining Inconsistencies in OWL
Ontologies,” in Proceedings of the Third International Conference on Scalable Un-
certainty Management (SUM’2009), Washington, District of Columbia, USA, ser.
Lecture Notes in Computer Science, L. Godo and A. Pugliese, Eds., vol. 5785.

112

Berlin & Heidelberg, Germany: Springer-Verlag Berlin Heidelberg, 2009, pp.
124 – 137.

[125] D. A. Plaisted and S. Greenbaum, “A Structure-Preserving Clause Form Trans-
lation,” Journal of Symbolic Computation, vol. 2, no. 3, pp. 293 – 304, 1986.

[126] J. S. C. Lam, D. Sleeman et al., “A Fine-Grained Approach to Resolving Unsat-
isfiable Ontologies,” vol. 10, pp. 62 – 95, 2008.

[127] T. A. Meyer, K. Lee et al., “Finding Maximally Satisfiable Terminologies for
the Description Logic ALC,” in First Part of the Proceedings of the 21th National
Conference on Artificial Intelligence (AAAI’06), Co-Located with the 18th Innovative
Applications of Artificial Intelligence Conference (IAAI’06), Boston, Massachusetts,
USA, A. Cohn, Ed. Menlo Park, California, USA: AAAI Press, 2006, pp. 269
– 274.

[128] F. Baader, I. Horrocks et al., “Reasoning in the EL Family of Description Log-
ics,” in An Introduction to Description Logic, 1st ed. New York, New York,
USA: Cambridge University Press, 2017, pp. 140 – 167.

[129] S. Colucci, T. D. Noia et al., “Concept Abduction and Contraction in
Description Logics,” in Proceedings of the 16th International Workshop on
Description Logics (DL’2003), Rome, Italy, ser. CEUR Workshop Proceedings,
D. Calvanese, G. D. Giacomo, and E. Franconi, Eds., vol. 81. RWTH
Aachen, Aachen, Germany: CEUR-WS.org, 2003. [Online]. Available:
http://ceur-ws.org/Vol-81

[130] G. Teege, “Making the Difference: A Subtraction Operation for Descrip-
tion Logics,” in Proceedings of the Fourth International Conference on Principles
of Knowledge Representation and Reasoning (KR’94), Bonn, Germany, J. Doyle,
E. Sandewall, and P. Torasso, Eds. San Francisco, California, USA: Morgan
Kaufmann Publishers, 1994, pp. 540 – 550.

[131] F. M. Suchanek, C. Menard et al., “Technical Report: A Language for
Combinatorial Creativity,” Telecom ParisTech, 2016, [Online]. Available:
https://suchanek.name, accessed: 2017-12-10.

[132] S. Brandt, R. Küsters, and A.-Y. Turhan, “Approximation and Difference in
Description Logics,” in Proceedings of the Eighth International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR’2002), Toulouse, France,
D. Fensel, F. Giunchiglia et al., Eds. San Francisco, California, USA: Mor-
gan Kaufmann Publishers, 2002.

[133] P. Gärdenfors and H. Rott, “Belief Revision,” in Epistemic and Temporal Reason-
ing, 1st ed., ser. Handbook of Logic in Artificial Intelligence and Logic Pro-
gramming, D. M. Gabbay, C. J. Hogger, and J. A. Robinson, Eds. Oxford, UK:
Oxford University Press, 1995, vol. 4.

113

[134] A. Fuhrmann, “Theory Contraction Through Base Contraction,” Journal of
Philosophical Logic, vol. 20, no. 2, pp. 175 – 203, 1991.

[135] C. McCamy, “Observation and Measurement of the Appearance of Metallic
Materials. Part I. Macro Appearance,” Color Research & Application, vol. 21,
no. 4, pp. 292 – 304, 1996.

[136] F. Sjöqvist and Y. Böttiger, “Historical Perspectives: Drug Interactions – It All
Began With Cheese,” Journal of Internal Medicine, vol. 268, no. 6, pp. 512 – 515,
2010.

[137] M. A. Musen, “The Protégé Project: A Look Back and a Look Forward,” AI
Matters, vol. 1, no. 4, pp. 4 – 12, 2015.

[138] J. Cardoso, “The Semantic Web Vision: Where Are We?” IEEE Intelligent sys-
tems, vol. 22, no. 5, 2007.

[139] M. Horridge, B. Parsia, and U. Sattler, “Explanation of OWL Entailments
in Protégé 4,” in Proceedings of the Poster and Demonstration Session at the
Seventh International Semantic Web Conference (ISWC’2008), Karlsruhe, Germany,
ser. CEUR Workshop Proceedings, C. Bizer and A. Joshi, Eds., vol. 401.
RWTH Aachen, Aachen, Germany: CEUR-WS.org, 2008. [Online]. Available:
http://ceur-ws.org/Vol-401

[140] B. Sertkaya, “OntoComP: A Protégé Plugin for Completing OWL Ontolo-
gies,” in Proceedings of the Sixth European Semantic Web Conference (ESWC’2009),
Heraklion, Crete, Greece, ser. Lecture Notes in Computer Science, L. Aroyo,
P. Traverso et al., Eds., vol. 5554. Berlin & Heidelberg, Germany: Springer-
Verlag Berlin Heidelberg, 2009, pp. 898 – 902.

[141] F. Hanika, G. Wohlgenannt, and M. Sabou, “The uComp Protégé Plugin
for Crowdsourcing Ontology Validation,” in Proceedings of the Posters
& Demonstrations Track at the 13th International Semantic Web Conference
(ISWC’2014), Riva del Garda, Italy, ser. CEUR Workshop Proceedings,
M. Horridge, M. Rospocher, and J. van Ossenbruggen, Eds., vol. 1272.
RWTH Aachen, Aachen, Germany: CEUR-WS.org, 2014, pp. 253 – 256.
[Online]. Available: http://ceur-ws.org/Vol-1272

[142] M. K. Sarker, A. Krisnadhi et al., “Rule-based OWL Modeling with ROWLTab
Protégé Plugin,” in First Part of the Proceedings of the 14th European Semantic Web
Conference (ESWC’2017), Portorož, Slovenia, ser. Lecture Notes in Computer Sci-
ence, E. Blomqvist, D. Maynard et al., Eds., vol. 10249. Cham, Switzerland:
Springer International Publishing, 2017, pp. 419 – 433.

[143] S. Schenk, R. Dividino, and S. Staab, “Using Provenance to Debug Changing
Ontologies,” Journal of Web Semantics, vol. 9, no. 3, pp. 284 – 298, 2011.

114

