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Abstract

This thesis addresses the automated identification and localization of a time-varying number of
objects in a stream of sensor data. The problem is challenging due to its combinatorial nature: If
the number of objects is unknown, the number of possible object trajectories grows exponentially
with the number of observations. Random finite sets are a relatively new theory that has been
developed to derive at principled and efficient approximations. It is based around set-valued
random variables that contain an unknown number of elements which appear in arbitrary order
and are themselves random. While extensively studied in theory, random finite sets have not yet
become a leading paradigm in practical computer vision and robotics applications.

This thesis explores random finite sets in visual tracking applications. The first method
developed in this thesis combines set-valued recursive filtering with global optimization. The
problem is approached in a min-cost flow network formulation, which has become a standard
inference framework for multiple object tracking due to its efficiency and optimality. A main
limitation of this formulation is a restriction to unary and pairwise cost terms. This circumstance
makes integration of higher-order motion models challenging. The method developed in this
thesis approaches this limitation by application of a Probability Hypothesis Density filter. The
Probability Hypothesis Density filter was the first practically implemented state estimator based
on random finite sets. It circumvents the combinatorial nature of data association itself by
propagation of an object density measure that can be computed efficiently, without maintaining
explicit trajectory hypotheses. In this work, the filter recursion is used to augment measurements
with an additional hidden kinematic state to be used for construction of more informed flow
network cost terms, e.g., based on linear motion models. The method is evaluated on public
benchmarks where a considerate improvement is achieved compared to network flow formulations
that are based on static features alone, such as distance between detections and appearance
similarity.

A second part of this thesis focuses on the related task of detecting and tracking a single
robot operator in crowded environments. Different from the conventional multiple object tracking
scenario, the tracked individual can leave the scene and later reappear after a longer period
of absence. Therefore, a re-identification component is required that picks up the track on re-
entrance. Based on random finite sets, the Bernoulli filter is an optimal Bayes filter that provides
a natural representation for this type of problem. In this work, it is shown how the Bernoulli filter
can be combined with a Probability Hypothesis Density filter to track operator and non-operators
simultaneously. The method is evaluated on a publicly available multiple object tracking dataset
as well as on custom sequences that are specific to the targeted application. Experiments show
reliable tracking in crowded scenes and robust re-identification after long-term occlusion.

Finally, a third part of this thesis focuses on appearance modeling as an essential aspect of any

method that is applied to visual object tracking scenarios. Therefore, a feature representation that

is robust to pose variations and changing lighting conditions is learned offline, before the actual

tracking application. This thesis proposes a joint classification and metric learning objective

where a deep convolutional neural network is trained to identify the individuals in the training

set. At test time, the final classification layer can be stripped from the network and appearance

similarity can be queried using cosine distance in representation space. This framework represents

an alternative to direct metric learning objectives that have required sophisticated pair or triplet

sampling strategies in the past. The method is evaluated on two large-scale person re-identification

datasets where competitive results are achieved overall. In particular, the proposed method better

generalizes to the test set compared to a network trained with the well-established triplet loss.
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Kurzfassung

Die Problemstellung der Objektverfolgung beschäftigt sich mit dem Schätzen von Objekttrajekto-
rien aus Sensordaten. Da in den meisten Anwendungsszenarien die Zuordnung von observierten
Positionen zu in der Szene vorhandenen Objekten unbekannt ist, entsteht bei der Sensordaten-
verarbeitung eine exponentiell wachsende Anzahl möglicher Trajektorienhypothesen deren vol-
lumfängliche Aufzählung und Auswertung nicht möglich ist. Random Finite Sets beschreiben
einen speziell für dieses Problem entwickelten mengentheoretischen Ansatz, der mit der Zielset-
zung entwickelt wurde, wohl fundierte und effiziente Approximationen herzuleiten. Dabei wird
das Problem basierend auf einer mengenwertigen Problemformulierung in einer Bayes’schen Zus-
tandsschätzung gelöst.

Die erste in dieser Arbeit entwickelte Methode kombiniert mengentheoretische Zustandss-
chätzung mit globaler Optimierierung im Kontext der Verfolgung einer unbekannten, zeitlich
variierenden Anzahl von Objekten. Dabei wird die Trajektoriensuche als Netzwerkflussproblem
formuliert, in dem Messungen zu Trajektorien verbunden werden. Netzwerkflussformulierungen
sind globale Optimierungsroutinen, die aufgrund effizienter und exakter Lösungsmethoden heute
zu den Standardverfahren in der Objektverfolgung gehören. Netzwerkflussprobleme sind in der
Problemformulierung jedoch auf paarweise Kostenterme beschränkt. Aus diesem Grund werden
Objekttransitionen zwischen Messungen traditionell durch statische Kostenterme, wie z.B. Erschei-
nungsähnlichkeit und Distanz zwischen Messungen modelliert. Der in dieser Arbeit entwickelte
Ansatz nähert sich dieser Restriktion durch Anwendung eines mengentheoretischen Zustandss-
chätzers an, auf dessen Basis Messungen mit zusätzlichen geschätzen Zustandsvariablen angere-
ichert werden. Unter Verwendung dieser Zustandsvariablen können z.B. lineare Bewegungsmodelle
in die Netzwerkflussformulierung integriert werden. Eine Evaluation auf öffentlichen Datensätzen
zeigt, dass sich durch die Kombination von mengentheoretischer Zustandsschätzung und globaler
Optimierung eine erhöhte Genauigkeit erzielen lässt.

In einem zweiten Teil der Arbeit wird das verwandte Problem der Detektion und Verfolgung
einer einzelnen Person in großen Personenmengen behandelt. Im Unterschied zum ersten Verfahren
kann die in diesem Teil der Arbeit entwickelte Methode mit Situationen umgehen, in denen
die Person die Szene verlässt und zu einem späteren Zeitpunkt wieder betritt. Dazu wird ein
mengentheoretischer Ansatz verwendet, der eine für diese Problemart natürliche Repräsentation
darstellt. Es wird außerdem gezeigt, wie durch Integration von Erscheinungsinformationen und
parallele Ausführung mehrerer mengentheoretischer Filter die Leistung des Systems verbessert
werden kann. Zur Evaluation wird sowohl ein öffentlich zugänglicher Datensatz als auch ein
speziell auf die Problemcharakteristik abgestimmter, eigens aufgenommener Datensatz verwendet.
In Experimenten wird gezeigt, dass das entwickelte System Personen erfolgreich verfolgt und nach
Langzeitverdeckungen wiedererkennt.

In einem dritten Teil wird schließlich das Lernen einer Merkmalsrepräsenation für die Perso-

nenverfolgung behandelt, die robust gegenüber Artikulationen, variierenden Hintergründen und

wechselnden Beleuchtungsbedingungen ist. Der in dieser Arbeit entwickelte Ansatz formuliert

die Aufgabenstellung als Klassifikationsproblem. Dazu wird ein Klassifikator formuliert, der eine

Kosinusmetrik auf dem darunterliegenden Merkmalsraum forciert. Während des Trainings wer-

den die Merkmalsrepräsentation und der Klassifikator gemeinsam trainiert. Nach Abschluss des

Trainings kann der Klassifikator entfernt werden. Ähnlichkeitsanfragen werden dann über die

Kosinusdistanz im Merkmalsraum durchgeführt. Auf diese Weise generalisiert der Merkmalsraum

über die im Trainingsdatensatz beinhalteten Individuen hinaus. In einer Evaluation auf zwei

Datensätzen zur Personenwiedererkennung werden konkurenzfähige Ergebnisse erzielt.
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Chapter 1

Introduction

Object tracking addresses the problem of estimating the location and assessing the
identity of a single or multiple objects from a stream of sensor data, taken from a
possibly moving platform. This problem naturally arises in many computer vision
and robotics applications where it is often a basic requirement for higher-order
reasoning. For example, intelligent vehicles that monitor outside traffic participants
have the potential to warn about unforeseen events and to trigger emergency stops
in situations where humans are unable to react. Likewise, consistent object labeling
is necessary in video surveillance scenarios in order to detect unusual or suspicious
behavior. Similar reasoning about human activities may be implemented on a
service robot to perform complex tasks that include human-robot interaction.

The design of a concrete tracking system involves modeling aspects that de-
pend on the application scenario and sensor setup at hand, but the typical tracking
engineer is faced with the following situation: In a preprocessing stage, observation
vectors are extracted from raw sensor data to be grouped into consistent object
trajectories by the tracker. The provided observations are imperfect in the following
ways. First, not all detections belong to a true object identity and false alarms
must be correctly identified and disregarded. Second, some existing objects are
not detected due to sensor failures and occlusions, but the application may require
output even when no observation is available, e.g., for collision avoidance in auto-
motive context. Finally, observations usually have no identifying label attached to
them, such that the association between objects and unlabeled observations must
be handled as part of the tracking system. Due to these imperfections, multiple
object tracking is a challenging combinatorial problem: When the identity of obser-
vations is unknown, the number of possible combinations of observations that make
up individual trajectories grows exponentially with the number of measurements
in the observation sequence.

Handling of sensor noise and uncertainty in object motion models is a well-
controlled subject. In the 1960s, the Kalman filter [Kal60] has been developed as a

1
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closed-form recursive filter for systems where all involved distributions are Gaussian
and the motion and measurement model are linear. For these problems, the Kalman
filter represents a Bayes optimal state estimator. Approximations of the Kalman
filter can be applied to nonlinear systems. The extended Kalman filter linearizes
nonlinear motion and measurement models around the mean estimate by Taylor ex-
pansion [TBF05, Chapter 3]. The unscented Kalman filter [WVDM00, VDMW01]
provides a more accurate approximation using moment matching. Instead of lin-
earizing the model, a set of deterministically placed points is propagated through
the nonlinear function. Then, moments of the posterior are reconstructed from the
propagated points. Even highly nonlinear systems can be solved, though at higher
computational cost, using sequential Monte-Carlo filtering [TBF05, Chapter 4].

Data association uncertainty is more difficult to deal with due to the combi-
natorial nature of the problem. Since their formulation in the 1980s, Joint Prob-
abilistic Data Association (JPDA) [FBSS83] and Multiple Hypothesis Tracking
(MHT) [Rei79] have largely influenced the tracking community. Both methods ap-
proach the problem by evaluation of multiple association hypotheses. In JPDA,
a joint probabilistic score for the measurement-to-track association is computed
under consideration of all assignments. In MHT, the space of object trajectories
is explored in a breadth-first search from the first time step onwards. Due to this
systematic exploration, MHT has long been seen as a gold standard. However, the
method is computationally costly and it has taken until the mid 1990s until a prac-
tical implementation was proposed by Cox [CH96]. Since then, the overwhelming
combinatorial nature of multi-object systems has lead to different conclusions on
how to approach the problem systematically.

In information fusion, random finite sets and finite set statistics [Mah07b] have
been developed for a rigorous treatment of multi-object phenomena under the
Bayesian paradigm. The theory provides mathematical procedures intended for
derivation at principled approximations with certain guarantees on their validity
and applicability in real-time. In contrast to MHT, where optimality was never
proven, the framework provides means to derive an optimal multi-object Bayes
filter in which the state of all objects is a single set-valued random variable. It
is only recently that a computationally tractable implementation has been de-
veloped [VVP14]. Earlier, computationally cheaper approximations have emerged
out of this theory, such as the Probability Hypothesis Density filter [Mah03], the
cardinalized Probability Hypothesis Density filter [Mah07a], and the Multi-Target
Multi-Bernoulli filter [VVC09]. These filters impose additional assumptions on
the multi-object state, such as independent motion and independent measurement
generation, that yield efficient but principled approximations. The second intention
behind the development of random finite sets and finite set statistics was to provide
an engineering friendly theory for multi-object problems. It is arguable if random
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finite sets are the “practitioner friendly version of point process theory” [Mah07b,
p.8] as intended. Bringing its own mathematical notation and calculus, there cer-
tainly is an entry hurdle that must be overcome to design appropriate models for
algorithms derived from finite set statistics.

There has been tremendous progress on object detection and feature learning
within the last decade [FGMR10, RHGS15, SRASC14]. In vision, this progress has
lead to a shift away from recursive filtering towards global optimization strategies.
Notable advances have been made under the tracking-by-detection paradigm which
typically refers to a tighter coupling of detection and tracking. Trajectories are often
recovered directly in image space and often without estimation of a hidden kine-
matic state. Interestingly, the related field of simultaneous localization and mapping
has undergone a similar shift away from the Bayesian paradigm towards efficient
global optimization strategies [GKSB10] and is now, apart from conventional meth-
ods that still dominate the field, a prime research area for methods derived from
finite set statistics [MVAV11]. A particular formulation that has found wide appli-
cation in tracking is based on a min-cost flow transportation problem [ZLN08]. The
popularity is due to availability of optimal, yet very efficient inference algorithms
that exploit the specific structure of the tracking problem [BFTF11, LGU15]. How-
ever, a key limitation of the min-cost flow formulation is its restriction to only
pairwise cost terms. This makes integration of motion models challenging because
multiple observations are required to compute object motion. Consideration of
higher-order potentials, however, makes the problem NP-hard and approximate
inference must applied [Col12, BC13]. Then, efficiency and optimality are lost.

1.1 Applications

As a fundamental environment perception problem, object tracking has application
in numerous domains. The methods in this thesis have been developed with the
following applications in mind.

Automotive The automotive industry is a major end user of object tracking
technologies. The demand stems from a need for reliable environment perception
in intelligent driver assistance systems. All major vehicle manufacturers offer ad-
vanced systems that enhance safety and driving comfort, such as autonomous cruise
control, collision avoidance, and blind spot monitoring [LKVN07]. The European
Road Safety Observatory has summarized the casualty reduction effect of various
safety technologies [Eur16b]. For example, autonomous emergency breaking sys-
tems effectively prevent up to 44% of front to rear collisions. In consequence, they
demand that from 2018 on all new vehicles are equipped with such systems.
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Autonomous driving is a long followed goal with first success stories in the
1980s [VPRH87]. The topic has received wide public attention due to a DARPA
challenge that was held in 2007 [BIS09] where vehicles were required to drive 90 km
through an urban environment. Since then, major manufacturers have developed
prototype autonomous vehicles. Due to the ongoing automation in passenger trans-
portation, the need for reliable object tracking can be expected to increase further
in the future.

Robotics Research on service robots is dedicated to the development of au-
tonomous systems that assist humans in daily life activities. Activity monitoring
and behavior analysis play an essential role in this task. Object tracking is a low-
level vision task that works towards this goal, enabling the robot to move through
populated environments and interact with people. Robotics research has reached
an exciting stage where first autonomous systems are deployed in industrial and
service applications. Within the SPENCER project [TAA+16] for example, a robot
was developed to guide passengers to their designated gate at a large European
airport. The subject can be expected to gain further importance. To better cope
with the challenges of an aging society, the European Commission funds research
into robotics for aging well under the Horizon 2020 framework programme [Eur16a].

Surveillance Video surveillance is a safety and security task where detailed in-
formation about the density, movements, and actions involving people and other
road users are obtained from one or multiple cameras in an automated fashion.
Besides obvious security applications, such information are also used to assess bot-
tlenecks in infrastructure or analyze traffic situations that lead towards dangerous
situations [Eur17]. On a regular basis, the Performance Evaluation of Tracking
and Surveillance (PETS) workshop is held in conjunction with the International
Conference on Computer Vision and Pattern Recognition. One of the most popular
crowd analysis datasets is due to this workshop [FS09].

1.2 Contributions

Methods based on random finite sets have yet found little adoption in vision and
robotics. From a historical perspective this is surprising, since information fusion,
vision, and robotics have long considered the same algorithms for application in
their respective domains [Rei79, FBSS83, CH96]. Potentially, this is due to an entry
hurdle that must be overcome to apply these methods in practice. This thesis aims
at bridging the gap between theoretically capable methods that have emerged out
random finite set theory and practical tracking applications in computer vision in
robotics. This goal is reached by the following contributions:
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• The main contribution of this thesis is the development of a multi-object
tracker that combines recursive multi-object filtering with global data associ-
ation, thus combining methods from computer vision with random finite set
theory. The tracker works with general point targets and can be applied to a
broad range of problems. From a computer vision perspective, the problem
formulation enables integration of object motion models through recursive
filtering without increasing the complexity of the data association problem.
From a random finite set perspective, the approach offers a novel data as-
sociation scheme to extract trajectories from the output of a Probability
Hypothesis Density filter [Mah03]. This work was presented at a renowned
international conference for robotics research [WP16] and is the first method
to combine random finite set theory with global data association. A practical
sequence Monte-Carlo implementation was presented in [WP17].

• The second contribution is the application of an optimal multi-object Bayes
filter to the specific problem of tracking a single robot operator through
crowded environments. It is shown that the random finite set formulation
offers a natural representation for this type of problem and how the perfor-
mance of such a system can be improved by integration of appearance features
and running multiple filters concurrently. This work has been presented at a
major conference on information fusion [WMP17].

• In a final contribution, person re-identification is explored as an environ-
ment to train an appearance descriptor for people tracking that is robust to
articulation, changing lighting conditions, and viewpoint changes. For this
purpose, a light-weight deep convolutional neural network architecture is
presented that permits application in online tracking scenarios. In addition,
a joint classification and metric learning framework is developed that over-
comes practical issues related to well-established metric learning objectives.
Evaluation shows that this framework improves the final model performance
when compared to these objectives. The work has been developed as part
of a multi-object tracker that has been presented at a major image process-
ing conference [WBP17a]. The details of the learning framework have been
published separately [WB18].

1.3 Outline

The following chapters are structured as follows. Chapter 2 introduces a theoretical
background on random finite set theory and the min-cost flow transportation
problem. The material presented in this chapter builds a foundation for the methods
that have been developed in this thesis. Chapter 3 diverts from the tracking
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application to a person re-identification task in order to learn an appearance
descriptor for people tracking that is robust towards articulation, background, and
changing lighting conditions. A multi-object tracker that combines multi-object
recursive state estimation with global data association in a tracking-by-detection
paradigm is presented in Chapter 4. In Chapter 5, a solution to a practical robotics
tracking task is developed in which random finite sets offer a natural representation
for the problem at hand. Finally, a conclusion and directions for future work are
presented in Chapter 6.



Chapter 2

Background

This chapter provides a theoretical foundation on Finite Set Statistics (FISST),
a specialized theory for set-valued random variables that has been developed to
make results from point process theory more accessible to engineers [Mah07b]. The
basic idea underlying FISST is to provide statistical descriptors and mathematical
procedures by which multi-object, multi-sensor problems can be treated similar
to the well-established single-object, single-sensor case. To this end, the theory
generalizes many concepts from conventional vector-valued probability theory to
set-valued phenomena. In the FISST methodology, the engineer defines appropriate
models for the practical application at hand and then applies a specialized multi-
object calculus to derive at a solution. The potential benefit of this approach lies
in the separation of application engineering and mathematical background. The
engineer is not required to be an expert on the mathematics behind the theory
in order to apply it. Yet, the theory itself is mathematically grounded and, in
some cases, offers guarantees such as Bayes optimality that are otherwise hard to
prove (e.g., [RVVF13]).

The following description covers only a minimal set of theoretical background
rather than diving deep into derivations or formalisms that may impair the com-
prehension of a potentially unfamiliar reader. For a broader, but relatively gentle
introduction to the topic refer to tutorial texts [Mah04] and [Mah13]. An ex-
tensive treatment with formal definitions and derivations is given in Mahler’s
book [Mah07b]. A recent sequel [Mah14] contains a discussion of advances in the
field. The remainder of this chapter begins with a discussion of set-valued ran-
dom variables in Section 2.1 and continues with a presentation of the multi-object
system representation in Section 2.2. The Probability Hypothesis Density filter,
a set-valued state estimator that plays a central role in this thesis, is described
in Section 2.3. The chapter concludes with an introduction of the min-cost flow
problem in Section 2.4. This problem will later be used as an inference framework
to recover object trajectories from the Probability Hypothesis Density filter.

7
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2.1 Random Finite Sets

Random Finite Sets (RFSs) are set-valued random variables that contain an un-
known number of elements which are themselves random. Within the scope of this
thesis, these are the set of objects present in the scene or the set of measurements
generated by these objects at a particular point in time. Given an underlying
space X , such as a single-object state or measurement space, a random finite set
draws instantiations from the hyperspace of all finite subsets F(X ) of X . As, in
general, a random finite set may contain any (finite) number of elements, possible
instantiations of a random finite set X ∈ F(X ) are

X = ∅, X = {x1}, X = {x1,x2}, . . . X = {x1, . . . ,xn}, . . . (2.1)

where xi ∈ X and ∀i, j : xi 6= xj. Random finite sets impose no ordering on their
elements, making them particularly well suited to model phenomena where (1) the
ordering has no physical interpretation or (2) elements are not directly observable
and the association between elements and their measurements is unknown.

Two probability distributions are needed to characterize the uncertainty in-
volved in a random finite set: A discrete probability distribution for the cardinality
of the set and a joint probability distribution for the individual members, given
the cardinality. Then, sampling from a random finite set can be illustrated as
follows. First, draw the number of elements n from the cardinality distribution.
Then, sample x1, . . . ,xn from the joint probability distribution over its elements
conditional on n.

2.1.1 Multi-Object Probability Density Function

Remark 2.1. Let x ∈ R be a continuous random variable on the set of real
numbers. Then its probability density function is a real-valued, non-negative
function p(x) that, for all intervals [a, b], integrates to the probability that x
takes on a value in a ≤ x ≤ b:

P(a ≤ x ≤ b) =
∫ b

a
p(x) dx (2.2)

with ∀x ∈ R : p(x) > 0 and P(−∞ ≤ x ≤ ∞) = 1. Alternatively, this can be
written as

P(x ∈ S) =
∫

S
p(x) dx (2.3)

where S = {x | ∀x ∈ R : a ≤ x ≤ b} is the interval in set-builder notation.
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The multi-object probability density function of a random finite set is an anal-
ogous concept to the probability density function of a continuous random vector1.
Let X ∈ F(X ) be a random finite set on some underlying space X . Then its multi-
object probability density function is a real-valued, non-negative function π (X)
that, for all regions S ⊆ X , integrates to the probability that X takes on a subset
of S:

P (X ⊆ S) =
∫

S
π (X) δX (2.4)

with ∀X ∈ F(X ) : π (X) ≥ 0 and P (X ⊆ X ) = 1. Since this definition contains an
integral over a set-valued random variable with an unknown number of elements
that appear in arbitrary order, it requires application of a specialized set-integral
which is denoted by

∫
δX.

The first step towards defining this integral is to express the multi-object prob-
ability density function in a vector notation. Therefore, define for each n ≥ 2 a
function in n vector variables that distributes the probability density of the set
equally among all n! permutations of the given inputs:

fn(x1, . . . ,xn) =





1
n!

π ({x1, . . . ,xn}) if x1, . . . ,xn are distinct,

0 otherwise.
(2.5)

Then, the set-integral in (2.4) can be expressed as an infinite sum over the cardinal-
ity of the set by integrating over all possible assignments [Mah07b, Section 11.3.3]:

∫
π (X) δX = π (∅) +

∫
π ({x}) dx +

∞∑

n=2

∫

Sn
fn(xi, . . . ,xn) dx1 . . . dxn, (2.6)

where Sn = S × . . . × S is the Cartesian product over n sets. It is obvious that,
due to the infinite sum over all cardinalities, evaluation of a set-integral is gener-
ally computationally intractable. However, the set-integral simplifies to tractable
terms for certain classes of random finite sets. This is illustrated in the following
Example 2.1.

Example 2.1. The purpose of this example is to show how a random vector
can be modeled as a random finite set and that, in this case, the multi-object
probability density function is equivalent to the conventional probability den-
sity function. Therefore, assume a single object x ∈ R

2 that moves on the

1In accordance with existing literature, the term multi-object probability density function is
used to refer to the probability density of a set-valued random variable. The theory is not limited
to modeling of multi-object tracking problems, but has been developed with this application in
mind.
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ground plane. The object is always present in the scene, but its position is sub-
ject to spatial uncertainty that is modeled by a bivariate normal distribution

p(x) = det(2πP )− 1
2 exp

(
−

1
2

(x − m)TP−1(x − m)
)

(2.7)

with mean m and covariance P . In this simple example, the random finite
set X = {x} is a singleton set and its multi-object probability density function
is

π (X) =





p(x) if X = {x},

0 otherwise.
(2.8)

Since π (X) evaluates to 0 whenever |X| 6= 1, it is easily verified that this
function fulfills the properties of a multi-object probability density function.
Further, for this example the set-integral (2.6) simplifies to a conventional
integral

∫
π (X) δX = π (∅) +

∫
π ({x}) dx +

∞∑

n=2

∫

Sn
fn(xi, . . . ,xn) dx1 . . . dxn

(2.9)

= 0 +
∫

p(x) dx + 0 + . . . (2.10)

and dealing with the random finite set X = {x} is no harder than dealing
with its random vector equivalent x directly.

2.1.2 Probability Hypothesis Density

Let X be a random finite set that draws its instantiations from the hyperspace of all
finite subsets F(X ) of some space X . The first-order moment of X is a non-negative
function v(x) defined on X . Formally, it is defined as a set-integral [Mah07b, p. 580]:

v(x) =
∫

π ({x} ∪ X) δX. (2.11)

This function is called the Probability Hypothesis Density (PHD) or intensity of X.
Intuitively, it can be interpreted as a fuzzy-membership function that represents
the zero-probability event that an element x is contained in the set X, i.e., v(x) =̂
P (x ∈ X). However, the PHD is not a proper probability density in the sense that
the integral

∫
X v(x) dx is not equal to 1. Instead, for all closed subsets S ⊆ X , the

PHD integrates to the expected number of elements in X that are also present
in S:

E [|X ∩ S|] =
∫

S
v(x) dx. (2.12)
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Figure 2.1: Illustration of the PHD of a random finite set X = {x1, x2} that contains
two normally distributed objects. In (a) both objects are well separated, and the integral
over region S returns approximately 1.06 objects. As the objects move closer together in
(b), the expected number of objects in S increases to approximately 1.57.

This property gives rise to a second interpretation: The PHD is an object density
measure in the sense that elements are concentrated in regions of high intensity
mass. Figure 2.1 illustrates this property for a random finite set that contains two
statistically independent objects. In (a) both objects are well separated and the
PHD has two well separated peaks from which the location of its elements can be
inferred. The two modes join when both objects move closer together in (b). At
this point, a clear distinction between the two objects is not possible. However, the
expected number of objects contained in any region can be obtained by integrating
over the intensity function.

2.1.3 Relevant Classes

Several common classes of random finite sets can be found in the literature. Relevant
to this thesis are the following two classes.

Poisson RFS A Poisson RFS X contains an expected number of λ objects
that are independent and identically distributed (i.i.d.) according to a spatial
density p(x). The cardinality distribution is Poisson with mean λ. The probability
density of the Poisson RFS is

π (X) = e−λ
∏

x∈X

λ p(x) = e−
∫

v(x) dx
∏

x∈X

v(x). (2.13)
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Therefore, Poisson RFSs are completely characterized by their PHD

v(x) = λ · p(x). (2.14)

The expected number of elements in the set can be computed from the PHD
by λ =

∫
v(x) dx and the spatial density of its elements by p(x) = v(x)/λ.

Bernoulli RFS A Bernoulli RFS X contains at most one element. The cardi-
nality distribution is a Bernoulli distribution with parameter q, such that the set
is empty with probability 1 − q and contains an element with probability q. The
probability density of the Bernoulli RFS is

π (X) =





1 − q if X = ∅,

q · p(x) if X = {x},

0 otherwise,

(2.15)

where p(x) is the spatial density. The PHD of the Bernoulli RFS is v(x) = q · p(x).
As for the Poisson RFS, conversion between the multi-object density and the
PHD is possible without loss of information. The probability of existence can be
recovered from the PHD by q =

∫
v(x) dx and the spatial density by p(x) = v(x)/q.

Throughout this thesis, the probability density of a Bernoulli RFS is abbreviated
by its parameters π = (q, p(x)) when appropriate.

2.2 Multi-Object State Estimation

In the typical object tracking application, raw sensor data is preprocessed by a
detector to obtain likely object locations. These are then passed on to the tracker
to filter false alarms and extract object trajectories. This processing pipeline is
subject to various sources of uncertainty that are left for the tracker to resolve.
In particular, detector-based preprocessing steps usually cannot resolve data as-
sociation ambiguity themselves. Instead, they provide locations of likely object
occurrences for all objects of a particular class, for example, pedestrians, vehicles,
or bicycles. Under these circumstances, the association of detections to individual
object identities is one of the most fundamental challenges of the tracking compo-
nent. Specifically designed to deal with set-valued phenomena, FISST provides the
means to address this problem in a mathematically principled way.
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2.2.1 System Representation

In a random finite set methodology, the set of all object states Xk and measure-
ments Zk at time k are reconceptualized as set-valued random variables

Xk = {xk,1, . . . ,xk,Nk
} ∈ F(X ), (2.16)

Zk = {zk,1, . . . ,zk,Mk
} ∈ F(Z), (2.17)

on state and measurement spaces X and Z without imposing a specific ordering on
the respective collections. This representation is natural in that the exact number
of objects as well as their association to individual measurements is unknown and
their ordering has no physical interpretation2. Through application of multi-object
calculus, a specialized Bayes recursion

π (Xk | Z1:k) =
π (Zk | Xk) π (Xk | Z1:k−1)

π (Zk | Z1:k−1)
(2.18)

can be derived to solve the estimation problem optimally, thus leading to a math-
ematically principled way to incorporate data association uncertainty into the
Bayes recursion. The modeling decisions to be made in this framework are on par
with the conventional vector-valued Bayes filter: In Equation 2.18, π (Xk | Xk−1)
is a set-valued Markov state transition density that describes the evolution of the
multi-object state over time. This density not only characterizes object motion,
but also appearances and disappearances between consecutive time steps. Like-
wise, π (Zk | Xk) is a set-valued measurement likelihood function that describes the
measurement generation process. The aspects involved in designing appropriate
models are similar to those in conventional Bayesian filtering. The random finite
set system representation not so much supersedes the conventional formalization as
it compromises it. At the core, conventional vector-valued probabilistic motion and
measurement models describe the single-object state evolution. These models are
complemented by the set-valued system representation to characterize multi-object
phenomena such as object appearances and disappearances, sensor failures, and
false alarms. The following two sections present the standard models commonly
employed in practical implementations [Mah03, VSD05, VM06, VVC09].

2One may argue that object states are ordered, in order to express the identity associated
with each object. This ordering, however, would be arbitrary. Any permutation of the order that
maintains consistent identities over all time steps is equally valid. Therefore, in the random finite
set methodology, maintaining object identities is handled by tracking on a state space that is
augmented with an identifying label [VVP14].
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2.2.2 Motion Model

In the standard formulation, the set of objects at the time k is a union of newly
appearing objects and surviving objects from time k−1. Therefore, let Bk denote the
random finite set of spontaneously appearing objects at time k. Further, assume that
each object x′ ∈ Xk−1 either disappears from the scene with probability 1 − pS(x′)
or transitions to a new state x ∈ X according to pk|k−1(x | x′). Then, this behavior
can be modeled by a Bernoulli RFS Sk (x′) with parameters (pS(x′), pk|k−1(x | x′))
and the set of objects at time k can be expressed by

Xk = Bk ∪


 ⋃

x
′∈Xk−1

Sk (x′)


 . (2.19)

The individual random finite sets in the above union are considered statistically
independent [Mah07b, Section 13.2]. Depending on the Bayes filter approximation,
the birth set may take on different forms. For example, if the task is to track a
single object through clutter, Bk is a Bernoulli RFS and the Bayes filter recursion
can be implemented exactly [Mah07b, Section 14.7]. If multiple objects are present
in the scene, then Bk may be modeled by a Poisson RFS [Mah03]. Based on this
decision, the multi-object Markov transition density π (Xk | Xk−1) can be derived
by application of multi-object calculus. However, since the multi-object Markov
state transition density is not used directly in this thesis, the interested reader is
referred to [Mah07b, Chapter 13] for a discussion on further modeling aspects and
a mathematical derivation.

2.2.3 Measurement Model

The measurement model draws a generative relationship between the set-valued ob-
ject state and the set of observed measurements. This relationship covers the spatial
location of object-generated measurements, but also includes sensor characteristics
such as the probability of detection, sensor field of view, clutter characteristics, etc.
Therefore, let pD(x) denote a probability of detection for given state x ∈ X and
let pk(z | x) denote a conventional single-object measurement model that draws a
relationship between x and measurement z ∈ Z. Then, object-generated measure-
ments are modeled by a Bernoulli RFS Hk(x) with parameters (pD(x), pk(z | x)).
This RFS is either empty with probability 1−pD(x) or contains exactly one element
that is distributed according to pk(z | x). If further Kk denotes the clutter RFS,
then the set of measurements observed at time k is

Zk = Kk ∪


 ⋃

xk∈Xk

Hk(x)


 . (2.20)
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It is generally assumed that clutter is independent of object-generated measure-
ments and that object-generated measurements are conditionally independent of
object state [Mah07b, Chapter 12]. Throughout this thesis, clutter is modeled by a
Poisson RFS. As for the Markov transition density, the multi-object measurement
likelihood π (Zk | Xk) will not be used directly in this thesis. A detailed discussion
with examples and derivations, including a relationship to the likelihood function
that is used in MHT, can be found in [Mah07b, Chapter 12].

2.3 Probability Hypothesis Density Filter

The PHD filter was the first successfully applied multi-object state estimator based
on FISST [Mah03]. It alleviates the computational intractability of the exact multi-
object Bayes recursion by propagating a first-order moment statistic instead of a full
multi-object probability density. This is conceptually closer to tracking entire groups
of objects rather than individuals. To see why this is true, recall that in Section 2.1.2
it has been pointed out that for a random finite set X ∈ F(X ) with PHD v(x) the
integral over any region S ⊂ X yields the expected number of elements in X that
are also in S. Due to this property, locations of high object concentration can be
extracted from peaks of the PHD. It does not, however, contain information about
individual object identities in the set. Therefore, these must be extracted from the
PHD in a post processing step. Despite this theoretical limitation, the PHD filter
offers several potential advantages over other methods [Mah07b, p. 571]:

• The PHD filter does not suffer from an exponential growth of track hypotheses.
At each time step, the computational complexity is O(mn) where m is the
number of measurements and n is the number of objects in the scene.

• The PHD filter does not require explicit decisions on measurement-to-track
associations which potentially introduce errors into state estimates.

• There exist efficient sequential Monte-Carlo [VSD05] and Gaussian mix-
ture [VM06] implementations.

• The number of objects in the scene is estimated directly from data under
consideration of sensor characteristics such as probability of detection, clutter
statistics, and sensor field of view.

• The filter has shown good performance compared to conventional methods
and there is evidence of successful applications, e.g., [PVS+04, JB09, KLW+10,
MĆP15].
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The remainder of this section outlines the PHD filter recursion without further
discussion. A practical Gaussian mixture implementation will be presented in the
following section.

2.3.1 Prediction

Given the posterior intensity vk−1(x) of the multi-object state Xk−1 at time k − 1,
the predicted intensity at time k is

vk|k−1(x) = bk(x) +
∫

pS(x′)pk|k−1(x | x′)vk−1(x′) dxk−1 (2.21)

where bk(x) = λb,k · pb,k(x) is the intensity of a Poisson birth RFS with mean
cardinality λb,k and spatial density pb,k(x). For an intuitive interpretation, note
that the second term in Equation 2.21 reduces to down-scaled Bayes filter prediction
for a constant probability of survival pS(x) = pS. If Xk is approximately Poisson,
then N̂k|k−1 =

∫
vk|k−1(x) dx objects in Xk are distributed proportional to vk|k−1(x).

Therefore, the PHD predictor propagates the spatial density of surviving object
according to the single-object motion model and adapts the cardinality estimate
to account for disappearing objects. Additionally, objects that enter the scene are
accounted for by adding intensity mass at locations where objects are likely to
appear.

2.3.2 Update

Let vk|k−1(x) denote the predicted intensity of the multi-object state Xk at time k.
Given a set of newly arrived measurements Zk, the posterior intensity at time k is

vk(x) = vL,k(x) +
∑

z∈Zk

vU,k(z,x), (2.22)

where the first term accounts for missed detections

vL,k(x) = [1 − pD(x)] vk|k−1(x) (2.23)

and the second term accounts for measurement-corrected updates

vU,k(z,x) =
pD(x)pk(z | x)vk|k−1(x)

ck(zk,j) +
∫
pD(x)pk(z | x)vk|k−1(x)

(2.24)

with ck(z) = λc,k · pc,k(z) denoting the intensity of the Poisson clutter RFS with
mean cardinality λc,k and spatial density pc,k(z).

In the missed-detection term, the predicted intensity is down-weighted by one
minus the probability of detection to account for objects that remain present in
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the scene, but are not detected at the current time. Each measurement-corrected
partition resembles a Bayes-like update of the predicted intensity with one of the
measurements. By taking into account clutter statistics ck(z), the intensity mass
weights off the likelihood of the measurement being generated by an object against
the clutter intensity.

2.3.3 Gaussian Mixture Implementation

The PHD filter can be implemented in closed form under linear Gaussian assump-
tions. The corresponding Gaussian Mixture Probability Hypothesis Density (GM-
PHD) filter [VM06] maintains a Gaussian mixture representation of the intensity

vk(x) =
Lk∑

i=1

w
(i)
k N (x;m(i)

k ,P
(i)
k ) (2.25)

where the weights sum up to the expected number of objects
∫

v(x) dx =
∑Lk

i=1 w
(i)
k .

The implementation presented in this section loosely follows an extension of the GM-
PHD filter where it is assumed that objects are detected on their first entrance into
the scene [RCVV12]. This leads to a more efficient processing of birth components
if no a priori knowledge about the location of appearing object is available.

Prediction

The pseudo code for the GM-PHD predictor is given in Algorithm 1. In line 3,
component weights are multiplied by a constant probability of survival pS(x) = pS.
A Kalman filter prediction step is carried out in line 4. If object motion is described
by a linear function xk = Fxk−1 + ǫk with zero-mean additive noise ǫk ∝ N (0,Q),
then

m
(i)
k|k−1 = Fm

(i)
k−1, (2.26)

P
(i)
k|k−1 = FP

(i)
k−1F

T + Q (2.27)

is the corresponding Kalman filter prediction (see, e.g., [TBF05]). The constant
velocity motion model is given as an example in Appendix B.1. This model as-
sumes objects follow a linear motion pattern with constant velocity. Errors in this
assumption are compensated by noise covariance Q that increases the uncertainty
associated with the predicted object state in Equation 2.27. Note that there are
no birth components in the presented implementation of the GM-PHD predictor.
Following [RCVV12], birth components are created during the filter update step.
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Algorithm 1 Gaussian mixture implementation of the PHD filter prediction step

1: procedure gmphd_predict({w
(i)
k−1,m

(i)
k−1,P

(i)
k−1}

Lk−1

i=1 )

2: for i = 1, . . . , Lk−1 do

3: w
(i)
k|k−1 = pS w

(i)
k

4: m
(i)
k|k−1,P

(i)
k|k−1 = kalman_predict(m(i)

k−1,P
(i)
k−1)

5: end for

6: return {w
(i)
k|k−1,m

(i)
k|k−1,P

(i)
k|k−1}

Lk−1

i=1

7: end procedure

Update

Pseudo-code for the GM-PHD corrector is given in Algorithm 2. The algorithm
is presented in terms of a procedure that computes the missed-detection inten-
sity partition of Equation 2.23 in lines 1–8 and a procedure that computes the
measurement-corrected partitions of Equation 2.24 in lines 10–21. The missed-
detection partition is generated from the predicted intensity by scaling component
weights by a constant miss probability 1 − pD(x) = 1 − pD. Each measurement-
corrected partition is computed from the predicted intensity by application of a
Kalman filter update (line 12 and 13). If measurement zk is generated from the
single-object state xk ∼ N (m(i)

k|k−1,P
(i)
k|k−1) by a linear function zk = Hxk + δk

with zero-mean additive noise δk = N (0,R), then

m
(i)
k = m

(i)
k|k−1 + K

(i)
k

(
zk − n

(i)
k

)
, (2.28)

P
(i)
k = P

(i)
k|k−1 − K

(i)
k S

(i)
k

(
K

(i)
k

)T
, (2.29)

l
(i)
k = N (zk;n(i)

k ,S
(i)
k ) (2.30)

with

Kk = P
(i)
k|k−1H

T
(
S

(i)
k

)−1
, (2.31)

n
(i)
k = Hm

(i)
k|k−1, (2.32)

S
(i)
k = HP

(i)
k|k−1H

T + R (2.33)

is the corresponding Kalman filter update (see, e.g., [TBF05]). A linear measure-
ment model for a partially observed state is given as an example in Appendix B.2.

The algorithm proceeds by generating a single birth component in line 16. This
birth component is generated as follows. If at time k on average λb,k objects enter
the surveillance volume where they are always detected and distributed according
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to pb,k(z), then a Gaussian component is generated for each measurement z such
that

τ
(Lk|k−1+1)

k = λb,k pb,k(z)

= λb,k

∫
pk(z | x)N (x;m

(Lk|k−1+1)

k ,P
(Lk|k−1+1)

k ) dx.
(2.34)

In practice, this is implemented by drawing the component mean m
(Lk|k−1+1)

k and

covariance P
(Lk|k−1+1)

k from an inverse measurement model pk(x | z). An example
of such a model is given in Appendix B.3. The general idea followed here is to
initialize the observed components of the state, e.g., the position, to the measured
values and initialize the remaining components, e.g., velocities, to zero mean. The
procedure is finalized by computing the updated mixture weights in lines 17–19.

The updated intensity is computed in lines 23 to 29 by taking the union of the
missed detection and measurement-corrected components. Therefore, the updated
intensity contains Lk = Lk|k−1 +Lk|k−1 ·Mk components in total, where Lk|k−1 is the
number of mixture components in the predicted intensity and Mk is the number
of measurements. In practice, most of the updated components have negligible
weights because the observation likelihood is peaked around the predicted object
location. Then, many of the computed update components have small weights.
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Algorithm 2 Gaussian mixture implementation of the PHD filter update step

1: procedure gmphd_missed_detections({w
(i)
k|k−1,m

(i)
k|k−1,P

(i)
k|k−1}

Lk|k−1

i=1

)

2: for i = 1, . . . , L
(i)
k|k−1 do

3: w
(i)
k = (1 − pD) w

(i)
k|k−1

4: m
(i)
k = m

(i)
k|k−1

5: P
(i)
k = P

(i)
k|k−1

6: end for

7: return {w
(i)
k ,m

(i)
k ,P

(i)
k }

Lk|k−1

i=1

8: end procedure

9:

10: procedure gmphd_correct({w
(i)
k|k−1,m

(i)
k|k−1,P

(i)
k|k−1}

Lk|k−1

i=1 , z )

11: for i = 1, . . . , Lk|k−1 do

12: m
(i)
k ,P

(i)
k = kalman_update(m(i)

k|k−1,P
(i)
k|k−1, z)

13: l
(i)
k =

∫
pk(z | x)N (x;m(i)

k|k−1,P
(i)
k|k−1) dx

14: τ
(i)
k = pD l

(i)
k w

(i)
k|k−1

15: end for

16: m
(Lk|k−1+1)

k ,P
(Lk|k−1+1)

k , τ
(Lk|k−1+1)

k = birth_component(z)

17: for i = 1, . . . , L
(i)
k|k−1+1 do

18: w
(i)
k =

τ
(i)
k

ck(z) +
∑Lk|k−1+1

i=1 τ
(i)
k

19: end for

20: return {w
(i)
k ,m

(i)
k ,P

(i)
k }

Lk|k−1+1

i=1

21: end procedure

22:

23: procedure gmphd_update(Xk|k−1 = {w
(i)
k|k−1,m

(i)
k|k−1,P

(i)
k|k−1}

Lk|k−1

i=1 , Zk)

24: XL,k = gmphd_missed_detections(Xk|k−1)

25: for j = 1, . . . , Mk do

26: X
(j)
U,k = gmphd_correct(Xk|k−1, zk,j)

27: end for

28: return XL,k ∪ X
(1)
U,k ∪ . . . ∪ U

(Mk)
U,k

29: end procedure
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Algorithm 3 Gaussian mixture PHD filter component pruning [VM06]

1: procedure prune_components({w
(i)
k ,m

(i)
k ,P

(i)
k }Lk

i=1 )

2: I = {i ∈ {1, . . . , Lk} | w
(i)
k ≥ wmin}

3: l = 0

4: while I 6= ∅ do

5: l := l + 1

6: j := argmax
i

w
(i)
k

7: G := {i ∈ I |
(
m

(i)
k − m

(j)
k

) (
P

(j)
k

)−1(
m

(i)
k − m

(j)
k

)T
< U}

8: w̃
(l)
k =

∑

i∈L

w
(i)
k

9: m̃
(l)
k =

1

w̃
(l)
k

∑

i∈G

w
(i)
k m

(i)
k

10: P̃
(l)
k =

1

w̃
(l)
k

∑

i∈G

w
(i)
k

(
P

(i)
k +

(
m̃

(l)
k − m

(i)
k

)
+
(
m̃

(l)
k − m

(i)
k

)T
)

11: I := I \ G

12: end while

13: return {w̃
(i)
k , m̃

(i)
k , P̃

(i)
k }l

i=1

14: end procedure

Pruning

During the GM-PHD filter update step, new components are added to the mixture
for each observed measurement. This leads to an unbounded growth of mixture
components as time progresses. Vo et al. [VM06] propose a simple pruning scheme
to reduce the number of Gaussian components in the mixture. The idea is to remove
those components that have negligible weights, i.e., a weight smaller than wmin, and
to merge components that are so close together that they can be accurately repre-
sented by a single Gaussian. The corresponding algorithm is given in Algorithm 3.
Here, all components that have squared Mahalanobis distance smaller than U are
merged into a single component. The algorithm is executed once at the end of each
time step, subsequently to prediction and update.

2.4 Min-Cost Flow Problem

The min-cost flow problem describes a general optimization problem that has ap-
plications in many fields, including but not limited to distributed systems planning,
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human resource management, transportation, and computer vision (for an overview
of different applications, see [AMO93, Chapter 9]). The problem is well studied
and specialized algorithms exploit the structure of the underlying task to find
solutions efficiently. Therefore, the min-cost flow problem provides a powerful and
efficient inference framework for many applications. In this section, the min-cost
flow problem is presented in a general form. Later in Chapter 4, the min-cost flow
problem serves as the inference framework for solving the multiple object tracking
problem.

2.4.1 Problem Formulation

In a general setting, the min-cost flow problem describes the search for the least
cost shipment of some commodity through a network in order to satisfy a demand
at certain nodes from available supply at other nodes [AMO93, p. 4]. This network
is a directed acyclic graph G(V, E) where each edge (u, v) ∈ E has an associated
capacity m(u, v) > 0 which indicates the maximum amount of commodity that
can be pushed along from u to v, an assigned flow f(u, v) ≥ 0 that is the amount
of commodity that is shipped along the edge, and a cost per unit of flow c(u, v)
that may take on negative values to indicate that traversing an edge produces
a certain amount of profit instead of incurring a penalty. Associated with every
node v ∈ V is a value b(v) which expresses the balance between supply and demand.
The balance is positive if the node supplies commodity and negative if the node
demands commodity. The min-cost flow problem can be stated by the following
linear program:

minimize
∑

(u,v)∈E

c(u, v) · f(u, v)

subject to
∑

w:(v,w)∈E

f(v, w) −
∑

u:(u,v)∈E

f(u, v) = b(v) ∀v ∈ V

0 ≤ f(u, v) ≤ m(u, v) ∀(u, v) ∈ E

(2.35)

The first constraint ensures flow conservation. It is satisfied if all nodes v ∈ V
consume the amount of commodity that is expressed by balance b(v) and pass on
the remaining flow to their successors. The second constraint is called capacity
constraint. It is satisfied if all edges (u, v) ∈ E transport no more commodity than
they can carry. A solution to the min-cost flow problem may not exist if the capacity
of the network is insufficient to satisfy all demands given the supply. However, if it
exists, the solution can be found in polynomial time [AMO93, Chapter 10].
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Frankfurt

Mainz

Wiesbaden

Autobahn

Bundesstraße
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Nürburgring
Koblenz

Bonn

Figure 2.2: The Nürburgring is a well-known race track in Germany that is host of
public events with over 100 000 visitors. A road network connects the Nürburgring with
major cities in its surrounding.

2.4.2 Example

The following example illustrates the min-cost flow problem on a traffic routing task.
Figure 2.2 shows the route network that connects the Nürburgring, a well-known
race track in the surrounding of Koblenz, with its neighboring cities. This road
network consists of large-capacity interstates (Autobahn) and highways of smaller
capacities (Bundesstraße). During major public events, thousands of visitors travel
to and from the Nürburgring via its neighboring cities, causing traffic jams and
delays on this road network. With planning ahead of time, traffic jams and resulting
delays can be avoided by creating a routing plan that directs vehicles towards their
destination under consideration of road capacities.

A simplified version of the full road network is shown in Figure 2.3a. This
simplified network shall serve as basis for the following example. Each node in
the network is annotated with the number of vehicles that start (positive balance)
or terminate (negative balance) at the corresponding location. In this example,
1000 vehicles start their journey in Cologne, 500 in Bonn, and another 500 in
Koblenz. Since all traffic is routed towards the Nürburgring, the balance at the
corresponding node has a value of −2000 vehicles. Edges in the graph are annotated
with a cost that corresponds to the time of travel and a capacity that corresponds
to the maximum number of vehicles that can travel on the road between the linked
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(a) Flow network
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Figure 2.3: Illustration (a) shows a simplified flow network that connects the Nürbur-
gring with major cities in is surrounding. Each node is annotated with a balance. Edges
are annotated with their corresponding cost and capacity. Illustration (b) shows the
min-cost flow solution of the corresponding traffic routing problem.

locations. Thus, the objective of the given min-cost flow problem is to minimize the
total time of travel of all vehicles under consideration of road capacities. For the
given flow network, the shortest path from any of the surrounding cities towards
the Nürburgring follows the direct connection towards the destination. However,
routing all vehicles on their direct path produces an infeasible solution due to limited
capacity on the road between Cologne and Nürburgring. The solution obtained
by solving the min-cost flow problem (2.35) for the given network is visualized in
Figure 2.3b. The corresponding optimal routing plan can be stated as follows.

1. Route 500 of the 1000 vehicles along the direct path from Cologne to Nür-
burgring, leaving 0 capacity on this road.

2. Re-route the remaining 500 vehicles towards Bonn, leaving a remaining ca-
pacity of 500 vehicles on this road.

3. Route 500 of the 1000 vehicles from Bonn (500 vehicles originate in Bonn, 500
have been re-routed from Cologne) directly to Nürburgring, leaving 0 capacity
on this road.

4. Re-route the remaining 500 vehicles via Koblenz, leaving a remaining capacity
of 500 vehicles on this road.

5. Route all remaining 500 vehicles that originate from Koblenz and the 500 ve-
hicles that have been re-routed from Cologne and Bonn towards Nürburgring,
leaving a capacity of 200 vehicles on this road.

Note that in the given example all costs are positive. Therefore, each vehicle
that travels between two locations incurs a penalty. The optimal solution is found
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when all demand and supply is satisfied by a routing that incurs the lowest penal-
ty/minimum cost. In certain applications, edge costs may become negative. In this
case, traversing an edge generates a certain profit that improves the solution. Such
an application can be found in [AMO93, Chapter 9]. In the hopping flight example,
a small commuter airline operates a plane that stops at several locations on its way
to the destination. In this case, the airline would like to determine the number of
passengers that should be transported between the locations in order to maximize
its profit. In this case, edge costs are negative such that each transported passenger
improves the overall solution. Since the min-cost flow problem is not constrained to
positive edge costs, this type of task can be solved in the min-cost flow framework
just as well.





Chapter 3

Deep Cosine Metric Learning

The data association problem in multiple object tracking refers to the task of finding
the correct association between new detections at time k and existing detections
from previous times 1 to k − 1. This problem shares similar characteristics to an
image retrieval task where the correct association between a given query image
and a gallery of unlabeled images must be established. Due to availability of large
datasets, such image retrieval tasks have received considerate attention as a play
ground for deep learning methods [CHL05, HRBLM07, SKP15, ZBS+16]. The
problem is typically tackled in a metric learning framework where during training
a suitable feature representation is learned to follow a predefined similarity metric.
At test time, this metric is then used to rank the similarity of gallery images to the
given query. This chapter focuses on person re-identification as an image retrieval
task that shares strong similarity to people tracking. A representation space that
has been trained in the person re-identification domain should be invariant to pose
variations, changing background, and lighting conditions. Therefore, such a feature
representation is also an ideal candidate to be employed in the tracking application
for integration of appearance information.

The content of this chapter has been developed as part of a tracking system
which has been published in [WBP17a]. A separate publication details the learning
framework [WB18]. The remaining text is structured as follows. Section 3.1 pro-
vides an introduction to person re-identification and metric learning. A summary
of related literature specific to this problem is provided in Section 3.2. A joint clas-
sification and metric learning framework is presented in Section 3.3. The concrete
network architecture that will be used throughout experiments in this thesis is
described in Section 3.4. A performance evaluation of the learning framework and
network architecture is provided in Section 3.5.

27
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3.1 Introduction

Person re-identification is a video surveillance problem. Given a query image, the
task is to search in a gallery for images that show the same person. The search must
be performed from a single camera shot because neither the person in the query nor
the identities in the gallery are known to the re-identification system. As gallery
images are usually taken from different cameras at different points in time, the
system must deal with pose variations, different lighting conditions, and changing
background. The problem is usually addressed in a metric learning framework. On
a set of separate training identities, a feature representation is learned to reflect
the task objective. At test time, the search for images of the same identity is
performed using nearest neighbor queries. A feature representation that reflects
the task objective is invariant to visual distractions such as pose changes, lighting,
and background and at the same time follows a predefined metric that can be used
for nearest neighbor queries.

Due to the annotation effort that is necessary to set up a person re-identification
dataset, until recently only a limited amount of labeled images was available. This
has changed with publication of the Market 1501 [ZST+15] and MARS [ZBS+16]
datasets. MARS contains over one million images that have been annotated in a
semi-supervised fashion. The data has been generated using a multi-target tracker
that extracts short, reliable trajectory fragments that were subsequently annotated
to consistent object trajectories. This annotation procedure not only leads to larger
amount of data, but also puts the dataset closer to real-world applications where
people are more likely extracted by application of a person detector rather than
manual cropping.

Much like in other vision tasks, deep learning has become the predominant
paradigm to person re-identification since the advent of larger datasets. Yet, the
problem remains challenging and far from solved. In particular, there is an ongoing
discourse over the performance of direct metric learning objectives compared to
approaching the training procedure indirectly in a classification framework. The
difference between the two methodologies is as follows. Metric learning objectives
encode the similarity metric directly into the training objective. Classification-
based methods train a classifier on the set of training identities and then use
the underlying feature representation of the network to perform nearest neighbor
queries. On the one hand, in the past direct metric learning objectives have suffered
from undesirable properties that can hinder optimization, such as non-smoothness
or missing contextual information about the neighborhood structure [RPDB16].
On the other hand, these problems have been approached with success in more
recent publications [OSXJS16, HBL17]. Nevertheless, with similarity defined solely
based on class membership, it remains arguable if direct metric learning has a clear
advantage over training in a classification regime. In this setting, metric learning
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is often reduced to minimizing the distance between samples of the same class and
forcing a margin between samples of different classes [CHL05, HBL17]. A classifier
that is set up with care might decrease intra-class variance and increase inter-class
variance in a similar way to direct metric learning objectives.

The purpose of this chapter is to twofold: First, a light-weight Convolutional
Neural Network (CNN) architecture is trained on the MARS dataset to be used
in the people tracking application later. Second, a re-parametrization of the stan-
dard softmax classifier is presented that enforces a cosine similarity metric on the
representation space. This parametrization is explored as an alternative to direct
metric learning objectives that have suffered from inefficient training behavior in
the past.

3.2 Related Work

Metric Learning CNNs have shown impressive performance on large scale com-
puter vision problems and the representation space underlying these models can
be successfully transferred to tasks that are different from the original training
objective [DJV+14, SRASC14]. Therefore, in classification applications with few
training examples a task-specific classifier is often trained on top of a general pur-
pose feature representation that was learned beforehand on ImageNet [KSH12] or
MS COCO [LMB+14]. There is no guarantee that the representation of a network
which has been trained with a softmax classifier can directly be used in an im-
age retrieval task such as person re-identification because the representation does
not necessarily follow a certain (known) metric to be used for nearest-neighbor
queries. Nevertheless, several successful applications in face verification and per-
son re-identification exist [TYRW14, XLOW16, ZZS+17]. In this case, a softmax
classifier is trained to discriminate the identities in the training set. When training
is finished, the classifier is stripped of the network and distance queries are made
using cosine similarity or Euclidean distance on the final layer of the network. If,
however, the feature representation cannot be used directly, an alternative is to
find a metric subspace in a post processing step [KHW+12, LHZL15].

Deep metric learning approaches encode notion of similarity directly into the
training objective. The most prominent formulations are siamese networks with
contrastive [CHL05] and triplet [WS09] loss. The contrastive loss minimizes the
distance between samples of the same class and forces a margin between samples of
different classes. Effectively, this loss pushes all samples of the same class towards a
single point in representation space and penalizes overlap between different classes.
The triplet loss relaxes the contrastive formulation to allow samples to move more
freely as long as the margin is kept. Given an anchor point, a point of the same
class, and a point of a different class, the triplet loss forces the distance to the
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point of the same class to be smaller than the distance to the point of the different
class plus a margin. Both formulations have been applied successfully to metric
learning problems (e.g., [SKP15, VHW16, HBL17]), but the success has long been
dependent on an intelligent pair/triplet sampling strategy. Many of the possible
choices of pairs and triplets that one can generate from a given dataset contain little
information about the relevant structures by which identities can be discriminated.
If the wrong amount of hard to distinguish pairs/triplets are incorporated into each
batch, the optimizer either fails to learn anything meaningful or does not converge
at all. Development of a well-working sampling strategy can be a complex and time-
consuming task, effectively limiting the practical applicability of siamese networks.
A second issue related to the contrastive and triplet loss stems from the hard margin
that is enforced between samples of different classes. The hard margin leads to a non-
smooth objective function that is harder to optimize, because only few examples are
presented to the optimizer at each iteration and there can be strong disagreement
between different batches [RPDB16]. These problems have been addressed recently.
For example, Song et al. [OSXJS16] formulate a smooth upper bound of the original
triplet loss that can be implemented by drawing informative samples from each
batch directly on GPU. A similar formulation of the triplet loss where the hard
margin is replaced by a soft margin has shown to perform well on a person re-
identification problem [HBL17].

Apart from siamese network formulations, the magnet loss [RPDB16] has been
formulated as an alternative to overcoming many of the related issues. The loss
is formulated as a negative log-likelihood ratio between the correct class and all
other classes, but also forces a margin between samples of different classes. By
operating on entire class distributions instead of individual pairs or triplets, the
magnet loss potentially converges faster and leads to overall better solutions. The
center loss [WZLQ16] has been developed in an attempt to combine classification
and metric learning. The formulation utilizes a combination of a softmax classifier
with an additional term that forces compact classes by penalizing the distance
of samples to their class mean. A scalar hyperparameter balances the two losses.
Experiments suggest that this joint formulation of classification and metric learning
produces state-of-the-art results.

Person Re-Identification With availability of large datasets, person re-identi-
fication has become an application domain of deep metric learning. Several CNN
architectures have been designed specifically for this task. Most of them focus
on mid-level features and try to deal with pose variations and viewpoint changes
explicitly by introducing special units into the architecture. For example, Li et
al. [LZXW14] propose a CNN with a special patch matching layer that captures
the displacement between mid-level features. Ahmed et al. [AJM15] capture feature
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displacements similarly by application of special convolutions that compute the
difference between neighborhoods in the feature map of two input images. The
gating functions in the network of Varior et al. [VHW16] compare features along a
horizontal stripe and output a gating mask to indicate how much emphasis should
be paid to the local patterns. Finally, in [VSL+16] a recurrent siamese neural
network architecture is proposed that processes images in rows. The idea behind
the recurrent architecture is to increase contextual information through sequential
processing.

More recent work on person re-identification suggests that baseline CNN archi-
tectures can compete with their specialized counter parts. In particular, the current
best performing method on the MARS is a conventional residual network [HBL17].
Application of baseline CNN architectures can be beneficial if pre-trained models
are available for fine-tuning to the person re-identification task. Influence of pre-
training on overall performance is studied in [ZBS+16]. They report between 9.5%
and 10.2% recognition rate is due to pre-training on ImageNet [KSH12].

3.3 Joint Classification and Metric Learning

This section presents a re-parameterization of the softmax classifier that enforces
a cosine similarity metric on the representation space. This parameterization is
explored as a way to train classifier and metric representation space jointly, mo-
tivated by the aforementioned issues related to training siamese networks. The
section starts with a formal problem definition and a review of the standard soft-
max classifier. Then, a suitable re-parameterization for metric learning is presented.

3.3.1 Problem Formulation

Given a dataset D = {(xi, yi)}N
i=1 of N training images xi ∈ R

D and associated
class labels yi ∈ {1, . . . , C}, metric learning refers to the problem of finding a
parametric encoder function r = fΘ(x) with parameters Θ which projects input
images x ∈ R

D into a feature representation r ∈ R
d that follows a predefined

notion of similarity. If the encoder function is a deep neural network, then this
problem is referred to as deep metric learning.

In person re-identification, similarity is expressed in terms of class membership.
Therefore, according to some symmetric measure ⊙, the similarity between features
of the same class should be larger than similarity between features of different classes

yi = yj ∧ yi 6= yk ⇔ ri ⊙ rj < ri ⊙ rk, ∀i, j, k ∈ {1, . . . , N}, (3.1)

such that at test time queries can be made using neighbor search. The benefit of
a metric learning formulation over a standard classification setting is that, if the
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similarity measure ⊙ is known, the feature representation generalizes to unseen
classes. At best, the encoder can be transferred to new datasets without additional
training. For example, a representation that is trained on a person re-identification
dataset can potentially be employed for data association in an object tracking
application that contains previously unseen object identities [LTCFS16, WBP17a].

This section focuses on a directional representation space where similarity is
measured in terms of the angle between samples. More specifically, for any two
unit-length features ri, rj ∈ R

d with ‖ri‖2 = ‖rj‖2 = 1, the cosine similarity

ri ⊙ rj = rT
i rj. (3.2)

is used to measure similarity. This metric is primarily chosen because it allows the
metric learning problem to be embedded in a classification setting. Let gΩ : Rd →
{1, . . . , C} denote a classifier with parameter Ω that maps from representation
space to one of the C classes. Then the feature encoder fΘ(x) is trained jointly
with the classifier by minimization of a classification loss

argmin
Ω,Θ

N∑

i=1

LgΩ
(yi, fΘ(xi)). (3.3)

At test time, the classifier is stripped of the network and the feature representation
is used on its own to perform nearest neighbor queries. Note that, because the
classification loss does not optimize the metric learning objective (3.1) directly,
the classifier must be set up in a way that good classification accuracy leads to
compact classes in a representation space that follows the predefined metric. The
following section reviews the standard softmax classifier in this regard. Then, a
re-parametrization that leads to compact classes in a directional representation
space is presented.

3.3.2 Standard Softmax Classifier

The standard approach to classification in the deep learning setting is to process
input images by a CNN and place a softmax classifier on top of the network to
obtain probability scores for each of the C classes. The softmax classifier gΩ(r) =
argmaxk p(y = k | r) chooses the class with maximum probability according to a
parametric function

p(y = k | r) =
exp

(
wk

Tr + bk

)

∑C
n=1 exp (wn

Tr + bn)
(3.4)

with parameters Ω = {w1, b1, . . . ,wC , bC}. For the special case of C = 2 classes
this formulation is equivalent to logistic regression. Further, the specific choice of
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functional form can be motivated from a generative perspective on the classification
problem. If the class-conditional densities are Gaussian

p(r | y = k) =
1√

|2πΣ|
exp

(
−

1
2

(r − µk)T
Σ

−1 (r − µk)
)

(3.5)

with shared covariance Σ, then the posterior class probability can be computed by
Bayes’ rule

p(y = k | r) =
p(r | y = k)p(y = k)

∑C
n=1 p(r | y = n)p(y = n)

=
exp

(
wT

k r + bk

)

∑C
n=1 exp (wT

nr + bn)
(3.6)

with wk = Σ
−1µk and bk = −1

2
µT

k Σ
−1µk + log p(yi = k) [Bis06]. However, the

softmax classifier is trained in a discriminative regime. Instead of determining the
parameters of the class-conditional densities and prior class probabilities, the param-
eters Ω of the conditional class probabilities are obtained directly by minimization
of a classification loss. Let ✶y=k denote the indicator function that evaluates to 1
if y is equal to k and 0 otherwise. Then, the corresponding loss

LgΩ
(y, r) = −

C∑

k=1

✶y=k · log p(y = k | r) (3.7)

is called cross-entropy loss because it minimizes the cross-entropy between the
true label distribution p(y = k) = ✶y=k and estimated probabilities of the softmax
classifier p(y = k | r). By minimization of the cross-entropy loss, parameters are
chosen such that the estimated probability is close to 1 for the correct class and
close to 0 for all other classes.

Figure 3.1 illustrates a classification problem with three classes. In Figure 3.1a,
three Gaussian densities p(r | y) are shown together with the corresponding decision
boundary. The posterior class probabilities of this scenario are shown in Figure 3.1b
together with a set of hypothesized training examples. Whereas the Gaussian
densities peak around a class mean, the posterior class probability is a function of
the distance to the decision boundary. When the feature encoder is trained with
the classifier jointly by minimization of the cross-entropy loss, the parameters of
the encoder network are adapted to push samples away from the decision boundary
as far as possible, but not necessarily towards their class mean that has been
taken to motivate the specific functional form. This behavior is problematic for
metric learning because similarity in terms of class membership is encoded in the
orientation of the decision boundary rather than in the feature representation itself.

3.3.3 Cosine Softmax Classifier

With few adaptations, the standard softmax classifier can be modified to pro-
duce compact clusters in representation space. First, ℓ2 normalization must be
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(a) (b)

Figure 3.1: Plot (a) shows three Gaussian class-conditional densities (iso-contours) and
the corresponding decision boundary (dashed lines). Plot (b) shows the conditional class
probabilities (color coded) and a set of hypothesized training examples. The softmax
classifier models the posterior class probabilities directly, without construction of Gaussian
densities. By training with the cross-entropy loss, samples are pushed away from the
decision boundary, but not necessarily towards a class mean.

applied to the final layer of the encoder network to ensure the representation is
unit length ‖fΘ(x)‖2 = 1, ∀x ∈ R

D. Second, the weights must be normalized to
unit-length as well, i.e., w̃k = wk/‖wk‖2, ∀k = 1, . . . , C. Then, the cosine softmax
classifier can be stated by

p(y = k | r) =
exp

(
κ · w̃T

k r
)

∑C
n=1 exp (κ · w̃T

nr)
, (3.8)

where κ is a free scaling parameter. This parametrization has C−1 fewer parameters
compared to the standard formulation (3.4) because the bias terms bk have been
removed, i.e., Ω = {κ, w̃1, . . . , w̃C}. Otherwise, the functional form resembles strong
similarity to the standard parametrization and implementation is straight-forward.
In particular, decoupling the length of the weight vector κ from its direction has
been proposed before [SK16] as a way to accelerate convergence of stochastic
gradient descent. Training itself can be carried out using the cross-entropy loss
as usual since the cosine softmax classifier is merely a change of parametrization
compared to the standard formulation.
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(a) (b)

Figure 3.2: Plot (a) illustrates a von Mises-Fisher distribution. The probability density
increases as the cosine of the angle α between sample r and mean direction w̃ becomes
smaller. Parameter κ controls the concentration of the distribution similar to how the
standard deviation controls the spread of a Gaussian distribution. Plot (b) illustrates
the posterior class probabilities (color coded) and decision boundary (white line) of the
cosine softmax classifier for a problem with three classes. During training, all samples
are pushed away from the decision boundary towards their parametrized class mean
direction (indicated by an arrow).

The functional modeling of log-probabilities by κ · w̃T
k r can be motivated from

a generative perspective as well. If the class-conditional likelihoods follow a von
Mises-Fisher distribution

p(r | y = k) = cd(κ) exp
(
κ · w̃T

k r
)

(3.9)

with shared concentration parameter κ and normalizer cd(κ), then Equation 3.8
is the posterior class probability under an equal prior assumption p(y = k) =
p(y = l), ∀k, l ∈ {1, . . . , C}. The von Mises-Fisher distribution is an isotropic
probability distribution on the d − 1 dimensional sphere in R

d that peaks around
mean direction w̃k and decays as the cosine similarity decreases. This is illustrated
in Figure 3.2a.

To understand why this parametrization enforces a cosine similarity on the
representation space, observe that the log-probabilities are directly proportional
to the cosine similarity between training examples and a parametrized class mean
direction. By minimizing the cross-entropy loss, examples are pushed away from
the decision boundary towards their parametrized class mean as illustrated in Fig-
ure 3.2b. In consequence, parameter vector w̃k becomes a surrogate for all samples
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(a) κ = 1 (b) κ = 10

Figure 3.3: Illustration of the free scaling parameter κ in a one dimensional problem
with three classes. The conditional class probabilities are shown as colored functions.
Optimized sample locations are visualized as stars at y = 0. A low κ value (a) leads to
smoother functions with wider support such that samples are pushed into tight clusters.
The shape becomes box-like for high values (b), allowing samples to move more freely
within a region that is occupied by the class.

in class k. The scaling parameter κ controls the shape of the conditional class
probabilities as illustrated in 3.3. A low value corresponds to smoother functions
with wider support. A high κ value leads to conditional class probabilities that
are box-like shaped around the decision boundary. This places a larger penalty on
misclassified examples, but at the same time leaves more room for samples to move
freely in the region of representation space that is occupied by its corresponding
class. In this regard, the scale takes on a similar role to margin parameters in
direct metric learning objectives. When the scale is left as a free parameter, the
optimizer gradually increases its value as the overlap between classes reduces. A
margin between samples of different classes can be enforced by regularizing the
scale with weight decay.

3.4 Network Architecture

This section presents a light-weight CNN architecture for person re-identification
and people tracking. The architecture is summarized in Table 3.1. Input images
are rescaled to 128 × 64 and presented to the network in RGB color space. A
series of convolutional layers reduces the size of the feature map to 16 × 8 before
a global feature vector of length 128 is extracted by layer Dense 10. The final ℓ2

normalization projects features onto the unit hypersphere for application of the
cosine softmax classifier. The network contains several residual blocks that follow



3.4. NETWORK ARCHITECTURE 37

Name Patch Size/Stride Output Size

Conv 1 3 × 3/1 32 × 128 × 64
Conv 2 3 × 3/1 32 × 128 × 64
Max Pool 3 3 × 3/2 32 × 64 × 32
Residual 4 3 × 3/1 32 × 64 × 32
Residual 5 3 × 3/1 32 × 64 × 32
Residual 6 3 × 3/2 64 × 32 × 16
Residual 7 3 × 3/1 64 × 32 × 16
Residual 8 3 × 3/2 128 × 16 × 8
Residual 9 3 × 3/1 128 × 16 × 8
Dense 10 128
ℓ2 normalization 128

Table 3.1: Overview of the CNN architecture. The final ℓ2 normalization projects
features onto the unit hypersphere.

the pre-activation layout proposed by He et al. [HZRS16b]. In general, a residual
block maps the input x to an output y by y = h(i(x) + g(x)) where i(x) is
an identity mapping, g(x) is a residual function and h(x) is a nonlinearity. In
the pre-activation residual block, all non-linearities are moved into the residual
function such that there is always a direct flow of information between the input and
output, i.e., y = i(x) + g(x). This has shown to ease learning and improve overall
accuracy [HZRS16b]. The structure of the residual blocks is shown in Figure 3.4.
The design follows the ideas of wide residual networks presented in [ZK16]: All
convolutions are of size 3 × 3 and max pooling is replaced by convolutions of
stride 2. When the spatial resolution of the feature map is reduced, then the
number of channels is increased accordingly to avoid a bottleneck. Dropout and
batch normalization are used as means of regularization.

Note that with in total 15 layers—including two convolutional layers in each
residual block—the network is relatively shallow when compared to the current
trend of ever deeper architectures [HZRS16b]. This decision has been made with the
people tracking application in mind to permit application in online tracking scenar-
ios and is backed up by the experiments of Zagoruyko and Komodakis [ZK16] that
suggest shallow networks with increased width can be computationally more efficient
and achieve similar accuracy than their deeper counterparts. Further, architectures
that have been designed for person re-identification specifically [LZXW14, AJM15]
put special emphasis on mid-level features. Therefore, the dense layer is added at a
point where the feature map still provides enough spatial resolution. Exponential
linear units [CUH15] are used as activation function in all layers.
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Figure 3.4: Structure of pre-activation residual blocks. In (a) the output has the same
dimensionality as the input. In (b) the spatial resolution is reduced by a factor of 2 and
the number of channels is increased by a factor of 2. Input, output, and computational
blocks that change the size of the feature map are annotated by input/output pins.

In total, the network has 2,800,864 parameters and one forward pass of 32
bounding boxes takes approximately 30 ms on an Nvidia GeForce GTX 1050 mo-
bile GPU. Thus, this network is well suited for online tracking even on low-cost
hardware.

3.5 Evaluation

This section presents an evaluation of the metric learning framework and network
architecture on two publicly available person re-identification datasets.

3.5.1 Datasets and Evaluation Protocols

The two datasets have been selected for evaluation are large enough to train a
CNN from scratch. A single-shot, cross-view evaluation protocol is adopted in
all experiments, i.e., a single query image from one camera is matched against
a gallery of images taken from different cameras. The gallery image ranking is
established using cosine similarity or Euclidean distance, if appropriate. Training
and test data splits are provided by the dataset authors. Additionally, 10% of
the training data is split for hyperparameter tuning and early stopping. On both
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datasets, cumulative matching characteristics (CMC) at rank 1 and 5 as well as
mean average precision (mAP) are reported. The CMC rank k metric reports the
frequency by which a matching image is contained in the top k images of the ranked
gallery. If the precision at k is the number of correct items in the ranked gallery
among all top k items, then average precision is the average precision over all k
and mean average precision is the mean of average precision over all queries. For
both metrics higher values indicate better performance. The scores are computed
with evaluation software provided by the corresponding dataset authors.

Market 1501 The Market 1501 [ZST+15] dataset contains 1,501 identities and
roughly 30 000 images taken from six cameras. The dataset is challenging due
to frequent bounding box misalignment and additional false alarms in the test
gallery. The standard evaluation protocol proposed for this dataset is followed here:
Training and testing are carried out on provided data splits (751 identities for
training, 750 for testing) using images that have been generated by a deformable
part models detector. Additional distractor training images that are also provided
by the authors are not used.

MARS The MARS [ZBS+16] dataset is an extension of Market 1501 that con-
tains 1 261 identities and over 1 100 000 images. The data has been generated using
a multi-target tracker that generates tracklets, i.e. short-term track fragments,
which have then been manually annotated to consistent identities. Consequently,
this dataset also contains significant bounding box misalignment and inaccurate
labeling.

3.5.2 Baseline Methods

In order to assess the performance of the joint classification metric learning frame-
work on overall performance, the network architecture is repeatedly trained with
two baseline direct metric learning objectives.

Triplet loss The triplet loss [WS09] is defined over tuples of three examples ra, rp,
and rn that include a positive pair ya = yp and a negative pair ya 6= yn. For each
such triplet the loss demands that the difference of the distance between the negative
and positive pair is larger than a pre-defined margin m ∈ R:

Ltriplet(ra, rp, rn) =
{
‖ra − rp‖2 − ‖ra − rn‖2 + m

}
+

, (3.10)

where {}+ denotes the hinge function that evaluates to 0 for negative values and
identity otherwise. In this experiment, a soft-margin version of the original triplet
loss [HBL17] is used where the hinge is replaced by a soft plus function {x + m}+ =
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log(1+exp(x)) to avoid issues with non-smoothness [RPDB16]. Further, the triplets
are generated directly on GPU as proposed by [HBL17] to avoid potential issues in
the sampling strategy. Note that this particular triplet loss formulation has been
used to train the current best performing model on MARS [HBL17].

Magnet loss The magnet loss has been proposed as an alternative to siamese
loss formulations that works on entire class distribution rather than individual
samples. The loss is a negative log-likelihood ratio measure that forces separation
in terms of each sample’s distance away from the means of other classes. In its
original proposition [RPDB16] the loss takes on a multi-modal form. Here, a simpler,
unimodal variation of this loss is employed because it better fits the single-shot
person re-identification task:

Lmagnet(y, r) =



− log

exp
(
− 1

2σ̂2 ‖r − µ̂y‖2
2 − m

)

∑
k∈C̄(y) exp

(
− 1

2σ̂2 ‖r − µ̂k‖2
2

)





+

, (3.11)

where C̄(y) = {1, . . . , C} \ {y}, m is again a margin parameter, µ̂y is the sample
mean of class y, and σ̂2 is the variance of all samples away from their class mean.
These parameters are computed on GPU for each batch individually.

3.5.3 Results

The results reported in this section have been established by training the network
for a fixed number of 100 000 iterations using Adam [KB15]. The learning rate was
set to 1 × 10−3. As can be seen in Figure 3.5, all configurations have fully converged
at this point. The network was regularized with a weight decay of 1 × 10−8 and
dropout inside the residual units with probability 0.4. The margin of the magnet
loss has been set to m = 1 and the cosine softmax scale κ was left as a free parameter
for the optimizer to tune, but regularized with a weight decay of 1 × 10−1. The
batch size was fixed to 128 images. Gallery rankings have been established using
Euclidean distance in case of magnet and triplet loss and cosine similarity in case of
the softmax classifier. To increase variability in the training set, input images have
been randomly flipped, but no random resizing or cropping has been performed.

Training Behavior Figure 3.5a shows the rank 1 matching rate on the validation
set of MARS as a function of training iterations. The results obtained on Market
1501 are omitted here since the training behavior is similar. The network trained
with the cosine softmax classifier achieves overall best performance, followed by the
network trained with soft-margin triplet loss. The best validation performance of
the softmax network is reached at iteration 49 760 with rank 1 matching rate 84.92%.
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(b) Evolution of triplet loss on training set

Figure 3.5: The left plot shows the rank 1 matching accuracy on the validation set
as a function of training iterations on MARS [ZBS+16]. The right plot shows how the
triplet loss evolves on the training set. Note that the triplet loss is only used as training
objective for the triplet network. For the other two methods the loss is only monitored
to obtain insight into the training behavior.

The best performance of the triplet loss network is reached at iteration 86 329 with
rank 1 matching rate 83.23%. The magnet loss network reaches its best performance
at iteration 47 677 with rank 1 matching rate 77.34%. Overall, the convergence
behavior of the three losses is similar, but the magnet loss falls behind on final
model performance. In its original implementation [RPDB16] the authors sample
batches such that similar classes appear in the same batch. For practical reasons
such more informative sample mining has not been implemented. Instead, a fixed
number of images per individual was randomly selected for each batch. Potentially,
the magnet loss suffers from this less informative sampling strategy more than the
other two losses.

During all runs, the triplet loss has been monitored as an additional informa-
tion source on training behavior. Figure 3.5b plots the triplet loss as a function
of training iterations. Note that the triplet loss has not been used as a training
objective in runs softmax (cosine) and magnet. Nevertheless, both minimize the
triplet loss indirectly. In particular the softmax classifier is quite efficient at mini-
mizing the triplet loss. During iterations 20 000 to 40 000 the triplet loss drops even
slightly faster when optimization is carried out with the softmax classifier rather
than optimizing the triplet loss directly. Therefore, the cosine softmax classifier
effectively enforces a similarity metric onto the representation space.

Re-Identification Performance All three networks have been evaluated on the
provided test splits of the Market 1501 and MARS datasets. Figure 3.2 summarizes
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Method
Market 1501 MARS

Rank 1 Rank 5 mAP Rank 1 Rank 5 mAP

TriNet [HBL17]a,b 84.92 94.21 69.14 79.80 91.36 67.70
LuNet [HBL17]b 81.38 92.34 60.71 75.56 89.70 60.48
IDE + XQDA [ZBS+16]a,† 73.60 - 49.05 65.30 82.00 47.60
MSCAN [LCZH17] - - - 71.77 86.57 56.06
P-QAN [LYO17] - - - 73.73 84.90 51.70
CaffeNet [ZHW+17] - - - 70.60 90.00 50.70
DaF [YZBB17]a 82.30 - 72.42 - - -
JLML [LZG17]a 85.10 - 65.50 - - -
GoogLeNet [ZLWZ17]a 81.00 - 63.40 - - -
SVDNet [SZDW17]a 82.30 - 62.10 - - -
Gated CNN [VHW16]b 65.88 - 39.55 - - -
Recurrent CNN [VSL+16]b 61.60 - 35.30 - - -

Tripletb 74.88 88.72 53.04 71.31 85.55 54.30
Magnet 61.10 81.03 40.12 63.13 81.16 45.45
Cosine softmax 79.10 91.06 56.68 72.93 86.46 56.88

Table 3.2: Performance comparison on the Market 1501 [ZST+15] and MARS [ZBS+16]
datasets. †: Numbers for Market 1501 taken from [HBL17]. a: Pre-trained on ImageNet.
b: Siamese network.

the results and provides a comparison against the state of the art. The training
behavior and rank 1 matching rates that have been observed on the validation set
manifest in the final performance on the provided test splits. On both datasets, the
cosine softmax network achieves the best results, followed by the siamese network.
The gain in mAP due to the softmax loss is 3.64 on the Market 1501 dataset and 2.58
on MARS. This is a relative gain of 6.8% and 4.7% respectively. The state of the
art contains several alternative siamese architectures that have been trained with a
contrastive or triplet loss, marked by b in the table. The performance of these net-
works is not always directly comparable because the models have varying capacity.
However, the LuNet of Hermans et al. [HBL17] is a residual network with roughly
double the capacity of the proposed architecture. The reported numbers have been
generated with test-time data augmentation that accounts for approximately 3
mAP points according to the corresponding authors. Thus, the proposed network
comes in close range at much lower capacity. Further, the method of [ZBS+16]
refers to a CaffeNet that has been trained with the conventional softmax classifier
and the metric subspace has been obtained in a separate post processing step. The
results suggest that the proposed joint classification and metric learning framework
not only enforces a metric onto the representation space, but also that encoding
the metric directly into the classifier works better than treating it in a subsequent
post processing step.
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The best performing method on Market 1501 has a 15.84 points higher mAP
score than the cosine softmax network. On MARS, the best performing method
achieves a 10.82 higher mAP. This is a large-margin improvement over the proposed
network, which shows that considerate improvement is possible by application of
larger capacity architectures with additional pre-training. For example, TriNet et
al. [HBL17] is a ResNet-50 [HZRS16a] with 25.74 million parameters that has been
pre-trained on ImageNet [KSH12]. Clearly, deeper networks have an advantage
over the small architecture used in this work, but they are not applicable in online
tracking scenarios due to the computational resources that they require.

The best performing network that has been trained from scratch, i.e., without
pre-training on ImageNet, is the LuNet of Hermans et al. [HBL17]. With approxi-
mately 5 million parameters the network is still roughly double the size, but the
final model performance in terms of mAP is only 4.03 and 3.6 points higher (in-
cluding test-time augmentation). Therefore, the proposed architecture provides a
good trade off between computational efficiency and re-identification performance
considering the targeted tracking application.

Learned Embedding Figure 3.6 shows a series of exemplary queries computed
from the Market 1501 test gallery. The queries shown in Figure 3.6a represent
a selection of many identities that the network successfully identifies by nearest
neighbor search. In many cases, the feature representation is robust to varying
poses as well as changing background and image quality. Figure 3.6b shows some
challenging queries and interesting failure cases. For example, the network focuses
on the bright handbag in a low-resolution capture of a woman in the second row.
The top five results returned by the network contain four women with colorful
clothing. In the third row the network fails to correctly identify the gender of
the queried identity. In the last example, the network successfully re-identifies a
person that is first sitting on a scooter and later walks (rank 4 and 5), but also
returns a wrong identity with similarly striped sweater (rank 3). A visualization
of the learned embedding on the MARS test split is shown in Figure 3.7 for visual
inspection.

Application to Multi-Object Tracking In a final experiment the cosine soft-
max network which has been trained on MARS is applied to a variety of multi-object
tracking datasets to assess the performance in the targeted tracking application.
On each dataset, the cosine similarity between detections at time k and time k + n
for n = 1, . . . , 50 is computed. Then, positive and negative pairs are established
by matching detections against ground truth annotations such that a positive pair
corresponds to two detections of the same identity and a negative pair corresponds
to two detections of different identities. Detections that cannot be matched against
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the ground truth with bounding box overlap of at least 75% are counted as false
alarms and are subsequently removed.

For each time gap n, histograms of the cosine similarity between positive and
negative pairs are computed and histogram intersection is used to measure how well
identities are separated in representation space (c.f. Figure 3.8). If identities fall
into compact clusters, then the cosine similarity of positive pairs should generally
be higher than the cosine similarity of negative pairs. In addition, there should be
little overlap between the two histograms in order to identify correct matches by a
threshold on the cosine similarity. In this regard, the histogram intersection area
for a given time gap n indicates how suitable the feature representation can guide
the tracker to recover from occlusions over n frames.

The datasets that have been selected for this experiment are: ETH [ELSVG08]
sequences Bahnhof and Sunnyday, TUD [ARS08] sequences Campus and Stadt-
mitte, PETS 2009 [FS09] sequences S1L1-1, S1L1-2, S1L2-1, S1L1-2, S2L1, S2L2,
S2L3, and KITTI [GLU12] training sequences 15–19. Figure 3.8 shows exemplary
images taken from the ETH and PETS 2009 datasets as well as the cumula-
tive histograms over the cosine similarity between positive and negative pairs for
all n = 1, . . . , 50. This corresponds to a time gap of up to 3.5 seconds on ETH
and 7 seconds on PETS 2009. By comparison of the two histograms it can be
observed that the performance differs considerably between both datasets. A pos-
sible explanation for the poor performance on PETS 2009 is threefold. First, the
camera position is much higher than on MARS. Potentially, the network does not
generalize well to the different perspective. Second, PETS 2009 contains many
densely crowded scenes with frequent partial occlusions, causing multiple people
to appear inside detection boxes. Such situations are likely harder to handle for
the re-identification network than detections in front of static background. Third,
ground truth identities that leave the scene are assigned a new identity when they
re-enter at a later point in time. Therefore, some negative pairs actually represent
the same identity.

Figure 3.9a plots the histogram intersection area as a function of time gap n
on all four datasets. Given that the performance on ETH, TUD, and KITTI is
relatively similar, it seems the network generalizes equally well to different domains.
However, on all datasets the intersection area is low for small n and increases with
time. Therefore, the network is well suited to establish associations on a frame-by-
frame basis with short occlusions and misses, but becomes less discriminative after
long-term occlusions. Detailed histograms for the four datasets can be found in
Appendix A.

The experiment has been repeated using provided models of the TriNet of
Hermans et al. [HBL17]. This is the current top performing network on MARS
with a 10.82 points higher mAP than the cosine softmax network. The result of
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this repeated experiment is shown in Figure 3.9b. Surprisingly, the TriNet performs
worse in the tracking application compared to the cosine softmax network. The
results suggest that the increased network capacity of TriNet results in more dataset
characteristic features that do not generalize to the tracking domain directly.
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(a) Examples for successful queries without error in top 5 matches

(b) Interesting failure cases

Figure 3.6: Example queries generated from the Market 1501 [ZST+15] test gallery.
The first image in each row shows the query image. The second block shows the five most
similar images in the gallery (errors marked by red border). The third block shows the
five most dissimilar images in the gallery.
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Figure 3.7: This plot shows an excerpt of the learned embedding on the MARS test
split. The visualization has been generated with t-SNE [VDM14]. Images that are close
in the image are also close in representation space. Identities shown here have not been
used during training. The full embedding can be found in Appendix A.
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(a) ETH dataset
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(c) PETS 2009 dataset
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Figure 3.8: This plot shows exemplary images from the ETH [ELSVG08] and PETS
2009 [FS09] dataset and corresponding histograms of the cosine similarity between posi-
tive and negative pairs. The PETS 2009 dataset is densely crowded with more frequent
partial occlusions, leading to worse performance.
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(a) Cosine softmax network
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(b) TriNet [HBL17]

Figure 3.9: For each tracking dataset, histograms of the cosine similarity between
positive (images of the same identity) and negative (images of different identities) pairs
have been computed. This plot shows the histogram intersection area as a function of
the time gap between detections within each pair. The smaller the intersection area, the
better the representation space discriminates between identities.



Chapter 4

Min-Cost Flow Probability
Hypothesis Density Tracker

This chapter presents a tracker based on the PHD filter that recovers trajectories in
a min-cost flow problem formulation. Due to this property, the approach is termed
as MCF-PHD tracker. Preliminary work on this method has been published [WP16]
and [WP17]. This chapter extends these publications by a more in-depth treatment
of the topic and broader evaluation on simulated data as well as public benchmarks.
The text starts with an introduction in Section 4.1. A literature review on multiple
object tracking is given in Section 4.2. Section 4.3 presents a re-formulation of
the PHD filter in terms of single-object track hypotheses that are subsequently
linked into consistent object trajectories in Section 4.4. A relationship between
the MCF-PHD tracker and MHT is drawn in Section 4.5. The following sections
discuss a practical application to visual tracking scenarios. Therefore, Section 4.6
shows how detector confidence scores can be integrated into the PHD recursion
as an additional source of information to infer the number of objects in the scene.
Section 4.7 discusses integration of appearance features, in particular the CNN
feature representation that has been developed in the previous chapter. A practical
Gaussian mixture implementation is given in Section 4.8. The MCF-PHD tracker
is evaluated both under controlled conditions in a simulated environment and on
public benchmarks. The results of this evaluation are presented in Section 4.9.

4.1 Introduction

The PHD filter provides an innovative solution to the multiple object tracking task
that circumvents the combinatorial data association problem by propagating an
object density measure which can be computed efficiently. In large, this efficiency
stems from the fact that the propagated intensity can be computed without main-

49
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taining object identities. Therefore, the PHD filter provides a set of likely object
locations at each time step, but provides no information about the trajectories that
individual objects have taken1.

This chapter proposes a multi-object tracker that recovers trajectories from
the PHD filter in a min-cost flow problem formulation. Therefore, the approach
combines multi-object state estimation with discrete optimization in the search for
globally consistent object trajectories. The resulting algorithm inherits the desir-
able properties of the min-cost flow formulation [ZLN08] which have lead to its
widespread application, i.e., efficient and exact inference for a globally consistent
solution, and at the same time approaches one of its limitations, the integration of
higher-order motion models, without increasing the complexity of the data associ-
ation problem.

The key observation that has led to the development of this algorithm is due to
a measurement-centric view onto the tracking problem that the PHD filter inherits
from RFS theory. More specifically, at any time the intensity can be written as
a sum of measurement-oriented partitions that each describe the hidden state of
an object that has generated the corresponding measurement. This measurement-
centric view is exploited in order to augment observations with additional estimated
state variables to be used in the cost terms of the min-cost flow problem. Therefore,
a main contribution of this chapter is the integration of object motion into the min-
cost flow problem that is traditionally solved using cost terms based on only static
features, such as appearance similarity and distance between detections [ZLN08].
Object motion is particularly useful to maintain identities when there are large
gaps between detections, e.g., due to occlusions, and broadens the application
domain to scenarios where appearance is less discriminative, such as Light Detection
and Ranging (LIDAR) and Radio Detection and Ranging (RADAR) tracking in
automotive and robotics context.

Further, this chapter establishes a relationship between the objective function
used in this work and the track hypothesis score used in MHT. The comparison
gives rise to an interpretation of the MCF-PHD tracker as an approximation to
the popular MHT that avoids its exponential growths of trajectory hypotheses at
the cost of capturing only short-term dependencies outside of the recursive filtering
framework. The proposed algorithm is general and can be applied to a broad range
of tracking scenarios where observations can be represented as point measurements.
Due to the efficiency of min-cost flow data association, the method can be applied
both in online and offline tracking scenarios.

1Existing track management schemes that can be applied to the PHD filter will be discussed
in the following section on related work.
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4.2 Related Work

In many practical applications it is still common practice to adopt a single-hypothe-
sis tracking approach where the data association problem is solved on a frame-by-
frame basis [ELSVG08, LBLA16, WBP17a]. In this paradigm, a set of confirmed
tracks is successively extended to incorporate new measurements. Therefore, newly
arriving measurements are associated to existing tracks in a linear assignment
problem that can be solved efficiently using the Hungarian method [Kuh55]. A
recent study on multi-modal people tracking in crowded environments [LBLA16]
suggests that this simple approach can outperform more advanced methods in
practice due to easier parametrization. Yet, single-hypothesis tracking is error
prone from a theoretical perspective because data association errors from the past
cannot be corrected based on new evidence.

More advanced methods that have been employed traditionally are JPDA
[FBSS83] and MHT [Rei79]. In JPDA, a joint probabilistic score is defined for
the measurement-to-track association problem. In MHT, the space of object trajec-
tories is explored in a breadth-first search starting from the first time step onwards.
This approach explicitly considers multiple trajectory hypotheses in parallel such
that errors from the past can be corrected. While both methods have received con-
siderate attention during the 1990s, attention has decayed within the last decades
due to combinatorial issues that come along with their application. However, recent
revisitations [HRMZ+15, KLCR15] suggest that both methods still perform well
compared to the state of the art.

Due to tremendous progress in object detection, the computer vision commu-
nity has widely adopted a tracking-by-detection paradigm where multiple object
tracking is typically solved in a global optimization problem over the measurement
sequence. In consequence, many approaches following this paradigm do not perform
recursive state estimation. Instead, they formulate a global optimization problem
that takes into account the distance of detections and appearance similarity. Many
optimization strategies of varying model capacity have been explored, including
conditional random fields [YN12, YN14, MSR16], minimum cliques [ZDS12], net-
work flows [ZLN08], message passing [SR13], and lifted multicuts [TAAS17]. The
network flow formulation of Zhang et al. [ZLN08] has become a standard method
within this paradigm due to its efficiency and optimality. The formulation extends
the linear assignment problem to multiple frames by construction of a flow network
in which the search for trajectories corresponds to a transportation problem. Dy-
namic programming solutions [PRF11] have been developed that find near-optimal
solutions in time linear in the number of objects and linear in the length of the
observation sequence. Further, due to the specific structure of the flow network, the
optimal solution can obtained very efficiently by casting the problem as shortest
path search [BFTF11]. More recently, clever caching strategies have been devel-
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oped [LGU15] that permit application in online tracking scenarios by extending
and re-using the solution of the previous time step. The resulting algorithm has
bounded memory and computational complexity. Further, a way to learn the pa-
rameters of a flow network by backpropagation has been presented by Schulter et
al. [SVCC17], leading to generally better performance and reduced parametrization
effort.

The performance of a tracking-by-detection system largely depends on the
cost terms that are used to model object transitions. Nowadays, most often CNNs
are used to model appearance similarity [KLCR15, LTCFS16, TAAS17, SAS17,
CAS+17]. Integration of motion models is more challenging. In particular, only
static features can be used to model transitions in the network flow formulation be-
cause the cost terms consider only pairwise relationships. Integration of a constant
velocity motion model has been studied by Butt et al. [BC13], but the resulting net-
work structure can no longer be solved in a min-cost flow problem and approximate,
iterative solutions must be applied to obtain a solution. This not only increases the
computational cost but also convergence is not guaranteed. Nevertheless, integra-
tion of motion models is worthwhile as it can reduce the number of identity switches
and provides useful information to maintain identities through occlusions [Col12].
An alternative strategy to incorporate motion into the network flow formulation
can be established by using optical flow. For this purpose, Choi [Cho15] has de-
veloped an appearance similarity descriptor that delivers excellent performance
on public benchmarks. Optical flow has been shown to perform particularly well
when tracking is performed in image coordinates and video footage is subject to
unknown camera motion.

Hierarchical association strategies, e.g., [YN12, YN14, WWCW17], represent a
straight-forward way to incorporate higher-order dependencies without increasing
the complexity of the optimization problem. Tracklet-based methods first solve
for reliable, small trajectory fragments and then apply one or multiple additional
optimization steps where these fragments are linked into longer trajectories. Both
stages can be solved in a min-cost flow problem [WWCW17], but from the second
stage onwards higher-order information can be integrated as each tracklet contains
a sequence of detections from which a motion pattern can be computed. The
drawback of this approach is that errors that have been made at lower association
stages cannot be corrected later on anymore.

Methods based on RFS theory approach the tracking problem in a set-valued
recursive filtering framework. The PHD filter does not provide object identities
itself, but heuristic track management schemes exist both for the Gaussian mixture
implementation [PCV09] and the sequential Monte-Carlo implementation [PVS05].
These methods assign a unique track label to each Gaussian mixture component,
or particle respectively, that is created during object birth and then propagate
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these labels to subsequent time steps during prediction and update. As an al-
ternative, MHT can be applied on top of the output of a PHD filter to obtain
trajectories [PVS07]. In this case, the PHD filter eliminates some clutter from the
measurement set to reduce the computational complexity of MHT.

The track management scheme of Panta et al. [PVS07] can also be applied to the
cardinalized PHD filter [Mah07a] and the Multi-Target Multi-Bernoulli (MeMBer)
filter [VVC09]. The cardinalized PHD filter provides a more accurate cardinality
estimate compared to its standard counterpart by propagating the cardinality
distribution in addition to the PHD. The MeMBer filter has been proposed as an
alternative that, instead of a moment approximation, propagates an approximate
multi-object posterior density of a multi-Bernoulli RFS. It has approximately the
same computational complexity, but suffers from a significant cardinality bias that
has been addressed with a correction term in [VVC09]. Although object interactions
can be modeled in RFS theory itself, the PHD filter, the cardinalized PHD filter,
and the MeMBer filter all assume independent object motion and measurement
generation.

More recent advances in the field have led to the development of a tractable
approximation to the optimal multi-object Bayes filter, called the Generalized La-
beled Multi-Bernoulli (GLMB) filter [VVP14]. This filter relaxes independence
assumptions and is therefore capable to incorporate interactions in object motion
and measurement models [BVV15, BRG+16]. In addition, in contrast to the afore-
mentioned filters, the GLMB filter outputs trajectories instead of object states.
Therefore, it is not necessary to run a heuristic track management scheme on top
of the filter. This is achieved by operating on a hybrid state space which contains a
discrete class label for each identity. Similar to MHT, the filter maintains multiple
trajectory hypotheses and computational tractability is maintained by pruning
schemes that limit the number of hypotheses to follow. The method has only re-
cently been applied to general [VVP14] and specialized applications such as tracking
in high clutter scenarios [PVV+15] and extended target tracking [BRG+16].

An alternative formulation to obtain trajectories from filters based on RFS
theory has been developed by Garcíi et al. [GFSM16]. Their approach models
the multi-object state as trajectory set. Thus, filtering is performed directly in
trajectory space. The theory is applied to the PHD filter in [GFS16] where they
discuss practical issues related to the PHD approximation and propose a Gaussian
mixture implementation that can be applied in practice.

Despite offering a diverse toolbox of algorithms that model multi-object track-
ing problems at different levels of accuracy and computational complexity, the RFS
methodology has not yet become a standard approach in computer vision. Cur-
rently, only two out of forty published submissions to 2DMOT2015 [LTMR+15], a
standard multiple object tracking benchmark, apply a RFS methodology at some
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stage of the tracking system [SMPC16, SJ16]. Instead, the domain is dominated
by approaches that operate under the tracking-by-detection paradigm. However, a
recent publication of Rezatofighi et al. [RMR+17] suggests that many vision tasks
can potentially benefit from a RFS formulation. More specifically, they formulate
the CNN object detection and multi-class classification task in a RFS framework
and achieve state of the art or superior performance to existing methods. The
importance of this work is twofold. First, the publication may be seen as founda-
tional work that potentially leads to wider acceptance of RFS theory in the future.
Second, their approach provides a way to learn a multi-object likelihood function
directly from data. Thus, the approach may become a useful tool for motion and
appearance modeling for trackers that operate under the RFS paradigm.

4.3 Track-Oriented PHD Filter

The following section presents a re-formulation of the PHD filter in terms of
single-object track hypotheses. This re-formulation leads to a measurement-oriented
partitioning of the PHD that is similar to the hypothesized tracks generated by
the MeMBer filter [VVC09]. For each measurement in the observation sequence,
there exists one track hypothesis that is characterized by a spatial density and a
cardinality estimate. These track hypotheses are initialized during the PHD filter
update step based on the predicted PHD and clutter characteristics. In subsequent
time steps, track hypotheses are propagated in accordance with the PHD filter
equations. This re-formulation is exact in the sense that it is merely a rewriting
in terms of individual intensity partitions rather than a modified recursion. In
particular, the intensity of the multi-object state can be constructed from its track
partitions at every time step. Let Z1:k denote the set of all measurements obtained
up to time k. Then, the posterior intensity at time k can be written as a linear
combination of individual track hypotheses

vk(x) = uk(x) +
∑

zt,i∈Z1:k

rt,i v
(t,i)
k (x) (4.1)

where uk(x) is the intensity of objects that remain undetected until time k, where
v

(t,i)
k (x) is the intensity of a single-object track hypothesis that originated at mea-

surement zt,i, and where rt,i ∈ [0, 1] is a scaling parameter that characterizes the
expected number of objects that have generated the corresponding measurement2.

The following two sections present the rewritten PHD recursion that initiates
and maintains these individual track hypotheses. An illustration of this algorithm is

2According to the standard multi-object measurement model, a measurement can be generated
by at most one target. Consequently, the expected number of objects that have generated each
measurement is at most one, i.e., rt,i ∈ [0, 1].
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Figure 4.1: Illustration of the track-oriented PHD filter recursion. (a) During the filter
update step a new measurement-induced track partition is created for each measurement.
(b–c) In subsequent time steps these become legacy tracks that account for the missed-
detection case of the PHD filter update. Measurement-induced tracks at time k are
computed from all track hypotheses of previous time steps 1 to k − 1.

given in Figure 4.1. During the update step, a measurement-induced track hypoth-
esis is created for each measurement. These are subsequently propagated in time
according to the PHD predictor and down-scaled to account for the missed-detection
case of the PHD filter update step. As such, each track hypothesis represents the
event that the object that has generated a particular measurement has since then
not been detected.

4.3.1 Prediction

If at time k − 1 the posterior intensity of the multi-object state partitions into
measurement-oriented track hypotheses

vk−1(x) = uk−1(x) +
∑

zt,i∈Z1:k−1

rt,i v
(t,i)
k−1(x), (4.2)

then the predicted multi-object intensity at time k partitions into measurement-
oriented tracks as well, i.e.,

vk|k−1(x) = uk|k−1(x) +
∑

zt,i∈Z1:k−1

rt,i v
(t,i)
k|k−1(x) (4.3)

with

uk|k−1(x) = bk(x) +
∫

pS(x′)pk|k−1(x | x′)uk−1(x
′) dx′, (4.4)

v
(t,i)
k|k−1(x) =

∫
pS(x′)pk|k−1(x | x′)v

(t,i)
k−1(x

′) dx′. (4.5)



56 CHAPTER 4. MIN-COST FLOW PHD TRACKER

The result is established by application of the PHD predictor (2.21) to the individual
partitions with the intensity of appearing objects bk(x) added to the partition of
undetected targets. During the prediction step, the intensity of each track partition
is scaled down by a state-dependent probability of survival pS(x′) to account for
objects leaving the scene. Surviving objects are propagated in time by application
of the single-object motion model pk(x | x′). The constant scaling factor rt,i is
independent of time and remains unchanged.

4.3.2 Update

If at time k a given predicted intensity partitions into measurement-oriented track
hypotheses

vk|k−1(x) = uk|k−1(x) +
∑

zt,i∈Z1:k−1

rt,i v
(t,i)
k|k−1(x), (4.6)

then the posterior intensity partitions into a set of legacy track hypotheses that ac-
count for the missed-detection case of the PHD filter update (2.22) and a set of newly
created measurement-induced track hypotheses that account for the measurement-
corrected terms:

vk(x) = uk(x) +
∑

zt,i∈Z1:k−1

rt,i v
(t,i)
k (x)

︸ ︷︷ ︸
= vL,k(x)

+
∑

zk,j∈Zk

rk,j v
(k,j)
k (x)

︸ ︷︷ ︸
=

∑

zk,j∈Zk

vU,k(zk,j,x)

. (4.7)

The update rule for legacy tracks is obtained from Equation 2.23 by scaling the
intensity mass down by missed-detection probability 1 − pD(x):

uk(x) = [1 − pD(x)] uk|k−1(x), (4.8)

v
(t,i)
k (x) = [1 − pD(x)] v

(t,i)
k|k−1(x). (4.9)

The measurement-induced track hypotheses are computed from Equation 2.24,
which is re-written into a scaling parameter and an intensity for the track hypoth-
esis:

rk,j =
τk(zk,j)

ck(zk,j) + τk(zk,j)
, (4.10)

v
(k,j)
k (x) =

pD(x)pk(zk,j | x)vk|k−1(x)
∫
pD(x)pk(zk,j | x)vk|k−1(x) dx

, (4.11)

with PHD likelihood τk(zk,j) =
∫
pD(x)pk(zk,j | x)vk|k−1(x) dx3. The following

Remark 4.1 shows that measurement-induced track hypotheses are indeed scaled
3An explanation of this term is given in Remark 4.3.
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partitions of the multi-object intensity4. An intuitive interpretation for this update
can be established as follows. First, observe that, for a constant probability of
detection pD(x) = pD, Equation 4.11 resembles a Bayes’ rule-like update of the
predicted multi-object intensity vk|k−1(x) with the newly arrived measurement zk,j

using the single-object measurement model p(zk,j | x). Assuming the underlying
Poisson assumption of the PHD filter holds, the predicted multi-object state at
time k contains N̂k|k−1 =

∫
vk|k−1(x) dx i.i.d. objects that are distributed according

to pk|k−1(x) = vk|k−1(x)/N̂k|k−1. Consequently, if measurement zk,j has been gener-
ated by an object (not clutter), then the posterior density of this object can indeed
be computed by application of a conventional Bayes update with the newly arrived
measurement. Therefore, the initiated track partition v

(k,j)
k (x) at time k corresponds

to the spatial density of an object that has generated zk,j under the assumption that
its prior distribution is proportional to the predicted multi-object intensity. Next,
observe that the track partition is created such that its intensity mass integrates
to 1, i.e., the expected number of object in this partition is

∫
v

(k,j)
k (x) dx = 1. There-

fore, scaling parameter rt,i is introduced to compensate for the difference in the
cardinality estimate with respect to the full multi-object intensity. In consequence,
Equation 2.24 can be written as vU,k(zk,j,x) = rk,j v

(k,j)
k (x).

Remark 4.1. To see why the track initialization scheme in Equation 4.10
and 4.11 holds, observe that

rk,j v
(k,j)
k (x) =

∫
pD(x)pk(zk,j | x)vk|k−1(x) dx

ck(zk,j) +
∫
pD(x)pk(zk,j | x)vk|k−1(x) dx

·
pD(x)pk(zk,j | x)vk|k−1(x)

∫
pD(x)pk(zk,j | x)vk|k−1(x) dx

(4.12)

=
pD(x)pk(zk,j | x)vk|k−1(x)

ck(zk,j) +
∫
pD(x)pk(zk,j | x)vk|k−1(x) dx

(4.13)

= vU,k(zk,j,x). (4.14)

Therefore, each track hypothesis v
(k,j)
k (x) corresponds to a scaled measurement-

corrected partition of the multi-object intensity vk(x).

4.3.3 State Extraction

The PHD of the multi-object state characterizes the number of objects in the scene
as well as their spatial density. The most commonly applied approach to extract

4The term multi-object intensity is used to refer to the intensity of the multi-object state vk(x)

for a clear distinction from the intensity of individual track hypotheses v
(t,i)
k (x).
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states from a given intensity is to select peaks that have a high concentration of
intensity mass. This task is straight-forward for the Gaussian mixture implemen-
tation of the PHD filter where—assuming components are well separated—local
minima can be found at means of the Gaussian components [VM06], but more
involved for the sequential Monte Carlo implementation that requires an additional
particle clustering step [VSD05]. The measurement-oriented track partitioning of-
fers a general, intuitive approach that provides similar results under reasonable
assumptions on the filter parameters.

Assuming a partitioned intensity of form (4.1), the expected number of objects
in the scene can be computed by

N̂k =
∫

vk(x) dx (4.15)

=
∫ 
uk(x) +

∑

zt,i∈Z1:k

rt,iv
(t,i)
k (x)


 dx (4.16)

=
∫

uk(x) dx +
∑

zt,i∈Z1:k

rt,i

∫
v

(t,i)
k (x) dx (4.17)

= N̂
(u)
k +

∑

zt,i∈Z1:k

N̂
(t,i)
k (4.18)

with N̂
(u)
k =

∫
uk(x) dx and N̂

(t,i)
k = rt,i

∫
v

(t,i)
k (x) dx. If the expected number of

objects that have never been detected N̂ (u) is small, then most of the intensity
mass in Equation 4.18 is due to measurement-induced partitions. In many prac-
tical applications this is indeed a reasonable assumption because the probability
of detection is typically large enough to assume objects are detected on their first
appearance in the scene. In particular, the Gaussian mixture implementation of
the PHD filter that was presented in Section 2.3.3 was based on the assumption
that appearing objects are always detected. Then, the set of undetected objects is
empty uk(x) = 0. Under these circumstances, a straight-forward way to extract
likely object locations from the partitioned intensity is to confirm any track hy-
pothesis with expected number of objects larger than a given threshold N̂min and
to take its location from the mode of its corresponding partition:

X̂k = {argmax
x

v
(t,i)
k (x) | ∀zt,i ∈ Z1:k : N̂

(t,i)
k > N̂min}. (4.19)

Since the expected number of objects N̂
(t,i)
k in each measurement-induced partition

is bound to [0, 1], a reasonable choice for the threshold is N̂min = 0.5.
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PHD Filter Recursion Flow Network for Trajectory Estimation

Figure 4.2: Illustration of the min-cost flow tracking framework. The left image shows
a sequence of measurements and associated track hypotheses computed in the track-
oriented PHD filter recursion. The right image shows the corresponding flow network
that is built in parallel to running the PHD filter. From this network, object trajectories
are found by solving a min-cost flow problem that optimizes for the minimum cost linking
of measurement-oriented track hypotheses into globally consistent trajectories. The cost
terms in the network are based on the track hypotheses obtained by the filter recursion.

4.4 Min-Cost Flow Trajectory Estimation

At each time step, the PHD filter provides an estimate of the number of objects
in the scene as well as their location in state space. The filter does not, however,
provide information about the trajectory that each individual object has taken.
The measurement-oriented partitioning scheme also does not directly provide such
information because a track hypothesis provides no information about the se-
quence of measurements generated by an individual object. Therefore, the goal
of this section is to recover trajectories from the PHD recursion by linking the
measurement-oriented tracks into consistent object trajectories. This is done in
a min-cost flow problem formulation where the cost terms are defined based on
the track hypotheses obtained from the filter recursion. Figure 4.2 illustrates this
approach. Concurrently to running the PHD filter, a flow network is built incremen-
tally where nodes represent measurements in the observation sequence. A virtual
source s and sink t are added to denote the start and end of object trajectories
such that every trajectory corresponds to an s-t path in the flow network. These
are recovered by running a min-cost flow solver.

Remark 4.2. In the remainder of this section, track hypotheses v
(t,i)
k (x) are

treated as the intensity of a Poisson RFS X
(t,i)
k that contains an expected num-

ber of
∫
v

(t,i)
k (x) dx i.i.d. objects that are distributed proportional to v

(t,i)
k (x).

At this point it is worth noting that, according to the assumptions underlying
the PHD filter, the posterior multi-object state Xk is itself a Poisson RFS with
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intensity vk(x). Therefore, all objects contained in Xk are i.i.d. proportional
to vk(x). This means, measurement partitions do not correspond to individual
objects formally because this would impose a violation of the i.i.d. assumption.

In this light, the approach presented in this section is to be taken under the
following premise: The object trajectories that are recovered from the following
problem formulation are only loosely coupled to the PHD filter. Whenever a
Poisson RFS is constructed from a measurement partition of the track-oriented
PHD filter, this is based on the reasoning of the track initialization scheme in
Equation 4.11. The experimental evaluation in Section 4.9.2 suggests that the
recovered trajectories are nonetheless well aligned with the locations confirmed
by the filter recursion.

4.4.1 Objective Function

Let Z = Z1 ∪ . . . ∪ ZM denote the set of measurements from time 1 to M and
let Tm = {(kml

, jml
)}Lm

l=1 denote a single-object trajectory, such that Tm(l) is an
index to the jml

-th measurement at time kml
, i.e., zTm(l) := zkml

,jml
. Further, define

a multi-object trajectory as the set of single-object trajectories T = {Tm}. Then,
trajectory estimation is defined as an optimization problem with linear cost function

T ∗ = argmin
T

C(T ) = argmin
T

∑

Tm∈T

Cm(Tm) (4.20)

where the space of valid solutions is constrained to non-overlapping trajectories,
that is,

Tm ∩ Tn = ∅, ∀m 6= n. (4.21)

The cost of each single-object trajectory is defined as a sum of an entry cost term
and cost terms that link neighboring measurements on the trajectory:

Cm(Tm) = centry(zTm(1)) +
Lm∑

l=2

clink(zTm(l−1), zTm(l)). (4.22)

The concrete form of these cost terms is inspired by the track scoring function of
the popular MHT [BP99, KLCR15], but it takes on a different form here because
of the random finite set methodology that the method is based on. A comparison
between both objectives is drawn in Section 4.5.

For the definition of the entry cost term, recall that in the predicted inten-
sity (4.2), partition uk|k−1(x) at time k accounts for objects that are present in the
scene but have not been detected in between times 1 to k − 1. In particular, this
partition contains the set of appearing objects at the current time bk(x). The cost
for starting a new trajectory at measurement zk,j is defined as

centry(zk,j) = − log
τ

(u)
k (zk,j)

ck(zk,j)
, (4.23)
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where
τ

(u)
k (zk,j) =

∫
pD(x) pk(zk,j | x)uk|k−1(x) dx (4.24)

is the PHD likelihood for a Poisson multi-object state with intensity uk|k−1(x) and
where ck(zk,j) is the intensity of the clutter RFS. Thus, the entry cost is defined as
the negative log-intensity ratio between the birth and clutter process. It takes on
negative values if the PHD likelihood of uk|k−1(x) becomes larger than the clutter
intensity ck(zk,j), zero if both intensities are equal, and positive otherwise.

Remark 4.3. Let v(x) denote the intensity of a Poisson multi-object state X.
Then

τ(z) =
∫

pD(x)p(z | x)v(x) dx (4.25)

is the intensity of the projected state into measurement space for a given
probability of detection pD(x) and measurement model p(z | x). This result
can be established by an integral transform of the Poisson multi-object density
of X analogous to the PHD predictor, following its derivation in [Mah03,
Section IVJ]. Here, the term PHD likelihood is used to refer to an evaluation
of the projected state in measurement space. This is not to be confused with
the PHD pseudolikelihood used by Mahler [Mah07b, Equation 16.109]. This
term contains an additional component for the event that an existing object
is not detected.

The cost term for linking neighboring measurements on a trajectory is defined
in similar vein to the entry cost. Given two measurements, zt,i from time t and zk,j

from time k > t, the cost of transitioning from measurement zt,i to measurement zk,j

is defined as the negative log-intensity ratio

clink(zt,i, zk,j) = − log
τ

(t,i)
k (zk,j)

ck(zk,j)
, (4.26)

where
τ

(t,i)
k (zk,j) =

∫
pD(x)pk(zk,j | x)v

(t,i)
k|k−1 dx (4.27)

is the PHD likelihood of a Poisson RFS with intensity v
(t,i)
k|k−1(x) and ck(zk,j) is the

intensity of the clutter RFS. Again, this term takes on negative values if the PHD
likelihood of v

(t,i)
k|k−1(x) becomes larger than the clutter intensity ck(zk,j), zero if

both intensities are equal, and positive otherwise.
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Remark 4.4. In Equation 2.11 the PHD vX(x) of a random finite set X has
been defined in terms of a set integral

vX(x) =
∫

πX ({x} ∪ W ) δW (4.28)

that accumulates the probability density of all sets W that contain element x.
This gave rise to an interpretation of the PHD as a fuzzy-membership function
that evaluates the likelihood that an element is contained in the set, informally
written as P (x ∈ X). Then the intensity ratio

vX(x)

vC(x)
=

∫
πX ({x} ∪ W ) δW

∫
πC ({x} ∪ W ) δW

(4.29)

between two random finite sets X and C in the same way relates to the
likelihood ratio P (x ∈ X)/P (x ∈ C) that becomes larger than 1 if x is more
likely an element contained in X than it is an element contained in C.

The motivation for this objective function is as follows. In the track-oriented
PHD recursion, a track hypothesis v

(t,i)
k (x) is created for each measurement. At

time k = t, this hypothesis is initialized to the spatial density of an object that
generated zt,i and has prior density proportional to the predicted multi-object
intensity (c.f. Equation 4.11). The intensity mass

∫
v

(t,i)
t (x) dx is equal to 1. In

subsequent times k > t, the track hypothesis is propagated according to the single-
object motion model and the intensity mass is gradually scaled down to account for
objects leaving the scene (4.5) and missed detections (4.9). As such, by application
of the PHD filter recursion, v

(t,i)
k (x) follows the spatial density and cardinality of

an object that has generated measurement zt,i at time t and has since then not
been detected. The total trajectory cost (4.22) is a sum over negative log-intensity
ratios that put the PHD likelihood of an object hypothesis in relation to the null
hypotheses which assumes that the measurement sequence originates from clutter.
In particular, a negative cost indicates that the generated trajectory is better
explained by the linked tracks than by clutter.

4.4.2 Min-Cost Flow Solution

The min-cost flow problem has been introduced in Section 2.4 as a transportation
problem where a commodity is routed through a network G(V, E) in order to sat-
isfy the demand and supply at certain nodes. Mapping the trajectory estimation
objective into a min-cost flow network is illustrated in Figure 4.3. For each measure-
ment zk,j ∈ Z1:M create two nodes uk,j, vk,j ∈ V and add a special source s ∈ V and
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s

u1,1 v1,1

u1,2 v1,2

u2,1 v2,1

u2,2 v2,2

u3,1 v3,1

u3,2 v3,2

t

Time 1 Time 2 Time 3

Figure 4.3: Example of a flow network over three time steps that each contain two
measurements. The dashed lines indicate edges to all incoming and from all outgoing
nodes at the corresponding time step. A red and a blue path show two non-overlapping
trajectories. The red trajectory contains the measurement sequence {z1,2, z3,2}. The
blue trajectory contains the measurement sequence {z2,1,z3,1}. For improved readability,
edges between v1,2, u3,1 and v1,1, u3,2 are not shown.

terminal t ∈ V node that mark the start and end of trajectories. Nodes uk,j ∈ V are
connected to all candidate predecessors via an incoming edge (vt,i, uk,j) ∈ E, t < k
with cost and capacity

c(vt,i, uk,j) = clink(zt,i, zk,j), (4.30)

m(vt,i, uk,j) = 1. (4.31)

Every node vk,j is also connected to all candidate successors um,n with m > k by
this procedure. An edge (uk,j, vk,j) ∈ E with zero cost and unit capacity

c(uk,j, vk,j) = 0, (4.32)

m(uk,j, vk,j) = 1 (4.33)
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connects nodes uk,j and vk,j. This edge encodes the non-overlapping trajectory
constraint (4.21) into the network structure by limiting the amount of flow that
can pass through each measurement: Because of flow conservation, the total amount
of flow coming into uk,j as well as the total amount of flow going out of vk,j cannot
take on values larger than 1 if m(uk,j, vk,j) = 1.

In general, trajectories can start and end at any time step. Therefore, all
nodes uk,j ∈ V are connected to the source s by an edge (s, uk,j) ∈ E with
cost and capacity

c(s, uk,j) = centry(zk,j), (4.34)

m(s, uk,j) = 1 (4.35)

and all nodes vk,j ∈ V are connected to the terminal t by an edge (vk,j, t) ∈ E with
zero cost and unit capacity

c(vk,j, t) = 0, (4.36)

m(vk,j, t) = 1. (4.37)

Every s-t path in this network corresponds to a trajectory with sum of edge costs
equal to the total trajectory cost (4.22). By solving the min-cost flow problem, each
edge is assigned a flow in {0, 1} that indicates if the edge is part of the minimum
cost solution. The min-cost flow problem must be solved for a varying number of
trajectories if the number of objects in the scene is unknown. The d trajectories
with minimum cost are found by setting the balance at the source to the number of
trajectories b(s) = d and the balance at the terminal to b(t) = −d. Any non-virtual
node is assigned balance b(uk,j) = b(vk,j) = 0, ∀zk,j ∈ Z1:M such that all flow that is
pumped into the network at the source s must be transported to the terminal t. The
optimal solution is found by iterating over the number of trajectories d = 0, 1, . . .
until the retrieved cost is larger than the current solution. Since the trivial solution,
i.e., no trajectories exist, has zero cost, all trajectories generated in this manner
are better explained by an object hypothesis than clutter.

Compared to the general transportation problem, the flow network of the mul-
tiple object tracking problem has a very specific structure. First, all edges have
unit capacity. Second, all edges point forward in time and there are no cycles. This
specific structure can be exploited to obtain a much more efficient solution than
solving the linear program of the min-cost flow problem directly. More specifically,
whereas finding the optimal solution using a general min-cost flow algorithm has a
computational complexity of O(n2m log n) where n is the number of nodes and m
is the number of edges in the graph [ZLN08], the current most efficient algorithm
casts the problem in a successive shortest path search [BFTF11] that provides the
optimal solution in O(k(m + n log n)) where k is the number of objects which is
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bounded by the number of nodes in the graph n. This algorithm can be outlined
as follows. In a first step, the flow network is converted into an equivalent represen-
tation without negative edge costs. This can be done in linear time using dynamic
programming because all edges point forward in time. Then, the optimal number
of objects together with their trajectories are found by successive applications of
Dijkstra’s shortest path search and subsequent manipulation of the residual graph
until the overall cost of the solution starts to increase5. This procedure is not
only very fast, but also effectively eliminates the search for the optimal number of
objects. Further, the successive shortest path algorithm can be extended to online
tracking scenarios by caching and re-using the solution of the previous time step
on arrival of new measurements [LGU15].

For a practical implementation, note that the flow network described in this sec-
tion has a dense structure because every measurement zt,i is a candidate predecessor
of every measurement zk,j, k > t. Theoretically, this leads to a high worst-case
computational complexity. In practice, however, the flow network can be sparsified
by only adding edges between measurements in a given time window. Since the
transition cost clink(zt,i, zk,j) increases with time difference k − t, measurements
with large time gap are unlikely direct neighbors on a trajectory.

4.5 Comparison to Multiple Hypothesis Track-

ing

This section draws a relationship between the MCF-PHD tracker and MHT. In
MHT the space of object trajectories is explored in a breadth-first search starting
from the first time step onwards. This is done by maintaining and successively
creating a number of likely trajectory hypotheses from newly arriving measure-
ments. For this purpose, MHT maintains tree structures that contain all possible
trajectories that originate from a single measurement. For an illustrative example,
consider the scene depicted in Figure 4.4a where two objects move in parallel from
left to right. Starting at the initial (leftmost) time step, either of the two observed
locations may belong to either an object or clutter. This gives rise to two trajectory
hypotheses with one measurement each. In the second time step, two observations
can be associated to the two existing trajectories. The tree structure is created by
adding a branch corresponding to each possible assignment. An example of such
a trajectory tree is shown in Figure 4.4c for the leftmost red measurement. Each

5The residual graph of a flow network is a data structure used for solving the k-shortest path
search. Initially, the residual graph is equivalent to the flow network. After each iteration, edges
along the shortest path are reversed in direction and the edge cost is multiplied by −1. Refer to
the original publication [BFTF11] for more information.
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Intensity

Measurement partition/
Track hypothesis

Measurement

(a) Illustration of two objects that move left to right in parallel. Arrows indicate multiple weighted
motion hypotheses due to the two objects moving in close proximity. A dark arrow corresponds
to a high weight.

s t

(b) The corresponding flow network of the
MCF-PHD tracker (simplified)

(c) MHT trajectory tree for the leftmost red
measurement (× denotes a missed detection)

Figure 4.4: Comparison of MHT and MCF-PHD tracker on an illustrated problem
that contains two objects moving in parallel. Illustration (a) shows how measurement
partitions and corresponding track hypotheses are created from the multi-object intensity
of the previous time step. In particular, each measurement partition contains multiple
weighted motion hypotheses. Illustration (b) shows a simplified flow network for this
problem where each trajectory is an s-t path. One trajectory tree that is constructed in
MHT from the leftmost red measurement is shown in (c).

branch from the root of the tree to one of its leafs corresponds to one trajectory
that originates at the red measurement in time step one and terminates at time step
four. One such tree is created for each measurement in the observation sequence.

Following all trajectory hypotheses becomes infeasible quickly. For the relatively
small scene depicted in Figure 4.4a, eight trajectory hypotheses exist at the second
time step already: four hypotheses accounting for possible assignments of new
measurements to the two existing trajectories, two hypotheses that account for
occlusions, and two hypotheses that account of new objects. Therefore, unlikely
trajectories must be pruned to keep the method computationally tractable. This is
achieved by scoring each trajectory by a likelihood ratio of the observation sequence
against a null hypothesis that assumes observations originate from clutter. Let pD

denote a constant probability of detection, let λFA denote the expected number of
false alarms per unit volume of measurement space, and let λnew denote the expected
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number of newly appearing objects per unit volume of measurement space. Then,
the track score is defined as [VMBS+15, Section V]:

S(Tm) = (pD)Lm−1 · (1 − pD)Um ·
λnew

λFA

·
Lm∏

l=2

p(zTm(l) | zTm(1), . . . ,zTm(l−1))

λFA

(4.38)

where Um denotes the number of missed detections and each factor

p(zTm(l) | zTm(1), . . . ,zTm(l−1)) =
∫

pk(zTm(l) | xkml
)p(xkml

| zTm(1), . . . ,zTm(l−1)) dx
(4.39)

denotes the observation likelihood of a measurement on the trajectory that can be
computed using a Bayes filter recursion, e.g., a Kalman filter for linear motion and
measurement models. This scoring function is also used to compute the most likely
set of compatible, i.e., non-overlapping, trajectories to be reported to the user.

The MCF-PHD tracker processes the observation sequence by application of
the track-oriented PHD recursion where a partition of the multi-object intensity
accounts for a Bayes rule-like update with each measurement. Scaled partitions form
measurement-oriented tracks which are subsequently linked into globally consistent
trajectories. The flow network corresponding to the scene depicted in Figure 4.4a is
illustrated in Figure 4.4b. Compared to MHT, the approach leads to a considerate
reduction of data association complexity. In particular, the MCF-PHD tracker does
not suffer from the same exponential growth of trajectory hypotheses that MHT
suffers from. The purpose of this section is to shed light on the approximation that
leads to this reduced complexity and the limitations that come along, but it also
provides justification for the trajectories generated by the MCF-PHD tracker in
showing similarities between the two approaches.

It has been noted before that the trajectory cost (4.22) of the MCF-PHD tracker
has been motivated by the track scoring function of MHT. In Appendix C it is
shown that this cost is approximately equal to the negative logarithm of the MHT
trajectory score

Cm(Tm) ≈ − log S(Tm) (4.40)

under the following premises:

1. Let V denote the volume of the surveillance region. Then, clutter is a Poisson
RFS with false alarm rate λFA · V and spatial density 1/V , i.e., ck(z) =
(λFA · V ) · 1

V
= λFA.

2. Newly appearing objects are always detected and the PHD likelihood of
appearing object is equal to τ

(u)
k (z) = (λnew · V ) · 1

V
= λnew.
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3. The probability of detection is constant pD(x) = pD and the probability of
survival pS(x) = 1 evaluates to one.

4. In computation of observation likelihood (4.39), the predicted state is ap-
proximately distributed according to a probability density function that is
proportional to the predecessor’s track partition:

p(zTm(l) | zTm(1), . . . ,zTm(l−1)) ≈
∫

pkml
(zTm(l) | x)p

(kml−1
,jml−1

)

kml
|kml

−1 (x) dx,
(4.41)

where

p
(kml−1

,jml−1
)

kml
|kml

−1 (x) ∝ v
(kml−1

,jml−1
)

kml
|kml

−1 (x). (4.42)

Assumptions 1–3 are concrete modeling decisions that render the system represen-
tation underlying the PHD filter comparable to MHT. As such, they impose no
general limitation on the performance of the MCF-PHD tracker. Therefore, the key
approximation is in assumption 4. Whereas the MHT observation likelihood (4.39)
is computed under consideration of the history of measurements on the trajectory,
likelihood (4.41) is computed from the direct predecessor’s track partition. This
partition is created by a Bayes rule-like update of the predicted multi-object in-
tensity with the preceding measurement on the trajectory. Since the intensity is
a multi-object descriptor that characterizes motion of multiple objects, the mea-
surement partition may also contain multiple (weighted) motion hypotheses. This
circumstance is illustrated in Figure 4.4a. Track hypotheses in the track-oriented
PHD filter summarize all trajectories that pass through the corresponding mea-
surement. The practical consequence is the following. MHT captures long-term
statistical dependencies by consideration of the full history of measurements on
the trajectory. The MCF-PHD tracker, on the other hand, only evaluates the com-
patibility between the measurement and its direct predecessor under consideration
of multiple weighted motion hypotheses that arise out of the PHD recursion. In
contrast to MHT where the observation likelihood is computed with respect to
exactly the one trajectory in question, the observation likelihood of the MCF-PHD
tracker considers all trajectories that pass through the direct predecessor. It is
due to this approximation that trajectories can be recovered in a min-cost flow
problem and, therefore, it is not necessary to enumerate all possible trajectories as
in MHT. In this regard, the MCF-PHD tracker trades off model capacity against
computational complexity.
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(a) (b) (c)

Figure 4.5: Three examples for low-confidence false alarms taken from the PETS 2009
dataset [FS09]. These typically originate (a) from misclassified static scene geometry,
(b)–(c) poor detector localization accuracy. Each detection is annotated with a detector
confidence score that is often much lower for false alarms than for real objects.

4.6 Integration of Detector Confidence Scores

FISST has been presented as a theory that provides comprehensive means of mod-
eling multi-object phenomena and the PHD recursion itself deals with all notable
sources of uncertainty involved in multi-object state estimation, including process
and measurement noise as well as the uncertainty involved in data association.
However, successful application of the PHD filter requires knowledge of clutter
characteristics and the performance of the filter degrades substantially if these pa-
rameters are chosen incorrectly. In practical applications, precise knowledge about
the clutter process is often unavailable. Then it is common practice to assume a
uniform spatial distribution. This is usually a poor choice in visual tracking scenar-
ios because detections are generated from a classifier that processes the image in a
sliding window. Due to localization inaccuracies, this object detector more likely
generates false alarms in the surrounding of the true object locations.

Figure 4.5 shows three examples for false alarms as they are often found in visual
tracking applications. In Figure 4.5a, part of the static scene geometry is mistakenly
detected as person. Figure 4.5b and 4.5c show poorly localized detections that are
generated around the true object. All three depicted cases pose a challenge to the
tracker because false alarms of this sort are typically reappearing from time to
time—though at a lower frequency—and must be suppressed.

One of the key strengths of the random finite set formulation is the ability
to handle data association implicitly, that is, no hard decision on measurement-
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to-track assignments need to be made. Instead, methods following this paradigm
aggregate evidence over multiple time steps and association hypotheses to infer the
number of objects in the scene directly from data. Towards this end, the detector
confidence provides a valuable source of information. As can be seen in Figure 4.5,
the detector confidence score is often much lower for false alarms than for correct
detections.

Integration of detector confidence scores into the PHD filter is straight-forward
by adapting the clutter density and measurement likelihood function. If each mea-
surement z = (y, s)T contains a spatial component y, i.e., bounding box position or
any other observed part of the object state, and a detector confidence score s, then
a likelihood function for the detector confidence can be learned from extraneous
training data. For the most widely-adopted multiple object tracking benchmarks
such data is provided, but even if training data for the particular tracking applica-
tion is not available, there typically exists a dataset that has been used to train and
validate the object detector. This dataset can be used if the two scenarios do not
diverge too much. Denote by pbg(s) the likelihood that a detection with confidence
score s has been generated by clutter and denote by pfg(s) the likelihood that the
corresponding detection has been generated by an object. Assuming the detector
confidence is independent of object location, the clutter density and measurement
likelihood factorize into a product of independent components:

pc,k(z) = pbg(s)pc,k(y), (4.43)

pk(z | x) = pfg(s)pk(y | x). (4.44)

Such a factorization only affects the cardinality estimate of the PHD filter, not the
location of individual objects, because the clutter intensity and PHD likelihood in
the measurement-corrected partitions are re-weighted by the detector confidence
likelihood globally, independent of state and observed location. Using likelihood
functions (4.43) and (4.44), the measurement-corrected partitions of the PHD filter
update (2.24) can be written as

vU,k(zk,j,x) =

pfg(sk,j) · pD(x)pk(yk,i | x)vk|k−1(x)

pbg(sk,j) · λc,k pc,k(y) + pfg(sk,j)
∫
pD(x)pk(yk,j | x)vk|k−1(x)

.
(4.45)

The potential benefit of this approach is a faster confirmation at high-confidence
locations and better suppression of low-confidence detections. How well the de-
tector confidence guides the cardinality estimate highly depends on the detector
and tracking scenario. Figure 4.6 shows two examples of a learned detector con-
fidence likelihood. The first example has been trained on the PETS 2009 [FS09]
dataset. This dataset contains many densely crowded scenes with partial occlu-
sions. Consequently, the detector does not discriminate false alarms from objects
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(a) (b)

Figure 4.6: Detector confidence likelihood that has been estimated from training data
of the (a) PETS 2009 dataset [FS09] and (b) KITTI vision benchmark [GLU12].

well. In particular, the detector produces many low-confidence detections near to
the cut-off threshold 0.5. The second example has been obtained from the KITTI
vision benchmark [GLU12]. On this dataset, false alarms and true detections are
separated much better. Through the detector confidence likelihood, these dataset
characteristics are transparent to the PHD filter.

4.7 Integration of Appearance Information

Appearance provides a valuable source of information for the tracking task. In
particular when occlusions cause motion to become less discriminative after several
prediction steps which successively increase the uncertainty associated with each
track hypothesis. In such situations, appearance potentially remains similar to the
last observed detection. So far, the MCF-PHD tracker has been described as a
general tracking method for point targets where the cost terms are aligned with
the PHD filter recursion. The purpose of this section is to outline how appearance
can be integrated into this formulation.

A conceptually straight-forward way to approach the integration of appearance
into the tracking framework would be to augment the state space with appearance
information and apply the PHD recursion on a hybrid motion-appearance space x =
(xmot,xapp)T. Then, appearance can be integrated into the measurement likelihood
function as follows. If each measurement z = (y, r)T contains a spatial component y
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and an appearance feature r, and if appearance is taken independent of motion,
then the measurement likelihood function can be written as

pk(z | x) = pk(y, r | xmot,xapp) (4.46)

= pk(y | xmot)p(r | xapp). (4.47)

There are two problems with this approach. First, since there is usually no model
available to describe how object appearance changes over time, filtering on this
space is not straight-forward. Second, such a hybrid motion-appearance space would
become high dimensional, making filtering generally inefficient.

The path followed here is conceptually similar, but simpler: The PHD filter
recursion is only applied to the motion component of the object state, i.e., x = xmot.
Assuming appearance remains relatively stationary over time and is independent
of motion, each track hypothesis is updated according to a measurement model
that takes into account its associated feature:

p
(t,i)
k (z | x) = p

(t,i)
k (y, r | x) (4.48)

= pk(y | x)p(r | rt,i). (4.49)

The measurement likelihood of unseen objects and the spatial density of the Poisson
clutter RFS are also adapted to account for object appearance. Since it is usually not
possible to describe the appearance of false alarms and unseen objects accurately,
both are characterized by the same appearance model p(r | ∅) that takes a simple
form, e.g., uniform over a part of the feature space. A concrete parametrization
based on the feature representation that has been trained in the metric learning
framework of Chapter 3 will be discussed together with a practical Gaussian mixture
implementation in Section 4.8. In its general form, the corresponding likelihood
functions of clutter and unseen objects are:

p
(u)
k (z | x) = p(r | ∅)pk(y | x), (4.50)

pc,k(z) = p(r | ∅)pc,k(y). (4.51)

The following two paragraphs outline the integration into the PHD filter recursion
and trajectory estimation objective. Section 4.8 sheds further light on a concrete
parametrization in a practical implementation.

PHD Filter In the track-oriented PHD filter, a new track hypothesis is created
from the predicted intensity and clutter characteristics for each measurement accord-
ing to Equation 4.10 and 4.11. The measurement model that is used therein pk(z | x)
does not account for a particular track hypothesis that the object x originates from,
as proposed in Equation 4.49. It has been noted before that the MCF-PHD tracker
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is only loosely coupled to the PHD filter because measurement-corrected partitions
cannot formally be treated as individual objects within the PHD filtering frame-
work. The remainder of this paragraph discusses how appearance can be integrated
practically. Then, a remark shows how this approach is related to the conceptual
idea outlined at the beginning of this section.

In Equation 4.10, new track hypotheses are constructed from the PHD likelihood
of the multi-object state and the clutter intensity. The PHD likelihood can be
written as a sum over individual measurement partitions:

τk(z) =
∫

pD(x)pk(z | x)vk|k−1(x) dx (4.52)

=
∫

pD(x)pk(z | x)uk|k−1(x) dx

+
∑

zt,i∈Z1:k−1

rt,i

∫
pD(x)pk(z | x)v

(t,i)
k|k−1(x) dx.

(4.53)

If appearance information are available, these are integrated into the PHD likelihood
by replacing measurement likelihood pk(z | x) by its counterpart (4.49) and (4.50):

τk(z) =
∫

pD(x)p
(u)
k (z | x)uk|k−1(x) dx

+
∑

zt,i∈Z1:k−1

rt,i

∫
pD(x)p

(t,i)
k (z | x)v

(t,i)
k|k−1(x) dx

(4.54)

= p(r | ∅)
∫

pD(x)pk(y | x)uk|k−1(x) dx

+
∑

zt,i∈Z1:k−1

rt,i p(r | rt,i)
∫

pD(x)pk(y | x)v
(t,i)
k|k−1(x) dx,

(4.55)

Using this modified PHD likelihood, the track-oriented PHD recursion can be
implemented as previously presented in Section 4.3.

Remark 4.5. A similar result to the practical implementation proposed in this
paragraph can be established formally within the PHD framework when filter-
ing is performed on the augmented motion-appearance space x = (xmot,xapp)T

that was introduced at the beginning of this section. Then, appearance be-
comes part of the state and, consequently, available in the measurement
model pk(z | x) = pk(y, r | xmot,xapp). If the uncertainty in the appearance
likelihood is very small, then xapp is sharply peaked around the last feature that
has been used to update the state. This is feature rt,i that is associated with
track hypothesis v

(t,i)
k (x). During succeeding prediction steps, this uncertainty

can be inflated again. Consequently, a measurement model pk(y, r | xmot,xapp)
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can be established that performs similar to the pairwise relationship p(r | rt,i)
that is used here.

Trajectory Estimation The entry cost (4.23) of the trajectory estimation ob-
jective remains unaffected by integration of appearance information because unseen
objects and false alarms follow the same appearance likelihood:

centry(zk,j) = − log
τ

(u)
k (zk,j)

ck(zk,j)
(4.56)

= − log
p(rk,j | ∅)

∫
pD(x) p

(u)
k (yk,j | x)uk|k−1(x) dx

λc,k · pc,k(yk,j)p(rk,j | ∅)
(4.57)

= − log

∫
pD(x) pk(yk,j | x)uk|k−1(x) dx

ck(yk,j)
(4.58)

= centry(yk,j). (4.59)

The transition cost (4.26) on the other hand factorizes into an appearance and a
motion component that each score the PHD likelihood of the predecessor against
clutter:

clink(zt,i, zk,j) = − log

∫
pD(x)p

(t,i)
k (zk,j | x)v

(t,i)
k|k−1(x) dx

ck(zk,j)
(4.60)

= − log
p(rk,j | rt,i) ·

∫
pD(x)pk(yk,j | x)v

(t,i)
k|k−1(x) dx

λc,k · pc,k(yk,j)p(rk,j | ∅)
(4.61)

= − log


p(rk,j | rt,i)

p(rk,j | ∅)
·

τ
(t,i)
k (yk,j)

ck(yk,j)


 . (4.62)

Alternatively, this can be written as a sum of an appearance cost term and a motion
cost term:

clink(zt,i, zk,j) = c
(app)
link (rt,i, rk,j) + c

(mot)
link (yt,i,yk,j), (4.63)

where

c
(app)
link (rt,i, rk,j) = − log

p(rk,j | rt,i)

p(rk,j | ∅)
, (4.64)

c
(mot)
link (yt,i,yk,j) = − log

τ
(t,i)
k (yk,j)

ck(yk,j)
. (4.65)

A concrete implementation will be presented in the following section.
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4.8 Gaussian Mixture Implementation

This section describes a Gaussian mixture implementation of the MCF-PHD tracker.
The description starts with pseudo code for the track-oriented GM-PHD filter that
is based on the procedures of the standard GM-PHD recursion of Section 2.3.3
and continues with a practical parametrization of the appearance likelihood for a
feature representation that has been trained in the metric learning framework of
Chapter 3.

4.8.1 Track-Oriented GM-PHD Filter

At each time k, the Gaussian mixture MCF-PHD tracker maintains a partitioned
intensity (4.1) that contains L

(t,i)
k components for each track hypothesis v

(t,i)
k (x):

vk(x) =
∑

zt,i∈Z1:k−1

rt,i

L
(t,i)
k∑

n=1

w
(t,i,n)
k N (x;m

(t,i,n)
k ,P

(t,i,n)
k ).

︸ ︷︷ ︸
v

(t,i)
k

(x)

(4.66)

Note that this mixture does not contain components that account for the set of
undetected objects uk(x). Following the implementation of the GM-PHD filter
in Section 2.3.3, for efficiency reasons it is assumed that objects are detected
when they first enter the scene. Therefore, the set of undetected objects is empty
and uk(x) = 0. Instead, for each measurement a single Gaussian birth component
is created during initialization of the track hypothesis. Further, in practice it is
undesirable to maintain track hypotheses indefinitely because this would lead to
an unbounded growth of Gaussian mixture components. As will be seen shortly,
components with low weight are removed from the mixture during a pruning stage
in which track hypotheses with low intensity mass vanish.

Algorithm 4 presents pseudo code for a practical implementation of the track-
oriented GM-PHD measurement correction step. The procedure largely follows the
standard GM-PHD measurement correction of Algorithm 2. The most prominent
changes are the integration of the appearance likelihood in line 7 and the integration
of detector confidence scores in line 14.

Pseudo code for the track-oriented GM-PHD recursion are given in Algorithm 5
and 6. For notational brevity, parameters of the Gaussian mixture corresponding
to track hypothesis v

(t,i)
k (x) are denoted by

X
(t,i)
k = {w

(t,i,n)
k ,m

(t,i,n)
k ,P

(t,i,n)
k }

L
(t,i)
k

n=1 . (4.67)

Algorithm 5 describes the propagation of an existing track hypothesis from time k−1
to time k by application of the GM-PHD predictor (line 2), followed by a down-
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Algorithm 4 Track-Oriented GM-PHD corrector

1: procedure mcfphd_correct(zk,j)

2: for zt,i ∈ Z1:k−1 do

3: m = 1

4: for n = 1, . . . , L
(t,i)
k|k−1 do

5: m
(k,j,m)
k ,P

(k,j,m)
k = kalman_update(m

(t,i,n)
k|k−1,P

(t,i,n)
k|k−1 ,yk,j)

6: l
(k,j,m)
k =

∫
p

(t,i)
k (yk,j | x)N (x;m

(t,i,n)
k|k−1,P

(t,i,n)
k|k−1 ) dx

7: τ
(k,j,m)
k = rt,i · p(rk,j | rt,i)pD l

(k,j,m)
k w

(t,i,n)
k|k−1

8: m := m + 1

9: end for

10: end for

11: m
(k,j,m)
k ,P

(k,j,m)
k , τ

(k,j,m)
k = birth_component(zk,j)

12: L
(k,j)
k = m

13: for m := 1, . . . , L
(k,j)
k do

14: w
(k,j,m)
k =

pfg(sk,j)τ
(k,j,m)
k

pbg(sk,j)p(rk,j | ∅)ck(yk,j) + pfg(sk,j)
∑L

(k,j)
k

i=1 τ
(k,j,i)
k

15: end for

16: return {w
(k,j,m)
k ,m

(k,j,m)
k ,P

(k,j,m)
k }

L
(k,j,m)
k

m=1

17: end procedure

Algorithm 5 Propagation of an existing track hypothesis v
(t,i)
k−1(x)

1: procedure propagate_track(X(t,i)
k−1 = {w

(t,i)
k−1,m

(t,i)
k−1,P

(t,i)
k−1 }

L
(t,i)

k|k−1

i=1 )

2: X
(t,i)
k|k−1 = gmphd_predict(X

(t,i)
k−1)

3: X
(t,i)
k = gmphd_missed_detections(X

(t,i)
k|k−1)

4: X
(t,i)
k := prune_components(X

(t,i)
k−1)

5: end procedure

weighting of mixture weights to account for missed detections (line 3). The pro-
cedure is terminated by pruning components with negligible weights and merging
similar components. As in the original GM-PHD recursion, this is necessary to
avoid an exponential growth of mixture components. During the pruning step, a
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Algorithm 6 Initialization of a new track hypothesis v
(k,j)
k from measurement zk,j

1: procedure init_track(zk,j)

2: {w
(k,j,n)
k ,m

(k,j,n)
k ,P

(k,j,n)
k }

L
(k,j)
k

n=1 = mcfphd_correct(zk,j)

3: rk,j =

L
(t,i)
k∑

n=1

w
(k,j,n)
k

4: w
(k,j,n)
k :=

w
(k,j,n)
k

rk,j

, for n = 1, . . . , L
(k,j)
k

5: X
(k,j)
k = prune_components({w

(k,j,n)
k ,m

(k,j,n)
k ,P

(k,j,n)
k }

L
(k,j)
k

n=1 )

6: end procedure

track hypothesis may loose all of its mixture components when the intensity mass
becomes negligible. Then, the track hypothesis also vanishes from the Gaussian
mixture multi-object intensity (4.66).

Initialization of a new Gaussian mixture for track hypothesis v
(k,j)
k (x) that

originates from measurement zk,j is given in Algorithm 6. In line 2, the intensity
partition is created by application of the track-oriented GM-PHD corrector (Al-
gorithm 4). This procedure functions as a plug-in replacement for the standard
GM-PHD corrector of Algorithm 1. In line 3, scaling term rk,j is computed from
the intensity mass in the measurement-corrected partition. Consequently, in line 4
weights are normalized to sum up to one, i.e.,

∫
v

(k,j)
k (x) dx = 1. The algorithm is

finalized by a pruning step in line 5 where low-weighted components are removed
and similar components are merged.

It is worth noting that the presented algorithm is computationally more complex
than the standard GM-PHD implementation because each Gaussian component is
associated to exactly one track hypothesis, whereas the standard GM-PHD filter
also merges similar components that originate from different measurements. This
leads to an increased number mixture components. A computationally more efficient
implementation of the track-oriented GM-PHD filter keeps a global pool of Gaussian
mixture components that each have an associated weight vector for the individual
track hypotheses. Then, the computational efficiency of the standard GM-PHD
filter can be retained by application of the pruning and merging strategy to the
global component pool. However, this more efficient implementation is also less
accurate in dense tracking scenarios. If multiple track hypotheses are represented
by the same Gaussian component, their transition cost terms are computed from
the same state hypothesis. Then, it is left solely to the appearance likelihood to
discriminate between individuals.
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4.8.2 Trajectory Estimation Cost Terms

The flow network of the trajectory estimation problem can be constructed during
application of the track-oriented PHD recursion by adding nodes for new mea-
surements and linking them to candidate predecessors. In the following, the cost
terms of this network are described in closer detail for a very general tracking
scenario where no special knowledge about the environment is assumed. There-
fore, clutter and birth are modeled by Poisson RFSs with uniform spatial density.
More specifically, if V denotes the volume of the surveillance region and λc,k is
the expected number of clutter returns at time k, then ck(y) = λc,k · V −1 is the
intensity of the Poisson clutter RFS. Likewise, if λb,k is the expected number of ap-
pearing objects at time k that are uniformly distributed in the surveillance volume,
then τ

(u)
k (y) = λb,k · V −1 is the PHD likelihood associated with birth components.

Under these very general modeling assumptions, the trajectory entry cost (4.23)
simplifies to

centry(zk,j) = − log
τ

(u)
k (zk,j)

ck(zk,j)
= − log

λb,k

λc,k

. (4.68)

It is straight-forward to adapt this model to scenarios where scene-specific infor-
mation are available by exchanging the uniform distribution with more informed
densities. For example, in some surveillance scenarios objects are more likely to
appear at image borders. This can be accounted for by increasing the spatial density
of the clutter and birth RFS at these locations.

In Equation 4.63, the transition cost has been formulated as a sum of a motion
and an appearance term. For uniform clutter and birth densities, the motion term
can be computed from the Gaussian mixture implementation as follows:

c
(mot)
link (yt,i,yk,j) = − log

pD

∫
pk(yk,j | x)v

(t,i)
k|k−1(x) dx

ck(yk,j)
(4.69)

= − log
pD

∑L
(t,i)

k|k−1

n=1 l
(t,i,n)
k w

(t,i,n)
k|k−1

λcV −1
, (4.70)

where

l
(t,i,n)
k =

∫
pk(yk,j | x)N (x;m

(t,i,n)
k|k−1,P

(t,i,n)
k|k−1 ) dx (4.71)

is the observation likelihood computed by the Kalman filter update of the n-th
component. For computation of the appearance term, recall the metric learning
framework of Chapter 3. By application of a neural network, a feature representation
has been trained that assigns images of the same identity a high cosine similarity
and images of different identities a small cosine similarity. Given any two unit-
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length features rt,i, rk,j ∈ R
d with ‖rt,i‖2 = 1 and ‖rk,j‖2 = 1, the cosine similarity

can be computed by:
s(rt,i, rk,j) = rT

t,irk,j. (4.72)

This relationship can be expressed by a von Mises-Fisher distribution placed
around rt,i with concentration κ:

p(rk,j | ri,j) = cd(κ) exp (κ · s(rk,j, rt,i)), (4.73)

where cd(κ) is a normalizing constant. This distribution peaks around rt,i and
decays when the cosine similarity decreases. The concentration parameter κ deter-
mines how sharp the distribution is peaked. Determining meaningful parameters
for this distribution can be challenging in practice. A practical parametrization
can be established as follows. By choosing

p(rk,j | ∅) = cd(κ) exp (κ · smin) (4.74)

for some minimum cosine similarity smin between two neighboring detections on
the same trajectory, the appearance component of the transition cost term be-
comes a log-linear model, parametrized by concentration κ and cosine similarity
threshold smin:

c
(app)
link (rt,i, rk,j) = − log

p(rk,j | rt,i)

p(rk,j | ∅)
= κ · (s(rk,j, rt,i) − smin) . (4.75)

This term becomes negative if the cosine similarity is higher than the threshold smin

and positive or zero otherwise. In consequence, the transition cost term is a weighted
combination of a motion and an appearance model with motion costs computed
from the PHD filter recursion and appearance costs based on a pairwise similarity
metric. Both models are weighted off by concentration parameter κ that scales
the importance of the cosine similarity between neighboring measurements on the
trajectory.

4.9 Evaluation

This section provides an evaluation of the MCF-PHD tracker in simulation and on
standard benchmarks. The first part of the evaluation is dedicated to a comparison
of the locations reported by the MCF-PHD tracker against the locations reported
by the PHD filter. The second part of the evaluation draws a comparison against the
state of the art, in particular to the well-established tracking-by-detection network
flow formulation of Zhang et al. [ZLN08] and its derivatives. Evaluation is carried
out on standard benchmarks to provide insight on the overall performance of the
method.
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Note that the most limiting factor of tracking performance is quality of detec-
tions [LBLA16, WBP17a]. Due to the success of deep learning, detector performance
has increased rapidly within the last few years [RHGS15, HRS+16]. With more
stable detections, fewer data association ambiguities arise and the gap between
simpler and more complex tracking methods decreases. In consequence, it is easy
to improve the presented results by application of a better object detector, but this
can be expected to hold for any tracking framework. Standard detections are used
in all benchmarks in order to eliminate the influence of object detection on overall
reported performance.

4.9.1 Metrics

Evaluation of multiple object tracking systems is a complex task and a number of
metrics have been proposed for this purpose. This section presents the most widely
adopted metrics that will be used—depending on the specific task sometimes in
part, in combination, or in full—to assess tracking performance throughout this
chapter.

Precision, Recall, F1 score The first three metrics are used to evaluate the
tracker’s ability to filter false alarms from correct object detections. Therefore, these
metrics do not take into account the identity of each object, but treat the problem
as binary classification. Precision is the ratio of true positive tracker responses
(TP) against the sum of true positives and false alarms (FA):

Precision =
TP

TP + FA
. (4.76)

It measures the fraction of correct responses among all reported locations. Recall
is the ratio of true positive tracker responses against the sum of true positives and
false negatives (FN):

Recall =
TP

TP + FN
. (4.77)

It measures the fraction of correct responses among all ground truth positions. The
F1 score measures the overall accuracy by taking the harmonic mean of precision
and recall:

F1 = 2 ·
Precision · Recall
Precision + Recall

. (4.78)

All three measures take values in [0, 1] and a higher value indicates better perfor-
mance.
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Mostly Tracked, Mostly Lost, ID switches, Fragments The following met-
rics express tracking performance in terms of individual ground truth object iden-
tities. These metrics have first been proposed by Li et al. [LHN09] and are now
widely adopted:

• Mostly Tracked Number of ground truth tracks that are covered by tracker
output for more than 80% of their life span (higher is better).

• Mostly Lost Number of ground truth tracks that are covered by tracker output
for less than 20% of their life span (smaller is better).

• ID switches The total number of times that a tracked object changes its
assigned ground truth identity (smaller is better).

• Fragments The total number of times that a ground truth trajectory is in-
terrupted in the tracking output, e.g., due to an identity switch or a missed
detection.

Note that the Most Tracked and Mostly Lost metrics do not penalize identity
switches because they evaluate whether the ground truth track is covered by any
track hypothesis.

CLEAR MOT The CLEAR MOT metrics [BS08] have been developed out of
the need to establish standard evaluation criteria for multiple object tracking and
they have become the most widely accepted metrics, today.

The MOTP metric evaluates tracking precision in terms of localization accuracy
without consideration of assigned identities. The metric is defined as the total error
in the estimated position normalized by the number of tracker-to-ground-truth
associations:

MOTP = 100 ·

∑
t,i d

(i)
t∑

t ct

, (4.79)

where d
(i)
t is, for the i-th association at time t, the distance between the estimated

and the ground truth position and where ct is the total number of associations made
at time t. The distance is established either by bounding box overlap, if evaluation
is performed in image coordinates, or by the Euclidean distance, if evaluation is
carried out in world coordinates. A higher MOTP value indicates higher precision.

The MOTA metric summarizes tracking accuracy in terms of false negatives,
false alarms, and identity switches:

MOTA = 100 ·

(
1 −

∑
t FNt + FAt + IDt∑

t GTt

)
, (4.80)
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1

(a) Time t − 1

1 2

(b) Time t

Figure 4.7: Illustration of the CLEAR MOT association strategy. At time t − 1 an
object hypothesis 1 has been associated to the red ground truth track. At time t, a new
object hypothesis 2 is better aligned to the ground truth, but both associations represent
a valid assignment. In this scenario, the CLEAR MOT association strategy gives priority
to object hypothesis 1, because this is the more consistent solution over both frames.

where FNt denotes the number of false negatives/missed detections, FAt the num-
ber of false alarms, IDt the number of identity switches, and GTt the number of
ground truth objects at time t. The metric is derived from the three error ra-
tios

∑
t FNt/

∑
t GTt,

∑
t FAt/

∑
t GTt,

∑
t IDt/

∑
t GTt that express the tracking

error in terms of missed detections, false alarms, and identity switches over all
frames. MOTA takes all three ratios into account equally to compute the tracking
accuracy in terms of overall object configuration errors made by the tracker.

Computation of the CLEAR MOT metrics requires tracker-to-ground-truth as-
sociations. The proposed strategy to compute these associations follows a complex
procedure based on a linear assignment problem that prioritizes existing associa-
tions from previous times. The procedure is illustrated in Figure 4.7 in a simplified
example. If at time t an existing tracker-to-ground-truth association from time t−1
can be maintained at a higher overall association cost, then this solution should be
preferred if the cost is below a predefined association threshold, because it provides
a more globally consistent assignment over both frames. If the association between
tracker and ground-truth were established purely based on the minimum cost lin-
ear assignment, small localization errors would lead frequent identity switches in
densely crowded scenes with occlusions. This behavior is unwanted. However, im-
plementation of the CLEAR MOT association strategy is not straight-forward
and reported metrics can differ significantly between different implementations. If
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(a) λc,k = 20 (b) λc,k = 40

Figure 4.8: Visualization of the simulated tracking scenario. Left: medium clutter profile
with λc,k = 20 clutter returns per time step, right: high clutter profile with λc,k = 40
clutter returns per time step. Object trajectories are shown in green, red, and magenta.
Black dots show the simulated sensor returns over 100 time steps.

available, the numbers report in this thesis have been computed with the software
provided by benchmark authors.

4.9.2 Simulation

In a first experiment the MCF-PHD tracker is evaluated against the standard PHD
filter to compare object locations reported by both methods. The experiment is
carried out in a simulation to have full control over the parametrization. In the
simulated environment, three objects follow a linear motion pattern with constant
velocity. The scene is observed by a sensor with sensor field 20 m × 20 m and zero-
mean isotropic noise of standard deviation 0.01 m. The scenario is evaluated once
in a medium clutter profile with λc,k = 20 clutter returns per time step and once
in a high clutter profile with λc,k = 40 clutter returns per time step. In both
cases, clutter follows a uniform distribution over the sensor field. Evaluation is
carried out for detection probabilities pD = 0.6, pD = 0.7, and pD = 0.8. The
simulation contains 100 time steps in total. Figure 4.8 shows the object trajectories
and accumulated sensor returns.

Gaussian mixture implementations of the PHD filter (Section 2.3.3) and MCF-
PHD tracker (Section 4.8) are compared. The state vector xk = (xk, yk, ẋk, ẏk)T

contains the object’s position (xk, yk)T and velocity (ẋk, ẏk)T. A constant velocity
motion model is used to model state transitions. The motion model adds zero-mean
noise with standard deviation 0.1 m for the position and 0.1 m s−1 for the velocity.
The position is taken as direct observation of the object state and measurement un-
certainty is set according to the simulated sensor setup, i.e., the standard deviation
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pD = 0.6 pD = 0.7 pD = 0.8

Precision Recall F1 Precision Recall F1 Precision Recall F1

PHD filter 0.88 0.45 0.59 0.90 0.53 0.66 0.93 0.72 0.81

MCF-PHD (online) 0.97 0.42 0.58 0.98 0.51 0.67 0.99 0.71 0.83

MCF-PHD (offline) 0.99 0.57 0.72 1.00 0.65 0.79 1.00 0.81 0.89

Table 4.1: Simulation results in a medium clutter profile (λc,k = 20). The best perform-
ing method is shown in red, the first runner up in blue.

pD = 0.6 pD = 0.7 pD = 0.8

Precision Recall F1 Precision Recall F1 Precision Recall F1

PHD filter 0.80 0.01 0.03 0.90 0.55 0.69 0.92 0.63 0.75

MCF-PHD (online) 1.00 0.01 0.02 0.97 0.55 0.70 0.99 0.63 0.77

MCF-PHD (offline) 1.00 0.03 0.06 1.00 0.67 0.80 1.00 0.74 0.85

Table 4.2: Simulation results in a high clutter profile (λc,k = 40). The best performing
method is shown in red, the first runner up in blue. The ranking is only shown for pD ≥ 0.7
because all three methods fail to pick up track with pD = 0.6.

is 0.01 m. For a given measurement y = (xk, yk)T, the birth component is initialized
to mean m(y) = (xk, yk, 0, 0)T and covariance P (y) = diag(0.012, 0.012, 1.0, 1.0).
The applied motion, measurement, and birth models are given in Appendix B.1–B.3
for completeness.

The remaining parameters of the PHD filter are: The probability of survival
is set to pS = 0.95, the clutter intensity is parametrized by ck(y) = λc,k · V −1

where V = 400 m2 is the volume of the surveillance region, and the expected number
of appearing objects is set to λb,k = 4 × 10−3. Gaussian mixture components
with weight smaller than wmin = 1 × 10−8 are pruned from the intensity and the
component merging threshold is set to U = 6. Following the standard methodology,
locations reported by the PHD filter are taken from mixture components with
weight larger than 0.5. The threshold that is used to establish tracker-to-ground-
truth associations is set to 0.1 m.

Table 4.1 and 4.2 summarize the results. Precision, recall, and F1 score are
reported for each simulated configuration. The MCF-PHD tracker is evaluated
in two modes of operation. In offline mode, trajectories are found in a batch
optimization over the entire observation sequence. In online mode, a fixed length
history of 30 frames is optimized and matched against the previous solution at each
time step. Configuration λc,k = 40 and pD = 0.6 is excluded from the following
evaluation because none of the evaluated methods was able to pick up objects in
this high clutter, low detection profile. Therefore, pD = 0.7 presents a lower bound
on the signal-to-noise ratio in which the filter can be employed successfully.
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(a) MCF-PHD (online) (b) MCF-PHD (offline)

Figure 4.9: Tracking output comparison of the MCF-PHD tracker in online and offline
mode. Ground truth locations are shown by black dots, reported trajectories are shown
in colors. In online mode the tracker solves the min-cost flow problem at every time step
and reports the current solution. Therefore, the tracker requires a few time steps before
the trajectory is confirmed. If offline mode, the full trajectory is recovered.

Throughout all simulations, the best result is obtained by using the offline
MCF-PHD tracker. The F1 score is 0.08 to 0.13 points higher than the score of
the standard PHD filter. In offline mode, the MCF-PHD tracker optimizes the
entire sequence in one batch. Therefore, information from the past and the future
is available when a decision is made about object locations at the current time.
This has a positive effect on all reported metrics. Note that, in this experiment,
recall is limited by the detection probability because trajectories are defined as
sequence of observations and the location at missed detections is not reported by
the tracker. Therefore, the precision and recall reported by the offline MCF-PHD
tracker are close to the theoretical maximum in all configurations. Since missed
detections can be interpolated in a postprocessing step if necessary, this behavior
imposes no limitation on the applicability of the MCF-PHD tracker.

In online mode, the min-cost flow problem is solved at each time step and current
object locations are reported. While it would be possible to correct errors from the
past based on the new current min-cost flow solution, such corrections are not made
to render the results closer to real online tracking applications. Figure 4.9 shows
the trajectory output obtained in both operational modes. Object trajectories are
usually confirmed when a series of consecutive measurements can be explained by a
linear motion pattern. In online mode, the object remains undetected until enough
evidence is collected. In offline mode, the full trajectory is recovered under this
circumstance.

The performance of the online MCF-PHD tracker is generally on par with the
standard PHD filter. A general trend throughout the simulation is that the MCF-
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(a) S2L1 (b) S2L2

Figure 4.10: Example images of two sequences from the PETS 2009 [FS09] dataset.
Sequence S2L1 shows a sparse crowd, S2L2 a medium dense crowd. Detections are shown
as red boxes with an annotated detector confidence score.

PHD tracker produces higher precision at lower recall. This effect is more eminent
for low detection probabilities and vanishes at about pD = 0.7. Only for pD = 0.6
the tracker receives a lower F1 score than the filter. By qualitative analysis, higher
precision and low recall of the tracker are due to overall fewer reported object
locations, both true positives and false alarms. In this regard, the MCF-PHD
tracker confirms object locations more conservatively. This is not surprising as
the PHD filter accumulates multiple trajectory hypotheses into its state estimate
whereas the MCF-PHD tracker reports locations based on individual trajectory
scores. Nevertheless, in terms of F1 score the performance of both methods compares
over all simulated configurations. Thus, the good filtering performance that the
PHD filter exhibits under controlled simulation parameters is retained in the MCF-
PHD tracker.

4.9.3 PETS 2009

The second experiment is conducted on the PETS 2009 dataset [FS09]. This dataset
consists out of 7 medium and densely crowded sequences that are observed from
multiple calibrated cameras. The scenario is characterized by substantial occlusions,
missed detections, and false alarms as well as a largely varying number of pedes-
trians in the sensor field and changing lighting conditions. Therefore, the dataset
is well suited to test the general applicability and sensitivity to parameter changes
under changing conditions. Two representative images of this dataset are shown
in Figure 4.10. Following an evaluation procedure that is comparable to other
methods, tracking is carried out in view of camera 1 using standard detections and
ground truth provided by Andriyenko et al. [ASR12]. The detections are projected
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onto the ground plane using known camera calibration and evaluation is carried
out in 3D. The tracker-to-ground-truth association threshold is set to 0.5 m. The
dataset is split up into training and test sets as follows:

• Sequences S1L1-1 and S1L2-2 are used for parameter tuning. In particular,
the parameters of the detector confidence likelihood and the appearance cost
model are trained on these sequences.

• Sequences S1L1-2 (medium density crowd), S1L2-1 (high density crowd),
S2L1 (sparse crowd), S2L2 (medium density crowd), S2L3 (dense crowd) are
used for evaluation.

This procedure is in accordance with the numbers reported by Rezatofighi et
al. [HRMZ+15] which will be used for a comparison against the state of the art.

Parametrization and Results The tracker is set up similarly to the simula-
tion environment: The state vector xk = (xk, yk, ẋk, ẏk)T contains the object’s
position (xk, yk)T and velocity (ẋk, ẏk)T on the ground plane. A constant velocity
motion model is used to model state transitions. The standard deviation is ∆t·0.2 m
for the position and ∆t · 1.0 m s−1 for the velocity, where ∆ = 0.142 s is the approx-
imate time between two camera images. The position on the ground plane is taken
as direct observation of the object state. The measurement model adds isotropic
noise with standard deviation 0.2 m. For a given measurement y = (xk, yk)T,
the birth component is initialized to mean m(y) = (xk, yk, 0, 0)T and covari-
ance P (y) = diag(0.22, 0.22, 1.0, 1.0). The probability of survival is set to pS = 0.9
and the probability of detection to pD = 0.7. Components with weight smaller
than wmin = 1 × 10−10 are pruned from the intensity and the merge threshold is set
to U = 6. The following parameters are found on training sequences by visual com-
parison of tracking output against the provided ground truth: The clutter intensity
is set to ck(y) ≈ 1.27 × 10−1 m−2 and the PHD likelihood of birth components is set
to τ

(u)
k (y) = 7.83 × 10−3 m−2. A Gaussian mixture with two components describes

the detector confidence likelihood pfg(s) and pbg(s). This likelihood is visualized in
Figure 4.6a. If appearance information are used, then κ = 10.0 and smin = 0.9.

The results of the experiment are given in Table 4.3. The numbers for the MCF-
PHD tracker have been generated in offline mode, that is, trajectories are recovered
by processing the entire sequence in a single optimization. In a preprocessing
stage, non-maximum suppression is applied before feeding detections to the tracker.
In a post processing stage, the location at missed detections are recovered by
interpolation, but no additional filter logic is applied. This is different from at least
one method (Rezatofighi et al. [HRMZ+15]) where small trajectories are removed
from the final solution to reduce false alarms. The following paragraphs provide
an analysis of the experimental results.
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Method MOTA MOTP GT MT ML ID Rec Prec

S1L1-2

Pirsiavash et al. [PRF11]a 45.4 66.8 36 9 14 38 47.1 99.5

Berclaz et al. [BFTF11]a 51.5 64.8 36 16 14 4 55.5 93.6

Wen et al. [WLY+14] 57.1 54.8 36 18 8 4 58.6 97.8

Milan et al. [MRS14] 57.9 59.7 36 19 11 21 64.5 91.8

Rezatofighi et al. [HRMZ+15] 70.0 64.8 36 21 5 10 74.5 94.7

MCF-PHD trackera 65.6 65.8 36 21 8 6 68.2 96.7

S1L2-1

Berclaz et al. [BFTF11]a 19.5 60.6 43 4 29 7 21.4 92.6

Milan et al. [MRS14]a 30.8 49.0 43 7 20 61 38.5 86.4

Rezatofighi et al. [HRMZ+15] 32.8 59.8 43 9 20 52 40.3 86.8

MCF-PHD trackera 29.1 42.1 43 9 24 18 32.1 92.8

S2L2

Pirsiavash et al. [PRF11]a 45.0 64.1 74 7 17 137 49.0 95.4

Berclaz et al. [BFTF11]a 24.2 60.9 74 7 40 22 26.8 92.1

Wen et al. [WLY+14] 62.1 52.7 74 27 3 125 71.2 90.3

Milan et al. [MRS14] 56.9 59.4 74 28 12 99 65.5 89.8

Rezatofighi et al. [HRMZ+15] 58.3 59.3 74 22 6 103 70.5 86.6

MCF-PHD trackera 56.2 61.2 74 20 14 61 60.2 94.9

S2L3

Pirsiavash et al. [PRF11]a 43.0 63.0 44 5 18 52 46.0 97.0

Berclaz et al. [BFTF11]a 28.8 61.8 44 5 31 7 30.4 95.7

Wen et al. [WLY+14] 55.3 53.2 44 12 9 36 61.0 93.0

Milan et al. [MRS14] 45.4 64.6 44 9 18 38 51.8 90.9

Rezatofighi et al. [HRMZ+15] 53.9 61.6 44 15 17 20 59.5 92.3

MCF-PHD trackera 45.0 66.9 44 12 22 10 47.0 96.5

S2L1

Breitenstein et al.[BRL+11] 79.7 56.3 - - - - - -

Bae et al.[BY14] 83.0 69.6 23 23 0 4 - -

Milan et al. [MRS14] 91.6 80.2 23 21 1 11 92.4 98.4

MCF-PHD trackera 88.9 79.3 23 21 0 7 94.7 94.4

Table 4.3: Evaluation on PETS 2009 [FS09]: MT = Mostly Tracked, ML = Mostly
Lost, ID = Number of ID switches, Rec = Recall, Prec = Precision. Numbers of previous
methods on sequences S1L1-2–S2L3 are taken from [HRMZ+15]. The best performing
method is shown in red, the first runner up in blue. Min-cost flow tracking formulations
are marked by a.

Rank Mean MOTA (Method) Rank Sum ID (Method)

1 60.73 Rezatofighi et al. [HRMZ+15] 1 33 Berclaz et al. [BFTF11]

2 58.17 Wen et al. [WLY+14] 2 77 MCF-PHD tracker

3 55.60 MCF-PHD tracker 3 133 Rezatofighi et al. [HRMZ+15]

4 53.40 Milan et al. [MRS14] 4 158 Milan et al. [MRS14]

5 40.80 Pirsiavash et al. [PRF11] 5 165 Wen et al. [WLY+14]

6 34.83 Berclaz et al. [BFTF11] 6 227 Pirsiavash et al. [PRF11]

Table 4.4: Ranking in terms of mean MOTA and sum of ID switches over sequences
S1L1-2, S2L2, S2L3 of PETS 2009 [FS09]. A method that successfully filters false alarms
and keeps consistent object trajectories should be ranked high in both categories. S1L2-1
and S2L1 are not considered in this ranking because not all methods have reported
numbers on these sequences.
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(a) MCF-PHD tracker (motion)

(b) MCF-PHD tracker (appearance)

Figure 4.11: Tracking output on dense PETS 2009 [FS09] test sequences for (a) MCF-
PHD tracker (motion) and (b) MCF-PHD tracker (appearance). Top to bottom: S1L1-2,
S1L2-1, S2L2, S2L3.
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(a)

(b)

Figure 4.12: This visualization shows how a track is successfully maintained through a
complex tracking scenario in sequence S2L2 (a) and successful tracking through occlusion
on S2L1 (b).

Comparison against State of the Art The state of the art in Table 4.3 con-
tains two methods based on a min-cost flow problem formulation: Pirsiavash et al.
[PRF11] refers to an efficient greedy algorithm with linear run-time and Berclaz et
al. [BFTF11] refers to an exact k-shortest path search that is also used in the
MCF-PHD tracker to recover trajectories. The difference between their formu-
lation and the MCF-PHD tracker is due to the cost terms in the flow network.
In particular, whereas the MCF-PHD tracker utilizes a constant velocity motion
model, the other two methods are restricted to transition costs based on the dis-
tance between detections. In Wen et al. [WLY+14], short-term track fragments
(tracklets) are linked into globally consistent trajectories using constant velocity
motion and color-histogram appearance affinity metrics. The method of Milan et al.
[MRS14] is a Markov random field formulation that encodes smooth trajectories as
well as detection-level and trajectory-level exclusion terms to penalize overlapping
trajectories. Finally, Rezatofighi et al. [HRMZ+15] is an efficient implementation
of JPDA in combination with a heuristic track management scheme.

Overall, the MCF-PHD tracker performs well within the state of the art, achiev-
ing several first or first runner up positions on individual metrics. Note that these
metrics are highly correlated. For example, the method of Berclaz et al. [BFTF11]
produces very few ID switches on all sequences, but receives very low tracking
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accuracy in terms of MOTA. At the other end, the method of Wen et al. [WLY+14]
produces consistently high MOTA scores, but a high number of ID switches com-
pared to other methods. From these examples it can be seen that trading off the
trackers ability to produce high precision and recall often comes at the cost of
an increased number of ID switches. This fact is not well captured by the MOTA
metric that weights precision, recall, and ID switches equally in creating a summary
descriptor. For a more detailed analysis, Table 4.4 ranks the tracking performance
in terms of mean MOTA and sum of ID switches. A well performing method,
both in terms of filtering false alarms and keeping consistent trajectories, should
be ranked high in both categories. In this regard, the JPDA of Rezatofighi et
al. [HRMZ+15] produces the best results (rank 1 on MOTA and rank 3 on ID
switches). The performance of the MCF-PHD tracker is well summarized by a
similar performance to Milan et al. [MRS14] in terms of MOTA at consistently
lower number of ID switches. In particular, the method produces the lowest num-
ber of ID switches compared to all other methods that achieve MOTA above 50.
The MCF-PHD tracker also performs significantly better than other min-cost flow
tracking formulations. The gain in MOTA is between 2.0 and 14.1 points. This
is a relative improvement of up to 27%. Therefore, object motion models greatly
improve the performance on this dataset. Tracking output on dense sequences
is shown in Figure 4.11 for visual inspection. Additionally, Figure 4.12 shows an
example where the MCF-PHD tracker successfully maintains an object identity
through complex tracking scenarios.

Influence of Batch Optimization and Appearance Features The experi-
ments have been repeated with and without integration of appearance information
and batch optimization in order to assess their influence on overall tracking per-
formance. In offline mode, the entire sequence is processed in one batch. In online
mode, a fixed-length history of 50 frames is optimized at each time step. Table 4.5
summarizes the results. The best results are obtained in offline mode. The gain in
MOTA is 7% with appearance information and 9% without appearance informa-
tion. The number of ID switches reduces by 16% and 17%, respectively. Whereas
the number of ID switches and fragments can be consistently reduced by integra-
tion of appearance information, the MOTA decreases by 1.2 points (2%) when
compared to using motion only. This can be attributed to two facts: First, the
evaluation in Chapter 3 has revealed that due to frequent partial occlusions the
feature representation does not work as well on PETS 2009 as on other datasets.
Second, the detections on sequence S2L1 contain a number of false positives that
continuously reoccur at static scene geometry. These false alarms are picked up
more frequently with integrated appearance information because they receive a
lower cost due to very similar appearance. If sequence S2L1 is taken out of the



92 CHAPTER 4. MIN-COST FLOW PHD TRACKER

Method MOTA MOTP GT MT ML ID FM Rec Prec

MCF-PHD (appearance, offline) 56.9 65.8 220 83 68 102 153 60.6 95.0

MCF-PHD (motion, offline) 57.7 63.7 220 81 70 116 183 61.1 95.6

MCF-PHD (appearance, online) 53.0 59.2 220 73 68 122 174 56.6 94.9

MCF-PHD (motion, online) 53.1 55.8 220 74 76 140 188 57.1 94.5

Table 4.5: Summary of results on PETS 2009 [FS09] in different operational modes. In
online mode, a fixed-length history of 50 frames is optimized at each time step. MT =
Mostly Tracked, ML = Mostly Lost, ID = Number of ID switches, FM = Fragments,
Rec = Recall, Prec = Precision. The best performing method is shown in red, the first
runner up in blue.

(a) Object density (b) Run-time

Figure 4.13: This plot gives an overview of average algorithm run-time on individual
sequences of PETS 2009 [FS09]. Plot (a) shows the average number of detections per
sequence. Plot (b) shows the run-time of the GM-PHD filter and min-cost flow trajectory
estimation. The reported numbers in offline mode are established by dividing the total
run-time by the number of frames. The figures are exclusive of feature extraction. The
CNN of Chapter 3 requires additional 30 milliseconds processing time for 32 bounding
boxes.

evaluation, appearance and motion perform approximately equally well in terms
of MOTA.

Figure 4.13 gives an overview of algorithm run-time on individual sequences.
The reported numbers have been obtained on a consumer notebook with Intel i7-
7700HQ CPU running at 2.8 GHz. The GM-PHD filter is implemented in Python,
the min-cost flow solver in C++. On all sequences, most computation time is spent
on state estimation. In particular, in online mode the cost of running the min-cost
flow solver becomes negligible compared to state estimation. The tracker runs at
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Method MOTA MOTP MT ML ID FM FP FN

DBN [KRH15] 51.1 62.2 28.7% 17.9% 380 418 2077 5746

GPDBN [KRH17] 49.8 61.0 25.7% 17.2% 311 386 1813 6300

MCF-PHD tracker 39.9 53.6 25.7% 16.8% 363 529 3029 6700

LPSFM [LTPMR11] 35.9 54.0 13.8% 21.6% 520 601 2031 8206

LP3D [LTMR+15] 35.9 55.8 20.9% 16.4% 580 659 3588 6593

SVT [WLC+17] 34.2 53.8 11.2% 25.4% 532 611 3057 7454

AMIR3D [SAS17] 25.0 55.6 3.0% 27.6% 1462 1647 2038 9084

KalmanSFM [PESVG09] 25.0 53.6 6.7% 14.6% 1838 1686 3161 7599

Table 4.6: Results on 3D MOT 2015 [LTMR+15] in offline mode (the entire sequence is
optimized in a single batch). MT = Mostly Tracked, ML = Mostly Lost, ID = Number
of ID switches, FM = Fragments, FP = False positives, FN = False negatives. The best
performing method is shown in red, the first runner up in blue. Accessed on 11/18/2017.

over 60 frames per second on sparsely crowded scene S2L1. On the most crowded
scene S2L2, the tracker runs at roughly 15 frames per second in offline mode and
22 frames per second in online mode.

4.9.4 MOT Challenge and RGB-D People

This section discusses results obtained on a number of different datasets that the
MCF-PHD tracker has additionally been evaluated on. The focus of this evaluation
is to provide a broad comparison against the state of the art on public benchmarks,
and to study the performance when applied to different sensor modalities.

3D MOT 2015 The MCF-PHD tracker is further evaluated on 3D MOT 2015
[LTMR+15], a public benchmark that contains sequences PETS 2009 S2L2 and
AVG-TownCentre in the test set. Despite the overlap with the previous experiment,
submission to 3D MOT 2015 is interesting because evaluation is carried out against
unpublished ground truth on a test server. Different results may be obtained on
PETS 2009 S2L2 compared to the previous experiment due to utilization of different
detections and possibly different ground truth. Sequence AVG-TownCentre has not
been evaluated before. For the sake of generality, the MCF-PHD tracker is applied
with the same parametrization as in the PETS 2009 experiment.

Results of the 3D MOT 2015 submission are summarized in Table 4.6. The
MCF-PHD tracker comes in third of all published methods when ranked according
to MOTA and ID switches. The top two methods utilize prior scene knowledge to
suppress false alarms outside and reduce the number of fragments inside the region
where people move. While such extraneous scene information could be integrated
into the MCF-PHD tracker by adaptation of clutter and birth intensities, this path
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Method MOTA MOTP ID FP FN

Luber et al. [LSA11] 78.0 - 32 4.5% 16.8%

Munaro et al.[MBM12] 71.8 73.7 19 7.7% 20.0%

MCF-PHD tracker (online) 74.1 74.1 18 2.5% 23.1%

MCF-PHD tracker (offline) 75.3 74.1 15 3.7% 20.6%

Table 4.7: Results on RGB-D People dataset [LSA11] in different operational modes.
In online mode a fixed-length history of 50 frames is optimized at each time step. ID =
Number of ID switches, FP = False positives, FN = False negatives. The best performing
method is shown in red, the first runner up in blue.

has not been followed here in order to draw a fair comparison to methods that work
in a general setup. Out of the remaining, more general methods, the MCF-PHD
tracker ranks highest according to most metrics. Compared to the baseline LP3D
formulation, a min-cost flow linear programming solution on 3D positions in world
coordinates, MOTA increases from 35.9 to 39.9 points and ID switches go down
from 580 to 363. This is a relative improvement of 11% and 37%.

RGB-D People The second dataset contains a sequence of over 3000 RGB-D
frames captured by three vertically mounted Microsoft Kinect sensors [LSA11].
The sensor configuration is placed in a busy university hall at approximately 1 m
height. The provided ground truth contains several identities that are not anno-
tated even though visible. To avoid a penalty during evaluation, the ground truth
is interpolated and these locations are flagged to not be counted as false positive.
Further, the corresponding dataset authors do not provide a set of standard de-
tections. Therefore, point measurements on the ground plane are generated by a
people detector that is available in current releases of the Point Cloud Library
(PCL) [MBM12, RC11]. The parameters of the MCF-PHD tracker are adopted
from the PETS 2009 experiment. The measurement noise uncertainty is reduced
to standard deviation 0.1 m to account for higher detector localization accuracy.
Remaining parameters are left unchanged.

The results are summarized in Table 4.7. The method of Luber et al. [LSA11]
is an implementation of MHT that integrates color and depth information into
the association likelihood by training online boosting classifiers for each track
hypothesis. The lower number of false negatives compared to the other two methods
can in part be explained by better detector output. Around 10% of people in the
dataset appear on an elevated stairway where the PCL people detector provides
no output. Consequently, these people are invisible to the tracker. The second
method [MBM12] uses Kalman filtering and Global Nearest Neighbor (GNN) data
association via Hungarian algorithm. Color features are integrated into the tracker
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in similar fashion to Luber et al. [LSA11] by training online boosting classifiers on
individual track hypotheses. Since this method also utilizes the PCL people detector,
the numbers are directly comparable to the MCF-PHD tracker. In comparison, the
MCF-PHD tracker has slightly better performance in terms of MOTA as well as
ID switches.

2D MOT 2015 The 2D MOT 2015 [LTMR+15] benchmark is a comprehensive
collection of existing and new video sequences. The benchmark is particularly
well suited to establish a performance evaluation over a broad range of tracking
applications because it covers a large variety dataset characteristics. There exist
sequences with low camera position (frontal view) as well as high camera position
(surveillance setup), the frame rate ranges from 7 to 30 frames per second and image
resolution from 640 × 480 to 1920 × 1020. The scene density varies from 5 to 22
objects per image. The camera is moving in some scenes and stationary in others.
Weather conditions range from sunny to cloudy, yielding very different lighting
conditions. In total, the benchmark contains 16 minutes and 30 seconds video
footage (11 286 frames), 1221 ground truth objects and over 100 000 detections.
Thus, it is hard to over-tune the tracker to a particular scenario. In addition, the
ground truth for test sequences is unpublished and evaluation must be performed
on a test server.

Note that this benchmark is particularly challenging for the MCF-PHD tracker
because camera calibration is unavailable. The MCF-PHD tracker is built upon
a recursive filtering framework which relies on informative motion models that
are easier to describe in a world coordinate frame than in image coordinates. In
particular, ego-motion can lead to substantial displacements in image coordinates
that must be accommodated by high noise parameters, making these models less
informative. This can be partially compensated by tuning the parameters to indi-
vidual sequences or at least groups of sequences with similar characteristics, but
this would provide little insight on the general performance of the tracker under
varying situations. Therefore, a single parameter set has been chosen for all se-
quences within the benchmark. More specifically, the MCF-PHD tracker is set up
to replicate the parametrization of a recent re-visitation of MHT [KLCR15] without
performing additional parameter tuning. This also includes parametrization of the
preprocessing and postprocessing stage where detections are filtered based on de-
tector confidence and non-maximum suppression. While this evaluation procedure
might lead to lower performance, it eliminates extraneous effects that can hinder
a direct comparison.

The parameters of the MCF-PHD tracker are chosen as follows. The state
vector x = (x, y, ẋ, ẏ)T contains the bounding box center position (x, y)T and
velocity (ẋ, ẏ)T in pixel coordinates. The position is assumed to move accord-
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Method MOTA MT ML ID FM FP FN Avg
Rank

Hz

APRCNN_Pub [CAS+17] 38.5 8.7% 37.4% 586 1263 4005 33203 15.0 6.7

AMIR15 [SAS17] 37.6 15.8% 26.8% 1024 2024 7933 29397 19.8 1.9

NOMT [Cho15] 33.7 12.2% 44.0% 442 823 7762 32547 18.2 11.5

MHT-DAM [KLCR15] 32.4 16.0% 43.8% 435 826 9064 32060 20.8 0.7

MCF-PHD trackera 29.9 11.9% 44.0% 656 989 8892 33529 24.4 12.2

SiameseCNN [LTCFS16]a 29.0 8.5% 48.4% 639 1316 5160 37798 30.8 52.8

ELP [MDRM15]a 25.0 7.5% 43.8% 1396 1804 7345 37344 36.7 5.7

JPDA_m [HRMZ+15] 23.8 5.0% 58.1% 365 869 6373 40084 31.3 32.6

EAMTTpub [SMPC16] 22.3 5.4% 52.7% 833 1485 7924 38982 38.3 12.2

LP2D [LTMR+15]a 19.8 6.7% 41.2% 1649 1712 11580 36045 39.6 112.1

CEM [MRS14] 19.3 8.5% 46.5% 813 1023 14180 34591 38.5 1.1

GMPHD [SJ16] 18.5 3.9% 55.3% 459 1266 7864 41766 38.6 19.8

ALExTRAC [BORU16] 17.0 3.9% 52.4% 1859 1872 9233 39933 47.5 3.7

DP_NMS [PRF11]a 14.5 6.0% 40.8% 4537 3090 13171 34814 40.7 444.8

Table 4.8: Results on 2D MOT 2015 [LTMR+15] in offline mode (the entire sequence is
optimized in a single batch). Methods based on a min-cost flow formulation are marked
bya. MT = Mostly Tracked, ML = Mostly Lost, ID = Number of ID switches, FM =
Fragments, FP = False positives, FN = False negatives, Avg Rank = Average rank over
all metrics, Hz = Reported tracker speed in frames per seconds. The full table can be
found in Appendix E. Note that this is an ongoing benchmark; the ranking can change
in future (accessed on 11/18/2017).

ing to a constant velocity motion model. The state transition covariance is set
to diag(σ2

pos, σ2
pos, σ2

vel, σ2
vel) where, for a predecessor detection of width wp that

has been used to perform the most recent measurement update, σ2
pos = ( 1

10
· wp)2

and σ2
vel = 1

80
· wp. The bounding box center position is taken as direct obser-

vation of the object state and the measurement model adds isotropic noise with
standard deviation 1

10
· wp. To prevent associations between bounding boxes that

have similar center position but different size, the measurement likelihood is set
to 0 if the size differs by more than 40%. Survival and detection probabilities are
set to pS = 1 and pD = 0.9. The clutter intensity is set to ck(y) = 1 · V −1 and
the PHD likelihood of birth components to τ

(u)
k (y) = 1 × 10−3 · V −1 where V is

the number of pixels in the image. Detector confidence scores are not integrated
into the GM-PHD recursion. Instead, detections are thresholded at a pre-defined
minimum confidence value that is chosen on a per-sequence basis. The values are
taken from the provided implementation of Kim et al. [KLCR15]. Components
with weight smaller than wmin = 1 × 10−10 are pruned from the intensity and the
merge threshold is set to U = 3. The appearance model is parametrized by κ = 10
and smin = 0.9.
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An excerpt of the benchmark results is shown in Table 4.8. This table contains
only the top two performing methods together with a selection of submissions
that are particularly interesting for comparison. The full table can be found in
Appendix E. Of all published methods that have been submitted to 2D MOT
2015, the MCF-PHD tracker ranks 12 out of 40 with respect to MOTA, placing
it at the top 30% and only two places below MHT-DAM [KLCR15], an imple-
mentation of MHT with online appearance modeling based on CNN features. The
top performing methods put strong emphasize on visual aspects of the tracking
problem. APRCNN_Pub [CAS+17] and AMIR15 [SAS17] focus on learning of
rich features using CNNs. The main innovation behind NOMT [Cho15] is the
development of a well-working optical flow descriptor that aids data association.
At the lower end of the table are mostly methods that utilize motion alone. For
example, JPDA_m [HRMZ+15] and CEM [MRS14] perform well on PETS 2009
where tracking is performed in 3D world coordinates, but the performance does
not generalize to the image-space tracking scenario. By using appearance only,
ALExTRAC [BORU16] is a peculiarity under all submissions.

MHT-DAM [KLCR15] and the MCF-PHD tracker are both very general meth-
ods that have been evaluated using a mostly identical parameter set. As discussed
in Section 4.5, the key strength of MHT over MCF-PHD is consideration of long-
term dependencies. Whereas the MCF-PHD tracker utilizes a pairwise appearance
model, MHT-DAM trains separate classifiers for each track hypothesis. This in-
creases performance according to almost all metrics. In particular, MHT-DAM has
an 8% higher MOTA and 34% fewer ID switches. A scenario where the advantage
of capturing long-term dependencies becomes particularly eminent is shown in
Figure 4.14. The number of false positives and false negatives on the other hand is
relatively similar.

Several entries in the table refer to methods that are formulated in a min-
cost flow framework. Out of these methods, the MCF-PHD tracker ranks highest
according to most metrics. The baseline method LP2D [LTMR+15] is formulated
on the distance between bounding box positions. DP_NMS [PRF11] is a fast
dynamic programming approximation of the optimal solution that has also been
evaluated on PETS 2009. Both methods fall behind in tracking performance, likely
due to lack of motion and appearance information. ELP [MDRM15] is a min-cost
flow network defined on tracklets. SiameseCNN [LTCFS16] utilizes a CNN that
has been trained on appearance and optical flow features. The method produces
similar MOTA and ID switches, but more fragments compared to the MCF-PHD
tracker.

The table also contains two methods that use a GM-PHD filter. The method
EAMTTpub [SMPC16] filters false alarms and fuse multiple detector outputs at
a low level of a hierarchical association strategy using a GM-PHD filter. GM-
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(a) MHT-DAM [KLCR15]

(b) MCF-PHD tracker

Figure 4.14: This figure shows tracking output of MHT-DAM [KLCR15] and MCF-
PHD on TUD-Crossing. The video shows frequent occlusions from a low camera position.
Bounding boxes typically have high overlap a the point where people cross their path.
MHT-DAM deals with this situation very well (observe the person in a blue jacket walking
right to left). For the MCF-PHD tracker this scenario is much more challenging.

PHD [SJ16] is a mostly straight-forward application of the GM-PHD filter with the
widely applied track management scheme of Panta et al. [PCV09]. Both methods
fall behind in tracking performance on this dataset.



Chapter 5

Operator Following

This chapter presents a practical application of a multi-object Bayes filter to the
problem of jointly detecting and tracking a single person in crowded environments.
The approach has been published in [WMP17]. Section 5.1 introduces the specific
problem that motivated the development of such a system. Section 5.2 gives an
overview of related work. The joint operator detection and tracking problem is
formulated in Section 5.3. The chapter concludes with an experimental evaluation
in Section 5.4.

5.1 Introduction

The motivation to jointly detect and track a single operator through crowded
environments stems from a regular participation in RoboCup@Home challenges
where fundamental as well as more advanced capabilities of service robots are tested
in a benchmark environment. These benchmarks are typically set up in a way that a
specific person is introduced to the robot as an operator. From that point onwards,
this operator must be continuously identified and distinguished from remaining
people, for example to take pick-and-deliver commands. Figure 5.1a shows service
robot Lisa of the Active Vision Group at the University of Koblenz-Landau and an
operator following scenario during the 2012 RoboCup@Home world cup in Mexico
City. The operator following benchmark takes place in an open space that is crowded
by spectators and press to increase the complexity of the problem. In addition,
several intended distractions are incorporated to test re-detection capabilities after
occlusions. For example, Figure 5.1b shows a person crossing onto the path in
between robot and operator. The person will persist at this location for several
seconds to test the robot’s behavior when the field of view is blocked. In other
benchmarks where operator identification is required, the operator may leave and

99
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(a) (b)

Figure 5.1: (a) shows robot Lisa of the Active Vision Group at the University of Koblenz-
Landau, (b) shows an operator following scenario during the 2012 RoboCup@Home world
cup in Mexico City where a person blocks the path between robot and operator.

re-enter the scene at any time. Therefore, this is not just a regular tracking task,
but rather a joint detection and tracking task.

The problem generalizes beyond the specific application in RoboCup@Home
that is targeted here. In many tasks that involve human-robot interaction, knowl-
edge about a specific person is fundamental to reliably carry out interaction. Con-
sider, for example, an airport service robot that serves as help desk and takes
customers to their designated gate. This robot must navigate through a dynamic,
crowded environment and at the same time be aware of the customer that it is
taking care of. While tracking a single individual is fundamentally easier than
tracking many people at the same time, the problem scales with the complexity of
the environment. The same challenges that make multiple object tracking difficult
also affect the performance of a single-object tracker: data-association ambiguities,
long-term occlusions, and social interactions. Therefore, while detecting and track-
ing an operator is relatively easy in controlled laboratory environments, deployment
in real-world scenarios still poses a scientific challenge.

A key characteristic of the RoboCup@Home scenario is that the operator can
leave and re-enter the scene at any time. Therefore, at each time the system must
be capable to determine whether the operator is currently present in the scene
and, if yes, at which location (c.f. Figure 5.2). In the end, a system to be suc-
cessfully deployed under complex circumstances requires careful combination of a
tracking component that resolves local ambiguities and a re-identification compo-
nent that recovers from tracking failures and long-term occlusions. Due to these
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· Detection and Tracking

Pedestrian Detections

• Operator present?

• Location?

Time 1

. . . Detection and Tracking

Pedestrian Detections

• Operator present?

• Location?

Time k

. . .

Figure 5.2: This diagram provides a schematic overview of the joint detection and
tracking problem. Initially, the operator is introduced to the robot at a known starting
position. From that point onwards, the system must determine whether the operator is
currently present and, if yes, at which location.

specific requirements, most work on people tracking is not directly applicable to
this application domain. In particular, most approaches to multiple object tracking
lack a re-identification component, such that they can only deal with limited-time
occlusions. On the other hand, RFS theory provides a natural framework to jointly
treat the detection and tracking problem. The state variable at interest here, the
operator, is a set that is either empty or contains exactly one element.

5.2 Related Work

Few integrated systems for operator following have been presented as a whole.
Leigh et al. [LPOZ15] present a laser based people tracking approach. They detect
people using extracted clusters of laser measurements at leg height. The clusters are
then tracked using a combination of Kalman filter and GNN matching. Gockley et
al. [GFS07] focus on the social aspect of people following in human-computer
interaction. Their tracker is a simple particle filter on laser detections.

More frequently, operator following is solved as part of a multi-object tracking
system. For example, Topp and Christensen [TC05] design a multiple object tracker
for following and passing persons. Detections are laser-based and the tracker uses a
sample-based JPDA filter. Munaro et al. [MBM12] design a multiple object tracking
system with GNN data association based on Kinect RGB-D detections. They first
find candidate clusters in the 3D point cloud. Then, they classify candidates with
a support vector machine that is trained on histograms of oriented gradients. They
apply the system to follow people in domestic environments.
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In recent revisitations, classical online multi-object tracking frameworks have
shown competitive performance when compared to more recent batch algorithms.
Notably, Kim et al. [KLCR15] show that the classical MHT algorithm [Rei79] can
achieve state-of-the-art results when combined with a visual classifier. Rezatofighi
et al. [HRMZ+15] have investigated an efficient solution to the JPDA that, com-
bined with a heuristic track handling scheme, achieves competitive results in dense
tracking scenarios with substantial occlusions, false alarms, and missed detections.
These methods are, however, only capable of short-term tracking. On the other
side are tracking approaches based on FISST [Mah07b], a specialized mathemat-
ical theory for set-valued random variables. Within this theoretical framework, a
number of recursive state estimators have been proposed. For example, the PHD
filter [Mah03] is a moment approximation of the set-valued multi-object Bayes
filter that is computationally efficient and has successfully been applied to various
tracking tasks, e.g., [PVS+04, JB09, KLW+10, MĆP15]. In the case of a single
target that is tracked through clutter, the Bernoulli filter [RVVF13] represents
an exact solution to the Bayes recursion under consideration of data association
uncertainty.

The problem formulation closest to the specific application scenario that is
considered here can be found in a visual object tracking context. The problem
is posed in an incremental learning framework that recovers from occlusions and
tracking failures. For example, Hare et al. [HGS+16] apply a budgeted kernel
support vector machine on a combination of Haar-like, histogram, and raw pixel
features. They also propose to integrate this classifier into a structured prediction
task to better cope with decreasing localization accuracy that is due to continuous
model adaption. Nebehay et al. [NP14] explicitly address tracking articulated
and deformable objects. They find matching key-points between successive frames
based on descriptor similarity. Then, they group correspondences based on observed
motion. While the work in this thesis is mostly in line with these methods, it tackles
different aspects of the problem: Since RGB-D data is available, the tracking system
does not suffer from drift and allows for more accurate integration of object motion
models. Further, since the goal is to track pedestrians specifically, a specialized
representation space can be employed that is optimized for this purpose.

5.3 Joint Detection and Tracking

A key characteristic of the detection and tracking problem is that the operator
may be absent from the scene at a particular point in time. Therefore, the system
must decide whether the operator is currently present and, if yes, at which location.
In Section 2.1.3 the Bernoulli RFS has been introduced as a set-valued random
variable that is either empty or contains exactly one element. This class of RFSs
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provides a natural representation for the joint detection and tracking problem
because the multi object density (c.f. Equation 2.15)

π(X) =





1 − q if X = ∅,

q · p(x) if X = {x},

0 otherwise,

(5.1)

of a Bernoulli RFS X captures both the uncertainty about the probability of
existence and the location of the operator. This set-valued problem formulation
has the following benefits over a conventional vector-valued formulation: (1) The
representation can deal with situations where the operator disappears and later
re-enters the sensor field without any additional logic built on top of the tracking
framework. (2) For this particular class of RFSs, a tractable implementation of the
optimal multi-object Bayes filter exists. The Bernoulli filter [RVVF13] propagates
the multi-object density of a Bernoulli state RFS under consideration of data
association ambiguities that arise from additional clutter returns in the sensor
field. By following a RFS methodology, hard decision on data association are
avoided and left for the tracker to resolve. This is particularly important because
a wrong decision on data association can be fatal for the operator following task if
decisions from the past cannot be corrected in the future. Then, the tracker focuses
on the wrong person from the point in time onwards where the error has been
made. Derived from multi-object calculus, the Bernoulli filter considers multiple
association hypotheses implicitly and, therefore, potentially recovers from errors
that have been made in the past.

5.3.1 System Representation

The standard multi-object system representation has been presented in Section 2.2
as a formal model for the evolution of a multi-object state and the process by which
measurements are generated. In this chapter, the representation must be adapted
to account for the particular problem characteristics at hand. In the joint operator
detection and tracking problem, the multi-object state at time k is the union of
two disjoint sets

Xk = X
(0)
k ∪ X

(1)
k (5.2)

in which non-operators in X
(0)
k are explicitly distinguished from the operator X

(1)
k .

This modeling attributes to the fact that the operator moves in a populated en-
vironment. In particular, the sensor responds not only to detections originating
from the operator, but to any person in the sensor field. Therefore, the set of
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measurements at time k is a union of clutter returns, measurements that originate
from non-operators, and up to one measurement that originates from the operator:

Zk = Kk ∪




⋃

xk∈X
(0)
k

Hk(x)


 ∪




⋃

xk∈X
(1)
k

Hk(x)


 . (5.3)

Following the modeling in Section 2.2, clutter Kk is Poisson with intensity ck(z)
and Hk(x) is a Bernoulli RFS with parameters {pD(x), pk(z | x)}. In this appli-
cation, non-operators are modeled as Poisson RFS with multi-object density (c.f.
Equation 2.13)

π
(0)
k (X) = e−

∫
v

(0)
k

(x) dx
∏

x∈X

v
(0)
k (x) (5.4)

such that the statistics of non-operators are completely characterized by their
intensity v

(0)
k (x). If there is at most one operator present, then X

(1)
k is a Bernoulli

RFS with multi-object probability density

π
(1)
k (X) =





1 − q
(1)
k if X = ∅,

q
(1)
k · p

(1)
k (x) if X = {x},

0 otherwise,

(5.5)

where q
(1)
k is the probability that the operator is currently present and p

(1)
k (x)

is the spatial density. In the following, the statistics of non-operators X
(0)
k and

operator X
(1)
k are estimated by a PHD filter and a Bernoulli filter that run in

parallel and interact in a combined update.
For the purpose of a unified system description, let xk = (x, y, ẋ, ẏ)T denote a

single-object state that contains position and velocity and let β ∈ {0, 1} denote a
binary class label that takes on 0 for non-operators and 1 for the operator. Then,
it is assumed that the operator does not change identity throughout the tracking
application:

pk|k−1(x, β | x′, β′) =





pk|k−1(x | x′) if β = β′,

0 otherwise.
(5.6)

In consequence, PHD and Bernoulli filter are non-interacting during the prediction
step. The state transition density pk|k−1(x | x′) follows a constant velocity motion
model in this application, both in the PHD filter that is used to track non-operators
as well as in the Bernoulli filter that is used to track the operator. A description
of the constant velocity motion model is given in Appendix B.1.

Measurements are collected from a mobile robot by application of a standard
pedestrian detector, e.g., from leg segmentation of laser scans [AMB07] or from 3D
point clusters obtained by a Microsoft Kinect [MBM12]. The sensor is calibrated
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against a color camera to perform image-based operator classification. Therefore,
each measurement z = (y, s)T contains a ground plane position y = (x, y)T and
a classification confidence score s that is the distance to the decision surface.
Section 5.3.3 outlines how this classifier is trained to discriminate the operator
from remaining people. For integration into the detection and tracking module, the
measurement likelihood is factorized into a spatial component and an appearance
likelihood

pk(y, s | x, β) = pk(y | x)p(s | β) (5.7)

with appearance taken independent of location. In the remainder of this chapter

p
(β)
k (z | x) = pk(y | x | p)(s | β) (5.8)

will be used to refer to the measurement likelihood of non-operators (β = 0) and
operator (β = 1).

With exception of the combined filter update, the joint operator detection
and tracking framework can be implemented based on this system description
by a straight-forward application of the PHD and Bernoulli filter. Therefore, the
remainder of this section will focus on the combined update step. Pseudo code for
the PHD filter has been given in Section 2.3.3. An extensive tutorial on the Bernoulli
filter, including a sequential Monte-Carlo and Gaussian mixture implementation,
can be found in [RVVF13]. For completeness, the Gaussian mixture Bernoulli filter
recursion is also provided in Appendix D.

5.3.2 Interacting Bernoulli/PHD Filter Update

The hybrid state space model with a common measurement space in Equation 5.2
and 5.3 has previously been studied by Mahler et al. [MVV11] in a PHD filter ap-
plication where the clutter profile is estimated directly from data. Their derivation
leads to a parallel execution of two PHD filters to jointly estimate true targets
and clutter dynamics. The derivations in [MVV11] can be summarized as follows.
If v

(β)
k|k−1(x) denotes the predicted intensity of non-operators (β = 0) and opera-

tor (β = 1) respectively, then the posterior intensity can be computed by [MVV11]

v
(β)
k (x) = [1 − pD(x)] v

(β)
k|k−1(x)+

∑

z∈Zk

pD(x)p
(β)
k (z | x)v

(β)
k|k−1(x)

ck(z) +
∑1

i=0

∫
pD(x)p

(i)
k (z | x)v

(i)
k|k−1(x) dx

,
(5.9)

where a common probability of detection pD(x) has been assumed. In essence,
Equation 5.9 resembles a standard PHD filter update with an additional term in
the denominator of measurement-corrected partitions that accounts for the PHD
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(0)
k (x)
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Non-operators

Figure 5.3: Interacting Bernoulli/PHD filter update: Schematic chart of the PHD filter
update.

likelihood of v
(1−β)
k|k−1(x) (c.f. Equation 2.22). Note that the same result could be

established by application of the standard PHD update when each filter is updated
according to a clutter set

Kk
(β) = Kk ∪




⋃

xk∈X
(1−β)
k

Hk(x)


 (5.10)

with intensity1

ck
(β)(z) = ck(z) +

∫
pD(x)p

(1−β)
k (z | x)vk|k−1

(1−β)(x) dx. (5.11)

Therefore, the operator represents itself to non-operators as an additional clutter
source and vice versa.

Within the operator detection and tracking application, this framework is used
to update the PHD filter and the Bernoulli filter jointly. Figure 5.3 illustrates the
PHD filter update. First, the intensity of the operator RFS is constructed from the
multi-object probability density by

v
(1)
k|k−1(x) = q

(1)
k|k−1 · p

(1)
k|k−1(x). (5.12)

As noted in Section 2.1.3, this conversion is exact because the multi-object density
of a Bernoulli RFS can be converted to and recovered from its intensity without loss

1Given two independent Poisson RFS X1 and X2 with intensity v1(x) and v2(x), the intensity
of the union X1 ∪ X2 is v1(x) + v2(x) [Mah07b]. In Equation 5.11, the first term is the clutter

intensity and the second term is the intensity of measurements generated by objects in X
(1−β)
k .



5.3. JOINT DETECTION AND TRACKING 107

πk−1(X)

Predict

πk|k−1(X)
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vk−1(x)

Predict
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Operator

Non-operators

clutter

Figure 5.4: Interacting Bernoulli/PHD filter update: Schematic chart of the Bernoulli
filter update.

of information. Then, Equation 5.9 is used to compute the posterior intensity of non-
operators. In similar vein, non-operators are considered during the Bernoulli filter
update by using a clutter intensity that accounts for v

(0)
k|k−1(x) using Equation 5.11

with β = 1. This is illustrated in Figure 5.4.

5.3.3 Classification and Online Learning

The purpose of the classifier in the joint detection and tracking module is twofold:
First, appearance aids the tracking component in case of occlusions when the uncer-
tainty associated with the kinematic state increases. Second, and more importantly,
if no extraneous information about where and when the operator enters the scene
is available, appearance is necessary to discriminate the operator from any other
person entering the scene. In Chapter 3, a CNN has been trained on a large-scale
person re-identification dataset to be generally applicable to the task of discriminat-
ing people from one another. For the operator detection and tracking application,
the final classification layer of this network is replaced by a linear support vector
machine with squared hinge loss [Tan13]. Then, the network is fine-tuned to the
operator classification task by keeping the parameters of the encoder network fixed,
such that only the parameters of the classifier are adapted to the new scenario.
The squared hinge loss is chosen over a softmax loss because in the online tracking
scenario training data is scarce. By using a hinge loss function, the parameters of
the classifier are only so much adapted as necessary to keep a margin between the
positive and negative examples. The softmax classifier on the other hand would
pull both classes indefinitely far apart. This could potentially lead to overfitting
on few training examples that exist early on in tracking.
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At each time step, training is carried out on newly arrived detections and a
random selection of detections from the past by running a fixed number of iterations
stochastic gradient descent. In order to avoid problems due to imbalanced classes—
the number of positive training examples is much less than the number of negative
examples when multiple non-operators are present in the scene—an equal number
of positive and negative images is randomly sampled at each iteration. Since the
Bernoulli filter does not perform explicit data association, training labels must be
extracted by a heuristic scheme: At each time step, the detection corresponding to
the most likely operator location is taken as positive example, remaining detections
are used as negative examples. Further, the classifier is only trained when the
probability of existence is above a predefined threshold to avoid learning when the
operator is currently not visible or when the probability of existence is just building
up on re-entrance into the scene.

5.4 Experiments

Joint operator detection and tracking is a very specific problem. Existing people
tracking datasets have either been created for evaluation of multi-object track-
ing systems, or do not contain a combination of LIDAR and image data. There
exists no publicly available dataset that targets the specific task of tracking a
single operator and contains all required sensor data. In order to evaluate all the
specific components of the system under these circumstances, experiments are
carried out as follows. First, the system is evaluated on a widely accepted multi-
object dataset [FS09] by tracking single individuals from a given starting position.
Then, the Bernoulli filter is applied to a custom dataset with common pitfalls spe-
cific to single-operator tracking, in particular operator disappearance and re-entry.
These situations are not commonly modeled in multi-object datasets. The method
is compared against two well-established visual object tracking systems, namely
CMT [NP14] and Struck [HGS+16], to establish a comparison against the current
state of the art. Performance is measured in terms of a binary classification prob-
lem: (1) A precision score indicates the fraction of reported operator locations that
coincide with the ground truth location, (2) a recall score indicates the fraction
of ground truth locations that have been reported by the tracker. In addition, the
number of ID switches is counted, that is the number of times that the tracker
switches between an object identity.

5.4.1 Parametrization

The evaluated system is based on a Gaussian mixture implementation of the
Bernoulli and PHD filter. A single set of parameters is adopted in all experiments.
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The constant velocity motion model adds isotropic noise with standard devia-
tion ∆t · 1 m for the position and ∆t · 1 m s−1 for the velocity, where ∆t is the time
gap between consecutive frames. The spatial component of the measurement model
adds isotropic noise with standard deviation 0.1 m. In addition, the following set
of parameters are used for the Bernoulli and PHD filter: The probability of sur-
vival is set to 0.95 and the probability of detection is set to 0.7. Birth components
are created around each measurement as in the PHD filter of Section 2.3.3. The
PHD likelihood of birth components is set to 3 × 10−2 m−1. The clutter intensity
is set to ck(z) = 3 × 10−2 m−1. At the beginning of the experiment, a single Gaus-
sian birth component is centered around the known operator location to initiate
tracking. The probability of existence of the operator state is clamped at 1 × 10−4

to prevent this value to become indefinitely small when the operator leaves the
field of view. To measure the impact of the classification module on overall re-
sults, all experiments are run once with and once without appearance information.
When classification is enabled, the class-conditional appearance likelihood is mod-
eled by two normal distributions placed on each side of the decision boundary,
i.e., N (s; −m, 12) and N (s; m, 12) where m is the margin of the squared hinge loss
used for training. Without classification module, only the spatial component of the
measurement model is taken into account.

5.4.2 PETS 2009

In the first experiment, the Bernoulli filter is applied to sequence S2L1 of the
PETS 2009 [FS09] dataset. This sequence is only moderately crowded, but con-
tains complex interactions and occlusions against static scene geometry. Bounding
box detections and ground truth have been taken from the MOT challenge bench-
mark [LTMR+15]. Individuals that have been selected for the purpose of evaluation
have been chosen to reflect a variety of appearances and difficulty levels. The results
are summarized in Table 5.1. In general, the Bernoulli filter performs favorable
compared to CMT and Struck. On all sequences, the Bernoulli filter obtains the
highest precision and fewest ID switches. In particular, the Bernoulli filter with
integrated classifier successfully discriminates the operator from remaining pedes-
trians, thus reaching a 100% precision score and 0 identity switches. However, the
Bernoulli filter fails to pick up the correct object identity after long-term occlusion
against static scene geometry (identity 3) without classifier (motion only). In this
case, motion uncertainty raises to a level where the operator cannot be identi-
fied purely based on its position. Struck and CMT generally perform considerably
worse. Struck successfully tracks the operator in two out of the four evaluation
scenarios (identity 1 and 7). CMT generally looses the operator early on during
tracking, as indicated by low recall rates. The lower performance of Struck and
CMT may be attributed to the more general tracking application they have been
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Precision Recall ID

Identity 1
CMT [NP14] 0.2526 0.2522 12
Struck [HGS+16] 0.9212 0.9212 5
Bernoulli filter (motion & appearance) 1.0000 0.8984 0
Bernoulli filter (motion only) 0.6056 0.4518 3

Identity 3
Ours (motion & appearance) 1.0000 0.7444 0
Ours (motion only) 0.1473 0.1241 0
CMT [NP14] 0.5434 0.5414 1
Struck [HGS+16] 0.2105 0.2105 2

Identity 7
CMT [NP14] 0.6713 0.6098 2
Struck [HGS+16] 1.0000 1.0000 0
Bernoulli filter (motion & appearance) 1.0000 0.9390 0
Bernoulli filter (motion only) 1.0000 0.8537 0

Identity 9
CMT [NP14] 0.1699 0.1699 8
Struck [HGS+16] 0.6795 0.6795 8
Bernoulli filter (motion & appearance) 1.0000 0.8243 0
Bernoulli filter (motion only) 0.9891 0.6988 0

Table 5.1: Results on PETS 2009 S2L1 [FS09]. The best performing method is shown in
red, the first runner up in blue. Refer to the tracking output in Figure 5.6 for a qualitative
analysis.

.

designed for: Whereas the operator classifier in the Bernoulli filter is trained on
positive and negative detections throughout the online tracking application, Struck
and CMT collect negative training examples from the entire image, thus yielding
a less informed model with respect to discrimination between persons in the scene.
Further, Struck and CMT utilize a more general feature space that has not been
designed for people tracking specifically. For a qualitative assessment of tracking
performance, a selection of images is shown Figure 5.6.

5.4.3 Custom Datasets

In a second experiment, the performance of the Bernoulli filter is evaluated on a
custom dataset that is specific to operator tracking. These sequences exhibit long-
term occlusions and operator disappearances to stress the re-detection component
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Precision Recall ID

Sequence 1
CMT [NP14] 0.6849 0.6849 –
Struck [HGS+16] 0.7112 0.7112 –
Bernoulli filter (motion & appearance) 1.0000 0.6083 0
Bernoulli filter (motion only) 0.7761 0.4551 5

Sequence 2
CMT [NP14] 0.6518 0.6518 –
Struck [HGS+16] 0.6196 0.6196 –
Bernoulli filter (motion & appearance) 1.0000 0.7411 0
Bernoulli filter (motion only) 0.9805 0.6286 2

Sequence 3
CMT [NP14] 0.3787 0.3787 –
Struck [HGS+16] 0.1837 0.1837 –
Bernoulli filter (motion & appearance) 0.9097 0.6168 3
Bernoulli filter (motion only) 0.6878 0.3447 6

Table 5.2: Results on custom datasets. The best performing method is shown in red, the
first runner up in blue. No identity switches are reported for CMT and Struck because
both trackers loose the object early on when the operator turns away from the camera.
Refer to the tracking output in Figure 5.7 for a qualitative analysis.

of the tracking system. The dataset has been collected from a domestic service
robot that is equipped with a Microsoft Kinect 2. Detections have been generated
using a people detector [MBM12] that is available in current releases of PCL [RC11].
This detector generates point clusters on the ground plane which are subsequently
filtered and classified. In total, three sequences of different complexity have been
collected:

• Sequence 1: In this sequence, the operator walks away from the robot; people
cross the path to block the view.

• Sequence 2: This sequence is similar to the first, but two identities wear
identical shirts.

• Sequence 3: The most challenging sequence exhibits complex motion, interac-
tion, and longer periods of operator disappearance. In addition, all identities
are similarly dressed (c.f. Figure 5.5).

The ground truth operator position is obtained from a motion capturing system that
is built of 12 OptiTrack Prime 13 cameras. These cameras record the 3D position of
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Figure 5.5: In sequence 3 of the custom dataset similar clothing stresses the re-
identification component of the tracking framework.

the operator and the robot position at 120 Hz. For evaluation, detections and ground
truth positions have been projected into the RGB-D camera frame. The results
of the second experiment are summarized in Table 5.2. Again, Struck and CMT
perform considerably worse than the Bernoulli filter. In particular, both approaches
struggle with sudden appearance changes, e.g., due to the operator turning away
from the camera in the beginning of the sequence. The Bernoulli filter on the
other hand reliably tracks the operator throughout most of the sequences. The
only tracking failure on the custom dataset occurred in the third, most challenging
sequence. In this case, all identities are similarly dressed and discrimination based
on object appearance alone is challenging (c.f. Figure 5.5). Consequently, during
a period of longer absence from the scene the Bernoulli filter picks up a wrong
identity twice before the operator is re-detected. A selection of images is shown in
Figure 5.7 for a qualitative assessment of tracking performance.
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(a)

(b)

Figure 5.6: Tracking output on PETS 2009 [FS09] sequence S2L1. (a) shows results
for identity 1; top to bottom: Bernoulli filter (appearance & motion), Bernoulli filter
(motion), CMT [NP14], Struck [HGS+16]. (b) shows results for Bernoulli filter (appear-
ance & motion); top to bottom: Identity 3, 7, 9. Detections are visualized as red boxes.
The reported operator location is highlighted in green. A confidence ellipse shows the
estimated location on the ground plane in case of the Bernoulli filter.



114 CHAPTER 5. OPERATOR FOLLOWING

(a)

(b)

Figure 5.7: Tracking output on custom dataset. (a) shows results for sequence 1; top to
bottom: Bernoulli filter (appearance & motion), Bernoulli filter (motion), CMT [NP14],
Struck [HGS+16]. (b) shows results for Bernoulli filter (appearance & motion) on sequence
2 (top) and sequence 3 (bottom). Detections are visualized as red boxes. The reported
operator location is highlighted in green.



Chapter 6

Conclusion and Future Work

This thesis has studied random finite sets in computer vision and robotics applica-
tions. The work has focused on two application scenarios. The first scenario was
a general multiple object tracking application which has been approached with
a method that combines efficient multi-object recursive filtering with global op-
timization in the search for object trajectories. The second scenario was a single
operator detection and tracking task that has been solved using a combination
of specialized filters from random finite set theory. Finally, appearance modeling
and feature learning has been addressed as a fundamental necessity for successful
application of any method to visual tracking scenarios.

The results obtained during evaluation on public benchmarks have underlined
the importance of good feature engineering on overall performance. The top per-
forming methods put strong emphasis on this aspect of the tracking problem. There-
fore, this is also the most promising direction to follow in future work. Within this
thesis, feature learning has been addressed in a deep metric learning framework.
A light-weight CNN architecture has been proposed for the people tracking ap-
plication at hand. This architecture has shown to provide a very good trade off
between computational complexity and model performance. In particular, the pro-
posed network has surpassed a much higher capacity network when trained models
were transferred from the person re-identification dataset to multi-object tracking
datasets. The training of this network has been approached in a joint classification
and metric learning framework. For this purpose, a re-parametrization of the con-
ventional softmax classifier has been presented that enables metric learning to be
posed in a classification objective. Trained in this regime, the final model perfor-
mance of the network has been consistently improved compared to baseline direct
metric learning methods. However, evaluation has also shown that overall model
performance drops when the network is transfered from the person re-identification
to the tracking domain. More specifically, experimental results suggest that the
network can successfully guide data association on a frame-by-frame basis and that
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it can handle short-term occlusions, but discriminative capabilities degrade when
objects are occluded for multiple seconds. Since the network has shown robust-
ness towards articulation and changing background on the re-identification test
split, the problem is likely due to a distributional shift caused by changing from
the re-identification to the tracking dataset. It is left for future work to study by
which extent the performance can be improved using unsupervised domain adap-
tion [WBP17b, KXFG15]. Similarly, future work could also investigate whether
more advanced data augmentation techniques can improve the performance. Due
to the tracklet-based annotation procedure by which the ground truth has been
established on the person re-identification dataset, many samples contained in the
training set have similar visual appearance. Possibly, variability in the training data
can be improved by adding virtually generated samples from generative adversarial
networks [GPAM+14]. This methodology has led to increased performance in other
applications [SPT+17]. Further, though evaluation was only carried out in a person
re-identification and tracking environment, the presented training regime is general,
and not limited to these specific applications. In future work, the proposed method
could be validated with higher-capacity networks, pre-training on ImageNet, and on
more diverse datasets and applications, to study the applicability to general metric
learning tasks such as face verification [HRBLM07] and object retrieval [PCI+07].

The MCF-PHD tracker has been proposed as a general multi-object tracker that
integrates higher-order motion models into a min-cost flow tracking formulation
via multi-object recursive filtering. For this purpose, the PHD filter was re-written
in terms of measurement-oriented track hypotheses that are proportional to par-
titions of the multi-object intensity. These tracks were subsequently linked into
globally consistent trajectories. The objective function was formulated as a PHD
likelihood ratio that takes on positive values if the observation sequence is more
likely generated by an object than clutter. Due to this property, the number of
objects could be inferred effectively along with the trajectories in a min-cost flow
problem. Derivation of the objective function was largely led by intuition and an
explanation in terms of conventional Bayesian filtering rather than strictly formal
treatment in the random finite set paradigm. In particular, support for the ap-
proach has been established by a comparison to the objective function used in
MHT. Future work could further investigate the formal relationship to existing
methods. The MeMBer filter [VVC09] may provide the necessary framework to
approach the problem formally in the random finite set paradigm. Compared to the
PHD filter, the MeMBer filter propagates a full multi-Bernoulli posterior density
that factorizes into measurement-oriented tracks similar to the track hypotheses
that are formed in the track-oriented PHD filter. Further, recent research has led to
a derivation of MHT using the multi-object calculus of finite set statistics [BC17].
This formulation is based on an alternative view that explicitly considers associa-
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tion hypotheses that are only handled implicitly in the PHD filter. Since MHT and
the PHD filter largely follow the same modeling assumptions, a formal relationship
that has not been established in this thesis may be derived from their work.

In practice, the key strength of the MCF-PHD tracker is the integration of object
motion models into the min-cost flow problem without increasing the cost of data
association. Experimental results suggest that motion significantly contributes to
the overall performance of the tracker. On all benchmarks, the MCF-PHD tracker
has shown superior performance to min-cost flow formulations that utilize static fea-
tures only. Compared to an implementation of MHT with CNN features [KLCR15],
the MCF-PHD tracker has shown to produce more ID switches. Future work
could investigate whether this gap can be bridged by integration of higher-order
appearance information within the recursive filtering framework, similar to how
object motion is handled. An alternative direction to consider is the following:
multi-object recursive filtering provides an estimate for the number of objects in
the scene. This information cannot be underestimated. If the number of objects
is known, the combinatorial complexity of data association reduces significantly
because it limits the number of possible object trajectories. Therefore, future work
could explore new ways in which multi-object filtering in general and the cardinality
estimate in particular can be help the search for high quality, globally consistent
trajectories. For example, if the trajectory starting points are known, then identity-
specific classifiers can be incorporated in a multi-commodity flow network from
which high quality solutions can be obtained using branch-and-bound [JFL07] or
Lagrangian relaxation [DTTS15]. Such a formulation would be much more robust
in terms of identity switches because it relaxes the restriction to pairwise appear-
ance costs through integration of global appearance models. Future work could
investigate whether trajectory starting points can be obtained from multi-object
filtering efficiently.

The final part of this thesis has been dedicated to a single operator detection
and tracking task in which the tracked person can leave and re-enter the scene at
any time. The Bernoulli filter has been shown to provide a natural representation
for this type of problem. The filter has been combined with a PHD that was
used to estimate the intensity of non-operators in the scene in order to suppress
detection responses corresponding to remaining people in the environment. Both
filters interacted in a combined update step. In order to increase the performance of
the tracker and in order to enable re-detection on re-entry into the scene, a classifier
has been integrated into the measurement likelihood function. Results obtained
during the experimental evaluation suggest that this formulation is capable of
robust operator detection and tracking, in principle. However, similarly clothing
still poses a challenge to the system. This problem is best addressed in the feature
representation that is learned offline, before the actual tracking application or in
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the online learning component of the tracker. Therefore, any progress in metric
learning directly contributes to the performance of the operator detection and
tracking system.



Appendix A

Metric Learning Plots

Plots A.1–A.4 show histograms of the cosine similarity between image pairs of
the same identity (positive pair) and image pairs of different identities (negative
pair) for time gaps 1, 10, 20, 30, 40 and cumulated histograms over all time gaps
from 1 to 50. The time gap refers to the time difference (number of frames) at the
observations within the pair. For example, the paired images have been observed in
consecutive frames if the time gap is 1. The plots are annotated with the histogram
intersection area and the sample mean and covariance. The results have been
obtained with the cosine softmax network trained on MARS [ZBS+16]. A plot of
the learned embedding on the MARS test split is shown in Figure A.5.

119



120 APPENDIX A. METRIC LEARNING PLOTS

0.0 0.2 0.4 0.6 0.8 1.0
Cosine similarity

0

2

4

6

8

10

12

All Sequences (Time Gap:  1, Intersection Area: 0.07)
(0.93, 0.052)
(0.56, 0.152)

Positive pairs
Negative pairs

0.0 0.2 0.4 0.6 0.8 1.0
Cosine similarity

0

1

2

3

4

5

6

7
All Sequences (Time Gap: 10, Intersection Area: 0.18)

(0.86, 0.082)
(0.55, 0.152)

Positive pairs
Negative pairs

0.0 0.2 0.4 0.6 0.8 1.0
Cosine similarity

0

1

2

3

4

5

6

All Sequences (Time Gap: 20, Intersection Area: 0.23)
(0.84, 0.092)
(0.55, 0.152)

Positive pairs
Negative pairs

0.0 0.2 0.4 0.6 0.8 1.0
Cosine similarity

0

1

2

3

4

5

All Sequences (Time Gap: 30, Intersection Area: 0.29)
(0.81, 0.102)
(0.55, 0.152)

Positive pairs
Negative pairs

0.0 0.2 0.4 0.6 0.8 1.0
Cosine similarity

0

1

2

3

4

All Sequences (Time Gap: 40, Intersection Area: 0.33)
(0.80, 0.112)
(0.55, 0.152)

Positive pairs
Negative pairs

0.0 0.2 0.4 0.6 0.8 1.0
Cosine similarity

0

1

2

3

4

5

All Sequences (Maximum Time Gap: 50, Intersection Area: 0.24)
(0.84, 0.102)
(0.55, 0.152)

Positive pairs
Negative pairs

Figure A.1: Cosine distance of positive and negative image pairs computed on the
ETH [ELSVG08] dataset, sequences Bahnhof and Sunnyday. The first five plots show the
cosine distance at time gaps 1, 10, 20, 30, 40. The last plot shows cumulated histograms
over all time gaps from 1 up to 50.
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Figure A.2: Cosine distance of positive and negative image pairs computed on the
TUD [ARS08] dataset, sequences Campus and Stadtmitte. The first five plots show the
cosine distance at time gaps 1, 10, 20, 30, 40. The last plot shows cumulated histograms
over all time gaps from 1 up to 50.
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Figure A.3: Cosine distance of positive and negative image pairs computed on the
PETS 2009 [FS09] dataset, sequences S1L1-1, S1L1-2, S1L2-1, S1L2-2, S2L1, S2L2, S2L3.
The first five plots show the cosine distance at time gaps 1, 10, 20, 30, 40. The last plot
shows cumulated histograms over all time gaps from 1 up to 50.
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Figure A.4: Cosine distance of positive and negative image pairs computed on the
KITTI [GLU12] dataset, training sequence 15–19. The first five plots show the cosine
distance at time gaps 1, 10, 20, 30, 40. The last plot shows cumulated histograms over
all time gaps from 1 up to 50.
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Figure A.5: This plot shows a visualization of the learned embedding on the MARS
test split obtained from t-SNE [VDM14]. Images that are close in the image are also close
in representation space. The identities shown here have not been used during training.



Appendix B

Single Object Modeling

B.1 Constant Velocity Motion Model

The following motion model describes the state evolution of an object that moves in
the two-dimensional plane following a linear motion pattern with constant velocity.
The state of this object at time k is modeled by a vector

xk =




xk

yk

ẋk

ẏk


 (B.1)

that contains the object’s position (xk, yk)T and velocity (ẋk, ẏk)T. Denote by ∆t
the elapsed time between time steps k and k + 1. Then, the evolution of the state

xk+1 = Fxk + ǫk (B.2)

is described by a normally distributed random vector ǫk ∝ N (0,Q) that charac-
terizes the uncertainty about the object’s motion and a state transition matrix

F =




1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1


 . (B.3)

If at time k − 1 the object state is normally distributed with mean mk−1 and
covariance Pk−1:

p(xk−1) = N (mk−1,Pk−1), (B.4)

then the predicted object state at time k is normally distributed as well

p(xk) = N (mk|k−1,Pk|k−1) (B.5)
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with mean and covariance

mk|k−1 = Fmk−1, (B.6)

Pk|k−1 = FPk|k−1F
T + Q. (B.7)

This is an example of the Kalman filter prediction step [TBF05].

B.2 Linear Measurement Model

The following observation model describes the measurement generation process for
an object state

xk =




xk

yk

ẋk

ẏk


 (B.8)

that contains the object’s position (xk, yk)T and velocity (ẋk, ẏk)T, to be used in
combination with the constant velocity motion model when the sensor directly
observes the object’s position zk = (xk, yk):

zk = Hxk + δk, (B.9)

where δk ∝ N (0,R) and

H =

(
1 0 0 0
0 1 0 0

)
. (B.10)

If at time k the predicted state is normally distributed with mean mk|k−1 and
covariance Pk|k−1:

p(xk) = N (mk|k−1,Pk|k−1) (B.11)

then the posterior is normal as well

p(xk | zk) = N (mk,Pk) (B.12)

with

mk = mk|k−1 + Kk (zk − nk) , (B.13)

Pk = Pk|k−1 − KkSkKk
T, (B.14)

where

Kk = Pk|k−1H
TS−1, (B.15)

nk = Hmk|k−1, (B.16)

Sk = HPk|k−1H
T + R. (B.17)

(B.18)

This is an example of the Kalman filter update step [TBF05].
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B.3 Linear Birth Model

This section describes how a partially observed object state can be initialized from
a given measurement. The model described here can be used in combination with
the linear measurement model of the previous section where the sensor measures
the object position

zk =

(
xk

yk

)
(B.19)

and the state contains the object’s position and velocity

xk =




xk

yk

ẋk

ẏk


 . (B.20)

If δk = N (0,R) denotes the measurement noise covariance, then

p(xk | zk) = N (mk,Pk) (B.21)

with mean and covariance

mk = (xk, yk, 0, 0)T, (B.22)

Pk =

(
R 0
0 σ2

vI

)
(B.23)

where I is a 2 × 2 identity matrix and σ2
v is the variance of a spherical Gaussian.





Appendix C

Comparison to Multiple
Hypothesis Tracking

The modeling assumptions underlying MHT differ from the multi-object system
representation in a few aspects. In order to compare the PHD recursion to MHT,
it is necessary to make the following assumptions:

1. The false alarm spatial density is uniform over a surveillance volume V and
the expected number of clutter returns per volume of measurement space
is λFA. Then, the false alarm rate is λ = λFA · V and the clutter intensity
becomes

ck(z) = λ ·
1

V
= (λFA · V ) ·

1

V
= λFA. (C.1)

2. Newly appearing objects are always detected and the PHD likelihood of each
appearing object is equal to

τ
(u)
k (z) = (λnew · V ) ·

1

V
= λnew. (C.2)

3. The probability of detection and the probability of survival are constant,
i.e., pD(x) = pD and pS(x) = pS.

Entry Cost Under the given premises, the cost (4.23) of starting a trajectory at
measurement zk,j simplifies to

centry(zk,j) = − log
τ

(u)
k (zk,j)

ck(zk,j)
= − log

λnew

λFA

. (C.3)

This is a direct consequence of assumptions 1 and 2.
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Transition Cost Consider track hypothesis v
(t,i)
t (x) that is created according to

Equation 4.11 at time t where measurement zt,i has been observed:

v
(t,i)
t (x) =

pD(x)pt(zt,i | x)vt|t−1(x)
∫
pD(x)pt(zt,i | x)vt|t−1(x) dx

. (C.4)

The predicted intensity vt|t−1(x) of multi-object state Xt characterizes a Pois-
son RFS that contains N̂t|t−1 =

∫
vt|t−1(x) dx i.i.d. objects that are distributed

according to pt|t−1(x) = vt|t−1(x)/N̂t|t−1. For a constant probability of detec-
tion pD(x) = pD Equation 4.11 simplifies to

v
(t,i)
t (x) =

pD(x)pt(zt,i | x)vt|t−1(x)
∫
pD(x)pt(zt,i | x)vt|t−1(x) dx

(C.5)

=
N̂t|t−1 pD pt(zt,i | x)pt|t−1(x)

N̂t|t−1 pD

∫
pt(zt,i | x)pt|t−1(x) dx

(C.6)

=
pt(zt,i | x)pt|t−1(x)

∫
pt(zt,i | x)pt|t−1(x) dx

. (C.7)

Therefore, track hypothesis v
(t,i)
t (x) follows a conventional Bayes update of pt|t−1(x)

with measurement zt,i and the intensity mass
∫

v
(t,i)
t (x) dx = 1 evaluates to one.

At times l = t + 1, . . . , k this track hypothesis is propagated in time according
to the track-oriented PHD recursion (4.5) and (4.9):

v
(t,i)
l|l−1(x) = pS

∫
pl|l−1(x | x′)v

(t,i)
l−1 (x′) dx′, (C.8)

v
(t,i)
l (x) = (1 − pD) v

(t,i)
l|l−1(x), (C.9)

where again constant survival and detection probabilities have been used. In to-
tal, k − t prediction steps (C.8) and k − t − 1 update steps (C.9) are applied to
generate v

(t,i)
k|k−1(x) from v

(t,i)
t (x). Therefore, the intensity mass of the predicted

track hypothesis at time k evaluates to

η
(t,i)
k|k−1 =

∫
v

(t,i)
k|k−1(x) dx = pS

k−t · (1 − pD)k−t−1. (C.10)

Denote by p
(t,i)
k|k−1(x) = (η

(t,i)
k|k−1)

−1
· v

(t,i)
k|k−1(x) a probability density function that is

proportional to intensity v
(t,i)
k|k−1(x). Then, this density arises as a consequence of

a Bayes update of pt|t−1(x) with zt,i (c.f. Equation C.7) followed by k − t Bayes
filter prediction steps (c.f. Equation C.8). The intensity can be written in terms of
this probability density as follows:

v
(t,i)
k|k−1(x) = η

(t,i)
k|k−1 · p

(t,i)
k|k−1(x) (C.11)

= pS
k−t · (1 − pD)k−t−1 · p

(t,i)
k|k−1(x). (C.12)
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Now, consider the cost (4.26) of linking two measurements zt,i at time t and
zk,j at time k > t on a trajectory. For a constant probability of detection and by
using Equation C.12 this can be written as

clink(zt,i, zk,j) = − log
τ

(t,i)
k (zk,j)

ck(zk,j)
(C.13)

= − log

∫
pD(x)pk(zk,j | x)v

(t,i)
k|k−1(x) dx

ck(zk,j)
(C.14)

= − log


pD pk−t

S (1 − pD)k−t−1

∫
pk(zk,j | x)p

(t,i)
k|k−1(x) dx

λFA


 (C.15)

= − log pD − log (pS)k−t − log (1 − pD)k−t−1

− log

∫
pk(zk,j | x)p

(t,i)
k|k−1(x) dx

λFA

.
(C.16)

Trajectory Cost The total cost of a trajectory Tm = {zTm(1), . . . ,zTm(Lm)} has
been defined in Equation 4.22 as a sum over an entry cost term and Lm−1 transition
cost terms:

Cm(Tm) = centry(zTm(1)) +
Lm∑

l=2

clink(zTm(l−1), zTm(l)). (C.17)

By substitution of Equation C.3 and Equation C.16 into Equation C.17 the total
trajectory cost becomes

Cm(Tm) = − log
λnew

λFA

−
Lm∑

l=2

log pD −
Lm∑

l=2

log (pS)kml
−kml−1

−
Lm∑

l=2

log (1 − pD)kml
−kml−1

−1

−
Lm∑

l=2

log

∫
pkml

(zTm(l) | x)p
(kml−1

,jml−1
)

kml
|kml

−1 (x) dx

λFA

,

(C.18)

where Tm(l) = (kml
, jml

), i.e., kml
denotes the time and jml

denotes the index
of the l-th measurement on the trajectory. Using

∑n
i=1 log xyi = log x(

∑n

i=1
yi)

and
∑Lm

l=2(kml
− kml−1

) = kmLm
− km1 , the trajectory cost can be written as

Cm(Tm) = − log
λnew

λFA

− log (pD)Lm−1 − log (pS)kmLm
−km1

− log (1 − pD)Um −
Lm∑

l=2

log

∫
pkml

(zTm(l) | x)p
(kml−1

,jml−1
)

kml
|kml

−1 (x) dx

λFA

,

(C.19)
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where Um =
∑Lm

l=2

(
kml

− kml−1
− 1

)
denotes the total number of missed detections

on the trajecory.
The score of a trajectory in MHT has been introduced in Equation 4.38. It is

re-stated here for a comparison:

S(Tm) = (pD)Lm−1 · (1 − pD)Um ·
λnew

λFA

·
Lm∏

l=2

p(zTm(l) | zTm(1), . . . ,zTm(l−1))

λFA

. (C.20)

The negative logarithm of this function is

− log S(Tm) = − log (pD)Lm−1 − log (1 − pD)Um − log
λnew

λFA

− log
Lm∏

l=2

p(zTm(l) | zTm(1), . . . ,zTm(l−1))

λFA

.

(C.21)

By comparison to Equation C.19, this function differs from the trajectory cost in
the following two aspects:

1. The trajectory cost (C.19) contains a constant cost term − log (pS)kmLm
−km1

that depends on the length of the trajectory. It accounts for a probability of
survival that does not exist in MHT. If the probability of survival pS = 1 is
one, this term vanishes from the trajectory cost of the MCF-PHD tracker.

2. The observation likelihood in MHT is computed under consideration of all
predecessors on the trajectory:

p(zTm(l) |zTm(1), . . . ,zTm(l−1)) =
∫

pkml
(zTm(l) | x)p(x | zTm(1), . . . ,zTm(l−1)) dx.

(C.22)

In the MCF-PHD tracker, this term is replaced by the observation likelihood
of a state x that is distributed according to a probability density function
that is proportional to the intensity of the predecessor’s track hypothesis:

∫
pkml

(zTm(l) | x)p
(kml−1

,jml−1
)

kml
|kml

−1 (x) dx. (C.23)

This probability density function arises from a Bayes update of pkml−1
|kml−1

−1(x)
of with measurement zTm(l−1) at time kml−1

and subsequent Bayes filter pre-
dictions up to time kml

.



Appendix D

Gaussian Mixture Bernoulli Filter

The following section presents the Gaussian mixture Bernoulli filter recursion as
given by Ristic et al. [RVVF13]. At time k − 1, let π

(1)
k−1 = {q

(1)
k−1, p

(1)
k−1(x)} denote

the parameters of a Bernoulli state RFS where q
(1)
k−1 denotes the probability of

existence and p
(1)
k−1(x) denotes the spatial density that is represented by a Gaussian

mixture

p
(1)
k−1(x) =

Lk−1∑

i=1

w
(i)
k−1N (x;m

(i)
k−1,P

(i)
k−1) (D.1)

with
∑Lk−1

i=1 w
(i)
k−1 = 1. Then, the parameters of the predicted multi-object den-

sity π
(1)
k|k−1 = {q

(1)
k|k−1, p

(1)
k|k−1(x)} can be established as follows. Denote by pS(x) = pS

a constant probability of survival, by

pk|k−1(x | x′) = N (x;Fmk|k−1,FPk−1F
T + Q) (D.2)

a linear Gaussian state transition model and by {qb,k, pb,k(x)} the parameters of a
Bernoulli birth RFS Bk that accounts for the object entering the scene at time k
with

bk(x) =
Lb,k∑

i=1

w
(i)
b,k N (x;m

(i)
b,k,P

(i)
b,k). (D.3)

Then, the parameters of the predicted multi-object probability density are:

q
(1)
k|k−1 = qb,k

(
1 − q

(1)
k−1

)
+ pSq

(1)
k−1, (D.4)

p
(1)
k|k−1(x) =

qb,k

(
1 − q

(1)
k−1

)

q
(1)
k−1

bk(x)

+
pS q

(1)
k−1

q
(1)
k−1

Lk−1∑

i=1

w
(i)
k−1N (x;Fm

(i)
k−1,FP

(i)
k−1F

T + Q).

(D.5)
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Given a linear measurement model

pk(z | x) = N (z;Hx,HPk|k−1H
T + R) (D.6)

and a constant probability of detection pD(x) = pD, the parameters πk = {q
(1)
k , p

(1)
k (x)}

of the posterior multi-object density can be computed by

q
(1)
k =

1 − ∆k

1 − q
(1)
k|k−1∆k

q
(1)
k|k−1, (D.7)

p
(1)
k (x) =

1 − pD

1 − ∆k

p
(1)
k|k−1(x) +

pD

1 − ∆k

·
∑

z∈Zk

Lk|k−1∑

i=1

w
(i)
k|k−1l

(i)
k (z)

ck(z)
N (x;m

(i)
k (z),P

(i)
k ),

(D.8)

∆k = pD


1 −

∑

z∈Zk

Lk|k−1∑

i=1

w
(i)
k|k−1l

(i)
k (z)

ck(z)


 , (D.9)

where ck(z) is the intensity of the Poisson clutter RFS and

m
(i)
k (z) = m

(i)
k|k−1 + K

(i)
k

(
z − n

(i)
k

)
, (D.10)

P
(i)
k = P

(i)
k|k−1 − K

(i)
k S

(i)
k K

(i)
k

T
, (D.11)

l
(i)
k (z) = N (z;n

(i)
k ,S

(i)
k ), (D.12)

n
(i)
k = Hm

(i)
k|k−1, (D.13)

S
(i)
k = HP

(i)
k|k−1H

T + R, (D.14)

K
(i)
k = P

(i)
k|k−1H

THk
−1. (D.15)

Refer to [RVVF13] for an extensive tutorial on the Bernoulli filter, including pseudo
code for a sequential Monte-Carlo implementation and practical applications to
unconventional problems.



Appendix E

Results on 2D MOT 2015

The following table contains the full list of published submissions to the 2DMOT2015 [LTMR+15]
benchmark.
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Method MOTA MT ML ID FM FP FN Avg
Rank

Hz

APRCNN_Pub [CAS+17] 38.5 8.7% 37.4% 586 1263 4005 33203 15.0 6.7

AMIR15 [SAS17] 37.6 15.8% 26.8% 1024 2024 7933 29397 19.8 1.9

HybridDAT [YWJ17] 35.0 11.4% 42.2% 358 1267 8455 31140 17.4 4.6

AM [COL+17] 34.3 11.4% 43.4 348 1463 5154 34848 18.4 0.5

TSMLCDEnew [WWCW17] 34.3 14.0% 39.4% 618 959 7869 31908 20.8 6.5

QuadMOT [SBCH17] 33.8 12.9% 36.9% 703 1430 7898 32061 23.9 3.7

NOMT [Cho15] 33.7 12.2% 44.0% 442 823 7762 32547 18.2 11.5

TDAM [YJ16] 33.0 13.3% 39.1% 464 1506 10064 30617 23.4 5.9

CDA_DDALpb [BY17] 32.8 9.7% 42.2% 614 1583 4983 35690 23.8 2.3

MHT-DAM [KLCR15] 32.4 16.0% 43.8% 435 826 9064 32060 20.8 0.7

MDP [XAS15] 30.3 13.0% 38.4% 680 1500 9717 32422 26.5 1.1

MCF-PHD tracker 29.9 11.9% 44.0% 656 989 8892 33529 24.4 12.2

CNNTCM [WWS+16] 29.6 11.2% 44.0% 712 943 7786 34733 25.4 1.7

SCEA [HYLYY16] 29.1 8.9% 47.3% 604 1182 6060 36912 29.8 6.8

SiameseCNN [LTCFS16] 29.0 8.5% 48.4% 639 1316 5160 37798 30.8 52.8

oICF [KBHA16] 27.1 6.4% 48.7% 454 1660 7594 36757 32.9 1.4

TO [MTDVG16] 25.7 4.3% 57.4% 383 600 4779 40511 35.7 5.0

LP_SSVM [WF17] 31.3 5.8% 53.0% 646 849 8369 36932 31.3 41.3

ELP [MDRM15] 25.0 7.5% 43.8% 1396 1804 7345 37344 36.7 5.7

LINF1 [FBADL16] 24.5 5.5% 64.6% 298 744 5864 40207 31.1 7.5

JPDA_m [HRMZ+15] 23.8 5.0% 58.1% 365 869 6373 40084 31.3 32.6

MotiCon [LTFK+14] 23.1 4.7% 52.0% 1018 1061 10404 35844 43.0 1.4

SegTrack [MLTSR15] 22.5 5.8% 63.9% 697 737 7890 39020 43.0 0.2

EAMTTpub [SMPC16] 22.3 5.4% 52.7% 833 1485 7924 38982 38.3 12.2

OMT_DFH [JKK+17] 21.2 7.1% 46.5% 563 1255 13218 34657 32.8 28.6

MTSTracker [AKNB17] 20.6 9.0% 36.9% 1387 2357 15161 32212 37.8 19.3

LP2D [LTMR+15] 19.8 6.7% 41.2% 1649 1712 11580 36045 39.6 112.1

DCO_X [MSR16] 19.6 5.1% 54.9% 521 819 10652 38232 39.9 0.3

CEM [MRS14] 19.3 8.5% 46.5% 813 1023 14180 34591 38.5 1.1

RNN_LSTM [MRD+17] 19.0 5.5% 45.6% 1490 2081 11578 36706 33.5 165.2

RMOT [YYLY15] 18.6 5.3% 53.3% 684 1282 12473 36835 43.4 7.9

TSDA_OAL [JKK+16] 18.6 9.4% 42.3% 806 1544 16350 32853 43.4 7.9

GMPHD [SJ16] 18.5 3.9% 55.3% 459 1266 7864 41766 38.6 19.8

SMOT [DCS13] 18.2 2.8% 54.8% 1148 2132 8780 40310 54.0 2.7

ALExTRAC [BORU16] 17.0 3.9% 52.4% 1859 1872 9233 39933 47.5 3.7

TBD [GLW+14] 15.9 6.4% 47.9% 1939 1963 14943 34777 51.3 0.7

GSCR [FBADL15] 15.8 1.8% 61.0% 514 1010 7597 43633 38.6 28.1

TC_ODAL [BY14] 15.1 3.2% 55.8% 637 1716 12970 38538 53.1 1.7

DP_NMS [LTMR+15] 14.5 6.0% 40.8% 4537 3090 13171 34814 40.7 444.8

LDCT [SCC15] 4.7 11.4% 32.5% 12348 2918 14066 32156 38.8 20.7

Table E.1: Full table of results on 2D MOT 2015 [LTMR+15] in offline mode (the
entire sequence is optimized in a single batch). MT = Mostly Tracked, ML = Mostly
Lost, ID = Number of ID switches, FM = Fragments, FP = False positives, FN = False
negatives, Avg Rank = Average rank over all metrics, Hz = Reported tracker speed in
frames per seconds. Note that this is an ongoing benchmark; the ranking can change in
future (accessed on 11/18/2017).
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Abbreviations & Acronyms

Abbreviations

i.i.d. independent and identically distributed

Acronyms

CNN Convolutional Neural Network
FISST Finite Set Statistics
GLMB Generalized Labeled Multi-Bernoulli
GM-PHD Gaussian Mixture Probability Hypothesis Density
GNN Global Nearest Neighbor
JPDA Joint Probabilistic Data Association
LIDAR Light Detection and Ranging
MCF-PHD Min-Cost Flow Probability Hypothesis Density (tracker)
MeMBer Multi-Target Multi-Bernoulli
MHT Multiple Hypothesis Tracking
PCL Point Cloud Library
PHD Probability Hypothesis Density
RADAR Radio Detection and Ranging
RFS Random Finite Set
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Symbols

General Notation

| · | Cardinality of a set
∅ Empty set
‖ · ‖2 ℓ2 norm of a vector
det(·) Matrix determinant
diag(·) Constructs a diagonal matrix from the given argument
✶y=k Indicator function that evaluates to 1 if y = k and 0 otherwise
N (·;m,P ) Gaussian density with mean m and covariance P

p(·) Conventional probability density function
P (·) Probability measure
F(·) Set of all finite subsets∫
δX Set integral

π (·) Multi-object probability density function

Multi-Object State Estimation

X State space
Z Measurement space
Xk Multi-object state RFS at time k
Zk Multi-object measurement RFS at time k
Bk Birth RFS that contains the set of appearing objects at time k
Kk Clutter RFS that contains the set of false alarms at time k
Nk Number of states |Xk| at time k
Mk Number of measurements |Zk| received at time k
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Zn:m Short-hand notation for Zn, . . . , Zm

xk,j The j-th vector-valued state at time k
zk,j The j-th vector-valued measurement observed at time k
pk|k−1(· | ·) Markov state transition density from time k − 1 to time k
pk(· | ·) Measurement likelihood function at time k
pS(x) State-dependent probability of survival
pD(x) State-dependent probability of detection
bk(·) PHD of the Poisson birth RFS at time k
λb,k Expected number of appearing objects at time k
pb,k(·) Spatial density of the Poisson birth RFS Bk at time k
ck(·) PHD of the Poisson clutter RFS at time k
λc,k Expected number of clutter returns at time k
pc,k(·) Spatial density of the Poisson clutter RFS Kk at time k
vk(·) PHD of a multi-object state at time k

Gaussian Mixture Probability Hypothesis Density Filter

Lk Number of GM-PHD components at time k

w
(i)
k Weight of the i-th GM-PHD component at time k

m
(i)
k Mean of the i-th GM-PHD component at time k

P
(i)
k Covariance of the i-th GM-PHD component at time k

F Kalman filter state transition matrix
Q Kalman filter state transition noise covariance
H Kalman filter measurement matrix
R Kalman filter measurement noise covariance
wmin Pruning threshold: minimum GM-PHD component weight
U Pruning threshold: GM-PHD component merge threshold

Metric Learning

D Datset of training images and associated class labels
C Number of classes in the dataset
N Number of examples in the dataset
xi The i-th image in the dataset, xi ∈ R

D

yi The i-th label in the dataset, yi ∈ {1, . . . , C}
ri Feature representation ri ∈ R

d corresponding to the i-th image xi
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fΘ(·) Encoder network with parameters Θ, such that ri = fΘ(xi)
gΩ(·) Classifier with parameters Ω that maps from feature to class label
wk Standard softmax class parameter vector of class k ∈ {1, . . . , C}
bk Standard softmax class bias parameter of class k ∈ {1, . . . , C}
w̃k Cosine softmax class parameter vector of class k ∈ {1, . . . , C}
κ Free scaling parameter of the cosine softmax classifier

Min-Cost Flow Probability Hypothesis Density Tracker

M Length of the observation sequence (number of time steps)
uk(·) PHD of objects that remain undetected until time k

v
(t,i)
k (·) PHD at time k of a track hypothesis that originates from measure-

ment zt,i, with k ≥ t

p
(t,i)
k (·) A probability density that is proportional to v

(t,i)
k (x)

rt,i Scaling parameter associated with v
(t,i)
k (x)

N̂min A confirmation threshold that defines the minimum intensity mass
of confirmed tracks in the track-oriented PHD filter

τk(·) PHD likelihood of the multi-object state at time k

τ
(u)
k (·) PHD likelihood of undetected objects uk(x)

τ
(t,i)
k (·) PHD likelihood of track hypothesis v

(t,i)
k (x)

Lm Length of the m-th trajectory
Tm The m-th single-object trajectory {(kml

, jml
)}Lm

l=1

T Set of non-overlapping trajectories {Tm}
T ∗ Minimum cost non-overlapping trajectories
zTm(l) The l-th measurement on the m-th trajectory
zkml

,jml
The l-th measurement on the m-th trajectory

Cm(·) Cost of a given trajectory
centry(·) Cost of starting a trajectory at the given measurement
clink(·, ·) Cost of linking two measurements on a trajectory (transition cost)
c

(mot)
link (·, ·) Motion component of trajectory transition cost

c
(app)
link (·, ·) Appearance component of trajectory transition cost

s Flow network source node
t Flow network terminal node
uk,j Measurement entry node (connected to candidate predecessors)
vk,j Measurement exit node (connected to candidate successors)
pfg(s) Foreground/true object likelihood over detector confidence scores
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pbg(s) Background/false alarm likelihood over detector confidence scores
V Volume of the surveillance region
y Spatial component of a measurement z, e.g., ground plane or

bounding box position
r Appearance feature representation of a measurement z

s Detector confidence score

Operator Following

X
(0)
k Set of operators at time k, contains at most one object

X
(1)
k Set of non-operators at time k

q
(1)
k Operator probability of existence at time k

p
(1)
k (x) Operator spatial density at time k

v
(0)
k (x) PHD of the Poisson non-operator RFS at time k

v
(1)
k (x) PHD of the Bernoulli operator RFS at time k

p
(0)
k (· | ·) Measurement likelihood function of non-operators at time k

p
(1)
k (· | ·) Measurement likelihood function of the operator at time k
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