
Nanotemplates for the combined
structural and functional analysis of

membrane-associated proteins

vorgelegt von

Nikolai Krupp

geboren am 08.12.1986 in Bonn

Angenommene Dissertation zur Erlangung des akademischen
Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.)

Fachbereich 3: Mathematik/Naturwissenschaften
Universität Koblenz ·Landau

Gutachterinnen und Gutachter:
Prof. Dr. Barbara Hahn
Prof. Dr. Elmar Behrmann
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Abstract

Plasma membranes are essential for life because they give cells an identity. Plasma

membranes are almost impermeable to fluids and substances. Still, transport be-

tween inside and outside needs to be possible. An important transport way is

endocytosis. This mechanism relies on membrane-associated proteins that sense

and induce curvature to the plasma membrane. However, the physics and struc-

tural dynamics behind proteins acting on membranes is not well understood. There

is a standard method in vitro to investigate membrane-associated proteins sensing

spherical geometries: They are incubated on unilamellar vesicles. This procedure

allows to analyze these proteins in their bound state. This approach is inappropri-

ate for GRAF1 (GTPase Regulator Associated with Focal Adhesion Kinase-1 ), a

key player in endocytosis because it senses tubular geometries instead. However,

GRAF1 extrudes lipid tubes from vesicles that can be analyzed. Still, this is a

limited method because these tubes suffer from inhomogeneity and they do not

enable the observation of intermediate and lower concentration binding states. To

overcome this issue they can be incubated on pre-tubular structures called nan-

otemplates. There have been studies using carbon nanotubes and Galactosylce-

ramide lipid tubes as nanotemplates. These approaches require complex chemical

modifications or expensive components and they are not necessarily flexible. In

this work we present a simple and easy new approach to prepare nanotemplates us-

ing Folch lipid mixture. We show on the basis of BPG, a truncate of GRAF1, that

our nanotemplates are suitable for Cryo-EM and that it is possible to use IHRSR

(Iterative Helical Real Space Reconstruction) to analyze the structure of BPG in

its bound state. Moreover, the qualification for Cryo-EM allows to use plunge

freezing to interrupt the incubation on our nanotemplates abruptly. This enables

the analysis of intermediate binding states to understand the binding process.
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Zusammenfassung

Die Inkubation von unilamellaren Lipid-Vesikeln mit einem als BPG bezeichneten

Abschnitt des Proteins GRAF1 führte zur Entstehung von röhrenförmigen Struk-

turen. Eine Untersuchung mittels negativkontrastierter Elektronenmikroskopie

zeigte eine körnige Beschichtung auf der Röhrenoberfläche. Durch die höhere

Auflösung der Elektronentomographie war es möglich, helikale Oligomere auf den

Röhren zu erkennen. Des Weiteren zeigte sich, dass die Röhren im Durchmesser in-

homogen waren und Biegungen aufwiesen. Das hatte ebenfalls Unregelmäßigkeiten

in der Ordnung der helikalen Struktur zur Folge. Das Herstellungsverfahren von

unilamellaren Vesikeln mittels Extruder wurde so modifiziert, dass es anstatt von

Vesikeln Nanoröhren entstehen ließ. Im Gegensatz zu den Röhren, die das Protein

formte, wiesen diese eine lineare Struktur mit konstantem Durchmesser auf. Trotz

der Inkubation mit BPG behielten diese ihre homogene Form und zeigten nun

eine geordnete helikale Beschichtung auf ihrer Oberfläche. Allerdings waren sie

nicht hoch genug konzentriert für die Kryoelektronenmikroskopie, und eine reine

Erhöhung der Lipidkonzentration führte nicht zu einer höhren Anzahl von Röhren,

sondern zu Lipidaggregation. Weitere Experimente zeigten, dass die Chelatligan-

den EDTA und EGTA in der Pufferlösung zur Entstehung unilamellarer Vesikel

führten. Da EDTA und EGTA die Metallionen Mg2+ und Ca2+ absorbieren, wur-

den weitere Tests mit neuen Pufferlösungen durchgeführt. Zur Absorption be-

reits vorhandener Metallionen wurden beide Chelatliganden hinzugegeben und eine

Variante mit zusätzlichem Magnesiumchlorid und eine weitere mit zusätzlichem

Calciumchlorid hergestellt. Es wurde gezeigt, dass Magnesiumchlorid unilamel-

lare Vesikel zur Folge hatte und Calciumchlorid zu einer höhren Konzentration

der Nanoröhren führte. Daraus wurde geschlossen, dass Calciumionen die Enste-

hung von Nanoröhren fördern. Zur weiteren Optimierung der Konzentration wurde

eine Varianzanalyse (CCD) der einflussreichsten Variablen im Extrusionsprozess

durchgeführt:

• Eine höhere Anzahl von Frier-Tau-Zyklen zur Unterdrückung multilamellarer

Vesikel hatte einen positiven Einfluss.

• Es konnte keine Korrelation zwischen der Extrudertemperatur und der Konzen-
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tration von Nanoröhren nachgewiesen werden.

• Mehr Extrusionszyklen hatten eine höhere Nanoröhrenkonzentration zur Folge.

Durch das optimierte Protokoll war die Konzentration hoch genug für die Kryo-

elektronenmikroskopie und eine helikale Rekonstruktion. Dennoch war eine 2D-

Klassifizierung nicht erfolgreich, da die Nanoröhren im aufgenommenen Datensatz

nicht homogen genug im Durchmesser waren und zudem eine unterschiedliche An-

zahl an multilamellaren Rändern aufwiesen. Aus diesem Grund wurde ein Skript

entwickelt, das die Röhren nach ihrem Durchmesser sortiert. Mit einer Unter-

menge des Datensatzes, dessen Röhren einen ähnlichen Durchmesser hatten, wurde

eine weitere 2D-Klassifizierung durchgeführt. Daraus resultierten schließlich 2D-

Klassen der helikalen Oberflächenstruktur.

iv



Conclusion

The incubation of the GRAF1 truncate BPG on unilamellar vesicles resulted in

protein-extruded lipid tubes. Negative stain electron microscopy showed lipid

tubes and vesicles with a grainy coat on their surface. The superior resolution of

electron tomography enabled to see helical oligomers on the surface of the tubes.

However, the experiments revealed curved shapes and inhomogeneities in the dia-

meter of these tubes. Hence, the helical oligomers are irregular. A protocol derived

from the preparation of unilamellar vesicles using a lipid extruder yielded LNTs

(Lipid NanoTubes) instead of vesicles. They feature a linear shape and a constant

diameter. When incubated with BPG they kept their shape and still showed a

regular helical coat on their surface. The concentration of LNTs was insufficient for

Cryo-EM. Increasing the lipid concentration yielded aggregates instead of higher

LNT concentrations. Experiments showed that the presence of the chelating agents

EDTA and EGTA in the buffer resulted in unilamellar vesicles instead of LNTs.

More experiments were performed because EDTA and EGTA absorb Mg2+ and

Ca2+ ions. Tests with new buffers containing both chelating agents to bind already

existent metal ions and additionally magnesium chloride or calcium chloride were

performed. While the presence of magnesium chloride resulted in vesicles, calcium

chloride yielded higher LNT concentrations. This showed that calcium ions favor

the tube formation. In the next step a Central Composite Design was performed to

optimize the tube yield by reviewing the most influential variables in the extrusion

process:

• More freeze-thaw-cycles to disrupt multilamellar vesicles showed a positive

influence.

• The extruder temperature did not show any reliable correlations.

• More extrusion cycles resulted in higher tube concentrations.

Using the optimized protocol the concentration was high enough for Cryo-EM and

also for IHRSR. However, the 2D classification failed because of inhomogeneous

tube diameters and a variable number of multilamellar tube borders in the dataset.

A script was developed to perform an automated tube diameter classification.
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Another 2D classification for IHRSR was performed with a subset of tubes with

similar diameters and truncated tube borders. Finally, 2D classes of the helical

protein coat on LNTs could be obtained.
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Chapter 1

Introduction

The plasma membrane defines biological cells as it separates inside from outside.

While it is almost impermeable to fluids and substances its function is not to

prevent all exchanges. Still, there need to be ways to transport amino acids, specific

ions, sugars and vitamins through the membrane[1]. It consists of a phospholipid

bilayer, robust enough to protect the cell. The membrane is also dynamic enough

to bend, fold and flex. Phospholipids, in case of membranes phosphoglycerides,

are amphipathic molecules that feature hydrophobic tails and hydrophilic head

groups. The non-polar tails of two lipid molecules connect to each other by van

der Waals interactions and form the hydrophobic core of the membrane bilayer.

The polar head groups are pointing away from the hydrophobic core and stabilize

the membrane by ionic and hydrogen bonds to their neighboring head groups. The

thickness of the membrane corresponds to the size of two phospholipids. There

are three major ways to transport substances through the plasma membrane:

• Simple diffusion: Small hydrophobic molecules can pass the membrane.

• Ion channels: Transmembrane proteins are embedded in the lipid bilayer.

They facilitate active or passive transport of substances across the mem-

brane. The passive transport allows ions to diffuse through an opened chan-

nel. For the active transport ions are physically pumped against chemical
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3 Chapter 1: Introduction

gradients. There are also carrier proteins that diffuse through the membrane

while they bind specific molecules.

• Endocytosis and Exocytosis: For this transport way proteins deform the

membrane and constrict vesicles that enclose fluids and macromolecules[2][3].

There are two forms of endocytosis: One is mediated by the protein clathrin[4]

and the other is mediated independently from clathrin by other proteins[5][6].

In the relaxed state, the membrane adopts the state with the lowest curvature en-

ergy. Changing curvature requires mechanical energy that is provided by proteins[7].

This process is not well understood. Membrane proteins are complex macro-

molecules subdivided into different domains in dynamic arrangements. To un-

derstand the energy distribution of these proteins it is needed to analyze different

molecular states at a high resolution. The structure in unbound states can be

studied using X-ray crystallography. However, this does not allow to analyze

bound and dynamic states. One conventional method to study proteins in their

bound state is to analyze protein-coated lipid vesicles[8]. This method can only

be considered for proteins sensing spherical geometries. In this work a method is

shown that allows to obtain atomic resolution models of tubular geometry sensing

proteins in a bound state. Moreover, it allows to observe intermediate states of

the binding reaction to a membrane. For this method nanotemplates are used as

tubular shaped binding targets for the proteins. Snapshots of the binding reaction

on nanotemplates can be analyzed using Cryo Electron Microscopy. This allows to

obtain molecular models of dynamic protein states and to draw conclusions about

the energy distribution.

1.1 Curvature Energy

During endocytosis proteins change the curvature energy of the membrane while

acting on them. An approach to calculate total energy of a curved lipid bilayer

is the Area-Difference Elasticity Model [9]. It is based on the assumption that the

cell or vesicle is a spherical volume V with the radius R. Its total curvature energy

G can be calculated by equation 1.1:

G =
κ

2

∮
(C1 + C2)2 dA. (1.1)
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The volume is surrounded by its curved surface area A and depends on the two

principal curvatures C1 and C2 of the surfaces of the bilayer and the local bending

rigidity κ. The curvatures can be calculated using the Riemann Curvature Tensor

Ω that depends on the Cartesian coordinates x, y, z:

Ω =

(
∂2z
∂x2

∂2z
∂x∂y

∂2z
∂y∂x

∂2z
∂y2

)
(1.2)

To calculate the corresponding radii R1 and R2 to the curvatures only its main

diagonal elements k1 and k2 are needed:

R1 =
1

k1

, R2 =
1

k2

, C1 + C2 = tr(Ω) (1.3)

The surface area can be calculated with the help of the volume radius and also by

the number of lipid molecules N1, N2 in the bilayer and the equilibrium density

φ0:

A = 4πR2 =
N1 +N2

2φ0

(1.4)

In figure 1.1 N1 and N2 and their distance to the center are shown:

Figure 1.1: Two layers of lipid molecules form a curved membrane with the
number of lipid molecules N1 and N2 and the distance d from the center.
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Finally, there is a more general form of the total curvature energy named F cal-

culated by equation 1.5:

F =
κ′π

2Ad2
(∆A−∆A0)2 +

κ

2

∮
(C1 − C2 + C0)2 dA (1.5)

It depends on the spontaneous curvature C0, the distance d (in figure 1.1) of the

molecules from the center of the bilayer and the non-local bending rigidity κ′. The

equation also depends on the difference ∆A from an unstreched equilibrium value

∆A0. The full derivation can be found in [10].

1.2 Analysis of Membrane Curvature-Sensing Pro-

teins

One conventional method to study curvature-sensing proteins is to analyze ULVs

(UniLamellar Vesicles) coated by proteins[8]. To mimic a close to native en-

vironment for the proteins in vitro the experimental setup has to fulfill some

requirements[11][12]:

• Buffer solution: The ionic concentrations and the pH value have to match

the protein’s environment in nature.

• Lipid composition: The vesicle’s bilayer needs to consist of the right lipid

mixture. The length of hydrophobic tails and the charge of the head groups

are important.

• Vesicle geometry: The size of the vesicles defines their surface curvature.

The proteins can only sense and bind to membranes with a specific curvature.

• Ligands and energy suppliers: Many proteins are only active in the

presence of ligands such as ions, molecules and other proteins. Some proteins

also require an energy supply from nucleotides for the binding process. These

need to be present in the right concentration as well.
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If the experiment meets all requirements the protein can bind on the vesicles and

these can be analyzed. Besides proteins that sense spherical geometries there

are also proteins that sense tubular geometries[13]. Some of these proteins can

also extrude lipid tubes from vesicles by oligomerization in vitro, e.g. some BAR

domain based[14], Epsin[15], EHD family[16]. In figure 1.2 a self-extruded tube

with helical protein coat is illustrated.

Figure 1.2: From ULV extruded lipid tube. The stripes on the tube illustrate a
helical oligomeric coat of protein molecules.

Studying tubular sensing proteins in a state bound on vesicles does not reveal them

in their natural geometry and may lead to wrong reconstructions. Thus, a tubular

shaped support is a better approach. It is possible to analyze the lipid tubes self-

extruded by the protein itself. However, this method has disadvantages: First of

all, these tubes are not regular. They are bent, and the diameter is not constant.

This makes a molecular reconstruction more difficult because the organization

of the molecules in an oligomer is deranged (see chapter 4.1.1). Secondly, self-

extruded tubes only show the reaction in its final state. There is no possibility to

observe oligomers formed at lower concentrations with less molecules. Moreover,

there is no possibility to see intermediate binding states that reveal the (intra-)

molecular dynamics of the protein. To overcome these problems a pre-tubular

shaped support is needed. This enables to see fewer molecules binding on the

support and the binding reaction can be stopped in intermediate states. This is

possible by rapidly freezing aqueous samples to vitrified ice layers and analyze

them in Cryo-EM (Cryo Electron Microscopy)[17][18]. At atomic resolution only

Cryo-EM allows to analyze non-crystallized aqueous samples (compared to X-ray

crystallography).
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1.3 GRAF1 and BPG

To study membrane bending the protein GRAF1 (GTPase Regulator Associated

with Focal Adhesion Kinase-1) was used. GRAF1 is involved in endocytosis. It

remodels membranes into tubulovesicular CLICs (Clathrin-Independent Carriers)

that mediates lipid-anchored receptor endocytosis[19][20]. The GRAF1 monomer

consists of N-BAR, PH, GAP and SH3 domains. In vivo, GRAF1 always acts as

a dimer as shown in figure 1.3a. In absence of proper ligands the SH3 domains

prevent the N-BAR domain from binding on membranes. In presence of an appro-

priate ligand the SH3 domains are folded away by intramolecular interactions. To

cause the maximum binding activity, a truncate of GRAF1 lacking the SH3 do-

mains was used. It only contains the N-BAR, PH and GAP domains and is called

BPG (BAR-PH-GAP)[21]. In figure 1.3b the truncate BPG lacking SH3 domains

is shown. BPG’s N-BAR domain is always active and can bind on membranes

without the control of ligands or signals[22].

(a) GRAF1 protein dimer[19]. (b) BPG fragment.

Figure 1.3: (a) shows a dimeric domain model of GRAF1. It is composed of
N-BAR, PH, rhoGAP and SH3 domains. The SH3 domains interact with ligands
to unblock the membrane binding module. (b) BPG is a fragment of GRAF1
lacking the SH3 domains. BPG is always active

BAR (Bin Amphiphysin Rvs) domain proteins are an important superfamily of

curvature-sensing proteins. Each character of the name represents a protein family

including BAR domains. The name also comes from the concave-, bar- or banana-

shaped geometry of BAR dimers. BAR proteins regulate the membrane shape

of organella and membrane fusion and fission[23]. Via its positive charge BAR

dimers bind and induce curvature in negative charged lipid membranes[24][25]. In
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addition, N-BAR domains feature an N-terminal amphipathic helix that inserts

into the membrane and induces curvature[26].

BPG senses tubular-shaped geometries. Cylindrical nanotemplates can be used to

bind BPG and study its molecular structure in vitro and close to nature.

1.4 Nanotemplates

To analyze proteins sensing tubular geometries it is possible to use cylindrical

structures instead of ULVs as protein binding targets. We call them (cylindrical)

Nanotemplates. To successfully bind proteins to nanotemplates they must ful-

fill multiple strict requirements: Nanotemplates need a biomimetic shell consisting

of a lipid bilayer mimicking the biological cell membrane that the protein is target-

ing at. Thus, the nanotemplate’s surface must match the cell’s lipid composition

and charge in the same way as ULVs in chapter 1.2. Secondly, the diameter of

the nanotemplates should be close to the diameter of self-extruded lipid tubes to

match the membrane curvature the protein binds to. When the deviation in diam-

eter is too much the protein’s helical oligomer will not be able to coat the surface

of the nanotemplate. Finally, nanotemplates must be suitable for Cryo-EM. They

must not decay during plunge freezing and not disturb the vitreous ice layer on

EM grids. Figure 1.4 illustrates the requirements on the nanotemplates.

Figure 1.4: Nanotemplates must meet all requirements at once.
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If the nanotemplates are mechanically rigid structures they also enable protein

analysis by helical reconstructions. These methods require linear tubular struc-

tures with a constant diameter. They enable reconstructions of 3D models of

protein molecules at atomic resolution. This is described in detail in chapter 1.5.3.

There are different ways to build nanotemplates: There have been approaches for

cylindrical nanotemplates that can be divided mainly into two different classes:

carbon nanotubes and lipid tubes. These two approaches are most reasonable

to provide mechanically rigid structures for Cryo-EM that can support protein

oligomers.

1.4.1 Carbon Nanotubes

CNTs (Carbon Nanotubes) only consists of carbon. The simplest CNT is basically

a rolled sheet of graphene with a cylindrical shape. When they only consist of a

single layer of graphene they are called SWNTs (Single-Walled CNTs). There

are also CNTs consisting of graphene multilayers called MWNTs (Multi-Walled

CNTs). Their diameter depends on the number of layers. Each layer adds 3.35 Å to

the diameter[27]. Thus, a diameter can in theory be selected by using CNTs

with the related count of layers. CNTs feature high mechanical strength because

each carbon atom in the lattice is three times covalently bound. MWNTs can be

purchased with different diameter classes, so that we can select an appropriate

diameter for a specific protein. CNTs cannot be used as nanotemplates in their

raw condition because they are hydrophobic and not soluble in water and also

not linear shaped. In addition, the protein needs a biomimetic structure with

lipid bilayers. Therefore, CNTs need to be modified by chemically anchoring

a lipid bilayer to their surface and to be straightened mechanically. There are

different approaches to apply these modifications: CNTs can be functionalized

with covalently bound linkers[28] or by π-π-stacking[29][30]. Figure 1.5 shows an

illustration of a carbon nanotube. To straighten CNTs they can be cut into smaller

pieces using ultrasound.
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Figure 1.5: Illustration of a carbon nanotube provided by Elmar Behrmann.
Each vertex of each hexagon represents a carbon atom with three covalent bindings
to other carbon atoms in the lattice.

1.4.2 Lipid Tubes

Hydrated dispersions of lipid mixtures including GalCer (GalactosylCeramide)

can self-assemble into bilayer cylinders[31]. The preparation protocol is similar to

the one of ULVs[32] (see chapter 3.3.1) but does not require to use extruders be-

cause GalCer lipids form tubes without any interventions. GalCer tubes are linear

shaped and have a length of 250 to 400 nm and diameters of 25 to 30 nm constant

over the whole tube. The lipid mixture must consist of at least 20 % GalCer.

GalCer is only responsible for the tube extrusion. At lower concentrations there

are not enough GalCer molecules present to form tubes. The other components

of the lipid mixture are responsible for protein binding. They need to be selected

depending on the intended use in terms of molecular properties like charge and the

length of the hydrophobic tail in order to mimic a cell membrane for the protein.

As a result, GalCer tubes that consist of a suitable lipid mixture can be used as

nanotemplates for specific proteins[33].

1.5 3D Electron Microscopy

The structure of proteins on nanotemplates can be studied using Cryo TEM

(Transmission Electron Microscopy). This method provides us with high-resolution

2D images of the protein of interest. A major pitfall with biological samples in EM

is, that they are radiation sensitive. Imaging biological samples in EM is always a

compromise between a strong signal on the detector and beam damage of the sam-

ple. Recording high resolution micrographs allows only low electron doses before
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radiation damage destroys the structure of the protein. Using only a non-harmful

dose results in a low SNR (Signal to Noise Ratio). While today’s DEDs (Direct

Electron Detectors) already yield much stronger signals at low doses the SNR

is still not good enough to obtain detailed structures of small particles without

advanced methods that average multiple micrographs and sum up the containing

information[34][35]. Averaging methods get more complex with the resolution they

are able to gain. For the protein-extruded tubes and nanotemplates of this work,

only methods can be used that provide the analysis of tubular structures. In figure

1.6 is a resolution chart of today’s most common appropriate methods to create

3D volumes from 2D micrographs in EM.

Figure 1.6: Requirements and resolution chart of 3D EM methods suitable for the
analysis of tubular structures. While tomography only requires Cryo samples, Sub-
Tomogram Averaging can combine the information of multiple sub-volumes of the
reconstructed tomogram. IHRSR (Iterative Helical Real Space Reconstruction)
is the most complex analysis method gaining the best resolution for filaments. But
it requires known helical parameters guessed or obtained from the other methods.

STA (Sub-Tomogram Averaging) can be used to obtain a high resolution structure

and requires reconstructed tomograms and not a high concentration. IHRSR builds

up on helical parameters. These can be obtained from ET or initially guessed. It

is used because it is the most suitable high resolution method for helical structures

at high enough concentration.



1.5. 3D Electron Microscopy 12

1.5.1 Electron Tomography

Electron Tomography reconstructs a 3D Volume from 2D micrographs recorded

from many different viewing angles. The sample is tilted stepwise between the se-

lected minimum and maximum angles and at every step a micrograph is recorded.

The resulting stack of micrographs is aligned via cross correlations. To ensure a

precise alignment fiducial markers are added to the sample. They consist of gold

crystals and add high contrast position markers to Cryo samples. Finally, the

different views are back projected to a 3D volume. There are different algorithms

to perform this task[36]. The most common ones are Filtered Back Projection

and SIRT (Simultaneous Iterative Reconstruction Technique). The more angles

the tomogram covers the more detailed is the final volume because of the Fourier

Slice Theorem[37]. It states that a projection in real space provides information

as a slice perpendicular to the projection in Fourier space. The process of ET is

visualized in figure 1.7.

Figure 1.7: Visualization of Electron Tomography: Micrographs from various
tilt angles are backprojected to a 3D volume. BAR domain illustration taken from
[26].
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ET is used to create volumes from unique samples. There are no requirements

on the concentration of the sample and symmetry of particles. However, ET has

some major disadvantages[38]:

• Electron Dose: The sample is exposed to a high electron dose because all

micrographs are recorded from the same position of the sample. This allows

only low-dosed micrographs and results in a low SNR.

• Missing Wedge: The mechanical construction of the goniometers of today’s

TEMs does not allow to tilt the sample up to 180 ◦. In case of transmission

images, 180 ◦ covers the complete volume. As a result of limited viewing

angles there are missing parts in the 3D volume because no micrographs

were recorded at these angles. This is called the Missing Wedge. This does

not only result in missing views at specific angles. Instead, it results in

missing information in the whole volume in Fourier space because of the

Fourier Slice Theorem.

• Alignment mismatches: ET is significantly more sensitive to mechanical

inaccuracies of the microscope stage and beam drift compared to other 3D

electron microscopy methods. In case of ET, the volume is reconstructed

from micrographs of different viewing angles. Stage or beam misalignments

between the micrographs can be compensated only partially and lower the

resolution. Other 3D EM methods build up on micrographs recorded at the

same angle (perpendicular to the beam).

A tomogram contains a lot more information than a single micrograph. Its only

requirements to samples are an appropriate ice thickness and a grid position that

does not affect tilts. Although, compared to averaging methods it is not possible

to refine the volume with additional information. This problem is solved by Sub-

Tomogram Averaging.
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Filtered Back Projection

The filtered back projection algorithm is based on the inversed Radon Transform

R−1[37]. The projection p(z) is convoluted with the high pass filter kernel g(z) in

real space. Integration over the polar projection angle φ allows to restore the real

image f(x, y):

f(x, y) =

π∫
0

 ∞∫
−∞

p(z′) · g(z − z′) dz′

 dφ (1.6)

f(x, y) depends on the Cartesian coordinates x = sin(φ) and y = cos(φ). Using

the Fourier Transform F allows to simplify the convolution to a multiplication.

f(x, y) =

π∫
0

F−1
{
F{p}(k) ·G(k) ·W (k)

}
dφ (1.7)

G(k) = F
{
g(z)

}
= |k| is the filter kernel in Fourier space with the spatial angular

frequency k and W (k) = e−β|k| is an additional window function to reduce spectral

leakage[39] with the damping factor β.

Simultaneous Iterative Reconstruction Technique

SIRT is an iterative algorithm based on a linear equation system[36]. The vector

~x ∈ Rn contains the gray values for each pixel and the vector~b ∈ Rm the projection

data. Both are linked via the matrix A ∈ Rm×n.

A~x = ~b (1.8)

The algorithm computes the approximate solution of the projection error ‖A~x−~b‖
of the equation system. With each iteration k the error is minimized.
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~x (k+1) = ~x (k) − λCATD
(
A~x (k) −~b

)
(1.9)

λ ∈ R is a selectable relaxation parameter and C ∈ Rn×n and D ∈ Rm×m are

diagonal transformation matrices depending on A’s main diagonal elements.

C = diag
(

1/c1, . . . , 1/cn
)
, cj =

m∑
i=1

aij

D = diag
(

1/d1, . . . , 1/dm
)
, di =

n∑
j=1

aij

The SIRT algorithm is computationally more expensive than back projection but

more robust to noise.

1.5.2 Sub-Tomogram Averaging

Sub-Tomogram averaging builds up on ET and requires completely reconstructed

3D volumes from ET. Basically, STA is a combination of SPR (Single Particle

Reconstruction) and ET because it averages particles from ET’s 3D volume. The

usage of this method is only an option if the sample contains periodic patterns that

can be averaged up to a 3D model. Figure 1.8 illustrates the process of STA[40].

Figure 1.8: Visualization of Sub-Tomogram Averaging: Sub-volumes of the to-
mogram in figure 1.7 are averaged and refined to a molecular 3D model.
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Sub-volumes are picked by the user from reconstructed tomograms. These particles

are summed up and sorted into 2D classes. After selecting suitable classes, a 3D

model is assembled. STA also needs an initial model of the structure as an input

for the refinement. The algorithm behind STA consists of four major steps[41][42]:

1. Alignment: Calculate suboptimal rigid transformations of all sub-tomograms

to restore their original positions in the volume.

2. Integration: Approximate integration over all suboptimal rigid transforma-

tions to calculate a first average (via summation). An accurate calculation

of the integral would be computationally infeasible.

3. Averaging: Use a maximum-likelihood based algorithm to update the sub-

tomogram averages. This refinement process is used instead of an accurate

integration from the last step. It is a less expensive computation.

4. Classification and modeling: The averages are classified and assembled

to a 3D model or refining an initial model.

Electron tomograms lack information in the missing wedge (see chapter 1.5.1).

To reconstruct a complete molecular structure using STA, the missing wedge of

the tomograms needs to be compensated. Therefore, it is needed to record and

reconstruct multiple tomograms that cover different sets of viewing angles. Fi-

nally, every viewing angle needs to be included. Compared to other SPR-based

reconstruction methods (e.g. IHRSR) this needs to be considered.

1.5.3 Helical Reconstruction

The most common helical reconstruction method is IHRSR (Iterative Helical Real

Space Reconstruction) and can obtain atomic resolution models of helical struc-

tures. Compared to its predecessor, Fourier-Bessel, it is a real space reconstruc-

tion method and based on SPR. There have already been reconstructions of helical

structures in real space before[43][44] but IHRSR is the most robust and flexible

approach[45]. IHRSR averages up periodic repeats in helical protein assemblies

around filaments.
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To extract particles from the helices it needs two parameters to be known: The

azimuthal rotation per subunit ∆ϕ and the axial subunit translation ∆z. These

helical parameters describe the basic geometry and repeats of the helix using a

mathematical function f(r, ϕ, z)[46]:

f(r, ϕ, z) = f
(
r, ϕ+ n∆ϕ, z + n∆z

)
, n = ±1,±2, . . . (1.10)

∆z is shown on the illustrated helix in figure 1.9a and ∆ϕ in the helix top view in

1.9b.

(a) Side view. (b) Top view.

Figure 1.9: Helical parameters shown in a virtual tube. Each black dot represents
a unit of the helix[46]. ∆z is the axial subunit translation and ∆ϕ the azimuthal
rotation per subunit.

Helical particles are extracted from filaments picked by the user in dataset micro-

graphs. To provide more information about the helical symmetry most efficiently,

two succeeding extracted particles need an overlap[45]. Extracted particles are

back projected to a 3D volume (see chapter 1.5.1). To impose helical symmetry

to the 3D volume a density array ρcart between the voxels is calculated and then

converted from Cartesian coordinates to ρ in cylindrical coordinates:

ρcart(x, y, z)→ ρ(r, ϕ, z) (1.11)
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The helical axis z is set along the radius r at r = 0 (red line in figure 1.9a). The

density function then follows the same symmetry as equation 1.10:

ρ
(
r, ϕ+ n∆ϕ, z + n∆z

)
(1.12)

The helical symmetry is now determined and applied to the volume by minimizing

2nd degree polynomials for each of the two parameters ∆ϕ and ∆z using the mean-

squared density 〈ρ2〉:

〈ρ2〉 = a1 + b1∆ϕ+ c1(∆ϕ)2 → ∆ϕ =
−b1

2c1

〈ρ2〉 = a2 + b2∆z + c2(∆z)2 → ∆z =
−b2

2c2

ai, bi and ci are coefficients of terms of each degree in the polynomials. The

minimization of the equations is done iteratively. The helical parameters can be

obtained from ET and STA as shown in figure 1.6 or by initially guessing the pa-

rameters and refining them in successive reconstructions. With (approximately)

known helical parameters the process of IHRSR is shown in figure 1.10. Due to

its derivation from SPR, IHRSR needs tubular fragments to be picked from mi-

crographs of datasets and an initial model.

Figure 1.10: Visualization of IHRSR: 2D projections from helical particles are
classified and averaged to reconstruct the helix. From the helix an atomic 3D
model of the protein can be obtained.
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The detailed process of IHRSR is described based on RELION [47]:

1. Particle Extraction: With help of the helical parameters particles are

extracted from picked tube fragments.

2. 2D Classification: The extracted particles are averaged up and classified

iteratively.

3. 3D Classification: Helical 3D classes are assembled from selected 2D

classes.

4. Molecular Model: A refined helical 3D model of the helix based on selected

3D classes can be used to obtain a molecular model of the protein forming

the assembly.

For the extraction of a preferably homogeneous set of particles it is important that

the helical assembly features a constant diameter and the absence of curvatures.

Otherwise the helical parameters do not fit anymore and particle views may be

distorted by wrong geometries. For the required initial model, IHRSR is robust

enough to use a featureless cylinder as an initial 3D template.

1.6 Central Composite Design

The CCD (Central Composite Design) method is used to study the influence of

more than one variable on the experiment’s results. It requires less experiments in

total compared to the analysis of each variable separately. Moreover, it can also

show quadratic dependencies. The number of required experiments for a CCD can

be calculated by equation 1.13. It contains a quadratic term and a linear term and

the central point[48].

N = 2k + 2k + Cp (1.13)

In case of this work the CCD was customized to optimize the lipid tube concentra-

tion in chapter 3.3.2. In this case we are not interested in the quadratic interaction

term of the CCD. Thus, its equation simplifies to 1.14[49]:

N = 2k + Cp (1.14)
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The CCD was applied on three important variables of the tube preparation pro-

cess: The number of freeze-thaw-cycles nFT, the extruder temperature TEx and

the number of extrusion cycles nEx. It is assumed that the tube count correlates

linear with the concentration cLipid. Thus, the concentration is kept constant and

the other influencing variables are being optimized. With k = 3 variables the

CCD needs nine experiments. The variables span a spatial orthonormal basis in a

coordinate system. The axis assignment is selectable and was set as the following:

~x1 = nFT ~ex1 , ~x2 = TEx ~ex2 , ~x3 = nEx ~ex3

Figure 1.11 shows the spatial coordinate system with the plotted CCD points.

Figure 1.11: Orthonormal basis of CCD: Each red dot represents a coordinate
point of the CCD.

In case of the tubes the concentration is denoted as the count of the tubes in

micrographs of a defined area. Thus, lipid nanotube extrusion is described as a

function of the variables nFT , TEx, nEx ∈ R ≥ 0 that maps on the tube count N :

N = f
(
nFT, TEx, nEx

)
∈ R (1.15)
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The CCD model interprets the variables as coordinates. The function f is a scalar

field. The gradient of the function f points in the direction of the maximum change

~r in a spatial vector base:

~r = ∇f
(
nFT, TEx, nEx

)
, f : R→ R3 (1.16)

An example for the gradient is illustrated in figure 1.12 in advance of the results

shown in chapter 4.3.2 and discussed in chapter 5.4.

Figure 1.12: Estimated gradient of CCD in chapter 1.6.

For the optimization of the lipid tube concentration the gradient of the CCD is

the most important result because it shows in which composition of the variables

the highest concentration is achieved and which variables are the most responsible

ones.
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Aim of this work

Some classes of tubular geometry sensing proteins extrude lipid tubes from unil-

amellar vesicles in vitro. A good approach to analyze structural and functional

properties of the protein is the analysis of these lipid tubes. In this work we want

to develop a method that enables to observe the oligomerization and understand

how these proteins act on a membrane and exert forces to bend membranes. Un-

derstanding the dynamics of intramolecular interactions between protein domains

is not convenient with methods like X-ray crystallography that require crystalliza-

tion and is far away from meaningful environments. To analyze different snapshots

of the functional states of a protein we intend to use Cryo-EM. This technique al-

lows to shock freeze aqueous in vitro reactions in intermediate states.

We want to use the truncate BPG of the protein GRAF1 as a representative of

the tubular geometry sensing protein class that form molecular oligomers on lipid

tubes. In the first step we want to review the analysis of protein-extruded lipid

tubes in Cryo-EM and characterize their oligomeric organization.

However, protein-extruded tubes do not enable the analysis of protein binding

in lower concentrations. This is needed to observe intermediate binding states.

Therefore, we want to use nanotemplates as pre-tubular rigid structures to bind

the protein and stop the binding reaction in different states via plunge freezing

22
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for analysis in Cryo-EM. Cylindrical nanotemplates suitable for binding protein

oligomers are not a novel idea but most of them suffer from complexity and expen-

sive components. In this work we want to develop an easy and robust approach

for nanotemplates and compare them to the protein-extruded tubes.

Finally, we intend to use sub-tomogram averaging or IHRSR to prove that our

approach for nanotemplates satisfies our expectations in a serious protein analysis.
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Materials and Methods

3.1 Chemicals and Consumables

Table 3.1: Substances used for lab experiments.

Substance Formular Grade Source

BPG protein N/A 81.3µM in Buffer solution M.K. Francis

Calcium Chloride CaCl2 dehydrated powder, ≥ 98 % Carl Roth

Chloroform CHCl3 anhydrous, ≥ 99 % Sigma Aldrich

Dithiothreitol (DTT) C4H10O2S2 ≥ 97 % Sigma Aldrich

EDTA C10H16N2O8 ≥ 99 % Sigma Aldrich

EGTA C14H24N2O10 ≥ 99 % Sigma Aldrich

Graphene Oxide CxOyHz dispersion in H2O, 2 mg
m`

Sigma Aldrich

HEPES C8H18N2O4S ≥ 99.5 % Carl Roth

Magnesium Chloride MgCl2 anhydrous, ≥ 98.5 % Carl Roth

Octyl Maltoside, Fluorinated C20H25F13O11 Anagrade Anatrace

Poly-L-Lysine Hydrobromide C6H15BrN2O2 solid, mol wt 150-300 MDa Sigma Aldrich

Sodium Chloride NaCl > 99.8 % Carl Roth

Uranyl Acetate Dihydrate C4H6O6U · 2H2O 2 % in H2O Science Services

Distilled Water H2O Barnstead MicroPure UF/UV Thermo Fisher Scientific

Table 3.2: Used lipids.

Lipid Name Source
Brain Extract from bovine brain Type I, Folch Fraction I Folch Sigma Aldrich

24
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Table 3.3: Consumables used for lab experiments.

Consumable Source

Autogrids + C-Clips Thermo Fisher Scientific
Carbon Support Films Au 200 mesh Quantifoil
Eppendorf Safe-Lock tubes 1.5m` Eppendorf, 0030120086
Fiducial Gold 10 nm UMC Utrecht
Filter Supports 10 mm Avanti Polar Lipids, 610014
Syringe needles Hamilton blunt tips
Holey Carbon Films R2/1 Au 200 mesh Quantifoil
Holey Carbon Films R2/1 Au 200 mesh + 5 nm C Quantifoil
Pipette tips Eppendorf epT.I.P.S.
Polycarbonate Membranes 0.8µm 19 mm Avanti Polar Lipids, 610009
Sample vials 2m` Rotilabo Carl Roth, E159.1
Screw caps with bore hole Carl Roth, KE36.1
UranyLess EM Stain Electron Microscopy Sciences, 22409
Whatman filter paper, Grade 2 50 mm Sigma Aldrich, WHA1004050
Whatman filter paper, Grade 4 50 mm Sigma Aldrich, WHA1004050

3.1.1 Buffer Solutions

• BPG B: 1 mM EDTA, 20 mM HEPES, 75 mM NaCl, pH 7.4, adjusted by

NaOH.

• BPG BEGTA: 1 mM EGTA, 20 mM HEPES, 75 mM NaCl, pH 7.4, adjusted

by NaOH.

• BPG B2: 20 mM HEPES, 75 mM NaCl, pH 7.4, adjusted by NaOH.

• BPG B3MgCl2 : 1 mM EDTA, 1 mM EGTA, 20 mM HEPES, 5 mM MgCl2,

75 mM NaCl, pH 7.4, adjusted by NaOH.

• BPG B3CaCl2 : 5 mM CaCl2, 1 mM EDTA, 1 mM EGTA, 20 mM HEPES,

75 mM NaCl, pH 7.4, adjusted by NaOH.

• EHD2 E: 30 mM ATP, 5 mM CaCl2, 2.5 mM DTT, 1 mM EDTA, 1 mM

EGTA, 20 mM HEPES, 20 mM MgCl2, 150 mM NaCl, pH 7.5, adjusted by

NaOH.
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3.2 Devices and Software

Table 3.4: Instruments used for lab experiments.

Instrument Manufacturer Name
Centrifuge VWR Micro Star 17R
Cryo Chamber Leica EM UC7 / EM FC7
Glow Discharger Balzers MED 010
Syringes Hamilton Gastight
Incubation Shaker INFORS HT Ecotron
Lipid Extruder Avanti Mini Extruder
Magnetic stirrer/Heat plate IKA C-MAG HS 7
pH Meter Mettler Toledo FE20 FiveEasy
Pipettes Eppendorf Research Plus
Plunge Freezer Thermo Fisher Vitrobot Mark IV
Plunge Freezer Leica EM-GP
Precision Scale Sartorius BP 211 D
Thermomixer Eppendorf Thermomixer C
Thermomixer Eppendorf Thermomicer Compact
Ultrasonic bath Bandelin Sonorex
Vortexer Scientific Industries Vortex-Genie 2

Table 3.5: Software used for data processing.

Name Version
EMAN2 / sparx 2.21
Gctf 0.50
imod / etomo 4.9.2
Leginon 3.1
MotionCor2 1.2.0
RELION 3.0
SerialEM 3.6

3.2.1 Electron Microscopes

For this work, two transmission electron microscopes were used. For all negative

stained grids and testing of Cryo conditions the JEOL JEM-2200FS was used

(shown in figure 3.1a). It is equipped with a 200 kV field emission gun and a TVIPS
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F416 scintillator CMOS camera. For all Cryo data acquisitions the Thermo Fisher

Titan Krios was used (shown in figure 3.1b). It uses a 300 kV field emission gun,

a CS-corrector, and the Thermo Fisher Falcon II direct electron detector.

(a) JEOL JEM-2200FS. (b) Thermo Fisher Titan Krios.

Figure 3.1: Transmission electron microscopes used for this work.

3.3 Methods

3.3.1 Lipid Extruder and Unilamellar Vesicles

For the preparation of ULVs (UniLamellar Vesicles) 4 mg of in chloroform dis-

solved Folch Type I lipids were dried in a 2m` glass vial in Argon stream. Residual

solvent was evaporated in the vacuum desiccator overnight. The lipids were re-

hydrated in 250µ` buffer solution B (4 mg
m`

) for 20 min. To disrupt multilamellar

vesicles the solution was frozen on dry ice and thawed at 25 ◦C for 5 min in Ther-

momixer for five times. The Lipid extruder was assembled with filter supports and

800 nm polycarbonate membrane. Figure 3.2a shows a scheme of the extruder. It

was flushed five times with buffer to avoid air gaps in the syringes. Lipid solution

was taken using the right syringe and extruded 21 times through the membrane[50].

Figure 3.2b shows an image of the extruder in use with the two syringes on the left



3.3. Methods 28

and on the right side. Lipid vesicles were taken from the left side of the extruder to

avoid lipid aggregates and multilamellar vesicles. Unilamellar vesicles were stored

for a maximum of 3 days at 4 ◦C in Eppendorf tubes and used at the earliest one

hour after preparation.

(a) Scheme of the Avanti Lipid Extruder[51]. The central part is a polycar-

bonate membrane between two filter supports.

(b) Image of the lipid extruder in use.

Figure 3.2: Lipid extrusion method.

3.3.2 Lipid Nanotubes

The preparation of Lipid Nanotubes was derived from 3.3.1. In chloroform dis-

solved Folch lipids were dried in 2m` glass vials using an Argon stream and kept

in vacuum overnight. They were rehydrated in the selected buffer solution (table

3.1.1) for 20 min. The solution was sonicated until all lipids were resuspended.

They were frozen and thawed and briefly vortexed for a defined number of times.

Liquid nitrogen was used for cooling instead of dry ice in the ULV protocol. The
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solution was frozen in aliquots of 200µ` and stored at -80 ◦C until use. The prepa-

ration procedure is illustrated in figure 3.3. One aliquot was thawed and vortexed

and extruded using a polycarbonate membrane for an odd number of times. Using

an odd number ensures that only lipid solution is saved that passed the extruder

membrane. The lipid tube solution was stored at room temperature and used for

a maximum of 5 days.

Figure 3.3: Preparation process of Folch Lipid Tubes and its variables.
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For further optimization of the preparation process the used variables and con-

stants are listed below:

Variables in the tube extrusion process in figure 3.3:

• cLipid: Lipid concentration dissolved in buffer solution.

• nFT: Count of freeze-thaw-cycles after rehydrating dried lipids in buffer so-

lution.

• TEx: The extruder is precooled or preheated to a defined temperature before

extruding lipids.

• nEx: Count of extrusion cycles. Each cycle corresponds to pressing the lipids

in one direction from one syringe to the other.

Constants in the tube extrusion process in figure 3.3:

• Freezing and thawing temperatures: Liquid nitrogen was used to cool

the lipid solution down to -196 ◦C. The solution was thawed in the Ther-

momixer for 2:45 min at 70 ◦C.

• Solution temperature at extrusion process: The last thawing step is

followed by the extrusion. Thus the temperature of the solution is 70 ◦C.

• Extrusion Volume: All extrusions were performed with a constant volume

of 250µ`. The concentration was only varied with the amount of lipids cLipid.

The lipid nanotube experiment was performed using the parameters in table 3.6:

Table 3.6: Lipid nanotube preparation.

Buffer cLipid nFT TEx nEx

B 4 mg
m`

5× 25 ◦C 21×

3.3.3 Optimization of Nanotemplates

The first step to optimize the yield of lipid nanotubes was to increase the concen-

tration cLipid of the lipids from 4 mg
m`

to 8 mg
m`

and 12 mg
m`

. At higher concentrations

undissolved lipid aggregates remained in the solution.
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Dependency on Buffer Components

To investigate the dependency of the tube formation on buffer components different

concentrations and components were used:

Buffers (see chapter 3.1.1) used for tube formation:

1. B2 (omitting EDTA): In the first step EDTA was removed from the original

buffer.

2. BEGTA (substitute with EGTA): As a negative control to buffer B, 1 mM

EGTA instead of EDTA was used.

3. B3MgCl2 (adding EGTA and MgCl2): 1 mM EGTA and 5 mM magnesium

chloride were added to the original buffer.

4. B3CaCl2 (adding EGTA and CaCl2): 1 mM EGTA and 5 mM calcium chlo-

ride was added.

All other parameters were adopted from table 3.6.

3.3.4 BPG Tubulation Experiment

For the tubulation experiments on ULVs and LNTs the fragment BAR-PH-GAP of

the protein GRAF1 (see chapter 1.3) was used[21]. It was purified and provided by

Monika Francis from Ume̊a University on 5th January 2016 with a concentration

of 81.3µM in a buffer solution containing 25 mM HEPES and 150 mM NaCl. The

protein stock was first diluted with buffer to the half of the concentration and then

mixed with ULVs or LNTs. In table 3.7 the detailed experiment parameters are

specified.

Table 3.7: BPG Experiment.

Template Buffer Conc. BPG conc. Mixer Temp. Incubation
ULV B 2 mg

m`
6.38µM 300 rpm 25 ◦C 10 min

LNT B3CaCl2 6 mg
m`

6.38µM 0 rpm 25 ◦C 20 min

After the tubulation experiment the solution was used immediately for negative

staining or Cryo-EM.
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3.3.5 Glow Discharge

By default, the carbon film on EM grids is hydrophobic. To incubate it with an

aqueous sample solution it must be hydrophilic. There are chemical methods and

glow discharging. The advantage of glow discharging grids is a more homogeneous

result and a less complex process. For this work, the grids were glow discharged

for 2 min using Balzers MED 010 with an Argon plasma. The chamber was at

first pumped to a vacuum of 10−7 mbar. Secondly, a balance between the vacuum

pumps and Argon pressure was adjusted to 3.5 mbar. The voltage between the

electrodes was constant at 4.25 kV and the plasma current at 40 to 50 mA. The

grids were used within a maximum of one hour after glow discharging.

3.3.6 Negative Staining

Due to the low contrast of light elements in biological samples grids were negative

stained with a heavy metal coat. 3.5µ` of liquid sample was pipetted on the

Carbon film side of a glow-discharged TEM grid and incubated for 1 min and then

blotted away with Whatman2 paper. The grid was washed two times with buffer

solution and once with staining solution. Uranyl acetate or UranyLess was used

as staining solution and applied for 35 s or 10 s, respectively. The staining solution

was blotted away and dried by airflow. In case of using UranyLess the grids were

additionally dried in vacuum for at least 1 h to evaporate remaining water in the

stain coat preventing bubbles when exposed by the electron beam.

3.3.7 Fiducial Markers for Tomography

For an optimized tracking of the sample position in different viewing angles the

samples for tomography were mixed with fiducial markers. These are gold crystals

with about 10 nm diameter. They were mixed with the sample immediately before

usage in negative staining or plunge freezing. They were added in a ratio of 1 : 10

to the sample volume.
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3.3.8 Graphene Oxide and Poly-L-Lysine

Glow discharged holey carbon grids for Cryo-EM were coated with graphene oxide

and Poly-L-Lysine[52][53]. The graphene oxide solution was diluted from 2 mg
m`

to

0.2 mg
m`

with H2O and centrifuged at 300 g for 30 s. 20µ` was added to a glow

discharged grid. After 2 min the grid was blotted using Whatman 2 filter papers

and washed three times on 30µ` H2O (two times on the front and once on the

back side). The grid was put on 20µ` of Poly-L-Lysine solution at 1 mg
m`

for 1 min

and again washed two times on 30µ` H2O and dried in air. There was no more

need to glow-discharge the grids before using them because of the hydrophilic

Poly-L-Lysine coating.

3.3.9 Plunge Freezing

For plunge freezing Thermo Fisher Vitrobot Mark IV or Leica EM-GP were used.

Individual parameters are listed in table 3.8. Holey carbon grids coated with

graphene oxide from chapter 3.3.8 were used for plunge freezing. The desired

humidity and temperature for the chamber of the used blotter were set. The sample

was mixed with surfactant solution. When the blotter was ready to use with the

previously set parameters the blotting papers were wetted (in case of Vitrobot)

and inserted. Gaseous ethane was condensed in a container cooled down by liquid

nitrogen. Blotting was started when the liquid ethane reached a temperature of

a maximum of -170 ◦C. 4µ` of the sample was pipetted on the carbon side of the

grid. After the blotting procedure the grid was left in liquid ethane for 1 min to

avoid devitrification and stored in liquid nitrogen.
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Freezing Parameters

Table 3.8: Plunge freezing parameters.

Vitrobot Mk IV EM GP

Blotting paper wet Whatman 4 dry Whatman 2

Blotting time 3.5 s 4 s

Cryogen temperature -170 ◦C -180 ◦C

Humidity 100 % 80 %

Temperature 23 ◦C 20 ◦C

Wetting Blot Papers

For the Vitrobot 3 Whatman4 papers were put in a petry dish and homogeneously

wetted with 1m` of buffer solution. The top paper was used as blot paper for the

front side of the grid and the middle paper was used as blot paper for the back

side of the grid. The bottom paper was discarded.

Surfactant Preparation

For a more homogeneous ice layer on the grid a surfactant was added to the sample

before plunge freezing. As surfactant fluorinated Octyl Maltoside dissolved in H2O

with a concentration of 0.1 mg
m`

was used. The sample solution was diluted by 10 %

of its volume with the surfactant solution.

3.3.10 Tube Counting

A tube was only counted if it could be identified as a (linear shaped) tube and if

its length and diameter was at least equal to the minimum length and diameter of

the smallest BPG-coated tubes in chapter 4.2.1. Aggregates were not counted. An

object was accepted as linear shaped when it was possible to draw a line through
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the whole object parallel to its borders and the line did not touch the outside. If

one end of the tube was invisible, or the tube left the image it was not counted

because of falsifying the result in case that the major part of the tube is outside

of the image. An illustration of the tube counting method can be found in figure

3.4.

Figure 3.4: Illustration of tube counting method. Scale bar: 2µm. The green
colored tubes were counted. The red ones were ignored because of their size or
one invisible end.
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All tubes were counted manually with the following settings:

Settings for counting tubes

• JEOL JEM-2200FS microscope

• Quantifoil Au 200 mesh Carbon Support Films stained with Uranyless solu-

tion for 10 s

• 8000× magnification. Pixel size: 1.96 nm
px

. Image size: (4096 px)2

• Area: (6.028µm)2

• Tube count of images averaged

3.3.11 Manual Tube Measurement

Lipid nano tube sizes were measured manually using the straight-line tool in FIJI.

The length and diameter were measured in the micrographs in pixels and then

multiplied by the pixel size of the microscope. The sizes of a minimum of 50 tubes

were averaged. The micrographs were obtained with the following settings:

Settings for measuring tubes

• Thermo Fisher Titan Krios microscope

• Leica EM-GP (see chapter 3.8)

• 5000× magnification. Pixel size: 1.28 nm
px

. Image size: (4096 px)2

• Area: (5.242µm)2

3.3.12 Negative Stain Tomography

Electron tomograms were recorded using the software SerialEM [54]. After a suit-

able target for a tilt series was found on the grid, the goniometer was tilted to

the highest possible angle in both directions without being affected by grid bars.

The tilt-series for the tomograms were acquired automatically in tilt-steps of 2 ◦.
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Tomogram reconstruction was done via etomo script[55] that accesses the software

imod [56][57]. The used reconstruction algorithm was Back Projection[58]. For a

precise alignment of the micrographs a fiducial seed model was used.

3.3.13 Cryo Data Acquisition

Data in Cryo-EM were acquired using the Thermo Fisher Titan Krios microscope

equipped with a Thermo Fisher Falcon II DED (Direct Electron Detector). The

DED records 17 frames per second. In the original setup these are added up

and saved as a micrograph. In the context of a master thesis written by Daniel

Rudolph[59] a frame grabber computer was installed. It captures the frames from

the DED via an optical fiber and saves them as separate files. This allows to

correct the beam induced motion by cross correlation. For this task, the software

MotionCor2[60] was used. Besides, the software can dose-filter the micrographs

by omitting high dose frames. This is important because these frames lack high

frequency information due to beam damage and disrupt the sample signal and no-

tably the CTF (Contrast Transfer Function) estimation. In case of this work only

motion-corrected and dose-filtered frame sums were used. For electron tomography

and single particle acquisition the grids were screened manually to evaluate the

ice quality and sample concentration. General parameters for all Cryo acquisition

methods are listed in table 3.9.

Table 3.9: Cryo-EM data acquisition parameters.

Acceleration voltage Objective aperture Spherical aberration
300 kV 100µm cs = 0.0001 mm

The detailed parameters for each dataset can be found in table 3.10.

Cryo Electron Tomography

Cryo electron tomogram acquisition and reconstruction is similar to negative stain

tomography described in chapter 3.3.12. The main difference is the use of a dose-
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symmetric tilt-scheme[61]. Usually, the stage is tilted continuously and micro-

graphs for all angles are recorded in the following order:

−60 ◦, −58 ◦, −56 ◦, −54 ◦, . . . , 54 ◦, 56 ◦, 58 ◦, 60 ◦

For the dose-symmetric tilt-scheme the angles around 0 ◦ are recorded first:

0 ◦, 2 ◦, −2 ◦, −4 ◦, . . . , −56 ◦, −58 ◦, 58 ◦, 60 ◦

The advantage is that low angles are recorded at low doses. These micrographs

contain the most information in contrast to the ones recorded at high angles. This

tilt-scheme ensures to keep the radiation damage as low as possible for low-angle

micrographs in the tomogram. Unfortunately, imod does not support reconstruc-

tion methods for dose-symmetric tilt-schemes by default. The micrographs of the

tomogram must be sorted by their angles before building tomograms. For this

purpose, a program called imod-prepare-stack was written in C++ (Appendix

B). It takes the information about the micrographs from SerialEM’s .mdoc file

and sorts the related micrographs by angle. Finally, a new .mdoc file is created

that can be used in imod. In figure 3.5, a scheme of imod-prepare-stack is shown.

Figure 3.5: imod-prepare-stack reads the .mdoc file and uses it to restore
the correct angle order of the frame stack. It also writes a new, sorted .mdoc file.

The final reconstruction does not differ from negative stain tomogram reconstruc-

tion.
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Dataset Acquisition

Single particle datasets were recorded using the software Leginon[62]. First, a

low-resolution map of the grid was recorded using the Gatan Orius SC1000 (scin-

tillator CCD camera). Suitable squares and holes on the grid were preselected by

ice quality. Each hole was previewed at lower magnification to identify tubes and

select them for the acquisition. Immediately before acquiring all selected tubes,

the CS-corrector was adjusted. In table 3.10 the detailed acquisition conditions

for the used datasets are listed.

Table 3.10: Single particle acquisition parameters.

Dataset Illumination area Pixel size Electron Dose Exposure time

May 2018 150µm 1.07 Å 39 e−

Å2
3 s

3.3.14 Particle Selection

Not all of the micrographs can be used for classification and helical reconstruction.

Good tube micrographs were selected using e2helixboxer.py that is part of the

software package EMAN2 [63]. Figure 3.6a shows a screenshot of the helix selection

process. Tubes were only selected when they had a linear shape, a homogeneous

color inside the tube and no ice crystals or dirt on top of the tube. When a tube

was only partially dirty or shaped inhomogeneously it was divided into usable sub-

particles. Figure 3.6b is an example for a tube usable for helical reconstruction.

The ice crystal on the right edge is not touching the inner part of the tube. In

contrast, 3.6c shows a non-linear shaped and a dirty inner tube surface. The helical

box size was selected to be the same for all particles and wide enough to fit the

largest tube found in the dataset.
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(a) GUI of e2helixboxer.py.

(b) Good tube. (c) Bad tube.

Figure 3.6: Tubes were selected in the GUI (a) of e2helixboxer.py. While (b)
shows a usable tube (c) was discarded.

Fragments of micrographs saved by e2helixboxer.py were used for further tube

analysis and helical reconstruction.

3.3.15 Automated Tube Analysis

For an automatic lipid tube analysis a script in Python named LineAdd.py was

written for this work (Appendix C). It accesses libraries from SPARX [64] and gen-

erates 1D density graphs of micrographs of the selected tube particles from chapter
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3.3.14. It approximates the position of the ends of each tube and calculates the

inner and outer tube diameters. After the tube measurement, the script classifies

the micrographs by their inner tube diameter and moves them to corresponding

class folders for helical reconstruction. Figure 3.7a shows a tube micrograph and

3.7b its corresponding density graph. In figure 3.7c the inner (green) and outer

(red) diameters are highlighted in an illustration of the density graph.

(a) Tube micrograph. (b) 1D density graph. (c) Analysis of the graph.

Figure 3.7: A tube micrograph (a) is averaged to a 1D signal (b) and the tube
ends detected in the graph. (c) shows a graph illustration with identified inner
and outer diameters.

In the following, the functionality of the tube detection algorithm is shown in

detail.

Density Graph Calculation

The first task of the script is to calculate a 1D density signal by averaging all

horizontal lines of the micrograph matrix M [x, y] containing m × n pixels. The

density signal is a single line l[x] containing m pixels as used in [65]:

f : Rm×n → Rm

l[x] =
1

n

n∑
y=0

M [x, y] (3.1)

All functions are discrete and thus it has to be valid that x, y ∈ N. Figure 3.8 shows
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a visualization of the density graph calculation by line averaging of the micrograph:

Figure 3.8: LineAdd.py averages all the pixel lines of the micrograph and plots
the 1D density graph.

Low-Pass Filter

The tube end detection algorithm analyzes the local contrast between two pixels.

Noise can disrupt the identification of a tube as it contains high frequencies that

increase the local contrasts in the signal and washes out the contrast between the

maxima of the tube edges and the background signal. High frequency signal noise

can be filtered using a low-pass filter. It cuts off all information of the signal at

frequencies higher than the cut-off at ωc. Frequencies lower than the cut-off pass

the filter unaffected. Figure 3.9b shows the low-pass filtered raw signal shown in

3.9a from figure 3.8. Figure 3.9c shows the low-pass filter function with a green

line showing the cut-off frequency.
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(a) Raw averaged signal l(x). (b) Filtered signal f(x). (c) Bode diagram of the low-pass

filter gain of H(s).

Figure 3.9: Illustration of the low-pass filter processing in LineAdd.py. The
raw signal l[x] (a) is low-pass filtered to f [x] (b) using the filter H(s) in (c).

The filtered signal function f [x] is the result of a discrete convolution between the

raw density signal function l[x] and the filter impulse response kernel h[x], where

f, h, l ∈ R and x ∈ N:

f [x] =
(
h ∗ l

)
[x] =

m∑
k=−m

h[k]l[x− k] (3.2)

For LineAdd.py, a 2nd order Butterworth low-pass filter[66] was used. Signal

filters are described in the frequency domain which is linked to the time domain

via Laplace transform L. In the frequency domain s = iω denotes the complex

frequency (s ∈ C). Moreover, the Laplace transform allows to simplify the math

of the convolution to a multiplication[67].

F (s) = H(s) · L(s) = L
{

(h ∗ l)[x]
}

(3.3)

F (s), H(s) and L(s) are the transformed counterparts of f [x], h[x] and l[x]. A

Butterworth filter can be described by the gain at the zero frequency G0 = G(ω =

0) and the cut-off frequency ωc:

H(s) =
G0

Bn(a)
, a =

s

ωc
(3.4)
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Bn(a) is linked to the normalized Butterworth polynomial Bn(s) in equation 3.5.

In case of 2nd order filters the Butterworth polynomial for an even order number

is used:

Bn(s) =

n
2∏

k=1

[
s2 − 2s cos

(
2k + n− 1

2n
π

)
+ 1

]
(3.5)

After applying the filter on the density function L(s) in the frequency domain, the

low-pass filtered signal F (s) is inverse Laplace-transformed:

f(x) = L−1
{
F (s)

}
(3.6)

For this work the Butterworth filter from SciPy package[68] with a cut-off fre-

quency of ωc = 0.5 rad
s

was used.

Tube End Approximation

Behind the low-pass filter only values higher than the mean f̄ of the filtered signal

f [x] are considered. Crooked cut tube particle micrographs can contain black

areas leading to global minima in the density graph. These can disrupt the tube

approximation algorithm. f+[x] is the sliced positive offset of the signal from its

mean:

f+[x] =

f [x]− f̄ f [x]− f̄ > 0

0 f [x]− f̄ ≤ 0.
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(a) f+[x]: Offset from mean value. (b) Graph showing the detection method.

Figure 3.10: (a) is the positive offset from the mean of the filtered function. The
blue dots are at the maxima m1 and m2 and the green colored line is the center of
the graph. In (b) the blue graph is the variance function c[x] and the red graph
is its normed running mean function rs[x]. The highest value for x where both
graphs meet is marked with the black dot.

f+[x] is graphed in figure 3.10a. The rough locations of the tube ends can be

found at the two local maxima m1 and m2 (blue dots) left and right to the center

of the graph. The graph is divided into four intervals (alternating gray and white

background) separated by the two maxima and the center of the graph (green

colored line). The script runs the same algorithm for each interval separately:

From the maxima towards the outer edges to find the outer ends and from the

maxima towards the center to find the inner ends. The algorithm in the following

is described based on the left outer end. The first step is to calculate the local

contrast variance c[x] between each two pixels starting from the left maximum

towards the left edge of the density graph.

c[x] =
[√

(f+[m1 − k]− f+[m1 − k − 1])2
]m1

k=0
(3.7)
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In the second step the running mean function r[x] of the local contrast variance

c[x] is calculated:

r[x] =
1

x

x∑
k=0

c[m1 − k] + c[m1 − k − 1] (3.8)

When comparing both functions it has to be considered that r̄ � c̄. r[x] needs to

be normed to the values of c[x]. The normed function is denoted by rs[x]:

rs[x] =
max c[x]

max r[x]
r[x] (3.9)

The last step is to find the values for x where the graphs of rs[x] and c[x] meet.

There can be multiple positions but only the last common point between the graphs

is an accurate approximation for the tube end position. The found position is not

an absolute location. It is an offset from the maximum m1. Thus, the most

accurate approximation for the left outer end position o1 can be calculated by:

o1 = m1 −max
x

{
x ∈ N, c[x]− rs[x] = 0

}
(3.10)

The inner end positions are i1 and i2, respectively. In figure 3.10b the functions

c[x] (blue) and rs[x] (red) are graphed. The black dot marks the position of the

tube end o1. After applying the algorithm to all four intervals in 3.10a the resulting

graph is displayed in figure 3.11. The red dots mark the outer ends of the tube

and the green dots mark the inner ends of the tube.
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Figure 3.11: Tube ends detected in the 1D density graph (cyan: raw, red: low-
pass filtered): Red dots are the approximated outer ends of the tube and green
dots are the approximated inner ends of the tube.

The calculation of tube ends enables the determination of the outer diameter dout

and the inner diameter din:

dout = o2 − o1, din = i2 − i1 (3.11)

The thickness of a single tube border dborder can be calculated from the difference

of outer and inner diameter:

dborder =
dout − din

2
(3.12)

The algorithm calculates only approximations of the tube end positions and these

can deviate from the exact tube end positions. Though, a small offset is still
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accurate enough to classify the tubes by their diameter. Nevertheless, there are

micrographs with completely wrong approximated tube ends. For this case a

failure detection is needed.

Approximation Failure

LineAdd.py tries to determine if the approximation of the tube end is inaccu-

rate. Failure checks are performed for each inner and outer tube end separately.

In case of the first outer tube end, the most trivial criterion for an inaccurate ap-

proximation is when its location and the location of the first maximum are equal

(o1 = m1). In this case the algorithm did not detect any difference to the maxi-

mum at all. The extended criterion is defined over the distance ratio around the

tube end limited by the left edge of the micrograph and the maximum m1:

o1 <
1

2
(m1 − o1) (3.13)

By default, the script excludes tubes with poor approximated inner diameters.

It can also be configured to exclude inner diameters from the statistics if the

corresponding outer diameter approximation failed.

Tube Classification

The automatic determination of diameters allows a classification of tubes by their

properties. LineAdd.py sorts the tubes by inner diameter and calculates their

minimum dmin and maximum dmax. After specifying the pixel size and diameter

classes dk with the width ∆d in units of [Å] all tubes are sorted into the fitting

interval limited by [ak, bk]:

[a, b] :=
{

(d1, . . . , dn) ∈ Nn | a1 ≤ d1 ≤ b1, . . . , an ≤ dn ≤ bn

}

a1 := dmin, bn := a1 + n ·∆d, n =
dmax − dmin

∆d
+ 1
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For each class a directory is created. All tube micrographs are moved to the class

directory they belong to. Micrographs with a failed tube end detection are moved

to a separate folder. As a plus, the script generates statistics about the tubes

and plots diagrams with the mean diameters and the standard deviations. The

classification is plotted with an automatic Gaussian fit. Detailed statistics are

shown in chapter 4.5.

3.3.16 Helical Reconstruction

For IHRSR RELION was used[69][70]. It was originally developed for single par-

ticle analysis, but helical reconstruction support was added in 2017[47]. The .mrc

stacks of the dose-filtered micrographs (see chapter 3.3.13) corresponding to the

picked particles (see chapter 3.3.14) were imported in RELION. The coordinates

of the picked particles were renamed from .txt to .box and also imported. CTF

estimation was performed using Gctf [71]. As box size B [px] the largest outer

diameter of the particles was used. Particles were extracted with an overlap of

90 % (the following particles start at a repeat of 10 % of the box size). The helical

parameters (helical rise R [Å] and the number of asymmetrical units U) for the

particle extraction were first guessed by the following relation:

R · U ≈ B

10
(3.14)
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Results

4.1 Unilamellar Vesicles

ULVs (UniLamellar Vesicles) were prepared using the protocol in chapter 3.3.1.

(a) Folch vesicles, 4 mg
m` . Count: 38. (b) Folch vesicles, 8 mg

m` . Count: 69.

Figure 4.1: Folch unilamellar vesicles prepared using the lipid extruder in Buffer
B. All the objects with curved shapes in the micrographs are dried vesicles. The
doubled lipid concentration in (b) resulted in 1.8× higher vesicle concentration
compared to (a). Scale bars: 2µm.

50
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Folch concentrations of 4 mg
m`

and 8 mg
m`

are compared in figure 4.1a and 4.1b in im-

ages of negative stained samples. Negative staining includes drying of the sample,

that is why the vesicles look crumpled. The doubled concentration resulted in 1.8

times higher vesicle concentration.

4.1.1 ULVs with BPG

As described in chapter 3.3.4 the ULVs were incubated with BPG. BPG extrudes

lipid tubes from ULVs. From the one of the vesicles in the green boxes a tube

(marked in red) was extruded in figure 4.2. It features a length of 3.7µm. Its di-

ameter varies between 49 nm and 77 nm. A grainy coat can be found on the tubes

extruded from the vesicle in the blue close-up. The resolution of the micrograph

is too low to identify the grainy coat as helical protein oligomers.

Figure 4.2: From one of the vesicles in the green boxes a 3.7µm long tube (red)
was extruded. Inside the blue close-up box, a circular vesicle with two extruded
tubes to the left and to the right can be seen. Notably on these tubes a grainy
coat is visible. At the yellow markers the diameter was measured: 1. 49 nm, 2.
77 nm, 3. 64 nm. Scale bar: 500 nm.
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To increase the resolution, a negative stain and a Cryo tomogram of BPG-extruded

tubes were recorded, and images were stacked up to a slice. In the negative stain

slice in figure 4.3a the helical protein coat is visible. The stripes have an angle

of 36 ◦ compared to 58 ◦ in the Cryo image in 4.3b. However, the Cryo slice

features far less contrast and it is not possible to see the more than stripes on the

tube surface. In the blue boxes the stripes are highlighted in red. The angle was

measured to the green tube axis.

(a) Slice of a negative stain tomogram (50 images stacked). The lipid tube was extruded by BPG

from the large vesicle on the left. On the surface of the tube a helical BPG coat is visible. It is

emphasized in the blue box with red highlighted stripes. They are tilted 36 ◦ to the green tube

axis. The tube has a length of 1.2µm and a diameter of 53 nm. Scale bar: 200 nm.

(b) Slice of a Cryo tomogram (28 images stacked). The tube has a diameter of 75 nm and a length

of 400 nm. The stripes on the tube are tilted 58 ◦ to the tube axis. The contrast is too weak to

see the same details as in (a). Only lines are visible. Scale bar: 100 nm.

Figure 4.3: Slices of tomograms of tubes extruded by BPG from ULVs in negative
stain (a) and Cryo (b). The high contrast of the negative stain image allows to
see white dots in a helical formation.
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4.1.2 Helical Parameters

Helical parameters ∆ϕ and ∆z were obtained from the slice of the negative stain

tomogram in figure 4.3a of a BPG-extruded lipid tube using the following equation:

∆ϕ =
2π

U
∆y =

360 ◦

2πr
∆y =

360 ◦

2π · 25 nm
· 2.84 nm = 6.51 ◦

∆z = 3.56 nm
(4.1)

The figures 1.9a and 1.9b in chapter 1.5.3 show the helical parameters on the basis

of an illustrated tube. The distances in y- and z-direction were measured manually

and averaged over five molecules in figure 4.4.

Figure 4.4: Helical parameters were obtained manually from a tomogram of a
negative stained tube (section of figure 4.3a). The distances between the molecules
in the red squares were measured in y- and z-direction and averaged. The green
rectangle shows the diameter of the tube at the measured location.
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4.2 Lipid Nanotubes

When applying the modified ULV protocol from chapter 3.3.2 linear shaped LNTs

(Lipid Nano Tubes) are formed as displayed in figure 4.5. They have a length

of 0.9 ± 0.29µm. The shortest length of 50 measured tubes was 0.5µm and the

longest 2.0µm. The diameter is homogeneous over the tubes and was measured at

96.0 ± 19.1 nm. Dimensions of LNTs were measured using the method described

in chapter 3.3.11.

Figure 4.5: A single Folch Lipid Nanotube (in the blue box) with a length of
1.6µm and a diameter of 90 nm. The box emphasizes the linear shape of the tube.
Scale bar: 1µm.
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4.2.1 BPG on LNTs

After incubating LNTs with BPG the tubes retain their linear shape with a con-

stant diameter while they feature the same stripes as the BPG-extruded tube in

figure 4.3b. The tube in figure 4.6 shows 40 stacked images of a Cryo tomogram

of a BPG-coated LNT. The tube has a diameter of 75 nm and a length of more

than 930 nm. The tube in the tomogram is cut off at its ends. The stripes have

an angle of 67 ◦ to the tube axis.

Figure 4.6: Slice of a Cryo tomogram (40 images stacked) of BPG-coated LNT.
Scale bar: 100 nm. The tube has a diameter of 75 nm and a length of more than
93 nm. The red stripes in the blue box have an angle of 67 ◦ to the green tube axis.

For the experiments in this work the diameter is more important than the length

of the tubes because the tube shape must meet the curvature sensed by BPG. In

table 4.1 the diameter d of 50 BPG-coated tubes was measured in Cryo and com-

pared to the raw LNTs. d is the mean diameter and σd is the standard deviation.

dmin and dmax are the minimum and maximum of measured tube diameters.

Table 4.1: Diameter measurements of raw and BPG-coated LNTs.

Type d [nm] σd [nm] dmin [nm] dmax [nm]

raw 96.08 19.10 71.31 149.10

BPG-coated 88.48 15.59 57.60 125.52

The tubes coated with BPG oligomers feature a 12 % smaller diameter than the

original raw lipid tubes.
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4.2.2 Concentration

The sample concentration used to prepare LNTs in Cryo-EM was insufficient for

single particle acquisition because the tube density was too low. In figure 4.7a the

micrograph of a sample, prepared with the original LNT protocol, is shown. For

helical reconstruction, several hundreds of tubes are needed. Therefore, it is de-

sirable to have at least one particle per hole. To reach this, each preparation step

was optimized to increase the particle density on the grid. 4.7b shows a sample

of raw LNTs prepared with the original conditions and the final conditions after

all optimization steps. Counting the tubes in both micrographs, as described in

chapter 3.3.10, results in a 16 times higher tube concentration after the optimiza-

tion process.

(a) Before optimization: 1 tube. (b) After optimization: 16 tubes.

Figure 4.7: Comparison of the concentrations in Cryo with 12 mg
m`

in the same
area. (a) is the original LNT protocol and (b) is the protocol including all opti-
mizations. The concentration was 16× higher in (b) after the optimization. Scale
bars: 500 nm.
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4.3 Optimization

As shown in chapter 4.2.2 the concentration of the LNTs was not enough for

Cryo-EM. All previous LNTs were prepared at a Folch concentration of 4 mg
m`

. The

most trivial way to increase the concentration is to dissolve more lipids in the

same buffer volume. A new experiment with a Folch concentration of 12 mg
m`

was

performed and compared to the standard concentration. Moreover, the following

parameters of the protocol were optimized:

• The buffer components were optimized by determination of ions responsible

for the tube extrusion.

• A Central Composite Design was performed to find relations between the

number of freeze-thaw-cycles, the number of extrusion cycles and the extru-

sion temperature.

• The stability of the LNTs was reviewed over the storage time to determine

the optimal point in time to use them for experiments.

4.3.1 Dependency on Buffer Components

The original buffer from unilamellar vesicle preparation protocol (chapter 3.3.1) B

included 1 mM EDTA. As shown in figure 4.8a a new buffer solution B2 without

EDTA yields a seven times higher tube concentration compared to the original

buffer in 4.8b but also in 1.5 times more vesicles. The sample in figure 4.8c

contains 1 mM EGTA instead of EDTA. This results in no LNTs but three times

more vesicles compared to the sample without any chelating agents. The size

of the vesicles also increased visually with their count. Thus, a measurement

was performed: While the mean diameter of the vesicles remained constant at

229± 24 nm the standard deviation was increased from 51 nm up to 173 nm with

more vesicles. This shows that the size distribution was extended and there are

more of larger and more of smaller vesicles in combination with less tubes.
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(a) LNTs without EDTA (buffer B2): 7

tubes and 19 vesicles. Diameter of vesicles:

229± 51 nm.

(b) LNTs with 1 mM EDTA (buffer B): 1

tube and 29 vesicles. Diameter of vesicles:

253± 91 nm.

(c) LNTs with 1 mM EGTA (buffer BEGTA):

0 tubes and 59 vesicles. Diameter of vesicles:

205± 173 nm.

Figure 4.8: Comparison between buffers without chelating agents and buffers
containing 1 mM EDTA and 1 mM EGTA. Omitting EDTA in (a) resulted in 7×
more tubes and 1.5× more vesicles compared to the original buffer in (b). The
sample in (c) containing EGTA yielded no tubes but 3× more vesicles. The mean
diameter stayed constant at 229±24 nm but the standard deviation was increased
from 51 nm to 173 nm with more vesicles. Scale bars: 2µm.
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These experiments show that both chelating agents yield less tubes but higher

amounts of vesicles. Besides a direct dependency, the concentration of the chelat-

ing agents can possibly show a dependency on Mg2+ and Ca2+ ions because the

chelating agents absorb these ions. Thus, another experiment was performed: The

buffer B3 contained 1 mM of EDTA and 1 mM of EGTA and in one case 5 mM

MgCl2 and in the other case CaCl2 to see the effect of each type of metal ions.

The results are shown in figure 4.9a and 4.9b:

(a) LNTs with 5 mM MgCl2 (buffer

B3MgCl2): no tubes and 19 vesicles.

(b) LNTs with 5 mM CaCl2 (buffer B3CaCl2):

24 tubes and 14 vesicles.

Figure 4.9: Comparison between LNTs with buffers containing MgCl2 and CaCl2.
(a) MgCl2 in the sample results in no tubes but 19 vesicles. (b) In contrast, the
sample with CaCl2 contains only 14 vesicles but 24 LNTs. This shows that CaCl2
favors tube extrusion. Scale bars: 2µm.

The experiment with 5 mM MgCl2 did not contain any tubes. It yielded 19 vesi-

cles. In contrast, CaCl2 yielded a high tube concentration (24 LNTs) and less

vesicle concentration (14 vesicles).

Finally, the highest tube concentration was achieved by adding both chelating

agents in the same concentration of 1 mM and 5 mM CaCl2.
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4.3.2 Central Composite Design

The formation of LNTs was characterized by the number of freeze-thaw-cycles

nFT, the extrusion temperature TEx and the number of extrusion cycles nEx. The

lipid concentration cLipid was kept constant at 12 mg
m`

(see chapter 3.3.2 for details).

To find the experimental correlation between them a CCD (Central Composite

Design) consisting of nine experiments in total (described in chapter 1.6) was per-

formed. For each experiment a negative stain test was performed and the tubes

on the EM grid were counted (chapter 3.3.10). The complete CCD was performed

with N = 3 and the averaged results are shown in table 4.2. The full results in-

cluding the tube count for every single image can be found in appendix A in table

A.1. For a better imagination of the CCD method every experiment was labeled

with a specific color and its coordinates in the spatial diagram.

Table 4.2: Results for LNT Central Composite Design.

Freeze- Extrusion Extrusion Tube Standard

thaw-cycl. Temp. cycl. count deviation

Coords. CCD Color nFT TEx nEx NTubes σTubes

000 0× 5 ◦C 0× 0.7 0.2

012 0× 25 ◦C 61× 4.1 0.8

021 0× 45 ◦C 21× 5.2 0.2

102 5× 5 ◦C 61× 11.1 3.1

111 5× 25 ◦C 21× 10.6 2.9

120 5× 45 ◦C 0× 1.5 1.7

201 10× 5 ◦C 21× 12.7 3.8

210 10× 25 ◦C 0× 3.2 2.3

222 10× 45 ◦C 61× 22.6 4.3

Figure 4.10a shows bar graphs of the averaged results of the CCD. Figure 4.10b

shows the position of the points in the spatial coordinate system.
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(a) Bar graph of the averaged tube counts in table 4.2. The tube count at the coordinates 222 is

the highest. At this position are the maximum values for all three variables (nFT = 10×, TEx =

45 ◦C, nEx = 61×).

(b) CCD basis of chapter 1.6 labeled with the

result flags of the LNT CCD. Each colored dot

is a measured point with three coordinates.

Figure 4.10: Visual illustration of LNT optimization CCD.
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In table 4.3 the tube counts of each CCD variable and its tested values are an-

alyzed separately. Each value of each variable appears
√

9 = 3×. The results

of these values were averaged and compared to the other values of the belonging

variable to see a trend in the tube count. The 1st and 2nd columns contain the

variables and each value they can accept. The 3rd column lists all corresponding

CCD points that contain the value of the 2nd column. In the 4th column are the

assigned diagram colors belonging to the averaged points. For the visualization in

figure 4.11 a new color was assigned to the average of each CCD variable. In case

of nEx = 0× the extruder was not used and the temperature TEx is inapplicable.

Thus, the averages of the extruder temperature only contain two results in con-

trast to the other CCD variables.

Table 4.3 shows the averages of the variables for each tested value.

Table 4.3: Correlation between variables and tube count.

CCD Variable Value Avg. CCD points Avg. CCD colors NTubes

0× 000, 012, 021 3.3

nFT 5× 102, 111, 120 7.7

10× 201, 210, 222 12.8

5 ◦C 102, 201 11.9

TEx 25 ◦C 012, 111 7.3

45 ◦C 021, 222 13.9

0× 000, 120, 210 1.8

nEx 21× 021, 111, 201 9.5

61× 012, 102, 222 12.6
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(a) Dependency on nFT. (b) Dependency on TEx. (c) Dependency on nEx.

Figure 4.11: Correlation between variables and tube count. In case of (a) nFT

and (c) nEx the tube count increases with higher values. Only in case of (b) (TEx)
there is a decreased tube count for 25 ◦C.

In contrast to nFT and nEx a higher extruder temperature TEx did not result in an

increased tube count. With the data shown at this point it is not possible to show

any temperature correlation.

4.3.3 Dependency on Extrusion Temperature

The results of the CCD from chapter 4.3.2 were not enough to determine a cor-

relation between the extruder temperature TEx and the tube count. For more

precise results another experiment was performed. The highest tube count could

be observed when all CCD variables were at their highest value. These parameters

were adopted and the extruder temperature varied from 5 ◦C to 45 ◦C in steps of

10 ◦C. Each experiment was performed three times. The resulting tube counts

can be found in table 4.4. The full data for this experiment can also be found in

appendix A in table A.2.
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Table 4.4: Detailed dependency on extrusion temperature.

TEx Coords. NTubes σTubes

5 ◦C 202 16.6 6,0

15 ◦C 21
22 16.4 10.6

25 ◦C 212 24.9 10.5

35 ◦C 23
22 15.1 4.0

45 ◦C 222 17.1 5.0

Although the experiment is not part of the CCD itself the 2nd column includes the

CCD coordinates to classify the results in comparison to the CCD. In figure 4.12

the averaged results have been plotted with the related error bars:

Figure 4.12: Detailed dependency on extrusion temperature: There is a slight
increase at 25 ◦C but the error bars show big uncertainty factors.
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4.3.4 Stability of LNTs

To test the stability of lipid nanotubes, the optimized preparation protocol at a

lipid concentration of 12 mg
m`

was used. The first grid was stained 1 h after prepara-

tion. The Eppendorf tube was kept at room temperature for the next days without

being moved. The following grids were stained on the 3rd, 5th and 9th days. On

the last day also the difference between tube solution taken from the top and the

bottom of the Eppendorf tube was compared. Micrographs of all grids are shown

in figure 4.13. The tubes were counted as described in chapter 3.3.10.

(a) 1st day. 13 : 51. (b) 3rd day. 14 : 38. (c) 5th day. 18 : 20.

(d) 9th day (top). 20 : 20. (e) 9th day (bottom). 9 : 34.

Figure 4.13: (a)-(e): [Tubes : Non-tubular objects]. Stability of LNTs at
room temperature over a maximum of eight days. The number of tubes increases
(2/3×) with time and the number of non-tubular objects decreases to (0.4×). The
only exception is the sample taken from the bottom at the 9th day. Scale bars:
2µm.
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The sample from the 1st day contains four times more non-tubular objects than

tubes. On the 3rd day there were 2.7 times more non-tubular objects than tubes.

On the 5th day non-tubular objects and tubes were equally distributed. At the

9th day the solution taken from the top was still equally distributed. The so-

lution taken from the bottom of the Eppendorf tube contained 3.7 times more

non-tubular objects than tubes. The tube concentration increased to 1.5 times

during the storage time. The comparison between the top and the bottom sample

on the 9th day shows that the concentration of usable tubes was two times higher

on the top and there were 0.4 times less non-tubular objects. The counts of non-

tubular objects and lipid tubes are visualized in figure 4.14.

Figure 4.14: Stability graph of LNTs. The number of non-tubular objects de-
creases with time while the tube count increases. The difference between the
5th day and the 9th day is negligible. The sample taken from the bottom of the
Eppendorf tube on the 9th day was not included in the graph.
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4.4 Dataset Acquisition

After the optimization of the tube yield for Cryo-EM it was finally possible to

acquire datasets for single particle analysis. The micrographs in figure 4.15 were

acquired with a pixel size of 1.07 Å per pixel and a dose of 39 e−

Å2
. Besides the tubes,

there were also vesicles in almost all cases, see figure (a). The presence of vesicles

implies a decreased tube concentration because the lipids did not form tubes in

this case. On some of the tubes the helical coat is visible, notably in the close-up

view in 4.16b.

(a) (b) (c)

(d) (e) (f)

Figure 4.15: Tubes recorded as part of a dataset. Scale bars: 40 nm. In (a)
vesicles are marked in red squares.
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(a) (b)

Figure 4.16: In the black marked close-up view in (b) the helical coat is visible.
Scale bars: 40 nm.

After the acquisition particles for helical reconstruction could be selected from the

micrographs as described in chapter 3.3.14.

4.5 Automated LNT Analysis

After selecting particles from the acquired micrographs an automatic tube analysis

was performed using the script LineAdd.py described in chapter 3.3.15. Figure

4.17c shows two examples for tubes with correctly detected tube ends. While (a)

and (c) are raw micrographs, (b) and (d) are the plotted density graphs (cyan)

including the low-pass filtered ones (red). High frequency content is visible in the

density graph of figure 4.17a and underlines the difference between the unfiltered

graph and the low-pass filtered graph.
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(a) Raw micrograph of a helical

particle.

(b) The high frequency information is

clearly visible and cut off by the low-pass

filter.

(c) Raw micrograph of helical par-

ticle with higher defocus.

(d) The raw density graph contains less high

frequency information compared to (b).

Figure 4.17: Raw micrographs and the output of LineAdd.py. The raw density
graphs are cyan-colored. In contrast, the (red) low-pass filtered graphs are cleaner
because they lack high frequency information that can distort the tube end detec-
tion algorithm. The difference in defocus between both raw micrographs is visible
in the high frequency content of the raw density graphs. Scale bars: 20 nm.

For the tube class histogram the script was configured to consider only inner tube

diameters when the corresponding outer ends were detected flawlessly. The class

diameter was set to 20 Å. Figure 4.18a shows the histogram of the dataset recorded

in May 2018. 4.18b shows a plot of all calculated diameters. The inner (green)

and outer (red) diameters were sorted independently. The centered lines mark

the mean values (di, do) and the thinner lines around them mark the positive and

negative standard deviations (±σi,±σo).
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(a) Tube class histogram in 20 Å steps with a red colored best fit Gaussian distribution.

(b) Tube statistics: Each green dot represents a measured inner diameter and each red dot an outer

diameter. The thick lines are the mean diameters and the thin lines are the standard deviations

(±σ).

Figure 4.18: Statistics generated for the dataset recorded in May 2018. The gray
highlighted classes in (a) were used for helical reconstruction. The measured inner
and outer diameters in (b) were sorted separately.
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Table 4.5: Detailed Dataset statistics.

Dataset Micrographs Excluded d̄i σi d̄o σo

May 2018 280 20 429.3 Å 79.2 Å 811.0 Å 132.7 Å

In figure 4.19 the border thickness of a single border is plotted against the outer

diameter of the tube. Overall the border diameter increases with the outer diame-

ter. However, the result is far away from being a linear function. The highlighted

interval from 100 to 150 Å was selected for helical reconstruction.

Figure 4.19: Border thickness plotted against the outer tube diameter. This
graph visualizes the distribution of the number of multilayers compared to the
total diameter of the tube. It helps to find an outer diameter interval with similar
multilayer numbers. A dense interval from 100 to 150 Å was selected.
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4.6 Helical Reconstruction

For IHRSR in RELION particles were picked using e2display.py as described in

chapter 3.3.14. At first, a 2D classification of the full dataset of May 2018 was

performed. In this run, RELION 2D-classified tubes by their number of multil-

amellar borders and ignored the helical coat between them. Due to this reason

three different methods to sort the tubes by diameter were performed to improve

the results of the 2D classification.

4.6.1 Diameter Class Selection

In a second run, the tubes were first classified by diameter using LineAdd.py.

From its output only the two most occupied diameter classes in figure 4.5 were

used: 420 to 439 Å and 440 to 459 Å. This yielded 67 tubes. Three different par-

ticle extractions and three different 2D classifications were run. The extraction

parameters are listed in table 4.6. In each run 1986 particles were extracted.

Table 4.6: Particle extraction parameters.

Box Tube Bimodal Asymmetrical Helical

size diameter priors units rise

#1 1100 px 410 Å yes 2 20 Å

#2 1100 px 1000 Å yes 2 20 Å

#3 1100 px 1000 Å no 2 20 Å

The tubes inside the selected diameter classes can still vary in 40 Å. At a resolution

of 10 Å a count of four different 2D classes can be expected because different

diameters are sorted in different classes. To be on the safe side, the number of

classes was doubled to eight and rounded up to ten. Each line of table 4.6 is linked

to a column of 2D classification parameters in table 4.7:
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Table 4.7: 2D classification parameters.

#1 #2 #3

Number of Classes 8/10 3/10 9/10

Mask diameter [Å] 410 1100 1100

Limit resolution [Å] -1 5 10

In-plane angular sampling 6 6 1

Offset search range [px] 5 5 10

Offset search step [px] 1 1 5

Tube diameter [Å] 410 1000 1000

Bimodal searches yes yes no

Angular search range [deg] 2 6 6

For the first extraction and 2D classification the parameters of the 1st line and col-

umn were used as a test to classify the helical coat on the LNTs. For this purpose,

the mask diameter was set to 410 Å to cut off the strong signal of the multilamellar

borders. This yielded eight classes and the densest one is shown in figure 4.20a.

The vertical stripes of the helical coat are clearly visible. However, for 3D model

building the tube borders must be considered as well because they are part of the

underlying geometry.

In the set of the 2nd line and column the mask diameter was set to 1100 Å to include

the complete tube. This resulted in an overfitted and blurred class because tubes

with different border numbers were averaged. In this case seven of ten classes

collapsed. The densest one is shown in figure 4.20b.

After some variations in the 2D classification parameters the best result was found

without bimodal angular searches and decreased sampling values to avoid over-

fitting in the 3rd column. For this run also a new particle extraction had to be

performed because the bimodal options must be in accordance (3rd line). The

other extraction parameters were left unchanged. As a result, the classes were not

blurred or washed out but only the least dense class in figure 4.20c showed the

stripes of the helical coat. Only one of the classes collapsed.
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(a) 410 Å, 107 particles. (b) 1100 Å, 379 particles. (c) 1100 Å, 38 particles.

Figure 4.20: Examples of different 2D classification runs of IHRSR of 1986 ex-
tracted particles after 25 iterations with tubes sorted by LineAdd.py highlighted
in figure 4.6.1. In (a) the mask diameter was set to 410 Å. This covers only the in-
ner tube diameter and cuts off most the borders. The stripes of the helical oligomer
are visible. (b) is the result of 1100 Å mask diameter and covers more than the
complete tube diameter. The class view is blurred because of overfitting. Particles
with a different border thickness were averaged. The helical coat is washed out.
In (c) the sampling was optimized. This class was the best one obtained after
various sampling experiments. However, this is only the least dense class.

4.6.2 Diameter Group Selection

To overcome the problem of different border numbers tubes with similar border

thickness and similar outer diameters were selected using LineAdd.py. The dense

area between 100 Å and 150 Å highlighted in figure 4.19 was selected as new input

for RELION and contained 77 tubes. However, the differences in the diameter

up to 206 Å between the classes worsened the problems of blurred classes and

diameter-sorted classification as shown in figure 4.21a and 4.21b. The particle

extraction and 2D classification parameters were identical to the ones from the 3rd

line and column of the tables 4.6 and 4.7.
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(a) 1100 Å, 125 particles. (b) 1100 Å, 81 particles.

Figure 4.21: Two of ten classes of the slice marked in figure 4.19 after 2D
classification. Notably in the shown classes the diameter between (a) (747 Å) and
(b) (953 Å) is too much for a suitable 2D classification because tubes were again
classified by their number of multilamellar borders instead of their helical coat.
Moreover, with big differences in diameter the geometry between the tubes is also
not comparable due to different curvatures.

4.6.3 Classification by RELION

Another approach to overcome the problem of different diameters is to obtain 2D

classes of the complete dataset containing 1986 particles. The results of the previ-

ous tests showed that RELION classifies tubes by their borders. Instead of using

LineAdd.py to sort tubes by diameter RELION’s 2D classification was used. Its

Bayesian-based dynamic algorithm can be more precise than the static tube end

detection algorithm because it takes more data into account. To perform the 2D

classification the parameters from the 3rd run in table 4.7 were adopted and the

number of classes was set to 100 because of the diameter difference between the

thinnest and the thickest tube in the histogram of figure 4.18a is 580 Å. For a safer

classification 100 instead of 58 classes were used. This resulted in 75 classes and

25 collapsed. The densest class contained 519 of 1986 particles. This is more than

one third and should be enough to show if the approach works.

With the selected particles another 2D classification was performed with the pre-

vious parameters and ten classes. This run yielded eight classes. The densest class
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(996 Å diameter) is shown in figure 4.22a and did not solve the previous problems.

The class in figure 4.22b contains the thinnest tubes (931 Å diameter). The differ-

ence in the class diameter is 65 Å. The class in figure 4.22c is less blurred compared

to the densest class but it contains only 17 particles of 519.

(a) 1100 Å, 327 particles. (b) 1100 Å, 65 particles. (c) 1100 Å, 17 particles.

Figure 4.22: Three of eight classes after using RELION for a diameter classifica-
tion. (a) is the densest class and blurred by overfitting with a diameter of 996 Å.
(b) contains thinner tubes and results in a 931 Å class diameter. (c) is less blurred
than the other classes but contains with 17 particles far less than the other classes
(327 and 65). It contains not enough particles to make the stripes of the helical
coat visible.
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Discussion

5.1 Energy Distribution

In vitro, BPG extrudes lipid tubes from vesicles. The total energy difference ∆E

between the energy of the extruded tube ETube and the energy of the original

vesicle EVesicle[72] has to be supplied by the protein:

ETube = EVesicle + ∆E

∆E = ETube − EVesicle

It can be calculated using the curvature energies for the vesicle and the tube

calculated by equation 1.1 in chapter 1.1. This requires the shell area of a cylinder

(Acyl = 2πrTh) and the surface area of a sphere (Asph = 4πr2
V). The total energy

distribution is then provided by equation 5.1. In case of the cylinder only the shell

is considered because the curvature of top and bottom base is small in comparison.

∆E =
κπ

4

[
rThT

(
C1,T + C2,T − C0

)2 − 2r2
V

(
C1,V + C2,V − C0

)2
]

(5.1)

77
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With known helical parameters ∆ϕ and ∆z (figures 1.9a and 1.9b) and the tube

length l the approximate number of units per tube can be obtained. Finally, the

molecular work Wmol per unit can be estimated by equation 5.2:

Wmol =
∆ϕ∆z

l · 360 ◦
∆E (5.2)

It would be infeasible to prepare a single vesicle and add BPG to extrude a tube

from it and measure the curvature before and after incubation. However, a statis-

tical comparison between the sizes of vesicles and tubes after BPG incubation can

approximate a binding energy per molecule.

5.2 Nanotemplates

There are many different types of nanotemplates but not many are suitable for

binding helical protein oligomers. They need a curvature that is sensed by the pro-

tein and the right diameter to be coated with a protein oligomer. Moreover, they

should be linear and constant in diameter. For this case and diameter class there

are notably two approaches: CNT -based (Carbon Nano Tube) and lipid-based.

They differ in key features as preparation effort, flexibility and complexity. The

least effort and flexibility feature GalCer-based lipid tubes. They extrude their

selves when the lipid mixture contains more than 20 % GalCer. Their shape is

linear and constant in diameter. However, according to literature, the diameter is

fixed at 25 to 30 nm due to molecular properties of GalCer[31][33]. For small heli-

cal protein oligomers or binding single molecules (e.g. streptavidin on biotinylated

lipids) GalCer tubes are an option. As second component of the lipid mixture

a lipid type suitable for protein binding must be selected. The flexibility can be

increased by selecting lipid cocktails like Folch containing differently charged lipids

with different tail lengths and head groups. The major disadvantage besides the

fixed diameter is the fact that GalCer is needed. This lipid is expensive and does

not belong to most protein’s native environments.
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In contrast to GalCer tubes, CNT-based nanotemplates offer a lot of flexibility:

CNTs are constant in diameter due to their structure and the diameter can in the-

ory be selected by the number of graphene layers. The most common production

method for multi-walled CNTs is Chemical Vapour Deposition. In this technique,

CNTs are grown on catalyst ions. The growing point diameter controls the diam-

eter of the CNT[73]. This is not very precise, but it allows to produce CNTs in

diameter classes (about ±10 nm). Thus, CNTs can be purchased in the desired

diameter groups. Moreover, long CNTs can be easily cut into smaller pieces with

the help of ultrasound. There are also electroconductive CNTs[74]. This feature

can enable experiments that require measurements of electrical properties. The

main disadvantage of CNTs is the requirement of complex preparation methods.

CNTs need to be modified chemically because of their non-biomimetic and hy-

drophobic properties. They need to be equipped with a lipid bilayer featuring a

suitable curvature that can be sensed by the protein. Covalently bound lipid lay-

ers require disengaged bindings between carbon atoms in the surface lattice of the

tube. This can be done using chemical radicals but there is no possibility to control

the location and amount of split atom bindings. As a result, the lipid layers are

not attached homogeneously. Non-covalently bound lipid layers require expensive

synthetic lipids with pyrene groups to be attached to the CNT’s surface by π-π-

stacking. An alternative method is the usage of linker molecules between CNT

(non-covalent side) and lipid head group (covalent side). The additional length of

the linkers must be taken into account when selecting CNTs with a suitable diam-

eter. Another disadvantage is that CNTs are not linear-shaped and in result not

usable for helical reconstruction directly. Cutting CNTs into smaller fragments

is one solution to straighten them. In addition, protein oligomerization can force

CNTs to linear-shaped tubes. In conclusion, CNTs are an interesting approach

for nanotemplates but it is very complex and requires many problems to be solved.

The Folch lipid tubes presented in this work are like GalCer tubes in their prop-

erties. They also feature the linear shape and constant diameter. Compared to

GalCer tubes, the average diameter is larger at 96 ± 18 nm (table 4.1) and fea-

tures a larger variance. This adds a bit of flexibility for protein oligomers but
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the extrema are less likely to appear (figure 4.18a). The effort for the preparation

using the lipid extruder is also low. The main advantage of Folch lipid tubes is

that they already consist of a cocktail of differently charged lipids and also lipids

with different tail lengths[75]. This allows them to be used without modification

for many different proteins that are in the same environment of Folch Type I (ex-

tracted from bovine brain). Moreover, Folch lipids are at a price of 1/28 (November

2018) far less expensive compared to GalCer. This calculation does not include

the additional lipids needed to prepare GalCer lipid tubes.

Folch lipid tubes are multilamellar and hollow inside. This allows the protein to

shrink them to the best fitting diameter for the protein oligomer and adds another

flexibility compared to both, GalCer lipid tubes and CNTs.

5.3 BPG on LNTs

Mixing LNTs with BPG results in Cryo in the same helical stripes on the tube

surface as BPG’s self-extruded lipid tubes (figure 4.3b compared to 4.6). LNTs

feature already tubular shapes, so there is no need for BPG to extrude its own

tube and it binds directly. Except a small shrinking of the diameter (12 %) the

LNTs keep their shape upon BPG binding, as shown in table 4.1. When BPG

oligomerizes on the LNT it compresses the tube to its preferred diameter[76] con-

stantly over the complete length of the tube. After shrinking the diameter of the

BPG-coated LNTs is closer the diameter of BPG-extruded tubes (88 nm compared

to 75 nm). The new diameter is the result of BPG’s molecular organization. How-

ever, there is still a variance (±16 nm) in the diameter of LNTs (with and without

BPG) because they feature different counts of multilamellar borders. Figure 5.1

visualizes the oligomerization of BAR domain proteins on tubes.
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Figure 5.1: Dimers of the BAR domain protein form oligomers and extrude
tubes from unilamellar vesicles. Phosphorylation at the tips of the dimers inhibit
oligomerization to ensure that the oligomers get their characteristic shape[76].

LNTs keep their linear shape and the constant diameter when they are coated by

BPG. In figure 4.6 the angle of the helical stripes is constantly at 67 ◦ over the

whole tube. In comparison to the LNT the helical stripes on BPG’s self-extruded

tube in figure 4.3b are at an angle of only 58 ◦. Both tubes have a diameter of

75 nm. This is not a big difference, but it can possibly be a hint that the helical

order on LNTs is different. Moreover, the BPG-extruded tube in Cryo and the one

in negative stain in figure 4.3a show not a constant angle of the stripes over the

whole tube. Behind curvatures in the tube the angle changes. This proves that

an analysis of the self-extruded tubes would not yield reliable results in a helical

reconstruction and distort the build of molecular models. Hence, LNTs solve the

curvature issues and variable diameter of BPG’s self-extruded tubes and enable

the use of helical reconstruction to obtain the structure of BPG.

5.4 Optimization of LNTs

The original protocol for LNTs (chapter 3.3.2), derived from the ULV protocol

(chapter 3.3.1), had to be optimized to yield a higher tube concentration. The

first try to increase the concentration was to use a higher lipid concentration in

the same buffer volume. Doubling and triplicating the concentration did only
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result in more aggregation instead of more tubes. Hence, a more sophisticated ap-

proach was needed. The buffer B adopted from the ULV protocol contains three

components: NaCl, HEPES and EDTA. While HEPES keeps the pH value at 7.4

NaCl provides a meaningful concentration of Na+ and Cl−. These are present

in similar concentrations inside eukaryotic cells (50 mM for Na+ and 150 mM for

Cl−)[1]. EDTA is a chelating agent that binds Mg2+ and Ca2+. These metal ions

can affect lipid formation and aggregation. Omitting EDTA in buffer B2 results

in a seven times higher amount of LNTs as shown in figure 4.8a compared to

4.8b. EDTA has a higher binding affinity for magnesium ions than for calcium

ions. There is also the chelating agent EGTA that has a higher binding affinity for

calcium ions compared to the affinity for magnesium ions[77]. To see the result of

a lower calcium concentration a second test with EGTA instead of EDTA was per-

formed. A comparison between the buffer solution B and the new one containing

1 mM EGTA (BEGTA) instead of EDTA shows that EGTA exclusively results in

unilamellar vesicles (4.8c). It seemed that magnesium supports the formation of

vesicles and calcium in contrast the formation of tubes. Both chelating agents can

also bind other metal ions. Therefore, it was needed to prove if magnesium or cal-

cium are the ions that are responsible for the different results. A buffer solution B3

was mixed. It contains 1 mM of both chelating agents to ensure that magnesium

and calcium are not present in the buffer solution in a significant concentration.

In the next step either 5 mM of MgCl2 (B3MgCl2) or 5 mM CaCl2 (B3CaCl2) were

added. The result in figure 4.9a proves that magnesium ions yield vesicles and 4.9b

that calcium ions yield LNTs. Calcium is known to be rigidifying and ordering

lipid layers by changing head groups[78], ordering acylic chains[79] and dehydrat-

ing lipids[80]. It also compresses bilayers[81]. These properties favor the formation

of rigid tubes with ordered multilayers. In contrast to calcium, magnesium is a

fusion catalyst without the rigidifying and ordering properties[82][83]. Thus, vesi-

cles and aggregates are formed in presence of magnesium ions. In conclusion, the

buffer B3CaCl2 containing both chelating agents and 5 mM CaCl2 yields the highest

tube concentration.
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There are more variables in the tube preparation protocol: The number of freeze-

thaw-cycles nFT, the extrusion temperature TEx and the number of extrusion cycles

nEx. These parameters had to be optimized to increase the tube yield. These vari-

ables cannot be tested separately because they can be correlated with each other.

For this reason the CCD method for all three variables was used and each variable

was tested for three different values. The results are shown in chapter 4.3.2 par-

ticularly in figure 4.10a. The results for each value of each variable were averaged

to display the influence of the variables separately in figure 4.11.

At first, there is the number of freeze-thaw-cycles nFT before using the lipid ex-

truder to finish the protocol. Originally, this step should disrupt multilamellar

vesicles to improve the yield of unilamellar vesicles during extrusion. It was not

known if LNTs profit from freeze-thaw-cycles in the same way as ULVs do. In Cryo-

EM images LNTs show multilamellar borders and they may profit from skipping

this step to preserve multilamellar lipid vesicles. To investigate the influence of

freeze-thaw-cycles, tests with more or less than five cycles were performed. Accord-

ingly, nFT was tested at 0×, 5× and 10×. The results show that the concentration

almost scales linearly with number of freeze-thaw-cycles nFT. This shows that dis-

rupting multilamellar vesicles is important for the formation of tubes. Although

the tubes seem to be multilamellar as well, they form from unilamellar vesicles.

During the extrusion non-uniform sized vesicles are pressed through the membrane

and constrict new vesicles of a size like the membrane’s pore size. Multilamellar

vesicles are more rigid than unilamellar vesicles because more molecular layers

must be deformed. Due to this reason it is less likely for a multilamellar vesicle

to form a tube behind the membrane. In presence of calcium as a fusion agent for

lipid molecules that also orders lipid layers new tubular multilamellar structures

can be formed.

LNTs are formed by pressing lipids through the extrusion membrane. Increasing

the number of extrusion cycles nEx should result in higher concentrations. Orig-

inally, 21 extrusion cycles were performed. When comparing the results for 0×,

21× and 61× it is clearly visible that almost no tubes form when the lipid-buffer-

solution was not extruded (0×). This proves that the primary origin of tubes is

the extrusion process. However, some tubes are also formed without extrusion. It

is less likely that they form but it is not impossible because their origin is the same
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as the origin of vesicles. At 61× there is only a small increase over 21×. At some

point the tube formation reaches a limit because there are no lipids left to form

tubes or too high tube concentration disrupts the formation of new tubes because

it blocks the extruder membrane.

In literature was shown that more extrusion cycles reduce the multilamellarity of

vesicles[84] and that the number of freeze-thaw-cycles increases the trap volume

of vesicles[85]. Both variables show an increased tube yield. This shows that

unilamellarity favors the tube extrusion and freeze-thaw-cycles may increase the

number of large vesicles that can form tubes in presence of Ca2+.

The extrusion was originally performed at a temperature TEx of 25 ◦C and at 21×
for the number of extrusion cycles nEx. Both variables can influence the tube yield

and thus they have to be taken into account in the optimization process as well.

TEx influences the viscosity of the lipid-buffer-solution and Folch is a complex mix-

ture of multiple lipid types. The temperature can influence molecular transitions

between them. For TEx, values of 5 ◦C, 25 ◦C and 45 ◦C were tested. While ex-

trusion temperatures (TEx) of 5 ◦C and 45 ◦C yielded similar tube concentrations,

25 ◦C first showed a clearly (0.5 times) lower concentration. To see if there is a rea-

son for the disadvantage at this temperature more values for TEx were added while

keeping the nFT and nEx constant. The results for the more detailed temperature

correlation in figure 4.12 show similar results for 5 ◦C, 15 ◦C, 35 ◦C and 45 ◦C. In

contrast to the previous CCD experiments the tube concentration was higher for

25 ◦C and not lower than the other temperatures. This is contradictory. However,

when considering the error bars the results are not reliable enough to see a temper-

ature correlation at all (notably the ones for 15 ◦C and 25 ◦C). This was also shown

in literature[84]. The large error bars show that there must be a different reason

behind the variation between experiments that are identical in all defined variables.

First of all, the lipid concentration can vary between experiments because some

lipids can remain undissolved. After rehydrating with buffer solution for 20 min the

there were only aggregates in the mixture (figure 5.2a). Normally, after sonication

the solution was homogeneously non-transparent because all lipids were dissolved

(5.2c). The sonication time was varying between experiments.
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(a) (b) (c)

Figure 5.2: Glass vials showing the steps in lipid rehydration. (a) is a trans-
parent buffer solution containing undissolved lipid aggregates. In (b) most lipids
are dissolved but there remain some smaller almost invisible aggregates and the
solution is already non-transparent. (c) does not contain an appreciable amount
of undissolved lipids and is homogeneously non-transparently colored. Sonication
of (a) finally results in (c).

However, if the sonication time is not long enough the solution still contains small

barely visible aggregates, as illustrated in figure 5.2b, and these do not contribute

to the extruded solution and lower the tube concentration. Moreover, a sedimen-

tation of lipid aggregates on the walls of the glass vials could be observed during

freeze-thaw-cycles. This was notably visible around the water surface area.

Secondly, during the experiments was noticed that the volumes inside the glass

vials were different between aliquots after the freeze-thaw-cycles although they

were filled with a constant amount of buffer solution in the beginning. This could

be observed when using a pipette set to a defined volume to divide the solution

into smaller aliquots to be stored after the freeze-thaw-cycles. The fluid volume

can be less because of less dissolved lipids. Moreover, it is possible that the glass

vials were not tight enough that water could evaporate and escape as steam dur-

ing heating up to 70 ◦C. In addition, lipid aggregates on the wall of the vial can

also retain water between multiple lipid layers[72]. This amount of water is not

present inside the volume of the solution anymore. However, the volume itself

cannot be responsible for differences in the tube concentration because the pres-

sure p is constant due to the constant area A of the extrusion membrane: p = F
A

.

However, the force F can change the pressure. In literature it was shown that
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the extrusion pressure is influencing the vesicle size and trapped volume[85]. All

extrusions were done by hand using the extruder shown in figure 3.2b. With larger

volumes inside the syringes the deflection of the fingers increases. With less de-

flection more force can be exerted on the piston of the syringe and the pressure

can be increased. Thus, the pressure differences dependent on the volume are due

to manual inaccuracies. When using an automatic extruder with a fixed pressure

volume-dependencies should be negligible.

Finally, the gradient of the CCD is used to visualize the results of the whole opti-

mization process: It points towards the maximum change in the spatial diagram

(see chapter 1.6). It was first approximated without considering the additional

temperature experiments. According to these experiments the tube concentration

has its maximum where all three variables have their highest value at the coordi-

nates 222 (nFT = 10×, TEx = 45 ◦C, nEx = 61×). In figure 5.3 the green arrow is

the gradient of the original CCD experiment.

Figure 5.3: The green arrow is the gradient of the original CCD experiment.
The red arrow is a more likely result for the gradient.
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Assuming that the tube count at 222 is similar to the points 102, 111 and 201 a

better approximation for the gradient is the red arrow in figure 5.3 because 201

and 102 yield high concentrations with TEx lower than the maximum at 45 ◦C. The

additional temperature correlation experiment shows a maximum at 25 ◦C. Taking

this result into account when estimating the gradient, the red arrow is even more

likely pointing towards 212 (nFT = 10×, TEx = 25 ◦C, nEx = 61×). This seems

to be the best approximation of the gradient but due to the high error bars in fig-

ure 4.12 no temperature correlation could be verified, and a more precise gradient

cannot be established with the present data.

Another important aspect to achieve an optimal LNT concentration in samples is

to consider their stability and usage. ULVs should be stored for a maximum of

three days at 4 ◦C and must not be vortexed. Otherwise they collide and aggregate.

LNTs are more robust due to their rigid multilamellar shape. They must not be

vortexed as well but they can be stored at room temperature and for a longer time

than three days. Although, after some days they show differences in shape and

aggregation in the same aliquot. For example, a higher tube concentration could be

observed when using a stock that was stored for one or two days compared to a fresh

one. Other samples suffered from aggregation like tubes that have been vortexed.

The graph of the experiment in figure 4.14 shows that the count of non-tubular

objects in the aliquot decreases while the tube concentration increases within days

converging to a maximum after five days. This can be a proof that non-tubular

objects are straightened. During the extrusion process vesicles are pressed through

the extruder membrane. Due to the extrusion force vesicles with a new shape and

size are formed and translational energy is converted into curvature. However,

flexible strained surfaces tend to relax to their equilibrium and lose curvature[10].

When losing curvature in presence of Ca2+ ions this could yield new tubes. In

the CCD was shown that tubes can also form without any extrusion cycles. Their

low concentration shows that this is not very likely. For long tube-like vesicles it

is more likely to straighten into LNTs over the time because they are closer to

their final shape. Lipid structures stored in an aqueous solution aggregate over

time due to gravity and thermal induced movements. In presence of fusion agents’
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smaller vesicles can aggregate and also lose curvature. In combination with Ca2+

ions ordering and dehydrating lipid structures this could be a second way to form

tubes over the storage time.

5.5 Helical Reconstruction

The helical parameters obtained from the negative stain tomograms in chapter

4.1.2 do not have to match the parameters obtained from Cryo-EM because the

tubes might be deformed when the sample is dried on the grid for negative stain-

ing. However, obtaining helical parameters from Cryo-EM samples is much more

complex because of the low contrast compared to stained samples. From the Cryo

tomogram in figure 4.6 the helical parameters cannot be obtained manually in a

reliable way. Originally it was attempted to use sub-tomogram averaging to ac-

quire helical parameters of Cryo samples and to study BPG because the first LNT

preparations did not yield concentrations high enough for helical reconstruction.

However, the successful optimization of the LNT preparation enables IHRSR. In

case of high enough concentrations of tubular shaped particles this is an easier ap-

proach because it does not require reconstructed tomograms and a compensation

of the missing wedge.

In a first attempt of helical reconstruction the distribution of different diameters

between the tubes led to problems in the 2D classification. Instead of classifying

the helical structure in the center of the tube, RELION classified tubes by the

number of multilamellar lipid layers visible in the tube borders. Setting the inner

mask diameter to fit in between the borders of the smallest tube would be a trivial

solution but the cylindrical shape of the surface area on the tubes must be consid-

ered as well. The different curvatures of small and large tubes at locations with

the same radius result in incomparable classes. The only solution to overcome

this problem is presorting the tubes by their diameter. Instead of measuring the

tubes manually the script LineAdd.py (described in chapter 3.3.15) was written.

Its tube detection algorithm sorts the tubes by their inner diameter in predefined
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classes. The histogram plot of all diameter classes is plotted in figure 4.18a and

looks like a Gaussian distribution. The Gaussian graph with the best fitting stan-

dard deviation was automatically calculated and plotted. However, there is not

enough data to examine the correct underlying statistical distribution. There is a

density peak in the center of the histogram.

For a second try of IHRSR only presorted tubes of the two central classes (420

to 439 Å and 440 to 459 Å) highlighted in figure 4.18a were selected. The mask

diameter of 410 Å covers only the inner diameter of the tube. This proved that it

is indeed possible to see the vertical stripes of the helical BPG-coat on the LNTs

as shown in the 2D class in figure 4.20a. However, this was only a test and is not

suitable for obtaining a 3D model because a mask diameter covering only the inner

part does not include the full tubular geometry and can in theory only reconstruct

a partial model of the helix.

When using a mask diameter covering more than the whole tube (1.5 times is

recommended[86]) with a presorted tube subset the tubes are not only classified

by their number of multilamellar borders anymore. Certainly, there are still tubes

of different diameters and border numbers in the subset as it covers an inner diam-

eter interval of 40 Å in total (highlighted in figure 4.18a). These border diameter

variations in the selected subset disrupt the classification because now tubes with

small diameter differences are averaged to one class. Moreover, there is almost

no correlation between the outer diameter and the border diameter as shown in

figure 4.19. This also means that there is almost no correlation between the inner

and outer diameter. Accordingly, tubes presorted by their inner diameter feature

different outer diameters randomly distributed.

In case of the presorted classification seven of ten classes collapsed. This blurred

out the classes and added up the strong signals of the tube borders (compared to

the helical coat) as shown in figure 4.20b.

Testing different sets of particle extraction and 2D classification parameters re-

vealed that smaller sampling ranges and steps lead to less blurred classes. Small

parameters would help to align the tubes in their axis perpendicular to the tube.

Though these were too small to align the stripes of the helical coat in the tube
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axis. Unfortunately, RELION only supports one parameter for both axes[86].

Furthermore, testing parameter sets revealed that the option for bimodal angular

searches is inappropriate for BPG-coated LNTs. This shows that the helical seg-

ments lack polarity and indicate a dihedral Dn symmetry[86]. Switching off this

option does not solve the problem of averaging up tubes of different diameters but

makes the helical coat on the tubes visible in figure 4.20c. This is the least dense

class of this run and contains only 38 of 1986 particles. This is not sufficient for

a high-resolution 3D reconstruction. Most of the other particles were averaged up

in blurred classes again.

To overcome the problem of the different tube diameters and different border num-

bers a new subset of the dataset was used. The diagram in figure 4.19 was used

to find a subset with similar outer diameters and similar border diameters. In

theory, the perfect dataset would consist of tubes with equal diameters and bor-

ders. Selecting a subset containing similar tubes is a better approximation than

using the complete dataset. For the subset a crowded area in the diagram with

an interval of 50 Å for the border diameters was used. This is close to previous

2D classifications using the two main peaks of the inner diameter with an interval

of 40 Å and resulted in a similar tube count (77 compared to 67 tubes). However,

the outer diameters of the selected interval also vary around more than 200 Å.

This explains the diameter difference of 206 Å between the class of the thinnest

tubes in figure 4.21a and the class of the thickest tubes in 4.21b. This disturbs the

classification and results in more blurred classes compared to the previous clas-

sification. Moreover, it was not successful to use RELION’s 2D classification to

classify the tubes diameter. This resulted in a less precise classification than Lin-

eAdd.py shown in figure 4.18a (65 Åcompared to 40 Å difference in diameter). 327

particles were put in the densest class (4.22a) and led to a blurred not usable class.

In conclusion, the two main problems of the 2D classification are differences in the

diameter and the strong signal of the multilamellar borders compared to the helical

coat in between. While the diameter difference is a physical problem it can only be
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improved using a better diameter classification algorithm in the script. Although

a better diameter sorting always implies less particles for a 2D classification. They

can refine an existing model in later runs but for building an initial model they are

not available. There are also wrongly classified tubes. These can as well disturb the

classification because particles are missing in the right class and instead disturbing

another class. The failure detection described in chapter 3.3.15 is only based on a

static mathematical criterion that does not recognize all possible failures. As an

example, figure 5.4 shows a tube micrograph and the corresponding density graph.

(a) Wrong detected particle. Scale

bar: 20 nm.

(b) Output of LineAdd.py. The left bor-

ders are not visible.

Figure 5.4: An example for a poor tube end detection. The low average contrast
of the left border results in a wrong inner diameter approximation.

By eye the whole tube can be identified. In contrast, the script does not use the

complete tube. It first averages all horizontal lines over the tube. Parts with strong

contrast are mixed up with parts with weak contrast. If most of the parts are weak

the tube average will show weak contrast in the density graph as well. For a more

robust detection algorithm all lines must be detected separately and averaged to a

weighted result. This application could benefit from a machine learning algorithm

as well as other single particle based detections[87][88]. Moreover, skew picked

tubes, as shown in figure 3.6c, resulted in a washed-out border signal and imprecise

and unreliable tube detections. These tubes can also disrupt IHRSR because the

columns in the micrograph containing similar views are shifted and the helical

parameters are not suitable anymore for that particle.
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5.6 Outlook

The remaining problem of the difference in the signal between borders and inner

tube can be solved using a selective filter that removes the tube border signal in

Fourier space. However, this filter should not just cut the frequencies responsible

for the borders because in this case any other information at the same frequencies

is also cut. A better approach is to remove only selective reflexes in Fourier space

considering their spatial location. In figure 5.5 a tube micrograph is shown before

and after filtering and also its Fourier transform after filtering with cut reflexes of

the tube borders.

(a) Tube micrograph

A[x, y].

(b) Filtered micrograph

Afilt[x, y].

(c) Normed Fourier transform∣∣F{Afilt[x, y]
}∣∣.

Figure 5.5: The raw tube micrograph in (a) is filtered in Fourier space and
results in (b). The tube borders of (a) are not present in (b) anymore because the
responsible frequencies were cut in Fourier space in (c). To show the amplitude it
was normed (f : Cn×n → Rn×n) as shown in equation 5.4. The centered black dots
(highlighted in red for better view) are zeroed and contain no more information.

Equation 5.3 describes the filter process of the quadratic and 2k-padded real space

image A[x, y] ∈ Rn×n with the filter kernel F [u, v] ∈ Cn×n and a window function

W [u, v] ∈ Cn×n[37].

Afilt[x, y] = F−1
{
F{A}[u, v] ·W [u, v] · F [u, v]

}
(5.3)

∣∣F{Afilt[x, y]
}∣∣ =

(
<
(
F{Afilt[x, y]}

)2
+ =

(
F{Afilt[x, y]}

)2
) 1

2
(5.4)
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As a filter kernel it should be sufficient to draw an image containing zeroes (black

color) located at the coordinates of the reflexes to be removed and ones (white

color) for all other pixel gray scale values. A multiplication in Fourier space re-

moves only the selected reflexes while preserving the other information. The filter

does not need to remove reflexes completely. It should be enough to attenuate

them to be at a similar amplitude as the frequencies of the helical coat. The filter

can be applied to all micrographs using a script and enable a 2D classification

yielding classes of the helical coat instead of tube borders.

Although not completely proven in this work, this is a sophisticated approach to

solve the remaining problem. The 2D classes will be the basis for a 3D classifi-

cation and 3D auto-refinement. Finally, when a working approach with the given

data is established there is the possibility to improve the resolution and refine the

first 3D structure with more datasets.

From the current point of view different states of the BPG binding process can be

analyzed with IHRSR. This can also enable the analysis of other tubular geometry

sensing proteins. For example, EHD2 (Eps Homology Domain Containing 2)

extrudes lipid tubes from Folch vesicles as well[89]. There are good chances that

EHD2 is usable on our Folch-based nanotemplates as well.
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Table A.1: Detailed CCD results.

#1 #2 #3 #4 #5 n̄ σ

N = 1 000 3 1 0 0 0 0.8 1.3
012 4 4 2 7 6 4.6 1.9
021 8 7 1 6 4 5.2 2.8
102 11 14 23 11 6 13.0 6.3
111 15 12 9 22 7 13.0 5.9
120 6 2 8 0 1 3.4 3.4
201 9 12 10 13 22 13.2 5.2
210 1 1 0 2 3 1.4 1.1
222 12 17 25 21 13 17.6 5.5

N = 2 000 0 0 1 2 1 0.8 0.8
012 3 4 5 4 6 4.4 1.1
021 5 7 6 5 2 5 1.9
102 18 16 9 10 11 12.8 4.0
111 9 23 9 9 7 11.4 6.5
120 0 1 0 2 0 0.6 0.9
201 7 11 9 9 7 8.6 1.7
210 6 2 1 2 1 2.4 2.1
222 25 25 25 27 25 25.4 0.9

N = 3 000 1 0 0 0 1 0.4 0.5
012 2 6 3 4 1 3.2 1.9
021 5 7 6 5 4 5.4 1.1
102 6 9 10 5 8 7.6 2.1
111 4 5 8 10 10 7.4 2.8
120 0 0 1 1 0 0.4 0.5
201 27 11 12 12 19 16.2 6.8
210 16 8 0 4 1 5.8 6.5
222 26 21 25 28 24 24.8 2.6
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Table A.2: Detailed CCD temperature results.

#1 #2 #3 #4 #5 n̄ σ

N = 1 202 5 ◦C 18 13 13 10 7 12.2 4.1
21

2
2 15 ◦C 4 8 0 2 7 4.2 3.3

212 25 ◦C 24 19 13 12 17 17.0 4.8
23

2
2 35 ◦C 10 6 12 11 15 10.8 3.3

222 45 ◦C 12 13 16 10 8 11.8 3.0
N = 2 202 5 ◦C 27 24 22 21 23 23.4 2.3

21
2
2 15 ◦C 26 20 21 23 20 22 2.5

212 25 ◦C 42 39 29 41 33 36.8 5.6
23

2
2 35 ◦C 14 18 21 21 19 18.6 2.9

222 45 ◦C 24 19 24 24 17 21.6 3.4
N = 3 202 5 ◦C 14 13 16 14 14 14.2 1.1

21
2
2 15 ◦C 24 21 22 24 24 23.0 1.4

212 25 ◦C 24 26 18 22 14 20.8 4.8
23

2
2 35 ◦C 16 18 20 12 13 15.8 3.3

222 45 ◦C 23 12 20 19 18 18.4 4.0
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/*

imod_prepare_stack.cpp V1.0.2, 2018/02/06

by Nikolai Krupp, E­Mail: mailto:nikolai.krupp@caesar.de

*/

#include <vector>

#include <string>

#include <cstdlib>

#include <fstream>

#include <iostream>

#include <dirent.h>

#include <cstring>

#include <cstdio>

#include <array>

#include <memory>

#include <stdexcept>

using namespace std;

struct TILTINFO {

int num;

string File;

double Angle;

vector<string> *MDOC_section;

};

const char ST[10] = ".st";

const char REV[10] = "­­r";

const char MRC[10] = ".mrc";

const char TXT[10] = ".txt";

const char TLT[10] = ".tlt";

const char OLD[10] = "_OLD";

const char MDOC[10] = ".mdoc";

const char ZVALUE[10] = "ZValue = ";

const char NEWSTACK[23] = "newstack ­­fileinlist ";

const char TILTANGLE[10] = "TiltAngle";

const char NEWSTACKTILT[10] = " ­­tilt ";

const char IMAGEFILE[13] = "ImageFile";

const char EXTRACTTILTS[14] = "extracttilts ";

string Trim(string);

bool exec(string, string&);

void bubblesort(TILTINFO *, int);

void bubblesort(vector<string> *);

inline bool IsNumeric(string,int,void *);

std::vector<string> *Split(string,string,int&);

int main(int argc, char** argv) {

cout <<

"­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

­­­" << endl;

cout << ".::          imod_prepare_stack V1.0.2 02/2018 Nikolai 

Krupp             ::." << endl;
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cout <<

"­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

­­­" << endl;

cout << "=> Input MRC file name order has to be equal to the chronological 

order." << endl;

cout << "=> Optional argument: ./imod_prepare_stack FILENAME.mrc OR ­­r (see

 manual)." << endl;

cout << "=> Please make sure that the module 'imod' is loaded."  << endl <<

endl;

DIR *dir;

dir = opendir("./");

// Mode: imod_fix_xmas

bool bMRC = false;

bool bRev = false;

string inputfile;

if (argc==2) {

inputfile = (string) argv[1];

if (inputfile==REV) {

bRev = true;

cout << "INFO: ­­r: Reversion of MRC file order switched on."  <<

endl << endl;

} 

else bMRC = true;

}

// Search all files in this folder and keep only MRCs and one MDOC:

int p;

struct dirent *entry;

string file, mdocfile = "";

vector<string> *files = new vector<string>;

while ((entry=readdir(dir))!=NULL) {

file = entry­>d_name; p = file.size();

if (p<5) continue;

if (file.substr(p­strlen(MRC), strlen(MRC))==MRC) files­>push_back

(file);

else if (file.substr(p­strlen(MDOC), strlen(MDOC))==MDOC) mdocfile =

file;

}

int i, n, sn;

TILTINFO *tilt;

vector<string> *s;

string cmd, output, line;

bool bNoData = false;

ifstream mrc;

if (!bMRC) { // Using files as input.

n = files­>size();

if (n==0) {

cout << "ERROR: No MRC files found in this folder!"  << endl;

return 0;

}
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else cout << n << " MRC files found in this folder." << endl;

// Sort MRC files by name to restore their chronological order:

tilt = new TILTINFO[n];

if (n>1) bubblesort(files);

if (!bRev) for (i=0;i<n;i++) tilt[i].File = files­>at(i);

else for (i=0;i<n;i++) tilt[i].File = files­>at(n­i­1);

files­>clear();

}

else { // Using MRC stack as input.

s = Split(inputfile, ".", sn);

mrc.open(inputfile, std::ios::in);

if (sn<2||!mrc.good()) {

cout << "ERROR: '" << inputfile << "' is not a valid MRC stack!" <<

endl;

mrc.close();

return 0;

}

mrc.close();

string tltfile_in = s­>at(0) + TLT;

cmd = EXTRACTTILTS + inputfile + " " + tltfile_in;

cout << "Running extracttilts ( " << cmd << " )..." << endl;

cout <<

"­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

­­­­­­­" << endl;

if (exec(cmd, output)) {

cout << "ERROR: Failed to execute shell command!"  << endl;

return 0;

}

cout << output;

cout <<

"­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

­­­­­­­" << endl << endl;

output = "";

// Read TLT file:

ifstream tlt_in;

tlt_in.open(tltfile_in, std::ios::in);

if (!tlt_in.good()) {

cout << "WARNING: Could not extract angles from '"  << inputfile <<

"' to '" << tltfile_in << "'! Is module 'imod' loaded?" << endl;

if (mdocfile=="") {

cout << "ERROR: No (MDOC) tilt angles available!"  << endl;

return 0;

} 

bNoData = true;

}

if (!bNoData) {

double value;

vector<double> *angles = new vector<double>;

while (getline(tlt_in, line)) {
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if (!IsNumeric(Trim(line),1,&value)) {

cout << "WARNING (tilt angle is invalid): " << line << endl;

continue;

}

angles­>push_back(value);

}

tlt_in.close();

n = angles­>size();

tilt = new TILTINFO[n];

for (i=0;i<n;i++) tilt[i].Angle = angles­>at(i);

angles­>clear();

}

}

vector<TILTINFO> *vectilt = new vector<TILTINFO>;

vector<string> *MDOC_header = new vector<string>;

if (mdocfile!="") {

// Try to open .mdoc:

ifstream mdoc;

mdoc.open(mdocfile, std::ios::in);

if (!mdoc.good()) {

mdoc.close();

cout << "ERROR: Could not access '" << mdocfile << "'!" << endl;

return 0;

}

else cout << "Using file '" << mdocfile << "'..." << endl << endl; 

// Read MDOC file and extract tilt angles:

bool bHeader = true;

string TiltAngle = TILTANGLE;

TILTINFO *Buffer;

while (getline(mdoc,line)) {

if (line.find(ZVALUE)!=std::string::npos) { // [ZValue = x]

if (!bHeader) vectilt­>push_back(*Buffer);

bHeader = false;

Buffer = new TILTINFO;

Buffer­>MDOC_section = new vector<string>;

Buffer­>MDOC_section­>push_back(line);

}

else {

if (bHeader) {

MDOC_header­>push_back(line);

continue;

}

Buffer­>MDOC_section­>push_back(line);

s = Split(line, "=", sn);

if (sn>=2 && Trim(s­>at(0))==TiltAngle) {

if (!IsNumeric(s­>at(1),1,&((*Buffer).Angle))) {

Buffer­>Angle = ­361.;
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cout << "WARNING (tilt angle is invalid): " << line <<

endl;

}

}

}

}

if (!bHeader) vectilt­>push_back(*Buffer);

else {

cout << "ERROR: '" << inputfile << "' did not contain any usable 

sections!" << endl;

return 0;

}

mdoc.close();

// Combine data from MDOC and MRC file(s):

if (bNoData) {

n = vectilt­>size();

tilt = new TILTINFO[n];

for (i=0;i<n;i++) tilt[i] = vectilt­>at(i);

}

else {

int cnt = vectilt­>size();

if (cnt>n) {

if (!bMRC) cout << "WARNING: '" << mdocfile << "' contains more 

angles (" << cnt << ") than files found in this folder (" << n

<< ")! Excess angles will be ignored." << endl << endl;

else cout << "WARNING: '" << mdocfile << "' contains more angles

(" << cnt << ") than sections found in '" << inputfile <<

"' (" << n << ")! Excess angles will be ignored." << endl <<

endl;

}

else if (cnt<n) {

if (!bMRC) cout << "WARNING: This directory contains more MRC 

files (" << n << ") than sections (" << cnt << ") in '" <<

mdocfile << "'. Excess files will be ignored." << endl <<

endl;

else cout << "WARNING: '" << inputfile << "' contains more 

sections (" << n << ") than '" << mdocfile << "' (" << cnt <<

"). Excess sections will be ignored." << endl << endl;

n = cnt;

}

else n = cnt;

for (i=0;i<n;i++) {

tilt[i].Angle = vectilt­>at(i).Angle;

tilt[i].MDOC_section = vectilt­>at(i).MDOC_section;

}

}

vectilt­>clear();

}

// Sort sections by tilt angle:
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for (i=0;i<n;i++) tilt[i].num = i;

bubblesort(&tilt[0], n);

for (i=0;i<n;i++) {

cout << tilt[i].Angle;

if (!bMRC) cout << " => " << tilt[i].File;

cout << endl;

}

// Prepare file names and NEWSTACK command:

ofstream stack;

s = Split((mdocfile!="") ? mdocfile : inputfile, ".", sn);

string tltfile_out = s­>at(0) + TLT;

string stackfile = s­>at(0) + TXT;

string outputfile = s­>at(0) + ST;

string newstack = NEWSTACK + stackfile + " " + outputfile;

string newmdocfile = s­>at(0) + ST + MDOC;

// Write sorted MDOC file:

if (mdocfile!="") {

// Rename original file:

cmd = "mv " + mdocfile + " " + s­>at(0) + OLD + MDOC;

cout << endl << "=> " << cmd << endl;

exec(cmd, output);

cout << output;

// Write new file:

ofstream newmdoc;

cout << "Writing new MDOC '" << newmdocfile << "' file with sorted 

angles..." << endl;

newmdoc.open(newmdocfile, std::ios::out);

if (!newmdoc.good()) {

newmdoc.close();

cout << "ERROR: Could not create new MDOC '" << newmdocfile << "' 

file!" << endl;

return 0;

}

// Update filename of stack:

int j;

string imgFile = IMAGEFILE;

for (i=0;i<MDOC_header­>size();i++) {

s = Split(MDOC_header­>at(i), "=", sn);

if (sn>=2 && Trim(s­>at(0))==imgFile) {

MDOC_header­>at(i) = imgFile + " = " + outputfile;

break;

}

}

for (i=0;i<MDOC_header­>size();i++) newmdoc << MDOC_header­>at(i) <<

endl;

for (i=0;i<n;i++) {

newmdoc << "[" << ZVALUE << i << "]" << endl;

for (j=1;j<tilt[i].MDOC_section­>size();j++) newmdoc << tilt
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[i].MDOC_section­>at(j) << endl;

}

MDOC_header­>clear();

newmdoc.close();

}

// Write new TLT file:

ofstream tlt_out;

tlt_out.open(tltfile_out, std::ios::out);

if (!tlt_out.good()) {

tlt_out.close();

cout << "ERROR: Could not create TLT '" << tltfile_out << "' file!" <<

endl;

return 0;

}

for (i=0;i<n;i++) tlt_out << tilt[i].Angle << endl;

tlt_out.close();

// Write TXT file as NEWSTACK input:

stack.open(stackfile, std::ios::out);

if (!stack.good()) {

stack.close();

cout << "ERROR: Couldn't create stack file '" << stackfile << "' for 

newstack!" << endl;

return 0;

}

if (!bMRC) {

// Write a file containing the found MRC files:

stack << n << endl;

for (i=0;i<n;i++) {

stack << tilt[i].File << endl << "0" << endl;

tilt[i].MDOC_section­>clear();

}

newstack += NEWSTACKTILT + tltfile_out;

}

else {

// Rename original file:

s = Split(inputfile, ".", sn);

string inputfile_old = s­>at(0) + OLD + "." + s­>at(1);

cmd = "mv " + inputfile + " " + inputfile_old;

cout << endl << "=> " << cmd << endl;

exec(cmd, output);

cout << output;

// Write a file with sorted angles only:

stack << "1" << endl << inputfile_old << endl;

for (i=0;i<n;i++) {

stack << tilt[i].num;

if (i==n­1) break;

stack << ",";

}

stack << endl;
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}

stack.close();

delete[] tilt;

cout << endl << "Finished: Stack file '" << stackfile << "' was written 

sucessfully." << endl << endl;

// Run NEWSTACK:

cout << "Running newstack ( " << newstack << " )..." << endl;

cout <<

"­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

­­­" << endl;

if (exec(newstack, output)) {

cout << "ERROR: Failed to execute shell command!"  << endl;

return 0;

}

cout << output;

cout <<

"­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

­­­" << endl << endl;

mrc.open(outputfile, std::ios::in);

if (!mrc.good()) cout << "ERROR: Writing of output file '" << outputfile <<

"' failed! Is module 'imod' loaded?" << endl;

else cout << "Finished. Output file '" << outputfile << "' was written 

sucessfully." << endl; 

mrc.close();

return 0;

}

void bubblesort(vector<string> *args) {

int i,j;

    string temp;

    for (i=1;i<args­>size();i++)

    {

        for (j=0;j<(args­>size()­1);j++) {

            if(args­>at(j)>args­>at(j+1)) {

                temp = args­>at(j);

                args­>at(j) = args­>at(j+1);

                args­>at(j+1) = temp;

            }

        }

    }

}

void bubblesort(TILTINFO *arr, int n) {

int i, j;

TILTINFO Buffer;

for (i=0;i<n;i++) {

for (j=0;j<n­1;j++) {

if (arr[j].Angle>arr[j+1].Angle) {

Buffer = arr[j];

arr[j] = arr[j+1];
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arr[j+1] = Buffer;

}

}

}

}

// Split a string by a delimiter:

std::vector<string> *Split(string Str, string Delimiter, int& n) {

std::vector<string> *v = new std::vector<string>;

int j, i=0;

while (true) {

j = Str.find(Delimiter, i);

if (j==­1) break;

v­>push_back(Str.substr(i,j­i));

i = j+Delimiter.size();

}

int l = Str.size()­i;

if (l>0) v­>push_back(Str.substr(Str.size()­l, l));

n = v­>size();

return v;

}

// Check if a string contains a valid number:

inline bool IsNumeric(string num, int FP, void *n) {

try {

if (FP==0) *((int *)n) = atoi(Trim(num).c_str());

else *((double *)n) = atof(Trim(num).c_str());

}

catch (...) {

return false;

}

return true;

}

// Trim all spaces around a string:

string Trim(string Str) {

int i,j;

for (i=0;i<Str.length();i++) if (Str[i]!=' ') break;

for (j=Str.length()­1;j>=0;j­­) if (Str[j]!=' ') break;

return (i>0||++j<Str.length()) ? Str.substr(i,j­i) : Str;

}

// Execute shell commands in Linux:

bool exec(string cmd, string& output) {

    array<char, 128> Buffer;

    shared_ptr<FILE> pipe(popen(cmd.c_str(), "r"), pclose);

    if (!pipe) return true;

    while (!feof(pipe.get())) {

if (fgets(Buffer.data(), 128, pipe.get()) !=  nullptr) output +=

Buffer.data();

    }

    return false;

}
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# Written by Nikolai Krupp, 26.11.2018

# LineAdd.py V2.4

import os

import sys

import glob

from sparx import *

from math import ceil

from shutil import move

from shutil import copyfile

from scipy.stats import norm

import numpy as np

import scipy.stats as stats

import scipy.signal as signal

import matplotlib.pyplot as plt

# .:: PREFERENCES ::.

#####################################################################

bMRC = True # Copy original MRC as well? #

bCopy = True # Copy files? #

bGauss = True # Gaussian fit? #

bExport = True # Export files of interval? #

bSafeOnly = True # Consider wrong outer diameters? #

d_interval = 20 # Classification interval (A), int. #

bOuterSort = False # Sort outer diameter? #

bMarkDiameters = True # Plot diameters? #

bClassifyDiagrams = True # Move diagrams to /Data? #

N = 2    # Filter order #

lowpass_freq = 0.05 # Filter cutoff frequency #

Data_folder = "Data" # Classification Destination #

LineAdd_folder = "./LineAdd/" # Output folder #

Pixel_Size = 1.07 # Calculate real distances (A/px) #

Gauss_std_min = 0.01 # Gaussian fit min std #

Gauss_std_max = 1.0 # Gaussian fit max std #

Gauss_std_step = 0.01 # Gaussian fit std step #

Export_min = 100 # Min. border thickness #

Export_max = 150 # Max. border thickness #

Export_folder = "/Export/" # Folder for export files #

#####################################################################

cnt = 0

img = EMData()

print "Welcome to LineAdd.py Version V2.4, by NK"

print "Low pass filter cutoff frequency:", lowpass_freq

print "Pixel size is: " + str(Pixel_Size) + " A/px"

print 

"========================================================================="

try: 

    os.makedirs(LineAdd_folder)

except OSError:

if not os.path.isdir(LineAdd_folder):
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print "ERROR: Could not create folder LineAdd. Aborting!" 

sys.exit(0)

fobj_out = open(LineAdd_folder + "Tube_statistics.txt","w")

B, A = signal.butter(N, lowpass_freq, output='ba')

# Plot filter:

w, h = signal.freqs(B, A)

plt.plot(w, 20 * np.log10(abs(h)))

plt.xscale('log')

plt.title('Low­pass filter frequency response')

plt.xlabel('Frequency [rad/s]')

plt.ylabel('Amplitude [dB]')

plt.rcParams.update({'font.size': 18})

plt.tick_params(axis='both', which='major', labelsize=12)

plt.tick_params(axis='both', which='minor', labelsize=10)

plt.margins(0, 0.1)

plt.grid(which='both', axis='both')

plt.axvline(lowpass_freq, color='green')

plt.savefig(LineAdd_folder + "Filter.png")

plt.clf()

d_wrong = [] # Wrong (inner) diameters

d_inside = [] # Inner diameters

d_outside = [] # Outer diameters

Filenames = [] # Filenames

Diagrams = [] # Diagram filenames

Data_folder = LineAdd_folder + Data_folder

for file in glob.glob("*.hdf"):

print file

# Prepare buffers:

img.read_image(file, 0)

nx = img.get_xsize()

ny = img.get_ysize()

targetimg = model_blank(nx,1,1,0.0)

# Sum up all lines to a single averaged line:

for i in xrange(ny):

tmp = Util.window(img,nx,1,1,0,i­ny//2,0)

targetimg = targetimg + tmp

fintarget = targetimg/float(ny)

filename = file[:len(file)­4] + "_Line"

newfile = LineAdd_folder + filename + ".hdf"

print newfile

fintarget.write_image(newfile)

# Copy the averaged gray values to a normal array:

img_vector = []

for i in xrange(nx):
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img_vector.append(fintarget.get_value_at(i, 0, 0))

# Low pass filter:

npvector = np.array(img_vector)

npvector = npvector.astype(np.float)

img_filt = signal.filtfilt(B, A, npvector)

# Plot unfiltered and filtered gray values:

plt.ylabel('Mean gray value [au]')

plt.xlabel('X­width [px]')

plt.title(file)

plt.plot(npvector, 'c')

plt.plot(img_filt, 'r')

plt.rcParams.update({'font.size': 18})

plt.tick_params(axis='both', which='major', labelsize=12)

plt.tick_params(axis='both', which='minor', labelsize=10)

del img_vector[:]

np.delete(npvector, 0)

# Calculate the global mean of the filtered array:

gl_mean = 0.0

for i in xrange(nx):

gl_mean += img_filt[i]

gl_mean /= nx

print "Global average:", gl_mean

a1 = 0

a2 = 0

b1 = nx//2­1

b2 = nx//2­1

min1 = img_filt[0]

min2 = img_filt[nx//2­1]

max1 = min1

max2 = min2

# Calculate left and right minima and maxima:

for i in xrange(nx//2):

val1 = img_filt[i]

if val1 < min1:

min1 = val1

a1 = i

if val1 > max1:

max1 = val1

a2 = i

val2 = img_filt[nx­i­1]

if val2 < min2:

min2 = val2

b1 = nx­i­1

if val2 > max2:

max2 = val2

b2 = nx­i­1

print "1st maximum:", a2
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print "2nd maximum:", b2

# Consider only maxima, minima should be zero:

hw_image = []

for i in xrange(nx):

v_img = img_filt[i]­gl_mean

if v_img>0:

hw_image.append(v_img)

else:

hw_image.append(0.0)

# Outer diameter:

################################################################

# front:

# ­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

mean = 0.0

var_arr = []

mean_arr = []

var_max = ((hw_image[a2]­hw_image[a2­1])**2)**0.5

mean_max = var_max

for i in xrange(a2):

v_img = ((hw_image[a2­i]­hw_image[a2­i­1])**2)**0.5

var_arr.append(v_img)

if v_img > var_max:

var_max = v_img

mean += v_img

if mean > mean_max:

mean_max = mean

mean_arr.append(mean)

factor = var_max / mean_max

for i in xrange(a2):

mean_arr[i] *= factor

o_end1 = ­1

for i in xrange(a2):

if mean_arr[a2­i­1] <= var_arr[a2­i­1]:

o_end1 = a2­i­1

break

# back:

# ­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

mean = 0.0

var_max = ((hw_image[b2­1]­hw_image[b2])**2)**0.5

mean_max = var_max

del var_arr[:], mean_arr[:]

for i in xrange(nx­b2):

v_img = ((hw_image[b2+i­1]­hw_image[b2+i])**2)**0.5
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var_arr.append(v_img)

if v_img > var_max:

var_max = v_img

mean += v_img

if mean > mean_max:

mean_max = mean

mean_arr.append(mean)

factor = var_max / mean_max

for i in xrange(nx­b2):

mean_arr[i] *= factor

o_end2 = ­1

for i in xrange(nx­b2):

if mean_arr[nx­b2­i­1] <= var_arr[nx­b2­i­1]:

o_end2 = nx­b2­i­1

break

# ­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

# Outer failure detection:

oWarn = False

outer_end1 = a2

outer_end2 = b2

if o_end1 != ­1:

outer_end1 = a2 ­ o_end1

else:

oWarn = True

if o_end2 != ­1:

outer_end2 = b2 + o_end2

else:

oWarn = True

if (outer_end1 < 0.5*(a2­outer_end1)) and not oWarn:

oWarn = True

if (nx­outer_end2 < 0.5*(outer_end2­b2)) and not oWarn:

oWarn = True

if oWarn:

print "Warning: Outer tube detection failed ("  + str(o_end1) + ", " + 

str(o_end2) + ")!"

print "1st outer End:", outer_end1

print "2nd outer End:", outer_end2

# Inner diameter:

################################################################

# front:

# ­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
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mean = 0.0

var_max = ((hw_image[a2]­hw_image[a2+1])**2)**0.5

mean_max = var_max

del var_arr[:], mean_arr[:]

n = nx//2­a2

for i in xrange(n):

v_img = ((hw_image[a2+i]­hw_image[a2+i+1])**2)**0.5

var_arr.append(v_img)

if v_img > var_max:

var_max = v_img

mean += v_img

if mean > mean_max:

mean_max = mean

mean_arr.append(mean)

factor = var_max / mean_max

for i in xrange(n):

mean_arr[i] *= factor

i_end1 = ­1

for i in xrange(n):

if mean_arr[n­i­1] <= var_arr[n­i­1]:

i_end1 = n­i­1

break

# back:

# ­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

mean = 0.0

var_max = ((hw_image[b2]­hw_image[b2­1])**2)**0.5

mean_max = var_max

del var_arr[:], mean_arr[:]

n = b2­nx//2

for i in xrange(n):

v_img = ((hw_image[b2­i]­hw_image[b2­i­1])**2)**0.5

var_arr.append(v_img)

if v_img > var_max:

var_max = v_img

mean += v_img

if mean > mean_max:

mean_max = mean

mean_arr.append(mean)

factor = var_max / mean_max

for i in xrange(n):

mean_arr[i] *= factor

i_end2 = ­1

for i in xrange(n):
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if mean_arr[n­i­1] <= var_arr[n­i­1]:

i_end2 = n­i­1

break

# ­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

del var_arr[:], mean_arr[:]

# Inner failure detection:

iWarn = False

inner_end1 = a2

inner_end2 = b2

if i_end1 != ­1:

inner_end1 = a2 + i_end1

else:

iWarn = True

if i_end2 != ­1:

inner_end2 = b2 ­ i_end2

else:

iWarn = True

if (nx//2­inner_end1 < 0.5*(inner_end1­a2))  and not iWarn:

iWarn = True

if (inner_end2­nx//2 < 0.5*(b2­inner_end2))  and not iWarn:

iWarn = True

if iWarn:

print "Warning: Inner tube detection failed ("  + str(i_end1) + ", " + 

str(i_end2) + ")!"

print "1st inner End:", inner_end1

print "2nd inner End:", inner_end2

################################################################

hw_image[:]

np.delete(img_filt[:],0)

if bMarkDiameters:

plt.plot(outer_end1, gl_mean, 'ro')

plt.plot(outer_end2, gl_mean, 'ro')

plt.plot(inner_end1, gl_mean, 'go')

plt.plot(inner_end2, gl_mean, 'go')

Diagrams.append(filename + ".png")

plt.savefig(LineAdd_folder + Diagrams[cnt])

plt.clf()

outer_diameter = (outer_end2­outer_end1) * Pixel_Size

inner_diameter = (inner_end2­inner_end1) * Pixel_Size

print "Diameter: " + str(outer_diameter) + " A, Inner diameter: " + str

(inner_diameter) + " A"
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print 

"­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

"

Filenames.append(file)

d_outside.append(int(ceil(outer_diameter)))

d_inside.append(int(ceil(inner_diameter)))

if bSafeOnly and oWarn:

d_wrong.append(True)

else:

d_wrong.append(iWarn)

fobj_out.write(str(cnt) + "    " + str(outer_diameter) + "    " + str

(inner_diameter) + "    " + filename + "    " + str(outer_end1) + "    " +

 str(outer_end2) + "    " + str(inner_end1) + "    " + str(inner_end2))

if oWarn:

fobj_out.write("    *")

if iWarn:

fobj_out.write("    *")

fobj_out.write("\n")

cnt+=1

#if cnt == 10:

# break

if cnt == 0:

print "No files found."

sys.exit(0)

# Statistics:

c_good = 0

d_in_avg = 0.0

d_in_std = 0.0

d_out_avg = 0.0

d_out_std = 0.0

for i in xrange(cnt):

if not d_wrong[i]:

c_good += 1

d_in_avg += d_inside[i]

else:

if bSafeOnly:

continue

d_out_avg += d_outside[i]

d_in_avg /= c_good

if bSafeOnly:

d_out_avg /= c_good

else:

d_out_avg /= cnt
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for i in xrange(cnt):

if not d_wrong[i]:

d_in_std += (d_inside[i] ­ d_in_avg)**2

else:

if bSafeOnly:

continue

d_out_std += (d_outside[i] ­ d_out_avg)**2

d_in_std /= c_good

if bSafeOnly:

d_out_std /= c_good

else:

d_out_std /= cnt

d_in_std = d_in_std**0.5

d_out_std = d_out_std**0.5

print "Mean inner diameter: " + str(d_in_avg) + " (+/­ " + str(d_in_std)

print "Mean outer diameter: " + str(d_out_avg) + " (+/­ " + str(d_out_std)

# Sort ALL arrays by inner diameter:

iBuffer = 0

fBuffer = 0.0

sBuffer = ""

for i in xrange(cnt):

for j in xrange(cnt­1):

if d_inside[j]>d_inside[j+1]:

fBuffer = d_inside[j]

d_inside[j] = d_inside[j+1]

d_inside[j+1] = fBuffer

fBuffer = d_outside[j]

d_outside[j] = d_outside[j+1]

d_outside[j+1] = fBuffer

iBuffer = d_wrong[j]

d_wrong[j] = d_wrong[j+1]

d_wrong[j+1] = iBuffer

sBuffer = Diagrams[j]

Diagrams[j] = Diagrams[j+1]

Diagrams[j+1] = sBuffer

sBuffer = Filenames[j]

Filenames[j] = Filenames[j+1]

Filenames[j+1] = sBuffer

mrc_file = []

box_file = []

box_name = []

if bMRC:

# Find belonging MRCs and boxes:

for i in xrange(cnt):

Split = Filenames[i].split('_')

mrc_file.append(Split[0] + "_" + Split[1] + ".mrc")

box_file.append(Split[0] + "_" + Split[1] + "_boxes.txt")
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box_name.append(Split[0] + "_" + Split[1] + ".box")

# Clean array from wrong detected diameters:

c = 0

d_in = []

d_out = []

d_diff = []

d_legacy = []

for i in xrange(cnt):

if d_wrong[i]:

continue

d_legacy.append(i)

d_in.append(d_inside[i])

d_out.append(d_outside[i])

d_diff.append((d_outside[i]­d_inside[i])/2)

c += 1

# Sort outer diameter by outer diameter:

if bOuterSort:

for i in xrange(c):

for j in xrange(c­1):

if d_out[j]>d_out[j+1]:

fBuffer = d_out[j]

d_out[j] = d_out[j+1]

d_out[j+1] = fBuffer

# Plot sorted and cleaned diameter statistics:

plt.ylabel('Diameter [A]')

plt.title('Tube diameter statistics [' + str(c) + ']')

plt.axhline(d_in_avg, color='green', linewidth=2.0)

plt.axhline(d_in_avg+d_in_std, color='green', linewidth=0.5)

plt.axhline(d_in_avg­d_in_std, color='green', linewidth=0.5)

plt.axhline(d_out_avg, color='red', linewidth=2.0)

plt.axhline(d_out_avg+d_out_std, color='red', linewidth=0.5)

plt.axhline(d_out_avg­d_out_std, color='red', linewidth=0.5)

plt.plot(d_out, 'r.')

plt.plot(d_in, 'g.')

plt.gcf().set_size_inches(30, 15)

plt.rcParams.update({'font.size': 42})

plt.tick_params(axis='both', which='major', labelsize=20)

plt.tick_params(axis='both', which='minor', labelsize=18)

plt.savefig(LineAdd_folder + "Tube_statistics.png")

plt.clf()

try:

    os.makedirs(Data_folder)

except OSError:

if not os.path.isdir(Data_folder):

print "ERROR: Could not create folder " + Data_folder + ". Aborting!" 

sys.exit(0)

if bSafeOnly and not bOuterSort:

export = Data_folder + Export_folder
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if bExport:

print "Exporting files..."

try:

os.makedirs(export)

except OSError:

if not os.path.isdir(export):

print "ERROR: Could not create folder " + export + ". Aborting!"

sys.exit(0)

for i in xrange(c):

if bExport:

if d_diff[i] <= Export_max and d_diff[i] >= Export_min:

print "Copying file " + Filenames[j] + " to " + export

copyfile(Filenames[d_legacy[i]], export +  "/" + Filenames

[d_legacy[i]])

copyfile(LineAdd_folder + Diagrams[d_legacy[i]], export +  "/" + 

Diagrams[d_legacy[i]])

if bMRC:

copyfile(mrc_file[d_legacy[i]], export +  "/" + mrc_file

[d_legacy[i]])

copyfile(box_file[d_legacy[i]], export +  "/" + box_name

[d_legacy[i]])

plt.xlabel('Border Thickness [A]')

plt.ylabel('Outer Diameter [A]')

plt.title('Outer diameter vs. Border [' + str(c) + ']')

plt.plot(d_diff, d_out, 'k.')

plt.gcf().set_size_inches(30, 15)

plt.rcParams.update({'font.size': 42})

plt.tick_params(axis='both', which='major', labelsize=20)

plt.tick_params(axis='both', which='minor', labelsize=18)

plt.savefig(LineAdd_folder + "Tube_statistics2.png")

plt.clf()

del d_in[:], d_out[:], d_diff[:]

print "Diameter classification interval [A]:", d_interval

# Pick the first and the last correct inner diameters:

a = ­1

b = ­1

for i in xrange(cnt):

if a==­1 and not d_wrong[i]:

a = i

if b==­1 and not d_wrong[cnt­i­1]:

b = cnt­i­1

if a!=­1 and b!=­1:

break

if a==­1 or b==­1:

print "No usable tubes detected. Aborting!"
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sys.exit(0)

# Calculate the number of classes:

d_range = d_inside[b]­d_inside[a]

d_count = d_range // d_interval + 1

# Fill classes and copy to class folders:

bSave = bCopy

d_class = []

str_d_class = []

Classification = []

for i in xrange(d_count):

bSave = bCopy

d_class.append(d_inside[a]+i*d_interval)

str_d_class.append(str(d_class[i]) + "­\n" + str(d_class[i]+d_interval­1))

class_folder = Data_folder + "/" + str(d_class[i])

try:

if bCopy:

os.makedirs(class_folder)

except OSError:

if not os.path.isdir(class_folder):

print "Error creating folder " + class_folder + "."

bSave = False

n = 0

for j in xrange(cnt):

if d_wrong[j]:

continue

if d_inside[j]>=d_class[i] and d_inside[j]<(d_inside[a]+(i+1)

*d_interval):

n+=1

if bSave:

print "Copying file " + Filenames[j] + " to " + class_folder

copyfile(Filenames[j], class_folder + "/" + Filenames[j])

if bClassifyDiagrams:

move(LineAdd_folder + Diagrams[j], class_folder +  "/" + 

Diagrams[j])

if bMRC:

copyfile(mrc_file[i], class_folder + "/" + mrc_file[i])

copyfile(box_file[i], class_folder + "/" + box_name[i])

Classification.append(n)

print 

"­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­"

del d_inside[:], d_outside[:]

# Now take care of all wrong detected diameters:

bSave = bCopy

err_folder = Data_folder + "/Incorrect"

try:
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if bCopy:

os.makedirs(err_folder)

except OSError:

if not os.path.isdir(err_folder):

print "Error creating folder " + err_folder + "."

bSave = False

for i in xrange(cnt):

if d_wrong[i] and bSave:

print "Copying file " + Filenames[i] + " to " + err_folder

copyfile(Filenames[i], err_folder + "/" + Filenames[i])

if bClassifyDiagrams:

move(LineAdd_folder + Diagrams[i], err_folder + "/" + Diagrams[i])

if bMRC:

copyfile(mrc_file[i], err_folder + "/" + mrc_file[i])

copyfile(box_file[i], err_folder + "/" + box_name[i])

if bCopy:

print "    Done."

# Plot the histogram of tube classes:

plt.ylabel('Tube Count')

plt.xlabel('Diameter class [A]')

if not bGauss:

plt.title('Classification of inner diameters')

plt.bar(d_class, Classification, align='center')

# Add a gaussian distribution and shift it to the class with the highest 

density:

if bGauss:

c_max = 0

c_pos = 0

d_class_ext = []

for i in xrange(d_count):

if Classification[i]>c_max:

c_max = Classification[i]

c_pos = i

if d_count­c_pos>c_pos:

h = (d_count­c_pos)

else:

h = c_pos

c_ext = 2*h

for i in xrange(h):

d_class_ext.append(d_class[c_pos]­(h­i)*d_interval)

c_mid = h+1

d_class_ext.append(d_class[c_pos])

for i in xrange(h):

d_class_ext.append(d_class[c_pos]+(i+1)*d_interval)
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n = int((Gauss_std_max­Gauss_std_min) / Gauss_std_step) + 1

d_offset = c_mid­c_pos

c_mu, c_std = norm.fit(Classification)

print "Classification mean: " + str(c_mu) + " std: " + str(c_std)

mu, std = norm.fit(d_class_ext)

print "Mean value of ext. vector: " + str(mu) + " std: " + str(std)

fit = []

std_factor = []

mean_deviation = []

for i in xrange(n):

std_factor.append(Gauss_std_min+i*Gauss_std_step)

fit.append(stats.norm.pdf(d_class_ext, mu, std_factor[i]*std))

# Norm gauss to Classification vector:

f_max = fit[i][0]

for j in xrange(c_ext):

if fit[i][j]>f_max:

f_max = fit[i][j]

factor = c_max / f_max

# Calculate the mean deviation of the fit:

mdev = 0.0

for j in xrange(d_count):

fit[i][d_offset+j­1] *= factor

mdev += ((Classification[j] ­ fit[i][d_offset+j­1])**2)**0.5

mean_deviation.append(mdev / d_count)

print "Mean deviation at std. factor " + str(std_factor[i]) + ": " + str

(mean_deviation[i])

# Search for the fit with the smallest mean deviation:

best_fit = 0

min_dev = mean_deviation[0]

for i in xrange(n):

if mean_deviation[i] < min_dev:

min_dev = mean_deviation[i]

best_fit = i

# Cut gaussian distribution vector to fit in diagram:

fit_small = []

for i in xrange(d_count):

fit_small.append(fit[best_fit][d_offset+i­1])

plt.title("Classification of inner diameters [" + "Gaussian fit: " + str

(std_factor[best_fit]) + " * std]")

plt.plot(d_class, fit_small, 'r')

del d_class_ext[:]

np.delete(fit[:][:],0)

plt.xticks(d_class, str_d_class)
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plt.gcf().set_size_inches(30, 15)

plt.rcParams.update({'font.size': 42})

plt.tick_params(axis='both', which='major', labelsize=20)

plt.tick_params(axis='both', which='minor', labelsize=18)

plt.savefig("./LineAdd/Tube_histogram.png")

plt.show()

del Filenames[:], d_wrong[:], d_class[:], Classification[:], str_d_class[:], 

mean_deviation[:], std_factor[:]

fobj_out.close()

print 

"========================================================================="

# module load hwloc/1.11.3

# module load openmpi/gcc/64/3.0.1_no_dlopen

# module load EMAN2/2.21

# /cm/shared/apps/EMAN2­versions/EMAN2­dist­2.21/bin/python LineAdd.py
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