UNIVERSITAT
KO B LE NZ : LAN DAU Mlgd%;vl;dge Networks
Faculty 4: Computer Science Institute for Web Science

and Technologies

Identifying fine grained controversy in
wikipedia edits of an article.

Master’s Thesis

in partial fulfillment of the requirements for
the degree of Master of Science (M.Sc.)
in Web Science

submitted by
Aadil Rasheed

First supervisor: JProf. Dr. Claudia Wagner
Institute for Web Science and Technologies

Second supervisor: Dr. Fabian Flock
GESIS - Leibniz-Institute for the Social Sciences

Koblenz, March 2019

Statement

I hereby certify that this thesis has been composed by me and is based on my own
work, that I did not use any further resources than specified — in particular no
references unmentioned in the reference section — and that I did not submit this
thesis to another examination before. The paper submission is identical to the
submitted electronic version.

Yes No

I agree to have this thesis published in the library. o O
I agree to have this thesis published on the Web. o O
The thesis text is available under a Creative Commons

License (CC BY-SA 4.0). O 0O
The source code is available under a GNU General Public

License (GPLv3). o 0O
The collected data is available under a Creative Commons

License (CC BY-SA 4.0). o 0O

(Place, Date) (Signature)

Note

o If you would like us to contact you for the graduation ceremony,
please provide your personal E-mail address:
e If you would like us to send you an invite to join the WeST Alumni

and Members group on LinkedIn, please provide your LinkedInID:

vii

Abstract

Our work finds the fine grained edits in context of neighbouring tokens in Wikipedia
articles. We cluster those edits according to similar neighbouring context. We en-
code neighbouring context into vector space using word vectors. We evaluate clus-
ters returned by our algorithm on extrinsic and intrinsic metric and compare it with
previous work. We analyse the relation between extrinsic and intrinsic measure-
ments of fine grained edit tokens.

ix

Contents

1

Introduction

1.1 ResearchQuestion

Related Work

Background

31 Corpus
311 Wikipedia o

3.2 Tokenization

33 WikiWho API e

34 LanguageModelling
3.4.1 Vectorspacemodeling

35 LanguageModels oL
3.5.1 Statistical LanguageModels
352 Neural LanguageModels

36 Clustering
3.6.1 TypesofClustering
3.6.2 DBSCANClustering
3.63 Evaluation

Methodology

41 ChangeObjects
41.1 Contiguous insertions and deletions
412 Identifying left and rightcontext
41.3 Merging of contiguousedits.0 L

42 ChangeVectors

43 Grouping and Evaluation
43.1 IntrinsicEvaluation.
4.3.2 Extrinsic Evaluation

Results

5.1 Intrinsicevaluation

5.2 Agreement with Bykau et al. (2015)clusters

5.3 Extrinsicevaluation
53.1 Optimal value of parameters
53.2 Comparison with Bykauetal. (2015)

5.4 Correlation between extrinsic and intrinsic evaluation

Discussion

Appendix

7.1 Definitions

O N O Ul =W WW -

T | Y
W WwWwNN R~ O

15
17
20
22
25
26
30
30
32

35
35
36
36
43
44
47

48

53
53

xi

1 Introduction

As a collaboratively edited knowledge database, articles in Wikipedia go through
a series of edits. Editing an article involves an editor, creating new revision by ad-
dition and removal of string tokens from previous revision of the article. Through
these edits, editors reach consensus about the content of the article. Amount of ed-
its after which a consensus is reached on content of an article vary widely across
Wikipedia.While for many articles, editors arrive at a consensus after few revisions,
for some articles it takes more time to reach consensus. Researchers have grouped
lack of consensus across revisions of an article as conflict groups Kittur et al. (2007);
Viégas et al. (2004). These models do not take into account fine grained position
of edited tokens in their respective revisions. Bykau et al. (2015) groups edits in a
Wikipedia article as groups of tokens edited at a fixed location.

We extend Bykau et al. (2015)’s model of fine grained controversy detection using
tokens from WikiWho API Flock et al. and word embeddings from Mikolov et al.
TokTrack algorithm used by WikiWho Flock et al. helps us in localising edits into
fine grained neighbourhood. We model fine grained edits into semantic vectors us-
ing

embedding vectors from Mikolov et al.. We cluster fine grained edit vectors using
the DBSCAN clustering algorithm Ester et al. (1996). We evaluate the clusters from
our model against the clusters obtained from Bykau et al. (2015) .

In the followings sections, we state our research question and the relevant related
work. We further describe the background knowledge required for our work, which
consists of theoretical concepts used in our methodology. We further explain
methodology of our algorithm used to address the research question and finally
discuss results of the experiments conducted.

1.1 Research Question

The research question addressed in our contribution is, “How can revision history
of a given Wikipedia article be grouped as fine grained token level insertions and
deletions with its context?”.

2 Related Work

Wikipedia, an online free, large scale and multilingual encyclopedia is the result of
collaborative edits and contributions to the articles. On one side, where the free-
dom of editing Wikipedia articles has promoted its accuracy and popularity unlike
traditional Encyclopedias which demanded the expertise of domain and supervi-
sion of the editors, on the other side, this editing freedom has led to the presence
of inaccurate information as well as the absence of accurate information by the in-
tended or ignorant edits by the Wikipedia users Brandes and Lerner (2009).Often
such collaborative authoring leads to malicious editing called Vandalism. Chin and

Street studies the revision history of Wikipedia articles at word level and builds
content-based statistical models to identify the vandalism by studying the differ-
ence between consecutive revisions of Wikipedia articles. They have classified the
Vandalism acts in different action categories such as deletion, insertion and change
of either text, image, links and formatting tags. Bykau et al. (2015) Vuong and Lim
(2008) and Yasseri and Sumi (2012) have considered the text modelling to study
Wikipedia controversies and conflicts in the edits. Bykau et al. (2015) has consid-
ered the Link modelling of Wikipedia along with the Text model too. Since textual
model considers single words as tokens, it facilitates studying the content change in
the articles as a sequence of words. We have therefore considered the textual model
of Wikipedia articles for our work to capture all the possible information regarding
the content alteration in the articles. Revision of an article stands for the version of
a document after the changes done by the contributorWikipedia (2005) and Bykau
et al. (2015). Brandes and Lerner (2009) models the revision history of Wikipedia
articles as visualization graphs without keeping article context in consideration. In
such representation, the authors of the concerned article revisions as nodes and the
revisions as the edges. Adler et al. (2007) study Wikipedia in terms of the truth wor-
thiness of the articles. Trust values for each Wikipedia articles are computed by a
content driven reputation system, where the trust values are determined by the time
duration for which the authors contributions live. Longer the contributions live, the
higher reputation an author attains and the contribution revert leads to the loss of
reputation. The reputation of the original author of the words and the reputation of
the authors editing in the proximity of the word are considered for the trust of the
word. Vuong and Lim (2008) uses the interaction among Wikipedia contributors to
identify controversial articles, rather than analyzing the edit content in the articles.
To identify the disputes between a pair of contributors, they consider the words
deleted from each Wikipedia articles” edit history. Hence, they have modelled their
problem in terms of addition and deletion of words in the way that replacing or
editing the content in the article is deleting the old words and replacing them with
the new ones.

Bykau et al. (2015) has modelled the controversy in edits to the Wikipedia pages
using changes on tokens which are a typical case of "substitution". The reasoning
behind this is that any controversy is the result of the alteration of the current con-
tent because of the opposing views, rather than the insertion of new content or the
deletion of the old content. Instead of identifying substituted tokens per revision,
Bykau et al. (2015) identifies the substitution in the neighbourhood of shared to-
kens. To accomplish this, they fine grain the edited tokens between revisions using
the neighbouring context. Once the edited tokens are identified, Bykau et al. (2015)
clusters them according to their neighbouring tokens. They hypothesize that these
clusters which represent controversy between editors are fine grained at token level.
We have based our research work on this idea of identifying tokens in the revision
history of an article which are fine grained at more granular level of nearby tokens
rather then a set of changed token between revisions. Bykau et al. (2015) further in-

troduces a concept of radius of neighbouring context, which is amount of token used
by clustering algorithm to group changed tokens into groups. We have extended the
notion of context in our research work and have evaluated the context of various
length in our work.

3 Background

In this section we describe the theoretical background behind our work. We de-
scribe the use of corpus in natural language modeling, we further describe in detail
our corpus, Wikipedia. We describe Wikipedia and its collaboration mechanism.
We further explain the background behind pre-processing of corpus in general and
Wikipedia articles in particular. We explain how WikiWho API from Flock et al.
tokenises each article in Wikipedia and tracking the tokens through the revision his-
tory. Next we explain Language modeling and different kinds of language models.
Lastly we explain clustering in general and DBSCAN algorithm in particular and
different ways to evaluate clustering algorithms.

3.1 Corpus

In natural language modelling, we require a collection of documents on a particular
subject in context. This collection of documents is known as corpus. Project Guten-
berg Lahiri (2014), Reuters-21578 corpus Lewis et al. (2004), Wikipedia Pasternack
and Roth (2008) are some of the famous corpora. Project Gutenberg is the oldest
digital library containing a huge collection of around 57,000 free E-books. Reuters-
21578 corpus is a collection of articles published on Reuters in 1987. It is indexed
according to the articles categories, thus enabling text categorization research.

3.1.1 Wikipedia

Wikipedia, the corpus of our interest, is the world’s largest online Encyclopedia,
available in multiple languages. Its content can be openly viewed and edited by its
readers. Wikipedia has evolved with the contributions of voluntary editors without
any Expert supervision. Every visitor can become a Wikipedia Editor. Because of
its such nature, it is a good fit for studying the collaborative processes in different
aspects like its evolution, content growth, hyperlinks evolution among articles, user
reputation, vandalism, controversies detection, collaboration quality and various
social aspects of Wikipedia communities Yasseri and Sumi (2012). In Wikipedia dif-
ferent individual editors collaborate in an uncontrolled manner and extend each
other’s content in order to correct minor mistakes until they reach a consensus
Wilkinson and Huberman (2007). Wikipedia records all the previous edits of its
pages which is available to its users via history option on the page.

Figure (1) shows a sample Revision history from a Wikipedia page. A user can ac-
cess a Page’s revision history from the time-frame available in the options and is

Show revision history
’7From year (and earlier): 2019 ¢ From month (and earlier): all [Tag filter: Show

External tools: Find addition/removal - Find edits by user - Page statistics - Pageviews - Fix dead links
For any version listed below, click on its date to view it. For more help, see Help:Page history and Help:Edit summary. (cur) = difference from current version,
(prev) = difference from preceding version, m = minor edit, = = section edit, « = automatic edit summary
(newest | oldest) View (newer 50 | older 50) (20 1 50 | 100 | 250 | 500)
Compare selected revisions
o (curlprev) @ 07:38, 16 February 2019 Kgfleischmann (talk | contribs) . . (257,560 bytes) (-72) . . (Undid revision 883578157 by Kgfleischmann (talk)) (Tag: Undo)
o (curlprev)@ 07:22, 16 February 2019 Kgfleischmann (talk | contribs) . . (257,632 bytes) (+72) . . (Undid revision 883575814 by Foster tree (talk)) (Tag: Undo)
o (cur | prev) 06:49, 16 February 2019 Foster tree (talk | contribs) m . . (257,560 bytes) (-72)
 (cur | prev) 06:47, 16 February 2019 Foster tree (talk | contribs) m . . (257,632 bytes) (+2)
o (cur prev) 06:46, 16 February 2019 Foster tree (talk | contribs) . . (257,630 bytes) (-6)
o (curl prev) 06:46, 16 February 2019 Foster tree (talk | contribs) . . (257,636 bytes) (+1,434)

» (curl prev) 19:33, 11 February 2019 MiXT4PE (talk | contribs) . . (256,202 bytes) (+3) . . (Fixed grammar) (Tags: Mobile edit, Mobile web edit, canned edit summary)

o (curl prev) 09:05, 9 February 2019 Genadigeno (talk | contribs) . . (256,199 bytes) (+20) . . (—Literature and philosophy)

 (cur | prev) 09:04, 9 February 2019 Genadigeno (talk | contribs) . . (256,179 bytes) (+2) . . (—*Literature and philosophy)

o (curl prev) 09:02, 9 February 2019 Genadigeno (talk | contribs) . . (256,177 bytes) (+144) . . (—Literature and philosophy)

o (curl prev) 08:55, 8 February 2019 John of Reading (talk | contribs) m . . (256,033 bytes) (-1) . . (—Religion: Typo fixing, replaced: An 2017 —+ A 2017) (Tag: AWB)
o (curl prev) 00:59, 2 February 2019 WhisperToMe (talk | contribs) m . . (256,034 bytes) .. (English uses the period here)

o (curl prev) 00:20, 2 February 2019 Khajidha (talk | contribs) . . (256,034 bytes) (-16)

Figure 1: Detail of Revision History of Wikipedia’s Germany Page

downloadable as well. Edit summary gives a brief explanation of an edit to the
Wikipedia page via links to the saved version, links to the difference from previous
version (indicating what has been deleted and inserted in the page). The timestamp
of the change, its author and the comments left by the authors about the edits are
available. Further, the user can sort the changes according to the timestamp, i.e.
both recent and oldest changes. Different options, like finding a particular content
addition and removal with the help of the tool called WikiBlame, page statistics
and page views are available. Watch list is another option of Wikipedia. Users are
notified via Email during any modification to the page they have added to their
watch list. This enables the users to fix the undesirable edit done to their page of
interest.Wikipedia provides the option to view the difference in the content of the
page across various revisions. Wikipedia articles are of high quality inspite of the
challenges of open edit and collaboration facility Giles (2005). Forte and Bruckman
(2005) hold that such quality is the result of peer recognition similar to an academic
community.

3.2 Tokenization

Representation of corpus content is required to be able to become the subject of lan-
guage modelling. Documents in a corpus are composed of the articles, paragraphs,
sentences, phrases, words and characters, which are the atomic representations of
those documents. We need to segment the text in the corpus of documents into
atomic representation before its modelling and thus convert the documents content
into a sequence of individual occurrences of smallest meaningful linguistic units
called tokens. Depending upon the language modeling task at hand we choose
different representation and every content entry is converted to a sequence of the
tokens as per the chosen representation. Unique tokens present in a corpu” docu-

ments as per the representation chosen build up the vocabulary of the corpus. For
example, if words are chosen as tokens, in that case, total unique words in the cor-
pus become the vocabulary of the corpus.

One of the most popular representation of English Wikipedia articles is “words”, as
words are smallest semantic representation of English language documents Bykau
et al. (2015)Vuong and Lim (2008)Yasseri and Sumi (2012)Flock et al.. The smallest
unit of undivided string is called token. The tokens can be words or links to other
pages or entries in the Wikipedia articlesBykau et al. (2015).

3.3 WikiWho API

We need to choose a token representation scheme of Wikipedia for our work and
Flock et al. WikiWho API provides such pre-processed representation. We have
chosen WikiWho API because: (1)WikiWho tokenises the text content of a revision
where tokens ~ words. We use WikiWho API to obtain list of string tokens created
by tokenisation of article’s content in revision R; in Equation (1). Words, punctua-
tion and special Wikipedia symbols (e.g. ’[[") are seen as separate unique tokens and
tracked independently. (2) WikiWho API provides the tokenised earliest known edit
history and change information of Wikipedia articles in various languages through
revisions and has released the dataset called Toktrack dataset in the same context.
WikiWho returns the revision history of a given article consisting of ordered set of
revision instances and tracks the tokens accurately across revision history with an
accuracy of around 95%. Each revision R; € Revision_history has text content of
article in that revision as well as the meta information about its creation. (3) It tracks
the token changes across revisions, which we aim for in our work using WikiWho
algorithm and maintains in and out lists based on the token deletion and insertion
in an article’s revision history. Corresponding to each revision R; € Revision, Wiki-
Who returns a list of string tokens string_tokens; ordered by their position in its text
content. WikiWho API returns a list of unique integers token wiki_who_tokens; cor-
responding to each string;oken € string_tokens; too. These tokens uniquely track
each string token in the string content of the article. Formally,

ri = (id;, editor;, t;, string_tokens;, wiki_who_tokens;) @)

A revision R; € Revision_history contains a unique revision id id;, an editor ¢;, a
timestamp ¢; a list of tokenised string tokens string_tokens; and a list of WikiWho
tokens wiki_who_tokens_i . WikiWho API gives both the string tokens and Wiki-
Who tokens which are ordered according to their positions in Wikipedia article.
WikiWho token information is divided into three categories, namely the current_content,
deleted_content and revisions per article. (1) current_content contains all the to-
kens of all the articles present in the last revision. current_content is represented

by the fields such as page_id, last_rev_id, token_id, str, origin_rev_id, out,in. cur-
rent_content maintains the provenance of the tokens in the revisions using the "in"

and "out" lists. (2) deleted_content contains the tokens which were present in at
least one revision and not present in the last revision. (3) revisions contains all the
revisions of the articles in order of their processing by WikiWho. Revisions are rep-
resented by page_id, rev_id, timestamp, editor. Formally,

Revision_history = [7“1 ro T3 e Ty Tipl - Tn] ()

There are two lists of revisions, namely, in and out lists. in list is the list of re-
visions, where the tokens are reinserted after at least one deletion previously. out
lists contains containing revisions, where the tokens are deleted. Inserting the token
again after at least its one deletion is called reinsertion.

3.4 Language Modelling

Natural language modelling aims to determine the regularities of natural language
and estimate the distribution of language linguistic units like words, sentences, doc-
uments Lau et al. (1993); Rosenfeld (2000). Application of Language Models can be
seen in various tasks, like speech recognition, machine translation, spelling correc-
tion etc Collins. To fulfill the goal of language modelling, an efficient representation
of tokens is necessary. The type of representation chosen at hand depends on the
target task. In the following section, we describe each such token representation
and how some of these representations are relevant to our work.

3.4.1 Vector space modeling

Salton et al. (1975) Manning et al. (2008) Vector space modelling is a technique in
natural language processing to represent tokens or simply, the terms/words of the
documents in a fixed dimensional vector space. Each document in a corpus, like an
article in Wikipedia, containing total n terms in the vocabulary, is represented by
an n dimensional vector in the vector space 7,. Weights are assigned to each term
in the document vector which is a measure of its importance and the weights are
therefore zero for the terms not present in the document. There exist different kinds
of representation methodology and term weighting schemes in Vector Space model.

Bag of words model Bag of words model is one of the text representation meth-
ods in language modelling. It is called “bag of words” because the representation
is done irrespective of the order of occurrence as well as the semantic importance
of the words Manning et al. (2008); Zhang et al. (2010); Sivic and Zisserman (2009).
Consider the following two sentences of a Wikipedia article:

1. “It was expected that he will come. He did not come.”
2. “He could have come.”

The text in the article is tokenised.

1. [’7It77777wa8777776xpect6d7’?’7that77’77h€77’77will77’77come7’,7’H677777did7’77’n0t77777come’7]

2. [” He”,”could”,” have”,” come”]

Multiple occurrences of the same token are dropped and unique tokens build up
the vocabulary of the model and the article is represented by the vector:
[” It " was”,” expected” ,”that” ,” he” " will” ,” come”,” did” ,"not”,” could”,” hcwe”]
Each sentence vector is represented as the vector of the same size as that of the vo-
cabulary and each entry in the sentence vector correspond to the count of the cor-
responding entry in the vocabulary of the article. Word count track the occurrence
frequency of the tokens in the vocabulary. The representation results as follows:

1. "It was expected that he will come. He did not come." is represented by the
vector[11113131100]

2. "He could have come." is represented by the vector 0000101001 1]

Though Bag of Words model is easy to understand and implement, vectors size
increases as the vocabulary size increases. The semantic meaning of the tokens is
not known as the tokens of the same meaning can be modelled as differently even
if they reflect the same concept. The spatial information between the words which
can be related to the words” order or proximity is lost Sivic and Zisserman (2009).

One-hot encoding Lantz (2013); Manning et al. (2008) One-hot encoding is a rep-
resentation as well as a term weighting scheme , similar to the Bag of Words model
which follows a Boolean vector approach. One-hot encoding represents each term
on n independent dimensions, where n is size of vocabulary. If the term is present
in the document, it is assigned a weight value of 1 otherwise 0 unlike the term fre-
quency in Bag of Words model.

Ti-ldf Tf-1df is a common mechanism of term weighting often used with different
vector space models scheme. It weights the each vector by using frequency statistics
of occurrence of a term in a document and in the entire corpus Manning et al. (2008);
Ko (2012); Jurafsky and Martin (2000). Tf stands for term frequency and Idf stands
for inverse document frequency. Tf, as the name suggests, counts the frequency
of a term in a document/article, while Idf measures the importance of the term in
the whole corpus and measures how rare the word is in the entire corpus. Tf-Idf is
obtained by the product of Tf and Idf. Idf is obtained by log(m/df_i), where m is
the no. of total documents in the corpus and df_i indicates the document frequency
in which the term i is present.

Formally, Inverse Document Frequency;, idf is:

N
idf (t,C) = logd—, where
t

t stands for the term,
C stands for the Corpus, &)
N is the total number of documents in the corpus C,

d; are the number of documents d in which the term ¢ appears

The higher is the weight assigned to a term by Tf-1df, rarer the term is as the term
might occur more in small number of documents in the corpus. Likewise, smaller
Tf-Idf indicates the term is more common because the term might be either occur-
ring fewer times in a single document or either occurring in many or all documents
of the corpus. One of the advantages of this weighting scheme is that it relies on term
frequency for the weighting scheme. But, like Bag of Words and One hot encoding,
Tf-Idf lacks in measuring the semantic similarity among the terms as it strives on
the word count irrespective of their semantic importance and thus, documents of
similar subject but different terminology cannot be correlated.

3.5 Language Models
3.5.1 Statistical Language Models

Statistical language modelling employs statistical estimation methods to determine
the distribution of a sequence of words in a language Rosenfeld (2000). Each textual
unit, be it words (tokens), sentences or documents are modelled as a random vari-
able with some probability distribution Rosenfeld (1996). An intuitive way to model
a sequence of tokens is using the joint probability rule which results into the prod-
uct of conditional probabilities Rosenfeld (1996, 2000). The chain rule of conditional
probability results to:

P
P(t

P(S)

t17t27"‘7)
) (tg ‘ tl) (t3 ‘ tg,tl)...P(tn ‘ 1,0y ln — 1)

(
(t

(4)

Il
’:]:

P(t; [t — 1)
1

.
I

Statistical language models tend to estimate P(¢; | t; — 1) where ¢; — 1 is often known
as history. The most naive way to estimate the probability of a sequence of words or
tokens, say for example, P(t5 | t4,t3,t2,t1), would be to use counting principle.

count(ty,ta,t3,t4,15)

P(ts | ta, t3,t2,11) =)

count(tl, tQ, t3, t4

Counting instances as in Equation (5) is practically not feasible because of the huge
amount of data required to learn it and the goal of learning the joint probability func-
tion of sequences of words leads to the problem of curse of dimensionality. This is
because the trained language will be tested on the test data which might contain dif-
ferent word sequences than training data. Thus huge training examples are required
to learn and differentiate various combinations(or sequences) of wordsBengio et al.
(2003).To address this problem, Markov model assumption can be used which states
that the future word can be predicted based on its relative short history, composed
of couple of previous words. Formally,

P(ty, ...ty HPt | t; — — 1), where ©
6

k is the number of previous tokens which are considered

In one of the earlier works, Kuhn (1988) used the same Markov assumption in
speech recognition systems. Below we describe the models called N-Gram models
based on the Markov assumption which address the problem of curse of dimension-
ality as described above. They present an approach to tackle the curse of dimension-
ality problem by generalizing to the short sequences of words in the training data
according to the word order.

N-Gram model N-Gram models are the language models which assign probability
to contiguous n sequence of words in a given text. N-gram model estimate the future
state based on the present state. The future state refers to the probability estimate of
the next word, n and present state means the context which is the present sequence
of the words, i.e n — 1 words. N-gram models strive on the semantic importance
of the immediate preceding neighbours of the current word as closer words in a
word sequence tend to be statistically more dependent. Bahl et al. (1983); Brown
et al. (1992); Bengio et al. (2003). An N-gram model is a Unigram model when n=1,
Bigram when n=2, Trigram when n=3 and so on.

P(ty, ...ty HP (7)
P(t1, ..ty HPtZ]t—l (8)

Equation (7) refers to the Unigram model formulation where n = 1 and it considers
only one word. Equation (8) is the Bigram model formulation which conditions each
word on the previous word. Similarly, in Trigram model conditions on the previous
two words, 4-gram model conditions

3.5.2 Neural Language Models

The major problem with Statistical language models is that they lack in capturing
the semantic similarity between words. For example, Having seen the sentence, "He
is eating Pizza" during training should enable the model generalize the sentence,
"He is making Pasta" almost as likely because "Pizza" and "Pasta", have similar se-
mantic role (of belonging to the category Food) and similarity, the actions, "eating"
and "making". Another problem in obtaining the probability of the next word using
N-gram model does not take into account context more than n words Bengio et al.
(2003).

Neural language models were first introduced in Bengio et al. (2000, 2003). They
propose a language model based on neural network in which represent each word
in the vocabulary by a feature vector. Such feature vectors are distributed represen-
tation of words in the vector space. Distributed representation of word is a feature
vector which identifies the meaning of the word and is not mutually exclusive. Each
word is mapped to point in the vector space. The idea is that semantically similar
words lie closer to each other in this vector space, thus enabling the transformation
of a sequence of words to a sequence of learned feature vectors. Such representation
reduces the impact of curse of dimensionality by allowing the model to generalize to
the unseen combinations of words in terms of their similarity in the feature represen-
tation.A feed forward neural network architecture is used with a linear projection
layer and a non-linear hidden layer to learn jointly word vector representation as
well as statistical language model. The importance of neural language models w.r.t
our work lies in our idea to capture the semantic similarity of the fine grained edits
across different revisions. We describe more behind this approach in the following
section.

Word2vec Mikolov et al.Word2vec is a popular approach of representation of word
sequences. Word2vec uses the concept of nearby words, i.e. word vectors which are
semantically similar lie close to each other in the vector space. Skip gram is one of
the model architecture which uses Word2vec for word representation. It predicts
the words semantically similar based on the current input word within some range
before and after the current word. The number of words before and after the current
word to be considered as the context words builds up the context window. Typical
size of the context window is 5, i.e 5 words before the current word and 5 after the
current word. The network is trained on the input combinations of the words in the
training vocabulary according to the window size. For classification purpose, the
input to the neural network are one-hot encoded vectors of the input word of the
same size as that of the vocabulary used in training the network. Its vector represen-
tation works by picking the words in certain range nearby to the each current word
in the sentence randomly. It predicts the similarity of those picked words by out-
putting the probability of the context similarity using Softmax function. Bojanowski
et al. (2016) and Joulin et al. (2016) improves the word2vec from Mikolov et al. to

10

create fast-text model, which accounts for sub-words of a word and is trained on
Wikipedia.

Skip gram model of train word vectors where embedding is hidden projection of
probability of predicting the word given the neighbourhood context is able to cap-
ture the semantic similarity between string tokens Mikolov et al.. Skip gram word
vectors perform well on series of tasks such as analogy in words as well as text re-
trieval, classification and clustering. Our motivation in using Skip gram model lies
in using pre-trained Word Embeddings from Mikolov et al. with distance metric to
calculate the similarity in the set of tokens in neighbouring context with accountance
of linguistic similarity of tokens in neighbourhood. Whereas Bykau et al. (2015) uses
Jaccard similarity in the set of tokens in neighbouring context and Jaccard similar-
ity on tokens compares occurrence of exact word without accounting for linguistic
similarity of words in neighbourhood.

3.6 Clustering

Clustering is an unsupervised machine learning technique which identifies pattern
in given data points without being trained on explicit labels for each group. Being
an unsupervised learning algorithm, it only has the unlabeled inputs without any
corresponding target variables and the task is to discover interesting patterns in the
data without the explicitly provided labelled outputs. Therefore, there is no specic
error metric to evaluate the model performance since we are not provided with la-
belled target outputs unlike supervised learning algorithms such as classification, in
which we can compare the model’s predicted outputs with the ground truth labels.
In clustering, given a set of inputs, {ml, Lo, - ,:En} where every input z,, is char-
acterised by a set of attributes, i.e. x; = {al, ag, - ,am}, the task of function ~ is
to group similar inputs together and these groups are known as clusters. Thus, we
need to nd the clusters, 2 = {wl, wWoy - - - Wy }, and we find the mapping function:

’y:a:,'—>QZ- (9)

The goal of clustering is to find the clusters such that similar groups contain the
data points as similar as possible and dissimilar groups contain the input points as
dissimilar as possible.

For data to be clustered in groups a similarity measure needs to be defined between
them. Generally similarity is defined as a distance metric. Any function d(a, b) be-
tween two points a and b is called metric if it follows the following three properties.

d(a,b) = d(b, a) (10)

d(a,b) >0, and d(a,a) =0 (11)

11

d(a,c) <= d(a,b) + d(b,c) (12)

Few example of metric are Minkowski distance, cosine distance, hamming distance
etc. There are few distances which only follows 10 and 11 but not the 12 also called
triangle rule. One such distance metric is Jaccard distance.

3.6.1 Types of Clustering

Clustering tasks can be divided into two major categories based on the criteria cho-
sen. The two types of criteria chosen for the clustering task can be either cluster
types and the function ~.

1. Based on the types of clusters: By the types of clusters, we mean the cluster
formation based on the relation of the clusters to each other.Clustering can be
categorized as follows based on the types of cluster formation:

a) Flat Clustering: Flat clustering relates to the cluster formation in a way
such that there is no explicit relation of clusters to each other.

K-means clustering is a famous flat clustering algorithm which partitions
the input data into k partitions where each partition belongs to one clus-
ter. The similarity is based on the closeness of the data points in a cluster
to the centroid of the respective cluster. The closeness of a data point to
the centroid of the cluster is measured by the Euclidean distance metric.
K-means algorithm is a fast and efficient algorithm because of its simple
implementation and less complexity, O(n) for each iteration as the num-
ber of iterations are usually small. A big disadvantage of K-means is that
it is necessary to know the number of clusters, i.e. K beforehand which
is often difficult to determine. DBSCAN (Density based spatial cluster-
ing of applications with noise) is yet another important flat clustering
algorithm. In this algorithm, the input data points are partitioned in dif-
ferent density regions. Data points are grouped together in high-density
regions to form clusters and the outliers are marked by the points lying
in low-density regions.

b) Hierarchical Clustering: Hierarchical clustering leads to the cluster for-
mation in a hierarchy. Before clustering algorithm identifies explicit hi-
erarchy of relations among points to be clustered. It uses two kind of
order to construct hierarchy among data points, a bottom-up approach
or top-down approach in cluster formation.

2. Based on the mapping function I': The cluster formation depends on the defi-
nition of the mapping function I' too. Based on this, there can be:

a) Hard clustering assignment: Each data point belongs exactly to only one
cluster among all the clusters formed, thus enabling a hard assignment.

12

b) Soft clustering assignment: The data points may belong to more than
one cluster, leading to their assignment to multiple clusters with some
probability.

3.6.2 DBSCAN Clustering

Density-based spatial clustering of applications with noise (DBSCAN) is a data clus-
tering algorithm proposed by Ester et al. (1996). It uses the concept of core points to
identify regions of high density and low density using neighbourhood radius of eps.
DBSCAN has two parameters, Minimum sample size min_samples and distance of
eps. eps distance is the maximum distance two points can be apart to be considered
in same group and min_samples is minimum number of points in the group which
has to be at least eps apart for the point to be considered core point of the group.
Algorithm works by identifying few core points than keeps adding more points to
its cluster and leaves remaining point as outliers.

Each point p; belonging to set of point to be clustered is put into group of core
point if it has at least min_samples number of point which are less than or equal
to eps distance from p;. After identifying core points, If any other point g; lies at
the eps distance to any p; belonging to core point its added to the cluster. Thus all
the reachable points from core points are put into the same cluster as core point,
but for a point to be a core point it has to be in high density region where at least
min_samples points are with in eps distance to it. As the algorithm is density based
it created spatial clusters of variable sizes and is sensitive to choice of parameters,
eps and min_samples. Amount point not clustered in any group is also dependent
upon choice of eps and min_samples.

3.6.3 Evaluation

Groups in clustering are created in an unsupervised manner, so each group does
not have predefined meanings. In order to evaluate the quality of cluster groups
identified by the algorithms, one way is to use the metric which evaluates the group
without taking help of user created groups. Such metric which evaluates clustering
just using intrinsic quality measure are called intrinsic evaluation metric. The other
way to evaluate a clustered group is to take help of external annotators. Metric
utilising external annotators is called extrinsic metric.

Intrinsic evaluation Intrinsic evaluation criteria relies on the quality of clusters.
Quality of clusters is determined majorly by inter-cluster and intra-cluster similar-
ity among the identified clusters. The goal is to have higher intra-cluster similarity,
indicating the enclosed data points in the cluster are similar and lower inter-cluster
similarity, indicating the data points in different clusters are dissimilar. Intrinsic
cluster measures try to quantify the quality of grouping based on similarity mea-
sure which leads to more coherent clusters. As most of the clustering algorithms

13

have some similarity measure to create the groups in first place, it is important to
use the intrinsic evaluation metric carefully in order to account for implicit bias for
similarity measures in clustering algorithms. Intrinsic clustering mechanism pro-
vides us with a notion of similar and dissimilar cluster which can be used to choose

an algorithm over other an help us gain insight into the process of clustering.

One such intrinsic evaluation scheme is the Fowlkes-Mallows index(F M I) E.B. Fowlkes
(1983). It measures the similarity between two clustering generated by two algo-
rithms and is defined as the geometric mean between of the precision and recall:
Formally,

TP
FMI = , Where

V(TP + FP)« (TP + FN)

1
TP is number of true positives, (13)

F' P is number of false positives,

F'N is the number of false negatives

Fowlkes-Mallows index score of 1 denotes perfect agreement while a score of 0 de-
notes no agreement.

Extrinsic evaluation Extrinsic evaluation on the other hand gives us a measure
of cluster which is not solely based on notion of similarity of data points to be clus-
tered but is dependent upon notion of similarity created by humans. It uses external
knowledge of labels to help humans annotate with the labels. This leads to creation
of ground truth of groups of clusters on which the algorithm created clusters are
evaluated. Extrinsic evaluation metrics’ rate the algorithm created clusters accord-
ing to its agreement with human created ground truth groups.

VMeasure is an entropy based extrinsic evaluation measure which evaluates a clus-
ter created by an algorithm against the annotated class label from human annota-
tors. It uses measures of Homogeneity and Completeness to calculate entropy in
clustering labels assigned by algorithm. Homogeneity quantifies how many of the
data points in each cluster belong to same class labels prepared by human annota-
tors. Similarly, completeness quantifies how many class labels created by human
annotators belong to the same cluster. Therefore, Homogeneity is equivalence to
precision of clustering algorithm to put same class labels in one cluster group, while
completeness is ability of clustering algorithm to be able to recall all class label in
one cluster. We can see both are symmetrical and competing metrics, so Vmeasure
is defined as harmonic mean of Completeness and Homogeneity.

14

4 Methodology

In this section we formulate the methodology to answer our research question of
identifying fine grained inserted and deleted tokens in the revision history of an ar-
ticle. First, we explain the problem of identifying fine grained edits in context where
context lies in the neighbouring tokens. We further give related definitions and for-
mulas. We also present the overall architecture of our methodology. Later, in the
subsections, we describe in detail the steps leading to identification of fine grained
edits, which we call change objects. In the last subsection, we devise methodology
to create groups of change object, evaluate it and compare our model with model
from Bykau et al. (2015).

In order to identify groups of inserted and deleted text in the Revision_history of a
given article which were similar in its meaning in the document, we group inserted
and deleted tokens according to their neighbouring context in respective revisions.
For example, let us consider an article whose Revision_history consists of four re-
visions.

1. The sister sings songs
2. The sister sings nice songs
3. The sister sings songs

4. the small bird sings songs

Upon observing changes in content of article between revisions we see that the word
“nice” is inserted in revision 2 and is removed in revision 3. In revision 4, the text
“small bird” replaces the word “sister”. Since the insertion of word "nice" and its re-
moval share context in terms of neighbouring tokens ("sings" in the left, and "songs"
in the right), we say that they belong to same group of changes. Similarly, the neigh-
bouring context for the removed word “sister” is the same as the context of the in-
serted words “small” and “bird”, thus they also form their own group. Although
the words “sister”, “small” and “bird” are semantically different, they belong to the
same group because they share the same context. Therefore, the unchanged neigh-
bouring context is responsible for deciding which objects belongs to the same fine
grained changed group, i.e. the change object.

Our objective consists in clustering these change objects across multiple revisions,
and not only of contiguous revisions as the toy example above. We can use the same
logic of the neighbouring context to detect similar change objects. However, since
the text in the article evolves with revisions, the neighbouring context will not be ex-
actly the same, and the clustering should be done using a similarity measure. Bykau
et al. (2015) uses Jaccard similarity in the set of tokens in neighbouring context. Jac-
card similarity on tokens compares occurrence of exact word without accounting
for linguistic similarity of words in neighbourhood, hence we use pre-trained Word

15

Evaluation

Change Object

Change Vector

Evaluation

Word vectors Metric

User
Pre annotated
processing group

‘ Sty =5, PESCAN * Cluster
T i __________________ Clustering
I
I
I
: Cluster > Agreement
I

Figure 2: System Architecture

Agreement
Metric

Embeddings from Mikolov et al. with distance metric to calculate similarity, as de-
scribed in Section (3).

The entire system architecture is summarised in Figure 2. It presents the overview
of the flow of data starting from tokens obtained from the WikiWho API and ending
in the evaluation of the clustering of the change objects.

The first step in the architecture in 2, Change Object is the identification of fine
grained change objects. A change object comprises the gap of inserted and deleted
tokens between two consecutive revisions along with their shared left and right con-
text. While Bykau et al. (2015) defines the gap as a substitution, i.e. there must be at
least one insertion and one deletion from same neighbouring context, we allow any
one of the inserted or deleted token set to be empty.

The second step in the System architecture in 2, Change Vector is the encoding of
context of change object as a fixed dimensional vector, called change vectors. Before
clustering change objects which share a similar context neighbourhood, we project
the context neighbourhood of all change objects identified in the previous step in a
fixed dimensional vector space. This fixed dimensional vector space is necessary for
the clustering algorithms as a distance metric needs to be defined on all the objects

16

to be clustered. Change vectors of fixed dimension allows us to efficiently calculate
distances between change objects.

The third step in the system architecture in 2, is the Clustering. We identify groups
of change objects which have high similarity in their neighbourhood context. We do
this by using the ChangeVector that characterise each Change Object.

In the fourth step, we create clusters for different sets of parameters and do intrinsic
and extrinsic evaluation on clusters. Intrinsic evaluation is done to identify stability
in clusters identified by our algorithm while extrinsic is done against a ground truth
prepared by human annotator.

In the fifth and the final step, we implement Bykau et al. (2015) and compare it with
our algorithm.

In the following subsection, we describe each step of the architecture in Figure 2 in
detail, starting from the identification of Change Object, followed by the creation of
ChangeVectors, and at last clusering and the intrinsic and extrinsic evaluation of
Change Objects.

4.1 Change Objects

As shown in the architecture diagram 2, in order to find groups of fine grained
change object we first need to group change tokens of an article across its revi-
sion history into change objects. To identify change objects of an article, we pro-
cess the revision history Revision_history of an article’s content. Each revision
r; € Revision_history of a given article is retrieved from the WikiWho API. As
discussed in the background section, WikiWho API returns the tokenised strings of
each revision content of an article. We identify gaps of tokens which change be-
tween two consecutive revisions r; and 7;41 which are bounded by the same tokens
in the neighbouring context. Figure 3 below shows the three revisions of the article.
Wikiwho tokens can be tracked uniquely (with 95% accuracy) across revisions of a
given article. For example, notice that in the Figure 3, in revision ry, the string "."
comes at two places but WikiWho tracks them separately and assigns them unique
token of 18 and 20. In this case, Wikiwho would be able to understand that token 18
belongs to the end of the revision due to the shared context, i.e left token 16 ("For")
and the left end of document token (not shown).

Two consecutive revisions can be described by multiple edits, as not all the changes
between revisions share the same text, i.e. they can happen in different parts of
the article. Therefore, we define a set of Fdits between each consecutive revisions
ri, Tit1, representing the edit process. Hence, there exists an ordered set of edits
Edits for an ordered set of Revision_history. Formally, set of Edits can be defined
as follows:

Edits = e<12>,€<23>," "+ ,€<iifl>, " »€<n—1n> (14)

17

String Tokens
WikiWho Tokens

Pos_rev

String Tokens

WikiWho Tokens

Pos_rev

String Tokens
WikiWho Tokens

Pos_rev

18

id-0

A | tree was | standing @ Close !
10 11 12 13 14 15
0 1 2 3 4 5
id -1
A | tree | was standing | Close ! For real
10 11 12 13 14 15 16 17 18
0 1 2 3 4 5 6 7 8
id-2
A | tree was | standing nearby For sure
10 11 12 13 19 20 16 21 18
0 1 2 3 4 5 6 7 8

Figure 3: Set of revisions

Each edit e; ;41> denotes the process of editing, i.e. an editor editor;1 sees an
existing revision r;, and proceeds to remove a set of tokens deletion; (from r;) and
insert another set of token insertion; 1 (into revision r; ;). Formally,

e<iit1> = (deletion;, insertiony1), Vec;it1> € Edits (15)

With the the set of three revisions returned by WikiWho API shown in Figure 3 as
an input, we can identify the edits e< 0,1 > and e< 1,2 >, i.e. the changes between
consecutive revisions. From WikiWho AP]I, for each revision r; we can tell which of
tokens (wiki_who_tokens; € r;) will be removed in the next edit e; ;+1~, and which
tokens were added in the previous edit (e<;—1 4~). Leveraging this information given
by WikiWho API, we retrieve sets of deletion; and insertion;,; corresponding to
each edite;;t1>.

In our example of 3 revisions in Figure 3, e« 2~ consists of removal of tokens “close”,

7o

and "real" and addition of tokens “nearby”, "." and “sure”, i.e. deletion; =
{1closey,””,"real” } and insertions = {inearbyj,”.” 1surey}. Sets of insertions and
deletions are replaced by their WikiWho token counterparts and re-written as deletion; =
{14,15,17} and insertions = {19,20,21}, as WikiWho tokens uniquely identify
words (e.g. it distinguishes between the two "." characters). We always use wiki_who_token
in our Algorithm 1 to identify change object because its unique tokens helps us in
avoiding all the ambiguity in identifying tokens uniquely.

Edit e<; ;1> contains all the inserted and deleted WikiWho tokens in two sepa-
rate sets. The deletions set deletion; is obtained from r;, whereas the insertion set
insertion;y1 is obtained from r;;;. Each edit is divided in several fine grained
change objects; two inserted or deleted tokens belong to the same change object

if they are in they are contiguous. The table 6 shows the fine grained change objects

that can be obtained from table 3.

Formally, a change object is described by:

mn

Change_object = (e<;i+1>,left_context, gap, right_context) (16)

Here, gap is the inserted and deleted tokens set, the le ft_context represents the to-
kens that appear before the gap and right_context represents the tokens that appear
after the gap. In theory, left_context extends all the way to the beginning of the
document, and the right_context all the way to the end; in practice, a cutoff is nec-
essary for computational reasons. For example, a change object of context 5 means
that there are only 5 tokens on the left and on the right of the change object. The
immediate left and right context, called le ft_context_start and right_context_start
respectively, are important in order to identify the contiguous insertions and dele-
tions.

19

Input Output
Edit Pos_rev_i token Pos_rev_ To rev left_token | right_token
i+1 _start _start
<0,1> - For 6 1 !
<0,1> - real 7 1 !
<0,1> - 8 1 !
<1,2> - Nearby 7 1 standing For
<1,2> - 8 2 standing For
<1,2> - sure 9 2 For

Figure 4: Context of insertions

4.1.1 Contiguous insertions and deletions

A token always has two neighbors: one on its left side and other on its right side. A
special token marker is used to indicate if the token is present at the start or at the
end of the article.

Formally,

Vtokeny, € (insertion;i1,deletion;) = 3I(left_context_start, right_context_start)
(17)

such that le ft_context_start is the first unchanged token to the left of token; and

right_context_start is the first unchanged token to the right of the token;,.

Assuming that we have identified the le ft_context_start and right_context_start,
it is provable that tokens which share le ft_context_start and right_context_start in
an edit e<; ;41> must come at contiguous positions bounded by le ft_context_start
and right_context_start. This can be proved by contradiction below:

PROOF Let there be two tokens t;,t;, € wiki_who_tokens; which share
left_context_start and right_context_start in edit e<; ;41> .

pos; < pos, where pos; is the position of ¢; and pos, is the position of ¢, but they
are not part of contiguous edits.

Since t; and t;, are not part of contiguous edits, it follows that there must exist at
least a single token ¢, such that pos; < pos, < pos, which remain unchanged be-
tween revisions R;, Ri11 € e<iit1>-

20

Input Qutput
Edit Pos_rev_i token Pos_rev_ To rev left_token [right_token
i+1 _start _start
<1,2> - close 5 2 standing for
<1,2> - ! 6 2 standing for
<1,2> real 8 2 for $

Figure 5: context of deletions

Since t;, t;, share left_context_start token then le ft_context_start token should be
the first token before ¢;, ¢, which is unchanged in e-;;11~. Same can be likewise
proved for the right_context_start.

Hence t,, does not exist proving that all the pair of token which share
left_context_start and right_context_start must be part of a contiguous edit in
€<i,i+1>-

Those, once we have identified le ft_context_start and right_context_start for each
token in e—; ;41> (next section), we can divide insertion;+1 € e;i+1> into change
objects, each of which contains the inserted and deleted tokens with same left and
right context, called gap of the change object. Each token in insertion; i1, € e<jit1>
which has same left_context_start and right_context_start belongs to the same
group of fine grained inserted gap bounded by right and left context. For exam-
ple, the Tables 4 and 5 shows the le ft_context_start and right_context_start for all
insertions and deletions of the example in Table 3.

The Table 4 presents all the inserted tokens that correspond to the revisions given
in Figure 3. The left side of the Table (Input) shows the corresponding edit e<; i 41>,
the position of the token in r; (empty as they did not exist in that revision), the
text of the token, and the position of the token in r; + 1. The right side of the
table (Output) shows the left and right neighbouring token. The insertion of the
tokens {"For","real","."} = € e<p,1> have the same left_context_start (“!”) and
right_context_start (empty, or end of document marker). The tokens

{”nearby",".”, ”sure"} € ec12> are divided into two change objects based on
their left_context_start and right_context_start tokens. The first group consists
of "nearby”,”.” with "standing" as their le ft_context_start and "For" as their

right_context_start. The second group has just one token ”sure” with "For" as its
left_context_start and "." asits right_context_start. Thus, in total we have obtained
three fine grained insertion units out of two edits (ep,; and e; 2) using the context of
their respective revisions.

Similarly, the Table 4 presents all the deleted tokens that correspond to the revisions
given in Figure 3. Once we detect the le ft_context_start and right_context_start,

21

Edit Left_context insertions deletions right_context

<0,1> ! For, real, .
<1,2> standing nearby, . Close, ! for
<1,2> For sure sure

Figure 125. List of change objects.

Figure 6: Edit e 2~

we can use the same procedure to group the tokens into the fine grained deletion
units, in this case two units are found: "close”,”!” and ” for”. Notice,however, that
the context is extracted from revision r; (instead of r;;1); this is because the token
does not exist in ;11 since it was deleted between r; and r;;. This is evident by
looking to the position columns (pos_r; and pos_r1). For insertions, pos_r; is empty,
whereas for deletions, pos_r1 + 1 is the one empty.

Finally, the fine grained insertion and deletion units can be associated when the
units share the same e; ;+1>, and le ft_context_start and right_context_start in or-
der to obtain the change objects. For example, the fine grain insertion unit
"nearby”,”.” can be associated with the deletion fine grained unit " close”,”!”. Fig-
ure 6 shows the complete list of change objects generated from the example in Figure
3. Here, we distantiate from Bykau et al. (2015), as already described in the brief in-
troduction of Section (4), we do not discard insertions or deletions which do not
have an associated counterpart. For example, the first change object in Table 6 does
not contain any deletions, just insertions.

4.1.2 Identifying left and right context

In the previous section, we assumed that we had identified the le ft_context_start
and right_context_start; in this section we present the procedure to actually iden-
tify them. The procedure, inspired from the Fourier Transform Bracewell (1978),
is not only efficient but it also provides a direct way to identify the change objects
with this procedure. We specifically design a transformer like discrete auto correla-
tion convolutions transformer, which tries to find auto correlation in insertions and
deletions to identify contiguous edits.

To mark the starting position of left and right context of each contiguous inser-
tions and deletions between revision r; and r;; we introduce two bitmaps (Fig-
ures 7 and 8). Both bitmaps are of the size equal to string_tokens_i in r;. The first
bitmap deleted_mask; corresponds to deletion;, where 1 indicates the token posi-
tions which will be removed in e<; ;1> (otherwise, a 0 is used). The second bitmap
inserted_mask; corresponds to insertion; 1, where 1 indicates the tokens that will

22

Revision Id O

Content st@rt A tree was standing Close ! &end
TokTrack id - 10 11 12 13 14 l 15 l -2 '
Deleted Mask 0 0 0 0 0 0 0 0
1d diff 0 0 0 0 0 0 0
Revision Id 1
Content st@rt A | tree was standing close ! For real . &end
TokTrack id -1 10 11 12 13 14 15 16 17 18 -2
Inserted Mask 0 0 0 0 0 0 0 - 0
1d difff 0 0 0 0 0 0 1 0 0 -1 0

Figure 7: Edit e 1>

be inserted in e<; ;+1> (otherwise, a 0 is used). Since each WikiWho token is unique,
we do not need to worry about ambiguity of tokens with the same text, and setting
up this mask runs in O(n).

Next, we take the difference of each element in both masks with its next value to
mark the le ft_context_start and right_context_start (1d diff in Figures 7 and 8). If
there is a 1, then a left_context_start has been detected, whereas if there is a -1,
then the right_context_start is located in the subsequent position, i.e. the one after
-1. All the tokens which come between le ft_context_start and right_context_start
are contiguous insertions or deletions with a shared context, i.e. a change object.
Once we are able to identify all pairs of 1 and -1 we identify all contiguous inser-
tions and deletions along with its context, and therefore all the change objects.

The algorithm runs in O(n) time which is just the search of 1 and -1 in mask differ-
ence.

Figure 7 shows the Edit e ;> including the special token added in start and
end to mark the start and end of revision. Difference of consecutive element in in-
serted_mask is 1d diff. As stated above the tokens “For”, “real” and “.” were added
in revision r; between "!" and especial end token "end". Position where there is
a 1 in 1d diff of mask gives us the first token of left context (le ft.ontext,oken) i.e
“1”, and positions after a -1 in 1d diff gives us the first token in the right context

23

4

24

Deleted Mask

E F G
Revision Id 1
standing close

real

&end

1d Diff 0
o
A B C D E F G H | J K L
Revision Id 2
Content A tree was standing nearby For sure &end
TokTrack id 10 1 12 13 19 20 16 21 18 -2
Inserted
0 0 0 0 0 0 0
Mask
1d diff 0 0 0 0 1 0 -1 1 -1 0

Figure 8: Edit e<1 2~

(right.ontextioken), i.e. especial end character. Our contiguous inserted token is
located between the first token in left context and first token in right context. In the
example above contiguous insertions is "For’, “real”, “.” located between the mark-
ers 1 (exclusive) and -1 (inclusive). Our algorithm 1 is able to identify insertions at
the end because of the especial token marking the end of the content in 7. Similarly,
contiguous insertions at the start of revision can be identified too. Thus, our algo-
rithm 1 is efficiently able to identify all contiguous insertions in a revision along with
its position as well as their respective le ft_context_start and right_context_start to-
kens.

Similarly, figure 8 shows contiguous deleted tokens in r;. We have a deleted mask
bitmap corresponding to each token in r;. If we take the difference of consecutive
values of bitmap, we can localise two contiguous deletes in ry, indicated by markers
1 and -1. So, two contiguous deleted token units are identified, (“close”, “!” and
“real”), with their respective le ft_context_start and right_context_start tokens as
(standing, For) and (for, .) respectively.

4.1.3 Merging of contiguous edits

Once we have identified contiguous insertions and deletions in each revision r;
which are fine grained in the wiki_who_tokens; € r; by their respective le ft_context_start
and right_context_start tokens context, we need to identify fine grained gap of con-
tiguous insertions and deletions in each edit e; 11>, i.e. change objects. For identi-
tying contiguous deletions, we divide deletions; € e<; 41> in units of tokens which
are present at contiguous positions in the r;, but get removed in the next revision
ri+1. Similarly, for identifying contiguous insertions, we divide insertions;;1 €
e<i+1> into units of tokens inserted contiguously between r; to get r; ;. Both of
these divisions are marked by left_context_start and right_context_start tokens,
so in order to identify the gaps of inserted and deleted tokens in e-; 1> we associ-
ated these two list of tokens. As both the left_context_start and right_context_start
tokens do not change in e; 41, we associate all the contiguous insertions and dele-
tions which share le ft_context_start and right_context_start in e<; 1. For exam-

nomn

ple, in Figure 8, contiguous deletions of "close", "!" in R; are associated with contigu-
ous insertions of "nearby", "." as their le ft_context_start and right_context_start is
same. left_context_start is "Standing" and right_context_start is "for". These two
associated units are called the gap of the change_object.

If no association exists for an insertion or deletion unit, then an empty list is assigned
in place of that missing counterpart. This indicates that between le ft_context_start
and right_context_start of unmatched changed object, only tokens were inserted
or deleted in e<; +1~. Unlike Bykau et al. (2015), which only captures gaps where
both insertions and deletions tokens are present, our merge process finds the change
object gap where one of insertions and deletions can be empty. Our algorithm thus
finds all the token in Bykau et al. (2015) as well as also the ones where insertions or
deletions are empty.

25

To summarise the change object identification algorithm (1), we identify change ob-
jects in edit history of an article by processing the set of revisions in time ordered
manner. We start from r; until r, and identify tokens added by editors in each
e<ii+1> between consecutive revisions r; and ;1. We model the edition process
as an editor editor; inspecting the existing revision r; and further adding and re-
moving string tokens at certain positions in existing string_tokens; to create a new
revision r;41 with string_tokens;1. This edit process gives us e-; 1>, consist-
ing of a set of inserted tokens insertion;y; and a set of deleted tokens deletion;.
We divide these inserted and deleted tokens which are at contiguous position in r;
into contiguous insertions and deletions. We further associate these contiguous in-
sertions and deletions into one change object if they share left_context_start and
right_context_start. Each change object contains added and removed tokens at the
contiguous positions between a fixed le ft_context_start and a fixed right_context_start.
Change objects built by this association consist of two ordered list of tokens, both
of which are at contiguous positions in edit e.; ;11> and between a fixed context
starting at left_context_start and right_context_start. The first list contains the
tokens which are present at continuous positions in the previous revisions r; €
edit< i,1+ 1 >, but get removed in the next revision r;;1. The second list contains
the tokens added contiguously in r; 1 at the same position from where the tokens
in the first list are removed in the previous revision 7;.

In this way, each edit e; ;41> is divided into a list of change_object consisting of
gaps of inserted and deleted tokens with a left and right context. Once we run our
algorithm 1 for all edits e.; ;41> in revision history of an article, we get the change
object corresponding to complete revision history of an article. Figure ?? shows the
change object identified by our algorithm 1 for list of edits e<g 1>, e<1,2>.

Make Inserted; 1 with the size of Tokens; where each position, which has new to-
kens, will be set to 1 and remaining to zero. Take difference between consecutive
element of Delgtedi and I nser?ediﬂ to find contiguous insertion and deleted posi-
tions. As Delgtedi and [nserzediﬂ contains 1 at insertion and deletion positions,
difference vector will contain -1 at left neighbour of contiguous edited positions, 1
at end of contiguous edited positions and 0 in the remaining positions. In the differ-
ence vector of Delgtedi and / nser_t’edi_l'_l, -1 denotes left neighbour position where
contiguous insertion or deletion started and 1 denotes the position where contigu-
ous insertion and deletion stopped. One position ahead where 1 is coming in differ-
ence vector is right neighbour.

Merge the deleted and inserted token from Delgtedi and [nseﬁediﬂ which share
the same left and right neighbour. This gives us the change objects between the
right and the left neighbour.

4.2 Change Vectors

Before we cluster change objects, we encode each of them in a fixed dimensional
vector space using vector space modeling on its left and right context and these vec-

26

Algorithm 1 Change Object Identification
Require: revision_list > List of all revisions
1: fori < range(len(revision_list) — 1) do
2: Pad tok_track_id; and tok_track_id;,; at start and end with special tokenld
to mark start and end positions.
3: deleted_1d_dif f; < deleted_mask;[1 :] — deleted_mask;[: —1]
> deleted_mask;[j| — deleted_mask;[j + 1]

4: inserted_ld_dif fit1 < inserted_mask;y1[1 :] — inserted_mask;+1[: —1]
> inserted_mask;1[j] — inserted_mask;1[j + 1]
5: deletion_start_pos; < deleted_ld_dif f; == —1
6: deletion_end_pos; < deleted_ld_dif f; == 1
7: insertion_start_pos;41 < inserted_ld_dif fi11 == —1
8: insertion_end_pos;y1 < inserted_ld_dif fi+1 == 1
9: deleted_positions_matriz; < concat(deletion_start_pos;; m, i, deletion_end_pos;)
10: inserted_positions_matrix;+1 < concat(insertion_start_pos;i1, insertion_end_posiﬂ)
11: change_matriz<; ;11> < outer_join([deleted_positions_matriz;, inserted_positions_matriziii],
[deletion_start_pos, insertion_start_pos))
12: end for

tors corresponding to change objects are called change vectors.

Each of our change object gap is bounded by le ft_context_start and right_context_start
tokens, which we have already defined to be first token which was not edited in
both right and left sides of contiguous edits in an edit e<; ;+1~. Each gap in an edit
e<ii+1> comes between two revisions, but we have fixed both of its right and left
context to be in revision r;, as this is the context that editor of r; 1 sees before creat-
ing r; Bykau et al. (2015). Therefore, left and right contexts of each change object are
in r; and start at le ft_context_start and right_context_start tokens which are used
to mark contiguous insertions and deletions and merge them. In order to mark the
end of context, we introduce a parameter to our model context_length, which con-
trols the number of tokens used on the left side of le ft_context_start and the right
side of right_context_start to create change vectors. Note that context_length is the
only one parameter which limits the size of both context, meaning that the same
amount of tokens will be used on both sides of the change object to create change
vectors. We pick tokens from start of left and right context to the context_length and
make two list of tokens, namely left context tokens and right context tokens.

Let pos(token) be the position of token in string_tokens;, and let len(string_tokens;)
be the total length of string_tokens;. Then, we define left context tokens
left_context_tokens of a change object coming in e-; ;11> as the list of tokens in who
are at contiguous positions in string_tokens; € R;, and that are located between
pos(left_context_start) — context_length to pos(left_context_start).

If pos(le ft_context_start) < context_length then we take the contiguous tokens be-
tween 0 to pos(left_context_start).

27

Similarly, we define right context tokens right_context_tokens of a change object
coming in e«; ;41> as list of tokens in which are at contiguous positions in
string_tokens; € R;, and that are located between pos(right_context_start) to pos(right_context_start)
context_length. If pos(len(string_tokens;) > right_context_start) + context_length
then we take the contiguous tokens between

pos(right_context_start) to len(string_tokens;).

For efficient representation of string tokens, we use Word vectors, given by Mikolov
et al., which semantically represents word vectors into a fixed dimensional repre-
sentation. Using Word vectors, we encode our left and right context into a fixed di-
mension space. As discussed in background section, these word vectors are trained
on Wikipedia corpus and gives R3% vector corresponding to each word in its cor-
pus vocabulary. Owing to finite RAM size and for efficient computation, we keep
vocabulary size for word embedding to be 1 million words sorted by their rank of
occurrence in the training corpus. We use well known Rehtifek and Sojka (2010)
Gensim Library to load the vectors corresponding to top 1 million words sorted
by their rank according to frequency of occurrence in the corpus. In top 1 million
vocabulary size, we perform two kinds of cleaning, first one is to drop the top 10
ranked words from vocabulary and the second is to drop any word with the length
of size less than or equal to 3. We remove top 10 ranked words because top ranked
words are the most frequent words in corpus and as discussed in Tf-Idf in Section (3)
more frequent words carry less meaning in corpus and are generally generic words
carrying very less meaning. We remove words with size less than 3 because most of
the words of size less than 3 are pronouns or symbols of less significance.

Once we have cleaned the vocabulary of our embedding vectors, we define a map-
ping function embedding,,ap(word). This mapping function takes each word in our
cleaned vocabulary and return its corresponding word vectors of R3% from Mikolov
et al.. If the word is out of vocabulary, it has a zero vector in R3%. Mapping func-
tion embedding_map(word) helps us to ignore all the other words which are not in
cleaned vocabulary cleaned_vocab, i.e. the words which are removed in cleaning or
do not exist in 1 million vocabulary set.

Let word_vector(word) be a function in Rehtifek and Sojka (2010) Gensim which
maps each word to 3% embedding vector, and let cleaned_vocab be a set of cleaned
vocabulary obtained above, then embedding_map(word) is defined as:

word_vector(word) € R3Y if word € cleaned_vocab

beddsi d) =
embedding_map(word) {O € R399 if word ¢ cleaned_vocab

(18)

We use the cleaned word embedding cleaned_vocab and embedding_map(word) to
average tokens in our left and right context into a vector of R3%. We finally concate-
nate both right and left context vector of R300 to get R500 change vector. Formally,

28

Left Context Right Context

R300 R300

R300 R300
300

R300 R

Figure 9: Change Vectors

len(left_context)

1
Left_Context_Vector = len(lefi_contexd) * ; embedding_map(le ft_context]i])
19)
1 len(right_context)
Right_Context_Vector = len(right_context) * Z embedding_map(right_context[i))

i=0
(20)

Change_Vector = |Left_Context_Vector; Right_Context_Vector} (21)

As an example, Figure 9 shows the list of change vectors that corresponds to the
change object list in ??.

As the semantic meaning of a change object lies in the token in its le ft_context
and right_context, we hypothesize that the change vectors created from left and
right context surrounding the gap of change object contain information that is able
to associate insertions and deletions in the gap of a change object. One important
parameter which we consider in encoding semantics from left and right context is
context_length, i.e. the number of tokens included in the left and the right context,
because it has effects on capturing the meaning of inserted and deleted token in
the gap as more or less tokens are considered. Different values of context_length
allow us to capture different number of tokens before and after gap of change object.
As described earlier, for each change object coming in edit e<; ;11> we consider its
context in 7;, so by varying the length of the context we pick varying amount of
tokens in left and right neighbour of gap in r;. For each value of context_length we
get a corresponding change vector. We, therefore, create change vector matrix for set
of change objects corresponding to Edit_history of an article. Each row in change
vector matrix corresponds to a change object. For each values of context length we

29

get a corresponding change vector matrix.

4.3 Grouping and Evaluation

We utilise Density-based spatial clustering of applications with noise(DBSCAN)
from Ester et al. (1996) to cluster Change_Vector € R corresponding to each
value of context_length. In order to cluster change vectors, DBSCAN needs to cal-
culate distance between change vectors. We use euclidean distance metric to cal-
culate distances between each pair of change vectors. We use euclidean distance as
distance metric because it satisfies all the three criteria of being a metric as described
in Clustering section of Section (3). Most of these change vectors are about change
object which are general edits and do not belong to any groups. We hypothesize
that the groups of change object which are about similar subject matter lie closer in
distance matrix to other change vectors, thus forming areas of high density. Change
object which are evenly distributed in distance matrix should be about general edit
tokens, not signifying any specific edit topic, thus forming low density region of not
particular interest. Being a density based clustering algorithm, DBSCAN is able to
identify high density groups and leave out low density regions. To identify high
density groups and leave all other points, DBSCAN has two parameters, minimum
sample size and epsilon. As explained in Section (3), DBSCAN uses these two pa-
rameters to create core group of points and keep adding new points in core groups
to identify high density regions.

We group Change Objects by clustering R dimensional Change Vectors corre-
sponding to each change object and context_length. We, therefore, have three pa-
rameters for our grouping algorithm: context_length is the first parameter which
gives us change vectors to cluster and remaining two parameters are min_samples
and eps, which are the parameters of DBSCAN algorithm. To evaluate the clusters
created by DBSCAN algorithm, we run it on various combinations of these three
parameters. We utilise DBSCAN algorithm from Pedregosa et al. (2011) library for
generating clusters labels for various parameters of epsilon distance, eps and min-
imum number of samples, min_samples for each change vector corresponding to
context_length. As DBSCAN clusters are unsupervised labels, we first evaluate
them instrincally on goodness of labels. After intrinsic evaluation, we do extrin-
sic evaluation of the algorithm against golden dataset.

4.3.1 Intrinsic Evaluation

DBSCAN cluster gives clusters of uneven sizes depending upon the parameters eps
and min_samples. We analyse this unevenness as the first parameter for intrinsic
evaluation of DBSCAN clusters. We calculate various descriptive statistics on the
clusters sizes of DBSCAN for analysis. We calculate the Gini co-efficient of the size
of the clusters created by a particular set of parameter too. Lower values of Gini
suggest more even sized clusters identified by DBSCAN.

30

A stable cluster of change objects returned by DBSCAN should be from similar po-
sitions in its revision content. In order to quantify the position of change object in
content of its revision, we introduce the concept of relative position of change ob-
ject. Relative position of a change object belonging to an edit e; ;41> is defined as
the position of first token in left context in wiki_who_stringiokens; in r; divided by
length of total tokens in wiki_who_string_tokens; inr;. Cluster of change object is
more stable if it contains lower Shanon’s entropy Shanon (1948) of relative positions.
Relative position is a ratio variable between 0 and 1. In order to calculate kinds of
relative positions, we round it off to two decimal places. Rounding off gives us
finite categories of relative positions for all change objects, making it a countable
categorical variable. In order to quantify kinds of different relative position cate-
gories present in a cluster, we use Shanon’s entropy Shanon (1948), which help us
quantify randomness of relative position category in a cluster. Lower randomness
in relative position entropy of a cluster signifies it contains change object with few
kinds of relative position. It can be interpreted as the cluster having change objects
with less probability of coming from random places in their respective revisions.
In order to calculate entropy of relative positions of a cluster generated by our al-
gorithm, we calculate the frequency of rounded off relative positions in the cluster.
We pass this generated frequency to the entropy function using Scipy library from
Pasternack and Roth (2008). This gives us entropy of relative position of each cluster
generated by our algorithm. We further propose an aggregated metric, which quan-
tifies the stability of clustering algorithm with respect to relative position of change
object contained in the clusters, by taking weighted average of relative position of
entropy of each cluster with its size. Reason for weighting the entropy before taking
its average is that the smaller cluster size will tend to have lower entropy. As the
cluster size is small, chances of getting change object from random places in revi-
sion decreases. So, weighted average favours bigger clusters with less randomness
in them.

We have created change vector by projecting left and right context of change object.
We hypothesise that clusters created by these change object will contain gap about
similar items. So a cluster of change object is more likely to have gaps related to
the same topic, if the gap contains same kind of string tokens. We define weighted
token entropy of string tokens in gap similar to weighted relative position entropy
to quantify randomness in gap of change object in clusters created by DBSCAN. For
purpose of weighted token entropy of string tokens in gap we first define token en-
tropy of string tokens in gap of change objects of each cluster. Token entropy of a
single cluster is Shanon’s entropy of frequency of total string tokens in gap of all
change object in a cluster.

Token entropy measures the randomness in gap of change object in a cluster because
of presence of different kind of string tokens. So a cluster will have lower token en-
tropy if it has fewer kind of string tokens, hence signifying that cluster on change
vector is able to create group of gap which are about same topic. Similar to weighted
relative position entropy we take weighted average of token entropy of each cluster

31

with its cluster size to negate for the effect of smaller cluster having lesser entropy
in their gap.
In order to identify the cluster stability or different values of context_length, eps and
min_samples we calculate change object of 17 articles shown in Table 10

After calculating change object for each article, we make two change vectors cor-
responding to context length of 4 and 10.
We, further, fix the min_samples as 5 and run DBSCAN for eps value in range of 0.5
to 4 with step size of 0.5. We calculate intrinsic evaluation metric and analyse the
best parameter of context length and eps for all the articles.

We also re-implement Bykau et al. (2015) for their suggested parameter for all 17
articles shown in table 10 and compare it with our cluster using Fowlkes Mallows
score E.B. Fowlkes (1983).

4.3.2 Extrinsic Evaluation

We select the John Loggie Baird Wikipedia page to create a gold standard dataset of
insertions and deletions associated (or not) with his nationality. Wikipedia contrib-
utors (2019a) We select the nationality of John Loggie Baird as it appears in the list
of Wikipedia Lamest Edit Wars and we consider its size appropriate for our eval-
uation work. The page size is around 32KB (2.5K words as of 18.02.2019), which,
according to Wikipedia size guideline Wikipedia contributors (2019b) is neither too
short (< 1KB, or stub), nor one that justify division of the page by its length alone (<
40KB).
We use the WikiWho API ! and the wikiwho_wrapper Python library 2 to identify
the tokens that represent the main nationality conflict (i.e. British vs Scottish). Upon
manually checking the context in which these tokens appear, we extend the dataset
to other tokens related to places that could have also been related or confounded
to nationality (i.e. Scotland, United, Kingdom, UK, Englain, England, London, He-
lensburgh, Bute, Dunbartonshire, Argyll). We consider that our procedure gives an
almost full coverage of the editions that are related to of the nationality Edit War.
The dataset is manually annotated indicating if each token is or not related to na-
tionality. We also annotate whether the token (1) is related to the birth place (which
context could be easily confounded with nationality), (2) is part of a Wikipedia link
(which context often comprised special Wikipedia markup characters which, we
presume, could make identification difficult), or (3) is part of a large group of to-
kens inserted or deleted in simultaneously in the same position. Table in figure 11
summarizes the annotated categories and the number of cases found in the dataset:
We create ground truth from this annotated category of inserted and deleted to-
kens where Nationality is true and it’s not in Bulk, against which we can compare
the groups found by our clustering algorithm.

'https:/ /api.wikiwho.net/
*https:/ / pypi.org/project/ wikiwho-wrapper/

32

Article name i No of change object

Crusades 45523

""""""" Fridrich Nietzsche | 41001
"""""""" Freddie Mercury | o6
"""""""""""" W | s
""" Q_and the Wealth of Nations | 21173
"""""""""" Berln Wall | st
' E_(mathematical_constant) | e
"""""""""" Yugostavia | 1o
"""""""""" Censorship | tosr

""""""" Vamas Famiy | tosr
"""""""" Human cloning | o8
' Systemic lupus erythematosus | o0
""""""""" Solar power | 75
"""""""""" Gambling | see
 Electonicvoting | ssaa
""""""" JohnLoggieBaird | 40
VioIence_against_-l;l-l-l.;;l-i-r;'-l;:i;:l-r;;i-:;l -------------- 3 933 -------------

Figure 10: List of Wikipedia article with sizes

Category Count Description

Nationality 497 Does the token relate to nationality?

Birth place 394 Does the token relate to place of birth?

Link 554 Does the token belongs to a Wikipedia internal link?
Bulk 1029 Is the token part of a large group of other tokens

inserted or removed simultaneously?

Total 1775

Figure 11: Distribution of annotated cases. The first column presents the annotated
category in the dataset, the second column the number of positive cases
annotated with that category, and the third column a detailed description
of the category. The categories Nationality and Birth Place are mutually
exclusive, but the categories Link and Bulk can overlap with any of the
others. The total in the last row at the end is therefore not the sum of the
individual counts.

In order to do extrinsic evaluation of our algorithm, we need to create cluster of each
token in our golden data using our algorithm with different values of context_length,
eps and min_samples. We use V-measure from Rosenberg and Hirschberg (2007) to
evaluate extrinsic clusters. V-measure is harmonic mean of Completeness and Ho-
mogeneity measure. These three measures are analogous to precision, recall and
f-score from classification algorithms. We evaluate our clustering algorithm on all
three parameters and find optimal values of context_length, eps and min_samples.

For comparing performance of our model with Bykau et al. (2015) we run their
model on our change object with all the parameters of context_length, eps and
min_samples. We compare and contrast Completeness, homogeneity and V-measure
scores of Bykau et al. (2015) on different combinations of three parameters.

To give a fair comparison, we also reimplement Bykau et al. (2015) by dropping three
kinds of change object from our model to match with change object of Bykau et al.
(2015). As change object of Bykau et al. (2015) has only those gap where both inser-
tion and deletion are present, we drop all the change object with only insertions or
deletions. Next we remove all the change object whose length of inserted or deleted
token is more than 5 following suggestion from Bykau et al. (2015). Lastly we drop
all the change objects whose gap is not repeated by two users, minimum user sup-
port condition of Bykau et al. (2015). We run their change object group identification
algorithm with same parameters of context_samples, eps and min_samples.

We run all three models; ours, Bykau et al. (2015) with our change object, Bykau
et al. (2015) with reduced change object on various values of context_length, eps

and min_samples. We fix min_samples as 2, context_length as 4,6,8,10,15,30 and
we varied eps from 0.5 to 4 with step size of 0.5. We compare and contrast results
for all the values of the parameters in the results section.

34

5 Results

We have done all the implementation of experiments regarding identifying fine
grained groups in change object in Python Programming language using packages
in Scipy stack Jones et al. (2001-). All steps of the implementation, as represented
in Architecture diagram of 2 are done in reproducible IPython notebooks Pérez
and Granger (2007). Change object detection algorithm is written entirely in Pan-
das McKinney (2010) and Numpy Oliphant (2015) libraries. Clustering and eval-
uation is done using Scikit-learn machine learning libraryPedregosa et al. (2011).
In the following section, we present the result of our analysis in detail, starting
from results on stability of DBSCAN clusters using intrinsic evaluation, followed
by Fowlkes—Mallows index agreement of our clustering results with Bykau et al.
(2015) and at last we present results of extrinsic evaluation with class labels from
annotated Golden Dataset using V-Measure Rosenberg and Hirschberg (2007).

5.1 Intrinsic evaluation

To measure the stability of the cluster, we do intrinsic evaluation of various parame-
ters of context_length, eps and min_samples on all 17 articles in Table 10. Parameter
of evaluation is shown in Table 12. We first analyse the No of cluster identified vs
outliers left by DBSCAN to analyse the effect on eps in leaving out the noise. We
observe that absolute value of cluster size is directly correlated to change object size
as can be observed from Graph in figures 13 and 14. When we normalize change
object size with maximum size of change object across all eps for a given article,
we observe that for all the article change object and outliers follow same pattern in
both 13 and 14. This suggests that both the context_lenght have similar variability
with number of cluster and cluster size normalised by maximum no. of clusters
following similar distribution across all the articles. Variation of outliers with eps
is a strictly decreasing function implying that as the eps is increased more change
objects, whose contexts are different, are added in the group of cluster by DBSCAN.
Number of clusters are observed to have a maxima for value ofeps in [1.5,2.0] then
decreases to 1. This pattern implies that when value of eps goes more than 1.5, clus-
ters start to merge together into one cluster.

In order to further investigate the effect of cluster sizes on the stability of clusters.
We compare Gini coefficient of cluster size distribution, mean cluster size, max clus-
ter size, standard deviation of cluster size, gap entropy and position entropy and
we plot the respective results in 16 and 15. We observe that values of all the stability
measure show a low and stable value before 1.5. After which it drastically increases.
For context_length of 10 we observe that for most articles Gini has minima between
1 and 1.5, while gap entropy and position entropy is also lower at 1.0. Hence we
choose value of 1.0 for eps to further continue our intrinsic value analysis.

35

Parameter name

Context_length {4,10}
min_samples &
eps {0.25,0.5,0.75, ..., 3.25,3.75,4.0}

Figure 12: Table shows the Values of parameters for intrinsic evaluation. Using the
Combination of these parameters we analyse intrinsic stability of clusters.

5.2 Agreement with Bykau et al. (2015)clusters

We compare our clusters created on parameters of context_length = 4,10, min_samples =
5 and eps = 1 with clusters created using Bykau et al. (2015) with all the parameters
suggested by them. Figure 18 shows a bar plot representing the agreement of our
clusters with Bykau et al. (2015) clusters for values of context_length 0 and 1 using
Fowlkes—-Mallows index.

We observe clusters corresponding to both context_length to have high value of
Fowlkes—Mallows index, but index value for context_length 4 is lower than 10 for all
articles. Upon observing Box Plot corresponding to both values of context_length,
we see that context_length = 10 has more spread between quartile but it has only
one outlier while context_length = 4 has two outliers. Values of outliers along
with spread of box plot suggest that for context_length = 4,most of the articles
have similar agreement but agreement of two articles is very low. Whereas for
context_length = 10, we observe that values have higher spread but spread is to-
wards higher agreement. The context_lenght = 10 has higher Fowlkes-Mallows
index agreement as well as only one low outlier value. These low value of outliers
need further analysis to understand the reason behind low agreement index.

5.3 Extrinsic evaluation

We run three related metric of Completeness, Homogeneity and V-measure to vali-
date our results and compare it with Bykau et al. (2015). We run analysis on all three
clustering algorithm we have; our change object detection algorithm, Bykau et al.

36

1600
1400
1200
1000
800
600
400

200

Figure 13:

Size and outlier analysis by variying eps for context size 10

No Of Clusters No Of Outliers
40000 — E_(mathematical_constant)
— Berlin_Wall
35000 — Truth
— Censorship
30000 — Human_cloning
— Systemic_lupus_erythematosus
25000 —— Solar_power
Gambling
20000 Friedrich_Nietzsche
Violence_against_Muslims_in_India
566 — Freddie_Mercury
— Yugoslavia
10000 —— Electronic_voting
—— 1Q_and_the_Wealth_of_Nations
5000 — John_Logie_Baird
—— Mama's_Family
o — Crusades
05 10 15 20 25 30 35 40
eps
No Of Outliers (Normalized)
10
08
06
04
02
00
05 10 15 20 25 30 35 40 05 10 15 20 25 30 35 40
eps eps

Size vs Outliers analysis for context_length of 10. X-axis shows the eps
parameter of DBSCAN while y axis shows the number of points in clus-
ters.First row shows no of cluster and no of cluster normalised by max-
imum number of clusters. Second row shows no of outliers and its nor-
malised counterpart. No of cluster plot shows that it peaks at value of eps
around 1 and 2. Outliers plots shows that as the value of eps from 1 to 4,
no of outliers tends to go to zero.

37

Size and outlier analysis by variying eps for context size 4

No Of Clusters No Of Outliers

— E_(mathematical_constant)
30000 — :erl.:,wmn
— Tru
— Censorship
25000 — Human_cloning
— Systemic_lupus_erythematosus
—— Solar_power
Gambling
Friedrich_Nietzsche

20000

15000 Violence_against_Muslims_in_India
— Freddie_Mercury

—— Yugoslavia

—— Electronic_voting

— 1Q_and_the_Wealth_of_Nations
— John_Logie_Baird

_ — Mama's_Family

g —— Crusades

10000

5000

05 10 15 20 25 30 35 40 05 10 15 20 25 30 35 40
eps
No Of Clusters (Normalized) No Of Outliers (Normalized)

05 10 15 20 25 30 35 40 05 10 15 20 25 30 35 40
eps eps

Figure 14: Size vs Outliers analysis for context_length of 4. X-axis shows the eps pa-

38

rameter of DBSCAN while y axis shows the number of points in clusters.
First row shows no of cluster and no of cluster normalised by maximum
number of clusters. Second row shows no of outliers and its normalised
counterpart. No of cluster plot shows that it peaks at value of eps around
1 and 2. Outliers plots shows that as the value of eps from 1 to 4, no of
outliers tends to go to zero

Intrinsic evaluation variables for context size 10

Mean Cluster Size Standard Deviation Cluster Size
3500 7000 —— E_(mathematical_constant)
—— Berlin_Wall
=000 6000 — Truth
— — Censorship
5000 — Human_cloning
— o — Systemic_lupus_erythematosus
a — Solar_power
— Gambling
1500
3000 Friedrich_Nietzsche
1000 L 2000 —— Violence_against_Muslims_in_india
— Freddie_Mercury
500 1000 — Yugoslavia
—— Electronic_voting
0 0 — 10_and_the_Wealth_of_Nations
05 10 15 20 25 30 35 40 05 10 15 20 25 30 35 40 lohn Loale: Balrd
— Mama's_Family
Max Cluster Size o — Crusades
35000
30000 o8
25000
06
20000
15000 o4
10000
5000 02
o
0.0
05 10 15 20 25 30 35 40 05 10 15 20 25 30 35 40
Token Entropy
10
8
’ 8
6
6
5
4 4
3
2
2
05 10 15 20 25 30 35 40 05 10 15 20 25 30 35 40

Figure 15: Intrinsic evaluation for context_length of 10. X-axis shows the value of
eps, while Y axis shows the value of all the intrinsic evaluation parameter.

39

Intrinsic evaluation variables for context size 4

Mean Cluster Size Standard Deviation Cluster Size
460 — E_(mathematical_constant)
2500 — Berlin_Wall
— Truth
— Censorship
2000
300 —— Human_cloning
— Systemic_lupus_erythematosus
1500 — Solar_power
200 —— Gambling
1000 Friedrich_Nietzsche
—— Violence_against_Muslims_in_India
100 — Freddie_Mercury
500 —— Yugoslavia
— Electronic_voting
0 0 — 10_and_the_Wealth_of_Nations
05 10 15 20 25 30 35 40 Jonn Logle, Balrd
— Mama's_Family
Max Cluster Size — Crusades
20000 10
17500
08
15000
12500
06
10000
7500 0.4
5000
2500 02
0
0.0
05 10 15 20 25 30 35 40 05 10 15 20 25 30 35 40
Token Entropy Position Entropy
8
7
6
5
4
3

Figure 16: Intrinsic evaluation for context_length of 4. X-axis shows the value of eps,
while Y axis shows the value of all the intrinsic evaluation parameter.

40

Fowlkes-Mallows Index of each article with Bykau. et al

~,

RS 3 . . “ 5

5,
",
%,

~

,
a,

",

N,

%,
s

%,

%,

%,
g
E

4,

: Figure 17

Fowlkes-Mallows Index between our clusters and Bykau et al
(2015). X-Axis shows the Index while Y-axis has name of article.
[Qundiheyealth, frationhasthelowestagreement.

41

Fowlkes-Mallows Index score with Bykau for context length 4 and 10.

Figure 18: Fowlkes-Mallows Index between our clusters and Bykau et al. (2015)
(context length effect). Two outliers in case of context_length = 4 and
one outliers in case of context_length = 10

42

Parameter name

Context_length {2.4,8,10, 15, 20,25,30}
min_samples {2,5,50}
eps {0.25,0.5,0.75, ..., 3.25,3.75,4.0}

Figure 19: Table shows the Values of parameters for extrinsic evaluation. Combina-
tion of these parameters were used to evaluate clusters against Golden
dataset.

(2015) with optimisation and without optimisation.

As shown in Table 12, for intrinsic evaluation discussed previously we fix the value
of min_samples = 5 and context_length = [4,10] and analyse stability of cluster
on size, no. of outlier, gap entropy, position entropy etc. For extrinsic evaluation of
our data as shown in 19, we vary the values of context_length from 2 to 30 to study
effect of context_length in all the three clustering algorithms.

5.3.1 Optimal value of parameters

Having chosen the range of context_length, we first validate our clustering algo-
rithm on the min_samples = 5 to analyse the value of homogenity and complete-
ness. Our golden data set has annotation only for the presence of class of "nation-
ality" and we leave all the other annotations as not known. Thus, in Figure 20, we
observe that the value of homogenity is always higher compared to completeness
for all values of context_length.

We know that homogeneity and completeness are competing measure, so in order to
analyse the bounding value of completeness we increase the value of min_samples =
50, hoping to get cluster, big enough to have high values of completeness and low
values of homogenity. In Figure 21, we observe that for smaller values of eps, com-
pleteness goes to one but homogenity becomes zero thus resulting in very low value
of V-measure. Hence this suggests that high values of eps, although give high Com-
pleteness in clusters, but is not optimal for Homogeneity and Vmeasure. We further

43

V-Measure analysis of John_Logie_Baird for various context_length and eps with min_samples=5

Figure 20: Analysis of extrinsic measures of Completeness, homogenity, V-measure
with intrinsic measure of gap entropy for min_samples = 5. X-axis repre-
sents different values of eps and y-axis represents the value of the evalu-
ation metrics. Negative correlation in shape of gap entropy with extrinsic
evaluation measures is observed for all values of context_length

analyse relation of cluster size and Completeness. We observe that we get the cluster
size of 7 for low value of Completeness and when the Completeness value becomes
1 all the change object gets clusters in one cluster of outlier.

Finally in order to maximise for homogenity and V-measure we decrease the value
of min_samples to its lowest possible value of 2. We observe, as plotted in Figure 22,
value of homogeneity for all the context length increases to about 0.7. Value of en-
tropy of change object in gap also decreases considerable, hence we pick the value of
min_samples to continue comparing our algorithm with both the implementation
of Bykau et al. (2015).

5.3.2 Comparison with Bykau et al. (2015)

Plot in figure 24 shows results of V-measure analysis of jaccard clustering of neigh-
bourhood context token according to Bykau et al. (2015) without any optimisation.
We can see that Without optimisation results of our algorithm in 22 is able to achieve
better homogeneity and V-measure. Value of completion in both the plot is simi-
lar although in case of Bykau et al. (2015) without optimisation it goes to 1 as eps
changes from 0.75 to 1. This sudden jump in completion and decrease of value of
homogeneity signifies a similar trivial case of all change objects being clustered in
one as was the case in our algorithm with min_samples = 50. So without optimisa-
tion Bykau et al. (2015) does not perform better than us.

In plots of the results of Bykau et al. (2015) with optimisation, we observe that al-
though our algorithm is still able to achieve better results for homogenity, Bykau

44

Figure 21:

Figure 22:

V-Measure analysis of John_Logie_Baird for various context_length and eps with min_samples=50

Analysis of extrinsic measures of Completeness, homogenity, V-measure
with intrinsic measure of gap entropy for min_samples = 50. X-axis rep-
resents different values of eps and y-axis represents the value of the eval-
uation metrics. Diagram shows negative correlation in shape of gap en-
tropy with extrinsic evaluation measures for all values of context_length.
Spike in value of Completeness to 1 is correlated with similar spike in
gap entropy. Diagram shows the observation that optimising for values
of Completeness leads to drastic decrease in value of Homogeneity.

V-Measure analysis of John_Logie_Baird for various context_length and eps with min_samples=2

Analysis of our model on Extrinsic evaluation measure of Complete-
ness, homogenity, V-measure with intrinsic measure of gap entropy for
min_samples = 2. X-axis represents different values of eps and y-axis
represents the value of the evaluation metrics. Diagram shows negative
correlation in shape of gap entropy with extrinsic evaluation measures
for all values of context_length. All values of context_length has similar
shape and similar value of Homogeneity at maximum point in the graph
with respect to eps. Values of Completeness remains considerable with
slight increase when homogenity goes down.

45

V-Measure analysis of John_Logie_Baird using Bykau et. al. with optimisation for various context length and eps

Figure 23: Analysis of Bykau et al. (2015) with optimisation on Extrinsic evalua-
tion measure of Completeness, homogenity and V-measure with intrinsic
measure of gap entropy for min_samples = 2. Diagram shows nega-
tive correlation in shape of gap entropy with extrinsic evaluation mea-
sures for all values of context_length. Values of context_length = [2,4, §]
has higher maximum point in the graph with respect to eps compared to
context_length = [15, 30].

et al. (2015) algorithm outperforms our algorithm in Completeness and hence is
able to outperform our algorithm in terms of V-measure. One possible explanation
of higher completion is that the process of optimisation of cluster by Bykau et al.
(2015) is able to separate all the clusters which are not in "nationality" in a separate
group. One another observation is that the context_length of 2,4 and 8 perform con-
siderably better than the context_length of 15 and 30 inBykau et al. (2015), whereas
in our work all context_length perform similarly. The result is inline with the claim
by Bykau et al. (2015) that as context increases more tokens will come, hence intro-
ducing noise in Jaccard Similarity. To some extent, we can see this effect in homo-
geneity of clusters, given by our model, that lower length of context is generally
high but is not always true, for example, maximum homogeneity of plot in figure
22 for context_length 15 is higher than 10. Hence we can conclude that bag of word
averaging of embeddings from Mikolov et al. capture better semantics in bigger
context_length than one-hot encoded vectors from Bykau et al. (2015). Finally we
can suggest that although Bykau et al. (2015) with optimisation performs better for
V-measure but our model is able to better results for all context_length, hence ren-
dering context_length as less important parameter than Bykau et al. (2015).

46

V-Measure analysis of John_Logie_Baird using Bykau et. al. without optimisation for various context length and eps

Figure 24: Analysis of Bykau et al. (2015) without optimisation on Extrinsic evalua-
tion measure of Completeness, homogenity and V-measure with intrinsic
measure of gap entropy for min_samples = 2. Diagram shows negative
correlation in shape of gap entropy with extrinsic evaluation measures
for all values of context_length. For all values of context_length diagram
shows the steep increase in gap entropy and steep decrease in Homo-
geneity. Completeness values are also low and steeply increase to 1 as
eps goes from 0.75 to 1.

5.4 Correlation between extrinsic and intrinsic evaluation

In plots of Figure 22, 23 and 24, we can see that the value of the homogeneity of
cluster increases with decrease in entropy of gap. This confirms our initial hy-
pothesis that good value of intrinsic measure will help us find better clusters as
described in Section (4). We quantify the correlation between gap entropy and three
of our extrinsic measures, i.e. Vmeasure, Completeness and Homogeneity. The
correlation Table of Figure 25 shows correlations for our clustering algorithm for
min_samples = 2. We can see that there is a strong negative correlation between
gap entropy and homogeneity. Negative correlation between gap entropy and ho-
mogeneity shows that homogeneous clusters have less entropy in gap. In our clus-
ter of min_samples = 2, all the three evaluation metrics homogeneity, complete-
ness and V-measure are strongly correlated as their is very little variation in value
of Completeness. Strong negative correlation of three measures with gap entropy
is the reason why we were able to get high Fowlkes-Mallows index E.B. Fowlkes
(1983) for values of eps = 1 pre selected using gap entropy.

Correlation plot in Figures 23 and 24 corresponds to Bykau et al. (2015) with opti-
misation and without optimisation respectively. Both of them have similar corre-
lation behaviour. Homogeneity and V-measure are negatively correlated with gap
entropy but completeness is positively correlated with gap entropy. Homogeneity
and V-measure are also negatively correlated with Completeness. Hence for these
two measures, Completeness is not a good evaluation metric as its value has high

47

gap entropy and low V-measure and Homogeneity. Thus Homogeneity is a good
measure of extrinsic cluster evaluation index for all the three cases. Homogeneity of
our algorithm is more than both of the implementations of Bykau et al. (2015), with
optimisation and without optimisation.

6 Discussion

We successfully leverage tracking of each token by WikiWho API to return change
objects in the revision history of an article in O(n) time complexity. As WikiWho
tokens are unique integers its efficient in terms of memory and comparisons.

We create the clusters of edit tokens in history of Wikipedia edits which are in
same neighbourhood context using embedding word vectors from Mikolov et al..
We observe that intrinsic measure of entropy to give us a good measure of qual-
ity of cluster. This observation is further supported when we compare agreement
between groups identified by our algorithm using eps = 1 using token entropy)
with the groups identified by Bykau et al. (2015) using Fowlkes-Mallows index.
Fowlkes—Mallows index on clusters of 17 articles of varied sizes, as shown in Ta-
ble 10 with parameter eps = 1, min_samples = 5 have high value for both context
sizes of 4 and 10. For both values of context_length we see that there is an outlier
in Fowlkes-Mallows index, on further investigation we see that this is a small arti-
cle with relatively high amount of Change Objects. As this article should have lots
of change object whose context should be similar or with a considerable amount of
overlap owing to small size of article and high number of change objects. Thus One
possible hypothesis for this behaviour is either ours or Bykau et al. (2015)’s method
is not able to separate the change object which are lot closer in vector space than
normal articles. Further analysis of article size and number of Change Objects is
required to confirm this hypothesis.

Our cluster has higher maximum Homogeneity for all the values of Context_length
compared to Bykau et al. (2015). But in terms of Completeness Bykau et al. (2015)
with optimisation is able to capture more complete clusters, which suggests that op-
timisation is able to remove noise around ChangeVectors Hence our model is not
able to perform significantly better than Bykau et al. (2015) in terms of V-Measure.
Higher values of Completeness in Bykau et al. (2015) suggest a strong dependence
on optimisation performed by them when we observe Completeness and V-Measure
of Bykau et al. (2015) without optimisation in plot of figure 24 we see a lower value
than what we get in our results in plot 22. Although our model gives lower Com-
pleteness evaluation score, but it gives slightly better score on Homogeneity with
lesser number of parameters, suggesting that our model performs little better by
overfitting less for size and kind of article.

context_length is an important parameter for Bykau et al. (2015), but our model per-
forms similarly for all values of context_length. Plot in 23 shows Bykau et al. (2015)
starts introducing noise as value of context_length increases more than 8, while plot

48

change_object_completness change_object_homegenity change_object_vmeasure gap_entropy

change_object_completness 1.000000 0.931869 0.994673 -0.873487
change_object_homegenity 0.931869 1.000000 0.944193 -0.979728
change_object_vmeasure 0.994673 0.944193 1.000000 -0.899761
gap_entropy -0.873487 -0.979728 -0.899761 1.000000

Figure 25: Correlation of extrinsic and intrinsic evaluation of our clustering algo-
rithm. Matrix shows correlation between intrinsic measure of token
entropy and extrinsic measure of Completeness, Homogeneity and V-
measure. All the three measure of extrinsic evaluation shows high nega-
tive correlation with intrinsic measure of gap entropy.

49

change_object_completness change_object_homegenity change_object_vmeasure gap_entropy

change_object_completness 1.000000 -0.798606 -0.857511 0.851718
change_object_homegenity -0.798606 1.000000 0.988415 -0.984534
change_object_vmeasure -0.857511 0.988415 1.000000 -0.976839
gap_entropy 0.851718 -0.984534 -0.976839 1.000000

Figure 26: Correlation of extrinsic and intrinsic evaluation of Bykau et al. (2015) with
optimisation. Matrix shows correlation between intrinsic measure of to-
ken entropy and extrinsic measure of Completeness, Homogeneity and
V-measure. Homogeneity and V-measure shows high negative correla-
tion with intrinsic measure of gap entropy. Completeness had positive
correlation with gap entropy.

50

change_object_completness change_object_homegenity change_object_vmeasure token_entropy

change_object_completness 1.000000 -0.609701 -0.702473 0.673925
change_object_homegenity -0.609701 1.000000 0.982152 -0.981906
change_object_vmeasure -0.702473 0.982152 1.000000 -0.988851
token_entropy 0.673925 -0.981906 -0.988851 1.000000

Figure 27: Correlation of extrinsic and intrinsic evaluation of Bykau et al. (2015)
without optimisation. Matrix shows correlation between intrinsic mea-
sure of token entropy and extrinsic measure of Completeness, Homo-
geneity and V-measure. Homogeneity and V-measure shows high neg-
ative correlation with intrinsic measure of gap entropy. Completeness
had positive correlation with gap entropy.

51

from our model in 22 and 20 shows that all the context_length has similar maximum
value. Thus suggesting that word vectors from Mikolov et al. is able to capture
more semantics of words in contexts then finding similarity between exact word.
Although more work is required to study the effect of context_length and extrinsic
evaluation metric. A bigger corpus of annotated dataset of ground truth comprising
of change object identified across multiple articles of varying sizes and number of
change object can be used to investigate the effect of context_length.
Gap of Change Object is an important part of our model using which we use to de-
fine gap entropy but apart from that we have only used gap in creating annotation
for our golden dataset. In our model, we are able to extend Bykau et al. (2015) by
just using cluster in context of gap. Higher values of our model on homogeneity
by using the gap and its negative correlation with gap entropy suggests that gap is
able to capture semantics of fine grained change object. More work is required to
analyse the effect of gap in clustering fine grained change object and introduce more
parameters in creating ChangeVectors from respective Change Objects.
ChangeVectors consisting of averaged word embeddings from Mikolov et al.
perform considerable well for different values of context_length. While each word
embedding represents semantics of that word, in order to get average of these em-
beddings we loose the relative semantics created by order of these words. Perfor-
mance of these embeddings can be further evaluated by considering different word
representation especially the ones which considers context of token in consideration
Devlin et al. (2018).

52

7 Appendix

7.1 Definitions
1. id;: A unique id representing ith revision of a Wikipedia article.

editor;: Editor of the revision corresponding to the id;.

timestamp;: Time at which editor; created the revision id;.

L

str_token_list;: Ordered sequence of string tokens representing content of ar-
ticle in revision id;.

5. wiki_who_tokens;: Ordered sequence of integral TokTrack tokens from Wiki-
Who API corresponding to each token in str_token_list;.

wiki_who_tokens;[j] € wiki_who_tokens; —> wiki_who_tokens;[j] € wiki_who_tokens;.
(22)

6. inserted_mask;: Ordered Sequence where each value is true if a token was
inserted in that position.

a=] (23)

7. deleted_mask;: Ordered Sequence of same size as tok_track_id;, where each
value is true if that token will be removed in next edit.

8. Revisions: A time ordered sequence of all revisions of a given article.
Revisions = [7“1 ro Ty - rn] (24)

T = [z‘di editor; timestamp; str_token_list; tok_track_id; inserted_mask; deleted_maski]

(25)

9. Change object consists of two ordered list of tokens which were added and
removed from same contiguous positions in a revision.

10. left_context_start WikiWho token from where left context of Change Object
starts.

11. right_context_start WikiWho token from where left context of Change Object
starts.

12. context_length Length of token considered in left and right context to encode
Change_Vector.

13. Change_Vector Vector representation of context of Change Object in R
created by averaging of word embeddings.

53

References

B. T. Adler, J. Benterou, K. Chatterjee, L. D. Alfaro, I. Pye, and V. Raman. Assigning
Trust to Wikipedia Content. 2007.

L. R. Bahl, F. Jelinek, and R. L. Mercer. A maximum likelihood approach
to continuous speech recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence, PAMI-5(2):179-190, March 1983. ISSN 0162-8828. doi:
10.1109/TPAMI.1983.4767370.

Y. Bengio, R. Ducharme, and P. Vincent. A neural probabilistic language model.
volume 3, pages 932-938, 01 2000. doi: 10.1162/153244303322533223.

Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A neural probabilistic lan-
guage model. J. Mach. Learn. Res., 3:1137-1155, Mar. 2003. ISSN 1532-4435. URL
http://dl.acm.org/citation.cfm?id=944919.944966.

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. Enriching Word Vectors with
Subword Information. 2016. ISSN 10450823. doi: 1511.09249v1.

R. N. Bracewell. The Fourier transform and its applications / Ronald N. Bracewell.
McGraw-Hill New York, 2d ed. edition, 1978. ISBN 007007013.

U. Brandes and J. Lerner. Visual analysis of controversy in user-generated encyclo-
pedias. 7(2008):34—48, 2009. doi: 10.1057 /palgrave.ivs.9500171.

P. F Brown, P. V. deSouza, R. L. Mercer, V. J. D. Pietra, and]. C.
Lai. Class-based n-gram models of natural language. Com-
put. Linguist., 18(4):467-479, Dec. 1992. ISSN 0891-2017. URL
http://dl.acm.org/citation.cfm?id=176313.176316.

S. Bykau, E. Korn, D. Srivastava, and Y. Velegrakis. Fine-grained controversy de-
tection in Wikipedia. In Proceedings - International Conference on Data Engineering,
2015. ISBN 9781479979639. doi: 10.1109/1CDE.2015.7113426.

S.-c. Chin and W. N. Street. Detecting Wikipedia Vandalism with Active Learning
and Statistical Language Models Categories and Subject Descriptors.

M. Collins. Language Modeling.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

L. M. E.B. Fowlkes. A Method for Comparing Two Hierarchical Clusterings Author
(s): E.B.Fowlkes and C . L. Mallows Source : Journal of the American Statistical
Association , Vol . 78 , No . 383 (Sep ., 1983), pp . 553- Published by : American
Statistical Association. Journal of the American Statistical Association , Vol . 78 , No .
383 (Sep ., 1983), pp . 553, 78(383):553-569, 1983.

54

M. Ester, H.-P. Kriegel,]. Sander, and X. Xu. A density-based algorithm for discov-
ering clusters a density-based algorithm for discovering clusters in large spatial
databases with noise. In Proceedings of the Second International Conference on Knowl-
edge Discovery and Data Mining, KDD'96, pages 226-231. AAAI Press, 1996. URL
http://dl.acm.org/citation.cfm?id=3001460.3001507.

E. Flock, K. Erdogan, and M. Acosta. TokTrack: A Complete Token Provenance and
Change Tracking Dataset for the English Wikipedia.

A. Forte and A. Bruckman. Why do people write for wikipedia? incentives to con-
tribute to open-content publishing. 01 2005.

J. Giles. Internet encyclopaedias go head to head. Nature, 438:900, dec 2005. URL
https://doi.org/10.1038/438900a http://10.0.4.14/438900a.

E.Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific tools for Python,
2001-. URL http://www.scipy.org/. [Online; accessed <today>].

A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov. Bag of Tricks for Efficient Text
Classification. 2016. ISSN 10450823. doi: 1511.09249v1.

D. Jurafsky and J. H. Martin. Speech and Language Processing: An Introduction to Natu-
ral Language Processing, Computational Linguistics, and Speech Recognition. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 1st edition, 2000. ISBN 0130950696.

A. Kittur, B. Suh, B. A. Pendleton, E. H. Chi, L. Angeles, L. Angeles, and P. Alto. He
Says , She Says : Conflict and Coordination in Wikipedia. 2007.

Y. Ko. A study of term weighting schemes using class information for text classifica-
tion. In Proceedings of the 35th International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR "12, pages 1029-1030, New York, NY,
USA, 2012. ACM. ISBN 978-1-4503-1472-5. doi: 10.1145/2348283.2348453. URL
http://doi.acm.org/10.1145/2348283.2348453.

R. Kuhn. Speech recognition and the frequency of recently used words: A modified
markov model for natural language. In Proceedings of the 12th Conference on Com-
putational Linguistics - Volume 1, COLING ’88, pages 348-350, Stroudsburg, PA,
USA, 1988. Association for Computational Linguistics. ISBN 963 8431 56 3. doi:
10.3115/991635.991706. URL https://doi.org/10.3115/991635.991706.

S. Lahiri. Complexity of Word Collocation Networks: A Preliminary Structural
Analysis. In Proceedings of the Student Research Workshop at the 14th Conference
of the European Chapter of the Association for Computational Linguistics, pages 96—
105, Gothenburg, Sweden, April 2014. Association for Computational Linguistics.
URL http://www.aclweb.org/anthology/E14-3011.

B. Lantz. Machine learning with R. 01 2013. ISBN 1782162151.

55

R. Lau, R. Rosenfeld, and S. Roukos. Adaptive language modeling using the maxi-
mum entropy principle. In Proceedings of the Workshop on Human Language Technol-
ogy, HLT 93, pages 108-113, Stroudsburg, PA, USA, 1993. Association for Com-
putational Linguistics. ISBN 1-55860-324-7. doi: 10.3115/1075671.1075695. URL
https://doi.org/10.3115/1075671.1075695.

D.D. Lewis, Y. Yang, T. G. Rose, and F. Li. Rcv1: A new benchmark collection for text
categorization research. . Mach. Learn. Res., 5:361-397, Dec. 2004. ISSN 1532-4435.
URL http://dl.acm.org/citation.cfm?id=1005332.1005345

C. D. Manning, P. Raghavan, and H. Schiitze. Introduction to Information Retrieval.
Cambridge University Press, New York, NY, USA, 2008. ISBN 0521865719,
9780521865715.

W. McKinney. Data structures for statistical computing in python. In S. van der Walt
and J. Millman, editors, Proceedings of the 9th Python in Science Conference, pages 51
- 56, 2010.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient Estimation
of Word Representations in Vector Space. Technical report. URL
http://ronan.collobert.com/senna/.

T. E. Oliphant. Guide to NumPy. CreateSpace Independent Publishing Platform,
USA, 2nd edition, 2015. ISBN 151730007X, 9781517300074

J. Pasternack and D. Roth. The wikipedia corpus. 2008.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, 12:2825-2830, 2011.

F. Pérez and B. E. Granger. IPython: a system for interactive scientific computing.
Computing in Science and Engineering, 9(3):21-29, May 2007. ISSN 1521-9615. doi:
10.1109/MCSE.2007.53. URL https://ipython.org.

R. Rehtitek and P. Sojka. Software Framework for Topic Modelling with
Large Corpora. In Proceedings of the LREC 2010 Workshop on New Chal-
lenges for NLP Frameworks, pages 45-50, Valletta, Malta, May 2010. ELRA.
http://is.muni.cz/publication/884893/en.

A. Rosenberg and J. Hirschberg. V-Measure : A conditional entropy-based external
cluster evaluation measure. (June):410-420, 2007.

R. Rosenfeld. A maximum entropy approach to adaptive statistical language mod-
elling. Computer Speech Language, 10:187-228, 1996.

56

R. Rosenfeld. Two decades of statistical language modeling: where do we go from
here? Proceedings of the IEEE, 88(8):1270-1278, Aug 2000. ISSN 0018-9219. doi:
10.1109/5.880083.

G. Salton, A. Wong, and C. S. Yang. A vector space model
for automatic indexing. Commun. ACM, 18(11):613-620, Now.
1975. ISSN 0001-0782. doi: 10.1145/361219.361220. URL
http://doi.acm.org/10.1145/361219.361220.

C. Shanon. The Bell System Technical Journal The
Bell ~ Sysytem technichal Journal, XXVII(3), 1948. URL

https://ieeexplore.ieee.org/stamp/stamp. jsp?tp=&arnumber=6773024.

J. Sivic and A. Zisserman. Efficient visual search of videos cast as text retrieval. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 31(4):591-606, April 2009.
ISSN 0162-8828. doi: 10.1109/TPAMI.2008.111.

E. B. Viégas, M. Wattenberg, and K. Dave. Studying Cooperation and Conflict be-
tween Authors with history flow Visualizations. 6(1):575-582, 2004.

B.-q. Vuong and E. P. Lim. On Ranking Controversies in Wikipedia : Models and
Evaluation. 2008.

M. Wikipedia. Measuring Wikipedia. pages 1-12, 2005.

Wikipedia contributors. Wikipedia:lamest edit wars
— Wikipedia, the free encyclopedia, 2019a. URL
https://en.wikipedia.org/w/index.php?title=Wikipedia:Lamest.dit,arsoldid =
884176630. [Online; accessed21 — February — 2019].

Wikipedia contributors. Wikipedia:article size — Wikipedia, the free encyclopedia.
https://en.wikipedia.org/w/index.php?title=Wikipedia:Articleizeoldid =
883738489, 2019b. [Online; accessed21 — February — 2019).

D. M. Wilkinson and B. A. Huberman. Assessing the
value of cooperation in wikipedia. First ~ Monday, 12(4),
2007. ISSN 13960466. doi: 10.5210/fm.v12i4.1763. URL

https://firstmonday.org/ojs/index.php/fm/article/view/1763.

T. Yasseri and R. Sumi. Dynamics of Conflicts in Wikipedia. 7(6):1-12, 2012. doi:
10.1371/journal.pone.0038869.

Y. Zhang, R. Jin, and Z.-H. Zhou. Understanding bag-of-words model: A statistical
framework. International Journal of Machine Learning and Cybernetics, 1:43-52, 12
2010. doi: 10.1007 /s13042-010-0001-0.

57

