

Design und Implementierung eines Business Process
Modeling Recommender Systems auf Basis

probalistischer Endlicher Automaten

BACHELORARBEIT

ZUR ERLANGUNG DES GRADES BACHELOR OF SCIENCE IM STUDIENGANG INFORMATIK

vorgelegt von

Tim Schneichel

[215101171]

Koblenz, im März 2019

Erstgutachter: Prof. Dr. Patrick Delfmann

(Institut für Wirtschafts- und Verwaltungsinformatik, FG Delfmann)

Zweitgutachter: M.Sc. Christoph Drodt

(Institut für Wirtschafts- und Verwaltungsinformatik, FG Delfmann)

Betreuer: M.Sc. Christoph Drodt

(Institut für Wirtschafts- und Verwaltungsinformatik, FG Delfmann)

Erklärung

Ich versichere, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen

als die angegebenen Quellen und Hilfsmittel benutzt habe.

Mit der Einstellung dieser Arbeit in die Bibliothek bin ich einverstanden. ☒ ja ☐ nein

.

(Kruft, 25. März 2019) (Unterschrift)

Kurzfassung

Ziel dieser Arbeit ist es, ein Recommender System (RS) für Geschäftsprozesse zu

erstellen, das auf dem bestehenden ProM-Plug-in RegPFA aufbaut. Um dies zu

gewährleisten, soll zunächst eine Schnittstelle geschaffen werden, welche die von

RegPFA erstellten probabilistischen endlichen Automaten (PFA) im tsml-Format zu einer

erweiterbaren Datenbasis zusammenfassen kann. Anschließend soll ein Java-Programm

geschrieben werden, das mithilfe dieser Datenbasis zu einem gegebenen Teilprozess die

wahrscheinlichsten Empfehlungen für das nächstfolgende Prozesselement angibt.

Abstract

The goal of this thesis is to create a recommender system (RS) for business processes,

based on the existing ProM plugin RegPFA. To accomplish this task, firstly an interface

must be created that sets up and expands a database receiving probabilistic finite

automata (PFA) created by RegPFA in tsml format as input. Secondly, a Java program

must be designed that uses said database to recommend the process elements that are

most likely to follow a given sequence of process elements.

Contents

1 Introduction and Motivation ... 9

2 Recommender Systems .. 10

2.1 Collaborative Filtering .. 10

2.2 Content-based filtering .. 11

2.3 Hybrid filtering ... 11

3 RegPFA .. 12

3.1 Probabilistic finite automata .. 12

3.2 RegPFA Predictor ... 14

3.3 RegPFA Analyzer .. 16

4 RegPFA Recommender System ... 18

4.1 Preliminary considerations .. 19

4.1.1 Fundamental requirements ... 19

4.1.2 Additional requirements .. 20

4.2 Reader .. 23

4.3 Recommender ... 26

4.3.1 User input ... 27

4.3.2 Identifying possible recommendations .. 28

4.3.3 Ranking and weighing recommendations 32

5 Evaluation .. 34

5.1 Correctness ... 35

5.2 Runtime ... 39

5.2.1 Reader .. 39

5.2.2 Recommender .. 41

6 Conclusion ... 41

7 Bibliography .. 43

8 Appendix .. 45

8.1 Inductive proof of upper limit for merge algorithm 45

8.2 Additional PFA .. 47

8.3 Additional testcases .. 47

Index of figures

Figure 1 - Collaborative vs. content-based filtering. Source: Tondji 2018

p.11 .. 11

Figure 2 - Overview of RegPFA. Source: Breuker et al. 2016 p.9 13

Figure 3 - Exemplary PFA. Source: Vidal et al. 2005 p.8 14

Figure 4 - The effect of pruning for RegPFA Analyzer. Source: Breuker et al.

2016 p.13 ... 18

Figure 5 – PFA1 with three states and two transitions. Source: self-made 21

Figure 6 – PFA2 with three states and three transitions. Source: Self-made

 ... 22

Figure 7 – PFA3 with 5 states and 5 transitions. Source: Self-made 23

Figure 8 - Exporting a transition system. Source: Screenshot of ProM 24

Figure 9 - Exemplary notation of states and transitions in tsml files. Source:

Self-made graphic based on the transition system of the BPI Challenge 2012

(van Dongen 2012) generated by RegPFA ... 24

Figure 10 - Pseudocode of state probability algorithm. Source: Self-made

 ... 26

Figure 11- Pseudocode of RegPFA RS Reader. Souce: Self-made 27

Figure 12 - Exemplary config file. Source: Self-made 29

Figure 13 – Partial pseudocode of RegPFA RS Recommender. Source: Self-

made .. 30

Figure 14 - Pseudocode of backtracking algorithm. Source: Self-made ... 31

Figure 15 - Pseudocode of merging algorithm. Source: Self-made 33

Figure 16 – PFA4 and PFA5. Source: Self-made ... 47

file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178182
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178182
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178182
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178182
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178183
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178183
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178183
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178184
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178184
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178184
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178185
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178185
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178185
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178185
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178186
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178186
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178186
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178187
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178187
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178187
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178187
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178188
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178188
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178188
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178189
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178189
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178189
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178190
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178190
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178190
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178190
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178190
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178191
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178191
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178191
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178191
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178192
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178192
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178192
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178193
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178193
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178193
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178194
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178194
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178194
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178194
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178195
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178195
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178195
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178196
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178196
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178196
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178197
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178197
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178197

Index of tables

Table 1 - Testcases based on PFA1. Source: Self-made 36

Table 2 - Testcases based on PFA1 and PFA3. Source: Self-made 36

Table 3 - Testcases based on PFA4. Source: Self-made 38

Table 4 - Testcases based on PFA1, PFA3, PFA4 and PFA5. Source: Self-

made .. 39

Table 5 - Runtime evaluation of the Reader. Source: Self-made 40

Table 6 - Runtime evaluation for the Recommender. Source: Self-made . 42

Table 7 - Testcases based on Chapter 5 of the Process Mining Book.

Source: Self-made .. 48

Table 8 - Testcases based on the 2012 BPI Challenge. Source: Self-made

 ... 49

file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178205
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178205
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178205
file:///C:/Users/jSnax/Desktop/Bachelorarbeit_final.docx%23_Toc4178205

Index of abbreviations
BPM ... Business process management
EOP .. End of process
PFA ... Probabilistic finite automaton
RS .. Recommender System
SPE ... Sequence of past events

1 Introduction and Motivation

Given the recent rise of importance of big data analytics (see Chen et al. 2012

p.1), it is not surprising that process mining, which refers to “the development of

tools and methods to generate insight based on event data collected during the

execution of a business process” (see Breuker et al. 2016 p.2) is also surging in

importance. This stems from the fact that process mining links big data analytics

to business process modeling through transforming event logs into process

models (Vera-Baquero et al. 2013 p.1).

At first, process mining aimed to gather insights by looking at the past, thereby

performing retrospective analysis (Breuker et al. 2016 p.2). Recent approaches

also implement predictive analytics, monitoring both the past and the present to

assume future behavior of processes (Breuker et al. 2016 p.2). Due to

participating in both a project practical as well as an undergraduate seminar in

the broad field of business process management (BPM) during 2018, I had

already developed an interest in process mining and process modeling. In

combination with the growing need for analytic software in today’s corporate

world, I was convinced that writing my bachelor’s thesis in this field of work would

be a great way to obtain skills and knowledge relevant to most modern companies.

This bachelor’s thesis aims to perform predictive analysis by designing and

implementing a RS for business processes using probabilistic finite automata

(PFA) generated by the process modeling software RegPFA. Since

recommendations cannot be given without collecting process data first, the

following goals can be determined:

1. Developing a program capable of reading textual representations of PFAs

generated by RegPFA and combining them to a singular database from

which recommendations can be drawn.

2. Designing and implementing a RS that uses said database and generates

predictions for the next event given a sequence of previously occurred

events as input.

To fulfill these goals, reasonable knowledge of both RegPFA and RS’s in general

is required. Therefore, the following two chapters provide a rough overview of

RS’s and PFAs in general as well as RegPFA in particular. Chapter 4 then

explains the steps taken to reach the goals outlined above and offers a detailed

explanation of the two components of the RS designed in this thesis, which will

further be referred to as RegPFA RS. In chapter 5, several testcases are

described to determine the efficiency and accuracy of RegPFA RS. The results

of those tests are further discussed in the conclusion at the end of this document.

2 Recommender Systems

RS, first introduced in the mid-1990s (Portugal et al. 2015 S. 1), are omnipresent

in modern day life. From YouTube (Covington et al. 2016 S. 1) to Amazon (Smith

et al. 2017 S. 1) to Netflix (Gomez-Uribe et al. 2016 S. 1), lots of widely used

websites that offer large selections of products point their users towards those

that are most likely to interest them using RS. While that goal is similar for most

RS, several approaches exist to determine which product constitutes the best

recommendation for a given user. The three most common approaches

collaborative filtering, content-based filtering and hybrid filtering (Portugal et al.

2015 S. 2) will be explained briefly in the following sections.

2.1 Collaborative Filtering

Essentially, collaborative filtering refers to the practice of generating

recommendations for a certain user by finding other users with similar interests

and recommending items that they’ve already purchased or liked. This can be

achieved by applying a nearest-neighbor method to a matrix of ratings. (see

Felfernig et al. 2007 S. 1) Additionally, characteristics of the users themselves

such as age or gender may be included to calculate the similarity of two users

(see Portugal et al. 2015 S. 2). The left side of Figure 1 describes this approach

graphically. Collaborative filtering is meant to simulate human behavior since

people are likely to watch a TV show or read a book that their friends recommend

to them (see Shani et al. 2005 S. 4). The drawbacks shown in such methods

include cold-start, i.e. inability to make recommendations before sufficient user

data was collected, sparsity of data in general and scalability problems (see

Isinkaye et al. 2015 p.3).

2.2 Content-based filtering

While collaborative filtering aims to make recommendations based on similarities

between users, the content-based approach to RS’s focuses on similarities

between items. For this method to be used, items must be defined by certain

features, e.g. genre, actors and director of movies, that are used to calculate the

similarity between them. (Portugal et al. 2015 S. 3) A user then receives

recommendations for items that are most similar to those they already acquired

in the past (Shani et al. 2005 S. 4). This process is illustrated on the right side of

Figure 1.

Problems with content-based filtering techniques include limited content analysis,

i.e. difficulties determining certain features correctly or too many possible values

for features, as well as overspecialization and sparsity of data (see Isinkaye et al.

2015, p.3).

2.3 Hybrid filtering

As the name suggests, hybrid filtering combines metrics of both collaborative and

content-based filtering to generate recommendations. The goal of hybrid filtering

is to create a single RS as a combination of multiple filtering techniques to

Figure 1 - Collaborative vs. content-based filtering. Source: Tondji 2018 p.11

diminish the impact of their shortcomings while taking advantage of their

strengths. (see Isinkaye et al. 2015 p.3)

3 RegPFA

Considering this thesis is heavily reliant on the predictive process modeling

technique RegPFA, which is short for “regularized probabilistic finite automata”,

an overview of the program must be provided. First, the general functionality of

the two RegPFA components, the RegPFA Predictor and the RegPFA Analyzer

as shown in Figure 2, will be explained. A short overview of PFAs as well as a

detailed presentation of both components of RegPFA is then given in the

following chapters.

The Predictor receives an event log, i.e. a collection of sequences of events, as

input and uses a learning algorithm to derive a probabilistic model representing

the data from the event log. Subsequently, this model can be used to either make

predictions about the outcome and behavior of present events when combined

with corresponding data or it can be used as input for the Analyzer. In the latter

case it is then transformed into an easily readable visualization in the form of

either a Petri net or an automaton. (see Breuker et al. 2016 p.8)

3.1 Probabilistic finite automata1

Assuming at least a light familiarity with finite automata, the mathematical

definition of a PFA is given here without going into detail. Some additional

comments are provided however to indicate how certain mathematical constructs

are used regarding either business process modeling in general or RegPFA in

particular. For the uninitiated reader, Figure 3 at the end of this subchapter

provides an illustration of a simple PFA, accompanied by a simplified explanation.

A PFA is a tuple A = (QA, Σ, δA, IA, FA, PA), where:

QA is a finite set of states

Σ is the alphabet, i.e. a set of transition names

1 All mathematical formulas and definitions in this section are based on Vidal et al. 2005 pp.7-8.

𝛿𝐴 ⊆ 𝑄𝐴 × 𝛴 × 𝑄𝐴 is a set of transitions, where each transition is defined by the

combination of its start state, its end state and its transition name

𝐼𝐴: 𝑄𝐴 → ℝ+are the initial-state probabilities

𝐹𝐴: 𝑄𝐴 → ℝ+are the final-state probabilities

𝑃𝐴: 𝛿𝐴 → ℝ+are the transition probabilities

It further holds that

∑ 𝐼𝐴(𝑞) =

𝑞∈𝑄𝐴

 1

and

∀𝑞 ∈ 𝑄𝐴: 𝐹𝐴(𝑞) + ∑ 𝑃𝐴(𝑞, 𝑎, 𝑞
′) = 1

𝑎∈Σ,𝑞′∈𝑄𝐴

Those restrictions state that the sum of all probabilities to start in a given state q

is 1 and that the sum of the probability to end in a given state q plus the probability

to leave state q to any other state q’ is 1 as well. As explained in more detail in

chapter 3.2, PFAs generated by RegPFA are modified to only contain a single

start and end state. Figure 3 shows an exemplary PFA. There is only one initial

state, namely q0 with IA(q0) = 1. Each state is a possible final state though with

probabilities to end in this state instead of transitioning to another state noted

within the circle denoting said state.

Figure 2 - Overview of RegPFA. Source: Breuker et al. 2016 p.9

PFA in graphical representation can be read similarly to control flow graphs.

Since q0 is the sole initial state, reading always starts there as indicated by the

arrow from the left. The outgoing arrows from q0 indicate which state it is possible

to move towards and are labeled with the name of transition as well as the

probability of the transition. E.g. it is possible to move from q0 to itself with

probability 1/4 using a transition labeled “c.”

In the context of this thesis, transitions represent events taken from an event log.

Therefore, visually moving through a PFA implies that the sequence of transitions

that are used to move from state to state correspond to a possible sequence of

events in a given event log. E.g. the sequence of (c, a, c, c) constitutes a valid

way to transition through the PFA above, ending at q1.

3.2 RegPFA Predictor

Since the RS explained in this thesis works with the visualization derived by the

RegPFA Analyzer, it is sufficient to discuss the properties of the probabilistic

model used as a basis for the Analyzer. Taking a standard PFA as a basis for the

model, some constraints are set to suit the Predictor to BPM (see Breuker et al.

2016 p.8).

Generally, a PFA does not necessarily have only one start or end state. A critical

goal of RegPFA is to create a visualization that can easily be understood without

comprehensive knowledge of probabilistic models (see Breuker et al. 2016 p.3).

The first modification therefore consists of altering the model to only include a

single start and end state, which additionally results in the PFA closer resembling

workflow nets, which also have fixed starts and ends (see Breuker et al. 2016

p.8).

Figure 3 - Exemplary PFA. Source: Vidal et al. 2005 p.8

Furthermore, it is also required to impose a constraint regarding the estimation of

probabilities in the model. RegPFA uses a parameter estimation approach to

realize grammatical inference, namely a maximum likelihood estimator. On its

own, this method could yield widely inaccurate results for incomplete or

insufficient data due to overfitting. However, as a counteract the Predictor adds

a modification based on Bayesian regularization to the maximum likelihood

estimator. Essentially, this means that pseudo-observations of all events at all

states are added before considering the actual observations from the input event

log. (see Breuker et al. 2016 pp.8-10)

To illustrate this process, imagine randomly picking a single card from a standard

sized deck of cards 1000 times which turns out to be the ace of spades each time.

The maximum likelihood method infers that the deck most likely is made up of 52

aces of spades, which seems plausible. However, if we only pick a single card

once and it turns out to be the ace of spades, maximum likelihood would still infer

that the deck is most likely made up of 52 aces of spades, which contradicts the

instinctive assumption that the standard sized deck indeed contains the standard

set of cards.

In a Bayesian framework, it is possible to apply some sort of ground assumption

to the probability distribution to mathematically implement the belief that

probabilities close to one or zero are unlikely (see Breuker et al. 2016 p.9). For

instance, if we apply the assumption that there are 52 distinct cards in the deck

and the probability to draw each one of them is 1/52, meaning we have 52

pseudo-observations of card draws, drawing the ace of spades once changes the

expected probability of drawing the ace of spades from 1/52 to

𝑝(𝑎𝑐𝑒 𝑜𝑓 𝑠𝑝𝑎𝑑𝑒𝑠) =
1 + 1

52 + 1
=
2

53
≈ 0,04

While changing the probability of any other card c that is not the ace of spades to

𝑝(𝑐) =
1 + 0

52 + 1
=
1

53
≈ 0,02

However, if we again assume to draw the ace of spades 1000 times in a row:

𝑝(𝑎𝑐𝑒 𝑜𝑓 𝑠𝑝𝑎𝑑𝑒𝑠) =
1 + 1000

52 + 1000
=
1001

1052
≈ 0,95

𝑝(𝑐) =
1 + 0

52 + 1000
=

1

1052
≈ 0,001

It is easy to see that with this modification it is still possible to depict extreme

results when given sufficient data, but predictions are more resistant to

insufficient or incomplete data. For the RegPFA Predictor, a Dirichlet distribution,

i.e. a continuous, multivariate probability distribution, with symmetric priors of

starting value

ℎ𝑝 = 1 +
𝑛

𝐾 ∗ (1 + 𝐸 ∗ (1 + 𝐾))

for each Dirichlet parameter hp was chosen. In this formula, n refers to the

amount of pseudo-observations, K refers to the amount of states of the PFA and

E to the number of distinct events in the event log. (see Breuker et al. 2016 pp.9-

10)

A maximum likelihood estimate is then determined by running an expectation

maximization algorithm. After choosing initial parameters randomly, it switches

between executing an expectation step, where current values of parameters are

used to derive a function of the log likelihood and a maximization step, where

new values for the parameters are calculated which maximize the log-likelihood

of the function derived in the previous expectation step.The algorithm converges

once the rate of improvement falls below a certain threshold set by the user. This

process is repeated multiple times as the expectation maximization algorithm

finds local optima depending on the initial randomly set parameters. (see Breuker

et al. 2016 pp.10-11)

3.3 RegPFA Analyzer

To recap, the main task of the RegPFA Analyzer is to transform a probabilistic

model generated from running the RegPFA Predictor into an easily readable

visualization. The key phrase in the previous sentence is “easily readable” since

an important design goal of the RegPFA creators was to provide a visual output

that can be understood by users inexperienced in probabilistic modeling. Since

PFAs are created from event logs, generally those of business processes,

achieving said goal is beneficial since it enables experts in the respective area of

business to work with RegPFA’s output. (see Breuker et al. 2016 p.12)

A direct consequence of this aim is to cut transitions with zero probability from

the visualization. However, as explained in the prior subchapter, Bayesian

regularization is used, which means transitions will not have zero probability value

except for few exceptions. This leads to a conflict of interest: On the one hand,

the non-zero probabilities caused by Bayesian regularization are necessary to

avoid overfitting. On the other hand, keeping all probabilities in the graphic leads

to a PFA with K states and K²E transitions, with E denoting the amount of unique

transition names, which is contrary to the goal of the graphic being easily

readable. (see Breuker et al. 2016 p.12)

The compromise made by the RegPFA team was to impose a probability

threshold for transitions, meaning all transition probabilities of value below are

disregarded for the visualization. It was defined relative to the value of

𝑝𝑒𝑞𝑢𝑎𝑙 =
1

𝐾 ∗ 𝐸

which constitutes the probability of any transition from either state to another

assuming all transitions are equally likely. As the sum of all transition probabilities

from a single state will always be 1, this directly implies that if some probabilities

to leave a given state towards another state increase, others must decrease. (see

Breuker et al. 2016 pp.12-13)

The RegPFA Analyzer requires the user to input a pruning ratio pr that will be

used to determine the actual value of according to the formula

 =
1

𝑝𝑟
∗

1

𝐾 ∗ 𝐸

Therefore, transitions will be cut if they are pr times as unlikely as any transition

from a state when no further information was provided. Naturally, if all transitions

leading into a certain part of the PFA are cut due to their probability being below

, all states and transitions in that part are disregarded as well. This is illustrated

in Figure 4, where the left side depicts a PFA generated with = 0.1 and the right

side depicts the same PFA generated with = 0.2. (see Breuker et al. 2016 pp.12-

14)

Automata which have been pruned in that matter may already fulfill the

requirement of being easy to read. In fact, the intermediate visualization of a

pruned PFA is used as input for the RegPFA RS described in this thesis. It can

however be transformed into an equivalent Petri net to further ease the

interpretation of the graphic. As neither the process of generating the Petri net

representation nor an understanding of Petri nets in general is required to

comprehend the following chapters, no further details will be provided here.2 (see

Breuker et al. 2016 p.14)

4 RegPFA Recommender System

After establishing a general knowledge of both RS’s and RegPFA, the design of

RegPFA RS may be discussed. In subchapter 4.1, several requirements are

determined that need to be fulfilled by the final RS. Afterwards, the general

functionality of the RegPFA RS two components, the Reader and the

Recommender, is explained in subchapters 4.2 and 4.3. Special attention is paid

to the fulfillment of the previously outlined design requirements.

Since the following chapters contain several examples of simple PFAs and

transition sequences within those, a proper notation must be introduced for

certain elements. Single transitions will be surrounded by parentheses, e.g. (A),

sequences of transitions will be surrounded by square brackets and separated

by commas, e.g. [A, B]. The sequence of past events that constitutes the central

user input of this RS will be referred to as SPE from now on.

2 The inclined reader may find additional information about this process in “Process Mining: A
Two-Step Approach to Balance Between Underfitting and Overfitting (van der Aalst et al. 2010)

Figure 4 - The effect of pruning for RegPFA Analyzer. Source: Breuker et al. 2016 p.13

4.1 Preliminary considerations

When designing a RS, it is necessary to consider the type of data one is working

with. In this section, we will attend to the PFA. Considering the formal definition

of a PFA given in chapter 3.1, that means we have a set of states, an alphabet

and three sets of probabilities: the probabilities to transition from one state to

another, the probabilities to start in any state and the probabilities to end in any

state. Conveniently, PFAs generated by RegPFA are modified to only contain a

single start and end state, rendering the latter sets of probabilities obsolete.

Since RegPFA solely relies on event logs to create PFAs and does not receive

other inputs, there is no user specific data available aside from potential insight

into process structure, which will be displayed in the PFA anyway. This strongly

implies the use of content-based filtering for the RS. Additionally, in a potential

real-world context, corporations making use of process mining techniques like

RegPFA may not be willing to share internal information concerning their BPM.

.

4.1.1 Fundamental requirements

Now that it has been established that only a content-based approach is

appropriate, we can define requirements for the RS. Some fundamental

requirements need to be defined independent of possible content, namely:

 [R1] – Recommendations based on longer subsequences of SPE are

always rated better than those based on shorter subsequences.

This is an obvious requirement whose main purpose is to express the importance

of context. It is best explained as an analog to text-based RS: When entering the

phrase “It’s raining cats and”, any decent RS will recommend “dogs” next.

However, just entering “and” will yield other recommendations than “dogs” most

likely. In terms of business processes, finding a transition that follows the exact

SPE of [A, B, C] provides far more valuable information than finding a transition

that follows [C].

[R2] – The last element of SPE is the primary factor for recommendations.

As mentioned above, context is of utmost importance when making

recommendations. Ultimately, the last element of SPE provides the most recent

context, i.e. the event that transpired directly before the point from which a

recommendation must be made. While other approaches, e.g. choosing the

overlap of events preceding a certain event with SPE as primary factor, might

also be suitable, it was decided to value the most recent context highest.

4.1.2 Additional requirements

Requirements for the RS can also be derived by considering different kinds of

contents and inputs and deciding how the RS should behave in those cases. For

instance, consider PFA1 illustrated in Figure 5. If the database only contained

PFA1 and SPE = [A], it is obvious that (B) should be recommended as the next

event. However, there are several possible values for SPE that hold less obvious

implications.

1) SPE = [B]:

A transition that follows [B] does not exist in the database, a transition (B) does

exist in the database though. There are two possible ways to handle this case:

• Conclude that no recommendations can be made

• Assume that the absence of a following transition to a known transition

requires a special recommendation independent of the database, e.g. (end

of process), further abbreviated as (EOP)

Since identifying the end of a process provides valuable information and is part

of the RegPFA team’s main goal of “[predicting] future behavior of business

processes” (see Breuker et al. 2016 p.2), the second option was chosen leading

to the third requirement for the RS:

[R3] – Recommend (EOP) when SPE leads to the final state

2) SPE = []:

If the input list is empty, it is impossible to know which transition follows next.

There are three possible ways to handle this case:

• Conclude that no recommendations can be made

• Recommend the transitions that most often originate from the start state

• Recommend the transitions that most often occur in the database,

disregarding context

It seems intuitive to choose the second option, mirroring the intended behavior of

the RS concerning R3. The third option also seems reasonable at first glance,

since finding the most frequent transition appears to be equivalent to finding the

most often frequently transpiring event, which provides valuable information. This

assumption is incorrect though.

Consider PFA2 illustrated in Figure 6. If our database was extended to include it

as well, (B) would be the most frequently occurring transition with a count of 2

and a summed probability of 1.1. However, we do not know how many process

instances for each PFA are performed. E.g. it is possible that PFA1 is associated

with 10 process instances while PFA2 is associated with 100 process instances,

leading to 10 instances of (A), 20 instances of (B), 90 instances of (D) and 100

instances of (C) on average. Therefore, the second option was chosen, which

implies the fourth requirement:

[R4] – Recommend transitions from starting states if SPE is empty

3) SPE = [C]:

The database, consisting again of just PFA1, contains no transition (C), therefore

a proper recommendation cannot be made. There are two possible ways to

handle this case:

• Conclude that no recommendations can be made

• Recommend the transitions that most often occur in the database,

disregarding context

Choosing the last option strongly implies to the user that the recommendation

was made directly based on information gathered from the database. Since no

such information for an SPE of [C] exists, the first option seems optimal. However,

not making any recommendation implies that the database does not contain any

helpful information to make a prediction at all, which is also not entirely true.

Transitions appearing across multiple PFAs or multiple times within a single PFA

indicate events that are important for several different processes and can be

identified within the database.

Figure 5 – PFA1 with three states and two transitions. Source: self-made

As a compromise, it was therefore decided to recommend the transitions which

most often occur in the database while displaying a warning that those

recommendations are not based on SPE. This will always be the case if the last

transition in SPE is not part of any PFA in the database. The consequential

requirement is as follows:

[R5] – Recommend most frequent transitions when the database does not

contain the last element of SPE while indicating those recommendations

are not based on SPE.

Consider a database consisting of both PFA1 from Figure 5 as well as PFA3 from

Figure 7. With SPE = [B], (EOP) as well as (E) are obvious events to be

recommended. The probability of (E) in PFA3 is 1, the probability of (EOP) in PFA1

is 1 as well, considering there are no possible transitions from state 3. Although

at first glance it may seem that implies (E) and (EOP) should be recommended

with the same probability, the paths that lead to the transition labeled (B) in both

PFAs needs to be considered as well. For PFA1, there is only a single path

leading to state 2 from which (B) originates with probability 1. For PFA3, there is

also just one path leading to the origin state of (B), but the probability of that path

is just 0,5.

As mentioned above, no data regarding association with specific process

instances is provided, therefore it’s impossible to conclude which PFA represents

more actual business processes. Lacking actual data, it is assumed that each

PFA represents the same actual amount of business processes. Therefore,

applying the assumption as well as the given information that the last transpired

event was [B], it is twice as likely for the process to occur in PFA1 compared to

PFA3. This implies it is twice as likely that [B] is followed by (EOP) compared to

(E), expressed in the final requirement:

[R6] – Probabilities of the origin states of SPE in each PFA must be

considered, not only the probability of elements in SPE.

Figure 6 – PFA2 with three states and three transitions. Source: Self-made

4.2 Reader

The main task of the RegPFA RS Reader is to create and update a database

containing several PFAs generated by RegPFA. Since textual representations of

them exist as files in tsml format, it can be accomplished by writing a

straightforward parser which collects relevant information and disregards

anything else. Additionally, to guarantee efficiency of the Recommender, data

needs to be prepared in a way that facilitates the generation of recommendations,

especially regarding the requirements outlined in the previous chapter.

Tsml files can be generated by using the ProM plugin RegPFA to create a

transition system from a log file.3 Once this is completed, the newly generated

transition system can be viewed in the ProM workspace. After clicking on “Export

to disk” as shown in Figure 8, making sure to select the tsml file format in the

save menu, the transition system can be converted to tsml format. A tsml file is

essentially split in two sections: First, all states of the transition system are listed

by name, then all transitions including their respective source and target states

are listed. The left side of Figure 9 illustrates an exemplary state in tsml notation

while the right side showcases an exemplary transition.

The parser starts by going through the state part of the file, creating all states with

only their ID currently known. Once the transition part of the document is reached,

each transition is created and named according to its label, then linked to the

3 A detailed guide for this process can be found at
https://em.uni-muenster.de/wiki/Mining_with_RegPFA_algorithm

Figure 7 – PFA3 with 5 states and 5 transitions. Source: Self-made

https://em.uni-muenster.de/wiki/Mining_with_RegPFA_algorithm

respective source and target states. Additionally, the probability of said transition

to occur from its source state is stored. Considering references from an object to

another object in Java are not bidirectional by default, a reference from both

source and target state to the transition connecting them must be created as well.

Otherwise the process of finding transitions from or to a given state, which is

needed to fulfill R1 and R6, would be slow and inefficient.

Those links are then used to calculate the probabilities to land on each state when

randomly traversing the PFA. This is performed by first determining the start state

of the PFA and then starting a recursive function from it that follows every

possible sequence of transitions in the PFA and adds the current probability of

the sequence to each state after it reaches it. However, if the sequence lands on

a state that was already visited over the course of the sequence, i.e. a circle was

found within the PFA, the recursion stops, and the sequence’s probability is not

Figure 8 - Exporting a transition system. Source: Screenshot of ProM

Figure 9 - Exemplary notation of states and transitions in tsml files. Source: Self-made graphic based
on the transition system of the BPI Challenge 2012 (van Dongen 2012) generated by RegPFA

added to the state yet again. While a pseudocode representation of this function

is provided in Figure 10, it is reasonable to also include a mathematical notation

for the calculation of state probabilities.

SS denotes the starting state of the PFA. (si, sj) denotes a transition from state si

to state sj and p(si, sj) the probability of the transition. [(si(1), sj(1)), (si(2), sj(2)), …

(si(n), sj(n))] denotes a transition sequence from state si(1) to state sj(n) if

𝑗(𝑘) = 𝑖(𝑘 + 1) ∀ 1 ≤ 𝑘 ≤ 𝑛 − 1. A transition sequence is called non-circular if

𝑗(𝑘) ≠ 𝑗(𝑙) ∀ 𝑘, 𝑙 ∈ ℕ. The set of all non-circular transition sequences is called NC.

Finally, the probability of a state S is defined as

𝑝(𝑆) = ∑ ∏𝑝(𝑠𝑖(𝑘), 𝑠𝑗(𝑘))

𝑛

𝑘=1[(𝑠𝑖(1),𝑠𝑗(1)),(𝑠𝑖(2),𝑠𝑗(2)),… (𝑠𝑖(𝑛),𝑠𝑗(𝑛))]𝜖𝑁𝐶

∧𝑠𝑖(1) =𝑆𝑆 ∧𝑠𝑗(𝑛) = 𝑆

For bigger PFA, this calculation is not feasible. While PFAs are unlikely to be

extremely interconnected, the amount of unique non-circular paths within a PFA

with (n+2) states - with the start state and the end state being fixed irrelevant in

terms of state probability - can be higher than 2 * n! in total. E.g. a PFA with 30

states excluding start and end could already require more than 5*1032 single

operations to calculate state probabilities. Therefore, if the amount of states

excluding start and end within a given PFA is higher than 20, all state probabilities

are set to 1, rendering them irrelevant for further calculations. Recommendations

in PFAs of that size are therefore slightly less accurate.

A basic recommender could already be developed using the state and transition

data outlined above but fulfilling R5 requires a list of all transitions grouped by

their label and sorted by their frequency of occurrence. Since creating this list

whenever a new recommendation is required would be resource intensive, it is

stored as part of the database as well as updated and sorted whenever a new

transition system is read. Even though merge sort is set as the standard sorting

algorithm, an alternative sorting algorithm named “divide sort” is also included

albeit not being used by default.

While merge sort assumes an unsorted list of n elements and performs a divide

and conquer on the whole list, divide sort assumes that the left part of the list, i.e.

the transitions with high frequencies, is already sorted. It identifies the index of

the last sorted element i, then divides the list into a sorted left part and an

unsorted right part, on which merge sort is performed. Afterwards, the already

sorted left part and the newly sorted right part are merged. Thereby, merge sort

only needs to be performed on a list with n-i elements instead of a list with n

elements. Assuming i to be marginally smaller than n, divide sort has a lower total

runtime and is hence preferable to merge sort.

For ease of use, tsml files only need to be moved to the folder labeled “data”

within the program folder. Once started, the Reader then analyzes the content of

all tsml files within the data folder and moves them to the archive folder afterwards,

overwriting files with the same name. The pseudocode of a single iteration of this

process is shown in Figure 11.

4.3 Recommender

Generating recommendations is set up as a multi-step process: First, the user

input consisting of SPE, a maximum number of required recommendations and

a weight factor for subsequences is processed. Using the database created by

running the Reader at least once, the Recommender then iterates over all stored

PFAs to find out in which of them the SPE can occur. For each suitable PFA, it is

Figure 10 - Pseudocode of state probability algorithm. Source: Self-made

then determined which states SPE can lead to and finally which transitions are

possible from that state. Those transitions are saved as possible

recommendations.

If not enough recommendations were found, the first element of SPE is cut and

the recommendation process begins anew until either enough unique

recommendations were found or SPE contains no more elements.

Recommendations containing identical transition names are then grouped and

merged into a single recommendation. To achieve this, the probability of every

single recommendation is adjusted by a factor dependent on the number of

events in SPE used to generate it as well as the weight factor set by the user. A

detailed explanation of all steps outlined above will be given in the following

subchapters.

4.3.1 User input

In order to simplify repeated runs of the RegPFA RS Recommender, all user input

is entered into a text file located in the data folder and automatically read with

each program start. An exemplary content of this file is depicted in Figure 12.

Figure 11- Pseudocode of RegPFA RS Reader. Souce: Self-made

Naturally, the user is required to define SPE, which constitutes the single most

important parameter for the RS. Equivalent to the notation used in this thesis, this

is accomplished by entering a comma-separated series of transition names within

square brackets.

Additionally, the user may specify the amount of recommendations that he wishes

to receive as well as a weight factor for subsequences. While the first parameter

is self-explanatory, the second one requires further explanation which will be

provided in chapter 4.3.3.

4.3.2 Identifying possible recommendations

Determining which transitions are most likely to follow a given SPE is the key task

of the RegPFA RS and unsurprisingly the most complex one as well. Figure 13

provides an incomplete pseudocode of the recommendations process, leaving

out the task of filling up the list of recommendations LR with the most frequently

occurring transitions in the whole database when SPE does not occur in any PFA.

The implementation of this subtask is comparably trivial, but nonetheless needed

to fulfill R5. Additionally, the same algorithm is used to fill up LR if some, but not

at least AR “real” recommendations, i.e. transitions directly following SPE or a

subsequence thereof, could be found.

The set of recommendations generated in this way will further be called RF. To

prepare for the ranking process outlined in chapter 4.3.3, the probability p(R) for

each recommendation R in RF is set to

𝑝(𝑅) =
𝑓(𝑅)

∑ 𝑓(𝑅′)𝑅′∈𝑅𝐹

with f(R) denoting the frequency of transitions with the same label as R over all

PFAs in the database.

The Recommender begins by checking whether SPE is empty. If that is the case,

all starting states from all PFAs in the database are possible end states for SPE

as outlined in R4. Conveniently, due to modifications made to the PFAs

generated by RegPFA as explained in chapter 3.2, there is only a single starting

state per PFA which therefore has a fixed probability of 1. It is hence sufficient to

set the probability of any recommendation of an outgoing transition from a starting

state to the probability of the transition itself.

Otherwise, it needs to be determined for all PFAs in the database whether they

contain SPE as a possible sequence of transitions, not necessarily originating

from the start state. Keeping R1 as well as the user specified maximum amount

of recommendations in mind, this is accomplished by iterating over all PFAs

repeatedly, removing the first element of SPE after each iteration, until either SPE

is empty or enough recommendations were found.

For the actual search for instances of SPE within a PFA, a backtracking algorithm

was implemented. Filtering out all PFAs that do not contain all transitions

occurring in SPE first, within the remaining PFAs a recursive function

getRecommendations is then called for all possible target states (CS) of the first

element in SPE. Since it is not only possible, but due to the nature of RegPFA

highly likely that any given state is the source of multiple transitions with the same

name, there are often multiple ways to traverse a PFA from CS according to SPE.

All possible directions, i.e. transitions with the same name as the next element in

SPE originating from CS, need to be checked. Therefore, the recursive call of

getRecommendations is nested in a for-loop. Figure 14 shows a pseudocode

representation of this function.

Due to the removal of the first element in each iteration, the last element of SPE

will stay relevant throughout every single iteration, simultaneously fulfilling R2.

And since the total probability of any given recommendation is multiplied by the

probability of the currently considered transition T after each recursive call,

Figure 12 - Exemplary config file. Source: Self-made

starting with the probability P to land on CS, R6 is also fulfilled. Finally, R3 can

be fulfilled by creating a pseudo-recommendation labeled (EOP) whenever the

recursive call of getRecommendations finds an empty SPE, but cannot find any

transitions T originating from CS. The probability of (EOP) is naturally found to be

Figure 13 – Partial pseudocode of RegPFA RS Recommender. Source: Self-made

equal to P in the final recursive call since there is only one end state for each PFA

generated by RegPFA and the probability to end the process in that state is

always 1.

To prepare for the ranking of each unique recommendation, the current length of

SPE is added to the probability of each recommendation that was generated

naturally, i.e. not from an empty SPE. With R being a recommendation and p(R)

denoting the ground probability of R calculated according to the code in Figure

14, that means the following calculation is performed:

𝑝(𝑅) = 𝑝(𝑅) + |𝑆𝑃𝐸|

This ensures that a recommendation based on a longer subsequence of SPE will

always have a higher probability than one based on a shorter subsequence,

Figure 14 - Pseudocode of backtracking algorithm. Source: Self-made

which is needed to fulfill R1. While the newly calculated values cannot yet be

considered proper probabilities as they are always bigger than 1, they will be

transformed into proper probabilities as explained in the following subchapter.

4.3.3 Ranking and weighing recommendations

To summarize the results of the steps taken by the Recommender up to this point,

a list of several recommendations, i.e. transition names coupled with a pseudo

probability value, exists. Some or even all recommendations might not be based

on SPE, but rather on the frequency of occurrence of all transitions over all PFAs

in the database. The set of those recommendations is called RF. With p(R)

denoting the probability of a recommendation according to the notation

introduced above, it holds that

∀𝑅 ∈ 𝑅𝐹: 0 ≤ 𝑝(𝑅) ≤ 1

The set of recommendations based on SPE respectively will be called RS from

now on. It holds that

∀𝑅 ∈ 𝑅𝑆: 1 < 𝑝(𝑅)

Therefore, the probability of any recommendations in RS is guaranteed to be

greater than the probability of any recommendation in RF.

It is important to remember at this point that while the amount of

recommendations with unique labels was counted to ensure that at least AR

unique recommendation are listed, RS might contain multiple recommendations

of the same label. This is an intended consequence of the fact that while longer

subsequences of SPE are supposed to lead to predictions with higher probability,

a ranking of predictions stemming from subsequences of SPE with equal lengths

is still required. To introduce such a ranking, recommendations with identical

labels are collected regardless of the length of SPE used to generated them and

then merged to a single recommendation of that label.

The process of merging first requires grouping all recommendations by their

respective label. Once this rather trivial task is completed, a merging function is

applied to each cluster of recommendations. Figure 15 shows the pseudocode

for a single application of the merging algorithm to a list of probabilities stemming

from recommendations with the same label. Defining the list of all probabilities as

𝐿𝑃 = {𝑃1, 𝑃2, … , 𝑃𝑛}

and without loss of generality assuming P1 to be the highest probability in LP, the

algorithm computes the total probability TP recursively as

𝑇𝑃(𝑖) =

{

𝑃1 𝑓𝑜𝑟 𝑖 = 1

𝑇𝑃(𝑖 − 1) +
(⌊𝑃1⌋ + 1 − 𝑇𝑃(𝑖 − 1)) ∗ 𝑃𝑖

(⌊𝑃1⌋ + 1) ∗ (⌊𝑃1⌋ + 1 − ⌊𝑃𝑖⌋)𝑊𝐹

where WF denotes the user specified weight factor. It can be proven that TP(i)

has an upper limit of ⌊𝑃1⌋ + 1 through induction. The appendix contains the full

inductive proof for the inclined reader.

The upper limit for TP(i) implies that a recommendation cluster of arbitrary size

will never receive a probability equal to or higher than the next highest integer of

the biggest probability within the cluster. As mentioned before, probabilities for all

recommendations were inflated by adding the number of elements in SPE at the

time of finding the recommendation. This imposes a limitation for each

recommendation cluster’s total probability. E.g. consider a recommendation

cluster with highest inflated probability of 6.5. Since proper probabilities are

greater than 0 and smaller than or equal to 1, the number of elements in SPE

used to generate this probability had to be 6. The upper limit for this cluster’s total

probability therefore is 7, which means it can never reach the minimal total

Figure 15 - Pseudocode of merging algorithm. Source: Self-made

probability of a cluster which contains at least one probability that’s greater than

7. This guarantees that R1 is always fulfilled.

Since a clear ranking of recommendations has been introduced now,

recommendations may be weighed in order to obtain proper probabilities once

more. The RegPFA RS obtains two weighing methods, of which the first one

weighs all probabilities proportionally and the second one weighs them according

to the softmax function. Denoting the set of all recommendations, i.e. unique

transition labels matched with their respective cluster’s total probability, as LR

once more, the standard weighing method defines the weight of a single

recommendation R as

𝑤𝑒𝑖𝑔ℎ𝑡_𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑(𝑅) =
𝑝(𝑅)

∑ 𝑝(𝑅′)𝑅′∈𝐿𝑅

While this weighing method is already sufficient for recommendation purposes,

its drawback is that it does not accurately reflect the importance of R1. While

recommendations gathered from longer subsequences of SPE will always be

rated higher than those gathered from shorter subsequences, the difference

between their ratings will be roughly proportional to the difference between the

subsequences’ lengths. The softmax function offers a way to weigh longer

subsequences substantially more by defining

𝑤𝑒𝑖𝑔ℎ𝑡_𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑟) =
𝑒𝑃(𝑅)

∑ 𝑒𝑃(𝑅
′)

𝑅′∈𝐿𝑅

While the standard weighing function might be preferable for certain cases, it was

considered to be inferior to the softmax weighing function due to the perceived

importance of R1. Therefore, the RegPFA RS offers no option to choose standard

weighing for recommendations at this point.

5 Evaluation

To evaluate the accuracy and speed of the recommendations generated by the

RegPFA RS, first several small-scale testcases and finally some larger-scale

testcases were performed. Based on the requirements defined in chapter 4.1, the

exemplary PFA from Figure 5 and Figure 7 were modeled in tsml format and

given to the RegPFA RS Reader as input first. Afterwards, additional PFAs were

created by hand to test the RS ability to handle circles within the PFAs as well as

the weighing function over a large amount of recommendations. Finally, an

exemplary event log used in the Process Mining book by Wil van der Aalst (van

der Aalst 2011) as well as the event log of the 2012 BPI challenge (van Dongen

2012) were used to illustrate the RS’s ability to handle PFAs of considerable size

as well.

5.1 Correctness

Tables in this section will consist of the following columns:

AR: Amount of recommendations

WF: Weight factor

SPE: Series of past events

Expected SPE based: Expectation for recommendations based on SPE. May be

empty if SPE ends with a transition that’s not part of any PFA in the database.

Expected additional: Expectation for recommendations based on frequency of

occurrence of all transitions over all PFAs in the database. May be empty if at

least AR recommendations can be made from SPE

Actual SPE based: Actual output from the Recommender based on SPE including

the probability of each recommendation.

Actual additional: Actual output from the Recommender based on transition

frequencies including the probability of each recommendation

Starting with the most basic case, i.e. a database consisting of only PFA1 from

Figure 5, the tests depicted in Table 1 were performed. As PFA1 constitutes a

rather trivial testcase, it is easy to figure out the expected results by hand to verify

the results of the mathematical operations required to reach the

recommendations. Also, first indicators that R3 and R4 are fulfilled are visible in

row 3 and 4.

Moving on to slightly more challenging testcases, we add PFA3 illustrated in

Figure 7 to the database. Table 2 shows the results of testcases involving both

PFA1 and PFA3. Row 1 provides first evidence for the fulfillment of R6 while rows

2 and 3 showcase that R5 is fulfilled as the additional recommendations always

include (A) and (B) which each have a frequency of 2 over both PFAs compared

to all other transitions with respective frequencies of 1. Note that in row 3, there

was no clear expectation for the third recommended additional transition due to

Table 1 - Testcases based on PFA1. Source: Self-made

Table 2 - Testcases based on PFA1 and PFA3. Source: Self-made

AR WF SPE Expected

SPE based

Expected

additional

Actual SPE

based

Actual additional

1 2 A B - B (1,0) -

2 2 A B A B (0,73) A (0,27)

3 2 A, B EOP A

B

EOP (0,87) A (0,06)

B (0,06)

1 2 - A - A (1.0) -

AR WF SPE Expected

SPE based

Expected

additional

Actual SPE

based

Actual additional

2 2 B E, EOP, - EOP (0,62)

E (0,38)

-

3 2 C D A

B

D (0,57) B (0,21)

A (0,21)

3 2 F - A

B

?

- A (0,42)

B (0,42)

E (0,16)

5 2 F - A

B

C

D

E

- A (0,32)

B (0,32)

D (0,12)

E (0,12)

C (0,12)

that fact. Instead of (E), both (C) and (D) were equally as likely to be

recommended as further indicated by row 4.

Requirements R1 and R2 can be tested using PFA4 as illustrated in the upper

half of Figure 16. Rows 2 and 3 of Table 3 show that an SPE of increasing size

but ending with the same element increases the confidence of the RS in its

recommendation, substantially increasing the probability of (D) while

simultaneously lowering the probability of (B), thereby fulfilling R1. Row 4 then

illustrates that changing the last element of SPE to one that does not occur in the

PFA, namely (F), reduces the confidence to zero, only yielding additional

recommendations instead of SPE based recommendations.

Row 1 further supports the fulfillment of R6, recommending (B) with more than

twice the probability as (D) due to state 2 having a higher overall state probability

than state 6 in PFA4. However, it also indicates a weakness of the RS: Due to

guaranteeing foremost that longer subsequences of SPE lead to higher

predictions, the importance of state probabilities might be undervalued.

Considering state 2 has probability 0,9 while state 6 has probability 0,1, the actual

recommendations of 0,69 for (B) and 0,31 for (D) do not accurately reflect the

likelihood of each transition. Since the ranking of recommendations is still

reflected correctly, this drawback is tolerable since it in turn leads to an adequate

representation of differences in SPE length when making recommendations as

displayed in rows 2 and 3.

Row 5 and 6 of Table 3 showcase how the confidence of the RS in its SPE based

predictions grows with the length of SPE. In row 5, SPE has length 1. Therefore,

the probability to land on a state of which (A) originates is contributes significantly

to the recommendation, leading to a rather confident prediction of (B), but a

cautious prediction of (D), only slightly surpassing the additional prediction (A)

which is recommended due to (A) appearing twice in the PFA. However, once we

add (C) to SPE in row 6, the confidence in predicting (D) grows immensely,

surpassing even (B) now and showing a clear difference between SPE based

predictions and additional predictions.

At last, testcases containing PFA1, PFA3, PFA4 and PFA5 were run. The result of

those are displayed in Table 4 and illustrate the ability of the RS to handle multiple

PFA as well as circles within a PFA. While rows 1 and 2 do not offer considerable

additional insight compared to the last sets of testcases, row 3 and 4 showcase

special requests for the RS, namely requesting the likelihood of all transitions

following (A) as well as the likelihood of all transition to start a process. Defining

AR with a value higher than the number of unique transitions within all PFAs

returns recommendations for all possible transitions, with the added information

whether the recommendation is based on SPE or just an estimation based on the

frequency of the transition itself.

Additional testcases for chapter 5 of the Process Mining book (van der Aalst

2011) as well as the 2012 BPI challenge (van Dongen 2012) can be found in the

appendix. Due to their complexity. the actual PFAs were not included and results

can therefore not be evaluated manually by the reader.

AR WF SPE Expected

SPE based

Expected

additional

Actual SPE

based

Actual

additional

2 2 A B

D

- B (0,69)

D (0,31)

-

2 2 C, A B

D

- D (0,57)

B (0,43)

-

2 2 B, C, A B

D

- D (0,79)

B (0,21)

-

2 2 B, C, F - A

B

- A (0,5)

B (0,5)

3 2 A B

D

A B (0,54)

D (0,24)

A (0,22)

3 2 C, A B

D

A D (0,49)

B (0,37)

A (0,15)

Table 3 - Testcases based on PFA4. Source: Self-made

5.2 Runtime

Separate tests must be performed for the Reader and the Recommender.

Additionally, since the Reader can load the database once and then read multiple

tsml files at a time, but can also be used for single tsml files, a runtime test must

include both options. The Reader’s runtime scales with the size of input PFA, i.e.

their number of states and transitions, as well as with the size of the database.

The Recommender’s runtime scales with the length of SPE, the amount of

recommendations and the size of the database.

5.2.1 Reader

Testing the Reader first, Table 5 displays the following parameters, starting with

an empty database in every single testcase:

Amount: The amount of times the input PFA is read by the reader

AR WF SPE Expected

SPE based

Expected

additional

Actual SPE

based

Actual

additional

3 2 C, A B

C

D

- D (0,45)

B (0,34)

C (0,21)

-

3 2 E, D B

E

EOP

- B (0,36)

E (0,36)

EOP (0,28)

-

99 2 A B

C

D

A

E

B (0,36)

D (0,26)

C (0,22)

A (0,10)

E (0,06)

99 2 - A

B

C

D

E

A (0,51)

C (0,20)

B (0,13)

D (0,08)

E (0,06)

Table 4 - Testcases based on PFA1, PFA3, PFA4 and PFA5. Source: Self-made

States: The number of states in the input PFA

Transitions: The number of transitions in the input PFA

At once (ms): Time in milliseconds for the Reader to terminate if the database is

loaded once and all PFAs are read afterwards

Separately mean (ms): Mean time in milliseconds it takes for the Reader to load

the database and read a single PFA when reloading the database each time

Separately total (s): Total time in seconds it takes for the Reader to load the

database and read all PFAs when reloading the database each time

Examining the results of Table 5, it is easy to see that loading and storing the

database constitutes the bottleneck of the Reader. The average time needed to

read a single PFA is only marginally lower than the time it takes to read several

PFAs without saving and reloading the database after each iteration. Reading

bigger PFAs as expected takes longer time than reading smaller PFA, but even

5000 iterations of the 2012 BPI challenge can be read in close to a minute. For

comparison, the creation of the respective PFA from the 70 MB event log file took

around 30 hours on the same machine.

Finally, loading PFAs separately into the database would require a considerable

amount of time from the user himself in practice. Since all PFAs within the data

folder are read during a single execution of the Reader, the user would have to

move tsml files into the data folder one at a time and start the reader after each

step which, for smaller PFA, would take longer than the Reader itself takes to

Amount States Transitions At once (ms) Separately

mean (ms)

Separately

total (s)

1000 3 2 649 518 518

500 6 6 580 388 194

1000 6 6 1216 885 885

200 15 32 675 504 1001

100 52 211 1524 1374 137

5000 52 211 62558 ??? ???
Table 5 - Runtime evaluation of the Reader. Source: Self-made

execute. Therefore, the runtime tests in column 4 reflect the reality much better

than those in column 5 and 6 and show that the Reader is efficient at handling

large amounts of big PFAs as showcased in row 6, where 5.000 iterations of the

2012 BPI challenge were read in just a minute. Reading the PFA separately was

not tested in this case due to the expected runtime being excessively high.

5.2.2 Recommender

As mentioned previously, the runtime of the Recommender depends on the

length of SPE, the amount of recommendations and the size of the database.

Since each PFA is treated separately, having multiple copies of the same PFA in

the database does not diminish the runtime of the Recommender. For ease of

use, several copies of the same PFA were used in the testcases outlined in Table

6. It contains the following columns:

Amount: The amount of PFAs stored in the database.

States: The amount of states of a single PFA in the database

Transitions: The amount of transitions of a single PFA in the database

AR: The user specified amount of recommendations

SPE length: The length of SPE as specified by the user

Time (ms): The time in milliseconds it takes for the Recommender to execute.

The results indicate that the runtime of the Recommender is mostly dependent

on the size of the database. In fact, for the testcases in rows 6-8, loading the

database accounted for roughly 95% of the total runtime of the Recommender.

Therefore, the effect of SPE length as well as amount of recommendations on

the total runtime is only relevant in larger databases, as exemplified by the

difference in runtime between row 6 and 7 as well as 6 and 8 respectively.

6 Conclusion

The goal of this thesis is to design and implement a RS for business processes

compatible with PFA created by RegPFA. During the design phase, several

requirements for the RS were determined and their fulfillment was verified at

several points within the implementation and evaluation process. The resulting

tool, RegPFA RS, offers a fast and efficient way to create a database containing

several thousands of variably sized PFAs and provide recommendations based

on that database within minutes.

The RS can be customized by users through changing several parameters,

namely SPE, the already transpired events that a recommendation is based on,

AR, the amount of recommendations, and WF, the weight factor used to diminish

the relevancy of recommendations based on shorter subsequences of SPE.

Additionally, a basic fundament for different weighing methods and sort

algorithms was built which can be further expanded to provide the user with even

more customization options.

The drawbacks of the RegPFA RS are solely related to state probabilities. For

large PFA, calculating state probabilities is impossible to do in reasonable time

due to the amount of calculation steps scaling not just exponentially, but

factorially. While they will be calculated for smaller PFA, their relevance is strictly

secondary to the length of SPE by design. As explained in chapter 5.1, this leads

to a ranking of recommendations in line with the determined requirements while

providing possibly misleading probabilities.

It can therefore be concluded that while the goal of designing and implementing

a RS for business processes was reached, the actual implementation is lacking

in some regards. Since the evaluation of correctness and runtime indicate no

Amount States Transitions AR SPE length Time (ms)

250 6 6 10 0 388

250 6 6 10 2 363

250 6 6 1 2 361

5000 6 6 1 2 4615

5000 6 6 1 0 4620

2500 52 211 10 0 41288

2500 52 211 10 2 50933

2500 52 211 3 2 42791
Table 6 - Runtime evaluation for the Recommender. Source: Self-made

issues though, possible improvements to the behavior of the Recommender

regarding state possibilities can easily build on the intermediate results the

Recommender provides.

7 Bibliography

Breuker, D., Matzner, M., Delfmann, P., Becker, J. (2016): Comprehensible

Predictive Models for Business Processes. In Management Information

Systems Quarterly (MISQ) Volume 40(4), pp.1009-1034

Chen, H., Ching, R. H. L., Storey, V. C. (2012): Business Intelligence and

Analytics: From Big Data to Big Impact. In Management Information Systems

Quarterly (MISQ), Volume 36(4), pp.1165-1188

Covington, P., Adams, J., Sargin, E. (2016): Deep Neural Networks for YouTube

Recommendations. In RecSys ’16 Proceedings of the 10th ACM Conference

on Recommender Systems, pp.191-198.

Felfernig, A., Friedrich, G., Schmidt-Thieme, L. (2007): Introduction to the IEEE

Intelligent Systems Special Issue: Recommender Systems. In IEEE

intelligent systems, Volume 22(3), pp.18-21. DOI: 10.1109/MIS.2007.52

Gomez-Uribe, C. A., Hunt, N. (2016): The Netflix Recommender System:

Algorithms, Business Value and Innovations. In ACM Transactions on

Management Information Systems (TMIS), Volume 6(4), Article 13.

Isinkaye, F. O., Folajimi, Y. O., Ojokoh, B.A. (2015): Recommendation systems:

Principles, methods and evaluation. In Egyptian Informatics Journal, Volume

16(3), pp.261-273

Portugal, I., Alencar, P., Cowan, D., (2015). Requirements Engineering for

General Recommender Systems. In arXiv:1511.05262

Shani, G, Heckerman, D, Brafman, R. (2005): An MDP-Based Recommender

System. In Journal of Machine Learning Research 6, pp.1265-1295.

Smith, B., Linden, G. (2017): Two Decades of Recommender Systems at

Amazon.com. In IEEE Internet Computing, Volume 21(3), pp.12-18. DOI:

10.1109/MIC.2017.72

Tondji, L. N. (2018): Web Recommender System for Job Seeking and Recruiting

(Unpublished master’s thesis). African Institute for Mathematical Sciences,

Senegal

van der Aalst, W. M. P. (2011): Process Mining: Discovery, Conformance and

Enhancement of Business Processes. Retrieved from

http://www.processmining.org/book/start

van der Aalst, W. M. P., Rubin, V., Verbeek, H. M. W., van Dongen, B. F., Kindler,

E., Günther, C. W. (2010): Process Mining: A Two-Step Approach to Balance

Between Underfitting and Overfitting. In Software and Systems Modeling,

Volume 9(1), pp.87-111

Van Dongen, B.F. (2012): BPI Challenge 2012 – Event Log of a Loan Application

Process. Eindhoven University of Technology

Vera-Baquero, A., Colomo-Palacios, R., Molloy, O. (2013): Business Process

Analytics Using a Big Data Approach. In IT Professional, Volume 15(6),

pp.29-35

Vidal, E., Thollard, F., De La Higuera, C., Casacuberta, F., Carrasco, R. (2005):

Probabilistic Finite-State Machines – Part I. In IEEE Transactions on Pattern

Analysis and Machine Intelligence, Volume 27(7), pp. 1013-1025. DOI:

10.1109/TPAMI.2005.147

8 Appendix

8.1 Inductive proof of upper limit for merge algorithm

Base step: TP (1) < ⌊𝑃1⌋ + 1

𝑇𝑃(1) = 𝑃1 < ⌊𝑃1⌋ + 1

This holds by default since by definition of the floor function, ⌊𝑥⌋ > 𝑥 − 1 ∀𝑥 ∈ ℝ

Inductive step: TP(i+1) < ⌊𝑃1⌋ + 1

𝑇𝑃(𝑖 + 1) = 𝑇𝑃(𝑖) +
(⌊𝑃1⌋ + 1 − 𝑇𝑃(𝑖)) ∗ 𝑃𝑖+1

(⌊𝑃1⌋ + 1) ∗ (⌊𝑃1⌋ + 1 − ⌊𝑃𝑖+1⌋)𝑊𝐹
 (1)

To simplify the equation, we will first assume that WF = 0. That leads to:

𝑇𝑃(𝑖 + 1) = 𝑇𝑃(𝑖) +
(⌊𝑃1⌋ + 1 − 𝑇𝑃(𝑖)) ∗ 𝑃𝑖+1

(⌊𝑃1⌋ + 1)
 (2)

Inductively, we assume that we already proved that TP(i) < ⌊𝑃1⌋ + 1 holds true.

This is equivalent to:

∃𝑥 ∈ ℝ: 𝑥 > 0 ∧ 𝑇𝑃(𝑖) + 𝑥 = ⌊𝑃1⌋ + 1 (3)

⇔ ∃𝑥 ∈ ℝ: 𝑥 > 0 ∧ 𝑥 = ⌊𝑃1⌋ + 1 − 𝑇𝑃(𝑖)

Now we can replace ⌊𝑃1⌋ + 1 − 𝑇𝑃(𝑖) in (2):

𝑇𝑃(𝑖 + 1) = 𝑇𝑃(𝑖) +
𝑥 ∗ 𝑃𝑖+1
(⌊𝑃1⌋ + 1)

⇔ 𝑇𝑃(𝑖 + 1) = 𝑇𝑃(𝑖) + 𝑥 ∗
𝑃𝑖+1

(⌊𝑃1⌋ + 1)
 (4)

Remembering we assumed without loss of generality that P1 is the maximum

value in LR, we know that

𝑃𝑖+1 ≤ 𝑃1

⇔ 𝑃𝑖+1 < ⌊𝑃1⌋ + 1 (5).

That means that

𝑃𝑖+1
⌊𝑃1⌋ + 1

< 1

⇔ 𝑥 ∗
𝑃𝑖+1

⌊𝑃1⌋ + 1
< 𝑥 (6)

Which, starting from formula (4), leads us to

𝑇𝑃(𝑖 + 1) = 𝑇𝑃(𝑖) + 𝑥 ∗
𝑃𝑖+1

(⌊𝑃1⌋ + 1)
< 𝑇𝑃(𝑖) + 𝑥 = ⌊𝑃1⌋ + 1 (7)

This proves the assumption for WF = 0. If we assume 𝑊𝐹 ≥ 1 now, keeping in

mind that WF is of integer value, adjusting formula (4) to include WF leads to

 𝑇𝑃(𝑖 + 1) = 𝑇𝑃(𝑖) + 𝑥 ∗
𝑃𝑖+1

(⌊𝑃1⌋ + 1) ∗ (⌊𝑃1⌋ + 1 − ⌊𝑃𝑖+1⌋)𝑊𝐹

⇔ 𝑇𝑃(𝑖 + 1) = 𝑇𝑃(𝑖) + 𝑥 ∗
𝑃𝑖+1

(⌊𝑃1⌋ + 1)
∗

1

(⌊𝑃1⌋ + 1 − ⌊𝑃𝑖+1⌋)𝑊𝐹
 (8)

Remembering again that P1 is the maximum value in LR, it holds that

𝑃𝑖+1 ≤ 𝑃1

⇔ ⌊𝑃𝑖+1⌋ ≤ ⌊𝑃1⌋

⇔ ⌊𝑃𝑖+1⌋ + 1 ≤ ⌊𝑃1⌋ + 1

⇔ 1 ≤ ⌊𝑃1⌋ + 1 − ⌊𝑃𝑖+1⌋

⇔ 1𝑊𝐹 ≤ (⌊𝑃1⌋ + 1 − ⌊𝑃𝑖+1⌋)
𝑊𝐹

⇔
1

1𝑊𝐹
≥

1

(⌊𝑃1⌋ + 1 − ⌊𝑃𝑖+1⌋)𝑊𝐹

⇔
1

(⌊𝑃1⌋ + 1 − ⌊𝑃𝑖+1⌋)𝑊𝐹
≤ 1 (9)

Applying formula (9) to formula (8) leads to

𝑇𝑃(𝑖 + 1) = 𝑇𝑃(𝑖) + 𝑥 ∗
𝑃𝑖+1

(⌊𝑃1⌋ + 1)
∗

1

(⌊𝑃1⌋ + 1 − ⌊𝑃𝑖+1⌋)𝑊𝐹

≤ 𝑇𝑃(𝑖) + 𝑥 ∗
𝑃𝑖+1

(⌊𝑃1⌋ + 1)
∗ 1

= 𝑇𝑃(𝑖) + 𝑥 ∗
𝑃𝑖+1

(⌊𝑃1⌋ + 1)

which was already proven to be smaller than ⌊𝑃1⌋ + 1 in formula (7).

We have thus shown that TP (1) < ⌊𝑃1⌋ + 1 and

∀𝑖 ∈ ℕ: 𝑇𝑃(𝑖) < ⌊𝑃1⌋ + 1 ⇒ 𝑇𝑃(𝑖 + 1) < ⌊𝑃1⌋ + 1

8.2 Additional PFA

8.3 Additional testcases

As mentioned in chapter 5.1, the complexity of the PFAs used to run the testcases

in Table 7 and Table 8 impedes their display within this thesis. However, the

results were evaluated by hand and found to be accurate. They can also be

replicated by creating the respective PFA with RegPFA using the following

parameters:

Figure 16 – PFA4 and PFA5. Source: Self-made

bigger_example.mxml of Chapter 5 of the Process Mining book (van der Aalst

2011) as shown in Table 7:

Minimum states: 4

Maximum states: 24

EM iterations: 100

Threshhold EM algorithm: 0,001

Pruning ratio: 1,5

BPI_Challenge_2012.xes of 2012 BPI Challenge (van Dongen 2012) as shown

in Table 8:

Minimum states: 25

Maximum states: 100

EM iterations: 100

Threshhold EM algorithm: 0,05

Pruning ratio: 1,0

AR WF SPE Actual SPE based Actual additional

3 2 - A (0,66) D (0,17)

C (0,16)

5 2 A, C, D E (0,79)

B (0,08)

C (0,08)

D (0,03)

H (0,02)

5 2 F, D B (0,45)

C (0,27)

E (0,19)

D (0,05)

H (0,04)

Table 7 - Testcases based on Chapter 5 of the Process Mining Book. Source: Self-made

T
a

b
le

 8
 -

 T
e
s

tc
a
s

e
s

 b
a

s
e

d
 o

n
 t

h
e

 2
0

1
2

 B
P

I
C

h
a

ll
e
n

g
e

.
S

o
u

rc
e

:
S

e
lf

-m
a

d
e

