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Tracking is one of the key aspects and challenges when developing Augmented Reality applications. It is
essential for determining the position and viewing direction of the viewer, represented by the virtual camera.
Tracking is also used to estimate the position and orientation of real objects, for exmaple to augment them with
virtual pieces of information or interaction with virtual objects. For tracking there exist two different
approaches. Tracking by detection searches every frame the camera transmits for the object to be tracked and —
if found — computes its pose from scratch. Temporal tracking on the other hand computes the relative change in
pose between two adjacent frames. For this, the pose of the previous frame has to be known.

The topic of this thesis will be the implementation and analysis of a temporal tracker which uses neural
networks for pose estimation. The focus will be on analyzing the influence of the architecture of the neural
network, particularly on the performance and precision of the tracking. A tracker is to be built, utilizing a
neural network for pose estimation. The training of the neural network to recognize a certain object requires
training data. To generate real world training data is costly and time consuming. For this reason it will be
generated automatically by a 3D rendering pipeline.

With regards to content, the focus of this work will be:

Research on temporal tracking and neural networks
Familiarization with convolutional neural networks (CNN)
Generating training and test data

Creating a neural network and tracker

Analysis, evaluation and documentation of the results
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Zusammenfassung

Tracking ist ein zentraler Bestandteil vieler moderner technischer An-
wendungen, insbesondere in den Bereichen autonome Systeme und Aug-
mented Reality. Fiir Tracking gibt es viele unterschiedliche Ansitze. Ein
erst seit kurzem verfolgter ist die Verwendung von Neuronalen Netzen. Im
Rahmen dieser Masterarbeit wird eine eine Anwendung erstellt, welche fiir
das Tracking ein Neuronales Netz verwendet. Dazu gehort ebenfalls die Er-
stellung von Trainingsdaten, sowie die Erstellung des Neuronalen Netzes
und dessen Training.

AnschliefSend wird die Verwendung von Neuronalen Netzen fiir Tracking
analysiert und ausgewertet. Hierunter fallen verschiedene Aspekte. Es wird
fur eine unterschiedliche Anzahl an Freiheitsgraden gepriift wie gut das
Tracking funktioniert und wie viel Performance dieser Ansatz kostet. Des
Weiteren wird die Menge der benétigten Trainingsdaten untersucht, der
Einfluss der Architektur des Netzwerks und wie wichtig das Vorhanden-
sein von Tiefendaten fiir die Funktion des Trackings ist. Dies soll einen Ein-
blick ermdglichen wie relevant dieser Ansatz fiir den Einsatz in zukiinfti-
gen Produkten sein konnte.



Abstract

Tracking is an integral part of many modern applications, especially in
areas like autonomous systems and Augmented Reality. For performing
tracking there are a wide array of approaches. One that has become a sub-
ject of research just recently is the utilization of Neural Networks. In the
scope of this master thesis an application will be developed which uses
such a Neural Network for the tracking process. This also requires the
creation of training data as well as the creation and training of a Neural
Network.

Subsequently the usage of Neural Networks for tracking will be an-
alyzed and evaluated. This includes several aspects. The quality of the
tracking for different degrees of freedom will be checked as well as the the
impact of the Neural Network on the applications performance. Addition-
ally the amount of required training data is investigated, the influence of
the network architecture and the importance of providing depth data as
part of the networks input. This should provide an insight into how rele-
vant this approach could be for its adoption in future products.
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1 Introduction

1.1 Motivation

Computing power has been increasing steadily over the last decades. Espe-
cially during recent years, this has resulted in a manifold of new mobile de-
vices. Offering plenty of computing power with little power consumption,
those enable a whole range of new applications. Augmented Reality (AR)
is one of the technologies which have benefited greatly from this develop-
ment. Devices like Microsoft Hololens or Google Glass offer us a glimpse
of what the future has to offer. While this technology is not ready for con-
sumers yet, it shows great potential and may change the way we work and
perceive the world around us. At the time of writing this, Microsoft just
announced the Hololens 2, which has been improved in many key aspects.
It is more lightweight, smaller, has a greater field of view, offers more pro-
cessing power and improved tracking.

Having a closer look at the software, tracking is a notably hard problem
to solve. There are two different cases one might want to consider in the
context of tracking for Augmented Reality. For one thing, the camera has to
be positioned correctly in the environment. With access to RGB-D sensors,
simultaneous localization and mapping (SLAM) techniques can be utilized
to perform this task. As the Hololens demonstrates, this process works
quite well already. The device is capable of setting up a room by scanning
and thereafter navigating inside it. This allows one to place virtual objects
within the physical environment and have them stick to their assigned loca-
tions. The second case is tracking of physical objects, for example to make
them interact with virtual ones or to overlay information. There are various
algorithms like the ICP and particle filters, but they come with limitations,
such as having high computation costs, needing hand crafted features and
not being robust to occlusions.

During recent years, machine learning has been another popular sub-
ject of research. While there are many different algorithms like support
vector machines and decision trees, one type has been a particularly hot
topic and has drawn a lot of attention: Artifical Neural Networks (ANN)
and working on top of that, Deep Learning algorithms. While Neural Net-
works are best known to be used for Artificial Intelligence like Googles
Alpha Go (beat a human Go world champion in 2016) or Alpha Star (beat
a human professional Starcraft 2 player), they have also proven to perform
well in computer vision. Utilizing Convolutional Neural Networks (CNN),
they can be trained for tasks such as the recognition of characters or com-
plex objects. By now there are large image databases like MNIST (character
recognition) and CIFAR (complex objects) which can be used for training
and testing the accuracy of ANNs. There are even competitions held like
the Imagenet Large Scale Visual Recognition Challenge.



The focus of this thesis will be to combine the aforementioned topics
and implement an object tracker which uses a Convolutional Neural Net-
work for pose estimation. The tracker will work temporal, which means it
is not going to calculate the pose from scratch every frame, but calculates
the relative movement of the object between the current frame and the one
before. To train the Neural Network, training data has to be generated.
As this task is costly and time consuming when performed in a real world
scenario, a geometric rendering pipeline is used to generate RGB-D train-
ing images. Finally the results will be analyzed and the possibilities and
problems of this approach will be discussed.

1.2 Structure

This thesis consists of six chapters. At first related works are presented and
discussed, showing different approaches to tracking and how they evolved
over time. This is followed by defining the goals for this thesis in the next
chapter. At this point the concept for creating training data, training a Neu-
ral Network and the tracking process are designed as well. The last part
of the chapter defines technologies and frameworks used in the scope of
this thesis. Chapter 4 provides the foundations for Machine Learning are
provided. This is started by giving general definitions which are essen-
tial to all types of Machine Learning and then providing an overview of
Neural Networks, which also includes a more detailed view at the Convo-
lutional Neural Networks used in the application. The next chapter details
the design of the object tracker, which consists of three stand alone applica-
tions required to cover the different tasks. Here the generation of training
data, the training of the Neural Network and the final object tracker are
explained. Chapter 6.1 focuses on analyzing and evaluating the different
aspects of the tracking applications. It begins with checking how well the
tracking process works for different degrees of freedom, followed by eval-
uating the influence of different aspects like the amount of training data,
the network architecture and the usage of depth data. The thesis is finished
by drawing a conclusion.



2 Related Works

Object tracking has been researched extensively for decades and is already
applied to many practical applications. Examples for common tracking
algorithms are the Kalman Filter [1], Optical Flow [2] and Particle filter [3].
Since many tracking algorithms work with 2D tracking only, the focus will
be on works related to 3D tracking as well as Neural Networks.

Tracking of objects in three dimensional space is a highly geometric
problem, which can be solved with algorithms like the ICP [4]. While the
ICP was intended for registering 3D objects and finds its application for
example in SLAM algorithms, it can also be used for tracking and pose es-
timation [5][6]. Given an object that has moved in space, this movement
can be represented as two instances of this object placed at the start and
end positions. The ICP will try to match their shape and return a transfor-
mation vector. This vector contains the translation and rotation which can
be applied to either object instance in way that both instances will end up
on top of each other. This process requires distinct and large enough objects
to work with, and is computationally expensive. To track smaller objects
with high accuracy in real time, more sophisticated methods are necessary.
Possibilities include algorithms which utilize traditional image processing
methods[7] and particle filters [8], both depending on handcrafted features.

To simplify and automate the process of finding feasible features, re-
cently the use of data-driven methods has been proposed. These try to
leverage Machine Learning algorithms to find optimal feature sets to en-
able fast and robust tracking. An example is the use of Random Forests [9]
in the 3D temporal tracker by Tan et al. [10]. Only using depth data, they
can calculate the displacement between points of the object and the cur-
rent depth frame and feed a random subset of those values into a decision
tree to estimate the change in pose. The random forest is trained with the
object from various viewpoints. Occlusion handling is done in two ways.
For once, the selection of random points makes the tracker robust against
holes in the depth image. To decrease the impact of actual occlusions, the
object on the depth image is divided into two regions and only one of them
is used for random sampling. With this purely being a temporal tracker,
Akkaladevi et al. [11] expanded on this approach and added a component
to perform a randomized global object localization (RANGO). It is used to
initialize the object location, but also for re-initialization in case the tracker
loses the object.

With increasing popularity of Neural Networks, particularly Convolu-
tional Neural Networks (CNN) which perform very well in computer vi-
sion [12], they were picked up for tracking. Gan et al. [13] used the ability of
CNNs to recognize objects to perform temporal 2D tracking of the bound-
ing box of an object, but not the actual pose of it in 3D space. Others solved
a variety of 3D geometric problems like estimating the camera pose from a



single RGB image [14], object pose estimation from a single RGB image [15]
or deriving a transformation between two input images [16].

Oberweger et al. [17] made use of CNNs for hand pose estimation, com-
bining the output of three networks. In their approach they utilize depth
images only. They first feed a recorded depth image into a CNN to predict
an initial estimate of the pose. This estimated pose is used as input for a
second CNN which generates a synthesized image. Both the original and
synthesized image are fed into a third CNN which derives the differences
resulting in a pose update. The update is applied and the process is re-
peated to improve the pose. This feedback loop ensures that the mistakes
made by a CNN trained for hand pose estimation can be corrected. In con-
text of object tracking it is important to mention the difference in nature of
hand-pose estimation. Every joint of a hand is tracked separately, hence the
resulting hand pose actually is a combination of many single joint poses.

Garon et al. [18] expand upon this idea to create a temporal 6 degrees of
freedom object tracker. While the concept of feeding a CNN with two im-
ages to obtain a pose update is the same, there are some major differences.
Instead of just depth data, they make use of a RGB-D image. They also
require just one CNN in their method, the synthesized image is generated
using a geometric rendering pipeline. The pose estimation loop consists
of two steps. First the synthesized image is generated from the previously
estimated pose. Afterwards this image and the current RGB-D frame are
fed into the CNN to obtain the change in pose. Finally, the pose can be up-
dated accordingly and the process is started over for the next input. Their
experiments showed that this setup resulted in a robust tracker which was
also able to handle occlusions when the network was trained accordingly.



3 Requirements and Concept

3.1 Goals

This thesis aims at creating an application which is able to track objects in
three dimensional space and estimate the objects pose. Input will be the
initial pose of the object and a sequence of images in which the object is to
be tracked. The initial pose estimation will not be part of this work. The
output will be the tracking result in form of the relative pose changes every
frame as well as an optional 3D representation of the object rendered onto
the tracked position. To keep the scope of this work manageable, at first
only two degrees of freedom will be considered, moving the object along
the x and y axes. Additional degrees of freedom may be added later on in
case there is enough time left to do so.

The main difference compared to other tracking applications will be the
usage of a Neural Network which is responsible for the tracking part. The
goal is to make the process of manually finding and designing features for
object tracking obsolete. Instead, those features should be learned auto-
matically by the Neural Network. A more robust tracking, especially when
the object is partially occluded, would be a desirable result of this process.
The Neural Network will be trained in advance to recognize the object it
will have to track as well as the changes to its position. The tracker itself
will only need to load the trained Network and feed it with the necessary
inputs to receive the change in pose.

Furthermore the influence the design of the Neural Network has on
the tracking process will be analyzed. There are many different types of
Neural Networks, some of them will be discussed later in chapter 4 about
Machine Learning. As certain types have been proven to be very efficient
for specific areas of application, this work will make use of one which is
well suited for image processing. The design of this specific network type
will be analyzed, which includes different aspects like the type of layers
used, the number of layers, their size and the way they are connected to
each other.

3.2 Concept

The project will consist of three standalone applications. The first will gen-
erate training images, the second will use this data to train the Neural Net-
work and the last will be the actual tracker.

The training image generator will be used to generate a large training
data set. Looking at popular datasets available on the internet, the MNIST
dataset [19] - containing hand written numbers from zero to nine - in-
cludes 60,000 samples for training and 10,000 for testing. CIFAR-10 [20],
a dataset for object classification, contains 50,000 samples for training and



10,000 for testing. Garon et al. [18], which this work is based on, gener-
ated 250,000 training images. Taking these numbers in consideration, the
minimum amount of training images generated for this project should be
around 50,000. The output for every sample will consist of three files, two
images and a text or binary.

Figure 1: Mockups for the image generator. On the left is the full render, on the
right the normalized output. Top: The image shows the object in the
previous position. Bottom: The image shows the object in its current
position. The background for this image is taken from [21].

One image will be a render of the tracked object in its previous po-
sition, using a geometric rendering pipeline. There will be nothing else
added, only the object on a plain background. It is important to note that
the previous position will be the one which was predicted during the last
iteration of the tracker. The second image will be a representation of the
current frame a camera would have recorded. It is the object rendered in its
current position, this time with a background. The second image can either
be fully rendered or the object can be composed onto an existing recorded
image. Garon et al. [18] render their object onto images taken from the
SUN RGB-D dataset [21]. Both images will contain RGB-D data and will be
normalized to a fixed square size. To achieve this a square bounding box
is drawn around the object in the image representing the previous object
position on the empty background. The selected area is then cut out and
scaled to fit a fixed size defined for all images. In the second image rep-



resenting the camera image showing the object in its current position, the
bounding box will be placed at the same coordinates having the same size,
the process of cutting and merging is repeated. This results in two output
images, both of the same size. One showing the object in its previous posi-
tion, perfectly centered, the other showing the object in its current position,
maybe partially outside the selected area. Mockups for the two images can
be found in figure 1.

The text or binary file will contain the transformation vector which was
applied to get from the previous to the current object position. In the first
step, this will be the x and y translation values, which can be extended
with other degrees of freedom (z and rotation) later on. The images will
serve as input for the Neural Network, which should derive the change in
pose from these. The text or binary file will act as a label against which the
output of the network can be compared to.

The second application will take care of several tasks. First a Neural
Network will be created. Since they have proven to perform well at im-
age processing, a Convolutional Neural Network (CNN, see section 4.2.4
for more details) will be used. The application will define the networks
structure, including layers and their parameters, activation functions and
the connections between layers. Once this is completed, the training data
will be loaded. After this the training process is started. It will feed batches
of training data into the network, compute the results, determine the error
and adjust the network parameters accordingly. Once the training process
is concluded, the model (which is the trained instance of the Neural Net-
work) will be saved. The training application should also be able to load
an existing model and continue its training.

Finally, the last application will combine the aspects of image rendering
and Neural Networks to perform the actual tracking of objects. It first has
to be initialized before it can begin the tracking process. The trained model
of the CNN has to be loaded and the geometric rendering pipeline set up.
The source of the input images has to be defined as well. This can either
be a sequence of prerecorded images or a camera feed, both however need
to provide RGB-D images. For testing purposes this work will use a pre-
recorded sequence, which will also provide the initial pose of the object to
track. In the main loop of the program the following steps are performed:

e First the pose of the previous frame (or initial pose for the first itera-
tion) will be used to render a 3D representation of the object in the last
pose it was seen. Like in the training image generator, nothing else
will be added to the image. The same steps to normalize the image to
the desired size have to be performed as well.

e The rendered image as well as the input image of the image sequence
will serve as input for the CNN. The network is run and the change
in pose calculated.



e The output of the Neural Network is then used to transform the pre-
vious pose into the current.

The result of the pose estimation can be visualized. A 3D representation,
only shaded in a single color to have a distinct representation, will be ren-
dered onto the current frame using the new pose and displayed in the view-
port of the application. A successful estimation should cover the original
object. The main loop then continues to process the next input frame. A
mockup for this can be found in figure 2.

Figure 2: Mockup for the graphical output of the tracker. The tracked object is ren-
dered on the estimated current position, which should cover the actual
object in the image. The background for this image is taken from [21].

3.3 Technologies and Frameworks

This project has two main aspects to focus on: rendering of images and
tracking. The tracking is done by a Neural Network and besides the train-
ing, it is only required in the final tracker application. The image rendering
is used at several stages in the project. First of all the training data has
to be generated. As it is too time-consuming to record actual real world
data for training, these images are computed using a geometric rendering
pipeline. In the final tracker the geometric rendering pipeline is required
in two places, to generate additional input images for the Neural Network
(will be discussed in 5.3) and to render a representation of the tracked ob-
ject.

3.3.1 Platform

The platform of choice will be a desktop PC with a CUDA enabled graph-
ics card. This will ensure fast training and computation times utilizing the



GPU acceleration built into the Machine Learning frameworks. All the de-
pendencies for the project like CUDA, Machine Learning frameworks and
the rendering pipeline work on both Linux and Windows. Since Windows
has been my primary operating system and it is easy to set up the depen-
dencies, it will be the OS of choice for this project.

The Machine Learning framework and the geometric rendering pipeline
will both be used in the tracker application of this project. For this reason
it is required that they use the same programming language. However,
while most Machine Learning frameworks use Python as their primary or
only programming language, the language of choice for computer graphics
is C++. Some of the bigger Machine Learning frameworks provide a C++
API as well, hence C++ was chosen to be the preferred language for this
project unless no framework would work well with it. Which framework
was chosen will be the subject of the next section.

The 3D rendering pipeline will be created using OpenGL. The advan-
tage of OpenGL over DirectX is the availability on many different platforms
and most notably, that I have been working with it for years. This also
means that while the applications will be developed on Windows, they can
still be compiled and used on Linux or other platforms if desired. Addi-
tional dependencies are Assimp, GLFW, GLM, GLAD and OpenCV. GLFW,
GLM and GLAD all provide an easy-to-use setup for OpenGL. Assimp is
used to load 3D models and OpenCV to load and save images and do im-
age processing tasks.

3.3.2 Machine Learning Framework

At the time of writing, there are three machine learning frameworks which
are well known, well supported and have large communities around them.
They are TensorFlow, PyTorch and Caffee.

TensorFlow is the biggest of the three. It is an open source project de-
veloped and supported by Google and was released in 2015. TensorFlow
supports CPU as well as GPU computing. It is used in Googles own ap-
plications, mostly for image and speech recognition. While this usage is
mostly hidden in the application itself and not much talked about, the Al-
pha applications have caused big news headlines. As of now there are two
Alpha projects: AlphaGo and AlphaStar. The first one beat a world cham-
pion in the game Go, the latter a professional player of Starcraft 2. Officially
TensorFlow provides a Python as well as a C++ API. While the Python API
worked well, unfortunately I was not able to get the C++ API to work in
an acceptable way. The examples provided by the TensorFlow team only
show working with the C++ API within the TensorFlow project structure,
using Googles internal build tool Bazel. This would mean a massive over-
head for the project compared to using libraries which can be included into
my own project structure. Including the required libraries for the geomet-



ric rendering pipeline would not be easy either, as it meant to include those
additional dependencies into the existing, large TensorFlow project struc-
ture. While there were people exploring the possibility to build libraries
and binaries on your own from the TensorFlow project files, unfortunately
those articles were outdated and did not work anymore with the current
TensorFlow versions.

Caffee is a framework developed by the Vision and Learning Center of
Berkeley University in 2014. While its roots lie within research projects, it
is suitable for industrial projects too. Like TensorFlow it offers APIs for
C++ and Python. Later the Facebook Research team published Caffee2,
which was merged with PyTorch in 2018. For this reason I did not do a
more extensive evaluation of this framework and instead focused on the
last framework, PyTorch.

PyTorch is based on Torch, which was released in 2002 under an open
source license. It was developed by the Facebook Al research team and
was released in 2016. As mentioned above, it was merged with the Caf-
fee2 framework in 2018, combining both projects into one big framework.
While previously the API was available for Python only, just recently a C++
API has been released as well, providing the same interface the Python one
offers. Like TensorFlow it has CPU and GPU enabled computing, but ad-
ditionally it also offers libraries and binaries for use in your own projects.
This makes it a lightweight and easy-to-include alternative to TensorFlow.

Comparing TensorFlow and PyTorch there are just minor differences.
Both projects have been growing rapidly during the last years, with Ten-
sorFlow having the bigger community and being used in more projects.
While the focus of TensorFlow lies on production use, PyTorch has seen
more research usage. Both offer all the functionality needed in this project,
are CPU and GPU enabled and are comparable in speed. Since PyTorch
offers not only a C++ API but also easy integration by providing libraries
and binaries, the decision was made to use this framework for the project.
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4 Machine Learning

In this thesis, Machine Learning (ML), particularly Neural Networks, will
be used for tracking. For this reason this chapter will give a short intro-
duction into those topics. First some general definitions in the context of
Machine Learning are explained, afterwards there will be a look at Neural
Networks. Detailed explanations on the topics in this chapter can be found
in [22] and [23].

4.1 General definitions

Machine Learning is used to perform a variety of Tasks, usually ones that
are "too difficult to solve with fixed programs written and designed by hu-
man beings" [23]. Generally speaking, a task consists of processing a sample
given to the ML Algorithm, analyzing its features and delivering a result in
the context the developer expects. Samples are usually represented by a
vector x € IR", with every entry x; being a feature. Common tasks can be:

e Classification: The sample is to be assigned to one or more provided
classes. Usually this process is described as a function f : R" —
1,...,k. A common output is one or more tuples assigning the sam-
ple to one or more classes, but it is also possible to provide the prob-
ability distribution over all classes. Examples for classification is text
recognition or object classification.

e Clustering: This task is similar to classification. The given sample
is to be assigned to one or more clusters. Usually clusters are not
provided by the designer of the algorithm, but are learned through
finding similarities between samples used for training. Hence the al-
gorithm attempts to find "classes" which distinctly group the samples.

e Regression: The algorithm is tasked with predicting numerical val-
ues for a given sample. This process can be described as a function
f : R" — IR, which clearly illustrates the similarity and difference
compared to a classification task. Tracking, the task at hand for this
thesis, is a problem of regression as well.

To solve a given task, a ML algorithm has to be chosen first. After its
implementation, a model has to be trained. A model is a set of parameters
the algorithm calculates during the training process, which is later used to
determine the output for a given input. The model is trained using an en-
tire dataset, which is a collection of many samples, sometimes also refered
to as data points. A dataset usually contains at least tens or hundreds of
thousands of samples to cover a wide variety of possible in- and outputs.
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Most Machine Learning algorithms, to be more precise their training
process, can be categorized as supervised or unsupervised. Supervised
learning algorithms use labeled samples for training. Classification is an
example for this kind of algorithms. The training data consists of samples
which contain the input, like the image of a number, as well as the class the
algorithm is supposed to assign to it. With this information available, the
ML algorithm can compute a result for a sample input using its current set
of parameters, calculate the error between computed and intended result
and adjust the parameters accordingly. For Unuspervised learning algo-
rithms, only the input values are provided, no additional information on
the expected outcome. The algorithm has to find the parameters which fit
the input data best on its own. This is usually used for tasks like cluster-
ing, for which a general structure of the data is to be found and no specific
classes are necessary or even known.

During the training process, the algorithm attempts to fit the model to
the training data. The goal is to find a model which predicts all the training
data correctly when fed with the training data, but still is able to predict
unknown samples correctly. The ability of a model to fit a variety of func-
tions is called its capacity. The higher the capacity of a model, the greater
the variety of functions it can fit.

Underfitting Appropriate Capacity Overfitting

Xo Xo Xo
Figure 3: Underfitting, overfitting and the appropriate capacity of a model [23]

Two problems which can occur during training are overfitting and un-
derfitting. In case of underfitting, the algorithm is unable to find parame-
ters for the model which result in low error values on the training dataset.
As a result, the algorithm will not be able to score a high amount of cor-
rectly predicted results even on the training data. Most common causes
for this problem are an insufficient number of parameters (low capacity of
the model), a training dataset which is too small or a lack of variety within
the training data. Overfitting is the opposite of underfitting. The trained
model performs well on the training data, but fails to predict new sam-
ples correctly. It is fit too tightly to the training data and does not allow
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for deviations in data it has never seen before. The causes can be similar
to underfitting, like a training dataset which is too small or has too little
variety. In this case however, the number of parameters and features used
for the model may be too high (high capacity), and it may help to reduce
the complexity of the model. The concepts of underfitting, overfitting and
a properly fit model are illustrated in figure 3.

4.2 Neural Networks

Neural Networks is an area of Machine Learning that has gained a lot of
popularity recently. While the basic idea and structure is the same for any
network that is built, there are a wide variety of concepts and designs,
focusing on different tasks. This section will discuss the basic concepts
of Neural Networks and present the architecture of Convolutional Neural
Networks, which will be used for the tracker.

4.2.1 Neurons

A Neuron - or perceptron - is the smallest unit of a Neural Network, every
network is built upon this concept. The basic idea of a neuron is to take an
arbitrary number of inputs and return a result in one output. A schematic
of this idea can be found in figure 4.

Figure 4: The structure of a neuron

In a basic neuron the inputs are first weighted and then summed up. A
bias can be added onto the result, which adds a precondition for activation
of the unit, for example in case the input data has a general bias. As a final
step, an activation function ¢ is applied which determines the output of
the neuron. Before training, the weights are initialized with random values
and will get adjusted during the training process.

There are a great variety of activation functions. As their name implies,
they determine the conditions for a neuron to activate and influence the
output as well. A few examples for common and often used activation
functions are:
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e Binary: The simplest type of activation function. When defining the
Neural Network, a threshold is assigned. When the sum of weighted
inputs exceeds the threshold, the neuron will output 1, otherwise it
will output 0.

fz) =

0 forz <6
1 forz >0

e Sigmoid: The sigmoid activation function clamps the input values
between 0 and 1. Positive values will result in an output of > 0.5, and
negative ones in an output of < 0.5.

1

f@) = 1

e Tanh: The tanh activation function is very similar to the sigmoid
function. As the name implies, it applies the tanh function to the
input. This results in the input values being clamped between -1 and

1.
2

f(x) = tanh(z) = TTeo

e ReLU: The Rectified Linear Unit (ReLU) activation function clamps
negative values to 0 and output positive values as is. There are slightly
altered versions like the leaky or parametric ReLU, which do not
clamp negative values strictly to 0 and provide a slope for negative
values as well.

flz) =

0 forx <0
T forz >0

Which activation function to be used depends on the task at hand. For
certain tasks which have been researched extensively already, there are best
practice activation functions that work well. For less researched subjects,
ReLU usually is a good starting from. It provides a good behavior for train-
ing, which I will discuss later in section 4.2.3.

This basic concept can be extended by adding more components to it,
for example to create a recurrent, memory or kernel unit [24]. Recurrent
and memory units are self explanatory, they either receive their own output
as input for one or more iterations or store a number of values from past
executions. The kernel unit will be interesting in context of tracking, as it
applies an n-dimensional filter to the input like traditional filtering done for
image processing. It is one of the main building blocks for Convolutional
Neural Networks.
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4.2.2 Structure of a Network

A Neural Network is composed of many connected neurons, which are
organized in layers. It has one input and one output layer, as well as a
number of hidden layers. The input layer is connected to the inputs and
the number of neurons it contains corresponds to the number of features of
the sample. The output layer can have any number of outputs, it usually is
a lot smaller than the input layer and every neuron of it returns a desired
feature value. The number and size of hidden layers can vary greatly, the
same goes for their behavior, which calculations they perform and how
they are interconnected. An example for a Neural Network is provided in
tigure 5

Output layer

Hidden layers <

Input layer

Figure 5: Example for a Neural Network

The neurons on a layer are not interconnected, but they connect to neu-
rons of the previous and next layer, with the exception of the input and out-
put layers, which only connect to the first or last hidden layer respectively.
In the example a Neural Network is shown which consists exclusively of
fully connected layers. In a fully connected layer, every neuron of a layer is
connected to every neuron of the other layers.

There are many different architectures [24], the simplest one is a Feed
Forward Network. It is composed of an input and an output layer and has
just one hidden layer in between. The neurons are fully connected. This
can be extended to a Deep Feed Forward Network, the only difference be-
ing there can be more than one hidden layer. Among other network archi-
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tectures which can also utilize recurrent and memory units, the most im-
portant ones for this thesis will be Convolutional Neural Networks, since
they are used in image processing. They will be discussed later in section
424,

4.2.3 Training a Neural Network

Training a Neural Network is done in several steps. Once a network has
been modeled, its parameters are initialized with random values. Then
training data is fed into it, calculating a (most likely incorrect) output. For
this step, the neurons of each layer process their weighted inputs, apply
the activation function and output the result to the next layer. this pro-
cess is repeated for every layer until the output layer is reached. A cost
function is used to compute the error between the computed and expected
values. Commonly used cost functions are Sum of Squared Differences,
Cross-Entropy and Exponential cost.

Once the training data is processed and the error calculated, the actual
training of the network can take place. Most commonly a process called
Backpropagation is used to accomplish this. The error value is processed
by the network in reverse, starting at the output and ending at the input
layer. At every node, its calculations are performed in reverse and the
gradient between input and output values is determined. A part of this
gradient, depending on the learning rate, is added to the input weight to
incorporate the error. The goal is to improve the input weights so future
computations will be closer to the desired result. Since a neuron can have
multiple inputs, this process has to be repeated for each incoming connec-
tion until all weights have been adjusted.

The activation function chosen has a big impact on the learning process
as it will impact the gradient. Learning progress can only be made when
the gradient is unequal to zero, as zero means there is no change in value.
Considering the Sigmoid function, it has high gradients around the ori-
gin, but their value decreases quickly towards negative or positive infinity.
This means for larger values, be it positive or negative, when computing
the gradient it will result in a zero or near zero value. A percentage of this
value, the learning rate, defines how much of the error will influence the
weights of the current neuron. If the gradient is zero or near zero, the influ-
ence of the error is minimal to none on this neuron. Especially when using
tanh and sigmoid activation functions the learning process can get stuck
because of this. The ReLU activation function improves on this behavior
by passing on positive values and setting negative values to zero. How-
ever, for negative values there is the same problem. For this reason there
are variants of the ReLU, like leaky ReLU, which allow for a small amount
to pass through, even if it is a negative value. This prevents the training
process from getting stuck because even if small, the gradient can never be
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Zero.

To train a Neural Network a big amount of data is necessary. Those
training datasets usually contain tens to hundreds of thousands of samples.
This allows for a wide variety of input data to cover as many scenarios as
possible. Since the process of Backpropagation is computationally expen-
sive, the training is usually done in batches. Batch sizes vary on network
size, architecture and the problem at hand, common sizes are around 50 to
100 samples. The output of the Neural Network is computed for all sam-
ples in the batch, the resulting error averaged and then a Backpropagation
pass done.

4.2.4 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are designed with image process-
ing in mind. They combine convolution layers, which apply kernels to
the input vectors in the same way traditional image processing does, and
fully connected layers to solve tasks like object recognition. The convo-
lution layers will do feature detection, like corners and edges, the fully
connected layers interpret those features, for example do an image classifi-
cation. What makes CNN really stand apart from traditional image recog-
nition algorithms is, that not only the fully connected layers are trained,
but the convolution layers as well. Hence they will adjust automatically to
fit the task at hand, which makes CNN a powerful tool.

The feature detection part of a CNN usually is comprised of three types
of operations: convolution layers, pooling layers and the activation func-
tion. Unlike Neural Networks which use fully connected layers and usually
work on one dimensional vectors, they work on surfaces or volumes. Since
in this thesis the input always is an image, the highest dimension a volume
can have is 4, which either means a multi channel or single 2D image.

When setting up convolution layers, instead of defining the number
of neurons of a layer, the filter size and number of filters is specified. The
number of neurons is automatically determined by the size of the input im-
age. Each neuron is only connected to the inputs which are close enough to
be inside the specified filter size as well as every corresponding depth layer
of the input (figure 6, right). A convolution is performed on this window
which results in a single value for the part of the image the filter covers.
One filter results in a 2D output vector (figure 6, left).

For convolution layers two additional considerations have to be made,
the treatment of borders and sharing of parameters. The treatment of bor-
ders is done using zero-padding, a process which adds inputs around the
image borders with a value of zero. There are three cases of zero-padding
worth mentioning. One is adding no padding at all, a kernel with size k
will only be applied to positions which are fully within the image dimen-
sions. This results in the image shrinking in size by k — 1 pixels whenever
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Figure 6: A single convolution layer. Left: Schematic of how a filter is applied to a
28x28 pixel sized image with 3 channels. Right: Neuron connections to
the input for a single channel image with a filter size of 3.

a convolution layer is applied. This is called a valid convolution. The sec-
ond setting adds (k —1)/2 pixels around the border, the center of the kernel
will visit every pixel of the image and the output will be of the same size.
This is called same convolution. The last case adds a zero padding of £ — 1
pixels, which means the center of the kernel will leave the image to the ex-
tend the filter window and image overlap by just one row of pixels. This
results in the image growing by k£ — 1 pixels every time a convolution layer
is applied and is called full convolution. An illustration of these cases can
be found in figure 7. Usually either valid or same convolution is used.

T Sy

Figure 7: Three cases of zero-padding (added padding in black). Left: Valid, the
image shrinks. Middle: Same, the image size remains constant. Right:
Full, the image size grows.

In fully connected layers, their parameters are usually stored locally for
each neuron. In convolution layers it is possible to share them between
kernels. This results in less memory usage. There are several options for
parameter sharing. In unshared convolution, no sharing is used at all.
No matter at which image position a kernel is applied, it has its own local
weights that get trained and used for calculation later. This is useful when
it is known that certain features will only appear in certain areas of the
image, for example when doing face recognition, but needs a lot of mem-
ory. Traditional convolution is the opposite of unshared convolution, as it
shares the same parameters across all kernel applications. This approach
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will recognize the same feature no matter where it occurs in the image and
uses very little memory. Finally tiled convolution combines both previous
approaches. A set of kernels is defined which are rotated through as the
filter moves through space. Immediately neighboring locations will have
different filters, but the memory requirements are a lot less than for a lo-
cally connected layer. A comparison of all methods of parameter sharing
can be found in figure 8.

Figure 8: Parameter sharing options between kernels. Top: Fully locally con-
nected, no sharing. Middle: Tiled sharing. Bottom: Traditional convolu-
tion
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Pooling layers have the purpose to reduce the output size, hence sim-
plifying it. This reduces the number of parameters that need to be learned.
A common method of doing this is max pooling. A pooling window size
is defined, for example 2x2. Furthermore a stride parameter can be added,
which determines how fast the window moves across the input. This win-
dow is then moved across the input vector with the defined step size and
the maximum value in it is taken as output for this layer. An example for
this operation can be found in figure 9.

Pooling 5

1
2
3
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Figure 9: A pooling operation with window size of 2x2 and step size of 2.

The final step of the feature detection is applying an activation function.
This works exactly like already discussed in 4.2.1. When for example using
the ReLU activation function, this removes all negative outputs and leaves
positive ones untouched, which is ideal for image processing. Depending
on the activation function, the two steps of pooling and activation function
can be swapped in their order.

The second part of a CNN, the feature interpretation, is done by a fully
connected network. To be able to use the output of convolution layers in
a fully connected layer, it has to be flattened first. This operation converts
the output of the previous convolution layers into a 1D vector, which can
be fed into a fully connected network. This part works exactly as discussed
earlier in this chapter. An example for a complete CNN can be found in
tigure 10.

/ — AR
[
i

— TRUCK
— VAN

D D — BICYCLE

FULLY
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU  POOLING FLATTEN B SOFTMAX
FEATURE LEARNING CLASSIFICATION

Figure 10: Example for a complete Convolutional Neural Network [25]

20



5 The Object Tracker

In this chapter the object tracker is presented. The project is divided into
three separate applications, which will be discussed in the following order:
Up first is the generation of training data to train the Neural Network that
is responsible for the tracking. After this I will explain the training process
and finally the object tracker application itself.

5.1 Generating Training Data

The process of generating the training data has been adopted from the one
Garon and Lalonde use in their Deep 6-DoF tracker [18]. The application
generates samples consisting of three files each. An image of the current
(observed) position, an image of the previous position and a binary which
contains the transformation vector which was applied to get from previous
to current position. While at first only training data for object translation in
x and y direction is necessary, the application supports generation of data
for full six degrees of freedom.

No

Generate
next
Sample

Initialize render
Start pipeline, objects
and materials

Iterations
left?

No

Figure 11: Flowchart: Generate training data - main loop

Figure 11 shows the main loop of the application. As a first step the
OpenGL render pipeline is initialized. Then the 3D objects, materials as
well as the shaders are loaded and prepared for use. The sample creation is
done in a double loop. The inner loop iterates over a directory in which the
background images are stored, generating a sample for every image in that
directory. The outer loop makes it possible to re-use the same background
images several times in case not enough background images are available.
It is important that for every background image its depth data is available.
Instead of background images a full 3D scene can be used as well. In this
case just one loop is necessary, calling the sample generation routine the
desired amount of times.

The image generation is fairly linear with a few options that can extend
it, shown in Figure 12. First, if RGB-D background images are used, those
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Figure 12: Flowchart: Generate training data - sample generation

are loaded. In case of the SUN RGB-D dataset [21], the information is dis-
tributed over two images. One contains the RGB image, the other holds
the depth information. Both images are combined to a single RGB-D image
later in this pipeline using a shader.

It is possible to perform postprocessing on the image representing the
current position of the object, also called observed image. In the final
tracker, this image can be provided by different sources. In my case it will
be an in application rendered image sequence to keep it simple for this the-
sis. Since all images are generated, there is no postprocessing necessary.
However, it is also possible to provide the tracker with a recorded image
sequence or real time video feed. Since the sensors and lenses of cameras
can not produce a perfect representation of the real world, it is necessary
to consider these factors when generating the samples so the Neural Net-
work can be trained with those impurities. In the postprocessing stage,
the image can be enhanced with blur, color shift and noise. Their values
can be changed, the default ones are taken from [18]. Blur willbea 3 x 3
mean filter. The color shift is applied in HSV color space to the hue and
luminosity channels with a random value of h ~ U(—.05,.05), where U is
a uniform distribution. The noise will use a gaussian distribution N (0, o)
with o ~ U(0,2). A noise texture will be generated which will be used
by the postprocessing shader. The blur is applied to the RGB and depth
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channel, the color shift and noise only to the RGB channels.

Next the poses for both images are generated. They represent the actual
pose found in the current input image, also called observed pose p,; ., as well
as the pose which was predicted during the last iteration of the tracker,
called predicted pose p,,, . ;-

The object to track needs to be placed in the center of the world co-
ordinate system and the camera is placed on a random pose around it.
To do this a random position (#, ¢) on a sphere surrounding the object
is sampled. The sampler uses a uniform distribution U, which results in
6 ~ U(—180°,180°) and ¢ = cos™ 1(2z — 1) with x ~ U(0, 1). The sphere ra-
dius, which represents the distance between camera and object, is sampled
the same way, using a uniform range which represents the use case for the
application best. Having the distance and sphere coordinates, the camera
position and rotation can be calculated. Additionally, a camera roll angle
is sampled with v ~ U(—180°,180°). All of these values are now used to
determine the camera matrix for the observed camera pose p, ..

To obtain the previous camera pose, a random displacement vector is
sampled. For a full 6-DoF tracker it contains a small translation ¢, , ., uni-
formly sampled for a range appropriate for the current application, and a
rotation 7, . which is uniformly sampled between —10° and 10° for every
rotation angle. The final displacement vector willbe d = [t;, ty, t., 74, 1y, 72].
The limited version of the tracker, which at first tracks only x and y direc-
tion, will use only that part of the displacement vector, resulting in d =
[tz,ty]. The inverse of this displacement vector is now applied to p,,, to
obtainp,, ..

—

Figure 13: Predicted image generation steps. Rendering the object followed by
normalization.

Now the predicted image i,,q is rendered using a textured version of the
objected to be tracked. In addition to a diffuse color texture an ambient
occlusion texture is used as well. The object is placed at the center of the
world coordinate system and the camera at the previously obtained p,;c4-
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Two light sources are used, one directional white light and one ambient
light. The directional light always points downward with regard to the
camera viewing direction. The background is black, which is initialized
when clearing the frame buffers. The bounding box for the object in the
image is determined. To allow for the object movement with respect to the
observed image, its size is increased by 15%. The image is cropped to the
size of the bounding box and resized to fit a 150 x 150 pixel image size. Ad-
ditionally, the depth pixels are shifted. For this the mean depth value of the
object is computed, the difference between that mean and 128 is calculated
and the result is added to the depth values of the image. This step ensures
that, no matter how close or far the object is from the camera, the input
images for the Neural Network will always have the same starting depth,
resulting in the same relative depth movement. The image is then saved.
The depth image is stored in the alpha channel of the image to eliminate
the need of saving two separate images. Figure 13 shows the output of the
steps.

Figure 14: Observed image generation steps. Rendering the object, composition
onto background, postprocessing and normalizing.

Next the observed image iops is created. The camera is positioned at pops.
In case a complete virtual scene is used, it is rendered with the object. The
image only needs to be cropped to the bounding box obtained in the previ-
ous step, resized, normalized in depth and saved. If a background images
is used, the object is rendered in the same manner it was done for iy 4.
Instead of pointing downwards, the light source direction is sampled uni-
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formly on a sphere using the same process explained earlier to determine
the camera position. Afterwards two additional render passes are applied.
First the object is composed onto the background image. Then the postpro-
cessing can be applied to the result. The image is also finished by cropping
it to the bounding box, resizing, normalizing the depth and saving it. Fig-
ure 14 shows the output of each step and figure 15 shows the composed
depth image.

Figure 15: Depth for the observed image.

As a last step, the displacement vector d is saved as a binary file, which
concludes the sample generation.

5.2 Training the Neural Network

This part of the project is about setting up and training the Neural Network
which will be used later on to do the tracking. This is done using PyTorch
as discussed earlier. A n-dimensional vector is also called a tensor in Py-
Torch, hence I will use both terms interchangeably. The initial network is
structured the same way Garon and Lalonde have defined [18]. The struc-
ture of it is visualized in figure 16.

As discussed earlier, a Convolutional Neural Network (CNN) is used
for tracking. The network takes two inputs, the predicted image which
is generated from the previously estimated pose and the observed image,
which is the current video frame. The images are normalized, using the
method described before in section 5.1. Both are passed through a convo-
lution layer, which is configured to have 24 filters with a 5x5 window size.
Then a max pool operation is performed, which reduces the image size to
half and an ELU activation function is applied. The ELU activation func-
tion is defined as follows [26]:
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Figure 16: The structure of the Convolutional Neural Network.

T ifx >0
f@) = {a(exp(az) -1) ifx <0

While the already discussed ReLU activation function clamps negative
values to a minimum of 0, the ELU activation function saturates at a min-
imum of -1. The advantage of ELU over ReLU is that values are not just
clamped, but they converge against -1 in negative direction. This ensures
that the learning process will not get stuck for negative values (the gradient
is 0 for all negative values in ReLU).

The separate layers are then concatenated and will get processed at the
same time by every layer coming up. The combined image is put through
three more convolution layers, all using 48 filters with a size of 3 x 3, each
followed by another max pool and ELU activation operation. The result is
a three dimensional vector of size 7 * 16 * 48 (image height * image width *
channels) which has to be flattened for further processing. This will convert
it into a one dimensional vector of length 5,376 which can be processed by
fully connected layers.

As the next step a dropout layer with a dropout rate of 50% is added. A
dropout layer is only active during the training process. A given number
of inputs, in this case half of them, will be randomly selected for every
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execution of the network. These inputs will not be passed on to the next
layer following the dropout layer. This helps to prevent overfitting of the
network.

Two fully connected layers form the end of the CNN. The first will re-
duce the input to an output size of 50 and uses the ELU activation function.
The second reduces these inputs to the network output size, which is 6 for
a full 6-DoF tracker and 2 for the simpler version tracking only two direc-
tions. It is the only layer in the network which uses not the ELU but a tanh
activation function.

load existing
model
Y
Initialize ~
»| Load data
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Process all samples
in batch with < Load batch
Neural Network

Training
data
left?

Compute loss

!
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Backpropagation i weights

Figure 17: Flowchart: Training the Convolutional Neural Network

The actual training process is shown in figure 17. First the CNN is pre-
pared. In case an already trained model is found it is loaded and used for
further training. If not a new model is created and the weights initialized
with random values. Then it is transferred to the GPU. The next step is to
load the training data. The samples are read from a given directory. While
the binary displacement vector can be moved to a PyTorch tensor without
any additional processing, the images which are read using OpenCV have
to be reformatted. The OpenCV Mat class into which the images are loaded
stores them in a per pixel fashion. However, the PyTorch tensor requires a
per channel storage. For this reason the image has to be split into its chan-
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nels and then concatenated correctly before moving it to the tensor. Once
this process is done the training data is moved to the GPU as well.

Now the training process starts. The training data is processed in batches
with a batch size of 64. This means 64 samples are loaded and processed by
the Neural Network before adjusting its weights. The average loss for all
64 samples is computed using the mean squared error. For this average the
backpropagation is conducted, which computes the gradient for the loss at
all neurons in the network. Doing this for a batch of samples instead of
every sample decreases the computation time significantly, but it comes at
the cost of accuracy. This loss is usually compensated for by using a high
number of samples as well as using them several times during a training
process. Finally the weights are updated. This done using an Adam opti-
mizer.

Processing all samples of a dataset once is called an epoch. The whole
training process is now repeated several times until a defined number of
epochs is reached. As mentioned employing several epochs compensates
for using batches and averaging the results. This is possible because the
data loaders provide the batches with randomized samples.

After the training is concluded the trained model is saved. It can either
be further refined by training it with other datasets or used in the tracker
application.

5.3 The Object Tracking Application

The tracking application combines both main elements of the previous ap-
plications, the geometric rendering pipeline and the Neural Network. It
will load and generate the data required to feed to the Neural Network
and then processes it to acquire the change in pose. Figure 18 provides an
overview of the tracking application.

First the core elements of the application are prepared before entering
the main loop. This step consists of initializing the Neural Network as well
as the geometric rendering pipeline. The Neural Network has to be de-
fined to match the structure of the one that was trained. Then an object
of this Network is created and the trained parameters are loaded from the
file they were saved to. The initialization of the Neural Network is final-
ized by transferring it onto the GPU if CUDA is available, otherwise the
CPU is used for calculations. Afterwards all components of the geometric
rendering pipeline are initialized, like creating the output window, load-
ing shaders, objects and materials and creating cameras, lights and frame
buffer objects (FBOs). Since this is a temporal tracker it is also important to
initialize the predicted pose at this point, so the tracker has a pose to start
with.

The main loop begins with creating the inputs for the Neural Network.
First the predicted image is rendered. Similar to generating the training
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Figure 18: Flowchart: The object tracker

data this means to render just the tracked object using the predicted pose.
The result is stored in a FBO for later use. Next the current frame is created.
In the scope of this thesis it is generated on the fly by loading a RGB-D
image from the SUN RGB-D dataset [21] and rendering the object on top
of it using the current pose. This step can easily be replaced by loading
the data from any other source, like a video, image sequence or camera
input. Both images are then processed to create the actual input required to
feed the Neural Network. The bounding box for the object is determined
and both images cropped to its size. The depth values of both images are
normalized using the same process described in 5.1.

After preparing the images, they are converted to tensors and uploaded
to the GPU. The Neural Network is then executed using those tensors as
inputs. It returns a single tensor which represents the displacement vector.
It needs to be transferred back to the CPU before the values can be read. The
transformations are then applied to the previous predicted pose to obtain
the new one.

Finally the output is rendered, which is a two step process. First the
unchanged version of the previously rendered or loaded current frame is
drawn using a screen filling quad. Then the object is optionally rendered
on top of this image, using the new predicted pose and a simple, single
color shader. Both outputs are shown in figure 19.
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Figure 19: Top: Unchanged output of the current video frame. Bottom: Output of
the current video frame with the object rendered on top of it using the
last predicted pose.
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6 Analysis and Evaluation

In this section I will investigate various aspects in the context of this ob-
ject tracker and its usage of Neural Networks. First there will be a general
analysis of the applications the way they were developed, focusing on the
quality of the results as well as the performance of the different parts. Af-
ter this I will have a look at how changes in network architecture affect
training times and the tracking results and performance. The section will
be concluded by checking the importance of the depth data included in the
Neural Network input.

The system used for training the Neural Network and running the tracker
is a Intel Core i7 4790k with 16GB RAM and a nVidia GeForce GTX 1080Ti
GPU with 11GB memory. Training the network and processing the data
while tracking is both done on the GPU as this results in significantly in-
creased computation speed.

6.1 Tracker Performance Evaluation

The tracker has been built to support up to six degrees of freedom, three
translation and three rotation axes. The only adjustment necessary to switch
between different degrees of freedom is to change the number of outputs
the Neural Network has. Of course the training data has to be generated
accordingly and in the tracking application all outputs have to be applied
to the predicted pose. Evaluation of the tracking was done in several steps,
starting with tracking x and y translations to the pose (hereafter referred to
as 2-DoF tracking), then tracking of all 3D translation axes (3-DoF tracking)
and finally full 3D tracking with all translation and rotation axes (6-DoF
tracking).

For training the 2-DoF tracking network 50,000 training samples were
generated. In each sample the change in pose is a translation along the x
and y axes by a random value between -0.2 and 0.2 units. The training was
done in three iterations, each training the Neural Network using all 50,000
samples for a total of 30 epochs. Considering the amount of images and
their size, it would not be possible to keep all of them stored in the memory
of the graphics card. Hence the training data was split into sets of 10,000.
This resulted in the diagram showing 50 epochs per iteration, which corre-
sponds to 10 epochs for each set. With each iteration the learning rate of the
Neural Network was decreased to refine the learning process, starting at a
rate of 0.005 and ending at 5E-5. After each iteration, the trained network -
also called model - was tested inside the tracking application to check the
tracking performance. The total training duration for all epochs was about
57 minutes.

After the first iteration the object tracking was already working. When
rendering the object on top of the input frame using the predicted pose,
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Figure 20: The upper images show the input frames, the lower ones show the ob-
ject in its predicted pose rendered on top. Left side: The object in its
starting position. Right side: The object was moved.

it remained centered on the object as it was displayed on the input frame
(figure 20). However, when the pose was not changing there was a notice-
able amount of jitter, indicating that more training was necessary. The next
iteration resulted in a visible decrease of the jitter to a very subtle level, but
was not able to eliminate it completely. The last iteration did have no fur-
ther visible changes. Further training might decrease the jitter more, but
given the nature of Neural Networks and the low floating point numbers
that cause this problem it seems unlikely to disappear completely. It can be
solved by introducing an epsilon value which ignores small values in pose
changes around 0. This results in a stable resting position with the tracking
still working.

The graph in figure 21 shows the change in error value over the time of
training and confirms the observations. During the first iteration (epochs
1-50) the error value decreases rapidly, but has not reached its lowest point
yet. The graph smoothes out over the second and third iteration (epochs
51-150) and reaches a constantly low error value.

Overall, the tracking limited to x and y axes works very well. The dig-
ital representation rendered on top of the input frame sticks to the middle
of the object. Even rapid movement of the camera / object does not result
in losing the tracked object.

In the next step the z axis was added to the Neural Network to enable
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Figure 21: Error rate over time during training for 2 and 3-DoF Networks.

3-DoF tracking. As already stated, this only required to change the number
of outputs of the Neural Network from two to three. The training process
was identical to the 2-DoF network, using the same amount of samples,
iterations and epochs. Like when training the 2-DoF network, after every
iteration the performance of the network was checked. The training process
took about 58 minutes and therefore just one minute longer than the 2-DoF
network. This may be connected to the additional output, but since the
difference is very small there is also the possibility that it is just a variance.

The first attempt of training the network did not have any normaliza-
tion of the depth data yet. While the translation along the x and y axes still
was working fine, there was no change in pose when translating along the
z axis. After adding depth normalization, which shifts the depth values
to the center of their range of values, the translation along the z axis was
working too. This normalization process ensures a relative change of depth
values similar to the normalization done when cropping the input images
to the bounding box of the object. With the depth normalization in place
the results are similar to the 2-DoF network. After the first iteration signifi-
cant jitter is visible, decreasing to be more subtle with the second and third
iteration. Figure 22 shows the output of the tracker with the object now
being translated along all three axes.

Like for the 2-DoF network, the graph in figure 21 shows the change in
error value over the time of training. It is by far not as smooth and takes
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Figure 22: The tracker showing the object in two different positions, the predicted
pose rendered on top of the input frame.

longer to get to a low error value, but this had no visible influence on the
object tracking task. The graph also shows that the baseline of the error
value is higher in general and most likely will remain so even if it would
smooth out completely. This is to be expected, since the mean squared error
function is used to compute the value. Adding another value, even when
very small, will increase the total unless it reaches 0. Looking at the error
value in isolation it seems to indicate more training is necessary to bring
it to the same smoothness the 2-DoF network achieved. However, consid-
ering the performance in the tracking application the Neural Network has
been trained sufficiently.

While the tracking itself is working, there are two problems when it
comes to extreme poses. When the object is very close to the camera a lot
of jitter appears. In the opposite case, when the object is far away from
the camera, it has increased jitter at first and with further increasing the
distance the tracking is lost and it starts to drift off. In the first case the
object may be too close to the camera. This could result in the bounding
box, which is even larger than the object, leaving the bounds of the image,
causing undefined areas. These undefined areas could cause the problems
when trying to estimate the pose with the Neural Network. The problem
might be solved when limiting the bounding box to the image size even
when parts of the object are cut off and adjusting the training data accord-
ingly to include this situation. However when the object gets too close to
the camera too many details of the shape and depth data will get lost, which
will impose a limit on how close objects can be tracked either way:.

As for the second case, neither the size of the bounding box nor the
lower resolution shape should have a significant impact on the tracking
performance since both parameters are normalized. It is more likely that
the trained differences in depth between the shape of the object and the
background get too small to be registered anymore. Similar to the closeup
case, increasing the amount of samples by including far away positions
may increase the distance an object can be tracked at. But this will have
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a limit as well, a point at which the depth values of the object and back-
ground are too similar to gain any meaningful information. This also might
give a hint at the importance of the depth data for the tracking process in
general, which is discussed later in section 6.3.2.

Aside from the two cases mentioned the 3-DoF network performs the
tracking task just as well as the 2-DoF network. The pose sticks to the object
and rapid movement is no problem.

Finally the network was adjusted for 6-DoF tracking by increasing the
amount of outputs to 6. Since these additional dimensions add a lot of pos-
sibilities to the pose changes, the number of training samples was increased
to 150,000. The training rate is kept at the same range and decreases from
0.005 to 5E-5. The net was trained for about four hours. The graph in figure
23 shows the development of the error during the training process.
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Figure 23: Error rate over time during training for the 6-DoF Network.

The error has decreased noticeably, but the curve does not get smooth.
It is also quite a bit higher than the lower degrees of freedom nets. The
lowest error value reached is about 0.1679, but jumps up to over 0.2 reg-
ularly even at the end of training. Compared to that the 3-DoF network
stays constantly below an error value of 0.001 and the 2-Dof is even lower
at less than 0.0001, which is a very big difference, even given the additional
outputs.

Looking at the error value it is to be expected that the tracker will not
work properly, and this is confirmed when using the network in the track-
ing application. When applying only the translation output of the network
to the predicted pose the tracking still roughly works, but it has a lot of
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jittering with very big jumps. When adding the rotation output to the new
predicted pose the object starts to randomly turn and when moving the
object tracking is lost completely.

Identifying the problem is not an easy task, given it could be situated
in any of the applications and training a Neural Network is a blackbox
process. It would need more extensive research and gathering experience
to solve, for which the amount of time available to write this thesis is not
enough. While I tried to stay true to the information given by [18], not all
required details are provided, which adds to the difficulty. For this reason
I will forgo trying to get the 6-DoF tracking to work in favor of analyzing
Neural Networks for tracking more thoroughly by using the 2-Dof and 3-
DoF networks.

To close this section I have a short look at the performance during track-
ing. Rendering the predicted pose with the geometric render pipeline takes
about 0.1ms, which makes it barely a factor considering the the time needed
by the rest of the application. However, copying the image from GPU
to CPU, calculating the bounding box and performing the postprocessing
(depth shift, cropping) takes 10ms which is a lot in comparison. But since
rendering the object in its predicted pose is a mandatory step of this algo-
rithm this has to be done and cannot be further optimized. In my case the
observed image is not loaded from an image sequence but generated dur-
ing runtime too. While the rendering process itself does not add much with
0.15ms, copying and postprocessing the image needs another 7ms. When
using a pre-rendered image sequence this could be reduced by about 6ms,
since the processing only takes about 1ms with the GPU to CPU transfer
taking up most of the time. For the last part, predicting the pose by process-
ing the input images with the Neural Network and applying the resulting
displacement vector to the predicted pose takes about 6ms. This process
also has no further room for optimization. Changing the number of out-
puts for different degrees of freedom does not affect the computation time
by a significant degree, it stays at around 6ms. This was expected since the
majority of the network did not change. Adding the times up it takes about
23ms every frame to perform these operations. Some general operations
needed to complete a 3D rendering application will add another 2ms total-
ing in 25ms for a fully rendered frame, which will result in a steady rate of
about 40fps.

6.2 Impact of the Amount of Training Data

To check the impact the amount of data used for training has on the perfor-
mance of the Neural Network, the same 2-DoF network was trained with
a different number of samples for the same amount of epochs. Figure 24
shows two graphs which picture the development of the error rate over
time. The graph was split into two for clarity and the 50,000 sample error
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rate was provided in both for reference.
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Figure 24: Error rate over time during training for a 2-DoF network with different
amount of training samples. Both graphs include the 50000 samples for
comparison.

The error rate still decreases over training, but it does not get as low
anymore as before. Also it is noticeable that with decreasing the amount of
samples, the error rate keeps jumping up and down and does not get to a
steady point compared to when using a high amount of samples.

Since the amount of samples decreased and the number of epochs re-
mained the same, this also meant the training time decreased as well. While
the original 50,000 samples took about 57 minutes as already mentioned
earlier, the consecutive training procedures took about 55, 55, 26 and 5 min-
utes. The 30,000 and 10,000 sample size passes took about as long as the
50,000 samples, which is caused by the way the training is done. The data
is split into sets of 10 which are trained for 10 epochs each. After all sam-
ples were used once the training rate is reduced and the process repeated.
In this context, each of the 50,000 samples was used for 3 sets, while each
of the 30,000 was used for 5 and of the 10,000 for 15 sets. The 5000 and 1000
sample passes still used 15 sets, hence the reduced training time.

The tracking works in all cases still surprisingly well, even when us-
ing only 1000 samples. Idle tracking has the usual jitter to it but it does
not grow significantly worse by reducing the amount of samples. No-
ticeable changes only occur when moving the object. With providing less
samples for training, the predicted pose starts to lag behind the actual one
and when moving away from the center of the screen tracking can get lost.
Also when moving the camera rapidly the tracking might not recognize all
movements, but catches up again within a few frames. As expected this
decline in tracking quality is most obvious when training with only 1000
samples. When decreasing the amount of samples further it is expected
that the tracking will not work anymore very soon.
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Reducing the training time instead of the amount of samples or a com-
bination of both will most likely have a bigger impact on the performance
of the network than reducing the number of samples alone. The decrease
in training time happened automatically in the previous example when de-
creasing the amount of samples low enough while not increasing the num-
ber of epochs. Looking at the graphs of the error rate over time which were
provided previously, all show a big initial decrease in error rate and suggest
that a short training time will have the biggest effect on the performance.

6.3 The Impact of the Neural Network Architecture

With the Neural Network being the central component of the tracking ap-
plication, it is worth investigating further. While the architecture used until
now was provided by Garon et al. [18], in this section changes will be ap-
plied to it like adding and removing layers or adjusting parameters. The
goal is to provide an insight into which adjustments could be made to im-
prove tracking performance and how they impact training and execution
time.

6.3.1 Layers and Parameters

First it is checked whether the size of the Neural Network can be further
reduced and whether processing speed can potentially be gained. By do-
ing so it is to be expected that the stability of the tracking will suffer once
a minimum has been reached, which should also show in the error rate
during training. Since the original net was meant to support six degrees of
freedom, there may be some room to perform those changes. The 2-DoF
network will be used for this purpose since its error rate got the lowest and
smoothest, which will make changes to the error rate the most obvious. As
a reminder, the original structure of the Neural Network can be found in
tigure 16 in chapter 5.2 for reference. The training process uses the 50,000
samples generated for the 2-DoF network and 150 epochs with different
training rates.

At first the preprocessing of the two input tensors with one convolu-
tion layer each is removed. The rest of the network remains unchanged.
The question is how much the network relies on finding features in the in-
put images separately before concatenating them and treating both inputs
as one. On starting the training process, it already becomes clear that this
change would break the network completely. The error was very high and
did not go down at all. It was completed within 59 minutes, so it took about
the same time to train as the unchanged 2-DoF network, even though two
layers were missing. When testing the network tracking was lost immedi-
ately, even when the object remained idle.
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Figure 25: The altered structure of the Neural Network. The additional convolu-
tion layer which was applied to each input was combined and moved
to take place immediately after the concatenation.

To counteract the removal of the two layers, an additional convolution
layer was added after the concatenation. It used the same parameters of the
convolution layers applied to the input before the concatenation took place
and hence just moved this step. It still is a small decrease in the networks
size as only one convolution layer will be used instead of two. The training
process again took about as long as the original network with a total of 56
minutes. This time the error rate ended up almost identical with the orig-
inal network and the tracking test confirmed it was working just as well.
The execution time during runtime did not change either, the original and
reduced network both took about 3-4ms in average to compute. Besides
being able to move this processing step to another place in the pipeline, it
is not too surprising there is no or a barely noticeable performance gain.
The same amount of data has to be processed, in one case this is done sepa-
rately and in the other combined. The adjusted network is shown in figure
25 and the error rate can be found in the left graph of figure 26.

Next the influence of the last three convolution layers is investigated,
the ones that are processed after the concatenation in the original network.
For this first one, then two of them are disabled. With one less the net-
work needs a bit longer to reach a low error value but otherwise, nothing
changed. It takes the same amount to train and process the data. This is
shown in the left graph in figure 26. The tracking works just as good as
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Figure 26: Error rate over time during training for a 2-DoF network with different
architectures. Left: Different preprocessing options. Right: Changing
the number of main convolution layers.

the original when used in the tracking application. When deactivating two
of the convolution layers it has the same effect removing the preprocessing
layers had, which is why it is not shown anymore on the graph.

The last part of the original network that has not been touched yet are
the two fully connected layers at the end. Since one is the output layer
which cannot be removed and the other is the only one connecting the con-
volution layers and the output layer it makes no sense to remove this one
either. So this part remains unchanged.

The tests show that it is possible to reduce the size of the network with-
out losing its capability to track the object. However, there seems to be
no noticeable advantage in execution time when training the network or
processing the input data. On the contrary, when changing the network to
track a higher number of degrees of freedom, further condensing its struc-
ture may result in poor tracking results. Hence the network appears to be
in its optimal form already and it might be better to add additional features
on top to improve the tracking performance.

Adding more convolution layers to the network will most likely not im-
prove the tracking quality. When the input images have been processed by
all existing convolution layers their size already is down from 150 x 150 to
7 x 7 pixels. Reducing the size even further will make it hard for the fully
connected layers to register meaningful features. For this reason I will not
pursue this approach. Instead fully connected layers will be added after
the convolution layers, which reduce the information output by the convo-
lution layers more slowly. Two cases were considered. The first was adding
a fully connected layer with 512 to 50 neurons, the second added another
1024 to 512 neurons on top. Both variants were trained for about one hour
with 50,000 samples and uses a 3-DoF network. The choice fell upon this
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over the 2-DoF network since its error rate has not been as consistent and
low and if the additional layers would add any improvement, it should be
more visible than by using the 2-DoF which had a decent and stable error
rate already.

Just one more layer did not change too much. Looking at the left graph
in figure 27 shows the error rate is relatively similar to the one of the origi-
nal network. It takes a bit longer to reach its low point, and it also got some
additional spikes. The tracking works as expected, but did not improve.
Adding a second layer did have the same effect as removing the second
convolution layer or removing the preprocessing layer. Since the error rate
is high and it is similar to behavior encountered and pictured before, it is
not included in this graph to not distort the other curves.

102 2
) 0 \ NETE _
—— unchanged —— unchanged
—— 1 additional FCL ——  half
21 - 21 double
—
o
g
m 1 7 7 1 v‘ MM
ol 1 ol Mm‘ubm'{,,ww \w&w\a'w« N
| | | |
0 50 100 150 100 1
Number of Epochs Number of Epochs

Figure 27: Error rate over time during training for a 3-DoF network with differ-
ent architectures. Left: Different fully connected layers (FCL). Right:
Different number of filters for convolution layers.

The last property tested in this section was changing the number of fil-
ters for the convolution layers. The number of filters represents the number
of different kernels applied to the image on this convolution layer. Instead
of telling the layer which kernels to use, for example a Sobel filter, the net-
work learns them on its own. Decreasing or increasing the number of ker-
nels will reduce or increase the number of features the network is able to
learn on a single convolution layer, which may influence the tracking pro-
cess as well. Since it takes a long time to train a network, two settings will
be tried. Cutting the number of filters per layer in half in one and doubling
them in the other case. The resulting error rate graph can be found on the
right in figure 27.

The total training time was reduced a little bit to about 55 minutes from
58 minutes for half the number of filters, while it increased to about 66
minutes when doubling it. The error rate was not influenced significantly.
Halving the number of filters seem to make the result a bit more unstable
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while the higher number of filters doing the opposite. When testing the
trained networks in the tracking application, tracking worked well in all
cases. Unless reducing the number of filters even more, changing it on its
own without other changes does not seem to improve the tracking results
anymore.

6.3.2 The Importance of including the Depth Data

While investigating different degrees of freedom and network architec-
tures, the question arose how important the addition of the depth data is
for the tracking process. For this reason the 2-DoF network was altered
to receive pure RGB input in one instance and only depth data in another.
The network was trained with 50,000 samples for 150 epochs (30 epochs
per sample). The samples used for training were the same generated for
the normal 2-DoF network. Of those either the RGB channels or the depth
values were taken as input for the network. The training process took about
46 minutes for training the RGB only network and about 26.5 minutes for
the depth only one. While a reduction in training time was to be expected
since the first layer of the Neural Network had to process less data, it was a
surprise to see it go down that much. For comparison, the RGB-D version
of the 2-DoF network took about 57 minutes to train. The development of
the error rate while training is shown in figure 28.

The error rate clearly shows that as soon as either RGB or depth data
are missing it becomes significantly more unstable. This means either of
those two pieces of information cannot be omitted for the tracking to be
fully working. However, even though the depth channel provides only a
third of the data compared to the RGB channels combined, it seems to get
lower and more consistent. In section 6.1, when discussing the problems
the 3-DoF network was having with extreme poses, it was assumed that
the depth data might be more important than the RGB data. This graph
seems to support that assumption.

Next the trained networks were put to the test in the tracking applica-
tion and the assumptions made when only looking at the error rate were
confirmed. The RGB and the depth data alone, each in its own scenario, did
not perform very well on their own. When using the depth only network
there was a noticeable increase of jitter in the resting position of the tracked
object. Moving the object around resulted in the predicted pose lagging
behind and the tracking lost the object very easily. Yet the tracking was
working to some degree. When doing slower movements that did not get
too close to the borders of the window they were recognized and the pose
updated accordingly. On the other hand the RGB network did not work at
all. Even in the resting position the predicted pose was jumping around the
actual object position and when moving it. The best case one could hope
for was that the pose would adjust slightly in the direction the object was
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Figure 28: Error rate over time during training for 2-DoF networks which use only
the RGB or Depth channels of an image. The RGB-D results are addi-
tionally provided for reference.

moved, but in general it was still stuck at the location the object started.

These results show the importance of having both, the RGB image data
and the depth information for the tracking to work. However, it also con-
firmed the importance of the depth data within this process, especially
when compared to the plain RGB image.

6.3.3 The usage of CPU and GPU

Until now every task using the Neural Network was computed on the GPU.
For both cases, training and processing tracking data, the network as well
as the data had to be transferred to the GPU before the computation could
be done. The result had to be transferred back to the CPU for further pro-
cessing. This process takes up additional time, hence the question arises
whether it is feasible to perform computations on CPU only.

By design Neural Networks are highly parallel. While the layers de-
pend on the input they receive from the previous one, the neurons on each
layer are independent from each other. For this reason it is possible to com-
pute all of them in parallel. It is also not necessary to wait for a layer to fully
complete all of its computations. Once the required inputs for a neuron on
the next layer are available, its computation can be started. Even modern
CPUs commonly only have four to eight cores, the more expensive ones
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and server processors can have up to 64 at the time of writing. While their
cores are slower in raw computation speed, GPUs offer a lot of them, easily
outperforming a CPU when doing highly parallelizied tasks. The nVidia
GTX 1080Ti which was used for computation offers 3584 cores. A training
task that took about 10 minutes to finish on the CPU was done in about 30
seconds on the GPU. This shows the CPU is not an option when it comes
to training a Neural Network.

On the other hand this might change when processing just one sample
with a fully trained network. Two factors come to mind when considering
this case. First there is no backpropagation pass needed when not actively
training the network. As a reminder, the backpropagation pass is necessary
to update the weights of a Neural Network. Since in this step the compu-
tation direction of the network is reversed, which requires the computation
of derivatives, it is very expensive and time consuming. For this reason
even when training on the GPU the training data is usually processed in
mini batches, which means a small amount of samples is computed by the
network (e.g. 64) and the backpropagation is performed only once for the
average error of the batch. Secondly, not all devices, especially mobile ones,
that might be used for production purposes may provide a dedicated GPU
which offers general purpose computation capabilities.

The Neural Network is transferred to the GPU just once at the begin-
ning of the application, which makes this step a non factor for the actual
tracking process. All steps necessary for tracking, which include transfer-
ring the inputs to the GPU, processing them by the network and transfer-
ring the output back to the CPU, take up a total of about 6ms when using
the 3-DoF network. This is now changed to be done by the CPU only. Com-
pared to the GPU computation this task now takes about 57ms, which is
significantly worse. Computing the network on a CPU does not seem to be
an option, even when only computing for one input without backpropaga-
tion.
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7 Conclusion

In the scope of this thesis a temporal object tracker was successfully imple-
mented which utilizes Neural Networks for the tracking process. To use it
for tracking, a Convolutional Neural Network which takes two images as
inputs - the object in its previous pose and the current frame - was defined
and trained with generated training data. The tracker performs in real time
and enables tracking up to three degrees of freedom, the translation of the
object along the X, y and z axes.

Currently rotating the object, which would add another three degrees
of freedom for tracking, is not possible. According to Garon et al. [18] the
Convolutional Neural Network which was implemented should be able to
track rotation as well. This can also be seen in videos they provide of the
tracking process. Neural Networks are a complex topic in on their own
and by design they are more like a blackbox than a system in which prob-
lems can be easily tracked. This makes it particularly difficult to find and
identify possible sources of error, especially when combining them with
another notoriously difficult topic in tracking. Therefor getting the tracker
to register full six degrees of freedom is a subject for future research.

The analysis of the tracker and the Neural Network, especially the change
in network architecture, provided an insight in how the tracker works and
how it could be further optimized. It requires only a relatively small amount
of data when tracking two degrees of freedom, but including additional
degrees of freedom will need an appropriately increased number of sam-
ples. The Neural Network which was implemented for this tracker seems
to be very optimized already, as simple changes like removing or adding
layers, reorganizing them or changing parameters did not result in visible
improvements in speed or tracking performance. However, this does not
conclude that there are no more improvements that can be made. It will
require more time, extensive research and testing to find ways to optimize
tracking speed and quality. An important insight gained was on the signif-
icance of providing the depth data with the images. It was shown that by
processing the depth data on its own, the tracking process was rudimen-
tary working. On the contrary the tracking was not working at all when
using the RGB data only, indicating the supportive character of this data.

The implementation of the tracker certainly has room for optimization.
When looking at the tracking process as a whole, first transferring the ren-
dered image of the object in its previous pose to the CPU, performing some
post processing and then pushing it back to the GPU as input for the Neu-
ral Network seems like a waste of computing time. For future iterations
it should be checked whether it is possible to never transfer this data and
perform all computations necessary on the GPU directly.

Considering real world applications for tracking like Augmented Re-
ality and autonomous systems, this kind of systems usually are very lim-
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ited in the computing power they can provide. They also may not have
a dedicated processor which can be used to outsource the highly parallel
computation task of a Neural Network. As shown earlier, the computa-
tions necessary for tracking can be done by a CPU without losing too much
performance. Hence a subject for future research could be whether this al-
gorithm can be used on mobile or embedded systems to realize real time
tracking. It would also be interesting to compare the performance of differ-
ent algorithms to see how this approach fares against others.

Everything considered, using a Neural Network for tracking is an in-
teresting and promising approach, especially when taking all the recent
advances in Machine Learning into account. It renders tedious steps like
manually crafting tracking features obsolete and replaces them with an au-
tomated process. Besides a higher number of degrees of freedom there are
other aspects covered in papers which I did not have the time to have a
look at, robustness against occlusions being one of them. This subject has a
lot of potential and offers many research possibilities.
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