
Fachbereich 4: Informatik

Deformable Snow Rendering,
Rendering von Schneeverformungen

Bachelorarbeit

zur Erlangung des Grades Bachelor of Science (B.Sc.)
im Studiengang Computervisualistik

vorgelegt von

Artur Wasmut

Erstgutachter: Prof. Dr.-Ing. Stefan M�uller
(Institut f�ur Computervisualistik, AG Computergraphik)

Zweitgutachter: Kevin Keul, M.Sc.
(Institut f�ur Computervisualistik, AG Computergraphik)

Koblenz, im September 2019

Erkl�arung

Ich versichere, dass ich die vorliegende Arbeit selbst�andig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Ja Nein

Mit der Einstellung der Arbeit in die Bibliothek bin ich einverstanden. � �

. .
(Ort, Datum) (Unterschrift)

Abstract

Accurate snow simulation is key to capture snow's iconic visuals. Intricate
methods exist that attempt to grasp snow behaviour in a holistic manner.
Computational complexity prevents them from reaching real-time perfor-
mance. This thesis presents three techniques making use of the GPU that
focus on the deformation of a snow surface in real-time. The approaches
are examined by their ability to scale with an increasing number of defor-
mation actors and their visual portrayal of snow deformation. The �ndings
indicate that the approaches maintain real-time performance well into sev-
eral hundred individual deformation actors. However, these approaches each
have their individual restrictions handicapping the visual results. An exper-
imental approach is to combine the techniques at reduced deformation actor
count to bene�t from the detailed, merged deformation pattern.

Zusammenfassung

Eine genaue Schneesimulation ist der Schl�ussel zur Erfassung der charakte-
ristischen Visualisierung von Schnee. Aufwendige Methoden existieren, die
versuchen Schneeverhalten ganzheitlich zu ergreifen. Die Rechenkomplexit�at
dieser Ans�atze hindert sie daran, Echtzeitf�ahigkeit zu erreichen. Diese Arbeit
stellt drei Methoden vor, die unter Verwendung der GPU eine echtzeitf�ahige
Deformation einer Schneeober��ache darstellen. Die Ans�atze werden hinsicht-
lich ihrer wahrheitsgetreuen Schneedarstellung untersucht und nach ihrer
F�ahigkeit, mit einer zunehmenden Anzahl von schneeverformenden Objek-
ten zu skalieren. Die Ergebnisse zeigen, dass die Methoden bei mehreren
hunderten schneeverformenden Objekten ihre Echtzeitf�ahigkeit beibehalten.
Jedoch benachteiligen die charakteristischen Einschr�ankungen jener Metho-
den die visuellen Resultate. Ein experimenteller Ansatz ist es, die Anzahl
der schneeverformenden Objekte zu reduzieren und durch Zusammenf�ugen
der Methoden ein genaueres, kombiniertes Verformungsmuster zu erzeugen.

Contents

1 Introduction 1

2 Related Work 2
2.1 Physical Simulation . 2

2.1.1 Animating Sand, Mud, and Snow 2
2.1.2 A Material Point Method for Snow Simulation 3

2.2 Case Studies . 5
2.2.1 Deformable Snow Rendering 5
2.2.2 Deferred Deformation 6
2.2.3 Screen Space Decals and Billboard Clouds 9

3 System Model 10
3.1 Goals . 10
3.2 Model Assumptions . 11
3.3 Scene . 12

4 Implementation 13
4.1 Overview . 13

4.1.1 Setup . 14
4.1.2 Render loop . 16

4.2 Snow Deformation Techniques 17
4.2.1 Snow Deformation via Render Target 17
4.2.2 Deferred Deformation 18
4.2.3 Billboards . 21

5 Evaluation 22
5.1 Visual Appearance . 22
5.2 Performance . 25

6 Experiments 27

7 Conclusion and Outlook 30

References 31

Appendices 33

i

1 Introduction

Snow is incredibly di�cult to simulate truthfully in computer graphics. Its
behaviour is nearly impossible to capture within a uniform framework. To
that end, several methods have emerged that are �exible enough to simulate
snow masses of varying properties. Recent developments lead to the cre-
ation of the material point method used in Disney's popular movie Frozen.
However, these methods' huge drawback is their computational complexity
and consequently their time consumption. At best case scenarios, several
minutes are required to render a single frame.
This thesis highlights several methods which are able to run in real-time
when given reasonable restrictions. Speci�cally, the explored methods per-
tain to the deformation of snow terrain. Due to continuous developments in
consumer graphics hardware and their increasing role as a GPGPU 1, there
is a bene�t in leveraging their highly e�cient power to o�oad homogeneous
computational tasks in parallel. As each presented technique makes use of
the GPU in one way or another, it is of interest to explore their performance
advantage. Moreover, the techniques each put di�erent properties into fo-
cus, hence their visual output is compared to another. The performance and
visual result are weighed against the set restrictions to answer the question
whether these techniques are a viable alternative.
The next section serves an overview of the previously mentioned material
point method and a precursor by Sumner, O'Brien and Hodgins. Addition-
ally, a case study of each snow deformation technique is presented. Based on
this, a section is dedicated to the conceptualization of a system model and
its implementation. Here, each technique is embedded into an interactive
simulation. An evaluation discusses the performance and visual output of
each technique separately. The experiments section explores the deforma-
tion technique's applicability to sand surfaces. Furthermore, two technique's
resulting deformation is combined and applied to a surface. Finally, a con-
clusion is drawn that compares the summarized results with each other and
an outlook for future research is given.

1General Purpose Graphics Processing Unit

1

2 Related Work

2.1 Physical Simulation

2.1.1 Animating Sand, Mud, and Snow

The work of Sumner, O'Brien, and Hodgins [SOH99] describes a technique
which allows for deformation of various ground environments in response to
a moving actor. Through a combination of displacement and compression
algorithms with variable properties sand, mud, and snow ground behaviour
may be simulated.
The ground material consists of a uniform rectilinear grid of appropriate
resolution and is de�ned as a height �eld. During each time step, a ray
per grid point is cast that checks for intersections with a rigid body. If the
body is below the surface, the surface height is adjusted to the intersection
point. Additionally, a �ag is set indicating a change in height. In the next
step, an algorithm generates a contour map for all �agged grid points, as
seen in �gure 1. The contour map contains the distance to the closest non-
�agged grid point and is used for the displacement of the ground material.

Figure 1:

Calculated
contour map,
excerpt from
[SOH99].

The subsequent displacement step redistributes
the material that has been deformed by a rigid
body. The grid point's contour map value is
shifted to the closest neighbour with a lower
value. This process is repeated until all values
have been redistributed to the closest non-�agged
grid points, thus forming an outline, referred to
as a ring, around the rigid body. This can be seen
in step C of �gure 2. The grid points' height is
increased and depicts the rigid body's displaced
material. The displacement step only shifts the
contour map's values to the �rst ring of unaf-
fected grid points, hence the height is adjusted in
an unrealistic way. A �nal erosion step readjusts
the height, forming a realistic mound. At this
stage, the erosion algorithm's parameters may be
varied to in�uence the mound's form.

Figure 2: Individual Stages, excerpt from [SOH99].

2

Figure 3: Timing results of one second of simulated motion per number of defor-
mation actors (bikes). Excerpt from [SOH99].

The paper further explores options of reducing algorithmic complexity
by storing the grid as a hash table and only using grid cells within the rigid
body's bounding box. Moreover, a parallel implementation for multiproces-
sor machines is presented. Despite the improvements, considerable time is
required to render a simulated second, as shown by �gure 3. However, the
results were captured on a Silicon Graphics Power Challenge system with 16
195MHz MIPS R10000 processors and 4GB of memory. A valid judgement
is di�cult to make as a comparison with modern hardware is necessary.

2.1.2 A Material Point Method for Snow Simulation

The material point method [Sto+13] is a technique using a combined ap-
proach of particle- and grid-based systems, thereby harnessing the ability to
depict varied snow dynamics, covering solid- and �uid-like properties.
Based on the PIC 2 method developed by [SZS95], the idea behind MPM is
to track the Lagrangian particles' data, such as mass, momentum, and defor-
mation gradient, and propagate it to a Eulerian grid. This allows simulating
mesh connectivity within the grid needed for stress-based force evaluation.
In turn, the grid's calculated data is propagated to the particles, creating a
feedback loop.
The procedure consists of several steps. Initially, the particles are rasterized
to the grid. Using weighting functions, the particles' data is transferred. The
particle's volume is estimated and passed to the grid. This volume estima-
tion happens only once during the �rst time step. Consequently, the grid
forces are computed. With the given data, the grid velocity is updated and
grid-based body collision is resolved. The newly calculated grid data is now
propagated to the particles. Here, each particle's deformation gradient as
well as their velocity is updated. Finally, particle-based collision is resolved
and the particle position is updated.

2Particle-in-Cell

3

Figure 4: Material Point Overview, excerpt from [Sto+13].

The paper exploits the available parameters and presents their visual
e�ect on the snow material. Further limitations of this method are high-
lighted. For example, most parameters are hand-tuned and air interaction
is disregarded. Possible future research is directed at sand simulation and
hardware acceleration by means of GPGPU techniques.
Although the material point method o�ers a visually convincing result, its
main draw back is its computational complexity, therefore requiring consid-
erable time to render a frame. Figure 5 shows the performance at di�erent
grid resolutions and particle counts for selected scenes. The results were
captured on an Intel Xeon X5550 8-core machine clocked at 2.67GHz.

Figure 5: Simulation times for example scenes with di�erent particle counts and
grid resolutions. Excerpt from [Sto+13].

4

2.2 Case Studies

2.2.1 Deformable Snow Rendering

An idea to depict deformable snow is through the use of (virtual) displace-
ment heightmaps. As explained by Barr�e-Brisebois in [Bar14], heightmaps
for accessible rooftops and streets covered with snow are dynamically allo-
cated based on size, characters, and visibility. To �ll the heightmap with
data, the snow-a�ecting objects are rendered in white from a bottom-up
view of the surface using an ankle-high orthogonal frustum similar to �gure
6.

Figure 6: Schematic of the ankle-high frustum setup. Excerpt from [Bar14].

In a consecutive step, the rendered texture is post-processed; an image
blur is applied. The resulting data is accumulated in a ping-pong-like fashion
and added to the existing pre-allocated heightmap. Since the game is set in a
snowing environment, a small value is subtracted every iteration to emulate
the snow trails re�lling.

Figure 7: Render target
generated from
the character's
movements.
Excerpt from
[Bar14].

An assumption made here is that the snow
is placed on �at geometry, therefore virtual dis-
placement is achieved via relief mapping and re-
quires no raycasts. Furthermore, the displace-
ment is independent of the geometry's triangle
density, thus an implementation on hardware
such as the Xbox 360 [Mic] without tessellation
features is possible. Nonetheless, an improved
approach using hardware tessellation is available
on PC. Here, the heightmap is treated as a depth
bu�er and consists of two channels, a minimum
height �eld and the projected displacement. The
displacement is applied globally to the snow sur-
face and calculated using the height �eld and the
normal map. Combined with an additional macro
normal map, the displacement forms snow banks.

5

There are several advantages to using tessellated geometry. Shadows
follow the surface and shift with the deformation, and the trails cast a shadow
themselves. Additionally, ambient occlusion will properly occlude the trails.
Performance-wise, the heightmaps update requires less than 1ms on consoles
and has a low memory footprint of 2-4 MB, depending on the �oating point
precision.

Figure 8: Visual result of tessellated snow deformation. Excerpt from [Bar14].

2.2.2 Deferred Deformation

A modern technique presented by Michels and Sikachev in [MS16] to deform
snow is called deferred deformation.
Given a terrain mesh and its corresponding snow mesh along with several dy-
namic objects to interact with the snow, a common approach to depict snow
deformation is to render the terrain and the snow mesh into a heightmap
from a top-down or bottom-up orthographic view. Afterwards, the dynamic
objects' height is rendered into a deformation map using the previously ac-
quired heightmaps to clamp the values. Finally, this deformation map is used
to o�set the snow mesh's height. The disadvantage is that height values from
the terrain and snow need to be gathered each time and the dynamic objects
require their own draw call as well.
Michels and Sikachev suggest that the necessary snow height is provided
by the vertices of the snow mesh itself during the render pass, hence the
heightmaps need not be rendered. Accordingly, the deformation height can
be clamped when it is sampled instead of when it is rendered, allowing to
pre-calculate an approximate deformation map requiring only the dynamic
objects. During the rendering of the snow, the precise deformation is calcu-
lated, thus the process is deferred.

6

The central observation during the development of this algorithm is that the
desired deformation shape is approximated by a quadratic curve. Conse-
quently, it can be calculated using the following formula:

deformation height = point height+ (distance to point)2 · artist′s scale

Instead of rendering the objects, deformation points are used to calculate
the quadratic curve. These deformation points are stored in a global bu�er
and a compute shader is dispatched, calculating the deformation for a given
pixel area per point. Since deformation heights may overlap at any given
time, atomic operations are required.

Figure 9: Trail depression with and without elevation. Excerpt from [MS16].

As seen in �gure 9, trail elevation is added to the trail depression for
increased overall appearance. Elevation occurs whenever the deformation
height is greater than the snow height. Nevertheless, this requires addition-
ally storing the original vertical height of the deformation point, referred to
as foot height, as a trail elevation should only occur when a point is low
enough to cause a trail depression. Figure 10 illustrates both possible cases
where higher deformation height can occur and why encoding the foot height
is necessary. To accomplish this, the 32 bits provided by the deformation
texture have to be split into 16 bit each. The deformation height is kept in
the most signi�cant 16 bits for the atomic operations and the remaining 16
bits are reserved for the foot height.

Figure 10: Schematic of deformation height above snow height. Excerpt from
[MS16].

7

During the snow render pass, the following equations are introduced that
are necessary for the elevation calculation:

depression distance =
√

snow height− foot height,

distance from foot =
√

deformation height− foot height,

distance from foot = depression distance+ elevation distance,

elevation distance = distance from foot− depression distance.

The depression distance is de�ned as the distance between center of defor-
mation and end of depression. Similarly, the distance from foot is de�ned as
the distance between center of deformation (the foot) and the current point
being rendered. The �nal variable, elevation distance, is in direct relation to
the two previous variables. The elevation distance is the distance between
start of elevation and the current point being rendered. Figure 11 highlights
the variable's relationship and shows that the deformation map's data along
with the snow height provides enough information to calculate the elevation
distance.

Figure 11: Relationship between deformation data and the distances. Excerpt
from [MS16].

A maximum elevation distance is calculated factoring in the depression
depth to scale the elevation with regard to the produced deformation. The
ratio of current and maximum elevation distance is used in a quadratic func-
tion, creating the rounded elevation edges of the trail. The following is
proposed in [MS16]:

ratio =
elevation distance

max. elevation distance
,

height = max. elevation distance · artist′s scale,

elevation = ((0.5− 2x ratio)2 + 1) · height.

8

2.2.3 Screen Space Decals and Billboard Clouds

A di�erent approach to simulate the impression of snow deformation is
through the use of billboard or decal placements. Rather than calculat-
ing an object's actual deformation on a given surface, a simple texture or
projection space is placed on the ground every time the deforming object
collides with the snow mesh.

Decals A solution proposed by Kim in [Kim12] is the use of SSDs3. Similar
to Krassnigg's deferred decal rendering technique presented two years prior
in [Kra10], SSD's make use of the provided bu�er data in the deferred ren-
dering pipeline. The decal data structure consists of a 3D box mesh, called
projection box, and the 2D texture decal, which can be an albedo map, a
normal map or both. After the geometry pass, the projection box is rendered
over the desired area and the depth bu�er is used to calculate the fragments'
world-space position. Using the projection box's inverse world-space matrix,
the position is translated into the decal's local space. Here, the fragment is
clipped depending on whether it is out of the 3D box's bounds or whether
the dot product between the texture's normal and the fragment's sampled
normal is greater than a certain threshold. This ensures the projected decal
texture is rendered within the bounds speci�ed by the box geometry.

Billboards [D�ec+03] and [Beh+05] provide an approach to replace high
poly models with so-called billboard clouds. The approach by [D�ec+03]
iteratively generates textures for large sets of faces by projecting them on
a plane. A greedy approach chooses as many faces as possible within an
error threshold to maximize the projected area and use a minimal number of
planes, called dense planes. Furthermore, planes nearly tangent to the model
are favoured for better surface approximation. Figure 12 shows the process
applied to a helicopter model. Moreover, billboard cloud representations can
be used in shadow computations. Similar to the decal approach, lighting can
be improved by storing the normals in the textures.

Figure 12: Decomposition of a billboard cloud (32 textures billboards) used on a
high poly model (5,138 polygons). Excerpt from [D�ec+03].

3Screen Space Decals

9

This idea is extended by [Beh+05] into a real-time capable landscape
demo. Complex tree geometry is replaced by billboard clouds, consisting of
2-40 billboards. This allows substituting several thousand trees while still
maintaining an acceptable framerate. According to the results, at 6,600 trees
9-21 FPS are achieved. At an increased 21,300 trees, the approach still man-
ages to produce several frames per second, namely 4-12 FPS. Nonetheless,
the results date back to 2005 and were generated with a 3GHz Pentium 4
processor and an Nvidia FX6800 GPU. By the same token, the resolution of
800x600 pixels is comparatively low to today's standards. A re-evaluation
with updated hardware is necessary to make further conclusions.

3 System Model

3.1 Goals

Based on the previously presented techniques, an interactive simulation of
snow deformation is conceptualized. The goal is to present the user a visu-
ally appealing snow landscape which is deformed by multiple spheres that
bounce and slide around in the snow in a realistic fashion. A key feature of
the simulation is the ability to customize deformation properties as well as
switch between several snow deformation algorithms altogether. The amount
of spheres is variable, allowing for a stress test of the di�erent deformation
algorithms. In this regard, interactivity speci�cally means that the prop-
erty customization and the deformation algorithm switch is controlled by
user input via mouse and keyboard, and that any changes take e�ect during
runtime. Additionally, the scene may be reset at any given point in time,
restoring the snow landscape's initial height and rearranging the spheres' po-
sition randomly, such that the simulation may be carried out again. Changes
to the sphere count are re�ected within the next scene reset, staying in line
with the requirements set for interactivity.
In accordance with interactivity, real-time capability is another key com-
ponent of the program. As the techniques are embedded in the context of
animation or video games, an acceptable soft boundary to be considered real-
time capable is any program that has a frame rate higher than 24 frames per
second.
As for visual appeal, the goal is a combination of visual clarity, meaning the
user is able to recognize the given scene as snow landscape instantly upon
simulation start, and visual realism. For that matter, when comparing the
program's snow deformation with reference images of actual snow deforma-
tion, the results should be as identical as possible.
The generation of additional snow geometry or snow dust via particle systems
is not considered in this program. Neither are the snow's or the deforming
actor's physical properties taken into account for the snow deformation.

10

3.2 Model Assumptions

For a concrete conception of the program, certain model assumptions have
to be made. These assumptions are based on the experiences and problems
encountered in the mentioned approaches in section 2.
The snow terrain is one large continuous mesh and has a �xed size that
is determined beforehand. This is done to combat potential memory issues
that may occur when using the terrain's dimensions to generate a heightmap.
For example, the heightmaps in [Bar14] are scaled to at most one fourth of
the terrain dimension and have a minimum of at least 512x512 pixels. Per
frame, at most two surfaces are rendered. The main requirement of dynamic
deformable snow in an open world game like Batman: Arkham Origins is
a low memory footprint accompanied low performance cost. Limiting the
snow terrain in this fashion accomplishes the former.
Most of the snow deformation techniques are embedded in a fully playable
environment featuring human characters as the deformation actors. A fully
manipulable environment featuring proper mesh and animation data for a
playable character would go beyond the scope of this thesis. To that end,
the dynamic actors are limited to spheres. A simple algorithm generates the
mesh data for a sphere, and a small physics system calculates the movement
each frame, causing the spheres to slide and bounce in the snow terrain. This
creates su�ciently varied deformation while at the same time allowing the
user to increase or decrease the amount of spheres without further manage-
ment of the components.
Certain limitations for the physics system have to be outlined as well. The
snow terrain's dimension is �nite, therefore the sphere movement has to be
contained within the snow terrain's boundary. Should a sphere happen to
bounce or roll out of boundary, its position is corrected and the force is re-
verted into the opposite direction. This assures that for the remainder of
the simulation run every sphere continues to stay on deformable terrain. For
the sake of simplicity, the physics system does not consider collision between
spheres. Although a drawback of this is that several spheres will be over-
lapping at some point, the physics system's complexity remains manageable
and is able to scale with a higher numbers of spheres.
To create a natural-like terrain pattern, a Perlin Noise algorithm is used
based on [Per02]. The noise algorithm's bene�t is that the created noise
data is continuous. Additionally, this is a requirement for the physics sys-
tem, as it is using the height value to check for spheres colliding with the
terrain. For normal calculation, the surrounding height values are required,
which determine the jump or slide direction for a given sphere. Continu-
ous height data results in a precise normal calculation, and therefore correct
physics behaviour. This feeds back into the visual appeal of the simulation,
since predictable and logical sphere movement creates an organic deforma-
tion trail.

11

A feature mentioned by Michels and Sikachev [MS16] and Barr�e-Brisebois
[Bar14] is reaccumulating snow. The deformable snow is embedded in a
snowing environment, hence having the deformed sections gradually reaccu-
mulate back their original height further aids the typical iconic impression of
snow. From a technical perspective, this serves as the deformation's soft re-
set. The immersion is not broken, since the environment suggests that trails
should re�ll over time. The reset function for the simulation mentioned ear-
lier alleviates this issue. An advantage is the ability to carefully observe the
deformation caused by the actors at any given point in time, because the
deformation is only reset upon user input. Moreover, the scene presented to
the user is limited to a static snow terrain without any snowing. Having the
trails re�ll over time is counter-intuitive to the presented scene.

3.3 Scene

The scene consists of a camera placed at the origin, along with a snow
terrain of set dimensions with random continuous height values determined
at the start. Within the boundaries of the snow terrain, an initial amount of
spheres is spawned. These are placed at a certain height guaranteed to be
always above the highest point of the snow terrain. Via mouse and keyboard
input, the camera may be moved and the sphere physics activated. When
resetting the scene, the snow terrain's height�eld is set back to its initial
values. Spheres are placed at new random positions above the snow terrain,
allowing the simulation to be run anew. Any change to the sphere count is
now re�ected. Figure 13 is a schematic representation of the scene presented
to the viewer.

Initial/Reset State Typical Simulation Run

Simulation Schematic

= Snow Deformation

Figure 13: Scene visual schematic.

12

4 Implementation

4.1 Overview

At the core of this implementation is a Visual Studio C++ project using
OpenGL 4.3 [Khr]. This version introduces compute shaders required for
the physics component and the deferred deformation approach. A compute
shader is not bound to the OpenGL rendering pipeline and allows carrying
out arbitrary calculations on the graphics card. The following is a list of all
external libraries integrated into the project:

• GLFW, utilizied for window and OpenGL context creation. This library
also manages mouse and keyboard input.

• GLEW4 exposes the OpenGL Core Pro�le.

• GLM5, a header-only mathematics library.

• stb_image.h, a header-only image loader.

• Dear ImGui, a self-contained GUI6 library.

• Assimp7, to import mesh data in common formats.

Several helper functions and wrapper classes manage and abstract the
interaction between user input, libraries, data and OpenGL, creating a small
framework:

• a Sphere, Terrain, and a general Mesh and Model class contain or load
necessary geometry data and provide a render function. A PerlinNoise2D

subclass is contained within Terrain for the noise algorithm implemen-
tation.

• a Shader class manages shader program creation, error-logging, and
compilation. It also functions as a wrapper for OpenGL's uniform
variables and passes data to the speci�ed location.

• the Texture class uses the image loader library to create a texture for
provided image data. It can also be used for the creation of empty
textures as bu�er data structures.

• a Camera class encapsulates view-matrix calculations and receives input
for movement.

4OpenGL Extension Wrangler Library
5OpenGL Mathematics
6Graphical User Interface
7Open Asset Import Library

13

4.1.1 Setup

A non-trivial portion of the program is executed before entering the ren-
der loop. The Camera, Terrain and Sphere classes are instantiated. The
Terrain class contains the vertex data and the continuous random heightmap
generated via the PerlinNoise class instantiated within. A units parame-
ter determines the distance between neighbouring vertices. For terrain with
high absolute dimensions a greater distance is chosen, so that further vertex
generation can be left to the tessellation.

typedef struct {

vec3 position;

int pad1;

vec3 velocity;

float radius;

} Sphere;

Listing 1: Sphere struct with paddings for the SSBO.

Sphere* spheres = new Sphere[NUM_SPHERES];

for (int i = 0; i < NUM_SPHERES; i++)

{

spheres[i].position = randomPositionWithinTerrain();

spheres[i].velocity = vec3(0.0f);

spheres[i].radius = 1.0f;

}

GLuint sphere_SSBO;

glGenBuffers(1, &sphere_SSBO);

glBindBuffer(GL_SHADER_STORAGE_BUFFER, sphere_SSBO);

glBufferData(GL_SHADER_STORAGE_BUFFER, NUM_SPHERES * sizeof(

Sphere), spheres, GL_STATIC_DRAW);

glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 0, sphere_SSBO);

glBindBuffer(GL_SHADER_STORAGE_BUFFER, 0);

Listing 2: Sphere SSBO creation.

14

The sphere movement is calculated in a compute shader, hence an SSBO8

is created. An SSBO is a bu�er structure which can be read and modi�ed on
the GPU. An advantage of SSBOs is that the storage data is available during
every shader stage. A sphere struct de�nes the necessary position data and is
copied to the SSBO. The bu�er size is determined by multiplying the sphere
struct's allocated memory with the number of spheres to be managed. Listing
1 and 2 show the struct de�nition and SSBO creation respectively.

// parameters consist of dimensions, formats, image data, and

boolean flags for cubemaps or texture arrays.

Texture deformationMap(terrain_size, terrain_size , GL_RG16F,

GL_RG, GL_FLOAT, nullptr, false, false);

glBindImageTexture(1, deformationMap.getID(), 0, GL_FALSE, 0,

GL_READ_WRITE, GL_R16F);

glClearTexImage(deformationMap.getID(), 0, GL_RG, GL_FLOAT,

clearValue);

Listing 3: Texture creation, clearing, and image unit binding.

For deformation techniques requiring a deformation map, listing 3 presents
the texture creation. The textures may additionally be bound to an image
unit for atomic operations within compute shaders. Since these textures con-
stitute the deformation data that will be applied to the terrain, they are �lled
with a su�ciently high deformation value initially, so that any minimum op-
erations checking for deformation will fail and leave the snow untouched.
The �nal part consists in setting up the shading. A PBR9 approach is taken.
The logic is based on [McA+12] and uses Epic Games' implementation within
Unreal Engine 4, as presented by Karis in [KG13]. The code is rewritten to
match OpenGL and GLSL10 features and restrictions.
Speci�cally, several render passes are carried out to convert a provided
HDR11 map into a usable cubemap and a LUT12 for the IBL13 portion
of the pipeline. Additionally, a random sample kernel used for SSAO14 is
pre-calculated. This concludes the shading setup as most of the PBR logic
pertains to the lighting calculations made within the fragment shader.
To summarize, geometry data and camera function is instantiated; the de-
formation technique's data structures are created and required memory is
allocated; random kernel samples for SSAO are calculated, and a cubemap
with its LUT for IBL is pre-rendered.

8Shader Storage Bu�er Object
9Physically Based Rendering

10Graphics Library Shading Language
11High De�nition Range
12Lookup Table
13Image Based Lighting
14Screen Space Ambient Occlusion

15

The overview does not elaborate further upon procedures such as win-
dow and context creation, compatibility and error checks, frame and vertex
bu�er object generation, as they are not particular to the setup of the snow
deformation process itself.

4.1.2 Render loop

while !glfwWindowShouldClose(window) do
QueryImguiInput();

if Deformation via Render Target then
// Bind FBO with the deformation texture attached

as render target

BindFBO(rtFBO);
SetViewport(0, 0, TERRAIN_SIZE, TERRAIN_SIZE);
Spheres.RenderInstanced(NUM_SPHERES);
// From top or bottom view, so it can be applied as

heightmap

BindFBO(0);
SetViewport(0, 0, WIDTH, HEIGHT);
else if Deferred Deformation then

Deformation.Compute(NUM_SPHERES);
// Calculate the deformation of each sphere in a

given range

// Written to texture that is bound as Image Unit

else if Decals as Deformation then
DecalManagement.Compute(NUM_SPHERES);
// Write latest sphere position to Decal SSBO

DecalShader.Use();
Points.DrawInstanced(1000 * NUM_SPHERES);
// Draw primitive geometry where decal will be

spawned

Terrain.RenderTessellated();
Spheres.RenderInstanced(NUM_SPHERES);

Physics.Compute(NUM_SPHERES);

PollInput(&camera);
SwapBu�ers(window);

end
Algorithm 1: Pseudocode of the Render Loop.

16

Algorithm 1 presents an informal overview of the render loop. The input
that Dear Imgui receives is queried in order to change deformation prop-
erties and switch between deformation algorithms. In the next step, the
code pertaining to the selected deformation technique is carried out. Subse-
quently, the geometry is rendered and the terrain is tessellated. Finally, the
physics calculations are done.

4.2 Snow Deformation Techniques

This section deals with the snow deformation techniques employed in the
program that the user may switch between. Ultimately, three techniques are
available during the program run.

4.2.1 Snow Deformation via Render Target

As the name suggests, the deformation algorithm uses a texture, referred to
as the render target, where the deformation data is rendered into. In the
setup step, this texture is created with a static size. For the deformation
data to be written to the render target, all deformation actors have to be
within the camera's view frustum at render time. For the static ground
mesh the view-matrix places the camera origin at the ground mesh's center
point, either facing down- or upwards. Then, the projection-matrix creates
an orthogonal frustum in form of the ground mesh's bounding box. Now, the
actors height is rendered and written into the texture. Since the frustum is
aligned with the ground mesh's dimensions, the uv-coordinates need not be
modi�ed and can be used to sample the deformation height during the vertex
shader stage. Alternatively, given the dimensions, the vertex coordinate can
be normalized and used to sample with instead. This sampled value is then
compared to the vertex's y-coordinate and set to the minimum of the two.
Barr�e-Brisebois's technique [Bar14] is limited to �at terrain, allowing the use
of a smaller, ankle-high camera frustum to capture the deformation actors.
The render target does not explicitly contain the vertices' height value. In-
stead, the render target contains the deformation actors rendered in white
when applying relief mapping or the resulting depth bu�er is used when
applying the tessellated approach. During the shading stage, the sampled
value is not compared with the snow's height but used as a height o�set
factor in range [0;1]. Here, an intermediate post-processing step is carried
out before the texture is used to be sampled from. A �lter creates smooth
transitions between the untouched area and the white deformation regions.
This post-processing step is not available when the render target contains
explicit height values. A �lter falsi�es absolute height values when smooth-
ing them near untouched snow regions, creating noticeable clipping between
the deformation actor and the snow surface, as the snow is not pressed down
far enough. Consequently, this step is skipped.

17

glBindFramebuffer(GL_FRAMEBUFFER, rt_FBO);

glCullFace(GL_FRONT);

glViewport(0, 0, terrain_size, terrain_size);

heightSphereShader.use();

heightSphereShader.setMat4f("view", top_view);

heightSphereShader.setMat4f("projection", ortho);

sphere.renderInstanced(NUM_PARTICLES);

glCullFace(GL_BACK);

glBindFramebuffer(GL_FRAMEBUFFER, 0);

Listing 4: Code execution for render target approach.

Listing 4 shows the commands executed during the loop. Face culling is
enabled to only render the geometry facing the snow.
The shader code for rendering the height is straightforward. The y-coordinate
of the deformation actor is passed as an out variable to the fragment shader.
The fragment shader then writes that value into the texture.

4.2.2 Deferred Deformation

This technique follows the instructions provided by Michels and Sikachev in
[MS16]. They suggest decoupling the deformation from the rendering pro-
cess. To that end, a compute shader is implemented that calculates the
deformation within a given range of the deformation actors' location. The
same SSBO storing the spheres' location and velocity for the physics compute
shader is used to access the location data. The deformation map is bound
as an image unit to enable read and write operations within the compute
shader. Furthermore, the implementation makes use of atomic operations to
guarantee that only the lowest deformation values are written into the tex-
ture at any given time in the compute step. As a consequence of that, the
image format is limited. OpenGL only provides atomic operations for im-
ages of GL_R32UI/r32ui or GL_R32I/r32i format, respectively an unsigned
or signed 32-bit integer precision on the red channel. Since the deferred de-
formation makes use of the currently calculated deformation value as well
as the deformation actor's actual location for later elevation calculations,
the deformation data has to be bit-shifted and packed as two 16-bit �oat
values inside an unsigned integer. Although OpenGL provides bitwise op-
erations and �oat-packing functions, this implementation utilizes Nvidia's
GL_NV_shader_atomic_fp16_vector [NVI] extension. This allows execut-
ing atomic image operations in a convenient image format, namely GL_RG16,
16-bit �oating point precision on the red and green channel respectively, and
o�ers a f16vec2 data structure where the necessary deformation data may

18

be put without bit-shifting and �oat packing.
Once the compute step �nished writing the deformation depression, the snow
terrain's vertex shader samples that very same f16vec2 data from the defor-
mation texture and compares the deformation point's height to the vertex's
height. A point height lower than snow height signals deformation. Here, the
deformation height is compared with the snow height, determining whether
the current point is responsible for snow depression or elevation. If the
deformation height is lower than snow height, the current point is a snow
depression point and set to the sampled value. Else, a higher deformation
height signi�es snow elevation. The deformation data is then used to cal-
culate an elevation factor for smooth elevation trails along the edges of the
trail depression.

deformationShader.use();

glDispatchCompute(NUM_SPHERES, 1, 1);

glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT);

Listing 5: Deferred deformation code execution in render loop.

Compared to the approach using render targets, the code in the render
loop requires less setup and consists of a compute dispatch for each sphere
as seen in listing 5. On the other hand, the compute and vertex shader have
increased complexity. Listing 6 shows how each compute execution iterates
over a set area around a deformation point and uses an atomic minimum to
conditionally write into the image texture. Additionally, the vertex shader
has several branches checking for the deformation type. Listing 7 presents
an outline of the vertex shader code.

for(int i = -custom_range; i < custom_range; i++)

{

for(int j = -custom_range; j < custom_range; j++)

{

ivec2 deform_point = tex_coordinates + ivec2(j,i);

float distance_to_point = (i*0.04)*(i*0.04) + (j*0.04)*(j

*0.04);

float16_t deform_height = foot_height + distance_to_point *

artist_scale;

f16vec2 deform_data = f16vec2(deform_height, foot_height);

imageAtomicMin(deformMap, deform_point, deform_data);

}

}

Listing 6: Compute shader loop.

19

float snow_height = world_position.y;

float vert_height = snow_height;

float deformation_height = texture(deformation_map, uv).r;

float foot_height = texture(deformation_map, uv).g;

// object is stepping on snow

if(foot_height < snow_height)

{

// depression area

if(deformation_height < snow_height)

{

vert_height = deformation_height;

}

// elevation area

else

{

float depr_distance = sqrt(snow_height - foot_height);

float distance_from_foot = sqrt(deformation_height -

foot_height);

float elevation_distance = distance_from_foot -

depr_distance;

float max_elevation_distance = sqrt(snow_height -

foot_height);

float elevation = (-(pow(elevation_distance - (

max_elevation_distance / artist_scale1), 2))) +

depr_distance/2.0;

vert_height = max(snow_height + elevation, snow_height);

}

}

Listing 7: Deferred deformation vertex shader code.

A di�erent elevation calculation to the one proposed by Michels and Sikachev
is used, as the results were not producing rounded trail edges. The calculated
elevation distance in range [0;max] is o�set by half the maximum elevation
distance, causing it to be in range [−max

2 ; max
2]. This result is squared, re-

sulting in a quadratic curve, similar to the depression calculations. The
quadratic curve is multiplied by −1, so that the elevation increases, reaching
its maximum when it is at equal distance to the maximum elevation dis-
tance and the depression distance. Once the elevation distance closes in on
the maximum, it starts fading o�, resulting in a smooth rounded curvature
around the trail depression.

20

4.2.3 Billboards

A di�erent approach to Kim's projector data structure in [Kim12] is imple-
mented. Several assumptions can be made allowing for a deformation pattern
placement without the need for a projector box. Instead of using decals, �at
billboards are placed at the sphere's trail. The most recent locations where
the spheres hit the ground mesh are captured and stored within an SSBO.
A point draw call for each location is made. A geometry shader receives the
point location and generates a quad where the texture is projected onto. The
terrain's provided heightmap allows calculating the normal and its tangents
at the point location on the spot along which the billboard will be oriented.
The implementation consists of two shader programs as seen in listing 8 and
9. A compute shader passes the sphere's location data to the SSBO for the
decal management and the decal geometry shader accesses the location data
to draw the billboard.

typedef struct {

vec3 position = vec3(0.0);

int pad0;

} Billboard;

unsigned int counter = 0;

Billboard* billboards = new Billboard[1000 * NUM_SPHERES];

GLuint billboardSSBO;

glGenBuffers(1, &billboardSSBO);

glBindBuffer(GL_SHADER_STORAGE_BUFFER, billboardSSBO);

glBufferData(GL_SHADER_STORAGE_BUFFER, sizeof(Billboard) * 1000

* NUM_SPHERES, &billboards[0], GL_STATIC_DRAW);

glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 2, billboardSSBO);

glBindBuffer(GL_SHADER_STORAGE_BUFFER, 0);

Listing 8: Billboard struct and SSBO setup, similar to listing 1 and 2.

glActiveTexture(GL_TEXTURE1);

terrain.bindHeightMap();

billboardShader.use();

billboardShader.setInt("counter", counter);

billboardShader.setInt("terrainHeightMap", 1);

glDispatchCompute(NUM_SPHERES, 1, 1);

glMemoryBarrier(GL_SHADER_STORAGE_BARRIER_BIT);

counter = (counter + 1) % 1000;

// to continuously fill the decal SSBO with the latest 1000

positions where the sphere hit the snow mesh.

Listing 9: Billboard code execution in the render loop.

21

5 Evaluation

In this section the implementation's qualitative and quantitative properties
are evaluated.
First, the deformation technique's visual output is captured and compared
to another. Speci�cally, the produced deformation pattern's degree of detail
is inspected and how close it resembles the deforming actor's shape. The
data allows categorizing the techniques according to their use cases. For an
overall outlook on the visual appearance a given snapshot of terrain deformed
by each technique is contrasted with reference imagery of actual deformed
snow.
Secondly, each deformation technique is tested with regard to real-time capa-
bility. To achieve this, the frame rate at increasing sphere count is measured.
Compared to a physically based pre-computational approach, an increasing
count of dynamic deformation actors allows making inferences about each
technique's scaling potential. Additionally, details such as the deforming ac-
tor's vertex count or the deformable area's size are exploited, revealing their
computational impact on each technique. Consequently, their use cases can
be classi�ed more distinctly and a di�erentiated conclusion regarding per-
formance is reached.
The data was captured on a 64-Bit Windows 10 system using an Intel Core i7-
3700k CPU with 4 cores clocked at 3.5 GHz. The GPU is an Nvidia GeForce
GTX 960 with 2GB GDDR5 VRAM and 1,024 CUDA cores clocked at 1,279
MHz. A total amount of 16GB GDDR3 RAM is available. The installed
Nvidia Game Ready driver is at version 430.64.

5.1 Visual Appearance

Figure 14 presents several reference images of actual deformed snow. It can
be seen that the snow trails are visibly darker than the surrounding snow.
This is due to the occlusion caused by the height di�erences between de-
formed and untouched snow sections. Another visual cue is that the trails
are smoothly divided into brighter deformation that is facing the light source
and a portion facing away from the light, being further occluded.
Figure 18, 19, and 20 each depict a snapshot of snow deformed by a defor-
mation technique. The �gures consist of three images. A view of the shaded
result, a view of the scene's normals, and a view of the scene's calculated
occlusion factor. Each image allows looking at a visually desirable property
in detail.

22

Figure 14: Reference images. Excerpts from [Com19a], [Com19c], and [Com19b].

Deferred Deformation The deferred deformation algorithm is depicted
by �gure 18. The shaded result in image 18a depicts the shadows gener-
ated near the deformation as well as the snow that is shaded with a darker
color. Identical to the reference image, the deformation pattern consists of
areas facing the light source that are shaded in a brighter tone and darker
areas facing away from the light source. This can be explained by image
18b. The new height values allow recalculating the snow's normals around
the deformation area. Here, the blue and bright green color near the depres-
sion indicate the snow facing to or away from the light source respectively.
Furthermore, the deformation consistently holds a higher occlusion factor as
depicted by the darker color in image 18c.

Render Target Figure 19 shows the deformation caused by rendering
the deformation actors' height values into a texture. Similar to the previous
approach, image 19b shows how the new height values are used to recalculate
the normal around the snow depression. Additionally, image 19c indicates
a higher occlusion factor where the snow has been deformed. In the same
way, image 19a depicts the shadows generated near the deformation and the
existing areas facing to and away from the light source. A larger portion of
the spheres is visible due to no snow elevation being calculated around the
trail edges. Consequently, the height di�erence from the lowest deformation
point to the trail edge is not as large. This di�erence is re�ected in the
resulting occlusion factor. The smaller the snow depression, the smaller the

23

concave deformation shape that is left. Hence, fewer samples contribute to
a darker occlusion factor.

Decals/Billboards Figure 20 has contrasting results to the two previ-
ous deformation techniques. Notably, no actual deformation occurs and is
therefore not re�ected in any of the images. The deformation is achieved by
rendering �at rectangular geometry with a generic deformation pattern and
placing it on top of the snow. The normals are left untouched as seen by
image 20b and the visible occlusion is limited to the close proximity of the
spheres themselves, shown in image 20c. Therefore, the resulting image 20a
depicts the sphere's shadows only and the trail is consistently dark and not
a�ected by any light sources.

Complex Deformation Patterns A key limitation is the deformation
actors' basic geometric shape in the form of a sphere. Figure 21 is dedicated
to the deformation technique's deformation patterns. Image 21a shows that
the implicit representation of the deformation as a quadratic function co-
incides well with the deformation actor's shape. Similarly for image 21b,
the produced deformation texture is precise enough for a smooth round de-
formation pattern. Image 21c depicts the textures used for the billboards.
The advantage of using spherical geometry as the pseudo deformation actor
for billboards is that the resulting texture is rotationally invariant. Con-
sequently, the texture's basis is a blue-tinted sphere whose edges have been
blended. On top of that, the edges transition to a lighter color and have been
smoothed with a rough brush for an additional noise pattern. The result is
a texture showing a rounded deformation pattern wherever the spheres have
bounced and a consistent deformation trail where the spheres have slid by
repeatedly placing several textures in close proximity and blending them.
However, �gure 22 o�ers a more distinguished look at the technique's gen-
erated pattern. A human model is used as the deformation actor in this
instance. Speci�cally, the model's feet serve as the deformation geometry.
At this point, the deferred deformation algorithm and the render target
approach start di�ering. Because the depression step is decoupled and its
own process, the deferred deformation algorithm calculates the same pattern
for a given deformation point regardless of the deformation actor's geome-
try. Since the depression calculation is based on a quadratic function as
its implicit representation, there is a discrepancy between the feet and the
deformation pattern. The bottom view in image 22a shows that the feet
clip through the deformed snow. By contrast, image 22b shows foot tracks
with enough detail for each individual toe. With the render target approach
the height values are explicitly only written to the texture positions where a
bottom-up view of the geometry would have been visible.

24

In summary, both the deferred deformation algorithm as well as the
render target approach create a convincing, permanent snow deformation.
Shadows and ambient occlusion work and enhance both techniques' visual
representation. The deferred deformation's calculated trail elevation serves
as further hint, creating additional shadows and increasing the occlusion
factor. Its deformation shape is limited to a quadratic curve. The render
target approach excels in transforming the deformation actors' geometry as
a deformation pattern on the snow. The billboards allow using an arbitrary
texture as a deformation pattern that is una�ected by the lighting.

5.2 Performance

At test start, the camera is moved to one corner of the randomly generated
snow terrain, facing the terrain center. The simulation is carried out and
the most recent frame rate that is stable for several seconds is captured.
Afterwards, the scene is reset and the camera moved to another corner of the
terrain. The same procedure is carried out for a total of four times, until the
frame rate has been captured once at every corner. This concludes one test
run. For more stable results, the test run has been conducted three times,
ensuring that the captured data is within margin of error and reproducible.
Finally, the data is averaged. The scene is rendered at 1600x900 pixels
(HD+).

32x32 Sphere

Deformation Technique Sphere Count
128 256 512 1,024

Deferred Deformation 91.75 91.5 87.5 77.25
Render Target 101.5 96.75 93 86.5

Decals/Billboards 99.75 90.875 76.5 60.5

Table 1: FPS of each deformation technique, rendering the deformation actor with
32x32 vertices.

Table 1 shows that each technique decreases in performance with increas-
ing sphere count. At 32x32 vertices for the deformation actor, the render
target approach holds the highest frame rate across all tested cases. Second
in performance is the deferred deformation with a di�erence of about 9-10
FPS at 128 and 1,024 spheres and 5 FPS at a sphere count of 256 and 512.
At 128 spheres, the decals reach a frame rate on par with the render target,
although its performance decreases the strongest with higher sphere count,
leading to the lowest frame rate reached at 60.5 FPS with 1,024 spheres
tested.

25

128x128 Sphere

Deformation Technique Sphere Count
128 256 512 1,024

Deferred Deformation 93.5 91.25 85.25 76.25
Render Target 82.75 71.125 56.375 39.5

Decals/Billboards 100.5 92.5 76.75 62.5

Table 2: FPS of each deformation technique, rendering the deformation actor with
128x128 vertices.

Table 2 suggests that the render target approach relies on the deformation
geometry. While the deferred deformation's and the decal's performance is
within margin of error to the previous results, using geometry with high
vertex count has an increasing performance penalty on the render target. At
each test case, it scores the lowest frame rate with a new 39.5 FPS low at
1,024 spheres.

512x512 Sphere

Deformation Technique Sphere Count
32 64 128 256

Deferred Deformation 94.5 95 91.5 88.125
Render Target 55.5 37.125 23.5 13.5

Decals/Billboards 105.5 106.375 99.625 92.875

Table 3: FPS of each deformation technique, rendering the deformation actor with
512x512 vertices.

With a total of 262,144 (5122) vertices per individual deformation actor,
table 3 depicts an edge case. At about 350 spheres the render target approach
reaches less than 10 FPS, which is why the overall observed sphere count has
been reduced. At each incremental step, the render target approach has a
performance delta greater than or equal to 10 FPS, with 55.5 FPS being the
highest performance reached at the lowest sphere count and an absolute low
of 13.5 FPS at 256 spheres. The remaining techniques continue to scale with
sphere count only, reaching the same performance as before at 128 and 256
spheres. A lower sphere count indicates no signi�cant performance penalty
(less than 1 FPS).
So far, the previous evaluations indicate a consistent performance loss at in-
creasing deformation actor count. The render target bene�ts from low vertex
deformation geometry to render its deformation values. As expected, the de-
ferred deformation algorithm calculates a deformation pattern regardless of
presented geometry, therefore the vertex count is irrelevant. However, since
a given range has to be speci�ed for the deformation that is to be calculated,
it is used as an additional performance metric instead.

26

Deferred Deformation Range Performance

Deformation Range Sphere Count
128 256 512 1,024

322 94.5 90 84 79.5
642 93.5 91.25 85.25 76.25
962 85 75.5 70.625 58.375
1282 77.6 68.25 59.5 47.125

Table 4: FPS of the deferred deformation technique using various deformation
ranges during the compute shader stage.

Table 4 is dedicated to the deferred deformation algorithm and its per-
formance regarding various speci�ed ranges. The spheres have a diameter of
2 meters, accordingly a standard deformation area of 642 pixels is chosen,
covering approximately 6.55m2 at 4cm per pixel. Accounting for the roughly
4m2 of the sphere's trail depression, there is enough space left over for the
trail elevation. This is the default range used in previous tables.
At a 32 by 32 pixel deformation range, approximately 1.64m2, no signi�cant
performance change is observed. The observations are well within margin
of error. The next range increment at 96 by 96 pixels, or 14.75m2 signi�es
a greater performance delta. At 128 spheres, there is a 9 FPS loss and at
1,024 spheres the delta increases to about 18 FPS.
Analogous to table 3, the 128 by 128 pixel deformation range with a 26.21m2

area is its edge case equivalent. The deferred deformation algorithm reaches
its lowest observed frame rate of 47.125 FPS at 1,024 spheres used. This re-
sults in a performance delta of 30 FPS compared to the default deformation
range.

6 Experiments

Sand A fundamental insight about these techniques is that they are unin-
volved with the rendering of the surface. For this reason, a future application
mentioned both in [Bar14] and [MS16] is to reapply the deformation to var-
ious other deformable surfaces, such as mud or sand. Indeed, the method
described in [SOH99] provides a proof of concept for various deformable sur-
faces and the material point method [Sto+13] presented in section 2 suggests
further research in this direction as well.
Figure 15 presents a snapshot of a sand surface deformed by each technique.
None of the techniques' implementation has been altered in any way and the
terrain uses the same noise algorithm to produce the height�eld. The only
change is a di�erent set of textures used in the rendering of the deformable
surface. Additionally, the billboard's projected texture is tinted with a sand-
like color. A performance di�erence was not observed.

27

Edwards [Edw12] o�ers further methods to recreate the typical impression
of sand that may be integrated into sand surfaces and combined with the
deformation techniques for improved visual results.

(a) Deferred Deformation (b) Render Target (c) Billboards

Figure 15: Deformation techniques applied to a sand terrain.

Combined Techniques The evaluation's results suggest that the render
target approach is suited for use cases where the deformation actor's geom-
etry plays a signi�cant role in the deformation process. On the other hand,
for use cases where the creation of a deformation trail has higher priority and
the geometry may be disregarded, deferred deformation o�ers visually simi-
lar results along with a trail elevation and maintains a higher performance.
To that end, an experimental approach is to combine the deferred deforma-
tion's and the render target's deformation map in a complimentary manner.
The desired result is to create a deformation map which allows for the cal-
culation of trail elevations while still considering the deformation actor's
geometry when forming a deformation pattern.

Figure 16: Deferred deformation combined with the render target approach.

Figure 16 is the result of applying the mentioned algorithms to the
same deformation map in succession. The render loop now consists of set-
ting up the camera frustum, rendering the deformation actors' height, and

28

dispatching a compute shader consecutively. The fragment shader uncon-
ditionally writes the height into the 16-bit red channel. In the compute
shader, the SSBO's deformation point is put into the 16-bit green channel.
The trail depression is calculated as is, but the atomic minimum opera-
tion now compares the texture's contained height value to the calculated
deformation depression, guaranteeing that only the lower value remains.
Image 17 shows how the deformation actor's foot shape remains and the
region around the feet is surrounded by the calculated quadratic curve.

Figure 17: Combined
defor-
mation
pattern.

Nevertheless, a problem occurs during the ter-
rain's vertex shader stage. Currently, the vertex
shader code has several branches that decide the
type of deformation to generate. The very �rst
branch samples the deformation point contained in
the texture's green channel for further calculations,
but early-outs if the value is lower than the snow
height. Accordingly, expensive operations are car-
ried out for deformed vertices only. Consequently,
this means that the deformation is contained within
the compute shader's set deformation range, where
the green channel is written into. For deformation
geometry, where the de�ned deformation range does not encompass its en-
tirety, this creates regions where the geometry is below the snow surface but
deformation does not occur. A solution to this issue is to change the branch
conditions. Instead of checking the deformation point's height, the actual
deformation height contained in the red channel is sampled. Here, the defor-
mation is applied to any vertex whose deformation height is lower than its
snow height and trail elevations are calculated for regions within the deferred
deformation range. Albeit, every vertex whose deformation height is higher
than the snow height additionally checks the provided deformation point's
height for elevation calculations if necessary. The performance advantage of
an early-out at the �rst branch is lost.

29

7 Conclusion and Outlook

Three deformation techniques have been implemented in an interactive sim-
ulation. Each technique's performance was benchmarked and their visual
output presented.
Deferred deformation is not dependant on geometry detail and its elevation
o�ers an additional visual cue. However, it still does not manage to out-
perform the render target approach for low poly deformation actors. The
deformation is limited by its approximation of a quadratic curve function.
Hence, its performance depends on the de�ned deformation range. Possible
research may be directed at the mathematical curve approximation, using
polynomial functions of higher order to calculate a trail depression with
several saddle points. The render targets key feature is its detailed defor-
mation pattern allowing complex geometry to be portrayed at the cost of
performance. Furthermore, the pattern is not limited to a prede�ned range.
Consequently, large and small deformation actors alike may be rendered
without having to manipulate the deformation process. Integrating both
the deferred deformation and render target approach allows leveraging their
individual bene�ts and circumventing their restrictions at the same time.
However, as the spherical geometry does not bene�t from the combined ap-
proach it has not been tested with regard to its performance. Therefore, a
future endeavour is to test all techniques anew with varied but autonomous
deformation actors that can be increased in count while maintaining similar
complexity to the spheres and their physics system.
The billboard's only variable parameter is the projected deformation texture.
Its main drawback is that no actual deformation is created. Nonetheless, if
detailed deformation is of lesser importance, several thousand billboards can
be placed per deformation actor while maintaining high deformation actor
count and acceptable performance. Another advantage is that the billboards
do not depend on a high poly ground mesh. It can not be ruled out that
this technique has its use cases for applications with low poly geometry or
restricted viewing angles not exploiting the billboard's two-dimensionality.
The billboards may be extended by animated deformation textures or tex-
tures of iconographic nature. A further direction for this approach is to
replace the billboards completely with Kim's projector box data structure
[Kim12] and supply an additional deformation normal map. While still not
causing any actual deformation, the provided normal map will in�uence the
lighting calculations, a key feature observed in the other two techniques.

30

References

[Bar14] Colin Barr�e-Brisebois. �Deformable Snow Rendering in BatmanTM:
Arkham Origins�. In: Game Developers Conference (GDC), San
Francisco, California, March. 2014.

[Beh+05] Stephan Behrendt et al. �Realistic real-time rendering of land-
scapes using billboard clouds�. In: Computer Graphics Forum.
Vol. 24. 3. Wiley Online Library. 2005, pp. 507�516.

[Com19a] Wikimedia Commons. File: Ìàëîêîçèíñêàÿ ëûæíÿ - panoramio

(1).jpg � Wikimedia Commons, the free media repository. [On-
line; accessed 20-August-2019]. 2019.

[Com19b] Wikimedia Commons. File: Ìàëîêîçèíñêàÿ ëûæíÿ - panoramio

(10).jpg � Wikimedia Commons, the free media repository. [On-
line; accessed 20-August-2019]. 2019.

[Com19c] Wikimedia Commons. File: Ìàëîêîçèíñêàÿ ëûæíÿ - panoramio

(4).jpg � Wikimedia Commons, the free media repository. [On-
line; accessed 20-August-2019]. 2019.

[D�ec+03] Xavier D�ecoret et al. �Billboard clouds for extreme model sim-
pli�cation�. In: ACM Transactions on Graphics (TOG). Vol. 22.
3. ACM. 2003, pp. 689�696.

[Edw12] J Edwards. �Dynamic sand simulation and rendering in jour-
ney�. In: ACM SIGGRAPH. 2012.

[KG13] Brian Karis and Epic Games. �Real shading in unreal engine 4�.
In: Proc. Physically Based Shading Theory Practice 4 (2013).

[Khr] Khronos Group. OpenGL 4.3 API Core Pro�le. [Accessed: 6-
August-2019].

[Kim12] Pope Kim. �Screen Space Decals in Warhammer 40,000: Space
Marine�. In: ACM SIGGRAPH 2012 Talks. SIGGRAPH '12.
Los Angeles, California: ACM, 2012, 6:1�6:1. isbn: 978-1-4503-
1683-5. doi: 10.1145/2343045.2343053. url: http://doi.
acm.org/10.1145/2343045.2343053.

[Kra10] Jan Krassnigg. �A Deferred Decal Rendering Technique�. In:
Game Engine Gems 1. Ed. by Eric Lengyel. Jones and Bartlett,
2010, pp. 271�280.

[McA+12] Stephen McAuley et al. �Practical Physically-based Shading in
Film and Game Production�. In: ACM SIGGRAPH 2012 Courses.
SIGGRAPH '12. Los Angeles, California: ACM, 2012, 10:1�10:7.
isbn: 978-1-4503-1678-1. doi: 10.1145/2343483.2343493. url:
http://doi.acm.org/10.1145/2343483.2343493.

[Mic] Microsoft Corporation. Xbox 360 Technical Speci�cations. Archive
retrieved from the original. [Accessed: 6-May-2019].

31

https://commons.wikimedia.org/w/index.php?title=File:%22%D0%9C%D0%B0%D0%BB%D0%BE%D0%BA%D0%BE%D0%B7%D0%B8%D0%BD%D1%81%D0%BA%D0%B0%D1%8F_%D0%BB%D1%8B%D0%B6%D0%BD%D1%8F%22_-_panoramio_(1).jpg&oldid=349129756
https://commons.wikimedia.org/w/index.php?title=File:%22%D0%9C%D0%B0%D0%BB%D0%BE%D0%BA%D0%BE%D0%B7%D0%B8%D0%BD%D1%81%D0%BA%D0%B0%D1%8F_%D0%BB%D1%8B%D0%B6%D0%BD%D1%8F%22_-_panoramio_(1).jpg&oldid=349129756
https://commons.wikimedia.org/w/index.php?title=File:%22%D0%9C%D0%B0%D0%BB%D0%BE%D0%BA%D0%BE%D0%B7%D0%B8%D0%BD%D1%81%D0%BA%D0%B0%D1%8F_%D0%BB%D1%8B%D0%B6%D0%BD%D1%8F%22_-_panoramio_(10).jpg&oldid=349129761
https://commons.wikimedia.org/w/index.php?title=File:%22%D0%9C%D0%B0%D0%BB%D0%BE%D0%BA%D0%BE%D0%B7%D0%B8%D0%BD%D1%81%D0%BA%D0%B0%D1%8F_%D0%BB%D1%8B%D0%B6%D0%BD%D1%8F%22_-_panoramio_(10).jpg&oldid=349129761
https://commons.wikimedia.org/w/index.php?title=File:%22%D0%9C%D0%B0%D0%BB%D0%BE%D0%BA%D0%BE%D0%B7%D0%B8%D0%BD%D1%81%D0%BA%D0%B0%D1%8F_%D0%BB%D1%8B%D0%B6%D0%BD%D1%8F%22_-_panoramio_(4).jpg&oldid=349129824
https://commons.wikimedia.org/w/index.php?title=File:%22%D0%9C%D0%B0%D0%BB%D0%BE%D0%BA%D0%BE%D0%B7%D0%B8%D0%BD%D1%81%D0%BA%D0%B0%D1%8F_%D0%BB%D1%8B%D0%B6%D0%BD%D1%8F%22_-_panoramio_(4).jpg&oldid=349129824
https://www.khronos.org/registry/OpenGL/specs/gl/glspec43.core.pdf
https://doi.org/10.1145/2343045.2343053
http://doi.acm.org/10.1145/2343045.2343053
http://doi.acm.org/10.1145/2343045.2343053
https://doi.org/10.1145/2343483.2343493
http://doi.acm.org/10.1145/2343483.2343493
https://web.archive.org/web/20080822024003/http://www.xbox.com/en-AU/support/xbox360/manuals/xbox360specs.htm
http://www.xbox.com/en-AU/support/xbox360/manuals/xbox360specs.htm

[MS16] Anton Kai Michels and Peter Sikachev. �Deferred Snow Defor-
mation in Rise of the Tomb Raider�. In: GPU Pro 7. AK Peter-
s/CRC Press, 2016, pp. 17�30.

[NVI] NVIDIA Corporation. NV_shader_atomic_fp16_vector exten-
sion. [Accessed: 5-August-2019].

[Per02] Ken Perlin. �Improving noise�. In: ACM transactions on graphics

(TOG). Vol. 21. 3. ACM. 2002, pp. 681�682.

[SOH99] Robert W Sumner, James F O'Brien, and Jessica K Hodgins.
�Animating sand, mud, and snow�. In: Computer Graphics Fo-
rum. Vol. 18. 1. Wiley Online Library. 1999, pp. 17�26.

[Sto+13] Alexey Stomakhin et al. �A material point method for snow sim-
ulation�. In: ACM Transactions on Graphics (TOG) 32.4 (2013),
p. 102.

[SZS95] Deborah Sulsky, Shi-Jian Zhou, and Howard L Schreyer. �Ap-
plication of a particle-in-cell method to solid mechanics�. In:
Computer physics communications 87.1-2 (1995), pp. 236�252.

32

https://developer.nvidia.com/sites/default/files/akamai/opengl/specs/GL_NV_shader_atomic_fp16_vector.txt
https://developer.nvidia.com/sites/default/files/akamai/opengl/specs/GL_NV_shader_atomic_fp16_vector.txt

Appendices

33

(a) Fully shaded result.

(b) Representation of normals.

(c) Occluded areas by SSAO.

Figure 18: Snapshot of the deferred deformation algorithm.

34

(a) Fully shaded result.

(b) Representation of normals.

(c) Occluded areas by SSAO.

Figure 19: Snapshot of the render target approach.

35

(a) Fully shaded result.

(b) Representation of normals.

(c) Occluded areas by SSAO.

Figure 20: Snapshot of the generated decals/billboards.

36

(a) Deferred Deformation's deformation pattern.

(b) Deformation pattern produced by the render target.

(c) Textures used as deformation pattern for the billboards.

Figure 21: Close up view of the deformation patterns.

37

(a) Deformation pattern using deferred deformation.

(b) Generated deformation using render targets.

Figure 22: Snow Tracks.

38

	Introduction
	Related Work
	Physical Simulation
	Animating Sand, Mud, and Snow
	A Material Point Method for Snow Simulation

	Case Studies
	Deformable Snow Rendering
	Deferred Deformation
	Screen Space Decals and Billboard Clouds

	System Model
	Goals
	Model Assumptions
	Scene

	Implementation
	Overview
	Setup
	Render loop

	Snow Deformation Techniques
	Snow Deformation via Render Target
	Deferred Deformation
	Billboards

	Evaluation
	Visual Appearance
	Performance

	Experiments
	Conclusion and Outlook
	References
	Appendices

