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Zusammenfassung

Business Process Querying (BPQ) ist eine Disziplin im Bereich des Geschäftsprozessman-
agement, die Experten beim Verständnis vorhandener und der Entwicklung neuer Geschäft-
sprozesse unterstützt. Anfragen können Modelle identifizieren und vereinigen, Fragen
bezüglich zugrunde liegender Geschäftsprozesse beantworten und Prozesse daher auf Kon-
formität prüfen. Viele Anfragesprachen wurden im Rahmen dieser Disziplin eingesetzt
doch zwei Sprachtypen dominieren: Logik-basierte Sprachen nutzen temporale Logik, um
die Modelle in Form endlicher Zustandsautomaten zu verifizieren. Graph-basierte Sprachen
nutzen wiederum musterbasierte Suchen, um passende Teilgraphen direkt aus dem Mod-
ellgraph zu extrahieren. Diese Arbeit zielt darauf ab, die Funktionen beider Spracharten
aufeinander abzubilden, um ihre Vor- und Nachteile zu identifizieren. Hierfür werden die
Funktionen von Computational Tree Logic (CTL) und The Diagramed Modeling Language
(DMQL) exemplarisch aufeinander abgebildet. CTL berechnet zuerst alle validen Zustände
und ist daher für behavioristische Anfragen besonders geeignet. Mangels bestimmter struk-
tureller Funktionen und Zählmechanismen ist CTL jedoch kaum für strukturelle Anfragen
anwendbar. Im Gegensatz dazu führt DMQL strukturelle Abfragen aus, deren Muster jede
CTL-Formel darstellen können. Diese erzielen jedoch nicht zwingend exakt dieselbe Se-
mantik: Muster behandeln bedingten Programmfluss stets wie sequenziellen, da sämtliche
Bedingungen ignoriert werden. Im Ergebnis stellen die extrahierten Pfade in bestimmten
Szenarien ungültigen Programmfluss dar und sind daher Fehlalarme. DMQL kann für be-
havioristische Anfragen genutzt werden wenn diese nicht vorhanden bzw. die Fehlalarme
akzeptabel sind. Zusammenfassend haben beide Spracharten Stärken und sind auf ver-
schiedenen Anwendungsfälle in BPQ spezialisiert doch graph-basierte Sprachen können
ggf. für beide genutzt werden. Wird die Evaluation von Bedingungen noch integriert,
könnte die Notwendigkeit für logik-basierte Sprachen in BPQ künftig entfallen.
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Abstract

Business Process Querying (BPQ) is a discipline in the field of Business Process Man-
agement which helps experts to understand existing process models and accelerates the
development of new ones. Its queries can fetch and merge these models, answer ques-
tions regarding the underlying process, and conduct compliance checking in return. Many
languages have been deployed in this discipline but two language types are dominant:
Logic-based languages use temporal logic to verify models as finite state machines whereas
graph-based languages use pattern matching to retrieve subgraphs of model graphs directly.
This thesis aims to map the features of both language types to features of the other to
identify strengths and weaknesses. Exemplarily, the features of Computational Tree Logic
(CTL) and The Diagramed Modeling Language (DMQL) are mapped to one another. CTL
explores the valid state space and thus is better for behavioral querying. Lacking certain
structural features and counting mechanisms it is not appropriate to query structural prop-
erties. In contrast, DMQL issues structural queries and its patterns can reconstruct any
CTL formula. However, they do not always achieve exactly the same semantic: Patterns
treat conditional flow as sequential flow by ignoring its conditions. As a result, retrieved
mappings are invalid process execution sequences, i.e. false positives, in certain scenarios.
DMQL can be used for behavioral querying if these are absent or acceptable. In conclusion,
both language types have strengths and are specialized for different BPQ use cases but in
certain scenarios graph-based languages can be applied to both. Integrating the evaluation
of conditions would remove the need for logic-based languages in BPQ completely.
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1. Introduction

Business Process Management is based on the explicit representation of business processes,
i.e. creating models of a company’s real-world processes. As a result, BPs are represented
digitally and can be further processed by information systems. Business Process Query-
ing (BPQ) is a subfield of Business Process Management where structural, behavioral and
semantic properties of business processes are checked for compliance with given queries.
Querying business process models can speed up the design of new process models, help
to understand or merge existing models and answer questions regarding a company’s pro-
cesses. The latter is interesting for customers (e.g. for choosing future business partners)
and the company itself, as it allows for automated compliance checking. Automated com-
pliance checking of business processes is important, facing the vast number of ever-changing
legal constraints, industrial standards and internal policies that a process might need to
fulfill. For example, mobile operators might be legally required to verify the identity of cus-
tomers before providing and activating the SIM card. In BPQ this translates to checking
the absence of an undesired BP element sequence, i.e. where an activation is not proceeded
by an identity verification.

Clearly, the power of BPQ is determined by the employed query language. Various lan-
guages have been developed and deployed for BPQ. Two types of languages dominate the
field: Languages based on temporal logic have been primarily developed for system verifi-
cation and transform processes into finite-state machines to evaluate them against defined
formulas. Languages using graph pattern matching retrieve subgraphs by matching given
query patterns to process model graphs. We refer to these languages as logic-based and
graph-based languages, respectively. There is an ongoing discussion of the advantages
and disadvantages concerning the two language types, especially when querying process
models, i.e. the definitions of processes: Some authors believe that structural querying
using pattern matching can only approximate behavioral querying on an instance level,
i.e. system verification (c.f. (Beeri et al. 2008)). Others state that behavioral semantics
can be expressed with temporal logic and graphs (c.f. (Wang et al. 2014)) which both
consequently must allow behavioral querying.

This thesis aims to investigate whether logic- and graph-based languages provide distinct
features for querying process definitions or rather can be expressed by one another. Con-
cretely, the following questions have driven the present research:

RQ1 What are the advantages of logic-based compared to graph-based business process
query languages and vice-versa?

RQ1a Which features do these languages offer?

RQ1b Which features of either language type can be emulated by features of the other?
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RQ1c Which features are left unique to either language type?

To answer these research questions, the features of a popular temporal logic (Computation
Tree Logic (Clarke et al. 1986)) and a generic, graph-based query language (The Diagramed
Model Query Language (Delfmann, Breuker, Matzner & Becker 2015)) are described ex-
emplary, summarized and mapped to each other where possible. Finding answers to our
questions contributes to this discussion and may guide the development of future query
languages to close the feature gap and potentially end the discussion. The findings of this
work are that pattern matching can reconstruct any formula of (branching-time) temporal
logic but retrieves false positives and false negatives (i.e. invalid executions) in certain sce-
narios. These validity issues can be resolved manually and may conceptually be resolved
in future work. Temporal logic, on the other hand, largely fails to reconstruct the feature
pattern matching offers.

Chapter 2 introduces the problem field, delimits the problem context from related concepts
and provides the necessary background for temporal logic and graph pattern matching.
Chapter 3 presents the mapping from temporal logic to graph querying language features
and vice versa. Chapter 4 summarizes and discusses the findings of the previous chapter.
Finally, chapter 5 concludes on this thesis, points at its limitations and future work, e.g.
regarding the validity issues.
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2. Background

This section presents the background required to assess and reason about the defined re-
search questions. Firstly, the problem description is narrowed down, starting with the
parental problem field. Section 2.1 introduces the problem field Business Process Manage-
ment and the problem context Business Process Querying, being a part of this field. Besides
introducing the required concepts the section delimits the problem context from related
concepts within the problem field. Next, a rudimentary foundation of the techniques which
are commonly applied to the two types of query languages is given. Logic-based querying
deploys temporal logic (section 2.2) while graph-based querying instruments graph pat-
tern matching (section 2.3). In particular, both sections list the application of available
languages within the problem context. For each query language type we select one repre-
sentative language. The selected languages are used in chapter 3 to map the features of
one type of query languages to the other.

2.1. Business Process Management (BPM)

Business Process Management (BPM) includes concrete techniques up to higher level con-
cepts supporting all phases in the lifecycle of a business process (BP), including its design,
administration, enactment and analysis (Weske 2012). The goals of BPM include (1) to
provide a better understanding of the company operations and their relationships, (2) to
increase the speed of changes and (3) to capture knowledge about the business in form of a
BP repository. However, BPM is not limited to these goals and actually solves additional
problems, Weske provides a comprehensive overview. At the very heart of these definitions
are BPs. BPs are collections of activities, performed in coordination to jointly realize the
business goal (Weske 2012). In this context the BP is an instrument to explicitly represent
the respective real-world process (or alternative versions), as each product (or service) is
an outcome of a series of activities (Hammer & Champy 1993). This explicit represen-
tation of BPs is fundamental to BPM and how it achieves its goals. The representation
itself is referred to as BP definition or model and contains the activities of the BP together
with their execution constraints (Weske 2012). As such, it is a blueprint for business cases
and is used to implement the BP manually or using software systems (Weske 2012). Or-
ganizational rules and policies implement a process manually but software can actually
enforce execution constraints within its activities (Weske 2012). While BPs are enacted
by a single organization, they are performed within an organizational and technological
environment where they possibly interact with other BPs (process choreography) (Weske
2012). A Business Process Management System (BPMS) is a piece of a software which
coordinates the enactment of BPs, driven by their explicit representation. While activities
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of enacted BPs can be executed manually, e.g. by knowledge workers using graphical inter-
faces, enactment often includes the automation of activities. Thus, BPMSs also integrate
involved IT systems and document this integration within the BP.

Section 2.1.1 describes a commonly used visual notation for the explicit representation of
BPs. Finally section 2.1.2 summarizes how explicit representations of BPs (e.g. expressed
in such notations) can be queried and how this querying contributes to the goals of BPM.

2.1.1. Business Process Model and Notation (BPMN)

The Business Process Model and Notation (BPMN) is a metamodel of and notation for
business processes (currently in version 2) (Group 2014). BPMN has been developed by
the Object Management Group1 (OMG), an open not-for-profit consortium for technology
standards driven, among others, by vendors (e.g. SAP, IDS Scheer, Software AG), end-
users and academic institutions (Group 2019). BPMN defines several diagram types for
BPs and is organized in different layers, where the notation allows to visualize elements
from the respective metamodel. To present the full BPMN standard is out of scope of
this work. Instead, this section focuses on basic modeling elements of Business Process
Diagrams which features four categories of elements (Weske 2012):

1. flow objects

2. artefacts

3. connecting objects

4. swimlanes

We briefly introduce each category and continue with introducing BPQ for BP models, e.g.
modeled in BPMN. An example BPMN model is presented and discussed in chapter 4.

2.1.1.1. Flow Objects

Flow objects are embedded in the control flow of a BP. The control flow describes the
theoretically possible execution of each BP case, from start to end. There are three types
of flow objects: (1) events, (2) activities and (3) gateways.

Events Events represent states and incidents, both physical and electronic, that can be
mapped to the real world. An example are incoming messages. They are visualized using
circles with different types of borders and icons, as shown in figure 2.1. The border indicates
the position type of an event. Events can be at the start, at the end or in between the
start and the end of a BP. The latter position type of events is called intermediate events.
Though it is best practice to start and end BPs with dedicated start and end events,
it is not mandatory in BPMN (Weske 2012). The icon inside the event shape indicates
the (optional) event type. For example, message events mainly indicate the receiving of

1https://www.omg.org



2.1. BUSINESS PROCESS MANAGEMENT (BPM) 5

start intermediateend

message timer escalation conditional link error cancel compensation signal multiple parallel multiple terminate

Figure 2.1.: BPMN event shapes in the interrupting flavor.

Task Sub-Process Transaction Call Activity

Send Task Receive Task User Task Service Task Script Task Manual Task

Loop Activity Parallel Activity Sequential Activity Ad-hoc Activity Compensation
Activity

Figure 2.2.: BPMN activity shapes.

messages and timer events trigger after certain temporal conditions are met (e.g. hourly
or after 12 hours passed). However, there are numerous event types and not all types exist
for every position type (c.f. (Weske 2012)). Additionally, events can have different flavors.
Events usually are interrupting, i.e. they listen and wait until the respective incident
occurs, such as the start event. Events can also be non-interrupting (event shapes with
dashed borders) or throwing (event shapes with filled icons). Latter events are actively
triggered by the process during its execution, such as the end event.

Activities Activities specify units of work which may or may not be further divided (Weske
2012). They are visualized as rounded rectangles, as shown in figure 2.2. Atomic activities
are referred to as tasks. These are reasonably small units of work that are to be executed
by a BP participant or an involved system. Task rectangles feature a single border and may
show an icon in their upper left corner. This icon indicates the optional type of the task.
For example, tasks can send or receive information, user tasks involve human interaction
and service tasks are fully automated by IT systems instead. Manual tasks allow to model
tasks which can not be supported by any involved system at all. In contrast, user tasks
involve human interaction but are supported by systems with graphical interfaces and
usually generate data to be stored. However, activities can also be non-atomic and thus
not only tasks. A plus icon in the rounded rectangle indicates a subprocess activity which
is described by a separate BP and its activities. There are also transaction activities
and call activities which require additional, possibly remote actions to complete before
the activity can be marked as completed. They are visualized as activities with double
and bold borders, respectively. In addition, there is a number of markers activities can
be annotated with. The loop marker expresses that the activity is iterated depending on
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xor parallel inclusive-or complexevent-based

Figure 2.3.: BPMN gateway shapes.
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Figure 2.4.: BPMN artefact shapes.

certain attributes. Other markers mark activities as sequential or parallel, ad-hoc activities
that are not embedded in the control flow or compensation activities which undo specific
prior activities.

Gateways Gateways define points in a BP model where control flow branches or joins.
Thus conditional control flow usually is modeled via gateways. They are visualized by dia-
monds where the icon inside the diamond indicates the gateway type, as shown in figure 2.3.
BPMN does not separate between branching and joining gateways but this property can be
derived from the number of outgoing flows. There are five types of gateways: Exclusive-or
gateways (x symbol) activate only a single of its outgoing branches. Parallel gateways (plus
symbol) activate all branches and synchronize them when joining. Inclusive-or gateways
(circle) activate any number of outgoing branches instead. The previous gateways decide
which branches to activate themselves. Event-based gateways (pentagram) are similar to
xor gateways but let the execution environment decide which branch to activate. Complex
gateways (asterisk symbol) allow to define the split and join behavior via activation con-
ditions and gateway expressions. Though joining gateways are not necessarily required in
BPMN, it is good practice to use gateways for both branching and joining.

2.1.1.2. Artefacts

Artefacts represent resources which add extra information to the model that is not related
to the control flow. Supported artefacts are (i) data objects, (ii) groups and (iii) anno-
tations. The different shapes are presented in figure 2.4. Artefacts may be arbitrarily
connected to flow objects.

Data Objects Data objects represent information or physical objects such as invoices or
parcels. In BPMN data objects document the usage of data in a process and can not define
the internal structure of the actual data (Weske 2012). Primarily, they are represented by
rectangles with an earmark. Arrow icons in the upper left corner may indicate whether the
data object is used as an input (such as customer orders) or output (such as an invoice) of a
flow object. A subscript icon with three vertical bars marks data objects which can actually
be broken down into multiple objects, as such the object is a collection of objects. The
state of a data object can be expressed within square brackets inside the shape. Finally,
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Figure 2.5.: BPMN connection object shapes.
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Figure 2.6.: BPMN pool and swimlane shapes.

the data store provides means to read and write data to a persistent storage (c.f. (Cruz
et al. 2012)).

Groups and Annotations The last types of artefacts are groups and annotations. Groups
can be used to group elements for the sake of layouting and without additional meaning.
Thus, they are allowed to span any parts of a model. Annotations allow to place textual
documentation inside the model, e.g. to further explain a certain object.

2.1.1.3. Connection Objects

Connection objects represent relationships between flow objects and/or artefacts. There
are different types of connections, each having their own arrow style as visualized in fig-
ure 2.5. Sequential flow specifies the ordering of flow objects, such as events and activities,
and is represented by solid arrows. Sequential flow may be conditional, if it is flow is
constrained by the values of certain attributes. Message flow is displayed as dashed arrows
and connects flow objects with artefacts, such as data objects. It indicates the flow of
messages from sender to receiver. Finally, associations related artefacts to other elements,
indicated by a dotted line.

2.1.1.4. Swimlanes

Finally, swimlanes structure a model according to its organizational environment. Swim-
lanes are organized within a pool having any number of lanes where each lane represents a
particular organization. Swimlanes are displayed as rectangles and solid lines divide them
into the different lanes, as shown in figure 2.6. Sublanes allow the model to visualize more
fine-granular organizational hierarchies.

2.1.2. Business Process Querying (BPQ)

Business Process Querying (BPQ) is a discipline in the field of BPM studying methods to
query BPs in a repository (c.f. (Polyvyanyy 2018), (Polyvyanyy et al. 2017)). Querying, in
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this context, is the execution of a process query, a formal instruction which can read and/or
write (parts of) BPs inside the repository. However, this work is limited to read queries and
we use the term BPQ to refer to this subset from now on. More specifically, we restrict BPQ
to the analysis of BP models, for example modeled in BPMN. BPQ helps to understand
BP models, find and extract (frequent) patterns for reusing and check a BP for certain
properties (Awad 2007). Thus, BPQ is a subfield and technique that supports to reach the
goals of BPM. Extracting frequent patterns reduces redundancy. Extracting patterns in
order to reuse model parts is even more important: Model development is complex, time
consuming and error prone (Awad, Decker & Weske 2008, Wang et al. 2014). Instead of
starting from scratch, reusing existing model parts can save time and costs. BPQ is required
for the understanding and extraction of these parts, due to large model sizes and the rapid
growth of the number of models per company, continuously making manual methods more
impractical (Awad, Decker & Weske 2008). Especially when BPs have to be merged, as in
case of company amalgamations (Wang et al. 2014). Furthermore, a BP captures important
information about a business and how it is conducted (Wang et al. 2014). This is why
it can be used as an information mine, e.g. to answer (customer) questions regarding
the underlying business process (c.f. (Beeri et al. 2008)). More prominently real-world
constraints, such as legal regulations, are translated into properties that a BP can be
checked for. Compliance checking (CC) is the name of this third major use case for BPQ.
Section 2.1.2.1 puts BPQ in the context of BPM and delimits it from related concepts such
as compliance checking. The different goals of BPQ yield different querying types which
are presented in section 2.1.2.2. Both led to the development of numerous query languages.
Section 2.1.2.3 provides a brief overview about query languages used for BPQ.

2.1.2.1. Delimitation of Related Concepts

BPQ is a discipline in the field of BPM and thus is related to many concepts in this field.
For example, BPQ can be seen as an approach to Business Process Analysis (BPA) and an
enabler of Business Intelligence (BI) (Riehle 2018). To give a contextual overview about
BPQ and to delimit BPQ from related concepts, they will be briefly introduced in this
section.

Compliance checking (CC) is the field of checking BP models for compliance with certain
rules. These rules describe regulations, policies and quality constraints the BP must meet
(Awad, Decker & Weske 2008). Typically, they ask for certain ordering or presence/absence
relations between activities. BPQ is required for automated CC as the rules are frequently
changing and manual checking is time-intensive (Awad, Decker & Weske 2008). CC is
separated into forward and backward CC (El Kharbili et al. 2008). Forward CC is pro-
active and aims to verify the rules at design-time or post design to prevent non-compliant
behavior. Backward CC is reactive and aims to detect non-compliant behavior by analyzing
the execution history. BPQ is primarily used in forward CC (post design).

Process Mining (PM) is a research field with the aim to discover structures from the
execution history of BPs (c.f. (van der Aalst et al. 2005)). The motivation of PM stems
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from the property that BPs leave footprints in all process-related systems (i.e. their logs)
(van der Aalst et al. 2005). Thus it provides techniques and tools to analyze these logs and
discover structures such as processes (process discovery), i.e. it learns the definition of a BP
based on the execution history of relevant cases. However, PM also includes (backward)
CC and bottleneck analysis, among others (Polyvyanyy et al. 2017). PM is closely related
to BPA and aims to bride the gap between data-driven BI and the process-centric BPM
(Polyvyanyy et al. 2017). In theory BPQ can be applied in the context of PM, e.g. when
querying logs or models derived via process discovery.

BPQ is generally defined as the querying of BPs. Confusingly, some authors speak of
workflows in this context (c.f. (Smith et al. 2012)). Workflows refer to the automation
of a BP (in part or at a whole) according to procedural rules (Weske 2012). Workflow
Management is the respective field and involves an explicit representation of BPs, as in
BPM, plus their controlled enactment based on the given models (Weske 2012). As such,
workflows are enacted BPs and in result these terms often are interchangeable.

2.1.2.2. Querying Types

There are different approaches to categorize the field of BPQ. One approach is to categorize
methods by the concrete BP entity that is being queried, which depends on the stage of
the BP (c.f. (Awad 2007, Polyvyanyy 2018)). At first, there is the definition of the BP,
e.g. captured in a model. Querying the definition involves to search for patterns in the
control flow or to lookup data requirements. The aim of this BPQ type primarily is to get
a better understanding of the BP or to reuse existing processes before designing new ones.
Secondly, the definition is instantiated yielding running BP instances. Querying running
instances allows monitoring the cases and query their status, e.g. to detect deadlocks.
Thirdly, the BP completes and leaves an execution history (i.e. a log). Querying the
history can be used for process discovery but also aims to generate statistics about the
process duration and bottlenecks (Awad 2007). Usually this querying type is used when a
definition is lacking (Polyvyanyy 2018).

Another approach for structuring BPQ methods is to analyze the type of information
they are processing, referred to as the perspective (c.f. (Wang et al. 2014, Polyvyanyy
et al. 2017)). Structural querying focuses the structural topology of the model (i.e. the
definition). Behavioral querying focuses on behaviors induced by the activity models, which
refers to the implicit execution semantics of behavioral models. At the first glance both
categorization approaches may look equal. Querying the BP definition primarily involves
structural querying (Wang et al. 2014) while querying running instances is a behavioral
analysis. However, the querying stages do not imply the applied perspective and both are
separate dimensions, indeed. This is because the BP definition carries implied behavioral
semantics (in its notion) and thus allows for behavioral querying, to some extent (Wang
et al. 2014). In fact, querying the definition approximates behavioral querying and can at
least narrow the search space for the costly verification behavioral querying implies (Beeri
et al. 2008).
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Additionally, there are different types of querying which span all stages and perspectives.
For example, semantic querying refers to the usage of similarities, an ontology etc. to
abstract from exact matches (in terms of activity labels or structures) and focus on un-
derlying meanings instead. However, this work focuses on the structural and behavioral
querying of BP models (i.e. definitions).

2.1.2.3. Languages

The different goals and perspectives of BPQ led to the development of different querying
techniques and numerous query languages for BP models. An overview and categoriza-
tion of available languages is given in (Polyvyanyy et al. 2017). Dominant techniques are
pattern matching (graph-based) and model checking (Clarke Jr et al. 2000) techniques
using temporal logic (logic-based) (Riehle 2018), especially in the field of structural and
behavioral BP definition querying. BP-QL (Beeri et al. 2006), DMQL (Delfmann, Stein-
horst, Dietrich & Becker 2015), GMQL (Delfmann, Breuker, Matzner & Becker 2015) and
VMQL (Storrle 2009) are examples for graph-based query languages and will be presented
in section 2.3.1. Languages of this category are primarily used for structural querying, as
they query the BP definition directly (Riehle 2018). In contrast, logic-based languages are
also more commonly used for behavioral querying, including the verification of compliance
rules. Logic-based languages incorporate temporal logic such as LTL (Pnueli 1977), PLTL
(Zuck 1986), CTL (Clarke & Emerson 1981) or MTL (c.f. (Polyvyanyy 2018)). For ex-
ample, BPMN-Q (Awad 2007) is a visual query language based on (P)LTL. In addition to
these dominant categories there are declarative query languages such as PQL (Kammerer
et al. 2015) as well as semantic languages such as APQL (Ter Hofstede et al. 2013), both
used for behavioral analysis (Polyvyanyy 2018). A more comprehensive list of available
languages is provided by dedicated surveys, such as (Polyvyanyy et al. 2017).

2.2. Temporal Logic

Temporal logic provides a formalism for describing assertions about event occurrences in
time - possibly past, presence and future - to reason about concurrent programs (Emerson
& Halpern 1986). Starting in the last century, it has been used as an unified approach for
the verification of programs and systems (Pnueli 1977). There are two views on temporal
logic which differ in their understanding of the nature of time and are used to classify
systems into categories (Emerson & Halpern 1986). In linear temporal logic, time is linear
and there is only one possible future. In branching time logic, time may branch into
alternative futures like a tree. The chosen view is a boundary for the expressiveness
of related systems and determines the set of allowed temporal operators and modifiers.
There are several common temporal languages, each covering different parts of the linear,
the branching or even both views on time. Linear Time Logic (LTL) was proposed for
formal verification in (Pnueli 1977) and refers to linear time temporal logic with solely
linear time operators. Computation Tree Logic (CTL) is a branching time temporal logic
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where path quantifiers must prefix linear time assertions (Clarke & Emerson 1981, Browne
et al. 1988). CTL* is an extension of CTL where path quantifiers can prefix linear time
assertions (Emerson & Halpern 1986). Thus, CTL* combines linear and branching time
logic to a powerful, more expressive temporal logic (Browne et al. 1988). Past linear time
temporal logic (PLTL) has been introduced in (Zuck 1986) and is a LTL with counterpart
operators to refer to past states (Awad, Decker & Weske 2008).

In temporal logic, a formula is evaluated against a typically finite system (i.e. having a
finite number of states). Model checking is a common approach to automatically verify
these finite state systems against temporal logic formulas (or specifications) (Clarke Jr
et al. 2000). The system is modeled as a state-transition graph which is then analyzed and
verified against the formula. Model checking, as initially proposed, suffers from the state
explosion problem and is not sufficient for large systems (i.e. having a large number of
states) (Clarke Jr et al. 2000). Symbolic model checking uses dedicated data structures (e.g.
binary decision diagrams) to cope with the state explosion problem (Clarke Jr et al. 2000).
These structures e.g. abstract from data values by mapping actual values to sets of abstract
values. This abstraction is then extended to states and state transitions to generate and
verify the resulting abstract system, often having a much smaller size. Model checking,
however, typically is not restricted to the initial variant but refers to any technique alike,
including symbolic model checking.

Section 2.2.1 provides an overview about the usage of temporal logic in BPQ and finishes
with a brief discussion on their appropriateness. An overview of applied temporal logic
languages has already been presented in (Elgammal et al. 2016). CTL is one of these
languages and has been selected as the most appropriate temporal logic for BPQ. Hence
CTL will be used as the reference language for logic-based BPQ. Section 2.2.2 introduces
CTL with its operators and their semantics.

2.2.1. Logic-based BPQ

When temporal logic is used for BPQ, the respective query is transformed into a temporal
logic expression (i.e. formula), defining the desired properties (Polyvyanyy 2018). In order
to analyze the BP with temporal logic, a finite state system is required. Depending on the
used modeling language this calls for pre-processing and transformations (Riehle 2018). In
principle, the BP model is transformed into a finite state system and evaluated against the
formula and its implied properties using model checking (De Nicola et al. 2012, Polyvyanyy
2018). However, this transformation may include intermediate transformations into more
formal modeling languages such as Petri nets (Reisig & Rozenberg 1998), depending on
the exact modeling language (De Nicola et al. 2012).

There are multiple examples for BPQ based on temporal logic, mainly in the area of CC.
BPMN-Q is a full query language for BPMNmodels with a BPMN-like syntax (Awad 2007).
Though BPMN-Q is primarily a visual language for structural querying, it incorporates
PLTL model checking to support (behavior-related) CC (Awad, Decker & Weske 2008).
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BPMN-Q has also been combined with CTL to conduct compliance checking (Awad et al.
2011). Visual BPMN-Q queries were used to express compliance requirements which were
mapped to CTL in a subsequent step, to take behavioral aspects into account. Additionally,
BPMN-Q has been expanded to support automated semantic querying using generated
ontologies (Awad, Polyvyanyy & Weske 2008). LTL has been used to verify properties of
executed BP based on log entries in (van der Aalst et al. 2005). (Liu et al. 2007) uses
model checking via LTL to check BPEL models for compliance with constraints originally
defined in the Business Property Specification Language (BPSL). Förster et al. used PLTL
for compliance checking on UML Activity Diagrams in a series of papers (c.f. (Förster
et al. 2007)). The constraints have been originally defined using the visual Process Pattern
Specification Language (PPSL). In (Elgammal et al. 2016) a Compliance Request Language
(CRL) is specified grounded in LTL, to express common CTL and LTL expressions used
in CC more compactly (Riehle 2018). Still closely related to BPQ is the usage of temporal
logics in declarative modeling languages. For example, DECLARE (Pesic & Van der Aalst
2006, Pesic et al. 2007) allows the declarative modeling of BPs where visual elements
represent constraints and (invisibly to the modeler) map to temporal logic constructs.

Facing this set of related work raises the question which temporal logic to use for BPQ.
At first, there are formulas in LTL which can not be expressed using CTL and vice versa
(Vardi 2001). Arguably, LTL is the preferred choice when querying linear entities such
as logs of executed BPs where there is a linear sequence of events (van der Aalst et al.
2005). However, prior to the execution of BPs linearity is not given and multiple branches
may be enabled in the future. In contrast to LTL, CTL naturally represents and works
with these branches. This is why CTL provides a natural means to express acceptable
behaviors (Venkatraman & Singh 1999). Finally, model checking seems to be less complex
for branching than for linear time logic (Emerson & Halpern 1986). Thus, CTL is selected
as the reference language for logic-based BPQ.

2.2.2. Computation Tree Logic (CTL)

Computation Tree Logic (CTL) (Clarke & Emerson 1981) is a subset of CTL* where only
branching-time operators are permitted, i.e. linear-time operators must be prefixed by
path quantifiers (Browne et al. 1988). This is because, unlike in many other temporal logic
languages, CTL respects the branching nature of time and is aware of multiple possible
futures. Formulas need to express whether a linear-time formula should be valid on one
or all these futures. As in every temporal logic, you construct formulas that may be
evaluated on finite state systems and, in result, be used for model checking (Clarke &
Emerson 1981). The syntax of CTL and its formalization is presented in section 2.2.2.1,
based on Kripke structures. Section 2.2.2.2 describes the semantics of the CTL operators
and related formulas in greater detail.
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2.2.2.1. Syntax and Formal Semantics

Given a system consisting of states, CTL internally allows to express two types of formulas,
namely (1) state formulas that are evaluated in a specific state and (2) path formulas that
are evaluated along paths, infinite sequences of states. Though both types exist, only
state formulas are valid CTL formulas. To become state formulas, path formulas must be
prefixed with path quantifiers (see above). In order to introduce the syntax of the state
formulas in CTL, it is required to understand that each state is associated with atomic
propositions that either do or do not hold in the respective state. Given a set of atomic
proposition names AP, a state formula is either

1. a ∈ AP - the name of an atomic proposition;

2. ¬ f1, f1∨ f2 - a logical transformation or combination of state formula(s) f1, f2;

3. E(g) - a path formula g prefixed with a path quantifier.

In this context, a path formula is either

1. X f1, f1U f2 - a branching time operator on state formula(s) f1, f2;

2. ¬g - the negation of a path formula g.

The semantics of CTL are defined with respect to a Kripke structure M = (S,R,L) and the
set of atomic proposition names AP (Clarke & Emerson 1981, Clarke et al. 1986) where

1. S is a set of states,

2. R⊆ S×S is the transition relation and

3. L : S→ 2AP is a labeling function that determines the set of valid atomic propositions
L(s) in state s ∈ S.

For a more compact description of the semantics, additional definitions have proven useful.
We use s1 → s2 to denote that (s1,s2) ∈ R. Let π = s0,s1, ... be a path, i.e. an infinite
sequence of states, in M where ∀i ∈ N0 : si ∈ S,si → si+1. In this context, π i denotes the
suffix of path π starting at si and πi denotes the i-th elements of π, i.e., si. The model
relation |= is now used to indicate that a state or path formula holds at a state or along a
path and inductively defined, given state formulas f1, f2 and path formulas g1,g2:

(R1) s |= a ⇔ a ∈ L(s)

(R2) s |= ¬ f1 ⇔ s 6|= f1

(R3) s |= f1∨ f2 ⇔ (s |= f1)∨ (s |= f2)

(R4) s |= E(g1) ⇔ ∃π : (π0 = s∧π |= g1)

(R5) π |= f1 ⇔ π : (π0 = s∧ s |= f1)

(R6) π |= ¬g1 ⇔ π 6|= g1
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(R7) π |= g1∨g2 ⇔ (π |= g1)∨ (π |= g2)

(R8) π |= X(g1) ⇔ π1 |= g1

(R9) π |= g1Ug2 ⇔ ∃k ∈ N0 :
(
πk |= g2∧∀( j ∈ N0| j < k)(π j |= g1)

)
This inductive definition is a direct translation of the set of rules presented above. While
the definition is complete, i.e. represents a minimal subset that any CTL formula can be ex-
pressed with, there are additional logical symbols and time operators which are commonly
defined based on existing ones:

(A1) A(g1) ⇔ ¬E(¬g1)

(A2) f1∧ f2 ⇔ ¬(¬ f1∨¬ f2)

(A3) f1⇒ f2 ⇔ ¬ f1∨ f2

(A4) ( f1⇔ f2) ⇔ ( f1⇒ f2)∧ ( f2⇒ f1)

(A5) F(g1) ⇔ trueUg1

(A6) G(g1) ⇔ ¬F(¬g1)

Implicitly, the logical symbols are defined for path formulas π analogously. Most important,
however, is the new path quantifier A and the linear time operator F . These abbreviations
allow for more compact and understandable CTL formulas.

The Bachus-Naur form (BNF) can be used to denote possible symbols for valid state and
path formulas and summarizes the basic CTL rules alongside with common abbreviations
that have been introduced. Valid state formulas f are described by the BNF in equa-
tion (2.1).

f ::=>|⊥|a |¬ f | f ∨ f | f ∧ f | f =⇒ f | f ⇔ f |E(g) |A(g) (2.1)

In this context, > and ⊥ are equivalent to true and false and can be seen as artificial
propositions that do, respectively do not, hold in every state and on every path. Valid
path formulas g are described by another BNF in equation (2.2).

g ::= ¬g |X( f ) | f U f |F( f ) |G( f ) (2.2)

2.2.2.2. Operator Semantics

The previous section introduced the syntax and formal semantics of CTL formulas which
effectively consist of logical symbols, atomic propositions, linear time operators and path
quantifiers. Linear time operators had to be prefixed with path quantifiers to allow for a
valid CTL formula, resulting in 8 possible combinations of the linear time operators X , U ,
F and G with the path quantifiers E and A to valid CTL operators. This section tracks
down each operator’s definition, provides an informal description and a visualization based
on state trees shown in figure 2.7. Keep in mind, however, that the semantics of CTL were
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defined with respect to Kripke structures with infinite sequences of states. State trees with
finite traces are used for simplicity and demonstration purpose only.

EX The combination of the path quantifier E with the linear time operator X defines the
CTL operator EX which is formally described by the rules 4 and 8 in equation (2.3).

(R4) s |= EX( f )⇔∃π : (π0 = s∧π |= X f )

(R8) ⇔∃π : (π0 = s∧π
1 |= f )

(2.3)

Informally, EX p holds when p holds in at least one of the possible immediate successor
states. Figure 2.7a visualizes the CTL formula EX p. It shows a tree of states where states
are linked to immediate successor states from lower levels. States in which the atomic
proposition p holds are highlighted in blue, states where the CTL formula EX p holds are
circled in green. Graphically, EX p holds whenever there is an immediate successor where
p holds.

AX The counterpart of EX is AX , where each path has to fulfill X . As shown in equa-
tion (2.4), this operator is defined by the same rules but in combination with abbreviation
1.

(A1) AX( f )⇔¬E¬X f

(R4) ⇒ s |= AX( f )⇔¬∃π : (π0 = s∧π |= ¬X f )

(R8) ⇔¬∃π :
(
π0 = s∧¬(π1 |= f )

)
(R6) ⇔¬∃π : (π0 = s∧π

1 6|= f )

(2.4)

Informally, AX p holds when there is no immediate successor state in which p does not hold.
A basic formula using this operator is visualized in figure 2.7b. As displayed, AX p holds
whenever p holds in all immediate successors which is equivalent to the phrase above.

EU The binary linear time operator U is a bit more complex which can be seen in rule 9.
When combined with the existential path quantifier, it results in the CTL operator EX ,
which is defined by the rules 4 and 9, as shown in equation (2.5).

(R4) s |= E f1U f2⇔∃π : (π0 = s∧π |= f1U f2)

(R9) ⇔∃π :
(

π0 = s∧∃k ∈ N0 : π
k |= f2∧∀( j ∈ N0| j < k)(πk |= f1)

) (2.5)

This operator checks whether there is a possible sequence of states that eventually leads
to a state in which one state formula holds while another state formula holds in between,
i.e. from the current state to this target state. To visualize this binary operator, the tree
now shows a second proposition q in figure 2.7c. States in which q holds are highlighted in
orange. A gradient from blue to orange denotes states in which both p and q hold. Every
state in which q holds trivially fulfills the U operator. States in which p holds may as well
fulfill E pUq if there is a path to the leaves of the tree where p holds until q eventually
holds. In result, any path consisting solely of states where either p or q holds until q holds
the first time fulfills the U operator, thus EU holds in each state with at least one of such
paths.
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AU This operator is formally defined by abbreviation 1, in addition to the abbreviations
and rules that define EU . Equation (2.6) presents the full definition.

(A1) A f1U f2⇔¬E¬( f1U f2)

(R4) ⇒ s |= A f1U f2⇔¬∃π : (π0 = s∧π |= ¬( f1U f2))

(R9) ⇔¬∃π :
(

π0 = s∧¬∃k ∈ N0 : π
k |= f2∧∀( j ∈ N0| j < k)(πk |= f1)

)
(2.6)

To put this formalization in words, A f1U f2 holds when there is no sequence of states where
there is no state in which f2 holds while f1 holds in all states in between. Again, every
state in which q holds trivially fulfills this formula. States in which p holds may still fulfill
it, if there is no path on which either q never holds or p does not hold until this state.

EF The CTL operator EF is formally defined as in equation (2.7), based on abbreviation
5 combined with the rules 4 and 9.

(A5) EF( f )⇔ E(trueU f )

(R4) ⇒ s |= EF( f )⇔∃π : (π0 = s∧π |= (trueU f ))

(R9) ⇔∃π :
(

π0 = s∧∃k ∈ N0 : nk |= f
) (2.7)

Informally, EF p holds whenever there is at least one possible sequence in which p eventually
holds. Graphically this translates to states where there is any path that contains any state
in which p holds. As displayed in figure 2.7e, this is trivially the case for states where p

holds but may still be true for other states if p holds in any subsequent state.

AF AF is defined by the rules 4 and 9 alongside with the abbreviations 1 and 5, as shown
in equation (2.8).

(A1) AF( f )⇔¬E¬F f

(A5) ⇔¬E¬(trueU f )

(R4) ⇒ s |= AF( f )⇔¬∃π : (π0 = s∧π |= ¬(trueU f ))

(R9) ⇔¬∃π :
(

π0 = s∧¬(∃k ∈ N0 : nk |= f )
) (2.8)

Following this formalization, AF p holds when there is no possible state sequence that does
not include at least one state where p holds. Thus, each possible state sequence must
include a state where p holds, This requirement is trivially fulfilled by states where p

holds, as displayed in figure 2.7f. AF p may still hold in other states if each possible path
down to the leaves includes at least one state where p holds.

EG The CTL operator EG is formally defined by the abbreviations 6 and 5, allowing to
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(a) EX p (b) AX p

(c) pEUq (d) pAUq

(e) EF p (f) AF p

(g) EG p (h) AG p

Figure 2.7.: Example formulas to visually describe the CTL operators. Circles represent states,
edges represent state relations. Blue circles denote states where the atomic proposition
p holds, green borders denote that the CTL formula holds. Orange circles denote states
where q holds.
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inductively define the model relation using the rules 4 and 9, resulting in equation (2.9).

(A6) EG( f )⇔ E¬F(¬ f )

(A5) ⇔ E¬(trueU¬ f )

(R4) ⇒ s |= EG( f )⇔∃π : (π0 = s∧π |= ¬(trueU¬ f ))

(R9) ⇔∃π :
(

π0 = s∧¬(∃k ∈ N0 : nk |= ¬ f )
) (2.9)

Informally, EG p holds whenever there is at least one possible sequence of states without any
state in which p does not hold. To put it differently, EG p holds when at least one possible
sequence consists solely of states where p holds. This is reflected by the visualization in
figure 2.7g. States where p does not hold are the trivial case in which G can never hold.
Instead, EG holds in states where (1) p holds and (2) there is at least one path down to
the leaves with states where p holds all the time.

AG Formally, AG is defined by the abbreviations 1, 6 and 5, together with rule 4 as well
as 9 this leads to the model relation definition shown in equation (2.10).

(A1) AG( f )⇔¬E¬G( f )

(A6) ⇔¬E¬¬F(¬ f )⇔¬EF(¬ f )

(A5) ⇔¬E trueU¬ f

(R4) ⇒ s |= AG( f )⇔¬∃π : (π0 = s∧π |= trueU¬ f )

(R9) ⇔¬∃π : (π0 = s∧∃k ∈ N0 : nk |= ¬ f )

(2.10)

AG p holds whenever there is no possible sequence of states, starting at the current state,
with at least one state where p does not hold. In result, the operator holds when all
possible state sequences solely consist of states where p holds. This property can be seen
in figure 2.7h. AG p holds in states where (1) p holds and (2) p holds in every state on
every path down to the leaves.

2.3. Graph Pattern Matching

Graph pattern matching is a field of research where graphs are searched for graphs (the
pattern) and potential matches are retrieved. This matching procedure can be exact or
approximate. Approximate graph matching tries to asses the similarity between the in-
put graphs while exact graph matching retrieves mappings where the pattern structure
is preserved in the searched graph (Gori et al. 2005). Exact graph matching can either
retrieve the subgraph or supergraph of the pattern query (Sakr & Al-Naymat 2010). For
supergraph queries, the searched graph is contained in the pattern graph while the first
query type retrieves subgraphs of the searched graph which structurally match the pat-
tern graph. In this case, the set of vertices and edges of the subgraph form a subset of
the vertices and edges of the searched graph and the pattern graph is isomorphic to the
subgraph. Approximate (or similarity) graph matching is not necessarily isomorphic (Sakr
& Al-Naymat 2010).
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A subgraph is defined as isomorphism if there is a bijective function mapping the vertices
of the pattern graph to the subgraph of the searched graph (Sakr & Al-Naymat 2010).
For each edge between two vertices in the pattern graph, there must be an edge between
the vertices of the subgraph they have been mapped to. Both, the vertex and the edge
mapping, has to respect the labeling of the respective graph elements. Formally, let P =

(VP,EP,αP,βP,δP,εP) and S = (VS,ES,αS,βS,δS,εS) be pattern graph and subgraph, where V

is the set of vertices, E ⊆V ×V is the set of edges, α , β are the sets of vertex respectively
edge labels and δ : V → α , ε : E→ β are the labeling functions, assigning labels to vertices
and edges. P is a graph isomorphism to S iff there is a bijective function f : VP → VS so
that

1. ∀(u,v) ∈ EP : ∃( f (u), f (v)) ∈ ES :

2. αP(u) = αS( f (u))∧αP(v) = αS( f (v))∧

3. βP((u,v)) = βS((u,v))

This kind of graph pattern matching is generally computationally expensive. Many al-
gorithms use dedicated indexing techniques to improve the complexity and indeed the
performance heavily depends on the efficiency of these techniques and the query process-
ing (Sakr & Awad 2010). Most techniques rely on a procedure with two phases, filtering
and verification, where the first phase intensively uses indexing structures to reduce the
state space (Awad & Sakr 2012, Wang et al. 2014, Shasha et al. 2002). Concerning the
exact graph matching, there are mostly backtracking algorithms based on tree search (Gori
et al. 2005, Wang et al. 2014).

Section 2.3.1 provides an overview about how graph pattern matching is used for BPQ and
which graph-based query languages have been applied. Section 2.3.2 introduces DMQL, a
generic graph querying language used as the reference language for graph-based BPQ.

2.3.1. Graph-based BPQ

Graph matching requires the model to be in a graph structure, having vertices and edges
together with their properties (Riehle 2018). Arguably every conceptual model, like a
BP model, already is such a graph (Weske 2012, Delfmann, Breuker, Matzner & Becker
2015, Riehle 2018). BP models, in particular, can be considered as graphs having behavior
semantics (Wang et al. 2014). In principle model querying resembles the graph pattern
matching problems of subgraph isomorphism and homeomorphism which can be applied to
the graphs representing the respective model (Delfmann, Breuker, Matzner & Becker 2015).
In the case of BPMN, such graphs are created by mapping flow objects (i.e. activities,
events and gateways) to vertices. These vertices are linked by an edge if the respective
flow elements are interlinked by connection objects. Properties of the flow and connection
objects can be mapped directly to properties of the particular property graph elements. If
the graph is not a property graph, each property key is mapped to a vertex type where the
captions of its vertices denote the property value, for example. However, the evaluation of
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BPQ queries is more than subgraph matching on the resulting graph (c.f. (Sakr & Awad
2010), (Beeri et al. 2006)). For example, graph patterns typically do not cover paths of
arbitrary length (Delfmann et al. 2010).

The Business Process Query Language (BP-QL) is a visual language to retrieve paths from
process definitions (Beeri et al. 2006). BP-QL focuses on querying distributed BP models
modeled in the Business Process Execution Language (BPEL) (Andrews et al. 2003) and
e.g. supports zooming into remove processes (Beeri et al. 2008). Its querying relies on an
abstract model representing a collection of processes (c.f. (Beeri et al. 2006)). BP-QL has
been specifically developed and applied for BPQ (see (Beeri et al. 2008)). The Generic
Model Query Language (GMQL) is a textual query language for conceptual models, such
as process models, data models and arbitrary graph-based models (Delfmann, Steinhorst,
Dietrich & Becker 2015). In GMQL the model graph is searched for subgraphs correspond-
ing to a pattern query. It has been developed with an application within business process
compliance management in mind, too. In fact, GMQL has been applied for compliance
checking in the financial sector (Becker et al. 2011) and a generic, GMQL-based compliance
checking approach emerged (Bräuer et al. 2013). The Diagramed Model Query Language
(DMQL) is its successor, extending GMQL with a visual notation and adding features such
as loop detection (Delfmann, Breuker, Matzner & Becker 2015, Polyvyanyy 2018). Being
a very recent development, DMQL has not been used for BPQ to our best knowledge yet.
The Visual Model Query Language (VMQL) is a language to query conceptual models like
Unified Modeling Language (UML) using the elements of the respective modeling language
(Storrle 2009). In (Störrle & Acretoaie 2013), VMQL has been used for BPQ on BPMN
models from the insurance sector. Though BPMN-Q is consequently categorized as logic-
based BPQ, it applies graph-reduction techniques based on structural matching to reduce
the state space for the LTL model checking (Awad, Decker & Weske 2008).

Besides BP-QL all these languages are generic and can be applied to different conceptual
models. DMQL is the successor of GMQL and thus only VMQL and DMQL are considered
as a reference language for graph-based BPQ. We favor the more recent DMQL over VMQL
which has been initially developed for UML diagrams. While DMQL has not been applied
for BPQ yet, GMQL has been used for CC more than once. DMQL has powerful features
such as negative paths and ships with a generic visual notation.

2.3.2. Diagramed Model Query Language (DMQL)

The Diagramed Model Query Language (DMQL) is a multi-purpose model query language
to specify graph structures using diagrams (Delfmann, Breuker, Matzner & Becker 2015).
It has been developed in response to the identification of a set of 10 requirements for model
query languages which no available language met. These requirements included, but were
not limited to, 1. express pattern vertex properties, 2. map query edges to model paths with
certain properties and elements, 3. be applicable to view-spanning integrated conceptual
models and 4. provide a graphical editor to model diagrammed patterns. DMQL is defined
on a formalization of conceptual models as graphs, using set theory, and thus can be
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applied to any conceptual model, regardless of the modeling language or notation that is
being used.

A summary of the set-based formalization of DMQL is presented in section 2.3.2.1. Ar-
guably one of the most powerful features of DMQL are paths with its properties, such
as the ability to filter paths depending on nested patterns (subpattern). Section 2.3.2.2
describes the semantics of patterns and subpatterns in greater detail.

2.3.2.1. Formalization of DMQL

DMQL is a generic language which requires a metamodel for each conceptual model that
is to be queried. As such, there is a modeling language that defines how supported concep-
tual models look like. Conceptual models of different modeling languages are allowed to
be integrated, i.e. they are allowed to share elements which can be instrumented in DMQL
patterns. Patterns are graphs referring to types and labels of the queried conceptual mod-
els. While patterns support numerous properties of vertices and edges, (negative) paths
and even subpatterns for path edges, they also allow the definition of global rules. Finally,
patterns are mapped to the joint graph of conceptual models - with respect to defined
global rules - to produce a number of mappings. These mappings are subgraphs which
match to the described pattern. The different concepts of the described matching proce-
dure will now be introduced and partially formalized, summarizing (Delfmann, Breuker,
Matzner & Becker 2015).

Delfmann et al. define a modeling language as a tuple L = (TV ,TE) where TV is a set of
vertex types and TE is a set of edge types. Edge types are further separated into directed
and undirected edge types, such that TE = TED∪TEU . While TED = TV ×TV , undirected edge
types must link vertices of different types, i.e. TEU ⊆ {(t1, t2)|t1, t2 ∈ TV , t1 6= t2}.

A conceptual model is a tuple M = (L,V,E,α,β ,C,γ) and thus an instantiation of a mod-
eling language (Delfmann, Breuker, Matzner & Becker 2015). In this context, L is the
instrumented modeling language and determines available vertex and edge types plus their
interrelations, as defined above. V and E are non-empty sets of vertices and edges of
the model, where α : V → TV and β : E → TE are functions that map vertices and edges
to their respective type. In accordance with edge types, edges can be further separated
into directed and undirected edges, i.e. E = ED ∪EU . Multi-edges are allowed, as such
two vertices may be linked by multiple edges at the same time. While directed edges in
ED ⊆V ×V ×N may link vertices to any vertex, undirected edges can only link vertices of
different types, formally EU ⊆ {(v1,v2,n)|v1,v2 ∈ V,n ∈ N,v1 6= v2}. Note that multi-edges
are numbered using the set of natural numbers N, counting from 1. Finally, C is a set of
captions (or labels) and γ : Z→C with Z =V ∪E is a generic labeling function for all graph
elements. Vertices may have further attributes which in turn are regarded as vertices.

Multiple conceptual models of different modeling languages using shared concepts are re-
ferred to as integrated models. They can be used to combine models from different sub-
domains in the context of vertical abstraction (Weske 2012), e.g. process and organization
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models. Using shared concepts implies not only that the languages have one or more ver-
tex/edge types in common but that the models refer to some identical modeling elements,
e.g. a certain organizational unit (Delfmann, Breuker, Matzner & Becker 2015). Formally,
integrated models can be represented as unified models, created by applying the union op-
eration on conceptual models which are to be integrated. As such, a set of integrated model
is defined as M̄ = (L̄,V̄ , Ē, ᾱ, β̄ ,C̄, γ̄) where L̄ = ∪i Li, V̄ = ∪iVi, Ē = ∪i Ei, ᾱ : V̄ → T̄V ∈ L̄,
β̄ : Ē→ T̄E ∈ L̄, C̄ = ∪iCi and γ̄ : Z̄→ C̄ with Z̄ = V̄ ∪ Ē.

Given these set-based definitions that formalize models as graphs, DMQL uses patterns to
issue queries. Patterns are graphs which are mapped to subgraphs of the joint conceptual
models graph. A pattern is a tuple Q = (VQ,EQ,PV ,PE ,δ ,ε,ρ,G). VQ and EQ =VQ×VQ×N

are the sets of pattern vertices and edges. Each pattern vertex and edge can be assigned
to properties stored as tuples in PV or PE , respectively. The two functions δ : VQ → PV

and ε : EQ→ PE assign such property tuples to pattern vertices and edges. ρ ⊆ ∪iLi is the
set of modeling languages the query pattern supports. Any query that is evaluated on a
conceptual model returns a set of pattern occurrences.

There are 3 built-in properties for pattern vertices: PV ⊆{(vid,vcaption,vtypes)}, where vid

is a string identifier for pattern vertices, vcaption∈C is a label required for model vertices to
be mapped and vtypes⊆ TV ∈ ρ is the set of vertex types a model vertex is allowed to have.
In contrast, there are 10 built-in pattern edge properties: PE ⊆ {(eid,ecaption,dir,minl,

maxl,minvo,maxvo,mineo,maxeo,vtypesr,vtypes f ,etypesr,etypes f ,Θ)}. Analogously to ver-
tices, eid is a string identifier for pattern edges and ecaption∈C is a label required for model
edges to be mapped. A pattern edge may be either mapped to a model edge or a model
path, depending on the values of minl and maxl. In both cases, dir ∈ P({org,opp,none})∪∅
determines whether mapped model edges or paths should have either the same, the op-
posite, none, any combination of those or even any direction, with respect to the pattern
edge. The property minl ∈ N specifies the minimum and maxl ∈ N0 the maximum length
of a mapped model path. Pattern edges with maxl = 0 are mapped to model paths of any
length. Pattern edges with minl = maxl = 1 will be mapped to model edges only. Addi-
tional built-in edge properties other than eid, dir and etypesr will be ignored in this case.
minvo,mineo ∈ N0 and maxvo,maxeo ∈ N0∪{−1} define to what extent paths are allowed to
cut themselves by specifying the minimum and maximum number of allowed vertex and
edge overlaps. The maximum number might be unlimited as indicated by a value of −1.
vtypesr,vtypes f ⊆ TV ∈ ρ and etypesr,etypes f ⊆ TE ∈ ρ specify vertex and edge types that
are required or forbidden on the path. Finally, Θ ⊆ {(Q,c)} specifies sub-patterns that
the path has to map to. This set consists of tuples where c ∈ {req, prep, f orb, p f orb} steer
whether the sub-pattern is (partially) required or forbidden and Q 6= ∅ is just another
query pattern.

The last pattern element is a tuple of global rules, G = (gminvo,gmaxvo,gmineo,gmaxeo,

R), which are applied to the whole query. Similarly to the respective edge properties,
gminvo,gmineo ∈ N0 and gmaxvo,gmaxeo ∈ N0∪{−1} define to what extent different paths
of the pattern are allowed to cut each other. R is a set of rules operating on the properties
of pattern vertices, supporting primitives, logical operators and calculations. There are
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four element properties that can be used: The caption, the vertex type and the number
of incoming, outgoing or undirected edges connected to the vertex. Naturally, all but the
caption property only apply to vertices.

Finally, all these constructs are used to map the patterns onto (possibly integrated) con-
ceptual models. Given a set of integrated conceptual models M̄ and a query pattern Q as
input, a query produces a set of pattern occurrences Mi(Q)′ = (L′i,V

′
i ,E

′
i ,α
′
i ,β
′
i ,C
′
i ,γ
′
i ) where

L′i ⊆ L̄, V ′i ⊆ V̄ , E ′i ⊆ Ē, α ′i = ᾱ|V ′i , β ′i = β̄ |E ′i , C′i ⊆ C̄ and γ ′i = γ̄|C′i .

Auxiliary constructs are defined to keep the formal description of how patterns are mapped
to conceptual models short: Properties of vertices and edges are represented as tuples
t = (x1, ...,xn) but a component xi of t can be accessed via t.xi where t.xi = t ∗ (y1, ...,yn)

with ∀( j ∈ [1,n] | j 6= i) : y j = 0 and yi = 1. A path through the set of models M̄ is defined
as a sequence of vertices and edges < v1,e1,v2,e2, ...,vn−1,en−1,vn where the edges may
be directed or undirected. The construct path is introduced, to describe such sequences.
As specified, pattern edges may be mapped to model edges/paths in different directions,
depending on the value of dir. Formally:

path(vs,vt)dir =< vs,es,vs+1,es+1, ...vt−1,et−1,vt >,vi ∈ V̄∧

({org} ∈ dir∧ ei = (vi,vi+1,z) ∈ Ē ∀i ∈ [s, t−1],z ∈ N)∨

({opp} ∈ dir∧ ei = (vi+1,vi,z) ∈ Ē ∀i ∈ [s, t−1],z ∈ N)∨

({none} ∈ dir∧ ei = {vi,vi+1,z} ∈ Ē ∀i ∈ [s, t−1],z ∈ N)

(2.11)

Since there may be more than one path between two vertices vs and vt , an index k ∈ N is
introduced to distinguish between the separate paths pathk(vs,vt)dir. After the introduction
of DMQL in 2015, features have been added. For example, DMQL has been extended by
negative paths. They require that two existent vertices are not connected by a path with
the given properties. However, patterns have to be fully connected. Thus vertices can not
be connected to the pattern graph by negative paths, solely. Each vertex must still be
connected by at least one positive path, given that there are pattern elements other than
this vertex.

To determine which model elements are part of a path, two operations transforming a path
to a set of vertices or edges, respectively, are described, given path p = pathk(vs,vt)dir:

vertices(p) = {v ∈ V̄ |v ∈ p} (2.12)

edges(p) = {e ∈ Ē |e ∈ p} (2.13)

Additionally, constructs to denote the path length as well as the number of overlapping
vertices and edges on a path are defined:

length(p) = |vertices(p)|−1 (2.14)

numvo(p) = d |p|
2
e− |vertices(p)| (2.15)
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numeo(p) = b |p|
2
c− |edges(p)| (2.16)

With these constructs, the mapping of a query pattern Q onto a set of models M̄ can be
defined in a more succinct way. Evaluating a query Q = (VQ,EQ,PV ,PE ,δ ,ε,ρ,G) on a set
of models M̄ = (L̄,V̄ , Ē, ᾱ, β̄ ,C̄, γ̄) by mapping Q to M̄ given a label equivalence relation
∼⊆ C̄×C̄ produces a set of pattern occurrences Mi(Q)′ = (L′i,V

′
i ,E

′
i ,α
′
i ,β
′
i ,C
′
i ,γ
′
i ) such that

equation (2.17) (handling simple pattern edges) and equation (2.18) (handling path edges)
hold.

vQs,vQt ∈VQ∧ eQ = (vQs,vQt ,nQ) ∈ EQ∧ ε(e).minl = ε(e).maxl = 1∧dir = ε(e).dir⇔
(2.17a)

∃=1v′is ∈V ′i ,∃=1v′it ∈V ′i : α
′
i (v
′
is) ∈ δ (vQs).vtypes∧δ (vQs).vcaption∼ γ

′
i (v
′
is)∧

α
′
i (v
′
it) ∈ δ (vQt).vtypes∧δ (vQt).vcaption∼ γ

′
i (v
′
it)∧

(2.17b)

((∃=1e′io = (v′is,v
′
it ,nM) ∈ E ′i : ε(eQ).ecaption γ

′
i (e
′
io)∧org ∈ dir∧β

′
i (e
′
io) ∈ ε(eQ).etypesr)∨

(∃=1e′ii = (v′it ,v
′
is,nM) ∈ E ′i : ε(eQ).ecaption γ

′
i (e
′
ii)∧opp ∈ dir∧β

′
i (e
′
ii) ∈ ε(eQ).etypesr)∨

(∃=1e′in = {v′is,v′it ,nM} ∈ E ′i : ε(eQ).ecaption γ
′
i (e
′
in)∧none ∈ dir∧β

′
i (e
′
in) ∈ ε(eQ).etypesr))

(2.17c)

Informally, a simple pattern edge from pattern vertex vQs to vQt maps to a model edge
between a pair of model vertices v′is,v

′
it iff

1. the model vertex types and captions fit the respective pattern vertex properties and

2. the model edge caption and direction match the specified pattern edge.

This is formally expressed in equation (2.18). Equation (2.18), on the other hand, handles
path pattern edges between the two pattern vertices vQs and vQt (a). A model path maps to
the path pattern edge iff the start and end vertices have the configured types and captions
(b) and its length is appropriate (c). Furthermore, the number of vertex and edge overlaps
between elements on the path must be within the configured interval (d) and each vertex
must have an allowed type but none of the forbidden types (e), this applies to edges as
well (f). Depending on the configured constraint of sub-pattern occurrences, specified sub-
patterns are fully or partly required or forbidden (g). This is applicable for each model
i and multi-edge count nQ, each pair of start and target pattern vertex indices s and t,
for each sub-pattern occurrence θ and each sub-pattern mapping. At the same time, the
configured inter-path overlapping constraints must be fulfilled by the mapping (i) and all
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global rules must hold (j).

vQs,vQt ∈VQ∧ eQ = (vQs,vQt ,nQ) ∈ EQ∧dir = ε(e).dir∧

ε(e).minl > 1∧ ε(e).maxl 6= 1⇔ (2.18a)

∃=1v′is ∈V ′i ,∃=1v′it ∈V ′i : α
′
i (v
′
is) ∈ δ (vQs).vtypes∧δ (vQs).vcaption∼ γ

′
i (v
′
is)∧

α
′
i (v
′
it) ∈ δ (vQt).vtypes∧δ (vQt).vcaption∼ γ

′
i (v
′
it)∧ (2.18b)

p = pathk(v
′
is,v
′
it)dir,∃=1vertices(p) ∈V ′i ,∃=1edges(p) ∈ E ′i :

l = length(p),(ε(eQ).maxl = 0∨ l ≤ ε(eQ).maxl)∧ ε(eQ).minl ≤ l∧ (2.18c)

oV = numvo(p),(ε(eQ).maxvo =−1∨oV ≤ ε(eQ).maxvo)∧ ε(eQ).minvo≤ oV ∧

oE = numeo(p),(ε(eQ).maxeo =−1∨oE ≤ ε(eQ).maxeo)∧ ε(eQ).mineo≤ oE ∧ (2.18d)

∀tV ∈ ε(eQ).vtypesr∃v ∈ vertices(p) |α ′i (v) = tV ∧@v ∈ vertices(p) |α ′i (v) ∈ ε(eQ).vtypes f ∧ (2.18e)

∀tE ∈ ε(eQ).etypesr∃e ∈ edges(p) |β ′i (e) = tE ∧@e ∈ edges(p) |β ′i (e) ∈ ε(eQ).etypes f ∧ (2.18f)

os = (vertices(p)∪ edges(p))∩M′θ (Θ.Q)∧

((Θ.constraint = req∧os = M′θ (Θ.Q))∨

(Θ.constraint = preq∧os 6=∅)∨

(Θ.constraint = p f orb∧os 6= M′θ (Θ.Q))∨

(Θ.constraint = f orb∧os =∅)) (2.18g)

∀i,nQ,s, t,θ , l,m 6= l,M′l 6= M′m∧ (2.18h)

∀p ∈Mi(Q) :

oV g = |∩k vertices(p)|,G.minvo≤ oV g∧ (G.maxvo =−1∨oV g ≤ G.maxvo)∧

oEg = |∩k edges(p)|,G.mineo≤ oEg∧ (G.maxeo =−1∨oEg ≤ G.maxeo)∧ (2.18i)

∀r ∈ G.R : r = true (2.18j)

2.3.2.2. Pattern and Subpattern Semantics

As shown in section 2.3.2.1, DMQL patterns represent queries and consist of vertices and
edges with their properties, potentially constrained by a number of global rules. This
section assesses the semantics of these constructs, having an appliance in the BPQ context
in mind.

Vertices in a pattern refer to (existing) model vertices. Pattern vertices are distinct within
their pattern, i.e. two vertices in a pattern can not refer to the same model vertex. They
feature three properties to be used: vid, vcaptions and vtypes. Firstly, vid is an identifier
for a vertex within a pattern. It is solely defined within the scope of this pattern and does
not imply any inter-dependencies when used in a second pattern. Thus, it is only use is to
refer to vertices from global rules. Secondly, vcaption is a property to define an expression
that mapped vertex labels have to match. It can be used to query specific activities or
events but does not support the binding of variables, such as in VMQL or BPMN-Q. Thus,
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it is not suitable to refer to vertices from other patterns. Thirdly, vtypes is a property to
define a set of allowed vertex types. It can be used to query particular types of vertices,
such as events or activities.

Edges connect two vertices, either directly (simple edge) or with intermediate vertices al-
lowed (path edge). Since their start and end vertices are distinct, edges are distinct within
patterns too. They feature numerous properties, most prominently to define subpatterns
for path edges. Analogously to vid, eid is an identifier for edges, valid within one pattern
and used to refer to edges from global rules. Similarly, ecaption allows to define an ex-
pression that mapped edges’ labels have to match. However, typically edges in BPMN do
not feature a label (except for conditional sequential flow). The property dir provides a
mean to specify the desired edge direction i.e. exactly as or inverse to as modeled in the
pattern, without a direction or any combination of them is allowed. In the BPQ setting,
one is usually interested in a single direction but sometimes it is useful to include multiple
directions, e.g. when read or write access to data objects is to be fetched. The properties
vtypesr and vtypes f allow to define sets of vertex types which are allowed, respectively
forbidden, on the path. Note that the path contains both the start and the end vertex of
the path, thus it is not possible to exclude their types from the path. In the BPQ context
this prohibits to find the path between subsequent activities (i.e. without a third activity
in between) using this property alone, for example. Similarly to these properties, etypesr

and etypes f allow to define sets of allowed (or forbidden) edge types. However, the subpat-
tern edge property (see below) can be used to filter out unwanted edge types, too. Thus
etypes f is an abbreviation and does not provide additional features. The properties minl

and maxl provide means to restrict paths to model paths of certain minimum or maximum
length. While this can be used to query activities that are followed by another activity
with at maximum n edges, intermediate events and branching or joining gateways have to
be considered when specifying n. As, in theory, an arbitrary number of joining gateways
may lie in between two activities, path lengths would only proof useful in a scenario where
model graphs are free from gateways. Another set of edge properties is the minimum
and maximum number of overlapping vertices and edges, namely minvo, maxvo, mineo and
maxeo. Overlapping elements indicate loops, thus these properties are built-in features to
detect loops, having the specified number of elements in common. The desired number of
iterations can be specified via minvo = maxvo = numIter∗numLoopVertices where numIter is
the number of iterations and numLoopVertices is the number of vertices inside the loop.

Finally, the subpattern property θ provides means to filter paths depending on nested pat-
terns. Subpattern can use the same constructs as regular patterns and are either required
or forbidden, partially or at a whole. In the DMQL query evaluation, matches for a sub-
pattern are intersected with matches for the parental path, where the subpattern property
was specified. Whether the subpattern is (partially) required or forbidden determines the
allowed values for this intersection. The following examples refer to figure 2.8, where a
pattern path was mapped to a model path p = p1→ p2, and three subpattern paths were
mapped to the model paths a, b and c. Vertices on the matched path p are highlighted by
a light blue background.
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p1 p2a1

a2 b1 b2

c1 c2

Figure 2.8.: Semantics of subpattern matches (a,b,c) with respect to the parental path match p.

If a subpattern is required (req), all the model elements it maps to have to be on the
parental path. Only model path c = c1→ c2 fulfills this requirement. Thus p would be a
match if the subpattern which has been mapped to path c was required. When specifying
a path as a required subpattern, this path may be any sub-path of the parental path. By
default, using the same vid in the parental path and its subpattern does not imply that
the respective pattern vertices refer to the same mode vertices. However, using domain
knowledge such as the uniqueness of start and end events on a single BP model path, we
can use vertex properties to make them refer to the same vertices. Another option is to
incorporate global rules to tie the start and end vertices of the parental and the subpattern
path together, i.e. require them to start and end with the same vertices. Global rules are
discussed and applied in section 3.3.5.

If a subpattern is partially required (reqp), any of its mapped model elements has to be on
the parental path. Model paths c and a = a1→ a2 both fulfill this requirement, as c lies on
p and so does a’s vertex a1. Thus p would be a match if the subpatterns mapped to a and
c were partially required. In the case of path a, please note that a1 does not necessarily
needs to be a modeled vertex, it is a vertex of the model path which the subpattern path
has been mapped to. Thus a1 may be a vertex on a path edge between two (modeled)
vertices of the subpattern. Modeling a1 as a dedicated vertex allows to apply global rules
and, again, enforce a1 to match a specific vertex of a parental path or limit a1 to desired
vertex types, captions, etc. Otherwise, a1 can be any vertex of the model path.

If a subpattern is partially forbidden ( f orbp), any of its mapped model elements have to
be outside of the parental path. As such, it is the negation of req. Both a and b = b1→ b2

fulfill this requirement, as b lies outside of p and so does a’s vertex a2. Thus p would be a
match if the subpatterns mapped to a and b were partially forbidden. Please note that a2

does not necessarily needs to be a modeled vertex or feature a specific type (see above).

Finally, if a subpattern is forbidden entirely ( f orb), all its mapped model elements have to
be outside of the parental path. As such, it is the negation of reqp. Consequently a single
common element, e.g. an activity, gateway or event, would invalidate the path. Only b

fulfills this strict absence requirement, thus p would still be a match if the subpattern that
mapped to b was forbidden. Using the same technique as for required subpatterns, we can
model a path which only maps to the parental path, if any. This technique is used for
logically combining subpatterns, as presented in section 3.3.4.
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3. Mapping the Features of CTL and
DMQL

In this section we show how CTL formulas can be mapped to DMQL patterns and vice
versa. These languages are exemplarily used to compare the features of temporal logic
and graph pattern matching in the context of BPQ. To follow and understand presented
mappings, chapter 2 provides the relevant background, introduces the syntax and discusses
the semantics of CTL and DMQL in detail. Section 3.1 describes how BPs are represented
and thus can be queried with the particular language. The two languages were developed
for different purposes in different eras and areas of computer science and represent BPs
differently. Section 3.2 points out constitutive differences which must be considered when
mapping their capabilities. We present the mapping of CTL to DMQL in section 3.3, i.e.
DMQL patterns that reconstruct the different components of CTL formulas. Analogously,
CTL formulas mimicking the features of DMQL patterns are introduced in section 3.4.
The findings of this chapter will be summarized and discussed in chapter 4.

3.1. Preparations for BPQ

While section 2.2.1 and section 2.3.1 describe how BPQ is conducted using temporal logic
and graph pattern matching in general, this section briefly discusses concrete steps for CTL
and DMQL. It presents how each language encodes BP models for querying and discusses
the implications of the differences in encoding.

As described in section 2.1, BP models consist of elements - such as activities, events and
data objects - plus their relationships. Both elements and relationships can incorporate
numerous properties, e.g. captions. For a temporal logic like CTL, BP models have to
be transformed into finite state systems: Activities and events become states while their
properties become atomic propositions (Smith et al. 2012). Start event vertices map to
initial states while end event vertices represent the final states. Data objects can also be
incorporated in CTL (c.f. (Awad et al. 2011)). Data is generally encoded in system states
directly and used to evaluate the space of possible states. However, data objects could also
be modeled as dedicated states if required. In case relationships between elements (such
as control and data flow) use properties that should be targeted by queries, relationships
would have to be represented as states with propositions, too. For the sake of simplicity
we assume that properties of model edges are not incorporated in queries. As a result, only
BPMN flow objects (i.e. activities and events) are mapped to states. In DMQL the whole
BP model is loaded as a graph which it already constitutes. Activity and event vertices
are referred to as state vertices since these map to the states in the state machine for CTL.
Note that DMQL is a generic query language and requires a meta model to work with a
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particular modeling notation. Appendix A presents a basic meta model to use DMQL on
BPMN (see section 2.1.1), an industry standard for BP models. This meta model does not
claim to be complete but covers the features required for the described BPQ.

BPQ, in the way defined, is generally interested in possible executions of a BP given its
model alone. Executions of BP models form finite sequences of BP elements, namely
activities and events. In our setting each execution will start and end with an event. Note
that this is a convention, dedicated start and end events are optional in BPMN (Weske
2012). Traces in CTL, however, are infinite. When finite systems have to be represented
as Kripke structures, infinite repetition of the system’s last state is a common step (c.f.
(Pesic 2008)). In fact, it ensures the well-defined meaning of temporal operators like G

(Valmari 1996). Thus any trace will be suffixed by a repeating final state s f . Condensing
this suffix to a single occurrence of s f produces a finite sequence of states which can be
directly mapped to the paths used in DMQL. Those literally represent the finite sequences
of BP elements by nature.

3.2. Semantic Differences

When mapping CTL to DMQL, it is required to stress out fundamental differences in
underlying concepts. CTL is a temporal logic to construct formulas where systems are
evaluated against these formulas by a model checker. The language has been developed
for the verification of finite state machines. DMQL is a generic graph query language to
formulate graph-based queries, here graphs are tried to be mapped to these queries via
pattern matching by a query evaluation engine. As such, constitutional differences include
which elements are analyzed (target object), how the evaluation of these elements is pro-
cessed (evaluation objects) and how its result is represented (evaluation result). Mapping
these concepts at forehand will increase their understanding and establish a context for
mapping CTL formulas onto DMQL queries and vice versa.

At first and as stated above, CTL analyzes systems and was initially developed to verify
systems and their properties. Systems are represented as finite Kripke structures. These
consist of all valid states of the system, including variables and assigned values. Graph
pattern matching works on directed graphs in DMQL. The graph elements are vertices and
edges connecting these vertices. When comparing CTL with its systems to DMQL with its
graphs, states and graph elements have to be mapped. Section 3.1 shows how both states
and graph elements are mapped to BPMN elements to allow for BPQ.

Secondly, different target objects require different evaluation processes and objects. CTL
is evaluated with respect to Kripke structures that contain the system states. While these
states represent single points in time of the system’s execution, CTL formulas can target
future states by incorporating temporal operators such as EF . Whether a formula holds
in a state depends on the states which can (not) be reached in the future. In CTL, states
can have multiple next states to choose from. This branching is a core feature of CTL
and it is not offered by every temporal logic, as described in section 2.2. Though the
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number of states is limited, they are analyzed as traces, infinite sequences of states which
express valid executions of the system, starting in the respective state. In contrast, pattern
matching searches for paths along graph elements that fulfill a particular query. Paths are
finite sequences of graph vertices and their interlinking edges. While traces are infinite,
section 3.1 describes how they can represent an execution of a business process and can be
mapped to the finite paths.

Finally, the evaluation processes of CTL and DMQL yield different types of values. CTL
formulas are evaluated to Boolean values, being either true or false. Each state in a system
can be tested against a state formula. Whether a system fulfills a CTL (state) formula
depends on its initial states. The final result will be whether all its initial states fulfill
the CTL formula. If the CTL operator is existential (i.e. features an existential path
quantifier), it looks for a trace which fulfills its inner linear time statement. One valid
trace is sufficient to make the formula true. If the CTL operator is universal, however,
no trace is allowed to violate the statement. This is manifested in abbreviation A1 as
presented in section 2.2.2.1: A(p)⇔ ¬E(¬p). DMQL queries, on the other hand, are
mapped to graph and yield subsets with mapped graph elements. Such mappings consist
of multiple elements whenever the query does. Additionally, a single model may feature
a large number of mappings. Thus, the result of the evaluation of DMQL queries is a set
of sets of graph elements (i.e. model elements). The set of mappings will be empty only
if no subset of graph elements was able to fulfill the query. Both, results of existential
and universal operators, can be mapped to DMQL: For existential formulas, non-empty
mappings for queries mimicking the formulas’ linear statement equal to an evaluation of
the formula to true. Formally, given an existential formula FE and an equivalent existential
DMQL query QE , FE = true⇔M(QE) 6=∅ - with respect to the different semantics between
traces and paths. For universal formulas, however, this does not apply. Since the number
of total paths is unknown it is not feasible to query and count desirable (i.e. non-violating)
paths to check whether there are (violating) paths left. Instead, it is more reasonable to
query violating paths and require that no mapping is found for them. Given an universal
formula FA and an equivalent universal DMQL query QA thus FA = true⇔M(QA) =∅.

To conclude, CTL evaluates given formulas and produces binary results whereas pattern
matching returns graph elements (i.e. graphs) that were successfully mapped to a given
pattern graph. While traces are infinite sequences of states and paths are finite sequences
of graph elements, both can be mapped to the finite sequences of model elements that the
execution of a BP involves. In this context, CTL states can be mapped to activity and
event vertices in DMQL.

3.3. Mapping CTL to DMQL

This section presents numerous DMQL queries that reconstruct the features of CTL. At
first, section 3.3.1 introduces a customized visual notation for DMQL that was optimized
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to present the mapping queries. section 3.3.2 uses this notation to describe a basic struc-
ture and discusses its implications for the following queries. CTL primarily consist of its
eight operators which can be nested and logically combined. DMQL queries for the basic
operators are presented in section 3.3.3 while section 3.3.4 shows how operator queries can
be logically combined. Finally, section 3.3.5 describes how they can be nested into each
other to reconstruct complex formulas.

3.3.1. Customized Graphical Notation for DMQL

This section presents the customized graphical notation for DMQL which is used for queries
in this thesis. As stated, DMQL ships with a dedicated graphical representation which is
as generic as DMQL. For the sake of readability, it hides away certain attributes that could
render the visualization of larger models confusing. For example, it presents subpatterns
of a path edge in a subform. However, the developed mapping queries will make extensive
use of subpatterns, as described in section 3.3.2. They will contain the main logic and
thus need to be visible at any time. Additionally, vertex type shapes are hidden if multiple
types are allowed for a certain pattern vertex. As the mappings use at maximum two
vertex types at a time, they still can and should be shown. Though it is possible to display
all the subforms of the built-in language next to the respective pattern, a custom notation
can yield more concise representations.

i
"*invoice"

p

(a) Vertex and its properties (b) Path edge

2..*

(c) Path length restrictions

1
 

(d) Undirected simple edge

1
2!*

(e) Required and forbidden subpatterns

Figure 3.1.: Specialized visual notation for DMQL patterns.

Pattern vertices are presented as circles in our customized notation and may be enriched
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by elements to indicate their properties, as shown in figure 3.1a. Per default, a pattern
vertex is mapped to model vertices of any type, i.e. property vtypes = ∅. If a model
vertex is required to have a certain type, the shapes of allowed types will be shown in
the lower right corner of the pattern vertex, much like a subscript. These shapes refer
to the respective BPMN element types, namely circles for events and rounded rectangles
for activities. Events can be start events, end events or intermediate events, for example,
while activities may be atomic tasks or more complex such as subprocesses. If the pattern
vertex refers to a specific event or activity type, the respective BPMN shape will be used.
Otherwise, the vertex type indicator is the filled BPMN shape of the respective element
type, as shown in the figure. The vid property of the vertex, if set, is placed inside the
vertex circle while the caption is placed below. Predicates that have to hold in a state vertex
will be placed in the upper right corner of that vertex. The font color of the predicate
is optional and guides the viewer by indicating positive (e.g. q) and negated predicate
statements (e.g. !p). Additional vertex properties, however, are not visualized.

Arrows represent both simple edges and path edges. Per default, there are no length
restrictions and arrows represent paths of arbitrary length (see figure 3.1b). If there are
lengths restrictions, they are placed inside a label above the arrow. For example, figure 3.1c
shows a path with minimum length 2 and an arbitrary maximum length. Simple edges
are path edges with a length of 1, i.e. this is both the minimum and maximum length,
as indicated by the single number in figure 3.1d. The heads of the arrows indicate the
direction of the pattern edge. In our context, there is usually one head which is pointing
from the start to the end vertex. However, the heads may also be omitted (as in case of
the simple edge) to represent undirected pattern edges. The subpattern of a path will be
displayed in a dashed rectangle, connected to the respective path edge with a dashed line
(see figure 3.1e). For unambiguous referring, subpatterns feature a label in their upper
right corner. If a path edge has multiple subpatterns, the rectangles are chained visually.
Per default, subpatterns are required at a whole (req). An exclamation mark at their left
border indicates that the subpattern is forbidden to occur at a whole ( f orbp) instead. If
single (but not all) elements of the subpattern are required or forbidden, an asterisk is
added.

3.3.2. Basic Pattern Structure

This section introduces the basic structure of the DMQL patterns that were produced to
reconstruct the CTL operators. The basic structure consists of a single path from a vertex
s to a vertex e with a subpattern P, as shown in figure 3.2. The start vertex s refers to the
starting point of the respective CTL operator. As described, the evaluation of operators
can start in any state, depending on whether they are used at the formula’s root level
or nested in additional operators. Consider the following example formula to derive the
implications for the starting point:

EF(AX(EX(Stopped))) (3.1)
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e
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s

Figure 3.2.: Basic structure for the DMQL mapping patterns.

This formula consists of three nested formulas, namely EF(x), AX(y) and EX(z). In this
example EF(x) is a root formula which is always evaluated against the entire system, i.e.
all its initial states. AX(y) is an inner formula which is evaluated against all states that
the outer root formula has filtered. Since the outer formula operator is EF , these states
are the same as for the outer formula. In contrast, the outer formula operator of EX(z)

is AX . Thus EX is evaluated in all states that directly follow the states which AX has
been evaluated in. To subsume, the formula context and the exact nesting of the operators
determine whether the evaluation states are the initial or subsequent states.

For patterns that reconstruct the basic operators, we assume that the respective operators
are used at the formula’s root level, i.e. their starting point is an initial state. In terms of
DMQL, patterns thus have to start from a start event vertex in our BPQ setting. Start
event vertices can be easily identified if they feature a respective property. We define the
property evPosType = {start|intermediate|end} (event position type) for event vertices that
describes whether the vertex represents a start, intermediate or end event. s thus is a
vertex of the type event where s.evPosType = start. In the pattern this is indicated by
using BPMN’s start event shape for the vertex type. In addition to this start vertex, the
patterns feature a path of arbitrary length to a vertex e which always refers to an end event
vertex. Consequently e is a vertex of the type event where e.evPosType = event, as indicated
by using BPMN’s end event shape for the vertex. This structure would not be necessary
for every pattern and requires the existence of dedicated start and end event vertices.
However, these are trivial to add in case they are missing in a model graph. Conveniently,
the described setup guarantees a path to be existent. This allows to use the subpattern

property of path edges, one of the most powerful tools in DMQL. Subpatterns can be used
to refine the set of valid paths. In the presented structure, the subpattern P will express
the operator and effectively limit the paths mapped by the pattern edge to paths that
fulfill the operator. Note that subpatterns of the modeled path can refer to s and e as
these are the only start and end event vertices that lie on the path. From operator pattern
to operator pattern the basic structure is the same but the subpattern changes. Given an
existential pattern QE where M(QE) 6= ∅ is desired, the respective universal pattern QA

can be produced by negating the subpattern of QE . In this way, the new pattern QA filters
paths that do not fulfill the original operator and if M(QA) =∅, the model is shown to be
free of such violating paths.

To summarize, following patterns consist of a single path of arbitrary length from a start
event to an end event vertex. From pattern to pattern, the subpattern property of this
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edge changes to reconstruct the respective operator. This structure allows for a convenient
conversion between existential and universal patterns.

3.3.3. CTL Operators

The following subsections present how DMQL queries can reconstruct the eight basic CTL
operators, namely EX , AX , EU , AU , EF , AF , EG and AG. Basic, in this context, refers to
the appliance of the operator to atomic propositions, i.e. without logically combining (see
section 3.3.4) or nesting (see section 3.3.5) the operators. As a result, the operators will
always be at the root level of a formula. For each operator, we discuss its semantics in the
context of CTL and transfer it to DMQL’s graph setting. This allows to express a DMQL
query which equals the respective CTL operator, using the presented visual notation. For
the sake of completeness, a formalization of these queries can be found in the appendix.

3.3.3.1. EX

Usually the CTL operator EX (section 2.2.2.2) can be used in any state to express that
a certain predicate holds in at least one of the consecutive states. The term consecutive
explicitly requests the absence of any states between the former and the latter state. As
described, we assume that the operator is evaluated in an initial state here. In terms of
paths there has to be a path from a start event vertex to a consecutive state vertex, in
which the named predicate holds. Consecutive, however, does not necessarily imply that
the path length is 1. Activities and events may be linked to gateways that split and join
the control-flow in BPMN, for example. Thus there may be an arbitrary number of vertices
on the path as long as there is no additional state vertex between the path’s start and end
vertices.

As described in section 3.3.2, DMQL queries will always start with a path of arbitrary
length from the start event vertex s to an end event vertex e. They are identified by
their types, indicated by the BPMN shapes. The arbitrary path length is realized via
the path edge properties minl = 1 and maxl = 0 (which are the default values and thus
not visualized). Again, to this point all queries are the same. Specific for queries is
the subpattern of the described path edge which restricts the paths to those fulfilling the
mimicked CTL operator. The DMQL pattern to reconstruct EX p is visualized in figure 3.3.
EX p can be expressed by a path of arbitrary length from s to a state vertex i in which
predicate p holds (subpattern 1). Latter state vertex is identified by its vertex type, as
indicated by the subscript shapes. Each path either fulfills the subpattern or does not. If
at least one path fulfills the subpattern, there is a start event where EX p holds. Again, this
subpattern path must not include additional state vertices. Thus, the nested subpattern 1A
forbids it to fully contain paths that feature three state vertices - s, i and an undesired third
exemplar. Note that the two pattern vertices with identifier s automatically will refer to
the same model vertex as there will be exactly one start event vertex on a path. Formally,
EX p⇔M(QEX) 6=∅ where QEX is the presented DMQL pattern. The formalization of QEX
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Figure 3.3.: DMQL pattern representing the CTL formula EX p.
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Figure 3.4.: DMQL pattern representing the CTL formula AX p.

is shown in appendix B.1, where subpattern 1 is formalized by QEX ′ and QNXT ST constitutes
subpattern 1A.

3.3.3.2. AX

In contrast to EX , the CTL operator AX requires a certain predicate to hold in all con-
secutive states, not just only one. This is equivalent to ¬EX¬p, stating that p holds in
no consecutive state. In terms of paths: There is no path from a start event vertex to
a consecutive state vertex, where EX p does not hold. As opposed to existential queries,
M(Q) = ∅ is desired for universal queries. Thus, the pattern for AX p will look for paths
violating the CTL formula and is shown in figure 3.4. Note that the pattern is the negated
form of the respective existential pattern, i.e. for EX p (section 3.3.3.1). Again, all patterns
are equal at the root level. Subpattern 1, however, is now forbidden instead of required.
Hence the pattern looks for paths without an i that fulfills EX p. A single occurrence
implies EX¬p ≡ ¬AF p holds. Its nested subpattern 1A is left untouched as its purpose
still is to limit potential matches for vertex i to consecutive state vertices. As such, the
query exactly looks for paths violating AX p now. Formally, AX p⇔ M(QAX) = ∅ where
QAX is presented in appendix B.2 with its subpatterns QAX ′ (subpattern 1) and QNXT ST

(subpattern 1A).
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Figure 3.5.: DMQL pattern representing the CTL formula pEUq.

3.3.3.3. EU

The CTL operator EU can be used to express that a certain predicate p holds until,
eventually, predicate q holds. The trivial case is that q holds in the initial state. Otherwise,
there must be a state in which q eventually holds and p must hold in all intermediate states,
including the initial state. As a first draft, there must be a path starting from the start
vertex to a state vertex in which q holds, where there is no state vertex on that path
in between in which p does not hold. This pattern would not cover the rare trivial case
However, this could be solved by issuing a second query for the trivial case specifically.
The translation of pEUq to DMQL is presented in figure 3.5. Again, the root path edge
from s to e is looking for full paths through the BP model. Using the subpattern property,
mapped paths are required to contain a path of arbitrary length from a start event vertex
to a state vertex i in which q holds (subpattern 1). Note that the subpattern implies s 6= q

and thus does not cover the trivial case, indeed. The subpattern path is required to be
free of any state vertices in which neither p nor q holds (subpattern 1A). Including q in
this condition is required as i will be checked against it, too, which is not required to fulfill
p. Note that the sub-path does not stop at the first occurrence of a state vertex fulfilling
q. However, additional occurrences do not invalidate EU . Formally, this pattern can be
expressed as presented in appendix B.3, where there are two nested subpatterns and with
pEUq⇔M(QEU) 6=∅. Subpattern 1 is formalized by QEU ′ , whereas the subpattern 1A is
covered by Qp̄.

3.3.3.4. AU

Analogously to EU , the AU operator requires that - on all future traces - there’s a state
reachable (1) in which a target predicate holds and (2) where a second predicate holds in
all intermediate states (including the initial one). In terms of paths, a negative lookup
is required again. Invalid paths either do not contain a state vertex in which predicate
q holds or contain an intermediate state vertex in which predicate p does not hold. In
DMQL, the path from s to e must not fulfill the criteria of EU at all. This violation occurs
when it does not include the subpattern that would actually meet the operator’s criteria.
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Figure 3.6.: DMQL pattern representing the CTL formula pAUq.
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Figure 3.7.: DMQL pattern representing the CTL formula EF p.

As such, the subpattern is negated again, as visualized in figure 3.6. To verify the pattern,
consider in which case no such sub-path (subpattern 1) would be existent: Either there is
no sub-path to a state i at all or there is such a sub-path but it contains a vertex in which
neither p nor q holds. This pattern can be formalized as shown in appendix B.4, where
there are the named two nested subpatterns with pAUq⇔M(QAU) = ∅. Subpattern 1 is
formalized by QAU ′ , whereas subpattern 1A is covered by Q p̄.

3.3.3.5. EF

The CTL operator EF states that a certain predicate holds in at least one future state on
any trace, starting from the initial state. In the trivial case, the predicate holds in the
initial state already. Expressed in terms of paths, the path from the start to the end event
vertex contains a state vertex in which the predicate holds.

The respective DMQL pattern is presented in figure 3.7. Starting with the basic path edge
again, a subpattern is used to filter paths that contain a state vertex i in which predicate
p holds (subpattern 1). No additional elements are required, as both s and e may fulfill
the formula (in contrast to EX). Formally, this pattern can be expressed as QEF , as in
appendix B.5, where EF p⇔M(QEF) 6=∅.
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Figure 3.9.: DMQL pattern representing the CTL formula EGp.

3.3.3.6. AF

The AF operator can be used to filter states where every future trace contains a state
in which a certain predicate holds. Equivalently, there is no trace with a future state
reachable where the predicate does not hold. In terms of paths, there must not be a path
from a start to an end event vertex that does not contain a state vertex where p holds.
Analogously to AU , we negate the subpattern of EF as shown in figure 3.8: Subpattern 1
is now forbidden and thus the basic path solely maps to model paths that are free of state
vertices in which p holds. In other words: model paths where EX p does not hold and
which would clearly violate AX p. The formalization of this pattern is presented as QAF in
appendix B.6, where AF p⇔M(QAF) =∅ and QAF ′ constitutes subpattern 1.

3.3.3.7. EG

The last existential operator, EG, expresses that there is a trace where a certain predicate
holds in each of its states, starting from the initial state. Formally, there is no trace in
which a future is reachable where the predicate does not hold. In path context, there is
a path from a start to an end event vertex which is forbidden to include a state vertex
in which the predicate is not fulfilled. Figure 3.9 visualizes the DMQL pattern for EGp.
Subpattern 1 requires the path to be free of any state vertices in which p does not hold.
QEG in appendix B.7 formalizes this pattern, where EGp⇔M(QEG) 6=∅ and subpattern 1
is manifested in QEG′ .
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Figure 3.10.: DMQL pattern representing the CTL formula AGp.

3.3.3.8. AG

Analogously, AG requires each future trace to solely consist of states where a certain pred-
icate holds. Thus, there has to be no path with a state vertex in which the predicate does
not hold. Again, we negate the subpattern of the existential operator EG and get the
pattern shown in figure 3.10. A basic path with a state vertex in which p does not hold
clearly violates AGp. The respective formalization is presented in appendix B.8. Formally,
AGp⇔M(QAG) =∅ where QAG′ represents subpattern 1.

3.3.4. Logically Combining CTL Operators

Considering the BNF for state formulas (see section 2.2.2.1), CTL formulas may be com-
bined in four different ways: Using the logical or (∨), the logical and (∧), an implication
( =⇒ ) or an equality comparison (⇔). CTL operators are combined at root level as in
EF p∧EFq or in their nested form as in EF(EF p∧EFq). Analogously, we separate between
the logical combination of queries and the combination of nested subpatterns in DMQL.

3.3.4.1. Combining Root Operators

If CTL operators are combined via the logical and at the formula’s root level, as in EF p∧
EFq, both a state in which p holds and a state in which q holds must be reachable. The
formula does not require the states to be on the same trace and it leaves open whether a
single state or two distinct states fulfill the EF operators. In DMQL, we need to express
the existence of two paths which may or may not refer to the same path. Thus, we can
not simply connect two paths to a starting vertex and let them point at two vertices (see
figure C.1). The latter were implied to be distinct, as they are within the same pattern.
Instead, we could issue multiple queries, one for each operator, and combine their mapping
results. Given two DMQL queries QEF1 and QEF2 that model the two operators (see
section 3.3.3), EF p would hold if the mapping of QEF1 is non-empty while EFq would
hold if the mapping of QEF2 is non-empty. Combined, the mapping results reconstruct the
example formula:

EF p ∧ EFq = true ⇔ M(QEF1) 6=∅ ∧ M(QEF2) 6=∅ (3.2)
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The described mechanism works for an arbitrary number of operators at the formula’s root
level, regardless if they are existential or universal. Consider the CTL formula EF p∧AFq

as an example. Given two DMQL queries QEF and QAF that model the two operators,
the mapping for the first is required to be non-empty while the second requires an empty
mapping. This could not have been modeled within a single pattern, anyway. However,
issuing multiple queries supports these different requirements and can set the formula equal
to an appropriate combination of the queries’ mapping results:

EF p ∧ AFq ⇔ M(QEF) 6=∅ ∧ M(QAF) =∅ (3.3)

The described mechanism also works when combining root level operators using the logical
or. In a single pattern, DMQL can not express that a path is optional let alone that
n-out-of-m paths are required. However, the mapping results can be logically combined as
specified in the mimicked CTL formula. Consider EX p∨AXq as an example. Given two
DMQL queries QEX and QAX that model the two operators, combining the mapping results
reconstructs the formula:

EX p ∨ AXq ⇔ M(QEX) 6=∅ ∨ M(QAX) =∅ (3.4)

Able to reconstruct these two boolean operators, the mechanism can reconstruct the logical
implication and the logical equality. Take EF p =⇒ EFq as an example. Per definition, this
CTL formula can be rewritten as ¬EF p∨EFq and thus multiple queries can reconstruct
this formula as before. Given the two DMQL queries QEF1 and QEF2 again:

(EF p =⇒ EFq)≡ (¬EF p∨EFq)

⇔M(QEF1) =∅∨M(QEF2) 6=∅
(3.5)

Note that EF p was negated, hence an empty mapping result is desired this time. Similarly,
formulas as EF p⇔ EFq can be rewritten using solely the two mapped boolean operators
and thus mapped to DMQL queries, by combining their results appropriately:

(EF p⇔ EFq)≡ (EF p =⇒ EFq ∧ EFq =⇒ EF p)

≡ ((¬EF p ∨ EFq) ∧ (¬EFq ∨ EF p))

⇔M(QEF1) =∅ ∨ M(QEF2) 6=∅) ∧ (M(QEF2) =∅ ∨ M(QEF1) 6=∅

(3.6)

Again, the presented mechanism is solely intended for operators combined at the root
level.

3.3.4.2. Combining Nested Operators

Operators are not combined at the root level exclusively. Instead, they may be nested and
combined at arbitrary levels of the formula, such as in EF(EF p∧EFq). While nested oper-
ators are not presented until the next section, this section already describes the mechanism
to combine them. The mechanism assumes that each nested operator can be expressed as
a subpattern and bases upon combining involved subpatterns into the appropriate path of
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the parental operator’s query. This path will be denoted as i→ e in the following queries.
Note that this path implies i 6= e so it can not be used to form queries that have an end
event vertex as a starting point. However, this is a rare use case and could be achieved by
issuing another query.

The logical and is the most simple logical connector to reconstruct. Consider the following
example formula which contains two nested operators:

EF(EF p∧¬EFq) (3.7)

Assume that two subpatterns P and Q model the nested operators. When defining multiple
subpatterns for a path, DMQL requires each to be present or absent, depending on whether
it is required or forbidden. This naturally models the logical and as all of them have
to match their defined criteria. Nested positive operators like EF p map to a required
subpattern while every negated operator such as ¬EFq maps to a forbidden subpattern.
In fact, nested operators will be partially required or partially forbidden but this aspect
will be covered in the following section that introduces the nesting of operators. Figure 3.11
visualizes a DMQL query that combines the two subpatterns appropriately.

P
Q!

i e

Figure 3.11.: DMQL pattern for nested conjunction.

The logical or is slightly more complex. At first, there is no means to express that m out
of n subpatterns of a path edge are required. However, we can use De Morgan’s law to
express the logical or using the logical and. Consider the following example formula:

EF(¬EF p∨EFq)≡ EF(¬(EF p∧¬EFq)) (3.8)

Due to the outer negation, the problem changed into expressing that a path does not have
certain properties, i.e. subpatterns. The solution is to forbid the path to feature itself at
a whole where the subpatterns are fulfilled. Nested positive operators such as EFq map
to forbidden subpatterns while negated operators like ¬EF p map to required subpatterns
this time, due to the transformation. The respective DMQL query is shown in figure 3.12.
It features the basic path i→ e but also includes a nested path i′→ e (subpattern 1). The
goal is to make both refer to the same model path. If they do, the nested path is mapped
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Figure 3.12.: DMQL pattern for nested disjunction and nested logical implication.

if the parental path features all subpatterns defined for the nested path, i.e. P is required
and Q is forbidden. In this case the nested path is mapped successfully and invalidates
the parental path as it is forbidden to lie on it. If the path is not mapped successfully, the
root path stays valid.

This pattern can not stand alone. While the two pattern vertices e automatically refer to
the same model vertex (there is exactly one end event per path, as defined in section 3.3.2),
i and i′ may refer to different vertices. However, if the paths should refer to the same path,
i and i′ must refer to the same vertex, too. Thus, we use a global rule to enforce that the
pattern vertices i and i′ do refer to the same model vertex. For example, we instrument
unique captions or enrich model vertices with unique identifiers beforehand. In our example
the rule could look as follows: i.id = i′.id. Defined global rules are checked before evaluating
the path intersection. There may be multiple paths (starting at the model vertex i has
been mapped to) that end in an end event vertex and thus map to subpattern 1. However,
exactly one of them lies on the parental path completely: the parental path itself. Hence,
only the parental path can invalidate itself by featuring all specified subpatterns. In result,
this construct will match the parental path only if it either fulfills Q or does not fulfill P.
Using global rules to tie pattern vertices and let them map to the same model vertex is a
key mechanism for nesting and combining nested operators in the form of subpatterns. For
subsequent queries we assume such global rules to be existent whenever we use the same
vertex identifier within a DMQL patten and its subpatterns. Specifically, we use the same
vertex identifier i for all pattern vertices i1, i2, ..., in to imply that there is a global rule of
the form i1.id = i2.id = ...= in.id.

Note that we just modeled the formula

EF(¬EF p∧EFq)≡ EF(AF¬p∧EFq) (3.9)
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which is mixing AF and EF in a single query. Pattern lookups are the root level are always
existential but forbidden subpatterns actually can proof the absence of certain patterns
regarding the matched model path. In fact, the previous example already constitutes
the logical implication. Logical equivalence can be expressed by combining the presented
subpattern mechanisms, analogously to combining the mapping results of root operators
in the previous section. Figure 3.13 visualizes a query that reconstructs EF p⇔ EFq where
the subpatterns P and Q model EF p and EFq as before.
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Figure 3.13.: DMQL pattern for nested logical equality.

3.3.5. Chaining CTL Operators

Considering the BNFs for state and path formulas (see section 2.2.2.1), CTL operators can
be nested into each other, such as in EF(EGp). Nesting refers to chaining formulas into each
other by using the target state of one formula as the start state of a second formula. Given
two DMQL patterns that represent the formulas, this translates to merging the patterns
by starting the second pattern with the target vertex of the first one. Each formula can
be a nested operator but also a logical combination of nested operators. According to the
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Figure 3.14.: Preliminary DMQL pattern representing the CTL formula EF(EF p).

mechanisms described in section 3.3.4, we can reconstruct any logical combination of nested
operators if we manage to express the operators as subpatterns. In previous sections, all
operators were defined as patterns with the main logic inside subpatterns. This time,
however, each operator has to be defined as a subpattern alone. The present section shows
how the CTL operators can be expressed as subpatterns for existential queries. Expressing
subpatterns for universal queries is analogous and left to the reader.

3.3.5.1. EF

Reconsider the DMQL pattern reconstructing EF p, where p was a proposition (figure 3.7).
Pattern vertex i matches to model vertices that fulfill the EF operator, namely because p

holds. When nesting a formula into EF , i has to match to model vertices that fulfill the
nested formula instead. Consider the following CTL formula as an example, where EF p is
nested in EF :

EF(EF p) (3.10)

The respective DMQL pattern is presented in figure 3.14. The root path and subpattern 1
are largely copied from the original EF pattern and jointly model the outer EF . Proposition
p has been removed from i. Instead, i must fulfill the nested formula EF p, i.e. there has to
be a path starting in i which fulfills EF p. Though it is allowed, it is not required that the
path which is fulfilling EF p lies on the parental path (s to e) completely. Thus, making
the respective subpattern required (req) would be inappropriate. The subpattern needs
to be partially required (reqp) because a single common element, namely i, is sufficient
for the two paths. However, using reqp does not automatically imply that the common
elements include i. Thus, we apply global rules again (see section 3.3.4): We demand
that the pattern vertices i from subpattern 1 and subpattern 2 refer to the same model
vertex. Again, these rules are assumed to be existent whenever vertices of a pattern,
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Figure 3.15.: DMQL pattern representing the CTL formula EF(EF p).

including its subpatterns, use the same identifier. The global rule filters potential matches
for subpattern 2 which start at the model vertex that i (subpattern 1) has been mapped
to.

Left open is how the subpattern for the nested EF p (subpattern 2) exactly looks like. The
semantic of EF p requires that any reachable state vertex fulfills p, starting from i. One
could use i as the start vertex s of the nested EF pattern and end up with a path from i

to e. However, this path would only be existent if i 6= e which is not necessarily true. The
solution is to add an artificial end event ee that all end event vertices are connected to.
The path from i to ee will always exist if we imply i 6= ee. Finally, the second path must
contain the target vertex i′ of the nested EF (subpattern 2A), in which proposition p holds.
Note that the implication i 6= ee is actually desired now, as we do not want any proposition
or formula to be fulfilled by the artificial vertex. This is enforced by using a distinct vertex
type for ee (note the modified event shape) so that it is not even considered as a state
vertex and can not be matched to i′, for example. Incorporating ee allows to express the
nesting using a single subpattern, as shown in figure 3.15, which allows arbitrary nesting.
The example described how EF can be nested into other patterns and how patterns can
be nested into EF , simultaneously. Note that the root path and subpattern 1 model the
outer EF while subpattern 2 models the nested EF . In fact, every operator pattern can
be nested into EF by replacing subpattern 2 and EF can be nested into every operator
pattern by adding subpattern 2 appropriately.

3.3.5.2. EX

Similarly to EF , reconsider the DMQL pattern for EX p (figure 3.3). When nesting a
formula into EX , i has to match to model vertices that fulfill the nested formula. Consider
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Figure 3.16.: DMQL pattern representing the CTL formula EX(EX p).

the following CTL formula where EX p is nested in EX :

EX(EX p) (3.11)

The respective DMQL pattern is shown in figure 3.16. The root path and subpattern 1
are copied from the original EX pattern but proposition p has been removed from i again.
Instead, i must fulfill the nested EX p, i.e. there has to be a path starting in i which fulfills
EX p. Analogously to EF , we reuse the subpattern of the original pattern but let it start
from i and make it partially required (see subpattern 2). Global rules ensure that the path
of subpattern 2 starts at i (from subpattern 1) while reqp is relaxed enough to consider all
potential matches. Subpattern 2A was left untouched and guarantees that i′ is consecutive
to i, similarly to subpattern 1A. Note that there was no need for the artificial vertex ee this
time: If the path is not existent (i.e. i = e), EX p can not be fulfilled. While this example
shows how to nest EX into EX , subpattern 2 models the nested EX and can be replaced
appropriately to nest other operators into EX . Analogously, the subpattern can be added
to other patterns to nest EX into the respective formula.

3.3.5.3. EG

Reconsider the DMQL pattern for EGp, as shown in figure 3.9. To show how EG can be
nested into EG consider the following CTL formula.

EG(EGp) (3.12)
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Figure 3.17.: DMQL pattern representing the CTL formula EG(EGp).

Note that subpattern 1 of the original pattern guarantees that the root path is free from
a state vertex i in which EG is violated, i.e. in which p does not hold. Similarly to EF ,
this subpattern does not feature a path. However, a path is required to nest subpatterns
that model nested formulas. Therefore we deploy the artificial end event vertex ee again,
as shown in figure 3.17: Subpattern 1 still guarantees that the root path is free of a state
vertex i in which the outer EG is violated. The outer EG is violated if ¬EGp holds in any
state, analogously to ¬p in the original pattern. ¬EGp holds if there is no path starting
at i (subpattern 2) that fulfills the nested EGp. Note that EG thus requires the nested
formula subpattern to be f orb instead of reqp. EGp, in turn, holds if the path is free from
state vertices in which p does not hold (subpattern 2A). In result, subpattern 1 models
¬EF(¬EGp)≡ EG(EGp) which is the desired result. Note that subpattern 2, including its
necessity modifier, models

¬EF¬EF¬p≡ ¬¬EF¬p≡ EF¬p≡ ¬EGp≡ AG¬p (3.13)

Thus we just showed how to nest universal operator patterns into existential formula
patterns. As stated in section 3.3.4 this is possible because f orb can actually show the
absence of certain patterns with regard to the matched model path. This example shows
how EG can be nested into EG. In fact, EG can also be nested into patterns other than
EG by adding subpattern 2 appropriately. For example, when nesting EGp into EF ,
subpattern 2 of figure 3.14 would be replaced by subpattern 2 of the described pattern. Note
that the subpattern necessity is not replaced, i.e. subpattern 2 would be partially required
when copied to the EF pattern. This is because the outer pattern determines the required
subpattern necessity, depending on whether the nested path should be existent (reqp)
or not ( f orb), i.e. whether the represented formula should hold or not. As stated, this
switch allows to express existential and universal operators in existential queries. Similarly,
subpattern 2 of figure 3.17 can be replaced appropriately to nest other operators into EG.
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Figure 3.18.: Improved version of the DMQL pattern reconstructing pEUq.

3.3.5.4. EU

Before presenting how the pattern for EU can be nested, we identify the potential to
simplify and improve the original operator pattern for pEUq (figure 3.5) using recently
introduced mechanisms, namely the artificial end event and global rules. As described
in section 3.3.3.3, the operator pattern firstly implies i 6= s and thus did not work when
proposition q was holding in the start vertex s. Previously, we introduced the artifical
end event vertex ee to change the implication i 6= e to i 6= ee. In the improved pattern,
we change subpattern 1 to a path from i to ee (as shown in figure 3.18) to resolve any
implication issues, i.e. i can now be matched to s and e. Secondly, subpattern 1A of
the original pattern ensured that no intermediate state vertex violates pEUq, i.e. that p

holds in every intermediate state vertex. Intermediate, in this context, means on the path
starting from s but ending in the vertex before i. As such, p must hold in successor of i but
not in i itself. In the improved pattern, we remove this subpattern and add an interlinked
subpattern 2 instead: On the path from s to i, no successor of i is allowed to violate pEUq,
i.e. ¬p does not hold in any succeeding state vertex. Using this subpattern requires global
rules to link the two pattern vertices i, a mechanism which was not used in the original
pattern. The resulting pattern includes both predicates once and thus leads to a reduced
effort for nesting.

In contrast to previous operators, pEUq has two arguments which may be nested formulas
instead of propositions. Consider the following CTL formula as an example

(EFa ∧ EFb)EU(pEUq) (3.14)

where (1) q has been replaced by pEUq to show how EU is nested (2) and p has been
replaced by a non-atomic formula to utilize the mechanisms for nested logical combination
and negation, presented in section 3.3.4. Starting with the improved EU pattern, we
first remove q from i in subpattern 1, thus i is only required to be a state vertex on the
root path. Since we replace q with pEUq, i now has to fulfill this formula. Therefore
we add the improved pattern as a nested subpattern, starting in i instead of s, as shown
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in subpattern 1A of figure 3.19. The subpattern is partially required to match any path
that starts in i. Subpattern 2 originally models the absence of a successor np of i that
violates proposition p. Since p has been replaced with EFa∧EFb, subpattern 2 internally
needs to model that at least one of the EF operators does not hold in np. Formally, this
equals to the disjunction ¬EFa ∨ ¬EFb. As described in section 3.3.4, a disjunction is
not possible in DMQL directly but needs to be modeled via negation and conjunction: We
model that the path np to i in subpattern 2 is not a path (subpattern 2A) where both EFa

(subpattern 2Aa) and EFb (subpattern 2Ab) hold. Subpattern 2 (without its necessity
modifier f orb) matches to paths from np to i. Subpattern 2A models exactly the same
path but is forbidden, thus subpattern 2 will only match a path if subpattern 2A, at the
same time, does not. Subpattern 2A (without its necessity modifier f orb) matches paths
from np to i where both EF operators hold in np. As a result, the path in subpattern 2 will
only match if its np does not model both EFa and EFb. Since subpattern 2 is forbidden, the
respective root path and the matched i are invalidated if such an np exists. In combination,
subpattern 1 and subpattern 2 model the example formula. This more complex example
shows how logically combined EF operators and the EU operator can be nested into EU . In
fact, EU can be nested into other patterns by adding subpattern 1A appropriately and every
operator pattern can be nested into EU . Note, however, that two subpatterns (namely
subpattern 1A and subpattern 2A) model the nesting, as EU takes two arguments.

3.4. Mapping DMQL to CTL

After mapping the CTL operators to DMQL queries, DMQL features are now mapped to
CTL formulas. Again, we need to stress out the different semantics of DMQL and CTL.
While DMQL queries retrieve sets of model elements that allow the specified mapping,
CTL formulas are evaluated to a binary result. Therefore we are interested in mapping
M(Q) = ∅⇔ E( f ) = f alse, where E is an evaluating function for CTL formulas. DMQL
queries are not evaluated in initial vertices only, thus retrieved paths may start at any
vertex. Since CTL formulas are evaluated in initial states, they generally need to be
wrapped by the EF operator to simulate the semantics of DMQL queries.

As described in section 2.3.2.2, DMQL pattern graphs (i.e. queries) consist of three types
of components. Section 3.4.1 describes how vertices and their properties are mapped by
CTL. Edges and their properties are handled in section 3.4.2. Finally, section 3.4.3 shows
the mapping of global rules to CTL features.

3.4.1. Pattern Vertices and their Properties

This section presents CTL formulas that reconstruct DMQL patterns consisting of vertices
and their properties. Pattern vertices can feature three built-in properties, namely vid,
vcaption and vtypes (see section 2.3.2.2). The following subsections show how atomic
propositions are used in combination with EF to reproduce patterns involving a vertex
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Figure 3.19.: DMQL pattern representing the CTL formula (EFa∧EFb)EU(pEUq).
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Figure 3.20.: DMQL patterns incorporating vertices and their properties.

and its properties. Note that DMQL patterns can not incorporate multiple vertices, if
they are not connected by edges.

3.4.1.1. Plain Vertex

Consider a DMQL pattern that matches any vertex in a process model graph (figure 3.20a).
Its vid is unset or unused, vcaption = ∗ matches any vertex and vtypes =∅ indicates that
any vertex type is appropriate for the mapping. The following CTL formula reconstructs
this pattern:

EF(true) (3.15)

EF moves the allowed start state from initial states to any states in the system. There are
no restrictions for the vertex, thus true is used as expression which evaluates to true in any
state.

3.4.1.2. The vid Property

The vid property has only a single purpose: Providing an identifier to refer to the particular
vertex from global rules. Thus the property itself does not have to mapped by CTL but
possible global rules do (see section 3.4.3).

3.4.1.3. The vcaption Property

The property vcaption limits the mapping of the respective pattern vertex to model vertices
having captions which match the specified expression. Assuming the vertex caption is
encoded as an atomic proposition caption in states, CTL can incorporate it:

EF(caption = ”MyCaption”) (3.16)

The state is simply required to feature the desired caption.

3.4.1.4. The vtypes Property

The vertex property vtypes allows to define a set of allowed vertex types. For example,
figure 3.20b matches any state vertex, i.e. vtypes = {activity,event}. Assuming the vertex
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type is encoded as an atomic proposition type, the following CTL formula mimics the
presented pattern.

EF(type = activity∨ type = event) (3.17)

The state is required to feature any of the allowed type values.

3.4.1.5. Combining Properties

Previous patterns made use of single vertex properties. Figure 3.20c combines multiple
vertex properties: It matches state vertices which are related to invoices, regarding their
caption. The following CTL formula reconstructs the described pattern.

EF((type = activity∨ type = event)∧ caption = ”∗ invoice∗ ”) (3.18)

3.4.2. Pattern Edges and their Properties

This section presents CTL formulas that reconstruct DMQL patterns with edges and their
properties. Pattern edges need a start and an end vertex, thus these queries always involves
named two vertices. See section 3.4.1 on how pattern vertices and their properties map to
CTL. Given two vertices, however, edges can be established. Pattern edges can feature 14
properties in total (see section 2.3.2.2). The following subsections show how edges and their
properties map to CTL. First, plain simple and path edges are mapped. However, plain
edges are not very useful and just for the sake of completeness. Subsequent subsections
present the mappings of the numerous edge properties.

3.4.2.1. Plain Simple Edge

A simple edge from one vertex to another (as shown in figure 3.1d earlier) implies that
there are at least two vertices where there is a path with minimum and maximum length
1 from one to the other. The following CTL formula maps this DMQL pattern:

EF(EX(true)) (3.19)

EF is used to specify the start state as an arbitrary state (see section 3.4.1) while EX(true)

ensures the existence of a second state. Chaining the parts together in the shown way
implies that the second state is reachable from the first within one step.

3.4.2.2. Plain Path Edge

In contrast to simple edges, a path edge between to vertices matches subgraphs where
there are at least two vertices on a path of arbitrary maximum length from the first to the
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second. A DMQL pattern of this kind was shown in figure 3.1b and the following CTL
formula reconstructs this behavior:

EF(EX(EF(true))) (3.20)

This formula is very similar to the previous formula for simple edges. Again, EF relaxes the
start state and EX(EF(true)) ensures the existence of a second state. This time, however,
the second EF relaxes the constraint and solely implies that the second state is reachable
from the first - using any number of steps which is at least 1, due to the EX .

3.4.2.3. The eid Property

Analogously to the vid property of vertices, the edge property eid does not need to be
mapped itself. Instead, the mapping of global rules is presented in section 3.4.3, which
make use of this property.

3.4.2.4. The ecaption Property

Analogously to the vcaption property of vertices, the ecaption property can be mimicked by
CTL if the captions are encoded as atomic propositions. Since atomic propositions are only
available for states, edges need to be encoded as system states if the ecaption property is
required. While this is perfectly possible, it makes the formulation of CTL formulas more
cumbersome. Thus presented formulas will assume that no edge states are present, as long
as they are not required.

3.4.2.5. The dir Property

The edge property dir⊆ P({org,opp,none}) describes which direction an edge can be inter-
preted in (P denotes the power set function). Our default is dir = {org} and the direction
of the (directed) model edge has to match the direction modeled in the pattern. In CTL,
this direction is given by the structure of the formula - more precisely, by the order in which
the operators, jointly reconstructing the DMQL pattern elements, are chained. Reconsider
the simple path edge where the respective CTL formula EF(EX(EF(true))) was mapping
the default direction. This formula is equivalent to EF(true∧EX(EF(true)) where the first
true is a "restriction" for the start state. Now let’s use p = true and q = true for the two
states, to allow for a better understanding of the next step:

EF(p∧EX(EF(q)) (3.21)

This formula still equals EF(EX(EF(true))) and thus handles cases where dir = {org}.
If the direction would have been opp instead, the order of the CTL formula had to be
reversed:

EF(q∧EX(EF(p))) (3.22)
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Now the end vertex state is looked up first and the start vertex state has to be reachable
from it. If the direction would have been {opp,opp}, the CTL formulas had to be combined
into a disjunction:

EF(p∧EX(EF(q))∨EF(q∧EX(EF(p))) (3.23)

In fact, the direction used in figure 3.1d is none. Transitions between system states always
have a direction and can not model undirected edges directly. However, for an edge type
which is known to be undirected, dir = {none} equals dir = {org,opp}. As stated, to query
properties that are encoded in edges, such as the direction, edges have to be encoded as
system states. Henceforth, previous formulas are only valid for (directed) graphs encoded
in a system without edge states. Adapting them to such systems is trivial but is left out for
the sake of readability (see above). The DMQL pattern visualized in figure 3.1d, however,
uses an undirected path edge and thus requires a CTL formula which is aware of vertex
and edge states in the system. The following formula reconstructs this pattern:

EF(p∧EX(isUndirected∧EX(EF(q))))∨EF(q∧EX(isUndirected∧EX(EF(p)))) (3.24)

Note that the formula assumes that p and q only hold for states modeling vertices and
isUndirected only holds for states modeling edges.

3.4.2.6. Length Properties

Two edge properties steer the minimum and maximum length of the path, namely minl
and maxl. Addressing paths, these properties do not require edge states in the system.
CTL can use the EX operator to reconstruct the minl property. This operator effectively
pushes a condition forward to subsequent states on validated traces. In fact, the plain
path edge formula already used EX to model minl = 1. EX may be nested arbitrarily to
model the desired minl while a final EF keeps the maximum length relaxed. For example,
the following CTL formula reconstructs a path edge with minl = 3, similar to the pattern
in figure 3.1c.

EF(p∧EX(EX(EX(EF(q))))) (3.25)

If the final EF is left out, only the state with the specified distance can fulfill the formula,
thus minl = maxl. However, the maximum length can also be variable, i.e. maxl > minl.
The easiest way to reconstruct this using CTL is to form a disjunction of allowed lengths,
as shown for maxl = 3 in the following formula:

EF(p∧EX(q)∨EX(EX(q))∨EX(EX(EX(q)))) (3.26)

This method can also be applied if both minl and maxl are incorporated in a pattern. The
following formula reconstructs a pattern with a single path edge from p to q where minl = 2

and maxl = 4:

EF(p∧EX(EX(q))∨EX(EX(EX(q)))∨EX(EX(EX(EX(q))))) (3.27)
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In this case, expressions violating the minimum length of the desired path are removed
from the disjunction produced in the previous step.

3.4.2.7. Vertex and Edge Type Properties

The edge properties vtypesr and vtypes f steer which vertex types are allowed or forbidden
on the path. Given that vertex types are encoded as atomic propositions in states, these
can be incorporated into CTL formulas. Consider a DMQL pattern where a vertex type,
e.g. event, is forbidden on a path from p to q. In CTL, this pattern could be expressed
as:

EF(p∧EX(EF(E(type 6= event)Uq))) (3.28)

Though this formula does not feature the exact semantic of the pattern (i.e. the formula
stops at the first occurrence of q) it is adequate in the context of the restricted mapping
from DMQL to CTL. While it is possible to limit a path to a certain vertex type, it is not
possible to make a certain vertex type required. This is because we can not keep track of
which vertex types already occurred on the current trace. Analogously, the edge properties
etypesr and etypes f restrict paths according to occurred edge types. Similarly to vtypes f ,
etypes f can be mimicked using the EU operator:

EF(p∧EX(EF(E(etype 6= myEdge)Uq))) (3.29)

3.4.2.8. Vertex and Edge Overlap Count Properties

The properties minvo and maxvo allow to specify the minimum and maximum number of
vertices that have to overlap on the model path in order to be mapped to the pattern path.
Basically, this requires to count how often certain elements have been visited or how often
they occur in the current trace. This count then has to be within the defined interval.
However, CTL lacks of a dedicated construct to count states. Furthermore, the language
CTL does not feature constructs to address the current trace, with their start and end
states. Traces are solely used internally for the evaluation of formulas. This limitations
applies to states in general, independent of whether they model vertices or edges. Thus,
the related edge properties mineo and maxeo can not be adequately represented in CTL,
too. A prominent use case for the overlap properties is the detection of loops (Delfmann,
Breuker, Matzner & Becker 2015). Loops can be detected, if a loop’s vertex is known in
advance and identifiable, e.g. incorporating an identifier. The simple path edge formula is
already able to detect this loop, assuming that p = q and that p only holds in the targeted
state, i.e. is the identifier. However, there is no means in CTL to express that an arbitrary
or each state must (not) occur a given number of times, due to the lack of means to count
or remember trace elements other than using the formula structure.
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3.4.2.9. The Subpattern Property

The subpattern property of path edges limits matching model paths to those that feature
either (i) all (ii) at least one (iii) not all (iv) none of the elements that the subpattern has
been matched to. As described, DMQL paths map to traces in CTL, thus this asks for the
intersection of traces. In fact, all CTL operators do ask for a specific intersection: They
require that valid traces start at the current state. Effectively, this asks for an intersection
between the current trace and evaluated traces where the evaluated traces start in the
current state on the current trace. However, the four types of subpattern necessity require
a different semantic. For example, reqp (at least one element required) requires that any
trace element overlaps with the trace - and not just the first one. There is no language
construct in CTL to express such arbitrary intersections of traces and it can not be mapped
to the available intersection semantic.

Obviously, some DMQL patterns using subpatterns can be reconstructed, such as those
reconstructing the CTL operators. However, all of them either model the semantics of a
CTL operator intentionally or can be expressed without subpatterns. For example, the EU

DMQL pattern presented in figure 3.18 exactly models the semantics of the EU operator:
There is a path (or trace) starting in the current vertex (or state) leading to a vertex
(state) where q eventually holds (subpattern 1) and where p holds until it has been reached
(subpattern 2). While the EU operator stops at the first occurrence of q, DMQL queries
would consider all matching paths but this is irrelevant in the context of our restricted
mapping. The DMQL pattern for EF (figure 3.7) also contains a subpattern. While it
does model the semantics of the EF operator, the subpattern is not strictly required and
could be modeled without. The DMQL pattern for EX (figure 3.3) uses subpatterns to
skip gateways in the model graph while still limiting valid vertices to subsequent next state
vertices. In CTL, we assumed that gateways were not modeled in the system and thus do
not need to be skipped. If we apply this assumption to the model graph, the EX pattern
shrinks to a simple edge and would not include a subpattern either. The DMQL pattern
for EG (figure 3.9 uses a subpattern to check for the absence of a certain predicate on the
path. This mimics the EG operator which can also be expressed as EG p≡ E¬F¬p. Again,
this is exactly what the subpattern expresses, what it has been designed for.

While these patterns were designed to model the exact logic of constructs available in
CTL (i.e. its operators), arbitrary patterns can not be reconstructed using CTL. It has no
means to express intersections other than the described start state intersection.

3.4.3. Global Rules

Global rules filter matched subgraphs according to the properties of their elements, possibly
pattern-crossing. An example are the frequently deployed global rules to interlink pattern
vertices. They ensure that the model vertices, which pattern vertices from different patterns
have been mapped to, feature the same identifier. As defined in section 2.3.2.1, there are
four properties of graph elements that may be used in global rules: (1) The element caption,



3.4. MAPPING DMQL TO CTL 57

(2) the type of the vertex and (3) the number of incoming, outgoing or undirected edges
connected to the vertex. However, we assume that every vertex property would be possible,
not only captions and types.

Some of these properties are structural properties, such as the number of incoming, outgo-
ing or undirected edges, which require counting. As CTL lacks of constructs for counting,
these can not be mapped. Regular vertex properties can be mapped by CTL if their context
can be mapped, too. For example, consider two subpatterns where certain vertices should
feature the same identity. CTL inherently maps these rules if the subpattern try to fix the
start point of certain paths (e.g. subpattern 2Aa and 2Ab in figure 3.19 for EFa ∧ EFb) or
if they fix the end point of certain paths (e.g. EF(a ∧ b)). Other global rules are mapped
because a CTL operator happens to model the same semantic, e.g. in case of EU where
subpattern 1 and subpattern 2 (figure 3.19 again) refer to the same vertices. However,
CTL can only maps these identity rules. For example, it can not express that two states
have the same proposition value, e.g. the state fulfilling EFa should have the same value
for type as the state fulfilling EFb. Naturally, if a subpattern is already not expressible in
CTL, its global rules consequently can not be mapped to CTL neither.
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4. Summary and Discussion

This chapter aims to summarize and discuss the previous chapter where CTL and DMQL
have been mapped to each other as far as possible. The two languages have not been
mapped to each other exactly but with limitations and assumptions. Nevertheless, the
extent of the achieved partial mappings (i.e. given the aforementioned limitations) differs.
To best describe the extent of the partial mappings an overview is given and related
limitations are discussed later on, to make meaningful statements about the advantages of
either language type, according to the representative language.

Table 4.1 provides an overview about the reconstruction of CTL features, using DMQL
and vice versa. All basic CTL operators have been successfully mapped to single DMQL
patterns, given that the operator parameters are propositions (e.g. EF p). The queries for
these operator patterns can be combined to model the logical combination of any type and
number of operators (e.g. EF p ∧ ¬EFq). The operator patterns can be nested in arbitrary
depth, using subpatterns that are interlinked by global rules, to model nested operators
(e.g. EX(EX p)). Nested operator patterns can be logically combined using negation,
conjunction and interlinked subpatterns to model complex formulas such as EF(AGp ∨
EXq). Explicitly, this allows to nest universal operator patterns into existential queries
and vice versa. However, the discussion following this overview qualifies the scenarios
in which the described extent of mapping is factually valid. In contrast, CTL can not
reconstruct all features of DMQL patterns. Patterns with a vertex and its properties
can be reconstructed by mapping vertices to states and properties to the state’s atomic
propositions. Simple edges can be mapped using EX while plain path edges (i.e. with
arbitrary length but without additional properties) can be mapped using EF . CTL is able
to map certain yet not all edge properties. Basic properties such as captions or the edge
direction can be expressed by using atomic propositions respectively reversing the formula
structure. Length restrictions can be mapped via combinations of the operators EX and
EF at the cost of duplicating parts of the formula. Forbidden vertex and edge types can be
excluded from traces by CTL but it can not track whether all required types have occurred.
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Mapping path overlap properties requires to count the overlapping path elements. CTL
provides no mechanisms for counting, instead it has to be involved in formulas. While this
allows to count how many times a specific state occurred (given an identifying expression),
counting the occurrences of arbitrary states is not possible. Forbidden subpatterns can
be reconstructed via the EU operator as long as they are atomic. However, there are no
means to express non-atomic subpatterns or subpatterns with different necessity modifiers.
Exceptions are subpatterns which happen to model the semantics of a CTL operator or
a logical combination of them. In particular, required subpatterns can not be mapped
as CTL is not aware of traces 1. Global rules are largely unmapped by CTL, especially
those referring to structural properties (e.g. the node degree). Since global rules basically
interlink subpatterns (which are largely unmapped), being able to map global rules would
not increase the mapping extent significantly. Though CTL can reconstruct some DMQL
concepts the mapping underlies the same restrictions as the reverse mapping. This is
because DMQL works on structural graphs and CTL works on behavioral system models.
Another limitation for the mapping from DMQL to CTL is time: The first mapping took
more than half of the time we invested on mapping and thus will be more progressed.

The presented overview visualizes the extent to which CTL and DMQL have been able to
reconstruct each other’s features. Due to the differences between paths and traces, these
features do not map exactly. Exemplary, we determine in which scenarios the paths in
DMQL patterns factually map to all traces the reconstructed CTL formula would have
considered as valid. These paths are directed paths from start to end events. As a result,
matched model paths solely consist of control flow elements (i.e. are free from data objects
etc.), represent a sequence of executed models elements and thus model traces. BPMN
(section 2.1.1) defines three categories of control flow elements: activities, events and
gateways. Depending on involved control flow elements, the directed paths stop modeling
(all) valid traces: Activities and events typically are executed in the specified order, i.e.
successors are enabled as soon as the predecessor has been executed. This property is used
by the directed paths to express that an activity follows another. In fact, this rudimentary
property does not even apply to all activities. Some activities are not embedded in the
control flow, such as ad-hoc activities. Including these activities would go beyond the
scope of this thesis but their exclusion shows up a limitation. Given a model consisting
of embedded activities and events only, the model execution is linear: Every start event
is connected to a single end event, there is only one path and it maps to the only, valid
trace.

Gateways change this linearity and redefine when an activity follows another. This is be-
cause gateways have conditional branches (xor), spawn parallel flow in additional branches
(and) or both (or). Subsequent activities in conditional branches might be executed if the
respective conditions hold. Activities on different parallel branches are executed in parallel,
i.e. may precede or succeed each other even if they are not connected by a directed path.
Consider a BPMN model with a branching and gateway that spawns a second branch, as
shown in appendix D.1. The activities A and B are executed in parallel, hence any order

1Traces are artifacts for the evaluation of formulas, used within model checkers.
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is acceptable. As a result, there are two valid traces: One where A is executed first and
one where A is executed last. Note that none of the traces maps to a directed path from s

to e. Consequently, presented patterns would not detect these execution sequences. Given
more time we could develop patterns that cover parallel flow, for now figure D.2 shows
how the presented patterns can be modified: State vertices follow each other if (1) they are
connected by a directed path (as modeled before) or (2) both reside in different branches
of a parallel gateway, i.e. the paths from the gateway to the activities do not include the
respective other activity. Instead of using modified patterns, the existing patterns could
be applied to transformations of the process model graphs as well. For example, every
valid trace can be mapped to a directed path in the Kripke structure which CTL has been
defined on. However, producing transformations with this property would probably inherit
problems related to model checking, e.g. the state space explosion problem.

Gateways of the type xor and or are conditional, i.e. the activation of their branches
depends on the fulfillment of specified conditions. These conditions may depend on the ex-
ecution of prior elements. DMQL does not evaluate the conditions but implicitly assumes
that they are evaluated to both true and false for at least once. Given that a certain exe-
cution sequence prohibits a condition to become true or false any longer, DMQL retrieves
paths which do not map to valid traces. For example, consider the simplified BPMN model
visualized in figure 4.1: Activity EnterPassword (denoted as a) must be executed at max-
imum three times to activate the branch with activity ShowDashboard (denoted as b), as
specified by the conditional edges of the xor gateway. The directed path in the presented

Enter Password

password is wrong && numRetries < 3

password is correct

password is wrong && numRetries >= 3

numRetries

Show Dashboard

[numRetries + 1]

Figure 4.1.: Example BPMN model with interdependent conditional flow.

EF pattern (figure 3.7) would fetch any path from a to b (see subpattern 1) independently
from how many times a has been repeated on that path. Of course, some invalid paths
could be excluded on pattern level manually (see figure D.3) but this would quickly yield
complex patterns which are cumbersome to create, read and maintain. For an automatic
solution DMQL could evaluate conditions before traversing conditional edges. However, it
has been stated that the semi-formal BPMN and other modeling languages are lacking of
exact execution semantics (c.f. (Polyvyanyy et al. 2017)) and difficulties could arise when
achieving such an evaluation. It is questionable whether and how CTL would achieve the
evaluation of valid traces if the language or the produced model do not define sufficient
execution semantics, especially for the variables used in conditions. In case CTL does not,
its traces would neglect conditional as well and all directed paths would continue to model
traces.
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5. Conclusion

The mapping of CTL and DMQL, representing temporal logic and graph pattern matching
respectively, has been achieved with different extents and limitations. We presented DMQL
patterns that reconstruct every CTL formula, given the absence of (1) elements which are
not embedded in the control-flow, (2) parallel gateways and (3) conditional gateways. The
first type of elements is out of scope. Parallel gateways cause parallel flow which the pre-
sented patterns do not handle. We described how the patterns can be modified to cope with
parallel flow. Conditional gateways make the activation of branches dependent on condi-
tions. DMQL neglects these conditions and retrieves paths which are no valid execution
sequences, in return. Depending on whether CTL traces respect these conditions, DMQL
patterns model different semantics than the CTL formulas they aim to represent. In this
case the retrieved false positives can be filtered out on the pattern level manually. Pattern
matching might even be extended to evaluate the conditions of edges before their traversal
to avoid retrieving false positives in the first place. Otherwise, patterns achieve the same
semantics as the reconstructed formulas. CTL can reconstruct some DMQL features but
largely fails to map structural queries and subpatterns, as CTL lacks of dedicated counting
mechanisms and is not aware of the traces its evaluated on. To conclude, CTL explores the
state space to find valid traces (i.e. process execution sequences) while DMQL retrieves
paths that represent structurally possible executions, neglecting conditional control flow.
As a result, CTL is more suitable for behavioral and DMQL is more suitable for structural
querying. While CTL seems inappropriate for structural querying, DMQL can be used
for behavioral querying given that there are no false positives (with respect to CTL) or
that their existence is acceptable. These advantages and disadvantages finally answer our
initial research question.

The contributions of this thesis are as follows: We presented DMQL patterns for all CTL
operators and how they can be combined to model complex formulas. Analogously, we
presented CTL formulas that reconstruct certain features of DMQL patterns. We discussed
the extent of these mappings and pointed out significant differences between traces and
paths, depending on involved control flow elements. While these differences qualify the
mapping extent, we described how DMQL patterns can be modified to eliminate them
partially.

Mapping CTL to DMQL and vice versa was exemplary to assess the advantages of temporal
logic and graph pattern matching. Arguably, other languages (such as LTL, VMQL, etc.)
exist and may show different mapping results. Though both partial mappings have been
presented, we could not spend the same resources on both and as a result, the second
mapping (DMQL to CTL) was not researched as extensively as the first. Furthermore,
the presented mappings are theoretical. They have not been tested at large scale and run-
time performance benchmarks are not provided. To assess the mapping between temporal
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logic and graph pattern matching in greater detail, future work could further investigate
the influence of BP model elements on the mapping of traces and paths. This influence,
however, may depend on the particular modeling language. Besides modeling new patterns,
automatic mechanisms can be investigated where transformations of the model graph are
used to answer behavioral queries in DMQL. For example, Kripke structures are graphs
where each path is a valid trace. However, generating these structures may involve the state
space generation and inherit its problems. In this context, the mappings should be tested
and benchmarked to evaluate their applicability in the real world. Finally, instead of trying
to achieve a general mapping between these conceptually different types of languages, it
may be more promising to map subsets of their features, adopted to certain use cases such
as compliance checking.
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A. BPMN Meta Model for DMQL

The mapping between the two reference languages will be shown with BPMN models in
mind. In order to use DMQL for a particular modeling language, a suitable meta model
has to be specified. Thus, we formalize a rudimentary meta model for BPMN:

ρ = {BPMN}

BPMN= (TvBPMN,TeBPMN)

TvBPMN = {event,activity,gateway,data}

TeBPMN = {ev-ea,ev-ae,evc-eg,evc-ge,cf,cf-g,cfc-ag,cfc-ga,dr,dw}

ev-ea= (event,activity),ev-ae= (activity,event),evc-eg= (event,gateway),

evc-ge= (gateway,event),cf= (activity,activity),cf-g= (gateway,gateway),

cfc-ag= (activity,gateway),cfc-ga= (gateway,activity),

dr= (data,activity),dw= (activity,data)

Please note that this meta model is rudimentary and does not claim to be complete.
Unsupported artefacts include group (having no semantic meaning) and annotation (typ-
ically unstructured, textual description). Consequently, the connection object association
is unsupported which is used to connect these artefacts. Lastly, swimlanes (represent or-
ganizations) are unsupported. However, the meta model covers flow objects, data objects,
sequence and message flow, arguably the BPMN core elements which are most important
for BP models.
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B. DMQL Pattern Formalization

While all DMQL patterns were presented using a specialized visual notation (see sec-
tion 3.3.1), a formalization of the patter expresses them in a built-in notation. As sum-
marized in section 2.3.2.1, DMQL patterns are generally formalized as Q = (VQ,EQ,PV ,PE ,

δ ,ε,ρ,G). The following patterns will define the vertices and edges alongside with their
properties. Due to the avoidance of global rules, G =∅ holds globally. See appendix A for
a formalization of the meta model ρ .

B.1. Formalization of the DMQL Pattern for EX

QEX = (VEX ,EEX ,PV ,PE ,δ ,ε,ρ,G) (B.1a)

VEX = {vs,ve},EEX = {e f },e f = (vs,ve,1)

δ (vs) = (vs,”∗ ”,{event}),δ (vs).evPosType = start

δ (ve) = (ve,”∗ ”,{event}),δ (ve).evPosType = end

ε(e f ) = (e f ,”∗ ”,{org},1,0,0,0,0,0,∅,∅,∅,∅,{θEX ′})

θEX ′ = (QEX ′ ,req)

QEX ′ = (VEX ′ ,EEX ′ ,PV ,PE ,δ ,ε,ρ,G) (B.1b)

VEX ′ = {vs,vi},EEX ′ = {e},e = (vs,vi,1)

δ (vs) = (vs,”∗ ”,{event}),δ (vs).evPosType = start

δ (vi) = (vi,”∗ ”,{activity,event}),δ (vi).p = true

ε(e) = (e,”∗ ”,{org},1,0,0,0,0,0,∅,∅,∅,∅,{θNxtSt})

θNxtSt = (QNxtSt , f orbp)

QNxtSt = (VNxtSt ,∅,PV ,PE ,δ ,ε,ρ,G) (B.1c)

VNxtSt = {v1,v2,v3}

δ (v1) = (v1,”∗ ”,{activity,event}),δ (v2) = (v2,”∗ ”,{activity,event})

δ (v3) = (v3,”∗ ”,{activity,event})
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B.2. Formalization of the DMQL Pattern for AX

QAX = (VAX ,EAX ,PV ,PE ,δ ,ε,ρ,G) (B.2a)

VAX = {vs,ve},EAX = {e f },e f = (vs,ve,1)

δ (vs) = (vs,”∗ ”,{event}),δ (vs).evPosType = start

δ (ve) = (ve,”∗ ”,{event}),δ (ve).evPosType = end

ε(e f ) = (e f ,”∗ ”,{org},1,0,0,0,0,0,∅,∅,∅,∅,{θAX ′})

θAX ′ = (QAX ′ , f orbp)

QAX ′ = (VAX ′ ,EAX ′ ,PV ,PE ,δ ,ε,ρ,G) (B.2b)

VAX ′ = {vs,vi},EAX ′ = {e},e = (vs,vi,1)

δ (vs) = (vs,”∗ ”,{event}),δ (vs).evPosType = start

δ (vi) = (vi,”∗ ”,{activity,event}),δ (vi).p = true

ε(e) = (e,”∗ ”,{org},1,0,0,0,0,0,∅,∅,∅,∅,{θNxtSt})

θNxtSt = (QNxtSt , f orbp)

QNxtSt = (VNxtSt ,∅,PV ,PE ,δ ,ε,ρ,G) (B.2c)

VNxtSt = {v1,v2,v3}

δ (v1) = (v1,”∗ ”,{activity,event}),δ (v2) = (v2,”∗ ”,{activity,event})

δ (v3) = (v3,”∗ ”,{activity,event})

B.3. Formalization of the DMQL Pattern for EU

QEU = (VEU ,EEU ,PV ,PE ,δ ,ε,ρ,G) (B.3a)

VEU = {vs,ve},EEU = {e f },e f = (vs,ve,1)

δ (vs) = (vs,”∗ ”,{event}),δ (vs).evPosType = start

δ (ve) = (ve,”∗ ”,{event}),δ (ve).evPosType = end

ε(e f ) = (e f ,”∗ ”,{org},1,0,0,0,0,0,∅,∅,∅,∅,{θEU ′})

θEU ′ = (QEU ′ ,req)
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QEU ′ = (VEU ′ ,EEU ′ ,PV ,PE ,δ ,ε,ρ,G) (B.3b)

VEU ′ = {vs,vi},EEU ′ = {e},e = (vs,vi,1)

δ (vs) = (vs,”∗ ”,{event}),δ (vs).evPosType = start

δ (vi) = (vi,”∗ ”,{activity,event}),δ (vi).q = true

ε(e) = (e,”∗ ”,{org},1,0,0,0,0,0,∅,∅,∅,∅,{θp̄})

θp̄ = (Qp̄, f orbp)

Qp̄ = (Vp̄,∅,PV ,PE ,δ ,ε,ρ,G) (B.3c)

Vp̄ = {vp}

δ (vp) = (vp,”∗ ”,{activity,event}),δ (vp).p = f alse∧δ (vp).q = f alse

B.4. Formalization of the DMQL Pattern for AU

QAU = (VAU ,EAU ,PV ,PE ,δ ,ε,ρ,G) (B.4a)

VAU = {vs,ve},EAU = {e f },e f = (vs,ve,1)

δ (vs) = (vs,”∗ ”,{event}),δ (vs).evPosType = start

δ (ve) = (ve,”∗ ”,{event}),δ (ve).evPosType = end

ε(e f ) = (e f ,”∗ ”,{org},1,0,0,0,0,0,∅,∅,∅,∅,{θAU ′})

θAU ′ = (QAU ′ ,req)

QAU ′ = (VAU ′ ,EAU ′ ,PV ,PE ,δ ,ε,ρ,G) (B.4b)

VAU ′ = {vs,vi},EAU ′ = {e},e = (vs,vi,1)

δ (vs) = (vs,”∗ ”,{event}),δ (vs).evPosType = start

δ (vi) = (vi,”∗ ”,{activity,event}),δ (vi).q = true

ε(e) = (e,”∗ ”,{org},1,0,0,0,0,0,∅,∅,∅,∅,{θp̄})

θp̄ = (Qp̄, f orbp)

Qp̄ = (Vp̄,∅,PV ,PE ,δ ,ε,ρ,G) (B.4c)

Vp̄ = {vp}

δ (vp) = (vp,”∗ ”,{activity,event}),δ (vp).p = f alse∧δ (vp).q = f alse
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B.5. Formalization of the DMQL Pattern for EF

QEF = (VEF ,EEF ,PV ,PE ,δ ,ε,ρ,G) (B.5a)

VEF = {vs,ve},EEF = {e f },e f = (vs,ve,1)

δ (vs) = (vs,”∗ ”,{event}),δ (vs).evPosType = start

δ (ve) = (ve,”∗ ”,{event}),δ (ve).evPosType = end

ε(e f ) = (e f ,”∗ ”,{org},1,0,0,0,0,0,∅,∅,∅,∅,{θEF ′})

θEF ′ = (QEF ′ ,req)

QEF ′ = (VEF ′ ,∅,PV ,PE ,δ ,ε,ρ,G) (B.5b)

VEF ′ = {vi}

δ (vi) = (vi,”∗ ”,{activity,event}),δ (vi).p = true

B.6. Formalization of the DMQL Pattern for AF

QAF = (VAF ,EAF ,PV ,PE ,δ ,ε,ρ,G) (B.6a)

VAF = {vs,ve},EAF = {e f },e f = (vs,ve,1)

δ (vs) = (vs,”∗ ”,{event}),δ (vs).evPosType = start

δ (ve) = (ve,”∗ ”,{event}),δ (ve).evPosType = end

ε(e f ) = (e f ,”∗ ”,{org},1,0,0,0,0,0,∅,∅,∅,∅,{θAF ′})

θAF ′ = (QAF ′ , f orbp)

QAF ′ = (VAF ′ ,∅,PV ,PE ,δ ,ε,ρ,G) (B.6b)

VAF ′ = {vi}

δ (vi) = (vi,”∗ ”,{activity,event}),δ (vi).p = true

B.7. Formalization of the DMQL Pattern for EG

QEG = (VEG,EEG,PV ,PE ,δ ,ε,ρ,G) (B.7a)

VEG = {vs,ve},EEG = {e f },e f = (vs,ve,1)

δ (vs) = (vs,”∗ ”,{event}),δ (vs).evPosType = start

δ (ve) = (ve,”∗ ”,{event}),δ (ve).evPosType = end

ε(e f ) = (e f ,”∗ ”,{org},1,0,0,0,0,0,∅,∅,∅,∅,{θEG′})

θEG′ = (QEG′ , f orbp)
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QEG′ = (VEG′ ,∅,PV ,PE ,δ ,ε,ρ,G) (B.7b)

VEG′ = {vi}

δ (vi) = (vi,”∗ ”,{activity,event}),δ (vi).p = f alse

B.8. Formalization of the DMQL Pattern for AG

QAG = (VAG,EAG,PV ,PE ,δ ,ε,ρ,G) (B.8a)

VAG = {vs,ve},EAG = {e f },e f = (vs,ve,1)

δ (vs) = (vs,”∗ ”,{event}),δ (vs).evPosType = start

δ (ve) = (ve,”∗ ”,{event}),δ (ve).evPosType = end

ε(e f ) = (e f ,”∗ ”,{org},1,0,0,0,0,0,∅,∅,∅,∅,{θAG′})

θAG′ = (QAG′ ,req)

QAG′ = (VAG′ ,∅,PV ,PE ,δ ,ε,ρ,G) (B.8b)

VAG′ = {vi}

δ (vi) = (vi,”∗ ”,{activity,event}),δ (vi).p = f alse
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C. Negative Examples of DMQL Patterns

While the DMQL patterns presented in the thesis led to the desired results, this appendix
section lists patterns that did not provide the intended semantics. The main purpose is
the visualization of inappropriate concepts that a thesis section refers to and shall support
the reader in following the written argumentation.

c
p

p

q
q

Figure C.1.: Inappropriate conjunction of DMQL paths.
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D. Parallel and Conditional Control Flow

The models and patterns in this appendix are related to the discussion about parallel
and conditional control flow in BP models which qualify the validity of DMQL patterns
presented in this thesis (see chapter 4).

D.1. BPMN Model with Parallel Flow

The following simple BPMN model features parallel flow, changing the semantics of "sub-
sequent control flow elements", such as activities: The strict need for a directed path from
A to B has to be dropped as residing in different parallel branches is also sufficient for
subsequent execution.

A

B

Figure D.1.: Example BPMN model with parallel flow.

D.2. DMQL Pattern Respecting Parallel Flow

The following DMQL pattern is a modification of the nested EF operator pattern (see
section 3.3.5) capturing "b follows a" where a desired state vertex b (1) has to follow a
vertex a directly (subpattern i) to capture sequential flow or (2) is on a different branch
of a parallel gateway g than vertex a, to capture parallel flow. In the latter case, g is a
common predecessor and b is not on the path from g to a. Note that if a was on the path
from g to b, the first condition would have been met already, we do not need to handle
this situation twice.
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Figure D.2.: DMQL pattern capturing sequential and parallel flow.

D.3. DMQL Pattern Filtering Invalid Conditional Flow

The following DMQL pattern is a modification of the nested EF operator pattern where a
certain invalid sequence of execution elements is forbidden on fetched paths. Its aim is to
show how to produce only valid paths, i.e. paths which map to valid traces.
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Figure D.3.: DMQL pattern filtering invalid conditional flow.
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