
Faculty 4: Computer Science Institute for Web Science and
Technologies

Implementation of the concept
contraction in the Description Logic

EL

Master’s Thesis
in partial fulfillment of the requirements for
the degree of Master of Science (M.Sc.) in

Web Science and Technologies

submitted by

Fiorela Ciroku

First supervisor: Prof. Dr. Steffen Staab
Institute for Web Science and Technologies

Second supervisor: Dr. Tjitze Rienstra
Institute for Web Science and Technologies

Koblenz, October 2019

3

Statement
I hereby certify that this thesis has been composed by me and is based on my own
work, that I did not use any further resources than specified – in particular no references
unmentioned in the reference section – and that I did not submit this thesis to another
examination before. The paper submission is identical to the submitted electronic ver-
sion.

I agree to have this thesis published in the library. Yes ◻ No ◻

I agree to have this thesis published on the Web. Yes ◻ No ◻

The thesis text is available under a Creative Commons License (CC BY-
SA 4.0).

Yes ◻ No ◻

The source code is available under a GNU General Public License
(GPLv3).

Yes ◻ No ◻

The collected data is available under a Creative Commons License (CC
BY-SA 4.0).

Yes ◻ No ◻

...
(Place, Date) (Signature)

Abstract
Belief revision is the subarea of knowledge representation which studies the dynamics
of epistemic states of an agent [Ribeiro, 2012]. In the classical AGM approach, contrac-
tion, as part of the belief revision, deals with the removal of beliefs in knowledge bases.
This master’s thesis presents the study and the implementation of concept contraction
in the Description Logic EL. Concept contraction deals with the following situation.
Given two concept C and D, assuming that C ⊑ D, how can concept C be changed so
that it is not subsumed by D anymore, but is as similar as possible to C? This approach
of belief change is different from other related work because it deals with contraction in
the level of concepts and not T-Boxes and A-Boxes in general. The main contribution
of the thesis is the implementation of the concept contraction. The implementation pro-
vides insight into the complexity of contraction in EL, which is tractable since the main
inference task in EL is also tractable. The implementation consists of the design of five
algorithms that are necessary for concept contraction. The algorithms are described,
illustrated with examples, and analyzed in terms of time complexity. Furthermore, we
propose an new approach for a selection function, adapt for the concept contraction.
The selection function uses metadata about the concepts in order to select the best from
an input set. The metadata is modeled in a framework that we have designed, based
on standard metadata frameworks. As an important part of the concept contraction, the
selection function is responsible for selecting the best concepts that are as similar as pos-
sible to concept C. Lastly, we have successfully implemented the concept contraction
in Python, and the results are promising.

Acknowledgments
Firstly, I would like to thank my supervisors Prof. Dr. Staab and Dr. Rienstra. Prof.
Staab, thank you for your immense support, thought my years as a master student at
the University of Koblenz. The West Institute has welcomed me with open arms and
introduced me to the beautiful world of the Semantic Web. Working for you has been a
great experience and has made me realize my path in academic life. Dr. Rienstra, thank
you very much for all the time that you have dedicated to me all these months. Our
constructive discussions and your continued feedback have made this thesis what it is.
Thank you for pushing me and helping me achieve my goals. Last but not least, I would
like to thank Dr. Schon for all her valuable input and constant communication during
the last year and a half.

A special thank you goes to my family for the unconditional support that they have
given me during my studies and specifically during the work of the thesis. You are my
motivation, and I could not have done it without you. This is for you mom and dad!

Contents

1 Introduction and motivation 11
1.1 Introduction . 11
1.2 Motivation . 13
1.3 Research questions and methodology . 14
1.4 Scope of the thesis . 15

2 Concept contraction in the Description Logics EL 17
2.1 Description Logics . 17
2.2 Preliminaries of Description Logic EL 19
2.3 Contraction in the AGM Theory . 23
2.4 Concept Contraction Operator . 25

2.4.1 LCS contraction . 26
2.4.2 Postulates for Concept Contraction 30
2.4.3 Contraction modulo acyclic and cyclic T-Boxes 32
2.4.4 Limitations of concept contraction 34

2.5 Related work . 35
2.6 Conclusions . 36

3 Designed algorithms and their complexity 39
3.1 computeWeakenings Algorithm . 39
3.2 computeRemainders Algorithm . 44
3.3 subsumedBy Algorithm . 46
3.4 computeLCS Algorithm . 50
3.5 conceptContraction Algorithm . 53
3.6 Conclusions . 53

4 A selection function for concept contraction 55
4.1 Selection function, an integral part of the concept contraction 55
4.2 Metadata standards for ontology description 56

4.2.1 Ontology Metadata Vocabulary 57
4.2.2 Metadata for Ontology Description and Publication Ontology . 59

9

10 CONTENTS

4.2.3 Comparison of metadata standards 59
4.3 A selection function for concept contraction operator 61

4.3.1 Concept description framework 62
4.3.2 Theoretical implementation of the concept description framework 63
4.3.3 Theoretical implementation of the selection function 65

4.4 Conclusions . 67

5 Implementation of conceptContraction algorithm 69
5.1 Environment of implementation . 69
5.2 Building an ontology for EL concepts . 71
5.3 Implementation of the remainders and LCSs 76

5.3.1 Implementation of subsumedBy algorithm 76
5.3.2 Implementation of computeRemainders algorithm 80
5.3.3 Implementation of computeLCS algorithm 82
5.3.4 Implementation of the conceptContraction algorithm 82

5.4 Testing of the implementation . 83
5.5 Conclusions . 84

6 Conclusions and future work 85
6.1 Conclusions . 85
6.2 Future work . 87

Chapter 1

Introduction and motivation

1.1 Introduction

With the passing of years, the World Wide Web has become an excellent means of pro-
viding and searching for information. At the same time, the vast amount of information
available on the Web makes the search for information an overwhelming experience for
the user. The reason is that most of the information that is currently in the Web is aimed
to be human-readable and not machine-readable. The Semantic Web aims for machine-
understandable Web resources, whose information can be shared and processed both
by automated tools, such as search engines and by human users. One of the key con-
cepts in the Semantic Web are ontologies, as they can be used to describe the semantics
of information at various sites, overcoming the problem of implicit and hidden knowl-
edge, and thus enabling content exchange[Berners-Lee et al., 2001]. Ontologies are not
static, though. New information is introduced every second to the Web, and ontologies
need to revise the knowledge that they already hold and change it with regards to the
new information. In the classical approach of belief revision, to add new information
that (usually) causes inconsistencies to the ontology, the ontology must give up the old
information that is already in the knowledge base and that it contradicts the new in-
formation. This kind of operation is called belief revision, and it is realized by firstly
contracting the old information and then adding the new information. The contraction
of old information from a knowledge base results in the removal of the whole sentence
that causes the inconsistency. Such an approach can be considered not too gentle for a
knowledge base. Based on research on related works, to our knowledge, there are very
few studies that tackle this problem. Most of the related work deal with contraction
by working with T-Boxes or A-boxes. The T-Box is the part of a knowledge base that
contains terminological knowledge about a domain. The A-Box of a Description Logic
knowledge base contains assertional knowledge about the domain [Baader et al., 2003].

11

12 CHAPTER 1. INTRODUCTION AND MOTIVATION

Based on the AGM theory [Alchourrón et al., 1985], we investigate belief change for
ontologies by considering the problem of concept contraction: given two concepts C
and D, we want to obtain a new concept that is as similar as possible to C, but that is
not subsumed D. It is understandable that if concept C is not subsumed by concept D,
the concept contraction does not apply, and C is left intact. We can see this as a form
of contraction since C must be weakened in a way similar to how a knowledge base
is weakened during belief contraction [Rienstra et al., 2018]. The basis of the concept
contraction is Description Logics EL, which forms the basis of the OWL 2 EL profile
[Patel-Schneider, 2004]. The authors in [Rienstra et al., 2018] formalised concept con-
traction by adapting the AGM approach. The object of the study is a concept contraction
operator ⊖ that takes as input two concepts C, D, and returns a new concept C⊖D rep-
resenting the contraction of C by D. Associative to definitions of the operator are the
postulates that determine classes of operators that are well-behaved in a precisely stated
sense. The constructive definitions are linked with the postulates by representation the-
orems, which establish a precise correspondence between certain classes of operators
and sets of postulates [Rienstra et al., 2018]. The goal of the master’s thesis is the im-
plementation of this concept contraction.

The overview of the thesis is as follows:

• Chapter 1: Introduction and Motivation We present the topic of the master’s
thesis and the motivation behind it. Later, we state the research questions and the
methodology that we have used in this work. At the end of the chapter, we discuss
the scope of the thesis.

• Chapter 2: Concept contraction in the Description Logic EL In this chapter,
we study in detail the concept contraction. Firstly, we provide an overview of
the Description Logics family, in particular, EL language. We briefly discuss the
contraction operation in the AGM theory, together with the respective postulates.
Then, we analyse the concept contraction thoroughly in the setting of an empty T-
Box. The situation where concepts are semantically dependable to a T-Box (cyclic
or acyclic) is also treated but in less detail. Reformulations of the well-established
AGM postulates for contraction are provided for the concept contraction as well.
Lastly, we include a section concerning the limitations of the concept contraction.

• Chapter 3: Designed algorithms and their complexity Here, we present five
algorithms that we have designed to implement the concept contraction operator.
Each of the algorithms is described and analyzed in terms of time complexity.

• Chapter 4: A selection function for concept contraction This chapter tackles
one of the leading research questions of the thesis: ”How to create a reasonable se-
lection function?”. Firstly, we introduce the selection function in belief revision.

1.2. MOTIVATION 13

Then we present an approach to the concept and associative metadata representa-
tion. Based on the representation, we propose a theoretical implementation of a
selection function, which makes use of metadata of concepts to choose the best
remainders of a concept C with respect to a concept D.

• Chapter 5: Implementation of conceptContraction algorithm In this chapter,
we describe the implementation of the conceptContraction algorithm in Python.
We also include the results of the testing of the application.

• Chapter 6: Conclusion and future work As the last chapter of the thesis, we
summarize our conclusions on the topic, and give an answer for each of the re-
search questions. We also include a short discussion regarding future work.

1.2 Motivation

The classical approach for repairing a description logic ontology O in the sense of re-
moving an unwanted consequence α is to delete a minimal number of axioms from
O such that the resulting ontology O′ does not have the consequence α, according to
[Alchourrón et al., 1985]. However, we can argue that this approach may be too rough,
meaning that it may also remove consequences that are wanted.

Example 1. Let us consider the case where T is a T-Box and A is an A-Box.

T = {Student ≡ Person ⊓ ∃isRegisteredAt.(University ⊓ Institute)}
A= {Student(Anna)}

Suppose that we want to contract the concept ∃isRegisteredAt.Institute from the
Person ⊓ ∃isRegisteredAt.(University ⊓ Institute). If we apply the classical ap-
proach of AGM contraction [Alchourrón et al., 1985], the whole terminological axiom
would be removed. This operation would cause the assertional axiom in A-Box to be
removed as well, considering that there is no more a concept Student. Obviously, such
contraction can lead to loss of information that might be valuable. With the means
of the concept contraction, we could weaken the concept definition in the T-Box. A
weaker definition would be Student ≡ ∃isRegisteredAt.University. In addition, the
individual Anna is assigned to a more general concept, and not permanently deleted.
Following this approach, the definition of concept Student and the information that
Anna is a Student is not lost. In conclusion, we believe that it is interesting to study a
gentle notion of repair in which axioms are not deleted but only weakened.

14 CHAPTER 1. INTRODUCTION AND MOTIVATION

1.3 Research questions and methodology
This master’s thesis aims to implement the concept contraction proposed in [Rienstra et al., 2018].
In the course of work, there are multiple questions that we raise. We believe that the
following research questions are worth investigating:

• Suppose the selection function is given, how to implement a concept contraction
operator?

– How to compute the remainders of a concept C with respect to a conceptD?

– How to compute the least common subsumer, given a set of remainders?

• How to select/create a reasonable selection function for the concept contraction?

• What is the complexity of the algorithms developed to implement the concept
contraction operator?

In order to provide a solution to the above research questions, our work will be divided
in the following main tasks:

1. Implementation of the concept contraction operator

The first research question is highly dependable from the two sub-questions. Find-
ing a way to compute the remainders and the least common subsumer is the path
to implementing the concept contraction operator. The computations of these
elements of the operator will be described in pseudocode and include the com-
putation of the weakenings of concepts and a subsumption algorithm for the De-
scription Logic EL.

2. Determining of a reasonable selection function

The work regarding the selection function is divided into two paths: (i) Assuming
that the selection function is given, and (ii) Creating/ Choosing a selection func-
tion. The first assumption is used in the design of the algorithms in the first part
of the thesis. Later on, we shall find an approach to determine a selection function
for the concept contraction.

3. Analysis of the complexity of the results

As part of the master thesis, an analysis is included with the purpose of evaluating
the algorithms that we have designed for the concept contraction. The analysis
would give an insight into whether the operator is simple enough to generate an
understandable output and complex enough to deal with different cases of con-
traction.

1.4. SCOPE OF THE THESIS 15

4. Prototype implementation

A prototype implementation of the operator shall be created. The application
is based on the algorithms that we designed for the concept contraction. The
implementation of the operator will be completed in Python.

On completion, the result of this master thesis would be the study and implementation
of the concept contraction operator, including a selection function, the remainders, and
the least common subsumer. A final analysis is interesting to understand the results of
the implementation.

1.4 Scope of the thesis
During the course of the thesis, we have made several assumptions, especially in the
design of the algorithms for the computation of the weakenings of a concept, the re-
mainders of a concept C with respect to a concept D, and the least common subsumer.

One of the main modeling choices of the concept contraction operator is the Descrip-
tion Logic language used to describe it, EL. Although a limiting language in terms of
expressivity, it is sufficient to define the concept contraction. Nonetheless, the lack of
expressivity for the union operation forces us to use the notion of the least common
subsumer.

Another assumption of the thesis is that in the discussion of the concept contraction
operation, we work in the setting of an empty T-Box. This assumption is reflected in
the design of the algorithms, where we deal directly with the concepts. Albeit, we do
provide a short description of the behaviour of the concept contraction in the setting of
acyclic and cyclic T-Boxes.

Lastly, in the first part of this work, where we discuss the concept contraction, we as-
sume that the selection function is given. In this part, the way that the selection function
selects the best remainders from a set is not our concern. In addition, the algorithms
are built upon this assumption. This limits the analysis of the conceptContraction
algorithm, as we cannot determine the complexity of the selection function. In the sec-
ond part of the thesis, we consider the development of a possible selection function for
concept contraction, but the approach is not taken into account for analysis.

Chapter 2

Concept contraction in the Description
Logics EL

The chapter covers the theoretical background of the concept contraction in the De-
scription Logics EL. In section 2.1, we introduce the Description Logics family and the
three basic ideas that have shaped the development of DLs. In section 2.2, we focus
mainly on the description logic EL, where we discuss the constructors of the language
and its semantics. Later on, in section 2.3, we discuss in general the contraction opera-
tion in the AGM theory. We present the basic six associative postulates of the operation
and provide a short description for each. In section 2.4, the concept contraction ap-
proach developed by Rienstra, Schon and Staab in [Rienstra et al., 2018] is analysed
thoroughly. The concept contraction operator is discussed in great detail for different
settings. Lastly, a summary of conclusions is provided for the chapter in section 2.6.

2.1 Description Logics

In this section, we briefly introduce Description Logics (DL) as a formalism for rep-
resenting knowledge of an application domain. We state the main ideas that shape
description logics and, the architecture of the knowledge representation system is pre-
sented. Basic definitions and the theory background included in this section are provided
in ’The Description Logic Handbook: Theory, Implementation, and Applications’ by
[Baader et al., 2003].

Description logics (DLs) are a family of logic-based knowledge representation for-
malisms, which are employed in various application domains, such as natural language
processing, configuration, databases, and biomedical ontologies. Their most notable

17

18 CHAPTER 2. CONCEPT CONTRACTION IN THE DESCRIPTION LOGICS EL

success so far is the adoption of the DL-based language OWL1 as standard ontology
language for the Semantic Web.

The following three ideas, first put forward in Brachman’s work [Brachman, 1985], have
largely shaped the development of DLs:

• The basic syntactic building blocks are atomic concepts, atomic roles, and indi-
viduals.

• The expressive power of the language is restricted in that it uses a rather small set
of constructors for building complex concepts and roles.

• Implicit knowledge about concepts and individuals can be inferred automatically
with the help of inference procedures. Subsumption relationships between con-
cepts and instance relationships between individuals and concepts play an impor-
tant role.

In figure 2.1, the architecture of a knowledge representation system based on description
logics is presented. This knowledge representation system provides facilities to set up
knowledge bases, to reason about their content, and to manipulate them. The source of
the figure is [Baader et al., 2003]. The notions of T-Box and A-Box are described in the
following section.

Figure 2.1: Architecture of a knowledge representation system based on description logics.

1See https://www.w3.org/TR/owl2-overview/ for its most recent edition OWL2.

2.2. PRELIMINARIES OF DESCRIPTION LOGIC EL 19

A key component of a DL is the description language, which allows its users to build
complex concepts (and roles) out of atomic ones. These descriptions can then be used
in the terminological part of the knowledge base (TBox) to introduce the terminology
of an application domain, by defining concepts and imposing additional constraints on
their interpretation. In the assertional part of the knowledge base (ABox), facts about
a specific application situation can be stated, by introducing named individuals and
relating them to concepts and roles [Baader, 2017].

2.2 Preliminaries of Description Logic EL
Having introduced the notion of description logics, we now focus on EL in particular.
We will cover the basic definitions and semantics for this knowledge representation
language. The definitions and the knowledge presented in this section are based on
[Baader et al., 2005] and [Rienstra et al., 2018].

EL is a small description logic that allows only a limited set of concept constructors.
Firstly, we define the signature of the language.

Definition 1 An EL signature is a pair Σ = (NC ,NR) where NC is the set of atomic
concepts and NR the set of atomic roles.

Given a signature Σ = (NC ,NR), we use A to denote an atomic concept and R to
denote an atomic role or the universal role u. The notations C and D are used to range
over concepts, which are formulas inductively generated by the rules presented in the
following definition. EL concept descriptions are defined as:

Definition 2 Let NC be a set of concept names and NR a set of role names. The set of
EL concept descriptions is the smallest set such that:

• ⊺ and all concept names A ∈ NC are EL concept descriptions;

• if C and D are EL concept descriptions, then so is C ⊓D;

• if C is a EL concept descriptions and r ∈ NR, then ∃r.C is an EL concept de-
scription.

Based on the definition, a concept in Description Logic EL can either be a universal
concept, an atomic concept, an existential role restriction or a conjunction of concepts.
Given a signature Σ, the set of concepts will also be denoted C(Σ). For example, the
concept Student in EL can be expressed as:

Example 1. A concept in EL description logics

20 CHAPTER 2. CONCEPT CONTRACTION IN THE DESCRIPTION LOGICS EL

Person ⊓ ∃isRegisteredAt.University

The semantics of EL is defined in terms of interpretations. An interpretation I is a
pair (∆I , .I), where ∆I in a non-empty set called the domain and .I is an interpretation
function. The interpretation maps each A ∈ NC to a set AI ⊆ ∆I and each R ∈ NR to a
set RI ⊆ ∆I ×∆I . The semantics of the universal role u is given by uI = ∆I ×∆I . The
universal role connects all the elements in the domain. The interpretation function maps
every individual a to an element aI of the domain aI ∈ ∆I . The interpretation function
is extended to concepts using the following definitions [Baader et al., 2003]:

• ⊺I = ∆I

• (C ⊓D)I = CI ∩DI

• (∃R.C)I = {a ∈ ∆I ∣(a, b) ∈ RI for some b ∈ CI}.

Definitions 3 and 6, included in [Heinz, 2018], provide a convenient way to implement
the algorithms in chapter 3. Two additional definitions, 4 and 5, have been created with
the purpose of defining the set of concepts that form a concept of type conjunction.

Definition 3 A conjunction of concepts is said to be trivial iff it consists of exactly one
conjunct. It is said to be non-trivial iff it is not a trivial conjunction.

Definition 4 If a non-trivial conjunction is constructed by the intersection of conjunc-
tion concepts, the non-trivial conjunction concept must be flattened. The flattening pro-
cedure consists on the removal of the parenthesis in the non-trivial conjunction concept.

The construction of a non-trivial conjunction concept using the flattening procedure is
expressed in example 2.

Example 2. Flattening of a non-trivial conjunction concept

A ⊓ (C ⊓ ∃r.D)
⇓

A ⊓C ⊓ ∃r.D

Definition 5 The set Conjuncts(C) is defined to contain all concepts that occur within
a non-trivial conjunction concept C.

Example 3. Conjuncts(C)

Conjuncts(A ⊓C ⊓ ∃r.D) = {A, C, ∃r.D}

2.2. PRELIMINARIES OF DESCRIPTION LOGIC EL 21

Definition 6 The notation InnerConcept(C) is defined to contain the concept that oc-
curs within an existential role restriction concept, C.

Example 4. InnerConcept(C)

InnerConcept(∃r.(C ⊓D)) = {C ⊓D}

A description logic knowledge base (KB) is made up of two parts, a terminological part,
called the T-Box and an assertional part, called the A-Box, each part consisting of a set
of axioms. The most general form of T-Box axioms are the so-called general concept
inclusions.

Definition 7 A general concept inclusion (GCI) is of the form C ⊑ D, where C,D are
EL concepts.

The terminological axioms can also be expressed by concept equivalence inclusion of
the form C ≡D, where C,D are EL concepts. We can now define a T-Box.

Definition 8 A T-Box T with signature Σ = (NC ,NR) is a finite set of definitions of the
form A ≡ C or A ⊑ C with A ∈ NC and C ∈ C(Σ) such that no A appears more than
once on the left-hand side of a definition in T .

An example of a T-Box that includes the definition of a Student concept is illustrated
in example 5. Part of the T-Box can be numerous terminological axioms in the domain
of a university, such as definitions of a professor, class, examination, grade, etc.

Example 5. T-Box T

T = {Student ≡ Person ⊓ ∃isRegisteredAt.University}

An A-Box can contain two kinds of axioms, one for asserting that an individual is an
instance of a given concept, and the other for asserting that a pair of individuals is an
instance of a given role. The definition of the A-Box, provided in [Baader et al., 2008],
is:

Definition 9 An assertional axiom is of the form x ∶ C or (x, y) ∶ r, where C is an EL
concept, r is an EL role, and x and y are individual names. A finite set of assertional
axioms is called an A-Box.

An A-Box example, given that Anna and UniKoblenz are individual names that re-
spectively represent a student and a university, can be:

Example 6. A-Box A

22 CHAPTER 2. CONCEPT CONTRACTION IN THE DESCRIPTION LOGICS EL

A = {Anna ∶ Student, (Anna,UniKoblenz) ∶ isRegisteredAt}

Now that the definitions of a T-Box and an A-Box are provided, we can define a knowl-
edge base.

Definition 10 A knowledge base (KB) is a pair (T ,A), where T is a T-Box and A is an
A-Box.

We can develop further the definition by analysing inference problems w.r.t. a knowl-
edge base consisting of an T-Box and an A-Box.

Definition 11 Given a knowledge base K = (T ,A), where T is a T-Box and A is an
A-Box, K is called consistent if it has a model.

A concept C is called specifiable with respect to K if there is a model I of K with

CI /= ∅.

Such an interpretation is called a model of C w.r.t. K.

The concept D subsumes the concept C w.r.t K (written K ⊧ C ⊑ D) if for all models I
of K the condition holds:

CI ⊆DI

Two concepts C,D are equivalent w.r.t K (written K ⊧ C ≡ D) if they subsume each
other w.r.t K.

C ⊑D and D ⊑ C

Furthermore, a concept C is equivalent to D w.r.t. T , if for all models I of T the
condition holds:

CI =DI

An individual a is an instance of a concept C with respect to K (written K ⊧ a ∶ C) if
for all models I of K the condition holds:

aI ∈ CI

A pair of individuals (a, b) is an instance of a role r with respect to K (written K ⊧
(a, b) ∶ r) if for all models I of K the condition holds:

2.3. CONTRACTION IN THE AGM THEORY 23

(aI , bI) ∈ rI

Definition 12 An interpretation I is a model of a knowledge base K = (T ,A) if I is a
model of T and I is a model of A.

Example 7. Knowledge base K

T = {Student ≡ Person ⊓ ∃isRegisteredAt.University}
A = {Anna ∶ Student, (Anna,UniKoblenz) ∶ isRegisteredAt}

It is important to emphasise that in section 2.4, where we discuss the concept contrac-
tion operator by [Rienstra et al., 2018], there are several assumptions on the description
logics EL. Firstly, the terminological axioms included in the T-Box can only be ex-
pressed by the concept equivalence inclusion (C ≡ D). Secondly, A-Boxes will not be
used in the development of the concept contraction operator, as the operator deals with
concepts in the T-Box, and not individuals in A-Box. Lastly, the concept contraction
operator does not take the universal role u into account. Nonetheless, this knowledge is
important to understand description logics, and thus is provided.

2.3 Contraction in the AGM Theory
In this section we introduce the epistemic changes of belief sets, based on the AGM
theory. The attention is on the contraction operation where we will also introduce and
discuss the associative postulates. The knowledge included in this section is based on
[Alchourrón et al., 1985] and [Gärdenfors et al., 1995].

Belief revision is the subarea of knowledge representation which studies the dynamics
of epistemic states of an agent. Belief sets, which are sets of sentences logically closed,
are composed of three pieces: a representation of epistemic states, a set of epistemic
attitudes, and types of belief change. An agent’s epistemic state is the set of beliefs of
the agent at a certain moment. The changes of attitudes are fired by an external trigger
called epistemic input. This input can lead to several kinds of epistemic changes called:

• Expansion - A new sentence is added to a belief set K regardless of the conse-
quences of the larger set so formed. The belief set that results from expanding K
by a sentence A together with the logical consequences is denoted K +A.

• Revision - A new sentence that is (typically) inconsistent with a belief set K is
added, but in order that the resulting belief system to be consistent some of the old
sentences in K are deleted. The result of revising K by a sentence A is denoted
K ∗A.

24 CHAPTER 2. CONCEPT CONTRACTION IN THE DESCRIPTION LOGICS EL

• Contraction - Some sentence in the belief set K is retracted without adding any
new facts. The result of contracting K with respect to the sentence A is denoted
K �A.

Based on the short description of the epistemic changes, a similarity between revision
and contraction is noted. Nonetheless, we should note that there is a distinctions be-
tween belief revision and belief contraction. The AGM approach to belief change states
that while belief revision deals with consistently adding a new belief, contraction deals
with removal of beliefs. Contraction is seen as a more fundamental type of change, since
revision can often be defined in terms of contraction, by first removing beliefs inconsis-
tent with the new belief, after which the new belief can be added without introducing
inconsistency [Alchourrón et al., 1985].

AGM theory studies changes in epistemic states modelled as logically closed sets of
sentences. AGM theory deals with contraction, with properties expressed by six postu-
lates: (i) Closure, (ii) Inclusion, (iii) Vacuity, (iv) Success, (v) Recovery and (vi) Exten-
sionality. The following definitions and explanations of the postulates can be found in
[Gärdenfors et al., 1995] and [Hansson, 2017].

The first postulate is Closure which states that when a belief set K is contracted by a
sentence A, the outcome should be logically closed.

Closure (K � 1). For any sentence A and any belief set K, K �A is a belief set.

According to postulate Inclusion, the contracted set is assumed to be a subset of the
original set. Inclusion is usually considered to be a constitutive property of contraction.
However, it has also been questioned with the argument that when the epistemic agent
ceases to believe in A, then this is usually because it receives some new information
that contradicts A.

Inclusion (K � 2). For any sentence A and any belief set K, K �A ⊆ K.

If the sentence to be contracted is not included in the original belief set, then contraction
by that sentence involves no change at all. Such contractions are vacuous operations,
and they should leave the original set unchanged.

Vacuity (K � 3). For any sentence A and any belief set K, if A /∈ K, then K �A = K.

Contraction should be successful, i.e., K � A should not imply A. However, it would
be too much to require that A /∈ K �A for all sentences A, since it cannot hold if A is a
tautology. The success postulate has to be conditional on A not being logically true.

2.4. CONCEPT CONTRACTION OPERATOR 25

Success (K � 4). For any sentence A and any belief set K, if not ⊢ A, then A /∈ K �A.

Belief contraction should not only be successful, it should also be minimal in the sense
of leading to the loss of as few previous beliefs as possible. The epistemic agent should
give up beliefs only when forced to do so, and should then give up as few of them as
possible. According to the Recovery postulate, so much is retained after A has been
removed that everything will be recovered by expansion of A.

Recovery (K � 5). For any sentence A and any belief set K, K ⊆ (K �A) +A.

Logically equivalent sentences should be treated alike in contraction. Extensionality
guarantees that the logic of contraction is extensional in the sense of allowing logically
equivalent sentences to be freely substituted for each other.

Extensionality (K � 6). For any sentence A and B and any belief set K, if ⊢ A ↔ B,
then K �A = K � B.

The postulates (K � 1) to (K � 6) are called the basic set of postulates for contraction.

In the next section, we will see how these basic postulates have been adapted to the
setting of the concept contraction. Firstly, let us introduce the notion of concept con-
traction.

2.4 Concept Contraction Operator

The foundation of the work in this master thesis is build on the concept contraction
presented in [Rienstra et al., 2018]. In this section we describe in detail the operator
and its properties. The basic postulates of belief contraction have been reformulated to
fit the setting of the operator. In the end of the section, we describe the assumptions
made for the development of the algorithms in chapter 3.

The concept contraction operator deals with the removal of single concepts from a cer-
tain knowledge base, instead of a whole axiom. The goal is, given two concepts C and
D, the operator should be able to obtain a new concept that is as similar as possible to
C but no longer subsumed by D. Contraction in this context is understood as finding a
weakening of C (i.e., some concept C ′ such that C ⊑ C ′) that is no longer subsumed by
D [Rienstra et al., 2018].

The authors model the process of concept contraction using the notion of a concept

26 CHAPTER 2. CONCEPT CONTRACTION IN THE DESCRIPTION LOGICS EL

contraction operator ⊖. The operator is defined by adapting the notion of AGM partial
and full meet contraction. The definitions related to the concept contraction operator
can be found in [Rienstra et al., 2018].

Definition 13 A concept contraction operator ⊖ with signature Σ associates each pair
of concepts C,D ∈ C(Σ) with a new concept denoted by C ⊖D ∈ C(Σ).

2.4.1 LCS contraction
The authors in [Rienstra et al., 2018] present an explicit construction of a particular kind
of contraction operator called lcs contraction operators. Initially the notion of remain-
ders is introduced.

Definition 14 A remainder of a concept C with respect to a concept D is a concept C ′

such that:

1. C ⊑ C ′

2. C ′ /⊑D

3. ∄C ′′ s.t. C ⊑ C ′′,C ′′ /⊑D and C ′′ ⊑ C ′.

Once the remainders C with respect to D have been identified, they can be considered
candidate answers for contracting D from C. The set of remainders are closed under
equivalence (i.e., if C ≡ C ′′ and C ′ is a remainder of C w.r.t. D then so is C ′′). Con-
sidering that a remainder of a concept C w.r.t. a concept D is a maximally specific
generalization of C not subsumed by D, we can state that at least one remainder of C
with respect to D always exists, provided that D /≡ ⊺. Otherwise, there can not be found
a remainder of concept C that is not subsumed by the ⊺ concept. The sets of remainders
are represented as sets of equivalent classes under ≡. The equivalence class of a concept
C is the set {D∣C ≡ D} and is denoted by [C]. Next, we introduce the notion of the
C�D set.

Definition 15 Let C, D be concepts. We define C�D by C�D = {[C ′]∣C ′ is a remain-
der of C w.r.t. D}.

In general, C�D may contain more than one remainder. Here comes in play the role of
a selection function σ that makes it possible to chose the ’most important’ remainders.
There are two limiting cases are (1) selection of single remainders (maxi-choice) and
(2) selection of all remainders (full meet) that are considered in [Rienstra et al., 2018].
Let us define what a selection function is.

2.4. CONCEPT CONTRACTION OPERATOR 27

Definition 16 A selection function σ selects, given every pair of concepts C, D a set
σ(C�D) such that:

1. If C�D ≠ ∅ then σ(C�D) ≠ ∅.

2. If C�D ≠ ∅ then σ(C�D) ⊆ C�D.

3. If C�D ≠ ∅ then σ(C�D) = {[C]}.

A selection function σ is called maxi-choice iff σ selects exactly one elements of C�D
and full meet iff it selects all elements of C�D.

It is evident that the selection function may select more than one remainder. In the
AGM contraction this fact is dealt with by intersecting all belief sets chosen by the
selection function. This intersection is itself a belief set (i.e., is closed under logi-
cal consequence) and contains all beliefs that the chosen belief sets have in common
[Rienstra et al., 2018]. In this setting of the concept contraction operator, this method
corresponds to the union of the chosen remainders. The problem is that the union is not
an allowed constructor in the description logic EL. The authors, then, propose the use
of the least common subsumer notion. Based on [Baader et al., 1999], the most specific
concept (msc) of an individual b is the most specific concept description C (expressible
in the given description logics) that has b as an instance, and the least common subsumer
(lcs) of n concept descriptions C1, ...,Cn is the most specific concept description in the
given description logic that subsumes C1, ...,Cn.

The formal definition of the least common subsumer provided in [Rienstra et al., 2018]
is:

Definition 17 Let C1, ...,Cn be concepts. A concept C is a least common subsumer of
C1, ...,Cn iff:

1. C1, ...,Cn ⊑ C,

2. For each C ′ s.t. C1, ...,Cn ⊑ C ′ we have C ⊑ C ′.

Assuming that the conceptsC1, ...,Cn andC ′

1, ...,C
′

n are given, such thatC1 ≡ C ′

1, ...,Cn ≡
C ′

n, we have that C is an lcs of C1, ...,Cn iff C is an lcs of C ′

1, ...,C
′

n. Considering this
behaviour, the authors define lcs-s as a function of a set of equivalence classes under ≡.

Definition 18 LetX = {[C1, ...,Cn]} be a set of equivalence classes under ≡. We denote
by lcs(X) the set of least common subsumers of C1, ...,Cn.

28 CHAPTER 2. CONCEPT CONTRACTION IN THE DESCRIPTION LOGICS EL

For any set of concepts, an lcs always exists and is unique up to equivalence. This
implies that lcs(X) coincides with an equivalence class under ≡ [Rienstra et al., 2018].
Finally, the class of lcs contraction operators is defined.

Definition 19 Let σ be a selection function. A contraction operator ⊖ is an lcs contrac-
tion operator defined by σ iff for all concepts C and D,

C ⊖D ∈ lcs(σ(C�D)

The concept contraction operator ⊖ is called maxi-choice contraction operator if it is
defined by a maxi-choice selection function and full meet if it is defined by a full meet
selection function.

It is understandable that lcs contraction operators are dependable from the selection
functions. Assuming that two lcs contraction operators ⊖ and ⊖′ are both defined from
the same selection function σ, we can say that for all concepts C and D, the following
holds:

C ⊖D ≡ C ⊖′D

For this reason, we refer to a lcs concept contraction operator defined by σ and denote
this operator by ⊖σ.

The concept contraction - like standard AGM contraction - is in general not uniquely
determined. Only full meet contraction yields a uniquely determined operator. Further-
more, the principle of minimal change is best captured by a maxi-choice operator, but re-
quires one to select single remainders, which may not be feasible [Rienstra et al., 2018].
Let us consider the following example.

Example 1. Let σ be a selection function. Suppose we want to determine the contrac-
tion:

Person⊓∃isRegisteredAt.(University ⊓ Institute)⊖σ ∃isRegisteredAt.Institute

In figure 2.2, we present the lattice of the generalizations of a conjunction concept C
formed by the intersection of an atomic concept and a role restriction concept (the ar-
rows point to more general concepts). The remainder of Person ⊓ ∃isRegisteredAt.
(University ⊓ Institute) with respect to ∃isRegisteredAt.Institute is enclosed in a
dotted rectangle. Given that this a single remainder, it is also the lcs. Hence, the con-
traction operation result in example 1 equals Person ⊓ ∃isRegisteredAt.University
regardless of the selection function.
Now let us consider the following example.

Example 2. Let σ be a selection function. Suppose we want to determine the contrac-
tion:

2.4. CONCEPT CONTRACTION OPERATOR 29

Person ⊓ ∃isRegisteredAt.University ⊓ ∃attends.Lecture⊖σ
∃isRegisteredAt.Institute ⊓ ∃attends.Lecture

In this case the remainders of the concept contraction are more than one. In figure 2.3,
the remainders are enclosed inside a rectangle. The least common subsumer of these
two concepts is the concept Person, also enclosed inside a rectangle. If the σ is a maxi-
choice selection function, the result of the contraction is either of the remainders. If σ is
a full meet selection function, then the contraction result is the least common subsumer,
Person.

Figure 2.2: The generalization lattice for example 1

Figure 2.3: The generalization lattice for example 2

30 CHAPTER 2. CONCEPT CONTRACTION IN THE DESCRIPTION LOGICS EL

2.4.2 Postulates for Concept Contraction
In this section we present a set of reformulated AGM postulates for contraction adapted
for the concept contraction operator. The postulates are described in the setting of the
operator, where the modifications to the AGM theory are explained. We include two
formulated theorems regarding the concepts contraction operator and the postulates that
it satisfies.

The first four basic AGM contraction postulates are reformulated as follows and can be
found in [Rienstra et al., 2018].

In the Preservation postulate is stated that given two equivalent concepts D ≡ D′, the
results of the contraction of either of these concepts from concept C are equivalent as
well.

Preservation: If D ≡D′, then C ⊖D ≡ C ⊖D′.

As discussed, at least one remainder always exists unless D /= ⊺. Assuming that D /= ⊺,
the contraction is successful, e.i. the result of the concept contraction C ⊖ D is not
subsumed by D. This property is formulated in the Success postulate.

Success: If D /≡ ⊺ then C ⊖D /⊑D.

The Inclusion postulate states that the result of the concept contraction C ⊖ D is a
weakening of concept C.

Inclusion: C ⊑ C ⊖D

The fourth postulate Vacuity is rather straightforward and it is understandable that if
concept C is not subsumed by conceptD, then the concept contraction is not applicable.

Vacuity: If C /⊑D then C ⊖D ≡ C

The sixth AGM postulate is Recovery and is formulated below. Like in the AGM setting,
the converse of Recovery, i.e., C ⊑ ((C ⊖D) ⊓D), follows from Inclusion, provided
that we have C ⊑ D. The postulate is not satisfied in the setting that we are discussing.
The reason way be a consequence of the limited expressivity of description logics EL.
A suitable replacement of the Recovery postulate is needed [Rienstra et al., 2018].

Recovery: (C ⊖D) ⊓D ⊑ C.

2.4. CONCEPT CONTRACTION OPERATOR 31

Firstly, we present the Failure postulate. It is evident that in case when concept D
is a ⊺ concept, the concept contraction C ⊖ ⊺ is equivalent to concept C. According to
[Rienstra et al., 2018], in the presence of Inclusion, Failure follows Recovery. However,
Failure does not follow if Recovery is replaced with any of the postulates that are be
discussed shortly below. Therefore, Failure needs to be considered explicitly.

Failure: (C ⊖ ⊺) ≡ C.

The first replacement for Recovery considered is Relevance. It is a reformulation of the
Relevance postulate in [Hansson, 1991] and can be thought of as expressing a principle
of minimal change. It stated that, if we lose X after contracting D, then adding X to
(C ⊖D) gives D again.

Relevance: If C ⊑X and (C ⊖D) /⊑X then (C ⊖D) ⊓X ⊑D.

The Vacuity postulate now becomes redundant. Therefore, the authors in [Rienstra et al., 2018]
present the following preposition.

Preposition 1 If ⊖ satisfies Inclusion and Relevance then it satisfies Vacuity.

Together with basic postulates, Relevance fully characterises maxi-choice lcs concept
contraction:

Theorem 1 Let ⊖ be a concept contraction operator. The following are equivalent:

1. ⊖ is a maxi-choice lcs concept contraction operator.

2. ⊖ satisfies Preservation, Inclusion, Success, Failure and Relevance.

The proof of theorem 1 can be found in [Rienstra et al., 2018]. This theorem considers
only the case when ⊖ is a maxi-choice lcs concept contraction operator, and does not
cover the lcs contraction in general. The following weakening of Relevance, which is a
reformulation of what is called Core-Retainment in [Hansson, 1991], characterises lcs
concept contraction in general [Rienstra et al., 2018].

Retainment: If C ⊑X and (C ⊖D) /⊑X , then there is a Y s.t. C ⊑ Y ⊑ C ⊖D and
Y /⊑D and Y ⊓X ⊑D.

Finally, we can introduce a theorem that represents the lcs concept contraction operator
as a whole, and not specific types of operators. Akin to theorem 1, the proof of this
theorem can be found in [Rienstra et al., 2018].

Theorem 2 Let ⊖ be a concept contraction operator. The following are equivalent:

32 CHAPTER 2. CONCEPT CONTRACTION IN THE DESCRIPTION LOGICS EL

1. ⊖ is an lcs concept contraction operator.

2. ⊖ satisfies Preservation, Inclusion, Success, Failure and Retainment.

This section marks the end of the discussion of the concept contraction operator’s con-
struction and properties. So far, we have considered concept contraction involving con-
cepts whose semantics do not depend on a T-Box. We have to accentuate the fact that
the concept contraction operator is proved to work when the T-Box is considered. A
short summary of the theory about this case is presented in the next section.

2.4.3 Contraction modulo acyclic and cyclic T-Boxes

In this section, we describe the concept contraction when there exists a non-empty T-
Box. Considering that for the developing of the algorithms we assume that the T-Box is
empty, the information provided is summarized and not explained in great detail. The
definitions and arguments included in this section are based on [Rienstra et al., 2018].
Further information about this case, together with proofs of the theorems can be found
in the fore-mentioned literature.

Primarily, we will define what cyclic and acyclic T-Boxes are. The definition is based
on [Baader et al., 2003].

Definition 20 A T-Box T contains a cycle iff there exists an atomic concept in T that
uses itself in a concept definition. Otherwise, T is called acyclic.

Let us analyse the setting where there is an acyclic background T-Box. An example of
such a T-Box is presented in example 3.

Example 3. An acyclic T-Box T

T = {Student ≡ Person ⊓ ∃isRegisteredAt.University,
Professor ≡ Person ⊓ ∃teaches.Lecture}

For every acyclic TBox T , we can effectively construct an equivalent acyclic TBox T̂
such that the right-hand sides of concept definitions in T̂ contain only primitive con-
cepts. Given an acyclic T-Box T , we define T̂ (⋅) by:

• T̂ (A) = A, if A does not appear on the left-hand side of a definition in T ;

• T̂ (A) = T̂ (C), if A ≡ C appears in T ;

2.4. CONCEPT CONTRACTION OPERATOR 33

• T̂ (C ⊓D) = T̂ (C) ⊓ T̂ (D);

• T̂ (∃R.C) = ∃R.T̂ (C).

T̂ (⋅) is well-defined only if T̂ is acyclic. When we define contraction with respect to a
T-Box T̂ we need to determine the signature of T̂ consisting only of base concepts.

Definition 21 Given a T-Box T̂ with signature Σ = (NC ,NR), we say that an atomic
concept A ∈ NC is a base concept of T̂ iff A does not appear on the left-hand side of a
definition in T̂ .

The set of base concepts of T̂ is denoted by BT . The base signature of T̂ is the signature
(BT ,NR) and is denoted by Σ↓T . If T is an acyclic T-Box with signature Σ then for
every concept C ∈ C(Σ), we have T (C) ∈ C(Σ↓T).

Given a T-Box T with signature (NC ,NR) and a concept contraction operator ⊖ with
signature (BT ,NR), an operator ⊖↑T with signature (NC ,NR) can be defined as follows.

C ⊖↑ TD ≡T T̂ (C) ⊖ T̂ (D)

To account for a T-Box T during contraction, the Inclusion postulate can be adapted by
requiring that C ⊑T C ⊖D; and Success by requiring that if D /≡T ⊺, then C ⊖D /⊑T D.
All the postulates discussed in the above section can be adapted in a similar way. That
is, they are defined relative to a T-Box T and replace ⊑ with ⊑T . All these postulates are
equivalent to the original versions when we assume T is empty. The postulates in this
case are named T -postulate name.

Preposition 2 ⊖ satisfies Inclusion (resp. Success, Failure, etc.) if and only if ⊖↑T
satisfies T -Inclusion (resp. T -Success, T -Failure, etc).

Theorem 3 Let T be a T-Box and ⊖′ be a contraction operator, both with signature
(NC ,NR). The following are equivalent:

1. ⊖′ =⊖↑T for some maxi-choice lcs contraction operator⊖with signature (BT ,NR).

2. ⊖′ satisfies T -Inclusion, T -Success, T -Failure and T -Relevance.

The following are also equivalent:

1. ⊖′ = ⊖↑T for some lcs contraction operator ⊖ with signature (BT ,NR).

2. ⊖′ satisfies T -Inclusion, T -Success, T -Failure and T -Retainment.

34 CHAPTER 2. CONCEPT CONTRACTION IN THE DESCRIPTION LOGICS EL

The theorem concludes that a concept contraction operator can perform in the same way
in the setting when there exists an acyclic T-Box, as to the setting where the T-Box is
empty. The concept contraction is well-defined and proved for this scenario.

Now, let us consider the case when the T-Box T is cyclic. If T is not acyclic then
T̂ (⋅) is not well-defined, so the approach taken in the acyclic T-Box case does not work.
There are fundamental problems preventing from modelling contraction modulo cycli-
cal T-Boxes. In [Rienstra et al., 2018] it is argued that the fact that a remainder of C
with respect to D always exist (unless D ≡ ⊺) does not hold if T contains cycles. It
has been shown that the least common subsumer may also not exist in the presence of
cycles. Thus, the notion of lcs contraction cannot be applied to cyclical T-Boxes in a
straightforward way.

2.4.4 Limitations of concept contraction

The theory of a concept contraction operator as a means of a more gentle approach to
AGM contraction analysed in this chapter comes with its limitations. We will briefly dis-
cuss limitation/modeling choices caused by the Description Logic EL and the behaviour
of the concept contraction operation in specific settings. This section will shortly sum-
marise the arguments provided in the above sections.

Starting with limitations caused by EL, it is predictable that the restricted number of
concept constructors of the language could create inconveniences in modeling of the
concept contraction operator. The main problem is the lack of expressivity of EL for
the union constructor. This problem forces the authors in [Rienstra et al., 2018] to use
the least common subsumer notion, which is weaker than the union. There might be
solutions that can be considered as more reasonable, but not expressible in EL. It seems
that this is the price to pay for a uniquely determined concept contraction in EL. If
this is unacceptable, then it means that a well-behaved uniquely determined concept
contraction in EL is impossible [Rienstra et al., 2018].

Another evident limitation is that the theory cannot be applied in the case of cyclic T-
Boxes. In this setting, the statement that a remainder of C with respect to D always
exists, unless D ≡ ⊺, does not hold. Furthermore, it is shown in [Baader, 2003] that a
least common subsumer may not exist in this setting. Thus, the notion of lcs contraction
cannot be straightforwardly applied to cyclic T-Boxes, as in acyclic T-Boxes. According
to [Rienstra et al., 2018], a possible solution is to compute approximations of remain-
ders and the least common subsumer, and using this as a basis for an “approximate lcs
contraction” operator. Approximating the lcs in the presence of cycles has already been
investigated by [Baader, 2003].

2.5. RELATED WORK 35

2.5 Related work

In this section we will present several works that are related to concept contraction.
These works differ from concept contraction as they focus on changes of T-box and
A-box and not in the concept level.

An important work concerning belief contraction can be found in [Baader et al., 2018].
The authors introduce a framework for repairing Description Logic-based ontologies
that is based on weakening axioms rather than deleting them. This approach is different
from the classical one where for repairing a Description Logic ontology in the sense of
removing an unwanted consequence is to delete a minimal number of axioms from such
that the resulting ontology does not have the consequence [Alchourrón et al., 1985]. In
[Baader et al., 2018], it is shown how to instantiate this framework for the Descrip-
tion Logic EL using appropriate weakening relations. In [Qi and Du, 2009], a similar
approach is described with the purpose of making contraction/revision a more gentle
operation. In this paper, three model-based revision operators to revise terminologies
in description logics are proposed. It is shown that one of them is more rational than
others by comparing their logical properties and this operator is the focus of the work.
The authors consider the problem of computing the result of revision by the operator
with the help of the notion of concept forgetting. The computational complexity of the
revision operator is analyzed.

In [De Giacomo et al., 2006], the authors study the notion of update of an ontology ex-
pressed as a Description Logic knowledge base, constituted by a TBox and an ABox.
The focus of the paper is in the case where the update affects only the instance level
of the ontology, i.e., the ABox. They provide a general semantics for instance level
update in description logics, with a focus on DL-Lite, a family of description logics that
underlie the tractable fragment OWL 2 QL 2 of the Web Ontology Language OWL 2.
The authors provide an algorithm that computes the result of an update in DL-Lite, and
it is shown that it runs in polynomial time with respect to the size of both the original
knowledge base and the update formula. In the paper, it is concluded that the result of an
update is always expressible as a new DL-Lite A-Box. The authors in [Liu et al., 2006]
operate in a similar setting as the previous work. They consider the problem of updating
A-Boxes. The assumption that they make is that changes are described at an atomic
level, i.e., in terms of possibly negated ABox assertions that involve only atomic con-
cepts and roles. Basic ABox updates are analyzed in several standard description logics
by investigating whether the updated ABox can be expressed in these DLs and, if so,
whether it is computable and what is its size. They have devised algorithms to compute
updated A-Boxes in several expressive DLs and show that an exponential blowup in the

2For more information: https://www.w3.org/TR/owl2-profiles/#OWL_2_QL

36 CHAPTER 2. CONCEPT CONTRACTION IN THE DESCRIPTION LOGICS EL

size of the whole input (original ABox + update information) cannot be avoided unless
every PTIME problem 3 is LOGTIME 4 parallelizable. This result can be considered
similar to the conclusions of the work [De Giacomo et al., 2006], although their work is
based only on DL-Lite.

The work of [Qi et al., 2006] focuses on knowledge base revisions. As we have pre-
viously mentioned, there is a clear distinction between contraction and revision in the
AGM theory [Alchourrón et al., 1985]. Nonetheless, the contraction operation is part
of the revision and thus this work is of interest to us. In this paper, the authors first
generalize the AGM postulates on revision to description logics. Then, they define two
revision operators in DLs, from which one is the weakening-based revision operator
which is defined by weakening of statements in a DL knowledge base and the other is
its refinement. The results of the work are promising and they show that both operators
capture some notions of minimal change and satisfy the generalized AGM postulates
for revision. Another work that focuses in this direction is [Zheleznyakov et al., 2019].
Here, the authors investigate knowledge expansion and contraction for knowledge bases
expressed in DL-Lite. A novel knowledge evolution framework and natural postulates
that evolution should respect are presented, and a comparison of the postulates to the
well-established AGM postulates is drawn. The authors propose a formula-based ap-
proach that respects their principles and for which evolution is expressible in DL-Lite.
In addition, they propose polynomial time deterministic algorithms to compute evolu-
tion of DL-Lite knowledge bases when evolution affects only factual data.

2.6 Conclusions
In this chapter, we have introduced the description logics family, with a special fo-
cus on the Description Logic EL. This particular language is used in the work of
[Rienstra et al., 2018], where an approach to a more gentle AGM contraction, concept
contraction, is introduced. An overview of the AGM contraction and its postulates are
discussed. We define the notion of lcs concept contraction and represent it with a set of
postulates. The postulates are reformulations of the original AGM postulates for con-
traction. From the basic AGM postulates, only the Recovery postulate did not apply
and had to be replaced with the weaker Relevance and Retainment postulates. Concept
contraction is described in three different settings: (i) an empty T-Box, (ii) an acyclic
T-Box, and (iii) a cyclic T-Box. In the first two cases, concept contraction is proved to
work, whereas in the third case, lcs concept contraction cannot be applied.

Later, we highlight the limitations of the concept contraction such as lack of expres-
3Problems that can be solved in polynomial amount of time.
4Problems that can be solved in logarithmic amount of time.

2.6. CONCLUSIONS 37

sivity of EL for the union constructor, and the problems that the concept contraction
encounters in the case of cyclic T-Boxes.

A summary of related works to the concept contraction is provided in the last sec-
tion. These works differ in the description logics that the authors have used in their
approaches, the assumptions that are made and in which part of the knowledge base
they focus on.

Chapter 3

Designed algorithms and their
complexity

This chapter presents the main work of the thesis, which consists of the design of the
algorithms to implement the concept contraction operator. The focus of the chapter is on
five key algorithms: (i) computeWeakenings in section 3.1, (ii) computeRemainder
in section 3.2, (iii) subsumedBy in section 3.3, (iv) computeLCS in section3.4, each
expressed in pseudocode. These algorithms are the foundations of the fifth algorithm,
conceptContraction, which is described in section 3.5. For each of the algorithms, we
provide a description, a discussion of the best and worst-case scenarios, and a straight-
forward analysis of the time complexity.

3.1 computeWeakenings Algorithm
This section covers the first algorithm that we have designed, which is the algorithm
computeWeakenings. We discuss the four basic cases of the weakening procedure for
concepts in the Description Logics EL. This discussion is the main theoretical back-
ground of the algorithm. The purpose of this algorithm is to compute the weakenings
of a concept. It is important to design this algorithm because computeRemainder al-
gorithm, which is introduced in the next section, uses the weakenings of a concept C to
find remainders with respect to a concept D.

Firstly, we define the notion of the weakening as follows:

Definition 22 A weakening of a concept C is a concept C ′ such that:

• C ⊑ C ′

• ∄C ′′ s.t. C ⊑ C ′′, and C ′′ ⊑ C ′.

39

40 CHAPTER 3. DESIGNED ALGORITHMS AND THEIR COMPLEXITY

Considering the limitations of the expressivity of the description logics EL, there are
only four possible ways that a concept can be constructed in this language, namely:
(i) atomic, (ii) top, (iii) existential role restriction, and (iv) conjunction. Each of these
types of concepts have a different procedure of weakening. To build an algorithm that
computes the weakenings of concepts in EL, there are four cases that need to be taken
into consideration.

Case 1 C is an atomic concept. Then:

computeWeakenings(C) = {⊺}

Case 2 C is a ⊺ concept. Then:

computeWeakenings(⊺) = ∅

Case 3 C is an existential role restriction of the form C = ∃r.C1, where r is a role.
Then:

computeWeakenings(C) = ⊓{∃r.W ∣W ∈ computeWeakenings(C1)}

Case 4 C is a non-trivial conjunction of concepts Ci such that C1 ⊓ C2 ⊓ ... ⊓ Cn and
every Ci is a trivial conjunction. Then:

computeWeakenings(C) = {W ⊓ ... ⊓Cn∣W ∈ computeWeakenings(C1)} ⊔
{C1 ⊓W ⊓ ... ⊓Cn∣W ∈ computeWeakenings(C2)} ⊔ ... ⊔

{C1 ⊓ ... ⊓Cn−1 ⊓W ∣W ∈ computeWeakenings(Cn)}

To compute the weakenings of concepts expressed in EL, we have designed an algorithm
computeWeakenings and an embedded function computeWeak Conjunction. The
computeWeakenings algorithm requires as input a concept and produces as an output
a set of weakenings of the concept considering the procedure described above.

The algorithm firstly considers the basic cases when the concept is a ⊺ concept or an
atomic concept. For these situations, there is no need to compute the weakenings as the
output is straightforward. If concept C is an atomic concept, then the algorithm returns
a set that includes only the ⊺ concept, as its weakening. If concept C is ⊺ concept, an
empty set is returned as there cannot be a weakening of a top concept.

If the parameter, concept C, does not fall into these two types of concepts, the algorithm
checks if it is an existential role restriction. If this is the case, a variable weak_role is
assigned with the return value of computeWeakenings algorithm, using as a parameter
the concept that forms the existential role restriction, InnerConcept(C) stores as C1.

3.1. COMPUTEWEAKENINGS ALGORITHM 41

For example, if concept C is ∃R.(A ⊓ B), the value of the variable weak_role is the
return value of computeWeakenings(A ⊓ B). The algorithm creates an empty list
role_weakening that is populated with new existential role restriction concepts formed
by the concepts in the weak_role list. The variable weakenings is assigned with the
return value of the conjunctionOf() function. This function creates a conjunction of
each of the elements in the given list. Lastly, the variable weakenings is returned.

In the last clause, when concept C is of a conjunction form, the computation of the
weakening is more complex and requires the call of computeWeakConjunction func-
tion. When the algorithm enters in this if condition, the concept is firstly flattened, and
then a variable conjunction_list is assigned the set Conjuncts(C). A for loops starts
with an index i = 0 and ends when the index reaches the length of Conjunction_list.
For each of the concepts in the list computeWeakConjunction is called and the re-
turned value is extended in a variable weakenings of type list. The extend() function
adds elements of a list into another list individually. Once the iteration has terminated,
the algorithm returns the variable weakenings.

The computeWeakConjunction function requires as an input the list Conjuncts(C)
and the counter i of the loop in computeWeakenings algorithm. The output is one
single weakening of the conjunction concept. When the function is called, an empty
list named weakening is created. A for loop, starting from j = 0 to the length of
the conjunction_list initiates. The loop checks is the index j is equal to index i, given
as a parameter. If the indexes point to the same element in the conjunction_list, the
computeWeakenings algorithm is called. The return value is added to the weaken-
ing list. If the indexes i and j point to different concepts in the conjunction_list, then
no computations are needed and the concept that index j refers to is added to the list
weakening. When the loop terminates, the conjunctionOf() function is called to form
a conjunction of all the elements in the weakening list and its value is stored in weak
variable. This variable is the return value of the function.

In figure 2.2 in chapter 2, is shown the lattice of the generalizations of the concept
Person⊓∃ isRegisteredAt.(University⊓Institute). This concept is of type conjunc-
tion and it is formed by two concepts: Person, and ∃isRegisteredAt.(University ⊓
Institute). Based on algorithm 1, there are two ways on how to weaken this concept.
The first weakening can be computed by calling the computeWeakenings algorithm
with parameter the first concept, Person, and leaving the second concept intact. Con-
cept Person is an atomic concept, therefore its weakening is the top concept ⊺. Af-
ter this value is returned, a new conjunction of the concepts ⊺ and ∃isRegisteredAt.
(University ⊓ Institute) is created. Since the intersection of any concept with the
top concept is the concept itself, only the concept has been added in the lattice. For

42 CHAPTER 3. DESIGNED ALGORITHMS AND THEIR COMPLEXITY

the second weakening of the initial concept, the first concept is left intact and the
computeWeakenings algorithm is called on the second concept. Considering that this
is an existential role restriction concept, initially the algorithm computes the weakening
of the concept that forms it, University ⊓ Institute and then returns the intersection
of the weakenings. After the second weakening is returned, computeWeakenings al-
gorithm is called for each of the weakenings, until all the concepts are weakened to the
top concept ⊺.

The analysis of the computeWeakenings algorithm consists of the discussion about
the best and worst-case scenarios and the complexity of the algorithm in the worst-case
scenario. We have chosen to discuss the complexity of the worst-case scenario in order
to predict how bad the algorithm can perform in terms of time. For the computation
of the time complexity, we have not followed the standard procedures for recursive
algorithms. The analysis is done in terms of the size of the input and the size of the
output of the algorithm. Further calculations are necessary to get a more accurate time
complexity function.

Clearly, the best cases of this algorithm are when concept C is either an atomic concept
or a top concept. In both cases, the number of steps to compute the weakenings is very
small, and it can be considered constant.

The worst-case scenario is when concept C is an existential role restriction of a con-
junction. An essential factor in the complexity of this case is the number of concepts
that form the conjunction. Let’s assume that the size of the number of conjuncts in the
conjunction concept is n. Given that this concept is in an existential role restriction, the
input size of the whole concept is n+1. Because there is always more than one weaken-
ing of a conjunction concept, the algorithm will create a new conjunction of existential
role restriction concepts formed by each of the weakenings. For example, if the input is
∃r.(A⊓B), the output is ∃r.A⊓∃r.B. The size of the set of weakenings of a conjunction
concept is equal to the number of concepts that form the conjunction. A key issue is that
each of the weakenings is of size bigger than one, precisely n+1. Hence, the size of the
output is n∗(n+1). We can conclude that the complexity of the computeWeakenings
algorithm is O(n2), a quadratic function. Taking into consideration the instruction on
calculating the Big O notation in [Cormen et al., 2009], only the highest order term is
kept. Although, it is arguable that for small sizes of input, the removed parts of the
function can influence the result.

An average-case scenario is challenging to analyse because it is not apparent what con-
stitutes an ’average’ input for this algorithm. Although, it is possible that it would lean

3.1. COMPUTEWEAKENINGS ALGORITHM 43

towards a worst-case scenario. The analysis of this case will not be discussed for any of
the algorithms that we have designed.

Algorithm 1 computeWeakenings(C)
if C is Atomic then

return {⊺}

else if C is Top then
return ∅

else if C is Existential Role Restriction then
C1 ← InnerConcept(C)
weak_role ← computeWeakenings(C1)
role_weakening ← ∅
for i = 0 to length[weak_role] do

role_weakening.add(∃r.weak_role[i])
weakenings ← conjunctionOf(role_weakening)
return weakenings

else if C is Conjunction then
C ← Flatten(C)
conjunction_list ← Conjuncts(C)
weakenings ← ∅
for i = 0 to length[conjunction_list] do

weakenings.extend(computeWeakConjunction(conjunction_list, i)
return weakenings

function computeWeakConjunction(conjunction_list, counter)
weakening ← ∅
for j = 0 to length[conjunction_list] do

if j == counter then
weakening.extend(computeWeakenings(conjunction_list[j]))

else
weakening.add(conjunction_list[j])

weak ← conjunctionOf(weakening)
return weak

44 CHAPTER 3. DESIGNED ALGORITHMS AND THEIR COMPLEXITY

3.2 computeRemainders Algorithm

In this section, we will describe the design and the analysis of the computeRemainders
algorithm. Computing a remainder of a concept C with respect to another concept D is
one of the main goals of the thesis. We have designed computeRemainders algorithm
with the purpose of classifying weakenings of a concept as remainders with respect to
the concept D that is being contracted. The remainders are found by going through
the elements in the weakening lattice explained in 2.2. This algorithm retrieves all the
weakenings of a concept C that are not subsumed by concept D.

The computeRemainders algorithm requires two parameters, concept C and concept
D. These concepts can be of any form allowed in description logics EL. An empty list,
remainder, is created to store all the remainders that are found. Another list, level,
initially stores concept C. Taking into consideration that unless C is a top concept, a
remainder always exists, the algorithm should be able to find at least one remainder.

For this reason, a while loop is initiated with the condition that the level list is not empty.
Inside this loop, there are three blocks of for loops that have different objectives.

The first for loop removes concepts from the level list that are weaker than the concepts
of the remainder list. This goal is realized by creating a nested for loop that iterates over
the concepts in the level list. For each pair of concepts between the level and remainder
list, the subsumedBy algorithm is called. If a concept in the level list subsumes a
concept in the remainder list, the concept is removed from the level list and cannot be
considered as a candidate for a remainder.

The second for loop removes concepts from the level list in case they are remainders,
and adds them to the remainder list. The loop iterates over the concepts of the level list
and for each of the concepts, the subsumedBy algorithm is called with parameter the
concept and concept D. If the concept in the level list is not subsumed by concept D,
the concept is added to the remainder list and removed from the level list. The removal
assures that the concept will not be considered as a candidate in the later iterations of
while loop.

Before the third for loop can start the iteration, an empty list new_level is created.
The loop’s purpose is to create a new list that contains the weakenings of the elements
in the existing level list. The loops call the computeWeakenings algorithm for each
concept in the level list. The weakenings are added to the new_list. Once the loop has
terminated, the level list is assigned with the values of the new_level list. This loop
guarantees that the algorithm reaches an end.

3.2. COMPUTEREMAINDERS ALGORITHM 45

The process continues until the while loop reaches its condition to terminate the itera-
tion. The output of the algorithm is a list of remainders.

Algorithm 2 computeRemainders(C, D)

remainder ← ∅
level ← C

while level is not empty do:

for i=0 to length[remainder] do
for j=0 to length[level] do

if subsumedBy(remainder[i], level[j]) then
level.remove(level[i])

for i = 0 to length[level] do
if not subsumedBy(level[i],D) then

remainder.add(level[i])
level.remove(level[i])

new_level ← ∅
for i = 0 to length[level] do

weak ← computeWeakening(level[i])
new_level.add(weak)

level ← new_level

return remainder

Considering the example in figure 2.2, let’s assume thatD ≡ ∃isRegisteredAt.Institute.
The algorithm computeRemainders takes Person⊓∃isRegisteredAt. (University⊓
Institute) and ∃isRegisteredAt.Institute as parameters. Firstly, conceptC is checked
if it is subsumed by D. This condition is true, so the weakening of concept C is com-
puted by calling computeWeakenings algorithm. With the first iteration of the while
loop, the remainder list is empty and the weakenings retrieved do not subsume any re-
mainders. In the next for loop, both weakenings are subsumed by concept ∃isRegist-
eredAt.Institute. Therefore, the algorithm calls again the computeWeakenings on
the existing weakenings, in the third for loop. In this new computation, only one of
the weakenings is not subsumed by concept D and is classified as a remainder. As
for the remaining weakenings, the computeWeakenings algorithm is called on them
and the algorithm is now checking weakenings of the fourth level of the lattice. The

46 CHAPTER 3. DESIGNED ALGORITHMS AND THEIR COMPLEXITY

algorithm concludes that the weakenings in this level are weaker than the remainder
that has already been found. For this reason, they are not categorized as remainders
and they are discarded as candidates. The algorithm terminates and the return value is
[Person ⊓ ∃isRegisteredAt.University].

The analysis of the algorithm follows on the same logic as in the previous section for the
computeWeakenings algorithm. The best-case scenario of the computeRemainder
algorithm is if concept C is a top concept. In this case, the algorithm would take a
limited number of steps to return the remainder of a top concept with regards to any
other concept. The computeRemainders algorithm does not enter the while loop as
the weakening of a top concept is an empty list. The returned remainder list would also
be empty.

The worst-case scenario is the case when concept C is the existential role restriction of
a conjunction and concept D is a top concept. In this case the algorithm would have to
go through each element of the weakening lattice of concept C because it cannot find
a weakening that is not subsumed by D. The complexity of this algorithm is not easy
to compute because we cannot determine the size of the weakening lattice. The classi-
fication of a weakening as a remainder highly depends primarily from concept D and
secondly from the concepts that are already in the remainder list. In this simple analy-
sis, we cannot predict how many times the algorithm iterates on the while loop. At this
point we can speculate that the complexity of the algorithm is polynomial, considering
that there are at most two nested for loops inside the while loop. In this calculation of
the complexity, the complexity of the subsumedBy algorithm should also be taken into
consideration.

3.3 subsumedBy Algorithm

A fundamental part of the computeRemainders algorithm is the subsumption check
between concepts. We have designed the subsumedBy algorithm taking into con-
sideration the subsumption properties for the Description Logics EL. In this section,
we discuss the different cases that need to be taken into account to design this algo-
rithm. We describe the algorithm and provide an analysis of its complexity. The prop-
erties of subsumption discussed in this section are adapted from a technical report by
[Suchanek et al., 2016]. In the referenced report, it is also included the proof of each of
the properties.

Properties 1-4 are the bases of the subsumption properties for EL. In the context of the
thesis, a concept is considered to be basic if it is an atomic, ⊺, or an existential concept.
These four properties are the fundamental components of the subsumedBy algorithm.

3.3. SUBSUMEDBY ALGORITHM 47

The algorithm is recursive, where the base cases are stated in the Top and Atomicity
property. The Existential Atomicity can be solved using the Top and Atomicity property
and Distribution can be solved using the base cases and Existential Atomicity property.

Property 1 Atomicity: For an atomic concept C ∈ NC and a basic concept D, the
subsumption C ⊑D holds iff C =D.

Property 2 Existential Atomicity: For an existential concept ∃r.C and a basic concept
D, the subsumption ∃r.C ⊑D holds iff D = ∃r.C ′, with C ⊑ C ′.

Property 3 Distribution: For two conjunctions concepts C and D, the subsumption
C ⊑D holds iff for every conjunct Dj of D there must exist a conjunct Ci of C such that
Ci ⊑Dj .

Property 4 Top: For a top concept C and a basic concept D, the subsumption C ⊑ D
holds iff C =D.

The Atomicity property has been changed to include the case when D is a top concept.
As an extension of this property, it is assumed that an existential role restriction can
not subsume an atomic concept. This assumption leaves the subsumption of an atomic
concept only by another atomic concept or a top concept ⊺. The Existential Atomic-
ity has been adapted not to consider the sub-case of the universal role mentioned in
[Suchanek et al., 2016] and to consider the case when concept D is a top concept. From
this property, it is understood that an existential role restriction can be subsumed only by
another concept of the same type or ⊺ concept. For this reason, other types of concepts
have not been taken into account in the algorithm. Lastly, a new property Top has been
added to consider the cases when concept C is a top concept.

Once that theoretical base for the design of the algorithm has been set, we can present
the subsumedBy algorithm. The algorithm requires two parameters, a concept C and
a concept D. The two first cases considered are when D or C is a top concept. If D
is a top concept, it does not matter what type of concept C is because the return value
of the subsumption algorithm is always True. If C is a top concept, then return value
is False, because no other concept can subsume a top concept, besides itself. This
condition was tested in the previous situation.

In the next case, the algorithm deals with the situation when C is an atomic concept. An
atomic concept is only subsumed by another atomic concept or the top concept. Given
that it has already been checked if concept D is a top concept, the algorithm checks if
C is equal to D. The value of this comparison is returned.

If concept C is not an atomic, it is checked if it is an existential role restriction concept.

48 CHAPTER 3. DESIGNED ALGORITHMS AND THEIR COMPLEXITY

If this is the case, the algorithm controls if concept D is of the same type. The value
of the subsumedBy algorithm with parameters, respectively, InnerConcept(C) and
InnerConcept(D), is returned. If D is not an existential role restriction, the value
False is returned because an existential role restriction can not be subsumed by any
other type of concept besides another existential role restriction and the top concept
based on the Existential Atomicity property.

The last case of the algorithm is when concept C is a conjunction concept. Initially
a variable, list_c that stores the value of the Conjuncts(C) and an empty list list_d
are created. The algorithm checks what type of concept is concept D. In case it is a
conjunction concept list_d get the value of Conjuncts(D). Otherwise, the concept is
added to the list_d. An empty list, check, is initialized to store the returned values of the
subsumedBy algorithm call for each of the combinations of the concepts in list_c and
list_d. Two for loops make sure that each concept in list_d is checked if it subsumes
at least a concept in list_c. After the subsumption check has been completed for an
element in list_d, the algorithm checks if there are any True values in the check list. If
this is the case, the check list is emptied, and the first for loop can continue to the next
concept in list_d. Otherwise, the value False is returned. If all the concepts in list_d
subsume at least an element in list_c, the algorithm returns True.

Lastly, there are no more cases to consider for the subsumption algorithm. If the param-
eters do not classify in any of the fore-mentioned cases, the algorithm returns False.

To better illustrate the behaviour of the subsumedBy algorithm, let’s understand its
execution when concept C is ∃isRegisteredAt.(University ⊓ Institute) and D is
∃isRegisteredAt.Institute. Firstly, the algorithm will try to categorize concept C in
one of the types of concepts of EL. Once the C is categorized as an existential role re-
striction, it is checked if conceptD is of the same type. For this example, this is the case
and the algorithm calls itself with new parameters, respectively University⊓Institute
and Institute. The process starts again and, concept C is classified as a conjunction
concept. The check variable is initiated as an empty list. The for loop iterates over
the elements in list_d, [Institute] and in each iteration the algorithm subsumedBy is
called again with parameters the concept in list_d and list_c, [University, Institute].
This call is fairly easy as both concepts provided in the parameter are atomic concepts.
A False and a True value are added to the check list as University is not subsumed
by Institute, and Institute is subsumed by Institute. The any() function returns
True confirming that University ⊓ Institute is subsumed by Institute. This value is
returned by the initial call of the algorithm.
As for the analysis of the algorithm, the best-case scenario of subsumedBy algorithm
is when concept D is a top concept. The algorithm does not have to check for concept

3.3. SUBSUMEDBY ALGORITHM 49

Algorithm 3 subsumedBy(C, D)

if D is Top then
return True

else if C is Top then
return False

else if C is Atomic then
if D is Atomic then

return C ==D
else

return False

else if C is Existential Role Restriction then
if D is Existential Role Restriction then

return subsumedBy(InnerConcept(C), InnerConcept(D))
else

return False

else if C is Conjunction then
list_c ← Conjuncts(C)
list_d ← ∅
if D is Conjunction then

list_d ← Conjuncts(D)
else

list_d.add(D)
check ← ∅
for i = 0 to length[list_d] do

for j = 0 to length[list_c] do
if subsumedBy(list_c[j], list_d[i]) then

check.add(True)
else

check.add(False)
if any(check) then

check ← ∅
else

return False
return True

else
return False

50 CHAPTER 3. DESIGNED ALGORITHMS AND THEIR COMPLEXITY

C, and a True value is returned. Concept C being a top concept can also classify for a
best-case scenario, as in both cases the number of steps can be considered as constant.

The worst-case scenario is when an existential role restriction of a conjunction is sub-
sumed by another existential role restriction of a conjunction. In the simplest case of
this scenario when C = D = ∃R.(A ⊓ B), the algorithm needs to call itself with the
parameters A⊓B and A⊓B. Afterward, the subsumedBy algorithm is called for each
combination of the concepts in the conjunction list [A, B]. Let’s consider the input size
to be n + 1, where n is the size of the conjunction list. In the worst-case scenario, the
algorithm will make n∗n calls to itself for each combination of the concepts. The extra
steps executed from the algorithm until it reaches the nested for loops are excluded from
the function calculation. The time complexity of the subsumedBy algorithm is O(n2),
which is also confirmed in [Suchanek et al., 2016]. According to [Baader et al., 1999],
the subsumption between EL concepts can be decided in polynomial time.

3.4 computeLCS Algorithm

In this section, we will describe the fourth algorithm that we have designed, which is
the computeLCS algorithm. Akin to the previous sections, we provide a discussion
about the best and worst-case scenarios, together with an analysis of the complexity of
the computeLCS algorithm. The purpose of the algorithm is to find the least common
subsumer of a list of remainders.

The algorithm requires as an input a list of remainders, that can be retrieved by executing
the computeRemainders algorithm with parameters the concepts C and D. An empty
list lcs is created to store all the candidates for the least common subsumer, while the
level list is initially assigned the value of the parameter.

The structure includes a while loop that is separated into two sections. The first for loop,
with the help of a nested for loop, checks for each pair of concepts in the parameter R
and level list, if there is a concept in the level list that subsumes all concepts in R. If
such a concept is found, it is added to the lcs list. The control is realized with the help
of a list check that keeps track of the subsumedBy algorithm results. If the list contains
all True values, the concept is considered an lcs; otherwise, the check list is emptied.

The second section of the while loop checks if the lcs list is empty or not. If lcs is not
empty, the strongest concept in the list is returned. Two for loops feed the subsumedBy
algorithm with combinations of concepts in the lcs list. A pair of the same concept is
not allowed, as the algorithm would always return true. If there is a concept in the lcs

3.4. COMPUTELCS ALGORITHM 51

that subsumes another concept of the list, the weaker concept is removed from the lcs.
When the iteration terminates, the lcs list is returned.

In case that the lcs list is empty, a for creates a new level list by computing the weak-
enings of the elements in the lcs. The loop iterates over the concepts in the lcs list and
calls the computeWeakenings algorithm for each of the concepts. After the loop ter-
minates, duplicates of concepts are removed from the new_level list and, its elements
are assigned to the level list.

The termination condition for the while loop is the return of the strongest lcs. This
condition is bound to happen, as in the worst-case, it would have to reach the top concept
in the weakening lattice.

Let’s go back to the example shown in picture 2.2 and assume that conceptD is ∃isReg−
isteredAt.Institute. The computeRemainder algorithm returns as a remainder only
Student⊓∃isRegisteredAt.University. In consequence, the computeLCS algorithm
has an input a list that contains only this remainder. The level list is not empty, so the
computeLCS algorithm firstly checks if the concept subsumes any concept in the lcs,
which is initially empty. This is not true, and it enters in the second for loop. Here
the subsumedBy algorithm call returns true because the concept is subsumed by itself.
The remainder is added to the lcs list and removed from the level list. Since the level
list is now empty, the algorithm does not enter in the third for loop, and it terminates.
The return value of the algorithm is the list [Student⊓∃isRegisteredAt.University].

The best-case scenario of the computeLCS algorithm is when the parameter, R is an
empty list. In this case, the level list is empty as well, and the algorithm does not enter
the while loop. The output is an empty list.

The worst-case scenario happens when the parameter is a list that contains a consider-
able number of remainders, and the ⊺ concept is the least common subsumer. Initially,
the algorithm will have to go through all combinations of concepts in the level list and
the parameter list and call the subsumedBy algorithm for each combination. If no least
common subsumer is found in the level list, the weakenings of all the concept of the list
are computed. This process increases the size of the level list, and therefore increases
the number of combinations in the first nested for loop. As stated in the analysis of
the computeRemainders algorithm, the size of the lattice is not determined, and as a
consequence, we cannot determine the size of the set of weakenings of the remainders.
At most, we can hypothesize that the time complexity of the algorithm is polynomial,
considering that the algorithm deals with nested loops.

52 CHAPTER 3. DESIGNED ALGORITHMS AND THEIR COMPLEXITY

Algorithm 4 computeLCS(R)

lcs ← ∅
level ← R
check ← ∅

while level is not empty do:

for i = 0 to length[level] do
for j = 0 to length[R] do

if subsumedBy(R[j], level[i]) then
check.add(True)

else
check.add(False)

if all(check) then
lcs.add(level[i])

else
check ← ∅

if lcs is not empty then
for i=0 to length[lcs] do

for j=0 to length[lcs] do
if i == j then

pass
else

if subsumedBy(lcs[j], level[i]) then
lcs.remove(level[i])

return lcs
else

new_level ← ∅
for i = 0 to length[level] do

weak ← computeWeakenings(level[i])
new_level.extend(weak)

Remove duplicates of concepts in new_level
level ← new_level

3.5. CONCEPTCONTRACTION ALGORITHM 53

3.5 conceptContraction Algorithm
In the last section of this chapter, we present the conceptContraction algorithm. This
algorithm can perform the concept contraction operation on concept C with respect to
concept D. It is simple in structure and makes use of all the algorithms described in the
above sections. We need to emphasize that the selection function mechanism included
in this algorithm has not been designed and is considered as given.

The conceptContraction algorithm requires two parameters, concepts C and D. The
first step is to find the remainders of concept C with respect to concept D by calling
the computeRemainders algorithm. The list of remainders retrieved from this step is
stored in the remainder variable, and it is used as a parameter of a selection function
algorithm. The remainder list now has assigned only the concepts that are chosen by
the selection function. The last step is to find the least common subsumer of the se-
lected remainders, and that can be done by executing computeLCS algorithm. The
least common subsumer found, stored in the lcs list, is returned.

Algorithm 5 conceptContraction(C,D)

remainder ← computeRemainders(C,D)

remainder ← selectionFunction(remainder)

lcs ← computeLCS(remainder)

return lcs

To compute the complexity of the algorithm, we have to sum all the complexity func-
tions of the algorithms that are called. Considering that we do not know how the
selection function is built, we will consider its complexity as a constant that does
not influence the end result. The computeRemainders and the computeLCS algo-
rithms both have the time complexity of a polynomial function. If the two polynomials
have the same degree, the degree of the sum is at most this common degree. If the
polynomials have different degrees, the degree of the sum is the maximum of the de-
grees of each polynomial. The degree of the sum defines the time complexity of the
conceptContraction algorithm.

3.6 Conclusions
In this last section of the chapter, we finalize the completion of the design of five algo-
rithms: (i) computeWeakenings, (ii) computeRemainders, (iii) subsumedBy, (iv)

54 CHAPTER 3. DESIGNED ALGORITHMS AND THEIR COMPLEXITY

computeLCS, (v) conceptContraction. These algorithms ensure that all the computa-
tions needed to implement the concept contraction operator are realized. Respectively,
the algorithms complete the following objectives:

• Computation of the weakenings of a concept C

• Computation of the remainders of a concept C with respect to D

• Implementation of the subsumption between concepts in EL

• Computation of the least common subsumer

• Implementation of the concept contraction operator, consisting of all the fore-
mentioned algorithms.

Regarding the analysis, for all the algorithms, the best-case scenario is when concept
C or concept D is a ⊺ concept. The worst-case scenario for all the algorithms is when
conceptC is an existential role restriction of a conjunction. As for conceptD, the values
vary from an existential role restriction of a conjunction to a ⊺ concept. In all cases, the
time complexity of the algorithms is polynomial. Considering that concepts of large size
are not very common, this kind of complexity can be acceptable. Although, scientific
analysis is needed to conclude the time complexity functions of each of the algorithms.
This work lacks the mathematical proof of the time complexity of the algorithms.

Chapter 4

A selection function for concept
contraction

One of the main assumptions of the concept contraction is that the selection function is
considered as extraneously given. In this chapter, firstly, we introduce the notion of the
selection function in belief revision. In the second section, we discuss the possibility
of associating metadata in the concept level in order to help a selection function choose
the best candidates. Lastly, we propose an approach of how to represent concepts and
its associative metadata and a theoretical implementation of a selection function using
this representation.

4.1 Selection function, an integral part of the concept
contraction

Choosing or developing a reasonable selection function is not an easy task. The general
idea is to create a selection mechanism that selects the ’best’ candidates from a remain-
der set. The term best can be interpreted in different ways from humans and machines,
as well. Manually choosing the best candidates, based on logic, is not an option be-
cause the information on how to take this decision is missing. Both, we need additional
information in order to decide rationally which sentences to give up and which to keep
[Gärdenfors et al., 1995].

So far, we have discussed the concept contraction by assuming that the selection is
given. The role of a selection function in the concept contraction is to select the best can-
didates from a list of remainders, as it can be understood from the conceptContraction
algorithm in section 3.5. The method of how the selection function chooses these best
remainders from a candidate list can be considered as a black-box approach. Such as-
sumption is illustrated in figure 4.1. In this chapter, we uncover this black box and

55

56 CHAPTER 4. A SELECTION FUNCTION FOR CONCEPT CONTRACTION

Figure 4.1: A black box approach of the selection function

propose an approach to the implementation of the selection function in the setting of
concept contraction.

As it is understood from figure 4.1, the input of the selection function is a set of remain-
ders. This set is retrieved from the execution of the computeRemainder algorithm.
The selection function must scan each item of the set of remainders for additional ’fea-
tures’. We propose to provide the selection function with metadata about concepts.
Metadata that provide information about the source, creation date, version can influence
the decision-making process of the selection function.

The main problem with this approach is that almost all the metadata standard frame-
works that exist are created for ontologies in general and do not give enough informa-
tion about concepts. A merge and modification of the different standards for ontology
description can provide a solution to choosing metadata that are specific to concepts.
The question that we raise now is: How to represent the concepts and how to attach this
set of metadata to individual concepts?

4.2 Metadata standards for ontology description

In this section, we discuss two metadata standards for the ontology description. We
make a comparison of these two standards in terms of completeness, implementation,
and usage. Based on the comparison, we have created a new small framework of meta-
data to help the selection function to choose the best candidates.

Firstly, let us define the notion of metadata. Metadata is information about a given
document, such as data, author, and publisher. In [Breitman et al., 2007], metadata is
defined as: “Metadata is data about data. The term refers to any data used to aid the

4.2. METADATA STANDARDS FOR ONTOLOGY DESCRIPTION 57

identification, description, and location of networked electronic resources. Many differ-
ent metadata formats exist, some quite simple in their description, others quite complex
and rich.” An ontology metadata model provides a method to characterize terminology
resources richly [Min et al., 2016]. This method enables the discovery of ontologies,
and the possibility to be reused is increased. Having metadata information can as well
help in the comparison of ontologies, and choosing the most suitable for a certain do-
main based on several aspects such as author, domain, design, etc. We aim to create a
selection function for the concept contraction operator by using these advantages.

4.2.1 Ontology Metadata Vocabulary

Ontology Metadata Vocabulary (OMV) is a proposed metadata standard reflecting the
most relevant properties of ontologies for supporting their reuse. The OMV metadata
schema is formally represented as an ontology and includes two separate modules: the
OMV Core and various OMV Extensions. The OMV Core contains the most relevant
information about the ontology, for the purpose of reuse. The OMV Extensions provide
application-specific information for ontology developers and users [(OEG), 2015]. For
creating the OMV Core, the authors have used two classes: (i) an ontology base and,
(ii) an ontology document. An ontology base represents the abstract or core idea of an
ontology. An ontology document represents a specific realization of an ontology base
[Palma et al., 2006].

In figure 4.2, an overview of the framework of OMV is presented. This figure can be
found in [Palma et al., 2006]. As it can be easily understood, two classes, Person and
Organization have been created as subclasses of the Party class. These three classes as
a whole provide information on the authors/creators of the ontology. A Party can create,
contribute, review an OntologyDocument and an OntologyBase. From the framework,
the distinction between the OntologyBase and OntologyDocument is clear. In the On-
tologyBase, as mentioned above, is included important information about the ontology
such as name, description, documentation, subject, and keywords. On the other hand,
in the OntologyDocument is included more specific information like: status, creation
date, modified date, language, number of classes, properties, individuals, and axioms.
Further, the Party can develop the language, syntax, type, methodology, license, and
engineering tools of the ontology.

The presented OMV tries to model as much information about ontologies and the im-
portant aspects for ontology reuse as possible and at the same time, intends to stay as
simple as possible [Palma et al., 2006].

58 CHAPTER 4. A SELECTION FUNCTION FOR CONCEPT CONTRACTION

Figure 4.2: OMV Vocabulary Overview

4.2. METADATA STANDARDS FOR ONTOLOGY DESCRIPTION 59

4.2.2 Metadata for Ontology Description and Publication Ontology

Metadata for Ontology Description and Publication Ontology (MOD) is a project that
consists of building an OWL ontology and application profile to capture metadata infor-
mation for ontologies, vocabularies, or semantic resources [Dutta and Jonquet, 2019a].
To make the MOD vocabulary interoperable and conform to the major representation
languages currently being used for the Semantic Web applications, MOD is expressed
using OWL. The ontology is available at [Dutta and Jonquet, 2019b].

In this vocabulary, the class Agent refers to a person or an organization that created
and/ or manages an ontology. Person and Organization are considered as classes and
connected to class Agent by a subclassOf relationship. An Agent can create, contribute,
endorse, and evaluate an ontology. Differently from the OMV ontology, in this vocabu-
lary, is it not explicitly evident who develops the design language, syntax, methodology,
license, design tool of the ontology. Nonetheless, this information is available and is
connected to the Ontology class. This class contains the most important information of
the ontology, including name, version, creation date, accessibility, language, descrip-
tion, status, number of classes, properties, individuals, axioms, etc.

Figure 4.3 provides an overview of MOD vocabulary. The MOD terms are standardised
by using equivalent terms that are available in the existing metadata standards. Some of
the metadata standards that are used are Friend Of A Friend (FOAF), Dublin Core (DC),
and Simple Knowledge Organization System (SKOS) [Dutta and Jonquet, 2019b].

4.2.3 Comparison of metadata standards
Ontology Metadata Vocabulary and Metadata for Ontology Description and Publication
Ontology are only two of the metadata standards used to describe ontologies. We chose
these metadata standards for the ontology description for different reasons. Firstly, these
standards include metadata about a wide range of aspects for ontology design. They
provide information not only for the authorship of the ontology but also for the imple-
mentation choices of the ontology in general. Many of the classes included in these
frameworks are not useful for concept description. Nonetheless, the core information
can be adapted for the concept level of the ontology.

When comparing the frameworks, it is clear in the first glace that the similarities are
multiple. The main class, Ontology, for both frameworks defines crucial information
about the ontology such as name, label, identifier, language, number of classes, num-
ber of properties, number of individuals, number of axioms, language, creation date,
version, etc. The same correspondence can be found in Agent and Party classes, even

60 CHAPTER 4. A SELECTION FUNCTION FOR CONCEPT CONTRACTION

Figure 4.3: MOD Vocabulary Overview

though the organization is different. Classes such as OntologyType, OntologyDomain,
FormalityLevel/LevelOfFormality, License/LicenseMode and so on, are almost identical
in both frameworks, with the only difference that MOD framework has added the label
metadata. The only class that is not found in MOD framework is Location. Nonethe-
less, the metadata in that class is included in class Agent. In table 4.1, we have listed the
classes of OMV and by its side are the analogue classes in MOD.
According to [Palma et al., 2006], among the main limitations of OMV are: (i) it does
not reuse any other existent relevant metadata vocabularies, (ii) it has not been included
in a common ontology editor like Protégé, (iii) the metadata properties were never used
by ontology libraries, (iv) after the year 2009, there was no update. On the other hand,
the team behind MOD has used existing relevant metadata vocabularies, as it can be
proved in figure 4.3. MOD is already implemented as an ontology in Protégé, and in

4.3. A SELECTION FUNCTION FOR CONCEPT CONTRACTION OPERATOR 61

OMV MOD
Ontology Ontology
Party foaf:Agent
Organization foaf:Organization
Person foaf:Person
OntologyType OntologyType
KnowledgeRepresentationParadigm KnowledgeRepresentationFormalism
LicenseModel License
FormalityLevel LevelOfFormality
OntologyTask foaf:Project
OntologyDomain OntologyDomain
OntologyEngineeringMethodology OntologyDesignMethodology
OntologyEngineeringTool OntologyDesignTool
OntologySyntax OntologySyntax
OntologyLanguage OntologyDesignLanguage
Location -

Table 4.1: Comparison of OMV and MOD frameworks

their documentation are also included basic queries that can be run for the ontology.
Most importantly, the work on Metadata for Ontology Description continues on MOD
1.4, with the extension of new URIs, description of the properties and mappings, docu-
mentation, extended number of properties [Dutta and Jonquet, 2019a].

It is worth mentioning that both of these frameworks have been implemented in projects.
There are two prototypical applications for decentralized (Oyster 1) and centralized
(ONTHOLOGY 2) sharing of ontology metadata based on OMV [Palma et al., 2006].
As for MOD, there is a knowledge base consisting of metadata about agronomic ontolo-
gies selected from AgroPortal [Jonquet et al., 2018] and defined as an instance of omv:
Ontology [Dutta et al., 2015].

4.3 A selection function for concept contraction opera-
tor

As discussed in the previous sections of the chapter, metadata can help the selection
function to decide which candidate is more accurate and relevant. For this purpose, we

1http://timm.ujaen.es/recursos/oyster/
2https://kmi.open.ac.uk/events/eswc06/poster-papers/FP50-Hartmann.

pdf

62 CHAPTER 4. A SELECTION FUNCTION FOR CONCEPT CONTRACTION

chose a small set of core metadata to create a framework that would be sufficient to
describe concepts. A theoretical approach to the representation of concepts and their
metadata is proposed based on the work of [Schueler et al., 2008]. Furthermore, we
propose a reasonable selection function mechanism based on the representation of the
fore-mentioned. The goal of this section is to demonstrate that existing theories can be
adapted to create a selection mechanism for concept contraction. We have to point out
that this proposal is not complete, and it is a mere presentation of the technologies that
can be used to achieve the objective of creating a reasonable selection function.

4.3.1 Concept description framework
Based on the description of the OMV and MOD ontologies, it is obvious that both
vocabularies are specific to describing an ontology in general, whereas in this thesis,
the focus is on concepts. Therefore, only a group of metadata is needed to describe a
specific concept. The inclusion of the metadata information for each individual concept
is a more complex task compared to adding metadata for the whole ontology. Based
on the comparison of the frameworks, most of the metadata is mapped from the MOD
framework. Figure 4.4 represents a group of metadata that has been chosen to describe
a concept.

Figure 4.4: Concept metadata framework

In class Concept are included important metadata that can help to identify a concept
and give information on the version, creation, modification date. The first metadata is
used to identify the type of concept, such as atomic, existential role restriction, top,
conjunction, etc. The last metadata in this class is justification. Justification can be
used to store information about the reason for modification of the concept. The Concept

4.3. A SELECTION FUNCTION FOR CONCEPT CONTRACTION OPERATOR 63

class is connected to the Agent class via the following properties: creator, contributor,
endorsedBy and evaluatedBy. A concept must have at least one creator, while the other
properties are not a hard requirement. The Agent class can be a person or a organiza-
tion, information which is shown by the classes Person and Organization. The entity is
identified by first name, last name in case it is a person or name and acronym in case it is
an organization. Extra information that is valid for the two kinds of entities are source,
email, and description.

The metadata has been selected considering the principles of design of the MOD and
OMV frameworks, based on [Dutta et al., 2015] and [Palma et al., 2006]:

• Brevity and expressiveness: The vocabulary should consist of a minimal set of
elements maintaining a balance between necessity and sufficiency.

• Clarity: The metadata elements must be well-defined and clear descriptions should
be provided.

• Simplicity: The vocabulary should be easy to use.

• Standardization: To confirm the standardization, the individual elements should
be mapped with the existing standard vocabularies.

• Interoperability: The vocabulary should be interoperable. It should conform to
the major knowledge representation languages currently in use for Semantic Web
applications.

4.3.2 Theoretical implementation of the concept description frame-
work

After creating a framework of metadata for concept description, we go back to the main
question asked in this chapter. How do we represent the concepts and how to attach the
metadata for each concept in an ontology? In this subsection, we present an approach
to achieve this goal.

Inspired from the work in [Schueler et al., 2008], we can define a theoretical structure
for the implementation of attaching metadata to concepts. In the referenced paper, the
authors present an original approach to manage dimensions of meta knowledge. The
meta knowledge is modeled in existing RDF structures. The authors define an abstract
syntax for RDF+, which is more expressive than RDF, and they have created an exten-
sion for SPARQL. The initial results of the implementation are promising. It is under-
standable that the purpose and the domain of the paper are not the same with the domain

64 CHAPTER 4. A SELECTION FUNCTION FOR CONCEPT CONTRACTION

of this thesis, but we can use parts of their approach to reach our goal of attaching meta-
data to concepts. The following definitions are drawn from [Schueler et al., 2008]. The
notations U , L, G ⊆ U and P ⊆ U are respectively Uniform Resource Identifiers(URIs),
all RDF literals, the set of graph names and the set of properties.

Definition 23 The set of all RDF+ literal statements, K, is defined as quintuples by:

K ∶= {(g, s, p, o, θ)∣g ∈ G,s ∈ U, p ∈ P, o ∈ U ∪L, θ ∈ Θ}

A literal interpretation of RDF statements in RDF+ is presented in terms of graph, sub-
ject, predicate, object, and an identifier θ. We can adjust this definition in terms of
concepts as follows. The notation c defines a singular concept that can be only a URI.

Definition 24 The set of all concept statements, K, is defined as triads by:

K ∶= {(g, c, θ)∣g ∈ G, c ∈ U, θ ∈ Θ}

The following definition determines the representation of selected RDF statements as
RDF+ meta knowledge. The representation is done using a separate structure of RDF+.

Definition 25 Let Π ⊆ P be the set of meta knowledge properties. Let Ωπ, with π ∈ Π,
be sets providing possible value ranges from the meta knowledge properties π ∈ Π. Then
the set of all RDF+ meta knowledge statements,M, is defined by:

M ∶= {(θ, π,ω)∣θ ∈ Θ, π ∈ Π, ω ∈ Ω}

Definition 26 A RDF+ theory of literal statements and associated meta knowledge state-
ments is a pair (K,M) referring to a set of literal statements K ⊆ K and a set of meta
knowledge statements M ⊆M.

The definitions of meta knowledge statements and the RDF+ theory can be left intact.
The meta knowledge statement uses θ to identify the concept and then provides the meta
knowledge available for it. In the paper [Schueler et al., 2008], the authors state three
additional definitions, namely: Standard interpretation and Model, Π-Interpretation and
Model, and Meta knowledge Interpretation and Model in order to prevent ambiguities
caused by definitions 23, 25, and 26, and to produce interpretations for RDF.

Based on the brief description of the theory, the concept Person ⊓ ∃isRegisteredAt.
University ⊓ ∃attends.Lecture can be represented in three graphs: G1, G2, and G3.
Each graph contains only one concept, as required in the definition. The representation
of the metadata that are attached to the concept is graph G4, G5, and G6.

4.3. A SELECTION FUNCTION FOR CONCEPT CONTRACTION OPERATOR 65

G1 { Person }

G2 { ∃isRegisteredAt.University }

G3 { ∃attends.Lecture }

G4 { G1 skos:altlabel ”person”.
G1 ex:type ”atomic”.
G1 ex:creationDate ”10/10/1999”.
G1 ex:source <http://uni-koblenz.org/ciroku.owl>. }

G5 { G2 skos:altlabel ”RegUni”.
G2 ex:type ”existentialRoleRestriction”.
G2 ex:creationDate ”08/10/2017”.
G2 ex:source <http://uni-koblenz.org/ciroku.owl>. }

G6 { G3 skos:altlabel ”AttLecture”.
G3 ex:type ”existentialRoleRestriction”.
G3 ex:creationDate ”10/10/2019”.
G3 ex:source <http://uni-koblenz.org/ciroku.owl>. }

4.3.3 Theoretical implementation of the selection function
Now that we have defined how a concept and its metadata are represented, we present
an approach to how a selection function can make use of the metadata. In order to
make the process of the selection function easier, we propose to use all the metadata
about a given concept to calculate a certainty degree of the concept. The procedure on
how to calculate such a degree is not decidable without further research, but different
possibilities can be taken into consideration. For example, a concept that has been
created by an agent that is trustworthy can have a higher degree than a concept that
is created by an agent who is not. Metadata such as source, creation date, version,
justification, can be taken into account to calculate a certainty degree for a concept. The
choice of the selection function is much easier when it is fed with concepts and their
respective degrees than with their group of metadata. Therefore, we define the notion of

66 CHAPTER 4. A SELECTION FUNCTION FOR CONCEPT CONTRACTION

a certainty mapping. The certainty mapping represents a concept that can contain one
or more conjuncts with the respective degrees of certainty.

Definition 27 A certainty mapping for a concept C is a mapping (C1:V1, ..., Cn:Vn)
where for each i, C ⊑ Ci and Vi is a non-negative integer named ”certainty degree”.

The certainty mapping of concept Student⊓∃isRegisteredAt.University⊓∃attends.
Lecture is shown in example 1. The scores associated with each of the concepts are
arbitrary, considering the type of concepts and creation date.

Example 1. Certainty mapping of a concept

⎛
⎜
⎝

Student ∶ 99
∃isRegisteredAt.University ∶ 56

∃attends.Lecture ∶ 48

⎞
⎟
⎠

With a complete mapping of the concept, we can now define a relevance degree for
concept C. The relevance degree is the sum of all the certainty degrees of all concepts
that form concept C.

Definition 28 The relevance degree of a concept C w.r.t the certainty mapping (C1:V1,
..., Cn:Vn) is:

n

∑
i=1

{Vi∣C ⊑ Ci}

This relevance degree can be provided to the selection function together with the remain-
der candidate concepts. This information about the concepts, based on its metadata, can
provide us with a reasonable selection function mechanism. Thus, we extend the prop-
erties of the selection function, as expressed below. This property enables the selection
function with a working mechanism specific to the concept contraction.

Property 5 A selection function σ selects, given every pair of concepts C,D, the con-
cept with the maximum relevance degree.

In figure 4.5, we illustrate the transparent mechanism of the selection function based on
the approach that we propose. In this case, the input of the selection function is a set of
remainders and also a set of associative relevance degrees. The decision of the selection
is based on the relevance degree of the concepts, and it chooses the remainders with the
maximum degree. The output is a set of best remainders, which is the objective of the
selection function.

The approach described in this section can be further developed and implemented in

4.4. CONCLUSIONS 67

Figure 4.5: A glass-box approach of the selection function

future work. The important issue that we need to emphasise is that there is an approach
to model concepts and its associative metadata, and to use this metadata to define a
selection function. Considering that the development of the approach is not the main
focus of the thesis, the discussion will not go into further detail. More thorough research
on this topic can conclude on an optimized approach, and the role of the metadata in the
selection function process could be determined.

4.4 Conclusions
In this chapter, we have answered the research question of how to create a reasonable
selection function. As discussed in chapter 2, the input of the selection function for
concept contraction is a set of remainders. We have proposed an approach that includes
several elements into creating a selection function, such as:

• Creation of a framework of metadata specific for a concept description. The set of
metadata that we have chosen is based on the merge and adaption of two different
ontology description frameworks.

• An approach for the representation of the concepts and their respective metadata
based on [Schueler et al., 2008]

• An approach for the computation of a certainty degree of a concept based on its
metadata.

Certainly, this proposed approach needs to be studied thoroughly in order to achieve a
working selection function. The connection between different technologies is not clear
enough, and most importantly, the computation of the certainty degree for each concept
has not been investigated.

Chapter 5

Implementation of conceptContraction
algorithm

In this chapter, we present the implementation of the computeWeakenings, compute
Remainders, subsumedBy, computeLCS and conceptContraction algorithms. In
the first section, we introduce the environment of the implementation, including a short
description of the programming language and specific libraries. In the second section,
we describe the implementation of the concepts as classes and their methods. In sec-
tion 5.3, we present the implementation of the computeRemainder, subsumedBy,
computeLCS algorithms. Each of the classes, their methods and functions are tested,
and the results can be found in section 5.4.

5.1 Environment of implementation

In this section, we will describe Python, the language chosen for the implementation
of the algorithms that we have designed. In the description, we include some features
of the language that support our choice of implementation language. In addition, we
introduce a package, Owlready2, supported by Python, which is specific to the creation
of ontologies and work with concepts and roles.

Python is an interpreted, object-oriented, high-level programming language with dy-
namic semantics. It provides high-level built-in data structures, combined with dynamic
typing and dynamic binding [pyt, 2019]. As a programming language, Python delivers
both the power and complexity of traditional compiled languages along with the ease-
of-use of simpler scripting and interpreted languages [Swamy, 2014]. Python has many
features that make it desirable to work with. The features listed below are the reason
why this language has been chosen for the implementation of the conceptContraction
algorithm.

69

70CHAPTER 5. IMPLEMENTATION OFCONCEPTCONTRACTION ALGORITHM

• Easy-to-use: This feature includes the ’Easy-to-learn’ and ’Easy-to-read’ de-
scribed in [Swamy, 2014]. The simple syntax of the language, variable’s be-
haviour compared to other programming languages makes Python easy to un-
derstand when one reads the code and also easy to use. Moreover, the high
level of abstraction of data structures reduces the framework development time
[Swamy, 2014].

• Expressiveness: For most programming tasks, Python requires fewer lines of
code than most programming languages. The features make the code easier to
maintain and debug [Ceder, 2010].

• Completeness: When Python is installed, there is no need to install additional li-
braries. The Python standard library comes with modules for handling email, web
pages, databases, operating system calls, GUI development, and more [Ceder, 2010].

• Cross-platform: Python is available on a wide variety of platforms, which con-
tributes to its surprisingly rapid growth in today’s computing domain.

Owlready2 is a package for ontology-oriented programming in Python. Owlready2 al-
lows transparent access to OWL ontologies. Owlready2 has been created at the LIMICS
research lab, by Jean-Baptiste Lamy. According to [Lamy, 2017], Owlready2 can:

• Import ontologies in RDF/XML, OWL/XML, or NTriples format.

• Manipulate ontology classes, instances, and annotations as if they were Python
objects.

• Add Python methods to ontology classes.

• Re-classify instances automatically, using the HermiT reasoner 1.

In order to better understand the purpose of Owlready2 in the implementation of the
conceptContraction algorithm, the conversion of formulas between Description Log-
ics and Owlready is of interest. In table 5.1, the analogy between Description Logics
and Owlready2 syntax is presented. The table has been adapted from [Lamy, 2018], by
selecting only the concepts and operations allowed in Description Logics EL.

No additional external libraries have been used for the implementation of the algorithms.
We make use of the power of Python and Owlready2. Further information about the
library can be found in [Lamy, 2018].

1HermiT is reasoner for ontologies written using the Web Ontology Language (OWL). Given an OWL
file, HermiT can determine whether or not the ontology is consistent, identify subsumption relationships
between classes, and much more[her, 2019].

5.2. BUILDING AN ONTOLOGY FOR EL CONCEPTS 71

DL Syntax Python + Owlready2
Top ⊺ Thing
Subsumption A ⊑ B issubclass(A, B)
Equivalence A ≡ B A.equivalent_to.append(B)
Instanciation A(i) isinstance(i, A)
Relations R(i, j) i.R = j
Intersection A ⊓B And([A, B])
Existential role restriction ∃R.B R.some(B)

Table 5.1: Description logics and formal ontology notation

5.2 Building an ontology for EL concepts

This section covers the implementation of concepts of the Description Logics EL. For
all concepts allowed in the language, we describe the class that we have created and
the methods included. For each of the classes, the methods initialize an instance of the
class, create a representation of the concept and compute the weakenings of the said
concept. The methods of weakening are based on the procedure discussed in section
3.1, computeWakenings Algorithm.

To implement the concept contraction algorithm, firstly, we have designed an ontology
named onto. The URI of the ontology, http://uni-koblenz.org/ciroku.
owl, is given as a parameter. In this ontology, six classes are included, from which
five are concept classes, and one is a property class. A new class can be created in an
ontology by inheriting the owlready2.Thing class. The ontology class attribute can be
used to associate the class to the given ontology. The Concept class has the role of the
superclass in this ontology. Based on the EL language expressivity, a concept can be of
the form: (i) atomic, (ii) top concept, (iii) existential role restriction, or (iv) conjunction.

Class Atomic, a subclass of class Concept, includes atomic concepts. The Top class
has only the ⊺ concept. Class Role_Restriction comprises concepts of the form of ex-
istential role restriction. Class Conjunction is built to include conjunction concepts.
The concepts that form the existential role restriction or the intersection form can be
of type Concept. Lastly, the property class role is created for the purpose of initiating
an instance of the Role_Restriction class. In figure 5.1, we present the hierarchy of the
ontology.

The superclass Concept is created to be a subclass to the Thing class provided from the
owlready2 package. We have created an __init__() method for Concept class. This
method not only initializes an instance of the class, but whenever an instance is created,

72CHAPTER 5. IMPLEMENTATION OFCONCEPTCONTRACTION ALGORITHM

Figure 5.1: Ontology of EL concepts

the latter is stored in a variable instance of type list. This method is called each time
that an instance of the subclasses is generated. This action is necessary to ensure that
the instance of the subclass is also of type Concept.

To initialize an instance of class Atomic, we use the __init__() method. This method
requires a String as a parameter. Upon initialization, the method calls another method,
create_concept(), that creates the representation of an atomic concept with the String
parameter as the name of the concept. In case that one needs to print an atomic concept,
this method can be used, as it returns the name of the concept. The weak_atomic()
method, that returns the weakening of an atomic concept, is a static method, and there-
fore it can be called without an object for that class. Taking into account that the weak-
ening of an atomic concept is the ⊺ concept, the function creates a class Top instance
and returns the instance.

In example 1, a new instance of class Atomic is created, given the string ’A’ as an
argument. In line 4, it is printed the return value of weak_atomic() method. As shown,
the weakening of an atomic concept is, in fact, the ⊺ concept.

Example 1. Execution of methods of Atomic class

1 # Create instance of Atomic class

5.2. BUILDING AN ONTOLOGY FOR EL CONCEPTS 73

2 A = Atomic(’A’)
3 # Print the weakening of atomic concept A
4 print(’The weakening of atomic concept’, A.create_atomic(), ’is’,

A.weak_atomic())
5

6 >>>The weakening of atomic concept owl.A is [owl.Thing]

The Top class also includes three methods to deal with its instances. The __init__()
method does not require any parameters to initialize. Once an instance has been created,
create_top() method is called. This method adds the value of owlready2.Thing to the
instance and returns the instance. The method that returns the weakening of a ⊺ concept
is weak_top(). Similar to weak_atomic(), this is also a static method. The weakening
of the ⊺ concept does not exist, an empty list is returned.

In example 2, the conceptT variable is initialized as an instance of the Top class. In line
4, the weakening of the Top concept is printed, using the method described in the above
paragraph. The results of the calling of the methods assure that the methods return the
correct value of the weakening of a Top class instance.

Example 2. Execution of methods of Top class

1 # Create instance of Top class
2 conceptT = Top()
3 # Print the weakening of Top concept conceptT
4 print(’The weakening of concept’,conceptT.create_top(), ’is’,

conceptT.weak_top())
5

6 >>>The weakening of concept owl.Thing is []

The Role_Restriction class, also, has three methods. Akin to the previous classes, the
methods are __init__(), create_role_concept(), and weak_role(). The __init__()
method requires as a parameter an instance of Concept class to initialize a new instance.
The given parameter is stored, and then the create_role_concept() method is called.
To create an instance of a class that includes the existential role restriction, the role
property class comes in help. This class has been created as shown in listing 5.2. The
property is used to build an instance of Role_Restriction class in create_role_concept()
method. The method does not require any parameters, although it uses the argument
given in __init__() method and adds the existential role restriction to that argument.
The return value is a concept in a role restriction form. Lastly, the weak_role() method

74CHAPTER 5. IMPLEMENTATION OFCONCEPTCONTRACTION ALGORITHM

is used to compute the weakening. This method does not require extra parameters to
compute the weakening of an existential role restriction concept. weak_role() calls
functionweak_concept(), described in listing ??, with the initialization parameter as its
parameter. After the return value of weak_concept() method is retrieved, it is checked
if there are one or more weakenings. In the case that there is only one weakening,
the method creates a new Role_Restriction instance with the weakening as a parameter.
Otherwise, multiple new instances of Role_Restriction class are created with parameters
the weakenings. Afterwards, a new Conjunction instance is created using all the newly
created Role_Restriction instances. The final result is returned.

The listing 5.2 presents the creation of the property class role. A new property can be
created by subclassing the ObjectProperty or DataProperty class from the owlready2
package. This property is functional, meaning that it has a single value for a given
instance. Domain and range must be given in the list, since OWL allows to specify
several domains or ranges for a given property. The domain and the range of the role
property is Concept class. This allows creating the existential role restrictions of an
atomic, top, existential role restriction or conjunction concept.

1 #Create a property named ’role’ with class Concept as domain and
range

2 with onto:
3 class role(owlready2.ObjectProperty, owlready2.

FunctionalProperty):
4 owlready2.domain = [Concept]
5 owlready2.range = [Concept]

Listing 5.1: Creation of role property

The creation of a new instance of Role_Restriction class is shown in example 3. As an
argument for the initialization, an atomic conceptA from example 1 has been used. Line
4 prints the weakening of the new instance, after the methods create_role_concept()
andweak_role() have been called. The results are correct as the weakening of a concept
∃r.A is, in fact, ∃r.⊺.

Example 3. Execution of Role_Restriction class methods

1 # Create instances of Role_Restriction class
2 conceptR = Role_Restriction(A)
3 # Print the weakening of conceptR
4 print(’The weakening of concept’, conceptR.create_role_concept(),’

is’, conceptR.weak_role())

5.2. BUILDING AN ONTOLOGY FOR EL CONCEPTS 75

5

6 >>>The weakening of concept role.some(owl.A) is role.some(owl.
Thing)

Class Conjunction, includes two methods __init__() and create_conjunction(), to
initialize and create a new instance, and two classes weak_conjunction() and weak_
conjunct() to compute the weakening of a conjunction of concepts. Contrasting the
fore-mentioned classes, the __init__() method of this class required a list of concepts
as an argument to initialize an object. The list is stored and then create_conjunction()
method is called to create a proper form of conjunction given the parameter. The
create_conjunction(), although it does not require other arguments, uses the list to
create a conjunction form of the concepts included. The conjunction is the return value
of the method.

Given the complexity of the weakening of conjunction compared to the other weaken-
ing methods that were described above, two methods are needed to reach such a goal.
The weak_conjunction() method does not require any arguments and can be called to
return a list of weakenings. Inside the method, a variable weakmatrix of type list is
created to store the weakenings of the conjunction. weak_conjunction() makes sure
that weak_conjunct() method is executed as many times that there are concepts in the
list. The return values are stored in the variable weakmatrix. The weak_conjunct
method requires as parameters only the index of the loop in weak_conjunction(). A
new variable weak_row of type list is initiated. It calls weak_concept() function as
many times that there are concepts in the list. If the return value of weak_concept() is
an instance of Top class, e.g.⊺ or instance of Role_Restriction class with inside concept
of Top class, e.g. ∃r.⊺, the value is ignored. If the above situations are not the case, then
the value is added to the weak_row list. If the list has only one element, the element is
returned as is, otherwise a new Conjunction instance is created using the weak_row list
as a parameter. The method returns a single weakening of the conjunction. After all the
single weakenings are computed byweak_conjunct() method, theweak_conjunction
method adds all the return values in weakmatrix list and returns the latter.

The mentioned methods of Conjunction class are illustrated in example 4. Variable
conceptA_B represents an instance of Conjunction class, that is created by two atomic
concepts such asA andB. The print statement in line 4 calls the methods create_conju−
nction() and weak_conjunction for the instance. As observed in line 6, the return val-
ues of both methods are correct regarding conceptA_B.

Example 4. Execution of Conjunction class methods

76CHAPTER 5. IMPLEMENTATION OFCONCEPTCONTRACTION ALGORITHM

1 # Create instances of Conjunction class
2 conceptA_B = Conjunction([A, B])
3 # Print the weakening of conceptA_B
4 print(’The weakening of conjunction’, conceptA_B.

create_conjunction(), ’is’, conceptA_B.weak_conjunction())
5

6 >>>The weakening of conjunction owl.A & owl.B is [owl.B, owl.A]

Additionally to these methods, a function weak_concept() has been created, as men-
tioned in the description of the methods of Role_Restriction class and Conjunction class
responsible for the weakening of the concepts. Both these classes are formed by other
concepts, that may be of any form allowed in EL Description Logics. If not specified,
the program needs to know which weakening method to perform. Taking into consider-
ation that the parameters needed to create objects of these classes are concepts, such a
function is necessary. The function checks if the instance falls into one of the categories
of the classes and returns the weakening of the concept.

5.3 Implementation of the remainders and LCSs

At this point of the implementation, we have created classes for each type of concept of
ELDescription Logics and methods to initialize, represent and compute the weakenings
of the concepts. Before we implement the function for computeRemainders algorithm,
another function of great relevance is needed. The function is subsumed_by(), based
on the subsumed_by algorithm. In this section, we primarily describe the implemen-
tation of this algorithm and then the implementation of the computeRemainders and
computeLCS algorithms.

5.3.1 Implementation of subsumedBy algorithm
The subsumedBy() function aims to test an important condition for a weakening to be
officially chosen as a remainder. The function is the implementation of the subsumedBy
algorithm which is based on the subsumption properties for EL. Based on the algorithm,
there are several cases of subsumption that need to be implemented.

The function requires two parameters, namely concept_c and concept_d, both instances
of Concept Class. The function deals initially with the case when concept_c or con-
cept_d is a ⊺ concept. As discussed for the subsumedBy algorithm, this case is straight-
forward and it can be implemented as shown in listing 5.3.1.

5.3. IMPLEMENTATION OF THE REMAINDERS AND LCSS 77

1 if isinstance(concept_d, Top):
2 return True
3 elif isinstance(concept_c, Top):
4 return False

Listing 5.2: subsumedBy(Top, Concept), subsumedBy(concept, Top)

The next case is when concept_c is an atomic concept. Based on the properties of
subsumption discussed in section 3.3, an atomic concept can only be subsumed by ⊺
concept or another atomic concept. Listing 5.3.1 shows the implementation of this case.

1 if isinstance(concept_c, Atomic):
2 if isinstance(concept_d, Atomic):
3 return concept_c == concept_d
4 else:
5 return False

Listing 5.3: subsumedBy(Atomic, Concept)

In EL Description Logics, a concept of the form of existential role restriction can be
subsumed only by a concept of the same form or a top concept. This makes the im-
plementation of this case fairly easy, as there is only one condition to be fulfilled for
a Role_Restriction instance to be subsumed by a Concept instance. In listing 5.3.1,
is checked whether both concept_c and concept_d are instances of Role_Restriction
class. If it is true, then the subsumedBy() function is called with new arguments.
my_role_concept, used in line 2, is an attribute of a Role_Restriction instance, which
stores the concept that forms the instance. This is the equivalent of the InnerConcept
used in the subsumedBy algorithm.

1 if isinstance(concept_c, Role_Restriction) and isinstance(
concept_d, Role_Restriction):

2 return subsumedBy(concept_c.my_role_concept, concept_d.
my_role_concept)

Listing 5.4: subsumedBy(Role_Restriction, Concept)

The last case to be implemented for the subsumedBy() function is when concept_c
is an instance of Conjunction class. For the implementation of this case, we have to

78CHAPTER 5. IMPLEMENTATION OFCONCEPTCONTRACTION ALGORITHM

mention that we consider conjunction concepts only non-trivial conjunction. Meaning
a conjunction concept is a concept that is formed by the intersection of at least two
concepts. This assumption falls into contradiction with the Distribution property for
the subsumption in EL. For this reason, the implementation is divided in two sub-cases.

The first sub-case is when concept_d is a Conjunction instance. Initially, the lists that
contain the concepts that form both conjunctions are retrieved. This action is reached by
using conjuncts attribute of the Conjunction class that stores the parameter used to cre-
ate an instance. The conjuncts attribute has the same function as Conjuncts set men-
tioned in 2.2. The the implementation is very similar to the design of the subsumedBy
algorithm for this case. The code is included in listing 5.3.1.

1 if isinstance(concept_c, Conjunction):
2 list_c = concept_c.conjuncts
3 if isinstance(concept_d, Conjunction):
4 list_d = concept_d.conjuncts
5 mat = []
6 for i in range(len(list_c)):
7 for j in range(len(list_d)):
8 if subsumedBy(list_c[i], list_d[j]):
9 mat.append(True)

10 else:
11 mat.append(False)
12

13 if any(mat):
14 pass
15 else:
16 return False
17 return True

Listing 5.5: subsumedBy(Conjunction, Conjunction)

The second sub-case is concept_d being an Atomic or a Role_Restriction instance. In
this case, any of the concepts that form concept_c have to be subsumed by concept_d.
The implementation includes only one for loop that iterates over the concepts of the
conjunction. This only difference in implementation between these to sub-cases is that
in this case there only one for loop that iterates over concept_c. Again, this implemen-
tation is a clear translation of the pseudocode in Python. This sub-case is illustrated in
listing 5.3.1.

1 if isinstance(concept_c, Conjunction):

5.3. IMPLEMENTATION OF THE REMAINDERS AND LCSS 79

2 list\c = concept_c.conjuncts
3 if isinstance(concept_d, Atomic) or isinstance(concept_d,

Role_Restriction):
4 value_check = []
5 for i in range(len(list_c)):
6 if subsumedBy(list_c[i], concept_d):
7 value_check.append(True)
8 else:
9 value_check.append(False)

10

11 if any(value_check):
12 pass
13 else:
14 return False
15 return True

Listing 5.6: subsumedBy(Conjunction, Atomic/ Role_Restriction)

If as parameters of the function is used any other combination of types of concepts not
mentioned above, the function returns False.

In the following example, the function is called with different parameters. X and T are
respectively an atomic concept X and a ⊺ concept. roleX and roleY are existential role
restrictions formed with atomic concepts X and Y . Lastly, XY Z is a conjunction of
atomic conceptsX , Y andZ andXY is also a conjunction of the atomic conceptsX and
Y . The results, depending on the various combinations of the parameters, prove that the
behaviour of the function is correct. The call in line 1 returns True because an atomic
concept X is subsumed by ⊺ concept. The reverse combination of these parameters
returns False, as a ⊺ concept cannot be subsumed by an atomic concept. The result for
the call in line 3 is also False because the concept that forms roleX is not subsumed
by the concept that forms roleY . The last two calls deal with the case when the first
parameter is a conjunction. The subsumedBy() call in line 4 returns True because all
the concepts in XY subsume a concept in XY Z. The last call returns True, as there is
a concept in the conjunction that is subsumed by the atomic concept X .

Example 1. Execution of the subsumedBy() function

1 print(subsumedBy(X, T))
2 print(subsumedBy(T, X))
3 print(subsumedBy(roleX, roleY))
4 print(subsumedBy(XYZ, XY))
5 print(subsumedBy(XY, X))

80CHAPTER 5. IMPLEMENTATION OFCONCEPTCONTRACTION ALGORITHM

6

7 >>> True
8 >>> False
9 >>> False

10 >>> True
11 >>> True

5.3.2 Implementation of computeRemainders algorithm
Subsequently, the implementation of the computeRemainders algorithm is in order.
The algorithm’s goal is to select remainders from the list of weakenings of a concept
with regards to the concept that is to be contracted and return the remainders. In this
subsection we describe the implementation of the algorithm with the help of snippets of
code and an example of execution of the implementation.

The function requires two arguments, a concept C, and a concept D. An empty list,
remainder, is created to store the weakenings that classify as remainders. Another list,
level, is initialized with the weakenings of C. This list is designed to store candidates
for the remainder list. A while loop begins, with the condition to run as long as there
are elements in level list. Inside the while loop, three loops need to run in order to find
remainders.

The goal of the first for loop is to check if there is a concept in the level list that is
stronger then concepts in remainder list. The weak candidates are removed from the
level list.

1 new_level = []
2 for i in range(len(remainder)):
3 mark = []
4 for j in range(len(level)):
5 if subsumedBy(remainder_found[i], level[j]):
6 mark.append(True)
7 else:
8 mark.append(False)
9 if not any(mark):

10 new_level.append(level[i])
11 level = new_level

Listing 5.7: Removing weak candidates

5.3. IMPLEMENTATION OF THE REMAINDERS AND LCSS 81

The second for loop classifies candidates in the level list as remainders and stores them
in the remainder list.

1 new_level = []
2 for i in range(len(level)):
3 if subsumedBy(level[i], concept_d):
4 new_level.append(level[i])
5 else:
6 remainder_found.append(level[i])
7 level = new_level

Listing 5.8: Find remainders

The last for loop, replaces the candidates in the level list with their weakenings. So far,
the elements in the level list are weakenings that are subsumed by concept_d. If the list
is empty, the process has reached an end, and the remainder list is returned. Otherwise,
a new while loop begins.

1 new_level = []
2 for i in range(len(level)):
3 new_level.append(weak_concept(level[i]))
4 level = new_level

Listing 5.9: Create next level of weakenings

In example 2, the computeRemainders() function is called with parameters XY Z
and XY , both conjunction concepts. As seen in line 3, the result of the call is a list
of remainders. The remainders are the weakenings of XY Z, not subsumed by XY ,
specifically conjunction concepts Y&Z and X&Z.

Example 2. Execution of the computeRemainders() function

1 print(computeRemainders(XYZ, XY))
2

3 >>> [Y & Z, X & Z]

82CHAPTER 5. IMPLEMENTATION OFCONCEPTCONTRACTION ALGORITHM

5.3.3 Implementation of computeLCS algorithm

The last part of the implementation of the conceptContraction algorithm is computing
the least common subsumer. The function computeLCS() is designed for this purpose
and is the implementation of the computeLCS algorithm.

As described in the algorithm, the parameter of the function is a remainders list that
is retrieved from the computeRemainders algorithm. The algorithm includes a while
loop that is divided in two sections, two nested for loops and an if/else clause. The
first section controls if there is a concept in the level list that subsumes all the concepts
in the parameter list. If such concept is found, it is added to the lcs list. The second
section, firstly checks if there are concepts in the lcs list. If this is the case, the strongest
of the concepts is returned. Otherwise the else clause computes the weakenings of the
concepts in the level list and the iteration in the while loop continues.

The example 3, illustrates the execution of the computeLCS() function. The parameter
used is the return list of computeRemainders() function, [Y&Z,X&Z]. From the
result in line 4, the lcs is the atomic concept Z.

Example 3. Execution of the compute_LCS() function

1 rem = compute_remainder(XYZ, XY)
2 print(compute_LCS(rem))
3

4 >>> [Z]

5.3.4 Implementation of the conceptContraction algorithm

The final stage of the implementation is the creation of a function for the concept
Contraction algorithm. Given that we have already implemented all the components
required for the algorithm to work, the function is a wrap up of these functions. A se-
lection function has not been implemented, so it will not be included even though it is
part of the conceptContraction algorithm.

The function requires a concept C and a concept D as parameters. The first call is
to the computeRemainders function where the remainders of C with respect to D
are computed. The list that is retrieved is given as a parameter to the computeLCS
function. The return value is a least common subsumer of the remainders.

5.4. TESTING OF THE IMPLEMENTATION 83

1 def conceptContraction(concept_c, concept_d)
2

3 remainders = computeRemainders(concept_c, concept_d)
4 lcs = computeLCS(remainders)
5

6 return lcs

Listing 5.10: conceptContraction(C,D) function

5.4 Testing of the implementation
With the completion of the implementation of all the algorithms, the next necessary
step is to test the code and make sure that all the possible cases are caught and treated
correctly. In this section we describe the test cases that we have executed for all the
classes and their methods, and for all the functions.

Firstly, the methods of Atomic, Top, Role_Restriction, and Conjunction class are tested.
Class Atomic requires an input of type string for the method __init__(). Meanwhile
for method create_atomic() and weak_atomic() no input is required. As for the Top
class, no input is required, and the testing is pretty straightforward. Contrarily, class
Role_Restriction requires one of four possible types of concepts as an initializing pa-
rameter. The input can be an Atomic, Top, Role_Restriction, or Conjunction instance.
Regarding Class Conjunction, there are several possible combinations of concepts that
need to be tested. Considering the fact that the input required is a list of at least two
elements, there are at least six possible combinations to be tested. For each of these
possible inputs for the classes, all the methods have been tested. The results of the tests
suggest that the methods created, given any possible parameter, are able to initialize and
represent an instance of a certain class, and most importantly to compute the weakenings
of that concept.

Next, the testing of the subsumedBy() function is designed and executed. For the
testing, it is necessary to provide the function with different combinations of parameters.
The combinations should represent all the examined cases in section 3.3. Based on
the results, it is confirmed that the subsumedBy function returns the correct True or
False values for each of the considered cases.

We continue with the testing of the computeRemainders() function. For this func-
tion, the testing coincides in considering different examples that should return different
results. The situations are as follows: (i) there exists at least one remainder, (ii) there

84CHAPTER 5. IMPLEMENTATION OFCONCEPTCONTRACTION ALGORITHM

exist no remainders. For the first case, example 1 can be taken into consideration. The
return list is proven to be correct, and therefore this test is successful. The second case
can be by testing the case that concept_c or concept_d is a ⊺ concept. If concept_c is
⊺ concept, there would be no weakenings, and therefore the function should return an
empty list. If concept_d is ⊺ concept, then there would be no weakenings of concept_c
that are not subsumed by concept_d. Based on the testing, the handling of these cases
is as predicted and is considered succesful.

Lastly, we have designed the testing of computeLCS() function. The cases that we
take into consideration are: (i) the input is an empty list, (ii) the input is a list containing
at least one element. If the input is an empty list, the function should return an empty
list as well. In case that the input list contains one or more remainders, the return list
of the function should in the best case include weakenings of the next level and in the
worst case it should include ⊺ concept. The testings prove that the results retrieved are
correct, considering the cases mentioned above. For the first test, example 3 has been
used.

As for the conceptContraction function, we have not designed any specific tests. Con-
sidering the fact that all its component have successfully passed their testing, it is ac-
ceptable to state that this function is successful as well.

5.5 Conclusions
At the end of this chapter, we can state that we have successfully implemented all the al-
gorithms that we have designed for the concept contraction. It is understandable that the
implementation choices that we have made are always open for optimizations. Nonethe-
less, the testing of the implementation proves to be successful for each of the methods
of the classes that we have created to represent specific types of concepts allowed in De-
scription Logic EL. The testing of the functions subsumedBy, computeRemainders
and computeLCS also is proved to be successful as we have run several test cases to
understand if the functions treat them gracefully.

Chapter 6

Conclusions and future work

In this chapter we draw a final conclusion on the work that we have presented in this
master’s thesis. In addition, we include a short discussion about potential future work.

6.1 Conclusions

In this work, we have given a short introduction to the Description Logics family, with
a special focus on the Description Logic EL. This is the language that is used for
the development of the concept contraction operator, which is discussed in chapter 4.
Beforehand, we present contraction in the AGM theory and the postulates that describe
this operation. Having provided this introduction to belief change, we define the notion
of concept contraction proposed in [Rienstra et al., 2018] and represent it with a set of
postulates, which are reformulations of the original AGM postulates for contraction.
From the six basic AGM postulates, only the Recovery postulate did not apply to the
setting of the concept contraction and had to be replaced with the weaker Relevance
and Retainment postulates. Concept contraction is described in three different settings:
(i) an empty T-Box, (ii) an acyclic T-Box, and (iii) a cyclic T-Box. In the first two
cases, concept contraction is proved to work, whereas in the third case, lcs concept
contraction cannot be applied. In addition, we have highlighted the limitations of the
concept contraction such as lack of expressivity of EL for the union constructor causing
the authors to chose the least common subsumer as a solution, and the problems that the
concept contraction encounters in the case of cyclic T-Boxes.

We have designed five algorithms: (i) computeWeakenings, (ii) computeRemainders,
(iii) subsumedBy, (iv) computeLCS, (v) conceptContraction, valuable for the im-
plementation of the concept contraction operation. These algorithms ensure that all
the computations needed to implement the operator are completed. Respectively, the
algorithms complete the following objectives:

85

86 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

• Computation of the weakenings of a concept C

• Computation of the remainders of a concept C with respect to D

• Implementation of the subsumption between concepts in EL

• Computation of the least common subsumer

• Implementation of the concept contraction operator, consisting of all the fore-
mentioned algorithms.

Regarding the analysis of the algorithms, we have primarily discussed the best and
worst-case scenarios for each of the algorithms. An average-case scenario cannot be
discussed without extensive research because it is not clear what classifies as average
for a concept. For all the algorithms, the best-case scenario happens when concept
C or concept D is a ⊺ concept. The worst-case scenario for all the algorithms is when
conceptC is an existential role restriction of a conjunction. As for conceptD, the values
vary from an existential role restriction of a conjunction to a ⊺ concept. Regarding
the complexity of the algorithms, the analysis is based on the worst-case scenario as
it is of interest to know how bad can the algorithms perform. In the design of the
computeContraction algorithm, we have considered the selection function is a given.
This assumption has caused the analysis of the computation to not been complete as
we have ignored the complexity of the selection function algorithm. In all cases, the
complexity of the algorithms is polynomial. Assuming that concepts of large size are
not very common, this kind of complexity can be acceptable.

To answer the research question of how to determine a reasonable selection function,
we have proposed an approach. The approach consists of several elements into creating
a selection function, such as:

• Creation of a framework of metadata specific for a concept description. The set of
metadata that we have chosen is based on the merge and adaption of two different
ontology description frameworks.

• An approach for the representation of the concepts and their respective metadata
based on [Schueler et al., 2008]

• An approach for the computation of a certainty degree of a concept based on its
metadata.

Lastly, we have implemented all the algorithms that we have designed for the concept
contraction operator. The testing of the implementation proves to be successful for
each of the methods of the classes that we have created to represent specific types of

6.2. FUTURE WORK 87

concepts allowed in description logic EL. The testing of the functions subsumedBy,
computeRemainders and computeLCS also is proved to be successful as we have run
several test cases to understand if the functions treat them gracefully.

The aim of the thesis was the implementation of the concept contraction in the Descrip-
tion Logic EL. We believe that we have answered all the research questions that we
raised in the beginning of the thesis. Nonetheless, there is always room for improve-
ment and in the next section we discuss about possible future work based on the thesis.

6.2 Future work

In this section we will describe possible improvements of the thesis. These improve-
ments can be a starting point for future work.

• The Description Logic language chosen for the concept contraction operator is
EL. Even though it is a powerful language, its limitations in expressivity force us
to find alternative solutions for the modeling of the operator. It would be interest-
ing to study how concept contraction and its properties can be redefined in other
languages.

• When one designs algorithms, there is always room for optimization. Defining
an algorithm to compute the size of a lattice of generalizations can also be of
interest. A further study of the topic could help in this direction and possibly
affect the complexity of the algorithms.

• Throughout the thesis, we have dealt with concept contraction in the setting of an
empty T-box. The adaption of the algorithms that we have designed to apply in
the setting of an acyclic T-Box can be part of future work. The research can also
try to find alternative solutions for the case when the T-Box is cyclic.

• As stated before, the analysis of the algorithms is not officially complete. There-
fore, future work focusing on this aspect can help to understand the behaviour of
the algorithms better.

• The implementation of the approach of the selection function can be an excit-
ing topic to study. We have only presented bits of existing theories and tech-
nologies, but it is evident the connection of the components is not realized. The
discussion on how to compute a certainty degree is always interesting. The im-
plementation of the selection function would make the analysis of the algorithm
conceptContraction complete.

88 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

• We have implemented the concept contraction operator in Python, but even though
it was successful, this is only a prototype of the operator. The implementation of
the operator as an extension to the Ontology editor Protégé 1 would be the next
step for a full and usable implementation.

This section concludes the work of this master’s thesis. The thesis is always open for
improvement and the fore-mentioned ideas tackles some of the main assumptions and
limitation of the thesis.

1https://protege.stanford.edu/

List of Algorithms

1 computeWeakenings(C) . 43
2 computeRemainders(C, D) . 45
3 subsumedBy(C, D) . 49
4 computeLCS(R) . 52
5 conceptContraction(C,D) . 53

89

List of Tables

4.1 Comparison of OMV and MOD frameworks 61

5.1 Description logics and formal ontology notation 71

91

List of Figures

2.1 Architecture of a knowledge representation system based on description
logics. 18

2.2 The generalization lattice for example 1 29
2.3 The generalization lattice for example 2 29

4.1 A black box approach of the selection function 56
4.2 OMV Vocabulary Overview . 58
4.3 MOD Vocabulary Overview . 60
4.4 Concept metadata framework . 62
4.5 A glass-box approach of the selection function 67

5.1 Ontology of EL concepts . 72

93

Literature

[Alchourrón et al., 1985] Alchourrón, C. E., Gärdenfors, P., and Makinson, D. (1985).
On the logic of theory change: Partial meet contraction and revision functions. The
journal of symbolic logic, 50(2):510–530.

[Baader, 2003] Baader, F. (2003). Computing the least common subsumer in the de-
scription logic EL w.r.t. terminological cycles with descriptive semantics. In Inter-
national Conference on Conceptual Structures, pages 117–130. Springer.

[Baader, 2017] Baader, F. (2017). Basic description logics. In [11], pages 43–95.

[Baader et al., 2005] Baader, F., Brandt, S., and Lutz, C. (2005). Pushing the EL en-
velope. In IJCAI-05, Proceedings of the Nineteenth International Joint Conference
on Artificial Intelligence, Edinburgh, Scotland, UK, July 30 - August 5, 2005, pages
364–369.

[Baader et al., 2003] Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., and
Patel-Schneider, P. F., editors (2003). The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge University Press.

[Baader et al., 2008] Baader, F., Horrocks, I., and Sattler, U. (2008). Description logics.
Foundations of Artificial Intelligence, 3:135–179.

[Baader et al., 2018] Baader, F., Kriegel, F., Nuradiansyah, A., and Peñaloza, R.
(2018). Making repairs in description logics more gentle (extended abstract). In
Proceedings of the 31st International Workshop on Description Logics co-located
with 16th International Conference on Principles of Knowledge Representation and
Reasoning (KR 2018), Tempe, Arizona, US, October 27th - to - 29th, 2018.

[Baader et al., 1999] Baader, F., Küsters, R., and Molitor, R. (1999). Computing least
common subsumers in description logics with existential restrictions. In Proceedings
of the Sixteenth International Joint Conference on Artificial Intelligence, IJCAI 99,
Stockholm, Sweden, July 31 - August 6, 1999. 2 Volumes, 1450 pages, pages 96–103.

95

96 LITERATURE

[Berners-Lee et al., 2001] Berners-Lee, T., Hendler, J., Lassila, O., et al. (2001). The
semantic web. Scientific american, 284(5):28–37.

[Brachman, 1985] Brachman, R. J. (1985). Schmolze. JG An overview of the KL-ONE
representation system. Cognifive Science, 9(2):171–216.

[Breitman et al., 2007] Breitman, K. K., Casanova, M. A., and Truszkowski, W. (2007).
Semantic Web: Concepts, Technologies and Applications. NASA Monographs in
Systems and Software Engineering. Springer.

[Ceder, 2010] Ceder, N. R. (2010). The quick python book. pages 3–7. Manning Pub-
lications Co.

[Cormen et al., 2009] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.
(2009). Introduction to Algorithms, 3rd Edition. MIT Press.

[De Giacomo et al., 2006] De Giacomo, G., Lenzerini, M., Poggi, A., and Rosati, R.
(2006). On the update of description logic ontologies at the instance level. In Pro-
ceedings, The Twenty-First National Conference on Artificial Intelligence and the
Eighteenth Innovative Applications of Artificial Intelligence Conference, July 16-20,
2006, Boston, Massachusetts, USA, pages 1271–1276.

[Dutta et al., 2015] Dutta, B., Nandini, D., and Shahi, G. K. (2015). MOD: metadata
for ontology description and publication. In Proceedings of the 2015 International
Conference on Dublin Core and Metadata Applications, DC 2015, São Paulo, Brazil,
September 1-4, 2015, pages 1–9.

[Gärdenfors et al., 1995] Gärdenfors, P., Rott, H., Gabbay, D., Hogger, C., and Robin-
son, J. (1995). Belief revision. Computational Complexity, 63:6.

[Hansson, 1991] Hansson, S. O. (1991). Belief contraction without recovery. Studia
logica, 50(2):251–260.

[Hansson, 2017] Hansson, S. O. (2017). Logic of belief revision. In Zalta, E. N., edi-
tor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford
University, winter 2017 edition.

[Heinz, 2018] Heinz, H. J. (2018). How i lost my owl: Retracting knowledge from el
concepts. pages 8–9.

[Jonquet et al., 2018] Jonquet, C., Toulet, A., Dutta, B., and Emonet, V. (2018). Har-
nessing the power of unified metadata in an ontology repository: The case of agro-
portal. J. Data Semantics, 7(4):191–221.

LITERATURE 97

[Lamy, 2017] Lamy, J. (2017). Owlready: Ontology-oriented programming in python
with automatic classification and high level constructs for biomedical ontologies.
Artificial Intelligence in Medicine, 80:4–7.

[Liu et al., 2006] Liu, H., Lutz, C., Milicic, M., and Wolter, F. (2006). Updating de-
scription logic aboxes. In Proceedings, Tenth International Conference on Principles
of Knowledge Representation and Reasoning, Lake District of the United Kingdom,
June 2-5, 2006, pages 46–56.

[Min et al., 2016] Min, H., Turner, S., de Coronado, S., Davis, B., Whetzel, T.,
Freimuth, R. R., Solbrig, H. R., Kiefer, R. C., Riben, M., Stafford, G. A., Wright,
L. W., and Ohira, R. (2016). Towards a standard ontology metadata model. In Pro-
ceedings of the Joint International Conference on Biological Ontology and BioCre-
ative, Corvallis, Oregon, United States, August 1-4, 2016.

[Palma et al., 2006] Palma, R., Hartmann, J., and Gómez-Pérez, A. (2006). Towards an
ontology metadata standard. European Semantic Web Conference.

[Patel-Schneider, 2004] Patel-Schneider, P. F. (2004). Owl web ontology lan-
guage semantics and abstract syntax, w3c recommendation. http://www. w3.
org/TR/2004/REC-owl-semantics-20040210/.

[Qi and Du, 2009] Qi, G. and Du, J. (2009). Model-based revision operators for termi-
nologies in description logics. In IJCAI 2009, Proceedings of the 21st International
Joint Conference on Artificial Intelligence, Pasadena, California, USA, July 11-17,
2009, pages 891–897.

[Qi et al., 2006] Qi, G., Liu, W., and Bell, D. A. (2006). Knowledge base revision in
description logics. In Logics in Artificial Intelligence, 10th European Conference,
JELIA 2006, Liverpool, UK, September 13-15, 2006, Proceedings, pages 386–398.

[Ribeiro, 2012] Ribeiro, M. M. (2012). Belief revision in non-classical logics. Springer
Science & Business Media.

[Rienstra et al., 2018] Rienstra, T., Schon, C., and Staab, S. (2018). Concept contrac-
tion in the description logic EL.

[Schueler et al., 2008] Schueler, B., Sizov, S., Staab, S., and Tran, D. T. (2008). Query-
ing for meta knowledge. In Proceedings of the 17th International Conference on
World Wide Web, WWW 2008, Beijing, China, April 21-25, 2008, pages 625–634.

[Suchanek et al., 2016] Suchanek, F. M., Menard, C., Bienvenu, M., and Chapellier,
C. (2016). Can you imagine... A language for combinatorial creativity? In The
Semantic Web - ISWC 2016 - 15th International Semantic Web Conference, Kobe,
Japan, October 17-21, 2016, Proceedings, Part I, pages 532–548.

98 LITERATURE

[Swamy, 2014] Swamy, H. K. (2014). Core python applications programming (third
edition) by wesley j. chun. ACM SIGSOFT Software Engineering Notes, 39(3):24.

[Zheleznyakov et al., 2019] Zheleznyakov, D., Kharlamov, E., Nutt, W., and Calvanese,
D. (2019). On expansion and contraction of dl-lite knowledge bases. J. Web Semant.,
57.

Internet Literature

[pyt, 2019] (2019). About python. https://www.python.org/.

[her, 2019] (2019). Hermit reasoner. http://www.hermit-reasoner.com/.

[Dutta and Jonquet, 2019a] Dutta, B. and Jonquet, C. (2019a). Mod-ontology. https:
//github.com/sifrproject/MOD-Ontology.

[Dutta and Jonquet, 2019b] Dutta, B. and Jonquet, C. (2019b). Repository of mod-
ontology. https://www.isibang.ac.in/~bisu/.

[Lamy, 2018] Lamy, J.-B. (2018). The great ontology table.

[(OEG), 2015] (OEG), O. E. G. (2015). Omv - ontology metadata vocab-
ulary. http://mayor2.dia.fi.upm.es/oeg-upm/index.php/en/
downloads/75-omv/index.html.

99

