
UNIVERSITÄT KOBLENZ-LANDAU

DISSERTATION THESIS

Recovering Security in
Model-Based Software Engineering by

Context-Driven Co-Evolution

by
Jens BÜRGER

Approved Dissertation thesis for the partial fulfilment of the
requirements for a

Doctor of Natural Sciences (Dr. rer. nat.)

Fachbereich 4: Informatik
Universität Koblenz-Landau

Chair of PhD Board: Prof. Dr. Maria A. Wimmer
Chair of PhD Commission: JProf. Dr. Mario Schaarschmidt
Examiner and Supervisor: Prof. Dr. Jan Jürjens
Further Examiner: Prof. Dr. Timo Kehrer

Date of the doctoral viva: Oct 31th, 2019

http://www.uni-koblenz.de

iii

Abstract

Software systems have an increasing impact on our daily lives. Many systems pro-
cess sensitive data or control critical infrastructure. Providing secure software is
therefore inevitable. Such systems are rarely being renewed regularly due to the
high costs and effort. Oftentimes, systems that were planned and implemented to
be secure, become insecure because their context evolves. These systems are con-
nected to the Internet and therefore also constantly subject to new types of attacks.
The security requirements of these systems remain unchanged, while, for example,
discovery of a vulnerability of an encryption algorithm previously assumed to be
secure requires a change of the system design. Some security requirements cannot
be checked by the system’s design but only at run time. Furthermore, the sudden
discovery of a security violation requires an immediate reaction to prevent a system
shutdown. Knowledge regarding security best practices, attacks, and mitigations is
generally available, yet rarely integrated part of software development or covering
evolution.

This thesis examines how the security of long-living software systems can be
preserved taking into account the influence of context evolutions. The goal of the
proposed approach, S2EC2O, is to recover the security of model-based software sys-
tems using co-evolution.

An ontology-based knowledge base is introduced, capable of managing com-
mon, as well as system-specific knowledge relevant to security. A transformation
achieves the connection of the knowledge base to the UML system model. By using
semantic differences, knowledge inference, and the detection of inconsistencies in
the knowledge base, context knowledge evolutions are detected.

A catalog containing rules to manage and recover security requirements uses
detected context evolutions to propose potential co-evolutions to the system model
which reestablish the compliance with security requirements.

S2EC2O uses security annotations to link models and executable code and pro-
vides support for run-time monitoring. The adaptation of running systems is being
considered as is round-trip engineering, which integrates insights from the run time
into the system model.

S2EC2O is amended by prototypical tool support. This tool is used to show
S2EC2O’s applicability based on a case study targeting the medical information sys-
tem iTrust.

This thesis at hand contributes to the development and maintenance of long-
living software systems, regarding their security. The proposed approach will aid
security experts: It detects security-relevant changes to the system context, deter-
mines the impact on the system’s security and facilitates co-evolutions to recover
the compliance with the security requirements.

v

Zusammenfassung

Softwaresysteme haben einen zunehmenden Einfluss auf unser tägliches Leben.
Viele Systeme verarbeiten sensitive Daten oder steuern wichtige Infrastruktur, was
die Bereitstellung sicherer Software unabdingbar macht. Derartige Systeme werden
aus Aufwands- und Kostengründen selten erneuert. Oftmals werden Systeme, die
zu ihrem Entwurfszeitpunkt als sicheres System geplant und implementiert wur-
den, deswegen unsicher, weil sich die Umgebung dieser Systeme ändert. Dadurch,
dass verschiedenste Systeme über das Internet kommunizieren, sind diese auch
neuen Angriffsarten stetig ausgesetzt. Die Sicherheitsanforderungen an ein System
bleiben unberührt, aber neue Erkenntnisse wie die Verwundbarkeit eines zum En-
twurfszeitpunkt als sicher geltenden Verschlüsselungsalgorithmus erzwingen Än-
derungen am System. Manche Sicherheitsanforderungen können dabei nicht an-
hand des Designs sondern nur zur Laufzeit geprüft werden. Darüber hinaus er-
fordern plötzlich auftretende Sicherheitsverletzungen eine unverzügliche Reaktion,
um eine Systemabschaltung vermeiden zu können. Wissen über geeignete Sicher-
heitsverfahren, Angriffe und Abwehrmechanismen ist grundsätzlich verfügbar, aber
es ist selten in die Softwareentwicklung integriert und geht auf Evolutionen ein.

In dieser Arbeit wird untersucht, wie die Sicherheit langlebiger Software unter
dem Einfluss von Kontext-Evolutionen bewahrt werden kann. Der vorgestellte
Ansatz S2EC2O hat zum Ziel, die Sicherheit von Software, die modellbasiert en-
twickelt wird, mithilfe von Ko-Evolutionen wiederherzustellen.

Eine Ontologie-basierende Wissensbasis wird eingeführt, die sowohl allge-
meines wie auch system-spezifisches, sicherheitsrelevantes Wissen verwaltet.
Mittels einer Transformation wird die Verbindung der Wissensbasis zu UML-
Systemmodellen hergestellt. Mit semantischen Differenzen, Inferenz von Wis-
sen und der Erkennung von Inkonsistenzen in der Wissensbasis werden Kontext-
Evolutionen erkannt.

Ein Katalog mit Regeln zur Verwaltung und Wiederherstellung von Sicherheit-
sanforderungen nutzt erkannte Kontext-Evolutionen, um mögliche Ko-Evolutionen
für das Systemmodell vorzuschlagen, welche die Einhaltung von Sicherheitsan-
forderungen wiederherstellen.

S2EC2O unterstützt Sicherheitsannotationen, um Modelle und Code zum
Zwecke einer Laufzeitüberwachung zu koppeln. Die Adaption laufender Systeme
gegen Bedrohungen wird ebenso betrachtet wie Roundtrip-Engineering, um Erken-
ntnisse aus der Laufzeit in das System-Modell zu integrieren.

S2EC2O wird ergänzt um eine prototypische Implementierung. Diese wird
genutzt, um die Anwendbarkeit von S2EC2O im Rahmen einer Fallstudie an dem
medizinischen Informationssystem iTrust zu zeigen.

Die vorliegende Arbeit leistet einen Beitrag, um die Entwicklung und Wartung
langlebiger Softwaresysteme in Bezug auf ihre Sicherheit zu begleiten. Der
vorgestellte Ansatz entlastet Sicherheitsexperten bei ihrer Arbeit, indem er sicher-
heitsrelevante Änderungen des Systemkontextes erfasst, den Einfluss auf die Sicher-
heit der Software prüft und Ko-Evolutionen zur Bewahrung der Sicherheitsan-
forderungen ermöglicht.

vii

Acknowledgements

During my work in academia, I had the opportunity to work with people doing
outstanding work in their fields. Countless conversations, workshops, meetings,
debates, and results provide an indescribable amount of contributions to how I see
and work with software engineering.

Firstly, I would like to express my sincere gratitude to my supervisor Prof. Dr. Jan
Jürjens. Jan supported me in all relevant concerns. His relentless endeavor of finding
a solution to a problem that arises has driven me forth many times. I appreciate the
amount of knowledge, time, and patience he supported my PhD with.

I would also like to thank Prof. Dr. Timo Kehrer for immediately agreeing to be the
second correspondent for my thesis. Timo was also available whenever I needed
feedback.

I would like to thank all of my colleagues of the SecVolution project, namely Prof.
Dr. Jan Jürjens, Prof. Dr. Kurt Schneider, Dr.-Ing. Stefan Gärtner, and Dr. Thomas
Ruhroth. I have benefited greatly from your experience in this intense time.

I would like to thank all of the people responsible for the SiLift approach for provid-
ing me support.

Furthermore, I would like to thank Dr. Rainer Buchty. Throughout the years, he
shared his experience and expertise with me in various aspects and provided me
continuous moral support.

I also express my gratitude to Dr. Sven Wenzel, who encouraged me to become a
PhD student. He also provided me helpful recommendations and insights through
my entire time as PhD student.

I would like to thank Dr. Marco Konersmann, Dr. Volker Riediger, Dr. Daniel
Strüber, Shayan Ahmadian, Katharina Großer, Sven Peldszus, and Qusai Ramadan
for proofreading various chapters of my thesis and providing me valuable feedback.

My sincere thanks also go to the PhD board of the University of Koblenz-Landau.

I would like to thank my parents, my parents-in-law, and all of my friends for their
support, and sympathy for my situation.

Last but not least, I would like to thank Beate, who did everything conceivable for
me to be free of any obligations and who cared for me in every successful as well as
unpleasant situation.

I would like to express my gratitude towards the community that has founded and
continuously maintains LATEX, with all of its packages and tooling. Especially when
combined with numerous tools coming from the UNIX and Linux community, these
tools of the trade have been an indispensable part of my daily work at the university
and all the more as a researcher.

Finally, my sincere gratitude goes to all scientists and people who strive to make
our world a better place. Science is not a matter of opinion. Science matters. Do not
let you be pushed aside and continue using evidence-based methods.

viii

Note: This document was built using the LATEX template Masters/Doctoral Thesis1.
The template is licensed under the creative commons license CC BY-NC-SA 3.02.
Version 2.5 (27/8/17) of the template was used.
Version 2.x major modifications were made by Vel (vel@latextemplates.com). The
template is based on a template by Steve Gunn3 and Sunil Patel4.

For this thesis, compared to the template as provided, the title page had to be
adapted to meet the requirements of the local promotion regulations. Starting after
the heading, the text elements in the centered block where reordered accordingly.
The remaining parts of the titlepage block were commented out, the additional
necessary information in the lower left was inserted using a large block.

Regarding the list of abbreviations, the longtable in the .cls file was com-
mented out to use content provided by the acronym package.

In the abstract page design of the .cls file, insertion of Author name and Thesis
title was commented out.

The template modified as described on this page has the same license as the
unmodified version.

1available for download at http://www.LaTeXTemplates.com
2 http://creativecommons.org/licenses/by-nc-sa/3.0/
3http://users.ecs.soton.ac.uk/srg/softwaretools/document/templates/
4http://www.sunilpatel.co.uk/thesis-template/

http://www.LaTeXTemplates.com
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://users.ecs.soton.ac.uk/srg/softwaretools/document/templates/
http://www.sunilpatel.co.uk/thesis-template/

ix

Contents

Abstract iii

Zusammenfassung v

Acknowledgements vii

List of Abbreviations xvii

1 Introduction 1
1.1 Motivation . 1
1.2 Challenges . 3
1.3 Research Method . 4
1.4 Preliminary Publications . 5

2 Research Roadmap 7
2.1 Thesis Structure . 7
2.2 S2EC2O Introduction . 10

2.2.1 Assumptions . 11
2.2.2 S2EC2O Components . 11
2.2.3 S2EC2O Process . 13

3 Background 19
3.1 Long-Living Systems . 19
3.2 Model-based Security Engineering . 19
3.3 Vulnerability Databases . 20
3.4 Ontologies . 20
3.5 Model Queries . 20
3.6 Graph Transformations . 21
3.7 Self-Adaptive Systems . 22
3.8 PhD Context: Research Project SecVolution 22

4 Context Knowledge in Model-Based Security Engineering 27
4.1 Security Context Knowledge . 28
4.2 Modeling Security Context Knowledge 30

4.2.1 Defining the Security Upper Ontology 30
4.2.2 Ontology Layering as Modularized Knowledge Base 33

4.3 Building up the Security Context Knowledge 35
4.3.1 Laws and Regulations . 35
4.3.2 Standards and Guidelines . 36
4.3.3 Attack Scenarios . 36
4.3.4 Vulnerability Databases . 36
4.3.5 Incorporate Security Knowledge into the Security Context

Knowledge . 37
4.3.6 System Level Knowledge . 38

x

4.4 Managing the Knowledge Base . 40
4.4.1 Ontology Queries . 40
4.4.2 Ontology Updating . 41

4.5 Related Work . 42
4.5.1 Compliance Checking of Ontologies 42
4.5.2 Knowledge Elicitation . 42
4.5.3 Security Requirements Elicitation 43

5 Leverage Changes in the System Context for Secure System Design 45
5.1 Detecting and Assessing Knowledge Changes 46
5.2 Semantic Differencing . 47

5.2.1 Security Context Knowledge (SCK) Evolution Example 48
5.2.2 Semantic vs. Atomic Changes . 48
5.2.3 Using SiLift to detect SCK Evolutions 50
5.2.4 Henshin Rule Layout Conventions 51
5.2.5 Complex Edit Rule Example . 53

5.3 Ontology Reasoning . 53
5.3.1 The Challenge of Closed-World Assumption vs. Open-World

Assumption . 54
Narrowing Degrees of Freedom to Increase Expressivity 55

5.3.2 Choosing a Reasoner . 56
5.3.3 Inconsistency with Explanation 57
5.3.4 Inference of Ontology Elements 59

5.4 Related Work . 61

6 Co-Evolve Design-Time Models by Assessing Context Evolution 63
6.1 Leveraging Context Evolution for System Co-Evolution 64
6.2 Initial Compliance to Security Properties 65

6.2.1 Security Context Catalog Meta Model 65
6.2.2 Example of the S2EC2O Initialization Process 68
6.2.3 Check System’s Security prior to Context Evolution 69

6.3 Coordinate Context Evolutions . 70
6.4 Co-Evolution at Design Time . 71
6.5 Semi-automatic Co-Evolution of Models 73
6.6 Related Work . 74

6.6.1 Analyze the Impact of Changes with respect to Co-Evolution . 74
6.6.2 Vulnerability and Attack Management 75

7 Assess Security Compliance During Run Time 77
7.1 Run-Time Monitoring with Run-Time Insights 78
7.2 Specifying Security Properties . 80

7.2.1 Specification of Security Requirements at Model level 80
7.2.2 Security Requirements at Source-Code Level 82
7.2.3 Mapping of Model Level and Source Level Annotations 82
7.2.4 Synchronizing Model and Code 83

7.3 Round-Trip Engineering Approach for Security Monitoring 84
7.3.1 Verification at Run Time . 85
7.3.2 Countermeasures . 89

7.4 Support Security Fixing with Run-Time Insights 90
7.4.1 Run-time Protocol for Subsequent Analysis 91
7.4.2 Addition of Missing Elements 92

xi

7.4.3 Documentation of Security Violations 93
7.5 Related Work . 94

7.5.1 Taking System Context into Account at Run Time 94
7.5.2 Undiscovered Program Activities 95
7.5.3 Security Monitoring . 96

8 Co-Evolve Run-Time Components of Systems 99
8.1 Run-Time Adaptation Approach . 100

8.1.1 Motivating Examples . 100
8.1.2 Adaptation Support at Design Time 102
8.1.3 Adaptation at Run Time . 103

Startup: Pull all Essential Security Requirement (ESR) States . . 103
Push Newly Threatened ESRs . 104
Reset ESR State after Threat is repealed 104

8.1.4 Example of Adaptation Interaction 105
8.1.5 Traceability of Adaptations . 106

8.2 Related Work . 106
8.2.1 Application Behavior Adaptation 106
8.2.2 Development of Adaptive Systems 107
8.2.3 Security-Aware Systems at Run Time 108

9 Prototypical Implementation 109
9.1 Architecture Overview . 109

9.1.1 System Model Design . 113
9.1.2 Management of Security Context Knowledge 113
9.1.3 Employing Reasoners via API . 113
9.1.4 Realizing specific Implementations for Ecore Objects 114

9.2 Relation of S2EC2O’s Initialization Process and Realized Prototype
Artifacts . 115
9.2.1 Initialization Process: Make System S2EC2O aware 115
9.2.2 Initialization Process: Initial Compliance 119
9.2.3 Initialization Process: Run-Time Monitoring 119

9.3 Relation of S2EC2O’s Delta Process and Realized Prototype Artifacts . 121
9.3.1 Delta Process: Determine Context Evolution from SCK 121
9.3.2 Delta Process: Apply Co-Evolution Steps 122
9.3.3 Delta Process: Generating Run-time Findings 124

Detecting System Evolution Automatically 126
9.3.4 Support for Run-Time Adaptation 126
9.3.5 Review of the Prototype’s Unique Features 127

10 Case Study: Applying S2EC2O to iTrust 129
10.1 Introduction to iTrust . 129

10.1.1 Architecture of iTrust . 130
10.1.2 Metrics of iTrust . 132

10.2 Introduction to Security-Related Context evolutions 132
10.3 Classification and Relevance of Vulnerabilities 134
10.4 S2EC2O Application Examples . 135
10.5 Example 1: Access Control . 136

10.5.1 Initial Compliance . 136
10.5.2 Context Evolution and Vulnerability 139
10.5.3 Security Maintenance and Co-Evolution 140

xii

10.6 Example 2: Privacy by Encryption . 143
10.6.1 Initial Compliance . 143
10.6.2 Context Evolution and Vulnerability 146
10.6.3 Security Maintenance and Co-Evolution 146

10.7 Example 3: Data Protection by Locking 149
10.7.1 Initial Compliance . 149
10.7.2 Context Evolution and Vulnerability 150
10.7.3 Security Maintenance and Co-Evolution 151

10.8 Example 4: Communication using Insecure Encryption 153
10.8.1 Initial Compliance . 154
10.8.2 Context Evolution and Vulnerability 156
10.8.3 Security Maintenance and Co-Evolution 157

10.9 Example 5: Secure Dependencies . 161
10.9.1 Initial Compliance . 161
10.9.2 Context Evolution and Vulnerability 162
10.9.3 Security Maintenance and Co-Evolution 163

10.10Performance Observations . 163

11 Contribution to Research 165
11.1 Review of Research Question 1 . 165
11.2 Review of Research Questions 2 and 3 167
11.3 Review of Research Question 4 . 168
11.4 Review of Research Question 5 . 168

12 Conclusion 169
12.1 Contributions . 170
12.2 Assumptions and Limitations . 173

12.2.1 Generalizability Considerations 173
12.2.2 Scalability Considerations . 173
12.2.3 Limitations of the Case-Study Results 173
12.2.4 Support for Additional Security Properties 174
12.2.5 Support for Further Programming Languages 175
12.2.6 Support for Further Software Engineering Methods 175

12.3 Future Work . 175
12.3.1 Regard Evolution of ESRs and SMRs 175
12.3.2 Share security and co-evolution knowledge of S2EC2O pub-

licly among projects . 176
12.3.3 Consider Implementation-Specific Security Vulnerabilities . . . 176
12.3.4 Investigate Influence of Security Co-Evolutions on Functional

Requirements . 177

A Preliminary Publications 179

Bibliography 187

xiii

List of Figures

2.1 This thesis’ research questions related to typical artifacts in secure
software engineering . 9

2.2 Relationship of typical artifacts in secure software engineering to evo-
lution and co-evolution . 10

2.3 Overview of S2EC2Os structure . 12
2.4 The initialization process of S2EC2O . 14
2.5 The delta handling process of S2EC2O 16

3.1 Henshin model query to search a state in a UML state chart by its name 21
3.2 Overview of the SecVolution approach 23
3.3 Overview of the SecVolution@Run-time envisioned approach 24

4.1 Artifacts and activities typically used in model-based software engi-
neering . 27

4.2 Example of an ontology to model a secure communication 29
4.3 Ontology of security concepts and their relationships 32
4.4 Example of Security Context Knowledge to provide an encryption al-

gorithm . 35
4.5 Overview of active learning using pool-based sampling 38
4.6 UML profile to annotate UMLsec models for the SCK 39
4.7 Example of UML annotations to support bridging to the SCK 39

5.1 Relationship of evolution and co-evolution with regard to model-
based security engineering . 46

5.2 Overview of different approaches accessing the Security Context
Knowledge in S2EC2O . 47

5.3 Example of evolving Security Context Knowledge: An encryption al-
gorithm is discovered to be vulnerable. 48

5.4 Comparison of atomic change log and pattern-based change log:
Atomic change operations can be presented by semantic change oper-
ations. 49

5.5 The SiLift process . 50
5.6 Example of complex edit rule describing addition of a Threat to an

existing Encryption of the Security Context Knowledge 52
5.7 Example of an ontology modeling access restriction 58
5.8 Screenshot of Protégé explaining the ontology inconsistency 58
5.9 Example of ontology used to infer knowledge 59
5.10 Protégé screenshots showing inferred knowledge 60

6.1 Concepts used in the co-evolution approach and their relation 64
6.2 Meta model of the Security Context Catalog 66
6.3 Example of an Essential Security Requirement 69
6.4 Meta model of delta information in S2EC2O 70

xiv

7.1 Approach to realize run-time monitoring of security properties speci-
fied at the model level . 78

7.2 Example of UMLsec secure dependency application 81
7.3 Structure of the run-time monitoring approach regarding software de-

velopment abstraction layers . 84
7.4 Events monitored at run time . 86
7.5 Ecore meta model for run-time protocols in S2EC2O 91
7.6 Deployment and manifestation of classes with evolution 93
7.7 sequence diagram generated by S2EC2O run time 94

8.1 Overview of the S2EC2O run-time adaptation approach 100
8.2 UML profile to support safe mode adaptations 103
8.3 Sequence diagram showing adaptation interaction of the example . . . 105

9.1 Overview of the S2EC2O tool’s architecture 111
9.2 Excerpt from Figure 6.2 to illustrate relation between SMR and

SMRExecutable classes . 114
9.3 S2EC2O initialization process: involved tasks 1-5 116
9.4 Components of the S2EC2O tool relevant for initialization of a S2EC2O

aware system . 117
9.5 Begin of initialization wizard: Choice of ESRs 117
9.6 S2EC2O initialization wizard: choose details from SCK 118
9.7 S2EC2O initialization process: involved tasks 6 and 9 119
9.8 S2EC2O initialization process: involved tasks 7-11 excluding 9 119
9.9 S2EC2O initialization wizard: provide information of the system to

instantiate run-time monitor . 120
9.10 Components of the S2EC2O tool relevant for delta handling process . . 121
9.11 S2EC2O delta handling: involved tasks 1, 2, 6, and 7 122
9.12 S2EC2O Delta Wizard: choice of alternatives 123
9.13 S2EC2O delta handling process: involved tasks 8 and 9 123
9.14 S2EC2O delta handling process: involved tasks 3, 4, and 5 124
9.15 Components of the S2EC2O tool relevant for run-time monitoring . . . 125

10.1 Package tree of iTrust Java classes . 131
10.2 Security Context Catalog entry for Access Control 136
10.3 SCK excerpt to model access control . 137
10.4 Excerpt of iTrust class PatientDAO . 138
10.5 Excerpt of iTrust class PatientBean . 138
10.6 SCK excerpt: relations of getReligion to other SCK elements 139
10.7 Reasoner explanation for SCK inconsistency 140
10.8 Henshin rule to search ⟨⟨SCK ⟩⟩ annotated operations 141
10.9 Henshin rule to alter ⟨⟨SCK ⟩⟩ annotations 141
10.10The class PatientBean in its evolved state 142
10.11Security Context Catalog entry for Privacy by Encryption 142
10.12SCK excerpt to model privacy requirements 144
10.13iTrust class ViewExerciseEntryAction to provide patient exercise data 145
10.14SCK excerpt: result of transformation from the system model to the

SCK . 145
10.15Inferred knowledge (yellow background) after evolution of SCK 147
10.16Henshin rule to search classes annotated with ⟨⟨encryptedPersistence ⟩⟩ . . 148
10.17Henshin rule for adding ⟨⟨encryptedPersistence ⟩⟩ to a specific class 148

xv

10.18Co-evolved class ViewExerciseEntryAction with added annotation . 148
10.19Security Context Catalog entry for Data Protection 149
10.20SCK excerpt showing a lockable data entity 150
10.21SCK excerpt showing a new lockable data entity according to the law

change . 150
10.22SiLift rule to detect addition of Lockable requirement in the SCK . . . 151
10.23Henshin model query to search for ⟨⟨ lockable ⟩⟩ annotated classes 152
10.24Henshin rule to add ⟨⟨ lockable ⟩⟩ to a given class 153
10.25Co-evolved class PrescriptionsDAO with added ⟨⟨ lockable ⟩⟩ 153
10.26Security Context Catalog entry for secure communication 154
10.27SCK excerpt describing available encryption algorithms 155
10.28Deployment diagram for iTrust with ⟨⟨secure links ⟩⟩ 156
10.29SCK evolution incorporating threatened RC4 algorithm 157
10.30SiLift complex edit rule to detect addition of a new threat targeting an

encryption algorithm . 158
10.31Henshin rule to query all ⟨⟨encrypted enc ⟩⟩ annotated communication

paths . 159
10.32Henshin rule to alter ⟨⟨encrypted enc ⟩⟩ annotations 159
10.33Evolved deployment diagram of iTrust with ⟨⟨secure links ⟩⟩ 160
10.34Security Context Catalog entry for secure dependencies 161
10.35Classes EditPrescriptionsAction and PrescriptionsDAO annotated

according to ⟨⟨secure dependency ⟩⟩ . 162

xvii

List of Abbreviations

API Application Programming Interface

BPMN Business Process Model and Notation

CAPEC Common Attack Pattern Enumeration and Classification

CVE Common Vulnerabilities and Exposures

CVSS Common Vulnerability Scoring System

CWA closed world assumption

CWE Common Weakness Enumeration

DAO Database Access Object

DL Description Logic

EMF Eclipse Modeling Framework

ESR Essential Security Requirement

GDPR General Data Protection Regulation

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

IRI Internationalized Resource Identifier

JavaEE Java Enterprise Edition

JSON JavaScript Object Notation

JSP JavaServer Pages

JVM Java Virtual Machine

LCW local closed world

MOF Meta Object Facility

NLP Natural Language Processing

NVD National Vulnerability Database

OCL Object Constraint Language

OWA open world assumption

OWASP Open Web Application Security Project

OWL Web Ontology Language

xviii

PDE Plug-in Development Environment

RDF Resource Description Framework

RFC Request for Comments

RBAC Role-based access control

SCK Security Context Knowledge

SLR Systematic Literature Review

SMM Security Maintenance Model

SMR Security Maintenance Rule

SQL Structured Query Language

TGG Triple Graph Grammar

TLS Transport Layer Security

UID unique ID

UML Unified Modeling Language

URI Uniform Resource Identifier

UNA unique name assumption

XMI XML Metadata Interchange

1

Chapter 1

Introduction

1.1 Motivation

Software and especially software-defined systems play an increasingly important
role in our daily lives. This is not least made possible by Internet technologies,
which build the core of an ongoing pervasion of networks. For example, even con-
ventional communication networks are replaced by solutions built upon software-
driven and Internet technologies: Deutsche Telekom, the largest carrier of Europe,
has announced to switch off their current phone network based on ISDN technolo-
gies until 2018 and is currently migrating to SIP- and IP-based solutions. At the time
of writing, the process is still ongoing. Moreover, mobile phone networks are at
present also migrated to IP-based technologies [GSM].

Telephony is a part of critical infrastructure, as it ensures reachability of police,
paramedics and firefighters. The phone network is also used for a number of mea-
suring and control tasks. Besides of fire-alarm systems and burglar alarm, it is vital
for industry plants as well as pumping stations in areas where the ground-water
level needs to be regulated.

Contemporary innovations like smart cities and Internet of Things [AIM10] also
reinforce the pervasion of our daily lives with software systems. IoT devices can
be considered embedded systems, in other words computers embedded into a sur-
rounding system. The user only interacts with the surrounding system and not with
the computer directly [Mar03].

Thus, humans who have little or even no direct interaction with these systems
rely on their security. Especially regarding systems providing (critical) infrastruc-
ture, the persons affected have no choice if they want to use a specific system nor are
they able to patch affected software components. Many of these systems can have
significant harmful impact on people’s lives, in case their security is compromised.

Systems typically are designed according to requirements. For security-relevant
properties, security requirements are elicited. Systems used in critical domains obvi-
ously need to be compliant with their security requirements. The compliance needs
to be preserved over a long period of time, typically more than 10 years [VJL+14].
During such a timespan, it seems even more likely that a system needs to be adapted
to an evolving environment. Changing laws and regulations as well as encryption
methods discovered to be insecure are examples of changes to the environment. The
longer the timespan, the more likely it becomes that such fundamental changes be-
come necessary. Some security issues in particular cannot be foreseen at system
design time and are considered unknown unknowns [MH05]).

With regard to smart cities and IoT, it can be assumed that critical systems will
increasingly be used in an networked manner and thus will be confronted with a
continuously changing environment perpetually. Moreover, critical systems may be
required to have virtually no downtime. In contrast to that, security vulnerabilities

2 Chapter 1. Introduction

can be discovered all of a sudden. Regarding the fact that also critical systems are
networked and may be even accessible over the Internet, they are vulnerable to new
attacks immediately. Thus, a full-fledged development needs too much time and an
immediate reaction to the new threat is required.

Knowledge about security vulnerabilities, mitigations, and best practices, is
available and, in many cases, publicly. For example, knowledge in terms of ex-
pertise of security white hats and formal recommendations like the Grundschutzkat-
alog [Bun] of the Federal Office for Information Security is available. Moreover,
platforms managed by the software engineering community exist. For example,
the MITRE corporation hosts the popular Common Vulnerabilities and Exposures
(CVE) [MITb] database, containing vulnerabilities for concrete software products,
as well as the Common Weakness Enumeration (CWE) [MIT17b], being a database
for common weaknesses in software development. However, security knowledge
is available but distributed among various sources and abstraction levels, ranging
from expert knowledge to semi-formal databases. Technical mechanisms for pre-
serving security must be complemented by procedures and cognitive support for
human experts who are willing to share their knowledge; they must be empowered
to do so at the least effort possible.

The question arises, how to leverage security knowledge to preserve a system’s
security over its period of application. According to the 2017 Global Information
Security Workforce Study, commissioned by the Information System Security Cer-
tification Consortium (ISC)2, Europe will face a shortfall of 350 000 cyber-security
professionals by the year 2022 [Int17]. For example, even organizations like the Euro-
pean Telecommunications Standards Institute (ETSI), only employ external security
experts for a limited time [HIK+10]. Thus, security experts are few in number and it
is reasonable to support them to become as efficient as possible.

Another possibility for dealing with security maintenance is to make use of the
programmer community as a whole. For example, distributed systems communicat-
ing over the Internet make use of a small number of core technologies on lower com-
munication layers, for example SSL. Moreover, communication interfaces or APIs
of services like REST and SOAP often rely on HTTP(S). For all these wide-spread
technologies, open source implementations exist. The principle behind open source
software regarding security is, that the public availability of the source code enables
the community to publicly audit the code. This should ease the process to find and
fix security issues, which in turn leads to secure software. On closer inspection of
numerous security issues in the recent past, for example, the OpenSSL bug Heart-
bleed, it is obvious that the mere availability of source code for audits is no guarantee
that it actually will take place. Thus, it is no protection against deployment of open
source implementations containing severe security issues [DKA+14].

Ultimately, development and maintenance of secure software often is conducted
without support of approaches that facilitate compliance to security requirements
already at design phase and thus support a correct implementation. This does not
only hold for the communications with other systems regarding attacks to interfaces,
but also the direct user interaction, when evolving privacy regulations enforce a re-
interpretation of roles and access rights [BGR+15], for example. It means in effect
that often not the security requirements of a system itself change, but the knowledge
about the environment evolves [RGB+14a].

There is demand for supporting security experts in the maintenance of long-
living software systems. Manually gathering knowledge is time-consuming
and the manual inspection of systems to assess impact of context changes
to the system is error-prone due to the complexity of today’s systems.

1.2. Challenges 3

We want to tackle the above-mentioned topics with an approach we define as research
objective as follows:

We want do develop an approach that supports maintaining the se-
curity of long-living software. Security-relevant knowledge from various
sources, in various forms, and at various abstraction levels shall be cap-
tured and managed. The knowledge shall be used by the approach to
assess, if the security of a given system is compromised, given a change
of the security context knowledge. If this is the case, the approach shall
support revising the system, so that it fulfills its security requirements
again.

In the next section, we will refine the research objective by deriving a number of
challenges.

1.2 Challenges

In the previous section, we motivated the topics this thesis deals with and formu-
lated an overall research objective. In this section, we refine this objective. We thus
enumerate the following challenges:

C1: Leverage evolution of context knowledge. The context of a software system
changes continuously. Examples of knowledge sources that are relevant for
the security design of a software system are laws, ordinary requirements and
vulnerability databases like CWE, CVE, and the Open Web Application Security
Project (OWASP) [MIT17b, MITb, Thed]. It is vital having access to as much
of this knowledge as possible to raise the probability noticing a change that
has negative impact to the security compliance of the software system under
consideration. Thus, knowledge is principally available but needs to be han-
dled. While approaches exist to build a secure software system from scratch
regarding the current security knowledge, repeating a full security analysis
after every change of the security context knowledge that may have no im-
pact on the system at all, wastes resources. With having evolution information
at hand, a security analysis can concentrate on the knowledge that changed,
avoiding repeating the whole security analysis.

C2: Infer concrete security requirements. A multitude of regulations can be
sources for security requirements. Apart from explicit security requirements
as part of the ordinary system requirements, there may be regulations coming
from the domain the system is to be used in. For example, for systems used
in the medical sector, a number of laws need to be followed. For systems pro-
cessing personal data, the (national) privacy laws need to be followed. Based
on the multitude of regulations, vulnerabilities, and mitigations, it needs to
be decided which concrete security requirements are necessary to be fulfilled
regarding the current security knowledge.

C3: Assess impact of context evolution to a given system. Evolution of the context
knowledge can have impact on the system’s security. The current system de-
sign needs to be inspected with regard to the evolved knowledge. The context
evolution information is many-faceted and may be described on different ab-
straction levels. For example, a rather abstract context evolution information
may also be relevant for a rather concrete part of the system, for example a

4 Chapter 1. Introduction

part of the source code. Thus, information given in various levels of abstrac-
tion needs to be bridged.

C4: Co-evolve system design to preserve its security. In case the system is insecure
regarding the evolved knowledge, it needs to be co-evolved so that the secu-
rity requirements are preserved. The functionality of the system needs to be
untouched.

C5: Assess system’s security during run time. There are security requirements
which typically are checked or can only be monitored during run time. This
especially is relevant when the behavior of the code depends on data stored
in a database. Another reason which makes run-time monitoring necessary
is when a full static code analysis cannot be done because the source code of
used frameworks is not available. Moreover, run-time monitoring can gain
insights regarding suspicious behavior of the system. This information needs
to be linked with the security context knowledge at run time to judge, if the
system fulfills its requirements regarding the current knowledge.

C6: Adapt the system to preserve security during run time Software is often engi-
neered using model-based techniques, but in many cases, the running code is
the result of using subsequent manual steps after automatic transformations.
Thus, the executable system often cannot be built automatically from the sys-
tem model. A pure co-evolution of the model, making a whole implementation
cycle necessary, whilst the production system is shut down may not be appro-
priate. Instead, a mechanism is necessary that is able to adapt the system’s se-
curity behavior during run time and without need for extensive manual code
adaptations.

1.3 Research Method

The presumably most widespread research method in computer science is called
constructive design, also known as exploratory research [HMPR04, Crn10]. Appli-
cation of the method begins with defining a relevant problem. A solution is con-
structed using theoretical foundations. The solution is then evaluated in dimensions
that are appropriate for the problem or the domain the solution shall be applied re-
spectively. Evaluation aspects are, for example, performance of an approach as well
as accuracy or completeness of the produced results.

The motivation of this thesis puts emphasis on the relevance of problems oc-
curring with long-living systems. Regarding the aspects of security in long-living
systems, S2EC2O is related to the research project SecVolution and its successor. We
give details in Section 3.8. Moreover, as argued in Section 1.4, S2EC2O is related
to numerous peer-reviewed publications worked out in context of the SecVolution
project.

S2EC2O was constructed in an exploratory way. We first considered related work
of the relevant domains to determine the state of the art and identify a gap in re-
search as shown by the challenges we presented in the preceding section. After that,
we developed an approach to close the research gap and investigated its applicabil-
ity by means of well-defined scenarios. For this step, we inferred concrete research
questions from the challenges (see Section 2.1). We generalized S2EC2O and evalu-
ated it in a case study targeting iTrust, a system with reasonable complexity. As we
argue in Chapter 10, iTrust can be considered a long-living system.

1.4. Preliminary Publications 5

1.4 Preliminary Publications

This thesis builds upon preliminary work, mostly in conjunction with project mem-
bers of the SecVolution project. This section enumerates them. All publications are
joint effort. A detailed discussion of the publications, emphasizing the contributions
of this thesis’ author, follows in Appendix A. We give an overview of the approach
presented in this thesis, S2EC2O, in Section 2.2.

• Jens Bürger, Jan Jürjens, and Sven Wenzel: Restoring security of evolving soft-
ware models using graph transformation.
In: STTT, 17(3): 267–289, 2015. [BJW15]

• Thomas Ruhroth, Stefan Gärtner, Jens Bürger, Jan Jürjens, and Kurt Schneider:
Versioning and evolution requirements for model-based system development.
In: CVSM 2014,
volume 34/2 of Softwaretechnik-Trends, pages 20–24, 2014. [RGB+14a]

• Stefan Gärtner, Thomas Ruhroth, Jens Bürger, Kurt Schneider, and Jan Jürjens:
Maintaining requirements for long-living software systems by incorporating
security knowledge.
In: RE 2014. IEEE, 2014. [GRB+14]

• Jens Bürger, Jan Jürjens, Thomas Ruhroth, Stefan Gärtner, and Kurt Schneider:
Model-based security engineering with UML: Managed co-evolution of secu-
rity knowledge and software models.
In: FOSAD 2012/2013 Tutorial Lectures, volume 8604 of LNCS, pages 34–53,
2014. [BJR+14]

• Thomas Ruhroth, Stefan Gärtner, Jens Bürger, Jan Jürjens, and Kurt Schneider:
Towards adaptation and evolution of domain-specific knowledge for main-
taining secure systems.
In: PROFES 2014, volume 8892 of LNCS, pages 239–253. Springer, 2014.
[RGB+14b]

• Stefan Gärtner, Jens Bürger, Kurt Schneider, and Jan Jürjens: Zielgerichtete An-
passung von Software nach der Evolution von kontextspezifischem Wissen.
In: 1st Collaborative Workshop on Evolution and Maintenance of Long-Living Sys-
tems (EMLS), 2014. [GBSJ14]

• Jens Bürger, Stefan Gärtner, Thomas Ruhroth, Johannes Zweihoff, Jan Jürjens,
and Kurt Schneider: Restoring security of long-living systems by co-evolution.
In: COMPSAC 2015. IEEE Computer Soc., 2015. [BGR+15]

• Jens Bürger, Daniel Strüber, Stefan Gärtner, Thomas Ruhroth, Jan Jürjens, and
Kurt Schneider: A framework for semi-automated co-evolution of security
knowledge and system models.
In: Journal of Systems and Software, Elsevier, 2018 [BSG+18].

• Cyntia Montserrat Vargas Martinez, Jens Bürger, Fabien Viertel, Birgit Vogel-
Heuser, and Jan Jürjens: System evolution through semi-automatic elicitation
of security requirements: A Position Paper.
In: 3rd IFAC Conference on Embedded Systems, Computational Intelligence and
Telematics in Control (CESCIT), 2018 [VBV+18].

6 Chapter 1. Introduction

• Jan Jürjens, Kurt Schneider, Jens Bürger, Fabien Patrick Viertel, Daniel Strüber,
Michael Goedicke, Ralf Reussner, Robert Heinrich, Emre Taşpolatoğlu, Marco
Konersmann, Alexander Fay, Winfried Lamersdorf, Jan Ladiges, Christopher
Haubeck: Maintaining Security in Software Evolution.
In: Managed Software Evolution (to appear; Springer Open).
Editors: Ralf Reussner, Michael Goedicke, Wilhelm Hasselbring, Birgit Vogel-
Heuser, Jan Keim, and Lukas Märtin.

• Sven Peldszus, Jens Bürger, Jan Jürjens: Reactive Security Monitoring of Java
Applications with Round-Trip Engineering.
Under review [PBJ19].

7

Chapter 2

Research Roadmap

The approach developed as part of this thesis is called S2EC2O (pronounced Secco),
an acronym for Secure Software in Evolving Contexts via CO-evolution. The goal
of this approach is to contribute to the research questions we will define hereinafter.

2.1 Thesis Structure

Considering the challenges that we discussed in Section 1.2, we determine that an
approach is needed that monitors its environment, analyzes possible impact to the
system, and carries out necessary adaptation actions. This basically resembles the
MAPE-K [ARS15] loop (Monitor, Analyze, Plan, Execute, plus Knowledge), we will
also take up again at the end of this section. Moreover, MAPE-K systems make their
decisions based on algorithms and/or rules [ARS15]. We thus identify the following
research questions regarding a rule-based system. We briefly take up the challenges
these research questions relate to:

RQ1: How can changes in security-relevant context knowledge be used to assess the impact
on the system?

The security-relevant knowledge of the system’s context can change in various
ways and at various abstraction levels. The question focuses on how these di-
verse and non system-specific information can be used to assess the impact of
a context evolution to the system. This research question tackles the challenges
C1 and C3.

RQ2: How can rules be formalized that are able to preserve the system’s security given
knowledge evolution?

Besides security-relevant knowledge that describes vulnerabilities and miti-
gations, there is also information regarding best practices. Especially when
a system needs to be evolved to fix a vulnerability, the question arises what
is the current state-of-the-art with no known threats to fulfill the security re-
quirement in question. This research question tackles the challenges C1 and
C2.

RQ3: How can these rules be used to carry out a semi-automatic co-evolution given a context
evolution?

In case a context evolution has been discovered and it has been determined
that the system under consideration needs to be fixed, the question arises, how
this can be accomplished. A set of co-evolution rules needs to be universal so
that it is not tailored against a specific system, but, of course, it needs to be
applied to a specific system. Eventually, user support is necessary. It needs to

8 Chapter 2. Research Roadmap

be decided when to carry out operations automatically and when to rely on
the user. This research question directly relates to challenge C4.

RQ4: How can information coming from the system execution be used, to assess the quality
of the security requirements compliance during run time?

There are security requirements that cannot be checked at design time. More-
over, information coming from the system execution needs to be associated
with the current security knowledge to assess, if the current behavior is suspi-
cious. This research question directly relates to challenge C5.

RQ5: How can information gathered at run time be used to adapt the system when the con-
text evolves, avoiding shutdown or additional design cycle?

The design documents of a software system do not represent the running code.
For example, in model-based software engineering, the system model is the
core design artifact. Often, the code is not fully generated from the model but
adapted manually before it is deployed. In this case, a co-evolution carried
out at the system design does not come into effect until the code itself is al-
tered. Especially regarding systems in critical domains, a shutdown may be
unwanted. Instead, an immediate reaction altering the behavior of the run-
ning system is required. The adapted running system and co-evolved system
design need to be put in sync again later on. This research question directly
relates to challenge C6.

Research Q. Challenges Chapters
RQ1 C1, C2 Chapter 4 & 5
RQ2 C1, C3 Chapter 6
RQ3 C4 Chapter 6
RQ4 C5 Chapter 7
RQ5 C6 Chapter 8

TABLE 2.1: Relation between research questions and challenges as
well as chapters covering them

Table 2.1 lists all research questions and provides an overview, which challenge
is addressed by which research question and is handled in which chapter.

We put the research questions in relation to a software engineering approach.
Figure 2.1 relates the research questions realizes this using model-based software
engineering as reference model, being the focused engineering approach in this the-
sis.

The gray, filled arrows sketch the typical process flow. On the vertical axis, the
typical flow of artifacts is recognizable: The first artifact to be build are requirements.
From the requirements, models are created. As a subsequent step, source code is
build (either by generation, manual creation or a mixture of both). Ultimately, the
system can be executed, which is the run-time phase. Regarding security knowl-
edge, in this simplified view, it contributes to requirements elicitation and finds its
way into the system design (i.e. models).

In the following, an overview of S2EC2O is given, referring in detail which part
of the approach treats which research question.

2.1. Thesis Structure 9

FIGURE 2.1: This thesis’ research questions related to typical artifacts
in secure software engineering

10 Chapter 2. Research Roadmap

Time

Security Context Knowledge (SCK)

System Model

ev SCK

ev Model

C
o-

E
vo

lu
tio

nSecurity
Analysis

Security
Analysis

ESRs ESRs

Executable Code

ev Code

A
da

pt
at

io
n

Security
Monitor

Security
Monitor

In
si

gh
t

SCK SCK

FIGURE 2.2: Relationship of typical artifacts in secure software engi-
neering to evolution and co-evolution

2.2 S2EC2O Introduction

Figure 2.2 shows the relation of evolution and co-evolution regarding the design
time and also the system in execution.

S2EC2O’s goal is to make a software system aware of its context and react to
context evolutions that put the security of a software system at stake. The Security
Context Knowledge (SCK) guides the development of a secure software system. Using
mature security analysis techniques, it is possible to assure that a system design meets
all security requirements (shown by the green ticks). We call the core of a typical
security requirement, detached from technical details, Essential Security Requirement
(ESR) in this work.

Whenever an evolution of the context occurs (evSCK), this means that the concrete
implementation of security requirements in the given system may not be sufficient
regarding the altered context anymore. Thus, a co-evolution of the system design
may be necessary (evModel), so that it passes the security analysis again afterwards.

S2EC2O acknowledges the fact that the system design may be too abstract to gen-
erate executable code directly from it. Instead, S2EC2O supports proposing security
monitors, by utilizing Security Context Knowledge that couple the executable code
and model loosely and in a lightweight manner.

As soon as the system context evolves (evSCK) or the system design needs to be
adapted (evModel), the running system may still be vulnerable. Many factors can in-
fluence the time needed until a security-fixed release can be deployed. To avoid a
system shutdown, it may be reasonable to adapt the behavior of the running system
as immediate reaction. Moreover, certain security properties cannot be checked stati-
cally. For both factors, run-time adaptation is appropriate, thus altering the behavior

2.2. S2EC2O Introduction 11

of the running code (evCode). Run-time monitors, using their findings, can provide
valuable insights about the current compliance with the security requirements.

In the succeeding sections, we will state the assumptions S2EC2O makes and we
will present the components S2EC2O consists of.

2.2.1 Assumptions

S2EC2O is intended to be used by software engineers who are responsible for the
management of a software system’s security. Thus, we assume background knowl-
edge in the domain of software security and thus call the user of the approach secu-
rity expert. We use the terms security expert, S2EC2O user and developer synonymously.

S2EC2O’s knowledge base is built upon an OWL ontology. Thus, the user should
have experience in managing a knowledge base using this semi-formal representa-
tion.

As we discussed in Section 2.1, S2EC2O targets model-based security engineer-
ing. It currently can be used for systems modeled using the Unified Modeling Lan-
guage (UML).

The programming language specific parts of S2EC2O currently support Java. The
prototypical implementation, the S2EC2O tool, is also written in Java.

S2EC2O’s goal is to assess evolutions of a system’s context that has been initially
secure, regarding the question if co-evolution operations need to be issued. Respec-
tive approaches that are used to design secure systems are often referred to follow
the security by design principle. How to design a system that is initially secure is not
focus of this work. We will refer to preliminary and related work as well as tool
support for that to realize.

2.2.2 S2EC2O Components

Figure 2.3 depicts the structure of S2EC2O. It tackles all phases of a typical model-
based software engineering process. In the remainder, we introduce the compo-
nents, relate them to the research questions and indicate which research question is
covered by which chapter.

The light gray rectangle comprises the components of S2EC2O, while all remain-
ing components resemble sources for security knowledge (vulnerability databases)
and the accompanied software system (UMLsec model, System@Run-Time).

S2EC2O incorporates security requirements as given by the developer on one
hand, called Essential Security Requirements (ESRs), and external knowledge
sources like vulnerability databases on the other hand. ESRs provide terms for ba-
sic, abstract, technology-independent security needs. Finally, knowledge about the
given software system is also considered. These three sources of knowledge are
gathered and managed in the Security Context Knowledge (SCK). The knowledge is
represented by an ontology. For example, it captures current security-relevant knowl-
edge like which encryption algorithms and key lengths are considered to be secure.
The knowledge can be queried using standardized querying languages. Differences
in the knowledge can be discovered using differencing approaches, for example.

Chapter 4 elaborates on how to build a knowledge base for security knowl-
edge to capture various aspects, covering common security knowledge, threats and
domain- as well as system-specific knowledge to bring these together.

Whenever a change to the knowledge occurs (Delta SCK), this triggers an investi-
gation of the system model. The security impact is assessed. The exploitation as well
as analysis of knowledge differences relate to RQ1 and are handled in Chapter 5.

12 Chapter 2. Research Roadmap

FIGURE 2.3: Overview of S2EC2O’s structure

Using the Security Context Knowledge, annotations to further support the soft-
ware engineering process can be inferred. S2EC2O focuses on but is not limited to
UMLsec, a security extension to the Unified Modeling Language (UML).

To check if the knowledge evolution led to the fact that the model of the system
is now insecure and needs to be co-evolved, the delta of SCK is used as a trigger for
a set of rules, the Security Maintenance Rules (SMRs). In case a model co-evolution is
necessary, it is carried out. This, for instance, can be realized using model and/or
graph transformation techniques.

The concept of Security Maintenance Rules and their application relates to RQ2
and RQ3, which are covered in Chapter 6.

S2EC2O also covers the operation phase of a software system by taking run time
aspects into account. In many cases, executable code is not fully generated out of
models, but manual adaptations to the source code are made. S2EC2O is designed
in a way that acknowledges this fact, so that model and code can be traced using
annotations that are related to ESRs.

There are security properties that cannot be fully checked statically, particularly
when considering the execution context of a system. For example, code can be
loaded dynamically during run time, or the system’s behavior can highly depend
on a user’s input. Thus, S2EC2O also proposes run-time monitoring to observe a
system during its execution so that this specific run-time data can be taken into ac-
count at run time.

2.2. S2EC2O Introduction 13

Monitoring is realized by a run-time component (S2EC2O run time). This com-
ponent monitors the system and reports findings during run time to the S2EC2O
service component (S2EC2O service), which then uses the information to eventually
trigger design-time or run-time co-evolutions. This is accomplished by providing
additional run-time aware Security Maintenance Rules (SMRs).

It seems reasonable to not shut the whole system down as soon as a security
breach is detected, but rather adapt the system behavior, i.e. disable specific func-
tionalities temporarily, or not taking actions at all but just trigger a warning and
detailed logging.

Monitors, as well as an adaptation of system behavior, can be realized using
source code annotations as well as manipulating the running code externally using
communication interfaces.

Round-trip engineering is supported by feeding run-time insights back into
design-time artifacts.

Assessing run-time findings tackles RQ4 and is described in detail in Chapter 7.
How the system is adapted during run time is concerned by RQ5 and discussed in
Chapter 8.

As a consequence, S2EC2O instantiates the MAPE-K loop for self-adaptive sys-
tems [ARS15]. Monitoring is carried out by the S2EC2O run-time component, analy-
sis and planning is handled using Security Maintenance Rules and they also trigger
execution of eventual co-evolutions, while the knowledge is managed as part of the
Security Context Knowledge and Essential Security Requirements.

2.2.3 S2EC2O Process

The S2EC2O approach spans a wide range of abstraction levels, starting with proba-
bly natural language requirements, affecting model-based development and ending
with running code on an actual execution context.

A number of steps require the security expert to take action, while S2EC2O gen-
erally is semi-automated and tool support for crucial steps is provided.

In the remainder, we introduce the S2EC2O process to precisely define which ac-
tion shall take place in what order by which role. The process consists of two phases,
both of them are presented using the Business Process Model and Notation (BPMN)
syntax. In both phases, the process is driven by two roles: the (human) security
expert and S2EC2O.

The goal of the initialization phase as depicted in Figure 2.4 is intended to make
an existing software system accessible for the S2EC2O approach. This is possible
not only for greenfield development but also for legacy systems (i.e. long-living
systems). The phase is described according to the numbering in the figure.

14
C

hapter
2.

R
esearch

R
oadm

ap

FIGURE 2.4: The initialization process of S2EC2O

2.2. S2EC2O Introduction 15

Initialization Phase

1. The process is initiated by the security expert who chooses a set of Essential Se-
curity Requirements (ESRs) he wants to take care of in development or main-
tenance of the system.

2. S2EC2O proposes a number of security properties to observe, for instance by
UMLsec checks or ontology-based checks.

3. S2EC2O queries the Security Context Knowledge to collate chosen ESRs with
the SCK. This can be realized using standard querying languages. As the SCK
is provided as an ontology, this can be, for example, done using the SPARQL
query language.

4. The security expert makes choices regarding the queries that have been is-
sued by S2EC2O. For example, he has to choose a specific encryption algorithm
when more than one algorithm matches the conditions.

5. In case the information provided by the security expert is not sufficient, ad-
ditional information is requested by S2EC2O. For instance, the security expert
can be requested to provide system-specific knowledge to populate an access
control mechanism.

6. Eventually using additional input provided by the security expert, S2EC2O
completes the annotation obligations necessary for the design-time checks.

7. S2EC2O proposes run-time monitors to the security expert, including instruc-
tions which steps need to be followed to make the system adaptable through
S2EC2O.

8. S2EC2O checks if the desired run-time monitors can be instantiated. Eventu-
ally, the security expert needs to provide information necessary to instantiate
monitoring. For example, consider an application running on an application
server, it may be necessary to gain control over the application server to a cer-
tain extent. In this case, it is necessary for S2EC2O to get required interfaces to
these external points configured.

9. The security expert annotates the model according to the issued obligations.

10. The security expert implements adaptation points in the code of the system as
necessary so that the system can be monitored and adapted at run time.

11. The monitoring can be instantiated and the software system under considera-
tion is now monitored.

16
C

hapter
2.

R
esearch

R
oadm

ap

FIGURE 2.5: The delta handling process of S2EC2O

2.2. S2EC2O Introduction 17

Delta Handling Phase

After initialization has been completed, the delta handling phase shown in Figure 2.5
becomes relevant. This phase again is described according to the numbering in the
figure.

1. One of the entry points to the delta handling is that an evolution of the Security
Context Knowledge (SCK) has been detected (Delta SCK). This, for instance,
can be accomplished using a semantic differencing approach. The delta is in-
vestigated by S2EC2O to assess a security impact on the system. This is realized
by triggering relevant SMRs. If the change is completely irrelevant, nothing is
done and the process instance terminates.

2. In case the change is relevant for the system, it is determined which Essential
Security Requirements are endangered by the change. If there are no ESRs en-
dangered, (for example, an encryption algorithm is now considered insecure
but more secure algorithms are already used throughout the system) the pro-
cess instance terminates. Security Maintenance Rules then further investigate
the system and determine co-evolution alternatives for the system to mitigate
the security vulnerability.

3. In case S2EC2O has detected a threat to manage, it checks if a run-time adap-
tation is possible. This also is the same first action taken in case of the second
entry point to the process, a reported monitor finding, is triggered. Note that
both paths, run-time adaptations as well as assessing the system to determine
if instant reactions are necessary are executed in parallel.

The current system security level is assessed and it is checked if an instant
reaction, adaption, for example, is appropriate. An instant reaction may be
necessary in case a breach is detected which may have impact on the overall
system’s functionality.

4. In case an instant reaction is advised by S2EC2O, it is realized.

5. In case an instant reaction has been taken place, a report has been generated
the security expert has to read to be briefed about altered system behavior and
the need for a permanent solution.

6. In case a design-time adaption is worked out with the security expert, run-time
adaptations can become available additionally.

7. The security expert chooses the co-evolution steps to be applied to the system.

8. S2EC2O checks if additional information is necessary to apply co-evolutions
(i.e. provide names for new classes/methods to introduce or acknowledge
refactoring proposal). If this is the case, the security expert is asked to provide
this information.

9. After collection of co-evolution associated data is completed, S2EC2O carries
the co-evolutions out and generates a report.

19

Chapter 3

Background

3.1 Long-Living Systems

Regarding software engineering, a long-living system is in service a considerably
long timespan. While there does not seem to be a precise definition, the typical lifes-
pan of a software intensive system is said to be 10 - 15 years [VJL+14]. According
to Lehman [LR03], software evolution is the ongoing progressive change of software
artifacts in one or more of their attributes over time. Progressive in this context means
that the change results in improvement of the corresponding software. Each change
preserves most properties (functionality and security, for example) of the former
system and is justified by a rationale. But changes may also lead to the emergence
of new properties. Thus, evolution is caused by a wide variety of environmental
changes such as technological changes, new stakeholders’ needs, modified require-
ments and assumptions, changes in laws and rules as well as regulations, correc-
tions of discovered problems, and many others. Maintaining security of information
systems by taking into account a continuously changing environment is therefore a
challenging task in software engineering. Thus, a long-living system demands con-
tinuous maintenance for more than 10 - 15 years. An investment upfront to wrap a
software system into a context monitoring layer can be compensated by the support
S2EC2O can accomplish in the long run. This thesis focuses on long-living software
systems.

3.2 Model-based Security Engineering

S2EC2O focuses on supporting model-based security engineering. Model-based soft-
ware engineering, for example using the Unified Modeling Language (UML), can
be used in a process of gradually refining requirements into executable code. In
this work, model-based and model-driven software engineering are distinguished as
follows: model-driven engineering means that the code is mostly built using mod-
els, whereas in model-based engineering, models are considered key assets but man-
ual code adaptation steps are acknowledged. Model-based security engineering is
supporting model-based software engineering processes to capture security require-
ments and design secure software. During the requirements elicitation phase, it is
necessary not only to consider regular system requirements but also security-related
requirements, to ensure secrecy of certain data, for example. A secure design is diffi-
cult to get right and many designs contain security weaknesses which are often non-
trivial to find and then to fix. Especially when considering evolving contexts, it is
necessary to constantly validate the security requirements of design models. To an-
notate UML design models with security requirements in S2EC2O, the UMLsec ap-
proach is used [JJ05]. Recurring security requirements and security assumptions on

20 Chapter 3. Background

the system environment can be specified as part of UML models. Thus, knowledge
on careful security engineering is encapsulated as annotations in models or code
and made available to developers who may not be security experts. The UMLsec
extension is given as a UML profile using the standard UML extension mechanisms.
Stereotypes are used together with tags to formulate security requirements and as-
sumptions. In [JJ05], the core approach is presented. UMLsec can and has already
been extended by a number of additional security requirement annotations.

Tool support for UMLsec has been introduced together with the original ap-
proach. Moreover, an extensible version built upon the Eclipse Modeling Frame-
work (EMF), called CARiSMA, also exists [APRJ17]. It also has been used and made
further process as part of the EU project VisiOn (Visual Privacy Management in User
Centric Open Environments; 2015-2017, H2020-DS-2014-1) [EU].

3.3 Vulnerability Databases

Community knowledge regarding security best practices, known vulnerabilities,
and mitigations is available. One example is the Common Weakness Enumera-
tion (CWE) database. A CWE entry [MITb] contains the following aspects, among
others: (1) a description of the security issue, (2) consequences, (3) applicability to
specific programming languages and development process phases, and (4) possi-
ble mitigations. In our setting, the system becomes subject to a certain CWE entry
after the environment has changed: either a change of the domain knowledge (an
encryption algorithm becomes insecure, for example) or a law change (introduction
and handling of the additional notion for personal data).

3.4 Ontologies

This work makes use of a knowledge representation that needs to be storable, up-
dateable and flexible enough to support different levels of abstraction and uncer-
tainty. Specifically, security issues cannot be foreseen at system design time and are
considered unknown unknowns [MH05]. Thus, a suitable knowledge representation
which can be adapted to entirely new fields of knowledge is required. To this end,
we use the knowledge representation concept of ontologies [Gru93]. Ontologies exist
in many different forms and flavors. In this work, we build upon the understand-
ing that an ontology contains the key concepts of a domain and the relationships
between them. Our technical realization of ontologies is based on the Web Ontology
Language (OWL), standardized by the W3C [OWL09]. Thus, for discussing ontolo-
gies in this work, we especially use the terminology as is used for the OWL.

3.5 Model Queries

To retrieve specific information from a model, model queries can be used. Since
system models can be interpreted as graphs [BJW15], various techniques based on
graph algorithms can be incorporated to investigate properties of a given model.
Model queries are a widely used concept (see [HKSS08, UBAH+15]). A model query
is carried out by firstly providing a query string based on a query language and a
model as input to an evaluation algorithm. Execution of this algorithm determines
a set of model elements matching the query, which also can be empty.

3.6. Graph Transformations 21

FIGURE 3.1: Henshin model query to search a state in a UML state
chart by its name

To check if a model violates certain properties, one can proceed as follows: the
non-compliance to this properties is modeled as query. If the query result is empty,
it means that the model does not contain non-compliant elements and thus is com-
pliant with the property in question. By now, S2EC2O focuses on the following pos-
sibilities to query models. First, we can formulate queries by a graph transformation
and its underlying matching algorithm [BJW15]. Second, we can make use of our
tool platform for risk and compliance checks, CARiSMA [APRJ17] which supports
analyzing models, for example in UML using approaches such as the Object Con-
straint Language (OCL) to formalize the security properties under investigation.

3.6 Graph Transformations

Graph transformation is a well established paradigm to describe change operations
of graphs in a formal way, mainly used for describing changes, synchronizing two
graphs, for example coming from different meta models or generating code out of
a software system model. Graph transformations typically consist of rules that are
specified by a left-hand side (LHS) and a right-hand side (RHS). Typically, wherever
the LHS can be matched as part of a model, the rule is applied to transform the LHS
into the RHS. Graph transformations can also be used to conduct model queries
by designing graph transformation rules where the LHS equals the RHS [BJW15].
To model and execute graph transformations, we make use of the graph transfor-
mation framework Henshin [ABJ+10, SBG+17]. Henshin has a unified view on the
LHS and RHS of a transformation rule. In a nutshell, mappings between LHS and
RHS are represented as so-called actions. These actions are annotated as stereotypes
in a graphical representation. We shortly introduce the fundamental action types.
⟨⟨preserve ⟩⟩ means that an element is member of the LHS as well as the RHS. ⟨⟨create ⟩⟩

means that an element is only member of the RHS. ⟨⟨delete ⟩⟩ means that an element is
only member of the LHS. Henshin features a powerful API that provides access to
resulting model elements of a match and thus gives a flexible way to interpose Java
code between rule executions. For example, partial match allows us to use transfor-
mation rules with fewer nodes. Here, usage of partial match as well as the Henshin
API allows us to design more abstract transformation rules that are parameterized
using program code with information gathered from model queries and the knowl-
edge delta. We make use of Henshin in two ways.

First, we use Henshin to carry out model queries. This is accomplished by mod-
eling graph transformation rules solely using ⟨⟨preserve ⟩⟩ type nodes. This way, we
achieve that there is no real modification of the underlying model carried out, but
the matcher as part of Henshin is used as a pattern matcher for the given model.
Figure 3.1 presents a model query which is used to search a state in a state chart
by a given name. Thus, every match of such a query rule means that the respective
pattern has been found in the model.

22 Chapter 3. Background

Second, we also use Henshin to carry out co-evolutions. Additional details on
Henshin and how we use it to find model flaws is in our previous work [BGR+15,
BJW15].

3.7 Self-Adaptive Systems

Referring to [OGT+99, MEHDH13], a self-adaptive system monitors itself and is able
to adapt its behavior accordingly. Regarding levels of automation, realizing adap-
tations using human-in-the-loop in a semi-automatic manner is also conceivable.
S2EC2O makes use of two core concepts commonly known among self-adaptive sys-
tems. First, S2EC2O makes use of run-time monitoring to check during run-time if
certain requirements (i.e. security requirements) requested during design time, hold
during run time. For example, monitors can be generated according to the security
requirements as annotated at the system specification. Monitoring can supervise
system variables which provide information about the internal state. Additionally,
monitoring using call traces helps to get information about the system state.

Second, S2EC2O makes also use of run-time adaptation. To alter the system be-
havior at run time, annotations are used. Similar to run-time monitoring, variables
as well as central method calls in the control can be used as interception points
to decide if the original behavior should come into effect or if alternate methods
should be called. Regarding self adaptivity, S2EC2O is inspired by the core idea of
the GRAF [ADET12], which tends to transform existing systems into self-adaptive
systems.

3.8 PhD Context: Research Project SecVolution

This work has been carried out as part of the research project SecVolution – Beyond
One-Shot Security: Keeping Information Systems Secure through Environment-Driven
Knowledge Evolution. This project is part of the German Research Foundation (DFG)
priority programme 1593 “Design For Future - Managed Software Evolution” [DFG].
SecVolution has been extended to be part of the SPPs second funding phase as
SecVolution@Run-time – Beyond One-Shot Security: Requirements-driven Run-time Se-
curity Adaptation to Reduce Code Patching.

The DFG issued the priority programme SPP1593 with an overall run time of 6
years and an overall funding of approx. 10 million EUR. The priority programme is
split into two funding periods. SecVolution is part of both funding periods.

The SecVolution approach is a holistic framework to deal with evolving knowl-
edge in the environment of a software project. The overall goal is to restore security
levels of an information system when changes in the environment put security at
risk.

It is built upon the SecReq approach developed in previous work of the au-
thor’s working group and project partners [HIK+10, Sch11, JS14]. As a core fea-
ture, SecReq supports reusing security engineering experience gained during the
development of security-critical software and feeding it back into the model-based
development process. To this end, SecReq combines three distinctive techniques to
support security requirements elicitation as well as modeling and analysis of the
corresponding system model: (1) Common Criteria [Int07] and its underlying se-
curity requirements elicitation and refinement process, (2) the HeRA tool [KLM09]
with its security-related heuristic rules, and (3) the UMLsec tool set [JJ05] (predeces-
sor of CARiSMA [APRJ17]) for secure system modeling and security analysis. This

3.8. PhD Context: Research Project SecVolution 23

FIGURE 3.2: Overview of the SecVolution approach. It uses the FLOW
notation [SSK08].

bridges the gap between security best practices and the lack of security experience
among developers. However, a significant limitation of SecReq is that it cannot cope
with evolution of the required security knowledge and, thus, has to be regarded as
a one-shot security approach.

SecVolution overcomes this limitation of SecReq by monitoring the system’s en-
vironment to infer appropriate adaption operations.

Figure 3.2 depicts the information flow developed during the first project phase.
It uses the FLOW notation, which has been used to describe explicit and implicit
information flows as well as the overall project process in the SecVolution project.
Basically, nodes represent persons, documents, and activities; solid arrows denote
solid (i.e., long-term accessible and repeatable) information flow, dashed arrows in-
dicate fluid (non-solid) information flow. A non-solid flow of information is char-
acterized by information that gets into the indirectly, passively, or not accountable.
For example, a security white hat is not part of the software engineering team, but
the information he provides is used in the process. Bold arrows indicate experience,
an information flow type that often acts as catalyst on other information flows. We
refer to the full publication for more details on FLOW [SSK08].

SecVolution’s reaction to evolution is a systematic co-evolution of correspond-
ing software models with respect to environmental changes as triggering events.
An assumption of the project is that the system fulfills all security requirements
regarding the current knowledge during design time. The system specification
is assumed to be a UMLsec model. There exist a number of security require-
ments which can be modeled using UMLsec. Their compliance can be checked us-
ing checking plug-in implementations for the UMLsec tool suite and its successor
CARiSMA [JJ05, APRJ17].

SecVolution monitors and prepares the change to the system by providing a
knowledge base (Security Maintenance Model). The knowledge base contains infor-
mation on how to react adequately to changes to the environment (Change Security
Maintenance Model). This happens always with security in mind. The knowledge
supporting long-living software evolution is elicited from different sources. This
includes not only natural-language documents like laws and regulations as well as
semi-formal assets like system specification documents, but also people that are

24 Chapter 3. Background

FIGURE 3.3: Overview of the SecVolution@Run-time envisioned ap-
proach

relevant to the development process like attackers, white hats, security experts (sec.
scouts), and stakeholders. With this updated knowledge base (Monitor Evolution) the
system models are evolved by a semi-automatic mechanism to get back the initial
fulfilled security of the software system. Monitored changes can trigger reactions
which lead to a co-evolution of security precautions and the corresponding system
model. To maintain an achieved security level, these models must be adapted to deal
with environmental changes affecting security properties of the system. To support
the elicitation of the security knowledge, a heuristic mechanism based on natural
language processing is available [GRB+14] (Elicitation Techniques). As argued in pre-
vious work (see [HIK+10, Sch11]), freeing valuable time of security experts is an
essential benefit, because they can then deal with new threats that are not covered
by automated reaction yet.

The PhD thesis of the SecVolution project member Stefan Gärtner focuses on the
elicitation of security and attack knowledge. Knowledge on how to perform attacks
is mined from vulnerability databases. From this, attack sequences are generated
and used to check the existing requirements specification (especially use case de-
scriptions) if any vulnerabilities exist [Gär16].

The overall security knowledge, capturing the context knowledge as well as ac-
tions how to react to evolution, resides in the central element called Security Mainte-
nance Model (SMM). Security knowledge itself is split into Essential Security Require-
ments (ESRs) and Security Context Knowledge (SCK).

ESRs resemble the bare security requirements elicited during the requirements
engineering phase, while SCK contains knowledge with technical details and context
knowledge about vulnerabilities and mitigations.

After all, the system model is co-evolved (Change System Model). The target ar-
tifact is the altered system model, now compliant with all security requirements
(Model of Secure Information System).

The goal of SecVolution@Run-time, the second project phase of SecVolution, is to
extend the core ideas of SecVolution, which reside in the design-time phases of the

3.8. PhD Context: Research Project SecVolution 25

software life-cycle, into the operation phase. The output of applying the SecVolution
approach is a model of a secure information system, as Figure 3.3 shows.

First of all, SecVolution@Run-time acknowledges that model-based development
often relies on manual code adaptations until it goes into deployment. To bridge the
code and system model, the SMM introduced in the first project phase is extended
by information relevant to the run time, as trace links, to a Run-time SMM (RSMM).

The system’s security is not assessed on a binary scale (i.e. all security require-
ments are fulfilled or not) but on a more fluid scale, to acknowledge the fact that
systems are more and more complex and a single vulnerability does not mean that a
full system shutdown is the only possibility to react to a security breach. This is sup-
ported by a quality model (Q model) of the system. Findings that are detected dur-
ing run time are analyzed immediately (Analysis). The approach decides in a semi-
automatic manner if a permanent run-time adaption is sufficient (Run-time adapta-
tion), a temporary adaptation followed by a design-time cycle is necessary or a full
shutdown is inevitable . To make this decision, a security expert may be involved.

To get information about the running system, (security) monitors as well as
methods from the domain of (self-)adaptive systems are used. The analysis of
the system is additionally supported by heuristic indicators, as well as screen video
recordings (Video rec.). Video recordings can be used for demonstration and guided
explanation purposes of inner workings. Call traces of demonstrations can be
recorded as a byproduct. Thus, intended behavior can be demonstrated, as well
as the realization of vulnerability mitigation or demonstration of an attack. More-
over, video snippets can be reused when an issue occurs which is related to a system
part or call trace that has been documented this way.

Regarding the first project phase of SecVolution, this thesis focuses on the pro-
cess of reacting to an evolution of the SCK. It is also considered how necessary
co-evolutions can be inferred and applied.

Regarding SecVolution@Run-time, research incorporated by this thesis focuses on
monitoring code at run time by providing monitoring probes and adaptation points
realized by source code annotations. Design time and run time, i.e. model and
code level, are bridged by providing methods to let monitor findings contribute to
design-time artifacts.

27

Chapter 4

Context Knowledge in
Model-Based Security Engineering

Among the numerous approaches for software development, model-based software
engineering is well known and provides a structured way of developing software.
According to Höhn et al. [HLJA10], the traditional strategy for security assurance
has been penetrate and patch. Figure 4.1 shows, what steps are typically undertaken in
model-based software engineering. Starting with requirements, a system is built. The
models can be analyzed against the requirements to check if all requirements are met.
The models can then be used to generate configurations for an execution context, the
code to be executed later on, and tests. The code may be adapted manually. Tests can
be used to check if the code still corresponds to the model, as well as models can be
reverse engineered from existing code to realize a difference inspection on the model
level. Moreover, systems that have not been built using model-based engineering in
the first place can be reversely converted into such a project.

S2EC2O especially focuses on security by design, where security requirements
are captured accompanying the ordinary requirements elicitation phase of the regu-
lar software engineering process [JJ05]. Typically, a software engineering process
begins with high-level stakeholder interaction eliciting requirements. As argued
in [Sch06], requirements elicitation should be as non-intrusive as possible, so that
using natural language for this task is appropriate. Thus, security requirements can

FIGURE 4.1: Artifacts and activities typically used in model-based
software engineering (adapted from [HLJA10])

28 Chapter 4. Context Knowledge in Model-Based Security Engineering

come up during the requirements elicitation phase. Moreover, it is reasonable to
capture security-relevant requirements as early in the development process as pos-
sible [Gär16].

Nowadays, the majority of software systems are distributed systems one way or
the other. The security of a software system is in large measure affected by the con-
text it is used in. There is the need to bring the various dimensions of engineering
complex systems and their context under control. While S2EC2O’s focus is to ana-
lyze context evolution, a formalization of the context prior to evolution is needed in
the first place for having a well-founded baseline to compare to. In Section 4.1, we
introduce the notion of Security Context Knowledge to capture context knowledge that
is relevant to build secure software systems. Section 4.2 then shows, how to model
and build a knowledge base according to this notion. We accomplish this by using an
ontology. We present a number of knowledge sources which can serve to populate
the ontology with security knowledge. Apart from that, we introduce a modulariza-
tion in terms of layering the knowledge base, to support separation of concerns in
knowledge modeling. For example, system-specific aspects can remain in a separate
ontology, keeping other parts of the knowledge model clean and reusable.

We also elaborate on approaches which can be used to incorporate knowledge
sources, only available in natural language, into the Security Context Knowledge
(SCK).

After all, we show how to bridge the gap between the knowledge base with its
layers ranging from coarse-grained global knowledge down to fine-grained system-
specific aspects, and model-based secure software design.

Section 4.4 covers the question of how to manage the knowledge of SCK after it
is built initially.

4.1 Security Context Knowledge

A software system is accompanied by a number of security requirements, but the
question if the requirements are met correctly, may depend on the system’s context.
On the one hand, security requirements need more or less effort regarding the do-
main the system under consideration is to be used. Given a messaging system, real-
izing security requirements may differ on a technical level based on the application
domain, for example a messaging system as part of a public web forum compared
to a messaging system an insurant can use to communicate with his insured people
and doctors.

As another example, we consider a system processing private data and con-
nected to a database. Consider a security requirement like The database server must
use RC4 as secure encryption algorithm. There are at least two facts that hold for this
requirement:

1. It may not be system specific. What is considered a secure encryption algo-
rithm is a general question made out by domain experts or is even part of a
more common security knowledge.

2. In every case it is not time invariant. What is considered a secure encryption
algorithm at one day, can be known to be insecure all of a sudden when a zero
day exploit is disclosed.

Thus, the security of a system under consideration is affected by common,
security-related knowledge that is not part of the actual system. Further knowledge
to be taken into account concerns existing vulnerabilities and possible mitigations,

4.1. Security Context Knowledge 29

FIGURE 4.2: Example of an ontology to model a secure communica-
tion

eventually provided by the community. In S2EC2O, we call this kind of knowledge
Security Context Knowledge (SCK).

Figure 4.2 shows an excerpt of an ontology with a security requirement (Secure
Encryption), system components (Database Connection, Communication Path)
and an actual encryption algorithm (RC4).

More precisely, what is considered to be an ordinary security requirement (i.e.
The database has to be connected using the secure encryption algorithm RC4.) is broken
down into two aspects. First, Essential Security Requirements (ESRs) cover the ab-
stract, technology-independent security needs (i.e. The database server must use a se-
cure encryption algorithm.). SCK then provides the security knowledge required to
bring ESRs into action for a specific system. ESRs will be discussed in detail in Sec-
tion 6.2.1.

To sum it up, SCK includes, but is not limited to (especially new) attacker types
and their abilities, encryption protocols, and their robustness against various at-
tacks. SCK is usually gathered from natural language documents of various kind,
for example the security knowledge as part of the IT baseline protection guide-
lines proposed by the German Federal Office for Information Security [Bun], or at-
tack and vulnerability reports as provided by the MITRE Corporation in the CVE
database [MITb]. Moreover, individual persons such as white hats or developers
can also contribute to the SCK. It is supposed to evolve more often than ESRs, as
knowledge about security techniques may change quickly and has direct impact on
the security of the system.

The following section gives details on how the Security Context Knowledge
(SCK) is represented and managed in S2EC2O.

30 Chapter 4. Context Knowledge in Model-Based Security Engineering

4.2 Modeling Security Context Knowledge

As argued in the preceding section, the SCK needs to incorporate knowledge from
various sources. The knowledge base needs to be managed and used in S2EC2O in
a semi-automatic manner (see Section 2.2, [BGR+15, BSG+18]), so that a formal rep-
resentation of knowledge is inevitable. Since collecting, formalizing, and maintain-
ing required knowledge is a laborious task, a formal representation of knowledge
should be shared among various projects and adapted to the specific needs and re-
quirements.

For example, privacy should be fulfilled by an organization according to given
security standards and regulations. Before introduction of the GDPR [EU 16], the
European Union defined privacy rules [EU 95] which had to be refined by each
member state. Germany accomplished this with the Bundesdatenschutzgesetz BDSG
[Bun05], while the United Kingdom had the Data Protection Act DPA98 [Bri]. Addi-
tionally, each organization had its own privacy guidelines extending and re-defining
the respective country regulation.

To model such knowledge, ontologies are a commonly used technique [HS06,
NCLM06]. They represent knowledge in a formal manner by using a set of types,
properties, relationships, individuals, and axioms. The knowledge base also needs
to be flexible and easily extensible, because security issues cannot be foreseen at
system design time and are considered unknown unknowns [MH05]. Ontologies, by
design, provide high flexibility in knowledge modeling, because they are based on
the open-world assumption.

Moreover, knowledge management activities (for example the use of ontologies)
need to fit into the developers’ work flow since rigid integration typically results in
retarding instead of supporting the development as well as the maintenance process
[MARS12].

In the succeeding sections, we will use the ontology shown in Figure 4.2 as exam-
ple and gradually develop it into SCK. We will introduce the security upper ontology
to build the core of the SCK. In this process, we will introduce an upper ontology
providing a basic taxonomy for security-relevant notions. We will introduce it in
Section 4.2.1. Section 4.2.2 shows how layering ontologies supports modularization
and thus foster project-spanning reusability of knowledge. In Section 4.3, we put
emphasis on how to populate the upper ontology with actual security knowledge.
Section 4.3.6 puts emphasis on how to connect the system model with the SCK.

4.2.1 Defining the Security Upper Ontology

In this section, we introduce the security upper ontology: It provides a number of
relations and notions which are used to build up instances of the knowledge base
respectively. The security upper ontology can thus roughly be compared to a meta
model in the modeling domain. The ontology introduced here and used for the Se-
curity Context Knowledge (SCK) has been introduced firstly in [Gär16, BSG+18]. An
earlier, substantially smaller security ontology of security-relevant methods, threats
and mitigations is presented in [GRB+14].

The security upper ontology as presented in this section is created after carrying out
a systematic literature review. We refer to [Gär16] for full details of the systematic
literature review, while we only briefly summarize the review process as presented
in [BSG+18]. The focus of this thesis is on how S2EC2O extends the ontology as
presented in [Gär16] by adding (semi-)automatic mechanisms to query and manip-
ulate the knowledge base using OWL 2 [OWL09] and accompanying technologies.

4.2. Modeling Security Context Knowledge 31

To have the security upper ontology in a well supported format, it was modeled in
OWL 2 using Protégé [Sta]. It can thus be accessed or processed using widespread
formats like Resource Description Framework (RDF) triples or the OWL/XML for-
mat [OWL09].

Systematic Literature Review

To define the security upper ontology, we conducted a Systematic Literature Re-
view (SLR). SLR is an empirical method used to aggregate, summarize, and critically
assess all available knowledge on a specific topic [KC07]. In our case, we searched
for scientific publications related to the modeling of security-specific knowledge in
the context of security management or software and systems modeling. In partic-
ular, we addressed publications in which concrete ontologies for the modeling of
knowledge related to IT security are described.

To find the relevant publications, we used the literature databases ACM Digital
Library, IEEE Xplore, ScienceDirect, and SpringerLink, since they cover the largest part
of scientific journals, conferences, and workshops in the domains of software engi-
neering and knowledge management [BKB+07]. The search query for a automated
search was obtained by combining the search terms Security (in title), Information Sys-
tem, Software (in title or abstract), and Ontology, Metamodel (in title, abstract or text).
This search yielded a total population of 287 publications which we subsequently
filtered to retain only those that (i) were available in English, (ii) describe an exist-
ing, practically applicable approach (rather than a position statement, for example),
(iii) address the modeling, application, or acquisition of security knowledge in soft-
ware engineering, and (iv) were not specific to a particular domain. The remaining
46 publications contained 29 security-related ontologies that we analyzed in detail
to aggregate the minimal set of concepts, required to enable the modeling of security
knowledge.

Ontology Analysis

In the analysis of the 29 ontologies, the objective was to answer the following re-
search question: What is the minimum set of terms required for modeling security knowl-
edge to enable a heuristic security analysis of development artifacts?

None of the analyzed ontologies matched all requirements fully. By focusing
on the minimum set of terms, we address a key prerequisite for the design of our
ontology, related to ontological commitment.

Ontological commitment [Gru95] is an important principle in ontology engineer-
ing. To support flexible use of a created ontology, it proposes to impose as few
restrictions as possible. A minimal ontological commitment is achieved if the ontol-
ogy contains only the essential and most general terms in the considered domain. In
his PhD thesis, Willem Nico Borst [Bor97] puts emphasis on the purpose of sharing
knowledge and comes to the following conclusion:

“Ontologies are formal specifications of shared conceptualizations. They
can be the instruments for knowledge sharing and reuse. Ontologies
can support information systems design because they specify the knowl-
edge an information system must capture to perform its tasks. To be
(re)usable, ontologies should not capture facts about instances in the do-
main, but make explicit tacit and meta-level knowledge.”

This allows others to use the ontology in their particular applications, specializ-
ing it where necessary. Based on the Systematic Literature Review, we achieved a

32 Chapter 4. Context Knowledge in Model-Based Security Engineering

FIGURE 4.3: Ontology of security concepts and their relationships in
VOWL 2 syntax

minimal ontological commitment by extracting the essential and most general terms.
A term fulfills this criterion if it occurs in multiple ontologies, or if it was pointed
out as particularly relevant in the underlying ontology’s description.

We developed a classification of all terms included in all ontologies. To this end,
the terms were assigned to classes, based on the descriptions in the publications
from which they were obtained. Various concepts occur under different terms across
publications, mostly due to the different research backgrounds of the authors and
different problems they want to solve. For instance, in most considered ontologies,
the term asset is used to refer to a protection-worthy object; yet, in some cases, the
terms affected element, resource, or information were used. Our classification represents
all of these terms as one particular class asset.

Resulting Security Upper Ontology

From the classification, we obtained the security-relevant classes for our ontology.
Figure 4.3 shows the resulting ontology in VOWL 2 [LNHE14] syntax; circles denote
classes, and lines between them denote object property associations and subclass
relations. In the following, we summarize the classes this thesis focuses on and
discuss evidence of their background. For the explanation of the remaining classes,
we refer to [Gär16].

The classes System, Access Point, Asset, and Trust Level represent system-specific
knowledge about the system and its parts. These aspects are addressed by the 10 of
the 29 considered ontologies, in which the terminology is subject to some variability.
For instance, Elahi et al. [EYZ09] distinguish the system parts Product, Component,
and Function. According to Swiderski et al. [SS04], an access point is an integral part
of a system, application, module, or component.

The class Security Property describes security requirements to an asset of the con-
sidered system. 11 out of the 29 considered ontologies specify a corresponding term.

4.2. Modeling Security Context Knowledge 33

The relationship between a security property and an asset is highlighted in several
ontologies, such as the one by Dubios et al. [DHMM10].

The classes Threat and Attack are dedicated to threat and attack modeling. Cor-
responding terms are included in 25 out of the 29 considered ontologies; 21 of
them also represent vulnerabilities or weaknesses of the considered system explic-
itly. Usually, a vulnerability is related to a particular attack or threat. Moreover,
the proposed ontology assigns an intent to attackers which is required to specify the
goal or motivation of attackers. Comparable terms are included in the ontologies of,
for instance, Elahi et al. [EYZ09] and Miede et al. [MNG+10].

The class Action is used to specify concrete steps performed by an attacker to
exploit a given security weakness. Modeling these concrete steps is necessary to
facilitate the detection of weaknesses where the order of steps performed by an at-
tacker matters [JKM+15]. 9 out of 29 ontologies considered this aspect; the most
detailed description is found in the ontology by Elahi et al. [EYZ09], in which an
attack consists of a sequence of steps, called malicious actions in their work.

The classes Stakeholder and Process are dedicated to users and business processes.
3 out of the 29 ontologies consider this aspect. Stakeholder is a sub-class of Agent
used in particular for representing the users of the considered system. Based on
the ontology of Baras et al. [BOAI14], stakeholders can be assigned responsibility
over Assets. In addition, agents can refer to Components to perform specific actions.
Processes represent a type of activity which consists of a number of actions. Related
terms are found in the ontologies of Launders and Polovina [LP13] and Mouratidis
et al. [MGM03].

4.2.2 Ontology Layering as Modularized Knowledge Base

On the one hand, maintaining an ontology with security knowledge just like the Se-
curity Context Knowledge (SCK) imposes additional burden on the security experts.
But, on the other hand, there is room for synergy effects, because ontologies, in par-
ticular the OWL, offer a mechanism that supports modularization and reusability
of knowledge. OWL features a mechanism to support the integration of knowledge
called import. Apart from that, an OWL ontology can also be equipped with a version
ID [OWL09].

While in general structure of ontology imports is not restricted, S2EC2O focuses
on using imports to layer ontologies, building three types of layers with specific
security focus. As we argued above, first, an ontology providing a core taxonomy is
inevitable, to provide a base for modeling security-relevant knowledge. Second, as
S2EC2O’s focus is to support evolving concrete software system, it is also necessary
to support modeling knowledge that is specific to a concrete software system, like,
for instance, a role hierarchy of a system with role-based access control. Lastly, we
see a need for a number of intermediate layers, to serve the purpose of using the
taxonomy provided by the security upper ontology to model generic aspects of the
domain the system is applied to.

Regarding the term domain, we focus on the definition of Eric Evans, who defines
domain as “[a] sphere of knowledge, influence, or activity” [Eva04]. To be precise,
for a banking system, a domain ontology may feature security-relevant measures,
threats, and mitigations especially relevant from the banking domain, and, for ex-
ample, incorporating rules and regulations important for this domain.

34 Chapter 4. Context Knowledge in Model-Based Security Engineering

The three types of ontologies S2EC2O works with are as follows:

Upper The top or upper ontology is independent of a particular software domain
or application. It represents the most general software security concepts, such
as encryption algorithm and attack as introduced in Section 4.2.1. Thus, we call
this ontology layer Upper Ontology.

Domain Domain ontologies allow domain knowledge as well as concrete security
issues and measures to be captured.

Domain ontologies have to be created for each domain anew and can be shared
by different systems in the same domain. We will emphasize on how to popu-
late domain ontologies in Section 4.3.

System System ontologies express the security-relevant knowledge about a concrete
system, for example, to specify that a banking system uses an encryption al-
gorithm defined in the domain ontology. These system ontologies can be
produced or enriched from existing artifacts, such as an UML-based system
model. Section 4.3.6 gives detail on how to couple ontology knowledge with a
system model.

In the ontology community, the concept of building ontologies from different
other ones is also known. Scherp et al. [SSFS11] define several types of ontologies.
We align the ontology types defined by us with the types defined in [SSFS11]. The
security upper ontology would then be considered a core ontology. According to
Scherp et al.,

“[...] core ontologies provide a detailed abstract definition of structured
knowledge in one of these fields, e.g., medicine, law, software services,
personal information management, multimedia annotations and others.”

Our definition of a domain ontology matches the one given also for a domain
ontology, given in [SSFS11]:

“[...] [W]ith domain ontologies we find representation of knowledge that
is specific for a particular domain [...]. Domain ontologies use terms in
a sense that is relevant only to the considered domain and which is not
related to similar concepts in other domains.”

In this work, we extend this hierarchy by system ontologies, to bridge the gap be-
tween universal and shareable ontologies and secure system design. We will discuss
this aspect in detail in Section 4.3.6.

Thus, the abstraction level decreases from upper to system ontology within the
Security Context Knowledge (SCK). We come back to the example Figure 4.2 shows
by adding layers and import relationships. Figure 4.4 shows the result.

In the upper layer, two classes from the taxonomy of the security upper ontology
are used: Security Property and Asset. The former is used to refine the notion of a
security property into a Secure Encryption property. As an individual, encryption
algorithm RC4 is modeled.

The concept Asset is refined as part of the system-specific ontology as
Communication Path, resembling the ability of at least two system components to
communicate with each other.

An individual Database Connection indicates to be a communication path and,
using the object property has, shows that this connection uses the RC4 encryption
algorithm.

4.3. Building up the Security Context Knowledge 35

FIGURE 4.4: Example of Security Context Knowledge to provide an
encryption algorithm

Sharing the knowledge to other systems is possible with regard to system- or
domain-independent parts of the security knowledge. Reuse and exchange of Se-
curity Context Knowledge between different projects and abstraction levels is sup-
ported, reducing the additional effort of modeling SCK.

Naming convention Regarding S2EC2O, the Security Context Knowledge is
composed of the security upper ontology and the layers of respective ontologies
of different abstraction levels. Throughout this thesis, we use the terms Security
Context Knowledge, layered ontologies, and ontology (as far as the context is SCK) syn-
onymously.

4.3 Building up the Security Context Knowledge

In the preceding section, we introduced a security upper ontology, providing the
base structure for the SCK. To be able to operate, the SCK needs to be populated with
actual security knowledge in terms of additional ontology classes (potential, con-
crete encryption algorithms, for example). In this section, we argue which sources of
knowledge for security guidelines, incidents, attacks, and mitigations are available
publicly. After that, we sketch an approach of how this knowledge can be incorpo-
rated into the SCK to make it usable.

We begin with enumerating various sources for security knowledge available in
non-formal (i.e. natural language) and semi-formal (i.e natural language parts but
provided with meta data) manner.

4.3.1 Laws and Regulations

While work on this thesis began, on EU level, the directive 95/46/EG [EU 95] and
its refinement in Germany, the Bundesdatenschutzgesetz BDSG [Bun05] were still

36 Chapter 4. Context Knowledge in Model-Based Security Engineering

valid. In May 2018, the General Data Protection Regulation [EU 16] came into effect,
replacing both laws in Germany. These laws build a foundation that most software
systems running in Germany, or the EU respectively, need to comply with.

There also have been changes to the German BDSG during its legal force [BfD14]
which also needed existing systems to be altered to remain compliant with the new
version of the law. We investigated such changes needed by privacy regulation
changes in preliminary work [BSG+18, BGR+15].

A major change introduced by the General Data Protection Regulation (GDPR),
is for example that the user of a data processing system has to be informed what data
is collected, how it is processed, and under what circumstances it is handed over to
third parties. The user needs to give consent upfront and also should have the right
to get access to all of the personal data a system has stored and also has the right to
get all of it deleted irrevocably. These laws may have fundamental influence on a
software system’s data processing design.

4.3.2 Standards and Guidelines

The German Federal Office for Information Security (BSI) issues a series of Techni-
cal Guidelines (Technische Richtlinie), for instance giving recommendations for the
use of cryptographic algorithms [Bun18]. Using this, it is possible to keep track of
security algorithms used in a software system that are considered to be secure.

Regarding guidelines for the development of secure software systems, there is
also the Open Web Application Security Project (OWASP) [Thed]. The maintainers
provide an open web presence documenting exemplified attacks and vulnerabilities
and also guidelines of how to design secure software. Moreover, they also issue a
top 10 of security risks. Since the Open Web Application Security Project (OWASP)
is structured and aligned to a taxonomy, incorporating the knowledge into an on-
tology is facilitated. Apart from that, the OWASP also provides an ontology called
Automated Threats to Web Applications. The term ontology may be misleading here,
because it is not available in the form of, for example, an OWL ontology or RDF
triples, but rather as wiki pages. Nevertheless, entries do contain cross links to other
knowledge bases like CWE, which we will introduce in a subsequent section.

4.3.3 Attack Scenarios

One possibility to gain insights in possible attacks is the Common Attack Pattern Enu-
meration and Classification (CAPEC) [MITa]. It provides numerous attack scenarios a
software system may need to be secured against. The catalog is also structured after
domains and mechanisms used for an attack. For example, input data manipulation
is one attack mechanism. The entries are described by natural language and feature
both references to other CAPEC entries and further attack pattern databases.

4.3.4 Vulnerability Databases

Regarding vulnerabilities, two well-known catalogs related to each other are Com-
mon Vulnerabilities and Exposures (CVE) [MITb] and Common Weakness Enumera-
tion (CWE) [MIT17b]. The CVE is a database of vulnerabilities a concrete software
product in a specific version was affected. The CWE is a structured catalog of typical
weakness types in software.

Regarding this chapter’s example considering secure communication, the entry
CWE-326 Inadequate Encryption Strength, describes the weakness introduced by an

4.3. Building up the Security Context Knowledge 37

encryption algorithm which performs insufficiently in terms of information secu-
rity. An encryption algorithm especially is inadequate as soon as an attack becomes
disclosed [BSG+18]. For each CWE entry, possible consequences, an example, cross
references to other catalogs like the OWASP Top 10, and possible mitigations are
eventually provided.

While the CWE is focused on providing general information and advice on how
to build secure software, Common Vulnerabilities and Exposures (CVE) is a catalog
of actual security incidents taking place in existing products. For example, CVE-ID
CVE-2009-1284 describes a vulnerability in BibTeX:

“Buffer overflow in BibTeX 0.99 allows context-dependent attackers to
cause a denial of service (memory corruption and crash) via a long .bib
bibliography file.”

Cross-references to, for example, CWE entries are also provided. Information
available via CVE and others is given in a directly processable form.

The National Vulnerability Database (NVD) [Nat] is a service run by the U.S. gov-
ernment. Security experts scan newly discovered security issues, make cross ref-
erences and incorporate the knowledge into a database that is available as a XML
file.

4.3.5 Incorporate Security Knowledge into the Security Context Knowl-
edge

In the preceding sections, we introduced a number of sources for security knowledge
to populate the SCK. However, as these knowledge sources are not complying with
the security upper ontology, the question arises how to incorporate that knowledge
into the SCK.

Proposing an approach on how to incorporate security knowledge from the var-
ious sources, semi-formal as well as natural language texts into the ontology is be-
yond the scope of this thesis. We will give an overview of existing approaches to
give suggestions of how to accomplish this instead.

Active Learning

An approach adequate for natural language input is presented in the PhD thesis
of Stefan Gärtner [Gär16]. The main idea is to examine development artifacts for
security vulnerabilities. To accomplish this, Natural Language Processing (NLP)
techniques are used. Using heuristics, process-oriented development artifacts such
as use case descriptions are compared to descriptions of attacks and can thus be
linked to security properties at stake and possible mitigations.

The ontology in the approach is used to link the security-relevant as well as
development-related descriptions to concepts at a higher level.

The proposed approach makes use of a learning technique called Active Learning,
we will sketch shortly here. Figure 4.5 shows the principle of active learning and
pool-based sampling [Set12].

The initial learning set needs to be provided manually. Using this, an instance-
based classifier is trained (1). The classifier then classifies the elements in the pool (2).
From the elements in the pool, the element with the biggest uncertainty is selected
(3) and the expert is asked to classify it (4). This learning cycle is iterated until the
maximum uncertainty remains under a given threshold or a maximum number of
cycles has been reached.

38 Chapter 4. Context Knowledge in Model-Based Security Engineering

FIGURE 4.5: Overview of active learning using pool-based sampling
(adapted from [Gär16])

Approaches specific to Knowledge Sources

Apart from this universal approach, there is also work tailored to specific knowledge
sources. While being only usable for the knowledge sources designed for, this work
can profit by using structure and/or meta data as provided by the specific sources
and thus provide more automatism and needing less user interaction.

As we mentioned previously in this section, the National Vulnerability Database
(NVD) is provided by security experts and incorporates preprocessed security
knowledge related to CVE, Common Vulnerability Scoring System (CVSS), and oth-
ers. The data is available as XML- and as JSON-feed. Due to the structure and inter-
nal links already provided, an approach making use of this information to improve
transformation of the knowledge into an ontology is conceivable.

Joshi et. al [JLFJ13] propose an approach where knowledge from the NVD is
translated directly into RDF triples which in turn can be directly incorporated into
their ontology. The natural language description parts of the database entries are
processed using an algorithm based on a conditional random field (CRF) implementa-
tion provided by a Stanford named entity recognizer.

Du et al. [DRW+18] propose another approach. They also use the data feed and
transform the knowledge rather directly into an ontology using scripts written for
the graph framework Neo4j [Neo].

We will cover further in the related work section of this chapter.

4.3.6 System Level Knowledge

The SCK needs security-relevant elements from the UMLsec system model to be
present in the ontology so that relations (object properties, for example) between
system elements and the security knowledge can be defined.

This work is up to the security expert, but a manual approach would result in
a vast amount of additional and yet error-prone work, since every security-relevant
elements would have to be modeled both in the UMLsec model and the SCK.

We provide support for coupling these two model types by proposing a UML
profile, offering a UML stereotype. UML profiles provide a native an lightweight
method of extending UML models with additional elements [Obj17]. The advantage
of extending the UMLsec model with SCK information is that relevant elements of
the system model can be tagged with their security-relevant notions and relations.
The other way around, every SCK class and individual would have to be annotated
with all of its applications in the UMLsec model which would lead to less clarity.

4.3. Building up the Security Context Knowledge 39

FIGURE 4.6: UML profile to annotate UMLsec models for the SCK

FIGURE 4.7: Example of UML annotations to support bridging to the
SCK

Figure 4.6 shows the profile. The stereotype ⟨⟨SCK ⟩⟩ can be attached to all UML el-
ements used for S2EC2O so far and can be extended to support additional classifiers.
It provides two attributes: types can be used to express which (ontology-)classes the
annotated UML element should have in the SCK, while relations does the same for
OWL object properties.

Figure 4.7 shows an excerpt from an UML model regarding the database con-
nection example in Figure 4.4. Here, an excerpt of a deployment diagram is given,
showing two nodes which communicate over a communication path. The path is
annotated with ⟨⟨SCK ⟩⟩. It is defined that, in the SCK, the path should be present and
have the class assertion Communication Path, and it shall have a relation to the on-
tology individual Secure_Encryption using the object property has. Please note that
due to technical reasons, spaces in OWL ontologies can be given by an underscore
(_).

Thus, using a (programmatic) transformation, providing individuals for a System
level ontology containing the relevant elements is possible which just imports the
lowest domain ontology in the layering to complete the SCK.

Another approach is to employ graph transformation techniques to carry the el-
ements from the UMLsec model over to the ontology respectively. Models can be
interpreted as graphs which especially holds for UML models as well as for OWL
ontologies [W3Ca]. Henshin [ABJ+10, SBG+17] and eMoflon [eDT] are two can-
didates for this. Another related approach is presented by Walter et al. [WSR10].
They present an approach based on the work on TGraphs by Ebert et al. [ERW08].
TGraphs are typed and attributed graphs, for which UML support, querying and

40 Chapter 4. Context Knowledge in Model-Based Security Engineering

transformation support exists. The approach of Walter et al. targets translating UML
models into OWL ontologies. A transformation from TGraphs to OWL is presented,
too.

4.4 Managing the Knowledge Base

In the preceding sections, we showed how to build the SCK. The security upper
ontology provides a foundation, we introduced various sources for security knowl-
edge, and we also presented a way to couple system model design and the SCK.

S2EC2O requires that the Security Context Knowledge (SCK) can be accessed to
acquire knowledge as shown with the activity Query SCK for details in Section 2.2.3
(on page 15). In the following, we will show potential interfaces to request knowl-
edge from the SCK and also to alter the knowledge. To cope with this challenges,
ontology query languages are a widespread concept [BBFS05].

As an example, we want to query the SCK for a set of encryption algorithms that
is currently not threatened by attacks. This can be used to provide an appropriate
encryption algorithm to be integrated in the example model shown in Figure 4.7.

4.4.1 Ontology Queries

The Security Context Knowledge (SCK) should be accessible automatically, using a
query language that is widespread, i.e. is supported by a number of tools and there
should also be a possibility for the S2EC2O user to check and test new queries.

Protégé [Sta] as the de-facto standard in the ontology domain, supports mainly
three query languages we investigated:

1. DL Query

2. SQWRL

3. SPARQL

DL Queries (DL is short for Description Logic) are based on Manchester Syntax class
expressions [W3Cb]. DL Query lacks support for variable binding and also prefixes
(i.e. different ontologies in the layering) cannot be addressed explicitly.

SQWRL [OD09] is a query language based on the SWRL rule language (SWRL is
short for Semantic Web Rule Language). At the time of writing, the syntax supported
inside Protégé does not support negation for object properties. This is a drawback,
because, regarding the example, to specify a set of encryption algorithms that is NOT
threatened by, for example, a Threat is not possible directly.

In contrast to that, SPARQL [W3Cc] (pronounced sparkle, a recursive acronym)
is a W3C standard. Using a graph framework like Apache Jena [Thea], it is possible
to answer SPARQL queries via an API. Reasoners like Pellet [PS04] do also support
SPARQL queries. We will cover reasoners in detail in Section 5.3.2.

SPARQL also does support variable binding of multiple variables and, with con-
structs like MINUS, NOT EXISTS, FILTER, results can be explicitly narrowed. The syn-
tax of SPARQL is similar to the Structured Query Language (SQL) used for relational
databases, for example [ISO16].

Hence, SPARQL is the only query language to provide essential features needed
by S2EC2O and is selected as standard query language.

4.4. Managing the Knowledge Base 41

1 SELECT ?algorithm
2 WHERE {
3 ?algorithm a domain:Encryption;
4 upper:has domain:Secure_Encryption.
5 FILTER NOT EXISTS {?t a upper:Threat.
6 ?t upper:threatens ?algorithm }.
7 }

LISTING 4.1: SPARQL query for encryption algorithms for which no
threat is known

Listing 4.1 shows an example of a SPARQL query to determine encryption al-
gorithms for which no threats are known. First, a variable algorithm is defined
using ? as prefix (line 1). The WHERE clause defines the properties that have to
be fulfilled by ?algorithm, comprised by the curly braces (lines 2 - 7). Firstly,
?algorithm is required to be of the type Encryption. As this type in turn is
an individual of a ontology, in this case a domain ontology, it is required to be
defined using its complete Internationalized Resource Identifier (IRI), for example
http://rgse.uni-koblenz.de/domain#Encryption. As using complete Internation-
alized Resource Identifiers (IRIs) over and over, this would bloat SPARQL queries,
this can be shortened by defining so-called prefixes. Prefixes need to be provided
additionally to a SPARQL query and precede it. For domain, the prefix is specified
as follows:

PREFIX domain: <http://rgse.uni-koblenz.de/domain#>

Prefixes for the other ontologies are defined analogously. The keyword a speci-
fies the variable to be of the respective type (line 3). As next step, the algorithm is
required to have the Secure_Encryption property. For this, the object property has
from the upper ontology is used as well as the individual Secure_Encryption as de-
fined in the domain ontology. Using ; as delimiter in line 3, the statement in line 4
is also applied to ?algorithm. The full stop . ends the statement.

The WHERE clause so far (lines 3 - 4) queries all encryption algorithms from the
knowledge base. We now need to filter the results (i.e. algorithms) that are currently
threatened. We realize this using the FILTER NOT EXISTS clause and describe that
we want every result removed where an individual ?t of type Threat exists that
threatens a given ?algorithm (lines 5 - 6).

To conclude, we showed that, using SPARQL, we are able to query the SCK.

4.4.2 Ontology Updating

As we argued above, it may be desirable to also provide an interface to alter the
knowledge stored in the SCK using a well-defined interface. While a detailed treat-
ment of this issue is out of this thesis’ scope, we shortly sketch how this could be
realized. In addition to the SPARQL query language, there is also a specification
provided by the W3C called SPARQL Update [W3Cd]. SPARQL Update defines a
syntax that can be used to specify updates on the knowledge base, being a superset
of the SPARQL syntax.

This would facilitate automated updates of the knowledge base. For instance,
Apache Jena currently supports SPARQL Update queries [Thea]. However, updat-
ing the knowledge base without any user interaction is non-trivial when knowledge
is to be added that contradicts already existing knowledge, being a current research
objective [ACPS16]. At the time of writing, the user is requested to update and check
the SCK manually, for example using Protégé.

42 Chapter 4. Context Knowledge in Model-Based Security Engineering

4.5 Related Work

In this section, we discuss related work of this chapter. As the publications that we
took into account only cover a some aspects of this chapter, we categorized them.

4.5.1 Compliance Checking of Ontologies

Humberg et al. [HWP+14] present an approach using ontologies to check compli-
ance of cloud-based processes. The authors present an analysis approach that uses
an OWL ontology as knowledge base. A small number of classes and object rela-
tions is given as base which is to be extended when various sources for compliance
requirements like the German IT-Grundschutz Catalogues is parsed. These build a
number of rules. A number of rules again constitute a situation which can be com-
pared to recognition patterns. The cloud-based process is assumed to be modeled
in BPMN. The process is examined regarding eventually existing situations. This
is done analyzing the activity labels and utilizing word databases which consider
co-occurrent words and synonyms. As soon as a situation is found in the model, it
can be checked whether the process is compliant with all rules. For example, the
constraint Separation of Duties can be checked in the model by assuring that activities
are performed by different actors.

The approach does not tackle evolution explicitly, while work towards using im-
ports and adaptation operations in ontologies is suggested. Progression of this work
as part of the SecVolution project is published later by Ruhroth et al. [RGB+14b].
While there is a minimal structure comparable to an upper ontology provided, this
has only little structure to rely on. Furthermore, sophisticated features of ontolo-
gies like reasoning are not used. All system specific information is handled outside
the ontology to keep it reusable. In contrast to that, S2EC2O leverages an ontology
layering to modularize the knowledge base.

Da Silva et al. [DSRdV+07] present an ontology for information security. The
ontology is built by extracting knowledge from natural language text like informa-
tion security standards, security policies, and security control descriptions. The ap-
proach is based on an OWL DL ontology. Experiences from a project context showed
that the information system experts preferred to work focused on text, for exam-
ple standards, human-readable protocols, and security control descriptions. As part
of the approach, a Protégé plug-in was implemented. The plug-in is a customized
editor where the specialist can mark text parts and thus categorize actions, secu-
rity controls, and objectives. The plug-in internally populates the ontology with
the respective individuals and creates relations; additionally, Description Logic (DL)
formulas are generated to allow semi-automatic checking. Afterwards, Description
Logic (DL) reasoners are used to work on the generated formulas.

4.5.2 Knowledge Elicitation

Harmain and Gaizauskas [HG03] utilize NLP for eliciting software requirements.
With their technique they are able to detect entities related to classes and attributes
to build an initial UML class model.

In contrast to S2EC2O they are not considering requirements in context of secu-
rity issues.

Compagna et al. [CEK+08] integrate legal patterns into a requirements engineer-
ing methodology for the development of security and privacy patterns using NLP.
This description is parsed by a natural language processor on the basis of a semantic

4.5. Related Work 43

template. The pattern design and validation process requires legal experts to de-
scribe patterns in natural language. While providing a possibility to model entities
and their security needs in a SI* model, there is no process provided of how to hand
the knowledge over to subsequent software development steps.

4.5.3 Security Requirements Elicitation

Gegick and Williams [GW07] developed a methodology for early identification of
system vulnerabilities for existing threats based on regular expressions. Patterns of
possible vulnerabilities are used to identify threats. The method is called Security
Analysis for Existing Threats (SAFE-T) and thus is not tailored to deal with newly
discovered threats and a system that is deployed.

Tsoumas and Gritzalis [TG06] provide a security ontology based framework for
enterprises linking high level policy statements and deployable security controls.
The security ontology is build by extending the DMTF Common Information Model
standard. It is used as a container for the security related information that concerns
the information system. This approach targets organizational security controls (for
example securing server hardware, recommending using a firewall) and not devel-
oping secure software systems, in contrast to S2EC2O.

Sindre et al. [SO05] argue that use cases offer limited support for eliciting security
requirements and therefore regard use cases enriched with textual description about
misuse. Based on this, guidelines are presented how to describe misuse cases in
detail, so that, in a next step, method guidelines for eliciting security requirements
with misuse cases can be established.

While providing a general approach on how to elicit security requirements based
on use case descriptions, in contrast to our approach there is no focus on overall
security goals/requirements and relations to the later system design.

Kaiya et al. [KSOK13] use information about the underlying architecture to elicit
security requirements. Use-case descriptions are converted into data-flow diagrams
called asset-flow diagrams. Security requirements are then defined as countermea-
sures for an attack if detected by the asset-flow diagrams and as design and imple-
mentation constraints if not detected. In contrast to S2EC2O, there is no systematic
approach for evolving stakeholder needs.

Haley et al. [HLMN08] present a framework not only for security requirements
elicitation, but also for security analysis. Their method is based on constructing a
context for the regarded system. Describing this context with a problem oriented
notation makes it possible to validate the system against the security requirements.
The approach is very powerful but needs a lot of security expertise to build the
context and understand the results of the analysis. Evolution of the context is not
supported here.

Huan et al. [NVLG14] propose a framework for knowledge-based requirements engi-
neering. Description Logic is used as base to analyze the requirements and realize
reasoning. Tool support is provided. The framework features a process beginning
with a requirements engineer specifying requirements. Requirements are processed
into an internal ontology. The Manchester OWL syntax is used to specify require-
ments and the approach is tailored to Goal-oriented requirements engineering. Us-
ing a provided ontology editor, the requirements engineer can refine and link the
specified requirements and also define rules over them. A Manchester syntax parser
updates the internal ontology. Analysis based on reasoning is used to detect re-
quirements problems, giving answers to requirements queries and generating ex-
planations.

45

Chapter 5

Leverage Changes in the System
Context for Secure System Design

In the preceding chapter, we introduced the Security Context Knowledge (SCK),
how a taxonomy is provided (the upper ontology), how the knowledge base can be
populated with security knowledge, and how the knowledge base can be modular-
ized. We also showed how the knowledge base can be managed.

In this chapter, we put emphasis on the question how changes to the knowledge
base can be detected. A knowledge base built from different sources, as the SCK
is subject to change in manifold ways. We thus focus on detecting evolutions on
a sophisticated manner, to foster directed analyses and reactions later on. We will
investigate ontologies from a model point of view and calculate differences on a
semantic manner. We will explore possibilities that ontologies and accompanying
techniques offer to detect changes as well.

Hence, this chapter contributes to the following research question:

RQ1: How can changes in security-relevant context knowledge be used to assess the impact
on the system?

S2EC2O’s focus is to support the system co-evolution when the context, i.e. the
SCK, evolves. Section 5.1 first introduces the underlying problem of co-evolution
and provides an overview of the techniques incorporated by S2EC2O to leverage
changes of the knowledge base. Section 5.2 shows in detail how differences in the
knowledge base can be recognized using semantic differencing. Section 5.3 introduces
a concept using ontology reasoners to infer additional knowledge or gain insights
after an evolution has taken place.

The concluding section of this chapter, Section 5.4, presents related work. Review
of the tackled research question will be carried out in Section 11.1.

46 Chapter 5. Leverage Changes in the System Context for Secure System Design

5.1 Detecting and Assessing Knowledge Changes

Figure 5.1 illustrates the relation between evolution and co-evolution of the system
model and its context as we consider it in this thesis.

The lower layer shows the system model. Using S2EC2O, the system development
is accompanied by the SCK, shown in the upper layer.

When a system is initially developed, it is ideally compliant with all of its secu-
rity requirements regarding the security knowledge, i.e. it passes a security analysis
(shown in the middle left of the figure).

As soon as an evolution of the SCK has taken place (shown as evSCK), an ap-
propriate co-evolution needs to be determined so that the evolved SCK and the co-
evolved system model lead to passing the security analysis again.

The following sections focus on evSCK, called Delta SCK, and investigate tech-
niques how changes to the knowledge base can be determined.

Regarding the question of how the SCK can be altered externally: there is a
plethora of possibilities how this can be accomplished. Besides the fact that different
tools for the end user exist to view and alter ontologies, OWL and underlying seri-
alization types like OWL/XML and RDF triples are supported by a wide range of
other frameworks and tools, for instance graph frameworks like Neo4j and Apache
Jena [Neo, Thea]. Additionally, it is possible to access and manipulate the SCK via
arbitrary program code. This can be realized using APIs like OWL API, on which
for example Protégé is based.

Hence, for S2EC2O we decide the way how to gather evolution of the knowledge
is not by making use of internal versioning approaches or by tracing access to the
SCK by a specific technology, but rather by analyzing an ontology directly as given,
or two versions of the same ontology. Going this way, we can handle all sources of
change that can lead to ontology evolution.

Time

Security Context Knowledge

System Model

ev SCK

ev Model

C
o-

E
vo

lu
tio

nSecurity
Analysis

Security
Analysis

ESRs ESRs

FIGURE 5.1: Relationship of evolution and co-evolution with regard
to model-based security engineering

5.2. Semantic Differencing 47

FIGURE 5.2: Overview of different approaches accessing the Security
Context Knowledge in S2EC2O

Techniques to Identify Delta SCK

Figure 5.2 shows an overview of the techniques to provide (updated) security knowl-
edge to the SCK. As we introduced in Section 4.3, various knowledge bases like vul-
nerability databases can contribute to the SCK, as the figure’s left side shows. More-
over, the system model can also contribute in terms of security relevant elements,
like, nodes of a distributed system as well as their communication paths. For de-
tails, we refer to Section 4.3.6.

The security expert is able, for example using Protégé as tool, to edit, maintain and
refine the ontology. This leads to a number of evolving ontologies. In this thesis,
we focus on two techniques to investigate the SCK for SCK evolution information
(Delta SCK).

Semantic Differences between two given versions of the same ontology can be
detected using the SiLift approach which we will discuss in Section 5.2.

The current given ontology can be analyzed using an ontology reasoner. Inconsis-
tencies can be detected and, using justifications, explained to S2EC2O’s user to take
further action. Moreover, implicit knowledge can be made explicit. We introduce
details on this in Section 5.3.

Both techniques we discuss in this chapter are used to investigate the SCK to
generate SCK evolution information (Delta SCK) in a (semi-)formal way, being the
trigger for potential co-evolution steps in S2EC2O’s delta process.

5.2 Semantic Differencing

In this section, we take up again the example of modeling secure communication in
the SCK as introduced in the preceding chapter.

48 Chapter 5. Leverage Changes in the System Context for Secure System Design

FIGURE 5.3: Example of evolving Security Context Knowledge: An
encryption algorithm is discovered to be vulnerable.

5.2.1 SCK Evolution Example

Figure 5.3 shows an excerpt of the SCK, being involved in an evolution. In the pre-
ceding chapter, we already showed how a system model can be connected to the
SCK and how the knowledge base can be queried to determine potential encryption
algorithms for which no attack is currently known.

The figure shows an evolution of the knowledge base in a unified view. Elements
in green are added and elements in red are removed, while the remaining elements
are part of both versions.

In this example, the encryption algorithm RC4 (as introduced in Section 4.2.2
on page 33) is modeled as an encryption algorithm providing the security prop-
erty Secure Encryption. A second algorithm, AES-256 is also modeled (both in
the center of the lower gray rectangle). The knowledge evolution shows that Weak
Encryption is added as a new Threat, targeting RC4. In the following sections, we
will show how to detect an evolution like this using semantic differencing.

5.2.2 Semantic vs. Atomic Changes

Information systems in model-based development consist of different software mod-
els such as system model and security model. Moreover, different development
groups are involved in developing the system and at the most, they work on dif-
ferent parts of the system and of course have different viewpoints on the system.
Every entity participating in the development process may cause changes to the cor-
responding models without notifying the other participants. Thus, if there are com-
monly shared models among one information system, no development participant
can assume the models to be unchanged when trying to apply changes on its own.
This means that every model-based approach used to develop software can change
models and some other participants have to be informed about these changes. For a
sophisticated reaction on evolution, the semantic meaning of changes is inevitable.
As we argued in Section 4.2, ontologies provide a flexible approach to manage the
knowledge base. Three challenges arise from the purpose of extracting evolutions
from edit operations:

5.2. Semantic Differencing 49

[]][[]1 4 6 7 n3 52

Session 1

Session 2

Session 3

ACL

SCL

Atomic
Change Log

Semantic
Change Log

={AddIndivual, AddProperty, AddProperty...}

<1, 2, 3> <7, 5> <6, 8>

8

FIGURE 5.4: Comparison of atomic change log and pattern-based
change log: Atomic change operations can be presented by seman-

tic change operations.

The first one arises by diversity of the change operations’ granularity. Many
tools allow pre-defined edit operations on models, but as edit steps can be of vary-
ing granularity, they do not necessarily describe evolution steps semantically. This
especially applies to ontologies. As the knowledge base can be extended arbitrarily,
edit operations provided by an ontology tool like Protégé [Sta] always are restricted
to the basic terms of ontologies.

The second challenge is that different semantic evolutions can be performed in
an interleaved manner.

The third challenge arises from the fact that models like the ontologies repre-
senting the Security Context Knowledge may be also changed semi-automatically
by external processes, for example when knowledge about attacks and mitigations
evolves.

We illustrate these challenges by discussing an example that Figure 5.4 depicts.
Consider a set of changes to be carried out on a model, in this case the SCK. Each

change is a separate and disjunct addition of information which is applied within the
scope of a maintenance task and, thus, can be described semantically. An example
for a task is: Add AES-4096 as encryption algorithm. However, each task may consist of
several edit operations which ultimately alters the model. Consider that the above
mentioned task has to be carried out on the ontology shown in Figure 5.3. First, a
new ontology individual has to be created. After that, a type assertion can be added,
and then object property assertions can be added.

Imagine that a security expert is assigned the task of incorporating two changes
into the SCK. In session 1, he adds the individuals (see the upper half of Figure 5.4).
After that, the SCK is changed externally (shown as session 2). Finally, the security
expert completes his task by adding the necessary object properties (shown as session
3).

Assuming that the tool used to alter the SCK logged all editing operations, which
can only take place on the atomic level, the result would be a stream of fine-grained
edit operations as the upper part of Figure 5.4 shows. Given these differences, dif-
ferent steps of the evolution are executed in an arbitrary and interleaved manner.
Thus, we cannot simply regard a sequence of atomic operations as evolutions, and it
is desired to create a log of semantic changes based on pre-defined change patterns
as the lower half of Figure 5.4 exemplifies.

Consequently, semantic differencing is necessary to express evolution of the SCK
in a suitable way, more coarse-grained and also domain or even system-specific. To
accomplish this, we make use of the SiLift approach [KKT11].

50 Chapter 5. Leverage Changes in the System Context for Secure System Design

FIGURE 5.5: The SiLift process (from [KKOS12])

5.2.3 Using SiLift to detect SCK Evolutions

SiLift is built upon Eclipse EMF [SBMP08]. The models are interpreted as graphs and
analyzed as well as altered using the graph transformation language and tool Hen-
shin [ABJ+10, SBG+17]. Graph transformations and especially Henshin are intro-
duced in Chapter 3. Henshin is also used in our preliminary work [BGR+15, BJW15].

SiLift can be used to realize the semantic change log as shown in Figure 5.4.
Figure 5.5 shows an overview of the SiLift process to calculate differences. SiLift
calculates semantic differences between two versions A and B of a model which
corresponds to an EMF-based meta model. Before SiLift is able to start to work, the
following artifacts need do be provided:

• A set of all possible atomic edit actions on the low-level, called atomic edit rules,
specified as Henshin transformation rules. These can be generated automati-
cally by SiLift using the meta model definition.

• A set of pattern definitions for semantic changes, called complex edit rules,
which is equivalent to the change operations we show in Figure 5.4. Thus,
a complex edit rule can be expressed by a number of atomic edit rule applica-
tions.

Both kinds of edit rules are then translated automatically into a set of recog-
nition rules. This step is necessary for technical reasons, because the complex
edit rules specified by the user need to be modified so that there are separate
nodes that can be matched to model version A and B separately.

• A matcher component that basically needs to provide information about when
two objects in question are equal. The matcher needs to be implemented
against SiLift’s API.

The SiLift process then works as follows (see Figure 5.5). For details we refer to
[KKOS12]:

(1) The matcher is used to calculate correspondences, i.e. the set of elements in
model version A and B that did not change.

(2) The set of correspondences is used by the difference derivator to compute a
set of low-level changes according to the atomic edit rules. This means that
occurrences of atomic edit rules are matched against the model versions.

(3) The semantic lifting engine then takes the recognition rules into account to
match them against occurrences of atomic edit rules, to infer which complex
edit operations have been applied. A compilation of atomic operations, corre-
sponding to a semantic operation is called a semantic change set.

5.2. Semantic Differencing 51

(4) The semantic change sets are shown to the user in a UI that provides further
operations. Note that SiLift can also be used via an API. S2EC2O interacts
with the user and processes the information provided by SiLift rather than
presenting it to the user.

SiLift is able to calculate the semantic difference in two ways: asymmetric and
symmetric. The symmetric difference is adapted from set theory; it consists of a set
of correspondences between two model versions, followed by information of how
to calculate one or another model version from it [Men02]. We use the asymmetric
difference, also known as edit script [KKT13]. It is calculated in the following way: a
series of edit operations (the edit script) is composed that, when applied in order to
version A of the model, version B of the model is obtained.

In what follows, we present a complex edit rule able to recognize the SCK change
introduced by Figure 5.3 (on page 48), defining a semantic evolution operation. Pre-
sentation of the complex edit rule is preceded by remarks regarding Henshin rule
layout conventions.

5.2.4 Henshin Rule Layout Conventions

The OWL EMF meta model as provided by the W3C [W3Ca], adhering to the struc-
ture of OWL, has a flat design, which results in a relatively high number of classes
and relations. This in turn results in a high number of nodes in Henshin rule design.
Precisely, in OWL most individuals get their identity by a linked URI object. Nearly
all other types do not have attributes but only relations to other objects. Figure 5.6
shows an example of a semantic difference specification as used in S2EC2O.

Consider the two nodes of the type Class in the upper left and upper right part
of this rule. While the nodes itself do not have any properties, their identity is defined
by the other associated elements on the one side and a name-defining URI element
on the other side.

To raise readability, we arrange Henshin rules for SiLift in this work according
to the following layout conventions:

• In associations, the association’s type (entity, for example) is placed above,
while the action type (⟨⟨preserve ⟩⟩, for example) is placed below the line.

• A URI element is placed to the right of the node it specifies.

• Due to technical reasons of the SiLift post-processing, all ⟨⟨create ⟩⟩ nodes need
to be associated to an Ontology container node. These elements are placed in
the upper right of the respective containing node.

52 Chapter 5. Leverage Changes in the System Context for Secure System Design

FIGURE 5.6: Example of complex edit rule describing addition of a
Threat to an existing Encryption of the Security Context Knowledge

5.3. Ontology Reasoning 53

5.2.5 Complex Edit Rule Example

Figure 5.6 shows a SiLift rule that is able to detect the evolution introduced in Fig-
ure 5.3 on page 48. The example pattern addEncryptionThreat specifies the situation
relevant for security knowledge updates: A threat for a given encryption algorithm
is discovered. As we argued above, entities do not have attributes that make them
distinguishable directly, but their identity is given by relation to a URI object via an
entityURI relation. ⟨⟨preserve ⟩⟩ nodes specify that there already exists a notion of En-
cryption, and Threat accordingly. Both are specified using the same structure: there
is a Class node getting its identity by association to a URI object. The object relation
threatens is defined in the lower left. These elements come from the structure as
given by the Security Context Knowledge and extensions by incorporating security
knowledge as introduced in Section 4.3 on page 35.

The actual difference is specified by create nodes. An addition of a threat is
modeled. The individual in question is compiled by the following nodes: cla1, d1,
ni1, and u.

The individual constituting the threat has the name Weak_Encryption and the
type Threat accordingly. The association to an existing individual of the type
Encryption using the object relation threatens is defined by the object property
assertion in the center of the figure.

Thus, the difference statement modeled by this rule is:

An individual of the type Threat, called Weak_Encryption is added. The
individual has the object property association threatens targeting an al-
ready existing individual of the type Encryption.

After the SiLift process for a given set of rules and ontology versions has finished,
it eventually has found matches of rules like the one shown in Figure 5.6. Basically,
all values for parameters defined in the Henshin rule, like attribute values or node
targets, can be queried using SiLift’s API. Hence, the Delta SCK as determined by
SiLift can be processed in subsequent steps of S2EC2O.

5.3 Ontology Reasoning

In this section we discuss a further technique to investigate the SCK for the sake of
determining delta information to be processed by S2EC2O. In contrast to a purely
model-based approach, based on the Meta Object Facility (MOF) [Obj16], for exam-
ple, ontologies have the advantage that approaches exist that infer additional knowl-
edge, using the actual knowledge base as starting point. A Reasoner investigates
the knowledge, can make assumptions and, besides the pure structural information
such as type assertions and individual relations defined by object properties, make
additional assertions. Reasoners are also able to check an ontology’s consistency:
It is examined if the modeled knowledge contradicts restrictions in the knowledge.
Moreover, a reasoner is able to provide information on how a given fact was inferred,
called justifications or explanations.

The research conducted for this thesis revealed an additional challenge concern-
ing the closed world assumption and open world assumption, having impact on the
features of ontology reasoners that can be used for S2EC2O. We will discuss related
issues using distinct examples.

After that, we elaborate on available ontology reasoners. Finally, we will exem-
plify how reasoning can be used in S2EC2O to provide Delta SCK information based
on two applications:

54 Chapter 5. Leverage Changes in the System Context for Secure System Design

Firstly, we will show how an ontology can be brought in an inconsistent state
by adding new knowledge, and how evidence can be generated by a reasoner. Sec-
ondly, we will show how a reasoner can infer additional knowledge, thus making
implicit knowledge explicit.

5.3.1 The Challenge of Closed-World Assumption vs. Open-World As-
sumption

For reasoners to come into effect, the knowledge base should feature expressions like
subclass expressions defining restrictions for certain classes. Ontologies make an as-
sumption regarding the elements modeled and also the ones actually not part of the
knowledge base. This base assumption of ontologies is called open world assump-
tion (OWA). It basically says that the knowledge that is modeled in a knowledge
base is not everything we know, but is just everything we are sure to know by now.

This is in contrast to typical meta-model based structures like the Meta Object Fa-
cility (MOF). MOF is the foundation of the Eclipse Modeling Framework (EMF) and
UML. These base on the closed world assumption, meaning that what is currently
defined in a model is exactly what is known currently.

We demonstrate effects the open world assumption (OWA) has using an exam-
ple. Imagine two classes Car and Human, as well as an object property owns. Then,
assume that a number of Car-individuals exists and also a number of Humans exist,
and some humans have relations to some cars.

Now, we want to build a class CarlessHuman with all humans not owning a car
in it. Using Manchester Syntax, we could define:

CarlessHuman ≡ Human and not (owns Car)

This is syntactically correct and also semantically sound. It can be modeled in
Protégé and does not lead to an error when using reasoners, but a reasoner will never
populate the class CarlessHuman. The reason for this is the open world assumption.
If, for example, the individual Sam has no owns relation to a car, it will still not be
added to the class by a reasoner because it is possible that Sam in fact owns a car but
we do not know this yet.

Thus, if a reasoner would add Sam to the CarlessHuman class now, there is the
risk that when, at a later point in time, the fact Sam owns Citroen can be added, this
would lead to an inconsistent knowledge base because of contradicting knowledge.

Enforceability of Cardinality Restrictions

Another challenge emerging with the open world assumption comes with cardinal-
ity restrictions. As with negation in class expressions, cardinality restrictions can
also not be used as expected, if they require to make statements about knowledge
that is not explicitly modeled yet and could be invalidated by adding additional
facts.

Regarding the example, imagine that we want all humans to own exactly 1 car.
We could define:

CarRestriction ≡ Human and owns exactly 1 Car

Now, given a human Sam not owning a car would not lead to an error with the
open world assumption in mind. The reason is that, again, this would require the
reasoner to make an assumption about knowledge that is not explicitly modeled.
Precisely spoken, the fact that Sam does not own at this point in time does not mean

5.3. Ontology Reasoning 55

that he will not own a car in the future, or he actually owns a car but we are not
aware of it, yet.

Missing Unique Name Assumption Constraints

Mostly, ontologies, and reasoners respectively, do not work with the unique name
assumption (UNA). As the name suggests, the assumption is that two different en-
tities of an ontology having different names, do not necessarily have to be different
individuals. When a reasoner is run to infer its knowledge base, it is also allowed
to infer, for example, equality of classes or individuals when it seems reasonable.
Regarding the example we introduced above, imagine a cardinality restriction and
facts as follows:

CarRestriction ≡ Human and owns max 1 Car
Sam owns Citroen
Sam owns Mercedes

One would expect the knowledge base to be inconsistent now. But, in case the
unique name assumption is not respected, the reasoner is allowed to infer that two
individuals having different names do not necessarily describe different individuals.
In this example, the reasoner infers:

Citroen sameAs Mercedes

The reasoner thus avoids inconsistency of the knowledge base. To prevent this,
one could use owl:differentFrom to explicitly state that a given individual (or class,
for instance) is not equivalent to another one. This in turn may be unwanted because
it bloats the knowledge base and also makes knowledge modeling cumbersome be-
cause when adding a new fact to the knowledge base, one also has to consider to
add these information.

The challenges we identified above impede design of the SCK so that reasoners
can be used to infer knowledge. In what follows, we elaborate on approaches to
encounter this.

Narrowing Degrees of Freedom to Increase Expressivity

To solve these issues, one possibility would be to prefer the closed world assumption
over open world assumption, but this would ultimately turn an ontology in some
kind of model with a rigid structure.

The ontology research community approaches this challenge with the concept of
local closed world (LCW) (reasoning). The idea is that delimited parts of the knowledge
base can be tagged in a way so that facts are surely known to be. There is various
existing work tackling this challenge.

Grimm et al. [GMP06] identified roughly the same challenges as we elaborate
on in this section. They bring in an example of an ontology to determine flight
services between different cities. A reasoner has the task of answering queries over
the knowledge base and determine, if, given two cities, a connecting flight service
is possible. Using conventional (i.e. OWA-)reasoning, an unexpected behavior is that
the reasoner for instance infers Berlin to be the same individual as London so that a
requested flight service can be inferred.

Grimm et al. introduce the K-operator the can be used to restrict reasoning in a
way that concepts can be tagged so that they belong to each possible world [GMP06].

56 Chapter 5. Leverage Changes in the System Context for Secure System Design

This can be basically read as: K-tagged elements have to be as specified in every
possible reasoners’ interpretation.

The authors describe their approach formally and also started work on a reasoner
supporting it. However, the linked implementation is not available anymore and
further work has not been carried out.

The authors of the Pellet reasoner also refer to the K-operator and state that sup-
port for queries using it is future work [PS04].

Anees Ul Mehdi [Ul 14] showed Epistemic Reasoning using the K-operator in
his PhD thesis. However, the proposed approach is only able to be used through
queries. Queries must be actively and concretely issued. The draw back is that
queries somehow require that one needs to know what possible answers could be
like in advance. Moreover, the implementation is not available nor maintained ei-
ther.

There is another reasoner with support for local closed world reasoning called
TrOWL [RPZ10]. A NBox (with N for negation) is introduced to allow negation as
failure for all individuals that are part of the NBox. Technically this is solved us-
ing OWL annotations. At the time of writing, the TrOWL reasoner is not actively
maintained. Tests in accessing local closed world using an old version of Protégé
compatible with the last TrOWL release did not succeed. The search for documenta-
tion on how to use NBox reasoning in practice also yielded only sparse results.

The graph framework Apache Jena also comes with an inference API and an
OWL reasoner [Thea]. At the time of writing, the documentation mentions that even
the ontology support is limited. For example, cardinality restrictions only support 0
and 1 as numbers. Especially, owl:complementOf is not supported. Thus, support for
local closed world reasoning could not be checked as support for OWL constructs
even in modeling is insufficient.

At the time of writing, to the best of the author’s knowledge, no working, com-
plete implementation of local closed world (LCW) reasoning in the field of OWL
exists. Nevertheless, as soon as such a reasoner exists, it can be leveraged to be used
in S2EC2O.

In the following, we will elaborate on reasoners available to be used in S2EC2O.
After that, we will introduce two methods of how the SCK can be enriched with
subclass expressions so that a reasoner can be used to infer additional knowledge
and thus create information to be used as Delta SCK in the delta handling of S2EC2O.

5.3.2 Choosing a Reasoner

As we argued in Section 4.2.1, it is meaningful for S2EC2O to be flexible regarding the
methods the Security Context Knowledge can be manipulated. Moreover, Protégé
is available as a tool for the security expert to use. The implementation of S2EC2O
(see Chapter 9) however is built as a separate tool and thus access on API level is
needed. Consequently, requirements for choosing a reasoner were the following:

5.3. Ontology Reasoning 57

1. Active development
As we discussed in the preceding section, reasoners or their features may be
described and implementations may be advertised, but it is also important
that a reasoner is actively supported, so that it is also compatible with recent
frameworks.

2. Available both as part of an ontology workbench as well as standalone/via an
API
For the tool support of S2EC2O to be developed, it seems reasonable that the
user should not have the need to interact directly and manually with the rea-
soner. Thus, API support is needed. Apart from that, support as part of an
ontology workbench, like Protégé, is needed so that the user can, also during
maintenance operations, tell if the ontology is consistent.

3. Support for explanations
Especially when the SCK grows in size, it is necessary that, in case of an incon-
sistency is detected, not only the mere information of inconsistency is given,
but the reasoner also is able to provide the user (or S2EC2O connected via an
API) its rationale.

We investigated a number of surveys about reasoners [Abb12, PMG+16,
MLH+15]. According to Abburu [Abb12], the Pellet reasoner [PS04] is one of the
reasoners matching all requirements. With regard to the additional facts that it is
implemented in Java, and available as open source, it is chosen as the best match.
To be precise, Pellet became a commercial product in the meantime, but there is an
open source version available and actively maintained called Openllet [Gal].

5.3.3 Inconsistency with Explanation

In this section we show how the SCK can be enriched so that a reasoner can be
employed to detect contradiction in the knowledge base.

For instance, this can happen when changes to the SCK are made to incorporate
changes of the system context. A reasoner can then be used to infer that information
already modeled (for instance, system-specific information) now leads to inconsis-
tencies of the knowledge base. This fact in turn can be leveraged by S2EC2O’s delta
handling process to eventually co-evolve the system model.

Figure 5.7 shows an excerpt of a layered ontology. We consider a medical in-
formation system. This, for instance, provides an Office Visit component, in-
corporating the possibility to view a patient’s exercise history. Apart from that, a
component for lab procedures features, for example, the possibility to view blood
examination data. When the system is initially designed, it is compliant with the
laws that not only Dana, a doctor is able to access both views but also lab technicians
like Louis.

We assume a law change that restricts access to data like the exercise view to
doctors. We will present how to enrich the ontology so that delta information can be
inferred using a reasoner.

To support checking if the ontology is in an inconsistent state which can be inves-
tigated, it is necessary to first specify some kind of constraints the ontology should
comply with.

In OWL, this mechanism is called restriction (defined by the OWL XML
tag owl:Restriction). OWL supports definition of restrictions in various
ways [OWL09], in this thesis we focus on the value and cardinality restrictions.

58 Chapter 5. Leverage Changes in the System Context for Secure System Design

FIGURE 5.7: Example of an ontology modeling access restriction

FIGURE 5.8: Screenshot of Protégé explaining the ontology inconsis-
tency (Due to OWL, spaces within individual names are displayed as

underlines.)

In the rectangle at the bottom of Figure 5.7, we show a restriction added to Office
Visit:

equivalent to not (inverse (hasAccessTo) some Lab)

It specifies that there should not be an individual of this class that has a
hasAccessTo object property pointing to it which has an individual as source that
has the type Lab Technician. In other words: The restriction demands that no lab
technician shall have access to Office Visit entry points. To specify this restriction,
we use the object property accessibleBy defined in the security upper ontology and
use its inverse, called hasAccessTo. Now, when a reasoner is started, it determines the
inconsistency and is able to produce a justification for this claim.

Figure 5.8 shows a screen shot of Protégé after running the reasoner and calling
for justification. As marked in red, the problematic fact (Louis hasAccessTo Exercise
View) and the conflicting restriction are shown. Louis has access to Exercise View that
is of type Office Visit, but for this class it is modeled that there must not exist an

5.3. Ontology Reasoning 59

FIGURE 5.9: Example of ontology used to infer knowledge

individual of type Lab Technician having the hasAccessTo relation to an individual of
type Office Visit.

5.3.4 Inference of Ontology Elements

In this section we show how the SCK can be enriched so that a reasoner can be em-
ployed to infer members of classes, thus making implicit knowledge explicit. In
other words, a reasoner investigates the knowledge modeled in the SCK, starting
with simple facts and infers the whole knowledge base, eventually inferring knowl-
edge that has not been stated explicitly so far.

Figure 5.9 shows an example of a layered ontology for a distributed, web-based
information system. We take up again the example used throughout the preceding
chapter regarding communication encryption between distributed nodes. The figure
shows a distributed system in which three nodes Webfrontend, Backend and Database
communicate with each other. Note that the web front-end does not communicate
with the database node directly.

The modeling as shown in the figure can easily be modeled using a UML de-
ployment diagram. The UMLsec stereotype ⟨⟨secure links ⟩⟩ is also defined to support
modeling security requirements regarding this scenario. Using ⟨⟨SCK ⟩⟩ and a trans-
formation step, the modeling of this distributed system can be generated from a
UMLsec-enhanced deployment diagram.

In this example, we use the object property communicatesWith as an object prop-
erty being both transitive as well as symmetric.

We want to use the reasoner to ensure encryption requirements for communica-
tion paths to ensure encrypted communication paths regarding all involved nodes.

60 Chapter 5. Leverage Changes in the System Context for Secure System Design

(A) SecuredNode (B) CriticalNode

FIGURE 5.10: Protégé screenshots showing inferred knowledge

In this case, the Database node requires a secure encryption. It also communicates
with other nodes, in this case Backend and, implicitly, with Webfrontend. Note that the
only modeled encryption requirement is regarding the Database node.

We enrich the SCK by providing three classes with class definitions that can be
used by the reasoner to infer the respective knowledge.

The three classes shown at the bottom of the lower layer ontology do not have
any relation to the existing elements in the ontology, but they are class definitions
which can be processed by the reasoner to infer additional knowledge. Thus, they
can be used independent of a specific system. In this case, the meaning of the class
definitions is as follows:

• SecuredNode: all nodes that have relation to a Secure Encryption

• CriticalNode: all nodes that communicate with a SecuredNode

• InsecureNode: all CriticalNodes that are no SecuredNodes

Figure 5.10 shows the result after executing the reasoner. As the communi-
catesWith object property is transitive, the reasoner is able to infer that Webfrontend
can also communicate with the database.

In the figure, knowledge inferred by the reasoner is shown with a yellow back-
ground. In detail, Figure 5.10a shows the result for SecuredNode. Database has not
been modeled with any class assertion or other relationships to SecuredNode, but, ac-
cording to the class definition, the reasoner has been able to infer that the database
node must have the type SecuredNode. Figure 5.10b shows the reasoning result for
CriticalNode. None of the nodes have been modeled with a type relationship to Crit-
icalNode, but as all nodes communicate with a SecuredNode, all nodes also are Criti-
calNodes.

Regarding determination of the InsecureNodes, which are critical but not secured,
the respective class definition is shown in Figure 5.9. To reason the instances of this
class, it requires availability of reasoning based on the closed world assumption as
we argued in Section 5.3.1.

As a workaround, the sets of individuals of SecuredNode and CriticalNode just
need to be subtracted, which can be done externally, for example by supplementary
code.

As a consequence, with this example we showed how a reasoner can be em-
ployed to make implicit knowledge explicit. Ontology individuals modeling a

5.4. Related Work 61

system deployment can be generated from a UMLsec deployment diagram. The
system-independent classes SecuredNode, CriticalNode, and InsecureNode can be spec-
ified in a system-independent way. After a reasoner has run, the instances for these
classes can be provided as delta information to support S2EC2O delta handling
phase.

5.4 Related Work

In the related work section of the preceding chapter, Section 4.5, we already elabo-
rated on various work in the field of security knowledge management. Thus, work
shown in the other chapter’s related work section may also be relevant for this chap-
ter. While it is hard to clearly distinguish both classes, in this section, we only refer
to work which explicitly also covers evolution.

Yskout et al. [YSJ12] propose a pattern-based framework focusing on co-
evolution. The relationship between different artifacts of a software project is spec-
ified by a so-called pattern. Evolutions are thus captured and processed systemati-
cally. Adaptation of a corresponding software architecture is realized by analyzing a
change specification to find appropriate patterns. The main contribution of this pub-
lication is the detection of common patterns at requirements level (change scenarios)
in concrete change descriptions. Every change scenario is connected to concrete co-
evolutions at architecture level and forms one pattern. The approach requires a sys-
tem model which is complete and formalized. Concrete change scenarios need to be
supplied as well as corresponding co-evolutions.

In contrast to this work, S2EC2O is built upon, but not limited to UML as mod-
eling language and UMLsec as extension to model security requirements. UML
supports a broad bandwidth of abstraction levels. Supporting developers who are
not fully into every detail of security details is one of the core goals of SecVolution
project, to which S2EC2O is related.

Ernst et al. [EBM11] identified changes in requirements specification as trigger-
ing event for software evolution. The relationship between requirements and the im-
plementation is described formally. Together with goals derived from software spec-
ification, implementation tasks are computed using a constraint solver to reach the
goals in accordance with the requirements. The formalism for requirements is highly
abstract and the user is needed to have profound knowledge in using Techne, the
logic-based requirements language which has been developed by the authors. The
goal of this rather abstract approach is to provide a clearly structured, graph-based
guidance for implementation decisions. The approach puts emphasis on dependent
problem parts and their requirements.

A co-evolution scenario arises when changing requirements restate the require-
ments problem which the authors state is not solved yet. An interface to system
design level is not discussed. The whole software project needs to be modeled using
Techne.

Souza et al. [SLAM13] regard requirements that cause the evolution of other re-
quirements. Their approach is based on goal-oriented modeling. The system the
stakeholders expect is supposed to be modeled as a set of goals. During run time,
events can be monitored. The concept of evolution requirements (EvoReqs) based
on event-condition-action schema, is used to adapt the goal model. Security is only
considered as a side note. The adaptation capabilities are fully based on the rules as
provided upfront and as part of the closed system, there is no mechanism of access-
ing knowledge like general security knowledge.

62 Chapter 5. Leverage Changes in the System Context for Secure System Design

Salehie et al. [SPO+12] present a requirements driven approach to adaptive se-
curity which aims at identifying and evaluating changing assets at run time to dy-
namically enable different countermeasures. A causal network is build upon a goal
model and a threat model to analyze system security in different situations. The
causal network needs to be maintained manually and dealing with unanticipated
events is not covered.

Stefan Farfeleder proposes a framework for requirements engineering focusing
on embedded systems in his PhD thesis [Far12]. The focus is especially shown by
covering failure types and failure rates of components in embedded systems. The
framework features a modularized knowledge base given by (domain) ontologies,
thus also supporting reusability. Requirements are defined using the so-called Boil-
erplates notation. Knowledge of the ontology is used to support definition of re-
quirements, analyses to check requirements regarding completeness, consistency,
and ambiguity. The knowledge base is compiled by using the import mechanism
and importing smaller ontologies covering components of a system. A core tax-
onomy is presented which can be compared to the concept of the security upper
ontology used in S2EC2O. The framework supports context change for example by,
in some cases, automatically updating the ontology structure when requirements
change. Additionally, comparing two versions of a domain ontology for review is
supported.

63

Chapter 6

Co-Evolve Design-Time Models by
Assessing Context Evolution

The preceding chapter focused on detecting an evolution of the system’s context,
represented by the Security Context Knowledge. As soon as changes to the SCK
have been detected, the impact on the system under consideration needs to be as-
sessed. In case the system is affected by the given context evolutions, appropriate
co-evolutions need to be determined and applied, so that the system is compliant
with its security requirements again.

This chapter shows how a software system can be designed so that it is secure
at its initial deployment. We will further introduce an extended notion of security
requirements to better support, for example, technical progress. We will specify a
catalog of rules to coordinate assessing context evolutions and co-evolution actions.
We will also show an example of a catalog entry. Finally, we will present how to
co-evolve a system at design time semi-automatically.

This chapter thus contributes to the following research questions:

RQ2: How can rules be formalized that are able to preserve the system’s security given
knowledge evolution?

RQ3: How can these rules be used to carry out a semi-automatic co-evolution given a con-
text evolution?

Section 6.1 elaborates on the relation of context evolution and co-evolution of
the system under consideration. It illustrates which part of the S2EC2O approach is
covered in this chapter, how it relates to the overall approach, and how the respective
components interact.

S2EC2O needs to be aware of the security requirements the system under con-
sideration shall be compliant with. To solve this, Section 6.2 introduces the concept
of Essential Security Requirement (ESR) to decouple basic security needs of a system
and their concrete technical realization. In that section, we also elaborate on the
question of how a system is made initially compliant with its security requirements
using S2EC2O, prior to evolution. This is especially needed as a baseline to perform
evolution-based security analyses.

Whenever the Security Context Knowledge evolves, this is considered as Delta
SCK that needs to be analyzed. In S2EC2O, various sources of context evolution are
supported. Besides evolution of the SCK as covered by Chapter 5, monitor findings
from the run-time monitoring are also supported (as we will discuss in Chapter 7).
To solve the challenge of variety and ease analysis, this delta information needs to be
structured. Thus, Section 6.3 introduces a model to appropriately specify the delta
information and supporting processing for co-evolution.

64 Chapter 6. Co-Evolve Design-Time Models by Assessing Context Evolution

FIGURE 6.1: Concepts used in the co-evolution approach and their
relation

As soon as the context evolution has been detected, appropriate co-evolution
operations need to be determined. Section 6.4 introduces the concept of Security
Maintenance Rules (SMRs). These rules are triggered by context evolution events
and, based on these, infer several co-evolution alternatives.

Finally, Section 6.5 introduces an algorithm for design-time co-evolution on con-
text evolution. The algorithm contributes to the S2EC2O process. Section 6.6 con-
cludes the chapter with related research. We will discuss this chapter’s contribution
to the research questions in Section 11.2.

6.1 Leveraging Context Evolution for System Co-Evolution

In this section, we focus on the part of S2EC2O responsible for the design time co-
evolution. Figure 6.1 shows an overview of S2EC2O’s components that make use of
context information and realize the system co-evolution.

In the upper center of the figure, the system under consideration is shown as
UMLsec model. Using Essential Security Requirements (ESRs) and Security Context
Knowledge (SCK), an ordinary system design can be extended with security anno-
tations. Essential Security Requirements also contain information on how security
properties can be monitored during run time (Run-time monitors). As soon as a sys-
tem is built according to S2EC2O and is in production, context evolution information
can be collected. This information can than be used to investigate it and, with regard
to the system, react to it.

In the lower left of the figure, potential sources for context evolutions are de-
picted. Firstly, there is delta information regarding the SCK as discussed in Chap-
ter 5 (Delta SCK). Second, there are monitor findings coming from the run-time phase.

6.2. Initial Compliance to Security Properties 65

S2EC2O supports monitoring security properties at run time. The run-time phase of
S2EC2O is covered in the Chapters 7 and 8.

The context evolutions (Monitor findings and Delta SCK) then trigger Security
Maintenance Rules (SMRs). These rules cause the co-evolution of a system. To ac-
complish this, SMRs can determine alternatives for co-evolutions, collected in pro-
posals. To realize this, they can access all relevant data sources. First of all, queries
of the system (model) can be conducted. The context evolution information can also
be investigated, since it may feature references to the SCK or the system model. As
the Essential Security Requirements also contain information on how the security
properties are to be realized in general, these can also be used by SMRs to infer
co-evolutions. Regarding methodologies to analyze the system and also to realize
co-evolutions, S2EC2O currently supports but is not limited to the following: graph
transformations, user interaction (i.e. let the user provide system-specific informa-
tion), and also Java code, for example to manipulate models via a reflective API.

Finally, the proposals composed by SMRs containing co-evolution alternatives,
need to be inspected. This can be done by the security expert manually and also in
conjunction with S2EC2O semi-automatically.

Thus, context evolution information raised by external sources triggers Security
Maintenance Rules that analyze the system, to verify, if it needs to be co-evolved. If
a co-evolution is necessary, appropriate steps are selected semi-automatically.

6.2 Initial Compliance to Security Properties

To accomplish the overall goal of S2EC2O, preserving a system’s security by leverag-
ing context knowledge, we need to make sure that the system is compliant with its
security requirements at the beginning as well as that it is enhanced by annotations
to enable S2EC2O. Using a system that is known to be secure initially as a baseline, it
is possible to assess incoming context changes. This is one of the tasks covered by
the Essential Security Requirements (ESRs) which we introduce in the following.

The security expert has to express the basic security needs of the system, so that
obligations for the system design can be inferred. We show how a given software
system is fitted into S2EC2O initially. The process that needs to be run through is
S2EC2O’s initialization process shown in Section 2.2.3 (on page 15).

6.2.1 Security Context Catalog Meta Model

To support the management of common security knowledge, S2EC2O provides the
SCK we introduced in Chapter 4.1. The counterpart which, when used in conjunc-
tion with the SCK results in an ordinary security requirement again, is introduced
in this section and called Essential Security Requirement (ESR). S2EC2O decouples
security requirements into two parts. Security requirements are split into the bare
security requirement and all information relevant for a concrete implementation.
This supports building a software system that fulfills its security requirements at
initial design, i.e. before the context may evolve. The motivation for this split is the
underlying perception that in many cases, the context, affecting the correct way of
realizing a security requirement is more often and quickly subject to change than the
fact that a security requirement change occurs [RGB+14a, RGB+14b].

ESRs are independent of concrete technologies and algorithms; their actual im-
plementation depends on the given domain and environment. For example, when
we take secure encryption as an essential requirement, it needs different algorithms

66 Chapter 6. Co-Evolve Design-Time Models by Assessing Context Evolution

FIGURE 6.2: Meta model of the Security Context Catalog

and parameters when applied to an ordinary web application as when used in the
banking sector. To implement a system that fulfills given ESRs, extensive knowl-
edge about current technologies, security principles, laws, and many others may be
involved.

According to S2EC2O’s overall structure shown in Figure 2.3 on page 12, Essen-
tial Security Requirements have a central role in the approach. Beginning with an
Essential Security Requirement, the Security Context Knowledge (SCK) is queried
to reify security requirements. Furthermore, they propose monitoring to check if
given security requirements hold during run time. The system can be co-evolved by
triggering SMRs coming from ESRs.

We define Essential Security Requirements as part of a meta model. S2EC2O
provides a number of Essential Security Requirements to choose from, called Security
Context Catalog. The Security Context Catalog thus embeds ESRs. Figure 6.2 shows
the catalog’s meta model.

The meta model is specified as an Ecore model and used in the prototypical im-
plementation of S2EC2O (see Chapter 9). The Catalog element has relations to all
other element types which, for instance, makes navigation easier. Biermann et al.
call meta models of this kind rooted:

“An EMF instance model is called rooted if there is one container which
contains all other elements transitively. Although EMF instance models
do not need to be rooted in general, this property is important for storing
them, or more general, to define the model’s extent.” [BET12]

In what follows, we walk through the meta model’s classes one by one and out-
line them.

6.2. Initial Compliance to Security Properties 67

ESR An Essential Security Requirement has a name and a description. The name is
a concise, short name to identify the Essential Security Requirement. The description
is used to provide the human readable explanation of the Essential Security Require-
ment, as well as assumptions regarding the modeling as part of the SCK and system
model for the underlying checks and Security Maintenance Rules to work properly.
The selected attribute is used to mark the Essential Security Requirements which
have been marked as relevant by the user. The threatened attribute is used to indi-
cate that the respective ESR is currently threatened because a context evolution has
taken place that invalidates the security properties as obliged by the ESR. An ESR el-
ement has associations to run-time monitor elements to specify relevant monitoring
mechanisms to be used.

SecurityProperty An Essential Security Requirement proposes a number of secu-
rity properties the system design has to be compliant with. Each of them is identified
by a name. S2EC2O currently focuses on, but is not limited to security properties that
can be checked using the UMLsec approach and accompanying tools. We discuss
this in detail in Section 6.2.3. As in [Gär16], we use the term security property for one
or more security requirements an asset needs to fulfill.

The checkIdentifier property is used to associate, for example, certain UMLsec
security requirements. A security property can associate a number of SMRs which
can be relevant to co-evolve a system, when the respective security property is
not valid anymore. For security requirement checks regarding UMLsec, the pre-
fix UMLsec is used, followed by :: as delimiter. In case that checks regarding the
SCK use OWL technologies, the prefix OWL is used. With statement logic, combina-
tion and/or exclusion of security property identifiers is possible. An example is as
follows:

checkIdentifier=UMLsec::securelinks AND OWL::Reasoner

RuntimeMonitor To also cover the run time, an Essential Security Requirement
additionally is linked to a number of run-time monitors. These provide the possi-
bility to monitor an ESR during run time. Run-time monitors, like ESRs themselves,
are identified by a short name and a human-readable description.

The elements discussed so far are used to let a user express the system’s security
needs and how they need to be integrated into the system design to provide the
desired degree of security. Apart from that, run-time monitors are used to check
compliance of security properties during run time. However, as soon as a violation
is discovered by a monitor finding or an evolution of the SCK, the system needs to
be co-evolved. This part is handled by Security Maintenance Rules (SMRs).

SMR A Security Maintenance Rule is specified according to the Event-Condition-
Action schema [Day94] and consists of three parts: the ON part is the event triggered
by a SCK evolution or monitor finding. The IF part is used to define how to evaluate
if the current trigger is relevant for the given rule (i.e. certain conditions hold). In the
DO part, actions needed to co-evolve the system are defined. A detailed discussion
of SMRs follows in Section 6.4.

The runtime property is used to indicate if the given SMR carries out operations
at run time. Using this, S2EC2O is able to distinguish which co-evolution opera-
tions are relevant for design- and run-time. The SMRExecutable class also belongs

68 Chapter 6. Co-Evolve Design-Time Models by Assessing Context Evolution

to the SMR and is used to associate executable instances of SMRs. We introduce
SMRExecutable for technical reasons, which we will discuss in Section 9.1.4 on 114.

Completion As we argued above, the Security Context Catalog is technology-
and system-independent. However, to come into effect, system-specific data is in-
evitable. For example, when a system is required to be secured by encryption, a con-
crete encryption algorithm needs to be chosen from the context knowledge (SCK).
To specify what is needed to complete elements of the Security Context Catalog to be
usable for a concrete system, Completion elements can be used.

Not only security properties may need additional knowledge so that they can
be implemented correctly. The same applies to run-time monitoring components
as well. Not only knowledge from the SCK may be necessary (OWLQUERY) but also
data provided by the user (USERQUERY). For example, a run-time monitor is able to
monitor the configuration of an application server. The user then needs to provide
the file path to the configuration files to be observed.

The Completion elements are used to realize this information demand.

Artifact A given completion may need more than one such completing elements
(in the simplest manner: a number of files to be monitored rather than a single file).
Thus, a completion can be connected to a number of artifacts.

Both Artifact and Completion are used by the major components to reference
details and system specific artifacts, as shown by the associations in Figure 6.2. Be-
sides FILE, the artifact type CHOICE is also supported to define completion elements
the user has to choose from.

To conclude, the Security Context Catalog features and links the necessary ele-
ments to accomplish the following goals:

• Define basic security needs,

• select the security needs for the specific system,

• query the context knowledge to gather current technology information and
further relevant knowledge, and

• query the user to gather system specific knowledge or to make choices if the
information gathered from the SCK is ambiguous.

In the succeeding section, we demonstrate the workings of ESRs using the exam-
ple of a concrete ESR for secure communication.

6.2.2 Example of the S2EC2O Initialization Process

We demonstrate how a system can be designed as S2EC2O aware by using one ESR
from the catalog as a starting point. We come back to the example of ensuring en-
crypted communication we already used in the previous chapters.

The ESR Secure Communication has the goal to make the communication between
nodes in distributed systems secure. To accomplish this, at design time, the UMLsec
stereotype ⟨⟨secure links ⟩⟩ is recommended.

Figure 6.3 shows an example of this Essential Security Requirement in the no-
tation of a UML object diagram. We omit object names and values of description
attributes for better readability.

6.2. Initial Compliance to Security Properties 69

FIGURE 6.3: Example of an Essential Security Requirement

The system under consideration shall be compliant with this ESR, so the attribute
selected is set to true. No context evolution is known at this point of time that
threatens this ESR, so threatened is set to false.

The ESR is connected to a security property enforcing the UMLsec check for
⟨⟨secure links ⟩⟩ using checkIdentifier. In detail, a tool for static checks independent
of evolution can be provisioned with checks to run. We give details on how to check
the system’s security prior to evolution in Section 6.2.3.

The completion object is used to query the SCK for an encryption algorithm for
which currently no threat is known. This is done using a SPARQL query. We intro-
duced a similar query in Section 4.4 on page 40.

To support run-time monitoring, the ESR is connected to a RuntimeMonitor ob-
ject to monitor application server configuration.

For example, distributed systems can be realized using an application server. In
this case, a run-time monitoring can consider the configuration of the server, thus the
offered cypher suites. In the example, this is the case. A Tomcat application server
is queried and the run-time monitoring of S2EC2O can be provisioned to monitor
server.xml.

The security property is connected to one SMR. The Security Maintenance Rule
threatenedEncryption is associated to the security property as shown above and
connected to a SMRExecutable with the same identifier. This doubling is due to
technical reasons and discussed in detail in Section 9.1.4 (on page 114).

This Essential Security Requirement is used in the S2EC2O initialization process
defined in Section 2.2.3 (on page 15) as follows: Once the user chooses it from the
Security Context Catalog, it is used by S2EC2O to guide the user in how the system
design needs to be altered to meet the desired security requirement. In this case,
the SCK can be queried without further interaction with the user. Monitoring a
configuration file does not make additional coding necessary but the file’s location
needs to be provided by the user so the monitoring can be instantiated.

6.2.3 Check System’s Security prior to Context Evolution

After the given system design has been adapted according to the obligations given
by S2EC2O, it needs to be ensured that the system meets its security requirements
prior to evolution. S2EC2O is focused on security vulnerabilities introduced by

70 Chapter 6. Co-Evolve Design-Time Models by Assessing Context Evolution

evolutions, so we assume that the system is compliant with the security require-
ments initially. This can be achieved using existing tooling for security checks at
design time. Currently, S2EC2O refers to the UMLsec approach for secure systems
design as introduced in Section 3.2. UMLsec is supported by the CARiSMA tool
platform [APRJ17].

6.3 Coordinate Context Evolutions

In the preceding sections, we discussed how to build a system that is designed in a
way that it fulfills all security requirements at its initial design on the one hand and
is build in a way to enable the S2EC2O approach on the other hand.

We introduced various sources and types of context evolution, which can be
summed up as a Delta to the Security Context Knowledge, in Chapter 5. As the S2EC2O
delta process shows in Section 2.2.3 (on page 17), an additional source of context
evolutions are findings of the run-time monitoring, leading to a change of the secu-
rity knowledge. Monitoring a system’s security compliance at run-time is discussed
in Chapter 7.

In Section 5.1 we argued that an arbitrary number of differences in the SCK can
occur at the same time. Obviously, there may be cases in which only a combination
of certain deltas is relevant to a given Security Maintenance Rule.

Context evolutions need to be processed to determine possible co-evolutions.
Thus, it is necessary to have the deltas in a formalized manner, and in a structure
that supports coordination of possible co-evolution operations.

FIGURE 6.4: Meta model of delta information in S2EC2O

6.4. Co-Evolution at Design Time 71

To solve this issue, we introduce a delta information model and specify it by its
meta model, as Figure 6.4 shows. We introduce the meta model by discussing all of
its major components.

Delta This abstract class is used to differentiate between the various possible delta
types. The meta model currently supports but is not limited to:

1. Semantic diffs as discovered by SiLift regarding two versions of the SCK,

2. facts inferred from a reasoner, and

3. inconsistency and explanations for the current SCK version that come from
reasoning contradictory facts.

Additionally, there is also a class prepared to model a finding as discovered by a
run-time monitor.

DeltaList This class is used to collect a number of deltas that have been discovered
since the last run of S2EC2O’s delta process, shown in Section 2.2.3 (on page 17).
As stated above, it is conceivable that for certain co-evolution operations, multiple
specific deltas need to be considered jointly.

Proposal Security Maintenance Rules are the components used to provide and ap-
ply co-evolution operations (for a detailed discussion see Section 6.4). Naturally, a
given SMR can provide co-evolutions for a limited number of deltas. Hence, with
Proposal, a SMR can submit proposals to be considered in S2EC2O automatically or
by the user manually. For subsequent steps, a proposal needs to contain the SMR’s
name it is related to and feature associations to the set of deltas it covers. A SMR
may offer different co-evolutions to react to the same evolution, i.e. alternatives. For
example, a given insecure encryption algorithm can be exchanged by a number of
alternative algorithms. Hence, the class Alternative is used to model a number of
alternatives. An alternative consists of a human-readable description and an ID for
internal reference. With data, a property is provided that can be used to store data
necessary to carry out the co-evolution later on. With regard to the choice associa-
tion, the user needs to select exactly one alternative for each proposal to guarantee
that for every delta a reaction will be carried out.

6.4 Co-Evolution at Design Time

In the preceding sections, we put emphasis on how evolution of a system’s context
can be structured and formalized into a list of deltas and how this can be used to sup-
port structuring the process of selecting co-evolution alternatives. In this section, we
introduce the concept used in S2EC2O to co-evolve the system under consideration,
namely Security Maintenance Rules (SMRs) [BJR+14].

The goal of a SMR is to recover the security of a system when for a certain se-
curity property, in the end an ESR, a set of threats is discovered. To accomplish
this, a SMR may analyze the system context, details of the context evolution, and
the SCK to check if the SMR is applicable. Subsequently, it may propose possible
co-evolutions and finally apply them, i.e. adapt artifacts of the system.

Ultimately, by bringing all SMRs as provided in the Security Context Catalog into
action, they can react to endangered ESRs by determining a series of co-evolution

72 Chapter 6. Co-Evolve Design-Time Models by Assessing Context Evolution

operations semi-automatically. The series of operations is considered to be necessary
to re-establish the system’s compliance with all ESRs again.

To support this combination of external events to be assessed and composing ac-
tions to be performed, Security Maintenance Rules are following the Event-Condition-
Action principle [Day94]. This means that a rule follows this schema:

ON Event IF Condition DO Action

Event indicates the deltas of the SCK and monitor findings as discussed above which
can be used to get relevant security properties and ESRs. Using the Events, possi-
ble relevant Security Maintenance Rules can be selected, but deeper investigation is
needed (for example run-time vs. design-time SMRs) which is defined by the second
part:
The Condition examines if the system is in a non-compliant state. This is realized
using model queries, compliance checks, etc. with respect to the (unchanged) ESRs.
A query can utilize the deltas and inspect the system as well as the SCK in detail
to ensure that preconditions for the SMR to be applied are met. For example, SMRs
addressing information stored in state chart diagrams should only be applied to a
model containing respective information.

With regard to SMRs as introduced by Figure 6.2 (on page 66), the class
SMRExecutable provides three operations which are used to realize the Event-
Condition-Action principle as follows:

• checkConditions(deltaList DeltaList) is used to realize the Condition part.
By using the parameter deltaList, the SMR is able to access the current list of
deltas and, for example, add proposals.

• inspectSystem() can be used to examine the given system, thus realizing the
Event part.

• As soon as the user or an algorithm has selected a proposal, the method
apply(proposal Proposal) is called, realizing the Action part. The proposal
which is to be used by the SMR to co-evolve the system is submitted as a pa-
rameter.

Figure 6.2 (on page 66) shows a combination of two classes SMR and
SMRExecutable. For technical reasons, we decided to split SMRs in these two classes.
This solution allows to combine an Ecore-based model on the one side and provide
separate implementations for every SMR as Java classes on the other side. We pro-
vide further details in Section 9.1.4.

Regarding the Action part of the SMRs (i.e. the apply() method), various types
of reaction are supported by S2EC2O. Java code is used as the common basis for the
apply() method. Supported approaches that can be used are depicted in Figure 6.1.
The most sophisticated possibility is to directly manipulate the system model by
using graph transformation rules specified using Henshin (see Section 3.6). To pre-
allocate nodes of the transformation rules with concrete model elements, we make
use of the partial match mechanism of Henshin. Thus, we only need a reduced set of
simple rules which we can concrete with information gathered in preceding steps.
As there are certain limitations regarding Henshin (for example regarding paths
through models), direct manipulation of the system model using EMF and reflection
code is also possible. With regard to the Security Context Catalog meta model we in-
troduced in Section 6.2.1 (on page 65), SMRs can also be associated with Completion
instances which means that the user can be requested to provide additional input to

6.5. Semi-automatic Co-Evolution of Models 73

further parameterize reactions (like defining new class names, choose desired posi-
tion of new elements in model hierarchy, etc.).

6.5 Semi-automatic Co-Evolution of Models

After a context evolution has emerged, appropriate co-evolutions need to be deter-
mined, supplied with additional knowledge, and finally applied. Throughout this
chapter, we introduced concepts to couple S2EC2O with the system development,
how to check the system’s security upfront, and how formalize and coordinate delta
information. In this section, we present an algorithm to realize the delta handling that
is used to put all the parts together and realize the design-time co-evolution.

1 loadCatalog ();
2 loadModel ();
3 semanticDiff ();
4 executeReasoning ();
5 for (Extension e : pluginRegistry.getAll("ssecco.esr.model.smr")) {
6 SMRExecutable smrExecutable pluginRegistry.createExecutable(e);
7 bindSMRExecutable(smrExecutable);
8 smrExecutable.checkConditions(deltaList);
9 }

10 requestUserChoices ();
11 for (Proposal p : deltaList.getProposals ()){
12 smrExecutables.get(p.getSmrIdentifier ()).apply(p);
13 }
14 saveModel ();

LISTING 6.1: Pseudo code for delta handling

Listing 6.1 presents the algorithm for delta handling in Java-like pseudo code.
First of all, the Security Context Catalog and the system model are loaded (lines 1-2).
After that, the context evolution information needs to be gathered, by calculating
the semantic difference between the given two versions of the SCK (line 3) and by
reasoning about the current SCK version (line 4). Both methods trigger the ontology
differencing mechanisms we discussed in Chapter 5. Execution of these methods
populates a deltaList as introduced in Section 6.3. Thus, all delta information can
be accessed in a sophisticated, structured way. After that, a loop is initiated that in-
stantiates and triggers all available SMRs (lines 5-9). Every SMR is first instantiated
(line 6) and then bound to its respective SMR object of the loaded Security Context
Catalog (line 7). Finally, the checkConditions() method is called so that every SMR
can analyze the model, the SCK, determine if there are relevant deltas, and submit
proposals that are subsumed by the deltaList (line 8).

After collecting all proposals, the user is requested to choose alternatives wher-
ever there is more than one alternative for one proposal (line 10). To actually realize
co-evolutions, a reaction of a SMR has to be applied. This means that the reactions
are carried out at the system model. As we discussed in preceding sections, there
are different kinds of reaction that can be used as a co-evolution, triggered within
the apply() method. For all proposals that have been submitted by the SMRs (and a
choice has been made), they get applied (lines 11-13). Finally, the co-evolved system
model is saved (line 14).

Afterwards, it has to be checked if no ESR is endangered. If an ESR is now vio-
lated that was respected before execution of the algorithm, or if there is an ESR that
still is violated, the assistance of the security expert becomes necessary. The secu-
rity expert needs to investigate the ESRs, eventually manually adapt the model to
prevent side effects, and consider a full security check using methods as introduced
in Section 6.2.3. In particular, this becomes necessary if two security requirements

74 Chapter 6. Co-Evolve Design-Time Models by Assessing Context Evolution

are to be applied that (logically) contradict each other (such as non-repudiation and
anonymity).

6.6 Related Work

In this section, we discuss related work of this chapter. As the publications that we
took into account only cover a some aspects of this chapter, we categorized them.

6.6.1 Analyze the Impact of Changes with respect to Co-Evolution

When an evolution takes place, the software artifacts under consideration can be-
come inconsistent due to unintentional side effects.

The Water wave phenomenon inspired Li et al. [LZSL13] to develop an impact as-
sessment approach based on call graphs. First they analyze the core which con-
sists of the direct affected software artifacts. After that, the call graph is analyzed,
taking the interference of different changes into account. They claim that their na-
ture inspired approach has fewer false positives compared to common call-graph
approaches. Their approach is focused on predicting how big (i.e. number of meth-
ods to change) the impact of changing a number of methods in a given source code
project will be. Opposed to this, our approach aims at analyzing impact regarding
security properties.

Bouneffa et al. [BA14] propose a process to support a change impact analysis
for applications modeled with Business Process Models. Semantic knowledge about
artifacts and change operations that is represented in an ontology is used to realize a
change management, while the system itself is represented as a graph. The authors
present graph transformations for numerous atomic as well as composite changes
to support system evolution. A part of the respective RHS contains impact elements
as part of the graph. The authors do not focus on how the knowledge represented
by the ontology is managed and what the reaction to determined change impacts
should be.

The approach does not support processing of requirements or other overall prop-
erties. The change management presented instead serves for keeping a big model
consistent. Apart from that, the authors do not argue how transformation of ele-
ments already annotated with impact elements should look like.

Okubo et al. [OKY11] regard the impact of software enhancements on security
by involving patterns of enhancements. The overall goal is to enable the developer
to estimate and compare the amount of modifications needed by different counter-
measures. The proposed security analysis process uses security requirements pat-
terns to identify threats and security design patterns to find countermeasures (see
also [OKY12]). The approach assumes evolution of ordinary requirements and then
estimates possible impact on the security requirements.

In contrast to S2EC2O, their approach does not cover evolution. Besides, appli-
cation of the approach leads to having a guidance of which patterns for security pre-
cautions or vulnerability mitigations should be applied. There is no integration with
an actual system design so far. Patterns are specified by natural language. The effect
of knowledge evolution to natural language or semi-formal sources is not covered.

Lehnert et al. [LFR13] investigated on the challenges that, after an evolution has
taken place, development artifacts may be inconsistent to each other. To address this
issue, they propose a rule-based impact analysis (IA) for a number of typical project
artifact types (models, source code, tests). Consistency is managed by an overall

6.6. Related Work 75

meta model. The goal of this multi-perspective analysis is to detect which artifacts
are affected and how. Impact Propagation Rules distribute changes between the ar-
tifacts. The approach focuses on preserving consistency of different development
artifacts. It does not cover security aspects, and an assumption is that the evolution
is planned.

In S2EC2O, unplanned evolutions triggered by external changes are considered
with the goal of preserving the functionality of the considered system.

Sun et al. [SLWZ13] provide an approach to support change impact analysis of
artifacts of object-oriented programs. Programs are formalized as graphs. This es-
pecially holds for classes, their relationships, and their properties. Change sets are
used to determine impact sets to provide ongoing consistency between artifacts.

The approach does not consider requirements or the requirements level and
mainly focuses on structural changes between classes like changes of visibility or
call dependencies.

6.6.2 Vulnerability and Attack Management

A main type of security threat arises from the constant emergence of new vulnera-
bilities and corresponding attacks.

An investigation of Kühn et al. [KM14] focuses on zero-day exploits, in which
previously unknown vulnerabilities are exploited by attackers. Big players such as
Microsoft or Facebook face a desperate situation where conventional security pre-
cautions seem to be overwhelmed by a rapidly increasing number of these exploits.
However, rather than addressing the question of how vulnerabilities can be avoided
upfront, their current reaction is to take part in the race by conducting bug bounty
programs.

In contrast, S2EC2O builds upon community knowledge. Using layered ontolo-
gies, knowledge can be hierarchically structured. As soon as an attack is discovered
(i.e. knowledge about it is made explicit), it can be shared publicly, which speeds up
the vulnerability fixing process.

Alhazmi et al. [AMR07] define a metric called vulnerability density, which puts
the number of vulnerabilities of a product in relation to its overall bug count. They
define a logistic and a linear model and measure its fitness regarding the publicly
available bug data of a number of Microsoft Windows releases and two Red Hat
Linux releases. The authors state that their metric can be used to predict the num-
ber of vulnerabilities to be expected. This method could be useful for S2EC2O to
gain additional knowledge and pointing out potential system parts which may be
vulnerable.

Since S2EC2O focuses on the system level, there is a trade off regarding the gran-
ularity of vulnerabilities and attack types it can address. We focus on design-level
vulnerabilities. Implementation-level vulnerabilities such as buffer overflows must
be detected and fixed on the source-code level, for which a plethora of tools exist.

77

Chapter 7

Assess Security Compliance
During Run Time

The approach shown in the preceding chapters provides steps which lead to a sys-
tem model annotated with security requirements. ESRs offer a way of beginning
secure systems modeling by expressing basic security needs independent of con-
crete technologies. ESRs also provide knowledge about how implemented security
requirements can be monitored at run time (i.e. run-time monitors).

Thus, S2EC2O as presented so far, aids the user in managing a security knowl-
edge base, calculating differences in it and reacting to evolutions of it with appropri-
ate co-evolutions. However, in many situations, the security of a system cannot be
fully checked at design time. For example, if a system’s behavior highly depends on
the user’s input or code is loaded dynamically during run time, static checks are not
sufficient. The methods presented in the preceding chapter, especially the concepts
Essential Security Requirement (ESR) and Security Maintenance Rule (SMR), can be
used to extend the security requirements management into the run time.

In this chapter, we close the gap by introducing components of S2EC2O that real-
ize run-time monitoring. Moreover, information gathered during run time enhances
design-time artifacts to support the security expert in understanding attacks and fix-
ing possible design flaws. Thus, this chapter contributes to the following research
question:

RQ4: How can information coming from the system execution be used, to assess the quality
of the security requirements compliance during run time?

Section 7.1 introduces the run-time monitoring part of S2EC2O and relates it to the
rest of S2EC2O. It presents an approach of coupling the system’s model and source
code together, and how security annotations of the Security Context Catalog used
during design time can be monitored at run time.

Section 7.2 introduces a method of bridging the gap in secure systems engineer-
ing between UMLsec models and Java source code. We will introduce a concept of
source code annotations to support mapping UMLsec annotations with their source
code counterpart. Furthermore, we will propose a synchronization of security anno-
tations at source code as well as model level. We will also show a mapping between
source code and model annotations. This is exemplified using the specific UMLsec
security property ⟨⟨secure dependency ⟩⟩.

In Section 7.3, we will discuss the S2EC2O run-time component in detail and
provide an example of how to use it. The run-time component realizes the run-time
monitoring of S2EC2O by detecting security violations, and providing run-time call
traces. It is also able to carry out countermeasures when a security violation is detected
at run time. The developer is able to specify these countermeasures, for example as
part of the source code.

78 Chapter 7. Assess Security Compliance During Run Time

FIGURE 7.1: Approach to realize run-time monitoring of security
properties specified at the model level

Section 7.4 shows how run-time logging information can be used to support
round-trip engineering. For example, a call sequence leading to a security violation
can be logged by the S2EC2O run-time component and fed back into the system de-
sign to support the security expert in understanding a malicious sequence of calls,
thus providing support in fixing vulnerabilities of a system permanently. Logged
data can be used to detect previously unknown classes, the data can also be pro-
cessed to show a behavioral sequence diagram related to the system model to trace
back how an attack may be realized.

We conclude this chapter with Section 7.5 by presenting relevant work of the
research area.

We will review this chapter’s contribution to the research question in Sec-
tion 11.3.

7.1 Run-Time Monitoring with Run-Time Insights

This section gives an overview of the run-time approach and shows how it is inte-
grated in the other components of S2EC2O as they have been introduced so far. A
detailed, more technical discussion follows in Section 7.3. When security proper-
ties of a system need to be monitored at run time, several challenges occur. In most
cases the system to be executed is provided as source code. Thus, there is a need
of coupling code and model. The source code may differ from the model because
often a system model is on a more coarse grained abstraction level than the source
code. Also, even when model-based engineering is employed, the source code may
evolve independently from the model, for example by connecting or exchanging ex-
ternal libraries. Thus, security requirement annotations made in the code may also
be synchronized to the model and vice versa.

There is a need for a run-time component that realizes the monitoring. Regard-
ing security-relevant applications, it is desirable that the monitoring mechanism is
in best case not a part of the code to be monitored. This fosters that monitoring
can be manipulated or switched off from the monitored code, by bypassing access

7.1. Run-Time Monitoring with Run-Time Insights 79

restrictions. For example, in Java, reflection and aspect-oriented programming are
two methods of manipulating behavior of running code.

To tackle these issues, we introduce a run-time monitoring approach. Figure 7.1
gives an overview of it. The monitoring activities are realized by the S2EC2O run
time-component. We detail its usage step by step according to the annotated num-
bers:

1. As we already discussed, model-based software engineering may lead to the
fact that source code and model are not congruent. Using existing tooling,
it is possible to reverse engineer additional model elements by analyzing the
source code.

2. The security expert needs to annotate the model with security requirements.
This can be achieved by annotating the model directly as defined by the
S2EC2O initialization process as introduced in Section 2.2.3 (on page 15) and
detailed in Chapter 6). This is depicted as step 2a. Additionally, code my be
annotated directly (step 2b).

3. The annotations of the UML model can be synchronized with the source code
and vice versa. This can be realized using graph transformation techniques.
This step especially is necessary in case a mixture of source code and model
annotations is used.

4. Applying the preceding step results in source code annotated with security
annotations as proposed by the ESRs.

The annotated Java source code is compiled and equipped with monitoring ex-
tensions. The resulting program is monitored during execution by the S2EC2O
run time for security violations.

5. The monitoring can lead to discovery of executed code that is, so far, not part
of the model. For example, a call dependency between two classes that is not
part of the design and may also not be determined by static checking. In this
case, the model can be adapted to document this behavior. The security expert
can then decide if this behavior is either malicious or benign but raises the
need for adapting the system model.

More generally, in the case of a monitor finding, the run-time information can
be generated into the model and related to existing elements like classes, to
help the security expert in gaining insights regarding how an attack may have
been performed.

In the subsequent sections, we show how the run-time monitoring shown as
step 4 in Figure 7.1 is realized in detail. We also introduce possible reactions the
security expert can define that are to be carried out during run time in case a security
violation is discovered.

To limit the scope of this thesis, the approach presented here focuses on secure
dependency as UMLsec property to be monitored at run time, but the approach can
be extended to support additional annotations and monitors.

80 Chapter 7. Assess Security Compliance During Run Time

7.2 Specifying Security Properties

First, it is desirable to find and fix security vulnerabilities as early as possible in the
development process. Alternatively, it is desirable to provide support to automatize
detection of and reaction to breaches [BOCB+17]. But, unfortunately, many security
violations (for instance previously unknown ones or vulnerabilities based on Java
reflection) are hard to detect statically in the system design or source code [MNGL98,
EL02, CM04].

Second, the ongoing modularization of software makes a project depend on ex-
ternal libraries. This can introduce vulnerabilities into a project and put the overall
system’s security at stake.

For example, OWL API [MMG], the Java library to work with OWL 2 ontologies
as introduced in Section 4.2.1, depends on 39 libraries (version 4.5.1). Thus, sys-
tem administrators may not know whether the software product they are running
depends on libraries which may contain vulnerabilities. This is security critical be-
cause these external libraries get access to the developer’s and/or administrator’s
system.

More concretely, security properties defined in a system which relies on trusted
libraries might not be satisfied any longer if, for example, a new library version
is introduced having vulnerabilities that are not known by now. Keeping track of
all potential vulnerabilities, particularly those discovered only recently but not yet
fixed, can be a challenging task.

We conclude that, even if a system features a design that is proven to be compli-
ant with its security requirements, and even if the source code has been implemented
in all conscience, dependency to external libraries can put security at risk. On this
account, we want to tackle this challenge by providing run-time monitoring based
on security requirements to be used at both the source code level and model level.
Security requirements at the source code level may better reflect implementation
details, while model annotations can be used to provide a better overview.

7.2.1 Specification of Security Requirements at Model level

To support modeling of security requirements at the model and also the source code
level, a concept is needed that works for both levels and also allows coupling be-
tween model and source code level. A tight coupling may be unwanted because in
model-based engineering, the source code, in comparison to the system model, may
be subject to manual adaptations. Regarding specification of security requirements
in system models, we make use of UMLsec as used in the design-time co-evolution
part of S2EC2O in Chapter 6. The approach we present in this chapter is focused
on but not limited to ⟨⟨secure dependency ⟩⟩. We chose it, because it is a security prop-
erty to handle compliance with security requirements between two partners, being
appropriate for considering working with external libraries.

We shortly summarize the security property Secure Dependency of UMLsec and
then discuss, how we extend its definition into run time for this thesis. Secure de-
pendency originally is concerning the static structure of the system. It ensures that
call and send dependencies between objects respect the security requirements on the
data that may be communicated along them. Detecting all dependencies which can
occur at run time statically, on the models or a concrete implementation, has been
shown to be statically undecidable. The use of Java reflection depending on user
input is one of the challenges to this matter [MNGL98, LWL05].

7.2. Specifying Security Properties 81

passwords <<secure dependency>>

<<critical>
{secrecy={table : Hashtable}

PasswordStore

- table : Hashtable

+ getPassword(String, String): String

<<critical>
{secrecy={table : Hashtable}

Application

+ requestPassword()

<<call,secrecy>>

FIGURE 7.2: Example of UMLsec secure dependency application

The following definition, adapted from [JJ05] addresses secrecy. The integrity case
is defined analogously.

A subsystem fulfills secure dependency iff for all call or send dependencies d from
an object C to an object D the following conditions hold:

1. for all s ∈ D.members: s ∈ C.secrecy ⇔ s ∈ D.secrecy,

2. for all s ∈ D.members: s ∈ C.secrecy ⇒ d is stereotyped secrecy, where s refers
to the signature of a member.

We show how ⟨⟨secure dependency ⟩⟩ is used by an example in Figure 7.2. It shows
a UML model of a password manager, inspired by the secure storage concept of the
Eclipse IDE [Ecl13], providing a public Application Programming Interface (API) to
different applications and requiring secure dependencies. The class PasswordStore
provides a method to retrieve passwords from the store via a public API. Also,
a table with private visibility in which all passwords are stored is part of the
class. Stored passwords can be requested using the method getPassword(String,
String):String which checks a master password before returning a stored pass-
word. Accordingly, this operation accepts the ID of the application for which a
password has been stored and the master password as parameters. As the class
PasswordStore is annotated ⟨⟨critical ⟩⟩ and the tagged value secrecy holds the signa-
ture table:Hashtable, all classes with a dependency stereotyped with ⟨⟨call ⟩⟩ have to
respect this secrecy security level. This in turn holds for Application, also equipped
with the respective secrecy tagged value. The security-relevant connection between
both classes is represented by ⟨⟨critical ⟩⟩ containing this signature and a ⟨⟨secrecy ⟩⟩

stereotype on the dependency.
In the implementation of a system specified in such a UML model, the dependen-

cies stereotyped with ⟨⟨call ⟩⟩ and ⟨⟨send ⟩⟩ are usually implemented as method calls and
field accesses. Even if a static model does not suffer violations, at run time it has to
be guaranteed that the security properties specified at design time are not violated.
A violation can occur due to an exchanged library or due to malicious code.

1 class MaliciousApplication {
2 public Hashtable readPasswords(PasswordStore s) {
3 Field f = s.getClass ().getDeclaredField("table");
4 f.setAccessible(true);
5 return (Hashtable) f.get(s);
6 }
7 }

LISTING 7.1: Source code of a malicious application

Listing 7.1 shows an excerpt of a modified application using the API of the pass-
word manager in a malicious way. It tries to read all passwords stored in the pass-
word manager by using the Java reflection API for accessing the private password

82 Chapter 7. Assess Security Compliance During Run Time

table of the class PasswordManager. To achieve this, (see lines 3 to 5) at first a Field
object representing the table is requested, set to accessible and finally the value of
this field is requested and returned for the PasswordManager object given to the
method as parameter.

7.2.2 Security Requirements at Source-Code Level

UMLsec originally does not support annotation of source code, but it provides de-
velopers with possibilities to annotate (UML-)models with security annotations.

A similar mechanism also exists for Java, namely Java annotations. With Java
annotations it is possible to define extensions to the syntax to annotate source code.
Hence, we introduce a set of Java annotations that realizes source code annotation to
specify annotations as defined in UMLsec. We focus on annotations for methods and
fields as these are the most relevant constructs if the call and data flow of a system
is to be traced.

Especially, we support monitoring of the secure dependency property by adding
a @Critical Java annotation that is semantically identical to ⟨⟨critical ⟩⟩, as well as
Java annotations for directly annotating class members: @Secrecy and @Integrity.
As ⟨⟨critical ⟩⟩ has the tagged values secrecy and integrity, the @Critical annotation
has parameters secrecy and integrity which provide, as well as ⟨⟨critical ⟩⟩, arrays of
member signatures provided as strings.

1 @Critical(integrity ={"checkMasterPassword"})
2 class PasswordStore {
3 @Secrecy
4 private Hashtable table = new Hashtable ();
5
6 public String getPassword(String id, String pwd){
7 if(checkMasterPassword(pwd)){
8 return table.get(id);
9 }

10 throw new SecurityException ();
11 }
12 }

LISTING 7.2: Source code of the password store with security
annotations

Listing 7.2 shows an adapted version of the PasswordStore introduced in Fig-
ure 7.2. The tagged value secrecy={table:Hashtable} of ⟨⟨critical ⟩⟩ is represented
by a @Secrecy annotation on the table field in line 3 of the example. Additionally,
the security requirement integrity is specified for a member with the signature
checkMasterPassword in the @Critical annotation (see line 1). The method is called
in line 7.

The next section elaborates on how the annotations of these two artifact kinds
are mapped.

7.2.3 Mapping of Model Level and Source Level Annotations

To synchronize UMLsec annotations of a UML model with annotations in source
code, mapping between this different kinds of annotations is needed.

Table 7.1 shows a mapping between UMLsec stereotypes as introduced by the
UMLsec profile and respective source code annotations.

UMLsec stereotypes provide abilities to model all information regarding secu-
rity levels within the tagged values secrecy and integrity of ⟨⟨critical ⟩⟩. Similar
to this we defined a @Critical Java annotation with the parameters secrecy and
integrity, as can be seen in the first three rows of Table 7.1.

7.2. Specifying Security Properties 83

TABLE 7.1: Mapping between UMLsec model and source code anno-
tations

UMLsec stereotypes Java annotations
stereotyped stereotype tagged value annotated annotation parameter

Classifier ⟨⟨critical ⟩⟩ Class @Critical
Classifier ⟨⟨critical ⟩⟩ secrecy Class @Critical secrecy
Classifier ⟨⟨critical ⟩⟩ integrity Class @Critical integrity
Classifier ⟨⟨critical ⟩⟩ secrecy Method/Field @Secrecy
Classifier ⟨⟨critical ⟩⟩ integrity Method/Field @Integrity

⟨⟨critical ⟩⟩ on classifiers is equivalent to the @Critical annotation on classes as
well as their corresponding tagged values and parameters. In addition to the
@Critical annotation on classes, we can directly annotate methods and fields using
the mapping with @Secrecy and @Integrity. Usually, methods and fields are anno-
tated by explicitly stating them as part of the respective secrecy and integrity tagged
value of ⟨⟨critical ⟩⟩. To avoid errors by mistyping and raise clarity and readability in
larger classes, we also support that methods and fields can directly be annotated
with @Secrecy and @Integrity respectively.

7.2.4 Synchronizing Model and Code

Considering the problem of mapping UML elements to Java code, mappings already
have been defined in various reverse engineering approaches [Ton05, LAS17]. Un-
fortunately, existing mappings only consider a one-shot mapping. Thus, the chal-
lenging part is to keeping up with continuous evolution of both UML model and
Java source code. Both can evolve independently. Existing approaches are using
graph transformation techniques providing model synchronization to deal with the
issues arising from this evolution [PKLS15, LAS17] and can also be applied to our
annotations.

Regarding steps 1 and 3 of the run-time approach as defined in Figure 7.1 (on
page 78), we may have to reverse engineer UML diagrams from source code and
have to keep both in sync afterwards. This does also apply to annotations as intro-
duced before.

Plain UML class diagrams can be reverse engineered from Java source code using
existing tools like MoDisco, Visual Paradigm or Architexta [Theb, Vis, i3l]. Unfor-
tunately, existing tools usually do not support synchronization of the reverse engi-
neered UML models with the source code.

Leblebici et al. already specified rules for transforming Java programs repre-
sented as instances of the MoDisco [Theb] meta model into UML class diagrams us-
ing their graph transformation tool eMoflon [eDT, LAS14]. To utilize this, a source
and a target model need to be provided (i.e. a UML model and a MoDisco model
representing the source code) as well as the changes on one of these two.

Regarding changes to the UML model, Papyrus [Thec] is able of directly provid-
ing fine grained edit operations. Papyrus is a very powerful UML editor which also
directly supports the UMLsec profile as part of CARiSMA, the current tool support
for UMLsec [APRJ17].

The eMoflon tool can use the MoDisco representation of source code as well as a
UML model as input and take model change events of Papyrus as delta information
into account. Leblebici et al. [LAS17] propose a set of TGG rules able to synchronize

84 Chapter 7. Assess Security Compliance During Run Time

FIGURE 7.3: Structure of the run-time monitoring approach regarding
software development abstraction layers

UML models and code. Rules to support the UMLsec-related annotations need to be
added analogously.

7.3 Round-Trip Engineering Approach for Security Monitor-
ing

Figure 7.3 shows the approach in detail that we sketched in Figure 7.1 (on page
78). It especially shows the different abstraction levels in model-based engineering
and which steps of the approach couple the respective levels. In the following, we
discuss the steps presented in Figure 7.3, emphasizing how the different layers are
coupled. Afterwards, we present the realization of the steps 3, 4, and 5 by examples.

1. As we discussed in Section 7.1, it also applies to model-based engineering that
source code is developed independent of the model. Step 1 can be realized
using existing reverse engineering tools like MoDisco [Theb].

2. After the system model is at hand, it needs to be annotated according to the
security annotation obligations given by S2EC2O. This can either be done by
annotating the system UML model directly with UMLsec annotations using

7.3. Round-Trip Engineering Approach for Security Monitoring 85

Papyrus [Thec] (step 2a), or by annotating the source code directly using the
Java annotations and mapping to UMLsec we introduced in Section 7.2.4.

3. Security annotations in model and code need to be kept in sync. This can be
realized using graph transformation techniques such as Triple Graph Gram-
mars (TGGs) and respective tooling like eMoflon [LAS14]. To let a graph
grammar work with source code, a model representation of the source code is
needed. This (step 3) can also be achieved using existing tooling like MoDisco.

4. Using steps 1 to 3, source code as well as a UML model can be annotated
by the security expert according to the security annotation obligations. Thus,
a UMLsec model annotated with security requirements can be coupled with
Java source code annotated with respective security annotations. The anno-
tated source code is compiled into Java classes. The compiled source code is
executed by an unaltered JVM, supported by a Java agent [Ora]. A Java agent
basically is a Java program equipped with a special premain method that is
called by the JVM prior to the main method of the actual program. The JVM
can be instructed to execute a Java agent along with an arbitrary Java program
by providing the Java agent’s main class as a command line argument. S2EC2O
run time is realized as a Java agent.

The monitoring approach is realized in a way that the monitoring code is sep-
arated from the monitored code. This is achieved using bytecode instrumenta-
tion. Section 7.3.1 gives details on which code snippets are used to instrument
the application’s code. Throughout this chapter, we already mentioned several
types of reactions that are conceivable, as soon as a security violation has been
discovered by the monitoring. One obvious type of reaction is to equip the
code with actual countermeasures to mitigate or even defend an exploit.

In Section 7.3.2 we discuss in detail, how countermeasures are actually im-
plemented and executed. Thus, the S2EC2O run-time component is started
alongside the system to be monitored and instruments it. Security annotations
at the model level lead to executable source code where security properties are
monitored.

5. While monitoring the system, monitor findings can occur. First of all, depen-
dencies discovered during run time which are not part of the system design
can be discovered. This especially applies to external libraries and call depen-
dencies which cannot be checked statically. These insights can be used to adapt
the UMLsec model automatically, contributing to round-trip engineering. For
example, reports of incidents and automatically induced countermeasures can
be shown as part of the model, by relating to existing classes. Thus, the secu-
rity expert is able to design a system on the model level and getting feedback
at the same level. Section 7.4 shows the round-trip mechanisms supported by
S2EC2O with their realization.

7.3.1 Verification at Run Time

This section shows, using secure dependency as an example, how run-time monitor-
ing using via instrumentation is realized.

Step 4 in Figure 7.1 (on page 78) is to execute the annotated source code and to
monitor the execution for security violations. To ensure that we detect every security
violation with respect to secure dependencies, we have to check all related method

86 Chapter 7. Assess Security Compliance During Run Time

…

Control Flow Graph

…

read

call

1) insertBefore: check(requestPassword)

3) insertBefore: check(checkMasterPassword)

5) fieldAccess: instrumentation on Class load

7) insertAfter: pop(exit,requestPassword)

6) insertAfter: pop(getPassword)

Instrumented agent calls

time

call

2) insertBefore: check(getPassword)

4) insertAfter: pop(checkMasterPassword)

Application

requestPassword()

PasswordStore

getPassword(String,String):String

PasswordStore

checkMasterPassword(String):boolean

PasswordStore

table:Hashtable

FIGURE 7.4: Events monitored at run time

calls and field accesses for their compliance with the specified security properties.
We thus need to trace the call flow and take action as soon as a method is entered or
exited. We reify monitoring by instrumenting the compiled code using Javassist, a
mature framework for bytecode manipulation of Java programs [Chi, Chi00].

The instrumentation needs to take place at run time because it is not foreseeable
which classes will be loaded at run time. Moreover, additional classes can also be
dynamically loaded at run time via the Internet. To instrument the program to be
monitored, we use a Java Agent which is called before the main method of a Java
program is called. The source code transformation is triggered every time a class is
loaded. The agent instruments appropriate code to conduct the secure dependency
check at run time. Classes of the JRE core are not instrumented because they cannot
be altered. S2EC2O’s classes are not instrumented to avoid an infinite loop.

First of all, all annotations relevant for ⟨⟨secure dependency ⟩⟩ are gathered. This
covers the @Critical annotation as well as individual @Secrecy and @Integrity an-
notated methods, and fields. After that, every method that is annotated with at least
one of the annotations or referenced by the @Critical annotations, the monitoring
code is instrumented in a way that it is inserted before and after the actual method
body. Additionally, all fields are instrumented with secure dependency checking
code.

The agent provides a global set of stacks for call traces, one stack per thread.
Whenever a method is entered, the conditions of secure dependency need to be
checked: It is checked if the method to be executed is trustworthy. Additionally,
the method is pushed to the stack for tracing purposes. After the code of a method
is finished and before the return finally is initiated, the method is popped from the
stack.

Figure 7.4 exemplifies the operating principle of the S2EC2O run time compo-
nent with an example. We show a sample execution of an application accessing the
PasswordStore. On the figure’s left hand side an excerpt of the control flow graph is
shown. First, the method requestPassword in the class Application is called. This
method in turn calls the getPassword method of the class PasswordStore (its imple-
mentation is shown in Listing 7.2 on page 82). According to its implementation, at

7.3. Round-Trip Engineering Approach for Security Monitoring 87

first the method checkMasterPassword is called and eventually the requested pass-
word is returned from the field table.

The right hand side of Figure 7.4 shows the instrumentations that are issued
alongside the method calls and the field access. The run-time monitor we propose is
realized distributed over instrumented blocks:

• before a class is loaded to check for potential forbidden field accesses in,

• before a method body begins to check the secure dependency conditions (check if
the called method is trustworthy), and

• after a method body has been executed to clean up the stack of called
methods. All field accesses are monitored regarding the compliance with
⟨⟨secure dependency ⟩⟩ as well.

Regarding the secure dependency property, whenever a method is entered or exited
or a field access may happen, this is relevant as we have to check if the call or access
of the respective members is allowed. To accomplish this, whenever such a relevant
event occurs, we need to trace the control flow graph backwards and check both
if the originating method is annotated as expected and if the accessed member is
annotated as requested by the originating method.

To realize the instrumentation as above, we make use of the three Javassist meth-
ods insertBefore, insertAfter and fieldAccess. The (byte-)code of the first two
is inserted before and after the body of a respective method. Before a method is
executed, the secure dependency check is run and the method is put on the stack.
After all outgoing edges of a method node (in the control flow graph) have been
processed, the method is popped from the stack.

Regarding fields, every field access is investigated regarding ⟨⟨secure dependency ⟩⟩

and eventually adapted.
In what follows, we discuss the code snippets that are instrumented into the ap-

plication. Listing 7.3 shows the check for field accesses, while Listing 7.4 shows the
code that gets executed before an actual application method is run. Listing 7.5 shows
the code snippet that is run after an actual application method has been executed.

1 input var fieldAccess
2
3 // Checking secrecy only for read accesses
4 if (fieldAccess.isRead () & fieldHasSecrecy) {
5 if (! secrecy.contains(fieldSignature)) {
6 fieldAccess.replace(counterMeasureFieldRead(fieldAccess , field));
7 }
8 if (secrecy.contains(fieldSignature) & !fieldHasSecrecy) {
9 fieldAccess.replace(RESULT=fieldValue);

10 }
11
12 // Checking integrity only for write accesses
13 if (fieldAccess.isWrite () & fieldHasIntegrity) {
14 if (! integrity.contains(fieldSignature)) {
15 fieldAccess.replace(counterMeasureFieldWrite(fieldAccess , field));
16 }
17 if (integrity.contains(fieldSignature) & !fieldHasIntegrity) {
18 fieldAccess.replace(NEW_VALUE=fieldValue);
19 }
20 }

LISTING 7.3: FieldAccess code to perform the field access
check during run time

88 Chapter 7. Assess Security Compliance During Run Time

1 global var stackSet // Global set of stacks of called methods for threads
2
3 checkSecrecy(stack.peek(), method(this))
4 checkIntegrity(stack.peek(), method(this))
5 stack.put(method(this))

LISTING 7.4: BeforeMethod check part to perform secure
dependency check at run time

1 global var stackSet // Global set of stacks of called methods for threads
2
3 stack.pop(method .(this))

LISTING 7.5: afterMethod to pop the method from the stack

The approach presented here also makes use of logging and debug output neces-
sary for realizing the run-time monitoring’s subsequent functions, but in the listings
we show in this section, we omit method calls for logging, printing debug messages,
etc. for clarity reasons.

To verify the secure dependency property, we need to trace which method is
the originating one of the current access to a method or field. To realize this, we
store a method call stack (line 1 in Listings 7.4 and 7.5) whose top is the last method
with outgoing accesses. A global map of stacks is provided by the S2EC2O run-time
component. Each thread is assigned a stack using the thread itself as key.

In case a new method is entered, we have to check if the security requirements
of this method are fulfilled by the caller and vice versa. The method checkSecrecy
validates, by using the source and sink of the given access, if the secure dependency
property holds for the secrecy security requirement. The method checkIntegrity
works analogously for integrity. In case one of the validations fails, we provide
various reactions which we will introduce in Section 7.3.2.

In addition, to verify if the caller (always top of the stack) and the entered
method provide all annotations required by secrecy, we use checkSecrecy in line
3 in Listing 7.4. In line 4, the same for integrity with the method checkIntegrity is
done. Afterwards, we put the entered method on top of the stack as it will be the
source of the next calls. When all statements of an method have been executed, the
method is popped from the stack (see line 3 in Listing 7.5).

1 checkSecrecy(caller , thisMethod){
2 if (caller != thisMethod && caller !=null){
3 boolean callerHasSecrecy = caller.getSecrecyAnnotations.contains(

thisMethod);
4 if (! callerHasSecrecy){
5 violations.add("secrecy");
6 return earlyReturn ();
7 }
8 }

LISTING 7.6: CheckSecrecy method to check the compliance of
the secrecy requirement

Listing 7.6 shows the pseudo code for the checkSecrecy() method. In case there
is a valid caller at the top of the stack and the calling class is not the class itself, the
check is carried out (line 2). It is then checked if the caller has the signature of the
instrumented method in its set of secrecy annotations (line 3). If this is not the case
(line 4), a violation has been detected. One type of countermeasure we will introduce
in the succeeding section is called early return (line 6). In case a violation has been
detected and such a method is defined, it is called.

Regarding field accesses, these are instrumented using the fieldAccess method
of Javassist. This code snippet is also executed at class loading time. In contrast

7.3. Round-Trip Engineering Approach for Security Monitoring 89

to the other snippets, it does not precede or succeed the regular method execution,
but it eventually manipulates the code for field accesses in all methods. The agent
we provide applies the instrumentation only if the respective field is not declared
in the loaded class. A variable containing reference to the field that is going to be
accessed is available via the instrumentation API in the fieldAccess object. Also at
class loading time, the sets secrecy and integrity are populated by collecting all
respective field/method and @Critical annotations of the class.

The secrecy check is done for reading accesses (see line 4 of Listing 7.3). If the
field to be accessed is not contained in the annotations of the calling class, the secrecy
requirement is violated. In this case, the behavior of the field access is replaced by
retrieving and returning the early return value (see line 6). We will give details on
early return in the succeeding section. In case the signature of the field is an element
of the secrecy set but the field itself does not have the secrecy annotation, the field
to be accessed violates the secure dependency requirement. In this case, the access
is still granted but the violation can be logged.

For the case of integrity check (see line 12 and following), the check is imple-
mented analogously. In case of violation (line 15), the value written into the field is
the early return value. It thus can be used to have a clearly defined value in the field
in case of violation. If no early return value is defined, the write access is omitted by
writing the same value into the field that it had before the write access came up. In
case of reflective field accesses, method calls declared in java.lang.reflect.Field
are instrumented, the check itself is realized analogously to Listing 7.3.

7.3.2 Countermeasures

Plain run-time monitoring is a passive method so that security violations are just
recorded. This does only provide limited benefit for production environments. In
this case, security violations are not prevented. A security run-time component has
a substantial benefit if it is able to react to violations detected at run time (Counter-
measures).

S2EC2O supports four kinds of countermeasures that go beyond simple shut-
down and facilitate reactions to both keep the system running and prevent violations
and thus prevent data from harm at run time:

1. Log actions of potential attacks for future evaluation.

2. End the attack by shutting down the application.

3. Return a statically defined value instead of the real value.

4. Call operations implementing sophisticated countermeasures.

In the simplest case, the reaction is to just log the call or access which leads to a
violation and all calls and accesses which take place after the violation. These can
be used as a plain textual log file or leveraged sequence diagrams as we describe in
subsequent sections. This different kinds of logging will not prevent damage caused
by the occurred violation but they enable system developers to study the violation
and adapt the system to prevent future damage.

To actively encounter a violation, we provide a number of reactions to stop ex-
ploiting a system and thus combine logging with additional countermeasures we
discuss in the remainder of this section.

The simplest reaction is to terminate the system and notify the system operator.
Especially when given a complex system where only a small part would be affected

90 Chapter 7. Assess Security Compliance During Run Time

by a vulnerability, this may be unwanted. Otherwise, provoking a system shut down
can also be some kind of denial of service attack.

As an alternative to keep the system running and to actively prevent it and its
data from harm, we support to change return values and values stored in fields in
case a violation occurs. For instance, returning null is a valid alternative as it is a
well-known reaction in case of unforeseen or unusual situations. This prevents the
system from disclosing real data to an attacker and the attacker may not notice that
the security violation has been noticed. For this reason the security annotations to be
applied on methods support to have primitive, statically defined early return values.
The values of accessed fields can be altered also.

Depending on the data returned and how often the same data is returned, the
probability of the attacker becoming suspicious might increase. Returning the same
bogus data repeatedly might allow the attacker to study how the system behaves
in case of an attack and thus rise additional breaches. To cope with this, we also
support to specify methods to be called to provide an early return value in a more
sophisticated and dynamic manner. Additional countermeasures can be triggered,
too.

In both cases, early return values are defined by a parameter earlyReturn of
@Secrecy and @Integrity. This parameter can be any primitive type, String, null
or the name of a method, within the class and without parameters, which should
be called. The called method can perform any operation accessible from object’s
scope whose member has been accessed. To avoid accidental use of methods pro-
viding countermeasures at the regular program execution, we additionally provide
@CounterMeasure: Whenever a method annotated in such a way is entered at run
time, S2EC2O run time can prohibit this call by issuing returning null.

1 public class PasswordStore {
2 @Secrecy(earlyReturn="secure")
3 private Hashtable table = new Hashtable ();
4
5 @CounterMeasure
6 public Hashtable secure (){
7 for(String key : table.keySet ()){
8 table.put(key , randomString ());
9 }

10 return table;
11 }
12 }

LISTING 7.7: Specification of a countermeasure for the field
table

Listing 7.7 is a code snippet regarding the password store example. It demon-
strates the usage of calling an additional method to determine an early return value:
secure():Hashtable will be called if a security violation of the secrecy property of
the field table:Hashtable occurs at run time. This method replaces all passwords
stored in the table with randomly generated strings to look like real passwords.

7.4 Support Security Fixing with Run-Time Insights

After the detection of security violations, even if they have been prevented by the
S2EC2O run time, the system still needs to be adapted to reduce the attack surface
permanently.

For this purpose, the data logged by the S2EC2O run time can be used. To
support a design-cycle on the model level, data collected during run-time can be

7.4. Support Security Fixing with Run-Time Insights 91

FIGURE 7.5: Ecore meta model for run-time protocols in S2EC2O

leveraged for the model level.

This automated evolution (see step 5 in Figure 7.1, page 78) covers:

1. addition of missing UML elements to the system model, and

2. documentation of security violations as sequence diagrams with direct refer-
ences to involved UML elements.

In the following we show how this two evolution steps can be realized based on
the gathered data.

7.4.1 Run-time Protocol for Subsequent Analysis

To realize the features as introduced above, run-time data needs to be gathered. The
S2EC2O run time realizes this by instrumenting the application not only with the
monitoring code representing the security check and countermeasures, but also by
logging and documenting relevant calls including the involved classes.

This is currently realized by writing a protocol using the JavaScript Object Nota-
tion (JSON). JSON has the advantage of being platform independent and supported
widely in diverse products. Writing the protocol can happen either off-line or on-
line. In the latter case, JSON objects can be transferred via a WebSocket instanta-
neously, while the off-line variant has less latency.

Figure 7.5 shows our meta model that offers supplementary services for the anal-
yses we introduce in the subsequent sections. For analyzing and utilizing the JSON
protocol, the JSON protocol is parsed and an instance of the Ecore meta-model is
built. This provides easy to access types and other convenience methods provided
by the EMF. The meta model basically represents the content of the protocol. Be-
sides some basic meta data like name of the executed program and location of the

92 Chapter 7. Assess Security Compliance During Run Time

program, methods, fields and classes can be distinguished. For easy access, class
paths are also stored. The RTAccess class with its associations helps for tracing call
and access sequences. The enumeration RTSecurity is used to specify the kind of
security property violation that has been discovered.

1 { "date": "2019-06-06",
2 "location": "/home/is/where/wifi/connects/automatically/bin/.",
3 "calls": [
4 { "id": 0, "prev": -1,
5 "clazz": "malware.MaliciousApplication",
6 "member": "malware.MaliciousApplication.main(java.lang.String[])"},
7 { "id": 10, "prev": 0,
8 "clazz": "malware.MaliciousApplication",
9 "member": "malware.MaliciousApplication.readPasswords(passwords.

PasswordStore)"},
10 { "id": 11, "prev": 10,
11 "clazz": "passwords.PasswordStore",
12 "member": "passwords.PasswordStore.getTable ()",
13 "violations": ["secrecy"]},
14 { "id": 12, "prev": 11,
15 "clazz": "passwords.PasswordStore",
16 "member": "passwords.PasswordStore.secure ()"},
17 { "id": 13,"prev": 12,
18 "clazz": "passwords.PasswordStore",
19 "member": "passwords.PasswordStore.getTable ()"},
20 { "id": 14, "prev": 12,
21 "clazz": "passwords.PasswordStore",
22 "member": "passwords.PasswordStore.getTable ()"},
23 { "id": 15, "prev": 12,
24 "clazz": "passwords.PasswordStore",
25 "member": "passwords.PasswordStore.randomString ()"},
26 { "id": 16, "prev": 12,
27 "clazz": "passwords.PasswordStore",
28 "member": "passwords.PasswordStore.getTable ()"},
29 { "id": 17, "prev": 12,
30 "clazz": "passwords.PasswordStore",
31 "member": "passwords.PasswordStore.randomString ()"},
32 { "id": 18, "prev": 12,
33 "clazz": "passwords.PasswordStore",
34 "member": "passwords.PasswordStore.getTable ()"},
35 { "id": 19, "prev": 12,
36 "clazz": "passwords.PasswordStore",
37 "member": "passwords.PasswordStore.randomString ()"},
38 { "id": 20, "prev": 12,
39 "clazz": "passwords.PasswordStore",
40 "member": "passwords.PasswordStore.getTable ()"},
41 { "id": 21, "prev": 0,
42 "clazz": "malware.MaliciousApplication",
43 "member": "malware.MaliciousApplication.sendPasswords(java.util.

Hashtable)"}
44]}

LISTING 7.8: S2EC2O trace of run-time monitoring

Listing 7.8 shows the trace written during execution of the malicious application
from Listing 7.1 (on page 81). We omit the attributes bin that reference the classes’
base directory, since it is the same for every class. Every call object is identified by
a numeric id, while prev eventually refers to the id of the caller. -1 as prev means
that it is the first method call. ID 11 shows the call of getTable() and the detected
secrecy violation. What follows is a call of the early return method secure() with
ID 12.

7.4.2 Addition of Missing Elements

One possibility to leverage the data gathered in the protocol is to add elements to
the system model which are newly discovered during run time. This is especially

7.4. Support Security Fixing with Run-Time Insights 93

<<critical>
{secrecy={table : Hashtable}

PasswordStore

<<artifact>>
PasswordStore.java

Malware

<<artifact>
Malware.java

<<call, secrecy>>

<<call,secrecy>>

<<ExecutionEnvironment>>
Workstation

<<deployment>>

<<manifest>><<manifest>>

<<critical>
{secrecy={table : Hashtable}

Application

<<artifact>
Application.java

<<call>>

<<call>>

<<ExecutionEnvironment>>
Unkown

<<manifest>>

<<deployment>><<deployment>>

FIGURE 7.6: Deployment and manifestation of classes with evolution

important in case a security violation takes place using classes or methods which
have not been anticipated. Another benefit, regarding usage of external libraries,
is to reveal call dependencies between the application under consideration and the
library code that have not been anticipated during development either.

The graphical depiction of a call trace as part of a UML model is both clearer than
inspecting a call trace file and eases adapting the system model to the actual usage,
because all relevant elements could be added automatically.

For example, in the top left hand side of Figure 7.6, the call between the two
classes from the password store example we introduced in Figure 7.2 (on page 81) is
shown.

Below these two classes we see on which artifacts they are deployed and on
which execution environment they are manifested. The gray elements on the right
hand side have been automatically added and are showing the malware we intro-
duced in Listing 7.1 (on page 81) which has not been considered by the system de-
velopers.

Detection of missing elements is realized as follows. At first, the current UMLsec
model is queried for all classifiers. After that, the protocol written during program
execution as introduced in Section 7.4.1 is parsed into its EMF representation and
then traversed in the same order as it has been written (i.e. chronologically). Every
classifier being referenced in the protocol is tried to be resolved using the cached
model classifiers. If this fails, the respective classifier is added to the model.

7.4.3 Documentation of Security Violations

To understand an attack, it is not only necessary to show a developer which method
call or field access lead to an security violation or which structural differences exist,
but it is of special interest which sequence of actions the attacker tried to perform.
For the specification of call sequences, UML provides sequence diagrams [Obj17].
Sequence diagrams allow developers to understand which parts of the system are
involved in a specific call sequence as the according model elements are directly
used in the diagram.

As we argued above, there may be associations that are not covered by the model
and cannot be detected statically. This especially applies to dynamic behavior intro-
duced by libraries and reflective calls. While a JVM is monitored during execution
of the target program (see step 4 in Figure 7.3 on page 84), S2EC2O run time keeps
track of every method which has been entered and not exited yet.

Thus, we are able to check continuously if a call edge detected in the monitoring
has respective elements in the model. If not, the tool can feed this information into
the model by adding respective elements.

94 Chapter 7. Assess Security Compliance During Run Time

:MaliciousApplication :PasswordStore

getTable()

main(String[]):void

table:Hashtable

Violation of
Secrecy

called
secure()sendPasswords(Hashtable)

readPasswords(PasswordStore):Hashtable

FIGURE 7.7: sequence diagram generated by S2EC2O run time

Figure 7.7 shows the sequence diagram based on the logged call sequence (see
Listing 7.8 on page 92)caused by the malicious application we introduced in List-
ing 7.1 (on page 81).

The root of the security violation is the access to the field table visualized by a
call of a get-operation which is annotated with Violation of Secrecy. Which counter-
measures have been executed is also shown as annotation on the return value. In
this case the operation secure() has been called as specified in Listing 7.7 (on page
90).

Furthermore, the sequence diagram contains information on which operation
caused the violation (readPasswords) and by which operation this operation has
been called (main). Also, beginning with the violation all following accesses have
been recorded, fostering analysis of the malicious application’s behavior. In this
case this is just one additional method call from the method main to the method
sendPasswords.

7.5 Related Work

In this section, we discuss related work of this chapter. As the publications that we
took into account only cover a some aspects of this chapter, we categorized them. A
number of approaches exist to support security at design and also at run time, but
few approaches cover coupling the phases so far. For example, TamiFlex uses infor-
mation gathered at run time about reflective calls for static analyses [BSS+11], while
WebSSARI inserts run-time guards into web applications where a static analysis is
not possible [HYH+04].

7.5.1 Taking System Context into Account at Run Time

Brézillon et al. [BM04] propose a model for building context-sensitive security poli-
cies. It is based on contextual graphs as introduced in their previous work [BPP02].
The authors define a security context as security relevant processes and mechanisms
which form the environment of a user or an application. For example, access control
mechanisms and cryptographic protocols are considered for the security context.

7.5. Related Work 95

Contextual graphs are an extension to decision trees and describe possible action
sequences when considering a (system) context which can have influence on possi-
ble course of actions. Determining the context and execution of actions do not take
place independently but in an interleaved way. As soon as contextual nodes have
gathered a sufficient amount of context information, fixed actions are automatically
triggered. The authors claim that contextual graphs support incremental acquisition
of knowledge.

This approach conducts knowledge management and solely uses a graph to
model context knowledge and actions to be executed. Reactions to unforeseen
changes, especially evolutions, are not considered.

Bodden et al. present an approach to lower the time to invest for run-time veri-
fication of big programs [BHL+07]. Given a sufficient number of end users, parts of
the run-time verification is distributed among end users. Instead of instrumenting
the whole product, only a partition of the program is instrumented at a time. Run-
time verification is based on execution traces. Using regular expressions, traces for
unwanted behavior are specified. The authors implemented two variants, noticing
generally a high instrumentation overhead.

The approach has the goal of performing a security analysis of one given sys-
tem, while S2EC2O’s goal is to protect deployed system instances against security
violations.

7.5.2 Undiscovered Program Activities

Lee et al. focused on Android and its powerful possibilities of inter-app communi-
cation, especially activities [LHR17]. These can result in a malicious flow of data or
actions performed which cannot be anticipated upfront. Depending on how a devel-
oper uses and/or allows activities, the ability of starting another app may enable an
attacker’s app to inject arbitrary activities into the victim’s app. Ultimately, a user
interaction can be hijacked and the sandbox mechanism can be break through as the
injected malicious activities can run in the context of a vulnerable victim app. To
demonstrate the threat potential, the authors built malware targeting the Facebook
app which realized that the malware was called when the user clicked a legitimate
Facebook icon in another, benign app. The authors claim there are hundreds of ways
to launch activities which calls for supporting app developers. Thus, they propose a
static analysis tool making use of an operational semantics of the activity life-cycle,
unveiling potential vulnerabilities.

In contrast to that, S2EC2O aims at providing the developer a lightweight model
extension to cover up security risks in early design phases, coupled with the source
code and run time.

Siveroni et al. [SZS10] conducted research on supporting design and verification
of secure software systems, putting emphasis on the early stages of development
like requirements elicitation. The proposed approach, a UML-based Static Verifica-
tion Framework, realizes static verification of properties given in a specification lan-
guage also provided by the authors. It enables to reason about temporal and general
properties of a UML subset, for example UML state machines. Formal verification is
carried out using the SPIN model checker.

The approach focuses solely on the early stages of software design and thus only
properties that can be checked statically.

96 Chapter 7. Assess Security Compliance During Run Time

7.5.3 Security Monitoring

Ion et al. [IDC07] investigated the security policy architecture of J2ME (Java for mo-
bile devices). While the Java Standard Edition provides an extensible security archi-
tecture, this is not the case for J2ME. J2ME’s security manager is static, cannot make
decisions depending on run-time properties, and has no ability to specify a per-
application policy. The authors constitute that only a coarse-grained security policy
approach exists. The authors present a modified version of the J2ME VM which
is able to deal with security policies defined in the Security Policy Language (SPL)
at run time. Flexibility of the security models for mobile computing platforms and
the granularity at which the policies come into effect can be specified and enforced.
These are the key contributions, with no considerable overhead.

In contrast to that, S2EC2O uses a native interface of the JVM API and thus does
not require changes to the VM. By incorporating model-based design, we support
developers in gaining additional knowledge about the how the code behaves during
run time.

Costa et al. also present an approach that features a more fine-grained and flex-
ible security mechanism for J2ME [CMM+10]. It mainly features a Policy Enforce-
ment Point (PEP), intervening security-relevant calls and responsible for calling pol-
icy checking methods, as well as the Policy Decision Point (PDP), which interacts
with the rest of the system to decide if the requested access is granted. Policies are
defined based on the ConSpec language that has been defined by the Security of
Software and Services for Mobile Systems (S3MS) project. Based on the 4 scopes ob-
ject, session, multi session, and global, API-calls, for example such that open HTTP
connections, can be bound to conditions. The authors implemented their approach
in two different ways and compared both variants. First, similar to [IDC07], by
adapting the Java VM. An issue encountered is that key words (for example method
names) referred to by policies are restricted to the methods that the current PEP im-
plementation can intercept. The second implementation, called in-lining, is based on
byte-code manipulation. This requires the author’s implementation to be installed
on the mobile device. The user application (MIDlet) is decompressed, every API call
in its byte code is preceded and succeeded by calls to the PDP. The authors evalu-
ated their realizations in terms of performance overhead and in both cases noticed
an overhead below 5%.

Compared to S2EC2O, the first variant requires a modified Java VM, while the
second one manipulates the application code. However, the approach requires a
high amount of formalization.

Hiet et al. propose to secure Java Web applications by monitoring information
flows [HTMM08]. Their work extends Blare, an already existing intrusion detection
tool on operating system level which considers processes es black boxes. The pro-
posed tool JBlare makes internals of Java applications available to Blare. A policy
based intrusion detection is then realized by tracing inter-method flows in Java ap-
plications, supported by the JRE calling an internal security manager before every
I/O access. The authors encountered a substantial slow down of factor 12 for load-
ing and factor 4 for the execution time. Blare requires a modified Linux kernel to
run on, while JBlare requires a modified JRE, which are heavy-weight assumptions
regarding the target environment.

However, detection of intrusion is covered in the publication, but, in contrast to
S2EC2O, reacting to breaches or preventing them is not tackled.

7.5. Related Work 97

Staicu et al. investigated on security vulnerabilities in Node.js-based applica-
tions [SPL18]. Node.js applications can also run outside browsers as desktop appli-
cations. The authors identify two APIs they call injection APIs, giving direct system
access without benefits of a sandbox. Calls to these APIs can be used maliciously if
not secured properly. Even more pervasive than Java is today, Node.js code is not
only executed by browsers (desktop as well as mobile), Node.js applications are also
able to be run as desktop applications and then interact with the system and with-
out benefits of a sandbox. The authors show in a large-scale study of 235,850 Node.js
applications vulnerabilities against injection attacks. For instance, a routine doing a
backup can be misused to delete all existing backups, just by properly injecting a pa-
rameter for the command line code that is executed on the host system. The authors
present an approach targeting this issue by computing a template of values passed
to APIs that are prone to injections. In a second step they synthesize run-time policy
from that to monitor fulfillment during run time. Checking is supported by their
approach during design time (where possible using static checks) and during run
time using code rewriting. The code-rewriting part shows to have a sub-millisecond
overhead.

In contrast to S2EC2O, the approach of Staicu et al. is tailored to a specific pro-
gramming framework and a specific kind of security vulnerability. The run-time
enforcement relies on rewriting the code, which raises the question of how the en-
forcement parts of the rewritten code are endangered. S2EC2O’s code manipulation
is restricted to prior and after method execution, for example. However, they show
the significance of early security analyses.

99

Chapter 8

Co-Evolve Run-Time Components
of Systems

In the preceding chapter we showed how the security of a system can be monitored
during run time. This is accomplished by providing a set of Java annotations which
can be used to bridge the gap between a system model annotated with security re-
quirements and code which can be executed. The model and code of the system can
be coupled using TGGs. Countermeasures against detected violations at run time
can be defined statically in the code.

The S2EC2O run time is realized by a Java agent accompanying the running code
and providing central data structures like a call stack to realize the security checks at
run time. Using S2EC2O’s run-time monitoring approach, it is possible to design a
secure software system, bring the security annotations to the code level and provide
monitoring of security requirements at run time.

However, when the environment evolves, situations can arise where the system
implemented to be compliant with the security requirements becomes insecure. De-
pending on the complexity of the surrounding infrastructure and the complexity
of the security mechanisms to be adapted, it may take some time until an adapted
system version is deployed.

Regarding systems where it is necessary to provide a continuous service, for ex-
ample information systems for hospitals or infrastructure, it may be acceptable to
take a calculated risk for the system whilst avoiding downtime. Thus, a system
needs to be adaptable during run time so that it can react instantly to a security
threat to lower the security risk while the permanent solution is being designed,
tested and deployed.

We will reuse a part of the S2EC2O approach introduced in the preceding chapter
and extend it to contribute to the following research question:

RQ5: How can information gathered at run time be used to adapt the system when the
context evolves, avoiding shutdown or additional design cycle?

In this chapter, we tackle this research question by providing an adaptation ap-
proach that builds upon the run-time monitoring approach we introduced in the
preceding chapter. The approach is able to adapt a system’s behavior at run time
as instant reaction, in case security threats are discovered. Section 8.1 first gives a
motivating example from the traveling domain, exemplifying the goal of the adap-
tation approach. After that, we give an overview of the approach by defining rel-
evant components and how they interact. Subsequently, we show where and how
S2EC2O’s monitoring approach can be extended to support adaptability. After intro-
ducing extensions to the modeling abilities and code annotation support, interaction
(i.e. communication) between the run-time agent and the S2EC2O service (as we in-
troduced in Section 2.2.2 on page 11) is defined. The interaction is further defined

100 Chapter 8. Co-Evolve Run-Time Components of Systems

FIGURE 8.1: Overview of the S2EC2O run-time adaptation approach

based on JSON objects which can be transmitted. Section 8.2 closes the chapter by
presenting relevant work of the research area. We will review the contribution of
this chapter to the research question in Section 11.4.

8.1 Run-Time Adaptation Approach

As we described in the preceding chapter, as soon as a system designed to be secure
is in production, security monitoring should be also put in place. In the S2EC2O
approach as presented in Chapter 7, security as well as countermeasures are defined
statically. This is insufficient in case of newly discovered security threats, when a
system shutdown is not sustainable. This especially applies to systems providing
services in critical domains, like medical information systems, pumping stations,
etc. Apart from that, there are also systems which, when completely shut down due
to security violations, would cause substantial losses in sales. In these cases, it may
be desired to adapt the system’s behavior to limit the attack surface and taking a
calculated risk in favor of continuation of the service.

8.1.1 Motivating Examples

We give an example that also gained popularity in the media. On Dec 20th, 2018,
the biggest German railway company, Deutsche Bahn, noticed fraud that has been
committed using the online booking services and reimbursement coupons [Deu18].
Apparently, shutting down the whole booking system was not a viable option. So,
as a reaction to the fraud, Deutsche Bahn restricted payment possibilities for tickets
for certain payment methods until the fraud could be permanently prevented. For
example, direct debit (Lastschriftverfahren) was forbidden for certain kinds of tickets.

Another example for this kind of need for adaption over shutdown affected a
wide range of distributed systems. For a long time, the cryptographic hash algo-
rithm SHA-1 was used, for example, to store passwords in databases. This algorithm
was considered secure until the year 2005 when a method was published to break
the security mechanism [WYY05]. Since the security of the authentication may de-
pend directly on the security of the hash algorithm, the developers of an affected
system can react to this change in the security context by replacing the algorithm

8.1. Run-Time Adaptation Approach 101

with another from the SHA-2 family. Replacing the hash function may take some
time. Apart from the mere development effort, pending processes like testing, qual-
ity assurance and even additional business processes hindering deployment need
time.

The kind of adaption to limit the risk of fraud or restrict the attack surface may
be application specific. Consider an online shopping service. In an affected system,
one can take a calculated risk as follows: For example, when regular user monitoring
shows that most customers buy for less than 100 EUR per month, this limit can be
used as a general safe mode for the system: limiting the maximal monthly turnover
to 100 EUR per customer.

As a result, a few customers might be prevented from spending more money.
Most customers, however, would not notice the limit since they spend less money
anyway. The company’s business is not obstructed and the turn-over is only endan-
gered to a small extent during the time of patching the algorithm. When the new
algorithm is in place, the limit can be removed. This strategy ensures that a suffi-
cient degree of security is preserved at all times and with an optimal trade-off to
limit negative impact on business.

Adaptation Approach Overview

The run-time approach we introduced in the preceding chapter realizes run-time
monitoring and also carries out countermeasures at run time. The drawback is that
the security checking code as well as the countermeasures are deployed statically
with the code. In other words: once a system is running, there is no possibility of
adapting its behavior additionally to reflect newly discovered threats. The run-time
adaption approach we introduce in this section tackles this challenge.

Figure 8.1 depicts an overview of the run-time adaptation part of S2EC2O. It re-
alizes adaptivity using annotations in the source code as well as the model level. It
works by enabling the security expert to specify alternative methods that are called
in case a given ESR is threatened. The Security Context Catalog already supports
providing the information which ESRs are currently threatened by the threatened
flag for each ESR (see Section 6.2.1). An ESR is considered threatened, when, accord-
ing to the current SCK, a threat against a given ESR is modeled, the system under
consideration is affected by this threat, and, up to now, no co-evolution has taken
place to mitigate that.

The run-time adaptation approach is realized by building upon the S2EC2O run
time, the run-time monitoring approach we presented in the preceding chapter. Pre-
cisely, the S2EC2O run time is reused and extended. We extend the run-time agent,
so that state information about threatened ESRs are synchronized with the Security
Context Catalog.

In the motivating examples, we determined the need to alter the system’s behav-
ior to, for instance, restrict the service or deactivate certain parts of the system. We
call this safe mode.

We support this by introducing a @SafeMode Java annotation and a respective
UML stereotype. The security expert is enabled to annotate the model or source
code, respectively, with annotations that mark certain methods of the system rele-
vant for a safe mode. With every annotation, a redirection method as well as a set
of redirection conditions can be defined. Not only the threatened ESRs, for which
the redirection shall be used, can be defined, but also the redirection method itself,
which is to be called in as a safe mode method instead of the annotated one.

102 Chapter 8. Co-Evolve Run-Time Components of Systems

The run-time agent can query the Security Context Catalog, to check which ESRs
are threatened currently. It needs a counterpart station during run time that provides
access to the Security Context Catalog. This is realized by S2EC2O service.

The approach presented in this chapter contributes to the delta-handling process
of S2EC2O as presented in Section 2.2.3 (on page 17). It realizes the activity Adapt
system@run-time.

8.1.2 Adaptation Support at Design Time

The security expert needs to annotate the system at design time, to make it adaptable
during run time. He needs to define which methods are relevant for the safe mode
and for which threatened ESRs a reaction is requested.

1 @Target ({ ElementType.METHOD }) @Retention(RUNTIME)
2 public @interface SafeMode {
3
4 String [] conditions () default {""};
5 String redirection () default "";
6
7 }

LISTING 8.1: Declaration of safe mode Java annotation

Listing 8.1 shows the declaration of a Java annotation SafeMode, which can be used
to annotate methods. The string array defined in conditions is used to define the
cases of threatened ESRs for which an alternative method shall be called. The string
given in redirection defines which method shall be called instead when at least
one of the ESRs defined in conditions is threatened.

Using fully qualified class names, it is also possible to load the method dynami-
cally at run time from an arbitrary class. This can be realized using the technique of
early return values, which we introduced in Section 7.3.1 (on page 85).

1 @SafeMode(
2 conditions = { "Data Integrity" },
3 redirection = "processOrderRestricted"
4)
5 public void processOrder (){/* ... */ }
6
7 private void processOrderRestricted (){ /* ... */ }
8 }

LISTING 8.2: Example of safe-mode annotated application
method

Listing 8.2 gives an example of using the safe-mode annotation. We consider the
train ticket booking system as described in Section 8.1. We assume two methods
for processing a customer’s order. First, the method processOrder to be used for
regular use. Second, a safe-mode variant that processes the order more restrictively,
eventually processing additional checks, examining the customer’s order history,
etc. We assume an ESR Data Integrity as part of the Security Context Catalog which
is used to express data processed by the system shall retain its integrity.

The adaptation during run time is then realized as follows: The S2EC2O run time
instruments the method, so that prior to executing its body, it checks if one of the
condition holds, i.e. one of the ESRs is currently flagged as threatened. If this is the
case, the method specified with the redirection annotation is executed instead.

Thus, the S2EC2O run time needs to be informed about the current Security Con-
text Catalog state. In the succeeding section we will describe how it communicates
to query the set of threatened ESRs.

8.1. Run-Time Adaptation Approach 103

FIGURE 8.2: UML profile to support safe mode adaptations

Figure 8.2 shows the UML profile we define to be used to specify adaptation
annotations at the model level. Its semantics is defined analogously to the Java an-
notations in Listing 8.2.

8.1.3 Adaptation at Run Time

At run time, there is a need for communication between the running system (i.e. the
S2EC2O run-time agent) and the components of S2EC2O maintaining the Security
Context Catalog (S2EC2O service). Moreover, S2EC2O and the system under consid-
eration may not be executed on the same machine.

First, when the security expert triggers a run-time adaptation, there is a need
of controlling the running system so that it gets adapted. This can happen when
S2EC2O processes a SCK delta which leads to the insight that an ESR is threatened.

Second, when the system under consideration is started, the S2EC2O run time
needs to query the Security Context Catalog for all ESRs which are currently flagged
as threatened. Thus, the agent synchronizes the adaptation state of the monitored
application to the state currently stored in the Security Context Catalog. To realize
this, the S2EC2O run-time agent as introduced in the preceding chapter can be ex-
tended with a static class providing an interface for data exchange, for example a
TCP socket. A widely used, light-weight technique for data exchange between dis-
tributed systems is to use JSON objects. In the following, we exemplify the operating
principle of the adaptation at run time based on example JSON objects transmitted
between the run-time agent and S2EC2O service.

Startup: Pull all ESR States

1 {
2 "DocumentType": "Pull ESRs",
3 "Timestamp": "2018-11-27 23:42:20.206",
4 "UID": "..."
5 }

LISTING 8.3: Example JSON object to query threatened ESRs

When the S2EC2O run time, accompanying the monitored application, is started,
it connects to the S2EC2O service and queries the Security Context Catalog for all
currently threatened ESRs. Listing 8.3 shows an example request sent from the
run-time agent. A unique ID (UID) and a time stamp are part of the message

104 Chapter 8. Co-Evolve Run-Time Components of Systems

so that S2EC2O can judge regarding the age of the message and its uniqueness.
1 {
2 "DocumentType": "All Threatened ESRs",
3 "Timestamp": "2018-11-27 23:55:20.206",
4 "UID": "...",
5 "ThreatenedESRs": ["Secure Communication","Secure Login"]
6 }

LISTING 8.4: Example JSON object response to query threatened
ESRs

A typical response is proposed in Listing 8.4. By referencing the same UID, the
agent can match the response to the original request.

After receiving the threatened ESRs, the S2EC2O run time has this information
available for all methods that are @SafeMode-annotated. Whenever such a method is
to be called, the agent is queried if at least one of the ESRs defined in the @Conditions
annotation is currently threatened. If this is the case, the agent initiates execution of
the redirection method instead. If not, the ordinary method execution is resumed.

Push Newly Threatened ESRs

When the delta process of S2EC2O, as defined in Section 2.2.3 (on page 17), is exe-
cuted and ESRs turn out to be threatened, (newly) threatened ESRs can be pushed
to the S2EC2O run time.

1 {
2 "DocumentType": "Push Threatened ESRs",
3 "Timestamp": "2019-01-01 00:01:00.333",
4 "UID": "...",
5 "ThreatenedESRs": ["Secure Communication","Secure Login"]
6 }

LISTING 8.5: Example of S2EC2O service pushing threatened ESRs to
the run-time agent

Listing 8.5 shows an example JSON object for that case. The set of threatened
ESRs is submitted as an array containing the respective ESR identifiers.

1 {
2 "DocumentType": "Push Threatened ESRs ACK",
3 "Timestamp": "2019-01-01 00:01:00.333",
4 "UID": "...",
5 "ThreatenedESRs": ["Secure Communication","Secure Login"]
6 }

LISTING 8.6: Example response of the run-time agent to a received
set of threatened ESRs

The S2EC2O service can be certain that the run-time agent received the message
if it receives an acknowledgement JSON object as exemplified in Listing 8.6.

Reset ESR State after Threat is repealed

As we discussed in the introduction of this chapter, the purpose of adapting the run-
ning system is to do this only temporarily. The goal is to prevent a shutdown and
lower the risks for exploits, while a permanent solution is being designed, imple-
mented, tested, and brought into production.

After the permanent solution is in production, it is safe to remove the threatened
flag of the ESRs in question.

This can be accomplished by issuing new Push Threatened ESRs messages con-
taining the smaller amount of ESRs.

8.1. Run-Time Adaptation Approach 105

FIGURE 8.3: Sequence diagram showing adaptation interaction of the
example

8.1.4 Example of Adaptation Interaction

Figure 8.3 shows the interaction between S2EC2O service and an application which
is executed (instrumented) along with the S2EC2O run time. We consider the ex-
ample as introduced in the beginning of this chapter. The sequence starts with the
S2EC2O service already running. The run-time agent is started alongside the moni-
tored application. It instruments all annotated methods of the application to query
its internal state regarding redirection methods. The agent pulls the current threat-
ened ESRs from the Security Context Catalog by issuing the respective query. The
threatened states of both systems are now in sync.

At a later point in time, we assume the SCK changes and executing S2EC2O’s
delta process leads to new insights. In this example, the ESR Data Integrity is now
flagged es threatened. This leads to a push message that informs the run-time agent
by submitting an updated list of threatened ESRs. The run-time agent updates its
internal state and redirects method calls accordingly then.

106 Chapter 8. Co-Evolve Run-Time Components of Systems

8.1.5 Traceability of Adaptations

1 {
2 "DocumentType": "SSECCO Report",
3 "SessionStart": "2018-11-27 12:52:20.206",
4 "Type": " ",
5 ...

LISTING 8.7: S2EC2O report header for logging interaction with the
run-time agent

To keep track of all incidents where adaptations have been affected, all of the
messages introduced above are to be logged in S2EC2O reports. To differentiate
between these objects and reports of other activities within the S2EC2O approach, a
JSON object with a header shown in Listing 8.7 can be used, while Type can be one
of the following:

• ESR states pulled

• ESR status change

• ESR status change ACKed

The object is then completed by adding the original message as introduced
above.

8.2 Related Work

In this section, we discuss related work of this chapter. As the publications that we
took into account only cover a some aspects of this chapter, we categorized them.

8.2.1 Application Behavior Adaptation

Tun et al. [TYB+18] propose an approach for behavior adaptation to retain compli-
ance to security requirements. They focus on web-based distributed systems, pre-
cisely a document sharing server like ownCloud. As attack type, they investigated
man-in-the-middle attacks, for example, parameter tampering attacks and cookie
poisoning. The effect of such an attack is that, for example, a document sharing
invitation of an inviter can be tampered, so that the request the server receives con-
tains additional users. The authors assume that the user notices this behavior and
actively revokes the sharing grant for the respective malicious users. Adaptation in
the presented approach is realized using statistical machine learning techniques. In
the example, a component containing the classifier analyzes every incoming sharing
request and compares it to share revoke requests that have happened in the past. If
a user in the sharing request is considered suspicious, the user is removed from the
request, thus avoiding granting access to the malicious user in the first place.

The approach also focuses on adapting behavior to keep a system secure. How-
ever, adaptation cannot be controlled from an external system, contrasting S2EC2O.
In their example, the authors make the assumption that a successful maliciously
altered sharing request will always be discovered and acted upon. In contrast to
S2EC2O, the approach focuses on adaptive behavior for a specific attack type and
does not take the overall system development and maintenance into account.

Morin et al. present an approach to build a system which is able to adapt its
security behavior at run time [MMF+10]. The approach is focusing access control.

8.2. Related Work 107

It is considered a problem of inflexibility that in most systems, access control rules
and also mechanisms are hard coded and weaved into the business logic. Thus,
changes that need to be made to the access control policies take time as they require
a design cycle (called request for change-process in the publication). By leveraging
models@run-time and software components that can be composed into a product, the
authors propose an access control component that is able to be updated at run time
and the business logic that is built according to an architecture model that can be
bound to an also provided access control model.

Compared to S2EC2O, the authors also gain adaptability of a system by provid-
ing possibilities to react to evolved security circumstances at run time. However, the
approach currently is restricted to access control. It is built on models@run-time and
also requires the running system to be built according to a concrete meta model.

8.2.2 Development of Adaptive Systems

Franch et al. [FGO+11] propose a model-based approach to develop adaptive,
service-based systems. The requirements for system development are elicited using
the goal-oriented notation i* and classified into service categories. Every category is
assigned a concrete metric which can be monitored during run time. For each cate-
gory, different services are defined and the according adaptation rules based on this
metrics are configured. To adapt the system based on the monitored run-time data,
violations of service rules and error states are determined.

Security is not considered in this publication, but it gives insight on how to refine
adaptive systems systematically from requirements engineering to deployment.

Evesti et al. [EPS10] present an architecture for security adaptation at run time
for mobile and embedded systems. The authors propose to evaluate changes in the
surrounding environment that may cause threats and to select appropriate security
mechanisms automatically. On this account, they extend the ontology presented by
Herzog et al. [HSD07] to model various security knowledge. This includes assets,
security goals, threats, vulnerabilities, and countermeasures. The ontology includes
a taxonomy for different context levels: (1) Situation context, (2) Digital context, and
(3) Physical context. Each level contains concepts affecting the security of the system.

The authors note that automatic context monitoring is incapable of collecting
all the required data, but no further suggestions for social-technical monitoring are
made. S2EC2O features a semi-automated process of monitoring a system’s context.

Salehie et al. present an approach to protect valuable assets at run time [SPO+12].
It aims to enable different countermeasures in face of various kinds of changes that
may occur at run time. The authors’ work is based on an asset model, a correspond-
ing goal model, representing the requirements of the system, and a threat model.
These models are used to generate a causal network required to analyze security
in different situations at run-time and to enable effective countermeasures if re-
quired. The evaluation of the approach shows to potential of adaptive security for
software systems. However, the presented approach is not capable of dealing with
new threats that have not been considered while developing the threat model. To
implement the presented approach, they developed the tool SecuritTAS presented
in [PMS+12]. It supports software engineers in modeling assets and corresponding
goals based on the requirements of the system as well as threats.

The tool appears rather sophisticated; unfortunately, software engineers need a
lot of expertise in developing the required models as no security knowledge support
is provided. S2EC2O aims at providing a light weight approach and fosters the re(-
use) of as much knowledge that already exists publicly as possible.

108 Chapter 8. Co-Evolve Run-Time Components of Systems

Omoronyia et al. [OCS+13] propose an approach for developing adaptive sys-
tems which consider privacy. The systematic approach supports the user in compil-
ing privacy-relevant requirements into software, based on a MAPE cycle. Privacy
needs of the users are at first investigated to enable controlled disclosure of personal
data. Attributes are identified which should be monitored to detect privacy threats.
Threats are to be discovered before the user passed his data. Finally, a tool is used
to assess the degree of threats coming from usage as well as passing personal data.
Using a behavior model, a context model, and the privacy requirements of the user,
the requirements to be monitored are chosen. The selected attributes are monitored
to ponder benefit of using data against disclosing it. The conduction of disclosure
is supported by a feedback loop which takes the system specification into account,
because a system adaptation may be necessary as countermeasure. The proposed
framework has been implemented as a tool [OPS+12]. The authors show that soft-
ware not respecting privacy requirements fails at regulating the information flow,
i.e. passing-on or disclosing personal data.

In contrast to that, S2EC2O is a light-weight extension to an existing software
development process. It accompanies conventional software engineering instead of
being a whole process on its own. Adaptation is realized by adapting system com-
ponents or aspects during run time. This is also and especially possible for legacy
systems, regardless of the engineering approach they have been built with.

8.2.3 Security-Aware Systems at Run Time

Xiao [Xia09] proposes an approach to realize security, access control to be precise,
using models at run time. In detail, the approach is built on agent-driven software
architecture. The approach is built using a system of models and rules. Assump-
tions on the software architecture of the software system to become security aware
are also made as the business logic of the system has to be defined using so-called
reaction rules. The access control is then defined by a set of policy rules that are
shared among the agents. The agents in turn execute rules and have the connection
to ordinary software components. The agents work goal-oriented, while the goal
is that defined by the business logic. The approach realizes an extended version of
Role-based access control (RBAC).

While gaining a flexible system out of the approach, it assumes the system to be
built around the so-called agent-oriented model-driven architecture. The approach
is restricted to access control, as well as evolution support only is provided for access
control policies. Thus, the behavior of the system itself cannot be altered at run time.

Nhlabatsi et al. present an approach where assumptions about security require-
ments are monitored at run time [NYZ+15]. Design-time assumptions (as location of
employees and (mobile) devices) are elicited. Security requirements are iteratively
progressed and refined into system specification information. During run time, logs
are written which continuously document a confidence level based on sensor data.
The confidence level is used to monitor the validity of assumptions at run time.
Causality is determined using temporal logic. If an incident occurs, logs are investi-
gated automatically in order to identify the security control that is insufficient. While
not addressing software engineering, the proposed approach still shows how design
time requirements (assumptions) can be formalized and monitored during run-time.

The approach is not targeted directly against software development, but it shows
a way of how design time requirements, i.e. assumptions, can be formalized and
monitored during run time.

109

Chapter 9

Prototypical Implementation

In the main chapters of this thesis, we elaborated on the central aspects of the S2EC2O
approach and the respective research questions. The covered aspects of S2EC2O in-
clude modeling of context knowledge using ontologies (see Chapter 4), detecting
and assessing differences in ontologies (see Chapter 5), co-evolution of system mod-
els (see Chapter 6), monitoring security requirements at run time (see Chapter 7),
and adaptation of the system behavior at run time (see Chapter 8).

This chapter shows the prototypical support that has been developed for
S2EC2O. We point to the fact that this chapter directly builds upon the S2EC2O ap-
proach as introduced in the above mentioned chapters. Thus, we recommend the
reader to read the preceding chapters beforehand.

During design and implementation, the focus was to provide artifacts that base
on common and/or widespread technologies, so that the implementation can be
extended easily. Thus, we also put emphasis on the expandability and flexibility of
S2EC2O’s prototypical implementation.

Section 9.1 gives an overview of S2EC2O tool’s architecture. It explains from
which components it is composed and how they depend on each other. Section 9.2
relates the S2EC2O tool to the S2EC2O process. It elaborates on which process tasks
are accompanied by the S2EC2O tool and highlights technical subtleties.

The S2EC2O tool is designed as a critiquing system. As defined in [Gär16], the goal
of such a critiquing system is to take a problem description and a proposed solution
as input, check the solution, reveal mistakes and propose improvements [FNO+93].
In the case of S2EC2O, the system model and security measures are taken as in-
put. These parts are checked against the Security Context Knowledge, eventually
updated by knowledge deltas. Improvements are proposed for example as co-
evolutions.

9.1 Architecture Overview

The S2EC2O tool has been developed as a set of plug-ins for the Eclipse platform.
Eclipse was chosen for a number of reasons.

First, the Eclipse Plug-in Development Environment (PDE) provides a versatile
way to develop functional units (i.e. components) independently. The Eclipse plug-
in mechanism makes use of the dynamic module system OSGi (Open Services Gate-
way initiative). Components can be stopped, started and exchanged during run
time. Apart from that, the PDE provides for instance a run time plug-in registry
which can be used by plug-ins to find other plug-ins that provide certain services
and to request specific ones. Loading/starting the needed plug-ins and executing

110 Chapter 9. Prototypical Implementation

all necessary code is done automatically and realized by using standardized inter-
faces and plug-in meta data. One mechanism to be used for that is called extension
point.

Second, the Eclipse Modeling Framework (EMF) provides a widespread base
for model-based development and tools [SBMP08]. Several tools used for this
thesis also are built upon EMF. For instance the graph transformation tool Hen-
shin [ABJ+10, SBG+17], the tool for detecting semantic deltas, SiLift [KKOS12], and
from preliminary work of the author’s working group, CARiSMA [APRJ17], the
platform for compliance and risk analyses, use the EMF as common base. For manip-
ulating OWL ontologies, an OWL EMF meta-model is provided [W3Ca]. Using EMF
as common base eases interoperability, as tools like Henshin only have to be built to
be compatible with Ecore meta-models and then support all models for which an
Ecore meta-model exists. Moreover, EMF also provides persisting (EMF-)models to
XML Metadata Interchange (XMI) files ready to use.

Third, Eclipse EMF supports model-based software development. Meta-models
for ESR and deltas are modeled as Ecore models and Java code to control these mod-
els. This has been used for a number of meta-models being part of S2EC2O.

As a prototypical implementation, we designed the S2EC2O tool to be modular
and extensible, so that components can be exchanged or extended easily or com-
ponents of the system can be used in other projects. The S2EC2O tool is controlled
using an Eclipse IDE View. From the View, wizards for the S2EC2O processes for
initialization and delta handling can be started. We give details on the GUI elements
and how to use them in Section 9.2.

Figure 9.1 gives an overview of the architecture of the S2EC2O tool by a UML
component diagram. The S2EC2O tool consists of the components highlighted by
gray rectangles, while the other components resemble external tools and frame-
works that have been used. The components, the S2EC2O tool consists of, are struc-
tured into four parts. These parts are shown by the rectangles numbered from 1 to 4.
The dashed arrows between components resemble dependencies. All components
stereotyped ⟨⟨Plug-in ⟩⟩ resemble Eclipse plug-ins. In case of EMF meta-models, we
omit the typical set of three plug-ins (.model, .edit, and .editor) and just show
one generic meta-model component.

(1) The core components realize the S2EC2O process. Process is the main plug-in,
containing the GUI code, integration into the Eclipse UI, and actually executing
the S2EC2O process.

The plug-in Core provides interfaces that need to be used by all other compo-
nents (ModelProvider, for example). The Core plug-in does not depend on any
other plug-in.

The meta models for delta handling and the Security Context Catalog as intro-
duced in Chapter 6 are realized as Ecore models. They are used by the core
plug-ins. These plug-ins are used to extend the core to process the Security
Context Catalog and delta information in a model-based manner using EMF.
Thus, these models are crucial components of the core.

Process also comprises two components providing essential capabilities.
Report is used to create and manage JSON reports, both for documenting
S2EC2O’s activities and also to realize system adaptation.

DataModel is a central model. It is used by all components being part of
S2EC2O process to retrieve and provide their data.

9.1. Architecture Overview 111

FIGURE 9.1: Overview of the S2EC2O tool’s architecture

112 Chapter 9. Prototypical Implementation

(2) The support for the S2EC2O tool’s run-time phase as introduced in Chap-
ter 7 is provided by two plug-ins. The plug-in Run-time annotations pro-
vides the annotations to enhance the capabilities for Java source code and thus
provides support for security annotations to be read at run time. CARiSMA
Instrumentation realizes instrumentation of source code and building a Java
agent that realizes the run-time monitoring. This is done using the bytecode
instrumentation framework Javassist.

(3) Four plug-ins have been implemented to realize analysis and application of
evolution and co-evolution of OWL ontologies and UML(sec) models.

All respective dependencies and functionalities are encapsulated in subject-
specific plug-ins. This lowers complexity of plug-in dependencies and eases
extension of the S2EC2O tool and/or further development of certain compo-
nents.

OWL Evolution contains code to analyze the Security Context Knowledge that
is managed in OWL ontologies. The plug-in realizes a transformation from
OWL ontologies in formats supported by the OWL API to an instance of the
EMF meta model. Furthermore, reasoners as provided by the OWL API can
be used. Thus, the plug-in uses the OWL API as well as the OWL EMF meta
model. It provides a number of reasoning operations (summed up in the figure
as a Reasoning port).

The plug-ins OWL Rulebase and OWL RulebaseComplex provide differencing
rules to realize semantic differencing as described in Chapter 5. This is done by
using SiLift and leveraging the SCK ontologies transformed into the EMF for-
mat. The names Rulebase and RulebaseComplex are used to name the rule base
for syntactic, low-level differences and complex, semantic, edit operations. As
the components need to be used by SiLift, they implement the respective inter-
face, provided by SiLift.

UML Evolution realizes model co-evolution for UMLsec models as shown
in Chapter 6. To realize analyses of UMLsec models, it makes use of the
UML EMF meta model as well as supplementary services provided by the
CARiSMA platform. This includes utility code and UMLsec UML profiles.
By using the Security Context Catalog meta model of S2EC2O, the SMRs can
be accessed to determine appropriate co-evolutions. Co-Evolutions are then
realized and applied by leveraging the Henshin graph transformation frame-
work. Additionally, supplementary Java code can be used to support queries
as well as co-evolutions. The component UML Evolution provides its capabil-
ities of accessing UML models by implementing the ModelProvider interface.
Interaction with the Security Context Catalog (Catalog) and Delta elements is
also realized by implementing the respective interfaces.

(4) The remaining elements are external tools, components, and frameworks that
have been used to implement the S2EC2O tool. Protégé has been chosen as the
tool to manage the knowledge of the SCK because it is a widespread and ma-
ture tool to design and manage ontologies. To the best of the author’s knowl-
edge, no tool with a similar reputation and active community existed for the
Eclipse platform throughout development. Nevertheless, the OWL API is the
technical foundation for Protégé and can also be used from plain Java pro-
grams.

9.1. Architecture Overview 113

The EMF meta model for OWL provides a standards-driven way to manage
ontologies within the EMF.

The EMF also provides a UML meta model to process UML(sec) models easily.

The CARiSMA platform mainly is used because it provides support for the
UMLsec extension, especially the UMLsec UML profiles.

Henshin, the graph transformation framework and tool, is used by SiLift. This
creates synergies, because using Henshin, the user can model semantic differ-
encing rules for ontologies as well as co-evolution actions for UMLsec models.
This is realized by modeling rules that alter UML models which can be further
customized. This leads to a high flexibility while the number of rules can be
kept low. In addition, Henshin is used for specifying model queries.

9.1.1 System Model Design

Regarding the design of the software system that should be used with S2EC2O, the
user needs to annotate the system model according to the obligations as shown by
S2EC2O. For this step, we refer to the CARiSMA platform [APRJ17]. The annotation
of UML models with security annotations realized with CARiSMA is also built as a
set of Eclipse PDE plug-ins. It enhances the EMF- and Eclipse-based UML editor Pa-
pyrus to work with UML profiles realizing UMLsec extensions [Thec]. Furthermore,
security checks for various security annotations are provided. To restrict effort for
this thesis, we assume the class names of the system to be unambiguous, so that a
distinction based on package names is not necessary.

9.1.2 Management of Security Context Knowledge

The required ontologies are modeled by the user using Protégé [Sta]. Protégé makes
use of OWL API to persist ontologies, for example in OWL/XML format. During the
implementation, a dependency problem arose. OWL API is built using the Maven
build system. Thus, dependencies are also managed by this build system. However,
Eclipse, while also supporting Maven projects, has its own dependency manage-
ment system for PDE plug-ins that does not integrate with Maven projects. For the
S2EC2O prototype, this was solved by building OWL API externally and linking it
into the S2EC2O tool.

By using Protégé as a ready-to-use workbench for modeling and managing OWL
ontologies, implementing a respective tool could be avoided. As Protégé is built
also upon the widespread and mature OWL API, the ontologies created with it can
import data from and export to various formats and sources.

OWL API has its own meta model of ontologies. In preliminary work of the
author’s working group, a transformation from ontologies corresponding the OWL
API meta model to ontologies corresponding the Ecore OWL meta model provided
by W3C [W3Ca] has been implemented. This way, both standard tools and frame-
works can be used for managing and processing ontologies inside and outside of the
Eclipse platform.

9.1.3 Employing Reasoners via API

At the time of writing, we did not succeed in using reasoners via API, to process
their result in S2EC2O. Thus, the step of triggering a reasoner from the S2EC2O tool
could not be realized due to technical difficulties. For example, an ontology being

114 Chapter 9. Prototypical Implementation

FIGURE 9.2: Excerpt from Figure 6.2 (on page 66) to illustrate relation
between SMR and SMRExecutable classes

inconsistent was reasoned to be consistent by the tested reasoners. Another reasoner
aborted when the inconsistency was detected and let no possibility of getting expla-
nations. Apart from that, the same reasoners, when used as they are shipped with
Protégé, produced the results as expected.

Thus, the reasoning results currently need to be generated manually. In Chap-
ter 10, we will show reasoning results as screenshots of Protégé.

The S2EC2O tool and the Security Context Catalog currently already uses the el-
ements for ontology inference and inconsistency explanations as provided by the
delta information meta model (see Figure 6.4 on page 70). Furthermore, we pro-
vide two text input dialogs as part of the S2EC2O tool’s delta wizard. The user can
use these to provide expressions in Manchester Syntax, representing inconsistency
explanations or inferred facts, respectively.

9.1.4 Realizing specific Implementations for Ecore Objects

While designing the S2EC2O tool, a challenge concerning a gap between Ecore and
Java code arose. The Security Context Catalog, as we introduced it in Section 6.2.1
(on page 65), is designed as an Ecore meta-model to take advantage of the Eclipse
EMF, for example in terms of persisting models. Figure 9.2 shows an excerpt of the
Security Context Catalog’s meta model. Consequently, the meta model features a
class for as Security Maintenance Rule. When executing the S2EC2O process, SMRs
are important for the operative parts. For instance, model queries need to be exe-
cuted and co-evolutions need to be applied.

To provide high flexibility and limit the implementation effort by not introducing
additional mechanisms, the operative parts of SMRs are implemented as Java code.
This is especially necessary because model queries and co-evolutions carried out by
Henshin need to access Henshin via its Java API.

This gets difficult because, by design, an operation specified in an Ecore class
can only have one implementation. As the class SMR is used as a template
for SMRs, every SMR instance needs its specific implementation of the methods

9.2. Relation of S2EC2O’s Initialization Process and Realized Prototype Artifacts115

inspectSystem(), checkConditions() and apply(). We solved this issue as fol-
lows: We split SMR into the model-related part and the implementation-specific
part, called SMRExecutable. The necessary implementations are done using or-
dinary Java classes that extend the Impl class as generated by EMF, in this case
SMRExecutableImpl. The additional class SMRExecutable is introduced to not dis-
rupt object relations to other EMF objects and persisting the Security Context Cat-
alog. Persisting ordinary Java objects would be conceivable but only with loss of
Ecore features. Trying to persist an Ecore model without these objects would also
cause problems because the associations would be tied to the rest of the Ecore model
loaded at the time of persisting the model.

This challenge was solved by adding the smrIdentifier as additional property
to SMRExecutable. In the S2EC2O tool, the whole Security Context Catalog, exclud-
ing SMR executables, can be loaded, managed and saved easily as designed in EMF.
A SMR can be associated with one SMR executable by using the same smrIdentifier
string. SMRExecutable classes need to be provided and somehow bound to the SMR
elements in of the loaded Security Context Catalog. To provide flexibility here, we
defined an Eclipse extension point ssecco.esr.model.smr. For all SMR executables,
we specify such extensions, so that the S2EC2O tool can query all available imple-
mentations easily from the Eclipse registry at run time.

When the Security Context Catalog is loaded, the S2EC2O tool’s core gathers and
instantiates all available SMR executables. Using the smrIdentifier string, all SMR
executables are bound to their respective SMRs EMF instance by setting the asso-
ciations correctly. Therefore, all Ecore features remain functional for the Security
Context Catalog, serialization of Java objects can be avoided, and individual im-
plementations for the SMR operations are realized while providing a flexible class
allocation handled by the Eclipse extension point registry.

9.2 Relation of S2EC2O’s Initialization Process and Realized
Prototype Artifacts

In the preceding section, we gave an overview of the S2EC2O tool’s architecture. It
shows which components have been implemented and how they depend on each
other. It also summarizes which external tools and frameworks have been chosen to
realize the prototype.

This section puts emphasis on the S2EC2O process shown in Section 2.2.3 (on
page 15) and Section 2.2.3 (on page 17) and how it is to be executed with the aid of
the S2EC2O tool. We support the discussion by figures showing the involved parts
of the processes and also the architecture as introduced in Figure 9.1.

9.2.1 Initialization Process: Make System S2EC2O aware

The initialization process is started by the user. The process is accompanied by the
S2EC2O tool using a wizard. It covers the first five tasks of the initialization process
as shown in Figure 9.3: Choose desired ESRs from catalog, Propose design time checks,
Query SCK for details, Complete sec. checks by choices, and Provide additional (system)
knowledge. Figure 9.4 shows an overview of the involved architecture components
respectively.

The Security Context Catalog is loaded and used to display available ESRs to the
user. As a first step, the user has to decide, which ESRs are to be followed. Figure 9.5
shows a screenshot of the respective wizard page. Available ESRs of the catalog

116 Chapter 9. Prototypical Implementation

FIGURE 9.3: S2EC2O initialization process: involved tasks 1-5

are shown. By traversing the associations of the selected ESRs, security properties
requested by given ESRs are determined. The security properties that are required
by the respective ESR are shown, as well as the description of the selected ESR.

The S2EC2O tool informs the user about necessary security properties by display-
ing them in a list. The steps described up to this point correspond to the tasks 1 to
2 of the initialization process (Choose desired ESRs from catalog and Propose design time
checks).

The user is then obliged to complete the security checks by choosing details. For
example, a specific encryption algorithm needs to be selected from a set of appropri-
ate ones.

Figure 9.6, for instance, shows a screenshot of the initialization wizard, where
the user needs to select an encryption algorithm, because more than one algorithm
modeled in the SCK fulfills the requirements as specified by the Security Context
Catalog. This relates to tasks 3 and 4 of the initialization process (Query SCK for de-
tails, and Complete security checks by choices). After the user has completed all inputs,
selecting the button Check data to proceed issues a consistency check of the selected or
given input. When the check does not detect any problems, the user can proceed to
the next wizard page.

The SCK is accessed using the OWL component that provides a port with rea-
soning functionalities. In this case, SPARQL is used as query language.

According to task 5 of the initialization process (Provide additional (system) knowl-
edge), the user may be required to provide additional system knowledge. For ex-
ample, a mapping of system classes to concepts in the SCK may be required to be
provided or completed. This needs to be done by the user, but is guided by the
wizard using instructions.

Currently, the checkIdentifier property of security properties as defined in the
Security Context Catalog meta model (see Figure 6.2 on page 66) is not evaluated
by the S2EC2O tool. But, this property fosters future tool development by easing a
technical integration of the S2EC2O tool with OWL reasoning, CARiSMA and other
tools for design time security checks.

9.2. Relation of S2EC2O’s Initialization Process and Realized Prototype Artifacts117

FIGURE 9.4: Components of the S2EC2O tool relevant for initializa-
tion of a S2EC2O aware system

FIGURE 9.5: Begin of initialization wizard: Choice of ESRs

118 Chapter 9. Prototypical Implementation

FIGURE 9.6: S2EC2O initialization wizard: choose details from SCK

9.2. Relation of S2EC2O’s Initialization Process and Realized Prototype Artifacts119

FIGURE 9.7: S2EC2O initialization process: involved tasks 6 and 9

9.2.2 Initialization Process: Initial Compliance

After the Essential Security Requirements have been selected and completed by the
user, he needs to implement them in the system model design. The wizard supports
this step by listing all security properties. This corresponds to the tasks 6 and 9 of the
process (Provide complete model annotation obligations and Annotate model according to
obligations). The respective tasks are highlighted in Figure 9.7. Task 6 is also realized
by traversing the Security Context Catalog.

The S2EC2O tool then determines concrete obligations for model annotations that
need to be applied to the system model. The annotation of UML models with secu-
rity annotations is supported by CARiSMA [APRJ17], as far as checks are available.

In parallel, the user’s selections are logged using the report component and per-
sisted as JSON object later-on.

9.2.3 Initialization Process: Run-Time Monitoring

Up to now, S2EC2O tool’s initialization wizard has covered the tasks of the initializa-
tion process relevant for the design time. In the succeeding steps, the wizard treats
what is relevant for the run time.

The S2EC2O tool determines matching run-time monitors for the selected ESRs.
This again is realized by traversing the associations of the Security Context Catalog.
Each ESR may be associated to a set of run-time monitors (task 7, Propose run-time
monitors). Figure 9.8 shows the initialization process of S2EC2O with relevant tasks
highlighted. With regard to task 8 (Provide information for monitor instantiation), it
may be necessary that the user needs to provide additional details of the system so
that security properties can be instantiated and/or implemented correctly.

FIGURE 9.8: S2EC2O initialization process: involved tasks 7-11 ex-
cluding 9

120 Chapter 9. Prototypical Implementation

FIGURE 9.9: S2EC2O initialization wizard: provide information of the
system to instantiate run-time monitor

This is realized by the wizard asking the user to provide that information. Fig-
ure 9.9, for example, shows an example of the wizard where the user needs to pro-
vide link to the configuration file of an application server, so that the run-time mon-
itor App Server Ciphersuite monitoring can work correctly.

Task 7 (Propose run-time monitors) is also realized using the S2EC2O tool’s OWL
component and its reasoning operations. Information that needs to be provided
additionally is modeled by using the Completion objects of the Security Context
Catalog.

After this step, the S2EC2O tool’s initialization wizard is finished and a report is
written. It is persisted as a JSON object, which can be read by humans and also eases
sophisticated processing by subsequent tool support.

1 {
2 "DocumentType": "SSECCO Report",
3 "Timestamp": "2019-01-11 19:16:23.281",
4 "Type": "Init Wizard run",
5 "SelectedESRs": [
6 {
7 "SelectedESR": "Secure Encryption",
8 "SecurityProperties": [
9 {

10 "PropertyName": "secure links",
11 "Completions": [
12 {
13 "Completion": "Algorithm Query",
14 "Artifacts": []
15 }
16]
17 }
18]
19 }
20]
21 }

LISTING 9.1: S2EC2O report logging execution of the initialization
process wizard

Listing 9.1 shows an example of a report after execution of S2EC2O tool’s initial-
ization wizard. It follows the same base structure as the JSON files we introduced
for the run-time adaptation approach in Section 8.1. In this case, the user selected
the ESR Secure Encryption. For history and archiving reasons, the Security Con-
text Catalog entries are dumped completely into the report. This fosters replicability,

9.3. Relation of S2EC2O’s Delta Process and Realized Prototype Artifacts 121

FIGURE 9.10: Components of the S2EC2O tool relevant for delta han-
dling process

as the Security Context Catalog may also be subject to change (as we will discuss in
Section 12.3).

For task 10 shown in Figure 9.8 (Implement S2EC2O adaptation points in code), no
sophisticated tool support has been implemented. We provide Java annotations (in-
troduced in Section 7.1 and Chapter 8) so that the user is able to add run-time anno-
tations and adaptation points to the source code.

For the final task of the initialization process (task 11, Reify monitoring in S2EC2O
run-time), regarding reification of the run-time monitoring, the user needs to run the
system accompanied by the S2EC2O run-time. This is accomplished by starting the
JVM with providing the Java agent (S2EC2O run time) as a parameter.

9.3 Relation of S2EC2O’s Delta Process and Realized Proto-
type Artifacts

This section relates to S2EC2O’s delta handling process we introduced Section 2.2.3
(on page 17) and how it is to be executed with the aid of the S2EC2O tool.

9.3.1 Delta Process: Determine Context Evolution from SCK

Figure 9.10 shows the components of S2EC2O tool’s architecture which are used to
analyze the SCK. In what follows, we will refer to the components of the architecture

122 Chapter 9. Prototypical Implementation

FIGURE 9.11: S2EC2O delta handling: involved tasks 1, 2, 6, and 7

when we elaborate on the according process tasks.
The delta handling process of S2EC2O has less user interaction than the initial-

ization process. At the time of writing, the prototype supports the steps relevant for
the design-time co-evolution.

The pseudo code for delta handling we introduced in Section 6.5 (on page 73)
describes the behavior that is currently implemented. Figure 9.11 highlights the pro-
cess tasks relevant for these steps (Trigger SMRs, Determine co-evolution alternatives,
Consider run-time adaptations, and Choose co-evolution steps).

The delta handling process of S2EC2O is also implemented as a wizard. This
wizard can be initiated by the user. Firstly, the delta information is collected by ex-
ecuting ontology reasoning and determining semantic differences between different
versions of the SCK using SiLift and Henshin. This results in a list of deltas according
to the delta meta model we introduced in Section 6.3. This behavior adheres to the
process start event Delta SCK.

The available SMRs are gathered using traversing the Security Context Catalog
(process task 1, Trigger SMRs). The run-time variants are instantiated as described in
Section 9.1.4. The SMRs then can access the Security Context Catalog and query the
system model to determine possible co-evolutions and prepare a set of proposals for
the user (process task 2, Determine co-evolution alternatives). When a SMR considers
a run-time adaptation as necessary, it can carry it out immediately (process step 6,
Consider run-time adaptations).

After that, the user needs to make choices about the co-evolution alternatives
(proposals) as determined by the SMRs (step 7 of Figure 9.11, Choose co-evolution
steps).

Figure 9.12 shows the step of selecting co-evolution proposals in the S2EC2O tool
delta wizard. The wizard page informs about all detected deltas. In this case, the
delta addEncryptionThreat was detected two times. The user then needs to choose
one co-evolution alternative for each SMR. Every co-evolution that is to be applied
has to be selected using the check box. Whenever an alternative from the drop-
down list is selected, a description which problem is going to be co-evolved how is
displayed. In this example, an encryption algorithm AES-256 is to be replaced by
RC6.

9.3.2 Delta Process: Apply Co-Evolution Steps

After the user has finished making his choice, the wizard can proceed to the next
step. Figure 9.13 emphasizes on the tasks 8 and 9 of the delta process, relevant for

9.3. Relation of S2EC2O’s Delta Process and Realized Prototype Artifacts 123

FIGURE 9.12: S2EC2O Delta Wizard: choice of alternatives

FIGURE 9.13: S2EC2O delta handling process: involved tasks 8 and 9

124 Chapter 9. Prototypical Implementation

choosing and applying co-evolutions to the system design (Provide information for
co-evolution, Apply system model co-evolutions).

The S2EC2O tool checks if the co-evolutions selected by the user require addi-
tional information. This is realized by analyzing the respective SMR’s Completion
elements. The S2EC2O tool eventually asks the user to provide information as re-
quired by the SMR completion elements. The dialog for completion of SMR infor-
mation works analogous to the respective dialog of the initialization process shown
in Figure 9.9 (on page 120). Access of the Security Context Catalog is completely
handled by the components building the core of the S2EC2O tool (see Figure 9.10 on
page 121).

After that step, the wizard’s interaction with the user is finished. The SMRs
are applied by calling all apply() methods and thus triggering Henshin model co-
evolving transformation rules, reflective model code, and further methods as intro-
duced in Chapter 6. The actions to be taken are defined in Security Context Catalog
and, more precisely, in the implementations of the SMRExecutable classes. A report
of the activities is written analogous to the report for the initialization wizard shown
in Listing 9.1 (on page 120). For querying and altering the system model, mainly the
component UML Evolution is involved. It is responsible for carrying out the code
and graph transformations that effectuate the co-evolution.

As we already discussed, the S2EC2O tool currently offers no support for the
run-time adaptation. We will discuss this in detail in Section 9.3.4.

9.3.3 Delta Process: Generating Run-time Findings

In the preceding sections, we discussed the case of Delta SCK as triggering event
for the delta process. A second source for delta information is run-time monitoring,
as highlighted in Figure 9.14. In this section, we put emphasis on how generation
of run-time findings is implemented using run-time monitoring by the S2EC2O run
time. We introduced the S2EC2O run time in Chapter 7.

Figure 9.15 shows the components of the S2EC2O tool relevant for run-time mon-
itoring. To instantiate the run-time monitoring with design-time insights, the source
code of the application needs to be annotated with security properties and appro-
priate countermeasures. Generation of monitored call sequences as sequence dia-
grams and the generation of missing model elements which appear at run time is
supported, too.

FIGURE 9.14: S2EC2O delta handling process: involved tasks 3, 4, and
5

9.3. Relation of S2EC2O’s Delta Process and Realized Prototype Artifacts 125

FIGURE 9.15: Components of the S2EC2O tool relevant for run-time
monitoring

126 Chapter 9. Prototypical Implementation

The source code annotations as specified in Section 7.2.2 are implemented as Java
annotations and encapsulated in a respective component (Run-time annotations).
Currently, annotations for ⟨⟨secure dependency ⟩⟩ are supported.

At the time of writing, synchronizing model and code including their annota-
tions is not supported by the S2EC2O tool. Nevertheless, by applying TGGs in either
direction (from model to code or vice versa), it is possible to have this conversion in
a one-shot manner.

To realize monitoring, we make use of bytecode instrumentation. To get access to
the running system, we make use of a Java agent. Java agent is a concept provided by
the official Java API and documented in the package java.lang.instrument [Ora].
To let the S2EC2O monitoring code be injected into existing classes of the application,
we use the bytecode manipulation framework Javassist [Chi]. We implemented a
Java Agent that can be called via the javaagent command line option of the Java
Virtual Machine (JVM).

The JVM calls our agent whenever a class is to be loaded. The agent then trans-
forms the bytecode of the class by injecting the code as shown as pseudo code in
the Listings 7.3, 7.4, and 7.5 (see page 85) necessary to keep track of the call stack,
issuing checks of the secure dependency conditions at appropriate times, and also
produce additional report data to realize a model adaption. The run-time protocol
is realized as introduced in Section 7.4.1 (on page 91). A JSON object containing the
call trace is serialized. Detected security violations are documented in the file, too.
This is also realized by the Instrumentation component in S2EC2O’s architecture.

Thus, the run-time agent is able to inject the necessary S2EC2O monitoring code
into all relevant methods at load time of the respective class. Static checking of po-
tential malicious field accesses is also done when the class is loaded. The realized
analysis of ⟨⟨secure dependency ⟩⟩ is a hybrid analysis not depending on local availabil-
ity of all classes. Since the agent is also called on classes loaded dynamically, from
the Internet, for example.

Detecting System Evolution Automatically

There may be associations in the code that are not covered and cannot be detected
statically. This especially applies to dynamic behavior introduced by libraries and
reflective calls. While a JVM is monitored during execution of the target program
(see step 4 in Figure 7.3 on page 84), the agent implementation keeps track of every
method which has been entered and not exited yet using a stack for each thread.

To present the call stack in a graphical manner, the trace written by the agent can
be used to create a sequence diagram and thus provide run-time feedback into the
UML model (see step 5 of Figure 7.3). As the Java agent is able of keeping track of
every method and field that is accessed, we are able to check continuously if a call
edge detected in the run-time monitor that has corresponding elements in the model.
If this is the case, then the elements can directly be related to the corresponding
model elements. If not, the tool can feed this information into the model by adding
respective elements using JSON objects.

9.3.4 Support for Run-Time Adaptation

At the time of writing, the S2EC2O tool does not cover run-time adaption in a way
that S2EC2O is able to actively control the system’s behavior. Thus, supporting tasks
3 and 4, as highlighted in Figure 9.14 (on page 124), namely Assess current system se-
curity level and Adapt system@run-time is not yet implemented. However, support for

9.3. Relation of S2EC2O’s Delta Process and Realized Prototype Artifacts 127

task 5 (Acknowledge run-time adaptation(s)) is currently implemented to that extent
that reports, for example coming from the S2EC2O run time, have to be acknowl-
edged by the user. This is realized as an additional page of the delta wizard that
displays the content of all new (i.e. non-ACKed) reports to the user.

The remaining work to realize the run-time adaption would require to imple-
ment the S2EC2O service component and the extensions proposed for S2EC2O run
time as described conceptually in Section 8.1. However, the monitoring part as de-
scribed in Section 9.3.3 is able to instrument code of the system. Hence, it is able to
prevent violations of security properties (in this case, ⟨⟨secure dependency ⟩⟩). Alterna-
tive behavior can be also defined. But this is only possible as part of the source code
and in a static manner, not updateable during run time.

This is realized as follows: The developer annotates the system model according
to the obligations given by S2EC2O. We acknowledge the fact that often a system
implementation is not on the same level of abstraction as the model. Thus, as con-
necting link we use class names.

The current implementation, supporting ⟨⟨secure dependency ⟩⟩, also supports defi-
nition of countermeasures using the @Countermeasure source-code annotation. The
CARiSMA instrumentation plug-in then instruments source code of the system un-
der consideration.

If a violation of the security property is detected by the instrumented code during
run time, the respective countermeasure actions are executed automatically. The
Java Agent writes reports about detected security violations into JSON reports as
introduced in Section 7.4.1.

9.3.5 Review of the Prototype’s Unique Features

In this section, we review the features the S2EC2O tool provides and thus realizes
S2EC2O. The initialization- and delta-handling process of S2EC2O both are sup-
ported by a wizard that guides the user through the process steps.

The S2EC2O tool supports management of the SCK by using the OWL API to ac-
cess ontologies created with Protégé. Thus, a widespread workbench can be reused,
avoiding additional implementation overhead. The S2EC2O tool is able to analyze
the knowledge base stored as part of the layered ontologies in terms of leveraging
reasoning and also by making use of semantic diffs as calculated using the SiLift
approach.

The S2EC2O tool is able to query models using, for example, graph transforma-
tion techniques as provided by Henshin. Moreover, SMRs are built on native Java
code and thus can be implemented in a highly flexible manner. The wizards the
S2EC2O tool offers make use of the Security Context Catalog, it is thus available
to the user in a convenient way. The SCK is also used in the processes by issuing
SPARQL queries. Design-time model co-evolution is supported by issuing graph
transformations. Thus, the S2EC2O tool realizes S2EC2O, so that the user is able to
co-evolve a system at design time.

Moreover, the prototype also supports run-time monitoring. We provide Java
annotations which can be used to accompany a system’s source code at the one side,
and matching with model elements and the UMLsec annotations at the other side.
We are able to instrument existing application code with our monitoring code. The
user is able to specify countermeasures to be carried out immediately in case the
monitoring detects a security violation. Moreover, round-trip engineering is sup-
ported by the S2EC2O tool by writing trace information that can be used to adapt
and extend the system model.

128 Chapter 9. Prototypical Implementation

In the subsequent chapter, we will exemplify the S2EC2O tool’s features by car-
rying out a case study.

129

Chapter 10

Case Study: Applying S2EC2O to
iTrust

In the previous chapters, we introduced and discussed S2EC2O theoretically as well
as its foundations. In Chapter 9, we introduced the S2EC2O tool, a prototypical
implementation of S2EC2O.

In this chapter, we especially show the applicability of S2EC2O and the S2EC2O
tool by presenting a case study. In the study, we apply S2EC2O to a medical infor-
mation system called iTrust. The system, its relevance for this thesis and its basic
architecture are introduced in Section 10.1.

We point out the fact that this chapter directly relates to the preceding chapter.
Thus, the reader is recommended to read it upfront.

S2EC2O focuses on co-evolution of software where a system’s security is put at
stake by evolution of its context. Section 10.2 elaborates on possible context evolu-
tion sources that have been taken into account for this chapter.

The context evolutions may lead to security vulnerabilities. Section 10.3 gives a
classification of them regarding their relevance.

Section 10.4 introduces the structure of the following sections. We will cover five
examples, each of them in a separate section.

The goal of this chapter is to study the applicability and the effectiveness of
S2EC2O with regard to the iTrust medical information system.

10.1 Introduction to iTrust

The target system for this case study targets is the open source healthcare system
iTrust. It has already been used in preliminary work [BSG+18, Gär16, BGR+15,
GRB+14]. iTrust is a role-based medical information system implemented in Java
for the Java Enterprise Edition (JavaEE) platform. Its purpose is to provide patients
with medical information, let medical staff organize their daily work, and provide a
messaging system so that all users can communicate with each other.

The iTrust project was initiated at North Carolina State University and is cur-
rently maintained by the Realsearch Research Group [MSW12]. It is a fully opera-
tional system. Its development artifacts, in particular, requirements and code, are
publicly available. Its use cases are documented in natural language (we use ver-
sion 27 of the requirements and the corresponding code version 21 for our study),
some of them addressing privacy and security issues regarding personal and medi-
cal data. At the time of writing, iTrust was moved from a completely open structure
to a Gitlab system available to the students of the involved university. However,
getting more recent artifacts for this thesis on request was possible. At the time of
writing, the artifacts before the move to Gitlab were still available [MSW].

130 Chapter 10. Case Study: Applying S2EC2O to iTrust

As a large system maintained over a long period of time, iTrust is a well-suited
example of a long-living system with substantial practical relevance: First, it un-
derwent organizational changes. Being in use since 2004, responsible architects and
developers changed several times, and functional requirements have also changed.

Second, it was subject to substantial functionality changes. Over the years, new
use cases have been implemented and others have been removed, according to con-
tinuously changing requirements. For example, in requirements version 27, the sys-
tem is implemented based on 39 use cases, while the overall sum of documented use
cases is 79 (see [MSW]).

As a healthcare system, iTrust is particularly prone to privacy and security is-
sues [Bow13]. All of these properties are also typical to a long-living system used in
industry.

10.1.1 Architecture of iTrust

iTrust is a role-based system, having a hierarchical role model. In total 11 roles are
defined, while the case study will focus on the following six roles (role descriptions
adapted from [MSW]):

Health Care Personnel (HCP) All of designated licensed health care professionals,
licensed health care professionals, and unlicensed authorized personnel, as de-
fined below.

Patient When an American infant is born or a foreigner requests medical care, each
is assigned a medical identification number and password. Then, this person’s
electronic records are accessible via the iTrust Medical Records system. Ev-
ery kind of operation, office visit, treatment, diagnostic tests, etc., is targeted
against a patient. A patient can log into the system, have access to all data that
is relevant for treatment.

Licensed Health Care Professional (LHCP) A licensed health care professional
that is allowed by a particular patient to view all approved medical records. In
general, a patient does not know this non-designated health care professional,
such as an emergency room doctor, and the set of approved records may be
smaller than that granted to a designated licensed health care professional.

Designated Licensed Health Care Professional (DLHCP) A licensed health care
professional that is allowed by a particular patient to view all approved medi-
cal records. Any LHCP can be a DLHCP to some patients (with whom he/she
has an established relationship) and an LHCP to others (whom he/she has
never/rarely seen before).

Unlicensed Authorized Personnel (UAP) A health care worker such as a medical
secretary, case manager, care coordinator, or other authorized clerical-type per-
sonnel. An unlicensed personnel can enter and edit demographic informa-
tion, diagnosis, office visit notes and other medical information, and can view
records.

Lab Technician (LT) A clinical worker that runs diagnostic tests on samples gath-
ered from patients during office visits. The lab technician can specialize in
blood work, tissue work, or general.

iTrust is built as a JavaEE application and based on JavaServer Pages (JSP) to
provide a web interface. Regarding the WebRoot, in the root directory, a login page

10.1. Introduction to iTrust 131

FIGURE 10.1: Package tree of iTrust Java classes

is provided. After a user is logged in, he is redirected into a subtree (auth). In
this part, a number of JSPs are stored to provide basic functionality available for
every authenticated user regardless of his role. For every role, on a coarse-grained
scale, further subtrees exist (hcp, patient, and hcp-uap, for example). Wherever
fine-grained permissions need to be checked (for instance, if a given LHCP is the
designated LHCP of a given patient), this is done using Java code.

The data of the system is completely stored in a SQL database, in this case a
MySQL database.

Figure 10.1 shows an overview over the package tree of iTrust regarding the Java
source code, our case study will focus on. The package names have been chosen
according to the features the respective classes are used for.

We briefly highlight the packages relevant for the case study.

• action.*: These classes provide content for JSP for every data-relevant ac-
tions. For instance, adding or editing prescriptions of a patient.

• beans.*: To ease handling of data, all complex types that may be per-
sisted in similar tables or the same table, Java beans are used. For instance,
PatientBean, HospitalBean, and PrescriptionBean exist.

• dao.*: while the package edu.ncsu.csc.itrust.dao just contains some skele-
ton classes and interfaces, the package edu.ncsu.csc.itrust.dao.mysql con-
tains 60 classes representing Database Access Objects (DAOs). These interface
with the Java beans (where applicable) and prepare as well as perform ev-
ery query of the MySQL to query and alter data of the system. For example,
PatientDAO, PrescriptionsDAO, and DiagnosesDAO are provided.

• validate.*: Barely 40 validator classes, such as PatientValidator, provide
functionality to check if the data processes makes sense. For instance, syntax
of dates, and phone numbers are checked in PatientValidator.

132 Chapter 10. Case Study: Applying S2EC2O to iTrust

10.1.2 Metrics of iTrust

To quantify the size of iTrust, we show a number of typical metrics, calculated
from the iTrust source code. We used the metrics tool SourceMeter in version
8.2.0 [FLS+14]. We use the wording and abbreviations as given by SourceMeter.
Total logical lines of code is defined as the number of non-empty and non-comment
code lines.

Metric Value
Total Lines of Code (TLOC) 116 789
Total Logical Lines of Code (TLLOC) 77 502
Total Number of Classes (TNCL) 938
Total Number of Methods (TNM) 6166

TABLE 10.1: Metrics calculated for the iTrust system

Acquiring the System Model

Since the iTrust project does not provide any models, the design models were ob-
tained in a reverse engineering process. A UML model was reverse engineered from
the source code by using the TGG tool eMoflon [eDT] and a set of TGG rules that
have been created for a work of Leblebici et al. [LAS17]. The resulting model turned
into class diagrams. The reverse engineered model of iTrust will be used for the case
study. We will show excerpts of the model to realize the case study.

10.2 Introduction to Security-Related Context evolutions

For the application examples, we consider three types of context evolution which
we will shortly introduce here. These are: changes to privacy laws, encryption algo-
rithm exploit, and trust in external libraries.

Changes to Privacy Laws

A potential source for context evolution is a law change regarding the German Fed-
eral Data Protection Act (in German: Bundesdatenschutzgesetz, BDSG [Bun05]). Pri-
vacy regulations change regularly to reflect changes in the behavior and technical
possibilities to work with data as well as new juristic interpretations. The German
privacy protection act has been altered several times to fulfill the European direc-
tive [EU 95]. The first versions failed to comply with the EU directive 95/46/EC and
Germany was forced to adapt it. There have been several changes to the privacy-
related legislation in the history of the BDSG since 1990. An illustrative but im-
pacting change of this law took place in 2001. In addition to ordinary private data,
the 2001 version of the BDSG introduces special categories of personal data including
data about racial or ethnic origin, political opinions, religious or philosophical con-
victions, union membership, health and sex life [BfD14]. The access to this kind of

10.2. Introduction to Security-Related Context evolutions 133

data needs to be more restrictive as enforced in section 13 par. 2 BDSG (translated):

“The collection of special types of personal data (Section 3 (9)) is permis-
sible only in so far as [...] 7. Such collection is necessary for the purposes
of preventive medicine, medical diagnosis, health care or the administra-
tion of health services and the processing of these data is carried out by
medical personnel or other persons who are subject to an obligation to
maintain secrecy [...].”

Another example of far reaching changes to privacy laws came into effect on 25th
of May, 2018. The EU directive 95/46/EC was replaced by a new, EU-wide privacy
law, the General Data Protection Regulation (GDPR) [EU 16]. This law furnishes
users with a number of additional rights. For example, the user has the right to be
forgotten, requesting from a company to delete all personal data. If deletion is not
possible, the company then has to make sure that the data is not processed anymore
and may only be stored for legal reasons, for example. This is mainly given by Art.
18 of the GDPR:

“The data subject shall have the right to obtain from the controller re-
striction of processing where one of the following applies:
1. [...] the processing is unlawful and the data subject opposes the era-
sure of the personal data and requests the restriction of their use instead
[.]
2. Where processing has been restricted under paragraph 1, such per-
sonal data shall, with the exception of storage, only be processed with
the data subject’s consent or for the establishment, exercise or defence of
legal claims or for the protection of the rights of another natural or legal
person or for reasons of important public interest of the Union or of a
Member State. [...]”

These two law changes are examples of regulatory context evolutions, having
the potential to require substantial changes in legacy systems.

Encryption Algorithm Exploit

Regretfully, during the last couple of years, a number of algorithms / variants/ im-
plementations for data encryption have been discovered to be insecure. We refer to
one popular example. The cipher suite RC4 has been popular over a long period
of time and has been used in Transport Layer Security (TLS) to provide security for
HTTP sessions. A number of attacks to break the encryption have been discovered.

After the publication of an attack that could be carried out in merely 75
hours [VP15], the use of RC4 has been prohibited in a Request for Comments (RFC)
by the Internet Engineering Task Force [Pop15]. At that time, the estimation of TLS
traffic relying on RC4 was approximately 30%. HTTP is, then and now, also used to
implement APIs for the interoperability of distributed systems. Thus, systems using
RC4 were vulnerable and needed to be evolved.

The deprecation of RC4 was critical because, for instance, many web servers re-
lied on it. As is also today, Hypertext Transfer Protocol (HTTP) or HTTPS was not
only used for web sites but also for REST-APIs and application servers, numerous
business applications are affected by this vulnerability.

134 Chapter 10. Case Study: Applying S2EC2O to iTrust

Trust in external Libraries

Information systems in general and application servers in particular are prone to ex-
ploits originating from data that is processed but checked insufficiently. The more
an application depends on external libraries, the more likely it is that a vulnera-
ble library is used. For example, the iTrust project has Maven dependencies on
over 90 external libraries. Especially regarding object deserialization, Java programs
are prone to remote code execution attacks. Such vulnerabilities also already ap-
peared in the wild, resulting in a remote code execution exploit. For example, the
JSON library Jackson suffered a vulnerability like this, documented in the CVE-2017-
7525 [MIT17a]. This means that every product relying on this particular library is
still vulnerable to remote code execution attacks.

As the JavaEE application servers themselves are Java programs, this risk also
applies to them and in turn to every hosted application. This in fact happened: For
instance, the application server JBoss was vulnerable to deserialization attacks be-
cause it in incorporated a vulnerable version of the Apache Commons collections
class. A proof-of-concept exploit was presented at the AppSecCali conference orga-
nized by OWASP and became known to the public as ysoserial [LF15].

10.3 Classification and Relevance of Vulnerabilities

To classify the vulnerabilities in this case study and thus assess their relevance, we
will relate them to the Common Weakness Enumeration (CWE) [MIT17b] database,
a set of common software security weaknesses. The knowledge represented in CWE
is provided by about 50 different organizations and companies of the software engi-
neering community.

We will discuss five cases of vulnerabilities that can be classified into six CWE
entries, three of them (marked with an asterisk) being part of the 2011 CWE/SANS
Top 25 most dangerous software errors1.

These CWE entries are representative examples of weaknesses that can be ad-
dressed at the system design level. We recall the types of security-related context
evolutions and relate the CWEs to them.
Regarding changes to privacy laws, we will cover

• CWE-284: Improper Access Control,

• CWE-311*: Missing Encryption of Sensitive Data, and

• CWE-732*: Incorrect Permission Assignment for Critical Resource.

With regard to encryption algorithm exploit, we will focus on

• CWE-327*: Use of a Broken or Risky Cryptographic Algorithm.

Finally, trust in external libraries is covered by

• CWE-20: Improper Input Validation and

• CWE-502: Deserialization of Untrusted Data.

We will cover one example related to one CWE entry per section, while the fifth
example (see Section 10.9) is related to both CWE-20 and CWE-502.

1http://cwe.mitre.org/top25/ (accessed Apr 9th, 2019)

http://cwe.mitre.org/top25/

10.4. S2EC2O Application Examples 135

10.4 S2EC2O Application Examples

Among others, the law changes discussed above can have a significant impact to
iTrust, since it processes different sort of privacy-relevant data. In what follows in
this chapter, we show application examples of S2EC2O to the iTrust system. Each
of the following sections is built around the same pattern. The goal of the rest of
this chapter is to provide application scenarios and show how S2EC2O can be ap-
plied to a realistic information system that features typical properties of a long-living
software system. The sections are accompanied by artifacts coming from the actual
source code (or model respectively).

Introduction

Every of the application examples begins with an introduction. A Security Context
Catalog entry is shown and the relevant security context is given.

Initial Compliance

In this part, it is shown how a system, in this case iTrust, can be made initially se-
cure using S2EC2O. This basically correlates to the S2EC2O initialization process in-
troduced in Section 2.2.3 (on page 15). It incorporates both system modeling and
necessary information to be put into the SCK. Assumptions the ESR makes to the
system model and the SCK to work properly (in particular regarding the security
property checks, SMR and run-time monitors), are part of the description property
of the respective ESR.

Context Evolution and Vulnerability

In this part, a context evolution affecting the Security Context Catalog entry is in-
troduced. The context evolution is verified by security breaches or changes that
actually have taken place. We elaborate, why the introduced evolution now leads to
a potential vulnerability and relate it to CWE entries. Where applicable, we discuss
how the context evolution of the SCK can be detected and using which technique.

Security Maintenance and Co-Evolution

In this part, the pseudo code of the SMR(s) connected to the Security Context Catalog
entry as introduced in the introductory section is shown. Code for the ESR method
checkConditions is shown as well as code for the method to be called when a SMR
is to be applied (apply). Techniques and relevant artifacts for the co-evolution are
shown as well as co-evolved artifacts of iTrust.

136 Chapter 10. Case Study: Applying S2EC2O to iTrust

FIGURE 10.2: Security Context Catalog entry for Access Control

10.5 Example 1: Access Control

The Security Context Catalog entry we cover in this section is used to support mon-
itoring compliance to access control restrictions. Figure 10.2 shows the model part
of the Security Context Catalog entry. We want to observe access restrictions of roles
regarding data that is processed by the system. It is based on modeling roles and ac-
cess restrictions as part of the SCK. The UML model however contains information
about which roles access what data. Both sources are brought together in the SCK
and the restrictions are checked as part of the ontology. In this case, as indicated
by OWL::Consistency in the security property is checked by monitoring the consis-
tency of the SCK, i.e. the ontology. The assumption is that both access restrictions
and roles are modeled as part of the SCK. As soon as the ontology is considered to
be inconsistent, this may be an indication that these do not match anymore.

10.5.1 Initial Compliance

The initial compliance of the system with this Security Context Catalog entry is es-
tablished by first modeling an appropriate base for the access control as part of the
SCK.

Figure 10.3 shows an excerpt of the entities to be modeled. The role hierarchy
needs to be modeled as subclasses below the Trust_Level class. In this example,
we assume that access to data is realized via getter/setter methods of the classes
holding the respective data. The Trust_Level class, as well as Access_Point for
example and the used object property assertions (accessibleBy, provideAccessTo)
come from the security upper ontology as introduced in Section 4.2.1 (on page 30).

Assets to be protected need also be modeled as part of the SCK. For example, we
work with a hierarchy for data assets (Data, Personal_Data, Health-related_Data)
as introduced by the German privacy law BDSG [Bun05]. In this example, we focus
on Religion as a valuable asset. Access to this asset is possible using for example a
getter method of a respective data class. Thus, the information about religion should
only be accessible to trustworthy employees, in this case all kinds of health care
personnel (thus the roles DLHCP, LHCP, and UAP). This means in turn that the

10.5. Example 1: Access Control 137

FIGURE 10.3: SCK excerpt to model access control

data must not be accessed by lab technicians (LT) for instance. This is restriction is
expressed using an equivalence expression for Operation:

not ((accessibleBy some LT) and (provideAccessTo value
Religion))

To allow consistency checking to happen inside of the ontology representing the
SCK, it is necessary for the operations (of the UML system model) to be present
in it. We realized this as part of the prototype. Section 4.3.6 introduces a ⟨⟨SCK ⟩⟩

stereotype that can be used to annotate elements of the UML model. Information
can be provided regarding what are the ontology classes (types) and also relations
to other individuals (as far as they exist) which the annotated elements should be
associated with. This way, a light-weight extension to system model is at hand,
providing an easy-to-use method that can help to benefit from external knowledge
management tools like ontology reasoning.

In this case, the transformation provides the instances of the SCK’s Operation
class (see Figure 10.3) as well as their relations to other elements of the SCK.

The information which method provides access to what data can for instance
be provided by audits, heuristics against method names and data names, or by re-
using information from an access control model, for instance the UMLsec security
annotation ⟨⟨rbac ⟩⟩. In this case, we assume the information to come from an audit. In
what follows, we relate the SCK as shown in Figure 10.3 to the UML model of iTrust.

We show excerpts of two central classes of iTrust regarding patient personal data,
namely PatientDAO in Figure 10.4 and PatientBean in Figure 10.5. For the sake of
clarity, we display all properties but only the operations relevant for this case study.

138 Chapter 10. Case Study: Applying S2EC2O to iTrust

FIGURE 10.4: Excerpt of iTrust class PatientDAO

FIGURE 10.5: Excerpt of iTrust class PatientBean

10.5. Example 1: Access Control 139

FIGURE 10.6: SCK excerpt: relations of getReligion to other SCK
elements

The PatientDAO is heavily connected to the rest of the system. For example,
just the method getPatient is called by over 40 other methods. It connects to the
database and handles PatientBean objects to exchange information.

Figure 10.5 shows PatientBean, note the ⟨⟨SCK ⟩⟩ annotations at the two methods
providing access to religion-oriented information about the patient.

Figure 10.6 shows the relations that getReligion has to other elements in the
ontology. It represents which data is exposed by the method (provideAccessTo) and
which roles have access to this method (accessibleBy). As we discussed above, the
ontology elements as shown in Figure 10.6 are generated by the transformation from
the model as shown in Figure 10.5 (note the ⟨⟨SCK ⟩⟩ stereotypes).

An advantage of this separation (role model as part of the SCK, access modeling
and coupling to the methods in the system model) is that this way a separation of
concerns is achieved: the system model is only used to annotate the access possibil-
ities as is, while the restriction policies can easily be managed within the SCK.

Note the following: object property assertions can only be targeted against in-
dividuals, not classes. But regarding roles for access control, a hierarchy is more
easily modeled using equivalence expressions. However, one might also want to
model concrete users of the system which would take place using individuals also.
To solve this issue, as is also shown by Figure 10.3, representative individuals for the
roles with the prefix A_ are used.

10.5.2 Context Evolution and Vulnerability

In this example, we consider a change that has to be made to the access control model
triggered by a change in legislation that has actually taken place. As we described
in Section 10.2, the German privacy law changed in 2001 and extended the notion of
personal data by introducing special categories of personal data, including data about
racial or ethnic origin. In this example, we treat religion and spiritual practices as
that kind of data.

The assumption is that Unlicensed Authorized Personnel (UAP) is not al-
lowed to access this information anymore. To adapt the access control to the
changed law context, the security expert alters the access restriction as follows:

not (((accessibleBy some LT) or
(accessibleBy some UAP)) and (provideAccessTo value
Religion))

140 Chapter 10. Case Study: Applying S2EC2O to iTrust

FIGURE 10.7: Reasoner explanation for SCK inconsistency

After this step, the context evolution is integrated into the SCK. The question that
follows is, whether the system actually is affected by this change and a co-evolution
needs to take place.

In this case, this can be answered using the reasoner (see SecurityProperty ele-
ment in Figure 10.2). The change made leads the SCK ontology to being inconsistent.
A reasoner also can provide explanations for the inconsistency. Figure 10.7 shows
the explanations for the inconsistency, critical parts in red.

The reasoner is able to derive that the operations getReligion and
getSpiritualPractices of the class PatientBean provide access to data to a role
where this is not allowed anymore.

Thus, the system is now violating the respective ESR. This can be seen as an
occurrence of CWE-284: Improper Access Control2. The short description of this
CWE reads: The software does not restrict or incorrectly restricts access to a resource from
an unauthorized actor.

10.5.3 Security Maintenance and Co-Evolution

In this section we consider how the system is co-evolved to remove the violation.
1 public void checkConditions(DeltaList deltaList) {
2 for (OntologyInconsistencyDelta d : deltaList.getDeltas ()) {
3 criticalOperations=d.getExplanations ()
4 .collect("Type Operation");
5 criticalRoles=d.getExplanations ()
6 .collect("accessibleBy");
7 queryAlternativeRoles ();
8 for (operation : criticalOperations) {
9 Proposal.addAlternative(operation ,REMOVE_CRITICAL_ROLE);

10 Proposal.addAllAlternatives(operation ,queryAlternativeRoles ());
11 }
12
13 public void apply(Proposal p) {
14 alterModel(p.getChoice ());
15 }
16 }

LISTING 10.1: Pseudo code for SMR co-evolution regarding
CWE 284

2https://cwe.mitre.org/data/definitions/284.html (accessed Apr 9th, 2019)

https://cwe.mitre.org/data/definitions/284.html

10.5. Example 1: Access Control 141

FIGURE 10.8: Henshin rule to search ⟨⟨SCK⟩⟩ annotated operations

FIGURE 10.9: Henshin rule to alter ⟨⟨SCK⟩⟩ annotations

Listing 10.1 shows the pseudo code of the SMR coming into action. In the method
checkConditions, the model and delta information is processed and alternatives to
co-evolve the system are determined and proposed. The SMR shown here is regard-
ing only delta information relating to inconsistent ontologies.

This is done by processing the explanation information provided by the reasoner.
Thus, in lines 3-6, the operations and roles in question are determined by pro-

cessing the explanation data. Thus, all explanation data as provided in the delta
information is analyzed for data that is relevant. The SMR analyzes the relations of
operations and access information as provided by the reasoner. It determines alter-
native roles. Basically, this is realized by issuing a SPARQL query towards the SCK.
The query is defined as completion element and it reads as follows:

SELECT ?role
WHERE { ?role rdf:type ?type.
?type rdfs:subClassOf* upper:Trust_Level. }

It queries the knowledge for roles that, in this example, are assumed to be mod-
eled as subclasses of Trust_Level.

After that, in lines 8-11 of Listing 10.1, proposals, i.e. co-evolution alternatives
are composed. The first possibility is just to remove the accessing role in question.
Furthermore, all roles modeled in the SCK are gathered and presented to the security
expert as alternatives to choose from, tied to the respective critical operation.

After the security expert has made the choices, the chosen alternatives are ap-
plied (see lines 13-16). The method alterModel() co-evolves the UML system model
by searching the operation in question and altering the ⟨⟨SCK ⟩⟩ annotation. This is re-
alized using Henshin rules. Figure 10.8 shows the rule used to search a operation in
the model identified by its name, the owning class and its package.

142 Chapter 10. Case Study: Applying S2EC2O to iTrust

FIGURE 10.10: The class PatientBean in its evolved state

FIGURE 10.11: Security Context Catalog entry for Privacy by Encryp-
tion

Figure 10.9 shows the rule to alter a ⟨⟨SCK ⟩⟩ annotation. Using Henshin’s partial
match feature as introduced in Section 3.6, it is sufficient to just refer to the Operation
node, as the specific target EObject has been determined using the searchOperation
rule. Using partial match and the reference to the operation, the match of this rule
can be predetermined.

Figure 10.10 shows the evolved PatientBean class. In this case, the user selected
to only remove the critical role. The access right of the UAP role is now removed.
After a re-run of the transformation from the UML model to the SCK, the SCK is
consistent again. The altered ⟨⟨SCK ⟩⟩ annotations can for example be used for further
analyses or a fine-grained audit to ensure the altered behavior is satisfied by the
code.

10.6. Example 2: Privacy by Encryption 143

10.6 Example 2: Privacy by Encryption

The goal of this Security Context Catalog entry is to ensure encryption of sen-
sitive data. The respective ESR monitors the compliance. It makes use of both
the SCK and respective modeling of the system model. The UMLsec stereotype
⟨⟨encryptedPersistence ⟩⟩ is used to tag classes of the model that represent data entities
and need to be persisted for example in an encrypted manner [BSG+18]. The stereo-
type features the tagged values algorithm and keylength to also provide the ability
to specify an encryption algorithm and its key length to be used for encryption. Fig-
ure 10.11 shows the model of the Security Context Catalog entry. The combination of
UMLsec modeling and leveraging the SCK can be seen by the combination of both
check identifiers in the connected SecurityProperty. The basic idea of this ESR is
that classes providing access to data assets are represented in the ontology. Further-
more, in the ontology, data assets are classified according to categories defined by
privacy laws, such as we introduced in Section 10.2 (on page 132).

In this example, the OWL reasoner is used to infer which classes of the system
model need ⟨⟨encryptedPersistence ⟩⟩. It can then be checked by the SMR whether the
classes annotated with ⟨⟨encryptedPersistence ⟩⟩ match the requirements as inferred by
the reasoner from the SCK.

The application relevance is as follows: A typical partitioning of information
systems is to have a presentation component, a business logic component and a
database as storage back-end iTrust, as introduced in Section 10.1, can also be de-
scribed that way. iTrust typically uses a MySQL server as database. Especially re-
garding medical information systems, there are regulations to have backups avail-
able. We assume the following trigger for a context evolution: backups of databases
can for example be persisted as a big set of Structured Query Language (SQL) state-
ments (SQL dump). While the connection to a SQL server can be encrypted, the data
itself can be stored in an unencrypted manner. For example, this can happen when
database dumps/backups are stored on a server, for example using automatisms
like the popular AutoMySQLBackup scripts3. Another possibility is, that, for exam-
ple using Debian Linux, the default configuration gives administrators of the Linux
system root privileges in MySQL:

“At least since Debian 9 "stretch," operating system credentials are used
by MySQL Server to authenticate users. That is, after installing mysql-
server and mysql-client you can access the server with root privileges
[. . .].”4

This issue can be solved by encrypting data before inserting it into the database.
⟨⟨encryptedPersistence ⟩⟩ supports to annotate respective data assets in the system
model.

10.6.1 Initial Compliance

The initial compliance is established by first modeling an appropriate base for the
privacy as part of the SCK.

Figure 10.12 shows an excerpt of the entities to be modeled. In this example, var-
ious categories of personal/private data are modeled, namely personal data, health-
related data, special personal data and data itself. These categories can be for exam-
ple inferred from the German privacy law BDSG [Bun05]. As individuals, various

3https://sourceforge.net/projects/automysqlbackup/ (accessed Apr 10th, 2019)
4from https://wiki.debian.org/MySql (accessed Apr 10th, 2019)

https://sourceforge.net/projects/automysqlbackup/
https://wiki.debian.org/MySql

144 Chapter 10. Case Study: Applying S2EC2O to iTrust

FIGURE 10.12: SCK excerpt to model privacy requirements

10.6. Example 2: Privacy by Encryption 145

FIGURE 10.13: iTrust class ViewExerciseEntryAction to provide pa-
tient exercise data

FIGURE 10.14: SCK excerpt: result of transformation from the system
model to the SCK

concrete types of data assets are shown, for example Diagnoses, Name, and Religion.
These assets need to be specified by the security expert, for example by extracting
them from the system specification.

Regarding connection to the system model, as in the preceding section, the ⟨⟨SCK ⟩⟩

annotation is used to tag classes with their ontology type (Clazz in this case to avoid
naming confusion with classes as members of the ontology an Java classes, repre-
sented in the ontology) and also data assets they provide access to.

The SCK is populated with encryption algorithms. We discussed in Section 4.3
(on page 35), how this knowledge can be acquired and incorporated into the knowl-
edge base.

Using the transformation we also used for the example in Section 10.5, the classes
from the model as well as their associations are put into the SCK.

Figure 10.13 shows the ViewExerciseEntryAction class. This class is used in
iTrust and directly called by a respective web page to display information about a
patient’s (fitness) exercises. Using a ⟨⟨SCK ⟩⟩ annotation as shown in the figure, the
information that this is a class to be represented in the SCK and the data assets it
provides access to, can be transformed into the SCK and used for analyses. Fig-
ure 10.14 shows this in detail. The class ViewExerciseEntryAction is an individual

146 Chapter 10. Case Study: Applying S2EC2O to iTrust

in the ontology and the relation provideAccessTo Exercises has also been applied.
We can tell from the SCK that the class ViewExerciseEntryAction provides access
to the data asset Exercises. While data of a class is generally provided by public
getter- and setter-methods, the class itself has access to all of its methods and fields.

Figure 10.12 also shows the requirement for encrypted persistence, modeled as
equivalence expression:

Clazz and (provideAccessTo some Health-related_Data)

We use the approach of inferring additional knowledge by the rea-
soner as we introduced in Section 5.3.4 (on page 59). Thus, the class
Needs_Encrypted_Persistence lets the reasoner infer all classes to which the equiv-
alence expression applies. The security expert needs to model the restriction accord-
ing to the, for example, company policies for asset encryption. As introduced in
Section 5.3.4, a reasoner can be used to infer knowledge. In this case, the reasoner
can infer which classes need to have encrypted persistence.

In addition to the preceding section, we also show a separation of concerns in
this example: In the system model, only tagging of classes regarding their access to
data is modeled, while the categorization as well as modeling of security restrictions
is modeled in the SCK.

10.6.2 Context Evolution and Vulnerability

We assume that data breaches have taken place which leads to a change in the com-
pany’s security policies. The company policy now requires not only health-related
data to be encrypted but, on a more coarse-grained level, also special personal data.
Thus, the equivalence expression in the SCK is changed to the following:

Clazz and (provideAccessTo some Special_Personal_Data)

Using the reasoner, now additional classes are inferred as instances of the
Needs_Encrypted_Persistence class. The vulnerability now being present can be
found in the CWE database as CWE-311: Missing Encryption of Sensitive Data5.
The description reads: The lack of proper data encryption passes up the guarantees of con-
fidentiality, integrity, and accountability that properly implemented encryption conveys.

Please note that no changes to the system model or system model-specific ele-
ments had to be realized. Only by changing the (separate) information about the
categorization, the reasoner is able to infer the additional classes needing encrypted
persistence. In principle, modeling with equivalence expressions can be significantly
more complex, as long as they can be still (logically) inferred by a reasoner.

Figure 10.15 shows the reasoning results after altering the subclass expression
for Needs_Encrypted_Persistence. The class ViewExerciseEntryAction now also
needs encrypted persistence.

10.6.3 Security Maintenance and Co-Evolution

Listing 10.2 shows the pseudo code for the relevant parts of the SMR coming into
effect. In the method checkConditions, the delta information is processed. In line 3,
the classes are filtered from the inferred facts that actually are relevant for this SMR,
namely all (thus inferred) instances of the Needs_Encrypted_Persistence class. To
put this in relation to the system model, all instances of UML classes annotated with

5https://cwe.mitre.org/data/definitions/311.html (accessed Apr 9th, 2019)

https://cwe.mitre.org/data/definitions/311.html

10.6. Example 2: Privacy by Encryption 147

FIGURE 10.15: Inferred knowledge (yellow background) after evolu-
tion of SCK

⟨⟨encryptedPersistence ⟩⟩ are queried. This is realized using a model query as shown in
Figure 10.16.

1 public void checkConditions(DeltaList deltaList) {
2 for (OntologyInferenceDelta d : deltaList.getDeltas ()) {
3 ontologyClasses=d.getInferredFacts ().filter("Type

Needs_Encrypted_Persistence");
4 queryModelClasses ();
5 if (! doAnnotationsMatch ()){
6 Proposal.addAlternative("Add missing annotations");
7 }
8 }
9

10 public void apply(Proposal p) {
11 alterModel(p.getChoice ());
12 }
13 }

LISTING 10.2: Pseudo code for SMR co-evolution regarding
CWE 311

In line 5, it is checked whether for every class in the SCK a respective annotation
in the system model exists. This is done by comparing both sets of classes. If the
annotations do not match, an alternative to co-evolve the system is proposed where
⟨⟨encryptedPersistence ⟩⟩ annotations are added to all missing classes.

Here comes the completion element of the SMR into action (see Figure 10.11 on
page 142). Using a SPARQL query, the SCK is queried for applicable encryption
algorithms to propose for persistence encryption.

This completion is of type CHOICE, so, according to the S2EC2O process and the
associated tool support, the user is asked to make a choice when going through the
delta wizard. The choice is put into the data attribute of the Choice element.

148 Chapter 10. Case Study: Applying S2EC2O to iTrust

FIGURE 10.16: Henshin rule to search classes annotated with
⟨⟨encryptedPersistence⟩⟩

FIGURE 10.17: Henshin rule for adding ⟨⟨encryptedPersistence⟩⟩ to a
specific class

When the SMR finally is applied (lines 10-12), the choice data is used to specify
the parameters of the graph transformation rule used to carry out the model co-
evolution, as shown in Figure 10.17.

Regarding the example, Figure 10.18 shows the result after the SMR has been
applied: the annotation ⟨⟨encryptedPersistence ⟩⟩ has been added.

After a re-run of the SCK transformation, the information regarding the model
elements of the system model is in sync with the SCK again and fully compliant with
the updated restriction in the SCK.

FIGURE 10.18: Co-evolved class ViewExerciseEntryAction with
added annotation

10.7. Example 3: Data Protection by Locking 149

FIGURE 10.19: Security Context Catalog entry for Data Protection

10.7 Example 3: Data Protection by Locking

This Security Context Catalog entry is used to support monitoring to ensure the
privacy of data. The idea behind this ESR is to support modeling of data entities
which need to be lockable in an information system. For example, when the new
version of the EU data protection law, GDPR, came into effect on the 25th of May,
2018, it explicitly introduced the customer’s right to let a company stop processing
and lock his data [EU 16].

In many cases, the data cannot be deleted by the company immediately. For rea-
sons of liability, or required by tax laws, the customer data has to be stored, even
after the customer terminated all contracts with a company. But, in turn, the com-
pany then has to make sure that the data is only available for exactly these above
mentioned purposes.

The application example we discuss in this section can be seen as an extension to
that in Section 10.6, as it reuses the modeling of data entities. Modeling the ability
of being lockable is realized by providing a UMLsec stereotype ⟨⟨ lockable ⟩⟩. Using it,
we can tag classes that provide access to certain data entities with the requirement
of being lockable.

In this example, addition of a lockable requirement as part of the SCK is detected
using a semantic difference determined by SiLift. Additionally, a reasoner is used to
determine the type entailment of related ontology classes.

10.7.1 Initial Compliance

The initial compliance of iTrust with the ESR is established by first modeling which
data entities need to be lockable as part of the SCK. This is realized by providing a
security property Lockable in the SCK the ESR relates to. Furthermore, the security
expert needs to associate all data entities that shall support to be locked with this
security property by using the object property has.

150 Chapter 10. Case Study: Applying S2EC2O to iTrust

FIGURE 10.20: SCK excerpt showing a lockable data entity

FIGURE 10.21: SCK excerpt showing a new lockable data entity ac-
cording to the law change

Figure 10.20 shows an excerpt of the SCK. In this case, the data entity Exercises
(highlighted in blue) shall be lockable. This is modeled by the object property asser-
tion has Lockable.

As discussed above, the structure built in the SCK from the previous example
is reused. This means, classes of the system model are tagged using ⟨⟨SCK ⟩⟩. For all
relevant classes, using the provideAccessTo object property, the link between classes
of the system model and the SCK is established.

Using the transformation as introduced in Section 10.6, the ⟨⟨SCK ⟩⟩ annotations
can be parsed and transformed into SCK entities.

10.7.2 Context Evolution and Vulnerability

The context evolution in this example is a law change. The introduction of the new
EU privacy law had far-reaching effects also on legacy systems, because customers
were furnished with considerable additional rights.

For example, GDPR generally grants the person affected the right to let the data
be deleted. Under given circumstances, a company cannot delete all data instantly
because it is forced by laws to keep it for a certain amount of time. Nevertheless, data
access needs then to be strongly restricted inside the company and deletion needs
to be issued after a freeze period. In this example, we assume the law change to
demand that data regarding the patient’s prescriptions is affected by the legislation
evolution. This means that prescription data also needs the capability to be locked.
Thus, it needs to be checked whether the model still fulfills the Lockable requirement
and eventually co-evolve it.

10.7. Example 3: Data Protection by Locking 151

FIGURE 10.22: SiLift rule to detect addition of Lockable requirement
in the SCK

Figure 10.21 shows the altered SCK, now with the data entity Prescriptions
having the respective object property assertion.

10.7.3 Security Maintenance and Co-Evolution

Listing 10.3 shows the pseudo code for the relevant parts of the SMR. In the method
checkConditions, the delta information is processed. This SMR is triggered by se-
mantic diffs coming from analysis of different versions of the Security Context Cat-
alog.

1 public void checkConditions(DeltaList deltaList) {
2 for (SemanticDiffDelta d : deltaList.getDeltas ()) {
3 for (OperationInvocation opInv : d.getOperationInvocations ()){
4 ObjectPropertyAssertion opa=opInv.getParameter("opa");
5 URI uri=opa.getSourceIndividual ().getURI ();
6 Set <String > classes=OWLReasoning.getAllClasses(uri);
7 if (classes.contains("Data")){
8 ontologyClasses=queryOntologyClasses ();
9 modelClasses=queryModelClasses ();

10 boolean doAnnotationsMatch =(ontologyClasses -modelClasses)== EMPTY_SET?
true:false;

11 if (! doAnnotationsMatch){
12 Proposal.addAlternative("Add missing lockable annotations");
13 }
14 }
15 }
16 }
17 }
18
19 public void apply(Proposal p) {
20 alterModel(p.getChoice ());
21 }
22 }

LISTING 10.3: Pseudo code for SMR co-evolution regarding
CWE 732

Figure 10.22 shows the SiLift rule used for detection of the SCK’s evolution. The
noticeable fact is the addition of an object property assertion (shown in the upper

152 Chapter 10. Case Study: Applying S2EC2O to iTrust

FIGURE 10.23: Henshin model query to search for ⟨⟨ lockable⟩⟩ anno-
tated classes

middle of the figure). Thus, it is specified that the object property assertion con-
nects an individual not further specified (shown in the upper right) as source and
the already existing individual Lockable as target. Both are connected using the
object property has, specified in the OWL meta model and shown in the figure as
objectPropertyExpression association.

The SMR further investigates the delta. The actual Uniform Resource Identifier
(URI) is queried (lines 4-5) from the diff to determine the name of the individual for
which the Lockable property was added.

Note the following detail: As Figure 10.22 shows, the actual type (i.e. OWL
class) of the individual is not specified in the Henshin rule for SiLift. The reason
is as follows: regarding this SMR, it is relevant that the individual in question is
of the type Data. But in the SCK, the data entities are only assigned subtypes (i.e.
subclasses) of this type, for example Health-related_Data (see also Figure 10.12 on
page 144 for the hierarchy of data asset types). However, the individual in the SCK
only has the specific type asserted (for example Health-related_Data).

From the ontology class hierarchy, one can infer that the entity also has the type
Data because there is a path of subclass-relations to Health-related_Data. To get
this information at run time, the SMR uses a reasoner (line 6 of Listing 10.3).

After that, similar to the SMR we introduced in Section 10.6, two sets are
calculated. First, a set of classes (of the system model) needing ⟨⟨ lockable ⟩⟩ ac-
cording to the SCK (see line 8) is calculated. To accomplish this, data enti-
ties are investigated and their associations to clazz individuals of the ontology
is traced. In the ontology, this is realized using provideAccessTo object prop-
erty. For every (system model) class providing access to a specific data entity
which in turn is associated to the Lockable security property, ⟨⟨ lockable ⟩⟩ is re-
quired in the system model. To establish the link from system model classes rep-
resented in the SCK and the data entities, a SPARQL query as follows is used:

SELECT ?clz
WHERE { ?clz a domain:Clazz.
?clz upper:provideAccessTo sys:Religion.}

After that, the SMR has a set of all classes in need of ⟨⟨ lockable ⟩⟩ according to
the SCK. After that, a set of classes of the system model currently annotated with
⟨⟨ lockable ⟩⟩ is gathered (line 9). This is realized using a model query. Figure 10.23
shows the Henshin rule used for that. It simply matches against all classes having
⟨⟨ lockable ⟩⟩.

In line 10 of Listing 10.3 (on page 151) it is checked whether all obligations re-
garding ⟨⟨ lockable ⟩⟩ as required by SCK are currently fulfilled by the model. This is
accomplished by subtracting all annotated classes from the UML model from the
set of classes as determined by the SCK. If there is no match, i.e. there are classes

10.8. Example 4: Communication using Insecure Encryption 153

FIGURE 10.24: Henshin rule to add ⟨⟨ lockable⟩⟩ to a given class

FIGURE 10.25: Co-evolved class PrescriptionsDAO with added
⟨⟨ lockable⟩⟩

of the system model left missing annotations, a proposal is created (line 12) to add
⟨⟨ lockable ⟩⟩ to the remaining classes.

When the SMR finally is to be applied (lines 19-21), the set of classes to be an-
notated with ⟨⟨ lockable ⟩⟩ is iterated. In every iteration, a Henshin rule is triggered to
realize the annotation. Figure 10.24 shows the rule the SMR uses for that. The class
and package name are used as input parameters to identify the respective class.

Applying the SMR in this example leads to first recognizing PrescriptionsDAO
as affected system model class that provides access to the data entity Prescriptions.
Thus, the co-evolution leads to proposing addition of ⟨⟨ lockable ⟩⟩ to this class as
shown in Figure 10.25.

After a re-run of the SCK transformation, model and respective SCK parts are in
sync again and the co-evolution is completed.

10.8 Example 4: Communication using Insecure Encryption

This Security Context Catalog entry supports the usage of secure encryption algo-
rithms in a system. In this application example, we especially consider encryption
of communication among nodes in a distributed system. The SCK is used to model
the knowledge which encryption algorithms exist and also which ones are poten-
tially endangered and should not be used anymore respectively. We discussed in
Section 4.3 (on page 35), how this knowledge can be acquired and incorporated into
the knowledge base.

154 Chapter 10. Case Study: Applying S2EC2O to iTrust

FIGURE 10.26: Security Context Catalog entry for secure communi-
cation

Figure 10.26 shows the model of the Security Context Catalog entry. It is based
on the UMLsec security requirement secure links [JJ05]. The security requirement tar-
gets a deployment diagram where all nodes of the distributed system are modeled
and dependencies among them show data transfer between the deployed artifacts.
Basically, all communication paths need to be annotated with the type of their con-
nection, for instance ⟨⟨LAN ⟩⟩, ⟨⟨ Internet ⟩⟩ (meaning an unencrypted Internet connec-
tion), or ⟨⟨encrypted ⟩⟩ respectively. In this example, we use an extended version of the
stereotype, namely ⟨⟨encrypted enc ⟩⟩. It provides additional tagged values (alg and
keylength) to also model which specific encryption algorithm shall be used as well
as the key length to be set.

10.8.1 Initial Compliance

The initial compliance is established by modeling a deployment diagram accord-
ing to ⟨⟨secure links ⟩⟩. As the deployment cannot be reverse engineered from the bare
source code, this needs to be done manually. Regarding secure communication mod-
eling and ⟨⟨secure links ⟩⟩, CARiSMA support can be used to model a deployment di-
agram according to UMLsec [APRJ17]. Selecting appropriate encryption algorithms
is supported by the S2EC2O tool’s wizard by using the completion element shown
in Figure 10.26. The completion element contains an OWL query that is used to find
encryption algorithms that are currently not threatened (shown in the lower right of
Figure 10.26).

Figure 10.27 shows an excerpt of the SCK. Encryption algorithms are shown
in the figure’s left hand side, all of them associated to the security property
Secure_Encryption. This ontology class is used to identify (secure) encryption algo-
rithms. At the time of writing, the S2EC2O tool supports key lengths when they are
encoded using :: as delimiter in the SCK individual name. Supporting additional
information accompanying ontology individuals is in principal possible using the
concept of OWL annotations. In case no delimiter is used, the key length is not
relevant.

Figure 10.27 shows two exemplary encryption algorithms: RC4 and AES with
256 bit key length as available encryption algorithms.

10.8. Example 4: Communication using Insecure Encryption 155

FIGURE 10.27: SCK excerpt describing available encryption algo-
rithms

156 Chapter 10. Case Study: Applying S2EC2O to iTrust

FIGURE 10.28: Deployment diagram for iTrust with ⟨⟨secure links⟩⟩

Figure 10.28 shows a deployment diagram of iTrust. It is already annotated with
⟨⟨secure links ⟩⟩ and also has concrete encryption algorithms annotated. Thus, the dia-
gram is the result of the security expert going through the S2EC2O tool’s initializa-
tion wizard and annotating the model accordingly. The deployment is rather typical:
there is an application server, executing the iTrust application as well as the database.
Apart from that, there are two kinds of devices to act as clients. On the left hand side,
a client device of the medical staff running a browser, and on the right hand side a
patient’s device, also running a browser. The database runs on the same node as
the iTrust application, thus does not require communication path encryption. The
communication between the server and the clients shall ensure the integrity and the
secrecy of the data transmitted over the communication paths.

According to the SCK, RC4 is selected as the encryption algorithm to secure
the communication paths between the application server and the client devices’
browsers.

We will also sketch how a run-time monitoring for this ESR can be realized. As
iTrust is built upon application server techniques, the used cipher suites for HTTPS
connections are configured in the application server configuration file. To incorpo-
rate this, a run-time monitor needs to be configured with the location of the applica-
tion server’s configuration file.

10.8.2 Context Evolution and Vulnerability

The context evolution in this example is a vulnerability discovery regarding an en-
cryption algorithm. We consider the RC4 encryption algorithm, which was declared
insecure after the discovery of severe attacks in 2015 [Pop15]. Thus, systems using
RC4 are principally vulnerable and need to be evolved.

Figure 10.29 shows the SCK after context evolution. A threat targeting the RC4
algorithm has been added. Regarding this example, the vulnerability now being
present can be found in the CWE database as CWE-327: Use of a Broken or Risky
Cryptographic Algorithm6. The description reads: The use of a non-standard algorithm
is dangerous because a determined attacker may be able to break the algorithm and com-
promise whatever data has been protected. Well-known techniques may exist to break the
algorithm.

6https://cwe.mitre.org/data/definitions/327.html (accessed Apr 11th, 2019)

https://cwe.mitre.org/data/definitions/327.html

10.8. Example 4: Communication using Insecure Encryption 157

FIGURE 10.29: SCK evolution incorporating threatened RC4 algo-
rithm

10.8.3 Security Maintenance and Co-Evolution

Listing 10.4 shows the pseudo code of the SMR used for this ESR. This SMR is
triggered by a semantic diff. Figure 10.30 (on page 158) shows the SiLift rule used
to model the diff: A new threat (in the lower middle) is added. Moreover, an object
property threatens (in the lower left) is added to an already existing encryption
individual (in the upper left).

1 public void checkConditions(DeltaList deltaList) {
2 currentAlgorithms=queryModelforUsedAlgorithms ();
3 alternativeAlgorithms=queryAlternativeAlgorithms ();
4 for (SemanticDiffDelta d : deltaList.getDeltas ()) {
5 for (OperationInvocation opInv : d.getOperationInvocations ()){
6 threatened.add(opInv.getParameter("alg"));
7 if (currentAlgorithms.contains(threatened.getValue ())){
8 foreach (b:alternativeAlgorithms AND a:currentAlrogithm)
9 Proposal.addAlternative("Replace"+a+" by "+b);

10 }
11 }
12 }
13 }
14
15 public void apply(Proposal p) {
16 foreach (communicationPath cp) {
17 if (threatened.contains(cp.getAlgorithm)){
18 alterModel(p.getChoice ());
19 }
20 }
21 }

LISTING 10.4: Pseudo code for SMR co-evolution regarding
CWE 327

Regarding the SMR itself, first, all currently used encryption algorithms are
queried from the model. Figure 10.31 (on page 159) shows the Henshin rule used
to carry out the respective model query (line 2 of Listing 10.4). After that, all alterna-
tive algorithms are gathered (line 3). This means: The SCK is queried for encryption
algorithms that are not threatened currently. To accomplish this, the same SPARQL
query of the SMRs completion is used as it has been used for the S2EC2O initializa-
tion wizard (see Figure 10.26 on page 154).

The threatened encryption algorithms are gathered from the diff (line 6). For each
relevant delta (i.e. match of the addEncryptionThreat rule), the parameter alg from
the rule is requested and added to a collection. This is a parameter of the Henshin
complex edit rule (Figure 10.26) and the node alg refers to an individual in the SCK
representing a now threatened encryption algorithm.

158 Chapter 10. Case Study: Applying S2EC2O to iTrust

At this stage, it is clear that the delta is in principle relevant and the threatened
encryption algorithm in question is also determined. As next step, the SMR checks
whether the threatened algorithm is currently also used in the model (line 7). If this
is the case, for every possible combination of exchanging this specific algorithm with
a non-threatened one, a respective proposal is added (line 9).

FIGURE 10.30: SiLift complex edit rule to detect addition of a new
threat targeting an encryption algorithm

10.8. Example 4: Communication using Insecure Encryption 159

FIGURE 10.31: Henshin rule to query all ⟨⟨encrypted enc⟩⟩ annotated
communication paths

FIGURE 10.32: Henshin rule to alter ⟨⟨encrypted enc⟩⟩ annotations

160 Chapter 10. Case Study: Applying S2EC2O to iTrust

FIGURE 10.33: Evolved deployment diagram of iTrust with
⟨⟨secure links⟩⟩

After the user has made his decision regarding which encryption algorithm
should replace which threatened one, the SMR finally is applied (lines 15-20). It
iterates over all communication paths of the model (while the set of communica-
tion paths in the model has been cached by queryModelforUsedAlgorithms()). Ev-
ery threatened encryption algorithm is replaced according to the choice the user
has made. Figure 10.32 shows the Henshin rule used for that. By using cached
values from earlier queries, the communication path does not need to be speci-
fied with full details or by its name, but we can rather make use of partial match
here and directly set the node cpath to needed CommunicationPath as collected by
queryModelforUsedAlgorithms() before. The attributes for the new ⟨⟨encrypted enc ⟩⟩

are provided as string input parameters for the rule.
Figure 10.33 shows the deployment diagram after evolving it. The algorithm

chosen is AES with 256 bit key length. The system design is now co-evolved and
adapted to the evolved context knowledge.

In this section, we also consider run-time monitoring of ESRs and, in what fol-
lows, sketch a run-time aware SMR. A run-time aware SMR has the advantage of
an immediate reaction to a newly discovered vulnerability is possible. In this case,
the encryption algorithms as part of the deployment diagram are deployed to the
application server by configuring the ciphers it accepts when a client requests a con-
nection.

Listing 10.5 shows pseudo code for a possible additional SMR to interact with a
run-time monitor to control the cipher suites used at run time. It works analogously
to Listing 10.4 (on page 157) but does not alter the system model. Instead, it requests
a S2EC2O run time to change the application server’s configuration (line 17). An-
other difference to the design-time SMR that his SMR collects cipher suites actually
in use (line 2).

Currently used ciphers of can be checked either by parsing the application
server’s configuration file (for Tomcat application server this is the server.xml and
the connector directive with the ciphers tag) or, on a more common ground, using
a SSL test suite. For example, the OWASP foundation provides O-Saft [OWA], the
OWASP SSL advanced forensic tool.

Changing the supported cipher suites is possible by changing the configuration
file accordingly and restarting the application server.

10.9. Example 5: Secure Dependencies 161

1 public void checkConditions(DeltaList deltaList) {
2 currentAlgorithms=queryCipherSuites ();
3 alternativeAlgorithms=queryAlternativeAlgorithms ();
4 for (SemanticDiffDelta d : deltaList.getDeltas ()) {
5 for (OperationInvocation opInv : d.getOperationInvocations ()){
6 threatened.add(opInv.getParameter("alg"));
7 if (currentAlgorithms.contains(threatened.getValue ())){
8 foreach (b:alternativeAlgorithms AND a:currentAlrogithm)
9 if (getRuntimeMonitor ().queryCipherSuites ().contains(a)){

10 Proposal.addAlternative("Replace app. server ciphersuite: "+a+" by
"+b);

11 }
12 }
13 }
14 }
15
16 public void apply(Proposal p) {
17 getRuntimeMonitor ().alterCipherSuites(p.getChoice ());
18 }

LISTING 10.5: Pseudo code for run-time SMR regarding CWE-
327

FIGURE 10.34: Security Context Catalog entry for secure dependen-
cies

10.9 Example 5: Secure Dependencies

This Security Context Catalog entry shows run-time monitoring regarding usage of
security-critical external libraries as we introduced in Chapter 7. Figure 10.34 shows
the model of the Security Context Catalog entry. It is based on the UMLsec security
property secure dependency [JJ05] as introduced in Section 7.2.1.

As run-time monitor, the run-time component we introduced in Chapter 7 is
used.

10.9.1 Initial Compliance

The initial compliance is established by accompanying the class diagram of the sys-
tem according to ⟨⟨secure dependency ⟩⟩. In this example, regarding iTrust, we focus on
the prescriptions of a patient.

In iTrust, the only class able of managing prescriptions in the database is
PrescriptionsDAO. The only class to use it is EditPrescriptionsAction. Thus,
these two classes are annotated with ⟨⟨critical ⟩⟩ and the tagged values secrecy and

162 Chapter 10. Case Study: Applying S2EC2O to iTrust

FIGURE 10.35: Classes EditPrescriptionsAction and
PrescriptionsDAO annotated according to ⟨⟨secure dependency ⟩⟩

integrity according to ⟨⟨secure dependency ⟩⟩. Figure 10.35 shows the respective
classes including the annotations. Additionally, we assume safe mode support for
iTrust as we introduced in Chapter 8.

For example, one kind of safe mode can be to restrict access to clients from inside
the hospital network. The effect is to reduce the attack surface while continuing
providing the service.

1 @SafeMode{
2 redirection="blockExternalClients(thisMethod)",
3 conditions ={"Secure Dependencies"}
4 }

LISTING 10.6: iTrust SafeMode annotation to block external
clients

Listing 10.6 shows a possible safe mode-annotation for redirecting requests. A
method blockExternalClients can then check the IP address and, if the source IP
address is valid, call the original method. In the other case, an error page generation
can be issued or an exception can be thrown.

Regarding source code annotations, we focus in this example not on annotated
countermeasures but rather on the run-time agent as proposed in Chapter 7 to pro-
duce a monitor finding delta at run time, as soon as a violation has been detected.

10.9.2 Context Evolution and Vulnerability

The context evolution in this case is that the application is compromised. For ex-
ample, the violation can occur because an external library that has been trusted so
far happens to be not trustworthy during run time. This can also be the case when
an audited (and in this case annotated) library is (maybe in malicious intention) ex-
changed by a malicious version. Especially two CWE entries come into question
here. Firstly CWE-502: Deserialization of Untrusted Data7. The description reads The
application deserializes untrusted data without sufficiently verifying that the resulting data
will be valid..

Secondly, CWE-20 is also appropriate: Improper Input Validation8. The description
reads When software does not validate input properly, an attacker is able to craft the input in

7https://cwe.mitre.org/data/definitions/502.html
8https://cwe.mitre.org/data/definitions/20.html

https://cwe.mitre.org/data/definitions/502.html
https://cwe.mitre.org/data/definitions/20.html

10.10. Performance Observations 163

a form that is not expected by the rest of the application. This will lead to parts of the system
receiving unintended input which may result in altered control flow, arbitrary control of a
resource, or arbitrary code execution.

10.9.3 Security Maintenance and Co-Evolution

As we discussed in Chapter 7, a number of reactions that are carried out automati-
cally using the S2EC2O run-time agent can be defined statically as part of the model
and/or the source code. Thus, in this case the co-evolution action is up to the devel-
oper. The security expert is informed about the actions that have taken place by the
reports the S2EC2O run time creates. This information is obtained and displayed as
part of S2EC2O’s delta process introduced in Section 2.2.3 (on page 17).

In this example, we assume that the run-time monitor reports its vulnerability
finding using a report with trace data.

1 public void checkConditions(DeltaList deltaList) {
2 for (MonitorFindingDelta d : deltaList.getDeltas ()) {
3 if (d.getRuntimeMonitor.equals(getRuntimeMonitor ())){
4 apply(null);
5 }
6 }
7 }
8
9 public void apply(Proposal p) {

10 getRuntimeMonitor ().issueSafeMode("Secure Dependencies");
11 }

LISTING 10.7: Pseudo code for SMR co-evolution regarding
⟨⟨secure dependency ⟩⟩ run-time violation

Listing 10.7 shows pseudo code for a SMR that triggers a safe mode using its
name as safe mode condition immediately. The only condition being checked is the
originating run-time monitor (line 3). No proposal is made as the SMR applies itself
immediately.

10.10 Performance Observations

The question of S2EC2O’s applicability is accompanied by the run time of the S2EC2O
tool. Thus, when conducting the case study, we measured the run-time of the auto-
mated parts of the S2EC2O tool. The performance measurements were done using
the following system:

• Lenovo ThinkPad T450s, Core i5 5200U CPU at 2.20 GHz, 8 GB RAM

• Ubuntu Linux 16.04.6 LTS

• Oracle Java 1.8.0 Update 201

• Eclipse Neon.3 Release (4.6.3)

Table 10.2 shows execution times we measured while conducting the case study.
As cases, all of the investigated examples are displayed and referenced by the respec-
tive CWE. The only example we omit is the one of Section 10.9 because the focus is
not automated monitoring. Regarding S2EC2O run time, we measured an average
overhead of 7.7x. By repeating the executions, we determined a fluctuation in the
run times. Thus, we display the arithmetic mean here. Moreover, since all times are
at a level way below threshold of noticeable or disturbing level and for the sake of
clarity, the values are rounded.

164 Chapter 10. Case Study: Applying S2EC2O to iTrust

CWE-284 CWE-311 CWE-732 CWE-327
(Sec. 10.5) (Sec. 10.6) (Sec. 10.7) (Sec. 10.8)

SCK Transformation 0.8 s 0.4 s - -
Explain ontology inconsistency <5 s* - - -
Reasoning - <1 s* - -
Sem. Diff of SCK - - 14 s 17 s
Load iTrust system model 13 s 19 s 14 s 8.8 s**
SMR Completion - - 4.4 s -
SMR checkConditions() 5 s 0.05 s 1 s 3.6 s
SMR apply() 0.2 s 0.04 s 0.02 s 0.09 s

TABLE 10.2: Run-time of the S2EC2O tool for various parts of S2EC2O

Regarding the values marked with an asterisk (*): as we discussed in Chapter 9,
ontology reasoning could not be employed due to technical reasons. Instead, we
show the times Protégé needs to calculate the respective values in its GUI.

Regarding the value marked with a double asterisk (**): the system deployment
could not be obtained from the source code, thus it was not part of the iTrust model.
Thus the deployment was modeled in a separate model file.

The structure of the table is as follows: Times are shown where applicable, as,
for example, not every SMR makes use of reasoning. Some Security Context Catalog
entries require or make use of the transformation of UML elements annotated with
⟨⟨SCK ⟩⟩ into the SCK itself. Below the double line, the time used to assess and react
to deltas is given, split up into the parts where S2EC2O executes steps without user
interaction. They focus all on the delta handling phase. The first three lines show
the steps necessary to determine the delta. The next line shows the time needed to
load the iTrust model, i.e. deserialize it back into EObjects, relating to the EMF UML
meta model. In the last three lines, the time consumed by the participating SMRs is
shown.

We conclude that, regarding this case study, the S2EC2O tool provides an appro-
priate measure of performance. Using the prototypical implementation that has not
been explicitly performance-optimized and a common system, execution times are
below any noticeable delay or around a couple of seconds.

Nevertheless, the most time consumption lies in calculating semantical diffs and
loading the UML model. We note that both processes need to create a vast amount
of (E)Objects at run time and involved plug-ins need to be started and initialized.
Several meta models need to be loaded, additionally to the models itself.

While most of these work is up to internal EMF code, we experienced a caching
effect: As soon as certain components relevant for these EMF-based tasks are loaded,
the times for subsequent process executions drop drastically.

Thus, the overall execution times of the S2EC2O tool can be lowered by opti-
mizing against this and fostering that these expensive tasks only are to be executed
once.

165

Chapter 11

Contribution to Research

In the preceding chapters, we introduced the S2EC2O approach. We also showed a
prototypical implementation as well as application examples as part of a case study.

In Chapter 2, we identified five research questions. In this chapter, we come
back to the questions and discuss the contribution this thesis makes to these research
questions. We also elaborate on insights gained from implementation of the S2EC2O
tool as well as the case study.

As a cross-cutting contribution, we introduced two processes, defined using
BPMN, that S2EC2O is built upon. S2EC2O consists of two phases which we reflect
with two processes: an initialization phase and a delta-handling phase. For each of
both phases, we introduced a process that is used to orchestrate all substeps.

11.1 Review of Research Question 1

RQ1: How can changes in security-relevant context knowledge be used to assess the
impact on the system?

To contribute to this research question, we introduced S2EC2O’s concept of Secu-
rity Context Knowledge (SCK). We presented ontologies as viable concept to build
and maintain a knowledge base. The context knowledge accompanying software
systems was outlined and we argued that it makes sense to split security require-
ments into a common part and a technical part, because the latter is subject to more
and more frequent changes.

We introduced a security upper ontology that builds the core taxonomy for the
SCK. Based on this ontology, we showed that modularization of the knowledge
base is supported by the OWL import mechanism. By using imports, ontologies
can be layered to tackle different abstraction levels and aspects of a system in differ-
ent ontologies that can be maintained separately and exchanged between projects.
To query the knowledge for details to reify then template-oriented security require-
ments, SPARQL queries were introduced as interface. While carrying out the case
study, SPARQL proved to be a flexible and easy-to-learn language. Queries can also
be build dynamically, for example by generating query prefixes dependent on the
currently loaded ontologies. We introduced various publicly available sources for
security knowledge.

We presented several existing approaches to incorporate available security (do-
main) knowledge into the ontology semi-automatically. We presented one approach
that solely works on natural language and thus is not tailored to a specific kind of
knowledge. Two approaches we showed are tailored to a specific database and take
advantage of its meta data and structure.

As S2EC2O is focused on analyzing differences in the system context, we intro-
duced two different approaches to analyze the SCK. One approach analyzes the

166 Chapter 11. Contribution to Research

SCK as is and another one takes different versions of the SCK ontology into account.
Using SiLift, deltas between two versions of the ontology can detect primarily struc-
tural changes on a semantic level. With reasoners, we showed a way of making
implicit knowledge explicit and detect inconsistencies by generating insightful ex-
planations for the user. However, while implementing the S2EC2O tool, the work
with OWL ontologies showed additional challenges.

The OWL meta model is cumbersome to use. To model an ordinary ontology
individual, a big number of objects is necessary, for instance:

1. A class entity,

2. a URI giving a class its name,

3. an individual entity,

4. a URI giving the individual its name, and

5. a class assertion, asserting that the given individual is of a certain class.

In contrast to that, in other meta models like UML, a single node with properties
and an association to a parent element (a class associating to its package, for exam-
ple) is sufficient. Apart from that, nearly all elements of the OWL (EMF) meta model
do not have any properties, as virtually every property that an entity in an ontology
has, is asserted by associations to further (property-less) elements.

Identification is ultimately possible using URIs. At this point, another challenge
arises. A URI of an ontology element mingles the actual name of an individual with
the ontology it is coming from. For example, the URI

http://rgse.uni-koblenz.de/upper#threatens

is the name of an object property. But given the prefix before the hash symbol,
the originating ontology is specified using the exact same string. This makes design
of, for example, Henshin rules complicated because there is no easy way to express
that the hosting ontology of a given individual is not relevant or can be one element
of a given set of ontologies. This also applies to the way ontologies are accessed
by the OWL API for example. The above mentioned type diversity does also exist
considering the classes that we need to interface with OWL ontologies. Basically
every type in OWL ontologies is represented by, in this case, a separate Java class,
comparable to the situation with the EMF meta model. This makes writing code to
analyze ontologies complex and highly inflexible.

Another finding occurred during the implementation of S2EC2O is that the ap-
proach would be in need of closed world assumption concepts such as local closed-
world reasoning. But despite the fact that this is a problem well understood and
solutions are described on a theoretical base, at the time of writing, no working im-
plementation was available.

Especially, while carrying out the application examples, it showed that building
security-related expressions has often a demand for restricting degrees of freedom
for reasoning, for example. In this thesis, we thus only could show examples that
work without using concepts like the closed world assumption (CWA).

Apart from that, reasoning was able to infer logical inconsistencies as well as
making implicit knowledge explicit with no notable delay. This can be of great value
in projects with a complex requirements structure.

11.2. Review of Research Questions 2 and 3 167

11.2 Review of Research Questions 2 and 3

While conducting the research for this thesis, it turned out that RQ2 and RQ3 have
to be treated jointly. Thus, we also review both RQs together.

RQ2: How can rules be formalized that are able to preserve the system’s security
given knowledge evolution?

S2EC2O focuses on reacting to evolution of a system’s context. Hence, it is neces-
sary to ensure that a system is compliant with its security requirements prior to evo-
lution. This is supported by the concept of Essential Security Requirements (ESRs).
We presented them as part of a catalog, being technology-independent security re-
quirements. ESRs can be selected in a lightweight way and bridge between ordinary
software engineering and a system that can be accompanied by S2EC2O. We intro-
duced a meta model for the Security Context Catalog. It includes ESRs and links
selected ESRs, to security properties that can be checked using existing tooling, for
example. S2EC2O in this case makes use of but is not limited to UMLsec checks,
the UMLsec tool platform CARiSMA and ontology reasoning. The Security Context
Catalog further is related to Security Maintenance Rules (SMRs). These rules real-
ize the Event-Condition-Action principle. They are used to determine appropriate
co-evolution steps when a context evolution has taken place. We introduced a meta
model for SMRs. Using the concepts of Essential Security Requirements and Security
Maintenance Rules, we can leverage context evolution and determine co-evolution
actions. With the concept of Completion, usable both by ESRs and SMRs, user inter-
action is possible and thus providing system-specific information to complete the
rather generic knowledge in the SCK.

RQ3: How can these rules be used to carry out a semi-automatic co-evolution given
a context evolution?

To coordinate and formalize the context evolution information, we introduced
the Delta meta model. It contributes to RQ3, as it provides a possibility of structuring
all different kinds of delta sources. With the concept of proposals, SMRs can propose
co-evolutions they offer to co-evolve the system. S2EC2O as well as the user can
then decide which proposal(s) to choose. Regarding S2EC2O, we introduced a Delta
handling algorithm which shows how the whole co-evolution process according to
the S2EC2O delta process can be carried out.

While carrying out the case study, the technologies supporting SMRs, namely
Henshin, SiLift, and the possibility to issue SPARQL queries, lowered the amount
of source code to be written. For example, in Section 10.8, the SPARQL query as
the SMR’s completion element is used both for building the initial compliance of the
system as well as carrying out the co-evolution.

Regarding the ESR implementation, a challenge with regard to EMF arose. The
Security Context Catalog is designed as a Ecore model, it can thus be natively serial-
ized as XML file. However, Ecore does not allow to have different implementations
of a operation of the same class. This contradicts the S2EC2O tool’s requirement, as
every SMR implementation needs to have its own implementation of the methods
inspectSystem(), checkConditions(), and apply(). However, a purely Java-based
implementation of SMR would also not solve the problem because then the SMRs
would not have been part of the Ecore model anymore. We solved the problem by
splitting SMR in one part being serialized and a second part, SMRExecutable, incor-
porating the method implementations for a given SMR. Both are coupled using a

168 Chapter 11. Contribution to Research

identifier string. During run time, available SMRExecutable instances are gathered
and instantiated using Eclipse’s extension point mechanism.

While we carried out the case study, it showed that there is no technical need for
having the inspectSystem() method. The application examples showed that both
steps can be performed at the same time or even have to because they are mingled.

11.3 Review of Research Question 4

RQ4: How can information coming from the system execution be used, to assess the
quality of the security requirements compliance during run time?

The S2EC2O run-time approach we presented in Chapter 7 builds upon reverse
engineering of models from code and security annotations in model as well as in
code. UMLsec Java annotations support security annotations at source code level
and thus bridge the gap between the system model and executable code. Counter-
measures which can take place as soon as security violations are detected are sup-
ported by call trace logging and also by providing modified return values to protect
real application data.

Furthermore, the security expert can gain insight regarding the system’s security
at design level by feeding back gathered run-time data into the model, thus sup-
porting round-trip engineering. Adapting the model with newly discovered calls
and classes dynamically loaded during run time can support understanding how
security attacks are accomplished. Apart from that, this can also help finding dif-
ferences between the system model and source code. A sequence diagram bound to
the UML model elements can be generated to graphically show a sequence of actions
during a detected violation. Thus, system evolution detection is also tackled.

The approach presented in Chapter 7 realizes support for checking secure call
dependencies by extending the realization secure dependency for the UMLsec exten-
sion which could only be checked statically (and thus partially) before. In tests, the
Java agent run-time monitor showed an average slowdown of the factor 7. While
this provides a degree of performance that is sufficient for proof-of-concept, perfor-
mance needs to be improved for potential practical usage.

11.4 Review of Research Question 5

RQ5: How can information gathered at run time be used to adapt the system when
the context evolves, avoiding shutdown or additional design cycle?

The run-time adaptation approach we introduced in Chapter 8 contributes to this
research question by extending the run-time monitoring approach we introduced in
Chapter 7. The extension concerns run-time adaptation. We proposed an interface
between the run-time agent and the Security Context Catalog (S2EC2O service).

It is used to react to context evolution because S2EC2O tool can trigger adapted
behavior at run time whenever ESRs are considered threatened when processing
SCK deltas. We introduced a @SafeMode annotation, so that the security expert is
enabled to specify redirection methods which should be called alternatively as soon
as ESRs are tagged as threatened.

Furthermore, we specified a set of JSON objects to be used by the run-time agent
and the S2EC2O tool for synchronization and control purposes. This way, a system
shutdown is avoided, saving time until design, implementation and test of a perma-
nent solution is issued.

169

Chapter 12

Conclusion

Software systems become increasingly complex. While more and more parts of our
daily lives are touched by information systems in particular, also a growing number
of originally hardware-based systems are replaced by software-defined solutions.
All in all, critical systems are complex and/or costly, so that they are not to be re-
placed often and thus have to be maintained over a long period of time. Neverthe-
less, these systems are not used in an isolated manner but communicate with each
other. As these systems control crucial parts of our daily lives and/or process sensi-
tive data, providing secure software is inevitable. However, security vulnerabilities
that might be disclosed in the future cannot be foreseen when the system is initially
designed. This thesis makes a contribution to accompany development and main-
tenance of long-living software systems. The presented approach supports security
experts in assessing impact to security requirements when context evolutions affect-
ing the security take place and adequately react to them.

Chapter 1 motivates the overall work and identifies challenges to be solved.
Chapter 2 presents the research road map of this thesis. Proceeding from the

identified challenges, we formulate a number of research questions and give an
overview of the approach presented in this thesis, S2EC2O. We show the compo-
nents of S2EC2O and how they relate to each other, model-driven software devel-
opment, and its environment. We further introduce the S2EC2O process, consisting
of an initialization phase to make a software system S2EC2O aware, followed by a
delta handling phase that reacts to context evolutions by assessing and eventually
applying appropriate co-evolutions.

Chapter 3 presents foundations on which S2EC2O is built upon and also elabo-
rates on the SecVolution research project, which is related to S2EC2O.

Chapter 4 elaborates on the question of how knowledge relevant for a system’s
security context can be incorporated in a semi-formal manner. It introduces the no-
tion of Security Context Knowledge (SCK) and the security upper ontology provid-
ing the foundation of SCK. We present potential sources of security-relevant knowl-
edge as well as techniques to incorporate them in SCK. We show a technique to
connect UML system model elements to the SCK ontology as well.

Chapter 5 focuses on the question of how changes to a system’s context can be
used to support the design of a secure system model. Semantic differencing can
be used to detect complex changes between two versions of the SCK. Ontology
reasoning provides possibilities to gain insight from a given ontology, namely con-
text changes leading to an inconsistent ontology and inferring additional knowledge
based on inference.

Chapter 6 shows how a system can be co-evolved, as soon as a context evolution
is detected. Rules to co-evolve the system’s security are introduced (Security Mainte-
nance Rules, SMRs) as well as a notion of technology-independent security require-
ments (Essential Security Requirements, ESRs). We introduce the Security Context

170 Chapter 12. Conclusion

Catalog to support coordination of ESRs and SMRs. A delta information meta model
organizes context evolution information and proposals for co-evolution operations.
We introduce a delta-handling algorithm that implements S2EC2O’s delta handling
process.

Chapter 7 shows how security requirements defined in the system model at de-
sign time can be carried further to the source code level. Based on an already existing
secure modeling extension, Java source code annotations are defined and run-time
related features are added. We present a run-time monitoring approach that sup-
ports dynamic method call re-assignment in case a violation is detected. Round-trip
engineering is also supported by extending the system model with information gath-
ered at run time.

Chapter 8 elaborates on how a system’s security can be adapted during run time.
We propose an approach of the run-time agent communicating with the core of
S2EC2O by exchanging JSON messages (S2EC2O service). Furthermore, we intro-
duce a concept for a safe mode to dynamically alter the system’s behavior in case
a security vulnerability emerges at design time. This reduces the attack surface
and thus lowers the risk for further exploitation while avoiding a system shutdown,
which may have even worse impact.

Chapter 9 presents the S2EC2O tool, a prototypical implementation of S2EC2O.
At first, we introduce S2EC2O tool’s architecture. After that, we show its components
in detail and relate them to the S2EC2O process steps they realize.

Chapter 10 constitutes a case study. For a number of realistic security vulnerabil-
ities and context evolutions, coming from law changes and also technical vulnera-
bilities, S2EC2O is applied to the medical information system iTrust. Five cases show
on the basis of real artifacts exemplary, how the system can be made secure initially,
how the context evolution is detected and how the co-evolution is carried out.

Chapter 11 reviews the research questions we specified in Chapter 2. We discuss,
how this thesis contributes to these questions.

Regarding this chapter, in Section 12.1, we put emphasis on which contributions
this thesis makes with regard to the research objective and the challenges defined
in Chapter 1. Section 12.2 shows, to what extent the results of this thesis can be
generalized and what are actual limitations we identified. Section 12.3 focuses on
open challenges on a coarse-grained scale and gives directions for possible future
research and concludes this chapter and therefore this thesis.

12.1 Contributions

In Chapter 1, we motivated the research for this thesis, formulated a research objec-
tive, and identified a number of challenges.

The research objective is as follows:

We want do develop an approach that supports maintaining the secu-
rity of long-living software. Security-relevant knowledge from various
sources, in various forms, and at various abstraction levels shall be cap-
tured and managed. The knowledge shall be used by the approach to
assess, if the security of a given system is compromised, given a change
of the security context knowledge. If this is the case, the approach shall
support revising the system, so that it fulfills its security requirements
again.

12.1. Contributions 171

In the remainder, we put emphasis on the contributions S2EC2O makes, relate
them to the challenges we identified and thus show how S2EC2O fulfills the research
objective.

C1: Leverage evolution of context knowledge

Regarding C1: Leverage evolution of context knowledge, we showed how the security
upper ontology first introduced by [Gär16] can be used to store common security
knowledge. By introducing the concept of the SCK in a layered manner, we fos-
ter modularization of the knowledge base and thus exchange between projects and
central management.

We introduced UML annotations to bridge the gap between the system-
unspecific ontology and the concrete system design. We realize leveraging context
knowledge evolution by employing a number of methods, namely ontology reason-
ers and semantic differences. These realize making implicit knowledge explicit and
also find subtle changes in a difference between two versions of an ontology.

C2: Infer concrete security requirements

Regarding C2: Infer concrete security requirements, we introduced the separation of
ordinary (security) requirements into Essential Security Requirements and informa-
tion provided by the SCK. This enables security experts and stakeholders to define
security requirements independent of a given domain and especially without tempo-
ral dependencies. Thus, security requirements, which are originally system-specific,
do not need to be adapted to an evolving environment anymore. The only part that
needs to be changed is considering time- and domain-dependent information incor-
porated by the SCK. This part can be managed independently from given projects,
thus gaining synergy effects.

C3: Assess impact of context evolution to a given system

S2EC2O not only supports the security expert by identifying evolutions of security-
relevant knowledge, but also by investigating the system with regard to the impact a
context evolution may have. This relates to the challenge C3: Assess impact of context
evolution to a given system. Using the delta model we introduced, context evolution
information can be leveraged and treated as required, according to their type and
origin.

By employing techniques like model queries, S2EC2O is able to inspect the sys-
tem under consideration, to determine if a given evolution is relevant. Model
queries are also used to calculate co-evolution alternatives, if no additional input
from the user is needed at this point.

We introduced Security Maintenance Rules to formalize the connection from con-
text evolution and system co-evolution in terms of rules. We further introduced the
Security Context Catalog. In the Security Context Catalog, all elements regarding
the system co-evolution are connected as needed. Thus, mappings between Essen-
tial Security Requirements, security properties and Security Maintenance Rules are
defined here. Thus, the Security Context Catalog contains the guidelines, S2EC2O
uses to investigate the system and eventually co-evolve it.

172 Chapter 12. Conclusion

C4: Co-evolve system design to preserve its security

With regard to C4: Co-evolve system design to preserve its security, we introduced a
delta-handing algorithm. It orchestrates triggering of the SMRs and involves the
security expert when necessary. The Security Context Catalog provides completion
elements to indicate these cases.

C5: Assess system’s security during run time

With regard to C5: Assess system’s security during run time, S2EC2O features round-
trip engineering. First of all, the gap between the system model and executable code
is bridged using standard Java annotations. S2EC2O supports deploying counter-
measures to security violations directly into the executable code. Information about
the system design discovered at run time can be fed back into the design.

C6: Adapt the system to preserve security during run time

Regarding C6: Adapt the system to preserve security during run time, we extended
S2EC2O to not only have countermeasures statically as part of the code, but also sup-
port adaptation at run time. We introduced safe-mode adaptation points that realize
a fine-grained adaptation of the system behavior relating to the currently known
threats as defined by the SCK and stored inside the Security Context Catalog.

Unique Contributions

In large part, we built tool support for S2EC2O. We showed the applicability of
S2EC2O and also the S2EC2O tool by conducting a case study using the medical
information system iTrust.

S2EC2O is a unique approach because of two reasons. First, it covers a wide range
of development artifacts. By incorporating common security knowledge, S2EC2O
treats relevant aspects even before development of a software starts. While focusing
on model-based software engineering and using a system model as main design
artifact, S2EC2O acknowledges the fact that manually built code exists and is able to
also incorporate it. Finally, round-trip engineering is supported by having insights
gained at run time put into the design level.

The second aspect of S2EC2O to make mention of is that it is entirely designed
as a lightweight extension to a mature software engineering process and does not
make strong assumptions about the artifacts involved or the architecture of the sys-
tem that is supplemented by S2EC2O. It is able of incorporating natural language
sources to build the SCK instead of requiring a formal requirements representation.
A given UML system design can be used with S2EC2O just by extending it by the
respective annotations. Finally, S2EC2O works with ordinary Java source code, as its
annotations make use of the standard, lightweight Java annotation mechanism.

S2EC2O is defined by two processes. The initialization process is used to equip
a given system design with the necessary annotations and meta data to make it
S2EC2O aware, regardless if it is a legacy system or greenfield development. The
delta-handling process then defines how to react to the continuous stream of delta
information.

Finally, we conclude that S2EC2O fulfills the research objective by contributing to
all research questions and challenges respectively. Security experts can use the ap-
proach to have the maintenance of long-living systems accompanied. While manag-
ing the SCK, S2EC2O determines changes to the knowledge, determines evolutions

12.2. Assumptions and Limitations 173

relevant to the system under consideration and guides the user in appropriately co-
evolving the system design. Additionally, the run-time phase is supported by moni-
toring security requirements at run time and equipping code with countermeasures
in case a violation is detected. While being a semi-automatic approach, S2EC2O frees
valuable time from security experts. The SCK and the Security Context Catalog were
built in a way that managing this data once for a multitude of projects is conceivable,
gaining additional synergy effects.

12.2 Assumptions and Limitations

In this section, we discuss the generalizability of S2EC2O and limitations we identi-
fied during research.

12.2.1 Generalizability Considerations

To the best of the author’s knowledge, the applicability of S2EC2O for certain types
of systems is only limited by, for instance, the expressiveness of the accompanying
approaches it makes use of. In other words, S2EC2O is principally applicable to any
system that can be described by a UML model, and for security properties that can
be checked either during system design time or at run time, as we discussed in Sec-
tions 6.5 (on page 73) and 7.2.1 (on page 80). Especially, the S2EC2O tool is designed
in an open way. If a case of limiting expressiveness comes up, it is worth consider-
ing to extend S2EC2O by incorporating a more expressive approach for the limiting
aspect. In particular, the Security Context Catalog can be extended by further en-
tries to cover additional aspects. For example, S2EC2O could be extended to support
additional kinds of knowledge bases, or further modeling languages.

12.2.2 Scalability Considerations

Regarding the scalability of S2EC2O and the S2EC2O tool respectively, our case study
showed that, using an average desktop system, running the S2EC2O tool to investi-
gate iTrust does not show an arguable delay. As iTrust is an example of a functional
information system, S2EC2O can apparently be used for a software system in realistic
size. The performance of S2EC2O mainly relies on the performance of the underly-
ing technologies like SiLift and Henshin for model queries, model differencing, and
model co-evolution. For ontology analysis, reasoners are also used. For all of these
aspects, unmodified tooling is used, so in case of performance issues, variants with
better performance could be used.

In the current implementation of the S2EC2O tool, the usage of EMF models is not
optimized. In case the size of Security Context Catalog raises performance issues, the
implementation could be adapted to persist EMF models in databases.

However, an actual performance issue exists with the run-time monitoring ap-
proach. The current implementation’s overhead is too big to use it in everyday situ-
ations. A more efficient run-time monitoring implementation is necessary.

12.2.3 Limitations of the Case-Study Results

A threat to the validity of our case-study results is that the case-study only consid-
ered one specific system. Thus, the prototypical tool support is also evaluated using
test cases and this specific system (iTrust).

174 Chapter 12. Conclusion

To reveal the eventual need for adjustments of S2EC2O, considering additional
systems, also from other domains and/or in conjunction with industrial partners,
seems reasonable.

Moreover, the ESRs and the Security Context Catalog we showed in in Chap-
ter 10, examine a number of specific use cases and do not make a claim to com-
pleteness of contents. However, the presented Security Context Catalog can be ex-
tended to support further security properties, domains, etc., similar to the idea of
the UMLsec approach [JJ05].

By using an appropriate system in terms of size, longevity, applicability, and
security-relevance, we showed that S2EC2O is applicable, and, by providing the
S2EC2O tool, we laid the groundwork for extending the Security Context Catalog
and realize subsequent studies. In the succeeding section, we focus on the current
set of ESRs supported by the Security Context Catalog and how to extend it.

12.2.4 Support for Additional Security Properties

By now, the Security Context Catalog covers a limited set of security properties. As
the catalog is designed openly, support for further security properties can be added
by adding the respective catalog entries.

Regarding source-code level annotations and run-time monitoring, S2EC2O
currently supports one security property, namely the UMLsec requirement
⟨⟨secure dependency ⟩⟩. In this case, the check for this stereotype’s violation needed to
be implemented tailored to this specific security property. From a syntactical point
of view, adding support for further security properties is straightforward. Basically,
appropriate Java annotations and a UML profile with matching stereotypes need to
be defined. However, the question is where in the source code information for the
respective property can be found to check its validity at run time. Regarding the
original set of security properties defined by UMLsec [JJ05], ⟨⟨secure links ⟩⟩ needs in-
formation about the system deployment. Typically, there is no clear way of how this
information manifests in a system, even in source code. In case the deployment is
not part of the source code, the run-time agent as we introduced is not sufficient and
needs to be extended at a conceptual level.

Referring to the assumptions for using S2EC2O, we gave in Section 2.2.1 (on page
11), a user who wants to provide support for additional ESRs, needs to provide
additional expertise. In case of ontology reasoning should be used to detect context
evolutions in the SCK, the user needs to provide knowledge about how to design an
ontology to foster reasoning methodologies.

Regarding design of semantic differences, model queries, and graph-
transformation based co-evolutions, the user needs to use the graph-transformation
tool Henshin.

To query the SCK, the implemented and preferred way currently is to conduct
SPARQL queries. Thus, the user needs to be able to specify these queries.

An additional Security Context Catalog entry is added by editing the Security
Context Catalog Ecore model. The editor plug-in generated by Eclipse does not
require additional domain knowledge, as it, for example, can be used with a tree-
based editor Graphical User Interface (GUI).

Finally, the user needs to provide a SMRExecutable class by implementing the
checkConditions and apply methods. The SCK can be used by its generated API
from the EMF. As the tool architecture in Section 9.1 (on page 109) shows, we en-
capsulated complex services like reasoning, graph transformations, etc., so that no
detailed knowledge about these APIs is required.

12.3. Future Work 175

12.2.5 Support for Further Programming Languages

By now, S2EC2O builds upon object-oriented programming and Java explicitly.
S2EC2O could also support other object-oriented programming languages. Never-
theless, S2EC2O, for example, assumes that data is encapsulated in classes and, for
external callers, only accessible via getter methods. While access readability restric-
tions can be in principal be circumvented using Java reflection, violations like this
can be detected during run time (as we showed). For programming languages that
allow to circumvent data encapsulation like this, for example C++, additional static
or run-time checks may be necessary. Basically, this guideline also holds regarding
usage of S2EC2O targeting a non object-oriented programming language.

12.2.6 Support for Further Software Engineering Methods

S2EC2O currently is a lightweight extension to an already existing software engi-
neering approach, namely model-based security engineering. This software engi-
neering method relies on the following artifacts: a set of requirements as result of a
requirements elicitation process and a system model, adhering to the requirements.
Source code is then generated more or less using the model as starting point. S2EC2O
currently refers to related approaches that realize examination of natural-language
requirements regarding security relevant terms. By sacrificing this option and de-
manding manual selection of relevant ESRs, a software engineering method not in-
volving requirements engineering could be supported.

Regarding the UML(sec) model, S2EC2O could be extended to support other
modeling languages, assuming they are not less expressive than UML. The fea-
tures used by S2EC2O that are specific to UML are annotations and UML profiles.
However, S2EC2O needs the user to annotate the system model with data relevant
for security requirements. As long as an other modeling language also supports
this, extending S2EC2O into this direction seems feasible. The question arises which
other software engineering approaches that can be loosely compared to or used with
model-based engineering, also feature mature methodologies to incorporate security
engineering. For example, in agile software engineering, no stable and widespread
processes for security testing exist by now [CFO+17].

12.3 Future Work

While conducting the research for this thesis, we identified additional challenges
and research questions regarding the problem of system co-evolution under context
evolution: These can be used as starting points for follow-up work. We highlight a
number of open questions.

12.3.1 Regard Evolution of ESRs and SMRs

S2EC2O is built to react to context evolution by co-evolving the system under consid-
eration. The methodology we presented for this is based on Security Maintenance
Rules and Essential Security Requirements. While ESRs help designing a secure
system at the first place, SMRs contain strategies to recover certain aspect of the
system’s security.

It sounds reasonable that the connections between security requirements and se-
curity properties may evolve. Moreover, co-evolution strategies may change. While

176 Chapter 12. Conclusion

evolution of ESRs and SMRs may provide support for additional security require-
ments, run-time monitors, etc., it is also possible that knowledge in these structures
is to be refactored or components even are to be removed.

However, S2EC2O currently does not deal with this. One challenge here is that
removing elements may cause parts of the system to become insecure because a co-
evolution that was known to recover an ESR is discovered to be insecure. This means
that currently implemented co-evolutions or deployed monitors must be revised.

A possible way to tackle this would be to handle these evolutions as an addi-
tional form of context evolution events.

12.3.2 Share security and co-evolution knowledge of S2EC2O publicly
among projects

One goal of S2EC2O is to lower the effort security experts have when they maintain
long-living software systems. As one contribution, the Security Context Knowledge
offers a possibility to manage knowledge about security best practices, regulations,
vulnerabilities, and mitigations. ESRs and SMRs further help to semi-automate the
process of context-driven co-evolution.

The needed effort for maintenance can be lowered even more when there is sup-
port for sharing the knowledge and data between different projects or domains. As
we described in Section 4.2.2 (on page 33), the way ontologies, as the base of SCK,
are used in S2EC2O already support this idea. With having the used knowledge base
built by a layered ontology stack realizes modularization.

To tie a system to S2EC2O, it is necessary to provide system-specific details. At
least, the information which ESRs shall be fulfilled, needs to be stored. Moreover,
further details necessary for ESRs and SMRs to work need to be provided as required
by the Completion elements. Using this kind of realization, establishing additional
trace links between the system and S2EC2O’s data is avoided.

A vision is to have ready-to-use versions of SCK parts, ESRs and SMRs, tailored
for different domains and application scenarios. These could be maintained by the
community, comparable to the CVE and CWE databases.

Currently, SMRs and ESRs do not provide a mechanism for modularization.
They could be distributed by just resetting all system-specific aspects to their de-
faults. However, support for evolving SMRs and ESRs would still be necessary then.

12.3.3 Consider Implementation-Specific Security Vulnerabilities

In its current form, S2EC2O accompanies the model-based design approach. That
means, there is roughly the order from requirements to models, to code, and finally
code that is executed.

When a problem is detected at the source code level, the development process is
run through again. Even if some artifacts do not need to be changed, every level at
least needs to be checked.

Given by its nature, the focus of S2EC2O is to support security by design, thus
promoting and demanding that security requirements are already treated at the de-
sign phase. This is the suitable approach for many security properties. Nevertheless,
naturally, a design model has a more coarse-grained abstraction level than the actual
source code. However, many security vulnerabilities come up at implementation
level, for example deserialization vulnerabilities and improper validation of inputs.

S2EC2O currently only supports linking security checks at the model level. There
is only one bridge from security requirements to the system model. Thus, S2EC2O

12.3. Future Work 177

could be extended to support security annotations, properties, and checks that are
specific to the implementation level directly. This additionally would require to align
the security design support coming from the model level and that defined at the
implementation level.

12.3.4 Investigate Influence of Security Co-Evolutions on Functional Re-
quirements

S2EC2O, as presented in this thesis, determines a number of co-evolution operations
and lets the security expert choose appropriate alternatives. A full security check of
the system can be used to ensure the full compliance to the security requirements.
However, it is currently not aligned with possible functional requirements. A series
of security co-evolution operations may have impact on the overall system’s require-
ments.

This could be tackled by involving continuous integration techniques and ordi-
nary testing in general to estimate effects on the system as a whole upfront.

The work in hand lays the foundations for the research directions introduced above.

179

Appendix A

Preliminary Publications

This thesis builds upon preliminary work, mostly in conjunction with project mem-
bers of the SecVolution project. This section lists them, briefly states what their con-
tent is, and states what the contribution of this thesis’ author is.

• Jens Bürger, Jan Jürjens, and Sven Wenzel: Restoring security of evolving soft-
ware models using graph transformation.
In: STTT, 17(3): 267–289, 2015. [BJW15]

This publication presents work on using security anti-patterns to check if a
given UMLsec model is compliant with its security requirements. It basically
stems from the author’s diploma thesis. Beyond that, a performance measure-
ment of the prototypical implementation has been laid out, showing that it is
faster than manual model inspection.

Basic work on how the approach can be applied to evolution scenarios using
model differencing approaches is presented. The contribution of model ma-
nipulation using graph transformation techniques is used as the technological
base in S2EC2O when it comes to co-evolution of system models.

• Thomas Ruhroth, Stefan Gärtner, Jens Bürger, Jan Jürjens, and Kurt Schneider:
Versioning and evolution requirements for model-based system development.
In: CVSM 2014,
volume 34/2 of Softwaretechnik-Trends, pages 20–24, 2014. [RGB+14a]

This publication ascertains that, to support evolution in model-based develop-
ment, difference calculation on a semantic rather than syntactic scale is neces-
sary.

With having semantic differencing of knowledge evolution in mind, triggering
actions to co-evolve models was considered the next step. Here, the Security
Maintenance Model (SMM) steps in. The author of this thesis presented first de-
tails on it like a rule mechanism. This work evolved into Security Maintenance
Rules (SMRs) in subsequent publications. The concept of SMRs is also used in
S2EC2O. Moreover, this paper is the first publication featuring an overview of
the SecVolution approach, to which the author also contributed.

• Stefan Gärtner, Thomas Ruhroth, Jens Bürger, Kurt Schneider, and Jan Jürjens:
Maintaining requirements for long-living software systems by incorporating
security knowledge.
In: RE 2014. IEEE, 2014. [GRB+14]

This publication’s main idea is to analyze natural-language project artifacts
(for example, use case descriptions) regarding their security relevance. A

180 Appendix A. Preliminary Publications

heuristics-based approach incorporating Natural language Processing is pre-
sented to extract security knowledge from use case descriptions. Security in-
cidents are provided in terms of misuse cases. Security knowledge gathered
this way is captured as part of an ontology, whereby its core structure resulted
from a literature research of publications concerning security ontologies and
taxonomies. The work has also been presented by the first author at the Ger-
man software engineering conference SE [GRB+15], to present updated results
and gain additional feedback.

The author of this thesis contributed to the case study by modeling the ontol-
ogy Security Context Knowledge. Moreover, an analysis of the iTrust require-
ments regarding their security relevance and interconnections was carried out.
The work conducted on the iTrust case study made use of experience gained
from a prequel study on the Palladio Component Model (PCM) based realiza-
tion of CoCoME [HKW+07] (one of the case studies inside the DFG priority
programme) which is not part of the publication. For S2EC2O, iTrust is also
used for evaluation. Moreover, the model of the upper ontology used to de-
scribe security notions is reused.

• Jens Bürger, Jan Jürjens, Thomas Ruhroth, Stefan Gärtner, and Kurt Schneider:
Model-based security engineering with UML: Managed co-evolution of secu-
rity knowledge and software models.
In: FOSAD 2012/2013 Tutorial Lectures, volume 8604 of LNCS, pages 34–53,
2014. [BJR+14]

This article gives an overview of security analysis in model-based software
engineering. Furthermore, the SecVolution approach is presented in more de-
tail, accompanied by a case study featuring a web shop extension of CoCoME.
Security considerations are modeled using UMLsec annotations for secure in-
formation flow (SIF) [RJ12].

This thesis’ author main contribution to this article is in the co-evolution of
UMLsec models. Details of the Security Maintenance Model are introduced,
including a formalism for Security Maintenance Rules. The rules are exempli-
fied using the CoCoME case study and a standard UMLsec check concerning
data integrity. A co-evolution to the security issue is also shown. Furthermore,
the author contributed to the design of the web shop extension and created its
model as well as their SIF annotations. The Security Maintenance Model and
rules as presented are incorporated by S2EC2O.

• Thomas Ruhroth, Stefan Gärtner, Jens Bürger, Jan Jürjens, and Kurt Schneider:
Towards adaptation and evolution of domain-specific knowledge for main-
taining secure systems.
In: PROFES 2014, volume 8892 of LNCS, pages 239–253. Springer, 2014.
[RGB+14b]

This publication presents an approach to the question, how layered ontolo-
gies can be re-integrated after evolution took place. SecVolution’s concept of
supporting knowledge that can be expressed in different layers of refinement
(from global to domain to system) is published.

The author of this thesis contributed to the paper by analyzing privacy laws
and their evolution. In the end, the result is a setting for a changing system
context (evolution) which makes a system (co-)evolution necessary. The pri-
vacy setting is part of the evaluation of S2EC2O.

Appendix A. Preliminary Publications 181

• Stefan Gärtner, Jens Bürger, Kurt Schneider, and Jan Jürjens: Zielgerichtete An-
passung von Software nach der Evolution von kontextspezifischem Wissen.
In: 1st Collaborative Workshop on Evolution and Maintenance of Long-Living Sys-
tems (EMLS), 2014. [GBSJ14]

This publication is the result of a problem statement sent in to a collaborative
workshop. An open discussion which has been attended by research as well as
industry participants resulted in feedback on the current view on how context
knowledge is documented.

• Jens Bürger, Stefan Gärtner, Thomas Ruhroth, Johannes Zweihoff, Jan Jürjens,
and Kurt Schneider: Restoring security of long-living systems by co-evolution.
In: COMPSAC 2015. IEEE Computer Soc., 2015. [BGR+15]

This publication focuses on how a system model can be co-evolved after a
context evolution has taken place. This work firstly shows a co-evolution ap-
proach, accompanied by a case study regarding iTrust and privacy law evo-
lution. The approach is evaluated using a case study, showing how iTrust is
co-evolved to solve security vulnerabilities introduced by context evolution.

The author conducted the main part of this research. This includes the co-
evolution approach itself, definition of Essential Security Requirements (ESRs)
and application as well as implementation of the case study. The implementa-
tion is merged in the implementation of S2EC2O, Security Maintenance Rules is
a concept which is also used in the approach.

• Jens Bürger, Daniel Strüber, Stefan Gärtner, Thomas Ruhroth, Jan Jürjens, and
Kurt Schneider: A framework for semi-automated co-evolution of security
knowledge and system models.
In: Journal of Systems and Software, Elsevier, 2018 [BSG+18].

This publication presents a deeper insight into the SecVolution design-time
approach. It emphasizes on system co-evolution under knowledge evolution
by presenting relevant results in conjunction. The publication features an ex-
tended version of the upper ontology, a revised definition and examples of Es-
sential Security Requirements (ESR) and a more detailed case study showing
modeled knowledge using the upper ontology as well as its evolution. Co-
evolution of the system model under consideration is also shown.

The author of this thesis contributed in substantial manner to this publication
by providing a refined Essential Security Requirements notion. Moreover, the
case study has been carried out mainly by the author, presenting examples of
Essential Security Requirements and making use of the extended upper ontol-
ogy.

• Cyntia Montserrat Vargas Martinez, Jens Bürger, Fabien Viertel, Birgit Vogel-
Heuser, and Jan Jürjens: System evolution through semi-automatic elicitation
of security requirements: A Position Paper.
In: 3rd IFAC Conference on Embedded Systems, Computational Intelligence and
Telematics in Control (CESCIT), 2018 [VBV+18].

This publication is a position paper, it comprises ideas of how to enhance the
SecVolution design-time approach with run-time relevant information to deal
with requirements of the automation domain. Vulnerability assessment and
penetration testing are presented as two mechanisms for actively assessing a

182 Appendix A. Preliminary Publications

given industrial control system. These ought to be matched against vulnera-
bility databases. Outcome of this assessment is envisioned to contribute to the
Security Maintenance Model (SMM).

This publication is the first result of an industrial collaboration with an external
PhD student. The approach presented is the result of joint discussions. The
author of this thesis contributed his expertise gained during his work and the
SecVolution project, especially concerning management of context knowledge
and possible reactions (co-evolutions) to context evolutions.

• Jan Jürjens, Kurt Schneider, Jens Bürger, Fabien Patrick Viertel, Daniel Strüber,
Michael Goedicke, Ralf Reussner, Robert Heinrich, Emre Taşpolatoğlu, Marco
Konersmann, Alexander Fay, Winfried Lamersdorf, Jan Ladiges, Christopher
Haubeck: Maintaining Security in Software Evolution.
In: Managed Software Evolution (to appear; Springer Open).
Editors: Ralf Reussner, Michael Goedicke, Wilhelm Hasselbring, Birgit Vogel-
Heuser, Jan Keim, and Lukas Märtin.

This publication is written by all projects which have participated in the first or
second funding period of the DFG priority programme 1593, of which SecVolu-
tion has been part of. The part mainly relevant to the results of the SecVolution
project have been contributed by Jan Jürjens, Kurt Schneider, Jens Bürger, Fa-
bien Patrick Viertel, and Daniel Strüber. The other authors contributed content
coming from other projects of the SPP.

The author of this thesis contributed to the chapter ranging the design-time co-
evolution part of SecVolution into the SPP context. Moreover, a first concept
is published on how the SecVolution approach can handle challenges coming
from run time. Emphasis is put on an approach of how the system can adapt
its behavior at run time to react on sudden odd context behavior occurring at
run time.

• Sven Peldszus, Jens Bürger, Jan Jürjens: Reactive Security Monitoring of Java
Applications with Round-Trip Engineering.
Under review [PBJ19].

This publication introduces an approach to combine security monitoring and
round-trip engineering for Java applications. The approach, called UMLsecRT,
makes use of the UMLsec to annotate a UML model with security annotations,
in this case secure dependency. As model, a pre-existing one can be used or a
model generated from source. Synchronization of annotations between source
code and model is supported. UMLsec annotations are proceeded into the
source code as Java annotations. A security monitor is executed alongside the
actual application, having countermeasures for security violations deployed.
Insights gained at run time are fed back into the model. The approach is evalu-
ated using a case study extracted from real attacks and the DaCapo benchmark
suite.

The work introduced in Chapter 7 is based on joint work with Sven Peldszus.
At the time of writing, the work is currently under review. The chapter in-
troduces a method for round-trip engineering of security properties. To limit
the scope of this thesis, we show the application for one exemplary UMLsec
stereotype, namely secure dependency. The author of this thesis contributed to
the paper by building the approach jointly in numerous workshops. The au-
thor of this thesis contributed to the approach by bringing in his expertise in

Appendix A. Preliminary Publications 183

secure model annotations and UML meta-modeling. Due to its domain span-
ning requirements ranging from abstract modeling to instrumented code, the
implementation was mainly done using pair programming between the author
and Sven Peldszus.

184 Appendix A. Preliminary Publications

Appendix A. Preliminary Publications 185

187

Bibliography

[Abb12] Sunitha Abburu. A survey on ontology reasoners and comparison.
International Journal of Computer Applications, 57(17), 2012.

[ABJ+10] Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause,
and Gabriele Taentzer. Henshin: Advanced concepts and tools for in-
place EMF model transformations. In Model Driven Engineering Lan-
guages and Systems (MoDELS), pages 121–135, 2010.

[ACPS16] Albin Ahmeti, Diego Calvanese, Axel Polleres, and Vadim Savenkov.
Handling inconsistencies due to class disjointness in SPARQL up-
dates. In Harald Sack, Eva Blomqvist, Mathieu d’Aquin, Chiara Ghi-
dini, Simone Paolo Ponzetto, and Christoph Lange, editors, The Se-
mantic Web. Latest Advances and New Domains, pages 387–404. Springer
International Publishing, 2016.

[ADET12] Mehdi Amoui, Mahdi Derakhshanmanesh, Jürgen Ebert, and Ladan
Tahvildari. Achieving dynamic adaptation via management and
interpretation of runtime models. Journal of Systems and Software,
85(12):2720–2737, 2012.

[AIM10] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The Internet of
things: A survey. Computer networks, 54(15):2787–2805, 2010.

[AMR07] Omar H. Alhazmi, Yashwant K. Malaiya, and Indrajit Ray. Measuring,
analyzing and predicting security vulnerabilities in software systems.
Computers & Security, 26(3):219–228, 2007.

[APRJ17] Amir Shayan Ahmadian, Sven Peldszus, Qusai Ramadan, and Jan Jür-
jens. Model-based privacy and security analysis with CARiSMA. In
Joint Meeting on Foundations of Software Engineering (ESEC/FSE), pages
989–993, 2017.

[ARS15] Paolo Arcaini, Elvinia Riccobene, and Patrizia Scandurra. Model-
ing and analyzing MAPE-K feedback loops for self-adaptation. In
2015 IEEE/ACM 10th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, pages 13–23, May 2015.

[BA14] Mourad Bouneffa and Adeel Ahmad. The change impact analysis
in BPM based software applications: A graph rewriting and ontol-
ogy based approach. In Enterprise Information Systems, pages 280–295.
Springer, 2014.

[BBFS05] James Bailey, François Bry, Tim Furche, and Sebastian Schaffert. Web
and Semantic Web Query Languages: A Survey, pages 35–133. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2005.

188 BIBLIOGRAPHY

[BET12] Enrico Biermann, Claudia Ermel, and Gabriele Taentzer. Formal foun-
dation of consistent EMF model transformations by algebraic graph
transformation. Software & Systems Modeling, 11(2):227–250, May 2012.

[BfD14] BfDI. BDSG Änderungen, 2014. http://www.bfdi.bund.de/bfdi_
wiki/index.php/BDSG_%C3%84nderungen (accessed: Apr 14th, 2019).

[BGR+15] Jens Bürger, Stefan Gärtner, Thomas Ruhroth, Johannes Zweihoff, Jan
Jürjens, and Kurt Schneider. Restoring security of long-living systems
by co-evolution. In 39th Annual IEEE Computer Software and Applica-
tions Conf. (COMPSAC 2015). IEEE Computer Soc., 2015. 6 pp.

[BHL+07] Eric Bodden, Laurie Hendren, Patrick Lam, Ondřej Lhoták, and No-
mair A. Naeem. Collaborative runtime verification with tracematches.
In Proceedings of the 7th International Workshop on Runtime Verification
(RV), pages 22–37, 2007.

[BJR+14] Jens Bürger, Jan Jürjens, Thomas Ruhroth, Stefan Gärtner, and Kurt
Schneider. Model-based security engineering with UML: Managed co-
evolution of security knowledge and software models. In Foundations
of Security Analysis and Design VII: FOSAD 2012/2013 Tutorial Lectures,
volume 8604 of Lecture Notes in Computer Science, page 282, 2014.

[BJW15] Jens Bürger, Jan Jürjens, and Sven Wenzel. Restoring security of evolv-
ing software models using graph transformation. STTT, 17(3):267–289,
2015.

[BKB+07] Pearl Brereton, Barbara A Kitchenham, David Budgen, Mark Turner,
and Mohamed Khalil. Lessons from applying the systematic litera-
ture review process within the software engineering domain. Journal
of Systems and Software, 80(4):571–583, 2007.

[BM04] Patrick Brézillon and Ghita Kouadri Mostéfaoui. Context-based se-
curity policies: A new modeling approach. In 2nd IEEE Conf. on Per-
vasive Computing and Communications Workshops (PerCom 2004 Work-
shops), pages 154–158, 2004.

[BOAI14] Doaa Saleh Abobakr Baras, Siti Hajar Othman, Mohammad Nazir Ah-
mad, and Norafida Ithnin. Towards managing information security
knowledge through metamodelling approach. In International Sympo-
sium on Biometrics and Security Technologies (ISBAST), pages 310–315.
IEEE, 2014.

[BOCB+17] Lotfi Ben Othmane, Golriz Chehrazi, Eric Bodden, Petar Tsalovski,
and Achim D. Brucker. Time for addressing software security issues:
Prediction models and impacting factors. Data Science and Engineering,
2(2):107–124, 2017.

[Bor97] Willem Nico Borst. Construction of Engineering Ontologies for Knowledge
Sharing and Reuse. PhD thesis, University of Twente, Netherlands, Sep
1997.

[Bow13] Sue Bowman. Impact of electronic health record systems on informa-
tion integrity: Quality and safety implications. Perspectives in Health
Information Management, 10(Fall), October 2013.

http://www.bfdi.bund.de/bfdi_wiki/index.php/BDSG_%C3%84nderungen
http://www.bfdi.bund.de/bfdi_wiki/index.php/BDSG_%C3%84nderungen

BIBLIOGRAPHY 189

[BPP02] Patrick Brézillon, Laurent Pasquier, and Jean-Charles Pomerol. Rea-
soning with contextual graphs. European Journal of Operational Research,
136(2):290–298, 2002.

[Bri] British Parliament. Data Protection Act 1998.

[BSG+18] Jens Bürger, Daniel Strüber, Stefan Gärtner, Thomas Ruhroth, Jan
Jürjens, and Kurt Schneider. A framework for semi-automated co-
evolution of security knowledge and system models. Journal of Systems
and Software, 139:142–160, 2018.

[BSS+11] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira
Mezini. Taming reflection: Aiding static analysis in the presence of re-
flection and custom class loaders. In Proceedings of the 33rd International
Conference on Software Engineering (ICSE), pages 241–250, 2011.

[Bun] Bundesamt für Sicherheit in der Informationstechnik (BSI).
IT-Grundschutz. https://www.bsi.bund.de/DE/Themen/
ITGrundschutz/itgrundschutz_node.html (accessed: Apr 14th,
2019).

[Bun05] Bundesministerium des Inneren. Bundesdatenschutzgesetz. Bundes-
gesetzblatt, September 2005.

[Bun18] Bundesamt für Sicherheit in der Informationstechnik (BSI). BSI
TR-02102-1 Kryptographische Verfahren: Empfehlungen und Schlüs-
sellängen, February 2018. https://www.bsi.bund.de/SharedDocs/
Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/
TR02102/BSI-TR-02102.pdf (accessed: Apr 14th, 2019).

[CEK+08] Luca Compagna, Paul El Khoury, Alžběta Krausová, Fabio Massacci,
and Nicola Zannone. How to integrate legal requirements into a re-
quirements engineering methodology for the development of security
and privacy patterns. Artificial Intelligence and Law, 17(1):1–30, Novem-
ber 2008.

[CFO+17] Daniela Soares Cruzes, Michael Felderer, Tosin Daniel Oyetoyan,
Matthias Gander, and Irdin Pekaric. How is security testing done in
agile teams? A cross-case analysis of four software teams. In Hubert
Baumeister, Horst Lichter, and Matthias Riebisch, editors, Agile Pro-
cesses in Software Engineering and Extreme Programming, pages 201–216,
Cham, 2017. Springer International Publishing.

[Chi] Shigeru Chiba. Javassist. http://www.javassist.org (accessed: Apr
14th, 2019).

[Chi00] Shigeru Chiba. Load-time structural reflection in Java. In ECOOP
2000 - Object-Oriented Programming, 14th European Conference, pages
313–336, 2000.

[CM04] Brian Chess and Gary McGraw. Static Analysis for Security. IEEE
Security & Privacy, 2(6):76–79, 2004.

[CMM+10] Gabriele Costa, Fabio Martinelli, Paolo Mori, Christian Schaefer, and
Thomas Walter. Runtime monitoring for next generation Java ME plat-
form. Computers & Security, 29(1):74–87, 2010.

https://www.bsi.bund.de/DE/Themen/ITGrundschutz/itgrundschutz_node.html
https://www.bsi.bund.de/DE/Themen/ITGrundschutz/itgrundschutz_node.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102.pdf
http://www.javassist.org

190 BIBLIOGRAPHY

[Crn10] Gordana Dodig Crnkovic. Constructive Research and Info-computational
Knowledge Generation, pages 359–380. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2010.

[Day94] Umeshwar Dayal. Active Database Systems: Triggers and Rules for Ad-
vanced Database Processing. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1994.

[Deu18] Deutsche Presseagentur (DPA). Bahn schränkt
Zahlungsarten für Ticketkauf ein, Dec 20th,
2018. https://www.faz.net/agenturmeldungen/dpa/
bahn-schraenkt-zahlungsarten-fuer-ticketkauf-ein-15951983.
html (accessed: Apr 14th, 2019).

[DFG] DFG. DFG SPP 1593 website. https://www.dfg-spp1593.de (ac-
cessed: Apr 14th, 2019).

[DHMM10] Éric Dubois, Patrick Heymans, Nicolas Mayer, and Raimundas Mat-
ulevičius. A systematic approach to define the domain of information
system security risk management. In Intentional Perspectives on Infor-
mation Systems Engineering, pages 289–306. Springer, 2010.

[DKA+14] Zakir Durumeric, James Kasten, David Adrian, J Alex Halderman,
Michael Bailey, Frank Li, Nicolas Weaver, Johanna Amann, Jethro
Beekman, Mathias Payer, et al. The matter of heartbleed. In Proceed-
ings of the 2014 Conference on Internet Measurement Conference, pages
475–488. ACM, 2014.

[DRW+18] Dongdong Du, Xingzhang Ren, Yupeng Wu, Jien Chen, Wei Ye, Ji-
nan Sun, Xiangyu Xi, Qing Gao, and Shikun Zhang. Refining trace-
ability links between vulnerability and software component in a vul-
nerability knowledge graph. In Tommi Mikkonen, Ralf Klamma, and
Juan Hernández, editors, Web Engineering, pages 33–49, Cham, 2018.
Springer International Publishing.

[DSRdV+07] Geiza Maria Hamazaki Da Silva, Alexandre Rademaker, Davi Romero
de Vasconcelos, Fernando Náufel do Amaral, Carlos Bazílio, Vaston G.
Costa, and Edward Hermann Haeusler. Dealing with the formal
analysis of information security policies through ontologies: A case
study. In Proceedings of the Third Australasian Workshop on Advances in
Ontologies-Volume 85, pages 55–60. Australian Computer Society, Inc.,
2007.

[EBM11] Neil A. Ernst, Alexander Borgida, and John Mylopoulos. Require-
ments evolution drives software evolution. In Proceedings of the 12th
International Workshop on Principles of Software Evolution and the 7th an-
nual ERCIM Workshop on Software Evolution, pages 16–20. ACM, 2011.

[Ecl13] Eclipse contributors. Workbench User Guide – Secure Storage
– How secure storage works. Technical report, The Eclipse
Foundation, 2013. https://help.eclipse.org/photon/index.
jsp?topic=%2Forg.eclipse.platform.doc.user%2Freference%
2Fref-securestorage-works.htm (accessed Apr 14th, 2019).

https://www.faz.net/agenturmeldungen/dpa/bahn-schraenkt-zahlungsarten-fuer-ticketkauf-ein-15951983.html
https://www.faz.net/agenturmeldungen/dpa/bahn-schraenkt-zahlungsarten-fuer-ticketkauf-ein-15951983.html
https://www.faz.net/agenturmeldungen/dpa/bahn-schraenkt-zahlungsarten-fuer-ticketkauf-ein-15951983.html
https://www.dfg-spp1593.de
https://help.eclipse.org/photon/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2Freference%2Fref-securestorage-works.htm
https://help.eclipse.org/photon/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2Freference%2Fref-securestorage-works.htm
https://help.eclipse.org/photon/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2Freference%2Fref-securestorage-works.htm

BIBLIOGRAPHY 191

[eDT] eMoflon Developer Team. eMoflon – A tool for building tools. http:
//www.emoflon.org/ (accessed: Apr 14th, 2019).

[EL02] David Evans and David Larochelle. Improving security using extensi-
ble lightweight static analysis. IEEE Software, 19(1):42–51, 2002.

[EPS10] Antti Evesti and Susanna Pantsar-Syväniemi. Towards micro archi-
tecture for security adaptation. In 4th European Conference on Software
Architecture (ECSA 2010), pages 181–188. ACM, 2010. Companion Vol-
ume.

[ERW08] Jürgen Ebert, Volker Riediger, and Andreas Winter. Graph technology
in reverse engineering: The TGraph approach. In 10th Workshop Soft-
ware Reengineering, 5-7 May 2008, Bad Honnef, Germany, pages 67–81,
2008.

[EU] EU. ViSion - the new privacy solution for citizen and public adminis-
tration. https://www.visioneuproject.eu (accessed: Jun 13th, 2019).

[EU 95] EU Parliament. Directive 95/46/EC of the European Parliament and
of the council of 24 October 1995. Official Journal of the European Union,
L 281:0031–0050, 1995.

[EU 16] EU Parliament. Regulation (EU) 2016/679 of the European Parliament
and of the Council of 27 April 2016 on the protection of natural persons
with regard to the processing of personal data and on the free move-
ment of such data, and repealing Directive 95/46/EC (General Data
Protection Regulation). Official Journal of the European Union, L119:1–
88, May 2016.

[Eva04] Eric Evans. Domain-driven Design: Tackling Complexity in the Heart of
Software. Addison-Wesley, 2004.

[EYZ09] Golnaz Elahi, Eric Yu, and Nicola Zannone. A vulnerability-centric re-
quirements engineering framework: analyzing security attacks, coun-
termeasures, and requirements based on vulnerabilities. Requirements
Engineering, 15(1):41–62, 2009.

[Far12] Stefan Farfeleder. Requirements Specification and Analysis for Embedded
Systems. PhD thesis, TU Wien, Austria, 2012.

[FGO+11] Xavier Franch, Paul Grünbacher, Marc Oriol, Benedikt Burgstaller,
Deepak Dhungana, Lidia Lopez, Jordi Marco, and João Pimentel.
Goal-driven adaptation of service-based systems from runtime mon-
itoring data. In Computer Software and Applications Conf. Workshops
(COMPSACW), 2011 IEEE 35th Annual, pages 458–463, July 2011.

[FLS+14] Rudolf Ferenc, László Langó, István Siket, Tibor Gyimóthy, and Tibor
Bakota. Source meter sonar qube plug-in. In 2014 IEEE 14th Inter-
national Working Conference on Source Code Analysis and Manipulation,
pages 77–82, Sep. 2014.

[FNO+93] Gerhard Fischer, Kumiyo Nakakoji, Jonathan Ostwald, Gerry Stahl,
and Tamara Sumner. Embedding critics in design environments. The
Knowledge Engineering Review, 8(4):285–307, 1993.

http://www.emoflon.org/
http://www.emoflon.org/
https://www.visioneuproject.eu

192 BIBLIOGRAPHY

[Gal] Galigator Github account. Openllet. https://github.com/
Galigator/openllet (accessed: Apr 14th, 2019).

[Gär16] Stefan Gärtner. Heuristische und wissensbasierte Sicherheitsprüfung von
Softwareentwicklungsartefakten basierend auf natürlichsprachlichen Infor-
mationen. PhD thesis, University of Hanover, Hannover, Germany,
2016.

[GBSJ14] Stefan Gärtner, Jens Bürger, Kurt Schneider, and Jan Jürjens. Ziel-
gerichtete Anpassung von Software nach der Evolution von kon-
textspezifischem Wissen. In 1st Collaborative Workshop on Evolution and
Maintenance of Long-Living Systems (EMLS), 2014.

[GMP06] Stephan Grimm, Boris Motik, and Chris Preist. Matching semantic
service descriptions with local closed-world reasoning. In The Semantic
Web: Research and Applications, 3rd European Semantic Web Conference,
ESWC 2006, Budva, Montenegro, June 11-14, 2006, Proceedings, pages
575–589, 2006.

[GRB+14] Stefan Gärtner, Thomas Ruhroth, Jens Bürger, Kurt Schneider, and Jan
Jürjens. Maintaining requirements for long-living software systems by
incorporating security knowledge. In 22nd IEEE Int. Requirements Eng.
Conference. IEEE, 2014.

[GRB+15] Stefan Gärtner, Thomas Ruhroth, Jens Bürger, Kurt Schneider, and Jan
Jürjens. Towards maintaining long-living information systems by in-
corporating evolving security knowledge. In Software Engineering (SE
2015), Lecture Notes in Informatics. GI, 2015.

[Gru93] Thomas R. Gruber. A translation approach to portable ontology spec-
ifications. Knowledge acquisition, 5(2):199–220, 1993.

[Gru95] Thomas R. Gruber. Toward principles for the design of ontologies used
for knowledge sharing? International Journal of Human-Computer Stud-
ies, 43(5-6):907–928, 1995.

[GSM] GSM Association. N2020.01 – VoLTE service description and
implementation guidelines (version 1.0). http://www.gsma.com/
network2020/wp-content/uploads/2015/03/N2020.01-v1.0.pdf
(accessed: Apr 14th, 2019).

[GW07] Michael Gegick and Laurie Williams. On the design of more secure
software-intensive systems by use of attack patterns. Information and
Software Technology, 49(4):381–397, April 2007.

[HG03] H.M. Harmain and Robert Gaizauskas. CM-Builder: A natural
language-based case tool for object-oriented analysis. Automated Soft-
ware Engineering, 10:157–181, 2003.

[HIK+10] Siv Hilde Houmb, Shareeful Islam, Eric Knauss, Jan Jürjens, and Kurt
Schneider. Eliciting security requirements and tracing them to design:
An integration of Common Criteria, heuristics, and UMLsec. Require-
ments Engineering Journal, 15(1):63–93, March 2010.

https://github.com/Galigator/openllet
https://github.com/Galigator/openllet
http://www.gsma.com/network2020/wp-content/uploads/2015/03/N2020.01-v1.0.pdf
http://www.gsma.com/network2020/wp-content/uploads/2015/03/N2020.01-v1.0.pdf

BIBLIOGRAPHY 193

[HKSS08] Piotr Habela, Krzysztof Kaczmarski, Krzysztof Stencel, and Kazimierz
Subieta. OCL as the query language for UML model execution. In
International Conference on Computational Science (ICCS), volume 5103,
pages 311–320. Springer Berlin Heidelberg, 2008.

[HKW+07] Sebastian Herold, Holger Klus, Yannick Welsch, Constanze Deit-
ers, Andreas Rausch, Ralf Reussner, Klaus Krogmann, Heiko Kozi-
olek, Raffaela Mirandola, Benjamin Hummel, Michael Meisinger, and
Christian Pfaller. CoCoME. In The Common Component Modeling Ex-
ample, volume 5153 of Lecture Notes in Computer Science, pages 16–53,
2007.

[HLJA10] Sebastian Höhn, Lutz Lowis, Jan Jürjens, and Rafael Accorsi. Identi-
fication of vulnerabilities in web services using model-based security.
In Web Services Security Development and Architecture: Theoretical and
Practical Issues, chapter 1, pages 1–32. Information Science Reference,
Hershey, 2010.

[HLMN08] Charles B. Haley, Robin C. Laney, Jonathan D. Moffett, and Bashar Nu-
seibeh. Security requirements engineering: A framework for represen-
tation and analysis. IEEE Trans. Software Eng., 34(1):133–153, 2008.

[HMPR04] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. De-
sign science in information systems research. MIS Q., 28(1):75–105,
March 2004.

[HS06] Hans-Jörg Happel and Stefan Seedorf. Applications of ontologies in
software engineering. In Proc. of Workshop on Sematic Web Enabled Soft-
ware Engineering (SWESE), 2006.

[HSD07] Almut Herzog, Nahid Shahmehri, and Claudiu Duma. An ontology
of information security. International Journal of Information Security and
Privacy (IJISP), 1(4):1–23, 2007.

[HTMM08] Guillaume Hiet, Valerie Viet Triem Tong, Ludovic Me, and Benjamin
Morin. Policy-based Intrusion Detection in Web Applications by Mon-
itoring Java Information Flows. In Proceedings of the 3rd International
Conference on Risks and Security of Internet and Systems (CRiSIS), pages
53–60, 2008.

[HWP+14] Thorsten Humberg, Christian Wessel, Daniel Poggenpohl, Sven Wen-
zel, Thomas Ruhroth, and Jan Jürjens. Using ontologies to analyze
compliance requirements of cloud-based processes. In Cloud Comput-
ing and Services Science (selected best papers), volume 453 of Communica-
tions in Computer and Information Science, pages 1–16. Springer, 2014.

[HYH+04] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-
Tsai Lee, and Sy-Yen Kuo. Securing web application code by static
analysis and runtime protection. In Proceedings of the 13th international
conference on World Wide Web (WWW), pages 40–52, 2004.

[i3l] i3labs. Architexta website. http://www.architexa.com/ (accessed:
Apr 14th, 2019).

http://www.architexa.com/

194 BIBLIOGRAPHY

[IDC07] Iulia Ion, Boris Dragovic, and Bruno Crispo. Extending the Java virtual
machine to enforce fine-grained security policies in mobile devices. In
Proceedings of the 23rd Annual Computer Security Applications Conference
(ACSAC), pages 233–242, 2007.

[Int07] International Standardization Organization (ISO). ISO 15408:2007
Common Criteria for information technology security evaluation,
version 3.1, revision 2, CCMB-2007-09-001, CCMB-2007-09-002 and
CCMB-2007-09-003, September 2007.

[Int17] International information system security certification consortium
ISC2. 2017 global information security workforce study, 2017.

[ISO16] ISO/IEC. ISO/IEC 9075:2016 Information technology - Database lan-
guages - SQL, 2016.

[JJ05] Jan Jürjens. Secure Systems Development with UML. Springer, 2005.

[JKM+15] Ravi Jhawar, Barbara Kordy, Sjouke Mauw, Saša Radomirović, and
Rolando Trujillo-Rasua. Attack trees with sequential conjunction. In
IFIP International Information Security Conference (SEC), pages 339–353.
Springer, 2015.

[JLFJ13] Arnav Joshi, Ravendar Lal, Tim Finin, and Anupam Joshi. Extract-
ing cybersecurity related linked data from text. In Semantic Computing
(ICSC), 2013 IEEE Seventh International Conference on, pages 252–259.
IEEE, 2013.

[JS14] Jan Jürjens and Kurt Schneider. The SecReq approach: From security
requirements to secure design while managing software evolution. In
Software Engineering (SE2014), volume Lecture Notes in Informatics.
GI, 2014.

[KC07] Barbara Kitchenham and Stuart Charters. Guidelines for performing
systematic literature reviews in software engineering. Technical re-
port, EBSE-2007-01, 2007.

[KKOS12] Timo Kehrer, Udo Kelter, Manuel Ohrndorf, and Tim Sollbach. Un-
derstanding model evolution through semantically lifting model dif-
ferences with SiLift. In Proc. of the 28th IEEE International Conference on
Software Maintenance (ICSM), pages 638 –641, 2012.

[KKT11] Timo Kehrer, Udo Kelter, and Gabriele Taentzer. A rule-based ap-
proach to the semantic lifting of model differences in the context of
model versioning. In 26th IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE 2011), Lawrence, KS, USA, November
6-10, 2011, pages 163–172, 2011.

[KKT13] Timo Kehrer, Udo Kelter, and Gabriele Taentzer. Consistency-
preserving edit scripts in model versioning. In 2013 28th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2013,
Silicon Valley, CA, USA, November 11-15, 2013, pages 191–201, 2013.

[KLM09] Eric Knauss, Daniel Lübke, and Sebastian Meyer. Feedback-driven
requirements engineering: The heuristic requirements assistant. In Int.

BIBLIOGRAPHY 195

Conf. on Software Eng. (ICSE’09), Formal Research Demonstrations Track,
pages 587 – 590, Vancouver, Canada, 2009.

[KM14] Andreas Kuehn and Milton Mueller. Shifts in the cybersecurity
paradigm: Zero-day exploits, discourse, and emerging institutions. In
New Security Paradigms Workshop (NSPW), pages 63–68. ACM, 2014.

[KSOK13] Haruhiko Kaiya, Junya Sakai, Shinpei Ogata, and Kenji Kaijiri. Elicit-
ing security requirements for an information system using asset flows
and processor deployment. International Journal of Secure Software En-
gineering, 4(3):42–63, 2013.

[LAS14] Erhan Leblebici, Anthony Anjorin, and Andy Schürr. Developing
eMoflon with eMoflon. In Proceedings of the 7th International Conference
on Theory and Practice of Model Transformations (ICMT), pages 138–145,
2014.

[LAS17] Erhan Leblebici, Anthony Anjorin, and Andy Schürr. Inter-model con-
sistency checking using triple graph grammars and linear optimiza-
tion techniques. In Proceedings of the 20th International Conference on
Fundamental Approaches to Software Engineering (FASE), pages 191–207,
2017.

[LF15] Gabriel Lawrence and Chris Frohoff. Marshalling pickles: how dese-
rializing objects can ruin your day, 2015. https://www.slideshare.
net/frohoff1/appseccali-2015-marshalling-pickles (accessed:
Apr 14th, 2019).

[LFR13] Steffen Lehnert, Qurat-ul-ann Farooq, and Matthias Riebisch. Rule-
Based Impact Analysis for Heterogeneous Software Artifacts. 2013
17th European Conference on Software Maintenance and Reengineering,
pages 209–218, March 2013.

[LHR17] Sungho Lee, Sungjae Hwang, and Sukyoung Ryu. All about Activity
Injection: Threats, Semantics, and Detection. In Proceedings of the 32nd

IEEE/ACM International Conference on Automated Software Engineering
(ASE), pages 252–262, 2017.

[LNHE14] Steffen Lohmann, Stefan Negru, Florian Haag, and Thomas Ertl.
VOWL 2: User-oriented visualization of ontologies. In Krzysztof
Janowicz, Stefan Schlobach, Patrick Lambrix, and Eero Hyvönen, edi-
tors, Knowledge Engineering and Knowledge Management, pages 266–281,
Cham, 2014. Springer International Publishing.

[LP13] Ivan Launders and Simon Polovina. A semantic approach to security
policy reasoning. In Strategic Intelligence Management, pages 150–166.
Elsevier, 2013.

[LR03] Meir M. Lehman and Juan F. Ramil. Software evolution – Background,
theory, practice. Information Processing Letters, 2003.

[LWL05] Benjamin Livshits, John Whaley, and Monica S. Lam. Reflection Anal-
ysis for Java. In Proceedings of the 3rd Asian Symposium on Programming
Languages and Systems (APLAS), pages 139–160, 2005.

https://www.slideshare.net/frohoff1/appseccali-2015-marshalling-pickles
https://www.slideshare.net/frohoff1/appseccali-2015-marshalling-pickles

196 BIBLIOGRAPHY

[LZSL13] Bixin Li, Qiandong Zhang, Xiaobing Sun, and Hareton Leung. Us-
ing water wave propagation phenomenon to study software change
impact analysis. Advances in Engineering Software, 58:45–53, 2013.

[Mar03] Peter Marwedel. Embedded system design. Kluwer, 2003.

[MARS12] Sebastian Meyer, Anna Averbakh, Torsten Ronneberger, and Kurt
Schneider. Experiences from establishing knowledge management in
a joint research project. In Oscar Dieste, Andreas Jedlitschka, and Na-
talia Juristo, editors, Product-Focused Software Process Improvement, vol-
ume 7343 of Lecture Notes in Computer Science, pages 233–247, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg.

[MEHDH13] Frank D. Macías-Escrivá, Rodolfo Haber, Raul Del Toro, and Vicente
Hernandez. Self-adaptive systems: A survey of current approaches,
research challenges and applications, 2013.

[Men02] Tom Mens. A state-of-the-art survey on software merging. IEEE Trans.
Softw. Eng., 28(5):449–462, May 2002.

[MGM03] Haralambos Mouratidis, Paolo Giorgini, and Gordon Manson. An on-
tology for modelling security: The Tropos approach. In International
Conference on Knowledge-Based and Intelligent Information and Engineer-
ing Systems (KES), pages 1387–1394. Springer, 2003.

[MH05] Hugh McManus and Daniel Hastings. A framework for understand-
ing uncertainty and its mitigation and exploitation in complex sys-
tems. In INCOSE International Symposium, volume 15, pages 484–503.
Wiley Online Library, 2005.

[MITa] MITRE. CAPEC – common attack pattern enumeration and classifica-
tion. https://capec.mitre.org/ (accessed: Apr 14th, 2019).

[MITb] MITRE. CVE – common vulnerabilities and exposures. https://cve.
mitre.org (accessed: Apr 14th, 2019).

[MIT17a] MITRE. CVE-2017-7525, 2017. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2017-7525 (accessed: Apr 14th, 2019).

[MIT17b] MITRE. CWE – Common Weakness Enumeration, 2017. https://cwe.
mitre.org/ (accessed: Apr 14th, 2019).

[MLH+15] Nicolas Matentzoglu, Jared Leo, Valentino Hudhra, Uli Sattler, and
Bijan Parsia. A survey of current, stand-alone OWL reasoners. In
ORE, pages 68–79, 2015.

[MMF+10] Brice Morin, Tejeddine Mouelhi, Franck Fleurey, Yves Le Traon,
Olivier Barais, and Jean-Marc Jézéquel. Security-driven model-based
dynamic adaptation. In Proceedings of the 25th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 205–214,
2010.

[MMG] Chris Mungall, Eleni Mikroyannidi, and Rafael Gonçalves. OWL API.
https://github.com/owlcs/owlapi (accessed: Apr 14th, 2019).

https://capec.mitre.org/
https://cve.mitre.org
https://cve.mitre.org
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7525
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7525
https://cwe.mitre.org/
https://cwe.mitre.org/
https://github.com/owlcs/owlapi

BIBLIOGRAPHY 197

[MNG+10] André Miede, Nedislav Nedyalkov, Christian Gottron, André König,
Nicolas Repp, and Ralf Steinmetz. A generic metamodel for IT security
attack modeling for distributed systems. In International Conference on
Availability, Reliability, and Security (ACES), pages 430–437. IEEE, 2010.

[MNGL98] Gail C. Murphy, David Notkin, William G. Griswold, and Erica S. Lan.
An empirical study of static call graph extractors. ACM Transactions on
Software Engineering and Methodology (TOSEM), 7(2):158–191, 1998.

[MSW] Andrew Meneely, Ben Smith, and Laurie Williams. iTrust website.
http://agile.csc.ncsu.edu/iTrust (accessed Apr 14th, 2019).

[MSW12] Andrew Meneely, Ben Smith, and Laurie Williams. iTrust electronic
health care system case study. In Software and Systems Traceability,
pages 425–438. Springer, 2012.

[Nat] National Institute of Standards and Technology (NIST). National vul-
nerability database. https://nvd.nist.gov/ (accessed: Apr 14th,
2019).

[NCLM06] Natalya F. Noy, Abhita Chugh, William Liu, and Mark A. Musen. A
framework for ontology evolution in collaborative environments. In
Proc. of the 5th ISWC, pages 544–558, 2006.

[Neo] Neo4j, Inc. Neo4j graph platform. https://neo4j.com/ (accessed:
Apr 14th, 2019).

[NVLG14] Tuong Huan Nguyen, Bao Quoc Vo, Markus Lumpe, and John
Grundy. KBRE: a framework for knowledge-based requirements engi-
neering. Software Quality Journal, 22(1):87–119, 2014.

[NYZ+15] Armstrong Nhlabatsi, Yijun Yu, Andra Zisman, Thein Tun, Niamul
Khan, Arosha Bandara, and Bashar Nuseibeh. Managing security con-
trol assumptions using causal traceability. In 8th Int. Symp. on Software
and Systems Traceability (SST), 2015.

[Obj16] Object Management Group. Meta Object Facility specification version
2.5.1, 2016. https://www.omg.org/spec/MOF/2.5.1/ (accessed: May
27th, 2019).

[Obj17] Object Management Group (OMG). UML 2.5.1 superstructure speci-
fication. Technical Report OMG Document Number: formal/2011-08-
06, Object Management Group (OMG), 2017.

[OCS+13] Inah Omoronyia, Luca Cavallaro, Mazeiar Salehie, Liliana Pasquale,
and Bashar Nuseibeh. Engineering adaptive privacy: On the role of
privacy awareness requirements. Proc. - Int. Conf. on Software Engineer-
ing, pages 632–641, 2013.

[OD09] Martin J. O’Connor and Amar K. Das. SQWRL: A query language for
OWL. In Proceedings of the 5th International Workshop on OWL: Experi-
ences and Directions (OWLED 2009), Chantilly, VA, United States, October
23-24, 2009, 2009.

http://agile.csc.ncsu.edu/iTrust
https://nvd.nist.gov/
https://neo4j.com/
https://www.omg.org/spec/MOF/2.5.1/

198 BIBLIOGRAPHY

[OGT+99] Peyman Oreizy, Michael M. Gorlick, Richard N. Taylor, Dennis Heim-
bigner, Gregory Johnson, Nenad Medvidovic, Alex Quilici, David S.
Rosenblum, and Alexander L. Wolf. An architecture-based approach
to self-adaptive software. IEEE Intelligent Systems, 14(3):54–62, May
1999.

[OKY11] Takao Okubo, Haruhiko Kaiya, and Nobukazu Yoshioka. Effective se-
curity impact analysis with patterns for software enhancement. 2011
Sixth International Conference on Availability, Reliability and Security,
pages 527–534, August 2011.

[OKY12] Takao Okubo, Haruhiko Kaiya, and Nobukazu Yoshioka. Analyzing
impacts on software enhancement caused by security design alterna-
tives with patterns. International Journal of Secure Software Engineering,
3(1):37–61, 2012.

[OPS+12] Inah Omoronyia, Liliana Pasquale, Mazeiar Salehie, Luca Cavallaro,
Gavin J. Doherty, and Bashar Nuseibeh. Caprice: a tool for engineering
adaptive privacy. Proc. of the 27th IEEE/ACM Int. Conf. on Automated
Software Eng. - ASE 2012, page 354, 2012.

[Ora] Oracle. Java Agent API. https://docs.oracle.com/javase/8/docs/
api/java/lang/instrument/package-summary.html (accessed: Apr
14th, 2019).

[OWA] OWASP. O-Saft. https://www.owasp.org/index.php/O-Saft (ac-
cessed: Apr 14th, 2019).

[OWL09] W3C OWL Working Group. OWL 2 Web Ontology Language: Document
Overview. W3C Recommendation, October 2009. Available at http:
//www.w3.org/TR/owl2-overview/.

[PBJ19] Sven Peldszus, Jens Bürger, and Jan Jürjens. Reactive Security Moni-
toring of Java Applications with Round-Trip Engineering. Under Re-
view, 2019.

[PKLS15] Sven Peldszus, Géza Kulcsár, Malte Lochau, and Sandro Schulze. In-
cremental co-evolution of Java programs based on bidirectional graph
transformation. In Proceedings of the 12th Principles and Practices of Pro-
gramming on The Java Platform (PPPJ), pages 138–151, 2015.

[PMG+16] Bijan Parsia, Nicolas Matentzoglu, Rafael S. Gonçalves, Birte Glimm,
and Andreas Steigmiller. The OWL reasoner evaluation (ORE) 2015
resources. In International Semantic Web Conference, pages 159–167.
Springer, 2016.

[PMS+12] Liliana Pasquale, Claudio Menghi, Mazeiar Salehie, Luca Cavallaro,
Inah Omoronyia, and Bashar Nuseibeh. SecuriTAS: a tool for engineer-
ing adaptive security. In 20th ACM SIGSOFT Symp. on the Foundations
of Software Eng. (FSE-20), page 19, 2012.

[Pop15] Andrei Popov. RFC 7465: Prohibiting RC4 cipher suite, Feb 2015.
https://tools.ietf.org/html/rfc7465 (accessed: Apr 14th, 2019).

[PS04] Bijan Parsia and Evren Sirin. Pellet: An OWL-DL reasoner. In Third
international semantic web conference-poster, volume 18, pages 1–2, 2004.

https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/package-summary.html
https://www.owasp.org/index.php/O-Saft
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
https://tools.ietf.org/html/rfc7465

BIBLIOGRAPHY 199

[RGB+14a] Thomas Ruhroth, Stefan Gärtner, Jens Bürger, Jan Jürjens, and
Kurt Schneider. Versioning and evolution requirements for model-
based system development. In International Workshop on Compari-
son and Versioning of Software Models (CVSM 2014), volume 34/2 of
Softwaretechnik-Trends, pages 20–24, 2014.

[RGB+14b] Thomas Ruhroth, Stefan Gärtner, Jens Bürger, Jan Jürjens, and Kurt
Schneider. Towards adaptation and evolution of domain-specific
knowledge for maintaining secure systems. In 15th Int. Conf. of Prod-
uct Focused Software Development and Process Improvement (PROFES’14),
volume 8892 of LNCS, pages 239–253. Springer, 2014.

[RJ12] Thomas Ruhroth and Jan Jürjens. Supporting security assurance in the
context of evolution: Modular modeling and analysis with UMLsec.
In IEEE: 14th Int. Symp. on High-Assurance Systems Eng. (HASE 2012).
IEEE CS, October 2012.

[RPZ10] Yuan Ren, Jeff Z. Pan, and Yuting Zhao. Closed world reasoning for
OWL2 with NBox. Tsinghua Science & Technology, 15(6):692 – 701, 2010.

[SBG+17] Daniel Strüber, Kristopher Born, Kanwal Daud Gill, Raffaela Groner,
Timo Kehrer, Manuel Ohrndorf, and Matthias Tichy. Henshin: A
usability-focused framework for EMF model transformation develop-
ment. In ICGT, pages 196–208, 2017.

[SBMP08] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro.
EMF: Eclipse Modeling Framework. Pearson Education, 2008.

[Sch06] Kurt Schneider. Rationale as a by-product. In Allen H. Dutoit, Ray-
mond McCall, Ivan Mistrik, and Barbara Paech, editors, Rationale Man-
agement in Software Engineering, pages 91–109. Springer, 2006.

[Sch11] Kurt Schneider. Focusing spontaneous feedback to support system
evolution. In Proc. of IEEE 19th Int. Requirements Eng. Conf. (RE’11),
pages 165–174, Trento, Italy, 2011. IEEE.

[Set12] Burr Settles. Active learning. Synthesis Lectures on Artificial Intelligence
and Machine Learning, 6(1):1–114, 2012.

[SLAM13] Vítor E. Silva Souza, Alexei Lapouchnian, Konstantinos Angelopou-
los, and John Mylopoulos. Requirements-driven software evolution.
Computer Science-Research and Development, 28(4):311–329, 2013.

[SLWZ13] Xiaobing Sun, Bixin Li, Wanzhi Wen, and Sai Zhang. Analyzing im-
pact rules of different change types to support change impact analysis.
International Journal of Software Engineering and Knowledge Engineering,
23(03):259–288, 2013.

[SO05] Guttorm Sindre and Andreas Lothe Opdahl. Eliciting security require-
ments with misuse cases. Requirements Engineering Journal, 10(1):34–44,
2005.

[SPL18] Cristian-Alexandru Staicu, Michael Pradel, and Ben Livshits. SYN-
ODE: Understanding and automatically preventing injection attacks
on Node.js. Proceedings of the Network and Distributed System Security
Symposium (NDSS), 2018.

200 BIBLIOGRAPHY

[SPO+12] Mazeiar Salehie, Liliana Pasquale, Inah Omoronyia, Raian Ali, and
Bashar Nuseibeh. Requirements-driven adaptive security: Protecting
variable assets at runtime. 2012 20th IEEE Int. Requirements Eng. Conf.
(RE), pages 111–120, September 2012.

[SS04] Frank Swiderski and Window Snyder. Threat modeling. Microsoft
Press, 2004.

[SSFS11] Ansgar Scherp, Carsten Saathoff, Thomas Franz, and Steffen Staab.
Designing core ontologies. Applied Ontology, 6(3):177–221, 2011.

[SSK08] Kurt Schneider, Kai Stapel, and Eric Knauss. Beyond documents:
Visualizing informal communication. In Proceedings of Third Inter-
national Workshop on Requirements Engineering Visualization (REV ’08),
Barcelona, Spain, November 2008.

[Sta] Stanford Center for Biomedical Informatics Research (BMIR). Protégé
website. http://protege.stanford.edu (accessed: Apr 14th, 2019).

[SZS10] Igor Siveroni, Andrea Zisman, and George Spanoudakis. A UML-
based static verification framework for security. Requirements Engi-
neering, 15(1):95–118, 2010.

[TG06] Bill Tsoumas and Dimitris Gritzalis. Towards an Ontology-based Se-
curity Management. In Proc. of the 20th Int. Conference on Advanced
Information Networking and Applications (AINA), volume 1, pages 985–
992. IEEE, 2006.

[Thea] The Apache Software Foundation. Apache Jena. http://jena.
apache.org/ (accessed: Apr 14th, 2019).

[Theb] The Eclipse Foundation. MoDisco website. https://www.eclipse.
org/MoDisco/ (accessed: Apr 14th, 2019).

[Thec] The Eclipse Foundation. Papyrus Modeling Environment. https://
www.eclipse.org/papyrus/ (accessed: Apr 14th, 2019).

[Thed] The OWASP Foundation. OWASP – open web application security
project website. https://www.owasp.org (accessed: Apr 14th, 2019).

[Ton05] Paolo Tonella. Reverse engineering of object oriented code. In Proceed-
ings of the 27th International Conference on Software Engineering (ICSE),
pages 724–725, 2005.

[TYB+18] Thein Than Tun, Mu Yang, Arosha K. Bandara, Yijun Yu, Armstromg
Nhlabatsi, Niamul Khan, Khaled M. Khan, and Bashar Nuseibeh. Re-
quirements and specifications for adaptive security. Proceedings of the
13th International Conference on Software Engineering for Adaptive and
Self-Managing Systems - SEAMS ’18, pages 161–171, 2018.

[UBAH+15] Zoltán Ujhelyi, Gábor Bergmann, Ábel Hegedüs, Ákos Horváth,
Benedek Izsó, István Ráth, Zoltán Szatmári, and Dániel Varró. EMF-
IncQuery: An integrated development environment for live model
queries. Science of Computer Programming, 98, Part 1:80 – 99, 2015.

http://protege.stanford.edu
http://jena.apache.org/
http://jena.apache.org/
https://www.eclipse.org/MoDisco/
https://www.eclipse.org/MoDisco/
https://www.eclipse.org/papyrus/
https://www.eclipse.org/papyrus/
https://www.owasp.org

BIBLIOGRAPHY 201

[Ul 14] Anees Ul Mehdi. Epistemic Reasoning in OWL 2 DL. PhD thesis, Karl-
sruhe Institute of Technology, 2014.

[VBV+18] Cyntia Vargas, Jens Bürger, Fabien Viertel, Birgit Vogel-Heuser, and
Jan Jürjens. System evolution through semi-automatic elicitation of se-
curity requirements: A Position Paper. IFAC-PapersOnLine, 51(10):64 –
69, 2018. 3rd IFAC Conference on Embedded Systems, Computational
Intelligence and Telematics in Control CESCIT 2018.

[Vis] Visual Paradigm. Visual Paradigm website. https://www.
visual-paradigm.com/ (accessed: Apr 14th, 2019).

[VJL+14] Colin C. Venters, Caroline Jay, Lydia Lau, Michael K. Griffiths, Violeta
Holmes, Rupert R. Ward, Jim Austin, Charlie Dibsdale, and Jie Xu.
Software sustainability: The modern tower of babel. In Proceedings of
the Third International Workshop on Requirements Engineering for Sustain-
able Systems, RE4SuSy 2014, co-located with 22nd International Conference
on Requirements Engineering (RE 2014), Karlskrona, Sweden, August 26,
2014., pages 7–12, 2014.

[VP15] Mathy Vanhoef and Frank Piessens. All your biases belong to us:
Breaking RC4 in WPA-TKIP and TLS. In USENIX Security Symposium,
USENIX Security 15, pages 97–112, 2015.

[W3Ca] W3C OWL Working Group. MOF-Based metamodel. https://www.
w3.org/2007/OWL/wiki/MOF-Based_Metamodel (accessed: Apr 14th,
2019).

[W3Cb] W3C OWL Working Group. OWL 2 web ontology language manch-
ester syntax. https://www.w3.org/TR/owl2-manchester-syntax/
(accessed: Apr 14th, 2019).

[W3Cc] W3C SPARQL Working Group. SPARQL 1.1 Overview. https://www.
w3.org/TR/sparql11-overview/ (accessed: Apr 14th, 2019).

[W3Cd] W3C SPARQL Working Group. SPARQL 1.1 Update. https://www.
w3.org/TR/sparql11-update/ (accessed: Apr 14th, 2019).

[WSR10] Tobias Walter, Hannes Schwarz, and Yuan Ren. Y.: Establishing a
bridge from graph-based modeling languages to ontology languages.
In In: Proceedings of 3rd Workshop on Transforming and Weaving On-
tologies in Model Driven Engineering (TWOMDE). Volume CEUR of 604.,
CEUR-WS.org, 2010.

[WYY05] Xiaoyun Wang, Lisa Yin Yin, and Hongbo Yu. Finding collisions in
the full SHA-1. In Advances in Cryptology–CRYPTO 2005, pages 17–36.
Springer, 2005.

[Xia09] Liang Xiao. An adaptive security model using agent-oriented MDA.
Information and Software Technology, 51(5):933–955, 2009.

[YSJ12] Koen Yskout, Riccardo Scandariato, and Wouter Joosen. Change pat-
terns. Software & Systems Modeling, 13(2):625–648, August 2012.

https://www.visual-paradigm.com/
https://www.visual-paradigm.com/
https://www.w3.org/2007/OWL/wiki/MOF-Based_Metamodel
https://www.w3.org/2007/OWL/wiki/MOF-Based_Metamodel
https://www.w3.org/TR/owl2-manchester-syntax/
https://www.w3.org/TR/sparql11-overview/
https://www.w3.org/TR/sparql11-overview/
https://www.w3.org/TR/sparql11-update/
https://www.w3.org/TR/sparql11-update/

	Abstract
	Zusammenfassung
	Acknowledgements
	List of Abbreviations
	Introduction
	Motivation
	Challenges
	Research Method
	Preliminary Publications

	Research Roadmap
	Thesis Structure
	S2EC2O Introduction
	Assumptions
	S2EC2O Components
	S2EC2O Process

	Background
	Long-Living Systems
	Model-based Security Engineering
	Vulnerability Databases
	Ontologies
	Model Queries
	Graph Transformations
	Self-Adaptive Systems
	PhD Context: Research Project SecVolution

	Context Knowledge in Model-Based Security Engineering
	Security Context Knowledge
	Modeling Security Context Knowledge
	Defining the Security Upper Ontology
	Ontology Layering as Modularized Knowledge Base

	Building up the Security Context Knowledge
	Laws and Regulations
	Standards and Guidelines
	Attack Scenarios
	Vulnerability Databases
	Incorporate Security Knowledge into the Security Context Knowledge
	System Level Knowledge

	Managing the Knowledge Base
	Ontology Queries
	Ontology Updating

	Related Work
	Compliance Checking of Ontologies
	Knowledge Elicitation
	Security Requirements Elicitation

	Leverage Changes in the System Context for Secure System Design
	Detecting and Assessing Knowledge Changes
	Semantic Differencing
	SCK Evolution Example
	Semantic vs. Atomic Changes
	Using SiLift to detect SCK Evolutions
	Henshin Rule Layout Conventions
	Complex Edit Rule Example

	Ontology Reasoning
	The Challenge of Closed-World Assumption vs. Open-World Assumption
	Narrowing Degrees of Freedom to Increase Expressivity

	Choosing a Reasoner
	Inconsistency with Explanation
	Inference of Ontology Elements

	Related Work

	Co-Evolve Design-Time Models by Assessing Context Evolution
	Leveraging Context Evolution for System Co-Evolution
	Initial Compliance to Security Properties
	Security Context Catalog Meta Model
	Example of the S2EC2O Initialization Process
	Check System's Security prior to Context Evolution

	Coordinate Context Evolutions
	Co-Evolution at Design Time
	Semi-automatic Co-Evolution of Models
	Related Work
	Analyze the Impact of Changes with respect to Co-Evolution
	Vulnerability and Attack Management

	Assess Security Compliance During Run Time
	Run-Time Monitoring with Run-Time Insights
	Specifying Security Properties
	Specification of Security Requirements at Model level
	Security Requirements at Source-Code Level
	Mapping of Model Level and Source Level Annotations
	Synchronizing Model and Code

	Round-Trip Engineering Approach for Security Monitoring
	Verification at Run Time
	Countermeasures

	Support Security Fixing with Run-Time Insights
	Run-time Protocol for Subsequent Analysis
	Addition of Missing Elements
	Documentation of Security Violations

	Related Work
	Taking System Context into Account at Run Time
	Undiscovered Program Activities
	Security Monitoring

	Co-Evolve Run-Time Components of Systems
	Run-Time Adaptation Approach
	Motivating Examples
	Adaptation Support at Design Time
	Adaptation at Run Time
	Startup: Pull all ESR States
	Push Newly Threatened ESRs
	Reset ESR State after Threat is repealed

	Example of Adaptation Interaction
	Traceability of Adaptations

	Related Work
	Application Behavior Adaptation
	Development of Adaptive Systems
	Security-Aware Systems at Run Time

	Prototypical Implementation
	Architecture Overview
	System Model Design
	Management of Security Context Knowledge
	Employing Reasoners via API
	Realizing specific Implementations for Ecore Objects

	Relation of S2EC2O's Initialization Process and Realized Prototype Artifacts
	Initialization Process: Make System S2EC2O aware
	Initialization Process: Initial Compliance
	Initialization Process: Run-Time Monitoring

	Relation of S2EC2O's Delta Process and Realized Prototype Artifacts
	Delta Process: Determine Context Evolution from SCK
	Delta Process: Apply Co-Evolution Steps
	Delta Process: Generating Run-time Findings
	Detecting System Evolution Automatically

	Support for Run-Time Adaptation
	Review of the Prototype's Unique Features

	Case Study: Applying S2EC2O to iTrust
	Introduction to iTrust
	Architecture of iTrust
	Metrics of iTrust

	Introduction to Security-Related Context evolutions
	Classification and Relevance of Vulnerabilities
	S2EC2O Application Examples
	Example 1: Access Control
	Initial Compliance
	Context Evolution and Vulnerability
	Security Maintenance and Co-Evolution

	Example 2: Privacy by Encryption
	Initial Compliance
	Context Evolution and Vulnerability
	Security Maintenance and Co-Evolution

	Example 3: Data Protection by Locking
	Initial Compliance
	Context Evolution and Vulnerability
	Security Maintenance and Co-Evolution

	Example 4: Communication using Insecure Encryption
	Initial Compliance
	Context Evolution and Vulnerability
	Security Maintenance and Co-Evolution

	Example 5: Secure Dependencies
	Initial Compliance
	Context Evolution and Vulnerability
	Security Maintenance and Co-Evolution

	Performance Observations

	Contribution to Research
	Review of Research Question 1
	Review of Research Questions 2 and 3
	Review of Research Question 4
	Review of Research Question 5

	Conclusion
	Contributions
	Assumptions and Limitations
	Generalizability Considerations
	Scalability Considerations
	Limitations of the Case-Study Results
	Support for Additional Security Properties
	Support for Further Programming Languages
	Support for Further Software Engineering Methods

	Future Work
	Regard Evolution of ESRs and SMRs
	Share security and co-evolution knowledge of S2EC2O publicly among projects
	Consider Implementation-Specific Security Vulnerabilities
	Investigate Influence of Security Co-Evolutions on Functional Requirements

	Preliminary Publications
	Bibliography

