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Abstract

The DPLL procedure is the basis of some of the most successful propo-
sitional satisfiability solvers to date. Although originally devised as a proof-
procedure for first-order logic, it has been used almost exclusively for propo-
sitional logic so far because of its highly inefficient treatment of quantifiers,
based on instantiation into ground formulas. The recent FDPLL calculus by
Baumgartner was the first successful attempt to lift the procedure to the first-
order level without resorting to ground instantiations. FDPLL lifts to the
first-order case the core of the DPLL procedure, the splitting rule, but ignores
other aspects of the procedure that, although not necessary for completeness,
are crucial for its effectiveness in practice. In this paper, we present a new cal-
culus loosely based on FDPLL that lifts these aspects as well. In addition to
being a more faithful litfing of the DPLL procedure, the new calculus contains a
more systematic treatment of universal literals, one of FDPLL’s optimizations,
and so has the potential of leading to much faster implementations.

Keywords: DPLL procedure, first-order logic, sequent calculi, model genera-
tion.
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1 Introduction

In propositional satisfiability the DPLL procedure, named after its authors: Davis,
Putnam, Logemann, and Loveland [DP60, DLL62], is the dominant method for
building (complete) SAT solvers. Its popularity is due to its simplicity, its polyno-
mial space requirements, and the fact that, as a search procedure, it is amenable
to powerful but also relatively inexpensive heuristics for reducing the search space.
Thanks to these heuristics and to very careful engineering, the best SAT solvers
today can successfully attack real-world problems with hundreds of thousands of
variables and of clauses [MMZ"01, GN02]. These solvers are so powerful that
many developers of automated reasoning-based tools are starting to use them as
back-ends to solve first-order satisfiability problems, albeit often in an incomplete
way, by means of ingenious domain specific translations into propositional logic
[JNRO1, Jac00, SSBO02].

Interestingly, the DPLL procedure was actually devised in origin as a proof-
procedure for first-order logic. Its treatment of quantifiers is highly inefficient,
however, because it is based on enumerating all possible ground instances of an
input formula’s clause form, and checking the propositional satisfiability of each
of these ground instances one at a time. Because of its primitive treatment of
quantifiers the DPLL procedure, which predates Robinson’s resolution calculus by
a few years, was quickly overshadowed by resolution as the method of choice for
automated first-order reasoning, and its use has been confined to propositional
satisfiability ever since.!

Given the great success of DPLL-based SAT solvers today, two natural research
questions arise. One is whether the DPLL procedure can be properly lifted to the
first-order level—in the sense first-order resolution lifts propositional resolution, say.
The other is whether those powerful search heuristics that make DPLL so effective
at the propositional level can be successfully adapted to the first-order case. We
answer the first of these two questions affirmatively in this paper, providing a
complete lifting of the DPLL procedure to first-order clausal logic by means of a
new sequent calculus, the Model Evolution calculus, or ME for short. We believe
that the ME& calculus can be used to answer the second question affirmatively as
well, although that will be the subject of our future work.

The recent FDPLL calculus by Baumgartner [Bau00] was the first successful
attempt to lift the DPLL procedure to the first-order level without resorting to
ground instantiations. FDPLL lifts to the first-order case the core of the DPLL
procedure, the splitting rule, but ignores another major aspect, unit propagation
[Z596], that although not necessary for its completeness is absolutely crucial to its
effectiveness in practice. The calculus described in this paper lifts this aspect as
well. While the ME calculus borrows many fundamental ideas from FDPLL and
generalizes it, it is not an extension of FDPLL proper but of DPLL [Tin02], a simple

! But see Section 5 for a brief overview of first-order reasoning systems that use the procedure
to help them focus their search.
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sequent calculus for propositional logic modeling the main features of the DPLL
procedure. As we will see, the Model Evolution calculus is a direct lifting of DPLL
in the sense that it consists of appropriate first-order versions of DPLL’s rules, plus
two additional rules specific to the first-order case.

A very useful feature of the DPLL procedure—and of most propositional proof
procedures for that matter—is that it is able to provide a (Herbrand) model of
the input formula whenever that formula is satisfiable. The procedure, and by
extension the DPLL calculus, generates this model incrementally as it goes. The
Model Evolution calculus can be seen as lifting this model generation process at the
first-order level. We could say that the purpose of the Model Evolution calculus is,
like the DPLL calculus, to construct a Herbrand model of a given set ® of clauses,
if any such model exists. As in DPLL, this model is built incrementally during a
derivation.

At any step of a derivation the calculus maintains a context A, that is, a finite
set of (possibly non-ground) literals. The context A is a finite—and compact—
representation of a Herbrand preinterpretation.” The preinterpretation I induced
by A serves in turn as a candidate model for ®. This preinterpretation might not
be a model of ® because it is not an interpretation to start with, or because it
does not satisfy some clauses in ®. The purpose of the main rules of the calculus
is to detect each of these situations and either repair I, by modifying A, so that
it becomes an interpretation that satisfies all clauses of ®, or recognize that I, is
unrepairable and fail. In addition to these rules, the calculus contains a number
simplification rules whose purpose is, again like in DPLL, to simplify the clause set
and, as a consequence, to speed up the computation.

We call our calculus Model Fvolution calculus because it starts with a default
candidate model, one that satisfies no positive literals, and “evolves it” as needed
until it becomes an actual model of the input clause set @, or until it is clear that
® has no models at all. The DPLL calculus does exactly the same thing, but for
ground formulas only. The Model Evolution calculus simply extends this behavior
to non-ground formulas as well. An important by-product of this model evolution
process is that terminating derivations of a satisfiable clause set ®, when they
exist, produce a context whose induced interpretation is indeed a model of ®. This
makes the calculus well-suited for all applications in which it is important to also
provide counter-examples to invalid statements, as opposed to simply proving their
invalidity.

The Model Evolution calculus is refutationally sound and complete: an input
clause set ® is unsatisfiable iff the calculus (finitely) fails to find a model for ®.
The calculus is obviously non-terminating for arbitrary, satisfiable input sets. With
some of these clause sets, the calculus might go on repairing their candidate model
forever, without ever turning it into an actual model. The calculus is however

2 This is a set of ground literals some of whose subsets are Herbrand interpretations in the
standard sense. See later for a formal definition.
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terminating for the class of ground clauses (of course), and for the class of clauses
resulting from the translation of conjunctions of Bernays-Schonfinkel formulas into
clause form.? The termination for ground clause sets is a direct consequence of
the fact that with such inputs the Model Evolution calculus reduces to the DPLL
calculus, as we will show. The reasons for termination for Bernays-Schonfinkel
formulas. are similar to those given in [Bau00] for FDPLL.

As mentioned, the Model Evolution calculus is already a significant improve-
ment over FDPLL because it is a more faithful litfing of the DPLL procedure,
having additional rules for simplifying the current clause set and the current con-
text. Another advantage over FPDLL is that it contains a more systematic and
general treatment of universal literals, one of FDPLL’s optimizations. As we will
see, adding universal literals to a context imposes stronger restrictions on future
modification of that context. This has the consequence of greatly reducing the
non-determinism in the calculus, and hence the potential of leading to much faster
implementations.

The paper is organized as follows. After some formal preliminaries, given below,
we briefly describe in Section 2 the DPLL procedure, and define the DPLL calculus,
a declarative version of the procedure. We then define and discuss the Model Evo-
lution calculus, in Section 3, showing how it extends DPLL. We prove the calculus’
correctness in Section 4. Then we show in Section 5 how the calculus compares to
other calculi in related work. We conclude the paper in Section 6 with directions
for further research. The more technical results needed in Section 4 are proved in
detail in the appendix.

1.1 Formal Preliminaries

In this paper, we use two disjoint, infinite sets of variables: a set X of universal
variables, which we will refer to just as variables, and another set V', which we will
always refer to as parameters. The reason for having two types of variables will be
explained later. We will use, possibly with subscripts, u,v to denote elements of
V', x,y to denote elements of X, and w to denote elements of VU X. We fix a
signature ¥ throughout the paper. We denote by ¥%%° the expansion of ¥ obtained
by adding to ¥ an infinite number of (Skolem) constants not already in X. By
Y-term (X5K°-term) we mean a term of signature ¥ (X%°) over X U U. In the
following, we will simply say “term” to mean a X%%°-term. If ¢ is a term we denote
by Var(t) the set of t’s variables and by Par(t) the set of ¢’s parameters. A term
t is ground iff Var(t) = Par(t) = . Two terms are variable-disjoint (parameter-
disjoint) iff they have no variables (parameters) in common. They are disjoint iff
they are both variable- and parameter-disjoint. We extend the above notation and
terminology to literals and clauses in the obvious way.

We adopt the usual notion of substitution over 2K°-expressions or sets thereof.
We also use the standard notion of unifier and of most general unifier. We will

3 Such clauses contain no function symbols, but no other restrictions apply.
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denote by {w; +— t1, ..., wy, — t,} the substitution ¢ such that w;o = t; for all
i=1,...,nand wo = w for all w € X U V \ {wy,...,w,}. Also, we will denote
by Dom(o) the set {wy,...,w,} and by Ran(c) the set {wio,...,w,o}.

If o is a substitution and W a subset of X U V, the restriction of o to W,
denoted by oy is the substitution that maps every w € W to wo and every
w e (VU X)\W toitself. A substitution p is a renaming on W C (V U X) iff pyy
is a bijection of W onto W. For instance p := {x + u,v — wu,u +— v} is a renaming
on V. Note however that p is not a renaming on V U X as it maps both x and v to
u. We call a substitution simply a renaming if it is a renaming on V' U X. We call
a substitution o parameter-preserving, or p-preserving for short, if it is a renaming
on V. Similarly, we call o variable-preserving if it is a renaming on X. Note
that a renaming is parameter-preserving iff it is variable-preserving. For example,
the renaming {z — y,y — z,u — v,v — u} is both variable- and parameter-
preserving, wheres the renaming {z — v,v + z} is neither variable-preserving nor
parameter-preserving.

If s and t are two terms, we say that s is more general than t, and write s 2 t, iff
there is a substitution o such that so =t. We say that s is a variant of t, and write
st iff s 2t and t 2 s or, equivalently, iff there is a renaming p such that sp = ¢.
We write s 2 t if s 2 t but s % t We say that s is parameter-preserving more
general than t, and write s > ¢, iff there is a parameter-preserving substitution
o such that so = t. When s > t we will also say that t is a p-instance of s.
Since the empty substitution is parameter-preserving and the composition of two
parameter-preserving substitutions is also parameter preserving, it is immediate
that the relation > is, like =, both reflexive and transitive. We say that s is
a parameter-preserving variant, or p-variant, of t, and write s ~ ¢, iff s > ¢ and
t > s; equivalently, iff there is a parameter-preserving renaming p such that sp = ¢.*
We write s >t if s > ¢ but s 2£ t. Note that both ~ and = are equivalence relations.

All of the above about substitutions is extended from terms to literals, that is,
atomic formulas or negated atomic formulas, in the obvious way. We denote literals
in general by the letters K, L. We denote by L the complement of a literal L. As
usual, a clause is a disjunction Ly V --- L, of zero or more literals. We denote
clauses by the letters C' and D and the empty clause by 0. We will write L V C
to denote a clause obtained as the disjunction of a (possibly empty) clause C' and
a literal L. When convenient, with a slightly abose of notation, we will treat a
clauses as the set of its literals.

A Skolemizing substitution is a substitution § with Dom(0) C X that replaces
each variable in Dom/(0) by a fresh Skolem constant and every remaining element
of X UV by itself. A Skolemizing substitution for a literal L (clause C) is a
Skolemizing substitution 6 with Dom(6) = Var(L) (Dom(8) = Var(C')). We write
LSk (C%°) to denote the result of applying to L (C) some Skolemizing substitution

4 Note that we could have just as well defined s to be a variable-preserving variant of t when
sp = t for some parameter-preserving renaming p. The reason is that, as observed above, parameter
preserving renamings are also variable-preserving, and vice versa.



for L (C).

We call a (Herbrand) preinterpretation any set I of ground X*°-literals that
contains L or L or both for every ground X%%-literal L. A (Herbrand) interpretation
is a Herbrand preinterpretation that contains a literal L if and only if it does
not contain its complement L. Satisfiability of literals and clauses in a Herbrand
interpretation I is defined as usual. The interpretation I satisfies (or is a model
of) a ground literal L, written I |= L, iff L € I; I satisfies a ground clause C, iff
I = L for some L in C; I satisfies a clause C, iff I = C’ for all ground instances
C’ of C; I satisfies a clause set @, iff I = C for all C' € ® in C. The interpretation
I falsifies a literal L (a clause C) if it does not satisfy L (C). Sometimes we will
also say that a clause C' is valid in I to mean that I |= C.

2 The DPLL Calculus

The DPLL procedure can be used to decide the satisfiability of ground (or proposi-
tional) formulas in conjunctive normal form, or, more precisely but equivalently, the
satisfiability of finite sets of ground clauses. The three essential operations of the
procedure are unit resolution with backward subsumption, unit subsumption, and
recursive reduction to smaller problems. The procedure can be roughly described
as follows.”

Given an input clause set ®, whose satisfiability is to be checked, apply unit
propagation to it, that is, close ® under unit resolution with backward subsumption,
and eliminate in the process (a) all non-unit clauses subsumed by a unit clause in
the set and (b) all unit clauses whose (only) atom occurs only once in the set. If the
closure ®* of ® contains the empty clause, then fail. If ®* is the empty set, then
succeed. Otherwise, choose an arbitrary literal L from ®* and check recursively,
and separately, the satisfiability of ®* U {L} and of ®* U {L}, succeeding if and
only if one of the two subsets is satisfiable.

The essence of this procedure can be captured by a sequent calculus, the DPLL
calculus, first described [Tin02], consisting of the derivation rules below. The cal-
culus manipulates sequents of the form A = ®, where A, the context of the sequent,
is a finite set of ground literals and ® is a finite (multi)set of ground clauses.%

C#0,
, AF® LVC . A
Split = if §L¢A,
AMLF® LVC ALF® LVC ~
L¢A

® See the original papers [DP60, DLL62], among others, for a more complete description.
6 As customary, we write A, L = ®,C, say, to denote the sequent A U {L} + & U {C}.
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A o L . [L¢n, ALE® LVC
Assert ————  if {_ Subsume

ALF O L T¢A ALFE®

A+ O O AL+ ® LVC
Empty ———————  if ®#£0 Resolve — :

AFO ALE®, C

The intended goal of the calculus is to derive a sequent of the form A + @ from
an initial sequent () = ®(, where ®( is a clause set to be checked for satisfiability.
If that is possible, then ®( is satisfiable; otherwise, ®( is unsatisfiable. Informally,
the purpose of the context A is to store incrementally a set of asserted literals, i.e.,
a set of literals in ® that must or can be true for ®( to be satisfiable. When A ()
is derivable from () = @, the context A is indeed a witness of ®(’s satisfiability
as it describes a (Herbrand) model of ®(: one that satisfies an atom p in @ iff p
occurs positively in A.

The context is grown by the Assert and the Split rules. The Assert rule models
the fact that every literal occurring as a unit clause in the the current clause set
must be satisfied for the whole clause set to be satisfied. The Split rule corresponds
to the decomposition in smaller subproblems of the DPLL procedure. This rule
is the only don’t-know non-deterministic rule of the calculus. It is used to guess
the truth value of an undetermined literal L in the clause set ® of the current
sequent A F &, where by undetermined we mean such that neither L nor L is in
the context A. The guess allows the continuation of the derivation with either the
sequent A, L - ® or with the sequent A, L + ®.

The other two main operations of the DPLL procedure, unit resolution with
backward subsumption and unit subsumption, are modeled respectively by the
Resolve and the Subsume rule. The Resolve rule removes from a clause all lit-
erals whose complement has been asserted—which corresponds to generating the
simplified clause by unit resolution and then discarding the old clause by back-
ward subsumption. The Subsume rule removes all clauses that contain an asserted
literal—because all of these clauses will be satisfied in any model in which the
asserted literal is true.

The DPLL calculus is easily proven sound, complete and terminating. It is not
hard to show that the calculus maintains its completeness even if one constrains
the Split rule to split only on positive literals.” In other words, there is no loss of
completeness if Split is replaced by the rule:

L is positive,

Split’ A+ ®, LVC ” C #0,

| — 1

P ALF® LVvC ALF® LVC L¢A,
T¢A

" This fact is known in the SAT literature and is used as an optimization in a number of
DPLL-based SAT solvers.



Another change that does not alter the calculus in any fundamental way—and is
actually more faithful to the way the DPLL procedure is usually implemented—is
the replacement of the Empty rule by the following, more powerful rule:

Close _ _
AFO Li,....L, €A

AP ® LiveVL, {@#Q]orn>0,
Note that Close reduces to the Empty rule given earlier if Ly V ---V L, has no
literals (if n = 0). The reason Close does not really change the calculus is that
every application of Close can be simulated by n applications of Resolve followed
by one application of Empty. Interestingly, with Close the Resolve rule becomes
superfluous for completeness.

We mention the Split’ and Close rules here because they will facilitate our com-
parison between the Model Evoution calculus and DPLL.

3 The Model Evolution Calculus

The Model Evolution calculus is a direct lifting of the DPLL calculus to the first-
order level. The lifting is achieved with a suitable first-order version of the rules
Split’, Assert, Subsume, Resolve and Close of DPLL, plus the addition of two extra
rules, Commit and Compact, specific to the first-order case. Of these two extra
rules, Compact is just a simplification rule like Resolve and Subsume, while Commit
is analogous to a rule with the same name in FDPLL.

Similarly to DPLL, the derivation rules of the Model Evolution calculus apply
to and produce sequents of the form A + ®. This time, however, A is finite set of
literals possibly with variables or with parameters, called again a context, and ® is
a set of clauses possibly with variables.

As mentioned in the introduction, the context A in a sequent A = ® determines
a (pre)interpretation Iy which is meant to be a model of ®. The purpose of the main
rules of the calculus is to recognize when I, is not a model of ®—either because it
is not even an interpretation or because it falsifies a clause in ®—and repair it so
that it can become one. The repairs are both localized and incremental, and based
on the computation of most general unifiers. The progressive repair process or
evolution of the candidate model starts with a default interpretation and continues
until an actual model is found or no further repairs are possible. The calculus is
non-deterministic because in some cases the current interpretation can be repaired
in two alternative ways, neither of which can be ruled out a priori. With an initial
sequent Ag F ®¢ then, this gives rise to a search space of possible evolution
sequences for Iy, the initial candidate model for ®.

We will show that when ®g is unsatisfiable and Ag is just {—v} all these alterna-
tive sequences are finitely failed—making the calculus complete. We will also show
that, conversely, if all evolution sequences for Iy, are finitely failed, then ®q is
guaranteed to be unsatisfiable—making the calculus sound as well. In the process,
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we will also show that non-failed finite sequences that cannot be grown any longer
end with a context whose candidate model is indeed a model of ®.

3.1 Contexts and Interpretations

The defining aspect of the calculus, modeled after FDPLL, is the way contexts are
extended to the first-order case, and the role they play in driving the derivation and
the model generation process. Therefore, we start our description of the calculus
with them.

Definition 3.1 (Context) A context is a set of the form {—v} U S where v € V
and S is a finite set of literals each of which is either parameter-free or variable-free.

A context is then a set of of literals that do not have both variables and pa-
rameters in them, plus a pseudo-literal of the form —wv. The role of —v will become
clear later.

Where L is a literal and A a context, we will write L €~ A if L is a variant of
a literal in A, will write L €~ A if L is a p-variant of a literal in A, and will write
L e> A if L is a p-instance of a literal in A.

We will work only with non-contradictory contexts in this paper.

Definition 3.2 (Contradictory) A literal L is contradictory with a context A
iff Lo = Ko for some K €~ A and some parameter-preserving substitution o. A
context A is contradictory iff it contains a literal that is contradictory with A.

Example 3.3 Let A := {-w, p(x1,9(y1)), ~q(v1)}. Then —p(h(x),u), —p(v,u),
and q(y) are all contradictory with A. However, q(f(v)) and r(z), say, are not.
(Recall that x,x1,y1 are variables while v,v1,u are parameters.)

A non-contradictory context induces a (unique) preinterpretation by means of
the next two notions.

Definition 3.4 (Most Specific Generalization) Let L be a literal and A a con-
text. A literal K is a most specific generalization (msg) of L in A iff K 2 L and
there is no K' € A such that K Z K' 2 L.

Definition 3.5 (Productivity) Let L be a literal, C' a clause, and A a contest.
A literal K produces L in A iff

1. K is an msg of L in A, and
2. there is no K' €> A such that K 2 K' > L.

The context A produces L iff it contains a literal K that produces L in A. The
context A produces C' iff it produces one of C’s literals.
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Example 3.6 Let A := {_"Ua p(vlag(ul))v _'p(vlag(vl))a q(h(u)av)a _'q(uvg(v))}'
The literals

_'p(vvu)a p(U,g(U)), p(xag(a))v _'p(aag(a))
are all produced by A. On the other hand,

p(v,u), ~p(v,g(u)), —p(z,g(a)), p(a,g(a))

are not. Note though that both q(h(u), g(v)) and —q(h(u), g(v)) are produced by A.

It is not difficult to show that there are effective—and simple—unification-based
procedures to test whether two literals are contradictory and whether a literal
produces another in a given context.

Contexts and interpretations satisfy a number of general properties that are
useful for our calculus. We present and discuss these properties next, deferring
their proof to the appendix.

Definition 3.7 (Induced Preinterpretation) Let A be a non-contradictory con-
text. The preinterpretation induced by A, denoted by Ix, is the set of all ground
ko _literals produced by A.

Induced preinterpretation are indeed pre interpretations.

Proposition 3.8 Let A a non-contradictory context. Then, Ip is a preinterpreta-
tion.

Recalling that each literal in a context is either parameter-free or variable-free
(or both), one way to understand how a non-contradictory context A induces a
preinterpretation I is the following.

Let us say that a ground literal L in I, is true in I if L € Iy and L ¢ Iy, is
false in I if L € Iy and L ¢ I, and is over-defined in Iy otherwise. Where K is
a literal, let us say that a literal L is immediately below K in A iff K is an msg of
Lorof L.

Now, if A contains a parameter-free literal K, then all the ground instances of
K will be true in I, without exception.® If A contains a variable-free literal K, then
all the ground instances of K will be true in I, except for those whose complement
is an instance of a literal in A that is parameter-free or is immediately below K in
A.

It should be clear now that the purpose of the pseudo-literal —v in a context
A is to provide a default truth-value to those ground literals whose value is not
determined by the rest the context. In fact, consider a ground literal L such that
neither L nor L is produced by A \ {=v}. If L is negative, then it is true in I

8 It is obvious that the instances are not false. They are not over-defined either because
otherwise A would be contradictory, as we will show.
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because it is produced by —w. If L is positive, then it is false in I because its
complement is produced by —w.

The preinterpretation induced by a context may not be an interpretation in
general. It becomes one exactly when A is consistent.

Definition 3.9 (Consistent) A context A is consistent wrt. a literal L iff A does
not produce both L and L; A is just consistent iff it is consistent wrt. every literal

L.

Proposition 3.10 Let A be a non-contradictory context. Then, In is an interpre-
tation iff A is consistent.

There is a simple necessary condition for the inconsistency of a non-contradictory
context A, typified by Example 3.6 earlier: there exist two variable-free K, L €~ A
such that K and L unify and neither K > L nor L > K. One of the derivation
rules of the ME calculus uses this fact to recognize that the context A in the current
sequent is inconsistent. Specifically, it looks for a literal L € A and a literal K €~ A
with K disjoint with L such that K and L have a most general unifier o and neither
K > L nor L > K. Each pair of literals like L and K above is a source of incon-
sistency for A, which we call a connection. The calculus attempts to eliminate all
connections (L, K) from the current context by adding Lo or its complement to the
context, provided that the addition does not result into a contradictory context.

As we mentioned, even if a context of a sequent A - & is consistent, its induced
intepretation may falsify a clause of ®. This situation is detectable through the
computation of context unifiers.

Definition 3.11 (Context Unifier) Let A be a context and
C=LiV-VLnpVLniiV--VLy,

a parameter-free clause, where 0 < m < n. A substitution o is a context uni-
fier of C' against A with remainder L,,+10V ---V Lyo iff there are fresh variants
Ky,...,K, €~ A such that

1. o is a most general simultaneous unifier of {K1,L1},...,{Kn, Ly},
2. foralli=1,...,m, (Par(K;))o CV,
3. foralli=m+1,....n, (Par(K;))o £ V.

We say, in addition, that o is productive iff K; produces Lio in A for all i =
1,...,n.

A context unifier o of C against A with remainder Ly, 10V ---V L,o is ad-
missible (for Split) iff for all distinct i,j = m + 1,...,n, Lo is parameter- or
variable-free and Var(L;o) N Var(L;o) = 0.
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Note that each context unifier has a unique remainder. If ¢ is a context unifier
of a clause C' with remainder D we call each literal of D a remainder literal of o.

Example 3.12 Let A := {-v, p(vi,u1), —p(z1,9(x1)), q(vz,9(v2))} and C =
r(x) V —p(x,y). Then, the substitutions

o1 = {v—rx), vy —x, u—y}

oy = {vr(vn), x— v, u — Yy}

are both context unifiers of C1 against A with respective remainders r(x)V —p(x,y)
and —p(v1,y). While both o1 and o9 are productive, neither of them is admissible;
the first because its remainder literals are not variable-disjoint, the second because
its remainder literal contains both variables and parameters. By contrast,

o3 = {vr(v), z— v, yr—ur}

is a context unifier of Cy against A, this time with remainder —p(vi,uy), that is
both productive and admissible.
Consider now the clause Cy = —p(z,y) V =q(x,y). The substitution

oy = {vr g, up = g(u), = v2, y o gluz)}

is a context unifier of Co against A with remainder —p(vy, g(ve)). This context
unifier is admissible but it is not productive because the literal p(vi,u1) of A chosen
to unify with —p(z,y) does not produce —p(x,y)oys = p(va, g(va)).

We point out for later comparisons with the DPLL calculus that when, in Def-
inition 3.11, C is ground and —w is the only non-ground literal of A, the substitu-
tion o is a context unifier of C' against A with remainder (L,,410V -V Lyo) =
(Lypg1 V-V Ly) iff (i) foralli = 1,...,m, K; = L; and (ii) for all i = m+1,...,n,
L; is a positive literal occurring neither positively nor negatively in A while K is a
p-variant of —w.

Admissible context unifiers are fundamental in the Model Evolution calculus.
In fact, with a context A and a clause C, the existence of an admissible context
unifier of C' against A is a sign that I, might not a model of C. This is because
it is possible to compute an admissible context unifier of C' against A whenever
A is consistent and I, falsifies C. The discovery by the calculus of an admissible
context unifier o of C' against the current context A prompts a modification of A
that involves adding a literal of C'o, with the goal of making C' valid in the new
Ip. This literal is chosen only among the remainder literals of o, the reason being
essentially that non-remainder literals can be ignored with no loss of completeness.

Note that while the existence of an admissible context unifier ¢ of C' against A
is necessary for the unsatisfiability of C' in Iy, it is not sufficient unless o is also
productive. As a matter of fact, for completeness the calculus needs to add to the
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context only remainder literals of admissible unifiers that are also productive. For
greater flexibility, however, we allow it to add remainder literals of non-productive
admissible unifiers as well. The reason is mostly practical and twofold: first, when
implementing the calculus, insisting on computing only productive context uni-
fiers can be considerably more expensive than computing context unifiers that are
usually, although not always, productive; second, sometimes “repairing” candidate
models with remainder literals from non-productive context unifiers can produce
more constrained contexts, as illustrated in the example that follows.

Example 3.13 Let A := {-w, p(u), =q(g(y))} and C := p(z) V q(z). The substi-
tution

o = {v—0plg(y)), z— g(y)}

is a context unifier of C' against A with remainder p(g(y)), but it is not productive.
As a matter of fact, I satisfies C', and so Co, because A it produces every ground
instance of p(x). However, having the universal literal p(g(y)) in A along with p(u)
considerably constraints further repairs involving instances of p(u), as we explain
in Section 3.2.

Productivity issues aside, it is important to observe at this point is that although
context unifiers for a given clause C' and context A are easily computable (they
are just simultaneous most general unifiers), they are not unique and may not be
admissible. Nevertheless, the calculus does not need to search for admissible context
unifiers. For completeness purposes any admissible context unifier of C' against A
will do. Furthermore, and more important, admissible context unifiers are easily
derived from non-admissible ones. In fact, let o be a context unifier of C' against A
with remainder D. If o has a remainder literal L that contains both variables and
parameters or shares variables with another remainder literal, one can compose o
with a substitution that moves the variables of L to fresh parameters (and fixes
everything else). It easy to see that a repeated application of this process leads
to an admissible context unifier op of C' whose remainder is included in Dp. For
instance, the non-admissible contexts unifiers o7 and oy in Example 3.12 can both
be turned into the admissible o3 by this kind of process.

Now, while the choice of an admissible context unifier over another is irrelevant
for completeness, some context unifiers are better than others for efficiency pur-
poses. A context unifier with an empty remainder for instance is always preferrable
to one with an non-empty remainder, because it lets the calculus stop the derivation
right away, as we will see. In absense of those, context unifiers with parameter-free
remainder literals are in general preferrable over context unifiers with variable-free
remainder literals only. As we explain later, the addition of a parameter-free literal
to a context imposes more constraints on later additions than the addition of a
variable-free literal, leading in principle to shorter derivations.
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3.2 Parameters vs. Variables

Before moving to describe the rules of the Model Evolution calculus, it is important
to clarify the respective roles that parameters and variables play in the calculus.
We said that the calculus manipulates sequents of the form A F ®, where ® is a
clause set and A is a context providing a candidate model for ®.

Each derivation in the calculus starts with a sequent of the form —v F ®¢, where
®y contain only standard clauses, i.e. clauses with no parameters—but possibly
with variables. Similarly, all sequents generated during a derivation have clause
sets consisting of standard clauses only. Variables then can appear both in clause
sets and in contexts. Parameters instead can appear only in contexts.

The role of variables within a clause is the usual one: they stand for all ground
terms. In contrast, the role of variables and parameters within a context is to
constrain, in different ways, how a candidate model can be repaired. To describe
this it is helpful to ignore at first the issue of consistency. Let us assume then that
the context of the current sequent A + & is consistent—so that the candidate
model induced by A is at least an interpretation.

When A is consistent, the current interpretation Iy needs repairing only if it
falsifies a clause C' in . As we observed earlier, in that case there is an admissible
context unifier ¢ of C against A. If every instance of C falsified by I, is also an
instance of C'o, to make C' valid in I, it is enough to modify A so that I satisfies
Co. One way to do that is to pick from Co a literal Lo that is not contradictory
with A, and assert it by adding it to A. The goal is to make the unit clause Lo valid
in In, which then makes C'o valid as well. Now recall that, since o is admissible,
the added literal will not contain both parameters and variables.

If Lo is a parameter-free literal, a univesal literal in FDPLL terminology, the
assertion of Lo cannot be retracted. No repairs that involve making instances of
Lo false will be allowed from that point on. Intuitively, this is justified by the fact
that, because of the way we define context unifiers, when Lo is parameter-free every
model of C'o that falsifies a ground instance of C'o\ Lo satisfies all ground instances
of Lo. That is the case, for instance, if Co has the form P(f(z)) VvV Q(y,y) V R(y),
where x and y are distinct variables, and Lo is P(f(x)).

If Lo is variable-free, the calculus is not sure that every model of C'o that falsifies
a ground instance of C'o \ Lo satisfies all ground instances of Lo. Therefore, the
assertion of Lo is provisional; it can be (partially) retracted later. When adding
Lo to the context, the calculus is in essence making the assumption that there is a
model of Co that satisfies all ground instances of Lo. This assumption, however, is
just a working hypothesis, subject to be revised when evidence against it is found.
This might happen if the calculus later adds to the current context A’ a literal Lo,
for some context unifier ¢/, in order to fix some other problem with the current
interpretation, and it happens that Co’ is an instance of C'o. After the addition,
the new induced interpretation satisfies only those instances of Lo that are not an
instance of Lo’. At that point, the clause C'o may not be valid anymore because
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its instance C'o’ may now be falsified. If that is case, the calculus will detect this
and will try to make Co’ valid (thereby restoring the validity of C'o) by looking
in Co’ for a literal other than Lo’ that can be added to the context, as explained
earlier for Lo.

We point out that, since literals are never removed from a context, once a
variable-free literal L has been asserted it can be retracted only partially—in the
sense that only some, not all, of its ground instances can be made false in the current
interpretation. Hence it would be more accurate to say that when the calculus adds
L to the current context it is assuming that (i) definitely one ground instance of
L is true and (ii) possibly all ground instances of L are true. Note that this is
consistent with the fact that ground literals are both parameter- and variable-free:
no matter how one looks at them, once they are asserted they cannot be retracted.

When A is not consistent the reasoning above still applies, but with the differ-
ence that I, is only a preinterpretation—which intuitively means that I, makes
at least one literal L and its complement L both valid. In that case, Iy must be
repaired so that it commits to either L or L. As we mentioned earlier, a necessary
condition for the existence of L is that L is a common instance of two variable-free
literals K, and K» such that K;, Ky €~ A. It is possible to repair I then by
computing the most general common instance K of K; and K, and adding either
K or K to A—as long as the added literal is not contradictory with A.

3.3 Derivation Rules

Having explained the main concepts and ideas behind the calculus, we can now
describe and discuss its derivation rules. While doing that we will also make com-
parisons with the rules of the DPLL calculus. We will show that, modulo a negligible
technical difference, the Model Evolution calculus reduces precisely to DPLL when
the input clause set is ground.” The technical difference is simply that, contrary
to DPLL, contexts in our calculus contain the pseudo literal —v. We will see that,
except for that, the two calculi operate on the same kind of sequents in the ground
case, and stepwise simulate each other.

) A-o CVL .
Split ——ko if ()
A Lo+ ® CVL A, (Lo) F @ CVL
C#0,
o is an admissible context unifier of C'V L against A
where (%) =

with remainder literal Lo,

neither Lo nor (fa)Sko is contradictory with A

9 More precisely, it reduces to the version of DPLL that uses the rules Split’ and Close, described
at the end of Section 2, in place of Split and Empty, respectively.
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We say that the clause C' Vv L above is the selected clause, the literal L
is the selected literal, and o is the context unifier Split.

The Split rule is the analog of the Split’ rule in DPLL. Together with Commit,
described later this the only (don’t-know) non-deterministic rule of the calculus,
the one that drives the search for a model for the input clause set. Split is the rule
that discovers when the current candidate model falsifies one of the clauses in the
current clause set. It does that by computing a context unifier ¢ with non-empty
remainder for a clause with at least two literals. Once it finds o, Split attempts to
repair the candidate model by selecting a remainder literal Lo and adding either
Lo or its complement to the context. The reason for adding the complement of Lo
in alternative to Lo is of course that the current clause set may have no models
that satisfy Lo. Obviously, the addition of Lo’s complement to the context will
not make the selected clause C'V L valid in the new candidate model. But it will
make sure that no context unifier ¢’ of C'V L has Lo’ in it remainder, forcing the
calculus to select other remainder literals, if any, to make C'V L valid.

Note that Split does not quite add the complement of Lo: when Lo is parameter-
free it adds a Skolemized version of Lo.'% This is in accordance to our treatment
of parameter-free literals in contexts as universal sentences.

In the ground case—that is, when both A\ {—v} and ® U {C'V L} are ground—
the Split rule reduces exactly to the Split’ rule of DPLL. To see that it is enough to
recall that in the ground case, if Lo = L is a remainder literal of a context unifier
o of C'V L against A, then L is positive and such that neither L nor L occurs in A.
Moreover, L (respectively, L) is contradictory with A, in the sense of Definition 3.2,
iff L € A (respectively, L € A).

MK L ®
AMK,L,Lo - ® AMK,L,Lo - ®

Commit if ()

o is an mgu of L and of a fresh p-variant of K,
where (x) = ¢ Var(K) = Var(L) = Var(L)o = 0,

neither Lo nor Lo is contradictory with A U {K, L}

We say that the pair (L, K) above is the selected connection of Commit.

The Commit rule is the one that detects an inconsistency in the current context.'!
When Commit applies to the sequent A, L + & with selected connection (L, K),
both Lo and Lo are produced by A U {L}. Each conclusion of Commit removes this
anomaly by making the new context produce either just Lo or just Lo. Observe
that Commit never applies with selected connection (L, K) such that K > L or

10 When Lo is variable-free the Skolemization step is vacuous.
11 See the observation after Proposition A.3.
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L > K. In fact, if K 2 L then Lo coincides with L, which makes it contradictory
with A U {K, L}; if L > K then Lo coincides with K which makes it contradictory
with A U {K, L}.

There is no rule corresponding to Commit in DPLL. However, Commit never
applies in the ground case. In fact, then, L and a p-variant of K in Commit’s
precondition have a most general unifier only if they are identical, or either K or L
has the form —v. Now, in the first case, Lo = L, which is obviously contradictory
with A U {K, L}; In the second case, either K > L or L > K. In both cases then,
the rule does not apply.

A F O L . there isno K € A s.t. K > L,
Assert —— if

AL FE O, L L is not contradictory with A

We say that the clause L above is the selected unit clause of Assert.

As in DPLL, the Assert rule is extremely useful in reducing the non-determinism of
the calculus. Every candidate model of a clause set ® U {L} must make L valid in
order to become a model of ® U {L}. The Assert rule achieves just that by adding
L to the context. Note that since L is parameter-free, its addition to the context is
not retractable. Also note that the rule does not apply if the (permament) validity
of L has been already established. This is the case when A contains a—necessarily
parameter-free—literal K such that K > L. The rule does not apply also if L is
contradictory with A. In that case, however, the candidate model is unrepairable.
Other rules will detect that and cause the calculus to stop working on A + @, L.

In the ground case, Assert reduces exactly to its namesake in DPLL. The reason
is that, then, K > L iff K = L, and L is not contradictory with A iff L € A.

AN KEFO L
Subsume .  LvC if K> L.
AKE®

We say that the clause L V C above is the selected clause of Subsume.

The purpose of Subsume is the same as in DPLL: get rid of clauses that are valid
in the current candidate model, and are guaranteed to stay so. These are exactly
those clauses one of whose literals is a p-instance of a—necessarily parameter-free—
literal in the current context. Although Subsume is not needed for completeness, it
is very useful in practice because it reduces the size of the current clause set.

In the ground case, the Subsume rule reduces to its namesake in DPLL because,
then, K > L iff K = L.

there is an mgu o of L and K’,

if < a fresh p-variant of K, s.t.
(Par(K'))o CV and Co =C
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We say that the clause L V C above is the selected clause and L is the
selected literal of Resolve.

This rule is similar to Subsume in that it is not needed for completeness but is
useful to reduce the complexity of the current clause set. Since Resolve is in a
sense dual to Subsume, it would be reasonable to expect its precondition to be
just K > L. This precondition, however, is a special case of the one provided.
The given precondition makes Resolve more widely applicable, allowing for more
frequent simplifications. Observe that Resolve is a special case of unit resolution
(with backward subsumption): the one in which the resolvent of a unit clause K
and a clause LV C' is exactly C—as opposed to a proper instance of C.

In the ground case, the Resolve rule as well reduces to its namesake in DPLL.
To see why it is enough to observe that in that case Resolve’s precondition holds iff
o is the empty subtitution and K/ = K = L.

ANNK, LE® .
Compact if K>1L
ANK O

We say that the literal L above is the selected literal and the literal K
is the subsuming literal of Compact.'?

The Compact rule is another simplication rule that is not nedeed for completeness
but is useful in practice. To understand the rule’s rationale it is important to know
that, the way the calculus is defined, Compact’s precondition holds only if K is a
parameter-free literal. As discussed in a previous section, parameter-free context
literals stand for all their instances, with no exception. This means that when a
parameter-free literal K is added to a context, all literals in the context that are an
instance of K become superfluous. The purpose of Compact is to eliminate these
superfluous literals.

There is no rule in DPLL corresponding to Compact. However, it is easy to see
that Compact never applies in the ground case.

®£(or C#£0,

Ao C . . .
—  if ¢ there is a context unifier of C' against A

AFO

Close

with an empty remainder

We say that the clause C' above is the selected clause of Close.

The idea behind Close is that when its precondition holds there is no way to repair
the current candidate model to make it satisfy C. The replacement of the current
close set by the empty clause signals that the calculus has given up on that candidate

2 The literals K and L are meant to be distinct.
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model. Note that, because of Resolve, it is possible for the calculus to generate a
sequent containing an empty clause among other clauses. The Close rule recognizes
such sequents and applies to them as well. To see that it is enough to observe that,
for any context A, the empty substitution is a context unifier of [ against A with
an empty remainder.

In the ground case, the Close rule reduces to its namesake in DPLL, because
then C has a context unifier against A with an empty remainder iff L € A for every
literal L of C.

3.4 Derivations

As customary in sequent calculi, derivations in the Model Evolution calculus are
defined formally in terms of derivation trees, where each node corresponds to a par-
ticular application of a derivation rule, and each of the node’s children corresponds
to one of the conclusions of the rule.

Definition 3.14 (Derivation Tree) A derivation tree (in ME) is a labeled tree
mductively defined as follows:

1. a one-node tree is a derivation tree iff its root is labeled with a sequent of the
form A+ @, where A is a context and ® is a clause set;

2. A tree T' is a derivation tree iff it is obtained from a derivation tree T by
adding to a leaf node N in T new children nodes Ni,...,N,, so that the
sequents labeling Ny, ..., Ny, can be derived by applying a rule of the calculus
to the sequent labeling N. In this case, we say that T’ is derived from T.

We say that a derivation tree T is a derivation tree of a clause set @ iff its root
node tree is labeled with —v + &.

Let us call a non-leaf node in a derivation tree a Split node if the sequents
labelling its children are obtained by applying the Split rule to the sequent labeling
the node. (Similarly for nodes to which other rules are applied.) Observe that
every non-leaf node in a derivation tree has only one child unless it is a Split or a
Commit node, in which case it has two children. When it is convenient and it does
not cause confusion, we will identify the nodes of a derivation tree with their labels.

Definition 3.15 (Open, Closed) A branch in a derivation tree is closed if its
leaf is labeled by a sequent of the form A + [J; otherwise, the branch is open. A
derivation tree is closed if each of its branches is closed, and it is open otherwise.

We say that a derivation tree (of a clause set @) is a refutation tree (of @) iff it
is closed.

In the rest of the paper, the letters ¢ and n will denote finite ordinal numbers,
whereas the letter x will denote an ordinal smaller than or equal to the first infinite
ordinal. For every k then, we will denote a possibly infinite sequence ag, a1, as, . ..
of k elements by (a;)i<.
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Definition 3.16 (Derivation) A derivation (in ME) is a possibly infinite se-
quence of derivation trees (T;)i<y, such that for all i with 0 < i < k, T; is derived
from T;_4.

We say that a derivation D = (T;);<x is a derivation of a clause set ® iff T is
a one-node tree with label {-w} F ®. We say that D is a refutation of ® iff D is
finite and ends with a refutation tree of ®.

We show in the next sections that the Model Evolution calculus is sound and
complete in the following sense: for all sets @ of Y-clauses with no parameters, @
is unsatisfiable iff ®y has a refutation in the calculus.

To prove the calculus’ completeness we will introduce the notion of an exhausted
branch, in essence, a derivation tree branch that cannot be extended any further
by the calculus. A by-product of the completeness proof will be to show that the
interpretation induced by the context in the leaf of an open exhausted branch is a
model of the clause set in the branch’s root. This means that whenever a derivation
of a clause set &y produces a tree with an open exausted branch, it is possible not
only to state that ®q is satisfiable, but also to provide (a finite description) of a
model of ®.

4 Correctness of the Calculus

In this section, we prove the soundness and completeness of the Model Evolution
calculus.

4.1 Soundness

To prove that the calculus is sound we will first prove that each of its derivation
rules preserves a particular notion of satisfiability that we call a-satisfiability, after
[Bau00].

Let us fix a constant a from the signature ¥%°\ ¥ and consider the substitution
a:={vra|veV}3 Given a literal L, we denote by L® the literal La. Note
that L% is ground if, and only if, L is variable-free. Similarly, given a context A, we
denote by A% the set of unit clauses obtained from A by removing the pseudo-literal
—w, replacing each literal L of A with L%, and considering it as a unit clause. Finally,
if o is a substitution, we denote by ¢® the composed substitution oca. We point
out for later that for all literals L and substitutions o such that (Par(L))o C V
(which includes all parameter-preserving substitutions), Lo® = L%®.

We say that a sequent A F @ is a-(un)satisfiable iff the clause set A® U @ is
(un)satisfiable in the standard sense—that is, has no (Herbrand) model.

Lemma 4.1 For each rule of the ME calculus, if the premise of the rule is a-
satisfiable, then one of its conclusions is a-satisfiable as well.

13 Strictly speaking, o is not a substitution in the standard sense because Dom/(«) is not finite.
But this will cause no problems here.
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Proof. We prove the claim only for the rules Split, Resolve, and Close. The proof
for Commit is very similar to that for Split. For the other rules the claim holds
trivially.

Split) The premise of Split has the form A F W, while its conclusions have respec-
tively the form A, K - ¥ and A,FSkO F W. Suppose that A + W is a-satisfiable.
Now let x := (x1,...,2,) be an enumeration of all the variables of K and note that
K and K have exactly the same variables. Then consider the unit clause K (or,

more explicitly, Vx K?) and its negation —Vx K®. Clearly, one of the two sets
S =AN"U{K}tUV¥ and Sy=A"U{-VxK*} UV

must be satisfiable. If S; is satisfiable, we have immediately that A, K F ¥ is

——sko

a-satisfiable. If Sy is satisfiable, then its Skolem form A* U {(K¢) "} U V¥ is also
satisfiable. Since (W)Sko = (FSkO)a, as one can easily see, we then have that
A,FSkO F W is a-satisfiable.

Resolve) The premise of Resolve has the form A + @, LV C, while its conclusion
has the form A F ®, C, and there is a most general unifier o of {K, L} for some
K €~ A such that (i) (Par(K))oc C V, and (ii) Co = C. Suppose A + &, LV C
is a-satisfiable, which means that A® U ® U {L Vv C'} is satisfiable. It is easy to see
that because of point (i) above and the fact that L is parameter-free, o® is a unifier
of {K% L}. Observing that K¢ €~ A%, it follows by the soundness of standard
resolution that A® U ® U {L Vv C, Co®} is also satisfiable. By point (ii) above and
the fact that C' is parameter-free, we have that Co® = (Co)* = C* = C. But this
entails that A* U & U {C'} is satisfiable, and so A F ®, C is a-satisfiable.

Close) The premise of Close has the form A = @, C', while its conclusion has the form
A F [, and there is a context unifier o of C' against A with an empty remainder.
As A+ [ is a-unsatisfiable, we must show that A - &, C is a-unsatisfiable as
well. We show that by proving that A* U {C'} is unsatisfiable.

Let C =L;V---V L, for some n > 0. Since ¢ is a context unifier o of C' against
A with an empty remainder, we know that there are fresh variants Ky,..., K, €~ A
such that o is a most general simultaneous unifier of {K1,L1},...,{K,, L,}, and
(Par(K;))o CV forall i = 1,...,n. Let us fix the literals K1,..., K.

Clearly, 0% is a simultaneous unifier of {Ky, L1}, ..., {K,, L,}. By an earlier
observation we know that K;0% = K'o® for all i = 1,...,n. It follows that ¢ is a
simultaneous unifier of

{KT, L1}, {K5, Lo}, . {KG, L}

This entails that {K{,..., K%, L1 V---V Ly} is unsatisfiable. From the fact that
K¢, ...,K% e~ A% it then immediately follows that A* U {C'} is unsatisfiable. O

Proposition 4.2 (Soundness) For all sets ®y of parameter-free ¥.-clauses, if ®g
has a refutation tree T, then ®qg is unsatisfiable.
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Proof. Let T be a refutation tree of ®3. We prove by structural induction on
refutation trees that the root —v F ®g of T is a-unsatisfiable. The claim will then
follow from the immediate fact that the sequent —v + @ is a-unsatisfiable iff ®
is unsatisfiable.

Base) If T consists of the single node —v F @, the only way for T to be a
refutation tree is that ®y be {J}. But then —v F @ is trivially a-unsatisfiable.

Step) If T has more than one node, let M be the root note of T. It is easy to
see that for every child node N of M, the subtree of T rooted at N is a refutation
tree of N. Therefore, we can assume by induction that all the children nodes of M
are a-unsatisfiable. But then we can conclude that M is also a-unsatisfiable by the
contrapositive of Lemma 4.1. O

4.2 Fairness

As customary, we will prove the completeness of the calculus with respect to fair
derivations. The specific notion of fairness that we adopt is defined formally in the
following. For that, it will be convenient to describe a tree T as the pair (N, E),
where N is the set of the nodes of T and E is the set of the edges of T.

Each derivation D in the Model Evolution calculus determines a limit tree wrt.
to all the derivation trees in D.

Definition 4.3 (Limit Tree) Let D = (T;);<\ be a derivation, where T; = (N;, E;)

for all i < k. We say that
1<K 1<K

s the limit tree of D.

It is easy to show that a limit tree of a derivation D is indeed a tree. But note
that it will not be a derivation tree unless D is finite.

Definition 4.4 (Persistency) Let T be the limit tree of some derivation, and let
B = (N;)i<k be a branch in T with k nodes. Let A; = ®; be the sequent labeling
node N;, for all i < k. We define the following sets of persistent context literals
and persistent clauses, respectively:

AB::U m Aj @B::U m q)j
i<k 1<j<K i<k 1<j<K
In words, a context literal is persistent in the considered branch B iff it appears
in the context of some node and in the context of all the node’s descendants (and
similarly for persistent clauses).

Although, strictly speaking, Ag is not a context because it may be infinite, for
the purpose of the completeness proof we treat it as one. We note that all the
definitions introduced in Section 3.1 can be applied without change to Ag as well.

Fair derivations in the ME& calculus are defined in terms of exhausted branches.
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Definition 4.5 (Exhausted branch) Let T be a limit tree, and let B = (N;)i<x
be a branch in T with k nodes. For all i < k, let A; = ®; be the sequent labeling
node Nj. The branch B is exhausted iff for all i < k all of the following hold:

(i) For all C € ®g, if Split is applicable to A; = ®; with selected clause C,
productive context unifier o, then there is a j > i with j < k such that A;
produces Co.

(ii) For all L, K € A, if Commit is applicable to A; & ®; with selected connection
(L,K) and mgu o, then there is a j > i with j < k such that A; is consistent
wrt. Lo.

(iii) For all unit clauses L € ®g, if Assert is applicable to A; = ®; with selected
unit clause L, then there is a j > i with j < k such that L €> ®;.

(iv) For all C € ®g, Close is not applicable to A; = ®; with selected clause C'.
(v) ®; #{0O}.

It is worth noticing that Point (i) in Definition 4.5 does not require that Split be
eventually applied with selected clause C' and context unifier o, for the branch
to be exhausted. It only requires that the intended effect of applying Split with
selected clause C and context unifier o, namely that C'o is permanently produced,
be eventually achieved. A similar observation can be made about Point (ii) and
the intended effect of applying Commit with selected connection (L, K), namely
that the inconsistency generated by L and K is permanently resolved, and about
Point (iii) and the effect of applying Assert with selected unit clause L, namely that
a literal more general (wrt. >) than L is permanently added to the context.

Definition 4.6 (Fairness) A limit tree of a derivation is fair iff it is a refutation
tree or it has an exhausted branch. A derivation is fair iff its limit tree is fair.

We point out that fair derivations as defined above do exist and are computable
for any set of (parameter-free) Y-clauses. A proof of this fact can be given by
adapting a technique used in [Bau00] to show the computability of fair derivations in
FDPLL. Moreover, and similarly to FDPLL, fair derivations need not be searched.
As we will see, the calculus is proof convergent, that is, if a set ® of X-clauses is
unsatisfiable, then every fair derivation of @ is a refutation.

4.3 Completeness

For the rest of this section, let ® be a set of parameter-free Y-clauses and assume
that D is a fair derivation of ® that is not a refutation. Observe that D’s limit tree
must have at least one exhausted branch. We denote this branch by B = (N;);<.
Then, by A; F ®;, we will always mean the sequent labeling the node N; in B, for
all i < k. (As a consequence, we will also have that Ay = {-v} and &g = ®.)
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Quite often we will appeal to the following compactness property of Ag. By
definition, L € Ag holds iff there is an ¢ < s such that L € A; for all j > 4 with
j < k. Similarly, if L €~ Ap then, by definition, L ~ K for some literal K € Ap.
Again, there is an ¢ < k such that K € A; for all j > ¢ with j < s, which entails
that L e~ Aj, for all j > i with j < k. More generally then, if Ly,..., L, € A (or
Ly,...,L, €~ A) for some n > 0, then there is an i < x such that Lq,..., L, € A;
(or Ly,...,Ly €~ A;) for all j > i with j < k.1

We provide below only a sketch of the completeness proof by proving just the
main results. A complete proof of all the auxiliary results stated here (and used in
the proof the main results) can be found in the appendix.

4.3.1 Evolving Contexts

Derivations are about about stepwise modifications of sequents. This section con-
tains lemmas mainly describing bounds the contexts in sequents can evolve within.
For instance, it is impossible to derive a sequent with a context that contains two
(or more) p-variants of the same literal.

Lemma 4.7 For all i < Kk, A; is not contradictory.

Being non-contradictory is a fundamental property of the contexts manipulated
by the calculus. Lemma 4.7 essentially says that rule applications produce non-
contradictory contexts from non-contradictory contexts. The next lemma extends
the previous one to the limit case.

Lemma 4.8 Ag is not contradictory.

Lemma 4.9 The sequent A, L = W is not derivable from A = V¥ if L €5 A or
L €> A.

Lemma 4.9 expresses that the inference rules of the model evolution calculus never
add a literal to a context in presence of a more general literal (wrt. >). One could
say that this fact expresses a kind of “loop check”.

Lemma 4.10 Leti < x and L € A;. For every j withi < j < k there is a K € A;
such that K > L.

In the course of the development of a branch, a literal in a sequent’s context
may be deleted by means of the Compact rule. Such a deletion is only possible in
the presence of a p-subsuming literal, which takes the role of the deleted literal.
The p-subsuming literal itself may be deleted later, in a similar way. Lemma 4.10
is a formal statement of this process.

14 Tt is easy to see that this index ¢ can be determined by taking the maximum of the i-indices
associated individually to the literals L1, ..., Ly, as just described.



26 4  Correctness of the Calculus

Lemma 4.11 For any two different literals K, L € |J;_,. A; it holds that K % L.

Lemma 4.11 states that if some context in the branch B contains a literal K,
then neither this nor any other context can contain a p-variant L of it. This holds
even if K is deleted at some point along the branch. Occasionally, we will use the
the following specialization of the lemma.

Lemma 4.12 For all i < k and for any two different literals K, L € A; it holds
that K ¢ L.

Lemma 4.13 For alli < k and L € A; there is a K € Ag such that K > L.

Lemma 4.13 essentially states that the set of persistent context literals of the branch
B contains generalizations of all the context literals along B.

Lemma 4.14 For all k < k and L € Ay \ A, there is an i > k such that for all j
with 1 < j <k, L g~ Aj.

Notice that this lemma is not trivial. That L ¢ Ap holds is consistent with adding L
to a sequent’s context, deleting it later again, and repeating this forever. The lemma
guarantees that this cannot happen. It could be strengthened and express that L is
entered at some timepoint, say, k, and L is present in each context up to timepoint
i—1 >k, and L (or any p-variant of L) is not contained in any subsequent context.
However, for the purpose of the completeness proof this stronger formulation is not
needed.

Lemma 4.15 Let K, L be two literals. If K produces L in Ag, then Jor alli <k
there is no K' € A; and no p-preserving substitution o such that K 2 K'o 2 L.

Lemma 4.16 Let K, L be two literals with K € Ag. If K produces L in Ag, then
there is an i such that for all j > i with j <k, K € A; and K produces L in A;.

This important lemma takes productivity wrt. the limit to a finite ordinal.

Lemma 4.17 If Ag does not produce a literal L, then there is an i such that for
all j >4, A; does not produce L.

This lemma is the counterpart of Lemma 4.16, this time about non-productivity.

4.3.2 Properties of Inference Rules

The following lemmas provide sufficient conditions for the applicability of the main
rules of the calculus to a given context. We will refer to these conditions to prove
the completeness of the calculus.

The first lemma considers the case of Commit, whose purpose is to repair an
interpretation when consistency is violated in the corresponding context, which
happens when both a literal and its complement are produced by the context.
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Lemma 4.18 (Commit Applicability) Let A + ¥ be a sequent with a non-
contradictory context A, and let K, K' € A be variable-free literals. If K produces
L in A and K' produces L in A, then Commit is applicable to A = W with selected
connection (K,K') and some most general unifier o. Moreover, K Z Ko 2, L and
K' Zz K'o 2 L.

As for Commit, a similar result is needed to characterize conditions under which
Split will be applicable. Its proof is more complex and will use the next two lemmas.
The first one shows how unification can be used to identify clause instances that
are false in the interpretation induced by the currently context.

Lemma 4.19 (Lifting Lemma) Let A be a non-contradictory context. Let C =
Ly V-V Ly, be a X-clause and v a grounding substitution for C'. If A produces

Li7,...,L,y, then there are fresh variants K1, ..., K, €~ A and a substitution o
such that

1. o is a most general simultaneous unifier of {K1,L1},...,{Kn, Ly},
2. fOT’ all i = 1,...,7’L, Lz 2 LZ‘J 2 Li’)/;
3. foralli=1,...,n, K; produces Lic in A.

In Section 3 we mentioned that the calculus does not need to search for admissi-
ble context unifiers, and that any context unifier can be composed with a renaming
substitution, determined deterministically, such that the resulting context unifier
is admissible. This fact is expressed by the following lemma.

Lemma 4.20 (Existence of Admissible Context Unifiers) Let A be a con-
text, C a clause and o a context unifier of C' against A. Then, there is a renaming
p such that o’ := op is an admissible context unifier of C' against A.

It should be mentioned that the purpose of this lemma is just to show the ex-
istence of an admissible context unifier based on a possibly non-admissible context
unifier. A realistic implementation would compute a “more clever” renaming, one
that maximizes the parameter-free literals in the resulting remainder. For complete-
ness purposes, however, any renaming that yields an admissibile context unifier will
do, as it will be clear from the proof of Proposition 4.25.

The following lemma applies (in particular) to remainders of admissible context
unifiers. It expresses, roughly, if each remainder literal individually is contradictory
with a given context, then there is a substitution, §, that allows to consider the
context as closed by the thus instantiated clause.

Lemma 4.21 Let A be a context, L1V ---V L, be a clause, where n > 0, such
that for all distinct i,j = 1,...,n, L; is parameter- or variable-free and Var(L;) N
Var(Lj) = 0. If for alli=1,...,n, L; is contradictory with A then there are fresh
literals K1, ..., K, €~ A and a substitution § such that the following holds:
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1. 6 is a simultaneous unifier of {K1,L1},...,{Kn, Ln},

2. foralli=1,...,n, Dom(§) N Par(L;) =0, (i.e. & does not move any single
parameter in the given clause)

3. foralli=1,...,n, (Par(K;))d CV.

Now we can turn to the lemma stating conditions under which the Split rule
is applicable. Roughly, Split is applicable if its selected clause admits a context
unifier, it does not overlap with Assert, i.e. the selected clause must contain at least
two literals, and Close is not applicable with the selected clause.

Lemma 4.22 (Split Applicability) Let A F U, C be a sequent with a non-
contradictory context A, where C' contains at least two literals. If all context unifiers
of C against A have a non-empty remainder, and o is a context unifiers of C' against
A with a remainder not produced by A, then Split is applicable to A + W, C' with
selected clause C' and context unifier o.

Finally, it remains the case of Assert, which is as follows.

Lemma 4.23 (Assert Applicability) Let A = U, L be a sequent with a non-
contradictory context A. If all context unifiers of L against A have a non-empty
remainder and there is an instance of L that is not produced by A, then Assert is
applicable to A = W, L with selected unit clause L.

4.3.3 Main Result

In the first lemma below we show that the set Ag of persistent context literals of
any exhausted branch B of a limit tree is a consistent context. This property is
essential for viewing A as a representation of an interpretation. Building on this
result, in the subsequent lemma we show that the interpretation induced by Ag is
a model of the clause set at the root of the limit tree.

Lemma 4.24 Ap is consistent.

As with finite contexts, Lemma 4.24 guarantees that the preinterpretation Iy
induced by Ag is in fact an interpretation.

Proof. Suppose to the contrary that Ag is not consistent. This means there is a
literal L such that Ag produces both L and L. Let K, K’ € A be two literals such
that K produces L in Ag and K’ produces L in Ag.

From the application of Lemma 4.16 to K and L on the one side, and to K’
and L on the other side, we conclude there is an i such that for all j > ¢ it holds
K,K' € A;, K produces L in Aj, and K’ produces L in A;.

By Lemma 4.7, A; is not contradictory. By Lemma A.6 both K and K’ are
variable-free. Therefore, Lemma 4.18 can be applied to conclude that Commit is
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applicable to the node N;, which is labeled with A; F ¢;, with selected connection
(K,K') and some most general unifier 6. Moreover, Lemma 4.18 gives us K 2
Koz Land K' 7 K'o 2 L.

By Definition 4.5-(ii), there is a j > 4 such that A; is consistent wrt. Ko.
This means A; does not produce Ko or A; does not produce Ko. Tt suffices to
consider the former case, because the proof for the latter case is similar for reasons
of symmetry.

Recall that for K € A; it holds K 2 Ko 2 L. The literal K is thus a candidate
msg of L in Aj. Let K = K if K is such an msg, otherwise chose K" € A; such
that K 7 K" and K" is an msg of L in A;.

Above we concluded that A; does not produce Ko. Since K" is an msg of
L in A;, there must be a literal K" € A; and a p-preserving substitution ¢’ such
that K" > K”0' > Ko. Recall that the application of Lemma 4.18 above gave
us Ko 2 L, and that K Z K" holds. Together this entails K 2 K”0’ 2 L. But
then, using Lemma 4.15 in the contrapositive direction conclude that K does not
produce L in Ag. A plain contradiction to what was derived near the beginning of
the proof. O

With Lemma 4.24, we are now ready to prove the following fundamental propo-
sition, which expresses that the calculus computes a model for the persistent clauses.

Proposition 4.25 If 0 ¢ &g, then Ipg is a model of Pg.

Proof. From Lemmas 4.8, 4.24 and Proposition A.3 we to know that I,y is an
interpretation. Now, suppose ad absurdum that &g does not contain the empty
clause, but Ip4 is not a model of ®g. This means that there is a ground instance
Cyofaclause C =Ly V---V L, with n > 1 from ®g that is not satisfied by Ig.
It follows by definition of Iy, that Ag produces Li7,...,L,y. We distinguish two
complementary cases, depending on whether n = 1 or n > 1, and show that they
both lead to a contradiction.

(n = 1) In this case, C consists of the single literal L;. Since Ag produces L7,
and Ap is consistent by Lemma 4.24, we know that Ag does not produce L7v. By
Lemma 4.17 then, we can conclude that there is an ¢ such that

for all j >4, A; does not produce Li7. (1)

Because L is a (unit) clause from ®g, there is a ¢’ such that L; € ® for all j' > i'.
Without loss of generality assume that ¢ > ' (otherwise i’ can be used instead of i
in the sequel).

By of Definition 4.5-(iv), Close is not applicable to A; F ®; with selected clause
Lq. Since L; € ®,;, this entails that all context unifiers of L against A; have a
non-empty remainder. Together with (1), this implies by Lemma 4.23 that Assert
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is applicable to A; F ®; with selected unit clause Li. According to Definition 4.5-
(ili) then, there is a j > i with j < x and an L € ®; such that L > L;. Recall
that clauses in sequents are parameter-free. It is easy to show then, with L; being
parameter-free, L must be parameter-free as well. Moreover, L > L1 > Ly7v. But
then, we have by Lemma A.5 that A; produces L;7, in contradiction to (1) above.

(n > 1) By the lifting lemma (Lemma 4.19), there are fresh p-variants Kj, ...,
K,, €~ Ag and a substitution ¢ such that

1. o is a most general simultaneous unifier of {Ky,L1},...,{Ky, Ly},
2. forall k=1,...,n, Ly 2 Lyo 2 Ly,
3. forall k=1,...,n, K; produces Lyo in Ag.

Clearly, by Definition 3.11, ¢ is a productive context unifier of C against Ag with
some remainder D. By Lemma 4.20 then, an admissible context unifier of C' against
Ap can be obtained as ¢’ = op, for some renaming p.

Let k € {1,...,n} and observe that a literal K produces a literal L in a context
A iff K produces a variant of L in A. From the fact that K produces Lio in Ag,
we have that K}, produces Lo’ in A as well. Given that K,, €~ Ag, we have that
Ap produces Lo’ and so, because of its consistency, it cannot produce Lo’

By applying Lemma 4.17 to every Lyo’ individually, and taking the maximum
of the indices 7 mentioned in the lemma’s statement, we conclude that there is an
17 such that

forall k=1,...,n and all j >4, A; does not produce Lyo". (2)

By assumption, C is a clause of ®g. Hence, there is a ¢’ such that C' € ®; for all
j" > 4'. Without loss of generality suppose that ¢ > ' (otherwise 7' can be used
instead of 7 in the sequel).

Because of Definition 4.5-(iv), Close is not applicable to A; F ®; with selected
clause C. Therefore, all context unifiers of C against A; must have a non-empty
remainder.By (2), A; does not produce Lio’ (for all & = 1,...,n), and so, in
particular, A; does not produce any remainder literal of ¢/. By Lemma 4.22 then,
Split is applicable to A; F ®; with selected clause C' and productive context unifier
o’. Because of Definition 4.5-(i), there is a j > i such that A; produces Co. This
means A; produces Lio’, for some k € {1,...,n}, in contradiction to (2) above. 0O

The completeness of the calculus is a consequence of Proposition 4.25. We state
it here in its contrapositive form to underline the model computation ability of ME.

Theorem 4.26 (Completeness) Let D be a fair derivation of ® with limit tree
T. If T is not a refutation tree, then ® is satisfiable; more specifically, for every
exhausted branch B of T, Irg is a model of ®.
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Let T be the universally true clause. For every clause C' € ®, we define C° := C,
and for all 7 > 0
(D if CVis of the form LV D and Resolve is applied
with selected clause C*~! and selected literal L to
Ai—l F (I)i—l to obtain Az F (I)z

C={T if C*~1 is of the form L V D and Subsume is
applied with selected clause C*~! and selected
literal L to Aifl H (1%;1 to obtain Az H (I>z

{ C'=1  otherwise

Observe that for all i > 0, {C* | C € &} = ®; U {T}.

Proof.  From Lemmas 4.8, 4.24 and Proposition A.3 we to know that I, is an
interpretation. Let C' be any clause in ®. It is enough to show that I, is a model
of C. Now, it is easy to see that there is a smallest j such that C* = C*~! for all
i > j, which means that C7 is either T or a persistent clause of B. Let us fix that
j. We show below by induction on i that Iy is a model of C? for all i < j, from
which it will immediately follow that I, is a model of C = C°.

(i = j) If C'is T, Izg is trivially a model of C*. Hence assume that C? is a
persistent clause of B, that is, C; € ®. By Proposition 4.25, it is enough to show
that &g does not contain the empty clause. Assume by contradiction that it does,
that is that ®g = &', for some clause set ®’.

That ® = ) holds is impossible by Definition 4.5-(v). If ® # (), there must be
an ¢ such that A; = ®; has the form A; = @/, for some non-empty clause set ®’.
But then, since the empty substitution is certainly a context unifier of [J against
A; with an empty remainder, Close is applicable to A; F @7, [0 with selected clause
O, which is impossible by Definition 4.5-(iv). It follows that Iy, is a model of C7.

(i < j) Assume by induction hypothesis that Iy, is a model of C*T! and
consider the following three cases, depending on the definition of C**1,

(i) If C* = C**!, we can conclude immediately that I, is a model of C*.

(i) If C* is of the form L V D and Resolve is applied with selected literal L to
A; = ®; to obtain A1 F @41, then O = D. Tt follows immediately that Iy,
is a model of C".

(iii) If C is of the form L V D and Subsume is applied with selected clause C to
A; = ®; to obtain A;y; F ®;;1, then C*t! = T. By the definition of Subsume,
there is a K € A; such that K > L. By Lemma 4.13, there is a K’ € Ag such
that K’ > K. It follows that there is a K’ € Ag such that K’ > L. Recalling that
C € ® is parameter-free and that, by definition, C? is a sub-clause of C, we have
that C*, and so L, is parameter-free. From the fact that K’ > L, it follows that K’
is also parameter-free and that K’ > L+, for any grounding substitution 7. Now,
since K’ € Ag and K’ > L~, we have by Lemma A.5 that Ag produces L. From
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the consistency of Ap it follows that I, satisfies L. Because Ly was an arbitrary
ground instance of L, we can deduce that I, is a model of L, and so of C". |

When the branch B in Theorem 4.26 is finite, Ag coincides with the context A,
say, in B’s leaf. From a model computation perspective, this is a very important
fact because it means that a model of the original clause set—or rather, a finite
representation of it, A,—is readily available at the end of the derivation; it does
not have to be computed from the branch, as in other model generation calculi.

The calculus is proof confluent [Bib82]: any derivation of an unsatisfiable clause
set extends to a refutation. In fact, because of the strong completeness result in
Theorem 4.26, the calculus satisfies an even stronger property, which we refer to as
proof convergence.

Corollary 4.27 (Proof Convergence) Let ® be a a parameter-free clause set
over the signature . If ® is unsatisfiable, then every fair derivation of ® is a
refutation.

In practical terms, the above corollary implies that as long as a derivation
strategy guarantees fairness, the order of application of the rules of the calculus is
irrelevant for proving an input clause set unsatisfiable, giving to the M& calculus
the same flexibility enjoyed by the the DPLL calculus at the propositional level.

5 Related work

Approaches that have features in common with ME come from the following four
categories: first-order DPLL methods, instance-based methods, Resolution methods
and Tableau methods.

5.1 First-Order DPLL Methods

A “lifted” version of the DPLL method has been described in the early textbook on
automated reasoning by Chang and Lee [CL73]. It uses the device of pseudoseman-
tic trees, which, like ME, realize splits at the non-ground level. Nethertheless, the
pseudosemantic tree method is very different: in sharp contrast to M¢E, a variable
is treated rigidly there, i.e. as a placeholder for a (one) not-yet-known term.'® The
Section 5.4 below discusses rigid variable methods, and what is said there applies
to the method in [CL73] as well.

The closest relative or the ME calculus is the FDPLL calculus developed by
one of us [Bau00]. As said in the introduction, ME is loosely based on FDPLL.
More precisely, the ME calculus can be specialized to the core FDPLL calculus
by (a) removing the Subsume, the Resolve and the Compact inference rules (these

5However the term “rigid” is not used there, as it was not introduced at the time the book [CL73]
was written.
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rules are optional in ME), and (b), speaking in terms of definition of the Split rule,
use only admissible context unifiers such that C'o is variable-free (using only such
admissible context unifiers preserves completeness). In terms of the present paper,
the core calculus of FDPLL does not have simplification rules and does not deal
with variables — it just uses parameters. However, in [Bau00] an extension of the
core FDPLL calculus to include reasoning with variables is sketched. As in ME,
mixed literals are not allowed, and so the literals used there for splits are of the
same type — variable free or parameter-free (or both). Nethertheless, ME is much
stronger than that version of FDPLL. Expressed in ME& terms, the rules mentioned
under (a) above are still not available in FDPLL, and the admissible context uni-
fiers are now of the kind (b) above, or such that the remainder always consists of
exactly one literal, and furthermore each non-remainder literal is confronted with a
parameter-free literal from the context. In resolution terminology, FDPLL mimics
unit-resulting resolution.

The impact of the restricted capabilities of FDPLL can be seen by looking at
some examples. For instance, if the current context is just A = {-w} and there
is a given clause P(x) V Q(y) V R(z), FDPLL will consider the clause instance
P(u) vV Q(v) V R(w) and split based on its literals, which contain parameters. In
contrast, ME will in essence carry out a case analysis according to the three literals
P(x), Q(y) and R(z), which are parameter-free and hence are implicitly universally
quantified. (As explained in Section 3, a parameter-free literal in a context puts
more constraints on later additions of literals than a variable-free literal, leading in
principle to shorter derivations.)

As another example consider the context A = {—w, P(u,v),Q(x,a,z)} and the
clause ~P(z,7) V =Q(x,y,2) V R(y, z). Based on the admissible context unifier'®
o ={uwr v, x> v, y+— a}, the Split rule is applicable, and it will split on the sole
remainder literal R(a, z). A comparable inference step is not possible with FDPLL,
as one of the involved context literals is not parameter-free.

In conclusion, due to the presence of the simplification inference rules Subsume,
Resolve and Compact, and due to the better treatment of variables, the ME calculus
improves significantly on FDPLL.

5.2 Instance-Based Methods

Besides the FDPLL calculus, ME is related to the family of instance-based methods.
Proof search in instance-based methods relies on maintaining a set of instances of
input clauses and analyzing it for satisfiability until completion. We point out that
ME is not an instance-based method in this sense, as clause instances are used only
temporarily within the Split inference rule and can be forgotten after the split has
been carried out.

The contemporary stream of research on instance-based methods was initiated
with the Hyperlinking calculus [LP92], The Hyperlinking calculus (HL) is based on

For simplicity of presentation, no fresh variants are taken.
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the idea of steadily growing a set of instances of input clauses in an intelligent way,
which is regularly tested for propositional unsatisfiability by an integrated DPLL
procedure. As a conceptual difference to ME, HL includes a DPLL procedure but
does not (directly) extend it to first-order clause logic.

The current successor of HL is the Ordered Semantic Hyperlinking calculus
(OSHL) [PZ97, PZ00]. OSHL has many interesting features, for instance “semanti-
cal guidance” by assuming a procedural representation of an (any) interpretation,
that just has to be capable to decide if a given ground literal is true in the interpre-
tation. As in ME, the main operation in OSHL is to detect an instance of a clause
that is false in a current interpretation, and then repair the interpretation (in the
sense given here). However, unlike as in ME, the repairs are carried out through
ground literals.

Another method in this category is the Confluent Connection Calculus (CCC)
by Baumgartner, Furbach and Eisinger [BEF99]. Unlike all connection methods
known at the time it was introduced, CCC enjoys the important property of proof
convergence. (See [Bib82] for more information on connection methods in general).
CCC is similar to HL: but is formulated as a connection method and does not rely
on a DPLL method behind. A conceptual difference of CCC to all other instance
based methods mentioned here is, that substitutions are applied globally, to the
whole clause set derived so far, and thus CCC behaves in this respect much like
rigid variable tableaux calculi (see below). Unlike ME, the completeness proof is
not based on a model-generation argument but relied on the Herbrand theorem
instead. This makes it hard to identify semantically justified refinements.

Some instance-based calculi have been formulated within the (clausal) tableau
framework. The initial work in this direction is Billon’s disconnection method
[Bil96]. The calculus described in [Bau98| relates to the disconnection method
much like the hyper resolution calculus relates to the resolution calculus.

The disconnection method has been picked up by Letz and Stenz for further
improvements. The disconnection calculus, as they call it, uses clausal tableau
as the primary data structure. The tableau structure represents an exhaustive
search through all possible connections between literals in clauses; the (single)
inference rule extends the current tableau by two clause instances found via a
connection on the branch. In [LS01] improvements have been mentioned and a
dedicated inference rule for deriving unit clauses has been sketched. Interestingly,
all variables in a derived unit clause have to be identified for soundness reasons.
Various forms of equality handling have been sketched for the disconnection calculus
[LS02] (without completeness proof, however), and an efficient implementation has
been built [Ste02].

Two variants of an instance-based method are described by Hooker et al. [HRCS02].
One of them, the “Primal Approach” seems to be very similar to the disconnection
method (see above) although, unfortunately, the relation with this method is not
made explicit in [HRCS02]. The other variant, the “Dual Approach”, differs from
the former by the presence of auziliary clauses of the form K — L generated during
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the proof search, where (K, L) is a connection of literals occurring in the current
clause set. No simplification mechanisms have been described, like for instance
those based on unit propagation rules. Both methods compare to ME in the same
way as the disconnection method, discussed above.

A significant difference between the instance based methods (we are aware of)
and the ME calculus is that the former maintain a growing set of instances of input
clauses, while M€ does maintain a growing set of instances of input literals: the
current context. However, contexts grow more slowly than sets of clause instances,
which may lead to an (at least) exponential advantage for ME regarding space
consumption. As a drastic example, consider a clause C' of the form Pj(z1) V
-V P,(z,,) and assume a signature that includes m constants. There are clearly
more than m™ different instances of C', and there seems no principle way to avoid
including that many of them in the set of instances of input clauses. This is, because
by nature of instance-based methods, clause subsumption cannot be used.

5.3 Resolution Methods

Resolution calculi are conceptually very different to the ME calculus, which makes
a comparison difficult. However, a common feature concern model generation:
contemporary completeness proofs for resolution calculi are typically of the model-
generation style: in the proofs it is argued that any saturated clause set that does
not contain the empty clause is satisfiable, and a construction is supplied how to
extract a model then (see [BGO1]). However, this is a conceptual construction,
and in order to actually extract a model from a failed refutation some non-trivial
postprocessing is necessary (but see [GMW97]). Typically, a model is computed
by enumerating all true ground literals, thereby interleaving this enumeration with
calls to the resolution procedure again in order to determine the “next” ground
literal [FL93, FLI6]. On the other side, it should be said that some of the strongest
decision procedures for subclasses of clause logic are based on resolution, however
without outputting a model.

5.4 Tableau Methods

(Clausal) tableau methods that are also instance-based methods have been dis-
cussed above. Clausal tableau calculi different to those are also related to ME, as,
in general, tableau calculi share with ME the property of encoding in an exhausted
open branch a model of the given clause set. For the purpose of comparison , it is
useful to classify the former with regard to their treatment of variables: rigid or
ground-level oriented.

In tableau calculi with rigid variables, a variable in a tableau is a placeholder
for a (one) not-yet-known term (see e.g. [Fit90] for a basic version). The meaning
of rigid variables can also be captured by constraints [Pel99, GieOl, vEOL, see|. Al-
though (most) tableau calculi are proof confluent, practically usable fair strategies
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to achieve proof convergence (cf. Corollary 4.27) are hardly known (but see [Bec00]).
A drawback of the rigid variable approach is that useful redundancy mechanisms
are very hard to find, for instance, one that would in general prevent to have an un-
bounded number of variants of the same literal along a branch. For instance, given
the unit clause P(x), there seems no simple justification for not enumerating vari-
ants P(z), P(2'), P(2"),... of P(x) along a branch. In fact, in general, one variant
will not be enough, unlike to ME, and it is difficult to (automatically) determine
sharp bounds on the number of variants required for completeness. See [Gie02] for
discussion on various options one has in the design of rigid tableau calculi, including
constraint based approaches.

Ground-level tableau calculi avoid the problems with rigid variables by recurring
to the propositional level. While analytic tableau with the “classical” ~-rule do
not seem a suitable basis to build competitive theorem provers, there are structural
refinements for clause logic that are also related to hyper resolution [MB88, BEN9G6,
e.g.] or to Ordered Semantic Hyper Tableaux [YP02]. However, these methods
suffer from an, in general unavoidable, don’t-know nondeterminism. It may lead to
an enumeration of the whole Herbrand base along a branch.

Compared to ME, tableau calculi (also the instance-based tableau calculi) branch
on subformulas, or, the literals of a clause in the clausal logic case, as opposed
to complementary literals like ME does. For the propositional case it is easy to
see that branching on complementary literals is more general than branching on
clauses. In fact, each branching on a clause with n literals can be simulated by n
splits with complementary literals. Furthermore, some improvements like factor-
ing (see [LMG94]) are automatically realized by the branching on complementary
literals approach. A systematic investigation on how this fact exactly carries over
to the first-order case—i.e. ME vs. certain clausal tableau calculi—is left for future
work.

6 Conclusions

In this paper we have introduced the Model Evolution (ME) calculus. The ME cal-
culus extends (the propositional part of) the DPLL procedure to first-order clause
logic by supplying unification-based, first-order versions of DPLL’s inference rules.
Compared to its most immediate predecessor, FDPLL [Bau00], M€ is a more faith-
ful lifting of DPLL to first-order clause logic, as it also includes first-order versions of
the propositional DPLL inference rules for unit propagation, which are not present
in FDPLL.

Further Work

Various directions for further work are conceivable. The following list is ordered
from the more concretely reachable to the more remote and research intensive.
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Mixed Literals. The inference rules of the ME calculus make sure that only
literals that are parameter-free or variable-free are inserted into contexts. “Mixed”
literals with parameters and variables presently occur in ME only temporarily,
during the computation of branch unifiers. Although reasoning with mixed literals
seems a novel feature, and not realized in related calculi, its full potential is not
exploited in the current version of the ME calculus. A conceivable improvement
would involve admitting mixed literals in contexts, allowing then single variables
to be singled out as universal, as opposed to entire literals as it is now.

This will be a non-trivial extension, however. While it is straightforward to
modify the formal framework of this paper to admit mixed literals, some properties
will be lost, or at least it is not clear if they are preserved under the relaxation. For
instance, we found neither a proof of nor a counterexample against Proposition 3.8
for (non-contradictory) contexts with possibly mixed literals. This proposition,
however, is a fundamental one: it implies that every ground atom will receive a truth
value, and it cannot be dispensed with. With a modified definition of productivity,
we were able to prove Proposition 3.8, but it was unclear if consistency of contexts
would be achievable (by Commit applications).

Strategies. The ME calculus is proof convergent (cf. Corollary 4.27), and so the
order of rule applications does not matter. This don’t-care nondeterminism can
be exploited to have the calculus stepwise simulate certain other calculi such as,
e.g., the propositional logic oriented Tableau calculi [Bau98, YP02] or the Hyper
Tableaux calculi in [Bau98]. Beyond the simulation as such, we expect that im-
proved versions of some clausal tableau calculi can be obtained this way.

Jv-Based Splitting. From a logical point of view, when used with a variable-
free literal, p(u) say, the Split rule in ME is a cut on a tautology of the form
Jdz p(z) vV 3z —p(x). It seems possible to build a complete calculus that instead
splits on the tautology Vz p(x) V 3z —p(z). In concrete, the resulting Split rule
would choose between p(x) and —p(c) for some fresh Skolem constant c. However,
the constant ¢ would now have to fill two réles: that of a constant proper, for the
purpose of closing branches, and that of parameter (in sense of this paper) for the
purpose of identifying falsified clauses. We speculate, however, that the resulting
calculus would behave rather differently from the ME calculus presented here, due
to the non-symmetrical nature of its Split rule.

ME as a decision procedure. A deduction system capable of deciding relevant
classes of formulas is usually of greater practical interest than a mere refutation
system (e.g. to disprove false “theorems” in a software verification context).

The ME calculus is guaranteed to terminate for clauses resulting from the trans-
lation to clausal form of conjunctions of Bernays-Schonfinkel formulas'” and hence

"Such clauses contain no function symbols, but no other restrictions apply.
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gives a decision procedure!®. The same holds for many instance-based methods (see
Section 5.2), but, interestingly, not for any known refinement of the resolution cal-
culus. On the other side, there are refinements of the resolution calculus as decision
procedure (see [FLHTO01]) for classes of formulas that are not obviously decidable by
instance-based methods or by the ME calculus. For instance, the guarded fragment
of first-order logic, which is of high practical relevance as it covers (basic) descrip-
tion logic, was shown to be decidable by a refinement of resolution [dN98]. To
decide the clause sets that result from the translation of formulas from the guarded
fragment, ordered resolution can be used. The ordering refinements chosen will
guarantee that the literals in the resolvent have a term complexity (using a certain
measure) that does not exceed that of the parent clauses. It seems promising to
pick up that strategy and attempt an ME decision procedure based on it.

Combining ME with Resolution. The ME calculus and, say, ordered resolution
calculi are based on rather different principles. It can therefore be expected that
an ME proof procedure spawns a very different search space than typical resolution
proof procedures. Furthermore, we speculate that ME will find proofs that are
difficult for resolution and vice versa. This conjectured property, however, motivates
the design of a combined calculus, one that has inference rules from both worlds.
Ideally, the resulting calculus would instantiate to both its parents, but would
supply means to specify a “mixed” mode, where derivations use both resolution
and ME inference rules to the favor of tuning the search space.

Indeed, some attempts have been made along these lines. For the DPLL method,
its combination with restricted forms of (propositional) resolution have been pro-
posed. For instance, in [DFW02] it is considered to apply resolution inferences such
that the resolvent subsumes one (or both) of its parent clauses.

We are aware of only three proposals for integrating splitting techniques into
first-order resolution systems. The theorem prover Otter [McC94] includes a heuris-
tically controlled binary split rule that branches with two complementary ground
literals, and an n-ary split rule that constructs one case for each literal in a ground
clause. Both types of splitting are realized by forking the current Otter process
on the operating system level. A tighter integration of a split rule, is realized in
the SPASS prover [WABT99]. The technique there permits, essentially, to break a
clause with variable disjoint subclauses into these subclauses and search for refu-
tations with them individually. A similar effect is achieved in the Vampire prover
through a certain transformation of the input clause set [RV00].

That not much work has been done else on integrating splitting techniques
into resolution systems is due to the reported incompatibility of the state-of-the-
art resolution implementations with splitting: splitting involves backtracking to a
previously derived clause set, which is difficult to implement in the saturation based

8This is an easy consequence of the fact that there are no two p-variants of a literal on any
sequent derivable by M& (cf. Lemma 4.12).
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resolution theorem provers. We consider it as an open problem if a more powerful
splitting rule than the ones currently used, like the ME splitting rule, can help to
build a faster resolution prover.

From the technical side, an extension of the ME calculus by resolution facilities
seems not so far away: ME maintains a set of current clauses, and it would be a
simple exercise to just add to ME resolution inference rules. The challenge, however,
is to design the fairness appropriately, such that the ME and the resolution inference
rules can be flexibly balanced.

Equational Theories and Equality. In many theorem proving applications, a
proper treatment of equational theories or equality is mandatory. In principle,
there seems to be nothing against a modern treatment of equality in ME by means

of a superposition-style inference rule and of simplification rules based on rewriting
[BGIg|.

Nonmonotonic Extensions. One of us is currently working on a calculus for a
first-order clause logic with a default negation operator [BGHS03]. The underlying
representation of interpretations has some resemblance with the one used for ME.
An interesting question is whether ME itself can be modified to accommodate such
logic. The resulting calculus would be useful promising for applications demanding
nonmonotonic knowledge representation languages.

A Appendix

This appendix contains auxiliary lemmas, their proofs, and proofs of the results
stated in the main part of this paper. It is structured in three parts. Section A.1
is a collection of results about contexts in general, not necessarily about contexts
as they evolve in derivations. Exactly the latter is the subject of Section A.2. The
subsequent Section A.3 then contains lemmas stating conditions under which the
mandatory inference rules of ME are applicable. The results collected up to then
were employed in Section 4.3 to prove our main theorem, the completeness of ME.

A.1 Properties of Contexts

The first lemma is not concerned with contexts; it will be needed, however, for
some proofs below.

Lemma A.1 For any literal L, the sets {K | K > L} / ~ and {K | K 2 L} | ~
are finite.

That is, for a given literal L, there are only finitely many more general literals wrt.
> of L modulo p-variantship, and similarly for 2. A similar result formulated in
terms of 2 and & is proven in [Ede85].
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Proof. Since K 2 L whenever K > L, it is enough to show that the set {K | K 2
L} / ~ is finite.

In the following argumentation we will prove the claim using a tree represen-
tation of literals: if L is a literal, its tree representation is the (ordered) tree, the
root of which is labeled with the predicate symbol of the literal, inner nodes are
labeled with function symbols, and leaf nodes are labeled with constant or variable
symbols, all in the obvious way.

Recall that K > L means there is a (p-preserving) substitution o such that
Ko = L. This means that the tree for L is obtained by replacing each variable leaf
node x in the tree for K by the tree for zo, and similarly for parameters.  Clearly,
the number of nodes in K is less than or equal to the number of nodes in L.

Now let {x1,...,z,} C X and {uy,...,u,} C V be finite sets of any n pairwise
different variables and any n pairwise different parameters, respectively,where n is
the number of nodes of the tree representation of L.

Let K be any literal such that K 2 L and such that K contains variables and
parameters from the finite sets just mentioned only. Because the number of nodes
in K is less than or equal to the number of nodes in L, it follows together with the
assumed finite sets of variables and parameters that only finitely many such literals
K 2z L exist. Let K be the finite set of all these literals.

Notice that K is finite also if the signature under consideration contains in-
finitely many function symbols. This holds, because K cannot contain any function
symbol not occurring in L (because then K could not be instantiated to L), and
there occur only finitely many function symbols in L.

Clearly, every literal K with K 2> L is a ~-variant of some literal in K. There-
fore, with K being finite, sois {K | K 2 L} / ~. O

Proposition 3.8 Let A be a non-contradictory context. Then, 15 is a preinterpre-
tation.

This proposition expresses, in other words, that a non-contradictory context A
produces at least one of L or L, for any ground literal L. In connection with the
subsequent Proposition A.3 then, and provided that A is consistent, it follows that
A produces ezactly one of L or L, for any ground literal L.

Proof. Let L be any literal, not necessarily ground. We will show that A produces
L or A produces L. From this, the claim follows immediately.

Due to the presence of the pseudo-literal —v in A, A must contain an msg of L
or of L in A (viz., —w if there is no other such msg). Now let K € A be such an msg
of L or of L in A. Beyond having K chosen as an msg, we may also assume having
chosen K such that there is no literal K’ € A with K Z K' >Lor K % K' > L.
This is possible, because there are only finitely many literals K’ (modulo renaming)
such that K’ > L or K’ > L (cf. Lemma A.1), and because the relation > is a
strict, partial ordering, and hence does not admit cycles.
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For reasons of symmetry we consider in the sequel only the case that K € A is
a msg of L in A and that there is no K’ € A such that K 2 K' > L.

Now, if K produces L in A the proof is complete. Otherwise, there must be
a literal K’ € A and a p-preserving substitution o such that K 2 K'oc > L. We
consider two complementary cases, the first one of which will be impossible to hold,
however.

In the first case K’ is variable-free. Since o is p-preserving this implies trivially
K' ~ K'o. But then, from K > K'o 2 L we conclude immediately K > K’ > L.
This, however contradicts the the choice of K. Hence this case is impossible.

Thus, the second case must hold, where K’ is not variable-free. This entails
that K’ is parameter-free. Trivially then, K’ > L implies K/ > L, and K’ > L
follows trivially, too. But then, Lemma A.5 gives immediately that A produces L.

In sum, in any case we have now shown that A produces L or A produces L. 0O

Proposition A.3 Let A be a non-contradictory context. Then, 15 is an interpre-
tation iff A is consistent.

Proof. The only-if part being trivial, we turn immediately to the if-part. Hence
assume that A is consistent.

Let L be any ground literal. We have to show that either L € Iy or L € I (but
not both). By definition, L € I iff A produces L. Since A is consistent, A cannot
produce both L and L.

It remains to show that A produces L or A produces L. Since A is consistent, it
is not contradictory. But then the claim follows immediately with Lemma 3.8. O

Lemma A.4 Let A be a context and L a literal. If L € A, then L is contradictory
with A.

Since the calculus works on non-contradictory contexts only, this Lemma implies
that no context will contain a literal and an instance of it (wrt. >) with comple-
mentary sign.

Proof. Suppose that K € A and K > L holds. We have to show that L is
contradictory with A.

We distinguish two cases. In the first case, K is parameter-free. Let K’ ~ K be
a fresh p-preserving variant of K. Clearly, K’ is parameter-free as well, and with
K > L it follows K’ > L. Let o be a substitution such that K’c = L. Clearly, o
may be assumed to move only the variables of K’ (but no parameters). Since K’
is fresh, o will not modify L, and so L = Lo follows. Altogether then K'oc = Lo.
Since K’ €~ A, L is contradictory with A.

In the second case, K is variable-free. That K > L holds means there is a
p-preserving substitution ¢ such that Ko = L. Since ¢ is a renaming on V and K
contains no variables, K ~ Ko follows. Since K € A it follows Ko €~ A. Since we
know Ko = L from above, L is contradictory with A. O
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Lemma A.5 Let A be a non-contradictory context and K € A a parameter-free
literal. Then, for any literal L with K > L,

(i) A produces L, and

(ii) A does not produce L.

Observe that if K is parameter-free, then K > L iff K 2 L. Hence, in the lemma
statement, K > L could be replaced by K 2 L. But then, equivalently, the lemma
expresses that a (non-contradictory) context containing a parameter-free literal K
produces every instance L of K. In other words, Lemma A.5 corresponds to the
fact that all instances of a parameter-free literal in a non-contradictory context are
true in the (pre)interpretation induced by the context.

Note that Lemma A.5 does not say that K itself produces L. In fact, this is
not true in general, as one can easily see by considering A = {—wv, P(z,y), P(u,u)},
K = P(x,y) and L = P(a,a).

Proof. Let L be a literal such that K > L. First we show that A produces L.

Let K’ € A be a msg of L in A, such that K > K’ 2 L holds (the case K = K’
is possible). We are going to show that moreover K’ produces L in A.

Suppose to the contrary that this is not the case. Then there is a literal K" € A
and a p-preserving substitution o such that K’ = K¢ > L. From K > K'it follows
that K 7 K"”o 2 L. Since K is parameter-free this is equivalent to K > K"o 2 L.

We distinguish two cases. If K" is variable-free, consider ¢’ = oy, which is a
p-preserving renaming. We also need the substitution o~!, which is a p-preserving
renaming, too. Observe that from K > K”¢ it follows Ko~! > Koo~ ! = K.
Since K" is parameter-free, it holds K”o’ = K”o. Since K is parameter-free,
K = Ko'~! holds as well. With Ko~! > K” we get K > K”. Since K € A, this
means K” €> A. By Lemma A .4 then, K” is contradictory with A. Since K" € A,
A itself is contradictory, against the assumption that is is not.

In the second case, if K" is not variable-free, it must be parameter-free. Above
we derived the chain K > K”¢ > L. Assume that L is disjoint with both K and K"
(if this is not the case, let L itself denote an appropriate variant, and the chain will
still hold). Since K" is parameter-free, the chain entails K > K”c > L. Because
of K" > L, there is a substitution ¢ such that K”7cd = L. Let 0" := 08y, (x1),
and it will hold K”¢” = L. Now let K’ €~ A be a fresh p-variant of K. Since K
is parameter-free, K’ will be parameter-free as well. From K > L and K’ ~ K we
conclude that there is a substitution ¢’ such that K'¢’ = L. We may assume that
o’ is already restricted to Var(K’). Since L is disjoint with K", ¢” will not affect
L,ie. L = Lo” holds. From K'c' = L it follows K'o’c” = L. Since K’ is fresh, o’
will not affect K", i.e. K" = K"o' holds. With K”¢"” = L it follows K"o'c" = L,
and with K'o’0” = L conclude K"¢'c” = K'c'c”. Since both ¢’ and ¢” move
only variables, o’¢” is trivially p-preserving. Since K’ €~ A and K"¢'0" = K'o'o"
holds, K" is contradictory with A. Since K” € A, A itself is contradictory, which
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plainly contradicts the lemma statement in this case, too. Hence, the assumption
that K’ does not produce L in A must be retracted, and the first claim of the lemma,
follows.

It remains to show that A does not produce L in A. Let K’ € A be any literal
such that K’ > L. (If such a literal does not exist, A cannot produce L). We will
show that K’ does not produce L in A.

Now, if not only K’ > L but the strong claim K’ > L holds, then K’ cannot
produce L. This is, because K and § prevent K’ from doing so, as is seen by the
chain K’ > K6 = L 2 L. Hence, suppose from now on K’ ~ L.

From K > L, as given, it follows K 2 L, and with K’ ~ L we get K 2 K’. Since
K is parameter-free this is equivalent to K > K. Since K € A, this means in other
words K’ €> A. By Lemma A.4 then, K’ is contradictory with A. Furthermore,
since K’ € A, A itself is contradictory. However, A was given as non-contradictory
in the lemma statement. From this contradiction it follows that the case K’ ~ L
cannot hold. Thus we have excluded all possibilities for K’ to produce L in A,
which remained to be shown. O

Lemma A.6 Let A be a non-contradictory conteat, K, K' € A, and L a literal.  If
K produces L in A and K' produces L in A, then both K and K' are variable-free.

This lemma will be important to prove that the Commit inference rule is appli-
cable whenever it should be, namely if a contexts produces both a literal and its
complement.

Proof. For reasons of symmetry it suffices to prove that K is variable-free. That K
produces L in A means in particular that K 2 L. Now, if K were not variable-free,
it would be parameter-free. In this case K 2 L means the same as K > L. But
then, with Lemma A.5 conclude that A does not produce L, contradicting what
was given in the lemma statement. O

Lemma A.7 Let A be a context and K, K', L literals. If K produces L in A and
K > K' Z L then K produces K' in A.

Proof.  Suppose that K produces L in A and K = K’ 2> L. We will show that K
produces K’ in A.

Clearly, K is a msg of K’ in A (for, if it were not, K would not be a msg of L
either, contradicting that K produces L in A). Now, if K would not produce K’ in
A, then there is a K” €> A such that K 2 K” > K'. But with K’ > L it would
follow K 2 K" 2 L, and so K would not produce L in A either.

O

The next two lemmas complement each other. Their prerequisites mean that
L is contradictory with A, as witnessed by a literal K €~ A. The first lemma
considers the case that L is parameter-free, and the second lemma considers the
case that L is variable-free. Both lemmas express how a literal K/ ~ K can take
the role of K.
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Lemma A.8 Let A a context, K €~ A, L a parameter-free literal, and o a p-
preserving substitution such that Lo = Ko. For all literals K' disjoint with L such
that K' ~ K, there is a p-preserving substitution o' such that Lo’ = K'o' and
Dom(c’) NV = 0.

Proof. Let K' be any p-preserving variant of K that is disjoint with L. This
means there is a p-preserving renaming ¢ such that K'6 = K. Let 0’ = djyur(xyuv-
Clearly, ¢ is p-preserving (but not necessarily a renaming on X) and it holds
K'§' = K. With Lo = Ko we therefore get Lo = K'§'c. Since L is parameter-free
and disjoint with K”, it is easy to see that L = L' holds. Thus, from Lo = K'd'c
it follows Lo = K'd'o.

Let p = (0'c)}y, be the restriction of §’'c to parameters. Since both ¢" and o
are p-preserving, §’c is p-preserving, and so p is a renaming on V. Therefore,
the substitution p~! exists, and from L&'c = K'§'c it follows trivially Lé'op~"
K'§'ap~!. In other words, setting ¢’ := §’op~! proves the first claim of the lemma.

Concerning the second claim, note that by construction of p it holds up = ud’o,
for any parameter u, and so u = upp~' = ud'op~! follows immediately. In other
words Dom/(8'ap~1)NV = (), which is equivalent to Dom(c’)NV = (). Finally notice
that &op~! = ¢/ trivially is p-preserving, as claimed in the lemma statement. [

Lemma A.9 Let A be a context, K €~ A, L a variable-free literal, and o a p-
preserving substitution such that Lo = Ko. (In other words, L is contradictory
with A). For all literals K' such that K' ~ K, there is a p-preserving substitution
o' such that L = K'o'.

Proof. Let K’ be any p-preserving variant of K. This means there is a p-preserving
renaming p’ such that K'p' = K.

Let p = o}y be the restriction of o to parameters. Since o is given as a p-
preserving substitution, p is a renaming on V. Therefore, the substitution p~!

exists, and it holds trivially Lop~! = Kop~!.

1 1

Since each substitution p/, o and p~' is p-preserving, p'op~! is p-preserving,
too. Since L is variable-free, it follows Lo = Lp, and so Lop~' = Lpp~! = L.
Together, thus, L = Kop~!. Using the equality K'p’ = K from above, it follows
L = Kp'op~!. Therefore, setting o’ := p'op~! proves the lemma. 0

A.2 Evolving Contexts

Quite often we will appeal to the following compactness property of Ag. By defi-
nition, L € Ag holds iff there is an ¢ < & such that L € A; for all j > i with j < k.
Similarly, if L €~ Ag then, by definition, L ~ K for some literal K € Ag. Again,
there is an ¢ < s such that K € A; for all j > ¢ with j < &, which entails that
L e~ Aj, for all j > ¢ with j < k. More generally then, if Li,...,L, € Ag (or
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Ly,...,L, €~ A) for some n > 0, then there is an i < x such that Lq,..., L, € A;
(or Ly,...,Ly €~ A;) for all j > i with j < &'

Lemma 4.7 For all i < Kk, A; is not contradictory.

Proof. The proof is by induction on i. For the base we have Ay = {-wv} and
this set is trivially not contradictory. For the induction step we take as induction
hypothesis the claim of the lemma. Observe that each inference rule that extends a
context includes as an applicability condition that the resulting context(s) is (are)
not contradictory. With this observation the induction step follows immediately.
O

Lemma 4.8 Ag is not contradictory.

Proof. Suppose that Ap is contradictory. Then there are literals L € Ag and
K €. Ap and there is a p-preserving substitution ¢ such that Lo = Ko. By
the compactness property, there is a j such that both L € A; and K €~ A;. By
virtue of the substitution o, A; is contradictory then. However, this is impossible
by Lemma 4.7. O

Lemma 4.9 The sequent A, L = W is not derivable from A = V¥ if L €5 A or
L €> A.

Proof. 1t suffices to consider potential applications of the Split, the Assert or of
the Commit inference rule to A, because these are the only rules that can extend a
context.

Split) Recall that the Split rule is applicable only if neither K nor K™ is contra-
dictory with A, where K is the remainder literal to split with. We consider two
cases, corresponding to the case that the literal L in the lemma statement is K or
is K™ In both cases we will show that Split is not applicable by showing that K
or B is contradictory with A.

In the first case the literal L in the lemma statement is K. That K €> A
holds means there is a literal K/ € A and a p-preserving substitution ¢ such that
Ko=K.

If K is variable-free, since o is p-preserving and hence a renaming on the pa-
rameters, K'c = K is equivalent to K’ ~ K. With K’ € A it follows by definition
that K €~ A. Since K is variable-free this implies trivially K =K. But then, by
taking the empty substitution one sees that K is contradictory with A. If K is not
variable-free, K must be parameter-free (this follows immediately from the defini-
tion of admissible context unifier and the fact that K is a remainder literal). Let
be the Skolemizing substitution used, i.e. the substitution p such that Ku = K.

19 Tt is easy to see that this index i can be determined by taking the maximum of the i-indices
associated individually to the literals L1, ..., Ly, as just described.
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From K'oc = K it follows trivially that K'op = Kp. Since o is p-preserving, we
then have that K’ > Kpu. With Kp = K% we get K > K%, or equivalently

K > K™, Since K’ € A, in other words, K €> A. But now, by Lemma A.4,
K™ is contradictory with A, too. This completes the proof for the first case.

In the second case the literal L in the lemma statement is KSkO. That FSkO es A

holds means there is a literal K/ € A and a p-preserving substitution o such that
K'o =K.
If K is variable-free, the proof is almost identical to the one above: since o is

p-preserving and hence a renaming on the parameters, K'o = K is equivalent to
K' ~ K™, With K’ € A it follows by definition K €~ A. Since K is variable-
free this implies trivially K =K. But then, by taking the empty substitution one
sees that K is contradictory with A. If K is not variable-free, as said above, K must
be parameter-free. Let u be the Skolemizing substitution used, i.e. the substitution
p such that Kpu = K®°, It can be written as u = {x1 + a1, ..., o, — a,}, where
Z1,...,Ty are all the variables occurring in K, and aq,...,a, are fresh constants.
Now, because the constants aq, ..., a, are fresh, none of them will occur in K. This
means that we can consider the “substitution” ' = {a1 — z1,...,a, — z,} and
have that K = Kupu' = K4/, From K'o = KX it follows trivially K'op' =
FSko,u’. Together with K = Ky we get easily K'oy/ = K. Since K’ € A, in
other words, K €> A. But now, by Lemma A.4, K is contradictory with A, too.
This completes the proof for the second case.

Together, thus, K or K™ is contradictory with A, which remained to be shown.

Assert) The proof is immediate from the applicability condition from Assert, which
explicitly demands that there is no K € A such that K > L.

Commit) Because of Commit’s applicatibility conditions, the literal L in the lemma’s
statement must be variable-free. The proof for this case is similar to the subcase
in the proof for of Split, where the literal K mentioned there, and hence also fSko,
is variable-free. O

In the course of the development of a branch, a literal in a sequent’s context
may be deleted by means of the Compact rule. Such a deletion is only possible in
presence of a p-subsuming literal, which takes the role of the deleted literal. This
process may continue and is formalized in the following definition.

Definition A.13 Let K be a literal. For all i < k, if L € A; then the trace of L
from A; is the sequence (L7)i<j<yx, where L7 := L if j =i, and for all j > i,

‘ K if Compact is applied with selected literal L’=" and
L) = subsuming literal K to Aj_1 = ®,;_1 to obtain A; = ®;
LI=Y  otherwise
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Lemma 4.10 Leti < k and L € A;. For every j with i < j < K there is a K € A;
such that K > L.

Proof. Consider the trace (L’ Ji<j<wr of L from A;. Each literal L’ from the trace,
where ¢ < j < K, is contained in Aj;, and L’ > L holds by construction of the
trace. 0

Lemma 4.11 For any two different literals K, L € |J;_,. A, it holds that K % L.

Proof. Assume by way of contradiction that K ~ L for some different literals
K,L € |J;., Ai. Notice first that not both K and L can be pseudo-literals, i.e. of
the form —w, because the context Ag contains exactly one such pseudo-literal and
the calculus has no inference rules to add (or to delete) those. If only one of K and
L is a pseudo-literal, the lemma holds trivially. Hence, from now on assume that
neither K nor L is a pseudo-literal.

There must be finite ordinals j and %k such that L € A; and K € A;,. W.lLo.g.
assume that j > k. Furthermore j and k may be chosen minimal, i.e. L ¢ A;_;
and K ¢ Aj_;. This means that some inference rule is applied to the node N;_;
that extends the context Aj_; with L to obtain A; (and similarly for K). Observe
that the inference rules of ME extend the given context by at most one literal.
In particular, K cannot have been added to A;_; by the considered inference rule
application. Thus, not only 5 > k but also j > k£ must hold.

But then, by Lemma 4.10 there is a literal K’ € Aj_; such that K’ > K.
Together with K ~ L it follows immediately that K’ > L. However, according to
Lemma 4.9 the considered inference rule application that extends A;_; by L is not
possible. A plain contradiction. Thus, we must have K # L. O

Lemma 4.12 For all i < k and for any two different literals K, L € A; it holds
that K # L.

Proof. Because A; C |J,_,. A; the result follows trivially from Lemma 4.11. O

1<K
Lemma 4.13 For alli < k and L € A; there is a K € Ag such that K > L.

Proof. Consider the trace (L7);<j<x of L from A;. All its consecutive different
elements L; and L;,; are those where the Compact rule is applied to the sequent
A; = @, labeling the node N;. That Compact is applied means L;y; > Lj;. Of
course, both L;y; € Aj and L; € A; must hold as well. By Lemma 4.12 we can
conclude that L;1 % L;. Together with L;,q > L; this entails that L;;1 > Lj;.
In other words, the considered consecutive different elements from the trace
determine a sequence of increasing literals wrt. >. With Lemma A.1 it follows
immediately that this sequence is finite. If the sequence is non-empty, let K be its
last element. Otherwise, let K = L. In both cases it is easy to see that K € Ap

and K > L. O
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Lemma 4.14 For all k < k and L € A \ A, there is an i > k such that for all j
with 1 < j <k, L g~ A;j.

Proof. Let k < k and L € A\ AB. Since L ¢ Ap there must be an i > k such that
L ¢ A;. Let i be the smallest such index. We prove that L ¢~ A; for all j with
1 < 7 < k by induction on j.

j = i) From the minimality of 7 we know tha t Compact rule is applied to A;—1 - ®;_1

with selected literal L, and that L does not occur in A;. By Lemma 4.12, there is
no literal K € A;_; different from L such that K ~ L. This implies that L ¢~ A;.

jr—j+1) Let K € Aj_1 be the subsuming literal of the Compact rule application
mentioned in the proof of the case j = i. By definition of the Compact inference
rule K > L holds. By Lemma 4.10 there is a literal K’ € A; such that K > K.
Together it follows K’ > L. Let L' ~ L be any variant, and it will hold K’ > L’.
But then, according to Lemma 4.9 an inference rule that would extend A; with L’
is not applicable. With L' ~ L this implies L ¢~ Aj;1. Now, together with the
induction hypothesis the result for the induction step follows immediately. O

Lemma 4.15 Let K, L be two literals. If K produces L in Ag, then for all i < k
there is no K' € A; and no p-preserving substitution o such that K 2 K'o 2 L.

Proof. We prove the lemma by proving its contrapositive. Suppose then that
there is a literal K’ € A;, for some i, and some substitution o such that K %
K'c 2 L. Then, from Lemma 4.13 it follows that there is a K’ € Ag such that
K" > K'. Let ¢’ be the p-preserving substitution such that K”¢’ = K’. From this,
K Z K"0'c Z L follows immediately. Because both o’ and ¢ are p-preserving, o’c
is p-preserving as well. Hence K € Ag does not produce L in Ag. O

Lemma 4.16 Let K, L be two literals with K € Ag. If K produces L in Ag, then
there is an i such that for all j > i with j <k, K € A; and K produces L in A;.

Proof. Since K € Ap there is a k such that K € A;, for all j > k. However, there
is no guarantee that k is the index ¢ we are looking for. Informally, it might be the
case that a literal K’ with the property K = K’ 2 L is added to the context Ay,
or to some successor context, and deleted later again. In both cases, K’ prevents
K from producing L in the contexts containing K’. We will show that this process
of adding and deleting literals like K’ can happen only finitely often. Clearly,
any index ¢ at some timepoint after this process is finished will have the desired
property.
More formally, let

M = {K' | there is an m > k such that K’ € A, and K 2 K' > L}

be those literals that prevent K from being a msg of L in A,,, for some m > k.
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Since K’ > L for each K’ € M, the set M / ~ must be finite by Lemma A.1.
Moreover, M is trivially a subset of | J,_,. A;. Therefore Lemma 4.11 is applicable,
and it gives us K| % K for any two different literals K1, K} € M. This means that
each element of M / ~ is a singleton. In sum, M / ~ is a finite set of equivalence
classes Therefore M itself is finite.

No literal K’ from M is persistent, i.e. K’ ¢ Ap holds for each K’ € M. This
is the case because otherwise K € Ag would not produce L in Ag as assumed.

By applying Lemma 4.14 to each literal K/ € M, we can conclude from the
finiteness of M that there is an index ¢ > k such that for all ;7 > 7 and for each
K’ € M it holds K’ ¢~ A; (k was chosen at the very beginning of the proof). In
other words, K is a msg of L in A; for all j > 1.

We are given that K € Ag produces L in Ag. Since K is a msg of L in A;
for all j > ¢, as just derived, we can immediately conclude by Lemma 4.15 that K
produces L in A; for all j > i. To complete the proof it is enough to recall that
K € Aj for all j > k with j < x and that 7 > k. O

Lemma 4.17 If Ag does not produce a literal L, then there is an i such that for
all j > i, A; does not produce L.

Proof. Suppose that Ag does not produce L. Let
M = {K | there is a m > 0 such that K € A, and K is a msg of L in A,,} .

Only those literals are candidates to produce L in some eventually derived
context. Since K 2 L for each K € M, the set M / ~ must be finite by Lemma A.1.
Moreover, M is trivially a subset of | J,_,. A;. Therefore Lemma 4.11 is applicable,
and it gives us K % Kj for any two different literals K7, Ko € M. This means
that each element of M / ~ is a singleton. In sum, M / ~ is a finite set of finite
equivalence classes Therefore M itself is finite.

Now let K € M. By construction of M, K € A, for some m > 0. We prove
that there is an index i such that for all j > i, K ¢ A; or A; does not produce
L in A;. Since M is finite, this proof can be applied to all literals in K € M and
the maximum of all the respective timepoints ix exists. Let i be that timepoint.
Because M contains all msg’s of L in all contexts derived so ever, but, for all
K € M and all j > i, K ¢ M or K does not produce L in Aj, it follows that A;
does not produce L, for all j > ¢, and so the proof will be complete. We consider
two complementary cases.

If K is not persistent, i.e. K € Ag, then from Lemma 4.14 it follows immediately
that there is a ix such that K ¢ A;, for all j > ix.

If K is persistent, i.e. K € A, recall the given assumption that Ag does not
produce L. This means that (i) K is not a msg of L in Ag or (ii) there is a literal
K’ €> Ag such that K K’ > L. If (i) holds, because K > L by construction of
M, there is a literal K" € Ag such that K 2 K" 2> L. Since K" is persistent, there
is an index igx such that K" € A, for all j > ix. With K Z K" it follows that K
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does not produce L in Aj, for all j > igx. If (ii) holds, there is a literal K’ € Ag
and a p-preserving substitution o such that K 2 K'o > L. Since K' is persistent,
there is an index ix such that K’ € A;, for all j > ix. With K Ko > L it
follows that K does not produce L in Aj, for all j > ig. O

A.3 Properties of Inference Rules

Lemma 4.18 (Commit Applicability) Let A + ¥ be a sequent with a non-
contradictory context A, and let K, K' € A be variable-free literals. If K produces
L in A and K' produces L in A, then Commit is applicable to A = W with selected
connection (K,K') and some most general unifier o. Moreover, K Z Ko 2, L and
K' Z K'oz L.

Proof. Let A, K and L be as mentioned in the lemma statement. Observe that
K produces L in A iff any variant of K produces any variant of L in A, and
similarly for K’ and L. This follows immediately from the definition of productivity
(Definition 3.5). Therefore, we can assume with no loss of generality that K, K’
and L are all pairwise disjoint.

That K produces L in A means in particular that K > L, and that K’ produces
L in A means in particular K’ > L. By definition, there are substitutions v and 7/
such that K+ = L and K’y = L. Because of the assumption that L is disjoint with
K and with K’, 4/ need not move a parameter or variable occurring in L. This
implies that L = L~, and, together with Ky = L that Ky = L. Similarly, since
K and K’ are given as parameter disjoint, v need not act on the parameters of K'.
This implies K’ = K'v, and, together with K’y = L it follows K’y = L.

From K~y = L and K'yy = L, as just derived, conclude K~y = K'4'. In
other words, 74/ is a unifier of K and K’. Hence there is a most general unifier o
of K and K’ and a substitution 6 such that Ko = K’o and 0§ = 44 hold. Any
standard unification algorithm will not introduce parameters (or even variables)
beyond those occurring in K or K’, and so Ko will be variable-free, as demanded
by Commit. For later use, note that from K~y = L and 0§ = ~7 it follows
K'cd = L. Similarly, from K'~y' = L it follows K'c6 = L.

The substitution ¢ is the one taken to prove that neither Ko nor Ko is con-
tradictory with A, as demanded by Commit. It also proves the “moreover” part in
the lemma statement. For reasons of symmetry, it suffices to prove only that Ko
is not contradictory with A.

We first rule out the possibility that Ko ~ K holds. Suppose to the contrary
that Ko ~ K holds. Because K is given as variable-free and Ko was assumed to
be variable-free further above, Ko =~ K is equivalent to Ko ~ K. Now we need a
further case analysis: in the first case Ko ~ K’ holds. As with K and Ko, both K’
and K’o are variable-free for the same reasons, and therefore K'oc ~ K’ is equivalent
to K'o ~ K'. Buth then, the chain K ~ Ko = Ko ~ K’ holds true. With K/ €~ A
it follows that K is contradictory with A, and so A itself is contradictory. However,
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A was given as non-contradictory, and so the case K'c ~ K’ is impossible. Hence
we consider the complementary case, K'oc % K'. Then, with K’ > K'o, which holds
trivially, it follows K’ > K’'o. Above we noted that K'cd = L holds. Together
with K’ > K'o we get the chain K’ 2 K'c 2 L. With Ko = K'c this chain is
equivalent to the chain K’ Ko 2 L. Recall that we currently assume Ko ~ K,
which implied Ko ~ K. However, from K € A it holds by definition Ko €~ A,
which implies trivially Ko €> A. With K’ > Ko > L it follows immediately that
K’ does not produce L in A. This contradicts what is given in the lemma statement,
and hence the second case, that K'c # K’ holds, is impossible, too. In sum, the
assumption that Ko ~ K holds led to a contradiction in both (complementary)
subcases.

From now on we may therefore assume that Ko % K. As said above, it suffices
to show that Ko is not contradictory with A. Suppose, to the contrary, that Ko
is contradictory with A. This means there is a literal K” €~ A and a p-preserving
substitution ¢’ such that Koo’ = K”¢’. Since Ko is variable-free, Lemma A.9
can be applied to conclude that there is a p-preserving substitution ¢” such that
Ko=K"o".

Because K 2 Ko holds trivially, together with Ko % K it follows K 2 Ko.
From above there is a substitution é such that Kod = L. Therefore it holds
K Z Ko Z L. Using the just derived identity Ko = K"¢”, we get K 2 K"¢" > L.
From the fact K” €~ A and that ¢” is p-preserving it follows that K”¢” €= A.
But then, K does not produce L in A, contradicting what was given in the lemma
statement. Hence, the assumption that Ko is contradictory with A leads to a
contradiction, which remained to be shown. O

Lemma 4.19 (Lifting Lemma) Let A be a non-contradictory context. Let C =
Ly V.-V Ly be a X-clause and v a grounding substitution for C. If A produces

L17,...,L,y, then there are fresh variants K1, ..., K, €~ A and a substitution o
such that

1. o is a most general simultaneous unifier of {K1,L1},...,{Kn, Ly},
2. foralli=1,...,n, L; 2 L;oc 2 L;~,
3. foralli=1,...,n, K; produces Lic in A.

Proof. Let i € {1,...,n} and assume that A produces L;y. Then, there are literals
K| € A such that K] produces L;y in A. Let K; ~ K| be fresh variants of K/. It is
easy to see that K; €~ A produces L;v in A. Because all the K;’s are fresh, they
are pairwise disjoint, and each K; is disjoint from C.

By definition of productivity, K; > L;v, that is, there is a substitutions 7; such
that K;m; = L;y. Since K; is variable disjoint from C, we can assume that 7; moves
only the variables and the parameters of K;. Now, since K; is disjoint from K for

j €{1,...,n} distinct from 4, and 7; is a ground substitution for K;, we have that
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K;m; = K;ym where w:=my -+ - ;- - - T, Since L;7y is ground, it follows immediately
that L,y = L;yw.

We may assume that all variables moved by 7 occur in C only (otherwise restrict
v respectively). Together with the assumptions made it follows that K; = K7,
which implies trivially that K;m = K;y.

Putting together all results obtained so far together, we get that K;ym = L;ym
for all i = 1,...,n. In other words, y7 is a simultaneous unifier of {K1, L1} ...,
{K,,L,}. Tt follows that {Ky,L1} ..., {Ky, L,} admits a simultaneous mgu o,
which proves item 1 in the statement of the lemma.

Now, to prove item 2 observe that since L;v is ground, L;ym = L;y. Since o is
a more general substitution than ym we know that vyr = 06 for some substitution
0. It follows that L;00 = L;ym = L;y. In other words, L;oc 2 L;y. But then
L 2 L;o 2 L;y as desired.

To prove item 3 first observe that K; 2 L;o because K;o = L;o. By item 2 we
then have that K; > L;o > L;~y. Recalling that the literal K; produces L;y in A, it
follows by Lemma A.7 that K; produces L;o in A as well. O

Lemma 4.20 (Existence of Admissible Context Unifiers) Let A be a con-
text, C' a clause and o a context unifier of C' against A. Then, there is a renaming
p such that o’ := op is an admissible context unifier of C' against A.

Proof. Let C =LV ---V Ly, for some n > 0. By Definition 3.11 of context unifier,
for all i = 1,...,n there is a K; €~ A such that K;o = L;o. Moreover, there is an
m € {1,...,n} such that (Par(K;))o CVforalli=1,...,m and (Par(K;))o £ V
forallt=m+1,...,n.

We are going to construct a renaming substitution p as stated. Let zi,...,xp
be the variables such that {xi,..., 25} =Var(Ly410V -V L,o0), i.e. all variables
occurring in the remainder. Define p := {1 +— uy,..., 2 — up, ug — 1,...,u; —
Tk, }, where uy, ..., u; are pairwise different and fresh parameters®.

Clearly, p is a renaming. It remains to show that op is admissible for Split.
Recall that (Par(K;))o € V holds, for i = 1,...,m. By construction, all the
parameters moved by p are fresh parameters, none of which therefore can occur in
K;. In other words, (Par(K;))p = Par(K;) holds, which entails (Par(K;))op =
(Par(K;))o. (However, (Par(K;))op € V, for i = m+1,...,n, will in general not
hold). Therefore, there is a m’ with m < m’ < n such that (Par(K;))op C V, for
i=1,...,m" and (Par(K;))op L V,fori=m'+1,...,n.

None of the remainder literals K;op, for ¢ = m + 1,...,n, contains a single
variable. Hence they all are variable-free, and the disjointness requirement in the
definition of admissible context unifier is trivially satisfied. This concludes the proof
of existence of a renaming p as claimed. O

20That is, every variable in the remainder is renamed by p to a parameter. From a practical
point of view this is absurd, and it is better to compute a renaming that keeps as many variables
in the remainder as possible. For the purpose of the completeness proof, however, the renaming p
as constructed will do.
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Lemma 4.21 Let A be a context, L1V ---V L, be a clause, where n > 0, such
that for all distinct i,j = 1,...,n, L; is parameter- or variable-free and Var(L;) N
Var(Lj) = 0. If for alli=1,...,n, L; is contradictory with A then there are fresh
literals K1, ..., K, €~ A and a substitution § such that the following holds:

1. 6 is a simultaneous unifier of {K1,L1},...,{Kn, Ln},

2. foralli=1,...,n, Dom(§) N Par(L;) =0, (i.e. & does not move any single
parameter in the given clause)

3. foralli=1,...,n, (Par(K;))d CV.

Proof. Let A and L;V ---V L, be as stated, and such that the condition in the
lemma result is satisfied. The conclusions, items 1-3, are proven by induction on
n.

Base) If n = 0 then the result follows trivially by choosing for § the empty substi-
tution.

Step) Suppose n > 0 and consider the clause L; V ---V L,_;. Clearly, for all
i,j = 1,...,n —1, L; is parameter- or variable-free and Var(L;) N Var(L;) = 0
holds. Therefore, by the induction hypothesis there are literals K1,..., K, 1 €~ A
and a substitution ¢’ such that

1. ¢ is a simultaneous unifier of {K7,L1},...,{Kn_1,Ln_1},
2. foralli=1,...,n—1, Dom(§') N Par(L;) =0,
3. foralli=1,...,n—1, (Par(K;))d C V.

Since L, is contradictory with A, there is a literal K €~ A and a p-preserving sub-
stitution o such that L,0 = Ko. Let K,, be a fresh p-variant of K. We distinguish
two complementary cases. In both cases we will show there is a substitution ¢’ such
that & := ¢’0’ proves the induction step.

If L, is parameter-free, then by Lemma A.8 there is a p-preserving substitution
o’ such that L,0’' = K,o' and Dom(c’) N V = (K, is fresh and hence disjoint
with L,,, and so the lemma can indeed be applied). From the latter conclusion and
items 2 and 3 from the induction hypothesis, items 2 and 3 for the induction step
follow immediately (recall we set ¢ := ¢'0”).

Since K, is fresh, the substitution ¢’ will not modify K,, i.e. K, = K,d holds
(the substitution ¢’ is a unifier for just L; and K;, for i = 1,...,n — 1 and hence
need not modify the fresh literal K,). Together with L,o’ = K,o' it follows
L,o' = K,80'. Since L, does not contain any parameter, does not share any
variable with the literals Lq, ..., L,_1, and all the literals Ky,..., K, are fresh, it
is safe to assume that ¢’ will not modify L,,. In other words, it holds L, = L,d".
Together with L, o’ = K,,6'c’ from above conclude L,6'c’ = K,,6'c".
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If L,, is variable-free, then by Lemma A.9, there is a p-preserving substitution o”
such that L,, = K,,0". Let o/ :=¢” Var(Ky) UPar(K,)- From this, items 2 and 3 from
the induction hypothesis, items 2 and 3 for the induction step follow immediately
(recall we set § := d'0”).

From L, = K,,0" and the definition of ¢’ it follows trivially L, = K,o’. From
the induction hypothesis, item 2, it follows that ¢’ does not move any parameter
in L, that occurs also in Ly V ---V L,_1. Furthermore, it is safe to assume that
0" does not move any other parameter in L,, (6’ needs just move the parameters
in Ky,...,K,_1, which, by freshness assumptions, are disjoint with L,). In other
words, L, = L,¢" will hold. Using the fact that K, is fresh, hence disjoint with
L,, and the definition of ¢’ it follows trivially L, = L,o’. Altogether then L, =
L,§ = L,o' = L,0'¢’, and from L, = K, o' we get L,8c' = K,o'. As already
argued for in the first case above, since K, is fresh, it will hold K,, = K,,§'. With
L, 00’ = Ko it follows L,0'c’ = K,,6'0’.

This concludes the case analysis. Note that in both cases we have shown that
there is a substitution ¢’ such that L,,0'c’ = K,,0'¢’. From the induction hypothesis
we know that ¢’ is a simultaneous unifier of {K1, L1},...,{K, 1, L,_1}. Hence §c’
is trivially a simultaneous unifier of these literals, too. Together, thus, item 1 for
the induction step is shown (recall we set § := d’0’). Also we have shown in the
case analysis that items 2 and 3 for the induction step hold for §’c’. Hence the
proof is complete. O

Lemma 4.22 (Split Applicability) Let A F U, C be a sequent with a non-
contradictory context A, where C' contains at least two literals. If all context unifiers
of C against A have a non-empty remainder, and o is a context unifiers of C' against
A with a remainder not produced by A, then Split is applicable to A + W, C' with
selected clause C' and context unifier o.

Proof. Suppose the condition of the lemma statement holds. The proof of the con-
clusion consists of two parts: in a first part, we will show that there is a remainder
literal that is not contradictory with A. Then, in a second part we will show that for
each remainder literal L, ™ is not contradictory with A. This will immediately
give a proof that Split is applicable to A + W, C' with selected clause C, context
unifier ¢ and that mentioned remainder literal.

Let C = LiV---VLy VL1V -V Ly, where 0 < m < n (and n > 2), where the
remainder D is (Ly,+1V- -V Ly, )o. Suppose, to the contrary of the statement for the
first part that every literal L;o, for j = m+1,...,n is contradictory with A. Since
o is admissible, all prerequisites to apply Lemma 4.21 are satisfied. By this lemma
then, there are fresh literals K,,+1,..., K, €~ A and there is a simultaneous unifier
§ of {Kmi1, Lmi10}, ..., {Ky,, Lyo} (item 1) such that for all j = m +1,...,n,
it holds Dom(d) N Par(L;) = 0 (item 2), and (Par(K;))d C V (item 3). We
may assume that ¢ is restricted so that each parameter moved by it occurs in some
literal K;, where m + 1 < j < n. Otherwise restrict ¢ respectively by excluding
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from its domain all the parameters that do not occur in any K, and items 1-3 will
still hold. In particular, § will still be a simultaneous unifier as stated in item 1,
because the unrestricted 0 does not move the parameters in L; anyway.

In the sequel the index j always ranges from m + 1,...,n.

Since each literal Kj is fresh, we may assume that o does not modify Kj,
i.e. K; = K;o holds. Therefore, § is a simultaneous unifier of {K,,+10, Lip+10},
..., {Kno, Lo}, Equivalently, o6 is a simultaneous unifier of {K,, 41, L1}, - - -
{Kyn, L,}.

Furthermore, from (Par(K;))6 C V and K; = Kjo it follows (Par(K;))od C V.

We are given that o is an (admissible) context unifier. This means in particular
that o is a simultaneous unifier of {K1, L1}, ..., {Km, Ly }. Trivially, ¢d is a
simultaneous unifier of these literals as well.

Above we assumed that § is restricted so that each parameter moved by it
occurs in some literal K, where m 4+ 1 < j < n. Since each literal K is fresh,
0 will not move any parameter in any literal K;o, for all i = 1,...,m. Since o is
a context unifier, we know (Par(K;))o C V, for all i = 1,...,m. Together this
implies (Par(K;))od C V.

Summing up, there is a simultaneous unifier o6 (of {K1, L1}, ..., {Kn, Ln} —
we will omit in the sequel the mentioning of these pairs if just these are meant)
such that (Par(K;))od CV, foralli=1,...,n.

However, there is no guarantee that ¢d will be a simultaneous most general
unifier. We will show next that a simultaneous most general unifier exists, that,
moreover will be a context unifier of C' against A with empty remainder, contra-
dicting the lemma statement.

Since ¢4 is a simultaneous unifier, there is a most general simultaneous unifier
o’ and a substitution ¢’ such that 0’6’ = 4. (The same arguments as in the proof
of the Lifting Lemma, Lemma 4.19, can be applied to show this). However, there
is no guarantee that (Par(K;))o’ C V, for all ¢ = 1,...,n. But it must hold
(Par(K;))o! € X UV, for all i = 1,...,n, because otherwise there would be a
parameter u in some literal K;, where 1 < ¢ < n and that would be moved to a
term uo’ ¢ X U V, which implies uo’d’ ¢ V. However, we know uo’d’ = uod € V.

Let x1,. ..,z be all the variables in Par(Ki)o’ U --- U Par(K,)o" and define
the renaming

p=A{x1 > up,...,Tp > Uk, UL — T1,..., UL — Tk} ,

where wuq,...,u; are fresh parameters. By this construction, each variable in
(Par(K;))o’ is moved to a parameter, and because uy, . .., uy are fresh, each param-
eter in (Par(K;))o’ is moved to itself, for alli = 1,...,n. This proves (Par(K;))o'p C
V, for all ¢ = 1,...,n. Furthermore, with ¢’ being a most general simultaneous
unifier and p being a renaming, ¢’¢’ is a most general simultaneous unifier, too.
(And it holds (¢/¢")(6'"1¢") = &§). In other words, o’ is a context unifier of C
against A with empty remainder. Since this plainly contradicts what is given in the
lemma statement, the assumption that every literal Lo, for j = m +1,...,n, is
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contradictory with A must be withdrawn. Hence, as claimed, there is a remainder
literal Lo that is not contradictory with A. This completes the first part of the
proof.

For the second part, let L € D be any remainder literal. We have to show that
77 is not contradictory with A. Suppose to the contrary that T74s contradictory
with A. Then, there is a K €~ A and a p-preserving substitution ¢ such that
™0 = Ko.

Because of Skolemization, K™ is variable-free. Now, if K is variable-free as
well, we take ¢’ := o and it holds T™°¢' = Ko'. Because o’ is a p-preserving

. _ . . —sko —sko _ - _ - .
renaming, o'~! exists, and it follows L~ = L o¢'0'"! = Ko'o'~' = K. This

implies trivially L*° = K. That L contains variables is impossible, because then
L% would contain (one or more) Skolem constants, which are fresh, but the context
literal K cannot contain any of these Skolem constants, and so L%° = K would be
impossible. Hence it holds L**° = L, and therefore L = K. Since we have K €~ A,
which is the same as L €~ A, A trivially produces L. However, since we are given
that A does not produce any literal in D, hence in particular A does not produce
L, the case that K is variable-free is impossible.

Now that we know that K is not variable-free, by property of contexts, K
must be parameter-free. Recall that L is variable-free. From Lemma A.9 then it
follows there is a p-preserving substitution ¢’ such that T = Ko'. This implies
I’ = Ko'. Let p = {x; ~ ai,...,2, — a,} be the Skolemizing substitution
used, for some n > 0. Now, because the constants aq,...,a, are fresh, none of
then will occur in K. This means, we can consider the “substitution” p' = {a; —
T1,...,0, +— T} and it will hold L = L¥°y’ = Ko'y/. The substitution o’ p/
instantiates the variables of K, which implies K > L. But then, by Lemma A.5,
A produces L. As above, since we are given that A does not produce any literal in
D, hence in particular A does not produce L, the case that K is parameter-free is
impossible as well.

In sum, we now now that K is neither variable- nor parameter-free, which
contradicts a fundamental property of contexts. Therefore, the assumption that
™ is contradictory with A is false, and so no remainder literal is contradictory
with A. Since this is all that remained to be proven, the proof is complete now. O

Lemma 4.23 (Assert Applicability) Let A - U, L be a sequent with a non-
contradictory context A. If all context unifiers of L against A have a non-empty
remainder and there is an instance of L that is not produced by A, then Assert is
applicable to A = ¥, L with selected unit clause L.

Proof. Suppose that A does not produce Lo and that there is no context unifier of
L against A with empty remainder. To show that Assert is applicable as stated, we
first have to show that there is no literal K € A such that K > L. Suppose there
were such a literal K. Recall that the clauses in the sequents are parameter-free.
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With L being therefore parameter-free, it follows easily that L > Lo. Together
with K > L conclude K > Lo.

But then, Lemma A.5 can be applied to conclude that A produces Lo, plainly
contradicting to what was supposed. Therefore, there is no literal K € A such that
K> L.

Finally, we have to show that L is not contradictory with A. Suppose, to the
contrary, there is a literal K €~ A and a p-preserving substitution ¢ such that
L6 = K6. Let K' €~ A be a fresh p-preserving variant of K. As said above, L is
parameter-free. By Lemma A.8 then, there is a p-preserving substitution ¢’ such
that L&’ = K’ such that Dom(§') N V = (). Since & is a unifier of L and K’, it is
not difficult to see that there is a mgu o’ of L and K’ such that Dom(cs’) NV =)
holds as well (roughly, any mgu not having this property must rename, say by a
substitution p, the offending parameters to variables, because otherwise it would be
impossible that ¢’ could be appended with some substitution 6" to give 0’6" = §’.
But then o/p~! will be a mgu such that Dom(c’'p~!) N V = ) holds and can be
used instead of o).

Since Dom(o’) NV = () trivially entails (Par(K"))o’ C V, we have just shown
that o’ is a context unifier of L against A with a non-empty remainder. This,
however, plainly contradicts what was supposed above. Altogether, all applicability
conditions for applying Assert as stated have been shown. O
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