
Study on Data Placement Strategies
in Distributed RDF Stores

by
Daniel Dominik Janke

Approved Dissertation thesis for the partial fulfillment of the requirements for a
Doctor of Natural Sciences (Dr. rer. nat.)

Fachbereich 4: Informatik
Universität Koblenz-Landau

Chair of PhD Board: Prof. Dr. Jan Jürjens
Chair of PhD Commission: Prof. Dr. Susan Williams
Examiner and Supervisor: Prof. Dr. Steffen Staab
Further Examiner: Prof. Dr. Georg Lausen

Date of the doctoral viva: 31. January 2020

This thesis will be published in the book series Studies on the Semantic Web∗ at IOS Press.

∗http://www.semantic-web-studies.net/

http://www.semantic-web-studies.net/

Abstract
The distributed setting of RDF stores in the cloud poses many challenges. One such challenge is how the data
placement on the compute nodes can be optimized to improve the query performance. To address this chal-
lenge, several evaluations in the literature have investigated the effects of existing data placement strategies on
the query performance. A common drawback in theses evaluations is that it is unclear whether the observed
behaviors were caused by the data placement strategies (if different RDF stores were evaluated as a whole) or
reflect the behavior in distributed RDF stores (if cloud processing frameworks like Hadoop MapReduce are
used for the evaluation). To overcome these limitations, this thesis develops a novel benchmarking method-
ology for data placement strategies that uses a data-placement-strategy-independent distributed RDF store to
analyze the effect of the data placement strategies on query performance.

With this evaluation methodology the frequently used data placement strategies have been evaluated. This
evaluation challenged the commonly held belief that data placement strategies that emphasize local compu-
tation, such as minimal edge-cut cover, lead to faster query executions. The results indicate that queries
with a high workload may be executed faster on hash-based data placement strategies than on, e.g., minimal
edge-cut covers. The analysis of the additional measurements indicates that vertical parallelization (i.e., a
well-distributed workload) may be more important than horizontal containment (i.e., minimal data transport)
for efficient query processing.

Moreover, to find a data placement strategy with a high vertical parallelization, the thesis tests the hypothesis
that collocating small connected triple sets on the same compute node while balancing the amount of triples
stored on the different compute nodes leads to a high vertical parallelization. Specifically, the thesis proposes
two such data placement strategies. The first strategy called overpartitioned minimal edge-cut cover was found
in the literature and the second strategy is the newly developed molecule hash cover. The evaluation revealed
a balanced query workload and a high horizontal containment, which lead to a high vertical parallelization. As
a result these strategies showed a better query performance than the frequently used data placement strategies.

iii

Zusammenfassung
Die Verteiltheit von RDF Cloud-Datenbanken beinhaltet viele Herausforderungen. Eine solche Herausfor-
derung ist die optimale Verteilung der Daten auf die einzelnen Rechenknoten, so dass Anfragen möglichst
schnell beantwortet werden können. Um eine solche optimale Verteilung zu finden, wurde in der Literatur
bereits mehrfach untersucht, wie sich existierende Datenverteilungsstrategien auf die Anfrageperformanz aus-
wirken. Bei vielen dieser Untersuchungen werden verschiedene RDF Cloud-Datenbanken miteinander vergli-
chen. Dies hat den Nachteil, dass nicht klar ist, ob die gemachten Beobachtungen auf die Datenverteilungsstra-
tegie zurückzuführen sind oder von anderen Faktoren verursacht werden. Bei anderen Untersuchungen wurden
Cloud-Verarbeitungssysteme wie Hadoop MapReduce verwendet. In diesen Fällen ist es nicht klar, ob die Be-
obachtungen auf verteilte RDF Datenbanken übertragbar sind, die keine solchen Cloud-Verarbeitungssysteme
nutzen. Um diese Nachteile zu überwinden, eine neue Methodik zum Benchmarking von Datenverteilungs-
strategien entwickelt. Teil dieser Methodik ist eine datenverteilungsunabhängige verteilte RDF Datenbank,
mit deren Hilfe die Wechselwirkungen zwischen der Datenverteilungsstrategie und der Anfrageabarbeitungs-
strategie analysiert werden können.

Mit Hilfe dieser Benchmarking-Methodik wurden die häufig genutzten Datenverteilungsstrategien evaluiert.
Diese Evaluation stellt die verbreitete Ansicht in Frage, dass Datenverteilungsstrategien, die sich wie die auf
lokale Berechnungen fokussieren, Anfragen schneller abarbeiten können. Die Ergebnisse unserer Evaluation
deuten darauf hin, dass Anfragen mit einer hohen Arbeitslast auf hashbasierten Datenverteilungsstrategien
schneller ausgeführt werden können als z.B. bei der minimaler Kantenschnitt-Verteilung. Die Analyse der
zusätzlichen Metriken weisen darauf hin, dass vertikale Parallelisierung (d.h., eine gut verteilte Arbeitslast)
für eine effiziente Anfrageabarbeitung wichtiger sein kann als die horizontale Eindämmung (d.h., minimaler
Datentransport).

Um eine Datenverteilungsstrategie mit einer hohen vertikalen Parallelisierung zu finden, wurde die Hypo-
these aufgestellt, dass wenn kleine zusammenhängende Tripelmengen auf demselben Rechenknoten gespei-
chert werden, jedoch gleichzeitig die Anzahl der auf den verschiedenen Rechenknoten gespeicherten Tripel
balanciert wird, dies zu einer hohen vertikalen Parallelisierung führen kann. Um diese Hypothese zu untersu-
chen, wurden zwei solche Datenverteilungsstrategien vorgestellt und evaluiert: die in der Literatur gefundene
überpartitionierte minimaler Kantenschnitt-Verteilung sowie die neu entwickelte Molekül-Hash-Verteilung.
Bei ihrer Evaluation konnte eine balancierte Arbeitslast sowie eine hohe horizontale Eindämmung und somit
eine hohe vertikale Parallelisierung festgestellt werden. Infolgedessen konnte eine bessere Anfrageabarbei-
tungsperformanz als bei den häufig verwendeten Datenverteilungsstrategien feststellt werden.

v

Publications and Disclaimer
Several parts of this thesis have been published at international journals or workshops as well as in book series.

• Chapter 2 and Chapter 3 that survey the related work of RDF stores in the cloud have been published as
chapter 7 in the book “Reasoning Web 2018. Learning, Uncertainty, Streaming, and Scalability” [68].

• The methodology for benchmarking data placement strategies described in Chapter 4 as well as the
evaluation of common graph cover strategies in Chapter 5 together with the additional evaluation details
from Appendix C have been published in the Journal of Web Semantics [73] and the technical report
[69]. The profiling system Koral has been published in the 2nd International Workshop on Bench-
marking Linked Data 2017 (BLINK2017) [70] and as a poster at the 16th International Semantic Web
Conference 2017 (ISWC2017) [71]. Initial evaluation results have been published in The International
Workshop on Semantic Big Data 2017 (SBD2017) [72].

• The proof that the developed distributed query execution strategy is sound and complete, shown in
Appendix B, has been published in the technical report [69].

The ideas presented in the publications are originated by the author of this thesis. The majority of the texts
was also written by the author. The coauthors Steffen Staab and Matthias Thimm helped improving the ideas
and the text quality.

vii

Acknowledgments
First of all, I would like to thank Steffen Staab, who gave me the opportunity to obtain a PhD degree. During
this process he continuously supported me by his scientific guidance,valuable discussions, critical feedback
on how to improve my scientific approach, and provision of computational resources.

I am grateful to my postdoc supervisors especially Matthias Thimm for their advice and feedback. I would
also like to thank my colleagues who helped by fruitful discussions and supported me with the everyday work.
I want to thank Alex Baier and Guosong Xu for proof-reading my PhD thesis.

I am grateful to my parents, siblings and friends for their unrestricted encouragement.

ix

Contents
1. Introduction 1

1.1. Research Questions . 2
1.2. Research Contributions . 3

2. Foundations 5
2.1. Formalization of Graph Cover Strategies and SPARQL . 6

2.1.1. Formalization of Graph Cover Strategies . 6
2.1.2. Formalization of SPARQL . 8

2.2. Architectures . 10
2.2.1. RDF Stores Using Cloud Computing Frameworks . 10
2.2.2. Distributed RDF Stores . 12
2.2.3. Federated RDF Stores . 14

2.3. Indices . 15
2.3.1. Centralized Indices . 15
2.3.2. Distributed Indices . 17

2.4. Distributed Query Processing Strategies . 18
2.4.1. Centralized Join . 19
2.4.2. Decentralized Join . 20
2.4.3. Distributed Query Processing in Graph Processing Frameworks 22

2.5. Fault Tolerance . 22
2.6. Further Challenges . 22

3. Related Work 25
3.1. Graph Cover Strategies . 25

3.1.1. Graph Cover Strategies in Cloud-Computing-Framework-Based RDF Stores 26
3.1.2. Hash-Based Graph Cover Strategies . 28
3.1.3. Graph-Clustering-Based Graph Cover Strategies . 29
3.1.4. Workload-Aware Graph Cover Strategies . 30
3.1.5. n-Hop Replication . 31
3.1.6. Dynamic Graph Cover Strategies . 32

3.2. Evaluation Methodologies . 32
3.2.1. Benchmarks . 32
3.2.2. Benchmark Generators . 36
3.2.3. Performed Evaluations . 37

4. Methodology for Benchmarking Graph Cover Strategies 41
4.1. Evaluation Measures . 41
4.2. Data Set and Queries . 44
4.3. Query Execution Strategies . 45

xi

Contents

4.4. Distributed RDF Store for Arbitrary Graph Covers (Koral) 46
4.4.1. Graph Loading . 46
4.4.2. Query Execution During Run-time . 47
4.4.3. Limitations . 54

5. Evaluation of Common Graph Cover Strategies 57
5.1. Experimental Setup . 57
5.2. Results . 59

5.2.1. Comparison with Centralized Execution . 60
5.2.2. Query Independent Measurements . 63
5.2.3. Measuring Overall Query Performance under Varying Independent Variables 67
5.2.4. Measuring Dependent Variables . 72

5.3. Lessons Learned . 77
5.4. Discussion . 78

6. Combining the Benefits of Graph Clustering and Hash Partitioning 79
6.1. Proposed Graph Cover Strategies . 79

6.1.1. Molecule Hash Cover . 80
6.1.2. Overpartitioned Minimal Edge-Cut Cover . 83

6.2. Experimental Setup . 83
6.3. Results . 84

6.3.1. Effect of Molecule Diameter for the Molecule Hash Cover 85
6.3.2. Query Independent Measurements . 85
6.3.3. Measuring Overall Query Performance . 87
6.3.4. Measuring Dependent Variables . 90

6.4. Lessons Learned . 94
6.5. Discussion . 94

7. Conclusion 97

Bibliography 99

A. Examples of Distributed Query Execution 113
A.1. Example of Distributed Query Execution without Triple Replication 113
A.2. Example of Distributed Query Execution with Triple Replication 123

B. Proof of Semantic Correctness and Completeness of Koral’s Distributed Query Execution
Strategy 133
B.1. Proof of Semantic Correctness and Completeness for the Distributed Query Execution Strategy

Ignoring Triple Replication . 133
B.2. Proof of Knows Lemma . 142
B.3. Proof of Semantic Correctness and Completeness for the Distributed Query Execution Strategy

With Triple Replication . 149
B.4. Proof of Unique Knows Theorem . 159
B.5. Proof of Similarity of the Replication-Aware Extension . 164

xii

Contents

C. Additional Evaluation Details 175
C.1. Characteristics of the Used Data Sets . 175
C.2. Generated Queries . 175
C.3. Query Execution Times . 182

List of Figures 189

List of Tables 191

List of Listings 193

Curriculum Vitae 195

xiii

CHAPTER 1
Introduction
The traditional web consists of documents written in natural language. These documents are easy to read and
understand by humans but are difficult to be processed by computers since the natural language may cause
problems. To simplify the automated processing of web documents and their meta data, the Resource De-
scription Framework (RDF) was recommended by the World Wide Web Consortium (W3C) as a standardized
format [34]. RDF is a directed graph whose edges and vertices are labeled. These labels serve as globally
unique identifiers to address the entities described by the meta data as well as their relations.

Since the idea of the semantic web was raised, several organizations as well as companies have started to
represent their data as RDF. For instance, the European Bioinformatics Institute (EMBL-EBI) has started to
convert its datasets into RDF, resulting in a graph consisting of several trillions of triples once the conversion
is finished [102].

In order to store and query RDF data efficiently, specialized databases called RDF stores have been devel-
oped. Traditionally, these RDF stores are running on a single computer. These centralized RDF stores satisfy
the needs in many use cases. Nevertheless, for use cases in which analytical queries are performed on large
data sets, the database needs to be fault tolerant, or a high number of queries have to be processed with a
low response time, centralized RDF stores may not suffice [43]. Therefore, RDF stores in the cloud which
use the computational and storage power of several computers have been designed to address these use cases.
In cloud environments physical computers may be substituted by virtual computers to easily migrate them
between physical computers.

When loading RDF data, RDF stores in the cloud have to decide on which compute nodes the individual
data items are stored. During the distribution of the data items, the RDF stores in the cloud need to index where
the data items were stored so that these data items can be located when they are requested by a user. When a
user sends a data request in the form of a query, RDF stores in the cloud distribute the query operations over
the different compute nodes. Each compute node applies the operations on its local data. Nevertheless, queries
may require the combination of data from different compute nodes. In this case intermediate results have to
be exchanged between compute nodes to process the overall results. Even though RDF stores in the cloud are
already used by, for instance, BBC and Wikidata [84, 43], the cloud setting remains an area of research.

In order to speed up the query execution, researchers are investigating how the data placement strategies
applied by the different RDF stores in the cloud to distribute the data items on the compute nodes affect the
query execution time. For this purpose, some researchers evaluate the query execution times of several RDF
stores in the cloud that use different data placement strategies (e.g., see [5], [29], [125] or [122]). Evaluating
and comparing the query performances of different RDF stores in the cloud is helpful to judge the overall
performances of RDF stores. Nevertheless, the compared RDF stores usually vary in more aspects than the
data placement strategy such as the data indexing strategy, the distributed query execution strategy, etc. As a
result, it is unclear which of the differences caused the varying observations.

Another way to find out data placement strategies that may lead to low query execution times is using a

1

Chapter 1. Introduction

single cloud processing framework such as Apache Spark1. This framework is used to create different graph
covers of the same data set and execute queries on top of it afterwards. This type of evaluation is done by,
e.g., [33]. One question that remains unclear is, to which extent the observations made with the specific
cloud processing framework are also valid for RDF stores in the cloud that do not rely on a cloud processing
framework.

In order to approximate the query execution times of RDF stores in the cloud that do not rely on cloud
processing frameworks, evaluations in, e.g., [66] and [91], propose a hybrid RDF store that can use different
data placement strategies to process queries. In order to efficiently process queries that do not need to exchange
intermediate results between compute nodes, each compute node stores its graph chunk in a local centralized
RDF store. Queries that need to combine intermediate results from different compute nodes are executed
within the cloud processing framework Hadoop MapReduce2. The evaluations performed with this hybrid
RDF store indicated that data placement strategies emphasizing local computation reduce the query execution
time. However, since query processing on top of Hadoop MapReduce requires a potentially huge overhead of
possibly several Hadoop jobs (see [74]), these results may differ from RDF stores in the cloud that do not rely
on cloud computing frameworks at all. Nevertheless, for queries that do not need the exchange of intermediate
results, the made observations reflect the behavior of RDF stores in the cloud that do not use cloud processing
frameworks.

1.1. Research Questions

The main goal of this thesis is to investigate the impact of data placment strategies on the performance of
queries with a high workload executed on distributed master-slave RDF stores. Thereby, distributed RDF
stores are RDF stores in the cloud that allow for exchanging intermediate results between compute nodes
during the query processing without the need of cloud processing frameworks or shared memory/storage.
More specifically, the query performance of distributed RDF stores that follow a master-slave architecture
as described in Section 2.2.2 are investigated. Examples of these distributed master-slave RDF stores are
Clustered TDB [115], COSI [23], Partout [45], GraphDB [17], Blazegraph [2], SemStore [156], TriAD [55],
DREAM [58], [118], DiploCoud [157] and [117].

Specifically, the following research questions will be addressed:

1. How can the effect of data placement strategies on the query performance be evaluated?
To analyze the query performance of distributed RDF stores, no cloud computing frameworks is used.
Instead the RDF graph is loaded and queried within a distributed RDF store. This ensures that the
measurements made reflect the performance of queries in real, distributed RDF stores. In order to
keep all evaluation variables (e.g., the indexing strategy) but the data placement strategy fixed, all data
placement strategies are evaluated using the same distributed RDF store.

2. How do frequently used data placement strategies impact the query performance?
A commonly held belief is that data placement strategies which reduce the number of transferred inter-
mediate results show a better query performance. This belief is based on evaluations that used cloud
computing frameworks to process queries. Therefore, this commonly held belief is challenged by ana-
lyzing the impact of data placement strategies on the query performance of distributed RDF stores.

1https://spark.apache.org/
2https://hadoop.apache.org/

2

https://spark.apache.org/
https://hadoop.apache.org/

1.2. Research Contributions

3. Which properties should data placements have to show a good query performance?
The analysis of the effects of frequently used data placement strategies on the query performance has re-
vealed properties of data placement strategies that lead to faster or slower query execution times. Based
on these observations, the properties of data placement strategies that allow for low query execution
times are formulated, implemented and evaluated.

1.2. Research Contributions

To address the research questions described in the previous section, foundational knowledge about the working
principles of RDF stores in the cloud has to be gained first. Therefore, the first contribution of this thesis is to
give an overview of the types of RDF stores in the cloud and the methodologies used to address the challenges
of RDF stores in the cloud. This survey is split into two parts. The first part in Chapter 2 describes the
architecture type of RDF stores in the cloud and how queries are processed in the cloud setting, how compute
nodes that contribute to a query can be identified and how fault tolerance is handled. The second part of the
survey described in Chapter 3 presents different data placement strategies and how RDF stores in the cloud
are evaluated.

The second contribution of the thesis is the development of a novel methodology for benchmarking data
placement strategies, which is described in Chapter 4 to address research question 1. This methodology aims
to make the interdependencies of the data placement strategies and the query processing understandable. This
is achieved by comparing data placements in terms of query execution time. In addition it allows to investigate
the following dimensions:

• Load time describes the time it takes to create a data placement. This is an indicator of how well a data
placement strategy can scale by horizontal scaling of the cloud.

• Storage balance describes the extent to which each compute node stores a similar amount of data. This
is an indicator that memory needs can be met with increasing data size by horizontal scaling of the
cloud.

• Horizontal containment describes the extent to which computation of individual query results is local to
the data stored on one (or few) compute node(s). This is an indicator that query processing is (to some
extent) robust when the cloud is scaled horizontally.

• Vertical parallelization describes the extent to which different query results are computed in parallel on
different compute nodes. This is an indicator that query processing can scale with growing result set
sizes by horizontal scaling of the cloud.

Part of this methodology is an open source distributed RDF store (Koral) that serves as profiling system. Koral
allows for measuring a large variety of metrics while executing queries on arbitrarily placed data.

Experiments based on this new methodology challenge the commonly held belief that data placement strate-
gies emphasizing local computation lead to faster query executions. This is the third contribution of this thesis,
which addresses research question 2. As described in Chapter 5, the results of the experiments indicate that,
contrary to commonly held belief, queries with a high workload may be executed faster on hash-based data
distributions than on graph-clustering-based data distributions. The analysis of the additional measurements
indicates that vertical parallelization (i.e. a well-distributed workload) may be more important than horizontal
containment (i.e. minimal data transport) for efficient query processing — even in a commodity network en-
vironment (1 GB/s). This analysis reveals that cloud computing frameworks as used in previous experiments
such as [66] and [91] are a highly inefficient way of data transfer.

3

Chapter 1. Introduction

Another finding of the performed experiments is that none of the frequently used data placement strategies
have a high vertical parallelization because they either balance the query workload among all compute nodes
(as done by, e.g., the hash-based data placement) or provide a high horizontal containment by reducing the
number of transferred intermediate results (as done by, e.g., graph clustering-based approaches). In order
to achieve a good vertical parallelization and a fast query execution, a data placement strategy could split
the graph into small sets of connected data items and then assign these sets to compute nodes such that the
compute nodes store similarly amounts of data items.

To investigate this hypothesis and address research question 3, two such data placement strategies are de-
scribed in Chapter 6. This is the fourth contribution of this thesis. The first strategy called overpartitioned
minimal edge-cut cover is described in [55]. This strategy first performs a graph-clustering algorithm to split
the graph into a high number of small partitions and thereafter assigns the partitions to compute nodes based
on a greedy algorithm. Because its implementation did not scale well with the dataset size in the performed
experiments, a novel second strategy called molecule hash cover has been developed. This is the fifth con-
tribution. The new strategy assigns molecules3 – a small set of connected triples – to compute nodes based
on their hashes. Both strategies are implemented within Koral. The performed evaluation reveals that both
data placement strategies have an even higher horizontal containment than the purely graph-clustering-based
data placements and balance the query workload similarly to the hash-based data placements. As a result,
the vertical parallelization is higher and the query execution times are faster than in the frequently used data
placement strategies.

In short, the research contributions of this thesis are:

1. A survey of how RDF stores in the cloud address the challenges of the distributed setting.

2. A novel benchmarking methodology and its open source implementation that allow for a detailed un-
derstanding of the interdependencies of the data placement strategy and the query processing.

3. An evaluation of frequently used data placement strategies indicating that vertical parallelization is
more important than horizontal containment and that hash-based data placements outperform graph-
clustering-based data placements.

4. A novel data placement strategy called molecule hash cover that can be computed at scale and assigns
connected triples to the same compute node while balancing the number of data items stored on the
compute nodes.

5. An evaluation of the molecule hash cover and the overpartitioned minimal edge-cut cover, which in-
dicates that data placement strategies that collocate closely connected triple sets while balancing the
amount of data items stored on each compute node have a higher vertical parallelization and, as a result,
lower query execution times than the frequently used data placement strategies.

3This strategy has been inspired by the definition of RDF molecules in [39], though it has been adapted for the needs of query
processing.

4

CHAPTER 2
Foundations
In order to provide RDF stores that can scale to huge graph sizes, researchers have started to develop RDF
stores in the cloud, where graph data is distributed over compute and storage nodes for scaling efforts of query
processing and memory needs. The main challenges to be investigated for such development are: (i) strate-
gies for data placement over compute and storage nodes, (ii) strategies for distributed query processing, and
(iii) strategies for handling failure of compute and storage nodes. In this chapter (published in and taken
from [68]), an overview of how these challenges have been addressed by scalable RDF stores in the cloud that
have been developed in the last 15 years is given. This should give the required background to understand the
remainder of this thesis.

In Section 2.1 the RDF and SPARQL is formalized as usual. Additionally, the data placement strategies are
defined formally.

In Section 2.2, an overview of the different architectures of scalable RDF stores in the cloud is given.
Basically there exist three types of architectures. The first type uses general cluster computing frameworks
like Spark1 or HBase2 to perform queries on RDF graphs. The second type – so-called distributed RDF
stores – splits the RDF graph into smaller parts that are then stored and queried on the compute and storage
nodes. The last type are federated query processing systems. These systems do not have any influence on the
data distribution over compute and storage nodes. Instead, they process queries over several RDF stores.

In case of cluster computing frameworks and distributed RDF stores, the RDF graph is distributed among
several compute and storage nodes. The general procedure of data distribution strategies is to first split the
graph into several not-necessarily disjoint triple sets. In relational and NoSQL databases this splitting is called
sharding. Thereafter, the individual triple sets are assigned to compute and storage nodes. Since the topic
of this thesis is the influence of the data distribution on the query performance, the reader is referred to the
related work Chapter 3 in which an overview of how these two steps are performed by the existing RDF stores
is given.

Querying a distributed data set is usually done by splitting the query into subqueries that can be answered
locally without the need to exchange data over the network. The results of these subqueries are finally com-
bined into the overall results of the query. In order to identify which parts of the queries can be answered
locally on which compute nodes, an index is required that stores information about the data distribution. The
different types of indices are described in Section 2.3. An overview of how distributed query processing is
done by RDF stores in the cloud is given in Section 2.4.

Another challenge of scalable RDF stores in the cloud is that the failure of an individual compute or storage
node should not lead to the failure of the complete RDF store. A brief overview of how this challenge is
addressed is given in Section 2.5.

Due to the huge amount of RDF stores in the cloud that were developed in the last 15 years, distributed
solutions for the handling of RDF streams or reasoning will not be presented. Interested readers are referred

1https://spark.apache.org/
2https://hbase.apache.org/

5

https://spark.apache.org/
https://hbase.apache.org/

Chapter 2. Foundations

to [131]. Beside RDF stores in the cloud there also exist distributed graph databases like Sparksee3 or Titan4 as
well as distributed graph processing frameworks like PGX.D [64] or PEGASUS [77]. They are not described
in this chapter since they have not been presented as part of an RDF store, yet. Furthermore, this chapter gives
an overview of how RDF stores in the cloud work. Readers interested in a performance comparison of RDF
stores in the cloud are referred to, e.g., [51].

Section 2.1 was taken from [73]. The remaining sections were taken from [68].

2.1. Formalization of Graph Cover Strategies and SPARQL

2.1.1. Formalization of Graph Cover Strategies

RDF graphs are defined like in [56]. To illustrate their formalization, the graph shown in Figure 2.1 is used as
running example. The graph represents the knows relationship between two employees of the university insti-
tute WeST and one employee of the Leibniz institute GESIS. Additionally, the graph includes the ownership
of the dog Bello. The terms r:, e:, w:, g:, and f: abbreviate IRI prefixes.

g:Dog g:Gesis

g:bello g:wanja

w :daniel w :martin

w :WeST"Daniel" "Martin"

r :type
e:employs

e:employsf :givenname

e:ownedBy

f :knows f :knows
f :knows

f :givenname

f :givenname

"Wanja"

Figure 2.1.: Example graph describing the knows relationships between some employees of WeST and Gesis.

Assume a signature σ = (I,B,L), where I, B and L are the pairwise disjoint infinite sets of IRIs, blank nodes
and literals, respectively. The union of these sets is abbreviated as IBL.

Definition 1. The set of all possible RDF triples T for signature σ is defined by T = (I ∪B)× I× (I ∪B∪L).
An RDF graph G or simply graph is defined as G ⊆ T . The set of all vertices contained in graph G is defined
by VG = {v|∃s, p,o : (v, p,o) ∈ G∨ (s, p,v) ∈ G}.

(s, p,o) ∈ T is also called a triple with subject s, property p and object o. To simplify later definitions, the
functions subj(t), obj(t) and prop(t) return the subject, object or property of triple t, respectively. Likewise,
subj(T), obj(T) and prop(T) are used to refer to the set of subjects, objects and properties in the triple set T .

In the context of distributed RDF stores, the triples of a graph have to be assigned to different compute
nodes. The finite set of compute nodes is denoted as C in the rest of this thesis.

Definition 2. Let G denote an RDF graph. Then a graph cover is a function cover: G → 2C, that assigns each
triple of a graph G to at least one compute node.

3http://www.sparsity-technologies.com/
4http://titan.thinkaurelius.com/

6

http://www.sparsity-technologies.com/
http://titan.thinkaurelius.com/

2.1. Formalization of Graph Cover Strategies and SPARQL

Definition 3. The function chunk returns the triples assigned to a specific compute node by a graph cover
(graph chunks). It is defined as

chunkcover : C → 2G

chunkcover(c):= {t|c ∈ cover(t)} .

For the description of the n-hop replication two additional definitions are required.

Definition 4. A graph cover of RDF graph G is subject-complete, if

∀c ∈C : ∀(s, p,o) ∈ chunkcover(c) : ∀p′,o′ :
(
s, p′,o′

)
∈ G ⇒

(
s, p′,o′

)
∈ chunkcover(c) .

Example 1. The graph cover shown in Figure 2.2 is subject-complete, since all triples with the same sub-
ject are located in the graph chunk of c1 or c2. A graph cover which is not subject-complete is shown in
Figure 3.3. In this graph cover the triple (g:wanja, f:givenname, "Wanja") was assigned to c1 whereas the triple
(g:wanja, f:knows,w:daniel) was assigned to c2.

Definition 5. A (directed) path P is a sequence ⟨t0, t1, ..., tn⟩, if ∀i ∈ [0,n] : ti ∈ G, |{t0, t1, ..., tn}|= n+1 and

∀ j ∈ [1,n] : t j−1 = (s j−1, p j−1,s j)∧ t j = (s j, p j,o j) .

The length of path P is n+1.

Example 2. In the example graph shown in Figure 2.1, ⟨(w:daniel, f:knows,w:martin) ,(w:martin, f:knows,g:wanja)⟩
is a path of length 2.

Definition 6. The (directed) diameter of a graph G is the length of the longest shortest path within G between
two vertices of G.

Example 3. The example graph shown in Figure 2.1 has a diameter of 4 since the longest shortest paths within
the example graph G are ⟨(g:bello,e:ownedBy,g:wanja) , (g:wanja, f:knows,w:daniel) , (w:daniel, f:knows,w:martin) ,
(w:martin, f:givenname, "Martin")⟩ and the other path ⟨(g:Gesis,e:employs,w:wanja) , (g:wanja, f:knows,w:daniel) ,
(w:daniel, f:knows,w:martin) , (w:martin, f:givenname, "Martin")⟩ with a length of 4.

g:Gesis

g:wanja

w :daniel w :martin

"Martin"

e:employs

f :knows f :knows

f :givenname

f :givenname

"Wanja" g:Dog

g:bello

w :WeST"Daniel"

r :type

e:employsf :givenname

f :knows

c1 c2

e:ownedBy

w :daniel

w :martin

g:wanja

Figure 2.2.: An example graph cover of the example graph.

7

Chapter 2. Foundations

2.1.2. Formalization of SPARQL

The used SPARQL core is defined as done in [123], [120] and [16]. For this definition the infinite set of
variables V that is disjoint from IBL is required. In order to distinguish the syntax of variables from other RDF
terms, they are prefixed with ?. The syntax of SPARQL is defined as follows.

Definition 7. A triple pattern is a member of the set TP = (I ∪L∪V)× (I ∪V)× (I ∪L∪V).

Definition 8. A basic graph pattern (BGP) is a

1. triple pattern.

2. a conjunction B1.B2 of two BGPs B1 and B2.

Definition 9. A SELECT query is defined as SELECT W WHERE {B} with W ⊆V and B a BGP.

Example 4. The following SELECT query returns the names of all persons known by employees of WeST
that own the dog Bello. It contains a basic graph pattern that concatenates four triple patterns. In the following
examples ?v1 <f:knows> ?v2 is abbreviated as tp1, ?v2 <f:givenname> ?v3 as tp2 and so on. All
following examples in this section will refer to this query.

SELECT ?v3 WHERE {
?v1 <f:knows> ?v2.
?v2 <f:givenname> ?v3.
<w:WeST> <e:employs> ?v1.
<gs:bello> <e:ownedBy> ?v2

}

Before the semantics of a SPARQL query can be defined, some additional definitions are required. In the
following Q represents the set of all SPARQL queries.

Definition 10. The function var : Q → 2V returns the set of variables occurring in a SPARQL query. It is
defined as:

1. var(tp) is the set of variables occurring in triple pattern tp.

2. var(B1.B2) := var(B1)∪var(B2) for the conjunction of the two BGPs B1 and B2.

3. var(SELECT W WHERE {B}) :=W ∩var(B) for W ⊆V and B a BGP.

Definition 11. A variable binding is a partial function µ : V ↦→ IBL. The set of all variable bindings is O .

The abbreviated notation µ(t) with t ∈ TP means that the variables in t are substituted according to µ .

Example 5. The following three partial functions are variable bindings, that assign values to some variables.
µ1 would be an intermediate result produced by the first triple pattern of the example query in example 4
whereas µ2 and µ3 would be produced by the second triple pattern.

µ1 = {(?v1,w:martin) ,(?v2,g:wanja)}
µ2 = {(?v2,g:wanja) ,(?v3, "Wanja")}
µ3 = {(?v2,w:martin) ,(?v3, "Martin")}

8

2.1. Formalization of Graph Cover Strategies and SPARQL

Definition 12. Two variable bindings µi and µ j are compatible, denoted by µi ∼ µ j, if

∀?x ∈ dom(µi)∩dom(µ j) : µi(?x) = µ j(?x).
5

Example 6. The variable bindings µ1 and µ2 from example 5 are compatible since in both variable bindings
g:wanja is assigned to ?v2 which is the only variable occurring in the domains of both variable bindings. µ1
and µ3 as well as µ2 and µ3 are not compatible because they assign different values to common variables.

Definition 13. The join of two sets of variable bindings Ω1 and Ω2 is defined as

Ω1 ⋊⋉ Ω2 = {µ1 ∪µ2|µ1 ∈ Ω1 ∧µ2 ∈ Ω2 ∧µ1 ∼ µ2}

The variables contained in dom(µ1)∩dom(µ2) are called join variables.

Example 7. The join of the two variable bindings sets {µ1} and {µ2,µ3} from example 5 produces a result
set only containing the variable binding {(?v1,w:martin) ,(?v2,g:wanja) ,(?v3, "Wanja")} because only µ1 and µ2
are compatible.

[120] and [16] define the semantics of a SPARQL query as follows:

Definition 14. The evaluation of a SPARQL query Q over an RDF Graph G, denoted by JQKG, is defined
recursively as follows:

1. If tp ∈ TP then JtpKG = {µ|dom(µ) = var(tp)∧µ (tp) ∈ G}.

2. If B1 and B2 are BGPs, then JB1.B2KG = JB1KG ⋊⋉ JB2KG.

3. If W ⊆V and B is a BGP, then JSELECT W WHERE {B}KG = project(W,JBKG) =
{

µ|W |µ ∈ JBKG
}

.6

The execution of a query requires the translation of a SPARQL query into a query execution tree. This tree
defines the individual operations and their execution sequence. Thereby, each node of the query execution tree
consists of three components: (i) the name of the operation to be executed, (ii) the set of variables that are
bound in the resulting variable bindings and (iii) the set of child operations.

Definition 15. Let Lnode be the set of node labels, then a query execution tree of a query Q, denoted as ⟨⟨Q⟩⟩,
is defined recursively as follows:

1. If tp ∈ TP then ⟨⟨tp⟩⟩= (tp,var(tp),∅).

2. If B1 and B2 are BGPs, then ⟨⟨B1.B2⟩⟩= (join,var(B1)∪ var(B2),{⟨⟨B1⟩⟩,⟨⟨B2⟩⟩}).

3. If W ⊆V and B is a BGP, then ⟨⟨SELECT W WHERE {B}⟩⟩= (project,W,⟨⟨B⟩⟩).

The set of all query execution trees is called ϒ.

Definition 16. The variables common for all child trees of a query execution tree are defined as follows.

cVars : ϒ → 2V

cVars((l,W,C)) :=
⋂

(l′,W ′,C′)∈C

W ′ .

5dom(µ) refers to the set of variables of this binding.
6µ|W means that the domain of µ is restricted to the variables in W .

9

Chapter 2. Foundations

Example 8. Figure 2.3 shows a graphical representation of one query execution tree for the example query
from example 4. The following query execution tree represents the first join in its mathematical representation.
It has the two child trees (tp,{?v1,?v2} ,∅) and (tp,{?v2,?v3} ,∅). Their common variables are {?v2}.

(join,{?v1,?v2,?v3} ,{
(tp,{?v1,?v2} ,∅) ,

(tp,{?v2,?v3} ,∅)

})

project

⋊⋉

Jtp4KG⋊⋉

⋊⋉ Jtp3KG

Jtp1KG Jtp2KG

Figure 2.3.: An example query execution tree from the query in example 4.

2.2. Architectures

The RDF stores in the cloud can be categorized into three groups that characterize their architecture. The first
type of RDF stores in the cloud makes use of cloud computing frameworks (see Section 2.4). These frame-
works hide the complexity of distributed systems from the developers. This reduced developing complexity
comes at the cost of limited influence on, e.g., the data placement. To overcome this limitation, developers
of distributed RDF stores have to address the challenges of data placement, distributed query processing and
fault tolerance on their own (see Section 2.2.2). In contrast to this, federated RDF stores aim to query data
from several RDF stores that manage the stored data on their own (see Section 2.2.3). One application scenario
would be querying several remote SPARQL endpoints that can be found in the linked open data cloud.

One RDF store in the cloud that caused a lot of attention after its launch is Neptune7. Due to a lack of
descriptions that can be found, it is unclear which architecture it has.

2.2.1. RDF Stores Using Cloud Computing Frameworks

Implementing a distributed system is a challenging task. To reduce the complexity, several RDF stores in the
cloud are realized on top of cloud computing frameworks. As shown in Fig. 2.4, these RDF stores need a
master node that translates the RDF graph into some format that can be stored within the cloud computing
frameworks. This is the job of the graph converter. Similarly, SPARQL queries need to be translated into
queries or tasks that can be executed on the cloud computing framework to produce the query results that are
then transferred back to the user. This is done by the query translator.

One of the first cloud computing frameworks that was used to build RDF stores in the cloud is Hadoop8 [152].
RDF stores like SHARD [129], HadoopRDF [44] and CliqueSquare [46] transform the RDF graph into one

7https://aws.amazon.com/neptune/
8https://hadoop.apache.org/

10

https://aws.amazon.com/neptune/
https://hadoop.apache.org/

2.2. Architectures

Cloud Computing

RDF Query
Master

Converter Translator

Framework

Figure 2.4.: Architecture of RDF stores using cloud computing frameworks.

or several files that are stored in the distributed file system of Hadoop [142]. SPARQL queries are translated
into one or several jobs that are executed within Hadoop. Depending on how the RDF graph is separated into
files, one or several files are processed during query execution.

To simplify the usage of Hadoop, the high-level query language and execution framework Pig9 [112] was de-
veloped on top of Hadoop. Instead of translating SPARQL into Hadoop jobs directly, systems like PigSPARQL
[136] and RAPID+ [83] translate SPARQL into the Pig query language. Pig then translate the code into
Hadoop jobs and tries to optimize the orchestration of the individual jobs.

One of the main limitations of Hadoop is that the result of each individual task has to be written back into
the distributed file system. To overcome this limitation, Spark10 [161] was developed. Spark stores the result
of each job in main memory. These results can be used by several other jobs before the final result is optionally
persisted on disk. Spark is used by SPARQLGX [52], S2RDF [138], SPARQL-Spark [110] and PRoST [29].

On top of Spark the graph processing framework GraphX11 [47] was developed. In this framework a graph
can be loaded and algorithms can be performed on it. These algorithms are vertex-centric, i.e., each vertex is
able to receive, process and send messages to its neighboured vertices. S2X [135] translates SPARQL queries
into such vertex-centric algorithms to produce the query results. Similar to S2X TripleRush [146], Random
Walk TripleRush [148] (both basing on Signal/Collect [147]) and [48] use vertex-centric graph processing
frameworks.

Another type of cloud computing frameworks are NoSQL (Not only SQL) database systems. These systems
usually scale well with a high number of compute nodes and are fault tolerant. Their drawback is that they
usually do not provide ACID transactions. One type of NoSQL systems are key-value stores. These systems
map a unique key to an arbitrary value. DynamoDB12 [35] is such a distributed key-value store. It is used in
AMADA [24] to index and store the triples of the RDF graph.

Column-family stores are another type of NoSQL database systems. These systems store tabular data like
in relational databases. Instead of storing all data of a row physically together, column-family stores locate all
entries of a set of columns (i.e., a column-family) physically together. Examples of these stores are HBase13

(used by Jena-HBase [81], H2RDF+ [116]), Cassandra14 [89] (used by CumulusRDF [87]), Accumulo15 (used
by Rya [127] and RDF-4X [4]) and Impala16 [130] (used by Sempala [137] and [124]). RDF stores relying on

9https://pig.apache.org/
10https://spark.apache.org/
11https://spark.apache.org/graphx/
12https://aws.amazon.com/de/dynamodb/
13https://hbase.apache.org/
14https://cassandra.apache.org/
15https://accumulo.apache.org/
16https://impala.apache.org/

11

https://pig.apache.org/
https://spark.apache.org/
https://spark.apache.org/graphx/
https://aws.amazon.com/de/dynamodb/
https://hbase.apache.org/
https://cassandra.apache.org/
https://accumulo.apache.org/
https://impala.apache.org/

Chapter 2. Foundations

these column-family stores usually vary in the way how they store the RDF graph in tables.
The last type of NoSQL database systems that are used in RDF stores are document stores. Document stores

store the data in documents which are objects with arbitrary fields and values. Each of the fields can be used
to index the data. The RDF store [32] uses Couchbase17 and D-SPARQ [109] uses MongoDB18.

2.2.2. Distributed RDF Stores

In contrast to RDF stores that use cloud computing frameworks, distributed RDF store have to address the
challenges resulting from the distribution. To reduce the complexity of these challenges, most distributed
RDF stores are realized with a master-slave architecture. In this architecture a dedicated compute node is
the master. It is responsible for coordinating the individual slaves that store the RDF graph and process the
queries. The disadvantage of this architecture is that the master node can easily become a bottleneck of the
distributed RDF store. To overcome this limitation some distributed RDF stores are realized with a peer-to-
peer architecture in which the design of every compute node is identical.

Distributed RDF Stores with Master-Slave Architecture

In distributed RDF stores that have a master-slave architecture there exists one master and several slaves. The
master is a dedicate compute node that is responsible for the coordination of all slaves. The slaves are the
compute nodes that store the graph and process the queries. The general architecture of such a distributed
RDF store is shown in Figure 2.5.

Data Query

Master

Distributor Coordinator

Local RDF Storage
Query Processor

Slave

Dictionary Index

Local RDF Storage
Query Processor

Slave

Figure 2.5.: Master-slave architecture used by distributed RDF stores.

When a graph is loaded, the master first replaces each string identifier of a resource by a shorter unique
integer identifier. This replacement reduces the storage size of the graph that needs to be processed. The
mapping between the string and integer identifiers are stored in the dictionary. Thereafter, the data distributor
assigns the triples to the individual slaves. Thereby, an index is created which keeps track on which slave
which part of the graph is stored. Each slaves stores the triples assigned to him in its local RDF storage.

In order to query the RDF store, a query is send to the master. The query coordinator first encodes all string
identifier in the query with the help of the dictionary. The query is then translated into a query execution tree
and optimized. With the help of the index, the query coordinator can decide which part of the query can be
executed on which slave and initiates the query processing on the slaves. On each slave the query processor
processes the (sub)query assigned to him on the local RDF storage. The intermediate results can then be

17https://www.couchbase.com/
18https://www.mongodb.com/

12

https://www.couchbase.com/
https://www.mongodb.com/

2.2. Architectures

directly exchanged between all slaves. The final results are sent back to the query coordinator. With the help
of the dictionary the query coordinator replaces the integer identifier of the results by their string identifiers
and sends them back to the user.

The architectures of Custered TDB [115], COSI [23], Partout [45], GraphDB [17], Blazegraph [2], Sem-
Store [156], TriAD [55], DREAM [58], [118], DiploCoud [157] and [117] are as described above. But there
also exist variations of this architecture. For instance in Trinity.RDF [162], WARP [65], YARS2 [63] and
4store [61] the query coordinator also has to join intermediate results.

Some of the components of the master can be distributed among the slaves. For instance, in EAGRE [163]
the data distribution is performed on all slaves in parallel and the index is distributed over all slaves. Fur-
thermore, distributed RDF stores do not necessarily need all of the presented components. For instance,
PHDStore [10], 2way [119] and [27] do not need a global index and/or dictionary. If distributed RDF stores
adapt the data distribution during runtime based on the actual workload, the master also contains a redistribu-
tion controller as in AdPart [60], AdHash [9, 59] and Spartex [5].

Beside these pure distributed RDF stores there also exist hybrid RDF stores that also use some cloud com-
puting infrastructure. In Sedge [159] a reimplementation of Pregel [97] is used to process distributed queries.
A more common approach is, to use Hadoop to process only distributed joins as done in [66], [40], [160],
SPA [93], VB-Partitioner [91], SHAPE [92] and [155].

Distributed RDF Stores with peer-to-peer Architecture

In distributed RDF stores that follow the peer-to-peer architecture all compute nodes – called peers – consist of
the same components. This architecture has the advantage that no single compute node can become a bottle-
neck by design. The disadvantage is that usually no compute node knows how many compute nodes exist and
how data are distributed among all compute nodes. Usually in systems like Edutella [38, 111], RDFPeers [25],
PAGE [36], GridVine [6, 31], RDFCube [101], Atlas [78], 3RDF [12], [13] and [114], a distributed index is
used that routes requests to the compute node storing the requested data. Since this distributed index is the
central component of the architecture, the implementation choice of the index determines how the triples of
the RDF graph are assigned to the compute nodes. The architecture of most peer-to-peer distributed RDF
stores is shown in Figure 2.6.

To load an RDF graph, the complete graph can be sent to any compute node. The data distributor asks the
distributed index on which compute node the individual triples should be stored. Based on this decision the
triples are distributed over the compute nodes. When a compute node receives triples from a data distributor, it
inserts them into its local RDF store and updates the distributed index. In order to speed up the graph loading
procedure, the RDF graph can be split into several parts that are processed by the data distributors on several
compute nodes in parallel.

When a user sends a query to any of the compute nodes, the query coordinator creates the query execution
tree. Based on the index the query coordinator decides which part of the query execution tree is sent to which
compute node. When a query processor receives some subquery from a query coordinator, it retrieves the
requested information from its local RDF store. The intermediate results are sent to other compute nodes or
back to the query coordinator where they will be further processed. Finally, the query coordinator computes
the overall results and send them back to the user.

In contrast to the master-slave architecture, peer-to-peer distributed RDF stores usually do not have a global
dictionary. As a consequence string identifiers are used when transferring triples during the loading of a graph
or intermediate results during the query processing.

13

Chapter 2. Foundations

Data Query
Peer Node

Distributor Coordinator

Local RDF Storage
Query Processor

Index

Data Query
Peer Node

Distributor Coordinator

Local RDF Storage
Query Processor

Index

Data Query
Peer Node

Distributor Coordinator

Local RDF Storage
Query Processor

Index

Figure 2.6.: Peer-to-peer architecture used by distributed RDF stores.

2.2.3. Federated RDF Stores

In the linked open data cloud19 there exist many public data sets and SPARQL endpoints. In order to combine
several data sets and query them together a naive approach would be to download all data sets and load
them into a single RDF store. This naive approach has several disadvantages. First of all, it requires a lot
of computational resources to store and process several data sets at once. Furthermore, when the data sets
change, the system would need to keep track of these changes and update its local copies of the data sets.

Query
Query Federator

Coordinator Index

RDF Store

Local RDF Cache

RDF Store

Figure 2.7.: Architecture of federated RDF stores.

To overcome these limitations, federated RDF stores have been developed. Their basic idea is to query
remote RDF stores directly. The general architecture of federated RDF stores is shown in Figure 2.7. In order
to query the remote RDF stores a global index is required that indicates which RDF stores contain data that
are relevant for the query. This index is created by retrieving statistical information that are provided by the
remote RDF stores (e.g., SPLENDID [50], WoDQA [8], LHD [151], DAW [134], SemaGrow [26], FEDRA
[105], LILAC [106] and Odyssey [104]) or the user (e.g., DARQ [128]), by sending special queries to the

19http://lod-cloud.net/

14

http://lod-cloud.net/

2.3. Indices

remote RDF stores (e.g., FedX [141], ANAPSID [7, 107], Lusail [100]) or by observing the results that are
returned during the processing of user queries (e.g., ADERIS [96]). Also combinations of these strategies are
possible as in Avalanche [18]. Also the absence of the index is possible if the resource IRIs are dereferenced
as proposed by SIHJoin [88].

When a user sends a query, the query coordinator transforms it into a query execution tree. With the help
of the index it can decide which remote RDF store can contributed to the query. Based on this decision it
forwards the query or parts of it to the corresponding remote RDF stores. The returned intermediate results
are joined by the query coordinator and finally sent back to the user. In order to speed up the query execution,
the query federator also contains a local RDF cache in which data retrieved by previous queries is cached.
This cached data can be reused for future queries, which might reduce the number of queries that needs to be
sent to the remote RDF stores.

2.3. Indices

RDF stores in the cloud distribute the triples of an RDF graph over several computers. When a query is sent
to these RDF stores, they require an index which can tell on which compute nodes the data contributing to the
query processing is located. These indices are either stored on a single compute node – i.e., the master or the
query federator – (see Section 2.3.1) or they are distributed over several compute nodes (see Section 2.3.2). A
centralized index has the advantage that it has knowledge about the whole RDF graph. To reduce the size of
the index, some type of compression needs to be applied. In contrast to this distributed indices need fewer
aggregation, since they are stored across all compute nodes. But a single index lookup may require the routing
of the lookup via several compute nodes until the required information is found.

2.3.1. Centralized Indices

Hash-Based Index

In distributed RDF stores that distribute triples based on their hash values (for instance, Virtuoso Clustered
Edition [41], 4store [61] or Trinity.RDF [162]), no explicit index is required. Based on the knowledge of all
compute nodes, the hash function and the triple elements that were hashed, the compute node to which triples
were assigned to based on a specific pattern can be identified.

Statistics-Based Index

Another type of centralized indices base on statistical information about the resources occurring in the data
stored on the individual compute nodes. In RDF stores like DARQ [128], FedX, [150] and Sedge [159]
the frequency of every subject, property and object occurring on each compute node is counted and stored.
Since this information does not tell anything about the RDFS types stored on the compute nodes, systems
like SPLENDID [128], WoDQA [128], LHD [128], SemaGrow [128] and Avalanche [128] bases on VoID
descriptions [11] of the data stored on each compute node. These descriptions contain the occurences of URIs
in the data set, the used RDFS types and the properties that occur in triples whose objects occur as subject
in triples assigned to a different compute node. Since this information might be complicated to collect in a
federated setting, if the remote RDF stores do not provide VoID descriptions, ANAPSID [128] restricts itself
to only count the occurrences of properties and RDFS types.

If a triple with two specific constants is looked for, the indices described so far could only restrict the
number of queried compute nodes by either of the two constants. To restrict the number of queried compute

15

Chapter 2. Foundations

nodes even further, LILAC [106] and SemStore [156] additionally count how frequently all subject-property,
property-object and subject-object combinations occur.

Since not all subjects and objects occurring in a data set have an RDFS type, the RDF store Odyssey [104]
defines the type of an subject s by the set of all properties occurring in at least one triple with subject s. Since
the number of types may be very large, types with similar property sets are merged. Additionally, it counts
how frequently instances of these types are connected by properties.

Summary-Graph-Based Index.

In some distributed RDF stores summary graphs are created. These summary graphs can be queried to identify
compute nodes that store triples required for the processing of a query. The definitions of summary graphs
differ between the different RDF stores.

In TriAD [55] each compute node becomes a vertex in the summary graph. For each triple (s, p,o), an edge
with label p is created in the summary graph that connects the vertices representing the compute nodes to
which all triples with subject s and o were assigned to. To reduce the size of the summary graph, all edges
connecting the same vertices and having the same label are represented by only a single edge.

Example 9. Figure 2.8b shows the summary graph created from the data distribution in Figure 2.8a. The
vertices represent the compute nodes. For instance, c1 represents all subject and objects occurring on compute
node c1. The self-loop at the vertices represent the properties occurring within these compute nodes. To
simplify the graphic, all labels were attached to a single edge instead of creating an own edge for every label.
The two edges connecting both vertices represent both triples whose subject and object were assigned to
different compute nodes.

Another type of summary graph is used by EAGRE [163]. EAGRE splits the RDF graph into sets of
triples with the same subject called molecules. The set of predicates in these molecules are called molecule
type. These molecule types are the vertices in the summery graph. To reduce the number of molecule types,
molecule types with similar properties are merged. Each triple t contained in a molecule of type T1 whose
object is the unique subject of all triples in another molecule of type T2 will result in an edge with the label of
the property that connects the vertices T1 and T2 of the summary graph.

g:Dog

g:Gesis

g:bello

g:wanja

w :daniel

r :type

e:employs
e:ownedBy

f :knows
f :givenname

"Wanja"

w :martin
w :WeST

"Daniel"

"Martin"

e:employs

f :givenname

f :knows

f :knows

f :givenname

c1 c2

e:employs

g:wanja

w :daniel

(a) An example distribution of the example graph from
Figure 2.1.

r :type
e:employs

e:ownedBy

f :givenname
f :knows

f :givenname

e:employs

c1 c2

f :knows

f :knows

(b) The summary graph of the data distribution shown in
Figure 2.8a used by TriAD.

e:employs
f :knows

r :type
e:ownedBy

c1 c1

e:employs
c2c1 c2

f :knows
f :givenname

e:ownedBy

(c) The summary graph of the data distribution shown in
Figure 2.8a used by EAGRE.

Figure 2.8.: An example data distribution and the two summary graphs created by TriAD and EAGRE.

16

2.3. Indices

Example 10. Figure 2.8c shows the summary graph created by EAGRE for the data distribution shown in Fig-
ure 2.8a. The three vertices represent the three different molecule types. The properties occurring in molecules
of that type are written in the upper part of the vertex. The compute nodes on which molecules of that type
can be found are listed in the bottom part of each vertex. The leftmost vertex represents the dog molecule, the
middle vertex represents the employee molecules and the right vertex represents the institute molecules. The
e:employs edge connecting the institute molecule type with the employee molecule type represents the edges
that connect the two institutes with their employees.

2.3.2. Distributed Indices

In distributed indices every compute node knows only a part of the complete index. In order to find every entry
of the complete index, the compute nodes have to forward the index lookup requests to other compute nodes,
until the compute node knowing the requested information is found. In order to route these index lookups,
overlay networks are created that define to which compute node an index lookup should be forwarded.

Hash-Based Index

If a distributed RDF store distributes the triples based on their hash values, each compute node can determine
on which compute node a triple can be found, by knowing the set of all available compute nodes. This
approach is done, for instance, by HDRS [22] and Virtuoso Clustered Edition [42].

In peer-to-peer distributed RDF stores, the set of all compute nodes might be large and change over time.
To prevent the replication of this set and keeping it up-to-date on all compute nodes, each compute node only
stores a set of neighboured compute nodes, to which index lookups may be forwarded. The definition of
the neighbourhood creates an overlay structure. In peer-to-peer distributed RDF stores the following overlay
structures are used frequently:

Ring structure. In RDFPeers [25], PAGE [36], Atlas [78] and [95] the compute nodes are ordered, e.g., by
their IP addresses. This order defines the direct neighbours of each compute node. To ensure that every
compute node has exactly two neighbours, the first and last compute node are defined as neighbours.
An example of the resulting ring is shown in Figure 2.9a. If only the ring structure would be given,
finding a compute node that stores the requested data would take linear time. To reduce the lookup
time, each compute nodes stores shortcuts to compute nodes at later positions in the ring. For instance,
compute node c1 knows compute nodes c2, c3 and c5. If c1 is asked whether it knows some information
about resource r, it can compute with the hash function that triples with this resource would have been

c1

c2

c3

c4c5

c6

c7

(a) Ring overlay.

c1 c2 c3 c4

0 1

00 01 10 11

(b) Tree overlay.

Figure 2.9.: The different types of overlay networks used in distributed hash indices.

17

Chapter 2. Foundations

assigned to, e.g., c6. Since c1 does not know c6, it sends the request to c5 since it is the closest compute
node to c6 that is known by c1.

Tree structure. In GridVine [6, 31], UniStore [79], 3RDF [12], [14], [13] the overlay network is based on a
prefix tree as shown in Figure 2.9b. Each vertex in this tree represents a prefix. The root has an empty
prefix, the left child of the root node has the prefix 0 and the leaf c1 stores all triples with resources that
have a hash value starting with 00. Each compute node knows the path from the root to itself. For each
node n in the path, the compute node knows one compute node contained in the subtree of the siblings
of n. For instance c1, would forward every hash with prefix 01 to compute node c2 and every hash with
prefix 1 to compute node c3.

Combinations of both overlay structures can be found in [19] and [114]. The basic idea is that they initially
use the ring overlay structure. If one compute nodes has to store too many entries, it redistributes it triples
based on a tree structure.

Schema-Based Index

Instead of using hash-based indices, the RDFS types can be used to distribute data. The RDFS types contained
in a data set usually build a type hierarchy. Similar to the tree overlay structure presented above, each compute
node is responsible for the instances of the RDFS types assigned to him. If a compute node should retrieve
instances of a given type T that is not assigned to him, it searches for a superclass of T for which he knows
a responsible compute node and forwards the request to it. This so called semantic overlay network [30] is
used, for instance, by SQPeer [85].

Data-Set-Integrated Index

The idea of data-set-integrated indices is that instead of having a dedicated index the index is stored within the
RDF graph itself. In case of TriAD [55] the integer identifiers of the encoded vertex labels are prefixed by the
identifier of the compute node that stores all triples with this vertex label as subject.

A completely different type of distributed index is presented in [121, 122]. It adapts the idea of the summary
graph from TriAD as described in Section 2.3.1. Instead of realizing a separate index structure, it integrates
the summary graph into its local RDF storage. With the help of these additional information a compute node
can decide, whether another compute node has data that might lead to further query results.

Example 11. Figure 2.10 shows the data distribution from Figure 2.8a extended by the triples from the sum-
mary graph. On c1 the graph chunk from c2 is represented by a super vertex named c2. All triples whose
subject or object is stored on c1 but the counterpart not, are represented by an edge connecting the vertex
located on c1 with the super vertex representing the other compute node that stores the other vertex. For in-
stance, the subject of the triple (w:daniel f:knows w:martin) is stored on c1 whereas its object is only
stored on c2. Therefore, the triple (w:daniel f:knows c2) is added to compute node c1. Furthermore, for
each property p label occurring on c2, a triple c2 p c2 is added to compute node c1.

2.4. Distributed Query Processing Strategies

RDF stores in the cloud distribute RDF graphs over several compute nodes. One challenge which arises from
this distribution is how to query the distributed graph. In general RDF stores in the cloud try to compute as
much locally on a single compute node as possible without the need to exchange data. Therefore, the received

18

2.4. Distributed Query Processing Strategies

g:Dog

g:Gesis

g:bello
r :type

e:employs

e:ownedBy

f :givenname

"Wanja"

w :daniel

w :martin

w :WeST

"Daniel"

"Martin"

e:employs

f :givenname

f :givenname

c1 c2

e:employs

c2
f :knows

f :givenname e:employs

c1
f :givenname

e:employse:ownedBy
r :type

f :knows

f :knows

f :givenname e:employs

g:wanja

f :knows
f :givenname

f :knows

e:ownedBy
e:employs

f :knows

f :knows

g:wanja
w :daniel

Figure 2.10.: The summary graph integrated into the graph cover shown in Figure 2.8a.

query is decomposed into subqueries that can be executed locally on a single compute node. In the simplest
case these subqueries consist of a single triple pattern. Other systems can make use of some properties of
the underlying data distribution. For instance, SHARD [116] uses a data distribution that assigns all triples
with the same subject to one compute node. As a result, all star-shaped subqueries can be executed locally.
Another example are RDF stores that make use of the n-hop replication. This replication ensures that all paths
of length n can be queried locally. If the local RDF storage is able to return all partial matches of the query,
the complete query can be executed by the local RDF storage. With the help of the indices, the number of
compute nodes that can contribute to a subquery can be restricted.

The intermediate results of the subqueries needs to be joined in order to produce the overall query result.
Several RDF stores transfer all intermediate results to a single compute node that is then responsible for joining
it (see Section 2.4.1). If a huge number of intermediate results are produced, the joining compute node might
be overloaded. Therefore, several RDF stores distribute the join computation over several compute nodes (see
Section 2.4.2). An example how queries are executed in distributed graph processing frameworks is given in
Section 2.4.3.

2.4.1. Centralized Join

Especially in federated RDF stores, the intermediate results of subqueries that were executed on remote RDF
stores have to be joined on the query federator. Thereby, the join strategies of relational databases are applied.
The following join strategies are used:

Nested loop join [103]: For each element in the intermediate result list of the first subquery, the intermediate
result list of the second result list needs to be iterated completely to find all join candidates.

Merge join [103]: For this join the intermediate result lists must be ordered. One list is iterated and for each
element the join candidates in the other list can be retrieved. Due to the ordering the other list does
not need to be traversed from the beginning. Instead only the elements with the same value of the join
variable needs to be reiterated. This join is performed by the distributed RDF store Partout [45].

19

Chapter 2. Foundations

Hash join [37]: The intermediate results of the subqueries are stored in separate hash tables. Each hash table
distributes the results into several buckets. If both hash tables use the same number of buckets, only the
intermediate results of two buckets need to be joined at once. When all buckets are joined, the join is
finished.

Symmetric join [153]: This type of join is a non-blocking hash join. For every subquery a hash table is created
that stores the already received intermediate results. When a new intermediate result is received, it is
joined with all join candidates in the other hash table. The results are emitted and the intermediate result
is inserted in the hash table of the subquery that produced it. This join strategy is performed by, e.g.,
ANAPSID [7] and LHD [151].

Bind join [57]: In order to perform a bind join, the first subquery is executed. For each returned distinct
intermediate result µ , the second subquery is executed. Thereby, all variables already bound by µ

are substituted in the second subquery by their bound values. This type of join is performed by, e.g.,
FedX [141], Avalanche [18] and SemaGrow [26].

Beside performing a single type of join operation, RDF stores like DARQ [128] and SPLENDID [50]
choose between a bind join and a nested loop join or between a bind join and a hash join, respectively. The
choice depends on the expected number of returned results.

Another join strategy is performed by [118]. In this distributed RDF store partial evaluation [75] is per-
formed. This means that the complete query is executed on the local RDF stores of each compute node. These
local RDF stores return the overall results and all intermediate results. For each intermediate result the sub-
query that created the result is returned. The intermediate results from all compute nodes are sent to a single
compute node who finally joins the intermediate results and returns the overall results.

2.4.2. Decentralized Join

The subqueries into which a query is decomposed can easily produce a large number of intermediate results.
Joining all intermediate results on a single compute node can overload the capacity of this compute node. To
overcome this limitation several RDF stores in the cloud apply distributed joins.

Replication-Based Distributed Join

In order to distribute the number of join computations over the individual compute nodes, in SemStore [156]
all intermediate results of a subquery are sent to all compute nodes on which the succeeding subquery is
executed. This strategy increase the amount of transferred intermediate results but each compute node only
joins its local results with the intermediate results produced by the other compute nodes.

Distributed Hash Join

In DiploCoud [157] the intermediate results of the subqueries are joined by a distributed hash join. Basically,
the distributed hash join is similar to a centralized hash join. The only difference is that each compute node is
a bucket of the used hash table.

The hypercube hash join was initially presented in [20] and was used in the distributed RDF store pre-
sented in [28]. The basic idea is that for each join variable one dimension is created. For instance, if a
query has three join variables, three dimensions are created. Therefore, we need to arrange the compute
nodes as a three-dimensional cube. Each compute node is responsible for one cubic region within this cube.

20

2.4. Distributed Query Processing Strategies

Thereafter, every triple pattern is executed in parallel producing intermediate results. If the intermediate re-
sult {(?v1,w:martin)} is produced, it is forwarded to all compute nodes that are responsible for the value
hash(w:martin) in the ?v1-dimension. Each compute node performs a local join of the intermediate results
it has received from the different triple patterns. Depending on the selection of the regions each compute node
is responsible for, the workload can be equally distributed among all compute nodes.

Distributed Merge Join

In a distributed merge join the intermediate result lists of the subqueries are sorted by the values of the join
variables. Thereafter, each compute node receives all elements within a specific value range and joins them.
This type of join is primarily performed in Hadoop-based RDF stores like H2RDF+ [116], SHARD [116],
[66] and Spark-based RDF stores like SparkRDF [158] and SPARQLGX [52].

Distributed Bind Join

One way to realize a distributed bind join is implemented in AdHash [9]. The first triple pattern is executed on
each compute node. Thereafter, each compute node performs a centralized bind join based on the intermediate
results the first triple pattern has produced on this compute node.

In RDFPeers [25], GridVine [6, 31], Atlas [78] and 3RDF [12] each triple is stored on at most three compute
nodes based on the hashes of its subject, property and object. As a consequence all triples in which one
resource occurs are located on the same compute node. Since usually each triple pattern of a query contains
at least one constant, all matches for this triple pattern can be found on a single compute node. In order to
process a query, the query coordinator determines a sequence in which the compute nodes should be traversed
to process all triple patterns. When moving from one compute node to another, all intermediate results are
transferred. In order to join the intermediate results, bind joins are performed.

In order to generalize and parallelize the previously described strategy, [95] introduced the so called spread
by value querying strategy20. The basic idea is that the first triple pattern is processed on the computed nodes
on which matches occur. These compute nodes start a bind join processing with the second triple pattern.
When a compute node identifies with the help of the global index that for one triple pattern there exist matches
on a different compute node, it will fork the query processing on the other compute node that will continue
with this branch of the query execution. The final query results are sent back to the query coordinator. This
strategy was also used by, for instance, [14], [13], [121, 122] and TripleRush [146]. In order to speed up
the query execution, Trinity.RDF [162] performs the spread by value strategy from the first and the last triple
patterns in parallel.

Example 12. In this example the graph pattern <w:WeST> <e:employs> ?v1. ?v1 <f:knows> ?v2.

?v2 <f:givenname> ?v3 should be executed on the data distribution with integrated summary graph in-
dex in figure 2.10. The first triple pattern creates the intermediate result {(?v1,w:martin)} on compute
node c2. Based on this intermediate result the variable ?v1 of the second triple pattern will be substituted
by w:martin. When processing the triple pattern <w:martin> <f:knows> ?v2, the intermediate result
{(?v1,w:martin),(?v2,g:wanja)} is produced. Before processing the third triple pattern, ?v3 will be
substituted by g:wanja. As a result <g:wanja> <f:givenname> ?v3 is executed. This time the only
possible substitution for ?v3 is the super vertex c1. This match means that there exists a triple on com-
pute node c1 that would match with the triple pattern. Therefore, the query, the created variable binding,

20This idea is named differently in the literature. For instance, in Trinity.RDF [162] it is called graph exploration.

21

Chapter 2. Foundations

and the metadata that this intermediate result was created by the first two triple patterns is sent to com-
pute node c1. Now, c1 executes <g:wanja> <f:givenname> ?v3 and produces the intermediate result
{(?v1,w:martin),(?v2,g:wanja),(?v3,"Wanja")}. For the sake of simplicity, the other intermediate re-
sults produced by the triple patterns that were executed in parallel were skipped during the explanation of this
example.

2.4.3. Distributed Query Processing in Graph Processing Frameworks

In S2X [158] a different type of distributed query processing is presented. First, each vertex checks whether it
can be a substitution for some variable in the query by checking its incident edges, their labels and the adjacent
vertices. Thereafter, it notifies the neighboured vertices by its intermediate results. If for one intermediate
result no compatible join candidate can be found on the neighboured vertices, it is discarded. The notification
of the neighboured vertices and the discard of local intermediate results is repeated until the intermediate result
sets of each vertex in the graph do not change any more. The remaining intermediate results can be retrieved
and joined as the final results.

2.5. Fault Tolerance

One problem of RDF stores in the cloud is that a single compute node may fail or become disconnected from
the network. RDF stores that bases on cloud computing frameworks mainly rely on the fault tolerance of the
used framework. In federated RDF stores the actual data is stored on remote RDF stores that are not under
control of the system administrator. As a result the fault tolerance is not an urgent problem for both types of
RDF stores.

In contrast to these RDF stores, the failure of compute nodes is an issue for distributed RDF stores. Since
most of these RDF stores that can be found in the literature are proof-of-concept implementations, they do not
address the problem of fault tolerance. The few systems that deal with fault tolerance, address this problem
by replication. Systems like Virtuoso Clustered Edition [42] suggest to create identical copies of all compute
nodes. If one compute node fails, it is replaced by one of its copies.

Another strategy to become fault tolerant is used by, e.g., 4store [61] and RDFPeers [25]. In these distributed
RDF stores there exists a partial order of all compute nodes, for instance, created by the comparison of their
IP addresses. To ensures that every compute node has a successor and predecessor, the successor of the last
compute node is the first compute node. Based on this ordering, the triples assigned to one compute node are
also assigned to the neighboured compute nodes. If one compute node fails, the index forwards the queries to
one of the neighbours that store replicas of the data originally assigned to the failed compute node.

2.6. Further Challenges

To cope with the growing size of huge graphs, scalable RDF stores in the cloud are used, where the graph data
is distributed among several compute nodes. From this distributed setting several challenges like (i) the data
placement strategy, (ii) the distributed query processing, and (iii) the handling of failed compute nodes. In this
chapter an overview of how most of these challenges are addressed by RDF stores in the cloud is given.

Due to the high number of RDF stores in the cloud, only an overview of the core challenges in distributed
RDF stores have been given. Beside these core challenges there exist further features that are required during
the practical usage of relational databases in the industry today. Realizing them in RDF stores is a challenging
task so that they are only partly realized in RDF stores. In order to achieve a broader usage of RDF stores in

22

2.6. Further Challenges

industry, further research is required to implement these features in RDF stores in the cloud. In the following
we describe some of these features. As an example use case we assume an online retailer.

When two customers try to order a unique product at the same time, only one of the orders must be suc-
cessful and the other must fail. To prevent the situation that both customers could successfully order the
unique product, transactional security (i.e., atomicity, consistency, isolation and durability) is required. Real-
izing transactional security in a distributed setting where the data is separated among several compute nodes
might require a lot of coordination between the compute nodes. This additional coordination increase the
query execution time. To avoid this overhead while providing transactional security, most RDF stores in the
cloud assume that the RDF graph is immutable after loading it. Only few RDF stores like Virtuoso Clustered
Edition [41] allow for inserting or deleting triples after loading.

In order to identify which products were sold the most frequently in the last three month, the database is
required to perform online analytical processing (OLAP) queries. This type of queries require a huge amount
of data to be processed. In context of RDF stores in the cloud, processing OLAP queries cannot be done by
sending all required data to a single compute node since a single compute node may be overloaded by the
huge amount of data. Therefore, data placement strategies and distributed query execution strategies need to
be developed supporting the parallel processing of OLAP queries with a few exchanged of network packets.

To simplify the search for a product, the online retailer has categorized its products in a category hierarchy.
For instance, an orange lemonade can be categorized as lemonade, soft drink and drink. With the introduction
of SPARQL 1.1 [123] property paths were introduced that allow for requesting all offered drinks independently
of the subcategory they belong to. This type of query differs from the pure graph pattern matching done in
SPARQL 1.0 since it can easily require the traversal of long paths. In a distributed setting the traversal of long
paths may lead to a high network traffic reducing the query execution time. One challenge arising from these
queries is, how to optimize the data placement for these queries. Alternatively to SPARQL, the retailer might
want to use other query languages like GraphQL21.

The retailer wants to prevent teenagers from buying alcohol. Therefore, he stores in the database the rules
that customers younger than 20 are teenagers and teenagers should not be allowed to buy alcohol. These rules
should be automatically applied to all customers. To realize this, RDF stores have to reason about RDF graphs.
In this context reasoning means inferring logical consequences and checking the RDF graph consistency.
Usually, reasoning is done during the graph loading and all logical consequences are stored as explicit triples
in the graph. The challenge of distributed reasoning is that the reasoning of the complete graph may overload
a single compute node. Therefore, distributed reasoning algorithms are required. A few RDF stores in the
cloud like MaRVIN [113] and Rya [127] have addressed this challenge. Another problem is, if the RDF graph
is mutable after loading. In this case the deletion or insertion of triples may produce inconsistencies, a lot of
newly inferred triples need to be inserted, or formerly inferred triples need to be removed.

Finally, the retailer wants to advertise summer products like swimwear, portable fans, etc. more prominently
if the temperature in the town where the customer lives is high. Therefore, the constantly streamed data from
temperature sensors needs to be processed. This quickly arriving streamed data cause further challenges
for RDF stores, like quickly combining the received data with static data, updating the database frequently
or balancing the workload among all compute nodes. CQELS Cloud [90] is one example of a system that
processes RDF streams in a distributed fashion.

21https://graphql.org/

23

https://graphql.org/

CHAPTER 3
Related Work
RDF stores in the cloud aim to combine the storage and processing capabilities of several compute nodes.
Especially for large RDF graphs, splitting the graph into smaller not-necessarily disjoint parts that are stored
and processed by different compute nodes may have advantages. First of all, the size of the graph that can
be managed by a distributed RDF store may be larger than the size of the graphs each of the compute nodes
can manage on its own. Due to the smaller portions of the graph for which the individual compute nodes
are responsible for, it needs to process only a small portion of the graph leading to potentially faster query
execution times.

In the last 15 years, several different data distribution strategies were developed. Some of these strategies
can efficiently create a data distribution or can simplify the indexing of the distributed RDF graph. Other
strategies aim to improve the query performance by collocating closely connected data on the same compute
node to reduce the amount of exchanged intermediate results during query processing. An overview of the
most common data distribution strategies is given in Section 3.1.

The topic of this thesis is, how the different data distribution strategies influence the query performance.
Therefore, their influences need to be evaluated. Section 3.2 gives an overview of the different evaluation
methodologies that have been used in the literature.

Section 3.1 and Section 3.2 were mainly taken from [68].

3.1. Graph Cover Strategies

One core aspect of RDF stores in the cloud is, how the RDF graph is distributed among the compute nodes.
Therefore, RDF stores in the cloud use different graph cover strategies. A common procedure to create a
graph cover is to first split the RDF graph into small possibly overlapping subsets. Thereafter, these graph
subsets are assigned to compute nodes. In RDF stores that base on cloud computing frameworks, the influence
on how this assignment to compute nodes is done is usually limited. Therefore, in Section 3.1.1 is described
how a graph is split into subsets that are then stored in the cloud computing framework. The graph cover
strategies of distributed RDF stores can in general be separated into three categories: (i) hash-based graph
cover strategies (see Section 3.1.2), (ii) graph-clustering-based graph cover strategies (see Section 3.1.3) and
(iii) workload-aware graph cover strategies that distribute the graph based on a historic query workload (see
Section 3.1.4). In order to reduce the amount of queries that need to combine data from different compute
nodes, the n-hop replication was proposed that replicates triples at the border of the chunks of arbitrary graph
covers (see Section 3.1.5).

When RDF stores are queried frequently, the initial distribution of the graph on the compute nodes may
be suboptimal for the current query workload. To improve the query performance, some RDF stores have
implemented a dynamic graph cover strategy (see Section 3.1.6). This strategy observes the current query
workload and tries to optimize the data placement by moving or copying small triple sets from one compute
node to another.

25

Chapter 3. Related Work

Since there is a huge number of graph cover strategies, this section focusses only on the most frequently
graph cover strategies and gives only hints to a few variations that can be found. Graph cover strategies that
were only used in a single RDF store are not presented.

To illustrate the different graph cover strategies, the graph from the running example introduced in the
previous chapter will be used. It is shown in Figure 3.1.

g:Dog g:Gesis

g:bello g:wanja

w :daniel w :martin

w :WeST"Daniel" "Martin"

r :type
e:employs

e:employsf :givenname

e:ownedBy

f :knows f :knows
f :knows

f :givenname

f :givenname

"Wanja"

Figure 3.1.: Example graph describing the knows relationships between some employees of WeST and Gesis.

3.1.1. Graph Cover Strategies in Cloud-Computing-Framework-Based RDF Stores

RDF stores that build on cloud computing frameworks have usually limited influence how the data is placed
on the individual RDF stores. Their influence is limited to the way how the RDF graph is split into subsets
that are stored in files or tables. The goal of splitting the RDF graph into subsets is to reduce the amount of
triples that need to be processed during the query execution. This is achieved by storing all triples with the
same subject, object, property or combinations of them in the same file or table.

Molecule Graph Splits

In order to process star-shaped queries efficiently, the RDF graph is split into molecules of diameter 1. This
means that all triples with the same subject are stored in one file as shown in Figure 3.2. D-SPARQ [109]
follows this approach. The advantage of the molecule graph split is that for star shaped queries whose triple
patterns are joined on a subject no distributed join needs to be processed. In case of a constant subject only a
single file needs to be processed.

In order to reduce the number of required distributed joins, RAPID+ [83] proposes to store all triples that
have the same resource identifier at a subject or object position in a single file. Additionally, RAPID+ reduces
the number of distributed joins by increasing the molecule diameter in order to process path-shaped queries
more efficiently.

In some RDF stores like Stratustore [144], Sempala [137] and SHARD [129] all molecules are stored in a
single table. Each molecule is basically represented by a single row in this table with the subject as unique
identifier. The properties are the column names and the object are the values stored in each cell. If the
combination of subject and property occurs in several triples, these cells store a list of objects or several rows
are created for this subject. This storage layout is called property table in the literature.

26

3.1. Graph Cover Strategies

g:Gesis g:wanja

e:employs

w :daniel

w :martin
w :WeST

e:employs

e:employs

g:Dog
g:bello

r :type

e:ownedBy g:wanja

"Wanja"

w :danielf :knows

f :givenname

g:wanja

f :knows

f :givenname

f :knows

f :givenname

w :daniel

g:wanja

w :martin

"Daniel"

w :martin
"Martin"

Figure 3.2.: The example graph split into molecules.

Vertical Graph Splits

The basic idea of the vertical cover originated in [3] is to store RDF data in a relational database such that for
each property a table is created in which all triples with this property are stored. In the context of distributed
RDF stores, approaches like Jena-HBase [82], PigSPARQL [136], [164] and SPARQLGX [138] store all
triples with the same property in one file or table as shown in Figure 3.3. The advantage is that it is easy to
compute but a query that matches with paths of length l will only match with triples on at most l compute
nodes. Thus, this graph cover strategy is likely to result in an imbalanced workload and a high number of
exchanged intermediate results.

One disadvantage of the vertical graph split as presented above is that frequently occurring properties like
rdf:type lead to very large files. Therefore, the RDF store HadoopRDF [44] splits these tables based on combi-
nations of properties and the RDFS types of the objects.

Another variant of the vertical graph split is realized in S2RDF [138]. In order to reduce the number of
joins that need to be processed, they additionally create tables for all possible subject-subject and subject-
object joins of triples.

g:Dogg:bello
r :type

g:bello

e:ownedBy

g:Gesis

e:employs

w :WeST

e:employs

e:employs

g:wanja
f :knows

w :martin
f :knows

f :knows
w :martin

g:wanja w :daniel

w :daniel

"Daniel"

"Martin"

"Wanja"

f :givenname

f :givenname

f :givenname

w :martin

g:wanja

w :danielw :daniel

w :martin

g:wanja

g:wanja

Figure 3.3.: An example vertical graph split of the example graph.

27

Chapter 3. Related Work

3.1.2. Hash-Based Graph Cover Strategies

Hash Cover

A hash cover assigns triples to chunks according to the hash values computed on their subjects modulo
the number of compute nodes. Thus, all triples with the same subject – i.e., a molecule – are located in
the same graph chunk. This graph cover strategy is used, for instance, by Virtuoso Clustered Edition [41],
VB-Partitioner [91], SPA [93], 4store [61] and AdHash [9].

Example 13. The following hash function produces the graph cover shown in Figure 3.4.

∀r ∈ {g:Gesis,g:wanja,w:martin}: hash(r):= 1

∀r ∈ {g:bello,w:WeST,w:daniel}: hash(r):= 2 .

g:Gesis

g:wanja

w :daniel w :martin

"Martin"

e:employs

f :knows f :knows

f :givenname

f :givenname

"Wanja" g:Dog

g:bello

w :WeST"Daniel"

r :type

e:employsf :givenname

f :knows

c1 c2

e:ownedBy

w :daniel

w :martin

g:wanja

Figure 3.4.: An example hash cover of the example graph.

The advantages of the hash cover are that it is easy to compute and due to a relatively random assignment
of triples to compute nodes the resulting graph chunks will have similar sizes. The disadvantages are that it
may lead to a high number of exchanged intermediate results if a query matches with long paths. Since all
hash covers are subject-contained, this graph cover strategy might be a good choice if the expected queries
will only match with paths of a short length (ideally 1).

Beside the subject, distributed RDF stores like Trinity.RDF [162], Clustered TDB [115], YARS2 [62, 63]
and RDFPeers [25] also use property and/or the object to assign each triple three times to the compute nodes.1

Additionally, RDF stores like PAGE [36] and [13] append at least two elements of each triple and use the hash
of the result to assign triples to compute nodes.

Hierarchical Hash Cover

Inspired by the observations that IRIs have a path hierarchy and IRIs with a common hierarchy prefix are often
queried together, SHAPE [92] uses an improved hashing strategy to reduce the inter-chunk queries. First, it
extracts the path hierarchies of all IRIs. For instance, the extracted path hierarchy of "http://www.w3.
org/1999/02/22-rdf-syntax-ns#type" is "org/w3/www/1999/02/22-rdf-syntax-ns/
type". Then, for each level in the path hierarchy (e. g., "org", "org/w3", "org/w3/www", ...) it computes
the percentage of triples sharing a hierarchy prefix. If the percentage exceeds an empirically defined threshold

1If the hash cover is only computed on the properties, the resulting graph cover would be similar to the vertical graph split.

28

http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
org/w3/www/1999/02/22-rdf-syntax-ns/type
org/w3/www/1999/02/22-rdf-syntax-ns/type
org
org/w3
org/w3/www

3.1. Graph Cover Strategies

and the number of prefixes is equal or greater to the number of compute nodes at any hierarchy level, then
these prefixes are used for the hash cover.

Example 14. Assume the hash is computed on the prefixes g and w of the subject IRIs in the example graph.
If the hash function returns 1 for g and 2 for w the resulting hierarchical hash cover is shown in Figure 3.5.

g:Dog

g:Gesis

g:bello

g:wanja

w :daniel

r :type

e:employs
e:ownedBy

f :knows
f :givenname

"Wanja"

w :martin
w :WeST

"Daniel"

"Martin"

e:employs

f :givenname

f :knows

f :knows

f :givenname

c1 c2

e:employs

g:wanja

w :daniel

Figure 3.5.: An example hierarchical hash cover which is also a minimal edge-cut cover of the example graph.

In comparison to the hash cover the creation of a hierarchical hash cover requires a higher computational
effort to determine the IRI prefixes on which the hash is computed. For queries that match with paths in
which the subjects and objects have the same IRI prefix the number of exchanged intermediate results may be
reduced. This reduction might come at the cost of a more imbalanced query workload since only a few chunks
will contain these paths. Thus, the use of the hierarchical hash cover might be beneficial (i) if the network
connecting the compute nodes is slow or (ii) if other functionality such as prefix matching benefits from the
hierarchical hash cover.

3.1.3. Graph-Clustering-Based Graph Cover Strategies

Graph clustering considers splitting a graph into partitions, i.e., a graph cover with pairwise disjoint graph
chunks. In this area a wide variety of algorithms was developed (for instance, see the survey [98]). The
basic idea is that an RDF graph is partitioned by one of these algorithms. Since most of the graph clustering
algorithms create an assignment from vertices to compute nodes, the triples are usually assigned to the compute
nodes to which their subjects were assigned to. The most frequently applied graph clustering approach is the
minimal edge-cut partitioning which is described below.

Another rarely used graph clustering algorithm tries to optimize the modularity. The modularity measures
the difference between the actual number of edges within the partitions and the expected number of such
edges. This strategy was applied for instance by MO+ [126].

Minimal Edge-Cut Cover

The minimal edge-cut cover is a vertex-centred partitioning which tries to solve the k-way graph partitioning
problem as described in [80]. It aims at minimizing the number of edges between vertices of different par-
titions under the condition that each partition contains approximately |VG|

k many vertices. Details about the
computation of k-way graph partitioning and the targeted approximation can, e.g., be found in [80]. RDF

29

Chapter 3. Related Work

stores like [66] and [118] convert the outcome of the minimal edge-cut algorithm, i.e., a split of the complete
VG into disjoint subsets, into a graph cover of G by assigning each triple to the compute node to which its
subject has been assigned.

Example 15. A minimal edge-cut algorithm may assign the resources g:Dog, g:Gesis, g:bello, g:wanja and
"Wanja" to compute node c1 and all other resources to compute node c2. For our specific running example the
result of the minimal edge-cut cover strategy is identical to the results of the hierarchical hash cover strategy
depicted in Figure 3.5.

In this example there exist two edges connecting vertices assigned to different chunks. One is the f:knows
edge starting at g:wanja and ending at w:daniel. The other is the f:knows edge starting at w:martin and ending at
g:wanja. Since the subject g:wanja of the first triple has been assigned to c1, this triple has been assigned to c1.
The subject of the second triple w:martin has been assigned to c2. Therefore, this triple has been assigned to c2.

Since the minimal edge-cut cover considers the graph structure, the creation of the graph cover requires
a high computational effort. The advantage of considering the graph structure may be a reduced number of
exchanged intermediate results. This would make the minimal edge-cut cover a good choice if the network
connection between compute nodes is slow.

In order to optimize the query performance, TriAD [55] creates an over-partitioning. For instance, to create
a graph cover that assigns triples to 5 compute nodes, 100k-200k partitions are created. These partitions are
then assigned to compute nodes. To improve the performance of queries that use RDFS schema information,
in [121] the RDFS schema is replicated to all graph chunks. Since the minimal edge-cut cover strategy can
lead to graph chunks whose cardinality varies a lot, [150] proposes to weight vertices by the number of triples
in which they occur.

An alternative optimization is performed by EAGRE [163]. Instead of partitioning the original graph, a
minimal edge-cut cover of the summary graph is created (see Section 2.3). Each vertex of the summary graph
represents a set of molecules that have similar properties. They are weighted by the number of molecules
they contain. This graph cover strategy ensures that molecules with similar properties are stored on the same
compute node.

3.1.4. Workload-Aware Graph Cover Strategies

Another type of graph cover strategies assumes that the query workload does not change much over time.
Therefore, they learn from a historic query workload which triples have been frequently queried together first.
Based on this knowledge they try to find an optimal graph cover for future queries. These approaches are, for
instance:

• The novel idea applied in WARP [65] is creating an initial minimal edge-cut cover and then replicate
triples in a way such that all historic queries can be answered locally.

• In COSI [23] edges are weighted based on the frequency they are requested by the historic query work-
load. Thereafter, a weighted minimal edge-cut partitioning is performed leading to a reduced number of
transferred intermediate results.

• In [17] the resulting graph cover aims to balance the overall workload of all queries equally among all
compute nodes. Thereby, each query is processed by a single compute node in an ideal case. To reach
this goal, the proposed algorithm assigns the triples required by the queries to compute nodes in a way
that the number of replicated triples is reduced.

30

3.1. Graph Cover Strategies

• In Partout [45] the queries contained in the historic query workload are first generalized by replacing
rarely queried subject or object constants by variables. Thereafter, the matches of this generalized triple
patterns are assigned to compute nodes in a way that (i) ideally each query can be answered by a single
compute node without replicating triples and (ii) the query workload of all queries is distributed equally
among all compute nodes.

• DiploCloud [157] generalizes the queries in the historic query workload by using schema information.
After generalizing the queries, triple sets are computed that can produce a single query result. Finally,
these triple sets are distributed equally among all compute nodes.

3.1.5. nnn-Hop Replication

Whenever a query combines data from different graph chunks, intermediate results need to be exchanged
between different compute nodes. To reduce the number of exchanged intermediate results for a subject-
complete graph cover of graph G, the n-hop replication strategy extends each of its chunks chi by replicating
all triples contained in some path of length ≤ n in G starting at some subject or object occurring in chi. This
way all queries that match with paths of length ≤ n could be processed without exchanging intermediate
results. The n-hop replication is used by systems like [66] and VB-Partitioner [91].

g:Gesis

e:employs

f :knows f :knows

f :givenname

f :givenname

"Wanja" g:Dogg:bello

w :daniel

w :martin

w :WeST

"Daniel"

r :type

e:employs

f :givenname

f :knows

c1 c2

e:ownedBy

"Daniel"

f :givenname

f :knows
g:wanja

"Martin"

f :givenname

"Wanja"

f :givenname

w :daniel

g:wanja

w :martin

"Martin"

Figure 3.6.: The 2-hop extension of the hash cover in Figure 3.4.

Example 16. Applying the 2-hop replication extension on the hash cover in Figure 3.4 results in the 2-hop
hash cover shown in Figure 3.6. In this cover a query could match with the path ⟨(g:bello,e:ownedBy,g:wanja) ,
(g:wanja, f:knows,w:daniel)⟩ on compute node c2 without the need to exchange intermediate results.

The n-hop replication may reduce the number of transferred intermediate results at the cost of replicating
triples. This replication will increase the effort to create the graph cover and increases the size of the graph
chunks. Furthermore, the replication might cause a higher computational effort during the query processing
since the replicated triples might lead to duplicate intermediate results. Thus, using the n-hop replication
might be beneficial if the network connecting the compute nodes is slow and the number of replicated triples
is low.

31

Chapter 3. Related Work

3.1.6. Dynamic Graph Cover Strategies

Graph covers created by one of the graph cover strategies above can lead to a high amount of data transfer
between compute nodes, if the actual query workload needs to combine data stored on different compute
nodes. In order to overcome this limitation, PHD-Store [9] and AdHash [9] keep track of basic graph patterns
that are queried frequently. When the frequency exceeds a threshold, triples that match with these frequent
triple patterns are replicated in a way that these basic graph patterns can be executed locally.

Instead of only trying to reduce the network communication, Sedge [9] tries to primarily distribute the query
workload equally among the compute nodes. Therefore, Sedge keeps track how frequently the molecules are
queried together. If a set of molecules is queried together with a high frequency, this set of molecules is
replicated to a compute node with a low workload.

Another type of graph cover strategies assumes that during runtime new triples can be added to the RDF
store. In this setting it may happen that a single compute node stores many more triples than other compute
nodes. To prevent the compute node from being overloaded, the triples of that compute node can be redis-
tributed based on the prefix of some hash values (as done in [114]). Another strategy is performed by [19].
The triples are sorted lexicographically and one half of them is sent to another compute node. In both cases
the systems keep track to which compute node they have moved the triples.

3.2. Evaluation Methodologies

In order to evaluate the performance of RDF stores several benchmarks were proposed. In general, bench-
marks consist of a data set, a set of queries and several performance metrics. In order to test the RDF stores
with differently-sized RDF graphs, benchmarks usually use a data set generator that generated RDF stores
based on a schema and/or specific characteristics. Some benchmarks provide fixed queries or query patterns
that contain special variables that are substituted by constants after data set generation (see Section 3.2.1). In-
stead of providing query patterns, benchmark generators generate queries based on query characteristics (see
Section 3.2.2). In Section 3.2.3, we elaborate how benchmarks are used to evaluate distributed RDF stores.

3.2.1. Benchmarks

Lehigh University Benchmark

LUBM [54] was developed to test the query optimizer performance. It generates an RDF graph based on its
Univ-Bench ontology. This ontology describes universities, their departments, employees, courses, students
and related activities. In order to provide more realistic data sets, several constraints are applied during the data
generation. For instance, a university can have between 15 and 25 departments and the ratio of undergraduate
students to faculties is between 8 and 14. The 14 provided SPARQL queries are designed to test how well
the query optimizer can improve the join ordering. The characteristics of the queries are shown in table 3.1a.
LUBM proposes the following performance metrics:

Load time is the time that the RDF store needs to parse and load the RDF graph.

Repository size is the size of all files that are required by the RDF store to store the data set including dictio-
nary and indices.

Query execution time is the average time to execute a query ten times.

32

3.2. Evaluation Methodologies

Query completeness and soundness measures which percentage of all results were retrieved and the percent-
age of correct results.

Query # Triple Patterns Query Diameter
Q1 2 1
Q2 6 2
Q3 2 1
Q4 5 1
Q5 2 1
Q6 1 1
Q7 4 2
Q8 5 2
Q9 6 2
Q10 2 1
Q11 2 1
Q12 4 2
Q13 2 2
Q14 1 1

(a) LUBM query characteristics.

Query # Triple Patterns Query Diameter
Q1 5 1
Q2 10 1
Q3a 2 1
Q3b 2 1
Q3c 2 1
Q4 8 2
Q5a 6 2
Q5b 6 2
Q6 9 2
Q7 13 5
Q8 8 2
Q9 4 2
Q10 1 1
Q11 1 1
Q12a 6 2
Q12b 8 2
Q12c 1 1

(b) SP2Bench query characteristics.

Table 3.1.: Query characteristics of LUBM and SP2Bench.

SP2Bench

SP2Bench [140] was designed to test the most common SPARQL constructs and how they are applied in real-
istic queries. It provides a data set generator that creates an RDF graph that follows the DBLP schema. This
schema describes publications like articles and inproceedings with their bibliographic information. The gen-
erated graph mimics the characteristics of the real DBLP graph. SP2Bench provides 17 queries. They mainly
focus on testing the capabilities of the query optimizer to optimize the join order but also the optimization
of complex filters and duplicate elimination. The characteristics of the queries are given in table 3.1b. The
proposed performance metrics are:

Load time is the time that the RDF store needs to parse and load the RDF graph.

Query execution time is the the arithmetic mean of all execution times of a query.

Global query execution times are the arithmetic and geometric means of all 17 queries. The geometric mean
is computed by multiplying the execution times of all 17 queries and then computing the 17th root of
the result. If a query could not be processed, it is punished with 3600 seconds.

Memory consumption is measured by (i) the maximum amount of memory that was allocated during the
processing of each individual query and (ii) the average memory consumption of all queries.

33

Chapter 3. Related Work

Berlin SPARQL Benchmark (BSBM)

The BSBM2 [21] focuses on the use case of an e-commerce platform. It aims to simulate the search and
navigation patterns of multiple concurrently acting customers. The data set is generated based on a relational
schema. This schema represents products, their offers and the custom reviews of the products. BSBM provides
12 query patterns whose characteristics are given in table 3.2. These queries mainly test the ability to optimize
the join ordering and the early application of filters. In BSBM a query pattern refers to a query in which
some constants are replaced by a special type of variable. During the runtime of the benchmark these special
variables are replaced with varying constants occurring in the data set. A set of queries in which each query
pattern is instantiated is called a query mix. Several of these query mixes are executed in parallel in order to
measure the performance of the RDF stores. The proposed performance metrics are:

Load time is the time that the RDF store needs to parse and load the RDF graph.

Query mixes per hour is the number of query mixes that can be completely processed within one hour.

Queries per second is the number of queries, which have been instantiated from a single query pattern, that
can be answered within one second.

Query # Triple Patterns Query Diameter
Q1 5 1
Q2 15 2
Q3 7 1
Q4 10 1
Q5 7 1
Q6 2 1
Q7 14 2
Q8 10 2
Q9 1 1

Q10 7 2
Q11 2 2
Q12 9 2

Table 3.2.: BSBM query characteristics.

Semantic Publishing Benchmark (SPB)

The SPB3 [86] is a benchmark motivated by the industry. The use case is a publisher organization that provides
metadata about its published work. Many journalists search for data and perform insertions and deletions con-
currently. SPB provides a data set generator that is designed to create data sets with several billions of triples
that mimic the BBC data sets. Similar to BSBM it provides query templates that contain special variables
that will be instantiated before query execution. SPB defines two set of query templates. The basic query set
focuses on join ordering, duplicate elimination and filtering whereas the advanced query set additionally con-
tains, e.g., analytical queries. The query characteristics are given in table 3.3a and in table 3.3b. The proposed
performance metrics are:

2http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/
3http://ldbcouncil.org/developer/spb

34

http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/
http://ldbcouncil.org/developer/spb

3.2. Evaluation Methodologies

Query # Triple Patterns Query Diameter
Q1 26 3
Q2 9 2
Q3 8 1
Q4 4 1
Q5 6 2
Q6 5 2
Q7 6 1
Q8 11 2
Q9 9 1
Q10 7 3
Q11 8 2

(a) Basic query set characteristics.

Query # Triple Patterns Query Diameter
Q1 26 3
Q2 9 2
Q3 1 1
Q4 3 1
Q5 3 2
Q6 4 2
Q7 2 1
Q8 4 1
Q9 1 1
Q10 5 1
Q11 11 1
Q12 9 1
Q13 5 1
Q14 12 2
Q15 10 2
Q16 9 1
Q17 5 2
Q18 6 1
Q19 4 1
Q20 11 2
Q21 9 1
Q22 9 1
Q23 9 1
Q24 4 1
Q25 4 1

(b) Advanced query set characteristics.

Table 3.3.: SPB query characteristics.

Minimum, maximum and average query execution times for each executed query.

Average execution rate per second measures how many queries could be finished per second on average.

FedBench

FedBench [139] is designed as a benchmark for federated RDF stores. It provides three different data set
collections: (i) a general linked data collection containing DBPedia, GeoNames, Jamendo, Linked_MDB,
New York Times and Semantic Web Dog Food, (ii) a life science data collection containing KEGG, ChEBI
and DrugBank as well as (iii) a data set of 10M triples generated with the data set generator of SP2Bench.
FedBench provides two self-made query sets as well as the queries from SP2Bench for the three data col-
lections. The first two query sets focus on the number of data sources involved, the join ordering and the
query results set sizes. Since the actual benchmark cannot be found online any more, the characteristics of the
queries cannot be examined. The proposed performance metrics are:

Query execution time for each executed query.

Number of requests to remote RDF stores during the processing of each query.

35

Chapter 3. Related Work

3.2.2. Benchmark Generators

DBPedia SPARQL Benchmark (DBSB)

The general ideas of DBSB [108] are to scale the DBPedia data set to the required size and to create queries
based on a historic query log of DBPedia SPARQL endpoints. In order to generate the data set a DBPedia
dump is taken. To increase its size, triples are replicated and their namespaces are changed. To shrink the
data set size, triples are removed in a way that characteristics like the indegree and the outdegree of vertices
is not changed. In order to generate queries, DBSB clusters all queries of a historic query log. Out of each
cluster the most frequent queries are picked as well as queries that cover most SPARQL features. Based on
the selected queries, new queries are generated by replacing the constants with resources of the generated data
set during the benchmark generation process.

Waterloo SPARQL Diversity Test Suite (WatDiv)

WatDiv [15] was designed to create benchmarks that are able to test the performance changes of RDF stores
under varying data sets and query characteristics. Therefore, the data set generator is able to create data
sets with variations of (a) the entity types, (b) the graph topology, (c) the well-structuredness of entities (i.e.,
which portion of the defined edges are usually present at an entity), (d) the probability of edges connecting
two entities and (e) the cardinality of properties. In order to generate queries based on a data set, the following
characteristics are defined:

Triple Pattern Count defines the number of triple patterns occurring in the generated query.

Join Vertex Count counts the number of resources or variables that occur in multiple triple patterns.

Join Vertex Degree determines in how many triple patterns each join vertex occurs.

Join Vertex Type defines whether a subject-subject, subject-object or object-object join is performed.

Result Cardinality is the number of results.

Filter Triple Pattern Selectivity defines with witch portion of the graph a triple pattern matches.

BGP-Restricted f-TP Selectivity determines to which extent a triple pattern contributes to the overall selectiv-
ity of a query.

Join-Restricted f-TP Selectivity determines to which extent a triple pattern contributes to the overall selectivity
of a join.

FEASIBLE

FEASIBLE [133] does not provide a data set generator. Instead it can use an arbitrary data set for which a
historic query log exists. FEASIBLE aims to generate queries that have characteristics similar to the queries in
a query log. Therefore, in a first step all syntactical incorrect queries and queries with no results are removed.
Each query is transformed into a vector based on the following query characteristics:

SPARQL features defines which SPARQL features like SELECT, ASK, UNION, etc. occur in the query.

Triple Pattern Count defines the number of triple patterns occurring in the generated query.

36

3.2. Evaluation Methodologies

Join Vertex Count counts the number of resources or variables that occur in multiple triple patterns.

Join Vertex Degree determines in how many triple patterns each join vertex occurs.

Join Vertex Type defines whether a subject-subject, subject-object or object-object join is performed.

Triple Pattern Selectivity defines with which portion of the graph a triple pattern matches.

From the resulting set of query vectors, the requested number of queries are selected in a way that their vectors
are as far away as possible from each other.

SPLODGE

The idea of SPLODGE [49] is to generated queries with a given set of characteristics from an arbitrary data
set. Thereby, it uses the following query characteristics:

Query Type defines whether a SELECT, CONSTRUCT, ASK or DESCRIBE query should be generated.

Join Type defines whether a conjunctive join (.), disjunctive join (UNION) or left-join (OPTIONAL) should be
performed.

Result Modifiers defines whether the result set should be altered by DISTINCT, LIMIT, OFFSET or ORDER_BY
operators.

Variable Patterns defines at which positions of the triple pattern variables should occur.

Join Patterns defines whether a subject-subject, subject-object or object-object join is performed.

Cross Products defines whether a conjunctive join without join variables should be performed.

Number of Sources defines from how many different data sources triples should be combined to answer the
query.

Number of Joins defines how many joins should occur in the query.

Query Selectivity defines with which portion of the graph all triple patterns of a query match.

3.2.3. Performed Evaluations

The before mentioned benchmarks are usually used to evaluate and compare the performance of RDF stores as
a whole. Table 3.4 summarizes the evaluations published from the beginning of 2016. All of them use at least
one of the benchmarks described above. Beside the generated data sets they usually also use a few realistic
data sets. The maximal data set size is in most cases approximately 1 billion triples. In two cases a data set
with up to 4.2 billion triples was used. Most RDF stores in the cloud were deployed on 10 compute nodes. In
one evaluation 19 compute nodes were used. Nevertheless, evaluating an RDF store as a whole may not allow
for identifying to which extent the observed performance was caused by the underlying hardware or the RDF
stores itself.

The evaluations in these papers use rather small data sets. To give a better overview of the capabilities of
current RDF stores, [1] reports RDF stores running on a single server or in the cloud that could store RDF
graphs consisting of several billions or even one trillion triples (see the summary in table 3.5).

37

Chapter 3. Related Work

Paper Benchmark Max. Data Set Size # compute nodes compute node size
[29] WatDiv ~100M triples 10 6 cores, 32 GB RAM, 4 TB disk

[125] WatDiv ~1,000M triples 10 6 cores, 32 GB RAM, 4 TB disk
[110] LUBM ~1,330M triples 18 12 cores, 50 GB RAM

WatDiv
[106] WatDiv ~10M triples 11 4 cores, 24 GB RAM
[100] LUBM ~35M triples 18 slaves 16 cores, 28 GB RAM

1 federator 16 cores, 56 GB RAM
[5] LUBM ~4,200M triples 12 24 cores, 148 GB RAM

[157] LUBM ~220M triples 4-16 slaves 4 cores, 8 GB RAM, 500 GB disk
1 master 4 cores, 16 GB RAM, 500 GB disk

[138] WatDiv ~1,000M triples 10 6 cores, 32 GB RAM, 4 TB disk
[135] WatDiv ~100M triples 10 6 cores, 32 GB RAM, 4 TB disk
[122] WatDiv ~1,382M triples 10 8 cores, 32 GB RAM

LUBM
[119] BSBM ~5M triples 4-12 2 cores, 8 GB RAM
[118] WatDiv ~1,099M triples 10 4 cores, 16 GB RAM, 500 GB disk

LUBM
FedBench

[117] WatDiv ~250M triples 10 4 cores, 16 GB RAM, 150 GB disk
[60] WatDiv ~4,288M triples 5-12 24 cores, 148 GB RAM

LUBM
[52] WatDiv ~1,380M triples 10 4 cores, 17 GB RAM

LUBM
[4] LUBM ~3,100M triples 11 8 cores, 16 GB RAM, 3TB disk

Table 3.4.: Evaluations of RDF stores in the cloud published since 2016.

38

3.2. Evaluation Methodologies

In order to compare the influence of alternative graph cover strategies or different query execution strategies,
all but the examined component of the distributed RDF store need to stay the same. This was done, for instance
in [110] to compare different query execution strategies on top of Spark or in [33], [66], [91] and [163] to
compare different graph cover strategies. But these evaluations used Hadoop or its distributed file system to
exchange data during the query processing. As a result, it remains unclear whether the made observations
are similar to the observations that could be made in distributed RDF stores in which the data is exchanged
directly between the compute nodes. To the best of my knowledge, no paper evaluated the influence of the
graph cover strategy on the query performance using the same distributed RDF store.

RDF Store Max. Data Set Size
compute
nodes compute node size

Oracle Database 12ca ~1 trillion triples 1 360 cores, 2 TB RAM, 45 TB disk
AllegroGraphb ~1 trillion triples 1 ?

Stardogc ~50,000M triples 1 32 cores, 256 GB RAM
Virtuoso Clustered Edition [42] ~37,000M triples 8 8 cores, 16 GB RAM, 4 TB disk

GraphDBd ~17,000M triples 1 16 cores, 512 GB RAM
4store [61] ~15,000M triples 9 ?

Blazegraph [2] ~12,700M triples ? ?
YARS2 [2] ~7,000M triples ? ?
Jena TDBe ~1,700M triples 1 2 cores, 10 GB RAM

RDFoxf ~1,700M triples 1 16 cores, 50 GB RAM

ahttp://www.oracle.com/us/corporate/features/database-12c/index.html
bhttps://franz.com/agraph/allegrograph/
chttps://www.stardog.com/
dwww.ontotext.com/products/ontotext-graphdb/
ehttps://jena.apache.org/
fhttp://www.cs.ox.ac.uk/isg/tools/RDFox/

Table 3.5.: Evaluations of RDF stores reported by [1].

39

http://www.oracle.com/us/corporate/features/database-12c/index.html
https://franz.com/agraph/allegrograph/
https://www.stardog.com/
www.ontotext.com/products/ontotext-graphdb/
https://jena.apache.org/
http://www.cs.ox.ac.uk/isg/tools/RDFox/

CHAPTER 4
Methodology for Benchmarking Graph Cover
Strategies
When defining a methodology for investigating the effects of graph cover strategies on distributed RDF stores,
several challenges arise. Beyond the overall performance for the processing of SPARQL queries [123], ob-
serving indications that contribute to understanding how graph cover strategies may relate to scalability is
useful. Two examples of such indicators are the horizontal containment and the vertical parallelization. The
horizontal containment describes to which extent computation of individual query results is local to one (or
few) graph chunk(s). This is an indicator that query processing is (to some extent) robust when the cloud
is scaled horizontally. The vertical parallelization describes to which extent different query results may be
computed in parallel on different compute nodes. This is an indicator that query processing can scale with
growing result set sizes by horizontal scaling of the cloud. All used high-level indicators are formally defined
in Section 4.1.

Ideally, the graph cover strategy would be the only independent input variable based on which to pursue
evaluation and to obtain values for dependent variables. Performance observations of graph cover strategies,
however, are tightly interwoven with several factors. The first two factors are the data sets and the specific
queries that are processed as part of the benchmark (cf. Section 4.2). Furthermore, actual query execution con-
stitutes a highly influential factor, too, for which the execution strategies (cf. Section 4.3) as well as execution
operation (cf. Section 4.4) are defined. For these two factors, the described methodology aims at experiment-
ing with a diverse set of inputs in order to allow for recognizing the patterns of influence between graph cover
strategies and performance measures. This chapter is mainly taken from [73].

4.1. Evaluation Measures

In this subsection, the measures that seem to be most useful to characterize different graph cover strategies
are defined. Experiments with further measurement and statistics functions, e. g. standard deviation instead of
Gini coefficient, have been made but they seemed to be correlated so that the measures that seem to be the
most intuitive to interpret were chosen.

Load times

Loading a data set typically involves at least seven steps, some of which may be interleaved and/or parallelized:

1. Initial dictionary encoding of nodes and labels unused during graph cover creation (see Section 4.4) for
faster access and memory savings.

2. Computation of the graph cover.

41

Chapter 4. Methodology for Benchmarking Graph Cover Strategies

3. Final dictionary encoding of nodes and labels used during graph cover creation.

4. Collection of statistical information.

5. Setting join responsibility of resources.

6. Transfer of data chunks to compute nodes.

7. Indexing of data chunks at local compute nodes.

Given a data set and a graph cover strategy, the overall load time comprises these 7 steps. Since the com-
putation of the graph cover is directly related to the graph cover strategy, the load time L is defined as the
time required for the computation of the graph cover. This measurement is a weak indicator for setting up a
data set in a cloud RDF store. However, all other steps by themselves are complex enough to warrant deeper
investigation in the future.

Storage imbalance

Scaling the cloud for handling growing memory needs may be jeopardized by graph cover strategies aiming
for a low number of transferred intermediate results. They might generate a skewed distribution delegating
expensive tasks on few compute nodes. Therefore, the quality of the storage distribution resulting from a
graph cover strategy with the storage imbalance b are evaluated.

Definition 17. For a given cover, storage imbalance b is defined by the Gini coefficient

b :=
2∗

|C|
∑

i=1
i∗volSeq(i)

(|C|−1)∗ ∑
c∈C

vol(c)
− |C|+1

|C|−1
, 0 ≤ b ≤ 1

whereby vol(c) := |chunkcover(c)| describes the number of triples on a compute node c and volSeq(i) returns
the size of the ith chunk in the ascending sequence of all vol(c).

Thus, storage imbalance b is defined by the Gini coefficient of the distribution of triple occurrences with
b = 1 indicating maximal imbalance and b = 0 maximal balance.

Beside the Gini coefficient, experiments with the standard deviation and entropy were also performed but the
Gini coefficient was chosen, since the produced values are within a fixed range between 0 and 1 independent
of the actual chunk sizes and thus better comparable. Furthermore, the experiments showed that the storage
imbalance between different graph cover strategies is better visible than using entropy.

Storage redundancy

When handling with triple replication the number of triples in the graph chunks will be larger than the original
number of triples in the graph. Therefore, the storage redundancy is defined as the blow-up factor, where r = 1
indicates no redundancy and r = |C| · |G| indicates maximal replication of triples on all compute nodes.

Definition 18. For a given cover of a graph G, the storage redundancy is defined as

r :=
∑

c∈C
vol(c)

|G| , 1 ≤ r ≤ |C| · |G|

whereby vol(c) := |chunkcover(c)| describes the number of triples on a compute node c.

42

4.1. Evaluation Measures

Overall query performance

Depending on the target use case, different overall performance characteristics of an RDF store may be desir-
able. While the time to delivery of the complete result is crucial, e.g., for statistical reports, in a fact-finding
mission one may be more interested in only few top-k results being returned quickly. Hence, different kinds
of performance characteristics are provided. Characteristics depend on measuring the time interval between
issuing the query q (more precisely the query execution tree as elaborated on in Section 4.3) at time tq

0 and the
time when the i-th result is returned at tq

i with Kq representing the overall number of query results for query q.
The superscript q is dropped when it is clear from context as in the following definitions.

Definition 19. Overall query performance is evaluated by the following functions, with K being the overall
number of query results:

Query time to completion: exTime := tK − t0
Result curve function: χ(t) := |{ti|ti−t0≤t}|

K

χ(t) allows us to plot the percentage of returned results on a time axis between 0 and tK − t0. A curve that
is strictly below another one will indicate that results are returned more slowly.

Horizontal containment

Time-based measurements such as exTime depend on the exact configuration of the system such as network
bandwidth and latency. In a distributed system, often the most time-consuming operation is data transfer.
Graph cover strategies that lead to massive data transfer indicate that computation of individual query results
is not contained on one or few compute nodes, and hence suggests that it will not allow the cloud to be scaled
horizontally. Hence, an abstract level of data transfer is measured:

Definition 20. For a join operation op,
⏐⏐dom(µop

i)
⏐⏐ are the number of variables of a variable binding and m

are the number of variable bindings m =
⏐⏐{µ

op
i }
⏐⏐. Each join operation that leads to the sending of variable

bindings from one compute node to another transfers data of size mop ·
⏐⏐dom(µop

i)
⏐⏐. The size of the data

transferred from one compute node c is measured as Tc := ∑op mop ·
⏐⏐dom(µop

i)
⏐⏐. The overall data transfer is

then defined as T := ∑c∈C Tc for a given cover and a given query execution tree.

Additionally to the data transfer which measures the amount of transferred data, the amount of transferred
packets is measured:

Definition 21. For a given cover and a given query execution tree, the number of transferred packets is defined
as P := ∑c∈C Pc, where Pc is the number of packets sent from c to any other compute node c′ ̸= c.

The data transfer is sometimes also used as the preferred measurement for overall query efforts in the
cloud, as in standard cloud architecture the processor-to-remote-memory gap by far excels the processor-to-
local-memory gap. In newer hardware architectures that natively support remote direct memory access large
differences between these gaps cannot be taken for granted anymore. Thus, the data transfer and the workload
imbalance are measured.

Vertical parallelization

In order to measure workload independently of time, the number of join comparisons to be performed are
observed. Given a query execution tree the overall workload will be identical for all graph cover strategies.
The vertical parallelization expresses how many join comparisons might be executed by different compute

43

Chapter 4. Methodology for Benchmarking Graph Cover Strategies

nodes in parallel. This number is very difficult to obtain as it would require the definition and implementation
of complex concepts in a distributed system such as ‘simultaneous’ or ‘nearly simultaneous’. A simple, but
effective strategy is pursued here, by simply measuring how the workload is distributed over different compute
nodes using the Gini coefficient.

Definition 22. For a cover and a query execution tree, workload imbalance W is the Gini coefficient:

W :=
2∗

|C|
∑

i=1
i∗wSeq(i)

(|C|−1)∗w(C)
− |C|+1

|C|−1
, 0 ≤W ≤ 1

where the workload of a compute node w(c) is defined by the number of join comparisons on c, wSeq(i)
denotes the ith workload in the ascending workload sequence of all compute nodes, and w(C) = ∑

c∈C
w(c) is

the total computational effort on all slaves.

In the strict sense, workload imbalance does not measure vertical parallelization, because an actual query
might involve many compute nodes in a strictly sequential manner. However, each sequential processing of
a query requires data transfer. Thus, in combination with horizontal containment the following interpretation
table can be created that derives a comprehensive picture when jointly considering workload imbalance and the
packet transfer as a measure for horizontal containment (see Table 4.1). Based on the evaluation the workload
imbalance may be seen as low for a W < 0.1 and the horizontal containment may be seen as high if less than
0.01 packets would be transferred to produce a single query result.

P high P low
W low high vertical parallelization low to medium vertical parallelization

W high low vertical parallelization low vertical parallelization (unlikely situation)

Table 4.1.: Measurement of vertical parallelization.

4.2. Data Set and Queries

Since the core functionality of SPARQL is provided by matching basic graph patterns, the proposed evalu-
ation methodology follows the strategy of most other benchmarks, performing evaluations with varied basic
graph pattern structures. In particular, the strategy of SPLODGE [49] is adopted, which varies the query
characteristics given arbitrary real-world data sets:

Number of joins: controls the number of triple patterns in the basic graph pattern.

Selectivity: controls the number of triples involved in answering the query.

Join pattern: controls the branching factor that shapes the basic graph pattern to a smaller or larger extent into
a path–shaped query or star–shaped query.

Number of sources controls for the number of data sources that need to be involved to answer a query (e.g.,
DBPedia and GeoNames would be two).

44

4.3. Query Execution Strategies

project

⋊⋉

⋊⋉

Jtp1KG Jtp2KG Jtp4KG

⋊⋉

Jtp3KG

(a) Bushy query execution tree.

project

⋊⋉

Jtp4KG⋊⋉

⋊⋉ Jtp3KG

Jtp1KG Jtp2KG

(b) Left-linear query execution tree.

project

⋊⋉

Jtp4KG

⋊⋉

⋊⋉

Jtp3KG

Jtp2KG

Jtp1KG

(c) Right-linear query execution tree.

Figure 4.1.: The three different query execution strategies for the query from example 4.

While the first three are common to most benchmarks, the last one has been specifically added to SPLODGE
for benchmarking federated stores. Varying this parameter between 1 and several units is important in this
context, as several graph cover strategies may easily collocate data from a single data source on a single
compute node. When testing the limits of graph cover strategies, it must be ensured that also ‘hard’ test cases
are created. Since some queries might produce accidentally huge result sets, the number of results is limited
to 1 million.

To better identify the influence of data-set-specific characteristics on the performance of the graph cover
strategies, the frequently used Waterloo SPARQL Diversity Test Suite (WatDiv) [15] is used to generate addi-
tional data sets. For each data set 20 queries based on the basic testing query templates1 are generated. These
generated queries consists of star-shaped queries (S1-S7), path-shaped queries (L1-L5) and combinations of
both shapes (C1-C3 and F1-F5).

4.3. Query Execution Strategies

In order to find out about weaknesses and strengths of graph cover strategies, it has to be determined how
far our evaluation measures are influenced by the graph cover strategies themselves and how far they are
influenced by interfering aspects of the overall RDF store. Query planning and execution are so intrinsically
interwoven that it is rather impossible to come up with one (or several) query optimizers and planners that fit
all challenges.This issue is remedied in a similar way as done for data set and queries: The suitability of the
different graph cover strategies under variations of query executions are systematically explored. Thus, the
performance of “the best run”, which would be hard to achieve anyway, is not measured but the robustness
and susceptibility of graph cover strategies vs. execution strategies are characterized.

Specifically, (i) a bushy query execution tree with minimal height, (ii) a left-linear query execution tree, in
which the triple patterns are joined in the sequence they are defined and (iii) a right-linear query execution
tree are used. Thus, trees of different heights and topological sorting are used. To evaluate the performance of
graph cover strategies under variations of query execution trees, an operative environment that can handle dif-
ferent graph cover strategies and such variations of query execution trees have been devised. This environment
is described next.

Example 17. Figure 4.1 shows the three different query execution trees generated for the query from exam-
ple 4. The bushy query execution tree joins all consecutive triple patterns pairwise as shown in Figure 4.1a.
The resulting intermediate results are joined pairwise again until all joins are performed. The left-linear query

1https://dsg.uwaterloo.ca/watdiv/basic-testing.shtml

45

https://dsg.uwaterloo.ca/watdiv/basic-testing.shtml

Chapter 4. Methodology for Benchmarking Graph Cover Strategies

execution tree joins the triple patterns in the sequence they were defined in the query (see Figure 4.1b) whereas
the right-linear query execution tree joins them in the reverse sequence as shown in Figure 4.1c.

4.4. Distributed RDF Store for Arbitrary Graph Covers (Koral)

The distributed RDF store for arbitrary graph covers (Koral)2 implements a query execution mechanism that
receives a data set, a graph cover, a query and a query execution strategy and computes the corresponding
query result set. Its formal definition is given in Section 4.4.2 and the proofs of soundness and completeness
are given in Appendix B.

Master
Dictionary

Slave1

Encoder
Graph Cover

Creator

Query Execution
Coordinator

Network
Manager

Dictionary Statistics

Query
Executor

Local Triple Indices

Network
Manager

Slaven

Query
Executor

Local Triple Indices

Network
Manager

Figure 4.2.: Architecture of Koral.

Koral is an extension of state-of-the-art asynchronous execution mechanisms such as realised in TriAD [55].
The extensions render the query execution mechanism independent from the underlying graph cover. The
architecture of Koral is depicted in Figure 4.2. Koral consists of one master node and |C| slave nodes. The
network managers maintain peer-to-peer network connections and manage the network communication.

4.4.1. Graph Loading

At loading, the huge size of the input graph needs to be reduced as early as possible. Therefore, the contained
textual resources are replaced by numerical ids. The creation of the ids as well as storing the mapping between
the textual and the numerical representation is done by the dictionary encoder. If a minimal edge-cut cover
should be created, the subject, property and object of the triples can be encoded. In the cases of the hierarchical
cover the subjects are kept in their textual representation since the IRI hierarchy is required for the creation of
this cover. The encoded graph is then used by the graph cover creator to create the requested graph chunks.
In case of the hierarchical cover the textual subject resources are encoded afterwards in order to reduce the
size of the graph chunks. During the creation of the graph cover, for each triple the graph chunks in which it
occurs is stored.

2https://github.com/Institute-Web-Science-and-Technologies/koral

46

https://github.com/Institute-Web-Science-and-Technologies/koral

4.4. Distributed RDF Store for Arbitrary Graph Covers (Koral)

As described in Section 4.3 each resource is uniquely assigned to a slave that is responsible for joining it
during the query processing. In order to increase the horizontal containment, the assignment of a resource
is based on the frequency with which it occurs in the different graph chunks. Therefore, the frequency of
the different resources in the different chunks is counted and stored in a statistics database. In the current
implementation the statistics database is a single huge file which is randomly accessed. Each resource stores
its statistical data at a dedicated region of the file. When the statistical data have been completely collected,
the loading process iterates over all graph chunks again. During the iteration, the slaves responsible for joining
the individual resources are determined. The resource id is then prefixed by the id of the responsible slave and
written to disk again.

After adjusting the join responsibility, the graph chunks are sent to the slaves. The slaves create local index
structures (SPO, OSP, and POS indices as described in [154]) that also includes the information on which
slaves the individual triples are stored. While the multi-pass strategy has the disadvantage that it iterates the
data files several times, it has the advantage that it prevents to run out of memory and is thus highly scalable
for very large files. In order to reduce the cost of disk I/O all components except the statistics database access
the data files linearly.

4.4.2. Query Execution During Run-time

At run-time, a query execution coordinator is instantiated for each received query. During the initial parsing
step the query execution tree is created that specifies the query execution strategy (bushy, left-linear, right-
linear). Thereby, all constants are encoded using the dictionary and the join responsibility is adjusted using
the statistics.

The created query execution tree is serialized and submitted to all slaves. Each slave deserializes the tree,
prepares all query operations for execution and finally sends a ready-to-start notification to the query execution
coordinator. When all slaves are ready to start, the coordinator instructs all slaves to start the execution of the
query operators. This synchronization step has the advantage that the receiver of an intermediate result sent
from one query operation to another on a different slave node is guaranteed to exist.

When the slaves execute the individual triple operations, the match operations use the local triple indices
to find matches for the corresponding triple pattern. The resulting variable bindings are transferred to the
succeeding join operation on the slave responsible for the join of the resource, i.e. µ(v) (where v is the join
variable) aiming at horizontal containment. The data transfer of the intermediate variable bindings is formally
defined in Section 4.3. In order to make better use of the network bandwidth, several intermediate results are
bundled together and sent to the receiving slave within one packet.

Whenever the join operation receives a variable binding, it is joined with the cached variable bindings. The
join results are directly sent. Since the number of received variable bindings can exceed the memory of a
slave, up to 32k variable bindings are cached in memory. If more variable bindings needs to be cached, they
are inserted into a persistent B-tree.

When all child operations in the query execution tree of a query operation o are finished and no further input
needs to be processed, it sends a finish notifications to all o operations on the other slaves. If o has received
the finish notifications from all other o operations, it declares itself as finished. This synchronization step is
required to guarantee that all results are found.

If a query operation has no succeeding operation, i.e. it is the root operation in the query execution tree, it
sends its results to the query coordinator. The coordinator decodes the ids using the dictionary and sends the
decoded variable bindings to the sender of the query. When the coordinator receives the finish notification of
the root operations from all slaves, it sends a finish notification to the sender of the query and terminates itself.

In the case that the query contains a limit for the number of results, the query coordinator counts the number

47

Chapter 4. Methodology for Benchmarking Graph Cover Strategies

of variable bindings it has sent to the sender of the query. If the limit is reached, it instructs all slaves to abort
the query execution.

Formalization of Distributed Query Execution Strategy

To improve the comprehensibility, the distributed query execution strategy of Koral is formalized in two steps.
First, the initial strategy is defined that ignores replicated triples. Thereafter, the initial strategy is extended to
benefit of replicated triples. In Koral only the extended query execution strategy has been implemented.

Distributed Query Execution Strategy Ignoring Triple Replication

The distributed query execution strategy aims to benefit from the vertical parallelization and horizontal con-
tainment capabilities provided by the underlying graph cover. Therefore, query results that can be produced by
triples contained in only one graph chunk should be computed on the compute node storing the chunk without
causing additional data transfer. In order to approximate this goal, each compute node executes all operations
of the query execution tree. Whenever a query operation produces an intermediate variable binding, it has to
be decided whether the succeeding join can be processed locally or on a different compute node. This decision
is defined by the join responsibility of a resource which is assigned to a join variable of the succeeding join.

Definition 23. The join responsibility of a resource is a function jResp : IBL →C that assigns each resource
to a compute node.

In order to benefit from the horizontal containment of a graph chunk, the actual join responsibility assign-
ment is based on the occurrence of resources in the different graph chunks. A resource r is assigned to the
compute node who stores the graph chunk containing r at the subject position most frequently. If r does not
occur at the subject position, the occurrence at the object and predicate position defines its join responsibility.

Example 18. Assume the example hash cover from Figure 3.4. The join responsibilities for the different
resources are:

r ∈ {g:Gesis,g:wanja,w:martin, "Wanja", "Martin", f:knows, f:givenname}⇒ jResp(r) := c1

r ∈ {g:bello,w:WeST,w:daniel, r:type,e:employs,g:Dog,e:ownedBy, "Daniel"}⇒ jResp(r) := c2 .

Since a join operation may consist of more than one join variable, one of these variables needs to be selected
deterministically in order to determine the compute node responsible for the join processing. Therefore, an
arbitrary but fixed strict total order <V is defined on V (e.g., a lexicographic order on the variable names).
With its help the least variable out of the set of all join variables can be extracted.

In order to simplify the definition of the distributed query execution strategy, a function is defined that ex-
tracts from all intermediate results produced by a query operation on a compute node the set of all variable
bindings that should be transferred to a dedicated compute node c. This decision is based on the join respon-
sibility of the resource bound to the join variable but there exists two corner cases: (i) empty variable bindings
are transferred to all compute nodes and (ii) if the join is a Cartesian product (i.e., no join variable exists), then
the variable binding is sent to the first compute node. Therefore, an arbitrary but fixed strict total order <C is
defined on C (e.g., a lexicographic order on the IP addresses of the compute nodes).

Definition 24. Let <S be a strict total order defined on a set S, then the minimum is defined as follows.

min<S : 2S → S

min<S(S
′) := s, iff S′ ⊆ S∧S′ ̸=∅∧ s ∈ S′∧∀si ∈ S′ : si ̸= s ⇒ s < si .

48

4.4. Distributed RDF Store for Arbitrary Graph Covers (Koral)

Definition 25. The route function extracts all variable bindings from a set of variable bindings Ω̂ that will be
produced by a query Q processed on a compute node c. For an arbitrary but fixed join responsibility function
jResp, it is defined as follows.

route : C×ϒ×O → O

route(c,⟨⟨Q⟩⟩,Ω̂) :=
{

µ ∈ Ω̂
⏐⏐µ =∅

∨ (cVars(⟨⟨Q⟩⟩) =∅∧ c = min<C(C))

∨ (cVars(⟨⟨Q⟩⟩) ̸=∅∧ jResp(µ(min<V (cVars(⟨⟨Q⟩⟩)))) = c)
}

.

Example 19. If the triple pattern ?v1 <f:knows> ?v2 from the query in example 4 on page 8 is exe-
cuted on compute node c1 of the example hash cover in Figure 3.4 on page 28, the variable binding µ1 =
{(?v1,g:wanja),(?v2,w:daniel)} is produced as shown in Figure 4.3. The succeeding join operation will join
on variable ?v2. µ1 maps ?v2 on the IRI w:daniel. The join responsibility for this IRI was assigned to
jResp(w:daniel) = c2. Therefore, route(c2,⟨⟨tp1.tp2⟩⟩,{µ1}) = {µ1} will identify µ1 to be transferred to com-
pute node c2.

c1

c2

⋊⋉

⋊⋉

µ1 = {(?v1,g:wanja),(?v2,w :daniel)}

µ2 = {(?v2,w :daniel),(?v3, "Daniel")}

Jtp1Kc1
cover

Jtp2Kc1
cover

Jtp1Kc2
cover

Jtp2Kc2
cover

Figure 4.3.: An illustration of the distributed join.

On compute node c2, the triple pattern ?v2 <f:givenname> ?v3 will lead to the creation of the variable
binding µ2 = {(?v2,w:daniel),(?v3, "Daniel")}. The succeeding join operation will join on variable ?v2. µ2
maps this variable on the same IRI as µ1. Thus, route(c2,⟨⟨tp1.tp2⟩⟩,{µ2}) = {µ2} will identify µ2 to be joined
on the same compute node c2 on which it was produced. Since now, both compatible mappings µ1 and µ2 are
assigned to the same join operation on the same compute node, they can be joined.

Definition 26. For an arbitrary but fixed jResp the evaluation of a SPARQL query Q over a graph cover called
cover on a computer c, denoted by JQKc

cover, is defined recursively as follows:

1. If tp ∈ TP then JtpKc
cover = {µ|dom(µ) = var(tp)∧µ(tp) ∈ chunkcover(c)}.

2. If B1 and B2 are BGPs, then

JB1.B2Kc
cover =

(⋃
ci∈C

route(c,⟨⟨B1.B2⟩⟩,JB1Kci
cover)

)
⋊⋉
(⋃

ci∈C
route(c,⟨⟨B1.B2⟩⟩,JB2Kci

cover)

)
.

3. If W ⊆V and B is a BGP, then JSELECT W WHERE {B}Kc
cover = project(W,JBKc

cover)=
{

µ|W |µ ∈ JBKc
cover

}
.

Definition 27. The distributed evaluation of a SPARQL query Q over an arbitrary graph cover called cover
that assigns triples of an arbitrary RDF graph G to compute nodes C, denoted by JQKcover, is defined as

JQKcover :=
⋃
c∈C

JQKc
cover.

49

Chapter 4. Methodology for Benchmarking Graph Cover Strategies

With the help of these definitions, it is possible to prove that the defined distributed execution mechanism
is semantically correct and complete.

Theorem 1. The centralized evaluation of query Q produces exact the same results as its distributed evalua-
tion, i.e.

JQKcover = JQKG .

The proof of Theorem 1 is shown in Appendix B. A full example of the distributed query execution strategy
without triple replication is given in Section A.1.

The presented distributed query execution strategy is similar to the shuffle join of Apache Spark3. Whereas
the shuffle join uses the hash of the join key to identify the compute node on which two data items are joined,
the presented query strategy joins the data items on the compute node where the join node occurs the most
frequently.

Distributed Query Execution Strategy With Triple Replication

The distributed query execution strategy described in the previous section has the disadvantage that in the
presence of replicated triples the query would match with each replica, transfer them all to one compute
node and then computes joins for each of them. Thus, triple replication would lead to a increased number of
transferred intermediate results and a higher computational effort. In order to benefit from triple replication,
systems like [92] try to avoid the transfer of duplicate intermediate results by using the replicated triple to
increase the amount of intermediate results that can be computed locally on the individual compute nodes.

Systems like [92] benefit of triple replication by avoiding the exchange of intermediate results. To reduce
the exchange of intermediate results within Koral, the distributed query execution strategy is extended differ-
ently from [92]. This extension keeps track on which compute nodes a produced intermediate result is already
known. Only if the compute node on which it should be processed next does not know it already, it is trans-
ferred to it. In order to do so, each triple is annotated with the compute nodes to which it was assigned during
the creation of the graph cover.

Example 20. Figure 4.4 shows the 2-hop replication extension of a hash cover from Figure 3.6 on page 31.
The information to which compute nodes each triple was assigned to is annotated behind the edge labels. In
the following, this cover will be used to explain how the extension of the query execution mechanism works.
Since the occurrences of the resources in the different chunks have changed, the new join responsibilities are:

r ∈ {g:Gesis,g:wanja, "Wanja", "Martin", "Daniel", f:knows, f:givenname}⇒ jResp(r) := c1

r ∈ {g:bello,w:WeST,w:daniel,w:martin, r:type,e:employs,g:Dog,e:ownedBy}⇒ jResp(r) := c2 .

When matching a triple pattern with these annotated triples, the resulting variable binding can be extended
by the set of compute nodes to which the original triple was assigned to. By doing so, the resulting localized
variable binding – in the following named as µ l – know on which compute nodes they could be created.

Definition 28. A localized variable binding is a tuple (µ,C′) with the set of compute nodes C′ ⊆C on which
the variable binding µ is known. The set of localized variable bindings denoted as O loc.

3https://www.waitingforcode.com/apache-spark-sql/shuffle-join-spark-sql/read

50

4.4. Distributed RDF Store for Arbitrary Graph Covers (Koral)

g:Gesis

e:employs{c1}
f :givenname

"Wanja" g:Dogg:bello

w :daniel

w :martin

w :WeST

"Daniel"

r :type{c2}

e:employs{c2}
f :givenname

f :knows{c1,c2}

c1 c2

e:ownedBy{c2}

"Daniel"

g:wanja

"Martin"

f :givenname{c1,c2}

"Wanja"

w :daniel

g:wanja

w :martin

"Martin"

{c1,c2}

{c1,c2}

f :givenname{c1,c2}

f :knows{c1,c2}

Figure 4.4.: The 2-hop replication extension of the hash cover in Figure 3.6 on page 31 with compute nodes
annotated to the triples.

Example 21. When finding matches for the triple pattern tp1 = ?v1 <f:kknows> ?v2 from the example
query in example 4 on page 8 with the graph chunk stored on compute node c2 the localized variable binding
µ l

1 = ({(?v1,w:martin),(?v2,g:wanja)},{c1,c2}) is created. Since the underlying triple was assigned to both
compute nodes, also µ l

1 was created on both compute nodes.
On compute node c2 the triple pattern tpe = <w:WeST> <e:employs> ?v1 creates the localized variable

binding µ l
2 = ({(?v1,w:martin)},{c2}). Since the underlying triple was only assigned to compute node c2, µ l

2
is only known by c2.

In order to join two localized variable binding, definition 13 on page 9 is extended. A variable binding that
is created by joining two localized variable bindings µ l

1 and µ l
2 will be created and known on all compute

nodes that know µ l
1 and µ l

2.4

Definition 29. The join of two sets of localized variable bindings Ωloc
1 and Ωloc

2 is defined as

Ω
loc
1 ⋊⋉ Ω

loc
2 =

{(
µ1 ∪µ2,C′

1 ∩C′
2
)
|
(
µ1,C′

1
)
∈ Ω

loc
1 ∧

(
µ2,C′

2
)
∈ Ω

loc
2 ∧µ1 ∼ µ2

}
.

Thereby, µ1 ∼ µ2 means that the variable bindings µ1 and µ2 are compatible as defined by definition 12 on
page 9.

Example 22. The join of µ l
1 and µ l

2 from the previous example will result in the localized variable binding
µ l

3 = ({(?v1,w:martin),(?v2,g:wanja)},{c2}) since µ l
2 was only known on compute node c2.

Crucial for reducing the number of transferred intermediate results is the decision whether a localized
variable binding should be transferred or not. This decision is defined in the routeloc function in definition 30.
Three different cases can be distinguished: (i) an empty mapping should be transferred, (ii) the following join
operation has no join variable, i.e., it is a Cartesian product, or (iii) the following join operation is a join on
at least one join variable. In the first case the empty variable binding needs to be transferred to all compute

4In the distributed query execution strategy with triple replication only localized variable bindings are produced. Therefore, the join
is only defined on localized variable bindings.

51

Chapter 4. Methodology for Benchmarking Graph Cover Strategies

nodes. Thus, after transferring it, it will be known by all compute nodes. In order to prevent sending duplicates
of the empty variable binding, only the first compute node knowing it will send it.

In case of a Cartesian product, all variable bindings need to be transferred to the first computer who will
then process them. After sending the localized variable binding, only the receiving compute node will know it.
In order to prevent the transfer of duplicates, only the first compute node knowing it will send it. One special
case is, when the compute node to which the variable binding should be transferred already knows it. In this
case, the variable binding will not be transferred over network.

In case of a join operation with at least one join variable, it is checked first, whether the compute node
responsible for performing the join already knows the variable binding or not. If the compute node does not
know it, it is transferred by the first compute node knowing it. As a consequence only the compute node
responsible for the join will know it. If the compute know knows the variable binding already, then every
compute node who knows the variable binding will forward it only to the succeeding local join operation.
Thus, query processing can benefit from replicated triples, since joins can be processed on the local replicas
of triples.

Definition 30. The replication-aware route function defines which localized variable bindings Ω̂loc are trans-
ferred from one compute node cs to the parent query operation ⟨⟨Q⟩⟩ on another compute node ct . Thereby,
C is the set of compute nodes, ϒ is the set of query execution trees and O loc the set of all localized variable
binding sets. For an arbitrary but fixed join responsibility function jResp, it is defined as follows.

routeloc : C×C×ϒ×O loc → O loc

routeloc(cs,ct ,⟨⟨Q⟩⟩,Ω̂loc) :=
{(

µ,C′
r
)⏐⏐∃(µ,C′) ∈ Ω̂

loc :
(
µ =∅∧ cs = min<C(C

′)∧C′
r =C

)
∨
(
cVars(⟨⟨Q⟩⟩) =∅∧ ct = min<C(C)∧ ct ̸∈C′∧ cs = min<C(C

′)∧C′
r = {ct}

)
∨
(
cVars(⟨⟨Q⟩⟩) =∅∧ ct = min<C(C)∧ ct ∈C′∧ cs = ct ∧C′

r = {ct}
)

∨
(
cVars(⟨⟨Q⟩⟩) ̸=∅∧ cs = min<C(C

′)∧ jResp(µ(min<V (cVars(⟨⟨Q⟩⟩)))) = ct ∧ ct ̸∈C′∧C′
r = {ct}

)
∨
(
cVars(⟨⟨Q⟩⟩) ̸=∅∧ cs = ct ∧ jResp(µ(min<V (cVars(⟨⟨Q⟩⟩)))) = cu ∧ cu ∈C′∧C′

r =C′)} .

Example 23. When executing the example query from example 4 on the 2-hop hash cover from Figure 4.4,
the first triple pattern will create the localized variable binding µ l

1 on both compute nodes as shown in Fig-
ure 4.5. The following join on ?v2. Based on the join responsibility of µ l

1(?v2) = g:wanja compute node c1

c1

⋊⋉
Jtp1K

loc,c1
cover

µ l
1 = ({(?v1,w :martin),(?v2,g:wanja)},{c1,c2})

Jtp2K
loc,c1
cover

µ l
2 = ({(?v2,g:wanja),(?v3, "Wanja")},{c1,c2})

c2

⋊⋉
Jtp1K

loc,c2
cover

µ l
1 = ({(?v1,w :martin),(?v2,g:wanja)},{c1,c2})

Jtp2K
loc,c2
cover

µ l
2 = ({(?v2,g:wanja),(?v3, "Wanja")},{c1,c2})

Figure 4.5.: Forwarding of duplicate localized variable bindings at the presence of replicated triples.

52

4.4. Distributed RDF Store for Arbitrary Graph Covers (Koral)

⋊⋉
µ l

3 = ({(?v1,w :martin),(?v2,g:wanja),(?v3, "Wanja")},{c1,c2})

⋊⋉
µ l

4 = ({(?v1,w :martin)},{c2})

⋊⋉

µ l
3 = ({(?v1,w :martin),(?v2,g:wanja),(?v3, "Wanja")},{c1,c2})⋊⋉

c2

c1

Jtp3K
loc,c1
cover

Jtp3K
loc,c2
cover

Figure 4.6.: Forwarding of unique localized variable bindings at the presence of replicated triples.

would be responsible for joining it. Since c1 knows the variable binding already, routeloc determines both
localized variable bindings to be transferred to the local join operations, i.e., routeloc(c1,c1,⟨⟨tp1.tp2⟩⟩,{µ l

1}) =
routeloc(c2,c2,⟨⟨tp1.tp2⟩⟩,{µ l

1}) = {µ l
1}. The second triple pattern produces the localized variable binding µ l

2
on both compute nodes. Also this variable binding will be forwarded to the local succeeding join operations.

Both join operations will compute the resulting localized variable binding µ l
3 that is also known by both

compute nodes. As shown in Figure 4.6 this variable binding is forwarded to the succeeding local join opera-
tions. The third triple pattern will produce the localized variable binding µ l

4 only on compute node c2. Since
the join responsibility of w:martin is c2 and µ l

4 is already known on c2 it is forwarded to the succeeding join
operation on c2.

When joining the localized variable bindings µ l
3 and µ l

4 on compute node c2 the resulting localized vari-
able binding µ l

5 = ({(?v1,w:martin) ,(?v2,g:wanja) ,(?v3, "Wanja")} ,{c2}) is only known on compute node c2,
since µ l

4 is only known on c2. The succeeding join operation would have the join variable ?v2. µ l
5 assigns

g:wanja to this variable. Since compute node c1 is responsible for joining it and c1 does not know the localized
variable binding yet, it is transferred to c1, i.e. routeloc(c2,c1,⟨⟨⟨⟨⟨⟨tp1.tp2⟩⟩.tp3⟩⟩.tp4⟩⟩,{µ l

5}) = {µ l
5}.

With the help of the previous definitions the replication aware evaluation of a SPARQL query can be defined.

Definition 31. For an arbitrary but fixed jResp the replication-aware evaluation of a SPARQL query Q over
a graph cover called cover on a computer c, denoted by JQKloc,c

cover, is defined recursively as follows:

1. If tp ∈ TP then

JtpKloc,c
cover = {(µ,cover(µ(tp)))|dom(µ) = var(tp)∧µ(tp) ∈ chunkcover(c)} .

2. If B1 and B2 are BGPs, then

JB1.B2Kloc,c
cover =

(⋃
ci∈C

routeloc(ci,c,⟨⟨B1.B2⟩⟩,JB1Kloc,ci
cover)

)
⋊⋉

(⋃
ci∈C

routeloc(ci,c,⟨⟨B1.B2⟩⟩,JB2Kloc,ci
cover)

)
.

3. If W ⊆V and B is a BGP, then

JSELECT W WHERE {B}Kloc,c
cover = project(W,JBKloc,c

cover) =
{(

µ|W ,C
′) |(µ,C′) ∈ JBKloc,c

cover

}
.

53

Chapter 4. Methodology for Benchmarking Graph Cover Strategies

Definition 32. The replication-aware distributed evaluation of a SPARQL query Q over an arbitrary graph
cover called cover that assigns triples of an arbitrary RDF graph G to compute nodes C, denoted by JQKloc

cover,
is defined as

JQKloc
cover :=

{
µ

⏐⏐⏐⏐⏐(µ,C′) ∈ ⋃
c∈C

JQKloc,c
cover

}
.

With the help of these definitions, it is possible to prove that the defined replication-aware distributed
execution mechanism is semantically correct and complete.

Theorem 2. The centralized evaluation of query Q produces exact the same results as its replication-aware
distributed evaluation, i.e.

JQKloc
cover = JQKG .

It can be proven that in the case of graph cover strategies that do not replicate triples the distributed query
execution strategy and the replication-aware distributed query execution strategy work identically.

Theorem 3. In case of a graph cover without triple replication, i.e., ∀t ∈ G : |cover(t)| = 1, the distributed
query execution strategy and the replication-aware distributed query execution strategy evaluate the BGP B
identically:

∀c ∈C :
{

µ
⏐⏐(µ,C′) ∈ JBKloc,c

cover

}
= JBKc

cover .

The proofs of Theorems 2 and 3 are shown in Appendix B. A full example of the distributed query execution
with triple replication is given in Section A.2.

4.4.3. Limitations

A single graph cover strategy might have a property that can be used to speed up the query processing. For
instance, in the case of a hash cover, the compute node storing all triples with subject s can easily be identified
by computing hash(s) mod |C| where C is the number of all compute nodes. This knowledge of triple place-
ment can be used to optimize query processing. The resulting optimized query processing strategy might not
work for minimal edge-cut covers since they do not have this property. Thus, starting to consider properties
of specific graph cover strategies to improve the distributed query processing would lead to several query ex-
ecution strategies. This would limit the comparability of graph cover strategies that will use different query
execution strategies.

In order to have comparable evaluation results of different graph cover strategies, the distributed query
execution strategy must not consider any graph cover strategy-specific properties. In [92] and [66] hash-
based graph cover strategies and the minimal edge-cut cover strategy with and without n-hop replication
were compared. In their systems they decided based on the length of the paths with which the query matches
whether a query needs to exchange intermediate results or not. If no intermediate results need to be exchanged,
the complete query is executed on all compute nodes. If intermediate results need to be exchanged, the
query is first decomposed into subqueries that only match with paths with a length of at most n. The created
intermediate results are then combined by executing potentially several MapReduce jobs. In case of triple
replication this strategy reduces the number of exchanged intermediate results but does not avoid the creation
and processing of duplicate intermediate results caused by triple replication.

The decomposition of queries into subqueries that match with paths that have a length of at most n as done by
[92] and [66] could not be realized in Koral, since this decomposition strategy uses a property that is specific

54

4.4. Distributed RDF Store for Arbitrary Graph Covers (Koral)

for the n-hop replication. To become more graph cover-independent Koral keeps track on which compute
nodes the individual triples and intermediate results are known, instead. With this information, transferring
intermediate results to compute nodes that know these results already can be avoided. Similar to [92], the
distributed query execution strategy does not prevent duplicate results being produced. This might lead to a
poorer performance of graph cover strategies with a huge portion of replicated triples.

For graph cover strategies without triple replication the main difference between the presented approach and
the systems [92] and [66] is how the join of intermediate results from different compute nodes is handled. [92]
and [66] use MapReduce to join them with the consequence that these joins via MapReduce punish network
traffic with an overhead. To avoid this punishment the approach of TriAD [55] was adapted in which the joins
of intermediate results are assigned to computed nodes based on the occurrence of resources as subjects in the
locally stored graph chunks. This strategy aims to reduce the network traffic for subject-object and subject-
subject joins. Nevertheless, the assignment of join responsibilities based on the subject occurrences might
lead to a poorer performance of graph cover strategies that assign triples with the same subject to different
compute nodes.

55

CHAPTER 5
Evaluation of Common Graph Cover Strategies
With the evaluation methodology presented in the previous chapter, the impact of different graph cover strate-
gies on the query execution effort can be analyzed. The used experimental setup is explained in Section 5.1.
The results are described in Section 5.2.1 This chapter was mainly taken from [73].

5.1. Experimental Setup

The set of configurations in the benchmark results from the multiplicative combination of (i) the set of different
graph cover strategies, (ii) the set of different query-data-set combinations, and (iii) the set of different query
execution strategies.

Compared Graph Cover Strategies

During the evaluation, a hash cover, a hierarchical hash cover, a minimal edge-cut cover and a vertical cover
are compared. Both hash covers and the vertical cover are reimplemented following the descriptions in [92].
For both hash covers, the hash is computed only on the subject of each triple. For the creation of the minimal
edge-cut cover METIS [80] is used as done by other distributed RDF stores like [121], [66], D-SPARQ [109]
and WARP [65].

Additionally, the effect of the n-hop replication is examined. [66] and [91] identified a value of n = 2 to
be a good balance between storage redundancy and gained query performance. Since it is to be expected that
the random distribution of a hash cover will lead to a high number of exchanged intermediate results, a 2-hop
hash cover is expected to have the greatest benefits from the reduced network traffic.

Data Sets and Queries

For the evaluations of the common graph cover strategies, three real-world data sets and two generated data
sets are used. The focus of the performed analysis will be on the real-world data sets, since they avoid effects
that may occur due to the generation process of the synthetic data sets. Nevertheless, generated data sets are
used to check whether the observations made with the real-world data sets can also be made with the generated
data sets. If similar observations can be made for all data sets, then it is an indicator that the made observations
are true for most data sets.

As real-world data sets 500M, 1000M and 2000M triples subsets of the real-world billion triple challenge
data set from 2014 (BTC2014) [76] are used. These data sets are referred to as BTC500M, BTC1000M
and BTC2000M, respectively. The BTC2014 data set has been generated by crawling data from several data

1A script to generate the used data sets, the generated queries, the raw and preprocessed measurements of all experiments as well as
many additional diagrams can be found at https://github.com/Institute-Web-Science-and-Technologies/
graphCoverStrategyEvaluationData.

57

https://github.com/Institute-Web-Science-and-Technologies/graphCoverStrategyEvaluationData
https://github.com/Institute-Web-Science-and-Technologies/graphCoverStrategyEvaluationData

Chapter 5. Evaluation of Common Graph Cover Strategies

sources of the linked open data cloud. The used subsets contain the first 500 million, one billion and two
billion syntactically correct triples.

Additionally, two datasets were generated with the Waterloo SPARQL Diversity Test Suite v0.6 [15]: the
WatDiv1000M data set containing 1,099,208,068 triples and the WatDiv100M data set containing 109,786,094
triples. Some characteristics of all used data sets are shown in C.1.

In comparison to evaluations as described in [162] that store 1 billion triples per compute node, the data sets
used in the evaluation of this thesis are relatively small. Due to limited computational resources, experiments
with 40 compute nodes that are capable to process 1 billion triples each could not be performed. In order
to compensate this, smaller data sets but also much smaller compute nodes were used. Whereas [162] used
compute nodes with 6 CPU cores and 96 GB RAM, for the experiments in this thesis, the used compute nodes
had only 1 CPU core and 2 GB RAM as described below.

Following the strategy explained in Section 4.2, basic graph patterns are generated with SPLODGE varying
the query characteristics. In order to measure the effect of an increasing number of joins, the generated queries
have one join involving two triple patterns or seven joins involving eight triple patterns. These joins can be
subject-subject joins or subject-object joins leading to star-shaped and path-shaped queries, respectively. Since
the horizontal containment of graph cover strategies might depend on the join patterns, queries for both join
pattern types are generated.

Some graph cover strategies might locate triples from the same data set within one graph chunk. This might
lead to a better result for queries requesting triples from only one data source but worse for queries that require
triples from different data sources. In order to examine this effect, queries that require triples only from one
data source and queries that combine triples from three different data sources are generated.

In order to generate queries that produce different amounts of intermediate results, queries with a selectivity
between 0.001% and 0.01% are generated for the 1000M triples subset. Thus, the match operations alone
guarantee that there will be between 1 million and 10 million intermediate results. Experiments with a selec-
tivity rate of 0.1% were performed but, since no query optimization strategy is applied, the join operations
of these queries produced such an amount of intermediate results that it exceeded the available resources.
Summarized, the selected query characteristics are:

Various number of joins: 2 and 8 triple patterns.

Varying selectivity: 0.001% and 0.01% involving between 1 million and 10 million triples.

Varying join patterns: path-shaped (subject-object join) and star-shaped (subject-subject join).

Varying number of data sources: 1 and 3 source data sets.

For each of the WatDiv data sets 20 queries are generated based on the basic testing query templates2. These
generated queries consists of star-shaped queries (S1-S7), path-shaped queries (L1-L5) and combinations of
both shapes (C1-C3 and F1-F5). The generated queries for all the data sets are given in C.2.

Evaluation Setup using the Graph Cover Evaluation Platform (CEP)

Using the extensible evaluation platform for graph cover strategies (CEP)3, the evaluation is set up as fol-
lows. CEP downloads the BTC2014 data set, removes all syntactically incorrect triples and creates the 500M,
1000M and 2000M triples data set. The resulting 1000M data set is used by SPLODGE [49] configured as

2https://dsg.uwaterloo.ca/watdiv/basic-testing.shtml
3https://github.com/Institute-Web-Science-and-Technologies/cep

58

https://dsg.uwaterloo.ca/watdiv/basic-testing.shtml
https://github.com/Institute-Web-Science-and-Technologies/cep

5.2. Results

described above to generate the query set for the benchmark. Thereafter, it downloads the WatDiv generator
and generates the WatDiv1000M and WatDiv100M data sets together with the queries.

For each graph cover strategy Koral is initialized, the data set is loaded and the list of configured queries is
executed 10 times. Thus, the effect of operating system-dependent caches storing the results of the previously
executed query is reduced, because no query is immediately reexecuted after it has finished. In order to prevent
the effect of outliers caused by, e.g. garbage collection, from all 10 executions of a query, the best and the
worst execution time are ignored and the arithmetic mean is used for exTime. CEP collects all measurements
during graph loading and query execution and creates tables and corresponding diagrams.

In order to evaluate the scalability of the different graph cover strategies, the BTC1000M data set and 11, 21,
and 41 virtual machines (VMs) are used to evaluate graph covers with 10, 20 and 40 graph chunks, respectively.
Thereafter, 21 virtual machines are used to evaluate the graph cover strategies with the BTC500M, BTC1000M
and BTC2000M triples data sets. Finally, the WatDiv1000M and WatDiv100M data sets are evaluated using
11 virtual machines.

Computer and Software Environment

The graph cover evaluation platform CEP is executed on a VM with 4 cores and 8 GB RAM. Koral is executed
on 11, 21 and 41 VMs. The master has 4 cores and 64 GB RAM and the 10 to 40 slaves have 1 core and 2
GB RAM each. Since the CEP and the Koral master VM need to store the complete data set, they have a 1 TB
hard disk. The slaves have 300 GB hard disks. The physical computers on which the VMs run are connected
via a 1 Gigabit Ethernet network.

The operating system of each VM is a 64 bit Ubuntu 14.04.4 with the Linux kernel 3.13.0-96. The Oracle
JDK in version 1.8.0_101 is used to execute CEP in version 0.0.1 and Koral in version 0.0.1. In order to create
the minimal edge-cut cover, METIS is used in version 5.1.0.dfsg-2. To generate the WatDiv data sets and the
corresponding queries the WatDiv generator in version 0.6 is used.

Summary of Evaluation Setup

Table 5.1 summarizes the setup of the performed evaluations. The hash cover with the 2-hop hash cover, the
hierarchical hash cover, the minimal edge-cut cover and the vertical cover were evaluated with the BTC1000M
data set distributed among 10 slaves. Additionally, the master and one slave were executed on the master VM
to measure the performance of a centralized RDF store that runs on only a single compute node. In order
to measure the effect of an increasing number of slaves on the hash cover, the hierarchical cover and the
minimal edge-cut cover, the BTC1000M data set was distributed among 10, 20 and 40 slaves. Additionally,
the effect of scaling the data set size from 500 million, 1 billion up to 2 billion triples on the hash cover, the
hierarchical hash cover and the minimal edge-cut cover was evaluated on 20 slaves. Finally, the WatDiv100M
and WatDiv1000M data sets were used to check whether the made observations could also be made for the
generated data sets.

5.2. Results

When investigating the effect of the graph cover strategy on the query execution effort, the possible config-
urations of independent variables (configuration settings) and dependent variables (evaluation measures) is
staggering. In order to shrink the number of configurations first the overall query performance of all graph
cover strategies with the query performance of a centralized setting in which the queries are executed on a
single compute node is compared in Section 5.2.1. For graph cover strategies that can process the queries

59

Chapter 5. Evaluation of Common Graph Cover Strategies

Data set Number of slaves
10 20 40

BTC500M -
hash
hierarchical
edge-cut

-

BTC1000M

hash
hierarchical
edge-cut
vertical
2-hop hash

hash
hierarchical
edge-cut

hash
hierarchical
edge-cut

BTC2000M -
hash
hierarchical
edge-cut

-

(a) Summary of the evaluation setup with the BTC2014 data sets.

Data set Number of slaves
10

WatDiv100M
hash
hierarchical
edge-cut

WatDiv1000M
hash
hierarchical

(b) Summary of the evaluation setup
with the WatDiv data sets.

Table 5.1.: Summary of the evaluation setup.

faster than in the centralized setting, first the analysis of measurements that do not depend on queries will be
presented in Section 5.2.2. These measurements comprise the loading time of the graph covers on the one
hand side. On the other side the size and the structure of the resulting graph chunks are analysed since they
influence whether a graph cover will have a good overall performance. The overall query performance under
a larger variation of independent variables is depicted in Section 5.2.3. The observed performance is caused
by the horizontal containment and vertical parallelization of the different graph cover strategies. Therefore, in
Section 5.2.4 indicators for horizontal containment and vertical parallelization based on few selected indepen-
dent variables will be analyzed. Additionally, the change of the observed results will be investigated, when
scaling the number of virtual machines with a fixed data set size as well as scaling the data set size with a fixed
number of virtual machines. The observed effects are described as separate paragraphs in each section.

In order to improve the comprehensibility of the diagrams, the queries are named based on their character-
istics. For instance, the query so #tp=8 #ds=3 sel=0.01 describes a query containing 8 subject-object
joined triple patterns which match triples from 3 data sources and the sum of the selectivities of all triple
patterns is 0.01. Table 5.2 shows the number of results returned by the queries for the different BTC2014 data
sets. For all queries the number of results increased while scaling up the data set size. In the following the
queries that were aborted after one million results are called the aborted queries. All the other queries are
called finished queries. For both WatDiv data sets, none of the 20 queries were aborted.

5.2.1. Comparison with Centralized Execution

One reason to use a distributed RDF store is that queries might be executed faster than on a single compute
node. The results described in this section can be summarized as:

• Queries can be executed on the hash cover, hierarchical hash cover and minimal edge-cut cover faster
than on a single compute node.

• The vertical cover has a slower query execution time since the matches for triple patterns can only be
found on a few compute nodes.

• The 2-hop hash cover tends to have a slower query execution time since the high amount of replicated
triples cause many intermediate results being computed several times.

60

5.2. Results

Query
#Results for
BTC500M

#Results for
BTC1000M

#Results for
BTC2000M

q1: so #tp=2 #ds=1 sel=0.001 855 1k 3k
q2: so #tp=2 #ds=1 sel=0.01 86k 127k 173k
q3: so #tp=8 #ds=1 sel=0.001 6k 61k 597k
q4: so #tp=8 #ds=1 sel=0.01 241 1k 144k
q5: so #tp=8 #ds=3 sel=0.001 1,000k 1,000k 1,000k
q6: so #tp=8 #ds=3 sel=0.01 328k 754k 1,000k
q7: ss #tp=2 #ds=1 sel=0.001 1,000k 1,000k 1,000k
q8: ss #tp=2 #ds=1 sel=0.01 65k 104k 148k
q9: ss #tp=8 #ds=1 sel=0.001 1,000k 1,000k 1,000k
q10: ss #tp=8 #ds=1 sel=0.01 1,000k 1,000k 1,000k
q11: ss #tp=8 #ds=3 sel=0.001 1,000k 1,000k 1,000k
q12: ss #tp=8 #ds=3 sel=0.01 4 12 60

Table 5.2.: Number of query results for the BTC2014 data sets.

so
#tp

=2 #d
s=

1 sel
=0.0

01

so
#tp

=2 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

1 sel
=0.0

01

so
#tp

=8 #d
s=

1 sel
=0.0

1

ss
#tp

=2 #d
s=

1 sel
=0.0

1

ss
#tp

=8 #d
s=

3 sel
=0.0

1

Queries

−102

−101

0

101

102

103

104

105

Q
ue

ry
E

xe
cu

tio
n

Ti
m

e
(l

og
-s

ca
le

,
ch

an
ge

to
H

A
SH

in
%

)

2.
41

15
.0

7 24
4.

22

41
.9

7 4.
36

25
.7

4

2.
50 23

.4
2

26
1.

41

49
.8

7

7.
27 20

.8
445

.0
6

3,
50

2.
10

1,
13

3.
15 3,

45
9.

84

44
.7

4 3,
90

8.
19

1.
11

35
4.

81

14
3.

74

28
9.

80

14
.1

9

66
7.

82

7.
81 23

8.
20

69
.6

4

27
6.

17

3.
28

31
3.

61

HIERARCHICAL
MIN_EDGE_CUT

VERTICAL
2HOP_HASH

Centralized

Figure 5.1.: Change of the exTimes of all finished queries relative to the hash cover using bushy query exe-
cution with 10 slaves using the BTC1000M data set. The numbers within the bars are the absolute query
execution times in seconds.

61

Chapter 5. Evaluation of Common Graph Cover Strategies

To check whether the examined graph cover strategies could reduce the query execution time, one Koral
master and one slave were executed on the master VM with 64 GB main memory. It loaded the BTC1000M
data set and executed the queries on it. Then, the measured execution time are compared with the times
measured for the different graph covers on 10 slaves running on VMs with 2 GB of main memory each. The
resulting query execution times of the finished queries are shown in Figure 5.1. Since the execution times vary
strongly, the change is shown in comparison to the hash cover.

Comparison with Hash, Hierarchical and Minimal Edge-cut Cover

For two queries the centralized setting executed them more than 10% faster than all the other graph cover
strategies. In both cases the total computational effort of the queries is 8 till 31 times higher than for the other
queries. This huge amount of computational effort indicates that the 2 GB of main memory are too small to
cache all intermediate results in main memory and thus have to be stored on disk. In contrast to this, the single
master node has enough main memory to cache the intermediate results without accessing the disk. For the
other queries, the centralized query execution strategy needs more than 3 times longer to execute the queries
than the hash cover, the hierarchical hash cover or the minimal edge-cut cover.

Comparison with Vertical Cover

When focussing on the vertical cover, the query execution time is more than 5 times slower than in the cen-
tralized case. The cause for this poor performance is that triples were assigned to compute nodes based on
their properties. When executing queries each triple pattern that has a resource at the property position it will
only find matches in at most one graph chunk. Figure 5.2 shows that for the queries with two triple patterns
matches on only two slaves where found and for queries with 8 triple patterns matches on only 4 till 5 slaves
were found. For all other evaluated graph cover strategies each query found matches on all slaves and, e.g., for
the hash cover the chunk with the fewest matches has only less than 2% fewer matches than the chunk with
the most matches for almost all queries. Since the vertical cover has matches only on a few slaves its workload

1 2 3 4 5 6 7 8 9 10
Slaves

0

101

102

103

104

105

106

107

108

N
um

be
ro

fM
at

ch
ed

Tr
ip

le
s

(l
og

-s
ca

le
)

so #tp=2 #ds=1 sel=0.001
so #tp=2 #ds=1 sel=0.01
so #tp=8 #ds=1 sel=0.001

so #tp=8 #ds=1 sel=0.01
so #tp=8 #ds=3 sel=0.01

ss #tp=2 #ds=1 sel=0.01
ss #tp=8 #ds=3 sel=0.01

Figure 5.2.: Number of triples that were matched on the individual graph chunks of the vertical cover.

62

5.2. Results

imbalance is between 0.63 and 1 whereas the highest workload imbalance of the other graph cover strategies
is 0.43. Also the number of transferred intermediate results is more than 70% higher than for the other graph
cover strategies.

Comparison with 2-Hop Hash Cover

The 2-hop hash cover leads to at least 5% slower query execution times than in the centralized setting for most
queries. In comparison to the hash cover, the 2-hop hash cover reduces the number of transferred packets by
90% till 100% and also the workload imbalance is reduced by more than 50% for almost all queries. The
reason for the poor performance of the 2-hop hash cover is that the storage redundancy r is 4.19. This high
number of replicated triples leads to a total computational effort that is 4 till 10 times higher than for the graph
cover strategies without replication. Thus, the high number of duplicate computations lead to the slow query
execution times of the 2-hop hash cover. Only for two queries the 2-hop hash cover was faster than the hash
cover. In these cases the computation effort was only 4 times higher while the workload imbalance was below
0.01 and the number of transferred packages was reduced by 98% till 100% in comparison to the hash cover.

Due to the poor performance of the vertical cover and the 2-hop hash cover the focus of the remaining
chapter will rely on the hash cover, the hierarchical hash cover and the minimal edge-cut cover.

5.2.2. Query Independent Measurements

In this section the required time to load the graph covers and analyse the size and structure of the created graph
covers is examined. The main findings are:

• The minimal edge-cut cover takes the longest time to be created and produces the most imbalanced
graph chunks.

• The graph chunks of the minimal edge-cut cover have the largest diameters.

Load Time

Even if the loading time has not a direct influence on the query performance, it is helpful to know, whether
a graph cover strategy can be computed in a reasonable amount of time for even large data sets. The loading
time L itself consists of several different steps like the dictionary encoding and the statistics collection. The
most interesting step is the graph cover creation, on which this section will focus here.

As shown in Figure 5.3, the hash cover is created the fasted. It takes around one hour to iterate the data
set and assign triples to the corresponding compute nodes. The hierarchical hash cover requires between
seven and eight hours. The longer cover creation time is caused by iterating the complete data set twice and
the additional computation to find the optimal IRI hierarchy level for creating the graph cover. With 30 to
32 hours, the minimal edge-cut cover creation takes the longest time.

Scalability. The effect of an increasing number of graph chunks on the creation time of the minimal edge-
cut cover and the hierarchical hash cover is negligible since the difference is only less than 10%. For the hash
cover the creation time was almost stable when scaling from 10 to 20 chunks. But when scaling to 40 chunks
the creation time increased by 35 minutes. This increase may be caused by a much higher number of switches
between the 40 chunk files when assigning the triples to the chunks. When the size of the data set was scaled,
the creation time increased to the same extent as the data set size grew for both hash-based covers. Only the
creation time of the minimal edge-cut cover became three times higher when doubling the data set size.

63

Chapter 5. Evaluation of Common Graph Cover Strategies

10 20 40
Number of Graph Chunks

0

10

20

30

L
oa

di
ng

Ti
m

e
(i

n
h)

0:
57

1:
02

1:
37

7:
19

7:
51

7:
08

31
:0

2

30
:1

1

31
:5

7

HASH
HIERARCHICAL

MIN_EDGE_CUT

Figure 5.3.: Creation times of different graph covers for different slave numbers and the BTC1000M data set.

WatDiv Data Sets. For the WatDiv1000M data set, the hash cover and the hierarchical hash cover were
created in almost the same time as for the BTC1000M data set. Since METIS tried to allocate more than one
terabyte of main memory, it could not be crated. For the WatDiv100M data set, the hash, hierarchical and
minimal edge-cut covers could be created in 16 minutes, 36 minutes and 7:44 hours, respectively. Thus, the
hierarchical hash cover could reduce its creation time the most.

In the current implementation the focus is on the graph cover creation step. The loading steps that are
the same for all graph cover strategies have not been optimized since they do not give any insights which
graph cover strategy is created faster. Therefore, the complete loading procedure consumes much more time.
The central bottleneck in the current implementation is the statistics database which needs more than a week
for collecting the statistics data. It requires optimization for practical use, but not for the purpose of this
evaluation.

Storage Imbalance

If a graph cover strategy produces some graph chunks that are much larger than the others, then the compute
nodes storing these large chunks may have a higher query workload than the compute nodes storing the smaller
chunks. In order to visualize the storage imbalance, Figure 5.4 shows, how many triples are contained in the
different graph chunks sorted in descending order for 20 graph chunks4. As shown in Table 5.3 the storage
imbalance of both hash-based covers is similar. When scaling up from 10 to 40 graph chunks, the storage
imbalance almost doubles but still have a very low storage imbalance. Both graph cover strategies distribute
triples based on subject hashes leading to a nearly optimal storage balance. Thus, the number of triples per
chunk decreases with an increasing number of graph chunks. For the WatDiv1000M data set, no storage
imbalance is given for the minimal edge-cut cover since it could not be created.

The storage imbalance value of the minimal edge-cut cover is at least 10 times higher than for the other
graph covers. As shown in Figure 5.4 the minimal edge-cut cover has one graph chunk that contains more
than twice the number of triples than each the other chunks has. Even when the number of chunks is increased
from 10 to 40 the number of its triples is only reduced by roughly 36%. Furthermore, there exists some graph
chunks that contain much fewer triples than the average graph chunk size. If the number of graph chunks is
increased, the number of these small chunks also increases leading to a higher workload imbalance value.

4The figures for 10 and 40 graph chunks and for the BTC500M and BTC2000M data sets as well as both WatDiv data sets do not
provide additional insights and are therefore omitted.

64

5.2. Results

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Chunks

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
um

be
ro

fT
ri

pl
es

×108

HASH HIERARCHICAL MIN_EDGE_CUT

Figure 5.4.: Number of triples contained in each of the 20 graph chunks.

Data set BTC2014 WatDiv100M WatDiv1000M
chunks 10 20 40 10 10
Hash cover 0.0167 0.0196 0.0275 0.0016 0.0006
Hierarchical hash
cover

0.0119 0.0160 0.0240 0.0010 0.0006

Minimal edge-cut
cover

0.1787 0.2418 0.2441 0.4355 -

Table 5.3.: The storage imbalance b of the different graph covers at different number of graph chunks.

Cause for High Storage Imbalance of Minimal Edge-cut Cover. When investigating the cause for the high
storage imbalance of the minimal edge-cut cover, the output of METIS stated that the number of vertices per
graph chunk only vary by at most 3% from the average number of vertices per chunk (i.e., |V |

|C|). Since in the
evaluation the size of a graph chunk is determined by the number of triples, the imbalanced chunk sizes are
caused by different number of incident edges that are assigned to the different graph chunks.

Structure of Graph Chunks. In order to measure the number of cut edges, let a cut edge be defined as a
triple whose subject and object are owned by different graph chunks. A resource r is owned by a graph chunk,
if all triples with r as subject are assigned to this graph chunk. When measuring the number of cut edges for
the different graph cover strategies, it could be observed that all graph cover strategies cut between 42% and
54% of all triples. Thereby, the hierarchical hash cover cuts at most 0.5% fewer triples than the hash cover.
The minimal edge-cut cover cuts 4% fewer triples than the hash-based covers.5

In order to understand, why nearly every second triple is a cut edge, 1k to 30k triples subsets of the BTC2014
data set were plotted. Similar to [94], the BTC2014 graph consists of one huge, densely-connected core and

5During the creation of the minimal edge-cut cover, the rdfs:type triples were removed and added to the chunk which owned their
subject later on. Since only 4% of the cut edges had a rdfs:type label, the high number of cut edges for the minimal edge-cut cover
was not caused by the used procedure.

65

Chapter 5. Evaluation of Common Graph Cover Strategies

Figure 5.5.: A plot of a minimal edge-cut cover of a 10k triples subset consisting of five chunks. Each chunk
is drawn by a different colour. Cut edges are indicated by red arrows.

several small sets of vertices which are densely connected with each other, but are only loosely or not at all
connected to the huge core. Additionally, around 20% of all triples used a subject and object that were not
used by any other triple. When coloring the triples by the chunks to which they were assigned to, it became
visible that each of the examined graph cover strategies cuts the huge densely connected core, leading to a
high number of cut edges.

Coloring the different chunks in the plots lead to another observation that might affect the query perfor-
mance. The triple assignment in both hash-based covers is more or less random, leading to graph chunks with
a low diameter (i.e., the longest shortest path within a graph chunk). In contrast to this, the diameters of the

66

5.2. Results

minimal edge-cut chunks are higher, as recognizable at, e.g., the green chunk in Figure 5.5. Thus, it is more
likely that path-shaped queries will require less data transfer. Furthermore, most triples of the huge core are
contained by the green, orange and black chunks whereas the cyan and the blue chunks mainly contain triples
not contained in the core. Since especially the path-shaped queries will have only a few matches outside the
core, the chunks containing portions of the core will have a higher workload than the other chunks.

Scalability. The scalability experiments showed that the effects of scaling the number of graph chunks and
the data set size on the storage imbalance is negligible.

5.2.3. Measuring Overall Query Performance under Varying Independent Variables

The investigation of the overall query performance of the different graph cover strategies described in this
section resulted in the following core findings:

• The hash-based covers have a better overall performance than the minimal edge-cut cover.

• Both hash-based covers perform nearly the same. Only for small data sets, the hierarchical hash cover
may have a slightly better overall performance than the hash cover.

• Star-shaped queries are executed faster than path-shaped queries. Path-shaped queries with a few triple
patterns are executed faster than path-shaped queries with many triple patterns.

Comparison of Query Execution Strategies. For the study of the effect of the graph cover strategy on the
query performance, a graph cover-independent query optimizer is simulated by using three different query
execution strategies for each query (see Section 4.3). When investigating the effect of the different strategies,
the bushy query execution strategy produces the least query execution times in 75 of 180 cases and the longest
query execution times in only 16 cases. This better performance of the bushy query execution strategy is
independent of the used graph cover. Since similarly to [149], the bushy query execution strategy is faster than
the other strategies in the performed evaluation, this chapter focuses on this strategy in the following.

Query Performance for 10 Slaves. In order to examine the overall query performance, the queries that were
finished completely are investigated. The corresponding query execution times are given in C.3. Since the
execution times of the different queries vary so strongly that even with a log-scaled y-axis the differences
between the different graph cover strategies would not be visible for some queries, Figure 5.6a shows the
differences of the hierarchical hash cover and the minimal edge-cut cover relative to the runtime of the hash
cover for each query with 10 slaves. For 5 of 7 queries the minimal edge-cut cover produces the longest query
execution times. This is caused by the imbalanced workload of the minimal edge-cut cover (see Figure 5.11).
In case of query so #tp=8 #ds=3 sel=0.01 the minimal edge-cut cover is the fastest. In this case the
difference of the workload imbalance between the minimal edge-cut cover and both hash-based covers is only
less than 0.1 whereas the minimal edge-cut cover requires more than 40% fewer packets to be transferred (see
Figure 5.10a). When comparing both hash-based queries, the hierarchical hash cover is slightly (i.e., < 10%)
faster for 5 of 7 queries. In the cases of so #tp=2 #ds=1 sel=0.01 and so #tp=8 #ds=1 sel=0.001

it is caused by a lower workload balance. In the other three cases the lower number of transferred packets
explains the faster query execution. In case of query so #tp=2 #ds=1 sel=0.001 the hierarchical hash
cover is slower even if the number of transferred packets is equal to the hash cover and the workload is better
balanced. Since the difference is only 204 msec, the delay might be caused by other effects not part of the
evaluation like the usage of the network by other services.

Query Performance for the WatDiv Data Sets. To check whether the query performances observed for the
BTC1000M data set is caused by some data-set-specific characteristics, 20 queries where executed on the

67

Chapter 5. Evaluation of Common Graph Cover Strategies

so
#tp

=2 #d
s=

1 sel
=0.0

01

so
#tp

=2 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

1 sel
=0.0

01

so
#tp

=8 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

3 sel
=0.0

1

ss
#tp

=2 #d
s=

1 sel
=0.0

1

ss
#tp

=8 #d
s=

3 sel
=0.0

1

Queries

−10

0

10

100

Q
ue

ry
E

xe
cu

tio
n

Ti
m

e
(l

og
-s

ca
le

,
ch

an
ge

to
H

A
SH

in
%

)
HIERARCHICAL
MIN_EDGE_CUT

(a) Change of the exTimes relative to the hash cover us-
ing 10 slaves.

so
#tp

=2 #d
s=

1 sel
=0.0

01

so
#tp

=2 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

1 sel
=0.0

01

so
#tp

=8 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

3 sel
=0.0

1

ss
#tp

=2 #d
s=

1 sel
=0.0

1

ss
#tp

=8 #d
s=

3 sel
=0.0

1

Queries

−100

0

100

200

Q
ue

ry
E

xe
cu

tio
n

Ti
m

e
(c

ha
ng

e
to

M
IN

_E
D

G
E

_C
U

T
10

sl
av

es
in

%
)

MIN_EDGE_CUT 20 slaves
MIN_EDGE_CUT 40 slaves

(b) Change of the exTimes relative to 10 slaves for the
minimal edge-cut cover.

Figure 5.6.: Change of the exTimes of all finished queries using bushy query execution and the BTC1000M
data set.

C1 C2 C3 F1 F2 F3 F4 F5 L1 L2 L3 L4 L5 S1 S2 S3 S4 S5 S6 S7
Queries

−10

0

10

100

Q
ue

ry
E

xe
cu

tio
n

Ti
m

e
(l

og
-s

ca
le

,
ch

an
ge

to
H

A
SH

in
%

)

HIERARCHICAL MIN_EDGE_CUT

Figure 5.7.: Change of the exTimes relative to the hash cover using bushy query execution for the WatDiv100M
data set.

68

5.2. Results

WatDiv1000M and WatDiv100M data sets. For the WatDiv1000M data set only the query execution times
of both hash-based covers could be compared. For half of all queries the differences of both query execution
strategies are almost the same (i.e., within a range of 3% difference). For the remaining queries, 7 queries were
executed faster with the hash cover and 3 queries with the hierarchical hash cover. So none of both strategies
is faster in general.

For the WatDiv100M data set, the queries could be executed also on the minimal edge-cut cover. As shown
in Figure 5.7, 13 out of 20 queries are executed 3%-287% slower with the minimal edge-cut cover while the
remaining queries were executed almost as fast as for the hash cover. With none of both hash-based graph
covers the queries are executed faster in general.

Scaling Number of Slaves

When scaling up the number of slaves, the effect on the query execution times is similar for the different
graph covers. Therefore, the effect of scaling up the number of slaves is discussed here only for the minimal
edge-cut cover. Figure 5.6b shows the change of the query execution times is given relative to the execution
times for 10 slaves, so that the effect of scaling up the number of slaves is better visible. The assumption
that the execution time will be reduced by roughly 50% when scaling up to 20 slaves and by roughly 75%
when scaling up to 40 slaves could only be observed for query ss #tp=8 #ds=3 sel=0.01. In this case
the workload imbalance is nearly constant and no network traffic occurs. For most other queries, the query
execution time increases. For some queries, the execution time increases when already scaling to 20 slaves. For
other queries, the execution time decreases when scaling to 20 slaves but increases when scaling to 40 slaves.
This observation is independent of the graph cover strategy. This increasing query execution time is mainly
caused by the hugely increasing number of transferred packets between the slaves. Therefore, the network
latency seems to be a factor limiting the scalability in the experimental setting, as already identified in [145],
chapter 24.3 for gigabit networks in general. The performed experiments show that the speed-up when scaling
with the number of slaves is limited, as described by rules like the Universal Scalability Law [53] which says
that in distributed settings the performance gain by adding further compute nodes to the system is limited by,
e.g., an increasing number of communications.

Query Performance for 40 Slaves. All graph cover strategies are affected by the increased query execution
time to a different extent, when scaling up the number of slaves. This leads to the query execution times for
40 slaves shown in Figure 5.8a. Now, the differences between the different graph cover strategies became
smaller. The maximal difference has decreased from 220% to 52%. The minimal edge-cut cover is the slowest
cover strategy for only one query. As described in Section 5.2.4, this is caused by the smaller differences in
the workload imbalance as well as in the number of transferred packets between the minimal edge-cut cover
and both hash-based covers. Since the number of transferred packets has increased faster for the hierarchical
hash cover than for the plain hash cover, the latter seems to be faster for more queries than the other graph
cover strategies.

Scaling Data Set Size

When scaling up the data set size, the query execution time increases for all graph cover strategies since all
queries produce more results. In order to deal with the higher number of query results, exTime was divided
by the number of query results leading to the execution time per result variable binding shown in Figure 5.8b
for the minimal edge-cut cover. For almost all queries the execution time per result variable binding decreases
when the data set size increases. As described in Section 5.2.4 this speed up is caused by a better balanced
query workload that can even compensate the increased number of transferred packets. A special case is

69

Chapter 5. Evaluation of Common Graph Cover Strategies

so
#tp

=2 #d
s=

1 sel
=0.0

01

so
#tp

=2 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

1 sel
=0.0

01

so
#tp

=8 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

3 sel
=0.0

1

ss
#tp

=2 #d
s=

1 sel
=0.0

1

ss
#tp

=8 #d
s=

3 sel
=0.0

1

Queries

−10

0

10

100

Q
ue

ry
E

xe
cu

tio
n

Ti
m

e
(l

og
-s

ca
le

,
ch

an
ge

to
H

A
SH

in
%

)
HIERARCHICAL
MIN_EDGE_CUT

(a) Change of the exTimes relative to the hash cover us-
ing 40 slaves and the BTC1000M data set.

so
#tp

=2 #d
s=

1 sel
=0.0

01

so
#tp

=2 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

1 sel
=0.0

01

so
#tp

=8 #d
s=

1 sel
=0.0

1

ss
#tp

=2 #d
s=

1 sel
=0.0

1

ss
#tp

=8 #d
s=

3 sel
=0.0

1

Queries

−100

−50

0

50

100

150

Q
ue

ry
E

xe
cu

tio
n

Ti
m

e
(p

er
qu

er
y

re
su

lt,
ch

an
ge

to
M

IN
_E

D
G

E
_C

U
T

50
0M

tr
ip

le
s

in
%

)

MIN_EDGE_CUT 1000M triples
MIN_EDGE_CUT 2000M triples

(b) Change of the exTimes per result variable binding rel-
ative to the BTC500M data set for the minimal edge-
cut cover.

Figure 5.8.: Change of the exTimes of all finished queries using bushy query execution.

0 10 20
Time (in sec)

0

50

100

%
of

R
et

ur
ne

d
R

es
ul

ts

HASH
HIERARCHICAL
MIN_EDGE_CUT

(a) ss #tp=8 #ds=1 sel=0.01.

0 50 100
Time (in sec)

0

50

100

%
of

R
et

ur
ne

d
R

es
ul

ts

HASH
HIERARCHICAL
MIN_EDGE_CUT

(b) so #tp=8 #ds=3 sel=0.001.

0 20 40
Time (in sec)

0

50

100

%
of

R
et

ur
ne

d
R

es
ul

ts

HASH
HIERARCHICAL
MIN_EDGE_CUT

(c) ss #tp=8 #ds=3 sel=0.001.

Figure 5.9.: χ for some queries at scale 10 for the 1000M triples data set.

70

5.2. Results

query so #tp=8 #ds=1 sel=0.01 for which the highest speed up of 99% was observed. This high speed
up cannot be explained by the workload imbalance and the packet transfer since both increase. Instead, the
total computational effort per result variable binding dropped by more than 99%. Thus, there were much
less intermediate results without join partners produced. Due to this, this query could produce 60,000% more
results requiring only 42% more time. The only query which required more time per result variable binding
was so #tp=2 #ds=1 sel=0.01. In this case the increased packet transfer could not be compensated by
the decreased workload imbalance. These observations are independent of the graph cover strategy.

Comparison of Graph Cover Strategies at the Different Data Set Sizes. Since the query execution time
speed ups affect the different graph cover strategies to a different extent, the different strategies are compared
for every data set size. For the BTC500M data set the minimal edge-cut cover required the longest execution
times for 4 out of 7 finished queries, whereas the hierarchical hash cover was the fastest for 5 out of 7 finished
queries. When observing the query execution times for the BTC2000M data set, the minimal edge-cut cover is
still the slowest for 4 out of 6 finished queries whereas now, the hash cover is the fastest for 4 out of 6 finished
queries. This indicates that the hierarchical hash cover seems to be better for smaller graph chunks whereas
hash produces better results for larger graph chunks. This conclusion is strengthened by the observation that
the hierarchical hash cover has a slightly (i.e. <10%) reduced number of transferred packets and improved
workload balance than the hash cover for the BTC500M data set whereas the opposite observation can be
found for the BTC2000M data set.

Results Over Time

When investigating how fast the different graph cover strategies produce their results over time, most queries
have result curve functions χ like the ones shown in Figure 5.9a for query ss #tp=8 #ds=1 sel=0.01.
It takes some time until the first result is produced but thereafter the results are arriving continuously. For
queries with only one join (not shown in Figure 5.9), the time until the first result is returned is shorter. For
most of these queries, the hash cover produces the query results faster and the minimal edge-cut cover slower
than the other graph cover strategies. Figure 5.9b shows the χ for query so #tp=8 #ds=3 sel=0.001. In
this case the hash cover produces the initial results faster but thereafter the results are returned more slowly
than for the other graph cover strategies. This slower return rate of the results is caused by a higher number
of transferred packets and a higher total computation effort that is more imbalanced among all slaves. The
hierarchical hash cover is slower than the minimal edge-cut cover, since it needs to exchange more packets
between the slaves. Since no data transfer exists for queries ss #tp=8 #ds=3 sel=0.0001 and ss #tp=2

#ds=1 sel=0.01, the different result return speeds of the different graph cover strategies (see Figure 5.9c
for the first of both queries) are caused by the workload imbalance of the three strategies. Initially, the minimal
edge-cut cover is faster than the hash cover. This may be caused by a more balanced workload in the beginning
of the query execution.

Susceptibility to Query Size and Shape

The measurements indicate that queries with only two triple patterns are executed faster than queries with
8 triple patterns in most cases. This effect affects the hash-based graph covers more than the minimal edge-cut
cover. This may be caused by the larger chunk diameters for the minimal edge-cut cover (see Section 5.2.2).
When focusing on the query shape, star-shaped queries tend to be faster than path-shaped queries. The expla-
nation is that in the evaluation their results are produced without data transfer as described in the following
section. Since star-shaped queries have no data transfer their horizontal containment is optimal for all graph

71

Chapter 5. Evaluation of Common Graph Cover Strategies

cover strategies. This leads to faster execution times at all evaluated scale levels in the term of slave numbers
for this type of queries.

Susceptibility to Number of Sources

Based on the evaluation the number of data sources does not seem to have an effect on the execution time.
The only observation that can be made is that the hierarchical hash cover is faster than the hash cover for most
queries using data from several data sources.

5.2.4. Measuring Dependent Variables

In order to find the reasons for the findings of the previous section, the indicators for horizontal containment
and vertical parallelization are analyzed, now. The core findings are:

• The minimal edge-cut cover has the best horizontal containment but the highest workload imbalance.

• Scaling up the number of slaves or the data set sizes reduces the horizontal containment for all graph
cover strategies.

• The query workload becomes more imbalanced, when the number of slaves is scaled up but it becomes
more balanced, when the data set size is increased.

Horizontal Containment

Horizontal Containment of Star-shaped Queries. One factor influencing the overall query performance is the
horizontal containment. A first observation is that the examined graph cover strategies assign triples with the
same subject to the same chunk. Therefore, all triples required to produce one result of a star-shaped query
are located in the same graph chunk. Since the query execution strategy performs the required joins on the
slave storing the original triples, no data transfer or packet transport could be observed. Thus, all graph cover
strategies result in a perfect horizontal containment for star-shaped queries.

Horizontal Containment of Path-shaped Queries. When investigating the path-shaped queries, the data
transfer T and the number of transferred packets P increase for all graph cover strategies, if the number of
triple patterns included in the path-shaped query increases. Thus, the likelihood to leave a graph chunk during
query processing increases for all graph cover strategies when the length of the queried path increases. In
order to examine the horizontal containment of the different graph cover strategies, Figure 5.10a shows how
the number of transferred packets changes relative to the hash cover using 10 slaves for the different graph
cover strategies. The minimal edge-cut cover requires 20%-43% fewer packets to be transferred than the
hash cover. As described in Section 5.2.2, this reduction is not caused by the fewer cut edges. Instead, it is
caused by the higher number of connections within one graph chunk leading to higher graph chunk diameters.
Only for query so #tp=2 #ds=1 sel=0.001 the number of transferred packets is almost identical. The
hierarchical hash cover reduces the number of transferred packets by only less than 10% for all queries. Thus,
the minimal edge-cut cover has the best horizontal containment whereas the horizontal containment of the
hierarchical hash cover is only slightly better than the one of the hash cover. Similar observations are made
when investigating the data transfer.

Effect of Other Query Characteristics on Horizontal Containment. Since queries with different character-
istics were used, it has been investigated which of theses characteristics lead to an increased data transfer and
number of transferred packets. The findings are that long path-shaped queries have the highest data transfer

72

5.2. Results

so
#tp

=2 #d
s=

1 sel
=0.0

01

so
#tp

=2 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

1 sel
=0.0

01

so
#tp

=8 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

3 sel
=0.0

1

Queries

−40

−30

−20

−10

0

#
Tr

an
sf

er
re

d
Pa

ck
et

s
(c

ha
ng

e
to

H
A

SH
in

%
)

HIERARCHICAL
MIN_EDGE_CUT

(a) Comparison of the different graph covers at 10 slaves.

so
#tp

=2 #d
s=

1 sel
=0.0

01

so
#tp

=2 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

1 sel
=0.0

01

so
#tp

=8 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

3 sel
=0.0

1

Queries

0

50

100

150

200

250

#
Tr

an
sf

er
re

d
Pa

ck
et

s
(c

ha
ng

e
to

M
IN

_E
D

G
E

_C
U

T
10

sl
av

es
in

%
)

MIN_EDGE_CUT 20 slaves
MIN_EDGE_CUT 40 slaves

(b) Comparison of the different number of slaves for the
minimal edge-cut cover.

Figure 5.10.: The relative change in the number of transferred packets P of the bushy query execution.

and star-shaped queries the smallest. The overall query selectivity cannot be used to estimate the data transfer.
In the performed evaluation, the impact of the number of data sources cannot be separated from the influence
of the number of results, since both queries with #ds=3 produce also more results than the other queries.

Horizontal Containment for the WatDiv Data Sets. In order to check whether the made observations are
specific for the BTC1000M data set, the packet transfer of the 20 queries executed on both WatDiv data
sets was investigated. For queries whose triple patterns are joined only on their subject, no packets were
transferred. The number of transferred packets of both hash-based covers vary by less than 5% for each query
and both data sets. The minimal edge-cut cover reduces the number of transferred packets only for 3 out of
20 queries by 8%-38% using the WatDiv100M data set. For the remaining queries the observed numbers of
transferred packets are similar to the ones observed for the hash-based covers.

Scaling Number of Slaves. The effect of scaling up the number of slaves on the packet transport and the
data transfer of the finished queries is not so huge. As shown in Figure 5.10b the number of transferred packets
increases by 12%-64% when scaling from 10 to 20 slaves and by 23%-229% when scaling from 10 to 40 slaves
using the minimal edge-cut cover. In case of the hierarchical cover the increases are 6%-67% and 12%-206%.
For the hash cover the increases are 6%-51% and 16%-177%. In contrast to the high impact on the number
of transferred packets, the data transfer increases only slightly (i.e., by at most 16%). Thus, the horizontal
containment decreases for all graph cover strategies when the number of slaves is increased. Since in the
evaluation scaling up the number of slaves affects the number of transferred packets more strongly than the
data transfer, a network with a low latency seems to be more important than a network with a high bandwidth,
to achieve low execution times for a high number of slaves.

73

Chapter 5. Evaluation of Common Graph Cover Strategies

Scaling Data Set Size. Scaling up the data set size while keeping the number of slaves constant leads to
increased graph chunk sizes. Thus, one may assume that the number of transferred packets per result variable
binding decreases since more query results might be computed with the data of a single chunk. In contrast
to this assumption, the number of transferred packets per result variable binding increases by up to 100% for
all queries when scaling up to the 1000M triples data set. When scaling up to the 2000M triples data set the
number of transferred packets per result variable binding increases between 50% and 450% for all queries.
These increases are independent of the graph cover strategy. Thus, the horizontal containment becomes worse
when the data set size increases. Since all graph cover strategies are affected by the increased number of
transferred packets to almost the same extent, the changes in the number of transferred packets between the
different graph cover strategies stays nearly the same for most queries.

Vertical Parallelization

Total Computational Effort. The second factor influencing the overall query performance is the vertical par-
allelization, which combines the data transfer presented in the previous section with the workload imbalance.
Before analysing the workload imbalance, it is examined how the total computational effort w(C) changes.
As expected, in the evaluation the total computational effort stays the same independent of the graph cover
strategy and the number of slaves for the finished queries. When increasing the data set size, the computational
effort increases for all graph cover strategies equally, since the queries produce more results.

so
#tp

=2 #d
s=

1 sel
=0.0

01

so
#tp

=2 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

1 sel
=0.0

01

so
#tp

=8 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

3 sel
=0.0

1

ss
#tp

=2 #d
s=

1 sel
=0.0

1

ss
#tp

=8 #d
s=

3 sel
=0.0

1

so
#tp

=8 #d
s=

3 sel
=0.0

01

ss
#tp

=2 #d
s=

1 sel
=0.0

01

ss
#tp

=8 #d
s=

1 sel
=0.0

01

ss
#tp

=8 #d
s=

1 sel
=0.0

1

ss
#tp

=8 #d
s=

3 sel
=0.0

01

Queries

0.0

0.1

0.2

0.3

0.4

0.5

W
or

kl
oa

d
Im

ba
la

nc
e

finished aborted
HASH HIERARCHICAL MIN_EDGE_CUT

Figure 5.11.: Workload imbalance W of the bushy query execution. Comparison of the different graph covers
at 10 slaves.

74

5.2. Results

Workload Imbalance. When analysing the workload imbalance W as shown in Figure 5.11, the minimal
edge-cut cover has the most unbalanced workload of all graph covers except for queries aborted after one
million results. This is caused by the small graph chunks that contain only small portions of the huge densely
connected core of the data set (see Section 5.2.2). Since these chunks contain fewer matches for the triple
patterns in the queries, they have a much smaller workload than the other graph chunks, whereas the single
huge graph chunk does not produce a higher workload. The workload of the hash and the hierarchical graph
cover is similarly balanced for all queries that were not aborted. Also the storage imbalance is similar for
both graph covers. In case of the queries that were aborted after one million results, none of the graph cover
strategies balances its workload better than the others in general.

Combining the high workload imbalance W with the high horizontal containment, the minimal edge-cut
graph cover only allows a low vertical parallelization for all types of queries. The vertical parallelization of
both hash-based covers depends on the type of query. Long path-shaped queries that combine triples from
several sources lead to a low vertical parallelization whereas short path-shaped queries lead to a medium
vertical parallelization.

Workload Imbalance for the WatDiv Data Sets. To check whether the observed workload imbalances are
independent of the used data set, both WatDiv data sets are used. The workload imbalance of the hash-based
graph covers varies by less than 0.02 for almost all queries. For the WatDiv100M data set, the workload of
the minimal edge-cut cover was the most imbalanced. For 12 out of 20 queries, its workload imbalance was
0.41 to 0.61 higher than the workload imbalance of both hash-based covers.

so
#tp

=2 #d
s=

1 sel
=0.0

01

so
#tp

=2 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

1 sel
=0.0

01

so
#tp

=8 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

3 sel
=0.0

1

ss
#tp

=2 #d
s=

1 sel
=0.0

1

ss
#tp

=8 #d
s=

3 sel
=0.0

1

so
#tp

=8 #d
s=

3 sel
=0.0

01

ss
#tp

=2 #d
s=

1 sel
=0.0

01

ss
#tp

=8 #d
s=

1 sel
=0.0

01

ss
#tp

=8 #d
s=

1 sel
=0.0

1

ss
#tp

=8 #d
s=

3 sel
=0.0

01

Queries

0.0

0.2

0.4

0.6

W
or

kl
oa

d
Im

ba
la

nc
e

finished aborted

MIN_EDGE_CUT 10 slaves
MIN_EDGE_CUT 20 slaves

MIN_EDGE_CUT 40 slaves

Figure 5.12.: Workload imbalance W of the bushy query execution. Comparison of the different number of
slaves for the minimal edge-cut cover.

75

Chapter 5. Evaluation of Common Graph Cover Strategies

Scaling Number of Slaves. In order to visualize the effect of the number of slaves on the workload im-
balance better, Figure 5.12 shows the workload imbalances for the minimal edge-cut cover at the different
numbers of slaves. For all finished queries the workload becomes more imbalanced, when the number of
slaves increases. Even for the aborted queries this is true for most queries. While the median workload imbal-
ance of all queries increases by 4% and 15% for the minimal edge-cut cover when scaling to 20 and 40 slaves,
the median workload imbalance increases by 27% and 125% for the hash cover, and 68% and 144% for the
hierarchical hash cover. Thus, when scaling horizontally, the workload imbalance of the hash-based covers
increases faster than for the minimal edge-cut cover. Nevertheless, the minimal edge-cut cover has the most
imbalanced workloads for every examined number of slaves.

Scaling Data Set Size. As shown in Figure 5.13, the workload imbalance decreases for the minimal edge-
cut cover for most queries, when the data set size increases. When scaling from 500M to 1000M triples the
median workload imbalance decreases by 8% and by 42% when scaling from 500M to 2000M triples. For the
hash covers the median workload decreases by 25% and 32%, and for the hierarchical hash cover it decreases
by 24% for both data sets.

so
#tp

=2 #d
s=

1 sel
=0.0

01

so
#tp

=2 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

1 sel
=0.0

01

so
#tp

=8 #d
s=

1 sel
=0.0

1

ss
#tp

=2 #d
s=

1 sel
=0.0

1

ss
#tp

=8 #d
s=

3 sel
=0.0

1

so
#tp

=8 #d
s=

3 sel
=0.0

01

so
#tp

=8 #d
s=

3 sel
=0.0

1

ss
#tp

=2 #d
s=

1 sel
=0.0

01

ss
#tp

=8 #d
s=

1 sel
=0.0

01

ss
#tp

=8 #d
s=

1 sel
=0.0

1

ss
#tp

=8 #d
s=

3 sel
=0.0

01

Queries

0.0

0.2

0.4

0.6

W
or

kl
oa

d
Im

ba
la

nc
e

finished aborted

MIN_EDGE_CUT 500M triples
MIN_EDGE_CUT 1000M triples

MIN_EDGE_CUT 2000M triples

Figure 5.13.: Workload imbalance W of the bushy query execution. Comparison of the different data set sizes
for the minimal edge-cut cover.

76

5.3. Lessons Learned

5.3. Lessons Learned

When analyzing the results of the experiments, the observations has confirmed several expectations:

• The distributed query execution speeds up the query execution for the hash-based and the minimal
edge-cut cover since they can benefit of the parallelization.

• Star-shaped queries are executed faster than path-shaped queries. Path-shaped queries with a few triple
patterns are executed faster than path-shaped queries with many triple patterns.

• Scaling up the number of slaves reduces the horizontal containment since the number of triples in each
chunk is reduced.

• The vertical cover needs to transfer the most packets and has the highest workload imbalance since the
triple patterns match only with triples of a few graph chunks. This leads to the longest query execution
times in our experiments.

• The minimal edge-cut cover takes the longest time to be created and produces the most unbalanced
graph chunk sizes, but has the best horizontal containment.

Beside the expected outcomes, the evaluation has shown several surprising results:

• The good horizontal containment of the minimal edge-cut cover is caused by the higher graph chunk
diameter and not by the marginal reduced number of cut edges in comparison to the hash-based covers.

• Scaling up the data set sizes reduces the horizontal containment for all graph cover strategies.

• The query workload becomes more imbalanced, when the number of slaves is scaled up but it becomes
more balanced, when the data set size is increased.

• The hash-based covers have a better overall performance than the minimal edge-cut cover, even if the
latter has less data transfer. Thus, the workload imbalance may be more important than the data transfer.

• Both hash-based covers perform nearly the same.

• The n-hop replication reduces the number of transferred packets drastically but the overall query perfor-
mance is decreased since duplicate intermediate results increase the total computational effort strongly.

A few aspects that were planned to be investigated could not be analyzed by the experiments:

• Since most of the generated queries that combine triples from three data sources were aborted after one
million results, the impact of the data source number on the query execution time could not be examined.

• None of the investigated graph cover strategies without replication has a high vertical parallelization
in general. Thus, the question remains how large the effect of the vertical parallelization on the query
execution time is.

77

Chapter 5. Evaluation of Common Graph Cover Strategies

5.4. Discussion

In this study the impact of frequently used graph cover strategies have been examined. These strategies consist
of two hash-based graph covers, the minimal edge-cut cover, the vertical cover and the 2-hop extension of the
hash cover. The minimal edge-cut cover strategy takes more effort to be prepared than the hash-based covers
and the vertical cover but due to the reduced number of cut edges, one might expect that queries can be
processed locally with less data transfer.

Commonly, papers like [92, 121, 156] make the assumption that a graph cover strategy with minimal data
transfer implies low query execution time. However, our results suggest that while minimal edge-cut reduces
the number of transferred packets up to 43% in comparison to hash-based strategies (see Figure 5.10a), due
to a more unbalanced workload (see Figure 5.11), the query execution time of minimal edge-cut is effectively
slower (see Figure 5.6a).

The vertical cover has an even 100 times slower query execution time than the minimal edge-cut cover
or the hash-based covers, since matches for the triple patterns can only be found on a few slaves whereas
for the other graph cover strategies the matches were found on all slaves. Thus, it is to be expected that the
vertical cover will lead to a more imbalanced query execution strategy and/or a higher amount of transferred
intermediate results independent of the query execution strategy.

The 2-hop extension could reduce the number of transferred intermediate results by more than 90% but due
to a 4 to 10 times higher total computation effort the queries took up to 82 times longer to finish. Thus, graph
cover strategies that replicate a high portion of triples need a distributed query execution strategy that avoids
the computation of duplicate results in order to benefit from the triple replication.

The performed investigation suggests that in the used setting the minimal edge-cut cover takes the most
effort to be prepared (see Figure 5.3) but does not perform better over all (see Figure 5.6a). Since both hash-
based covers perform similarly, the simpler hash cover implementation may be preferred, if other functionality
such as prefix matching does not benefit from the hierarchical hash cover.

78

CHAPTER 6
Combining the Benefits of Graph Clustering
and Hash Partitioning
The evaluation in Chapter 5 has revealed that none of the frequently used graph cover strategies has a high
vertical parallelization. Hash-based graph cover strategies balance the query workload over all compute nodes.
This good workload balance comes at the cost of a high number of intermediate results that need to be ex-
changed between the compute nodes during query processing. Graph-clustering-based graph cover strategies
reduce the amount of transferred intermediate data at the cost of an imbalanced query workload.

Given these results, the main hypothesis of this chapter is that a graph cover strategy that combines the
balanced query workload of the hash-based graph cover strategies with the reduced data transfer of the graph
clustering approaches should lead to a high vertical parallelization and thus, allow for faster query executions.
To reduce the data transfer, all data items required to produce a single query result should be stored on the
same compute node. To balance the query workload among all compute nodes the various data item sets that
produce different individual query results should be equally distributed among all compute nodes. Therefore,
it is expected that graph cover strategies that (i) collocate the individuals of small sets of closely connected
data items on compute nodes and (ii) store similar amounts of data items on the different compute nodes to
execute queries faster than the frequently used data placement strategies.

In this chapter this hypothesis is investigated by evaluating two graph cover strategies that fulfil both prop-
erties (see Section 6.1). The first strategy called overpartitioned minimal edge-cut cover is described in [55].
It first performs a graph-clustering algorithm to split the graph into a high number of small partitions and
thereafter assigns the partitions to compute nodes based on a greedy algorithm. Since its implementation did
not scale well with the data set size in the performed experiments, a novel second strategy called molecule
hash cover has been developed. It assigns molecules1 – a small set of connected triples – to compute nodes
based on their hashes. The implementations of both strategies have been integrated into Koral and are made
open source2. Both strategies were evaluated (see Section 6.2) with the same extensive set of experiments that
were used for the evaluation in Chapter 5. The results are presented in Section 6.3.

6.1. Proposed Graph Cover Strategies

To combine the balanced workload of hash-based graph covers with the low number of transferred intermediate
query results of graph-clustering-based graph covers, graph cover strategies may collocate closely connected
triples on the same compute node while balancing the number of stored triples over the compute nodes. In the
following, two graph cover strategies that fulfill these properties are presented: the novel molecule hash cover
(see Section 6.1.1) and the overpartitioned minimal edge-cut cover (see Section 6.1.2) originally presented

1This strategy has been inspired by the definition of RDF molecules in [39]. It has been adapted for the needs of query processing.
2https://github.com/Institute-Web-Science-and-Technologies/koral

79

https://github.com/Institute-Web-Science-and-Technologies/koral

Chapter 6. Combining the Benefits of Graph Clustering and Hash Partitioning

g:Dog g:Gesis

g:bello g:wanja

w :daniel w :martin

w :WeST"Daniel" "Martin"

r :type
e:employs

e:employsf :givenname

e:ownedBy

f :knows f :knows
f :knows

f :givenname

f :givenname

"Wanja"

Figure 6.1.: Example graph describing the knows relationships between some employees of WeST and Gesis.

in [55]. Both strategies were implemented within the profiling system Koral. Their source code is made open
source as part of Koral.

6.1.1. Molecule Hash Cover

The molecule hash cover aims to reduce the number of transferred intermediate results of the hash cover while
maintaining its balanced query workload. The basic idea is that instead of randomly distributing individual
triples a set of connected triples – so called molecules – are arbitrarily distributed among the compute nodes.
Thereby, no triple should be replicated in order to keep the data set size fixed and to avoid the computation of
duplicate intermediate results. Before the algorithm can be described, some additional definitions are required.

Definition 33. A subset Mv ⊆ G of an RDF graph G is called molecule3 of vertex v if

1. for all triples t ∈ Mv there is a path ⟨t0, t1, ..., tn, t⟩ such that t0 = (v, p0,o0) and t0, t1, ..., tn ∈ Mv and

2. if s is a subject of some triple in Mv, then
∀(s, p,o) ∈ G : (s, p,o) ∈ Mv.

The vertex v is called anchor vertex.4

Based on this definition, a molecule is a set of triples that are reachable from its anchor vertex. This property
of molecules aims for an efficient processing of path-shaped queries. Furthermore, star-shaped queries, in
which the triple patterns are joined on the subject, will be processed efficiently. Nevertheless, the definition of
a molecule does not require all triples of the graph that are reachable from the anchor vertex to be contained
in the molecule. This allows a decomposition of the graph into disjoint molecules.

Definition 34. The (directed) molecule diameter of a molecule Mv is the length of the longest of all shortest
paths in the graph Mv that start at anchor vertex v.

Example 24. The molecule with diameter 1 of the anchor vertex g:gesis in the example graph shown in
Figure 6.1 only contains the triple (g:Gesis,e:employs,g:wanja). A molecule with diameter 2 of the same anchor
vertex would additionally contain (g:wanja, f:knows,w:daniel) and (g:wanja, f:givenname, "Wanja").

3The definition of an RDF molecule origninated in [39] has been adapted to allow molecule diameters ≥ 1.
4The term anchor vertex was taken from [91].

80

6.1. Proposed Graph Cover Strategies

�
1 Input : RDF graph G , s e t o f compute nodes C ,
2 maximal m o l e c u l e d i a m e t e r d ,
3 t a r g e t working queue s i z e w
4 Output : g r aph c o v e r named covermolHash
5 −−−
6 incidenceMap = c r e a t e I n c i d e n c e M a p (G)
7 V = incidenceMap . g e tKeySe t ()
8 W = ∅
9 / / i n i t i a l i z e w i t h v e r t i c e s t h a t have i n d e g r e e 0

10 f o r (v ∈V) :
11 i f (δ−(v) == 0) :
12 W = W ∪{(v,0,v)}
13 V = V\{v}
14 / / pe r fo rm bread th− f i r s t s e a r c h
15 whi le (W ̸=∅∨V ̸=∅) :
16 whi le (|W |< w∧V ̸=∅) :
17 / / e n s u r e t a r g e t work ing queue s i z e
18 v = V . g e t V e r t e x () ;
19 W = W ∪{(v,0,v)}
20 V = V\{v}
21 W ′ = ∅
22 f o r ((v, l,a) ∈W) :
23 f o r ((v, p,o) ∈ incidenceMap . g e t (v)) :
24 covermolHash = covermolHash∪{((v, p,o),{hash(a) mod |C|})}
25 i f (l +1 == d) :
26 W ′ = W ′∪{(o,0,o)}
27 e l s e :
28 W ′ = W ′∪{(o, l +1,a)}
29 V = V\{o}
30 incidenceMap . remove (v)
31 W = W ′
� �

Listing 6.1: The molecule hash cover creation algorithm.

The idea of the molecule hash cover is to decompose the RDF graph into disjoint molecules with a fixed
maximal diameter. The resulting set of molecules is then equally distributed among all compute nodes. This
idea is rather simple but effective as indicated by the evaluation described in Section 6.3.

The algorithm that creates a molecule hash cover bases on a breadth-first search. Thereby, the graph is
decomposed into molecules that are distributed among the compute nodes. The actual algorithm is presented
in Listing 6.1. It receives an RDF graph G, the set of compute nodes C and the maximal diameter d of
the molecules that should be distributed as input. In order to speed up the algorithm, a target size w of the
working queue – the queue that contains the vertices to be visited next by the breadth-first search – is given
as additional input. The result of the algorithm is a graph cover according to definition 2 since the breadth
first search iterates over all triples and assigns them to the compute node to which the anchor vertex of the
corresponding molecule belongs.

81

Chapter 6. Combining the Benefits of Graph Clustering and Hash Partitioning

In line 6 the graph is converted into a map, which maps a vertex v to the set of all triples that have v as
subject. Thereafter, the working queue W is initialized with all vertices that have an indegree of 0 (lines 10-
13). The elements of the working queue are triples of the form (v, l,a), where v is the vertex to be visited next,
l the length of the path from anchor vertex a to v and a the anchor vertex of the current molecule.

Example 25. In the graph of the running example the working queue would be initialized with the elements
(w:WeST,0,w:WeST), (g:Gesis,0,g:Gesis) and (g:bello,0,g:bello).

In lines 15-31 a breadth-first search is performed, starting at the vertices with indegree 0. These vertices
are selected as starting points, since the breadth-first search cannot find them otherwise. In the lines 23-29 all
triples whose subject is contained in the working queue are traversed. Each of these triples are assigned to
the compute node to which the anchor vertex of the current molecule belongs (line 24). If the diameter of the
molecule reaches the maximal diameter size d, the object of the traversed triple becomes the anchor vertex of a
new molecule (line 26). Otherwise, the object is inserted into the working queue with an incremented molecule
diameter and the original anchor vertex. After all triples with the same vertex v as subject are traversed, the
entry of v is removed from the incidence map (line 30). This ensures that no triple is assigned to more than
one compute node.

Example 26. In the running example (w:WeST,0,w:WeST) is extracted from the working queue first. Based
on the hash function shown in example 13 both triple with w:WeST as subject are assigned to compute node c2.
Thereby, the elements (w:daniel,1,w:WeST) and (w:martin,1,w:WeST) are appended to the working queue.
Then, (g:Gesis,0,g:Gesis) is dequeued from the working queue, the corresponding triples are assigned to com-
pute node c1 and (g:wanja,1,g:Gesis) is appended to the working queue. When (g:bello,0,g:bello) is dequeued,
the corresponding triples are added to compute node c2 and (g:Dog,1,g:bello) as well as (g:wanja,1,g:bello) are
added to the working queue.

Now, the working queue contains two entries for g:wanja: (g:wanja,1,g:Gesis) and (g:wanja,1,g:bello). Since
the former one was added to the working queue first, the outgoing edges of g:wanja will be assigned only to
compute node hash(g:Gesis) = 1. The final molecule hash cover is shown in Figure 6.2. Each molecule is
colored in a different color.

g:Gesis

g:wanja

w :daniel

"Martin"

e:employs

f :knows f :knows f:
gi

ve
nn

am
e

f :givenname

"Wanja"

g:Dog

g:bello

w :daniel w :martin

w :WeST"Daniel"

r :type

e:employsf :givenname

c1 c2

g:wanja

e:ownedBy

Figure 6.2.: An example molecule hash cover of the example graph from Figure 6.1.

Since there might be cycles in the graph that are not reachable from any vertex with indegree 0, one of these
vertices is arbitrarily selected and added to the working queue. This happens in lines 16-20. During initial
experiments the working queue only contained a single element after a few iterations. This small working
queue size caused a long execution time of the algorithm. In order to speed up the execution, new random

82

6.2. Experimental Setup

anchor vertices, that have not been visited yet, are added to the working queue whenever the size of the
working queue is smaller than a target size w (lines 16-20).

Theorem 4. For RDF graphs G in which the number of edges m is larger than the number of vertices, the
molecule hash cover can be produced in the worst time complexity O(m logm).

Proof. Let m = |G| denote the number of triples of the graph G and n = |VG| denote the number of vertices
in G. The input of the algorithm is an RDF graph stored as a list of triples. Its conversion into an incidence
map, mapping a vertex v to the set of triples with v as subject, in line 6 of Listing 6.1 can be done with a single
merge sort. Thereby, the list of triples is sorted by their subjects first. Thereafter, the sorted list is iterated
and all triples with the same subject are aggregated. This has the time complexity O(m logm). During this
evaluation it is also possible to compute the indegree of each vertex without changing the complexity class.
Thus, the code within the for loop in the lines 10-13 is executed n times. If V is implemented as a balanced
search tree, the operation in line 13 has logarithmic complexity. The complexity of the for loop is O(n logn).

The code within the while loop starting in line 16 is executed at most n times. If V is implemented as a
balanced search tree, the operations in line 18 and 20 can be performed in logarithmic time. This leads to an
effort of O(n logn).

Since each edge is traversed exactly once, the code in lines 24-29 is executed m times. The operation in
line 29 has logarithmic complexity, while the other operations can be performed in constant time. Thus, this
code has the complexity O(m logn). The lines 23 and 30 are executed n+m times. Each of both operations
have logarithmic complexity leading to the complexity O((m+n) logn).

When combining the complexities of the different code segments, the overall time complexity of the algo-
rithm is O((m+n) logn+m logm). Since in realistic RDF graphs the number of edges m is much larger than
the number of vertices n, the time complexity can be simplified to O(m logm).

6.1.2. Overpartitioned Minimal Edge-Cut Cover

Another graph cover strategy that collocates closely connected triples on the same compute node while balanc-
ing the number of stored triples over the compute nodes can be found in [55]. In order to identify the closely
connected triples, it performs a minimal edge-cut partitioning. But instead of creating a single partition per
compute node it creates a much higher number of partitions. Therefore, this strategy is called overpartitioned
minimal edge-cut cover in the context of this thesis. As motivated in [55], the number of partitions to create

can be determined by
√

λ∗|E|
d∗|C| with d = |E|

|V | the average degree of a vertex, V the set of vertices, E the set of
edges and C the set of compute nodes. λ is a parameter with which the number of partitions can be adjusted to
get the fastest query execution times. The authors of [55] stated that in their experiments λ = 187 resulted in
the fastest query execution times. After the partitions have been created, they are combined to graph chunks,
one for each compute node. This assignment is done by a greedy algorithm that assigns a partition to the
smallest chunk.

6.2. Experimental Setup

To investigate how the molecule hash cover and the overpartitioned minimal edge-cut cover perform in com-
parison with the frequently used graph cover strategies, several experiments are performed. The set of config-
urations in the experiments results from combining the different graph cover strategies with the different data
sets and the corresponding queries. This experimental setting follows the evaluation methodology described
in Chapter 4 and is identical to the one used for the evaluation described in Chapter 5.

83

Chapter 6. Combining the Benefits of Graph Clustering and Hash Partitioning

Compared Graph Cover Strategies

In order to evaluate the molecule hash cover and the overpartitioned minimal edge-cut cover (with λ = 187),
both have been implemented within the glass box profiling system Koral. Their performances are compared
with the performances of the hash cover, hierarchical hash cover and the minimal edge-cut cover. Since these
frequently used graph cover strategies showed a better performance than the 2-hop hash cover in the evaluation
described in Chapter 5, it is not used for the comparison.

Data Sets and Queries

The first used data sets consist of the 500 million, 1 billion and 2 billion triples subsets of the real-world billion
triple challenge data set from 2014 (BTC2014) [76]. They are called BTC500M, BTC1000M and BTC2000M
within this chapter. Additionally, two data sets have been generated with the Waterloo SPARQL Diversity
Test Suite v0.6 [15]: the WatDiv1000M data set containing 1,099,208,068 triples and the WatDiv100M data
set containing 109,786,094 triples.

For the BTC2014 data set, the seven queries were used that do not abort after 1 million results. These
queries consists of 2-8 triple patterns that are subject-object joined (path-shaped) or subject-subject joined
(star-shaped). For each of the WatDiv data sets 20 queries have been generated based on the basic testing
query templates5. These generated queries consist of star-shaped queries (S1-S7), path-shaped queries (L1-
L5) and combinations of both shapes (C1-C3 and F1-F5).

Experiment Execution

For each graph cover strategy and data set, Koral is cleared. Then the data set is loaded and the list of
corresponding queries is executed 10 times. Thus, the effect of operating system-dependent caches storing the
results of the previously executed query is reduced, because no query is immediately reexecuted after it has
finished. In order to prevent the effect of outliers caused by, e.g. garbage collection, from all 10 executions of
a query, the best and the worst execution time are ignored and the arithmetic mean is used for exTime.

Computer and Software Environment

Koral is executed on 11, 21 and 41 VMs distributed over 4, 6 and 8 physical computers, respectively. The
master has 4 cores and 64 GB RAM and the slaves have 1 core and 2 GB RAM each. Since the Koral master
VM needs to store the complete data set, it has a 1 TB hard disk. The slaves have 300 GB hard disks. The
physical computers on which the VMs run are connected via a 1 Gigabit Ethernet network.

The operating system of each VM is a 64 bit Ubuntu 14.04.4 with the Linux kernel 3.13.0-96. The Oracle
JDK 1.8.0_101 is used to execute Koral in version 0.0.1. In order to create the minimal edge-cut cover, METIS
is used in version 5.1.0.dfsg-2. To generate the WatDiv data sets and the corresponding queries the WatDiv
generator in version 0.6 is used.

6.3. Results

The molecule hash cover strategy allows for configuring the diameter of the molecules in which the graph
is split. In order to reduce the number of possible configurations for the experiments, the query execution

5https://dsg.uwaterloo.ca/watdiv/basic-testing.shtml

84

https://dsg.uwaterloo.ca/watdiv/basic-testing.shtml

6.3. Results

times for several molecule hash covers with varying molecule diameters were performed. As described in
Section 6.3.1 the molecule hash cover with a diameter of 3 lead to the fastest query execution times.

The performed evaluations aim to investigate, whether the molecule hash cover and the overpartitioned
minimal edge-cut cover are able to combine the balanced workload of hash-based graph cover strategies with
the low number of transferred intermediate results of graph-clustering based graph cover strategies and thus,
lead to a high vertical parallelization. First, the analysis of measurements that are independent of the queries
are described in Section 6.3.2. Beside the loading time, this includes how balanced the chunk sizes are since
this influences the query execution time as already described in Chapter 5. The overall performances of all
compared graph cover strategies are presented in Section 6.3.3. This performance relies on the horizontal
containment and vertical parallelization. Thus, in Section 6.3.4 indicators for the horizontal containment and
the vertical parallelization are analyzed.

6.3.1. Effect of Molecule Diameter for the Molecule Hash Cover

The molecule hash cover has the direct molecule diameter as a parameter. To analyze its impact on the query
performance the diameter was varied between 2 and 7 for the BTC1000M data set. It was observed that with
a higher molecule diameter the number of transferred packets decreases for most queries. When increasing
the diameter from 2 to 3, the packet transfer drops by up to 26% whereas the change from a diameter 3 to 7
is below 6%. In contrast to the packet transfer, the workload imbalance increases slightly for most queries.
When the molecule diameter is increased from 2 to 3 the workload imbalance increases by up to 0.12. When
increasing the molecule diameter from 3 to 7 the workload imbalance increases by up to 0.36. As a result the
average query execution time drops by 11% when increasing the diameter from 2 to 3 and increases by up to
32% when increasing the diameter from 3 to 7. Therefore, only the molecule hash cover with a diameter of 3
will be compared with the other graph cover strategies in the remainder of this section.

6.3.2. Query Independent Measurements

In this section, the required time to create the graph covers is analyzed. Furthermore, it is investigated how
balanced the sized of the created graph chunks are. The main findings are:

• The molecule hash cover needs a bit more time than the hierachical hash cover to be created but needs
much less time than the minimal edge-cut cover. The overpartitioned minimal edge-cut cover needs the
most time to be created.

• The overpartitioned minimal edge-cut cover has the most balanced graph chunk sizes. The sizes of the
molecule hash chunks are less balanced than the hash based graph chunks but more balanced than the
sizes of the minimal-edge-cut-based chunks.

Load Time

In the evaluation of the BTC2014 and the WatDiv1000M data sets, the hash-based graph cover strategies,
which do not consider the graph structure, took 1 hour and the hierarchical hash cover took 7 hours to be
created (see Figure 6.3). In contrast, the minimal edge-cut cover and the overpartitioned minimal edge-cut
cover focus on the graph structure to create large connected graph chunks. They required 31 hours and 79 hours
to be created for the BTC2014 data set. For the WatDiv1000M data set, none of both strategies could be created
since METIS, which was used to create the minimal edge-cut partitioning, tried to occupy more than 1TB main
memory. A similar observation has been made by [60]. In contrast to this, the molecule hash cover only uses

85

Chapter 6. Combining the Benefits of Graph Clustering and Hash Partitioning

the graph structure for the computation of the indegrees and the breadth-first search. As a result, it was able to
load all data sets and required 11 hours for the BTC2014 and 7 hours for the WatDiv1000M data set (which is
only 10 minutes slower than the hierarchical hash cover). For the latter synthetic data set, the molecule hash
cover was faster since the breadth-first-search needed fewer iterations over the disk-based working queue. The
relation between the loading times of the different graph cover strategies is similar for the WatDiv100M data
set.

10 20 40
Number of Graph Chunks

0

25

50

75

100

125

L
oa

di
ng

Ti
m

e
(i

n
h)

0:
57

1:
02

1:
377:

19

7:
51

7:
08

31
:0

2

30
:1

1

31
:5

7

10
:5

5

11
:4

1

12
:5

7

78
:5

8

13
8:

43

12
9:

26

HASH
HIERARCHICAL
MIN_EDGE_CUT

MOLECULE_HASH
OVER_MEC

Figure 6.3.: Creation times of different graph covers for different slave numbers and the BTC1000M data set.

Scalability. When scaling up the number of slaves from 10 to 20 and from 20 to 40, the load time T of
the molecule hash cover varied by less than 10% and hence is negligible for the BTC1000M data set. When
scaling from 10 to 20 slaves, the overpartitioned minimal edge-cut cover required 75% more time to be created.
The cause is that METIS required 58% more time to create the graph partitioning and the combination of the
resulting partitions to a higher number of graph chunks took another 66% longer. When scaling from 20 to
40 slaves the overpartitioned minimal edge-cut cover, the loading time decreased by 7%. When doubling the
data set size the loading time of the molecule hash cover also doubles, similar to the loading times of the hash
and the hierarchical hash covers. In contrast to this the loading times of the overpartitioned minimal edge cut
cover and the minimal edge-cut cover increase by a factor of 3.

Since the focus of the evaluation is the query execution, only a proof-of-concept non-optimized implemen-
tation has been provided for loading. Nevertheless, the overpartitioned minimal edge-cut cover has originally
been implemented in the RDF store TriAD [55]. As reported in [60], with the more sophisticated implemen-
tation of TriAD it took only 12 hours to load a data set of ~1.4 billion triples. In use cases, in which a lot of
long-running analytical queries are issued against a static data set, the savings of the shorter query execution
time may overcome the longer loading times.

Storage Imbalance

As shown in table 6.1, the minimal edge-cut cover strategy produces the least balanced graph chunks and the
overpartitioned minimal edge-cut cover strategy the most balanced graph chunks for 10 chunks. For both

86

6.3. Results

Data set BTC1000M WatDiv100M WatDiv1000M
chunks 10 20 40 10 10
Hash cover 0.0167 0.0196 0.0275 0.0016 0.0006
Hierarchical hash cover 0.0119 0.0160 0.0240 0.0010 0.0006
Minimal edge-cut cover 0.1787 0.2418 0.2441 0.4355 -
Molecule hash cover 0.0145 0.0235 0.0361 0.0114 0.0049
Overpartitioned minimal edge-cut cover 0.0001 0.0013 0.0020 0.00004 -

Table 6.1.: The storage imbalance b of the different graph covers at different number of graph chunks.

graph cover strategies, no storage imbalance could be given for the WatDiv1000M data set since they could
not be load it. The low storage imbalance of the overpartitioned minimal edge-cut covers is achieved by the
greedy algorithm that tries to optimize the storage balance while assigning partitions to compute nodes. For
all graph covers created by the hash, hierarchical hash and molecule hash cover strategies, b is below 0.02 for
10 slaves. None of these three graph cover strategies is more balanced then the others for the BTC1000M,
WatDiv100M and WatDiv1000M data sets. The best storage imbalance with at most 0.0001 is achieved by the
overpartitioned minimal edge-cut cover. This good storage balance is achieved by the greedy algorithm that
tries to optimize the storage balance while assigning partitions to compute nodes.

Scalability. Similar to the frequently used graph cover strategies, scaling up the number of slaves and the
data set size have only a negligible effect on the storage imbalance.

6.3.3. Measuring Overall Query Performance

In this section it is investigated, whether the molecule hash cover and the overpartitioned minimal edge-cut
cover execute queries faster or slower than the frequently used graph cover strategies. The main findings are:

• The molecule hash cover and the overpartitioned minimal edge-cut cover execute queries faster than the
frequently used graph cover strategies. Thereby, the overpartitioned minimal edge-cut cover tends to be
faster than the molecule hash cover.

• The molecule hash cover and the overpartitioned minimal edge-cut cover show the highest execution
time reductions for queries that have a mixture of several different join patterns and path-shaped queries
with a high diameter.

• For purely star-shaped queries that do not need to transfer intermediate results, the molecule hash cover
may increase the query execution times in comparison with the hash-based covers but is still faster than
the minimal edge-cut cover.

As described in Chapter 5 bushy query execution trees produced the lowest query execution times for the
frequently used graph cover strategies. Therefore, the queries were executed using the bushy query execution
trees for the molecule hash cover and the overpartitioned minimal edge-cut cover. Since with both graph covers
the queries could be executed faster than with the frequently used graph cover strategies, the evaluations with
the other query execution tree types were omitted. Since the query execution times vary a lot between the
queries, the execution times are presented relative to the hash cover. The absolute query execution times can
be found in Appendix C.3.

87

Chapter 6. Combining the Benefits of Graph Clustering and Hash Partitioning

so
#tp

=2 #d
s=

1 sel
=0.0

01

so
#tp

=2 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

1 sel
=0.0

01

so
#tp

=8 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

3 sel
=0.0

1

ss
#tp

=2 #d
s=

1 sel
=0.0

1

ss
#tp

=8 #d
s=

3 sel
=0.0

1

Queries

−100

−10

0

10

100

Q
ue

ry
E

xe
cu

tio
n

Ti
m

e
(l

og
-s

ca
le

,
ch

an
ge

to
H

A
SH

in
%

)

2.
41

15
.0

7

24
4.

22

41
.9

7

2,
46

0.
03

4.
36

25
.7

4

2.
50 23

.4
2

26
1.

41

49
.8

7

2,
31

1.
45

7.
27 20

.8
4

2.
20

14
.6

0

10
8.

25

32
.2

4

1,
92

6.
51

2.
48

10
.6

2

0.
70

5.
41

15
.9

3 27
.4

5

69
.2

1

0.
10 2.
42

HIERARCHICAL MIN_EDGE_CUT MOLECULE_HASH OVER_MEC

Figure 6.4.: exTime of all queries relative to the hash cover for BTC1000M. The numbers within the bars are
the absolute query execution times in seconds.

C1 C2 C3 F1 F2 F3 F4 F5 L1 L2 L3 L4 L5 S1 S2 S3 S4 S5 S6 S7
Queries

−100

−10

0

10

100

Q
ue

ry
E

xe
cu

tio
n

Ti
m

e
(l

og
-s

ca
le

,
ch

an
ge

to
H

A
SH

in
%

)

HIERARCHICAL MIN_EDGE_CUT MOLECULE_HASH OVER_MEC

Figure 6.5.: exTime of all queries relative to the hash cover for WatDiv100M.

88

6.3. Results

Query Performance for BTC1000M. Figure 6.4 shows the execution times exTime of the queries for all
graph covers using the BTC1000M data set. For almost all queries the molecule hash cover reduces the query
execution time between 11% and 56%. This reduction is caused by 38%-62% less packet transfer P that could
overcome the workload imbalance W increase of below 0.05 for most queries. Only for query ss #tp=8

#ds=3 sel=0.01, the molecule hash cover increased the query execution time. In this case, the increased
workload imbalance of the molecule hash cover could not be compensated since for this query no packets
were transferred between compute nodes.

The overpartitioned minimal edge-cut cover reduces the query execution times between 40% and 98%.
These high reductions are caused by an almost perfectly balanced query workload (W ≤ 0.03) and almost no
transferred packets (P < -99%). For so #tp=8 #ds=3 sel=0.01 and ss #tp=2 #ds=1 sel=0.01, the
high reductions of more than 90% is mainly caused by a decreased workload imbalance of 99% and 89% for
both queries.

Query Performance for WatDiv100M. For the synthetic WatDiv100M data set, the observations are similar
to the ones of the BTC1000M data set. The query execution times are shown in Figure 6.5. In 13 out of 20
cases the molecule hash cover improved the query execution speed in comparison with the hash cover. In 10 of
these cases the reduction amounted to 5%-92% (43% on average). In these cases the workload imbalances of
both graph cover strategies were similar but the number of transferred packets reduced by 6%-95%. Most of
these queries consisted of a mixture of different join types with at least 6 triple patterns. Only queries S2 and
S7 were executed slower than in case of the hash cover. For both queries no packets were transferred between
compute nodes but the workload imbalance almost doubled leading to the slower query execution.

The overpartitioned minimal edge-cut cover could reduce the query execution times by 5%-96% (60% on
average) or had a similar execution time for all queries. The workload imbalance was up to 0.14 lower than
the one of the hash cover. The number of transferred packets could be reduced by 23%-100%. Similar to the
molecule hash cover, the overpartitioned minimal edge-cut cover performed the best for queries consisting of
a mixture of different join types with at least 6 triple patterns.

C1 C2 C3 F1 F2 F3 F4 F5 L1 L2 L3 L4 L5 S1 S2 S3 S4 S5 S6 S7
Queries

−100

−10

0

10

100

Q
ue

ry
E

xe
cu

tio
n

Ti
m

e
(l

og
-s

ca
le

,
ch

an
ge

to
H

A
SH

in
%

)

HIERARCHICAL MOLECULE_HASH

Figure 6.6.: exTime of all queries relative to the hash cover for WatDiv1000M.

Query Performance for WatDiv1000M. When scaling up the size of the data set, similar observations have
been made (see Figure 6.6). As described in the previous section, the minimal edge-cut cover and the overpar-
titioned minimal edge-cut cover could not be created for this data set. For 9 out of 20 queries, the molecule
hash cover is able to reduce the query execution time by 4%-98% (41% on average) and for 7 out of 20 queries

89

Chapter 6. Combining the Benefits of Graph Clustering and Hash Partitioning

it has similar execution times as the hash cover. The execution time reduction may be caused by a 7%-96%
reduced packet transfer while the workload imbalance staid almost constant. Most of these queries consisted
of a mixture of different join types with at least 6 triple patterns. In 4 cases the execution time increased by
more than 5%. Most of these queries were star-shaped queries with a low number of transferred packets. Thus,
the reduction of the packet transfer could not compensate the workload imbalance increase.

Scaling Number of Slaves

When scaling up the number of slaves the molecule hash cover showed a similar performance as the hash
covers (see Chapter 5). Only for query ss #tp=8 #ds=3 sel=0.01 the query execution times almost
halved when scaling from 10 to 20 slaves and from 20 to 40 slaves. For most queries the query execution
times increase when increasing the number of slaves. This is caused due to the higher number of transferred
intermediate results since the chunk sizes became smaller. Only for two queries the query execution times
dropped when scaling to 20 slaves but increased when scaling to 40 slaves. Nevertheless, the molecule hash
cover executes 6 out of 7 queries faster than the frequently used graph cover strategies for 40 slaves.

When increasing the number of slaves, the overpartitioned minimal edge-cut cover splits the initial RDF
graph into fewer but larger partitions. These larger partitions lead to an up to 3 times higher workload im-
balance during query execution. As a consequence the query execution times increase for almost all queries.
As a result the overpartitioned minimal edge-cut cover executes only 4 out of 7 queries the fastest. Especially
for the star-shaped queries in which no packet transfer could be observed, the increased workload imbalance
lead to slower query execution times. This effect may be compensated by setting λ to a higher value when
increasing the number of slaves.

Scaling Data Set Size

Scaling the size of the data set affects the molecule hash cover and the overpartitioned minimal edge-cut cover
similar as the frequently used graph cover strategies. For almost all queries the query execution time per
query result decreases. Only for query so #tp=2 #ds=1 sel=0.01 the query execution times per result
increase, as discussed in Chapter 5.

For the BTC500M data set the molecule hash cover executes 6 out of 7 queries faster than the hash cover,
similar to the BTC1000M data set. For the BTC2000M data set the molecule hash cover is still faster than
the hash cover for 5 out of 7 queries. In both cases the molecule hash cover could not reduce the number
of transferred packets enough to compensate the increased workload imbalance. Since the data set scalabil-
ity experiments were conducted with 20 slaves, the overpartitioned minimal edge-cut cover produced larger
partitions leading to higher workload imbalances. As a consequence, for all data set sizes the overpartitioned
minimal edge-cut cover could execute only 4 out of 7 queries the fastest. Especially the two star shaped queries
were executed slower, since they did not cause any packet transfer.

6.3.4. Measuring Dependent Variables

In order to identify the reasons for the overall performance of the proposed graph cover strategies described
in the previous section, the indicators of the horizontal containment and vertical parallelization are analyzed
now. The main findings are:

• The molecule hash cover and the overpartitioned minimal edge-cut cover have a better horizontal con-
tainment than the frequently used graph cover strategies. Scaling up the number of slaves reduces the
horizontal containment whereas scaling up the data set size improves the horizontal containment.

90

6.3. Results

• The molecule hash cover has a slightly higher workload imbalance than the hash-based covers, inde-
pendent of the number of slaves and the data set size.

• The overpartitioned minimal edge-cut cover has the most balanced query workload for 10 slaves. Scal-
ing up the number of slaves decreases the workload imbalance, since the initial graph is split into fewer
but larger partitions.

Horizontal Containment

All examined graph cover strategies assign triples with the same subject to the same chunk. Therefore, all
triples required to produce one result of a subject-subject-joined star-shaped query are located in the same
graph chunk. Since Koral performs joins on the slave storing the original triples, no data transfer was observed.

Horizontal Containment for BTC1000M. For the path-shaped queries, both graph cover strategies that col-
locate items of small closely connected triple sets on the same compute node are able to reduce the number
of transferred packets P between compute nodes even more than the best frequently used graph cover strategy
(see Figure 6.7). The molecule hash cover is able to reduce the packet transfer P for most path-shaped queries
by 38%-62% in comparison with the hash cover. The overpartitioned minimal edge-cut cover can reduce P by
99%-100%.

so
#tp

=2 #d
s=

1 sel
=0.0

01

so
#tp

=2 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

1 sel
=0.0

01

so
#tp

=8 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

3 sel
=0.0

1

Queries

−100

−75

−50

−25

0

#
Tr

an
sf

er
re

d
Pa

ck
et

s
(c

ha
ng

e
to

H
A

SH
in

%
)

HIERARCHICAL
MIN_EDGE_CUT
MOLECULE_HASH
OVER_MEC

Figure 6.7.: Packet transfer P relative to hash cover for the BTC1000M data set using 10 slaves.

As described in Chapter 5 real-world data sets consist of a densely-connected huge core and most queries
match with triples within this core. The traditional minimal edge-cut cover cuts this core into 10 partitions
whereas the overpartitioned minimal edge-cut cover cuts it into 60k partitions. Due to the high reduction of
transferred packets these smaller partitions seem to fit better with the subgraphs with which the queries match.

91

Chapter 6. Combining the Benefits of Graph Clustering and Hash Partitioning

Horizontal Containment for WatDiv Data Sets. For the WatDiv100M data set the molecule hash cover could
reduce the packet transfer for 13 out of 20 queries by 6%-95% (26% on average). For the remaining queries the
number of transferred packets is similar to the ones of the hash cover. The overpartitioned minimal edge-cut
cover could reduce the number of transferred packets by 23%-100% (84% on average) for 15 queries. Only for
5 queries the number of transferred packets were similar to the ones of the hash cover. For the WatDiv1000M
data set, the molecule hash cover reduced the number of transferred packets by 7%-96% (28% on average) for
9 out of 20 queries. For the remaining queries the packet transfer was similar as for the hash cover.

Scaling Number of Slaves. When scaling up the number of slaves while keeping the data set size fixed,
the horizontal containment is reduced for all graph cover strategies. As described in Chapter 5, the lower the
packet transfer for 10 slaves the more it will increase. Since both presented graph cover strategies have a lower
packet transfer than the frequently used graph cover strategies, the packet transfer increases by an average of
136% for the molecule hash cover and by an average of 266% for the overpartitioned minimal edge-cut cover
when scaling from 10 slaves to 40 slaves. Nevertheless, the molecule hash cover and the overpartitioned
minimal edge-cut cover are still able to reduce the packet transfer by 18%-54% and 83%-99% in comparison
to the hash cover for 40 slaves, respectively. Thus, they still reduce the packet transfer more than the frequently
used graph cover strategies.

Scaling Data Set Size. For the frequently used graph cover strategies the number of transferred packets per
query result increases when the data set size is scaled up. In contrast to this, the packet transfer per query result
reduces by 32%-99% when scaling up to 2 billion triples for all queries using the molecule hash cover. For the
overpartitioned minimal edge cut cover, the packet transfer per query result increases by 24% for one query
but reduces by 97%-100% for the remaining queries when scaling up to 2 billion triples. Thus, the horizontal
containment of both graph cover strategies improves when scaling up the data set size.

Vertical Parallelization

Workload Imbalance for BTC1000M. When analyzing the workload imbalance W in Fig. 6.8, the molecule
hash cover tends to increase the workload imbalance slightly by up to 0.05 in comparison with the hash cover
for 5 out of 7 queries. Nevertheless, the workload imbalance of the molecule hash cover is still 22%-90%
lower than the workload imbalance of the minimal edge-cut cover. In contrast to the molecule hash cover, the
overpartitioned minimal edge-cut cover could reduce the workload imbalance to a maximum of 0.03 for all
queries. Thus, both examined graph cover strategies that collocate items of small closely connected triple sets
on the same compute node tend to balance the query workload similar to hash-based graph cover strategies or
even better

Workload Imbalance for WatDiv Data Sets. For the WatDiv100M data set, the workload imbalance of the
molecule hash cover is similar to the one of the hash cover for 18 out of 20 queries. The difference is less than
0.02. Only for queries S2 and S7 the workload imbalance of the molecule hash cover is twice as high as the
workload imbalance of the hash cover. The overpartitioned minimal edge-cut cover balanced the workload
similar to the hash cover for 14 out of 20 queries. For the remaining 6 queries, it could reduce the workload
imbalance by up to 0.14 in comparison with the hash cover. When using the WatDiv1000M data set the
workload imbalance of the molecule hash cover varies by less than 0.1 from the workload imbalance of the
hash cover for all queries.

92

6.3. Results

so
#tp

=2 #d
s=

1 sel
=0.0

01

so
#tp

=2 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

1 sel
=0.0

01

so
#tp

=8 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

3 sel
=0.0

1

ss
#tp

=2 #d
s=

1 sel
=0.0

1

ss
#tp

=8 #d
s=

3 sel
=0.0

1

Queries

0.0

0.1

0.2

0.3

0.4

W
or

kl
oa

d
Im

ba
la

nc
e

HASH
HIERARCHICAL

MIN_EDGE_CUT
MOLECULE_HASH

OVER_MEC

Figure 6.8.: Workload imbalance W for the BTC100M data set using 10 slaves.

Scaling Number of Slaves. As already described in Chapter 5, the workload imbalance increases when
scaling up the number of slaves. For the molecule hash cover, the median increase is 29% when scaling to
20 slaves and 50% when scaling to 40 slaves. Nevertheless, for 40 slaves, the workload imbalance remains
only slightly higher than the workload imbalance of the hash cover for 5 out of 7 queries. Only for two queries
the workload imbalance is 0.08 and 1.8 higher.

For the overpartitioned minimal edge-cut cover, the median increase is 98% when scaling to 20 slaves and
267% when scaling to 40 slaves. As described earlier, this large workload imbalance increase is caused by the
lower number of partitions into which the graph is split resulting in larger partitions. As a result, the workload
imbalance of the overpartitioned minimal edge-cut becomes similar to the workload imbalance of the hash
cover for 4 out of 7 queries. For 3 queries including both star-shaped queries the workload imbalance is even
higher than the one of the hash cover.

Scaling Data Set Size. Similar to the behavior of the frequently used graph cover strategies, the workload
imbalance of both proposed graph cover strategies decrease when scaling up the data set size. The median
workload imbalance decrease of the molecule hash cover is 17% when scaling from BTC500M to BTC1000M
and 10% when scaling from BTC1000M to BTC2000M. For the overpartitioned minimal edge-cut cover, the
median workload imbalance decreases by 40% when scaling from BTC500M to BTC1000M and by 33%
when scaling from BTC1000M to BTC2000M.

93

Chapter 6. Combining the Benefits of Graph Clustering and Hash Partitioning

6.4. Lessons Learned

When analyzing the results, several expectations could be confirmed:

• The molecule hash cover needs a bit more time than the hierachical hash cover to be created but needs
much less time than the minimal edge-cut cover. The overpartitioned minimal edge-cut cover needs the
most time to be created.

• The overpartitioned minimal edge-cut cover has the most balanced graph chunk sizes. The sizes of the
molecule hash chunks are less balanced than the hash based graph chunks but more balanced than the
sizes of the minimal-edge-cut-based chunks.

• The molecule hash cover and the overpartitioned minimal edge-cut cover execute queries faster than the
frequently used graph cover strategies. Thereby, the overpartitioned minimal edge-cut cover tends to be
faster than the molecule hash cover.

• For purely star-shaped queries that do not need to transfer intermediate results, the molecule hash cover
may increase the query execution times in comparison with the hash-based covers but is still faster than
the minimal edge-cut cover.

• Scaling up the number of slaves reduces the horizontal containment of both proposed graph covers.

• The molecule hash cover has a slightly higher workload imbalance than the hash-based covers, inde-
pendent of the number of slaves and the data set size.

• For both proposed graph cover strategies that collocate closely connected triples on the same compute
node while balancing the number of stored triples over the compute nodes, the vertical parallelization
seems to be better than for the frequently used graph cover strategies.

Beside the expected results, some surprising results could be observed:

• The molecule hash cover and the overpartitioned minimal edge-cut cover show the highest execution
time reductions for queries that have a mixture of several different join patterns and path-shaped queries
with a high diameter.

• The molecule hash cover and the overpartitioned minimal edge-cut cover have an even better horizontal
containment than the minimal edge-cut cover.

• Scaling up the data set size improves the horizontal containment for both proposed graph cover.

• The overpartitioned minimal edge-cut cover has the most balanced query workload for 10 slaves. Scal-
ing up the number of slaves decreases the workload imbalance, since the initial graph is split into fewer
but larger partitions.

6.5. Discussion

In the performed evaluation, the performances of the molecule hash cover strategy and the overpartitioned
minimal edge-cut cover strategy on a real-world and two synthetic data sets were investigated. Both strategies
(i) split the graph into small sets of connected triples that are collocated on the same compute node and (ii) try
to balance the number of stored triples on the different compute nodes. Their performances are compared with

94

6.5. Discussion

the hash-based graph cover strategies that balance the number of stored triples without considering the graph
structure. Additionally, their performances were also compared with the one of a minimal edge-cut cover that
focuses on the graph structure to create large sets of connected triples.

In contrast to the hash cover, the minimal edge-cut cover has the disadvantage that the differently sized
graph chunks lead to an unbalanced query workload. To overcome this drawback, the molecule hash cover
relies on the equal distribution of the hash function and the overpartitioned minimal edge-cut cover uses a
greedy algorithm to group the small partitions to equally-sized chunks. As a result, the query workloads are
almost perfectly balanced among all compute nodes.

For most queries, the molecule hash cover could reduce the query execution times by an average of 41%
in comparison to the hash cover. An even higher reduction of the query execution time by an average of
67% can be achieved by the overpartitioned minimal edge-cut cover for most queries. These speed-ups are
caused by the up to 100% lower number of transferred packets. Both graph cover strategies showed their best
performances for queries consisting of a mixture of different join types with at least 6 triple patterns. This
indicates that the small sets of connected triples better align to the triple sets with which more complex queries
match.

Based on the query execution times, the overpartitioned minimal edge-cut cover outperforms the molecule
hash cover. Nevertheless, the drawback of the former graph cover strategy is its up to 12.6 times longer loading
time in the evaluation. Furthermore, the implementation relies on METIS that could not create the minimal
edge-cut partitioning for the WatDiv1000M data set with approximately 1.1 billion triples due to a too high
main memory consumption. Since the used implementation of the molecule hash-cover relies on a disk-based
algorithms, it was able to load all data sets used in the evaluation.

95

CHAPTER 7
Conclusion
This thesis starts with a survey of RDF stores in the cloud. Thereby, different types of RDF stores are identified
and a summary is provided with regard to how researchers address the challenges of the cloud setting such
as data placement, distributed query execution and fault tolerance. One type of RDF stores in the cloud are
distributed RDF stores. This type of RDF stores is of special interests to this thesis because it allows for full
control of the data placement and the distributed query processing. In order to speed up the query execution,
the interdependencies of the data placement and the distributed query processing have to be understood.

To gain a deeper understanding of these interdependencies a methodology for benchmarking data placement
strategies is developed in this thesis. With this methodology the frequently used data placement strategies are
evaluated. This evaluation reveals that graph-clustering-based data placement strategies have a high horizontal
containment — i.e., the individual query results can be created locally without the need to exchange interme-
diate results between compute nodes — but the overall query workload is not balanced across all compute
nodes, leading to a low vertical parallelization. In contrast to these data placement strategies, distributing
triples arbitrarily over the compute nodes as done by the hash-based data placement strategies tends to have
a balanced query workload at the cost of a low horizontal containment, leading to a low to medium vertical
parallelization. As a result the hash-based data placement strategies show a better overall query performance
than the graph-clustering-based strategies. None of the frequently used data placement strategies have a high
vertical parallelization in the performed experiments.

To find a data placement strategy with a high vertical parallelization, the thesis tests the hypothesis that
collocate small connected triple sets on the same compute node while balancing the amount of triples stored
on the different compute nodes can lead to a high vertical parallelization. Specifically, two data placement
strategies are employed, namely, the overpartitioned minimal edge-cut cover and the molecule hash cover (the
latter being a newly developed data placement strategy). The evaluation shows a balanced query workload and
a high horizontal containment, which leads to a high vertical parallelization. As a result these strategies show
a better query performance than the frequently used data placement strategies.

Outlook

As described in the previous section, data placement strategies that split the data into small sets of connected
data items and subsequently group these sets to similarly sized data chunks may lead to faster query executions
than the frequently used data placement strategies. The newly developed data placement strategy, namely,
molecule hash cover, splits the data set arbitrary into small sets of connected data items and then distributes
them arbitrarily over different compute nodes. Future work could investigate whether the performance of the
data placement strategy can be improved by, e.g., collocating connected small data item sets on the same
compute node instead of distributing them arbitrarily.

Furthermore, the number of data placement strategies that optimize the data placement based on historic
query workloads is increasing. One such workload-aware data placement strategy is implemented in the dis-

97

Chapter 7. Conclusion

tributed RDF store DiploCloud [157]. It splits the data set into small sets of data items that are required to
create the individual query result of the historic queries. In the evaluation DiploCloud shows similar perfor-
mances to TriAD [55] which uses the overpartitioned minimal edge-cut cover. Therefore, a potential extension
of Koral is to further support the creation and evaluation of these workload-aware data placement strategies.

In the benchmarking methodology presented in this thesis, the used queries are generated to test different
query characteristics. Nevertheless, the extent to which these queries reflect real query workloads is unclear.
Therefore, future work is required to improve the benchmarking methodology by investigating real query logs
such as the one of Wikidata [99] or the LSQ data set [132].

Finally, the presented benchmarking methodology focuses on the execution of individual queries with high
workloads such as in use cases where analytical queries are requested against a data set. Nevertheless, RDF
stores in the cloud are also used in settings in which many queries with mostly small workloads are requested
against a system in parallel. For these settings, the query throughput is an important measure. To address
these settings, the developed methodology can be adapted to additionally measure the query throughput and
thereafter be applied to reevaluate the frequently used data placement strategies.

98

Bibliography
[1] Largetriplestores. https://www.w3.org/wiki/LargeTripleStores, accessed: 2018-07-10

[2] The bigdata® RDF Database. Retrieved: 29.10.2014, http://www.bigdata.com/
whitepapers/bigdata_architecture_whitepaper.pdf

[3] Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: Scalable Semantic Web Data Management
Using Vertical Partitioning. In: Proceedings of the 33rd International Conference on Very Large Data
Bases. pp. 411–422. VLDB ’07, VLDB Endowment (2007), http://dl.acm.org/citation.
cfm?id=1325851.1325900

[4] Abbassi, S., Faiz, R.: RDF-4X: A Scalable Solution for RDF Quads Store in the Cloud. In: Proceedings
of the 8th International Conference on Management of Digital EcoSystems. pp. 231–236. MEDES,
ACM, New York, NY, USA (2016). doi: 10.1145/3012071.3012104

[5] Abdelaziz, I., Harbi, R., Salihoglu, S., Kalnis, P.: Combining Vertex-Centric Graph Processing with
SPARQL for Large-Scale RDF Data Analytics. IEEE Transactions on Parallel and Distributed Systems
28(12), 3374–3388 (2017). doi: 10.1109/TPDS.2017.2720174

[6] Aberer, K., Cudré-Mauroux, P., Hauswirth, M., Van Pelt, T.: GridVine: Building Internet-Scale Seman-
tic Overlay Networks. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) The Semantic Web
– ISWC 2004. pp. 107–121. Springer Berlin Heidelberg, Berlin, Heidelberg (2004)

[7] Acosta, M., Vidal, M.E., Lampo, T., Castillo, J., Ruckhaus, E.: ANAPSID: An Adaptive Query Pro-
cessing Engine for SPARQL Endpoints. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A.,
Kagal, L., Noy, N., Blomqvist, E. (eds.) The Semantic Web – ISWC 2011. pp. 18–34. Springer Berlin
Heidelberg, Berlin, Heidelberg (2011)

[8] Akar, Z., Halaç, T.G., Ekinci, E.E., Dikenelli, O.: Querying the Web of Interlinked Datasets using
VOID Descriptions. In: WWW2012 Workshop on Linked Data on the Web, Lyon, France, 16 April,
2012 (2012), http://ceur-ws.org/Vol-937/ldow2012-paper-06.pdf

[9] Al-Harbi, R., Abdelaziz, I., Kalnis, P., Mamoulis, N., Ebrahim, Y., Sahli, M.: Adaptive Partitioning for
Very Large RDF Data. CoRR abs/1505.0 (2015), http://arxiv.org/abs/1505.02728

[10] Al-Harbi, R., Ebrahim, Y., Kalnis, P.: PHD-Store: An Adaptive SPARQL Engine with Dynamic Par-
titioning for Distributed RDF Repositories. CoRR abs/1405.4 (2014), http://arxiv.org/abs/
1405.4979

[11] Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J.: Describing Linked Datasets with the
VoID Vocabulary. W3C interest group note, W3C (2011), http://www.w3.org/TR/2011/
NOTE-void-20110303/

[12] Ali, L., Janson, T., Lausen, G.: 3rdf: Storing and Querying RDF Data on Top of the 3nuts Overlay
Network. In: 2011 22nd International Workshop on Database and Expert Systems Applications. pp.
257–261 (aug 2011). doi: 10.1109/DEXA.2011.1

99

https://www.w3.org/wiki/LargeTripleStores
http://www.bigdata.com/whitepapers/bigdata_architecture_whitepaper.pdf
http://www.bigdata.com/whitepapers/bigdata_architecture_whitepaper.pdf
http://dl.acm.org/citation.cfm?id=1325851.1325900
http://dl.acm.org/citation.cfm?id=1325851.1325900
http://ceur-ws.org/Vol-937/ldow2012-paper-06.pdf
http://arxiv.org/abs/1505.02728
http://arxiv.org/abs/1405.4979
http://arxiv.org/abs/1405.4979
http://www.w3.org/TR/2011/NOTE-void-20110303/
http://www.w3.org/TR/2011/NOTE-void-20110303/

Bibliography

[13] Ali, L., Janson, T., Schindelhauer, C.: Towards Load Balancing and Parallelizing of RDF Query
Processing in P2P Based Distributed RDF Data Stores. In: 2014 22nd Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing. pp. 307–311 (feb 2014). doi:
10.1109/PDP.2014.79

[14] Ali, L., Janson, T., Lausen, G., Schindelhauer, C.: Effects of Network Structure Improvement on Dis-
tributed RDF Querying. In: Hameurlain, A., Rahayu, W., Taniar, D. (eds.) Data Management in Cloud,
Grid and P2P Systems. pp. 63–74. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

[15] Aluç, G., Hartig, O., Özsu, M., Daudjee, K.: Diversified Stress Testing of RDF Data Manage-
ment Systems. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić,
D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.) The Semantic Web – ISWC 2014, Lecture
Notes in Computer Science, vol. 8796, pp. 197–212. Springer International Publishing (2014). doi:
10.1007/978-3-319-11964-9_13

[16] Arenas, M., Pérez, J.: Federation and Navigation in SPARQL 1.1. In: Eiter, T., Krennwallner, T. (eds.)
Reasoning Web. Semantic Technologies for Advanced Query Answering, Lecture Notes in Computer
Science, vol. 7487, pp. 78–111. Springer Berlin Heidelberg (2012). doi: 10.1007/978-3-642-33158-9_3

[17] Basca, C., Bernstein, A.: Distributed SPARQL Throughput Increase: On the effectiveness of Workload-
driven RDF partitioning. In: ISWC2013 (2013)

[18] Basca, C., Bernstein, A.: Querying a Messy Web of data with AVALANCHE. Web Seman-
tics: Science, Services and Agents on the World Wide Web 26(0) (2014), http://www.
websemanticsjournal.org/index.php/ps/article/view/361

[19] Battré, D., Heine, F., Höing, A., Kao, O.: On Triple Dissemination, Forward-Chaining, and Load
Balancing in DHT Based RDF Stores. In: Moro, G., Bergamaschi, S., Joseph, S., Morin, J.H., Ouk-
sel, A.M. (eds.) Databases, Information Systems, and Peer-to-Peer Computing. pp. 343–354. Springer
Berlin Heidelberg, Berlin, Heidelberg (2007)

[20] Beame, P., Koutris, P., Suciu, D.: Skew in Parallel Query Processing. In: Proceedings of the 33rd ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. pp. 212–223. PODS ’14,
ACM, New York, NY, USA (2014). doi: 10.1145/2594538.2594558

[21] Bizer, C., Schultz, A.: The Berlin SPARQL Benchmark. Int. J. Semantic Web Inf. Syst. 5(2), 1–24
(2009). doi: 10.4018/jswis.2009040101

[22] Böhm, C., Hefenbrock, D., Naumann, F.: Scalable Peer-to-peer-based RDF Management. In: Proceed-
ings of the 8th International Conference on Semantic Systems. pp. 165–168. I-SEMANTICS ’12, ACM,
New York, NY, USA (2012). doi: 10.1145/2362499.2362523

[23] Bröcheler, M., Pugliese, A., Subrahmanian, V.S.: COSI: Cloud Oriented Subgraph Identification in
Massive Social Networks. In: Advances in Social Networks Analysis and Mining (ASONAM). pp.
248–255 (Aug 2010). doi: 10.1109/ASONAM.2010.80

[24] Bugiotti, F., Camacho-Rodríguez, J., Goasdoué, F., Kaoudi, Z., Manolescu, I., Zampetakis, S.:
SPARQL Query Processing in the Cloud. In: Harth, A., Hose, K., Schenkel, R. (eds.) Linked Data
Management. Emerging Directions in Database Systems and Applications, Chapman and Hall/CRC
(Apr 2014)

100

http://www.websemanticsjournal.org/index.php/ps/article/view/361
http://www.websemanticsjournal.org/index.php/ps/article/view/361

Bibliography

[25] Cai, M., Frank, M.: RDFPeers: A scalable distributed RDF repository based on a structured peer-
to-peer network. Proceedings of the 13th International Conference on World Wide Web pp. 650–657
(2004), http://dl.acm.org/citation.cfm?id=988760

[26] Charalambidis, A., Troumpoukis, A., Konstantopoulos, S.: SemaGrow: Optimizing Federated
SPARQL Queries. In: Proceedings of the 11th International Conference on Semantic Systems. pp.
121–128. SEMANTICS ’15, ACM, New York, NY, USA (2015). doi: 10.1145/2814864.2814886

[27] Cheng, L., Kotoulas, S.: Scale-Out Processing of Large RDF Datasets. IEEE Transactions on Big Data
1(4), 138–150 (2015). doi: 10.1109/TBDATA.2015.2505719

[28] Chu, S., Balazinska, M., Suciu, D.: From Theory to Practice: Efficient Join Query Evaluation in a
Parallel Database System. In: Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data. pp. 63–78. SIGMOD ’15, ACM, New York, NY, USA (2015). doi: 10.1145/
2723372.2750545

[29] Cossu, M., Färber, M., Lausen, G.: PRoST: Distributed Execution of SPARQL Queries Using Mixed
Partitioning Strategies. In: Proceedings of the 21th International Conference on Extending Database
Technology, EDBT 2018, Vienna, Austria, March 26-29, 2018. pp. 469–472 (2018). doi: 10.5441/002/
edbt.2018.49

[30] Crespo, A., Garcia-Molina, H.: Semantic Overlay Networks for P2P Systems. In: Moro, G., Bergam-
aschi, S., Aberer, K. (eds.) Agents and Peer-to-Peer Computing. pp. 1–13. Springer Berlin Heidelberg,
Berlin, Heidelberg (2005)

[31] Cudre-Mauroux, P., Agarwal, S., Aberer, K.: GridVine: An Infrastructure for Peer Information Man-
agement. IEEE Internet Computing 11(5), 36–44 (sep 2007). doi: 10.1109/MIC.2007.108

[32] Cudré-Mauroux, P., Enchev, I., Fundatureanu, S., Groth, P., Haque, A., Harth, A., Keppmann, F.,
Miranker, D., Sequeda, J., Wylot, M.: NoSQL Databases for RDF: An Empirical Evaluation. In: Alani,
H., Kagal, L., Fokoue, A., Groth, P., Biemann, C., Parreira, J., Aroyo, L., Noy, N., Welty, C., Janowicz,
K. (eds.) The Semantic Web – ISWC 2013, Lecture Notes in Computer Science, vol. 8219, pp. 310–325.
Springer Berlin Heidelberg (2013). doi: 10.1007/978-3-642-41338-4_20

[33] Curé, O., Naacke, H., Baazizi, M.A., Amann, B.: On the Evaluation of RDF Distribution Algorithms
Implemented over Apache Spark. In: Proc. of the 11th Int. Workshop on Scalable Semantic Web Knowl-
edge Base Systems (at ISWC-2015). pp. 16–31 (2015)

[34] Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1 Concepts and Abstract Syntax. W3C Recommenda-
tion, W3C (2014), http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

[35] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Sivasubramanian,
S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s Highly Available Key-value Store. In: Proceedings
of Twenty-first ACM SIGOPS Symposium on Operating Systems Principles. pp. 205–220. SOSP ’07,
ACM, New York, NY, USA (2007). doi: 10.1145/1294261.1294281

[36] Della Valle, E., Turati, A., Ghioni, A.: PAGE: A Distributed Infrastructure for Fostering RDF-Based
Interoperability. In: Eliassen, F., Montresor, A. (eds.) Distributed Applications and Interoperable Sys-
tems. pp. 347–353. Springer Berlin Heidelberg, Berlin, Heidelberg (2006)

101

http://dl.acm.org/citation.cfm?id=988760
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

Bibliography

[37] DeWitt, D.J., Katz, R.H., Olken, F., Shapiro, L.D., Stonebraker, M.R., Wood, D.A.: Implementation
Techniques for Main Memory Database Systems. In: Proceedings of the 1984 ACM SIGMOD Interna-
tional Conference on Management of Data. pp. 1–8. SIGMOD ’84, ACM, New York, NY, USA (1984).
doi: 10.1145/602259.602261

[38] Dhraief, H., Kemper, A., Nejdl, W., Wiesner, C.: Processing and Optimization of Complex Queries
in Schema-Based P2P-Networks. In: Ng, W.S., Ooi, B.C., Ouksel, A.M., Sartori, C. (eds.) Databases,
Information Systems, and Peer-to-Peer Computing. pp. 31–45. Springer Berlin Heidelberg, Berlin, Hei-
delberg (2005)

[39] Ding, L., Peng, Y., da Silva, P.P., McGuinness, D.L.: Tracking RDF Graph Provenance using
RDF Molecules. Tech. rep., UMBC (2005), https://ebiquity.umbc.edu/paper/html/
id/240/Tracking-RDF-Graph-Provenance-using-RDF-Molecules

[40] Du, F., Bian, H., Chen, Y., Du, X.: Efficient SPARQL Query Evaluation in a Database Cluster. IEEE
Int. Congress on Big Data pp. 165–172 (2013). doi: 10.1109/BigData.Congress.2013.30

[41] Erling, O., Mikhailov, I.: Towards Web Scale RDF. In: 4th Int. Workshop on Scalable Semantic Web
Knowledge Base Systems (SSWS2008) (2008)

[42] Erling, O., Mikhailov, I.: Virtuoso: RDF Support in a Native RDBMS. In: de Virgilio, R., Giunchiglia,
F., Tanca, L. (eds.) Semantic Web Information Management, pp. 501–519. Springer Berlin Heidelberg
(2010). doi: 10.1007/978-3-642-04329-1_21

[43] Everett, N.: [wikidata-tech] wikidata query backend update (take two!).
https://lists.wikimedia.org/pipermail/wikidata-tech/2015-March/000740.html (March 2015)

[44] Farhan Husain, M., McGlothlin, J., Masud, M.M., Khan, L., Thuraisingham, B.: Heuristics-Based
Query Processing for Large RDF Graphs Using Cloud Computing. Knowledge and Data Engineering,
IEEE Transactions on 23(9), 1312–1327 (Sep 2011). doi: 10.1109/TKDE.2011.103

[45] Galarraga, L., Hose, K., Schenkel, R.: Partout: A Distributed Engine for Efficient RDF Processing.
CoRR abs/1212.5 (2012), http://arxiv.org/abs/1212.5636

[46] Goasdoué, F., Kaoudi, Z., Manolescu, I., Quiané-Ruiz, J.A., Zampetakis, S.: CliqueSquare: Flat plans
for massively parallel RDF queries. In: 2015 IEEE 31st International Conference on Data Engineering.
pp. 771–782 (apr 2015). doi: 10.1109/ICDE.2015.7113332

[47] Gonzalez, J.E., Xin, R.S., Dave, A., Crankshaw, D., Franklin, M.J., Stoica, I.: GraphX: Graph Pro-
cessing in a Distributed Dataflow Framework. In: Proceedings of the 11th USENIX Conference on
Operating Systems Design and Implementation. pp. 599–613. OSDI’14, USENIX Association, Berke-
ley, CA, USA (2014), http://dl.acm.org/citation.cfm?id=2685048.2685096

[48] Goodman, E.L., Grunwald, D.: Using Vertex-centric Programming Platforms to Implement SPARQL
Queries on Large Graphs. In: Proceedings of the 4th Workshop on Irregular Applications: Architectures
and Algorithms. pp. 25–32. IA3 ’14, IEEE Press, Piscataway, NJ, USA (2014). doi: 10.1109/IA3.2014.
10

[49] Görlitz, O., Thimm, M., Staab, S.: SPLODGE: Systematic generation of SPARQL benchmark
queries for linked open data. The Semantic Web–ISWC 2012 pp. 116–132 (2012). doi: 10.1007/
978-3-642-35176-1_8

102

https://ebiquity.umbc.edu/paper/html/id/240/Tracking-RDF-Graph-Provenance-using-RDF-Molecules
https://ebiquity.umbc.edu/paper/html/id/240/Tracking-RDF-Graph-Provenance-using-RDF-Molecules
http://arxiv.org/abs/1212.5636
http://dl.acm.org/citation.cfm?id=2685048.2685096

Bibliography

[50] Görlitz, O., Staab, S.: SPLENDID: SPARQL Endpoint Federation Exploiting VOID Descriptions.
In: Proceedings of the Second International Conference on Consuming Linked Data - Volume 782.
pp. 13–24. COLD’11, CEUR-WS.org, Aachen, Germany, Germany (2010), http://dl.acm.org/
citation.cfm?id=2887352.2887354

[51] Graux, D., Jachiet, L., Genevès, P., Layaïda, N.: A Multi-Criteria Experimental Ranking of Distributed
SPARQL Evaluators (2016), https://hal.inria.fr/hal-01381781

[52] Graux, D., Jachiet, L., Genevès, P., Layaïda, N.: SPARQLGX: Efficient Distributed Evaluation of
SPARQL with Apache Spark. In: Groth, P., Simperl, E., Gray, A., Sabou, M., Krötzsch, M., Lecue, F.,
Flöck, F., Gil, Y. (eds.) The Semantic Web – ISWC 2016: 15th International Semantic Web Conference,
Kobe, Japan, October 17–21, 2016, Proceedings, Part II, pp. 80–87. Springer International Publishing,
Cham (2016). doi: 10.1007/978-3-319-46547-0_9

[53] Gunther, N.J.: A simple capacity model of massively parallel transaction systems. In: 19. International
Computer Measurement Group Conference, San Diego, CA, USA, December 5-10, 1993 (1993)

[54] Guo, Y., Pan, Z., Heflin, J.: LUBM: A Benchmark for OWL Knowledge Base Systems. Web Se-
mantics: Science, Services and Agents on the World Wide Web 3(2-3) (2005), http://www.
websemanticsjournal.org/index.php/ps/article/view/70

[55] Gurajada, S., Seufert, S., Miliaraki, I., Theobald, M.: TriAD: A Distributed Shared-nothing RDF En-
gine Based on Asynchronous Message Passing. In: SIGMOD. pp. 289–300 (2014). doi: 10.1145/
2588555.2610511

[56] Gutierrez, C., Hurtado, C., Mendelzon, A.O.: Foundations of Semantic Web Databases. In: PODS. pp.
95–106. ACM (2004). doi: 10.1145/1055558.1055573

[57] Haas, L.M., Kossmann, D., Wimmers, E.L., Yang, J.: Optimizing Queries Across Diverse Data Sources.
In: Vldb. VLDB ’97, vol. Athens, Gr, pp. 276–285. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA (1997)

[58] Hammoud, M., Rabbou, D.A., Nouri, R., Beheshti, S.M.R., Sakr, S.: DREAM: Distributed RDF Engine
with Adaptive Query Planner and Minimal Communication. Proc. VLDB Endow. 8(6), 654–665 (2015).
doi: 10.14778/2735703.2735705

[59] Harbi, R., Abdelaziz, I., Kalnis, P., Mamoulis, N.: Evaluating SPARQL Queries on Massive
RDF Datasets. PVLDB 8(12), 1848–1851 (2015), http://www.vldb.org/pvldb/vol8/
p1848-harbi.pdf

[60] Harbi, R., Abdelaziz, I., Kalnis, P., Mamoulis, N., Ebrahim, Y., Sahli, M.: Accelerating SPARQL
queries by exploiting hash-based locality and adaptive partitioning. The VLDB Journal 25(3), 355–380
(jun 2016). doi: 10.1007/s00778-016-0420-y

[61] Harris, S., Lamb, N., Shadbolt, N.: 4store: The Design and Implementation of a Clustered RDF Store.
In: Scalable Semantic Web Knowledge Base Systems - SSWS2009. pp. 94–109 (2009)

[62] Harth, A., Decker, S.: Optimized Index Structures for Querying RDF from the Web. In: Proc. of LA-
WEB ’05. pp. 71—-. IEEE (2005). doi: 10.1109/LAWEB.2005.25

103

http://dl.acm.org/citation.cfm?id=2887352.2887354
http://dl.acm.org/citation.cfm?id=2887352.2887354
https://hal.inria.fr/hal-01381781
http://www.websemanticsjournal.org/index.php/ps/article/view/70
http://www.websemanticsjournal.org/index.php/ps/article/view/70
http://www.vldb.org/pvldb/vol8/p1848-harbi.pdf
http://www.vldb.org/pvldb/vol8/p1848-harbi.pdf

Bibliography

[63] Harth, A., Umbrich, J., Hogan, A., Decker, S.: YARS2: A Federated Repository for Querying Graph
Structured Data from the Web. In: ISWC-2007, vol. 4825, pp. 211–224. Springer Berlin Heidelberg
(2007). doi: 10.1007/978-3-540-76298-0_16

[64] Hong, S., Depner, S., Manhardt, T., Van Der Lugt, J., Verstraaten, M., Chafi, H.: PGX.D: A Fast
Distributed Graph Processing Engine. In: Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis. pp. 58:1—-58:12. SC ’15, ACM, New York,
NY, USA (2015). doi: 10.1145/2807591.2807620

[65] Hose, K., Schenkel, R.: WARP: Workload-aware replication and partitioning for RDF. In: Data Engi-
neering Workshops (ICDEW). pp. 1–6 (Apr 2013). doi: 10.1109/ICDEW.2013.6547414

[66] Huang, J., Abadi, D.J., Ren, K.: Scalable SPARQL Querying of Large RDF Graphs. PVLDB 4(11),
1123–1134 (2011)

[67] Janke, D., Skubella, A., Staab, S.: Evaluating sparql 1.1 property path support. In: Usbeck, R.,
Ngonga, A., Kim, J.D., Choi, K.S., Cimiano, P., Fundulaki, I., Krithara, A. (eds.) Joint Proceedings
of BLINK2017: Benchmarking Linked Data and NLIWoD3: Natural Language Interfaces for the
Web of Data (BLINK2017-NLIWoD3). No. 1932 in CEUR Workshop Proceedings, Aachen (2017),
http://ceur-ws.org/Vol-1932/paper-04.pdf

[68] Janke, D., Staab, S.: Storing and Querying Semantic Data in the Cloud. In: D’Amato, C., Theobald, M.
(eds.) Reasoning Web. Learning, Uncertainty, Streaming, and Scalability: 14th International Summer
School 2018, Esch-sur-Alzette, Luxembourg, September 22–26, 2018, Tutorial Lectures. pp. 173–222.
Springer International Publishing, Cham (2018). doi: 10.1007/978-3-030-00338-8_7

[69] Janke, D., Staab, S., Thimm, M.: Impact Analysis of Data Placement Strategies on Query Efforts in Dis-
tributed RDF Stores. Tech. rep., WeST (2016), https://owncloud.uni-koblenz-landau.
de/owncloud/s/5c25skgCkkDgxyQ

[70] Janke, D., Staab, S., Thimm, M.: Koral: A Glass Box Profiling System for Individual Components of
Distributed RDF Stores. In: Joint Proceedings of BLINK2017: 2nd International Workshop on Bench-
marking Linked Data and NLIWoD3: Natural Language Interfaces for the Web of Data co-located with
16th International Semantic Web Conference (ISWC 2017), Vienna, Austria, October 21st - to - 22nd,
2017. (2017), http://ceur-ws.org/Vol-1932/paper-05.pdf

[71] Janke, D., Staab, S., Thimm, M.: Koral: A Glass Box Profiling System for Individual Components of
Distributed RDF Stores. In: Nikitina, N., Song, D., Fokoue, A., Haase, P. (eds.) ISWC 2017 Posters
& Demonstrations and Industry Tracks. No. 2963 in CEUR Workshop Proceedings, Aachen (2017),
http://ceur-ws.org/Vol-1963/paper489.pdf

[72] Janke, D., Staab, S., Thimm, M.: On Data Placement Strategies in Distributed RDF Stores. In: Proceed-
ings of The International Workshop on Semantic Big Data. pp. 1:1–1:6. SBD ’17, ACM, New York,
NY, USA (2017). doi: 10.1145/3066911.3066915

[73] Janke, D., Staab, S., Thimm, M.: Impact analysis of data placement strategies on query efforts in
distributed RDF stores. Journal of Web Semantics 50, 21 – 48 (2018). doi: 10.1016/j.websem.2018.02.
002, http://www.websemanticsjournal.org/index.php/ps/article/view/516

104

http://ceur-ws.org/Vol-1932/paper-04.pdf
https://owncloud.uni-koblenz-landau.de/owncloud/s/5c25skgCkkDgxyQ
https://owncloud.uni-koblenz-landau.de/owncloud/s/5c25skgCkkDgxyQ
http://ceur-ws.org/Vol-1932/paper-05.pdf
http://ceur-ws.org/Vol-1963/paper489.pdf
http://www.websemanticsjournal.org/index.php/ps/article/view/516

Bibliography

[74] Jiang, D., Ooi, B.C., Shi, L., Wu, S.: The performance of mapreduce: An in-depth study. PVLDB 3(1),
472–483 (2010), http://www.comp.nus.edu.sg/~vldb2010/proceedings/files/
papers/E03.pdf

[75] Jones, N.D.: An Introduction to Partial Evaluation. ACM Comput. Surv. 28(3), 480–503 (sep 1996).
doi: 10.1145/243439.243447

[76] Käfer, T., Harth, A.: Billion Triples Challenge data set. Downloaded from
http://km.aifb.kit.edu/projects/btc-2014/ (2014)

[77] Kang, U., Tsourakakis, C.E., Faloutsos, C.: PEGASUS: A Peta-Scale Graph Mining System Implemen-
tation and Observations. In: 2009 Ninth IEEE International Conference on Data Mining. pp. 229–238
(2009). doi: 10.1109/ICDM.2009.14

[78] Kaoudi, Z., Koubarakis, M., Kyzirakos, K., Miliaraki, I., Magiridou, M., Papadakis-Pesaresi, A.: At-
las: Storing, updating and querying RDF(S) data on top of DHTs. Web Semantics: Science, Services
and Agents on the World Wide Web 8(4) (2010), http://www.websemanticsjournal.org/
index.php/ps/article/view/250

[79] Karnstedt, M., Sattler, K.U., Richtarsky, M., Muller, J., Hauswirth, M., Schmidt, R., John, R.: UniS-
tore: Querying a DHT-based Universal Storage. In: 2007 IEEE 23rd International Conference on Data
Engineering. pp. 1503–1504 (apr 2007). doi: 10.1109/ICDE.2007.369054

[80] Karypis, G., Kumar, V.: A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs.
SIAM J. Sci. Comput. 20(1), 359–392 (1998). doi: 10.1137/S1064827595287997

[81] Khadilkar, V., Kantarcioglu, M., Thuraisingham, B.M., Castagna, P.: Jena-HBase: A Distributed, Scal-
able and Effcient RDF Triple Store. Tech. rep., Department of Computer Science at The University of
Texas at Dallas (2012)

[82] Khadilkar, V., Kantarcioglu, M., Thuraisingham, B.M., Castagna, P.: Jena-HBase: A Distributed, Scal-
able and Effcient RDF Triple Store. In: Proceedings of the ISWC 2012 Posters & Demonstrations
Track, Boston, USA, November 11-15, 2012 (2012), http://ceur-ws.org/Vol-914/paper_
14.pdf

[83] Kim, H., Ravindra, P., Anyanwu, K.: From SPARQL to MapReduce: The Journey Using a Nested
TripleGroup Algebra. PVLDB 4(12), 1426–1429 (2011), http://www.vldb.org/pvldb/
vol4/p1426-kim.pdf

[84] Kiryakov, A., Bishop, B., Ognyanoff, D., Peikov, I., Tashev, Z., Velkov, R.: The Features of BigOWLIM
that Enabled the BBC’s World Cup Website. In: Workshop on Semantic Data Management (Sem-
Data@VLDB 2010) (Sep 2010)

[85] Kokkinidis, G., Christophides, V.: Semantic Query Routing and Processing in P2P Database Systems:
The ICS-FORTH SQPeer Middleware. In: Lindner, W., Mesiti, M., Türker, C., Tzitzikas, Y., Vakali,
A.I. (eds.) Current Trends in Database Technology - EDBT 2004 Workshops. pp. 486–495. Springer
Berlin Heidelberg, Berlin, Heidelberg (2005)

105

http://www.comp.nus.edu.sg/~vldb2010/proceedings/files/papers/E03.pdf
http://www.comp.nus.edu.sg/~vldb2010/proceedings/files/papers/E03.pdf
http://www.websemanticsjournal.org/index.php/ps/article/view/250
http://www.websemanticsjournal.org/index.php/ps/article/view/250
http://ceur-ws.org/Vol-914/paper_14.pdf
http://ceur-ws.org/Vol-914/paper_14.pdf
http://www.vldb.org/pvldb/vol4/p1426-kim.pdf
http://www.vldb.org/pvldb/vol4/p1426-kim.pdf

Bibliography

[86] Kotsev, V., Kiryakov, A., Fundulaki, I., Alexiev, V.: LDBC Semantic Publishing Bench-
mark (SPB) - v2.0 First Public Draft Release. Tech. rep., The Linked Data Benchmark Coun-
cil (June 2014), https://github.com/ldbc/ldbc_spb_bm_2.0/blob/master/doc/
LDBC_SPB_v2.0.docx?raw=true

[87] Ladwig, G., Harth, A.: CumulusRDF: Linked Data Management on Nested Key-Value Stores. In:
Proceedings of the 7th International Workshop on Scalable Semantic Web Knowledge Base Systems
(SSWS2011) at the 10th International Semantic Web Conference (ISWC2011) (Oct 2011)

[88] Ladwig, G., Tran, T.: SIHJoin: Querying Remote and Local Linked Data. In: Antoniou, G., Grobelnik,
M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) The Semantic Web: Research
and Applications. pp. 139–153. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

[89] Lakshman, A., Malik, P.: Cassandra: A Decentralized Structured Storage System. SIGOPS Oper. Syst.
Rev. 44(2), 35–40 (apr 2010). doi: 10.1145/1773912.1773922

[90] Le-Phuoc, D., Nguyen Mau Quoc, H., Le Van, C., Hauswirth, M.: Elastic and Scalable Processing of
Linked Stream Data in the Cloud. In: Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, C., Parreira,
J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.) The Semantic Web – ISWC 2013. pp. 280–297.
Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

[91] Lee, K., Liu, L.: Efficient Data Partitioning Model for Heterogeneous Graphs in the Cloud. In: Proc. of
the Int. Conf. on High Performance Computing, Networking, Storage and Analysis. pp. 46:1—-46:12.
ACM (2013). doi: 10.1145/2503210.2503302

[92] Lee, K., Liu, L.: Scaling Queries over Big RDF Graphs with Semantic Hash Partitioning. PVLDB
6(14), 1894–1905 (Sep 2013). doi: 10.14778/2556549.2556571

[93] Lee, K., Liu, L., Tang, Y., Zhang, Q., Zhou, Y.: Efficient and Customizable Data Partitioning Frame-
work for Distributed Big RDF Data Processing in the Cloud. In: IEEE CLOUD ’13. pp. 327–334
(2013). doi: 10.1109/CLOUD.2013.63

[94] Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Statistical Properties of Community Structure
in Large Social and Information Networks. In: Proceedings of the 17th International Conference on
World Wide Web. pp. 695–704. WWW ’08, ACM, New York, NY, USA (2008). doi: 10.1145/1367497.
1367591

[95] Liarou, E., Idreos, S., Koubarakis, M.: Evaluating Conjunctive Triple Pattern Queries over Large Struc-
tured Overlay Networks. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P.,
Uschold, M., Aroyo, L.M. (eds.) The Semantic Web - ISWC 2006. pp. 399–413. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2006)

[96] Lynden, S., Kojima, I., Matono, A., Tanimura, Y.: ADERIS: An Adaptive Query Processor for Join-
ing Federated SPARQL Endpoints. In: Meersman, R., Dillon, T., Herrero, P., Kumar, A., Reichert,
M., Qing, L., Ooi, B.C., Damiani, E., Schmidt, D.C., White, J., Hauswirth, M., Hitzler, P., Mohania,
M. (eds.) On the Move to Meaningful Internet Systems: OTM 2011. pp. 808–817. Springer Berlin
Heidelberg, Berlin, Heidelberg (2011)

[97] Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski, G.: Pregel:
A System for Large-scale Graph Processing. In: Proceedings of the 2010 ACM SIGMOD International

106

https://github.com/ldbc/ldbc_spb_bm_2.0/blob/master/doc/LDBC_SPB_v2.0.docx?raw=true
https://github.com/ldbc/ldbc_spb_bm_2.0/blob/master/doc/LDBC_SPB_v2.0.docx?raw=true

Bibliography

Conference on Management of Data. pp. 135–146. SIGMOD ’10, ACM, New York, NY, USA (2010).
doi: 10.1145/1807167.1807184

[98] Malliaros, F.D., Vazirgiannis, M.: Clustering and community detection in directed networks: A survey.
Physics Reports 533(4), 95–142 (2013). doi: 10.1016/j.physrep.2013.08.002

[99] Malyshev, S., Krötzsch, M., González, L., Gonsior, J., Bielefeldt, A.: Getting the Most out of Wiki-
data: Semantic Technology Usage in Wikipedia’s Knowledge Graph. In: Vrandečić, D., Bontcheva, K.,
Suárez-Figueroa, M.C., Presutti, V., Celino, I., Sabou, M., Kaffee, L.A., Simperl, E. (eds.) Proceed-
ings of the 17th International Semantic Web Conference (ISWC’18). LNCS, vol. 11137, pp. 376–394.
Springer (2018)

[100] Mansour, E., Abdelaziz, I., Ouzzani, M., Aboulnaga, A., Kalnis, P.: A Demonstration of Lu-
sail: Querying Linked Data at Scale. In: Proceedings of the 2017 ACM International Conference
on Management of Data. pp. 1603–1606. SIGMOD ’17, ACM, New York, NY, USA (2017). doi:
10.1145/3035918.3058731

[101] Matono, A., Pahlevi, S.M., Kojima, I.: RDFCube: A P2P-Based Three-Dimensional Index for Struc-
tural Joins on Distributed Triple Stores. In: Moro, G., Bergamaschi, S., Joseph, S., Morin, J.H., Ouk-
sel, A.M. (eds.) Databases, Information Systems, and Peer-to-Peer Computing. pp. 323–330. Springer
Berlin Heidelberg, Berlin, Heidelberg (2007)

[102] McMurry, J., Jupp, S., Malone, J., Burdett, T., Jenkinson, A., Parkinson, H., Davies, M., Brandizi, M.,
et al.: Report on the scalability of semantic web integration in biomedbridges (2015). doi: 10.5281/
zenodo.14071

[103] Mishra, P., Eich, M.H.: Join Processing in Relational Databases. ACM Comput. Surv. 24(1), 63–113
(1992). doi: 10.1145/128762.128764

[104] Montoya, G., Skaf-Molli, H., Hose, K.: The Odyssey Approach for Optimizing Federated SPARQL
Queries. In: The Semantic Web - ISWC 2017 - 16th International Semantic Web Conference,
Vienna, Austria, October 21-25, 2017, Proceedings, Part I. pp. 471–489 (2017). doi: 10.1007/
978-3-319-68288-4_28

[105] Montoya, G., Skaf-Molli, H., Molli, P., Vidal, M.E.: Federated SPARQL Queries Processing with
Replicated Fragments. In: Arenas, M., Corcho, O., Simperl, E., Strohmaier, M., D’Aquin, M., Srinivas,
K., Groth, P., Dumontier, M., Heflin, J., Thirunarayan, K., Thirunarayan, K., Staab, S. (eds.) The
Semantic Web - ISWC 2015, pp. 36–51. Springer International Publishing, Cham (2015)

[106] Montoya, G., Skaf-Molli, H., Molli, P., Vidal, M.E.: Decomposing Federated Queries in
presence of Replicated Fragments. Web Semantics: Science, Services and Agents on the
World Wide Web 42(1) (2017), http://www.websemanticsjournal.org/index.php/
ps/article/view/486

[107] Montoya, G., Vidal, M.E., Acosta, M.: A Heuristic-based Approach for Planning Federated SPARQL
Queries. In: Proceedings of the Third International Conference on Consuming Linked Data - Volume
905. pp. 63–74. COLD’12, CEUR-WS.org, Aachen, Germany, Germany (2012), http://dl.acm.
org/citation.cfm?id=2887367.2887373

107

http://www.websemanticsjournal.org/index.php/ps/article/view/486
http://www.websemanticsjournal.org/index.php/ps/article/view/486
http://dl.acm.org/citation.cfm?id=2887367.2887373
http://dl.acm.org/citation.cfm?id=2887367.2887373

Bibliography

[108] Morsey, M., Lehmann, J., Auer, S., Ngonga Ngomo, A.C.: DBpedia SPARQL Benchmark – Perfor-
mance Assessment with Real Queries on Real Data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J.,
Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) The Semantic Web – ISWC 2011. pp. 454–469.
Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

[109] Mutharaju, R., Sakr, S., Sala, A., Hitzler, P.: D-SPARQ: Distributed, Scalable and Efficient RDF Query
Engine. In: ISWC (Posters & Demos)’13. pp. 261–264 (2013)

[110] Naacke, H., Amann, B., Curé, O.: SPARQL Graph Pattern Processing with Apache Spark. In: Pro-
ceedings of the Fifth International Workshop on Graph Data-management Experiences & Systems. pp.
1:1—-1:7. GRADES’17, ACM, New York, NY, USA (2017). doi: 10.1145/3078447.3078448

[111] Nejdl, W., Wolpers, M., Siberski, W., Schmitz, C., Schlosser, M., Brunkhorst, I., Löser, A.: Super-peer-
based Routing and Clustering Strategies for RDF-based Peer-to-peer Networks. In: Proceedings of the
12th International Conference on World Wide Web. pp. 536–543. WWW ’03, ACM, New York, NY,
USA (2003). doi: 10.1145/775152.775229

[112] Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig Latin: A Not-so-foreign Language for
Data Processing. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management
of Data. pp. 1099–1110. SIGMOD ’08, ACM, New York, NY, USA (2008). doi: 10.1145/1376616.
1376726

[113] Oren, E., Kotoulas, S., Anadiotis, G., Siebes, R., ten Teije, A., van Harmelen, F.: Marvin: Distributed
reasoning over large-scale Semantic Web data. Web Semantics: Science, Services and Agents on the
World Wide Web 7(4) (2009), http://www.websemanticsjournal.org/index.php/ps/
article/view/173

[114] Osorio, M., Aranda, C.B.: Storage Balancing in P2P Based Distributed RDF Data Stores. In: Pro-
ceedings of the Workshop on Decentralizing the Semantic Web 2017 co-located with 16th Inter-
national Semantic Web Conference (ISWC 2017) (2017), http://ceur-ws.org/Vol-1934/
contribution-04.pdf

[115] Owens, A., Seaborne, A., Gibbins, N., McSchraefel: Clustered TDB: A Clustered Triple Store for
Jena (Nov 2008), http://eprints.soton.ac.uk/266974/, http://eprints.soton.
ac.uk/266974/

[116] Papailiou, N., Tsoumakos, D., Konstantinou, I., Karras, P., Koziris, N.: H2RDF+: An Efficient Data
Management System for Big RDF Graphs. In: Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data. pp. 909–912. SIGMOD ’14, ACM, New York, NY, USA (2014).
doi: 10.1145/2588555.2594535

[117] Peng, P., Zou, L., Chen, L., Zhao, D.: Query Workload-based RDF Graph Fragmentation and Alloca-
tion. In: Proceedings of the 19th International Conference on Extending Database Technology, EDBT
2016, Bordeaux, France, March 15-16, 2016, Bordeaux, France, March 15-16, 2016. pp. 377–388
(2016). doi: 10.5441/002/edbt.2016.35

[118] Peng, P., Zou, L., Özsu, M.T., Chen, L., Zhao, D.: Processing SPARQL Queries over Distributed RDF
Graphs. The VLDB Journal 25(2), 243–268 (apr 2016). doi: 10.1007/s00778-015-0415-0

108

http://www.websemanticsjournal.org/index.php/ps/article/view/173
http://www.websemanticsjournal.org/index.php/ps/article/view/173
http://ceur-ws.org/Vol-1934/contribution-04.pdf
http://ceur-ws.org/Vol-1934/contribution-04.pdf
http://eprints.soton.ac.uk/266974/
http://eprints.soton.ac.uk/266974/
http://eprints.soton.ac.uk/266974/

Bibliography

[119] Penteado, R.R.M., Scroeder, R., Hara, C.S.: Exploring Controlled RDF Distribution. In: 2016 IEEE
International Conference on Cloud Computing Technology and Science (CloudCom). pp. 160–167
(2016). doi: 10.1109/CloudCom.2016.0038

[120] Pérez, J., Arenas, M., Gutierrez, C.: Semantics and Complexity of SPARQL. ACM Trans. Database
Syst. 34(3), 16:1—-16:45 (Sep 2009). doi: 10.1145/1567274.1567278

[121] Potter, A., Motik, B., Horrocks, I.: Querying Distributed RDF Graphs: The Effects of Partitioning. In:
Workshop on Scalable Semantic Web Knowledge Base Systems (SSWS 2014). pp. 29–44 (2014)

[122] Potter, A., Motik, B., Nenov, Y., Horrocks, I.: Distributed RDF Query Answering with Dynamic
Data Exchange. In: Groth, P., Simperl, E., Gray, A., Sabou, M., Krötzsch, M., Lecue, F., Flöck, F.,
Gil, Y. (eds.) The Semantic Web – ISWC 2016: 15th International Semantic Web Conference, Kobe,
Japan, October 17–21, 2016, Proceedings, Part I, pp. 480–497. Springer International Publishing, Cham
(2016). doi: 10.1007/978-3-319-46523-4_29

[123] Prud’hommeaux, E., Harris, S., Seaborne, A.: SPARQL 1.1 Query Language. W3C Recommendation,
W3C (2013), http://www.w3.org/TR/sparql11-query/

[124] Przyjaciel-Zablocki, M., Schätzle, A., Lausen, G.: TriAL-QL: Distributed Processing of Naviga-
tional Queries. In: Proceedings of the 18th International Workshop on Web and Databases. pp. 48–54.
WebDB’15, ACM, New York, NY, USA (2015). doi: 10.1145/2767109.2767115

[125] Przyjaciel-Zablocki, M., Schätzle, A., Lausen, G.: Querying Semantic Knowledge Bases with SQL-
on-Hadoop. In: Proceedings of the 4th ACM SIGMOD Workshop on Algorithms and Systems for
MapReduce and Beyond. pp. 4:1—-4:10. BeyondMR’17, ACM, New York, NY, USA (2017). doi:
10.1145/3070607.3070610

[126] Pujol, J.M., Erramilli, V., Rodriguez, P.: Divide and Conquer: Partitioning Online Social Networks.
CoRR abs/0905.4 (2009), http://arxiv.org/abs/0905.4918

[127] Punnoose, R., Crainiceanu, A., Rapp, D.: Rya: A Scalable RDF Triple Store for the Clouds. In: 1st Int.
Workshop on Cloud Intelligence. pp. 4:1–4:8. ACM (2012). doi: 10.1145/2347673.2347677

[128] Quilitz, B., Leser, U.: Querying Distributed RDF Data Sources with SPARQL. In: Bechhofer, S.,
Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) The Semantic Web: Research and Applications.
pp. 524–538. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

[129] Rohloff, K., Schantz, R.E.: High-performance, Massively Scalable Distributed Systems Using the
MapReduce Software Framework: The SHARD Triple-store. In: Programming Support Innovations for
Emerging Distributed Applications. pp. 4:1—-4:5. PSI EtA ’10, ACM, New York, NY, USA (2010).
doi: 10.1145/1940747.1940751

[130] Russell, J.: Getting Started with Impala: Interactive SQL for Apache Hadoop. O’Reilly Media (2014),
http://shop.oreilly.com/product/0636920033936.do

[131] Sakr, S., Wylot, M., Mutharaju, R., Le Phuoc, D., Fundulaki, I.: Linked Data: Storing, Querying, and
Reasoning. Springer International Publishing, Cham, 1 edn. (2018). doi: 10.1007/978-3-319-73515-3

109

http://www.w3.org/TR/sparql11-query/
http://arxiv.org/abs/0905.4918
http://shop.oreilly.com/product/0636920033936.do

Bibliography

[132] Saleem, M., Ali, M.I., Hogan, A., Mehmood, Q., Ngomo, A.C.N.: LSQ: The Linked SPARQL Queries
Dataset. In: Arenas, M., Corcho, O., Simperl, E., Strohmaier, M., d’Aquin, M., Srinivas, K., Groth,
P., Dumontier, M., Heflin, J., Thirunarayan, K., Staab, S. (eds.) The Semantic Web - ISWC 2015. pp.
261–269. Springer International Publishing, Cham (2015)

[133] Saleem, M., Mehmood, Q., Ngonga Ngomo, A.C.: FEASIBLE: A Feature-Based SPARQL Benchmark
Generation Framework. In: Arenas, M., Corcho, O., Simperl, E., Strohmaier, M., D’Aquin, M., Srini-
vas, K., Groth, P., Dumontier, M., Heflin, J., Thirunarayan, K., Thirunarayan, K., Staab, S. (eds.) The
Semantic Web - ISWC 2015. pp. 52–69. Springer International Publishing, Cham (2015)

[134] Saleem, M., Ngonga Ngomo, A.C., Xavier Parreira, J., Deus, H.F., Hauswirth, M.: DAW: Duplicate-
AWare Federated Query Processing over the Web of Data. In: Alani, H., Kagal, L., Fokoue, A., Groth,
P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.) The Semantic Web
– ISWC 2013: 12th International Semantic Web Conference, Sydney, NSW, Australia, October 21-25,
2013, Proceedings, Part I, pp. 574–590. Springer Berlin Heidelberg, Berlin, Heidelberg (2013). doi:
10.1007/978-3-642-41335-3_36

[135] Schätzle, A., Przyjaciel-Zablocki, M., Berberich, T., Lausen, G.: S2X: Graph-Parallel Querying of
RDF with GraphX. In: Wang, F., Luo, G., Weng, C., Khan, A., Mitra, P., Yu, C. (eds.) Biomedical
Data Management and Graph Online Querying. pp. 155–168. Springer International Publishing, Cham
(2016)

[136] Schätzle, A., Przyjaciel-Zablocki, M., Lausen, G.: PigSPARQL: Mapping SPARQL to Pig Latin. In:
Proceedings of the International Workshop on Semantic Web Information Management. pp. 4:1—-4:8.
SWIM ’11, ACM, New York, NY, USA (2011). doi: 10.1145/1999299.1999303

[137] Schätzle, A., Przyjaciel-Zablocki, M., Neu, A., Lausen, G.: Sempala: Interactive SPARQL Query
Processing on Hadoop. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić,
D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.) The Semantic Web – ISWC 2014, Lecture Notes
in Computer Science, vol. 8796, pp. 164–179. Springer International Publishing (2014). doi: 10.1007/
978-3-319-11964-9_11

[138] Schätzle, A., Przyjaciel-Zablocki, M., Skilevic, S., Lausen, G.: S2RDF: RDF Querying with
SPARQL on Spark. PVLDB 9(10), 804–815 (2016), http://www.vldb.org/pvldb/vol9/
p804-schaetzle.pdf

[139] Schmidt, M., Görlitz, O., Haase, P., Ladwig, G., Schwarte, A., Tran, T.: FedBench: A Benchmark
Suite for Federated Semantic Data Query Processing. In: Aroyo, L., Welty, C., Alani, H., Taylor, J.,
Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) The Semantic Web – ISWC 2011. pp. 585–600.
Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

[140] Schmidt, M., Hornung, T., Meier, M., Pinkel, C., Lausen, G.: SP2Bench: A SPARQL Performance
Benchmark. In: de Virgilio, R., Giunchiglia, F., Tanca, L. (eds.) Semantic Web Information Man-
agement: A Model-Based Perspective, pp. 371–393. Springer Berlin Heidelberg, Berlin, Heidelberg
(2010). doi: 10.1007/978-3-642-04329-1_16

[141] Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: Optimization Techniques for
Federated Query Processing on Linked Data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein,
A., Kagal, L., Noy, N., Blomqvist, E. (eds.) The Semantic Web – ISWC 2011. pp. 601–616. Springer
Berlin Heidelberg, Berlin, Heidelberg (2011)

110

http://www.vldb.org/pvldb/vol9/p804-schaetzle.pdf
http://www.vldb.org/pvldb/vol9/p804-schaetzle.pdf

Bibliography

[142] Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The Hadoop Distributed File System. In: 2010
IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST). pp. 1–10 (2010). doi:
10.1109/MSST.2010.5496972

[143] Skubella, A., Janke, D., Staab, S.: Beseppi: Semantic-based benchmarking of property path imple-
mentations. In: The Semantic Web - 15th International Conference (06/06/19) (June 2019), https:
//eprints.soton.ac.uk/429356/

[144] Stein, R., Zacharias, V.: RDF on Cloud Number Nine. In: Ceri, S., Valle, E.D., Hendler, J., Huang, Z.
(eds.) Proceedings of the 4th Workshop on New Forms of Reasoning for the Semantic Web: Scalable
& Dynamic. CEUR Workshop Proceedings (2010)

[145] Stevens, W.R.: TCP/IP Illustrated (Vol. 1): The Protocols. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA (1993), http://www.pcvr.nl/tcpip/

[146] Stutz, P., Verman, M., Fischer, L., Bernstein, A.: TripleRush: a fast and scalable triple store. In: 9th
International Workshop on Scalable Semantic Web Knowledge Base Systems. CEUR Workshop Pro-
ceedings, http://ceur-ws.org, Aachen, Germany (2013)

[147] Stutz, P., Bernstein, A., Cohen, W.: Signal/Collect: Graph Algorithms for the (Semantic) Web. In:
Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.)
The Semantic Web – ISWC 2010. pp. 764–780. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

[148] Stutz, P., Paudel, B., Verman, M., Bernstein, A.: Random Walk TripleRush: Asynchronous Graph
Querying and Sampling. In: Proceedings of the 24th International Conference on World Wide Web.
pp. 1034–1044. WWW ’15, International World Wide Web Conferences Steering Committee, Republic
and Canton of Geneva, Switzerland (2015). doi: 10.1145/2736277.2741687

[149] Vidal, M.E., Ruckhaus, E., Lampo, T., Martínez, A., Sierra, J., Polleres, A.: Efficiently Joining Group
Patterns in SPARQL Queries, pp. 228–242. Springer Berlin Heidelberg, Berlin, Heidelberg (2010). doi:
10.1007/978-3-642-13486-9_16

[150] Wang, R., Chiu, K.: Optimizing Distributed RDF Triplestores via a Locally Indexed Graph Partitioning.
In: Parallel Processing (ICPP), 2012 41st International Conference on. pp. 259–268 (Sep 2012). doi:
10.1109/ICPP.2012.47

[151] Wang, X., Tiropanis, T., Davis, H.C.: LHD: Optimising Linked Data Query Processing Using Paralleli-
sation. In: Proceedings of the WWW2013 Workshop on Linked Data on the Web, Rio de Janeiro, Brazil,
14 May, 2013 (2013), http://ceur-ws.org/Vol-996/papers/ldow2013-paper-06.
pdf

[152] White, T.: Hadoop: The Definitive Guide. O’Reilly, Beijing, 4 edn. (2015), https:
//www.safaribooksonline.com/library/view/hadoop-the-definitive/
9781491901687/

[153] Wilschut, A.N., Apers, P.M.G.: Dataflow query execution in a parallel main-memory environment.
Distributed and Parallel Databases 1(1), 103–128 (jan 1993). doi: 10.1007/BF01277522

[154] Wood, D., Gearon, P., Adams, T.: Kowari: A platform for semantic web storage and analysis. In: In
XTech 2005 Conference. pp. 05–0402 (2005)

111

https://eprints.soton.ac.uk/429356/
https://eprints.soton.ac.uk/429356/
http://www.pcvr.nl/tcpip/
http://ceur-ws.org/Vol-996/papers/ldow2013-paper-06.pdf
http://ceur-ws.org/Vol-996/papers/ldow2013-paper-06.pdf
https://www.safaribooksonline.com/library/view/hadoop-the-definitive/9781491901687/
https://www.safaribooksonline.com/library/view/hadoop-the-definitive/9781491901687/
https://www.safaribooksonline.com/library/view/hadoop-the-definitive/9781491901687/

Bibliography

[155] Wu, B., Zhou, Y., Yuan, P., Liu, L., Jin, H.: Scalable SPARQL querying using path partitioning. In:
2015 IEEE 31st International Conference on Data Engineering. pp. 795–806 (apr 2015). doi: 10.1109/
ICDE.2015.7113334

[156] Wu, B., Zhou, Y., Yuan, P., Jin, H., Liu, L.: SemStore: A Semantic-Preserving Distributed RDF Triple
Store. In: CIKM-2014 (2014)

[157] Wylot, M., Cudré-Mauroux, P.: Diplocloud: Efficient and scalable management of rdf data in the cloud.
IEEE Transactions on Knowledge and Data Engineering 28(3), 659–674 (2016). doi: 10.1109/TKDE.
2015.2499202

[158] Xu, Z., Chen, W., Gai, L., Wang, T.: SparkRDF: In-Memory Distributed RDF Management Frame-
work for Large-Scale Social Data. In: Dong, X.L., Yu, X., Li, J., Sun, Y. (eds.) Web-Age Information
Management. pp. 337–349. Springer International Publishing, Cham (2015)

[159] Yang, S., Yan, X., Zong, B., Khan, A.: Towards Effective Partition Management for Large Graphs.
In: Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data. pp.
517–528. SIGMOD ’12, ACM, New York, NY, USA (2012). doi: 10.1145/2213836.2213895

[160] Yang, T., Chen, J., Wang, X., Chen, Y., Du, X.: Efficient SPARQL Query Evaluation via Automatic
Data Partitioning. In: Meng, W., Feng, L., Bressan, S., Winiwarter, W., Song, W. (eds.) Database Sys-
tems for Advanced Applications. pp. 244–258. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

[161] Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: Cluster Computing with
Working Sets. In: Proceedings of the 2Nd USENIX Conference on Hot Topics in Cloud Comput-
ing. p. 10. HotCloud’10, USENIX Association, Berkeley, CA, USA (2010), http://dl.acm.org/
citation.cfm?id=1863103.1863113

[162] Zeng, K., Yang, J., Wang, H., Shao, B., Wang, Z.: A Distributed Graph Engine for Web Scale RDF
Data. PVLDB 6(4), 265–276 (Feb 2013). doi: 10.14778/2535570.2488333

[163] Zhang, X., Chen, L., Tong, Y., Wang, M.: EAGRE: Towards scalable I/O efficient SPARQL query
evaluation on the cloud. In: ICDE-2013. pp. 565–576 (Apr 2013). doi: 10.1109/ICDE.2013.6544856

[164] Zhang, X., Chen, L., Wang, M.: Towards Efficient Join Processing over Large RDF Graph Using
MapReduce. In: Ailamaki, A., Bowers, S. (eds.) Scientific and Statistical Database Management,
Lecture Notes in Computer Science, vol. 7338, pp. 250–259. Springer Berlin Heidelberg (2012). doi:
10.1007/978-3-642-31235-9_16

112

http://dl.acm.org/citation.cfm?id=1863103.1863113
http://dl.acm.org/citation.cfm?id=1863103.1863113

APPENDIX A
Examples of Distributed Query Execution

A.1. Example of Distributed Query Execution without Triple Replication

In the example setting we assume that there exists three compute nodes c1, c2 and c3. Therefore the set of all
compute nodes C is C = {c1,c2,c3}. The compute nodes have the order c1 < c2 < c3.

A graph cover called cov distributes a graph G over all three computes nodes. The resulting chunks are:

chunkcov(c1) = {(1,a,2),(1,b,2),(2,c,5),(2,c,6),(2,c,7)}
chunkcov(c2) = {(2,a,3),(2,b,3),(3,b,2)}
chunkcov(c3) = {(2,a,1)}

Thereby, 1,2,3,5,6,7 represent resources at the subject or object position whereas a,b,c represent resources
at the property position.

While loading the graph, the following join responsibilities will be defined based on the number of occur-
rences at the subject position in the different chunks. If a resource does not occur as a subject in the complete
graph G then the number of its occurrences at the object and thereafter at the property position is chosen. One
special case is a. a occurs in each chunk only once as a property. In this case the smallest compute node c1
on which it occurs is chosen.

jResp(1) = c1

jResp(2) = c1

jResp(3) = c2

jResp(5) = c1

jResp(6) = c1

jResp(7) = c1

jResp(a) = c1

jResp(b) = c2

jResp(c) = c1

The following query Q should be executed with a bushy query execution tree.

SELECT ?X, ?Y, ?Z, ?W WHERE {
?X a ?Y.
?Y b ?Z.
?Z b ?W.
?W a ?X

}

113

Appendix A. Examples of Distributed Query Execution

The bushy execution tree for query Q will result in the query execution tree shown in Figure A.1. Each
compute node will execute the complete query execution tree. Additionally, the variables have the order
?X< ?Y< ?Z< ?W.

Figure A.1.: Query execution tree of example query Q.

Processing of ⟨⟨?X a ?Y⟩⟩

Each compute node matches the triple pattern ?X a ?Y on its locally stored chunk. The results are visualized
in Figure A.2.
Compute node c1 computes J?X a ?YKc1

cov = {{(?X,1),(?Y,2)}}
Compute node c2 computes J?X a ?YKc2

cov = {{(?X,2),(?Y,3)}}
Compute node c3 computes J?X a ?YKc3

cov = {{(?X,2),(?Y,1)}}

Figure A.2.: Results of evaluating ?X a ?Y on the different compute nodes.

Processing of ⟨⟨?Y b ?Z⟩⟩

Each compute node matches the triple pattern ?Y b ?Z on its locally stored chunk. The results are visualized
in Figure A.3.
Compute node c1 computes J?Y b ?ZKc1

cov = {{(?Y,1),(?Z,2)}}
Compute node c2 computes J?Y b ?ZKc2

cov = {{(?Y,2),(?Z,3)},{(?Y,3),(?Z,2)}}
Compute node c3 computes J?Y b ?ZKc3

cov = {}

114

A.1. Example of Distributed Query Execution without Triple Replication

Figure A.3.: Results of evaluating ?Y b ?Z on the different compute nodes.

Processing of ⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y b ?Z⟩⟩⟩⟩

In order to join the results of the triple patterns ?X a ?Y and ?Y b ?Z the join variables need to be identified
first. In this case the join variables are cVars(⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y b ?Z⟩⟩⟩⟩) = {?Y}.

One difficulty of distributed joins is to compute the complete set of results. To ensure this, all variable
bindings that assign the same resource to the join variable needs to be transferred to the same compute node
where they will be joined. The compute node on which a specific resource will be joined is defined by its join
responsibility jResp. For instance, the variable binding µ = {(?X,1),(?Y,2)} will be joined on compute node
jResp(µ(?Y)) = jResp(2) = c1.

Reminder: The join responsibilities of 1, 2 and 3 are jResp(1) = c1, jResp(2) = c1 and jResp(3) = c1.

Transferring the Results of the Evaluation of ?X a ?Y

The results of J?X a ?YKc1
cov produced on compute node c1 will be transferred to the compute nodes c1, c2

and c3 as follows:

route(c1,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y b ?Z⟩⟩⟩⟩,J?X a ?YKc1
cov) = {{(?X,1),(?Y,2)}}

route(c2,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y b ?Z⟩⟩⟩⟩,J?X a ?YKc1
cov) = {}

route(c3,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y b ?Z⟩⟩⟩⟩,J?X a ?YKc1
cov) = {}

The results of J?X a ?YKc2
cov produced on compute node c2 will be transferred to the compute nodes c1, c2

and c3 as follows:

route(c1,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y b ?Z⟩⟩⟩⟩,J?X a ?YKc2
cov) = {}

route(c2,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y b ?Z⟩⟩⟩⟩,J?X a ?YKc2
cov) = {{(?X,2),(?Y,3)}}

route(c3,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y b ?Z⟩⟩⟩⟩,J?X a ?YKc2
cov) = {}

The results of J?X a ?YKc3
cov produced on compute node c3 will be transferred to the compute nodes c1, c2

and c3 as follows:

route(c1,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y b ?Z⟩⟩⟩⟩,J?X a ?YKc3
cov) = {{(?X,2),(?Y,1)}}

route(c2,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y b ?Z⟩⟩⟩⟩,J?X a ?YKc3
cov) = {}

route(c3,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y b ?Z⟩⟩⟩⟩,J?X a ?YKc3
cov) = {}

115

Appendix A. Examples of Distributed Query Execution

Transferring the Results of the Evaluation of ?Y b ?Z

The results of J?Y b ?ZKc1
cov produced on compute node c1 will be transferred to the compute nodes c1, c2

and c3 as follows:

route(c1,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y b ?Z⟩⟩⟩⟩,J?Y b ?ZKc1
cov) = {{(?Y,1),(?Z,2)}}

route(c2,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y b ?Z⟩⟩⟩⟩,J?Y b ?ZKc1
cov) = {}

route(c3,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y b ?Z⟩⟩⟩⟩,J?Y b ?ZKc1
cov) = {}

The results of J?Y b ?ZKc2
cov produced on compute node c2 will be transferred to the compute nodes c1, c2

and c3 as follows:

route(c1,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y b ?Z⟩⟩⟩⟩,J?Y b ?ZKc2
cov) = {{(?Y,2),(?Z,3)}}

route(c2,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y b ?Z⟩⟩⟩⟩,J?Y b ?ZKc2
cov) = {{(?Y,3),(?Z,2)}}

route(c3,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y b ?Z⟩⟩⟩⟩,J?Y b ?ZKc2
cov) = {}

The results of J?Y b ?ZKc3
cov produced on compute node c3 will be transferred to the compute nodes c1, c2

and c3 as follows:

route(c1,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y b ?Z⟩⟩⟩⟩,J?Y b ?ZKc3
cov) = {}

route(c2,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y b ?Z⟩⟩⟩⟩,J?Y b ?ZKc3
cov) = {}

route(c3,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y b ?Z⟩⟩⟩⟩,J?Y b ?ZKc3
cov) = {}

Figure A.4 shows the result after transferring all variable bindings.

Figure A.4.: Results of transferring the variable bindings according to their join responsibility.

Joining the Results of the Evaluations of ?X a ?Y and ?Y b ?Z

Compute node c1 has received the following results of the evaluation of ?X a ?Y from the different compute
nodes:⋃

c∈C

route(c1,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y b ?Z⟩⟩⟩⟩,J?X a ?YKc
cov) = {{(?X,1),(?Y,2)},{(?X,2),(?Y,1)}}

116

A.1. Example of Distributed Query Execution without Triple Replication

Furthermore, compute node c1 received the following results of the evaluation of ?Y b ?Z from the different
compute nodes:⋃

c∈C

route(c1,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y b ?Z⟩⟩⟩⟩,J?Y b ?ZKc
cov) = {{(?Y,1),(?Z,2)},{(?Y,2),(?Z,3)}}

The join of both variable binding sets results in:
J?X a ?Y. ?Y b ?ZKc1

cov
= {{(?X,1),(?Y,2)},{(?X,2),(?Y,1)}} ▷◁ {{(?Y,1),(?Z,2)},{(?Y,2),(?Z,3)}}
= {{(?X,1),(?Y,2),(?Z,3)},{(?X,2),(?Y,1),(?Z,2)}}

Compute node c2 has received the following results of the evaluation of ?X a ?Y from the different compute
nodes: ⋃

c∈C

route(c2,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y b ?Z⟩⟩⟩⟩,J?X a ?YKc
cov) = {{(?X,2),(?Y,3)}}

Furthermore, compute node c3 received the following results of the evaluation of ?Y b ?Z from the different
compute nodes:⋃

c∈C

route(c2,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y b ?Z⟩⟩⟩⟩,J?Y b ?ZKc
cov) = {{(?Y,3),(?Z,2)}}

The join of both variable binding sets results in:
J?X a ?Y. ?Y b ?ZKc2

cov = {{(?X,2),(?Y,3)}} ▷◁ {{(?Y,3),(?Z,2)}}= {{(?X,2),(?Y,3),(?Z,2)}}

Compute node c3 has not received any variable bindings. Therefore, J?X a ?Y. ?Y b ?ZKc3
cov = {}.

Figure A.5 shows the variable bindings resulting of the joins.

Figure A.5.: Results of joining the results of ?X a ?Y and ?Y b ?Z.

Processing of ⟨⟨?Z b ?W⟩⟩

Each compute node matches the triple pattern ?Z b ?W on its locally stored chunk. The results are visualized
in Figure A.6.
Compute node c1 computes J?Z b ?WKc1

cov = {{(?Z,1),(?W,2)}}
Compute node c2 computes J?Z b ?WKc2

cov = {{(?Z,2),(?W,3)},{(?Z,3),(?W,2)}}
Compute node c3 computes J?Z b ?WKc3

cov = {}

117

Appendix A. Examples of Distributed Query Execution

Figure A.6.: Results of evaluating ?Z b ?W on the different compute nodes.

Processing of ⟨⟨?W a ?X⟩⟩

Each compute node matches the triple pattern ?W a ?X on its locally stored chunk. The results are visualized
in Figure A.7.
Compute node c1 computes J?W a ?XKc1

cov = {{(?W,1),(?X,2)}}
Compute node c2 computes J?W a ?XKc2

cov = {{(?W,2),(?X,3)}}
Compute node c3 computes J?W a ?XKc3

cov = {{(?W,2),(?X,1)}}

Figure A.7.: Results of evaluating ?W a ?X on the different compute nodes.

Processing of ⟨⟨⟨⟨?Z b ?W⟩⟩.⟨⟨?W a ?X⟩⟩⟩⟩

In order to join the results of the triple patterns ?Z b ?W and ?W a ?X the join variables need to be identified
first. In this case the join variables are cVars(⟨⟨⟨⟨?Z b ?W⟩⟩.⟨⟨?W a ?X⟩⟩⟩⟩) = {?W}. The variable bindings pro-
duced by the triple patterns ?Z b ?W and ?W a ?X are transferred to the compute node which is responsible
for joining the resource bound to ?W.

Reminder: The join responsibilities of 1, 2 and 3 are jResp(1) = c1, jResp(2) = c1 and jResp(3) = c1.
Figure A.8 shows the result after transferring all variable bindings.

Compute node c1 has received the following results of the evaluation of ?Z b ?W from the different compute
nodes:⋃

c∈C

route(c1,⟨⟨⟨⟨?Z b ?W⟩⟩.⟨⟨?W a ?X⟩⟩⟩⟩,J?Z b ?WKc
cov) = {{(?Z,1),(?W,2)},{(?Z,3),(?W,2)}}

118

A.1. Example of Distributed Query Execution without Triple Replication

Figure A.8.: Results of transferring the variable bindings according to their join responsibility.

Furthermore, compute node c1 received the following results of the evaluation of ?W a ?X from the different
compute nodes:

⋃
c∈C

route(c1,⟨⟨⟨⟨?Z b ?W⟩⟩.⟨⟨?W a ?X⟩⟩⟩⟩,J?W a ?XKc
cov)

= {{(?W,1),(?X,2)},{(?W,2),(?X,3)},{(?W,2),(?X,1)}}

The join of both variable binding sets results in:
J?Z b ?W. ?W a ?XKc1

cov
= {{(?Z,1),(?W,2)},{(?Z,3),(?W,2)}} ▷◁ {{(?W,1),(?X,2)},{(?W,2),(?X,3)},{(?W,2),(?X,1)}}
= {{(?Z,1),(?W,2),(?X,3)},{(?Z,1),(?W,2),(?X,1)},{(?Z,3),(?W,2),(?X,3)},{(?Z,3),(?W,2),(?X,1)}}}

Compute node c2 has received the following results of the evaluation of ?Z b ?W from the different compute
nodes: ⋃

c∈C

route(c2,⟨⟨⟨⟨?Z b ?W⟩⟩.⟨⟨?W a ?X⟩⟩⟩⟩,J?Z b ?WKc
cov) = {{(?Z,2),(?W,3)}}

Furthermore, compute node c3 received the following results of the evaluation of ?W a ?X from the different
compute nodes: ⋃

c∈C

route(c2,⟨⟨⟨⟨?Z b ?W⟩⟩.⟨⟨?W a ?X⟩⟩⟩⟩,J?W a ?XKc
cov) = {}

The join of both variable binding sets results in:
J?Z b ?W. ?W a ?XKc2

cov = {{(?Z,2),(?W,3)}} ▷◁ {}= {}

Compute node c3 has not received any variable bindings. Therefore, J?Z b ?W. ?W a ?XKc3
cov = {}.

Figure A.9 shows the variable bindings resulting of the joins.

119

Appendix A. Examples of Distributed Query Execution

Figure A.9.: Results of joining the results of ?Z b ?W and ?W a ?X.

Processing of ⟨⟨⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y b ?Z⟩⟩⟩⟩.⟨⟨⟨⟨?Z b ?W⟩⟩.⟨⟨?W a ?X⟩⟩⟩⟩⟩⟩

In order to join the results of the two previous joins ?X a ?Y. ?Y b ?Z and ?Z b ?W. ?W a ?X the join
variables need to be identified first. In this case the join variables are

cVars(⟨⟨⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y b ?Z⟩⟩⟩⟩.⟨⟨⟨⟨?Z b ?W⟩⟩.⟨⟨?W a ?X⟩⟩⟩⟩⟩⟩) = {?X,?Z}

Since there are two join variables now, the smallest variable is chosen based on the ordering of the variables. In
this case min<V ({?X,?Z}) = ?X. Therefore, variable bindings produced by both previous joins are transferred
to the compute node which is responsible for joining the resource bound to ?X. In order to abbreviate the
following formulas, the term ⟨⟨⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y b ?Z⟩⟩⟩⟩.⟨⟨⟨⟨?Z b ?W⟩⟩.⟨⟨?W a ?X⟩⟩⟩⟩⟩⟩ will be named as
Q j.

Reminder: The join responsibilities of 1, 2 and 3 are jResp(1) = c1, jResp(2) = c1 and jResp(3) = c1.

As described before, the join ?X a ?Y. ?Y b ?Z produces the following results on the different compute
nodes:
J?X a ?Y. ?Y b ?ZKc1

cov = {{(?X,1),(?Y,2),(?Z,3)},{(?X,2),(?Y,1),(?Z,2)}}
J?X a ?Y. ?Y b ?ZKc2

cov = {{(?X,2),(?Y,3),(?Z,2)}}
J?X a ?Y. ?Y b ?ZKc3

cov = {}
As described before, the join ?Z b ?W. ?W a ?X produces the following results on the different compute

nodes:
J?Z b ?W. ?W a ?XKc1

cov = {{(?Z,1),(?W,2),(?X,3)},{(?Z,1),(?W,2),(?X,1)},{(?Z,3),(?W,2),(?X,3)},
{(?Z,3),(?W,2),(?X,1)}}}

J?Z b ?W. ?W a ?XKc2
cov = {}

J?Z b ?W. ?W a ?XKc3
cov = {}

Figure A.10 shows the result after transferring all variable bindings. Since no operation on compute node
c3 is involved its operations are not shown.

120

A.1. Example of Distributed Query Execution without Triple Replication

Figure A.10.: Results of transferring the variable bindings according to their join responsibility.

Compute node c1 has received the following results of the evaluation of ?X a ?Y. ?Y b ?Z from the
different compute nodes:⋃

c∈C

route(c1,Q j,J?X a ?Y. ?Y b ?ZKc
cov)

= {{(?X,1),(?Y,2),(?Z,3)},{(?X,2),(?Y,1),(?Z,2)},{(?X,2),(?Y,3),(?Z,2)}}

Furthermore, compute node c1 received the following results of the evaluation of ?Z b ?W. ?W a ?X from
the different compute nodes:⋃

c∈C

route(c1,Q j,J?Z b ?W. ?W a ?XKc
cov) = {{(?Z,1),(?W,2),(?X,1)},{(?Z,3),(?W,2),(?X,1)}}

The join of both variable binding sets results in:
J?X a ?Y. ?Y b ?Z. ?Z b ?W. ?W a ?XKc1

cov
= {{(?X,1),(?Y,2),(?Z,3)},{(?X,2),(?Y,1),(?Z,2)},{(?X,2),(?Y,3),(?Z,2)}}

▷◁ {{(?Z,1),(?W,2),(?X,1)},{(?Z,3),(?W,2),(?X,1)}}
= {{(?X,1),(?Y,2),(?Z,3),(?W,2)}}

Compute node c2 has received the following results of the evaluation of ?X a ?Y. ?Y b ?Z from the
different compute nodes: ⋃

c∈C

route(c2,Q j,J?X a ?Y. ?Y b ?ZKc
cov) = {}

Furthermore, compute node c3 received the following results of the evaluation of ?Z b ?W. ?W a ?X from
the different compute nodes:⋃

c∈C

route(c2,Q j,J?Z b ?W. ?W a ?XKc
cov) = {{(?Z,1),(?W,2),(?X,3)},{(?Z,3),(?W,2),(?X,3)}}

121

Appendix A. Examples of Distributed Query Execution

The join of both variable binding sets results in:
J?X a ?Y. ?Y b ?Z. ?Z b ?W. ?W a ?XKc2

cov
= {} ▷◁ {{(?Z,1),(?W,2),(?X,3)},{(?Z,3),(?W,2),(?X,3)}}
= {}

Compute node c3 has not received any variable bindings.
J?X a ?Y. ?Y b ?Z. ?Z b ?W. ?W a ?XKc3

cov = {}.

Figure A.11 shows the variable bindings resulting of the joins.

Figure A.11.: Results of joining the results of both previous joins.

Processing of
⟨⟨SELECT ?X, ?Y, ?Z, ?W⟨⟨⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y b ?Z⟩⟩⟩⟩.⟨⟨⟨⟨?Z b ?W⟩⟩.⟨⟨?W a ?X⟩⟩⟩⟩⟩⟩⟩⟩

The projection of the variables can be performed locally on each compute node without the need to exchange
variable bindings before. Since in this example no variable is filtered out the results on the different compute
nodes remain unchanged.

JQKc1
cov = {{(?X,1),(?Y,2),(?Z,3),(?W,2)}}

JQKc2
cov = {}

JQKc3
cov = {}

Union of the Result Sets of all Compute Nodes

The last step performed is to union all result sets before sending the results to the requesting client.

JQKcov = JQKc1
cov ∪ JQKc2

cov ∪ JQKc3
cov = {{(?X,1),(?Y,2),(?Z,3),(?W,2)}}

122

A.2. Example of Distributed Query Execution with Triple Replication

A.2. Example of Distributed Query Execution with Triple Replication

In the example setting we assume that there exists three compute nodes c1, c2 and c3. Therefore the set of all
compute nodes C is C = {c1,c2,c3}. The compute nodes have the order c1 < c2 < c3.

A graph cover called cov distributes a graph G over all three computes nodes. The resulting chunks are:

chunkcov(c1) = {(1,a,2),(2,a,3)}
chunkcov(c2) = {(2,a,3),(3,b,1)}
chunkcov(c3) = {(3,b,1),(1,a,2)}

Thereby, 1,2,3 represent resources at the subject or object position whereas a,b represent resources at the
property position. Even though it is not defined formally, we add the set of compute nodes on which the
triples occur in the following list of chunks in order to increase the comprehensibility of this example. In the
formal definition the sets of compute nodes are determined by the graph cover function cov when evaluating
the triple patterns.

chunkcov(c1) = {((1,a,2),{c1,c3}),((2,a,3),{c1,c2})}
chunkcov(c2) = {((2,a,3),{c1,c2}),((3,b,1),{c2,c3})}
chunkcov(c3) = {((3,b,1),{c2,c3}),((1,a,2),{c1,c3})}

Furthermore, awe assume that the following join responsibility is defined.

jResp(1) = c1

jResp(2) = c1

jResp(3) = c2

jResp(a) = c1

jResp(b) = c2

The following query Q should be executed with a bushy query execution tree.

SELECT ?X, ?Y, ?Z, ?W WHERE {
?X a ?Y.
?Y a ?Z.
?Z b ?X

}

The bushy execution tree for query Q will result in the query execution tree shown in Figure A.12. Each
compute node will execute the complete query execution tree. Additionally, the variables have the order
?X< ?Y< ?Z.

Processing of ⟨⟨?X a ?Y⟩⟩

Each compute node matches the triple pattern ?X a ?Y on its locally stored chunk. The results are visualized
in Figure A.13.
Compute node c1 computes J?X a ?YKloc,c1

cov = {({(?X,1),(?Y,2)},{c1,c3}),({(?X,2),(?Y,3)},{c1,c2})}
Compute node c2 computes J?X a ?YKloc,c2

cov = {({(?X,2),(?Y,3)},{c1,c2})}
Compute node c3 computes J?X a ?YKloc,c3

cov = {({(?X,1),(?Y,2)},{c1,c3})}

123

Appendix A. Examples of Distributed Query Execution

Figure A.12.: Query execution tree of example query Q.

Figure A.13.: Results of evaluating ?X a ?Y on the different compute nodes.

Processing of ⟨⟨?Y a ?Z⟩⟩

Each compute node matches the triple pattern ?Y a ?Z on its locally stored chunk. The results are visualized
in Figure A.14.
Compute node c1 computes J?Y a ?ZKloc,c1

cov = {({(?Y,1),(?Z,2)},{c1,c3}),({(?Y,2),(?Z,3)},{c1,c2})}
Compute node c2 computes J?Y a ?ZKloc,c2

cov = {({(?Y,2),(?Z,3)},{c1,c2})}
Compute node c3 computes J?Y a ?ZKloc,c3

cov = {({(?Y,1),(?Z,2)},{c1,c3})}

Processing of ⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y a ?Z⟩⟩⟩⟩

In order to join the results of the triple patterns ?X a ?Y and ?Y a ?Z the join variables need to be identified
first. In this case the join variables are cVars(⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y a ?Z⟩⟩⟩⟩) = {?Y}.

One difficulty of distributed joins is to compute the complete set of results. To ensure this, all localized
variable bindings that assign the same resource to the join variable needs to be transferred to the same compute
node where they will be joined. The compute node on which a specific resource will be joined is defined by its
join responsibility jResp. For instance, the localized variable binding (µ,C′) = ({(?X,1),(?Y,2)},{c1,c3})
produced on compute node c3 would be joined on compute node jResp(µ(?Y)) = jResp(2) = c1. Since this
localized variable binding is already known on compute node c1, i.e., c1 ∈ C′ with C′ = {c1,c3}, it is not

124

A.2. Example of Distributed Query Execution with Triple Replication

Figure A.14.: Results of evaluating ?Y a ?Z on the different compute nodes.

transferred to compute node c1. Instead, it is transferred to the parent join on the same compute node c3 to
allow for future joins with localized variable bindings on this compute node.

Reminder: The join responsibilities of 1, 2 and 3 are jResp(1) = c1, jResp(2) = c1 and jResp(3) = c1.

Transferring the Results of the Evaluation of ?X a ?Y

The results of J?X a ?YKloc,c1
cov produced on compute node c1 will be transferred to the compute nodes c1,

c2 and c3 as follows:

routeloc(c1,c1,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y a ?Z⟩⟩⟩⟩,J?X a ?YKloc,c1
cov) = {({(?X,1),(?Y,2)},{c1,c3}),

({(?X,2),(?Y,3)},{c1,c2})}
routeloc(c1,c2,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y a ?Z⟩⟩⟩⟩,J?X a ?YKloc,c1

cov) = {}
routeloc(c1,c3,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y a ?Z⟩⟩⟩⟩,J?X a ?YKloc,c1

cov) = {}

The results of J?X a ?YKloc,c2
cov produced on compute node c2 will be transferred to the compute nodes c1,

c2 and c3 as follows:

routeloc(c2,c1,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y a ?Z⟩⟩⟩⟩,J?X a ?YKloc,c2
cov) = {}

routeloc(c2,c2,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y a ?Z⟩⟩⟩⟩,J?X a ?YKloc,c2
cov) = {({(?X,2),(?Y,3)},{c1,c2})}

routeloc(c2,c3,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y a ?Z⟩⟩⟩⟩,J?X a ?YKloc,c2
cov) = {}

The results of J?X a ?YKloc,c3
cov produced on compute node c3 will be transferred to the compute nodes c1,

c2 and c3 as follows:

routeloc(c3,c1,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y a ?Z⟩⟩⟩⟩,J?X a ?YKloc,c3
cov) = {}

routeloc(c3,c2,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y a ?Z⟩⟩⟩⟩,J?X a ?YKloc,c3
cov) = {}

routeloc(c3,c3,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y a ?Z⟩⟩⟩⟩,J?X a ?YKloc,c3
cov) = {({(X,1),(?Y,2)},{c1,c3})}

125

Appendix A. Examples of Distributed Query Execution

Transferring the Results of the Evaluation of ?Y a ?Z

The results of J?Y a ?ZKloc,c1
cov produced on compute node c1 will be transferred to the compute nodes c1,

c2 and c3 as follows:

routeloc(c1,c1,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y a ?Z⟩⟩⟩⟩,J?Y a ?ZKloc,c1
cov) = {({(?Y,1),(?Z,2)},{c1,c3}),

({(?Y,2),(?Z,3)},{c1,c2})}
routeloc(c1,c2,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y a ?Z⟩⟩⟩⟩,J?Y a ?ZKloc,c1

cov) = {}
routeloc(c1,c3,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y a ?Z⟩⟩⟩⟩,J?Y a ?ZKloc,c1

cov) = {}

The results of J?Y a ?ZKloc,c2
cov produced on compute node c2 will be transferred to the compute nodes c1,

c2 and c3 as follows:

routeloc(c2,c1,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y a ?Z⟩⟩⟩⟩,J?Y a ?ZKloc,c2
cov) = {}

routeloc(c2,c2,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y a ?Z⟩⟩⟩⟩,J?Y a ?ZKloc,c2
cov) = {({(?Y,2),(?Z,3)},{c1,c2})}

routeloc(c2,c3,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y a ?Z⟩⟩⟩⟩,J?Y a ?ZKloc,c2
cov) = {}

The results of J?Y a ?ZKloc,c3
cov produced on compute node c3 will be transferred to the compute nodes c1,

c2 and c3 as follows:

routeloc(c3,c1,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y a ?Z⟩⟩⟩⟩,J?Y a ?ZKloc,c3
cov) = {}

routeloc(c3,c2,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y a ?Z⟩⟩⟩⟩,J?Y a ?ZKloc,c3
cov) = {}

routeloc(c3,c3,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y a ?Z⟩⟩⟩⟩,J?Y a ?ZKloc,c3
cov) = {({(?Y,1),(?Z,2)},{c1,c3})}

Figure A.15 shows the result after transferring all localized variable bindings.

Figure A.15.: Results of transferring the localized variable bindings.

Joining the Results of the Evaluations of ?X a ?Y and ?Y a ?Z

Compute node c1 has received the following results of the evaluation of ?X a ?Y from the different compute
nodes:⋃
c∈C

routeloc(c,c1,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y a ?Z⟩⟩⟩⟩,J?X a ?YKloc,c
cov) =

{({(?X,1),(?Y,2)},{c1,c3}),({(?X,2),(?Y,3)},{c1,c2})}

126

A.2. Example of Distributed Query Execution with Triple Replication

Furthermore, compute node c1 received the following results of the evaluation of ?Y a ?Z from the different
compute nodes:⋃
c∈C

routeloc(c,c1,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y a ?Z⟩⟩⟩⟩,J?Y a ?ZKloc,c
cov) =

{({(?Y,1),(?Z,2)},{c1,c3}),({(?Y,2),(?Z,3)},{c1,c2})}
The join of both localized variable binding sets results in:
J?X a ?Y. ?Y a ?ZKloc,c1

cov
= {({(?X,1),(?Y,2)},{c1,c3}),({(?X,2),(?Y,3)},{c1,c2})}

▷◁ {({(?Y,1),(?Z,2)},{c1,c3}),({(?Y,2),(?Z,3)},{c1,c2})}
= {({(?X,1),(?Y,2),(?Z,3)},{c1})}
Note that the joined result is only known by compute node c1 since it is the only compute node that knows
both localized variable bindings from which it is created, i.e., {c1}= {c1,c3}∩{c1,c2}.

Compute node c2 has received the following results of the evaluation of ?X a ?Y from the different compute
nodes:⋃

c∈C

routeloc(c,c2,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y a ?Z⟩⟩⟩⟩,J?X a ?YKloc,c
cov) = {({(?X,2),(?Y,3)},{c1,c2})}

Furthermore, compute node c3 received the following results of the evaluation of ?Y a ?Z from the different
compute nodes:⋃

c∈C

routeloc(c,c2,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y a ?Z⟩⟩⟩⟩,J?Y a ?ZKloc,c
cov) = {({(?Y,2),(?Z,3)},{c1,c2})}

The join of both localized variable binding sets results in:
J?X a ?Y. ?Y a ?ZKloc,c2

cov = {({(?X,2),(?Y,3)},{c1,c2})} ▷◁ {({(?Y,2),(?Z,3)},{c1,c2})}= {}

Compute node c3 has received the following results of the evaluation of ?X a ?Y from the different compute
nodes: ⋃

c∈C

routeloc(c,c3,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y a ?Z⟩⟩⟩⟩,J?X a ?YKloc,c
cov) = {({(X,1),(?Y,2)},{c1,c3})}

Furthermore, compute node c3 received the following results of the evaluation of ?Y a ?Z from the different
compute nodes:⋃

c∈C

routeloc(c,c3,⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y a ?Z⟩⟩⟩⟩,J?Y a ?ZKloc,c
cov) = {({(?Y,1),(?Z,2)},{c1,c3})}

The join of both localized variable binding sets results in:
J?X a ?Y. ?Y a ?ZKloc,c3

cov = {({(?X,1),(?Y,2)},{c1,c3})} ▷◁ {({(?Y,1),(?Z,2)},{c1,c3})}= {}
Figure A.16 shows the localized variable bindings resulting of the joins.

Processing of ⟨⟨?Z b ?X⟩⟩

Each compute node matches the triple pattern ?Z b ?X on its locally stored chunk. The results are visualized
in Figure A.17.
Compute node c1 computes J?Z b ?XKloc,c1

cov = {}
Compute node c2 computes J?Z b ?XKloc,c2

cov = {({(?Z,3),(?X,1)},{c2,c3})}
Compute node c3 computes J?Z b ?XKloc,c3

cov = {({(?Z,3),(?X,1)},{c2,c3})}

127

Appendix A. Examples of Distributed Query Execution

Figure A.16.: Results of joining the results of ?X a ?Y and ?Y a ?Z.

Figure A.17.: Results of evaluating ?Z b ?X on the different compute nodes.

Processing of ⟨⟨⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y a ?Z⟩⟩⟩⟩,⟨⟨?Z b ?X⟩⟩⟩⟩

In order to join the results of the join ⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y a ?Z⟩⟩⟩⟩ and the triple pattern ?Z b ?X the join
variables need to be identified first. In this case the join variables are

cVars(⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y a ?Z⟩⟩⟩⟩,⟨⟨?Z b ?X⟩⟩) = {?X, ?Z}

Since there are two join variables now, the smallest variable is chosen based on the ordering of the variables.
In this case min<V ({?X,?Z}) = ?X. Therefore, localized variable bindings produced by both previous joins
are transferred to the compute node which is responsible for joining the resource bound to ?X. In order to
abbreviate the following formulas, the term ⟨⟨⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y a ?Z⟩⟩⟩⟩,⟨⟨?Z b ?X⟩⟩⟩⟩ will be named as Q j.

Reminder: The join responsibilities of 1, 2 and 3 are jResp(1) = c1, jResp(2) = c1 and jResp(3) = c1. As
described before, the join ?X a ?Y. ?Y a ?Z produces no join results on compute nodes c2 and c3. On
compute node c1 the localized variable binding {({(?X,1),(?Y,2),(?Z,3)},{c1})} is produced.

Transferring the Results of the Evaluation of ⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y a ?Z⟩⟩⟩⟩

The results of J?X a ?Y. ?Y a ?ZKloc,c1
cov produced on compute node c1 will be transferred to the compute

nodes c1, c2 and c3 as follows:

routeloc(c1,c1,Q j,J?X a ?Y. ?Y a ?ZKloc,c1
cov) = {({(?X,1),(?Y,2),(?Z,3)},{c1})}

routeloc(c1,c2,Q j,J?X a ?Y. ?Y a ?ZKloc,c1
cov) = {}

routeloc(c1,c3,Q j,J?X a ?Y. ?Y a ?ZKloc,c1
cov) = {}

Since there were no join results on compute nodes c2 and c3, they are omitted here.

128

A.2. Example of Distributed Query Execution with Triple Replication

Transferring the Results of the Evaluation of ?Z b ?X

The triple pattern ?Z b ?X has produced the localized variable binding (µ,C′)= ({(?Z,3),(?X,1)},{c2,c3})
on compute nodes c2 and c3. Based on the join responsibility of the resource to which ?X is bound this lo-
calized variable binding has to be joined on compute node jResp(µ(?X)) = jResp(1) = c1. Since c1 does not
know the localized variable binding – i.e., c1 ̸∈ {c2,c3} – it has to be transferred there. In order to produce
the complete result set c1 only needs to receive (µ,C′) once. Therefore, only the smallest compute node
min<C({c2,c3}) = c2 knowing (µ,C′) will send it to c1. Compute node c3 will discard the localized variable
binding. Since after the transfer only compute node c1 will know the localized variable binding, it will be
transferred as ({(?Z,3),(?X,1)},{c1}).

The results of J?Z b ?XKloc,c1
cov produced on compute node c1 will be transferred to the compute nodes c1,

c2 and c3 as follows:

routeloc(c1,c1,Q j,J?Z b ?XKloc,c1
cov) = {}

routeloc(c1,c2,Q j,J?Z b ?XKloc,c1
cov) = {}

routeloc(c1,c3,Q j,J?Z b ?XKloc,c1
cov) = {}

The results of J?Z b ?XKloc,c2
cov produced on compute node c2 will be transferred to the compute nodes c1,

c2 and c3 as follows:

routeloc(c2,c1,Q j,J?Z b ?XKloc,c2
cov) = {({(?Z,3),(?X,1)},{c1})}

routeloc(c2,c2,Q j,J?Z b ?XKloc,c2
cov) = {}

routeloc(c2,c3,Q j,J?Z b ?XKloc,c2
cov) = {}

The results of J?Z b ?XKloc,c3
cov produced on compute node c3 will be transferred to the compute nodes c1,

c2 and c3 as follows:

routeloc(c3,c1,Q j,J?Z b ?XKloc,c3
cov) = {}

routeloc(c3,c2,Q j,J?Z b ?XKloc,c3
cov) = {}

routeloc(c3,c3,Q j,J?Z b ?XKloc,c3
cov) = {}

Figure A.18 shows the result after transferring all localized variable bindings.

Joining the Results of the Evaluations of ?X a ?Y. ?Y a ?Z and ?Z b ?X

Compute node c1 has received the following results of the evaluation of ?X a ?Y. ?Y a ?Z from the
different compute nodes:⋃

c∈C

routeloc(c,c1,Q j,J?X a ?Y. ?Y a ?ZKloc,c
cov) = {({(?X,1),(?Y,2),(?Z,3)},{c1})}

Furthermore, compute node c1 received the following results of the evaluation of ?Z b ?X from the different
compute nodes: ⋃

c∈C

routeloc(c,c1,Q j,J?Z b ?XKloc,c
cov) = {({(?Z,3),(?X,1)},{c1})}

129

Appendix A. Examples of Distributed Query Execution

Figure A.18.: Results of transferring the localized variable bindings.

The join of both localized variable binding sets results in:
J?X a ?Y. ?Y a ?Z. ?Z b ?XKloc,c1

cov
= {({(?X,1),(?Y,2),(?Z,3)},{c1})} ▷◁ {({(?Z,3),(?X,1)},{c1})}
= {({(?X,1),(?Y,2),(?Z,3)},{c1})}

Compute node c2 has not received any localized variable bindings. Therefore, no results are created.
J?X a ?Y. ?Y a ?Z. ?Z b ?XKloc,c2

cov = {}.

Compute node c3 has not received any localized variable bindings. Therefore, no results are created.
J?X a ?Y. ?Y a ?Z. ?Z b ?XKloc,c3

cov = {}.

Figure A.19 shows the localized variable bindings resulting of the joins.

Figure A.19.: Results of joining the results of ?X a ?Y. ?Y a ?Z and ?Z b ?X.

130

A.2. Example of Distributed Query Execution with Triple Replication

Processing of ⟨⟨SELECT ?X, ?Y, ?Z⟨⟨⟨⟨⟨⟨?X a ?Y⟩⟩.⟨⟨?Y a ?Z⟩⟩⟩⟩.⟨⟨?Z b ?X⟩⟩⟩⟩⟩⟩

The projection of the variables can be performed locally on each compute node without the need to exchange
localized variable bindings before. Since in this example no variable is filtered out the results on the different
compute nodes remain unchanged.

JQKloc,c1
cov = {({(?X,1),(?Y,2),(?Z,3)},{c1})}

JQKloc,c2
cov = {}

JQKloc,c3
cov = {}

Union of the Result Sets of all Compute Nodes

The last step performed is to union all result sets and removing the localization before sending the results to
the requesting client.

JQKloc
cov = {{(?X,1),(?Y,2),(?Z,3)}}

131

APPENDIX B
Proof of Semantic Correctness and
Completeness of Koral’s Distributed Query
Execution Strategy
In this section the semantic correctness and completeness of the distributed query execution strategy that
ignores the triple replication is proven in Section B.1. The semantic correctness and completeness of the
distributed query execution strategy with triple replication is proven in Section B.3. In order to proof it,
an additional theorem is required that is presented and proven in Section B.2. The equality of both query
execution strategies for graph covers that assign each triple to exactly one graph chunk is proven in Section B.5.
In order to proof it, Section B.4 defines and proves an additional theorem. This chapter was taken from [69].

B.1. Proof of Semantic Correctness and Completeness for the Distributed
Query Execution Strategy Ignoring Triple Replication

The semantic correctness and completeness of the distributed execution mechanism described in Sec. 4.4.2 is
shown by proving Theorem 1.

Theorem 1. The centralized evaluation of query Q produces exact the same results as its distributed evaluation,
i.e.

JQKcover = JQKG .

Proof. The proof of Theorem 1 is an induction over the structure of query Q. As induction bases it will be
shown for all queries that do not contain subqueries. In the context of this thesis this means Q = t p. Based
on this proof the induction hypothesis is raised that the theorem holds for queries B, B1 and B2. Afterwards
the induction step is shown for the remaining query constructs that are the join Q = B1.B2 and the projection
Q = SELECT W WHERE {B}.

Definition 2 ensures that an arbitrary graph cover called “cover” always assigns each triple of the graph G
to at least one compute node. This means that (B.1) holds.

G =
⋃
c∈C

chunkcover(c) . (B.1)

133

Appendix B. Proof of Semantic Correctness and Completeness of Koral’s Distributed Query Execution
Strategy

Induction basis: Q = tp.

µ ∈ Jt pKcover
Def. 27⇐⇒ µ ∈

⋃
c∈C

Jt pKc
cover

Def. 26⇐⇒ µ ∈
⋃
c∈C

{
µ
′⏐⏐dom(µ ′) = var(t p)∧µ

′(t p) ∈ chunkcover(c)
}

⇐⇒
⋁
c∈C

(dom(µ) = var(t p)∧µ(t p) ∈ chunkcover(c))

⇐⇒ dom(µ) = var(t p)∧
⋁
c∈C

µ(t p) ∈ chunkcover(c)

⇐⇒ dom(µ) = var(t p)∧µ(t p) ∈
⋃
c∈C

chunkcover(c)

(B.1)⇐⇒ dom(µ) = var(t p)∧µ(t p) ∈ G

Def. 14⇐⇒ µ ∈ Jt pKG

Induction hypothesis: Theorem 1 is valid for queries B1, B2 and B.

Induction step: Q = B1.B2.

This proof is structured in a way that first JB1.B2Kcover is transformed into a set Sle f t and then JB1.B2KG is
transformed into a set Sright . Finally, the equality of Sle f t and Sright is shown.

µ ∈ JB1.B2Kcover
Def. 27⇐⇒ µ ∈

⋃
c∈C

JB1.B2Kc
cover

Def. 26⇐⇒
⋁
c∈C

µ ∈

((⋃
c1∈C

route(c,⟨⟨B1.B2⟩⟩,JB1Kc1
cover)

)
⋊⋉

(⋃
c2∈C

route(c,⟨⟨B1.B2⟩⟩,JB2Kc2
cover)

))
Def. 13⇐⇒

⋁
c∈C

µ) ∈

{
µ1 ∪µ2

⏐⏐⏐⏐⏐µ1 ∼ µ2 ∧µ1 ∈

(⋃
c1∈C

route(c,⟨⟨B1.B2⟩⟩,JB1Kc1
cover)

)

∧µ2 ∈

(⋃
c2∈C

route(c,⟨⟨B1.B2⟩⟩,JB2Kc2
cover)

)}
⇐⇒∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2∧⋁

c∈C

(
µ1 ∈

(⋃
c1∈C

route(c,⟨⟨B1.B2⟩⟩,JB1Kc1
cover)

)
∧µ2 ∈

(⋃
c2∈C

route(c,⟨⟨B1.B2⟩⟩,JB2Kc2
cover)

))

134

B.1. Proof of Semantic Correctness and Completeness for the Distributed Query Execution Strategy
Ignoring Triple Replication

Def. 25⇐⇒ ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧
⋁
c∈C

(
(⋁

c1∈C

µ1 ∈
{

µ
′
1 ∈ JB1Kc1

cover
⏐⏐µ ′

1 =∅∨ (cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C))

∨
(
cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ jResp(µ ′

1(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c
)})

∧

(⋁
c2∈C

µ2 ∈
{

µ
′
2 ∈ JB2Kc2

cover
⏐⏐µ ′

2 =∅∨ (cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C))

∨
(
cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ jResp(µ ′

2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c
)}))

⇐⇒∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧
⋁
c∈C

(
(⋁

c1∈C

(µ1 ∈ JB1Kc1
cover ∧ (µ1 =∅∨ (cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C))

∨ (cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ jResp(µ1(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c))

))

∧

(⋁
c2∈C

(µ2 ∈ JB2Kc2
cover ∧ (µ2 =∅∨ (cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C))

∨ (cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c))

)))
=⇒ µ ∈ Sle f t

135

Appendix B. Proof of Semantic Correctness and Completeness of Koral’s Distributed Query Execution
Strategy

Now, JB1.B2KG is transformed into a set Sright .

µ ∈ JB1.B2KG
Def. 14⇐⇒ µ ∈ JB1KG ⋊⋉ JB2KG

Def. 13⇐⇒ µ ∈ {µ1 ∪µ2|µ1 ∼ µ2 ∧µ1 ∈ JB1KG ∧µ2 ∈ JB2KG}
⇐⇒ ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧µ1 ∈ JB1KG ∧µ2 ∈ JB2KG

ind. hyp.
⇐⇒ ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧µ1 ∈ JB1Kcover ∧µ2 ∈ JB2Kcover

Def. 27⇐⇒ ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧µ1 ∈
⋃

c1∈C

JB1Kc1
cover

∧µ2 ∈
⋃

c2∈C

JB2Kc2
cover

⇐⇒∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2

∧

(⋁
c1∈C

µ1 ∈ JB1Kc1
cover

)
∧

(⋁
c2∈C

µ2 ∈ JB2Kc2
cover

)
=⇒ µ ∈ Sright

The sets Sle f t and Sright contain only the elements determined by the equations above. The equality of Sle f t
and Sright is proven by distinguishing the following cases:

1. ∅ ∈ Sle f t ∩Sright

2. µ ∈ Sle f t ∩Sright ∧µ =∅∼ µ2 ∧µ2 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) =∅

3. µ ∈ Sle f t ∩Sright ∧µ = µ1 ∼∅∧µ1 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) =∅

4. µ ∈ Sle f t ∩Sright ∧µ =∅∼ µ2 ∧µ2 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) ̸=∅

5. µ ∈ Sle f t ∩Sright ∧µ = µ1 ∼∅∧µ1 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) ̸=∅

6. µ ∈ Sle f t ∩Sright ∧µ = µ1 ∼ µ2 ∧µ1 ̸=∅∧µ2 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) =∅

7. µ ∈ Sle f t ∩Sright ∧µ = µ1 ∼ µ2 ∧µ1 ̸=∅∧µ2 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) ̸=∅

The proofs of the third case is analogue to the second case and the fifth case is analogue to the fourth case.
Therefore, the proofs of the third and fifth case are not shown.

136

B.1. Proof of Semantic Correctness and Completeness for the Distributed Query Execution Strategy
Ignoring Triple Replication

Case 1: ∅ ∈ Sleft ∩Sright

µ ∈ Sle f t ⇐⇒∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧
⋁
c∈C

(
(⋁

c1∈C

(µ1 ∈ JB1Kc1
cover ∧ (µ1 =∅∨ (cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C))

∨ (cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ jResp(µ1(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c))

))

∧

(⋁
c2∈C

(µ2 ∈ JB2Kc2
cover ∧ (µ2 =∅∨ (cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C))

∨ (cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c))

)))
case 1⇐⇒ ∃µ1,µ2 ∧µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧

⋁
c∈C

(
(⋁

c1∈C

(µ1 ∈ JB1Kc1
cover ∧µ1 =∅)

)
∧

(⋁
c2∈C

(µ2 ∈ JB2Kc2
cover ∧µ2 =∅)

))
⇐⇒∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2

∧

(⋁
c1∈C

µ1 ∈ JB1Kc1
cover

)
∧

(⋁
c2∈C

µ2 ∈ JB2Kc2
cover

)
⇐⇒ µ ∈ Sright

137

Appendix B. Proof of Semantic Correctness and Completeness of Koral’s Distributed Query Execution
Strategy

Case 2: µ ∈ Sleft ∩Sright ∧µ =∅∼ µ2 ∧µ2 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) =∅

µ ∈ Sle f t ⇐⇒∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧
⋁
c∈C

(
(⋁

c1∈C

(µ1 ∈ JB1Kc1
cover ∧ (µ1 =∅∨ (cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C))

∨ (cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ jResp(µ1(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c))

))

∧

(⋁
c2∈C

(µ2 ∈ JB2Kc2
cover ∧ (µ2 =∅∨ (cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C))

∨ (cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c))

)))
case 2⇐⇒ ∃µ1,µ2 ∧µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧

⋁
c∈C

((⋁
c1∈C

(µ1 ∈ JB1Kc1
cover ∧µ1 =∅)

)

∧

(⋁
c2∈C

(µ2 ∈ JB2Kc2
cover ∧ cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C))

))
⇐⇒∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2

∧

(⋁
c1∈C

µ1 ∈ JB1Kc1
cover

)
∧

(⋁
c2∈C

µ2 ∈ JB2Kc2
cover

)
⇐⇒ µ ∈ Sright

138

B.1. Proof of Semantic Correctness and Completeness for the Distributed Query Execution Strategy
Ignoring Triple Replication

Case 4: µ ∈ Sleft ∩Sright ∧µ =∅∼ µ2 ∧µ2 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) ̸=∅

µ ∈ Sle f t ⇐⇒∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧
⋁
c∈C

(
(⋁

c1∈C

(µ1 ∈ JB1Kc1
cover ∧ (µ1 =∅∨ (cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C))

∨ (cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ jResp(µ1(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c))

))

∧

(⋁
c2∈C

(µ2 ∈ JB2Kc2
cover ∧ (µ2 =∅∨ (cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C))

∨ (cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c))

)))
case 4⇐⇒ ∃µ1,µ2 ∧µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧

⋁
c∈C

((⋁
c1∈C

(µ1 ∈ JB1Kc1
cover ∧µ1 =∅)

)

∧

(⋁
c2∈C

(µ2 ∈ JB2Kc2
cover ∧ cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c)

))
⇐⇒∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2

∧

(⋁
c1∈C

µ1 ∈ JB1Kc1
cover

)
∧

(⋁
c2∈C

µ2 ∈ JB2Kc2
cover

)
⇐⇒ µ ∈ Sright

139

Appendix B. Proof of Semantic Correctness and Completeness of Koral’s Distributed Query Execution
Strategy

Case 6: µ ∈ Sleft ∩Sright ∧µ = µ1 ∼ µ2 ∧µ1 ̸=∅∧µ2 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) =∅

µ ∈ Sle f t ⇐⇒∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧
⋁
c∈C

(
(⋁

c1∈C

(µ1 ∈ JB1Kc1
cover ∧ (µ1 =∅∨ (cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C))

∨ (cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ jResp(µ1(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c))

))

∧

(⋁
c2∈C

(µ2 ∈ JB2Kc2
cover ∧ (µ2 =∅∨ (cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C))

∨ (cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c))

)))
case 6⇐⇒ ∃µ1,µ2 ∧µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧

⋁
c∈C

(
(⋁

c1∈C

(µ1 ∈ JB1Kc1
cover ∧ cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C))

)

∧

(⋁
c2∈C

(µ2 ∈ JB2Kc2
cover ∧ cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C))

))
⇐⇒∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2

∧

(⋁
c1∈C

µ1 ∈ JB1Kc1
cover

)
∧

(⋁
c2∈C

µ2 ∈ JB2Kc2
cover

)
⇐⇒ µ ∈ Sright

140

B.1. Proof of Semantic Correctness and Completeness for the Distributed Query Execution Strategy
Ignoring Triple Replication

Case 7: µ ∈ Sleft ∩Sright ∧µ = µ1 ∼ µ2 ∧µ1 ̸=∅∧µ2 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) ̸=∅

µ ∈ Sle f t ⇐⇒∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧
⋁
c∈C

(
(⋁

c1∈C

(µ1 ∈ JB1Kc1
cover ∧ (µ1 =∅∨ (cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C))

∨ (cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ jResp(µ1(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c))

))

∧

(⋁
c2∈C

(µ2 ∈ JB2Kc2
cover ∧ (µ2 =∅∨ (cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C))

∨ (cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c))

)))
case 7⇐⇒ ∃µ1,µ2 ∧µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧

⋁
c∈C

(
(⋁

c1∈C

(µ1 ∈ JB1Kc1
cover ∧ cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ jResp(µ1(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c)

)

∧

(⋁
c2∈C

(µ2 ∈ JB2Kc2
cover ∧ cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c)

))
Def. 13⇐⇒ ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2

∧

(⋁
c1∈C

µ1 ∈ JB1Kc1
cover

)
∧

(⋁
c2∈C

µ2 ∈ JB2Kc2
cover

)
⇐⇒ µ ∈ Sright

141

Appendix B. Proof of Semantic Correctness and Completeness of Koral’s Distributed Query Execution
Strategy

Induction step: Q = SELECT W WHERE {B}.

µ ∈ JSELECT W WHERE {B}Kcover
Def. 27⇐⇒ µ ∈

⋃
c∈C

JSELECT W WHERE {B}Kc
cover

⇐⇒
⋁
c∈C

µ ∈ JSELECT W WHERE {B}Kc
cover

Def. 26⇐⇒
⋁
c∈C

µ ∈
{

µ
′
|W

⏐⏐⏐µ ′ ∈ JBKc
cover

}
⇐⇒∃µ

′ : µ = µ
′
|W ∧

⋁
c∈C

µ
′ ∈ JBKc

cover

⇐⇒∃µ
′ : µ = µ

′
|W ∧µ

′ ∈
⋃
c∈C

JBKc
cover

Def. 27⇐⇒ ∃µ
′ : µ = µ

′
|W ∧µ

′ ∈ JBKcover

ind. hyp.
⇐⇒ ∃µ

′ : µ = µ
′
|W ∧µ

′ ∈ JBKG

Def. 14⇐⇒ µ ∈ JSELECT W WHERE {B}KG

B.2. Proof of Knows Lemma

The knows Lemma 1 is required to proof the semantic correctness and completeness of the replication-aware
distributed query execution strategy in the following section. It says that whenever a localized variable binding
is produced on a compute node c, then this variable binding will be known by c.

Lemma 1. If the replication-aware distributed query execution strategy produces a localized variable binding
µ ′ while evaluating the BGP B on any compute node c, then µ ′ is known on c:

∃µ ∈ Ω̂ : ∃C′ ⊆C : ∀c ∈C : (µ,C′) ∈ JBKloc,c
cover ⇒ c ∈C′ .

Proof. The proof of Lemma 1 is an induction over the structure of basic graph pattern B. As induction bases
it will be shown for all queries that do not contain other basic graph patterns. In the context of this thesis this
means B = t p. Based on this proof the induction hypothesis is raised that the theorem holds for basic graph
patterns B1 and B2. Afterwards the induction step is shown for the remaining basic graph pattern that is the
join B = B1.B2.
Induction basis: B = tp.

∃µ ∈ Ω̂ : ∃C′ ⊆C : ∀c ∈C : (µ,C′) ∈ JtpKloc,c
cover

Def. 31⇐⇒ dom(µ) = var(tp)∧µ(tp) ∈ chunkcover(c)∧C′ = cover(µ(tp))

=⇒ µ(tp) ∈ chunkcover(c)∧C′ = cover(µ(tp))

Def. 3⇐⇒ c ∈ cover(µ(tp))∧C′ = cover(µ(tp))

=⇒ c ∈C′

142

B.2. Proof of Knows Lemma

Induction hypothesis: Lemma 1 is valid for queries B1, B2 and B.

Induction step: B = B1.B2.

∃µ ∈ Ω̂ : ∃C′ ⊆C : ∀c ∈C : (µ,C′) ∈ JB1.B2Kloc,c
cover

Def. 31⇐⇒ (µ,C′) ∈

(⋃
c1∈C

routeloc(c1,c,⟨⟨B1.B2⟩⟩,JB1Kloc,c1
cover)

)
⋊⋉

(⋃
c2∈C

routeloc(c2,c,⟨⟨B1.B2⟩⟩,JB2Kloc,c2
cover)

)
Def. 29⇐⇒ ∃µ1,µ2 ∈ Ω̂,∃C1,C2 ⊆C : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧C′ =C1 ∩C2(

(µ1,C1) ∈
⋃

c1∈C

routeloc(c1,c,⟨⟨B1.B2⟩⟩,JB1Kloc,c1
cover)

)
∧(

(µ2,C2) ∈
⋃

c2∈C

routeloc(c2,c,⟨⟨B1.B2⟩⟩,JB2Kloc,c2
cover)

)

In the following we distinguishing the following cases:

1. µ1 =∅∧µ2 =∅

2. µ1 =∅∧µ2 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) =∅

3. µ1 ̸=∅∧µ2 =∅∧ cVars(⟨⟨B1.B2⟩⟩) =∅

4. µ1 =∅∧µ2 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) ̸=∅

5. µ1 ̸=∅∧µ2 =∅∧ cVars(⟨⟨B1.B2⟩⟩) ̸=∅

6. µ1 ̸=∅∧µ2 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) =∅

7. µ1 ̸=∅∧µ2 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) ̸=∅

The proofs of the third case is analogue to the second case and the fifth case is analogue to the fourth case.
Therefore, the proofs of the third and fifth case are not shown.

143

Appendix B. Proof of Semantic Correctness and Completeness of Koral’s Distributed Query Execution
Strategy

Case 1: µ1 =∅∧µ2 =∅

∃µ ∈ Ω̂ : ∃C′ ⊆C : ∀c ∈C : ∃µ1,µ2 ∈ Ω̂,∃C1,C2 ⊆C :

µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧C′ =C1 ∩C2(
(µ1,C1) ∈

⋃
c1∈C

routeloc(c1,c,⟨⟨B1.B2⟩⟩,JB1Kloc,c1
cover)

)
∧(

(µ2,C2) ∈
⋃

c2∈C

routeloc(c2,c,⟨⟨B1.B2⟩⟩,JB2Kloc,c2
cover)

)
Def. 30⇐⇒ µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧C′ =C1 ∩C2∧(

∃C′
1 :

⋁
c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧µ1 =∅∧ c = min<C(C

′
1)∧C1 =C

))
∧(

∃C′
2 :

⋁
c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover ∧µ2 =∅∧ c = min<C(C

′
2)∧C2 =C

))
=⇒C′ =C1 ∩C2 ∧C1 =C∧C2 =C

⇐⇒C′ =C∩C =C
c∈C
=⇒ c ∈C′

144

B.2. Proof of Knows Lemma

Case 2: µ1 =∅∧µ2 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) =∅

∃µ ∈ Ω̂ : ∃C′ ⊆C : ∀c ∈C : ∃µ1,µ2 ∈ Ω̂,∃C1,C2 ⊆C :

µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧C′ =C1 ∩C2(
(µ1,C1) ∈

⋃
c1∈C

routeloc(c1,c,⟨⟨B1.B2⟩⟩,JB1Kloc,c1
cover)

)
∧(

(µ2,C2) ∈
⋃

c2∈C

routeloc(c2,c,⟨⟨B1.B2⟩⟩,JB2Kloc,c2
cover)

)
Def. 30⇐⇒ µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧C′ =C1 ∩C2∧(

∃C′
1 :

⋁
c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧µ1 =∅∧ c = min<C(C

′
1)∧C1 =C

))
∧(

∃C′
2 :

⋁
c2∈C

((
(µ2,C′

2) ∈ JB2Kloc,c2
cover ∧ cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C)∧ c ̸∈C′

2

∧c2 = min<C(C
′
2)∧C2 = {c}

)
∨(

(µ2,C′
2) ∈ JB2Kloc,c2

cover ∧ cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C)∧ c ∈C′
2

∧c2 = c∧C2 = {c}))

)
=⇒C′ =C1 ∩C2 ∧C1 =C∧C2 = {c}
⇐⇒C′ =C∩{c}= {c}
=⇒ c ∈C′

145

Appendix B. Proof of Semantic Correctness and Completeness of Koral’s Distributed Query Execution
Strategy

Case 4: µ1 =∅∧µ2 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) ̸=∅

∃µ ∈ Ω̂ : ∃C′ ⊆C : ∀c ∈C : ∃µ1,µ2 ∈ Ω̂,∃C1,C2 ⊆C :

µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧C′ =C1 ∩C2(
(µ1,C1) ∈

⋃
c1∈C

routeloc(c1,c,⟨⟨B1.B2⟩⟩,JB1Kloc,c1
cover)

)
∧(

(µ2,C2) ∈
⋃

c2∈C

routeloc(c2,c,⟨⟨B1.B2⟩⟩,JB2Kloc,c2
cover)

)
Def. 30⇐⇒ µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧C′ =C1 ∩C2∧(

∃C′
1 :

⋁
c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧µ1 =∅∧ c = min<C(C

′
1)∧C1 =C

))
∧(

∃C′
2 :

⋁
c2∈C

((
(µ2,C′

2) ∈ JB2Kloc,c2
cover ∧ cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ c2 = min<C(C

′
2)

∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c∧ c ̸∈C′
2 ∧C2 = {c}

)
∨(

(µ2,C′
2) ∈ JB2Kloc,c2

cover ∧ cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ c2 = c

∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = cu ∧ cu ∈C′
2 ∧C2 =C′

2
)))

ind. hyp.
=⇒ C′ =C1 ∩C2 ∧C1 =C∧ (C2 = {c}∨ (c2 ∈C2 ∧ c2 = c))

⇐⇒C′ =C∩{c}= {c}∨
(
C′ =C∩C2 =C2 ∧ c ∈C2

)
=⇒C′ = {c}∨ c ∈C′

=⇒ c ∈C′

146

B.2. Proof of Knows Lemma

Case 6: µ1 ̸=∅∧µ2 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) =∅

∃µ ∈ Ω̂ : ∃C′ ⊆C : ∀c ∈C : ∃µ1,µ2 ∈ Ω̂,∃C1,C2 ⊆C :

µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧C′ =C1 ∩C2(
(µ1,C1) ∈

⋃
c1∈C

routeloc(c1,c,⟨⟨B1.B2⟩⟩,JB1Kloc,c1
cover)

)
∧(

(µ2,C2) ∈
⋃

c2∈C

routeloc(c2,c,⟨⟨B1.B2⟩⟩,JB2Kloc,c2
cover)

)
Def. 30⇐⇒ µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧C′ =C1 ∩C2∧(

∃C′
1 :

⋁
c1∈C

((
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧ cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C)∧ c ̸∈C′

1

∧c1 = min<C(C
′
1)∧C1 = {c}

)
∨(

(µ1,C′
1) ∈ JB1Kloc,c1

cover ∧ cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C)∧ c ∈C′
1

∧c1 = c∧C1 = {c}))

)
∧(

∃C′
2 :

⋁
c2∈C

((
(µ2,C′

2) ∈ JB2Kloc,c2
cover ∧ cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C)∧ c ̸∈C′

2

∧c2 = min<C(C
′
2)∧C2 = {c}

)
∨(

(µ2,C′
2) ∈ JB2Kloc,c2

cover ∧ cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C)∧ c ∈C′
2

∧c2 = c∧C2 = {c}))

)
=⇒C′ =C1 ∩C2 ∧C1 = {c}∧C2 = {c}
⇐⇒C′ = {c}∩{c}= {c}
=⇒ c ∈C′

147

Appendix B. Proof of Semantic Correctness and Completeness of Koral’s Distributed Query Execution
Strategy

Case 7: µ1 ̸=∅∧µ2 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) ̸=∅

∃µ ∈ Ω̂ : ∃C′ ⊆C : ∀c ∈C : ∃µ1,µ2 ∈ Ω̂,∃C1,C2 ⊆C :

µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧C′ =C1 ∩C2(
(µ1,C1) ∈

⋃
c1∈C

routeloc(c1,c,⟨⟨B1.B2⟩⟩,JB1Kloc,c1
cover)

)
∧(

(µ2,C2) ∈
⋃

c2∈C

routeloc(c2,c,⟨⟨B1.B2⟩⟩,JB2Kloc,c2
cover)

)
Def. 30⇐⇒ µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧C′ =C1 ∩C2∧(

∃C′
1 :

⋁
c1∈C

((
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧ cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ c1 = min<C(C

′
1)

∧ jResp(µ1(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c∧ c ̸∈C′
1 ∧C1 = {c}

)
∨(

(µ2,C′
1) ∈ JB1Kloc,c1

cover ∧ cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ c1 = c

∧ jResp(µ1(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = cu ∧ cu ∈C′
1 ∧C1 =C′

1
)))

∧(
∃C′

2 :
⋁

c2∈C

((
(µ2,C′

2) ∈ JB2Kloc,c2
cover ∧ cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ c2 = min<C(C

′
2)

∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c∧ c ̸∈C′
2 ∧C2 = {c}

)
∨(

(µ2,C′
2) ∈ JB2Kloc,c2

cover ∧ cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ c2 = c

∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = cu ∧ cu ∈C′
2 ∧C2 =C′

2
)))

ind. hyp.
=⇒ C′ =C1 ∩C2 ∧ (C1 = {c}∨ (c1 ∈C1 ∧ c1 = c))∧ (C2 = {c}∨ (c2 ∈C2 ∧ c2 = c))

⇐⇒C′ = {c}∩{c}= {c}∨
(
C′ = {c}∩C2 ∧ c ∈C2

)
∨
(
C′ =C1 ∩{c}∧ c ∈C1

)
∨(

C′ =C1 ∩C2 ∧ c ∈C1 ∧ c ∈C2
)

=⇒C′ = {c}∨ c ∈C′

=⇒ c ∈C′

148

B.3. Proof of Semantic Correctness and Completeness for the Distributed Query Execution Strategy With
Triple Replication

B.3. Proof of Semantic Correctness and Completeness for the Distributed
Query Execution Strategy With Triple Replication

The semantic correctness and completeness of the replication-aware distributed execution mechanism de-
scribed in Sec. 4.4.2 is shown by proving Theorem 2.

Theorem 2. The centralized evaluation of query Q produces exact the same results as its replication-aware
distributed evaluation, i.e.

JQKloc
cover = JQKG .

Proof. The proof of Theorem 2 is an induction over the structure of query Q. As induction bases it will be
shown for all queries that do not contain subqueries. In the context of this thesis this means Q = t p. Based
on this proof the induction hypothesis is raised that the theorem holds for queries B, B1 and B2. Afterwards
the induction step is shown for the remaining query constructs that are the join Q = B1.B2 and the projection
Q = SELECT W WHERE {B}.
Induction basis: Q = tp.

µ ∈ JtpKloc
cover

Def. 32⇐⇒ ∃C′ : (µ,C′) ∈
⋃
c∈C

JtpKloc,c
cover

Def. 31⇐⇒ ∃C′ :
⋁
c∈C

(
dom(µ) = var(tp)∧µ(tp) ∈ chunkcover(c)∧C′ = cover(µ(tp))

)
⇐⇒ dom(µ) = var(tp)∧∃C′ : C′ = cover(µ(tp))∧

⋁
c∈C

µ(tp) ∈ chunkcover(c)

Def. 2⇐⇒ dom(µ) = var(tp)∧
⋁
c∈C

µ(tp) ∈ chunkcover(c)

(B.1)⇐⇒ dom(µ) = var(tp)∧µ(tp) ∈ G

Def. 14⇐⇒ µ ∈ JtpKG

Induction hypothesis: Theorem 2 is valid for queries B1, B2 and B.
For every basic graph pattern B the induction hypothesis is:

JBKG = JBKloc
cover

Def. 32
=

{
µ

⏐⏐⏐⏐∃C′ : (µ,C′) ∈
⋃

c∈C
JBKloc,c

cover

}
This can be rephrased as

µ ∈ JBKG ⇔∃C′ :
⋁

c∈C
(µ,C′) ∈ JBKloc,c

cover .

149

Appendix B. Proof of Semantic Correctness and Completeness of Koral’s Distributed Query Execution
Strategy

Induction step: Q = B1.B2.
This proof is structured in a way that first JB1.B2Kloc

cover is transformed into a set Sle f t and then JB1.B2KG is
transformed into a set Sright . Finally, the equality of Sle f t and Sright is shown.

µ ∈ JB1.B2Kloc
cover

Def. 32⇐⇒ ∃C′ :
⋁
c∈C

(µ,C′) ∈ JB1.B2Kloc,c
cover

Def. 31⇐⇒ ∃C′ :
⋁
c∈C

(µ,C′) ∈

(⋃
c1∈C

routeloc(c1,c,⟨⟨B1.B2⟩⟩,JB1Kloc,c1
cover)

)

⋊⋉

(⋃
c2∈C

routeloc(c2,c,⟨⟨B1.B2⟩⟩,JB2Kloc,c2
cover)

)
Def. 29⇐⇒ ∃C′,C1,C2 : ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧C′ =C1 ∩C2

∧
⋁
c∈C

(
(µ1,C1) ∈

⋃
c1∈C

routeloc(c1,c,⟨⟨B1.B2⟩⟩,JB1Kloc,c1
cover)

∧(µ2,C2) ∈
⋃

c2∈C

routeloc(c2,c,⟨⟨B1.B2⟩⟩,JB2Kloc,c2
cover)

)
=⇒ µ ∈ Sle f t

Now, JB1.B2KG is transformed into a set Sright .

µ ∈ JB1.B2KG
Def. 14⇐⇒ µ ∈ JB1KG ⋊⋉ JB2KG

Def. 13⇐⇒ ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧µ1 ∈ JB1KG ∧µ2 ∈ JB2KG

ind. hyp.
⇐⇒ ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧

(
∃C′

1 :
⋁

c1∈C

(µ1,C′
1) ∈ JB1Kloc,c1

cover

)

∧

(
∃C′

2 :
⋁

c2∈C

(µ2,C′
2) ∈ JB2Kloc,c2

cover

)
=⇒ µ ∈ Sright

The sets Sle f t and Sright contain only the elements determined by the equations above. The equality of Sle f t
and Sright is proven by distinguishing the following cases:

1. ∅ ∈ Sle f t ∩Sright

2. µ ∈ Sle f t ∩Sright ∧µ =∅∼ µ2 ∧µ2 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) =∅

3. µ ∈ Sle f t ∩Sright ∧µ = µ1 ∼∅∧µ1 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) =∅

4. µ ∈ Sle f t ∩Sright ∧µ =∅∼ µ2 ∧µ2 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) ̸=∅

5. µ ∈ Sle f t ∩Sright ∧µ = µ1 ∼∅∧µ1 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) ̸=∅

6. µ ∈ Sle f t ∩Sright ∧µ = µ1 ∼ µ2 ∧µ1 ̸=∅∧µ2 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) =∅

7. µ ∈ Sle f t ∩Sright ∧µ = µ1 ∼ µ2 ∧µ1 ̸=∅∧µ2 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) ̸=∅

150

B.3. Proof of Semantic Correctness and Completeness for the Distributed Query Execution Strategy With
Triple Replication

The proofs of the third case is analogue to the second case and the fifth case is analogue to the fourth case.
Therefore, the proofs of the third and fifth case are not shown.
Case 1: ∅ ∈ Sleft ∩Sright

µ ∈ Sle f t
Def. 30⇐⇒ ∃C′,C1,C2 : ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧C′ =C1 ∩C2 ∧

⋁
c∈C

(
(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧µ1 =∅∧ c1 = min<C(C

′
1)∧C1 =C

))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover ∧µ2 =∅∧ c2 = min<C(C

′
2)∧C2 =C

)))
C′=C∩C=C⊆C⇐⇒ ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧

⋁
c∈C

(
(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧µ1 =∅∧ c1 = min<C(C

′
1)
))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover ∧µ2 =∅∧ c2 = min<C(C

′
2)
)))

a∨a=a⇐⇒ ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2∧(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧µ1 =∅∧ c1 = min<C(C

′
1)
))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover ∧µ2 =∅∧ c2 = min<C(C

′
2)
))

case 1⇐⇒ ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2∧(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧ c1 = min<C(C

′
1)
))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover ∧ c2 = min<C(C

′
2)
))

Lemma 1⇐⇒ ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2∧(
∃C′

1 :
⋁

c1∈C

(µ1,C′
1) ∈ JB1Kloc,c1

cover

)
∧

(
∃C′

2 :
⋁

c2∈C

(µ2,C′
2) ∈ JB2Kloc,c2

cover

)
⇐⇒ µ ∈ Sright

151

Appendix B. Proof of Semantic Correctness and Completeness of Koral’s Distributed Query Execution
Strategy

Case 2: µ ∈ Sleft ∩Sright ∧µ =∅∼ µ2 ∧µ2 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) =∅

µ ∈ Sle f t
Def. 30⇐⇒ ∃C′,C1,C2 : ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧C′ =C1 ∩C2 ∧

⋁
c∈C

(
(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧µ1 =∅∧ c1 = min<C(C

′
1)∧C1 =C

))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover ∧ ((

cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C)∧ c ̸∈C′
2 ∧ c2 = min<C(C

′
2)∧C2 = {c}

)
∨(

cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C)∧ c ∈C′
2 ∧ c2 = c∧C2 = {c}

)))))
case 2⇐⇒ ∃C′,C1,C2 : ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧C′ =C1 ∩C2 ∧

⋁
c∈C

(
(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧ c1 = min<C(C

′
1)∧C1 =C

))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover ∧ ((

c = min<C(C)∧ c ̸∈C′
2 ∧ c2 = min<C(C

′
2)∧C2 = {c}

)
∨(

c = min<C(C)∧ c ∈C′
2 ∧ c2 = c∧C2 = {c}

)))))
Lemma 1⇐⇒ ∃C′,C1,C2 : ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧C′ =C1 ∩C2 ∧

⋁
c∈C

(
(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧C1 =C

))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover ∧ ((

c = min<C(C)∧ c ̸∈C′
2 ∧C2 = {c}

)
∨(

c = min<C(C)∧ c ∈C′
2 ∧C2 = {c}

)))))
∀c∈C:∃C′:C′=C∩{c}={c}⊆C⇐⇒ ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧

⋁
c∈C

(
(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover

))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover ∧ (

(
c = min<C(C)∧ c ̸∈C′

2
)
∨
(
c = min<C(C)∧ c ∈C′

2
)))))

152

B.3. Proof of Semantic Correctness and Completeness for the Distributed Query Execution Strategy With
Triple Replication

⇐⇒∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧
⋁
c∈C

(
(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover

))
∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover

)))
a∨a=a⇐⇒ ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2∧(

∃C′
1 :

⋁
c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover

))
∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover

))
⇐⇒ µ ∈ Sright

Case 4: µ ∈ Sleft ∩Sright ∧µ =∅∼ µ2 ∧µ2 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) ̸=∅

µ ∈ Sle f t
Def. 30⇐⇒ ∃C′,C1,C2 : ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧C′ =C1 ∩C2 ∧

⋁
c∈C

(
(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧µ1 =∅∧ c1 = min<C(C

′
1)∧C1 =C

))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover ∧ ((

cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ c2 = min<C(C
′
2)∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c∧

c ̸∈C′
2 ∧C2 = {c}

)
∨

(cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ c2 = c∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = cu∧

cu ∈C′
2 ∧C2 =C′

2
)))))

case 4⇐⇒ ∃C′,C1,C2 : ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧C′ =C1 ∩C2 ∧
⋁
c∈C

(
(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧ c1 = min<C(C

′
1)∧C1 =C

))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover ∧ ((

c2 = min<C(C
′
2)∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c∧ c ̸∈C′

2 ∧C2 = {c}
)
∨(

c2 = c∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = cu ∧ cu ∈C′
2 ∧C2 =C′

2
)))))

153

Appendix B. Proof of Semantic Correctness and Completeness of Koral’s Distributed Query Execution
Strategy

∃C′:∀C2∈2C:C′=C∩C2=C2⊆C⇐⇒ ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧
⋁
c∈C

(
(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧ c1 = min<C(C

′
1)
))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover ∧ ((

c2 = min<C(C
′
2)∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c∧ c ̸∈C′

2
)
∨(

c2 = c∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = cu ∧ cu ∈C′
2
)))))

Lemma 1⇐⇒ ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧
⋁
c∈C

(
(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover

))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover ∧ ((

jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c∧ c ̸∈C′
2
)
∨(

c2 = c∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = cu ∧ cu ∈C′
2
)))))

c2=c⇒cu=c,Lemma 1⇐⇒ ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧
⋁
c∈C

(
(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover

))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover ∧ ((

jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c∧ c ̸∈C′
2
)
∨(

jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c∧ c ∈C′
2
)))))

⇐⇒∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧
⋁
c∈C

(
(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover

))
∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover

)))
a∨a=a⇐⇒ ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2∧(

∃C′
1 :

⋁
c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover

))
∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover

))
⇐⇒ µ ∈ Sright

154

B.3. Proof of Semantic Correctness and Completeness for the Distributed Query Execution Strategy With
Triple Replication

Case 6: µ ∈ Sleft ∩Sright ∧µ = µ1 ∼ µ2 ∧µ1 ̸=∅∧µ2 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) =∅

µ ∈ Sle f t
Def. 30⇐⇒ ∃C′,C1,C2 : ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧C′ =C1 ∩C2 ∧

⋁
c∈C

(
(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧ ((

cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C)∧ c ̸∈C′
1 ∧ c1 = min<C(C

′
1)∧C1 = {c}

)
∨(

cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C)∧ c ∈C′
1 ∧ c1 = c∧C1 = {c}

))))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover ∧ ((

cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C)∧ c ̸∈C′
2 ∧ c2 = min<C(C

′
2)∧C2 = {c}

)
∨(

cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C)∧ c ∈C′
2 ∧ c2 = c∧C2 = {c}

)))))
case 6⇐⇒ ∃C′,C1,C2 : ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧C′ =C1 ∩C2 ∧

⋁
c∈C

(
(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧ ((

c = min<C(C)∧ c ̸∈C′
1 ∧ c1 = min<C(C

′
1)∧C1 = {c}

)
∨(

c = min<C(C)∧ c ∈C′
1 ∧ c1 = c∧C1 = {c}

))))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover ∧ ((

c = min<C(C)∧ c ̸∈C′
2 ∧ c2 = min<C(C

′
2)∧C2 = {c}

)
∨(

c = min<C(C)∧ c ∈C′
2 ∧ c2 = c∧C2 = {c}

)))))

155

Appendix B. Proof of Semantic Correctness and Completeness of Koral’s Distributed Query Execution
Strategy

∃C′:∀c∈C:C′={c}∩{c}={c}⊆C⇐⇒ ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧
⋁
c∈C

(
(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧ ((

c = min<C(C)∧ c ̸∈C′
1 ∧ c1 = min<C(C

′
1)
)
∨(

c = min<C(C)∧ c ∈C′
1 ∧ c1 = c

))))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover ∧ ((

c = min<C(C)∧ c ̸∈C′
2 ∧ c2 = min<C(C

′
2)
)
∨(

c = min<C(C)∧ c ∈C′
2 ∧ c2 = c

)))))
Lemma 1⇐⇒ ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧

⋁
c∈C

(
(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧ (

(
c = min<C(C)∧ c ̸∈C′

1
)
∨
(
c = min<C(C)∧ c ∈C′

1
))))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover ∧ (

(
c = min<C(C)∧ c ̸∈C′

2
)
∨
(
c = min<C(C)∧ c ∈C′

2
)))))

⇐⇒∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧
⋁
c∈C

(
(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover

))
∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover

)))
a∨a=a⇐⇒ ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2∧(

∃C′
1 :

⋁
c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover

))
∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover

))
⇐⇒ µ ∈ Sright

156

B.3. Proof of Semantic Correctness and Completeness for the Distributed Query Execution Strategy With
Triple Replication

Case 7: µ ∈ Sleft ∩Sright ∧µ = µ1 ∼ µ2 ∧µ1 ̸=∅∧µ2 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) ̸=∅

µ ∈ Sle f t
Def. 30⇐⇒ ∃C′,C1,C2 : ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧C′ =C1 ∩C2 ∧

⋁
c∈C

(
(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧ ((

cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ c1 = min<C(C
′
1)∧ jResp(µ1(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c∧

c ̸∈C′
1 ∧C1 = {c}

)
∨

(cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ c1 = c∧ jResp(µ1(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = cu1∧

cu1 ∈C′
1 ∧C1 =C′

1
))))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover ∧ ((

cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ c2 = min<C(C
′
2)∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c∧

c ̸∈C′
2 ∧C2 = {c}

)
∨

(cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ c2 = c∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = cu2∧

cu2 ∈C′
2 ∧C2 =C′

2
)))))

case 7⇐⇒ ∃C′,C1,C2 : ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧C′ =C1 ∩C2 ∧
⋁
c∈C

(
(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧ ((

c1 = min<C(C
′
1)∧ jResp(µ1(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c∧ c ̸∈C′

1 ∧C1 = {c}
)
∨(

c1 = c∧ jResp(µ1(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = cu1 ∧ cu1 ∈C′
1 ∧C1 =C′

1
))))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover ∧ ((

c2 = min<C(C
′
2)∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c∧ c ̸∈C′

2 ∧C2 = {c}
)
∨(

c2 = c∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = cu2 ∧ cu2 ∈C′
2 ∧C2 =C′

2
)))))

157

Appendix B. Proof of Semantic Correctness and Completeness of Koral’s Distributed Query Execution
Strategy

∀C1,C2⊆C:C1∩C2⊆C⇐⇒ ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧
⋁
c∈C

(
(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧ ((

c1 = min<C(C
′
1)∧ jResp(µ1(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c∧ c ̸∈C′

1
)
∨(

c1 = c∧ jResp(µ1(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = cu1 ∧ cu1 ∈C′
1
))))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover ∧ ((

c2 = min<C(C
′
2)∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c∧ c ̸∈C′

2
)
∨(

c2 = c∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = cu2 ∧ cu2 ∈C′
2
)))))

ci=c⇒cui=c,Lemma 1
⇐⇒ ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧

⋁
c∈C

(
(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧ ((

jResp(µ1(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c∧ c ̸∈C′
1
)
∨(

jResp(µ1(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c∧ c ∈C′
1
))))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover ∧ ((

jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c∧ c ̸∈C′
2
)
∨(

jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c∧ c ∈C′
2
)))))

⇐⇒∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧
⋁
c∈C

(
(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover

))
∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover

)))
a∨a=a⇐⇒ ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2∧(

∃C′
1 :

⋁
c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover

))
∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover

))
⇐⇒ µ ∈ Sright

158

B.4. Proof of Unique Knows Theorem

Induction step: Q = SELECT W WHERE {B}.

µ ∈ JSELECT W WHERE {B}Kloc
cover

Def. 32⇐⇒ ∃C′ : (µ,C′) ∈
⋃
c∈C

JSELECT W WHERE {B}Kloc,c
cover

Def. 31⇐⇒ ∃C′ : ∃µ
′ : µ = µ

′
|W ∧

⋁
c∈C

(µ ′,C′) ∈ JBKloc,c
cover

⇐⇒∃µ
′ : µ = µ

′
|W ∧∃C′ :

⋁
c∈C

(µ ′,C′) ∈ JBKloc,c
cover

ind. hyp.
⇐⇒ ∃µ

′ : µ = µ
′
|W ∧µ

′ ∈ JBKG

Def. 14⇐⇒ µ ∈ JSELECT W WHERE {B}KG

B.4. Proof of Unique Knows Theorem

Lemma 2. In case of a graph cover without triple replication, i.e., ∀t ∈ G : |cover(t)| = 1, the distributed
query execution strategy and the replication-aware distributed query execution strategy will only produce
located variable bindings (µ,C′) with |C′|= 1 if µ ̸=∅ for the query Q:

∀c ∈C :
(
µ,C′) ∈ JQKloc,c

cover ∧µ ̸=∅⇒ |C′|= 1 .

Proof. The proof of Lemma 2 is an induction over the structure of query Q. As induction bases it will be
shown for all queries that do not contain subqueries. In the context of this thesis this means Q = t p. Based
on this proof the induction hypothesis is raised that the theorem holds for queries B, B1 and B2. Afterwards
the induction step is shown for the remaining query constructs that are the join Q = B1.B2 and the projection
Q = SELECT W WHERE {B}.

Induction basis: Q = tp.

∀c ∈C : ∃C′ : (µ,C′) ∈ JtpKloc,c
cover

Def. 31⇐⇒ ∃C′ : dom(µ) = var(tp)∧µ(tp) ∈ chunkcover(c)∧C′ = cover(µ(tp))
∀t∈G:|cover(t)|=1

=⇒ |C′|= 1

Induction hypothesis: Lemma 2 is valid for queries B1, B2 and B.

159

Appendix B. Proof of Semantic Correctness and Completeness of Koral’s Distributed Query Execution
Strategy

Induction step: Q = B1.B2.

∀c ∈C : ∃C′ : (µ,C′) ∈ JB1.B2Kloc,c
cover ∧µ ̸=∅ Def. 31⇐⇒ ∃C′ : (µ,C′) ∈

(⋃
c1∈C

routeloc(c1,c,⟨⟨B1.B2⟩⟩,JB1Kloc,c1
cover)

)

⋊⋉

(⋃
c2∈C

routeloc(c2,c,⟨⟨B1.B2⟩⟩,JB2Kloc,c2
cover)

)
Def. 29⇐⇒ ∃C′,C1,C2 : ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧C′ =C1 ∩C2

∧
⋁

c1∈C

(µ1,C1) ∈ routeloc(c1,c,⟨⟨B1.B2⟩⟩,JB1Kloc,c1
cover)

∧
⋁

c2∈C

(µ2,C2) ∈ routeloc(c2,c,⟨⟨B1.B2⟩⟩,JB2Kloc,c2
cover)∧µ ̸=∅

=⇒ µ ∈ S∧µ ̸=∅

(µ,C′) ∈ S∧µ ̸=∅⇒ |C′|= 1 is proven by distinguishing the following cases:

1. µ1 =∅∧µ2 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) =∅

2. µ1 ̸=∅∧µ2 =∅∧ cVars(⟨⟨B1.B2⟩⟩) =∅

3. µ1 =∅∧µ2 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) ̸=∅

4. µ1 ̸=∅∧µ2 =∅∧ cVars(⟨⟨B1.B2⟩⟩) ̸=∅

5. µ1 ̸=∅∧µ2 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) =∅

6. µ1 ̸=∅∧µ2 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) ̸=∅

The proofs of the second case is analogue to the first case and the fourth case is analogue to the third case.
Therefore, the proofs of the second and fourth case are not shown.
Case 1: µ1 =∅∧µ2 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) =∅

µ ∈ S Def. 30⇐⇒ ∃C′,C1,C2 : ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧C′ =C1 ∩C2

∧

(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧µ1 =∅∧ c1 = min<C(C

′
1)∧C1 =C

))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover

∧
((

cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C)∧ c ̸∈C′
2 ∧ c2 = min<C(C

′
2)∧C2 = {c}

)
∨
(
cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C)∧ c ∈C′

2 ∧ c2 = c∧C2 = {c}
))))

=⇒C′ =C∩{c}= {c}
=⇒ |C′|= 1

160

B.4. Proof of Unique Knows Theorem

Case 3: µ1 =∅∧µ2 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) ̸=∅

µ ∈ S Def. 30⇐⇒ ∃C′,C1,C2 : ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧C′ =C1 ∩C2

∧

(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧µ1 =∅∧ c1 = min<C(C

′
1)∧C1 =C

))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover ∧ ((

cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ c2 = min<C(C
′
2)∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c∧

c ̸∈C′
2 ∧C2 = {c}

)
∨(cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ c2 = c∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = cu∧

cu ∈C′
2 ∧C2 =C′

2
))))

ind. hyp.
=⇒ ∃C′,C1,C2 : ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧C′ =C1 ∩C2

∧

(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧µ1 =∅∧ c1 = min<C(C

′
1)∧C1 =C

))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover ∧|C′

2|= 1((
cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ c2 = min<C(C

′
2)∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c∧

c ̸∈C′
2 ∧C2 = {c}

)
∨(cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ c2 = c∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = cu∧

cu ∈C′
2 ∧C2 =C′

2
))))

Lemma 1
=⇒ C′ =C∩{c}= {c}

=⇒ |C′|= 1

161

Appendix B. Proof of Semantic Correctness and Completeness of Koral’s Distributed Query Execution
Strategy

Case 5: µ1 ̸=∅∧µ2 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) =∅

µ ∈ S Def. 30⇐⇒ ∃C′,C1,C2 : ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧C′ =C1 ∩C2

∧

(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover

∧
((

cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C)∧ c ̸∈C′
1 ∧ c1 = min<C(C

′
1)∧C1 = {c}

)
∨
(
cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C)∧ c ∈C′

1 ∧ c1 = c∧C1 = {c}
))))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover

∧
((

cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C)∧ c ̸∈C′
2 ∧ c2 = min<C(C

′
2)∧C2 = {c}

)
∨
(
cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C)∧ c ∈C′

2 ∧ c2 = c∧C2 = {c}
))))

=⇒C′ = {c}∩{c}= {c}
=⇒ |C′|= 1

Case 6: µ1 ̸=∅∧µ2 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) ̸=∅

µ ∈ S Def. 30⇐⇒ ∃C′,C1,C2 : ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧C′ =C1 ∩C2

∧

(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧ ((

cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ c1 = min<C(C
′
1)∧ jResp(µ1(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c∧

c ̸∈C′
1 ∧C1 = {c}

)
∨(cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ c1 = c∧ jResp(µ1(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = cu1∧

cu1 ∈C′
1 ∧C1 =C′

1
))))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover ∧ ((

cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ c2 = min<C(C
′
2)∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c∧

c ̸∈C′
2 ∧C2 = {c}

)
∨(cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ c2 = c∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = cu2∧

cu2 ∈C′
2 ∧C2 =C′

2
))))

162

B.4. Proof of Unique Knows Theorem

ind. hyp.
=⇒ ∃C′,C1,C2 : ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧C′ =C1 ∩C2

∧

(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧|C′

1|= 1((
cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ c1 = min<C(C

′
1)∧ jResp(µ1(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c∧

c ̸∈C′
1 ∧C1 = {c}

)
∨(cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ c1 = c∧ jResp(µ1(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = cu1∧

cu1 ∈C′
1 ∧C1 =C′

1
))))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover ∧|C′

2|= 1((
cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ c2 = min<C(C

′
2)∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c∧

c ̸∈C′
2 ∧C2 = {c}

)
∨(cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ c2 = c∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = cu2∧

cu2 ∈C′
2 ∧C2 =C′

2
))))

Lemma 1
=⇒ C′ = {c}∩{c}= {c}

=⇒ |C′|= 1

Induction step: Q = SELECT W WHERE {B}.

∀c ∈C : ∃C′ : (µ,C′) ∈ JSELECT W WHERE {B}Kloc,c
cover ∧µ ̸=∅

Def. 31⇐⇒ ∃µ
′ : µ = µ

′
|W ∧ (µ ′,C′) ∈ JBKloc,c

cover ∧µ ̸=∅

⇐⇒∃µ
′ : µ = µ

′
|W ∧ (µ ′,C′) ∈ JBKloc,c

cover ∧µ ̸=∅

∧µ
′ ̸=∅

ind. hyp.
=⇒ |C′|= 1

163

Appendix B. Proof of Semantic Correctness and Completeness of Koral’s Distributed Query Execution
Strategy

B.5. Proof of Similarity of the Replication-Aware Extension

Theorem 3 says that in the case of graph cover strategies that do not replicate triples the distributed query
execution strategy and the replication-aware distributed query execution strategy work identically.

Theorem 3. In case of a graph cover without triple replication, i.e., ∀t ∈ G : |cover(t)| = 1, the distributed
query execution strategy and the replication-aware distributed query execution strategy evaluate the query Q
identically:

∀c ∈C :
{

µ
⏐⏐(µ,C′) ∈ JQKloc,c

cover

}
= JQKc

cover .

Proof. The proof of Theorem 3 is an induction over the structure of query Q. As induction bases it will be
shown for all queries that do not contain subqueries. In the context of this thesis this means Q = t p. Based
on this proof the induction hypothesis is raised that the theorem holds for queries B, B1 and B2. Afterwards
the induction step is shown for the remaining query constructs that are the join Q = B1.B2 and the projection
Q = SELECT W WHERE {B}.
Induction basis: Q = tp.

∀c ∈C : ∃C′ : (µ,C′) ∈ JtpKloc,c
cover

Def. 31⇐⇒ ∃C′ : dom(µ) = var(tp)∧µ(tp) ∈ chunkcover(c)∧C′ = cover(µ(tp))

⇐⇒ dom(µ) = var(tp)∧µ(tp) ∈ chunkcover(c)

Def. 26⇐⇒ µ ∈ JtpKc
cover

Induction hypothesis: Theorem 3 is valid for queries B1, B2 and B.
For every basic graph pattern B the induction hypothesis is:

JBKc
cover =

{
µ

⏐⏐⏐⏐∃C′ : (µ,C′) ∈
⋃

c∈C
JBKloc,c

cover

}
This can be rephrased as

µ ∈ JBKc
cover ⇔∃C′ : (µ,C′) ∈ JBKloc,c

cover .

Induction step: Q = B1.B2.
This proof is structured in a way that first {µ|∃C′ : (µ,C′) ∈ JB1.B2K

loc,c
cover} is transformed into a set Sle f t and

then JB1.B2Kc
cover is transformed into a set Sright . Finally, the equality of Sle f t and Sright is shown.

∀c ∈C : ∃C′ : (µ,C′) ∈ JB1.B2Kloc,c
cover

Def. 31⇐⇒ ∃C′ : (µ,C′) ∈

(⋃
c1∈C

routeloc(c1,c,⟨⟨B1.B2⟩⟩,JB1Kloc,c1
cover)

)

⋊⋉

(⋃
c2∈C

routeloc(c2,c,⟨⟨B1.B2⟩⟩,JB2Kloc,c2
cover)

)
Def. 29⇐⇒ ∃C′,C1,C2 : ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧C′ =C1 ∩C2

∧
⋁

c1∈C

(µ1,C1) ∈ routeloc(c1,c,⟨⟨B1.B2⟩⟩,JB1Kloc,c1
cover)

∧
⋁

c2∈C

(µ2,C2) ∈ routeloc(c2,c,⟨⟨B1.B2⟩⟩,JB2Kloc,c2
cover)

=⇒ µ ∈ Sle f t

164

B.5. Proof of Similarity of the Replication-Aware Extension

Now, JB1.B2Kc
cover is transformed into a set Sright .

∀c ∈C : µ ∈ JB1.B2Kc
cover

Def. 26⇐⇒ µ ∈

(⋃
c1∈C

route(c,⟨⟨B1.B2⟩⟩,JB1Kc1
cover)

)

⋊⋉

(⋃
c2∈C

route(c,⟨⟨B1.B2⟩⟩,JB2Kc2
cover)

)
Def. 13⇐⇒ ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2

∧
⋁

c1∈C

µ1 ∈ route(c,⟨⟨B1.B2⟩⟩,JB1Kc1
cover)

∧
⋁

c2∈C

µ2 ∈ route(c,⟨⟨B1.B2⟩⟩,JB2Kc2
cover)

=⇒ µ ∈ Sright

The sets Sle f t and Sright contain only the elements determined by the equations above. The equality of Sle f t
and Sright is proven by distinguishing the following cases:

1. ∅ ∈ Sle f t ∩Sright

2. µ ∈ Sle f t ∩Sright ∧µ =∅∼ µ2 ∧µ2 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) =∅

3. µ ∈ Sle f t ∩Sright ∧µ = µ1 ∼∅∧µ1 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) =∅

4. µ ∈ Sle f t ∩Sright ∧µ =∅∼ µ2 ∧µ2 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) ̸=∅

5. µ ∈ Sle f t ∩Sright ∧µ = µ1 ∼∅∧µ1 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) ̸=∅

6. µ ∈ Sle f t ∩Sright ∧µ = µ1 ∼ µ2 ∧µ1 ̸=∅∧µ2 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) =∅

7. µ ∈ Sle f t ∩Sright ∧µ = µ1 ∼ µ2 ∧µ1 ̸=∅∧µ2 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) ̸=∅

The proofs of the third case is analogue to the second case and the fifth case is analogue to the fourth case.
Therefore, the proofs of the third and fifth case are not shown.
Case 1: ∅ ∈ Sleft ∩Sright

µ ∈ Sle f t
Def. 30⇐⇒ ∃C′,C1,C2 : ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧C′ =C1 ∩C2

∧

(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧µ1 =∅∧ c1 = min<C(C

′
1)∧C1 =C

))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover ∧µ2 =∅∧ c2 = min<C(C

′
2)∧C2 =C

))

165

Appendix B. Proof of Semantic Correctness and Completeness of Koral’s Distributed Query Execution
Strategy

C′=C∩C=C⊆C⇐⇒ ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2

∧

(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧µ1 =∅∧ c1 = min<C(C

′
1)
))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover ∧µ2 =∅∧ c2 = min<C(C

′
2)
))

Lemma 1⇐⇒ ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2

∧

(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧µ1 =∅

))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover ∧µ2 =∅

))
ind. hyp.
⇐⇒ ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2

∧

(⋁
c1∈C

(µ1 ∈ JB1Kc1
cover ∧µ1 =∅)

)

∧

(⋁
c2∈C

(µ2 ∈ JB2Kc2
cover ∧µ2 =∅)

)
Def. 25⇐⇒ µ ∈ Sright

Case 2: µ ∈ Sleft ∩Sright ∧µ =∅∼ µ2 ∧µ2 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) =∅

µ ∈ Sle f t
Def. 30⇐⇒ ∃C′,C1,C2 : ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧C′ =C1 ∩C2

∧

(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧µ1 =∅∧ c1 = min<C(C

′
1)∧C1 =C

))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover

∧
((

cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C)∧ c ̸∈C′
2 ∧ c2 = min<C(C

′
2)∧C2 = {c}

)
∨
(
cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C)∧ c ∈C′

2 ∧ c2 = c∧C2 = {c}
))))

166

B.5. Proof of Similarity of the Replication-Aware Extension

C′=C∩{c}={c}⊆C⇐⇒ ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2

∧

(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧µ1 =∅∧ c1 = min<C(C

′
1)
))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover

∧
((

cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C)∧ c ̸∈C′
2 ∧ c2 = min<C(C

′
2)
)

∨
(
cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C)∧ c ∈C′

2 ∧ c2 = c
))))

Lemma 1⇐⇒ ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2

∧

(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧µ1 =∅

))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover

∧
((

cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C)∧ c ̸∈C′
2
)

∨
(
cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C)∧ c ∈C′

2
))))

⇐⇒∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2

∧

(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧µ1 =∅

))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover ∧ cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C)

))
ind. hyp.
⇐⇒ ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2

∧

(⋁
c1∈C

(µ1 ∈ JB1Kc1
cover ∧µ1 =∅)

)

∧

(⋁
c2∈C

(µ2 ∈ JB2Kc2
cover ∧ cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C))

)
Def. 25⇐⇒ µ ∈ Sright

167

Appendix B. Proof of Semantic Correctness and Completeness of Koral’s Distributed Query Execution
Strategy

Case 4: µ ∈ Sleft ∩Sright ∧µ =∅∼ µ2 ∧µ2 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) ̸=∅

µ ∈ Sle f t
Def. 30⇐⇒ ∃C′,C1,C2 : ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧C′ =C1 ∩C2

∧

(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧µ1 =∅∧ c1 = min<C(C

′
1)∧C1 =C

))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover ∧ ((

cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ c2 = min<C(C
′
2)∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c∧

c ̸∈C′
2 ∧C2 = {c}

)
∨(cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ c2 = c∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = cu∧

cu ∈C′
2 ∧C2 =C′

2
))))

C′=C∩C2=C2⊆C⇐⇒ ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2

∧

(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧µ1 =∅∧ c1 = min<C(C

′
1)
))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover ∧ (

(cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c∧
c2 = min<C(C

′
2)∧ c ̸∈C′

2
)

∨(cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = cu∧

c2 = c∧ cu ∈C′
2
))))

Lemma 2⇐⇒ ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2

∧

(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧µ1 =∅∧ c1 = min<C(C

′
1)
))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover ∧ (

(cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c∧
c2 = min<C(C

′
2)∧ c ̸∈C′

2
)

∨(cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c∧

c2 = c∧ c ∈C′
2
))))

168

B.5. Proof of Similarity of the Replication-Aware Extension

Lemma 1⇐⇒ ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2

∧

(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧µ1 =∅)

))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover ∧ ((

cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c∧ c ̸∈C′
2
)

∨
(
cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c∧ c ∈C′

2
))))

⇐⇒∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2

∧

(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧µ1 =∅)

))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover ∧ (

cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c))

)
ind. hyp.
⇐⇒ ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2

∧

(⋁
c1∈C

(µ1 ∈ JB1Kc1
cover ∧µ1 =∅))

)

∧

(⋁
c2∈C

(µ2 ∈ JB2Kc2
cover ∧ (

cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c))

)
Def. 25⇐⇒ µ ∈ Sright

169

Appendix B. Proof of Semantic Correctness and Completeness of Koral’s Distributed Query Execution
Strategy

Case 6: µ ∈ Sleft ∩Sright ∧µ = µ1 ∼ µ2 ∧µ1 ̸=∅∧µ2 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) =∅

µ ∈ Sle f t
Def. 30⇐⇒ ∃C′,C1,C2 : ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧C′ =C1 ∩C2

∧

(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover

∧
((

cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C)∧ c ̸∈C′
1 ∧ c1 = min<C(C

′
1)∧C1 = {c}

)
∨
(
cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C)∧ c ∈C′

1 ∧ c1 = c∧C1 = {c}
))))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover

∧
((

cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C)∧ c ̸∈C′
2 ∧ c2 = min<C(C

′
2)∧C2 = {c}

)
∨
(
cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C)∧ c ∈C′

2 ∧ c2 = c∧C2 = {c}
))))

C′={c}∩{c}={c}⊆C⇐⇒ ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2

∧

(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover

∧
((

cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C)∧ c ̸∈C′
1 ∧ c1 = min<C(C

′
1)
)

∨
(
cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C)∧ c ∈C′

1 ∧ c1 = c
))))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover

∧
((

cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C)∧ c ̸∈C′
2 ∧ c2 = min<C(C

′
2)
)

∨
(
cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C)∧ c ∈C′

2 ∧ c2 = c
))))

Lemma 1⇐⇒ ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2

∧

(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover

∧
((

cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C)∧ c ̸∈C′
1
)

∨
(
cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C)∧ c ∈C′

1
))))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover

∧
((

cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C)∧ c ̸∈C′
2
)

∨
(
cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C)∧ c ∈C′

2
))))

170

B.5. Proof of Similarity of the Replication-Aware Extension

⇐⇒∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2

∧

(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧ cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C)

))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover ∧ cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C)

))
ind. hyp.
⇐⇒ ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2

∧

(⋁
c1∈C

(µ1 ∈ JB1Kc1
cover ∧ cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C))

)

∧

(⋁
c2∈C

(µ2 ∈ JB2Kc2
cover ∧ cVars(⟨⟨B1.B2⟩⟩) =∅∧ c = min<C(C))

)
Def. 25⇐⇒ µ ∈ Sright

171

Appendix B. Proof of Semantic Correctness and Completeness of Koral’s Distributed Query Execution
Strategy

Case 7: µ ∈ Sleft ∩Sright ∧µ = µ1 ∼ µ2 ∧µ1 ̸=∅∧µ2 ̸=∅∧ cVars(⟨⟨B1.B2⟩⟩) ̸=∅

µ ∈ Sle f t
Def. 30⇐⇒ ∃C′,C1,C2 : ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧C′ =C1 ∩C2

∧

(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧ ((

cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ c1 = min<C(C
′
1)∧ jResp(µ1(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c∧

c ̸∈C′
1 ∧C1 = {c}

)
∨(cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ c1 = c∧ jResp(µ1(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = cu1∧

cu1 ∈C′
1 ∧C1 =C′

1
))))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover ∧ ((

cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ c2 = min<C(C
′
2)∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c∧

c ̸∈C′
2 ∧C2 = {c}

)
∨(cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ c2 = c∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = cu2∧

cu2 ∈C′
2 ∧C2 =C′

2
))))

Thm. 2⇐⇒ ∃C′,C1,C2 : ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧C′ =C1 ∩C2

∧

(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧ ((

cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ c1 = min<C(C
′
1)∧ jResp(µ1(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c∧

c ̸∈C′
1 ∧C1 = {c}

)
∨(cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ c1 = c∧ jResp(µ1(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c∧

c ∈C′
1 ∧C1 =C′

1
))))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover ∧ ((

cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ c2 = min<C(C
′
2)∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c∧

c ̸∈C′
2 ∧C2 = {c}

)
∨(cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ c2 = c∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c∧

c ∈C′
2 ∧C2 =C′

2
))))

172

B.5. Proof of Similarity of the Replication-Aware Extension

Lemma 1⇐⇒ ∃C′,C1,C2 : ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2 ∧C′ =C1 ∩C2

∧

(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧ (

(cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ jResp(µ1(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c∧
c ̸∈C′

1 ∧C1 = {c}
)

∨(cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ jResp(µ1(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c∧

c ∈C′
1 ∧C1 =C′

1
))))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover ∧ (

(cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c∧
c ̸∈C′

2 ∧C2 = {c}
)

∨(cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c∧

c ∈C′
2 ∧C2 =C′

2
))))

∀C1,C2⊆C:C1∩C2⊆C⇐⇒ ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2

∧

(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧ (

(cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ jResp(µ1(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c∧
c ̸∈C′

1
)

∨(cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ jResp(µ1(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c∧

c ∈C′
1
))))

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover ∧ (

(cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c∧
c ̸∈C′

2
)

∨(cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c∧

c ∈C′
2
))))

173

Appendix B. Proof of Semantic Correctness and Completeness of Koral’s Distributed Query Execution
Strategy

⇐⇒∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2

∧

(
∃C′

1 :
⋁

c1∈C

(
(µ1,C′

1) ∈ JB1Kloc,c1
cover ∧ (

cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ jResp(µ1(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c))

)

∧

(
∃C′

2 :
⋁

c2∈C

(
(µ2,C′

2) ∈ JB2Kloc,c2
cover ∧ (

cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c))

)
ind. hyp.
⇐⇒ ∃µ1,µ2 : µ = µ1 ∪µ2 ∧µ1 ∼ µ2

∧

(⋁
c1∈C

(µ1 ∈ JB1Kc1
cover ∧ (

cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ jResp(µ1(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c))

)

∧

(⋁
c2∈C

(µ2 ∈ JB2Kc2
cover ∧ (

cVars(⟨⟨B1.B2⟩⟩) ̸=∅∧ jResp(µ2(min<V (cVars(⟨⟨B1.B2⟩⟩)))) = c))

)
Def. 25⇐⇒ µ ∈ Sright

Induction step: Q = SELECT W WHERE {B}.

∀c ∈C : ∃C′ : (µ,C′) ∈ JSELECT W WHERE {B}Kloc,c
cover

Def. 31⇐⇒ ∃C′ : ∃µ
′ : µ = µ

′
|W ∧ (µ ′,C′) ∈ JBKloc,c

cover

ind. hyp.
⇐⇒ ∃µ

′ : µ = µ
′
|W ∧µ

′ ∈ JBKc
cover

Def. 26⇐⇒ µ ∈ JSELECT W WHERE {B}Kc
cover

174

APPENDIX C
Additional Evaluation Details

C.1. Characteristics of the Used Data Sets

Table C.1 shows the characteristics of the 500M, 1G and 2G triples subsets of the real-world billion triple
challenge dataset from 2014 [76] as well as both data sets generated with the Waterloo SPARQL Diversity
Test Suite v0.6 [15] used in the evaluations.

dataset BTC500M BTC1000M BTC2000M WatDiv100M WatDiv1000M
triples 500M 1,000M 2,000M 109,786,094 1,099,208,068
unique top level domains 9k 13k 21k 1 1
unique subjects 50,602k 90,713k 170,246k 5,212k 52,120k
unique properties 179k 412k 812k 86 86
unique objects 76,642k 147,625k 259,945k 9,743k 92,220k

Table C.1.: Data set characteristics.

C.2. Generated Queries

Queries for the BTC2014 Data Sets�
SELECT ?v0 ?v2 WHERE {

?v0 <http://purl.org/ontology/bibo/Webpage> ?v1.
?v1 <http://purl.org/dc/terms/created> ?v2.

} LIMIT 1000000
� �
Listing C.1: Query 1: so #tp=2 #ds=1 sel=0.001�

SELECT ?v0 ?v2 WHERE {
?v0 <http://vivo.ufl.edu/ontology/vivo-ufl/dateTimeIntervalFor> ?v1.
?v1 <http://www.w3.org/2000/01/rdf-schema#label> ?v2.

} LIMIT 1000000
� �
Listing C.2: Query 2: so #tp=2 #ds=1 sel=0.01

175

Appendix C. Additional Evaluation Details

�
SELECT ?v0 ?v8 WHERE {

?v0 <http://www.w3.org/2000/01/rdf-schema#isDefinedBy> ?v1.
?v1 <http://purl.org/dc/terms/hasPart> ?v2.
?v2 <http://www.metalex.eu/metalex/2008-05-02#variant> ?v3.
?v3 <http://www.metalex.eu/metalex/2008-05-02#fragment> ?v4.
?v4 <http://www.metalex.eu/metalex/2008-05-02#fragment> ?v5.
?v5 <http://xmlns.com/foaf/0.1/primaryTopic> ?v6.
?v6 <http://www.w3.org/2000/01/rdf-schema#isDefinedBy> ?v7.
?v7 <http://purl.org/dc/terms/hasPart> ?v8.

} LIMIT 1000000
� �
Listing C.3: Query 3: so #tp=8 #ds=1 sel=0.001

�
SELECT ?v0 ?v8 WHERE {

?v0 <http://vivo.ufl.edu/ontology/vivo-ufl/dateTimeIntervalFor> ?v1.
?v1 <http://vivoweb.org/ontology/core#contributingRole> ?v2.
?v2 <http://vivoweb.org/ontology/core#teacherRoleOf> ?v3.
?v3 <http://vivo.ufl.edu/ontology/vivo-ufl/homeDept> ?v4.
?v4 <http://vivo.ufl.edu/ontology/vivo-ufl/homeDeptFor> ?v5.
?v5 <http://vivo.ufl.edu/ontology/vivo-ufl/homeDept> ?v6.
?v6 <http://vivoweb.org/ontology/core#subOrganizationWithin> ?v7.
?v7 <http://www.w3.org/2000/01/rdf-schema#label> ?v8.

} LIMIT 1000000
� �
Listing C.4: Query 4: so #tp=8 #ds=1 sel=0.01

�
SELECT ?v0 ?v8 WHERE {

?v0 <http://www.w3.org/2000/01/rdf-schema#isDefinedBy> ?v1.
?v1 <http://www.w3.org/2007/05/powder-s#describedby> ?v2.
?v2 <http://www.openlinksw.com/schema/attribution#isDescribedUsing> ?v3.
?v3 <http://www.w3.org/2007/05/powder-s#describedby> ?v4.
?v4 <http://www.openlinksw.com/schema/attribution#isDescribedUsing> ?v5.
?v5 <http://www.w3.org/2007/05/powder-s#describedby> ?v6.
?v6 <http://www.openlinksw.com/schema/attribution#isDescribedUsing> ?v7.
?v7 <http://purl.org/dc/terms/title> ?v8.

} LIMIT 1000000
� �
Listing C.5: Query 5: so #tp=8 #ds=3 sel=0.001

�
SELECT ?v0 ?v8 WHERE {

?v0 <http://www.w3.org/2000/01/rdf-schema#isDefinedBy> ?v1.
?v1 <http://purl.org/dc/terms/hasFormat> ?v2.
?v2 <http://purl.org/dc/terms/hasVersion> ?v3.
?v3 <http://purl.org/dc/terms/isFormatOf> ?v4.
?v4 <http://purl.org/dc/terms/hasFormat> ?v5.
?v5 <http://purl.org/dc/terms/isVersionOf> ?v6.
?v6 <http://purl.org/dc/terms/type> ?v7.
?v7 <http://www.w3.org/2000/01/rdf-schema#seeAlso> ?v8.

} LIMIT 1000000
� �
Listing C.6: Query 6: so #tp=8 #ds=3 sel=0.01

176

C.2. Generated Queries

�
SELECT ?v0 ?v2 WHERE {

?v0 <http://www.metalex.eu/metalex/2008-05-02#realizedBy> ?v1.
?v0 <http://www.metalex.eu/metalex/2008-05-02#fragment> ?v2.

} LIMIT 1000000
� �
Listing C.7: Query 7: ss #tp=2 #ds=1 sel=0.001�

SELECT ?v0 ?v2 WHERE {
?v0 <http://vivo.ufl.edu/ontology/vivo-ufl/dateTimeIntervalFor> ?v1.
?v0 <http://vivoweb.org/ontology/core#start> ?v2.

} LIMIT 1000000
� �
Listing C.8: Query 8: ss #tp=2 #ds=1 sel=0.01�

SELECT ?v0 ?v8 WHERE {
?v0 <http://www.metalex.eu/metalex/2008-05-02#realizedBy> ?v1.
?v0 <http://www.metalex.eu/metalex/2008-05-02#fragment> ?v2.
?v0 <http://xmlns.com/foaf/0.1/isPrimaryTopicOf> ?v3.
?v0 <http://purl.org/vocab/frbr/core#realization> ?v4.
?v0 <http://purl.org/dc/terms/valid> ?v5.
?v0 <http://purl.org/dc/terms/description> ?v6.
?v0 <http://www.w3.org/2000/01/rdf-schema#isDefinedBy> ?v7.
?v0 <http://purl.org/dc/terms/created> ?v8.

} LIMIT 1000000
� �
Listing C.9: Query 9: ss #tp=8 #ds=1 sel=0.001�

SELECT ?v0 ?v8 WHERE {
?v0 <http://www.metalex.eu/metalex/2008-05-02#realizedBy> ?v1.
?v0 <http://www.metalex.eu/metalex/2008-05-02#fragment> ?v2.
?v0 <http://purl.org/vocab/frbr/core#realization> ?v3.
?v0 <http://purl.org/dc/terms/description> ?v4.
?v0 <http://xmlns.com/foaf/0.1/isPrimaryTopicOf> ?v5.
?v0 <http://purl.org/dc/terms/type> ?v6.
?v0 <http://purl.org/dc/terms/created> ?v7.
?v0 <http://purl.org/dc/terms/title> ?v8.

} LIMIT 1000000
� �
Listing C.10: Query 10: ss #tp=8 #ds=1 sel=0.01�

SELECT ?v0 ?v8 WHERE {
?v0 <http://www.w3.org/1999/xhtml/vocab#stylesheet> ?v1.
?v0 <http://www.w3.org/1999/xhtml/vocab#icon> ?v2.
?v0 <http://ogp.me/ns#description> ?v3.
?v0 <http://www.w3.org/1999/xhtml/vocab#next> ?v4.
?v0 <http://ogp.me/ns#title> ?v5.
?v0 <http://ogp.me/ns#url> ?v6.
?v0 <http://ogp.me/ns#type> ?v7.
?v0 <http://www.w3.org/1999/xhtml/vocab#prev> ?v8.

} LIMIT 1000000
� �
Listing C.11: Query 11: ss #tp=8 #ds=3 sel=0.001

177

Appendix C. Additional Evaluation Details

�
SELECT ?v0 ?v8 WHERE {

?v0 <http://www.w3.org/2002/07/owl#equivalentClass> ?v1.
?v0 <http://www.w3.org/2004/02/skos/core#prefLabel> ?v2.
?v0 <http://www.w3.org/2003/06/sw-vocab-status/ns#term_status> ?v3.
?v0 <http://purl.obolibrary.org/obo/IAO_0000111> ?v4.
?v0 <http://www.w3.org/2000/01/rdf-schema#isDefinedBy> ?v5.
?v0 <http://www.w3.org/2000/01/rdf-schema#label> ?v6.
?v0 <http://www.w3.org/2000/01/rdf-schema#comment> ?v7.
?v0 <http://eagle-i.org/ont/app/1.0/preferredLabel> ?v8.

} LIMIT 1000000
� �
Listing C.12: Query 12: ss #tp=8 #ds=3 sel=0.01

Queries for the WatDiv Data Sets

Since the queries generated for the WatDiv100M and the WatDiv1000M data sets were identically, they are
only listed once. In order to improve the layout some line breaks were inserted into some triple patterns
without changing their semantics.�
SELECT ?v0 ?v4 ?v6 ?v7 WHERE {

?v0 <http://schema.org/caption> ?v1 .
?v0 <http://schema.org/text> ?v2 .
?v0 <http://schema.org/contentRating> ?v3 .
?v0 <http://purl.org/stuff/rev#hasReview> ?v4 .
?v4 <http://purl.org/stuff/rev#title> ?v5 .
?v4 <http://purl.org/stuff/rev#reviewer> ?v6 .
?v7 <http://schema.org/actor> ?v6 .
?v7 <http://schema.org/language> ?v8 .

}
� �
Listing C.13: Query C1

�
SELECT ?v0 ?v3 ?v4 ?v8 WHERE {

?v0 <http://schema.org/legalName> ?v1 .
?v0 <http://purl.org/goodrelations/offers> ?v2 .
?v2 <http://schema.org/eligibleRegion>

<http://db.uwaterloo.ca/~galuc/wsdbm/Country5> .
?v2 <http://purl.org/goodrelations/includes> ?v3 .
?v4 <http://schema.org/jobTitle> ?v5 .
?v4 <http://xmlns.com/foaf/homepage> ?v6 .
?v4 <http://db.uwaterloo.ca/~galuc/wsdbm/makesPurchase> ?v7 .
?v7 <http://db.uwaterloo.ca/~galuc/wsdbm/purchaseFor> ?v3 .
?v3 <http://purl.org/stuff/rev#hasReview> ?v8 .
?v8 <http://purl.org/stuff/rev#totalVotes> ?v9 .

}
� �
Listing C.14: Query C2

178

C.2. Generated Queries

�
SELECT ?v0 WHERE {

?v0 <http://db.uwaterloo.ca/~galuc/wsdbm/likes> ?v1 .
?v0 <http://db.uwaterloo.ca/~galuc/wsdbm/friendOf> ?v2 .
?v0 <http://purl.org/dc/terms/Location> ?v3 .
?v0 <http://xmlns.com/foaf/age> ?v4 .
?v0 <http://db.uwaterloo.ca/~galuc/wsdbm/gender> ?v5 .
?v0 <http://xmlns.com/foaf/givenName> ?v6 .

}
� �
Listing C.15: Query C3

�
SELECT ?v0 ?v2 ?v3 ?v4 ?v5 WHERE {

?v0 <http://ogp.me/ns#tag> <http://db.uwaterloo.ca/~galuc/wsdbm/Topic57> .
?v0 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> ?v2 .
?v3 <http://schema.org/trailer> ?v4 .
?v3 <http://schema.org/keywords> ?v5 .
?v3 <http://db.uwaterloo.ca/~galuc/wsdbm/hasGenre> ?v0 .
?v3 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://db.uwaterloo.ca/~galuc/wsdbm/ProductCategory2> .
}
� �

Listing C.16: Query F1

�
SELECT ?v0 ?v1 ?v2 ?v4 ?v5 ?v6 ?v7 WHERE {

?v0 <http://xmlns.com/foaf/homepage> ?v1 .
?v0 <http://ogp.me/ns#title> ?v2 .
?v0 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> ?v3 .
?v0 <http://schema.org/caption> ?v4 .
?v0 <http://schema.org/description> ?v5 .
?v1 <http://schema.org/url> ?v6 .
?v1 <http://db.uwaterloo.ca/~galuc/wsdbm/hits> ?v7 .
?v0 <http://db.uwaterloo.ca/~galuc/wsdbm/hasGenre>

<http://db.uwaterloo.ca/~galuc/wsdbm/SubGenre49> .
}
� �

Listing C.17: Query F2

�
SELECT ?v0 ?v1 ?v2 ?v4 ?v5 ?v6 WHERE {

?v0 <http://schema.org/contentRating> ?v1 .
?v0 <http://schema.org/contentSize> ?v2 .
?v0 <http://db.uwaterloo.ca/~galuc/wsdbm/hasGenre>

<http://db.uwaterloo.ca/~galuc/wsdbm/SubGenre23> .
?v4 <http://db.uwaterloo.ca/~galuc/wsdbm/makesPurchase> ?v5 .
?v5 <http://db.uwaterloo.ca/~galuc/wsdbm/purchaseDate> ?v6 .
?v5 <http://db.uwaterloo.ca/~galuc/wsdbm/purchaseFor> ?v0 .

}
� �
Listing C.18: Query F3

179

Appendix C. Additional Evaluation Details

�
SELECT ?v0 ?v1 ?v2 ?v4 ?v5 ?v6 ?v7 ?v8 WHERE {

?v0 <http://xmlns.com/foaf/homepage> ?v1 .
?v2 <http://purl.org/goodrelations/includes> ?v0 .
?v0 <http://ogp.me/ns#tag> <http://db.uwaterloo.ca/~galuc/wsdbm/Topic39> .
?v0 <http://schema.org/description> ?v4 .
?v0 <http://schema.org/contentSize> ?v8 .
?v1 <http://schema.org/url> ?v5 .
?v1 <http://db.uwaterloo.ca/~galuc/wsdbm/hits> ?v6 .
?v1 <http://schema.org/language>

<http://db.uwaterloo.ca/~galuc/wsdbm/Language0> .
?v7 <http://db.uwaterloo.ca/~galuc/wsdbm/likes> ?v0 .

}
� �
Listing C.19: Query F4�

SELECT ?v0 ?v1 ?v3 ?v4 ?v5 ?v6 WHERE {
?v0 <http://purl.org/goodrelations/includes> ?v1 .
<http://db.uwaterloo.ca/~galuc/wsdbm/Retailer6238>

<http://purl.org/goodrelations/offers> ?v0 .
?v0 <http://purl.org/goodrelations/price> ?v3 .
?v0 <http://purl.org/goodrelations/validThrough> ?v4 .
?v1 <http://ogp.me/ns#title> ?v5 .
?v1 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> ?v6 .

}
� �
Listing C.20: Query F5�

SELECT ?v0 ?v2 ?v3 WHERE {
?v0 <http://db.uwaterloo.ca/~galuc/wsdbm/subscribes>

<http://db.uwaterloo.ca/~galuc/wsdbm/Website15805> .
?v2 <http://schema.org/caption> ?v3 .
?v0 <http://db.uwaterloo.ca/~galuc/wsdbm/likes> ?v2 .

}
� �
Listing C.21: Query L1�

SELECT ?v1 ?v2 WHERE {
<http://db.uwaterloo.ca/~galuc/wsdbm/City142>

<http://www.geonames.org/ontology#parentCountry> ?v1 .
?v2 <http://db.uwaterloo.ca/~galuc/wsdbm/likes>

<http://db.uwaterloo.ca/~galuc/wsdbm/Product0> .
?v2 <http://schema.org/nationality> ?v1 .

}
� �
Listing C.22: Query L2�

SELECT ?v0 ?v1 WHERE {
?v0 <http://db.uwaterloo.ca/~galuc/wsdbm/likes> ?v1 .
?v0 <http://db.uwaterloo.ca/~galuc/wsdbm/subscribes>

<http://db.uwaterloo.ca/~galuc/wsdbm/Website47601> .
}
� �

Listing C.23: Query L3

180

C.2. Generated Queries

�
SELECT ?v0 ?v2 WHERE {

?v0 <http://ogp.me/ns#tag> <http://db.uwaterloo.ca/~galuc/wsdbm/Topic167> .
?v0 <http://schema.org/caption> ?v2 .

}
� �
Listing C.24: Query L4

�
SELECT ?v0 ?v1 ?v3 WHERE {

?v0 <http://schema.org/jobTitle> ?v1 .
<http://db.uwaterloo.ca/~galuc/wsdbm/City212>

<http://www.geonames.org/ontology#parentCountry> ?v3 .
?v0 <http://schema.org/nationality> ?v3 .

}
� �
Listing C.25: Query L5

�
SELECT ?v0 ?v1 ?v3 ?v4 ?v5 ?v6 ?v7 ?v8 ?v9 WHERE {

?v0 <http://purl.org/goodrelations/includes> ?v1 .
<http://db.uwaterloo.ca/~galuc/wsdbm/Retailer3584>

<http://purl.org/goodrelations/offers> ?v0 .
?v0 <http://purl.org/goodrelations/price> ?v3 .
?v0 <http://purl.org/goodrelations/serialNumber> ?v4 .
?v0 <http://purl.org/goodrelations/validFrom> ?v5 .
?v0 <http://purl.org/goodrelations/validThrough> ?v6 .
?v0 <http://schema.org/eligibleQuantity> ?v7 .
?v0 <http://schema.org/eligibleRegion> ?v8 .
?v0 <http://schema.org/priceValidUntil> ?v9 .

}
� �
Listing C.26: Query S1

�
SELECT ?v0 ?v1 ?v3 WHERE {

?v0 <http://purl.org/dc/terms/Location> ?v1 .
?v0 <http://schema.org/nationality>

<http://db.uwaterloo.ca/~galuc/wsdbm/Country18> .
?v0 <http://db.uwaterloo.ca/~galuc/wsdbm/gender> ?v3 .
?v0 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://db.uwaterloo.ca/~galuc/wsdbm/Role2> .
}
� �

Listing C.27: Query S2

�
SELECT ?v0 ?v2 ?v3 ?v4 WHERE {

?v0 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://db.uwaterloo.ca/~galuc/wsdbm/ProductCategory8> .

?v0 <http://schema.org/caption> ?v2 .
?v0 <http://db.uwaterloo.ca/~galuc/wsdbm/hasGenre> ?v3 .
?v0 <http://schema.org/publisher> ?v4 .

}
� �
Listing C.28: Query S3

181

Appendix C. Additional Evaluation Details

�
SELECT ?v0 ?v2 ?v3 WHERE {

?v0 <http://xmlns.com/foaf/age> <http://db.uwaterloo.ca/~galuc/wsdbm/AgeGroup7> .
?v0 <http://xmlns.com/foaf/familyName> ?v2 .
?v3 <http://purl.org/ontology/mo/artist> ?v0 .
?v0 <http://schema.org/nationality>

<http://db.uwaterloo.ca/~galuc/wsdbm/Country1> .
}
� �

Listing C.29: Query S4�
SELECT ?v0 ?v2 ?v3 WHERE {

?v0 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://db.uwaterloo.ca/~galuc/wsdbm/ProductCategory3> .

?v0 <http://schema.org/description> ?v2 .
?v0 <http://schema.org/keywords> ?v3 .
?v0 <http://schema.org/language>

<http://db.uwaterloo.ca/~galuc/wsdbm/Language0> .
}
� �

Listing C.30: Query S5�
SELECT ?v0 ?v1 ?v2 WHERE {

?v0 <http://purl.org/ontology/mo/conductor> ?v1 .
?v0 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> ?v2 .
?v0 <http://db.uwaterloo.ca/~galuc/wsdbm/hasGenre>

<http://db.uwaterloo.ca/~galuc/wsdbm/SubGenre57> .
}
� �

Listing C.31: Query S6�
SELECT ?v0 ?v1 ?v2 WHERE {

?v0 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> ?v1 .
?v0 <http://schema.org/text> ?v2 .
<http://db.uwaterloo.ca/~galuc/wsdbm/User97304>

<http://db.uwaterloo.ca/~galuc/wsdbm/likes> ?v0 .
}
� �

Listing C.32: Query S7

C.3. Query Execution Times

Table C.2 shows the query execution times of all graph covers for the 10 slaves and the 1 billion triples data
set BTC1000M in seconds. Table C.3 shows the query execution times of the molecule hash covers with the
varying molecule diameters for 10 slaves and the BTC1000M data set in seconds. Table C.4 shows the query
execution times for the different graph cover strategies for the 1 billion triples data set BTC1000M when
using 10, 20 and 40 slaves in seconds. Additionally, this table includes the execution times for the centralized
query execution. Table C.5 shows the query execution times for the different graph cover strategies for 20
slaves when using the 500 million, 1 billion and 2 billion triples data sets (i.e., BTC500M, BTC1000M and

182

C.3. Query Execution Times

BTC2000M) in seconds. When interpreting the query execution times, it should be noted that the number
of returned results differ for the different data set sizes and the 2-hop hash cover. Query execution times of
aborted queries are highlighted. For the WatDiv100M and WatDiv1000M data sets the query execution times
are shown in Table C.6 and Table C.7, respectively.

query hash hierarchical minimal edge-cut vertical 2-hop hash molecule hash MEC over
q1 2.2 2.4 2.5 45.1 1.1 2.2 0.7
q2 16.5 15.1 23.4 3,502.1 354.8 14.6 5.4
q3 245.4 244.2 261.4 1,133.2 143.7 108.2 15.9
q4 45.6 42.0 49.9 3,459.8 289.8 32.2 27.4
q5 121.5 76.1 55.4 2,516.0 24.5 43.4 29.2
q6 2,505.6 2,460.0 2,311.4 2,455.7 91.0 1,926.5 69.2
q7 36.0 38.3 54.6 57.4 39.9 33.8 38.8
q8 4.4 4.4 7.3 44.7 14.2 2.5 0.1
q9 22.5 23.6 25.6 201.0 34.4 22.8 173.7
q10 21.9 24.0 23.8 1,176.5 30.9 22.1 83.8
q11 28.0 22.0 38.7 1,099.1 28.2 37.3 10.3
q12 8.0 25.7 20.8 3,908.2 667.8 10.6 2.4

Table C.2.: Query execution times in sec for the comparison of the different graph cover strategies using the
BTC1000M data set and 10 slaves.

query diameter 2 diameter 3 diameter 4 diameter 5 diameter 6 diameter 7
q1 2.2 2.2 0.6 0.7 2.2 0.3
q2 12.7 14.6 14.2 16.7 15.5 15.6
q3 166.1 108.2 105.4 104.8 100.8 100.8
q4 37.1 32.2 30.7 29.1 30.7 33.2
q5 53.3 43.4 52.9 55.1 50.6 62.6
q6 2,197.1 1,926.5 1,865.3 1,897.6 1,875.9 1,847.6
q7 43.2 33.8 39.5 41.9 35.6 46.2
q8 3.0 2.5 2.9 2.9 2.5 2.9
q9 26.9 22.8 24.1 25.1 22.9 24.0
q10 24.8 22.1 23.6 24.0 22.2 24.2
q11 36.7 37.3 35.6 39.0 30.7 33.1
q12 7.8 10.6 8.8 8.8 10.0 8.2

Table C.3.: Query execution times in sec for the different diameters of the molecule hash cover using the
BTC1000M data set and 10 slaves.

183

Appendix C. Additional Evaluation Details

hash hierarchical minimal edge-cut
query 10 20 40 10 20 40 10 20 40
q1 2.2 5.4 11.5 2.4 5.6 12.8 2.5 5.4 8.0
q2 16.5 18.0 15.2 15.1 12.0 19.3 23.4 13.6 16.6
q3 245.4 174.1 188.9 244.2 162.9 172.6 261.4 168.4 174.2
q4 45.6 53.6 81.0 42.0 57.6 103.3 49.9 56.4 88.0
q5 121.5 62.0 45.0 76.1 39.2 56.4 55.4 49.0 91.8
q6 2,505.6 3,756.1 2,799.9 2,460.0 3,500.4 2,186.9 2,311.4 2,206.7 2,639.7
q7 36.0 20.3 36.9 38.3 50.6 57.8 54.6 47.4 60.2
q8 4.4 4.4 8.0 4.4 5.5 8.0 7.3 4.3 8.0
q9 22.5 25.2 24.4 23.6 25.1 35.6 25.6 24.6 40.1
q10 21.9 24.9 27.5 24.0 34.7 44.3 23.8 24.8 39.8
q11 28.0 22.5 25.0 22.0 24.0 41.4 38.7 24.3 36.5
q12 8.0 6.0 3.3 25.7 7.5 3.4 20.8 11.1 4.1

(a) Query execution times for frequently used graph cover strategies.
molecule hash overpartitioned minimal edge-cut centralized

query 10 20 40 10 20 40
q1 2.2 4.3 8.0 0.7 0.4 0.4 7.8
q2 14.6 9.6 13.6 5.4 16.6 25.7 238.2
q3 108.2 87.9 107.8 15.9 30.2 59.8 69.6
q4 32.2 44.0 70.2 27.4 29.6 59.7 276.2
q5 43.4 41.2 79.3 29.2 15.0 27.0 55.0
q6 1,926.5 2,945.9 3,643.2 69.2 24.0 61.9 247.3
q7 33.8 40.0 55.7 38.8 21.2 33.6 23.6
q8 2.5 4.0 7.9 0.1 8.9 19.8 3.3
q9 22.8 26.1 45.3 173.7 45.2 59.6 49.4
q10 22.1 25.6 57.6 83.8 38.6 59.4 57.2
q11 37.3 23.3 36.8 10.3 3.0 59.9 124.9
q12 10.6 5.8 1.8 2.4 30.6 59.9 313.6

(b) Query execution times for molecule hash cover, overpartitioned minimal edge-cut cover and the centralized setting.

Table C.4.: Query execution times in sec when scaling the number of slaves for the BTC1000M data set.

184

C.3. Query Execution Times

hash hierarchical minimal edge-cut
query 500M 1000M 2000M 500M 1000M 2000M 500M 1000M 2000M
q1 5.7 5.4 5.5 4.0 5.6 5.4 5.1 5.4 5.4
q2 10.3 18.0 19.6 9.4 12.0 89.5 15.1 13.6 80.1
q3 97.8 174.1 1,516.7 94.6 162.9 1,956.8 99.8 168.4 2,290.7
q4 46.9 53.6 64.5 34.4 57.6 65.0 49.3 56.4 70.0
q5 27.6 62.0 46.1 28.0 39.2 51.4 42.9 49.0 52.9
q6 2,883.0 3,756.1 2,561.1 2,570.5 3,500.4 2,613.4 1,368.8 2,206.7 1,929.2
q7 27.9 20.3 43.1 29.0 50.6 39.7 28.9 47.4 42.0
q8 5.0 4.4 8.7 3.9 5.5 8.4 4.0 4.3 5.0
q9 25.7 25.2 29.1 25.2 25.1 25.0 25.8 24.6 24.6
q10 26.7 24.9 26.1 30.5 34.7 23.4 29.2 24.8 23.7
q11 22.3 22.5 32.9 21.2 24.0 33.2 23.7 24.3 23.8
q12 1.3 6.0 12.2 3.4 7.5 14.2 4.4 11.1 19.6

(a) Query execution times for frequently used graph cover strategies.
molecule hash overpartitioned minimal edge-cut

query 500M 1000M 2000M 500M 1000M 2000M
q1 4.9 4.3 4.2 0.4 0.4 0.7
q2 8.2 9.6 17.6 11.6 16.6 24.6
q3 67.0 87.9 2,258.9 29.1 30.2 8.4
q4 39.6 44.0 53.6 29.2 29.6 37.3
q5 50.3 41.2 40.1 19.4 15.0 14.0
q6 2,859.5 2,945.9 1,583.8 4.9 24.0 44.3
q7 34.7 40.0 40.1 21.5 21.2 23.3
q8 3.9 4.0 4.1 8.7 8.9 11.1
q9 32.0 26.1 25.5 30.0 45.2 427.0
q10 32.7 25.6 24.9 29.3 38.6 257.5
q11 26.4 23.3 29.5 1.3 3.0 19.1
q12 4.0 5.8 13.1 29.3 30.6 67.8

(b) Query execution times for molecule hash cover and the overpartitioned minimal edge-cut cover.

Table C.5.: Query execution times in sec when scaling the dataset size for 20 slaves.

185

Appendix C. Additional Evaluation Details

query hash hierarchical minimal edge-cut molecule hash MEC over
C1 68.3 67.9 182.4 64.4 3.3
C2 444.7 443.7 816.6 34.5 19.1
C3 2,581.2 3,580.9 3,584.0 1,242.4 1,519.6
F1 22.3 24.4 32.8 22.2 12.1
F2 3,420.3 3,427.0 3,414.7 3,379.0 3,389.5
F3 2,884.8 2,886.5 2,886.5 2.884.0 2.881.3
F4 3,226.0 3,210.5 3,199.0 247.1 3,166.8
F5 6.9 7.7 9.8 6.0 3.4
L1 28.9 28.6 29.6 29.1 29.1
L2 0.1 0.1 0.1 0.1 0.04
L3 0.5 0.3 1.8 0.5 0.3
L4 1.9 1.9 1.9 1.9 1.9
L5 50.6 50.5 49.9 50.7 47.9
S1 17.2 16.1 66.6 17.4 16.6
S2 0.8 0.7 2.8 0.9 0.8
S3 6.6 6.6 6.8 6.8 6.6
S4 1.4 1.6 2.4 0.6 0.5
S5 2.9 2.8 3.0 0.2 0.2
S6 0.9 0.5 1.4 0.8 0.9
S7 4.9 4.9 2.9 5.2 4.9

Table C.6.: Query execution times in sec for the comparison of the different graph cover strategies using the
WatDiv100M data set and 10 slaves.

186

C.3. Query Execution Times

query hash hierarchical molecule hash
C1 570.6 573.4 553.4
C2 3,465.0 3,288.1 609.6
C3 3,581.5 3,593.9 3.590.7
F1 2,873.8 3,479.5 2.660.9
F2 4,661.7 4,662.4 3,080.3
F3 3,968.0 3,966.3 839.8
F4 4,279.2 4,257.0 4,263.1
F5 192.6 195.5 126.5
L1 230.8 231.9 230.9
L2 532.0 541.1 521.8
L3 11.5 13.3 11.4
L4 2.0 1.9 1.9
L5 1.8 1.9 1.9
S1 490.0 441.7 368.6
S2 8.3 10.6 11.0
S3 7.8 10.5 7.6
S4 436.4 677.4 8.8
S5 7.2 7.0 6.9
S6 8.9 10.9 11.7
S7 13.9 16.8 15.1

Table C.7.: Query execution times in sec for the comparison of the different graph cover strategies using the
WatDiv1000M data set and 10 slaves.

187

List of Figures
2.1. Example graph describing the knows relationships between some employees of WeST and Gesis. 6
2.2. An example graph cover of the example graph. 7
2.3. An example query execution tree from the query in example 4. 10
2.4. Architecture of RDF stores using cloud computing frameworks. 11
2.5. Master-slave architecture used by distributed RDF stores. 12
2.6. Peer-to-peer architecture used by distributed RDF stores. 14
2.7. Architecture of federated RDF stores. 14
2.8. An example data distribution and the two summary graphs created by TriAD and EAGRE. . . 16
2.9. The different types of overlay networks used in distributed hash indices. 17
2.10. The summary graph integrated into the graph cover shown in Figure 2.8a. 19

3.1. Example graph describing the knows relationships between some employees of WeST and Gesis. 26
3.2. The example graph split into molecules. 27
3.3. An example vertical graph split of the example graph. 27
3.4. An example hash cover of the example graph. 28
3.5. An example hierarchical hash cover which is also a minimal edge-cut cover of the example

graph. 29
3.6. The 2-hop extension of the hash cover in Figure 3.4. 31

4.1. The three different query execution strategies for the query from example 4. 45
4.2. Architecture of Koral. 46
4.3. An illustration of the distributed join. 49
4.4. The 2-hop replication extension of the hash cover in Figure 3.6 on page 31 with compute nodes

annotated to the triples. 51
4.5. Forwarding of duplicate localized variable bindings at the presence of replicated triples. 52
4.6. Forwarding of unique localized variable bindings at the presence of replicated triples. 53

5.1. Change of the exTimes of all finished queries relative to the hash cover using bushy query
execution with 10 slaves using the BTC1000M data set. The numbers within the bars are the
absolute query execution times in seconds. 61

5.2. Number of triples that were matched on the individual graph chunks of the vertical cover. . . . 62
5.3. Creation times of different graph covers for different slave numbers and the BTC1000M data

set. 64
5.4. Number of triples contained in each of the 20 graph chunks. 65
5.5. A plot of a minimal edge-cut cover of a 10k triples subset consisting of five chunks. Each

chunk is drawn by a different colour. Cut edges are indicated by red arrows. 66
5.6. Change of the exTimes of all finished queries using bushy query execution and the BTC1000M

data set. 68
5.7. Change of the exTimes relative to the hash cover using bushy query execution for the Wat-

Div100M data set. 68

189

List of Figures

5.8. Change of the exTimes of all finished queries using bushy query execution. 70
5.9. χ for some queries at scale 10 for the 1000M triples data set. 70
5.10. The relative change in the number of transferred packets P of the bushy query execution. . . . 73
5.11. Workload imbalance W of the bushy query execution. Comparison of the different graph

covers at 10 slaves. 74
5.12. Workload imbalance W of the bushy query execution. Comparison of the different number of

slaves for the minimal edge-cut cover. 75
5.13. Workload imbalance W of the bushy query execution. Comparison of the different data set

sizes for the minimal edge-cut cover. 76

6.1. Example graph describing the knows relationships between some employees of WeST and Gesis. 80
6.2. An example molecule hash cover of the example graph from Figure 6.1. 82
6.3. Creation times of different graph covers for different slave numbers and the BTC1000M data

set. 86
6.4. exTime of all queries relative to the hash cover for BTC1000M. The numbers within the bars

are the absolute query execution times in seconds. 88
6.5. exTime of all queries relative to the hash cover for WatDiv100M. 88
6.6. exTime of all queries relative to the hash cover for WatDiv1000M. 89
6.7. Packet transfer P relative to hash cover for the BTC1000M data set using 10 slaves. 91
6.8. Workload imbalance W for the BTC100M data set using 10 slaves. 93

A.1. Query execution tree of example query Q. 114
A.2. Results of evaluating ?X a ?Y on the different compute nodes. 114
A.3. Results of evaluating ?Y b ?Z on the different compute nodes. 115
A.4. Results of transferring the variable bindings according to their join responsibility. 116
A.5. Results of joining the results of ?X a ?Y and ?Y b ?Z. 117
A.6. Results of evaluating ?Z b ?W on the different compute nodes. 118
A.7. Results of evaluating ?W a ?X on the different compute nodes. 118
A.8. Results of transferring the variable bindings according to their join responsibility. 119
A.9. Results of joining the results of ?Z b ?W and ?W a ?X. 120
A.10.Results of transferring the variable bindings according to their join responsibility. 121
A.11.Results of joining the results of both previous joins. 122
A.12.Query execution tree of example query Q. 124
A.13.Results of evaluating ?X a ?Y on the different compute nodes. 124
A.14.Results of evaluating ?Y a ?Z on the different compute nodes. 125
A.15.Results of transferring the localized variable bindings. 126
A.16.Results of joining the results of ?X a ?Y and ?Y a ?Z. 128
A.17.Results of evaluating ?Z b ?X on the different compute nodes. 128
A.18.Results of transferring the localized variable bindings. 130
A.19.Results of joining the results of ?X a ?Y. ?Y a ?Z and ?Z b ?X. 130

190

List of Tables
3.1. Query characteristics of LUBM and SP2Bench. 33
3.2. BSBM query characteristics. 34
3.3. SPB query characteristics. 35
3.4. Evaluations of RDF stores in the cloud published since 2016. 38
3.5. Evaluations of RDF stores reported by [1]. 39

4.1. Measurement of vertical parallelization. 44

5.1. Summary of the evaluation setup. 60
5.2. Number of query results for the BTC2014 data sets. 61
5.3. The storage imbalance b of the different graph covers at different number of graph chunks. . . 65

6.1. The storage imbalance b of the different graph covers at different number of graph chunks. . . 87

C.1. Data set characteristics. 175
C.2. Query execution times in sec for the comparison of the different graph cover strategies using

the BTC1000M data set and 10 slaves. 183
C.3. Query execution times in sec for the different diameters of the molecule hash cover using the

BTC1000M data set and 10 slaves. 183
C.4. Query execution times in sec when scaling the number of slaves for the BTC1000M data set. . 184
C.5. Query execution times in sec when scaling the dataset size for 20 slaves. 185
C.6. Query execution times in sec for the comparison of the different graph cover strategies using

the WatDiv100M data set and 10 slaves. 186
C.7. Query execution times in sec for the comparison of the different graph cover strategies using

the WatDiv1000M data set and 10 slaves. 187

191

List of Listings

6.1. The molecule hash cover creation algorithm. 81

C.1. Query 1: so #tp=2 #ds=1 sel=0.001 . 175
C.2. Query 2: so #tp=2 #ds=1 sel=0.01 . 175
C.3. Query 3: so #tp=8 #ds=1 sel=0.001 . 176
C.4. Query 4: so #tp=8 #ds=1 sel=0.01 . 176
C.5. Query 5: so #tp=8 #ds=3 sel=0.001 . 176
C.6. Query 6: so #tp=8 #ds=3 sel=0.01 . 176
C.7. Query 7: ss #tp=2 #ds=1 sel=0.001 . 177
C.8. Query 8: ss #tp=2 #ds=1 sel=0.01 . 177
C.9. Query 9: ss #tp=8 #ds=1 sel=0.001 . 177
C.10. Query 10: ss #tp=8 #ds=1 sel=0.01 . 177
C.11. Query 11: ss #tp=8 #ds=3 sel=0.001 . 177
C.12. Query 12: ss #tp=8 #ds=3 sel=0.01 . 178
C.13. Query C1 . 178
C.14. Query C2 . 178
C.15. Query C3 . 179
C.16. Query F1 . 179
C.17. Query F2 . 179
C.18. Query F3 . 179
C.19. Query F4 . 180
C.20. Query F5 . 180
C.21. Query L1 . 180
C.22. Query L2 . 180
C.23. Query L3 . 180
C.24. Query L4 . 181
C.25. Query L5 . 181
C.26. Query S1 . 181
C.27. Query S2 . 181
C.28. Query S3 . 181
C.29. Query S4 . 182
C.30. Query S5 . 182
C.31. Query S6 . 182
C.32. Query S7 . 182

193

Curriculum Vitae
♂ Daniel Dominik Janke

� Institute for Web Science and Technologies,
Universität Koblenz-Landau,
Universitätsstr. 1,
56070 Koblenz,
Germany.

Ó +49 (0) 261 287-2747

� danijank@uni-koblenz.de

� February 5, 2020

Education and Qualification

2012 M.Sc. in Computer Science Universität Koblenz-Landau, Koblenz.
2010 B.Sc. in Computer Science Universität Koblenz-Landau, Koblenz.

Positions

2013– Research assistant, Institute for Web Science and Technologies, Universität Koblenz-Landau.
2012-2013 Research assistant, Institute for Software Engineering, Universität Koblenz-Landau.

Research

My current research is on distributed graph databases. My focus is on the effects of the data placement
strategies on the query performance. Additionally, I also investigate distributed query execution strategies as
well as finding new persistent data structures that allow for efficient updates.

Invited Talks

• Summer school lecturer, 14th Reasoning Web Summer School, Esch-sur-Alzette, September 2018.

Teaching

2019 Big Data Tutorial.
2018 Foundations in Databases Tutorial.
2014 Data Science Tutorial.
2013 Proseminar Linked Data.

195

mailto:danijank@uni-koblenz.de

Curriculum Vitae

Supervised Theses

• Optimizing a Statistics Database for Big Data, bachelor thesis, August 2018.

• Quintuple Extension of RDF and SPARQL, bachelor thesis, December 2016.

• Benchmarks for SPARQL Property Paths, bachelor thesis, July 2016.

Reviewing Activities

2017-2018 Extended Semantic Web Conference.
2017 International Semantic Web Conference.

Publications

1. Janke, D., Staab, S., Thimm, M.: Impact Analysis of Data Placement Strategies on Query Efforts in Dis-
tributed RDF Stores. Tech. rep., WeST (2016), https://owncloud.uni-koblenz-landau.
de/owncloud/s/5c25skgCkkDgxyQ

2. Janke, D., Staab, S., Thimm, M.: On Data Placement Strategies in Distributed RDF Stores. In: Proceed-
ings of The International Workshop on Semantic Big Data. pp. 1:1–1:6. SBD ’17, ACM, New York, NY,
USA (2017). doi: 10.1145/3066911.3066915

3. Janke, D., Skubella, A., Staab, S.: Evaluating sparql 1.1 property path support. In: Usbeck, R., Ngonga,
A., Kim, J.D., Choi, K.S., Cimiano, P., Fundulaki, I., Krithara, A. (eds.) Joint Proceedings of BLINK2017:
Benchmarking Linked Data and NLIWoD3: Natural Language Interfaces for the Web of Data (BLINK2017-
NLIWoD3). No. 1932 in CEUR Workshop Proceedings, Aachen (2017), http://ceur-ws.org/
Vol-1932/paper-04.pdf

4. Janke, D., Staab, S., Thimm, M.: Koral: A Glass Box Profiling System for Individual Components of
Distributed RDF Stores. In: Joint Proceedings of BLINK2017: 2nd International Workshop on Bench-
marking Linked Data and NLIWoD3: Natural Language Interfaces for the Web of Data co-located with
16th International Semantic Web Conference (ISWC 2017), Vienna, Austria, October 21st - to - 22nd,
2017. (2017), http://ceur-ws.org/Vol-1932/paper-05.pdf

5. Janke, D., Staab, S., Thimm, M.: Koral: A Glass Box Profiling System for Individual Components of
Distributed RDF Stores. In: Nikitina, N., Song, D., Fokoue, A., Haase, P. (eds.) ISWC 2017 Posters
& Demonstrations and Industry Tracks. No. 2963 in CEUR Workshop Proceedings, Aachen (2017),
http://ceur-ws.org/Vol-1963/paper489.pdf

6. Janke, D., Staab, S., Thimm, M.: Impact analysis of data placement strategies on query efforts in dis-
tributed RDF stores. Journal of Web Semantics 50, 21 – 48 (2018). doi: 10.1016/j.websem.2018.02.002,
http://www.websemanticsjournal.org/index.php/ps/article/view/516

7. Janke, D., Staab, S.: Storing and Querying Semantic Data in the Cloud. In: D’Amato, C., Theobald, M.
(eds.) Reasoning Web. Learning, Uncertainty, Streaming, and Scalability: 14th International Summer
School 2018, Esch-sur-Alzette, Luxembourg, September 22–26, 2018, Tutorial Lectures. pp. 173–222.
Springer International Publishing, Cham (2018). doi: 10.1007/978-3-030-00338-8_7

196

https://owncloud.uni-koblenz-landau.de/owncloud/s/5c25skgCkkDgxyQ
https://owncloud.uni-koblenz-landau.de/owncloud/s/5c25skgCkkDgxyQ
http://ceur-ws.org/Vol-1932/paper-04.pdf
http://ceur-ws.org/Vol-1932/paper-04.pdf
http://ceur-ws.org/Vol-1932/paper-05.pdf
http://ceur-ws.org/Vol-1963/paper489.pdf
http://www.websemanticsjournal.org/index.php/ps/article/view/516

8. Skubella, A., Janke, D., Staab, S.: Beseppi: Semantic-based benchmarking of property path imple-
mentations. In: The Semantic Web - 15th International Conference (06/06/19) (June 2019), https:
//eprints.soton.ac.uk/429356/

197

https://eprints.soton.ac.uk/429356/
https://eprints.soton.ac.uk/429356/

	Introduction
	Research Questions
	Research Contributions

	Foundations
	Formalization of Graph Cover Strategies and SPARQL
	Formalization of Graph Cover Strategies
	Formalization of SPARQL

	Architectures
	RDF Stores Using Cloud Computing Frameworks
	Distributed RDF Stores
	Federated RDF Stores

	Indices
	Centralized Indices
	Distributed Indices

	Distributed Query Processing Strategies
	Centralized Join
	Decentralized Join
	Distributed Query Processing in Graph Processing Frameworks

	Fault Tolerance
	Further Challenges

	Related Work
	Graph Cover Strategies
	Graph Cover Strategies in Cloud-Computing-Framework-Based RDF Stores
	Hash-Based Graph Cover Strategies
	Graph-Clustering-Based Graph Cover Strategies
	Workload-Aware Graph Cover Strategies
	n-Hop Replication
	Dynamic Graph Cover Strategies

	Evaluation Methodologies
	Benchmarks
	Benchmark Generators
	Performed Evaluations

	Methodology for Benchmarking Graph Cover Strategies
	Evaluation Measures
	Data Set and Queries
	Query Execution Strategies
	Distributed RDF Store for Arbitrary Graph Covers (Koral)
	Graph Loading
	Query Execution During Run-time
	Limitations

	Evaluation of Common Graph Cover Strategies
	Experimental Setup
	Results
	Comparison with Centralized Execution
	Query Independent Measurements
	Measuring Overall Query Performance under Varying Independent Variables
	Measuring Dependent Variables

	Lessons Learned
	Discussion

	Combining the Benefits of Graph Clustering and Hash Partitioning
	Proposed Graph Cover Strategies
	Molecule Hash Cover
	Overpartitioned Minimal Edge-Cut Cover

	Experimental Setup
	Results
	Effect of Molecule Diameter for the Molecule Hash Cover
	Query Independent Measurements
	Measuring Overall Query Performance
	Measuring Dependent Variables

	Lessons Learned
	Discussion

	Conclusion
	Bibliography
	Examples of Distributed Query Execution
	Example of Distributed Query Execution without Triple Replication
	Example of Distributed Query Execution with Triple Replication

	Proof of Semantic Correctness and Completeness of Koral's Distributed Query Execution Strategy
	Proof of Semantic Correctness and Completeness for the Distributed Query Execution Strategy Ignoring Triple Replication
	Proof of Knows Lemma
	Proof of Semantic Correctness and Completeness for the Distributed Query Execution Strategy With Triple Replication
	Proof of Unique Knows Theorem
	Proof of Similarity of the Replication-Aware Extension

	Additional Evaluation Details
	Characteristics of the Used Data Sets
	Generated Queries
	Query Execution Times

	List of Figures
	List of Tables
	List of Listings
	Curriculum Vitae

