UNIVERSITAT
KOBLENZ - LANDAU

Fachbereich 4: Informatik

Molecular Dynamics Simulations
Utilizing the GPU

Bachelorarbeit

zur Erlangung des Grades Bachelor of Science (B.Sc.)
im Studiengang Computervisualistik

vorgelegt von

Christina Krieg

Erstgutachter: Prof. Dr. Stefan Miiller
Institut fiir Computervisualistik, Leiter der Arbeitsgruppe Miiller

Zweitgutachter: Bastian Krayer, M.Sc.
Institut fiir Computervisualistik

Koblenz, im Februar 2020

Erkldrung

Ich versichere, dass ich die vorliegende Arbeit selbstindig verfasst und keine an-
deren als die angegebenen Quellen und Hilfsmittel benutzt habe.

Ja Nein

Mit der Einstellung der Arbeit in die Bibliothek bin ich einverstanden. X U

(Ort, Datum) (Unterschrift)

Abstract

Molecular dynamics (MD) as a field of molecular modelling has great poten-
tial to revolutionize our knowledge and understanding of complex macromolecular
structures. Its field of application is huge, reaching from computational chemistry
and biology over material sciences to computer-aided drug design. This thesis on
one hand provides insights into the underlying physical concepts of molecular dy-
namics simulations and how they are applied in the MD algorithm, and also briefly
illustrates different approaches, as for instance the molecular mechanics and molec-
ular quantum mechanics approaches. On the other hand an own all-atom MD algo-
rithm is implemented utilizing and simplifying a version of the molecular mechanics
based AMBER force field published by [Cornell et al. (1995)} . This simulation al-
gorithm is then used to show by the example of oxytocin how individual energy
terms of a force field function. As a result it has been observed, that applying the
bond stretch forces alone caused the molecule to be compacted first in certain re-
gions and then as a whole, and that with adding more energy terms the molecule
got to move with increasing flexibility.

Zusammenfassung

Die Molekulardynamik als Bereich der molekularen Modellierung hat ein grofes
Potenzial, unser Wissen und Verstindnis komplexer makromolekularer Strukturen
zu revolutionieren. IThr Anwendungsgebiet ist grof3 und reicht von der computerge-
stiitzten Chemie und Biologie iiber die Materialforschung bis hin zum computerge-
stiitzten Wirkstoffentwurf. Diese Bachelorarbeit gibt einerseits einen Einblick in die
den Molekulardynamik-Simulationen zugrundeliegenden physikalischen Konzepte
sowie in ihre Anwendung im MD-Algorithmus, und skizziert auerdem verschiede-
ne Ansitze, wie z.B. die Ansétze der molekularen Mechanik und der Quantenche-
mie. Andererseits wird durch Verwendung und Vereinfachung einer von [Cornell
et al. (1995)] verdffentlichten Version des auf der Molekularmechanik basierenden
AMBER-Kraftfeldes ein eigener all-atom MD-Algorithmus implementiert. Die re-
sultierende Simulation wird anschlieSend verwendet, um am Beispiel von Oxytocin
zu zeigen, wie einzelne Energieterme eines Kraftfeldes funktionieren. Als Ergebnis
konnte beobachtet werden, dass sich das Molekiil durch die alleinige Anwendung
der durch die Valenzschwingung der Bindung entstehenden Krifte zuerst in be-
stimmten Regionen und dann als Ganzes verdichtet und sich schlieBlich durch die
Zugabe weiterer Energieterme zunehmend flexibler bewegen kann.

Contents

1 Introduction 1
2 Basics 3
2.1 Physical Basics o 3
2.1.1 Thermodynamic Ensembles 3

2.1.2 EnergyandForce 5

2.1.3 Classical Mechanics 5

22 Proteins 8

2.3 Molecular Dynamics 9
23.1 Approaches 10

232 Inputs 11

2.3.3 Molecular Mechanics 12

3 Method and Implementation 14
3.1 Inputs 14
3.1.1 Simulation Parameters 15

3.1.2 Initial Positions and Types 15

3.1.3 Initial Velocities 16

3.14 OtherInputs 17

32 ForceField 18
3.2.1 Energy Function and Parameters 18

322 Modifications 21

323 PForceCalculation 23

3.24 Implementation 25

33 Integration e e e e 28

34 Drawing e 30

4 Results 31
5 Conclusion 36

1 Introduction

The study of macromolecular behavior is an important step in order to find appro-
priate treatment for diseases linked to protein dysfunction. A deep knowledge about
dynamical properties of those molecules can be used to forecast their modifica-
tion in certain situations such as solvation, force effects or changes in temperature.
Moreover it can be deployed to determine equilibrium values or to explorate fold-
ing mechanisms of proteins with the goal of predicting their secondary and tertiary
structures. The results of protein investigation are used to, for example, acquire
knowledge about the misfolding of proteins, which is a suspected partial cause of
many diseases, for example Alzheimer’s disease, Parkinson’s disease, cataract or
type 2 diabetes mellitus.

Considering the properties and dynamical behavior of proteins, ribonucleic acid
(RNA) and other macromolecules, but also of fluids and metals, molecular dynam-
ics (MD) simulations are becoming an increasingly important tool to gain further
information of those. The applications of MD are numerous, taking place in the
areas of computational biology and chemistry, material science and drug design.
MD applications simulate the probable trajectories of particles within molecules
with respect to time. They are making it possible to observe materials outside of the
laboratories, providing the ability to run an experiment several times under the same
conditions, which simplifies its analysis and evaluation and increases information
gain of the latter. Additionally they support researchers in designing new drugs by
simplifying the process of observing how a certain molecule and its target interact
with each other before they are synthesized. To further improve this already useful
instrument, the major computing power of graphics processing units (GPUs) can
be availed. GPUs have long since ceased to be used only for graphics computation,
as they have been found to be likewise valuable for general purpose computation
on graphics processing units (GPGPU). For MD simulations this is especially the
case because by providing high-level parallelism GPUs enable researchers to sim-
ulate larger system sizes on longer time scales than only with central processing
units (CPU) [Rovigatti et al. (2015)]. Considering these forceful tools, which are
in continuous development, this method of computational simulation may enable
researchers to design even better drugs for the curative treatment of protein related
diseases.

To launch any kind of MD simulation, it is required to allocate initial positions
and velocities for each of the system’s particles, where by system is meant the en-
tirety of both the molecule and, if applicable, its surroundings. For instance, the
molecule can be encompassed by a gas or fluid. The positions are most often in-
ferred in laboratory from an analysis of the desired molecule and the velocities
are derived from a velocity distribution suitable to the specific simulation envi-
ronment. Instead of autonomously performing a protein analysis, online macro-
molecule databases can be accessed, which provide data sets containing the data
required to simulate certain molecules. After preparations have been made, models
of the intra- and intermolecular forces are applied to determine the individual force

effect introduced onto each particle by any other particle. Finally an equation of
motion is applied and a mathematical integration is performed, to determine the po-
sitions and velocities of the next time step for each particle and to therefore obtain
each particle’s trajectory.

The aim of this thesis is to provide insights into the underlying physical con-
cepts of molecular dynamics and how they are applied in the MD algorithm, and to
further make use of the resulting simulation to show how individual energy terms
of an all-atom molecular mechanics force field affect the motion behavior of a
molecule to show the functionalities of those terms. Chapter 2 examines the physi-
cal and algorithmic basics of molecular dynamics simulations as well as the basic
information concerning proteins. In Chapter 3 the particular methods used in this
thesis are portrayed in detail. This includes the inputs for the simulation, the force
field and mathematical integration algorithm utilized, as well as the implementation
of those in the compute shader and in the draw shaders. Chapter 4 then discusses
the results of the simulation, whereas Chapter 5 draws a conclusion and gives an
outlook on future work.

2 Basics

This chapter deals with the basic knowledge needed to write a simple MD ap-
plication. Chapter 2.1 examines the underlying physical principles to calculate
the trajectory of a molecule. In Chapter 2.2 the basic information about proteins
is described, since the algorithm implemented for the purpose of this thesis uti-
lizes a force field (Chapter 2.3.3) optimized for proteins, nucleic acids and organic
molecules and simulates the trajectory of a peptide. The general and algorithmic
basics of molecular dynamics are stated in Chapter 2.3.

2.1 Physical Basics

In this chapter the underlying physical principles employed in molecular dynamics
applications are examined. Chapter 2.1.1 makes a connection between experimen-
tal assemblies in the laboratory and the concept of statistical ensembles, or more
specific thermodynamic ensembles, which is utilized in MD to ensure statistical
correctness of simulations. Chapter 2.1.2 describes the calculation of the energy
and force of a physical system, whereas in Chapter 2.1.3 the equations of motion
needed to generate a trajectory using classical mechanics are explained in detail.

2.1.1 Thermodynamic Ensembles

Each molecular dynamics simulation is fitted to a certain statistical or more pre-
cisely thermodynamic ensemble, which is described in this chapter. To derive av-
erages of certain properties of a system over its trajectory, the system would have
to be observed over a sufficiently long period of time. However, typical systems
of interest are too big and too diverse in behavior [Hill (1986)], so that the dura-
tion of observation would have to be excessively long. A thermodynamic ensemble
encapsulates a set of physical systems organized under the same thermodynamic
conditions. The average of a certain property of a system can be derived by calcu-
lating its average for the system’s ensemble [Hill (1986)} . This means that several
relatively short simulations can be rolled out under the same conditions to derive an
average value for a system. Although an ensemble can never be fully investigated,
the correctness of ensemble averages is verified by the ergodic hypothesis. The
hypothesis signifies, that thermodynamic systems act randomly and therefore every
possible state of the system which is energetically accessible, will be accessed.

Ensembles are generated by setting certain ensemble properties as constant,
depending on the experimental assembly in which the system is to be investigated,
e.g. if the system is closed or insulated. Each thermodynamic ensemble corresponds
to a determined experimental assembly (Figure 1). The ensemble properties and
several ensembles are outlined below.

Statistical ensembles

- L weight

piston

_—insulation —insulation

Microcanonical Canonical Grand Canonical Gibbs or Enthalpy or
(const. NVE) (const. NVT) (const. pvT) Isobaric-i: 'mal I ic—i: ic
(const. NPT) (const. NPH) H=E+PV

Figure 1: Statistical Ensembles / Experimental Assemblies (Figure by [szacobmartin
(2017)))

To specify the properties of physical ensembles there are seven variables of
which three can be set as constant. Six of these variables form pairs, where only
one out of each pair may be set as constant (also see Table 1). This is due to the fact
that the other variable of the pair can be calculated depending on the other. For the
first pair, the number of particles is stated by N, while u is the chemical potential
per particle type. Here, by particle is meant either a single atom or a compound of
atoms. In the next pair, P describes the pressure and V the volume of the system,
whereas in the last 7 and E quantify its temperature and energy. The behavior of
the seventh ensemble parameter, the entropy S of the system, varies depending on
the considered ensemble.

‘ Either ‘ Or

N u

Pairs | V P
E T

Table 1: Ensemble Properties

Several ensembles can be derived from the possible combinations, two frequently
used ensembles are described hereafter and more are mentioned below. For molec-
ular dynamics simulations, one widely applied ensemble, on which this thesis is
focused, is the microcanonical ensemble. It represents an idealized experimental
assembly that consists of a closed, isolated system which is unable to exchange
energy with its environment. It is also called the NV E-ensemble, because it con-
sists of systems with a constant value for N, V and E. The second ensemble to
be mentioned is the canonical ensemble, also called NV T-ensemble. Its systems
also have a constant value for N and V, however other than the NV E-ensemble it
is not isolated, but able to exchange energy with a reservoir. Since the canonical
system and its reservoir are in thermal equilibrium, the system’s own energy may
fluctuate and its temperature 7" is maintained. This ensemble represents an exper-
imental assembly that consists of a closed system in a heat bath. Further relevant

4

ensembles are the grandcanonical or uV T-ensemble, the isobaric-isothermal or
NPT-ensemble and the isoenthalpic-isobaric or NPH-ensemble, where H is the
enthalpy with H = E 4 PV . The first describes an open system with fixed volume,
the second a closed system exposed to pressure, and the last a closed, insulated
system exposed to pressure.

2.1.2 Energy and Force

There are several forms of energy, for example potential, kinetic, electric or chemical
energy, which can be converted into each other. Albeit, in classical mechanics (see
Chapter 2.1.3) the equations of motion only consider the potential (Equation (1))
and kinetic (Equation (2)) energy of the system.

V(rl, ...,FN):ZM(I"U) (1)
i<j
T zzimi-ri (2)
i
Where rq, ..., ry describe the position, 7y, ..., ry the velocity and my, ..., my the

mass of each of the system’s particles. Furthermore u(r;;) defines the inter-particle
potential, a function of the distance r;; between particle i and j. The inter-particle
potential also depends on the types of the interacting particles. It contains for exam-
ple binding energy, van der Waals (vdW) interaction and electrostatic interaction
between the two particles. The total energy E of a system equals the sum of potential
and kinetic energy (Equation (3)).

E=T+V(r). 3)

For closed, insulated systems, i.e. systems of the microcanonical ensemble, the
result of Equation (3) has to be conserved over time, while both of its components
may vary. This is required due to the energy conservation law.

To calculate the trajectory of a particle, its potential force is needed. As stated
in Equation (4), the potential force introduced onto a particle is usually a three-
dimensional vector which can be derived from Equation (1) by taking its negative
gradient, i.e. its negative derivative with respect to the particle’s position ;.

8V

E:—VV,»:—S—”. 4)

2.1.3 Classical Mechanics

Molecular dynamics relies on several physical models and systems. Since MD is
supposed to simulate trajectories of various particles, the most central underlying
concepts concern the equations of motion, which have to be applied on each particle

of the system. The equation of motion for the microcanonical ensemble is based on
Newton’s three laws of motion which apply to inertial systems:

1. Unless an atom is influenced by a force introduced onto it, it moves either at
a constant velocity or rests.

2. If a force is applied on a body of constant mass, the body is accelerated in
the direction of this force.

3. For two atoms i and j, if F;(j) is the force introduced onto atom i by atom ;.
Then the force introduced onto atom j by atom i has the same magnitude but
takes the opposite direction (F;j(i) = —Fi(j)).

Assuming these laws to be true, Newton’s second law can be formulated as in
equation Equation (5), where m is an atom’s constant mass and 7 its acceleration at
the current point in time. An equation of motion can be inferred from this equation
by shifting it to # (Equation (6)):

F = mi 5)

(6)

According to Equation (6), the acceleration of a particle is determined by the force
introduced onto it divided by its constant mass. The force F is usually a three-
dimensional vector given by Equation (4) determining the direction of acceleration.

It may be proven that Equation (6) meets the requirement of microcanonical
ensembles to preserve the energy of the system. Therefor it has to be transformed
into another equation of motion, derived from a function called the Hamiltonian
[Tuckerman and Martyna (2000)] . It is a transformation of the Lagrangian function
which is also a function of motion.

L(r,i‘):T—V:Z%mifiz—Zu(rij). (7)
i i<j
H(rp:V) =} i pi— L, ®)
pi= SL(F.J-) = m;f;.)
5}’,'
p.2
H(r,p;V)zzzl.+Zu(r,~j):T+V:E. (10)
;M i
=i (1)
opi my

. ®H vV
pi__siri_—a—ri_F,(rl, vy TN)- (12)

Equation (7) is the Lagrangian for an N-particle system, while Equation (8) is its
Hamiltonian, which is dependent on the Lagrangian. Inserting Equation (7) into
Equation (8) yields Equation (10), from which the two Equations (11) and (12)
can be derived, the Hamiltonian equations of motion. For these equations, r =
Fly <oy IN, F = F1, ..., Fy and p = py, ..., py and Equation (9) specifies the mo-
menta of the system. As shown in Equation (10) the Hamiltonian is equal to the
energy of the system. An important characteristic of Equations (11) and (12) is that
they conserve the Hamiltonian [Tuckerman and Martyna (2000)} , meaning they
conserve the total energy of the system. This can be proven by taking the time
derivative of the Hamiltonian, which is zero. Additionally the Hamiltonian equa-
tions of motion have the quality of being time reversible [Tuckerman and Martyna
(2000)] , 1.e. they can be applied in the same way, if the time ¢ is transformed to —z.

To show that the Hamiltonian equations of motion are a transformation of
Newton’s equation of motion and thus prove that the latter is applicable for the
microcanonical ensemble, one may take the time derivative of both sides of Equa-
tion (11). The derivative of the left side can be seen in Equation (13). For the right
side, applying the quotient rule and substituting with Equation (12) at the end of
the calculation delivers the derivative stated in Equation (14). Equating these two
yields Equation (6).

(7)) = F; (13)

I’I’ll2 I’}’ll2 I’)’ll2 m; m;

(Pi)l_mi'l’;_pi'm; mi-pi—pi-0 _mi-pi _pi _F

m;

As mentioned earlier, Newton’s and Hamilton’s equation of motion (see Equa-
tions (6), (11) and (12)) are used for experiments in the microcanonical ensemble.
Other ensembles require different equations of motion. Observing for instance the
NV T-ensemble, energy fluctuations have to be produced, because they are needed
to keep the temperature constant. One possibility to achieve this, is to append a
collision term to the Hamiltonian equation of motion as an additional, stochastic
force acting on a particle as stated by [Andersen (1980)} .

At last, a mathematical integration has to be performed to solve the equations
of motion for several points in time. This means, that the new position and velocity
for each moment in time are derived by integrating those of the previous moment
in time. For this purpose, a time step must be chosen; the shorter the time step, the
more precise the integration.

2.2 Proteins

Proteins are crystal-like macromolecular compounds consisting of amino acids
which contain the two functional groups COOH, the carboxyl group, and NH>,
the amino group. Amino acid molecules are zwitterions, i.e. they always have a
positive and a negative charge. The charged functional groups are the carboxylate
group COO™ and the ammonium group NH;F. Several amino acids can be bound to
each other by forming peptide bonds which originate from the condensation of one
amino acid’s carboxyl group with another amino acid’s amino group [Branden and
Tooze (2012)] . The following chemical equation expresses the peptide bonding of
two glycine amino acids.

A peptide consisting of two amino acid molecules is called dipeptide, whereas
peptides with 2-9 amino acid components are called oligo- and those with more
than 9 are called polypeptides. Proteins are peptides built of more than 100 amino
acids.

The description of a protein’s spatial structure is organized in primary, sec-
ondary, tertiary and quaternary structure [Branden and Tooze (2012)], as can be
seen in Figure 2. The primary structure of a protein is the sequence of its amino
acids. Regular peptide bonds and eventual hydrogen bridge bonds between close
peptide bonds define the secondary structure, where two common examples are
the o-helix and the B-sheet structure. Tertiary structure is the structure generated
by intermolecular forces between side chains of different amino acids. If a protein
consists of several polypeptide chains they form a quaternary structure.

Secondary Structure

Quaternary Structure

Tertiary
- Structure (s
I3
X N o- Helix
/
4 . (&
- v A i
»- S B
- 7/ //)

Primary Structure
Tyr-Lys- Ala-Ala-Val-Asp-Leu-Ser-His-Phe-Leu-Lys-Glu-Lys
Asp-Trp-Trp-Glu-Ala-Arg-Ser-Leu-Thr-Thr-Gly-Glu-Thr-Gly-Tyr-Pro-Ser

Figure 2: Protein Structures (Figure derived from [Holger87 (2012)] and then translated
into English)

2.3 Molecular Dynamics

The various MD methods are associated with molecular modelling, which is the
set of all methods used to model the behavior of molecules. The field of molec-
ular dynamics simulations in particular deals with the computational, graphical
representation of the dynamical behavior of molecules. Its fields of application are
computational chemistry and computational biology, which focus on the resolu-
tion of chemical and biological problems through computer simulation, as well as
material science, which deals with the analysis and construction of new materials,
and computer-aided drug design, which is concerned with the observation of the
intermolecular interaction between a designed drug and its biological target.

As mentioned at a few points in this thesis, there are various methods asso-
ciated with molecular dynamics simulations depending on the particular interest.
Some of those are briefly described in Chapter 2.3.1. The input data needed to start
an MD application is stated in Chapter 2.3.2. After preparations have been made,
the molecular dynamics algorithm starts. The common algorithm is described in
the following lines. At first, the forces introduced onto each atom by any other of
the system’s atoms have to be calculated. The forces are derived from the energy
functions (see Chapters 2.1.2 and 2.3.3), which are functions of the types and the
distance between the two considered particles. The complete force introduced onto
an atom is then used to calculate its acceleration by using Equation (6). Afterwards

a mathematical integration is performed to solve the equation of motion for a se-
quence of time steps by integrating the position and velocity of the previous time
step to yield those of the current one. For force calculation either molecular me-
chanics or quantum chemistry are utilized. Since this thesis is focused on molecular
mechanics, it is described in Chapter 2.3.3.

2.3.1 Approaches

There are various methods associated with MD simulations depending on the par-
ticular interest. Some of these are briefly described in this chapter.

To begin with, MD programs differ in their level of detail regarding the atoms
of the simulated molecule and its surroundings. Molecules can be modeled in an
atomistic or also called all-atom way where each atom is represented as one parti-
cle, as for example in [Cornell et al. (1995)} whose force field was utilized for the
purpose of this thesis. All-atom simulations are computationally expensive since
each atom has its own distinct position, a type, radius, and so forth and has to be
involved in force calculations. [Kmiecik et al. (2016)] says, that even if a super-
computer designed for the purpose of all-atom MD simulations is used, only for
small and fast folding protein’s the folding processes can be simulated. In [Zwier
and Chong (2010)] several methods for all-atom simulations are discussed. Alterna-
tively molecules can be modeled in a coarse-grained manner, where several atoms
are merged to atom groups to be handled as one particle. Since the trajectories of
fewer particles have to be calculate, the coarse-grained approach is more affordable
than the atomistic one considering computational cost and the computing power
which may be availed [Kmiecik et al. (2016)] .

MD simulations further make use of quantum mechanics or alternatively clas-
sical mechanics (Chapter 2.1.3) in determining the potential energy function for
the MD algorithm. Using quantum mechanics for molecular dynamics simulations
or for molecular modelling in general is called quantum chemistry or alternatively
molecular quantum mechanics (QM). [Micha and Burghardt (2007)] gives a broad
overview of established methods and approaches in development. With the QM
method, the forces are calculated by precisely treating the electronic behavior of
each atom using formulas derived from theoretical knowledge and considerations.
Such a theoretical approach is also called an ab initio approach and thus using quan-
tum chemistry techniques for the derivation of an energy function in the context
of MD is also known as ab initio molecular dynamics (AIMD). This approach
usually utilizes the electronic molecular Hamiltonian to solve the time-dependent
Schrédinger equation which describes the atom’s wave function [Linderberg and
Ohrn (2004)] . The Schrodinger equation in quantum mechanics is analog to New-
ton’s second law (Equation (6)) in classical mechanics (Chapter 2.1.3). Assigning
energy functions using classical mechanics is also referred to as molecular mechan-
ics (MM). In this method the energy function is usually called a "force field" which
is empirically fitted to calculate the approximate behavior of a class of molecules,
e.g. proteins. Common force fields are the AMBER (Assisted Model Building

10

with Energy Refinement) [Weiner et al. (1986)] [Cornell et al. (1995)] , CHARMM
(Chemistry at Harvard Macromolecular Mechanics) [Brooks et al. (1983)] and
GROMACS (Groningen Machine for Chemical Simulations) [Van Der Spoel et al.
(2005)} force fields. In comparison to the QM method which always calculates the
energy of the specific molecule being simulated, MM saves computational cost and
is an efficient and sufficiently accurate technique in many cases. The parameters
needed as input for this energy function are derived either empirically or using
ab initio techniques. Since this thesis is focused on MM, the method is described
further in Chapter 2.3.3. Another popular approach is deploying a hybrid of both
aforementioned approaches which is called QM/MM molecular dynamics. It can
be a considerable solution for simulations where MM is sufficient for most of the
simulated system but where a small region of interest in the molecule needs to be
observed more accurately. [Senn and Thiel (2009)} gives an overview of the basics,
optimization possibilities and applications of QM/MM simulations. All variants
may be applied for both all-atom and coarse-grained simulations. MM and QM are
also subsets of molecular modelling.

Another important factor is the surrounding of the observed molecule. One
possibility is situating the molecule in solvent. This may be done with explicit
solvent where a water model is needed to simulate the water molecules as individual
particles too, in an either atomistic or coarse-grained way. An alternative method
is establishing a mathematical formula so that the influence of the surrounding
water can be derived implicitly which is called an implicit solvent simulation. Water
molecules are not modeled as particles, but are incorporated by adding a formula
to the energy function.

Further parameters in which MD algorithms differ are for instance the boundary
conditions, e.g. cut-off boundary or periodic boundary, the mathematical integration
method, for example the Verlet algorithm or the leapfrog algorithm [Leimkuhler
et al. (1996)] may be applied, or the time step Ar chosen for the integration may be
adjusted where the results are more accurate the smaller At is.

2.3.2 Inputs

To launch any MD programm, the type, initial position and initial velocity of each
particle of the system to be simulated are required as input, where by system is
meant the entirety of both the observed molecule and, if applicable, its surroundings.
For instance, the molecule can be encompassed by a gas or fluid. This data is the
basis to specify all other inputs and to perform every partial calculation to finally
yield the trajectory of the system.

The atomic structure and consequently the positions and atom types are de-
rived experimentally. The structures of proteins for instance are obtained from a
crystal structure analysis which can be carried out using different techniques, for
example X-ray crystallography. Coordinates are typically represented in angstrom
(A). Instead of autonomously performing such an analysis, online databases, e.g.

11

the RCSB website! or the ChemSpider website?, can be accessed, which provide
data sets containing all data required to simulate certain molecules. The particles’
types are then used to specify several of the particles’ properties, for example their
covalent radii, masses or bonds between particles.

For the calculation of the initial velocities, in many cases an ideal gas is as-
sumed. According to the kinetic theory of gases, whose principles are for example
stated in [Loeb (2004)], the average kinetic energy of a particle directly depends on
temperature in an ideal gas (Equation (17)). Moreover, kinetic energy is a function
of velocity (Equation (2)). The normally distributed Maxwell-Boltzmann distribu-
tion, whose principles are summarized by for instance [Hernandez (2017)], utilizes
these relations, describing the spreading of the magnitudes of the velocities’ com-
ponents in an ideal gas. Its mean and standard deviation can be obtained from
Equations (15) and (16).

u=0 (15)

($:\/]qg—T:UE (16)
m M

In these two equations kp = 1.380649 * 10_23% defines the Boltzmann constant,
R=283 14462618mOJW the ideal gas constant, m the particle mass and M the molar
mass. The temperature T is yielded by Equation (17). If the mass is given in molar
mass instead of particle mass, kp is substituted by R.

2 Ein 2 Ey
Tcurrentzg' kk;nnglZ; (17)

A value from this distribution is generated for all three components of each atom’s
velocity vector. The velocity is represented in angstrom per seconds (A/s).

2.3.3 Molecular Mechanics

Molecular dynamics and molecular modelling in general use different methods to
determine the calculation of energy and force and accordingly motion. Assigning
energy functions using classical mechanics is also referred to as molecular mechan-
ics. MM energy functions are usually referred to as force fields. Such a force field
consists of several terms. Let Equation (18) be the potential energy of the considered
system. Then Equation (19) represents the covalent or also called bonded energy of
the system, whereas Equation (20) represents the non-bonded energy of the system
[Rappe and Casewit (1997)] . The bonded energy term (Equation (19)) consists of a
bond and angle term as well as a term named dihedral or also torsion term. The first

'Research Collaboratory for Structural Bioinformatics: https://www.rcsb.org
2ChemSpider by the Royal Society of Chemistry: http://www.chemspider.com

12

https://www.rcsb.org
http://www.chemspider.com

two are principally computed as harmonic oscillators [Rappe and Casewit (1997)] .
Some force fields also add a separate term for out-of-plane angles. The non-bonded
energy term (Equation (20)) is composed of one term each for van der Waals and
electrostatic energies. The first is usually modelled by the Lennard-Jones potential,
while the latter is based on Coloumb’s law [Rappe and Casewit (1997)] . To finally
receive a particle’s force, the negative gradient of its energy function has to be
calculated, as mentioned in Chapter 2.1.2. Finally, the trajectory is yielded using
Newton’s equation of motion, see Equation (6), and performing a mathematical
integration.

V(I") = Epot = Evonded + Enonbonded (18)
Evonded = Ebond + Eangle + Edihedral <+ Eout of plane) (19)
Enonbonded = Evan der Waals 1 Eelectrostatic (20)

The concrete formula depends on the chosen force field. A force field is the unity of
an energy function and its parameters. Often either of them alone is also referred to
as force field. Force fields are often specialized, e.g. to a certain group of molecules.
The parameters are either derived empirically by fitting them to certain molecules
observed in laboratory or by utilizing ab initio techniques. These and more informa-
tion about the derivation of molecular mechanics parameters can be extracted from
[Allinger et al. (1994)] . Furthermore force fields differ in the atom types for which
parameters are calculated. An atom type is usually defined by the element of the
atom and by the atom’s neighbor atoms in the molecule. The energy function and
parameters of distinct force fields are usually not compatible, because force fields
are only internally consistent.

13

3 Method and Implementation

In the scope of this thesis it is to be shown which impact distinct terms of a molec-
ular mechanics inter-particle potential have on the trajectory of a molecule. For
this purpose a version of the molecular mechanics based AMBER force field for
proteins, nucleic acids and organic molecules, presented by [Cornell et al. (1995)]

was utilized. I simplified the energy function and parameters of this force field
and spared implementing a water model, although the force field is suitable for
explicit solvent simulations. This was done to limit the scope due to the time con-
straints of a bachelor thesis. The molecule whose trajectory is to be shown is an
oligopeptide called oxytocin. It was chosen because its small size facilitates data
preparation and reduces computational cost. The implementation is performed in
OpenGL and OpenGL Shading Language (GLSL). Furthermore the CVK 3 from
the "AG Computergrafik" at Universitidt Koblenz-Landau is utilized.

Inputs and their designation in the implementation are stated in Chapter 3.1.
The complete force field, its parameters and the simplifications generated here are
outlined in Chapter 3.2. That chapter also describes the force calculation derived
from the AMBER energy function, and the implementation of the force field, in-
cluding the GPU specific features of the implementation. Chapter 3.3 completes
the description of the MD implementation by explaining the leapfrog integration
algorithm which I utilized for the time step integration, and finally Chapter 3.4
illustrates the drawing procedure. It is noteworthy that for the MD implementation
some of the constants as well as some calculation results have to be converted into
different units. This is due to the fact that the S.I. unit for length is m while the
length unit used in molecular modelling is angstrom. Furthermore, data like for in-
stance energy is given per mol instead of per atom. This topic will not be explained
further in this thesis.

3.1 Inputs

To begin with, the simulation parameters utilized by the implementation are stated
in Chapter 3.1.1. Next, the initial position and type data of the considered peptide
are derived from a .mol file, downloaded from the ChemSpider website. The Chem-
Spider ID of that peptide is "388434" [Royal Society of Chemistry (RSC) (nd)].
The file then was converted to a format similar to the XYZ format, to load only
the data required for this project into the OpenGL environment. Initial positions
and types as well as file conversion and loading are described in Chapter 3.1.2. Af-
terwards, Chapter 3.1.3 describes the calculation of initial velocities, derived from
the Maxwell-Boltzmann distribution. Finally, inference of other inputs from the
initial positions and types is elucidated in Chapter 3.1.4. All created input arrays
are loaded into buffers and serve as input for the shaders.

14

3.1.1 Simulation Parameters

The number of atoms N belonging to the system corresponds to the number of atoms
of oxytocin, since only this molecule is simulated, without any encompassing sub-
stance. For the initial temperature Tipiiy I choose a value of 309.75K, because it
is near the average body temperature of a human being and therefore in the tem-
perature range of a protein’s or peptide’s natural environment. The bond threshold
k used here has a value of 1.2, whereas the time step A¢ for numerical integration
has a magnitude of 0.01fs. The latter is chosen smaller than it would be ordinarily,
to compensate for some of the inaccuracies induced by the simplifications made
on the force field. Because of the time limitation of a bachelor thesis no bound-
ing volume was created, although the energy and force calculations are performed
for a microcanonical ensemble. Since the system has no spacial boundary, the en-
ergy also fluctuates and therefore N is the only determined ensemble property. The
simulation parameters chosen may also be extracted from Table 2.

Parameter Value
N 135
Tinitial 309.65K
kthreshold 1.2
At 0.01fs

Table 2: Simulation Parameters

3.1.2 Initial Positions and Types

To prepare the .mol file for extracting the position and type data, first all lines that do
not contain coordinate information are deleted from the file. Then the spaces in front
of the first column are deleted and the spaces seperating the columns are changed to
tabulators by using pearl-style regular expressions. The regular expression "s+"
is replaced by "" and "\h+" by "\t". This makes the file readable for the following
Bash command which extracts the file’s 1st, 2nd, 3rd and 4th column and writes
them to a new file.

cut -f1,2,3,4 ChemSpiderID.mol > ChemSpiderID_tmp.mol

After this adjustment the types are replaced by integers. This enables to gener-
ate buffers containing information about atoms of certain elements, and accessing
this information with the integer value of the particular element as index. The re-
placement is performed by the following Bash command.

cat ChemSpiderID_tmp.mol | sed "s/HS$/0/" |
sed "s/CS$/1/"™ | sed "s/NS$/2/" | sed "s/0S$/3/" |
sed "s/S$/4/" > ChemSpiderID.xyze

We call the file ChemSpiderID.xyze, with x, y and z standing for the coordinates
and e for the element. The integer values represent the corresponding element in

15

the MD simulation of this thesis, see Table 3.

String | Integer

wn|olZlalxm
AW =] O

Table 3: Type Replacement

To finally load the .xyze file into the OpenGL environment and extract the
information, an std::ifstream is used. It is assumed that every line consists of
four entries: the atom’s x-, y- and z-coordinate, represented in A, and its type, an
integer. Each line is read token by token, writing its contents into a position- and
type-array respectively. Each entry of the position array consists of a four element
vector containing floating point numbers, whereas the type array contains integers.
Each atom of the imported molecule has its own position and type and is therefore
simulated as a distinct particle, since an all-atom MD simulation is performed in
this thesis. As a consequence, both arrays have a length of N, the number of atoms
in the peptide to be simulated. To serve as input for the compute shader, they are
each stored in an SSBO and the position is furthermore stored in an array buffer to
be accessed in the vertex shader.

3.1.3 Initial Velocities

The initial velocities, as mentioned in Chapter 2.3.2, are derived from the Maxwell-
Boltzmann distribution. While assuming an ideal gas, this distribution utilizes the
direct dependence of kinetic energy and temperature, whereby kinetic energy is a
function of velocity as can be seen in Equation (2).

To generate random values of the Maxwell-Boltzmann velocity distribution
the following functions are used. The first function, std: :normal_distribution,
creates a normal distribution which is constructed by giving a mean and standard
deviation as input. In this case, the mean and standard deviation of the Maxwell-
Boltzmann velocity distribution are its input (Chapter 2.3.2). Uniformly-distributed,
non-deterministic integer random numbers are then produced by the function
std::random_device as seed for the third function, std: :mt19937, which is the
random number engine. Finally, for all three components of each atom’s velocity
vector one random value of the normal distribution is fetched.

The temperature in G is not the fixed temperature of the system, but rather its
initialization temperature, since we are exhibiting a simulation in the microcanoni-
cal ensemble where energy is fixed but temperature fluctuates. In the end, the final
values are stored in an array of N elements filled with four element vectors which
is then stored in an SSBO to serve as input for the compute shader.

16

3.1.4 Other Inputs

As mentioned before, several additional inputs can be inferred from the types and
initial coordinates. First, an atom’s mass may be derived from its type. It is chosen
as it can be seen in the second column of Table 4, taking the values of [Wieser et al.
(2013)}. Where intervals are given, I choose the lowest values of these intervals.
The masses of the five elements used in this thesis’ simulation are stored in an array
of five elements containing float values. They are represented in unified atomic
mass units. Subsequently another array of NV elements is filled with the atomic mass
of each atom by accessing the five-element array with the particular type value of
the current atom as index. To serve as input for the compute shader this information
is then stored in a shader storage buffer object (SSBO) with read-only access, since
the masses stay constant throughout the algorithm.

Next, the covalent radius of an atom may also be deduced from its type as stated
in the third column of Table 4. The values are derived from [Cordero et al. (2008)] .
For simplicity, I choose the value of sp3-carbon for all carbon atoms. The covalent
radii are given in angstrom and a five-element array of float values is filled with
the covalent radius of each element. As the covalent radii are only used in the main
program and not in the shaders no buffer array has to be created for them.

The third property to be derived from the types are the colors per element which
are presented in the fourth column of Table 4. The colors proposed by [Koltun
(1965)] are used for the elements hydrogen, carbon, nitrogen, oxygen and sulfur. A
five element array where each entry consists of a four element vector is initialized
with the r-, g- and b-components of the color of each element as its first three values
and 1 as its fourth value. The access for the initialization of the N-element array is
arranged as for the masses. The color information is stored in an array buffer to be
accessed in the vertex shader.

Element | Atomic Mass (in u) | Atomic Radius (in A) | Color
H 1.0078 0.31
C 12.009 0.76
N 14.006 0.71
(0] 15.999 0.66
S 32.059 1.05

Table 4: Atomic Masses, Atomic Radii, Color

The last input inferred from the .xyze file are the bonds which are established
between pairs of atoms. Since the peptide used is already in equilibrium state,
the bonds are not supposed to change during simulation. Therefore they can be
calculated once before the MD algorithm starts and then be used as a constant input
for the compute shader. To calculate if there is a bond between a particular pair
of atoms, the distance between their coordinates has to be determined. Afterwards
the resulting value is compared to the sum of their covalent radii multiplied by a
threshold factor. The distance has to be smaller or equal than the product. Here,

17

a threshold value of ktpreshold = 1.2 1s chosen. The bond calculation is stated in
Equation (21) where r;; is the distance between two atoms i and j, and rad; and rad;
are their covalent radii. Atoms i and j are bonded, if this equation is true.

1;j <= Kthreshold * (rad; +rad;) (21)

To store the bond information, an array of N elements is declared, where each
element is filled with another array of 4 elements. Each element is initialized with
-1. This form is chosen, because there are N atoms, where each atom can only have
up to four bonds. Subsequently, the array is filled anew, now with the bonds that are
calculated. Each atom is compared to every other atom but itself. If a bond exists,
the index of the bonded atom is inserted into the next element of the current atom.
The four element array for one certain atom now contains the indices of the atoms
bound to it and, if it has less than four bonds, the remaining elements are filled up
with -1. This makes it possible to optimize the algorithm later on by calculating the
concrete number of bonds for each atom. The generated array is stored in an SSBO
to serve as input for the compute shader.

Additionally, one array for energy and force respectively are initialized with
zeros. These are also each stored in an SSBO to be accessed in the compute shader.

3.2 Force Field

After all preparations have been made the MD algorithm starts. At first, the forces
have to be calculated. The AMBER energy function utilized for that purpose and
its parameters are described in Chapter 3.2.1, whereas the simplifications that I
apply on this force field to limit the scope of this bachelor thesis are mentioned in
Chapter 3.2.2. The calculation of the force, i.e. the negative gradient of the energy
function supplied by the force field, is presented in Chapter 3.2.3. Chapter 3.2.4
explains the implementation of the force field, including the GPU specific features
of the implementation.

3.2.1 Energy Function and Parameters

The force field on which this thesis builds on is an AMBER force field which was
published by [Cornell et al. (1995)} (Equation (22)) which again is build upon the
force fields introduced in [Weiner et al. (1984)] and [Weiner et al. (1986)]. The
values of the force field parameters were derived part empirically part ab initio.

Eiotal = Z Kr(r_req)2+ Z Ke(e_eeq)z

bonds angles

Va Aij Bij | qiq;
+ Y Fll4cos(no—y)]+Y, 5 — +
dibcdrals 2 =R R eRy;

(22)

Since it is based on molecular mechanics, it has the same structure as shown in

18

Chapter 2.3.3 (Equations (18) to (20)). Equation (22) defines the total energy of
the observed system. It consists of five partial energy functions each of which are
described hereafter. The first three partial energy functions are functions for cova-
lent, i.e. bonded, energies and the last two are functions for non-bonded energies.
The non-bonded interactions are mainly intermolecular interactions and thus inside
of one molecule they are only calculated between atoms separated by at least three
bonds. If separated by exactly three bonds they are scaled down by a factor of 0.5.
The force field parameters mentioned in the below paragraphs can be derived from
[Cornell et al. (1995)].

Equation (23) describes the sum of the energies between each pair of directly
bonded atoms. In this formula K, is the bond force constant, req the equilibrium
bond length and r the current length of the considered bond. A spring is created by
this term, always dragging the atoms into the direction where the particular bond
has the equilibrium bond length for this pair of atoms. This means that the atoms
oscillate around the positions which yield the equilibrium bond length. req is not
necessarily the equilibrium bond length of the particularly observed bond, since it
is a constant value over the entire force field. Figure 3 shows the force generated by
the bond energy, where f, is the force introduced onto atom a by atom b, and — f,
the force introduced onto atom b by atom a. This is according to Newton’s third
law, see Chapter 2.1.3.

Evonds = Z Kr(r_ req)2 (23)
bonds

fa -ja/.
@

Figure 3: Bond Force [Monasse and Boussinot (2014)]

Equation (24) describes the sum of the energies for each bond angle. In this formula
Ky is the angle force constant, 6¢q the equilibrium bond angle and 6 the current
angle of the considered bond angle. As the previous formula, this one creates a
spring, letting the atoms oscillate around the positions which yield the equilibrium
angle for the particular bond angle between this combination of atoms. As above,
O¢q 1s constant over the force field and not necessarily the equilibrium bond angle
of the particularly observed bond. Figure 4 shows the bond angle force with f,, f.
and f, = —(f, + f) describing the forces introduced on atoms a, ¢ and b by the
bond angle. The bond angle is the angle between the two bonds symbolized by bars
between the atoms.

19

Eangles - Z Ke(9 - eeq)2 (24)

angles

Figure 4: Bond Angle Force [Monasse and Boussinot (2014)]

Equation (25) describes the sum of the energies for each dihedral which may also
be labeled as Ejorsions- It also includes energies generated by out of plane angles. In
this formula V,, /2 describes the magnitude of the torsion, Y the phase offset, n the
periodicity of the torsion and ¢ the current angle of the considered torsion angle.
Figure 5 shows the torsion angle forces f;, f», fc and f; introduced on atoms a, b, ¢
and d by the torsion angle. The bonds from b to a and b to ¢ span a plane and those
from ¢ to b and c to d span another plane. The torsion angle is the angle between
these two planes which is stated as 0 in the figure, but equals ¢ in Equation (25).

v,
Eginedrals =), —[1+cos(np—7)] (25)
dihedrals

2

p2

e
B

fa

pl

Figure 5: Torsion Angle Force [Monasse and Boussinot (2014)]

Equation (26) describes the sum of the van der Waals energies between each pair
of non-bonded atoms. It is a potential called "6-12 potential" with the van der

20

Waals radius R* and van der Waals well depth € as parameters for each of the two
considered atoms. R;; is the distance between them. Furthermore, the following
substitutions apply: Aij =& (Rij*)lz, Bij = 28,’1' (Rij*)6, R,’j* =R/* +Rj* and &=
/&€; for an interaction between atoms 7 and j.

Aij Bi
Evan der Waals’ = Z |: <l U :|

SRy Ry 6
=) [e,-j (R 28y (Rij*)ﬁ}
S0 R;" R;j

Equation (27) describes the sum of the electrostatic energies between each pair of
non-bonded atoms. It is a Columbic interaction potential, where the parameters are
the electrostatic charges ¢, and the dielectric constant €. The charges were derived
from an electrostatic model also created by Cornell et al.

qiq;
Eelectrostatics = Z |:;?j:| (27)
i<y LERj

Each atom type has its own parameters for these functions. The said paper has 13
atom types for the element C, e.g. CA, CB, CT, seven atom types for N, e.g. N and
NA, 5 for O, e.g O and OH, 12 for H, e.g. HA and H1 and two for S, that are S and
SH. It also has several atom types for elements that are not covered here.

3.2.2 Modifications

In this thesis only the energy terms for bond energies (Equation (23)), angle en-
ergies (Equation (24)) and van der Waals energies (Equation (26)) were applied.
Additionally, to further reduce complexity I calculated simplified force field parame-
ters only for the elements H, C, N, O and S and not for more specific atom types, i.e.
the atom types equal their elements. This was done using the original parameters
from Cornell et al. and simplifying them. To calculate one parameter for a certain
element, the corresponding original parameters for each atom type belonging to this
element were averaged with an arithmetic mean. The atom types OW and HW are
left out in this calculation, since they are values for water model atoms which do
not exist in this thesis. E.g. for a C — S bond, the parameters of the CT — S bond
and the CT — SH bond in the paper from Cornell et al. were averaged. In Table 5
we see the parameters defined by Cornell et al. Thus, in this thesis the parameters
for a bond between C and S are K, = 232.0 and req = 1.810.

21

Bond K, Teq
CT-S | 227.0 | 1.810
CT-SH | 237.0 | 1.810

Table 5: Bond force parameters used for bonds between C and S considering atom types
by [Cornell et al. (1995)]

The averaged bond force, angle force and van der Waals force parameters can be
derived from Tables 6 to 8. The bond force parameters are rounded up to the whole
number for K, and to three decimal places for req, the angle force parameters are
rounded up to the whole number for K and to two decimal places for 8.4 and the
van der Waals force parameters are rounded to four decimal places for R* and €.

Angle Ky Ocq Bond K, Teq
H—C—H | 35 | 109.50 H—C | 359 | 1.083
H—C—N | 41 | 116.01 H—N | 434 | 1.010
H—C—O0 | 50 | 109.50 H—O | 553 | 0.960
H—C—S | 50 | 109.50 H—S | 274 | 1.336
H—N—H | 35 | 116.50 C—C | 427 | 1434
H—S—H | 35| 9207 C—N | 434 | 1379
C—C—C | 64 | 118.44 C—O | 463 | 1.333
C—C—H | 41 | 11577 C—sS | 232 | 1.810
C—C—N | 71 | 11728 S—sS | 166 | 2.038
C—C—0 | 69 | 118.64
C—C—sS 150 11165 Table 7: Bond Force Parameters
C—N—C | 67 | 11842
C—N—H | 3211992 Element | R* .
€—0—C 60 109.50 H | 10796 | 0.0509
C—O0—H 45| 11075 C [22054 | 0.0735
€—5—C 62| 989 N [1.8495 [0.1700
C—S—H|43| 96.00 O | 1.6818 | 0.2001
C—S—S | 68 | 103.70 S 2.0000 | 0.2500
N—C—N | 70 | 120.16
N—C—O | 74 | 119.28 Table 8: Van der Waals Force Parameters
O—C—0 | 80 | 126.00

Table 6: Angle Force Parameters

Same as the inputs mentioned in Chapter 3.1 they are stored in buffers to be
accessed by the compute shader and same as for example for the mass buffer array,
the access is accomplished by using the atom types. The buffer array for the van der
Waals parameters has a length of five, i.e. one entry per element, where each entry
consists of a two element vector containing R* and € for the particular element. The
buffer array for the bond parameters consists of a five element array where each

22

entry is again a five element array which finally contains the two element vectors
for K, and reg, i.€. it is a 5X5 array containing two-dimensional vectors. According
to the same scheme, the buffer for the angle parameters is a 5x5x5 array containing
two-dimensional vectors.

3.2.3 Force Calculation

Since Equation (22) is an energy function, it only calculates the energy of the system.
To calculate the forces between each pair of atoms the equation’s negative gradient
has to be calculated (see Chapter 2.1.2). Here, as I only apply Equations (23), (24)
and (26), only the force calculation for those three partial energy functions is shown
(Equations (28) to (30)). Other than the energy that is calculated for the whole
system the force is calculated per atom. For that reason the sigma signs are left
out in the following equations. Equations (28) and (30) calculate the bond and van
der Waals force between a pair of atoms i and j with positions r; and ;. Fiond' and
Foond’ = —Fpond’ are the forces introduced onto atoms i and j by the bond energy,
and Foqw' and Foqw’/ = —F,qw' the forces introduced onto atoms by the van der
Waals energy. Equation (29) calculates the angle force for an angle of atoms i, j
and k, with positions r;, r; and ri, where j is the atom in the center of the angle, i.e.
the atom which is bound to i and k. For the angle forces Fanglei , Fanglej and Fanglek
introduced onto atoms i, j and k, the direction for each force is different from the
other two forces’ directions. Note that for all equations r;; is the distance between
atoms i and j. This was done for simplicity, instead of distinguishing between r, the
bond length, and R;;, the distance between two not necessarily bound atoms i and ;.

Further, #j; = "/ is the normalized direction from ; to i.
ij
i 6Ebond
Foond' = —
bond 61’,‘
)
= _STQKF’ (rij _req)z
)
= 2K, (rij = req) - 5 -(rij = Ieq)
’ (28)
)
= _2'Kr'(rij_req)’ 871",",”

:_Z.Kr.(rij_req).i

:—Z-Kr-(rij—req)-f”ﬁ

23

Fangle 5}’,
)
= _877‘,-[(9 JCE eeq)2
)
= _2'K9'(9—9eq> . g(e_eeq)
’ (29a)
)
= —2~K9-(e—eeq> . ge
6 A A
= _2'K9 : (e_ eeq) . gaI'CCOS (rji . rjk)
f‘iX(f'in'k) 1
OE.
F. anglek = - é:{gle
(29b)
=—2-Ko(0—0cq)- (Pji X Pje) ¥ P 1
° e |(fji><fjk)><f'jk|rjk
Fanglej = _(Fanglei + Fanglek) (29¢)

24

Fuaw = — S
1
_ 8]A; By
87‘,‘ I‘,‘jlz I’,‘j6
_ 8 Jep Ry 208y (R
or; rijt? rif®
b 1 b 1
= e [(R, — | — | —2.(R.*)0. — | —
! <(R [”ijlz] ®i 5, L‘ﬁ])

-12 8 G0

—6 9
- B 12 = My o6, Y Y
= —§&;;j <(R1J) rij13 or; Tij 2 (le) rij7 Sr; rl])

LK\ 12 . *\6
:12~€ij<<Rl]) - (Rl]) >-8rij

I”ijB I’,'J'7 61’,’

£\ 13 N\ 7
R,’j rl-j rij ri
£\ 13 *\ 7
R,’j rij rij ’

In Equations (28) and (29) the partial terms —2- K- (rij —req) and —2-Kg - (6 —
B¢q) are the respective magnitudes of the force, whereas the rest of the considered
force term is its direction. For Fpong', the direction is simply the normalized vector
from j to i. For the angle force Fanglei, Fji X T jx s a vector which is orthogonal to the
plane spanned by the two bonds from j to i and from j to k. Then 7j; X (7; X 7j) is
a vector which is orthogonal to the bond from j to i and to the previously mentioned
orthogonal vector. The resulting vector is normalized and then divided by r;;, the
bond length between i and j. This is the direction of the angle force introduced onto
atom i. If we look at Figure 4, the resulting direction vectors are the blue vectors
originating from atom a, b and ¢ which are equal to i, j and k in this example. For
the van der Waals force, 7;; is the direction of the force whereas the rest of the term
is its magnitude.

(=

>

3.2.4 Implementation

In this chapter the implementation of the force calculation in the compute shader is
described looking at one shader invocation. The atom processed by that invocation
is henceforth referred to as Ayreaq- Implementing the compute shader, at first all
buffers are included as mentioned in Chapters 3.1 and 3.2.2. Then all constant
values concerning Aead, 1.€. mass, type and bonds, plus its position and velocity

25

are stored locally on the GPU because they are frequently accessed. Subsequently,
the force-buffer entry of Aread, i.€. the force introduced onto this atom in the last
time step, is stored to be reused for the time step integration (Chapter 3.3). To
make memory access secure without using a floating point atomic add function,
each instance of the compute shader first stores its calculated forces in a local array
and all threads’ results are summarized after all of them have completed their force
calculations. This local force array has as many elements as there are atoms in
the considered molecule. Each entry consists of a three dimensional force vector
which is initialized with zeros and will be filled with the force introduced onto that
atom in the current run of the compute shader. This procedure is described more
detailed later in this chapter. To implement the simplified force field as described in
Chapters 3.2.2 and 3.2.3, the bonded and non-bonded energies and forces are each
calculated in a loop which both are described below. In the following I refer to the
atom that Agpreaq is currently compared to as A¢_vaw Or Ac_bond respectively, with ¢
standing for "compare".

For the first loop several remarks have to be made. As mentioned above, for this
force field the non-bonded interactions only should be calculated between atoms
separated by at least three bonds and non-bonded interactions separated by exactly
three bonds should be downscaled. But considering, that the bonds have an equi-
librium bond length around roughly 1 Ato15A, appropriate to the force field
parameters, it was first contemplated to simply calculate the non-bonded interac-
tions only for distances above 4 A in this paper. However, I finally decided to make
both options available in the program by a customizable boolean variable that is
set in the simulation parameters of the compute shader, and to show both results in
Chapter 4.

The loop for the calculation of the non-bonded, i.e. the van der Waals energies
and forces iterates over all atoms that have a higher index than Ayead. This may
be done, since the force introduced onto Ac yvaw by Athread 1S the negative value of
the force introduced onto Apread by Ac vaw (see Chapter 3.2.3) and therefore it is
sufficient to sample each pair of atoms in only one direction and directly calculate
the force introduced onto both atoms by each other. At the beginning of the loop it is
inspected if the calculation should be done only for distances over 4 A or forall pairs
of atoms separated by at least three bonds. In the first case, it is simply calculated if
the distance between Apread and Ac_yvaw i smaller or equal to 4 A and if A vaw 1s a
direct bond of Agreaq. If any of those two conditions is true, Ac_yqw is ignored. If not,
the van der Waals parameters for both are derived from the buffer and the energy
between those two atoms and the forces that Anreaq and Ac vaw exert on each other
are calculated using Equations (26) and (30). Otherwise, if the calculation should be
done for atoms separated by at least three bonds, it is examined if A._yqw is a direct
of bond Anreaq Or Of the bonds of Aread, Or of the bonds of those, meaning that both
atoms are separated by only one, two or three bonds respectively. If one of the first
two is the case, the energy and force calculation is discarded. If they are separated
by exactly three bonds, the energy and force calculation is performed with a scale
factor of 0.5. If the atoms are separated by more than three bonds the energy and

26

force calculation is performed normally, with a scale factor of 1. Since each thread
calculates the force for two atoms, more than one thread might be accessing the
same buffer entry if we wrote the forces directly into the buffer at this point. For
that reason the forces are first stored in the local force array mentioned above.

The loop for the calculation of the bonded energies and forces, i.e. for the
bonds and angles, iterates over all atoms A¢ pong, that are bound to Agpyreaq. First
the bond length, i.e. the distance between the two atoms’ centers, as well as the
normalized direction from Athread t0 Ac_bond, 1S calculated. If A pong, has a higher
index than Areaq the bond force parameters are read from the corresponding buffer
and subsequently the energy of the bond as well as the force introduced onto Aread
and that introduced onto A _pong, by the bond are calculated. This is done by using
Equations (23) and (28), applying the distance and normalized direction as input.
Same as in the loop of the previous paragraph, the forces are then stored in the local
force array. Afterwards another loop starts which iterates over all atoms A¢ pond,
that have not yet been processed by the superordinate loop. This means that each
combination of two bonds of Aread providing an angle with Airead as the angle’s
vertex is observed in only one direction. In this loop the bond length of this second
bond and the normalized direction from Agyread t0 Ac_bond, 18 calculated and the
angle force parameters are derived from the corresponding buffer. Then the bond
lengths and normalized directions calculated for A¢ pong, and A pond, as well as the
parameters are used as input for the calculation of the bond angle energy and force
which is processed using Equations (24) and (29).

After all energies and forces have been calculated, first the potential, kinetic and
total energy of the system are calculated as described in Chapter 2.1.2. Afterwards,
the calculated forces are written to the force buffer. Therefor the force buffer entries
are set to zero and a memory barrier is inserted, to ensure that all threads are at
the same position in the program. To assure that the accessed force buffer entry is
individual for each thread, I created two loops to be executed consecutively where
one of them iterates from the global index of Ayread, g1_WorkGroupID.x, down to
index zero and the second of them iterates from one index above the thread ID, i.e.
gl_WorkGroupID.x + 1,up toindex N — 1. Using an access index dependent on
the index of Areaq makes the buffer access unique for each thread. Between those
two loops a memory barrier has to be positioned, because the number of iterations
differ and it has to be assured that the second loop is not entered until all threads
have completed the first loop. Inside of the loops, the force buffer is read at the
index provided by the iteration variable, to obtain the current value which is then
written to a temporary variable Fien,p. Afterwards, the value in the local force array
at the same index is added to Fiepmp. The resulting value is then written back to the
force buffer. Memory barriers are inserted after all read and write operations on the
buffer.

27

3.3 Integration

This chapter explains the leapfrog integration algorithm which I use to perform
the time step integration. First, to be able to perform the numerical integration the
thread-atom’s acceleration of the last time step has to be derived from the stored last
time step’s force and that of the current time step from the current time step’s force
by applying Equation (6). Then the leapfrog integration algorithm as presented in
[Leimkuhler et al. (1996)} is performed. It provides three formulas to calculate
the position and velocity of the current time step, using those of the previous time
step. In Equation (31), p; is the impuls, r; the position and F; the force at time
step i, whereas m is the mass and At the time step. The original Equations (31b)
and (31c¢) are transformed by inserting Equation (31a) and substituting p; = m - #;
(Equation (9)) and % = i (Equation (6)).

28

1
pi+% :pi‘i‘EFi'At

Picy n

Figl =T+

A+ LE A
:ri+p1271.At
m

. 1F
=t DA 2T AR
m 2m

I’I’l‘f‘,’

1
-At+§fi-At2

1
:ri—f-f‘i’Al‘—I—Ei’.i'Al’z

1
Pit1 =Ppip1+ EEH - At
1 1
Piv1 = pit+ SFi- A+ SFipy - A

1 1
Sm-fipr=m-Fi+ SF-At+ SFiy - At

2 2
1F 1F

S = A S A
2m 2 m

1 1.
:r—i-iri'At—i-ErH_] At

1
:r+§(r,+r,+1)At

(31a)

insert Equation (31a)

insert Equations (6) and (9) (31b)

insert Equation (31a)
insert Equation (9)

‘m

(31¢)

The results of Equations (31b) and (31c) are implemented using the named data

as input, i.e. the current, not yet changed position of the thread-atom r;, its current

velocity 7;, the acceleration calculated in this iteration #;;; and that of the last

iteration #;, and the time step A¢. Then the new values for the thread-atom’s position
and velocity are written into the corresponding buffers.

29

3.4 Drawing

Each atom of the considered molecule is drawn as a sphere at the particular atom’s
position and with the color of its element (Chapter 3.1.4). For this thesis’ purpose
I extracted the required functions of CVK: : Spheres and CVK: : Geometry from the
CVK 3 and simplified them by excluding some buffers that are redundant for the
aim of this thesis. A radius of 0.7 angstrom is chosen for each sphere which is
roughly the average radius of the five included chemical elements.

In the render loop, these spheres are drawn using instanced drawing and then
illuminated using a simple variant of phong shading. The vertex shader receives the
positions and normals of the sphere model as well as the position and color of the
currently processed instance as input. Further inputs are the view and projection
matrix. To later calculate the fragment color, a light vector is defined in the vertex
shader. Then the x-, y- and z-component of the atom’s position serve as the transla-
tion coordinates of the model matrix and subsequently g1_Position is defined by
transforming the currently processed position of the sphere with the model-, view-
and projection matrix. The position and normal of the current vertex as well as the
light position are then calculated in their view space coordinates and those plus
the vertex color are provided for the fragment shader. The fragment shader then
receives the fragment’s position, normal, unlighted color and the light position. The
colors of ambient, specular and of the point light as well as the shininess are defined
and afterwards the fragments are illuminated by relating the light colors and the
unlighted fragment color to the position and normal of the fragment. The resulting
fragment color is provided to the fragment buffer.

30

4 Results

The simulation was executed six times enabling different combinations of forces:
1. bond forces
2. bond and bond angle forces, i.e. all bonded forces implemented in this thesis

3. van der Waals forces, i.e. the non-bonded force implemented in this thesis,
calculated for pairs of atoms which are separated by at least three bonds

4. van der Waals forces calculated for pairs of atoms which have a distance of
at least 4 A

5. bond, bond angle and van der Waals forces, i.e. all forces implemented in this
thesis, with the van der Waals forces calculated for pairs of atoms which are
separated by at least three bonds

6. bond, bond angle and van der Waals forces, with the van der Waals forces
calculated for pairs of atoms which have a distance of at least 4 A

The goal of these simulations is to show how the structure of the chosen molecule,
oxytocin, changes throughout these simulations beginning with its start configura-
tion (Figure 6) which is oxytocin in thermodynamic equilibrium, and ending after
a particular number of time steps.

Figure 6: Start configuration

31

Each of the simulations was run for 105,000 time steps which, considering the cho-
sen time step of 0.01 femtoseconds, equals a simulation time of 1.05 picoseconds.
The execution time for those 1.05 ps ranges from about 12 minutes and 10 seconds
to 12 minutes and 20 seconds on the used hardware. The start configuration of the
molecule which applies for all six simulations can be seen in Figure 6. Subsequently,
the observations made for each of these simulations are outlined in the following
paragraphs and supplied by excerpts of the simulation. To make it possible to show
the trajectories of the molecule the camera had to be zoomed out at some points.
However, for the purpose of this thesis it is more important to observe the changes
in the molecule’s structure rather than its motion in simulation space.

Figure 7 shows the state of the molecule after 0.3, 0.75 and 1.05 picoseconds of
simulation time, applying only bond forces. As it can be seen the whole structure
of the molecule is compacted throughout the simulation. This first happens within
several regions of the molecule, and later also those regions move closer together.
The reasons for this might be that the bond angle and torsion angle forces which
would usually pull the atoms apart where those angles should be formed are missing.
Also missing are the van der Waals forces which would cause atoms to repel each
other strongly if they are located too close to one another. Without those forces the
bond length between each pair of bound atoms indeed stays around its equilibrium
bond length, but non-bonded atoms are also coming closer and closer together since
there are too few repulsive forces.

P g g

o

Figure 7: Trajectory only with bond force, after 0.3, 0.75 and 1.05 picoseconds of simula-
tion time (from left to right)

Figure 8 shows the state of the molecule after 0.3, 0.75 and 1.05 picoseconds
of simulation time, applying only the bonded forces calculated within the scope
of this thesis, i.e. bond forces and bond angle forces. In this simulation, first some
regions are straightened out, then the molecule is compacted similar as with only
the bond forces and finally the structure of the molecule loosens up again. This
could be explained by the fact that now with the bond angle forces another factor
for the fluctuation of each atom’s position comes into effect. However, since there
are still, especially repulsive, forces missing, the molecule also has the tendency to
be compacted again within the limits of possible variations.

32

Figure 8: Trajectory only with bond and bond angle force, after 0.3, 0.75 and 1.05 picosec-
onds of simulation time (from left to right)

Figure 9 shows the state of the molecule after 0.3, 0.75 and 1.05 picoseconds
of simulation time, applying only the vdW forces for pairs of atoms which are
separated by at least three bonds. It can be seen that the atoms simply move out-
wards. This happens because there are no bonded energies keeping the molecule
together. However the decomposition is a slow process, since the vdW forces are
weak compared to other forces.

Figure 9: Trajectory only with vdW force calculated for pairs of atoms which are separated
by at least three bonds, after 0.3, 0.75 and 1.05 picoseconds of simulation time
(from left to right)

Figure 10 shows the state of the molecule after 0.3, 0.75 and 1.05 picoseconds
of simulation time, applying only the vdW forces for pairs of atoms which are at
least 4 A apart. It can be seen that especially the atoms at the outer part of the
molecule, i.e. the hydrogen atoms, move away from the rest of the molecule. This
is due to the fact that they have the highest number of atoms compared to them
which have a distance over 4 A. Combined with the fact that they have the lowest
mass, they accelerate the fastest. The core of the molecule in contrast nearly stays
at the same position. It is clear to see, that vdW forces are calculated between fewer
particles as in the other version which happens because pairs of atoms separated by
at least three bonds but with a distance of less than 4 A do not exert vdW forces
onto each other in this version. This automatically leads to fewer forces.

33

Figure 10: Trajectory only with vdW force calculated for pairs of atoms which are at least
4 A apart, after 0.3, 0.75 and 1.05 picoseconds of simulation time (from left to
right)

Figure 11 shows the state of the molecule after 0.3, 0.75 and 1.05 picoseconds
of simulation time, applying all implemented forces with the vdW forces calculated
for pairs of atoms which are separated by at least three bonds. After 0.3 ps it can
be seen, that the molecule begins to break down in several groups. These groups
are moving further and further apart but still can be recognized as groups of atoms.
A possible reason for this behavior is on one hand, that two of the partial energy
functions were not implemented, particularly the torsion angle forces. Without this
third formula for bonded energies which should hold the molecule together, the
molecule is driven apart by the van der Waals forces. On the other hand without a
water model surrounding the molecule and without a boundary volume the atoms’
motions are not guided and restricted by the molecule’s environment but rather
deflect in any direction.

Figure 11: Trajectory with all implemented forces and with the vdW forces calculated for
pairs of atoms which are separated by at least three bonds, after 0.3, 0.75 and
1.05 picoseconds of simulation time (from left to right)

Figure 12 shows the state of the molecule after 0.3, 0.75 and 1.05 picoseconds
of simulation time, applying all implemented forces with the vdW forces calculated
for pairs of atoms which are at least 4 A apart. Similar to the first execution of the
simulation, where only bond forces are considered, the molecule is first compacted
within several regions. In contrast to prior version where all implemented forces

34

are applied but the vdW forces are calculated differently, these groups are not
detached from each other but the molecule strongly deforms. However, it has the
same restrictions as mentioned before.

Figure 12: Trajectory with all implemented forces and with the vdW forces calculated for
pairs of atoms which are at least 4 A apart, after 0.3, 0.75 and 1.05 picoseconds
of simulation time (from left to right)

In all of these versions the molecule’s structure cannot be maintained. As men-
tioned above, this is due to several reasons. First, other than the original force field
parameters which are determined per atom type, the simplified force field parame-
ters used for this simulation are inaccurate, since they are only chosen per element.
Another reason are the missing energy functions for the torsion and electrostatic
energies and forces, and the simulation lacks a water model as well as a boundary
volume. Despite all of these limitations it was possible to show the impact that dis-
tinct forces have onto the motion behavior of a molecule and to therefore illustrate
the functionality of the utilized force field.

35

5 Conclusion

In this thesis the basics of molecular dynamics simulations were discussed and its
application was demonstrated by implementing a small MD program. The result-
ing simulations was used to show how individual terms of a force field affect the
behavior of a molecule with respect to time. For future work it would be interesting
to extend the approach of this thesis, adding the missing energy terms, i.e. the tor-
sion force term and that for the electrostatic interactions, applying a water model
and implementing a boundary volume, to generate more realistic demonstrations of
the various energy terms. Additionally an algorithm optimized for more atoms and
consequently more threads could be implemented. Furthermore, it is most certainly
desirable to become acquainted with existing molecular dynamics programs to ac-
quire a deeper knowledge of molecular dynamics simulations. This last idea and
a collaboration with physicists, chemists or biologists would be advisable, since
MD is a highly interdisciplinary field. Though the implementation of MD programs
seems to be performed rather by natural scientists than by computer scientists, as lit-
erature research suggests, it is for sure an interesting and promising field of research
worth of support from both scientific sectors.

36

References

Allinger, N. L., Zhou, X., and Bergsma, J. (1994). Molecular mechanics parameters.
Journal of Molecular Structure: THEOCHEM, 312(1):69-83.

Andersen, H. C. (1980). Molecular dynamics simulations at constant pressure
and/or temperature. The Journal of chemical physics, 72(4):2384-2393.

Branden, C. 1. and Tooze, J. (2012). Introduction to protein structure. Garland
Science.

Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S. a.,
and Karplus, M. (1983). CHARMM: a program for macromolecular energy,

minimization, and dynamics calculations. Journal of computational chemistry,
4(2):187-2117.

Cordero, B., Gémez, V., Platero-Prats, A. E., Revés, M., Echeverr\’\ia, J., Cremades,
E., Barragan, F., and Alvarez, S. (2008). Covalent radii revisited. Dalton Trans-
actions, (21):2832-2838.

Cornell, W. D., Cieplak, P., Bayly, C. L., Gould, I. R., Merz, K. M., Ferguson, D. M.,
Spellmeyer, D. C., Fox, T., Caldwell, J. W., and Kollman, P. A. (1995). A second
generation force field for the simulation of proteins, nucleic acids, and organic
molecules. Journal of the American Chemical Society, 117(19):5179-5197.

Hernandez, H. (2017). Standard Maxwell-Boltzmann distribution: Definition and
properties. ForsChem Research Reports, 2.

Hill, T. L. (1986). An introduction to statistical thermodynamics. Courier Corpora-
tion.

Holger87 (2012). Protein-Struktur. https://commons.wikimedia.org/
wiki/File:Protein-Struktur.png. [Holger87 [CC BY-SA (https:
//creativecommons.org/licenses/by-sa/3.0)]] (Online; accessed 13-
February-2020)].

Kmiecik, S., Gront, D., Kolinski, M., Wieteska, L., Dawid, A. E., and Kolinski, A.
(2016). Coarse-grained protein models and their applications. Chemical reviews,
116(14):7898-7936.

Koltun, W. L. (1965). Space filling atomic units and connectors for molecular
models.

Leimkuhler, B. J., Reich, S., and Skeel, R. D. (1996). Integration methods for
molecular dynamics. In Mathematical Approaches to biomolecular structure
and dynamics, pages 161-185. Springer.

Linderberg, J. and Ohrn, Y. (2004). Propagators in quantum chemistry. John Wiley
& Sons.

37

https://commons.wikimedia.org/wiki/File:Protein-Struktur.png
https://commons.wikimedia.org/wiki/File:Protein-Struktur.png
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0

Loeb, L. B. (2004). The kinetic theory of gases. Courier Corporation.

Micha, D. A. and Burghardt, 1. (2007). Quantum dynamics of complex molecular
systems, volume 83. Springer.

Monasse, B. and Boussinot, F. (2014). Determination of forces from a potential in
molecular dynamics. arXiv preprint arXiv:1401.1181.

Nzjacobmartin (2017). Statistical Ensembles. https://commons.wikimedia.
org/wiki/File:Statistical_Ensembles.png. [Nzjacobmartin [CC BY-SA
(https://creativecommons.org/licenses/by-sa/4.0)] (Online; accessed
13-February-2020)].

Rappe, A. K. and Casewit, C. J. (1997). Molecular mechanics across chemistry.
University Science Books.

Rovigatti, L., Sulc, P, Reguly, I. Z., and Romano, F. (2015). A comparison between
parallelization approaches in molecular dynamics simulations on GPUs. Journal
of Computational Chemistry, 36(1):1-8.

Royal Society of Chemistry (RSC) (n.d.). Oxytocin. CSID:388434, http://
www.chemspider.com/Chemical-Structure.388434.html (accessed 10:45,
Jan 29, 2020) [Royal Society of Chemistry (RSC)].

Senn, H. M. and Thiel, W. (2009). QM/MM methods for biomolecular systems.
Angewandte Chemie International Edition, 48(7):1198-1229.

Tuckerman, M. E. and Martyna, G. J. (2000). Understanding modern molecular
dynamics: techniques and applications.

Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., and Berendsen,
H. J. C. (2005). GROMACS: fast, flexible, and free. Journal of computational
chemistry, 26(16):1701-1718.

Weiner, S. J., Kollman, P. A., Case, D. A., Singh, U. C., Ghio, C., Alagona, G.,
Profeta, S., and Weiner, P. (1984). A new force field for molecular mechanical
simulation of nucleic acids and proteins. Journal of the American Chemical
Society, 106(3):765-784.

Weiner, S. J., Kollman, P. A., Nguyen, D. T., and Case, D. A. (1986). An all atom
force field for simulations of proteins and nucleic acids. Journal of computational
chemistry, 7(2):230-252.

Wieser, M. E., Holden, N., Coplen, T. B., Bohlke, J. K., Berglund, M., Brand, W. A.,
De Bievre, P., Groning, M., Loss, R. D., Meija, J., and Others (2013). Atomic
weights of the elements 2011 (IUPAC Technical Report). Pure and Applied
Chemistry, 85(5):1047-1078.

Zwier, M. C. and Chong, L. T. (2010). Reaching biological timescales with all-atom
molecular dynamics simulations.

38

https://commons.wikimedia.org/wiki/File:Statistical_Ensembles.png
https://commons.wikimedia.org/wiki/File:Statistical_Ensembles.png
https://creativecommons.org/licenses/by-sa/4.0
http://www.chemspider.com/Chemical-Structure.388434.html
http://www.chemspider.com/Chemical-Structure.388434.html

	Introduction
	Basics
	Physical Basics
	Thermodynamic Ensembles
	Energy and Force
	Classical Mechanics

	Proteins
	Molecular Dynamics
	Approaches
	Inputs
	Molecular Mechanics

	Method and Implementation
	Inputs
	Simulation Parameters
	Initial Positions and Types
	Initial Velocities
	Other Inputs

	Force Field
	Energy Function and Parameters
	Modifications
	Force Calculation
	Implementation

	Integration
	Drawing

	Results
	Conclusion

