
A B S T R A C T I O N O F B I O - M E D I C A L S U R FA C E D ATA
F O R E N H A N C E D C O M P R E H E N S I O N A N D A N A LY S I S

nils lichtenberg

A B S T R A C T I O N O F B I O - M E D I C A L S U R FA C E D ATA F O R
E N H A N C E D C O M P R E H E N S I O N A N D A N A LY S I S

by
nils lichtenberg

Approved Dissertation thesis for the partial fulfillment of the requirements for a
Doctor of Natural Sciences (Dr. rer. nat.)

Fachbereich 4: Informatik
Universität Koblenz-Landau

Chair of PhD Board: Prof. Dr. Maria Wimmer

Chair of PhD Commission: J.-Prof. Dr. Tobias Krämer

Examiner and Supervisor: J.-Prof. Dr. Kai Lawonn

Further Examiners: Prof. Dr. Lars Linsen

Prof. Dr. Timo Ropinski

Date of doctoral viva: January 31, 2020

Nils Lichtenberg: Abstraction of bio-medical surface data for enhanced com-
prehension and analysis, © January 31, 2020

Opa, ich hätte dir gerne noch davon berichtet ...

A B S T R A C T

Bio-medical data comes in various shapes and with different repre-
sentations. Domain experts use such data for analysis or diagnosis,
during research or clinical applications. As the opportunities to ob-
tain or to simulate bio-medical data become more complex and pro-
ductive, the experts face the problem of data overflow. Providing a
reduced, uncluttered representation of data, that maintains the data’s
features of interest falls into the area of Data Abstraction. Via abstrac-
tion, undesired features are filtered out to give space - concerning the
cognitive and visual load of the viewer - to more interesting features,
which are therefore accentuated. To address this challenge, the disser-
tation at hand will investigate methods that deal with Data Abstraction
in the fields of liver vasculature, molecular and cardiac visualization.
Advanced visualization techniques will be applied for this purpose.
This usually requires some pre-processing of the data, which will also
be covered by this work. Data Abstraction itself can be implemented
in various ways. The morphology of a surface may be maintained,
while abstracting its visual cues. Alternatively, the morphology may
be changed to a more comprehensive and tangible representation.
Further, spatial or temporal dimensions of a complex data set may
be projected to a lower space in order to facilitate processing of the
data. This thesis will tackle these challenges and therefore provide an
overview of Data Abstraction in the bio-medical field, and associated
challenges, opportunities and solutions.

vii

Z U S A M M E N FA S S U N G

Biomedizinische Daten existieren in verschiedenen Formen und mit
unterschiedlichen Repräsentationen. Experten nutzen diese Daten für
die Analyse oder Diagnose, in der Forschung oder im klinischen
Alltag. Da die Möglichkeiten, biomedizinische Daten aufzunehmen
oder zu simulieren, komplexer und produktiver werden, stehen die
Experten vor dem Problem des Datenüberflusses. Die Bereitstellung
einer reduzierten, übersichtlichen Darstellung von Daten, die die in-
teressanten Merkmale der Daten aufrechterhält, fällt in den Bereich
der Data Abstraction. Über die Abstraktion werden unerwünschte Merk-
male herausgefiltert, um - was die kognitive und visuelle Belastung
des Betrachters betrifft - Raum für interessantere Merkmale zu schaf-
fen, die dadurch hervorgehoben werden. Um diese Herausforderung
zu meistern, werden in der vorliegenden Dissertation Methoden un-
tersucht, die sich mit der Data Abstraction in den Bereichen Leberge-
fäß-, Molekül- und Kardio-Visualisierung befassen. Zu diesem Zweck
werden fortgeschrittene Visualisierungstechniken eingesetzt. Dies er-
fordert in der Regel eine gewisse Vorverarbeitung der Daten, die
auch durch diese Arbeit abgedeckt wird. Data Abstraction selbst kann
in verschiedenen Formen umgesetzt werden. Die Morphologie einer
Oberfläche kann beibehalten werden, während ihre visuellen Darstel-
lung abstrahiert wird. Alternativ kann die Morphologie in eine ver-
ständlichere, greifbarere Darstellung geändert werden. Darüber hin-
aus können räumliche oder zeitliche Dimensionen eines komplexen
Datensatzes auf einen niedrigeren Dimensionsraum projiziert wer-
den, um die Verarbeitung der Daten zu erleichtern. Diese Arbeit wird
sich diesen Herausforderungen stellen und daher einen Überblick
über Data Abstraction im biomedizinischen Bereich und die damit ver-
bundenen Herausforderungen, Chancen und Lösungen geben.

viii

D A N K S A G U N G E N

Wie die meisten wissen, bin ich kein Mensch vieler Worte, ...

ix

... aber man kann ja mal eine Ausnahme machen.
Nur, wo fängt man an? Bei den Lehrern, die mir eine dunkle Zukunft
vorhergesagt haben, wohl eher nicht. Dann doch erst mal ganz klas-
sisch bei meinem Doktorvater Kai Lawonn, der mich bereitwillig auf
sein DFG-Projekt gesetzt, geduldig mit mir diskutiert, mich korrigiert,
inspiriert und mir jegliche Freiheiten eingeräumt hat. Also Kai, danke
für dein Vertrauen und die gute Zeit, absolute Empfehlung für einen
Lachgesicht-Stempel!
Auch möchte ich mich bei Stefan Müller und Dietrich Paulus be-
danken, die mir überhaupt erst den Weg zur Promotion ermöglicht
und mich bei meiner initialen Themenfindung sowie im weiteren Ver-
lauf unterstützt haben. An dieser Stelle auch vielen Dank an alle ehe-
maligen Kollegen, für eure stetige Hilfsbereitschaft.
Noeska, I thank your for our collaboration and your great advice on
how to properly structure a scientific paper. Our first work was ex-
actly what I needed to really get started and to get the confidence for
successive publications.
Sandy, deine ausgezeichnete Betreuung meiner Masterarbeit am DKFZ
hat sicherlich auch zu meinem weiteren Weg beigetragen und es hat
mich sehr gefreut, dass wir anschließend nochmal gemeinsam an die
Thematik anknüpfen konnten. Danke dafür.
Den Kollegen Ajay A. George, Pascal Heimer und Diana Imhof ver-
danke ich sehr interessante Einblicke in den Bereich der Pharmazie.
Danke für die produktiven Diskussionen und die gemeinsame Ar-
beit.
Es gibt auch einige Studenten, denen ich danken möchte. Ihr möget
euch angesprochen fühlen: Ohne eure ausgezeichneten Abschlussar-
beiten wäre es für mich nicht möglich gewesen die letztendliche the-
matische Breite meiner Dissertation zu erreichen. Danke euch!

Meiner Familie danke ich für die gedrückten Daumen, die angezün-
deten Kerzen und dafür dass ihr an mich geglaubt habt. Vor allem
meinen Eltern. Eure Unterstützung hat mir immer erlaubt, das in
Angriff zu nehmen, was mir gerade vernünftig vorkam oder Spaß
gemacht hat und war damit natürlich maßgeblich meinen Weg.
Sugi, du hast mir ebenso den Rücken freigehalten. Gerade dann, wenn
ich zu Deadline-Zeiten mal wieder einen Tunnelblick entwickelt habe,
hast du für uns gemeinsam nach rechts und links geblickt um das Ziel
sicher zu erreichen.

xi

C O N T E N T S

I preamble 1

1 introduction 3

1.1 Motivation and Overview 4

1.2 Thesis Structure . 6

II illustrative abstraction 9

2 sline 11

2.1 Introduction . 11

2.2 Related Work . 13

2.3 Method . 17

2.3.1 Preprocessing . 17

2.3.2 Silhouettes and Contours 18

2.3.3 Suggestive Contours 18

2.3.4 Line Search based Hatching 19

2.3.5 Transition Parameterization 25

2.4 Results . 27

2.5 Discussion . 30

2.6 Conclusion and Future Work 31

3 real-time field aligned stripe patterns 33

3.1 Introduction . 33

3.2 Related Work . 35

3.3 Method . 38

3.3.1 Basics . 39

3.3.2 Local Optimization 42

3.3.3 Convergence . 44

3.3.4 Hierarchical Optimization 44

3.3.5 Texture Coordinates 45

3.3.6 Cross-Fields . 47

3.4 Implementation . 48

3.5 Results . 50

3.5.1 Usage scenarios 52

3.5.2 Performance . 56

3.6 Conclusion and Future Work 60

III vessel visualization 63

4 concircles 65

4.1 Introduction . 65

4.2 Related Work . 66

4.2.1 Spatial Perception 67

4.2.2 Glyphs . 68

4.2.3 Direct Foundation for this Work 69

4.3 Method . 69

xiii

xiv contents

4.3.1 Vessel End-Points 70

4.3.2 Multi-Feature Glyph Placement 71

4.4 Glyph Design . 74

4.5 Implementation . 77

4.5.1 Glyph Selection 77

4.5.2 Glyph Visualization 78

4.5.3 Hatching . 79

4.6 Evaluation . 80

4.7 Results . 81

4.8 Discussion and Future Work 85

5 pfb for tree-like structures 87

5.1 Introduction . 87

5.2 Related Work . 88

5.3 Method . 90

5.3.1 Parameterization 90

5.3.2 Graph generation and segmentation 96

5.4 Applications . 99

5.4.1 Branch and end-points 99

5.4.2 Using V to enhance depth perception 100

5.4.3 Hatching . 102

5.4.4 Contour parameterization 103

5.4.5 Binary tree coloring 104

5.5 Implementation . 108

5.6 Discussion . 111

6 vessel sdf parameterization and abstraction 117

6.1 Introduction . 117

6.2 Related Work . 118

6.3 Method . 121

6.3.1 2D Graph Layout 121

6.3.2 Signed Distance Field Generation 124

6.3.3 Pull-push algorithm 128

6.3.4 Background reconstruction 129

6.3.5 Screen space guiding field 131

6.3.6 Screen space parameterization 131

6.3.7 Frame coherence 133

6.4 Implementation . 134

6.5 Applications . 135

6.6 Discussion and conclusion 142

7 auxiliary tools 145

7.1 Introduction . 145

7.2 Human Perception . 146

7.3 History of Depth Enhancement 147

7.4 Auxiliary Tools . 149

7.4.1 Supporting Lines 150

7.4.2 Supporting Anchors 151

7.4.3 Concentric Circle Glyphs 151

contents xv

7.4.4 Void Space Surfaces 152

7.5 Evaluation . 153

7.5.1 Evaluation Overview 153

7.5.2 Comparative discussion 155

7.6 Conclusion . 157

IV dimension reduction 159

8 residue surface proximity 161

8.1 Introduction . 161

8.2 Background . 163

8.3 Related Work . 165

8.4 Requirements . 167

8.5 Application Concept . 168

8.5.1 Acquisition: Residue Surface Proximity 169

8.5.2 Presentation: RSP-map and 3D-visualization . . 170

8.5.3 Analysis: Filter Expressions 171

8.5.4 Distribution: Data Export 173

8.6 Implementation . 173

8.6.1 Surface Atom Extraction 173

8.6.2 3D Visualization 179

8.6.3 Filter Expressions 180

8.7 Results . 181

8.7.1 Performance . 182

8.7.2 User Experience 182

8.7.3 Accompanying Study using RSP 184

8.8 Discussion and Conclusion 185

9 flattening mitral valve geometry 189

9.1 Introduction . 189

9.2 Related Work . 192

9.3 Materials and Methods 192

9.3.1 Requirements and notation 193

9.3.2 Flattening . 194

9.3.3 Mappings . 197

9.4 Evaluation . 198

9.4.1 Parameterization Evaluation 198

9.4.2 User Study . 199

9.5 Results . 200

9.6 Discussion . 201

V conclusion 203

10 summary 205

11 future work 209

bibliography 213

publications 226

Part I

P R E A M B L E

The thesis at hand makes several contributions to the field
of data abstraction and visualization in a bio-medical con-
text. The content is based on the manuscripts published
by the author of this thesis which are presented as stand-
alone chapters throughout this written work. In the follow-
ing, an introductory text will clarify the relationship of
the individual publications and therefore emphasize the
combined contribution of this thesis to the visualization
community. After that, the structure of this theses will be
summarized.

1

1
I N T R O D U C T I O N

This thesis is placed in the area of bio-medical visualization. In this
field, a multitude of disciplines come together, that are required to
reach from raw bio-medical data to a final, comprehensive visual-
ization. The raw data has to be pre-processed, translated into a dis-
playable and task-oriented representation, and then to be rendered
to a display. Following the formulation of the Visualization Pipeline by
Haber and McNabb [59], the three consecutive main steps after raw
data acquisition are the Data Enrichment, the Visualization Mapping
and the final Rendering. During Data Enrichment, given data may be
optimized for subsequent steps, or additional attributes are derived
from the data. The Visualization Mapping transforms the data into a
so called Abstract Visualization Object (AVO, see [59]), which contains
information about, e.g., geometries or colors to be applied, in order to
allow for a comprehensive visualization of the data. The AVO, as the
name suggests, is an abstraction of an object. For example, the world
map is a 2D abstraction of the earth, see Figure 1.1. This process of
abstraction can be employed in various ways and on very different
levels of abstraction. Finally, the Rendering step creates an image to be
displayed. The displaying step can be dictated by the available hard-
ware or the task and utility of the visualization. Generating a single
still image may be allowed to take an arbitrary amount of time, while
an interactive application requires several images to be rendered per
second.

These three steps are each very broad and highly connected within
this visualization pipeline. The thesis at hand makes several contri-
butions to the Visualization Mapping stage, but also to the two other
stages. It will show that, when utilizing view-dependent visualiza-
tions, the three steps form a loop, where the Rendering result is used
as an input for subsequent Data Enrichment and Visualization Mapping.
An example, which further highlights the link between the individ-

Figure 1.1: The 2D map of the earth is an example for an AVO of the earth
itself.

3

1

4 introduction

Data/
Information

Visualization

Model/
Inference

Knowledge/
InsightsInteraction

Visual
Reasoning

Knowledge
Extraction

Data
Analysis

Data
Visualization

Figure 1.2: Concept of Visually Enabled Reasoning by Meyer et al. [154]. The
main coverage of this thesis is highlighted green.

ual steps of the Visualization Pipeline, and is also picked up during
this thesis, is Illustrative or Non-Photorealistic Rendering (NPR). NPR
techniques are applied during the Rendering step, but rely on an ap-
propriate pre-processing of the data. By their concept, illustrative ren-
dering techniques can also be seen as an additional abstraction of the
rendered AVO and thus, they can be accounted for both, the Visual-
ization Mapping and Rendering.

The Visualization Pipeline can be set in a larger context using the for-
mulation of Visually Enabled Reasoning by Meyer et al. [154], depicted
in Figure 1.2. They argue that visualization, combined with user inter-
action, enables the interactive process of gaining insight into data. The
contribution of this thesis covers a part of their concept, highlighted
green in Figure 1.2. Therefore, the methods presented throughout the
work at hand aim to provide responsive, i.e., real-time or interactive,
tools and foundations for visualization. These create a basis for fur-
ther research or the implementation of responsive visualization con-
cepts.

In the following, the motivation for and the structure of this thesis
will be described. The state-of-the-art and related work of each topic
and publication are discussed in the respective chapter.

1.1 motivation and overview

To narrow the application range, this thesis mainly focuses on the
visualization of liver vasculature, but also draws the bio-molecular
domain and ensembles of anatomical data as an example.

Part II begins by addressing the visualization of ensembles. If mul-Focus-and-Context
visualization. tiple objects of interest are visualized in a combined view, the ob-

server may have trouble to distinguish individual structures or fea-
tures. Then, focus-and-context applications can be employed to guide
the visual perception of the observer. Such applications utilize differ-
ent information channels from visual perception [28] to make selected

1

1.1 motivation and overview 5

objects appear as either focus- or context [70]. For example, depth-
of-field, transparency, different colors or differently shaped patterns
can be exploited for this. Part II contributes to this field by utilizing
illustrative line-drawing techniques to achieve continuous levels of
abstraction for individual structures in an ensemble.

The rendering of patterns or textures requires the displayed AVO to
be equipped with texture coordinates. The surface parameterization Surface

parameterizationdomain deals with the generation of such. It has a wide range of appli-
cations and has been intensely researched for a long time [47]. Global
parameterization, for instance, plays an important role in remeshing
algorithms [15, 92, 176] that aim to distribute vertices optimally on a
surface. The vertices are then usually aligned to a pre-defined direc-
tion field. While the above mentioned parameterization algorithms
focus on remeshing tasks, it is conceivable that the proposed ideas
have the potential to be translated to the visualization domain. Hence,
Chapter 3 of this thesis will make an effort to build a bridge from the
parameterization- or meshing-domain to the visualization domain.

For liver surgeries, image-guided planning and navigation has be-
come an important pre- and intra-operative tool for surgeons and
interventional radiologists. It enables new minimal-invasive proce- Visualization of liver

vasculature.dures, and has the potential to improve the accuracy and success
of existing surgical and interventional approaches [32]. Incorrect spa-
tial interpretation is a common perceptional problem in 3D applica-
tions and visualizations [116]. Here, the term spatial perception dis-
tinguishes between techniques that encode the distance from an ob-
ject to the observer (depth), the distance between objects (inter-object
distance), and the shape of an object. Several studies have shown that
users often have serious problems estimating depth and inter-object
distances in virtual worlds [82, 96, 208]. The need to assess spatial in-
formation of 3D models accurately during an intervention has led to
the development of several techniques to improve spatial perception,
which is still part of active research. In the field of liver surgery, it is
important for the clinician to fully understand the vascular structures
within the liver. Structural complexity of the multiple branches and
cluttered blood vessels does not make this an easy task. And so there
is a demand for specialized visualization techniques that simplify the
comprehension of such medical data. Therefore, part III of this thesis
aims to contribute to this field in terms of improved depth perception
to enhance spatial comprehension of 3D vascular data.

An alternative approach to visualizing complex structures and to
make them more comprehensive and conceivable, is to reduce their
complexity to the required or necessary features. While NPR tech- Abstraction by

dimension
reduction.

niques do not alter a surface itself, but rather only highlight a subset
of features, the morphology or dimensionality of a data object can
as well be changed for purposes of abstraction. Such as the world
map is a 2D AVO of the earth, structures from the medical domain

1

6 introduction

can as well be mapped to lower dimensions. The report by Kreiser
et al. [109] underlines that there is a high interest in techniques that
transfer spatio-temporal data to the 2D domain. The main advantage
of a 2D depiction of a data set is that it can be perceived at a glance
on a 2D display. No interaction, like rotating a 3D object, is required
to fully grasp the visualization. The present work contributes to this
area in Part IV by two examples. First, a task-oriented AVO of large
molecular dynamics (MD) data is created for MD simulation visual-
ization. Data sets produced by MD simulations grow ever bigger with
more powerful computers and embrace longer time ranges or are
temporally more densely sampled. At the same time, it becomes in-
creasingly difficult for the domain experts to analyze the 3D and time
resolved simulation results. Therefore, divide-and-conquer strategies
are required to allow chemists to work themselves from high level fea-
tures in a data set to low level features that provide insight into the
processes that determine the final outcome of a chemical reaction. As
the extraction of such high level features requires some sort of data
abstraction, it can be well placed into the Visualization Mapping step.
The second example are segmentations of the mitral valve (MV, one of
the four human heart valves) that are transformed to the 2D domain
in order to support clinical assessment. The motivation is, again, a
more comprehensive view on complex data. The MV may develop
deficiencies that may cause minor symptoms but also life threating
conditions for a patient. Physicians and surgeons are then interested
in the behavior and morphology of the valve over a cardiac cycle, in
order to plan and conduct restorative interventions. However, the 3D
structure of the valve for a single time step of the cardiac cycle may
already be highly convoluted and therefore difficult to comprehend
and analyze. Hence, a mapping to 2D space is feasible to support
surgeons in their analysis task.

In brief, this dissertation contributes to the improvement of percep-
tion and comprehension of medical vascular data sets, as well as to
the support of bio-medical analysis tasks through dimension reduc-
tion. This is done by applying different, task-oriented approaches of
data abstraction to the input data. Further, aspects of the parameter-
ization domain are taken into account, modified and applied to the
respective visualization tasks.

1.2 thesis structure

The main content of this thesis is presented in three parts. Each
part consists of chapters that are based on individual publications
or manuscripts that are currently under peer-review. These publica-
tions or manuscripts are the result of collaborative work with stu-
dents, colleagues and domain experts. Nils Lichtenberg, the author
of this dissertation, was significantly involved in all of these works in

1

1.2 thesis structure 7

terms of theoretical and practical contributions. Details are provided
in a report of individual share to cooperative contributions, submit-
ted to the doctoral committee.

Part II begins with an investigation on how illustrative rendering
techniques can be employed to achieve different levels of visual ab-
straction and covers the Data Enrichment and Rendering step of the
Visualization Pipeline (Chapter 2). This is exemplary implemented as
an interactive focus-and-context visualization for ensembles of medi-
cal surface objects. Then, concepts of the parameterization- or mesh-
processing domain are used to generate periodic texture coordinates
for surface meshes (Chapter 3). It is shown how these periodic coor-
dinates can be employed to encode scalar data or for tasks of visual
abstraction. Even dynamic scalar fields can be illustrated in a frame-
coherent and smooth manner.

Part III focuses on the visualization of liver vasculature. Here, the
whole Visualization Pipeline is covered and also the loop, i.e., connect-
ing the Rendering and the Data Enrichment steps, is introduced. The
part begins with a contribution to enhanced depth perception, by
view-dependently augmenting the vasculature with glyphs (Chap-
ter 4). The glyphs are positioned at previously extracted candidate
positions.

In the subsequent chapter, the candidate extraction is further im-
proved and solved more robustly (Chapter 5). In contrast to the gen-
eral parameterization technique of the previous part, a new hybrid
approach is presented. It is tailored to tree-like structures and hybrid
in the sense that part of the solution is found in world space and part
is found in screen space. The screen space parameterization provides
options for view-dependent illustrations of the vessel surface, that
would otherwise be harder to achieve.

The next chapter picks up the idea of screen space parameteriza-
tion and generalizes this concept (Chapter 6). Examples are, however,
predominantly given for vascular input data. Furthermore, the vascu-
lar data is rendered implicitly, based on a Signed Distance Field (SDF).
Once given, an SDF provides promising properties that can be used
for interactive visualization, as proposed in the respective chapter.
Lastly, the vascular input data is additionally represented as a 2D
graph abstraction, in order to support the comprehension of complex
branch topology and associated information.

Finally, this part summarizes recent methods that attempt to im-
prove depth perception of vascular trees, using auxiliary, i.e., sup-
portive tools (Chapter 7).

Part IV further pursues the topic of 2D abstraction. Contributions
are provided in the domain of drug design (Chapter 8) and cardiac
surgery (Chapter 9). In either case, complex surface representations
are transferred to 2D depictions of the data. For the molecular data of

1

8 introduction

the drug design domain, complex 3D and time resolved simulation
data is transferred to a heat-map, uncovering structural and temporal
correlations of residue movement. The field of cardiac surgery is sup-
ported by an approach that unfolds complex heart valve structures
to an uncluttered 2D representation. Expert feedback underlines the
feasibility of both approaches to support analysis tasks in the bio-
medical field.

At last, a final conclusion is given in Part V. Here, the contributions
of this thesis to the visualization community are wrapped up and
discussed, as well as goals for future research are being extracted.

Part II

I L L U S T R AT I V E A B S T R A C T I O N

This part uses existing illustrative line-drawing techniques
and shows how they can be combined with a novel hatch-
ing method to achieve different levels of visual abstraction
of a rendered surface (Chapter 2). The hatching method is
based on a previous sampling of the surface. From this,
the necessity for controllable and uniform surface sam-
pling is derived. This topic will be covered in the subse-
quent contribution (Chapter 3), presenting a field aligned
parameterization and sampling method, that yields a ba-
sis for further visualization approaches.

This part consists of the following papers:

Lichtenberg, N., Smit, N., Hansen, C., Lawonn, K., “Sline: Seam-
less Line Illustration for Interactive Biomedical Visualization.”
In: Eurographics Workshop on Visual Computing for Biology and
Medicine. The Eurographics Association, 2016, pp. 133–142. doi:
10.2312/vcbm.20161281

Lichtenberg, N., Smit, N., Hansen, C., Lawonn, K., “Real-time
field aligned stripe patterns.” In: Computers & Graphics 74 (2018),
pp. 137–149. doi: 10.1016/j.cag.2018.04.008

https://doi.org/10.2312/vcbm.20161281
https://doi.org/10.1016/j.cag.2018.04.008

22

2
S L I N E : S E A M L E S S L I N E I L L U S T R AT I O N F O R
I N T E R A C T I V E B I O - M E D I C A L V I S U A L I Z AT I O N

abstract In medical visualization of surface information, prob-
lems often arise when visualizing several overlapping structures si-
multaneously. There is a trade-off between visualizing multiple struc-
tures in a detailed way and limiting visual clutter, in order to allow
users to focus on the main structures. Illustrative visualization tech-
niques can help alleviate these problems by defining a level of ab-
straction per structure. However, clinical uptake of these advanced
visualization techniques so far has been limited due to the complex
parameter settings required.

To bring advanced medical visualization closer to clinical applica-
tion, we propose a novel illustrative technique that offers a seamless
transition between various levels of abstraction and detail. Using a
single comprehensive parameter, users are able to quickly define a
visual representation per structure that fits the visualization require-
ments for focus and context structures. This technique can be applied
to any bio-medical context in which multiple surfaces are routinely
visualized, such as neurosurgery, radiotherapy planning or drug de-
sign. Additionally, we introduce a novel hatching technique, that runs
in real-time and does not require texture coordinates. An informal
evaluation with experts from different bio-medical domains reveals
that our technique allows users to design focus-and-context visual-
izations in a fast and intuitive manner.

2.1 introduction

Human anatomy consists of many closely arranged structures. In 3D
visualization of anatomy, the proximity and number of structures can
cause perception problems, hampering the focus on structures of in-
terest. Especially for regions featuring complex anatomy, such as the
pelvis, many organs are arranged in a confined region and visual-
ization of these spatial arrangements is difficult. Furthermore, the
number of different structures visualized can lead to visual clutter
or distraction from the areas of interest. For many medical visualiza-
tion tasks, a pathology or target structure needs to be visualized in
anatomical context. Simply showing every structure is then not ideal,
due to a potential visual overload.

Advanced visualization techniques, such as focus-and-context tech-
niques, are able to emphasize structures of interest, and de-emphasize
context structures. Context representations are then abstracted and

11

22

12 sline

Figure 2.1: Bio-medical focus-and-context scenes generated with Sline.

serve to provide an indication of the spatial extent, without present-
ing much shape detail. In this way, distraction from the focus struc-
ture(s) is prevented. The focus structures are then presented in a
detailed way, so that shape and spatial perception is supported. Il-
lustrative, or non-photorealistic rendering (NPR) techniques can be
employed to provide the necessary level of abstraction.

While illustrative techniques can be successfully applied to medi-
cal visualization problems, e.g., to visualize multimodal data or for
surgical treatment planning, clinical uptake of these novel techniques
so far is limited. In clinical contexts where segmentation is routinely
performed, such as for neurosurgery or radiotherapy planning, struc-
tures are often visualized using Phong shading combined with a sim-
ple opacity setting. Rendering structures in a similar shading style
could lead to visual distraction from focus structures, or in case the
structures are rendered in a transparent way, reduced shape percep-
tion. While applications such as these would benefit from more ad-
vanced visualization techniques, a limiting factor is the complex pa-
rameter specification required to generate effective visual representa-
tions. Furthermore, many illustrative techniques, such as silhouettes,
suggestive contours, and hatching exist, but they are not presently
available in a comprehensive implementation.

In this paper, we present the integration of several NPR techniques
into a single application, entitled Sline (Seamless Line Illustration).
With this, our main contributions are the following:

22

2.2 related work 13

1. Our technique provides a seamless transition between surface
rendering styles, from high levels of abstraction to less abstrac-
tion and finally to a smooth, non-illustrative appearance.

2. Using a single parameter setting per structure, users have the
ability to quickly and intuitively visualize a complete 3D scene
with several focus and context structures.

3. We introduce a novel real-time hatching technique, which does
not require texture coordinates.

We define an ordered set of rendering styles to represent different
stages of abstraction. Sline does not require texture coordinates for its
rendering styles, in order to make our technique suitable for a wide
range of bio-medical research data. Each rendering style depends on
several parameters of which a subset will be used for the transition
among the stages. By mapping these parameter subsets to a single
comprehensive parameter, users can intuitively and quickly set the
desired visual representation for structures or groups of structures.
The resulting visualization can convey focus-and-context information
through choice of rendering styles, even without the use of color (see
Figure 2.1).

The rest of this paper is structured as follows. First, in Section 2.2,
we describe work related to illustrative visualization techniques and
their bio-medical applications. In Section 2.3, we describe the meth-
ods that constitute Sline. Afterwards, we present the results of Sline
in three case studies combined with an informal evaluation with do-
main experts in Section 2.4, followed by a discussion in Section 2.5
as well as a conclusion and outlook on future research directions in
Section 2.6.

2.2 related work

The basis of our work focuses on a smooth transition from distinct
illustrative visualization techniques at varying levels of abstraction to
a smooth, non-illustrative rendering style. With this work, we mainly
focus on line drawing techniques. Thus, in this section we will give an
overview of the most commonly used line drawing techniques: feature
lines and hatching approaches. Furthermore, we discuss applications
of these techniques in the bio-medical domain.

feature lines Feature lines aim to represent the strongest shape
cues of a surface mesh with lines. When an artist is asked to draw a
surface with only a few lines, the lines would be placed at the most
significant regions. Although this is a very subjective task, some lines
will be placed more often than others, depending on the geometric de-
tails of the underlying surface. Especially if the normals of the surface
vary strongly, e.g., at a strong edge, a line would commonly be drawn

22

14 sline

there. Feature line techniques aim to automate this process, such that
these lines are placed based on shading or surface information. Shad-
ing approaches take the normals of the surface mesh and the light
vector into account. Mostly, a headlight is used where the light vector
coincides with the view direction of the camera. The most intuitive
feature line in this category is the contour. The contour is defined as
the loci of points where the normal and the view direction are mu-
tually perpendicular. As the normal is only defined at the vertices
of the mesh, the dot product of the view vector and the normal is
determined at these points. Afterwards, the signs of the vertices per
triangle are checked and if the sign changes, a line is constructed on
the triangle that interpolates the negative and positive value such that
a zero-crossing is obtained. This contour yields a reasonable impres-
sion of the surface, but is not sufficient for a detailed spatial impres-
sion. Another approach, which is based on shading, was presented
by DeCarlo et al. [40]. Xie et al. [231] presented photic extremum lines.
Their approach identifies regions of high variance in the shading. For
this the maximum of the magnitude of the light gradient in direction
of the light gradient is determined. The user has the possibility to add
more light sources to influence the result. This feature can be useful
when regions with a high amount of noise produce too many feature
lines. Adding more light sources that point to this region reduces
the number of lines. This approach was later improved by Zhang et
al. [236] to improve the runtime performance. Zhang et al. [237] also
presented Laplacian lines as an extension of the Laplacian-of-Gaussian
edge detector used in image processing to surface meshes. The Lapla-
cian of the normal is determined component-wise, again yielding a
vector. Afterwards, the dot product with the resulting vector and the
view direction is determined, and the zero-crossings are used as po-
tential candidates for the feature lines. Although this approach is
fast in comparison to other approaches, the pre-processing step of
determining the Laplacian is very time-consuming, as the authors
suggested to use the Belkin weights [7].

Regarding the feature line approaches that are based on geometric
properties of the surface, Interrante et al. [84] proposed ridges and val-
leys. Their approach was adapted to triangulated surface meshes by
Ohtake et al. [163]. The ridge and valley lines require principal curva-
ture information. First, the zero-crossing of the directional derivative
of the greatest curvature along the corresponding principal curvature
directions is determined. Depending on the sign of the second direc-
tional derivative and on the sign of the curvature, the feature line is
either a ridge or a valley. A more advanced approach was presented
by Judd et al. [91]. Their apparent ridges are determined similar to the
ridges and valleys, but in contrast they employ their own definition
of curvature. They presented a view-dependent curvature such that
contours are also determined.

22

2.2 related work 15

All the presented feature line methods have advantages and disad-
vantages. An overview of feature line techniques, which summarizes
these positive and negative aspects, can be found in the survey by
Lawonn and Preim [126].

hatching In contrast to feature lines, where the most salient re-
gions are depicted by single lines, hatching tries to convey a spatial
impression of the surface, by covering the surface with a large num-
ber of line strokes. The stroke style depends on the underlying shad-
ing, such that the number of lines increases for regions with dark
shading. The first approach of hatching lines on a surface was intro-
duced by Hertzmann and Zorin [75]. They determined the principal
curvature directions and smoothed them to obtain less noisy results.
Afterwards, they determined the integral lines that represent the lines
over the surface. A texture-based approach was introduced by Praun
et al. [172]. They used lapped textures that vary in hatching size and
different sets of textures encoding the brightness of the shading. For
dark regions a cross-hatched texture was used, and for bright regions
only a few lines were drawn. Finally, these textures were projected on
the surface. In contrast, Zander et al. [233] proposed to use geometri-
cal lines as streamlines. The lines are then individually propagated on
the surface along the principal curvature direction. Cylinders around
the lines ensure a specific distance from one line to another. A dy-
namic approach was presented by Kim et al. [99]. They determined
the principal curvature direction on the GPU and aligned hatching
textures along this curvature direction. With their method, a hatching
approach was introduced that can be applied on animated surfaces
in a frame-coherent manner. A line drawing technique that combines
the advantages of feature lines and hatching was presented by La-
wonn et al. [121]. They determined feature regions and the contour
margin, which are the starting point for streamline propagation. Later,
they improved their approach such that animated surfaces can be il-
lustrated with hatching lines as well [127]. In contrast to our method,
they used a noise texture to generate the hatching, which may result
in blurry lines.

bio-medical applications Illustrative techniques, that also in-
clude line drawings, have been successfully applied to bio-medical
data in various contexts. In the biology domain, Tarini et al. [214]
presented edge cueing techniques for molecular visualization. Using
depth-aware halos, depth-revealing contour lines, and intersection-
revealing contour lines, they enhanced real-time visualization of mo-
lecules. Weber et al. [229] developed the ProteinShader application,
which renders macromolecules using illustrative techniques. They
employ real-time half-toning, bend textures and edge-line generation
algorithms to visualize proteins, but in contrast to our approach, rely

22

16 sline

on texture mapping to attain their results. Parulek et al. [166] utilize
level-of-detail to enable the interactive rendering of large molecules.
They apply a seamless transition from the display of the solvent-
excluded surface to sphere rendering. More closely related to the
work presented here, Zwan et al. [238] presented illustrative molec-
ular visualization with continuous abstraction. The molecules were
visualized using various levels from a space filling representation to
abstract ribbons, specifically designed for molecular data.

In the medical domain, Interrante et al. [84] enhanced transparent
skin surfaces with the aforementioned ridge and valley lines for ra-
diation therapy treatment planning. Dong et al. [42] presented NPR
techniques for segmented volumetric medical data. They generate sil-
houette points and strokes in order to provide volumetric hatching,
but only employ this to generate static images. Tietjen et al. [217] com-
bined silhouettes, surface, and volume rendering in a scene-graph-
based application aiming at surgical education and planning. Their
method successfully integrated strokes with surface and volume ren-
dering, but did not include hatching and required complex interac-
tion for adjustments. Ritter et al. [184] presented work on real-time
illustration of vascular structures. They spatially accentuated vessels
using hatching, distance-encoded surface and shadow illustrations.
Based on this work, Lawonn et al. [122] proposed a combination of
supporting lines, view-aligned quads, hatching and illustrative shad-
ows to improve depth assessment of complex 3D vascular models.

Jainek et al. [85] combined volume and surface rendering to vi-
sualize anatomical and functional brain data using illustrative tech-
niques. Gasteiger et al. [51] proposed a texture-based method to hatch
anatomical structures derived from clinical volume datasets. They ap-
ply curvature-based hatching by incorporating model-based prefer-
ential directions of the underlying anatomy. Chu et al. [30] presented
perception-aware depth cueing for illustrative vascular visualization,
using depth-aware silhouettes, color-coded shading strokes and line-
culling highlights. Svakhine et al. [210] depth enhanced medical vol-
ume visualization with artistic styles for outlining features and con-
veying depth information. Hansen et al. [64] visualized 3D planning
models for augmented reality in liver surgery using illustrative tech-
niques. In their work, they combine distance-encoding silhouettes
and surfaces with procedural textures for intra-operative visualiza-
tion. Svetachov et al. [211] illustrated brain fiber tracts from DTI data
in an interactive application using interactive slice-based hatching.
Born et al. [20] proposed illustrative visualization of cardiac and aor-
tic blood flow from 4D MRI acquisitions.

In contrast to previous work, our method is the only method that
supports a seamless interactive transitions between different levels of
abstraction by integrating several illustrative rendering techniques,

22

2.3 method 17

without relying on textures or assumptions about the underlying
models.

2.3 method

Our method, Sline, provides a smooth transition from silhouettes, to
more detailed illustrative styles, to Phong shading for surface meshes.
In this way, we achieve a transition from a very abstract representa-
tion along several levels of abstraction to a non-illustrative visualiza-
tion. For every mesh M in the scene an individual rendering style
can be chosen. To attain a step-wise decrease in illustrative levels of
abstraction, we employ the following techniques in order:

1. (a) Silhouettes and (b) Contours (Section 2.3.2)

2. Suggestive Contours (Section 2.3.3)

3. Hatching (Section 2.3.4)

4. Phong Shading

An overview illustration of these stages is given in Figure 2.2.

(a) Γ = 0 (b) Γ = 1 (c) Γ = 1.5 (d) Γ = 2 (e) Γ = 2.5

(f) Γ = 3 (g) Γ = 3.5 (h) Γ = 4 (i) Γ = 4.5 (j) Γ = 5

Figure 2.2: The Sline method applied to a surface model of a clinical CT scan
of the liver. Sline provides a seamless transition between various
levels of abstraction, from silhouettes to contours, to suggestive
contours (top row), to hatching, and finally to Phong Shading
(bottom row) with intermediate states. The user parameter Γ (see
Section 2.3.5) is given for each state.

The next sections describe the preprocessing, implementation of
the algorithms, and the parameterization of the transition between
consecutive rendering steps respectively.

2.3.1 Preprocessing

Silhouettes and contours do not require any preprocessing. The sug-
gestive contours as in [40] and our hatching approach require the
computation of the radial surface curvature κw(p) and its directional
derivative Dwκw. Here, p ∈M is a point on the mesh M and w is the
projection of the view vector v on the tangent plane at p. Note that v

22

18 sline

points from the camera towards M. The scalar field κw is computed
based on the light gradient vector field k. We compute k and κw as
in the technique proposed by Lawonn et al.[127] and use the method
described by Judd et al.[91] to compute Dwκw. Finally, we define a
feature size F, that will be used to adjust parameters that depend on
the world size of a mesh. For example, the curvature on the surface
of a large sphere is smaller than that on a small sphere. Thus, we set
F to the bounding sphere radius of M.

2.3.2 Silhouettes and Contours

Silhouettes describe the outline of an object, while contours are found
where the surface normal of an object is orthogonal to the view vector.
Our silhouettes and contours use the same algorithm, which is similar
to the object space algorithm described by Hertzmann [74]: We find
zero crossings on the triangle edges where 〈n̂, v〉 = 0 holds, with 〈., .〉
defining the dot product. Here, n̂ denotes the interpolated normal
along the edge between two vertices. If we find zero crossings on two
edges of a triangle, we create a contour patch with four vertices - two
for each of the two edges, given by:

p̂0; p̂1 = p̂0 + a · n̂ ·F, (2.1)

where p̂0 is the location of the zero crossing on the edge with cor-
responding n̂ and a controls the width of the contour. If only the
silhouette is required, the inner contour patches are discarded using
a stencil test. We render M into the stencil buffer and then render
the contours with the stencil test enabled, allowing the contours to be
drawn only where M has not been drawn into the stencil buffer. To
avoid terminology confusion between contours and suggestive con-
tours, we will refer to the contours described in this section as actual
contours.

2.3.3 Suggestive Contours

Suggestive contours, proposed by De Carlo et al. [40], can be under-
stood as an elongation of actual contours to support shape percep-
tion. Suggestive contours extend actual contours, as these represent
contours in nearby camera locations. If we look at M from location A
and see a suggestive contour, this contour might be an actual contour
seen from location B, where B is close to A. In order to determine the
suggestive contours, κw and Dwκw (recall Section 2.3.1) are required.
The algorithm checks for the following constraints, based on the work
by De Carlo et al., to find suggestive contour patches:

1. Search for a zero crossing of κw at point p̂ on each triangle edge.

2. Check for 0 < td <
Dwκw(p̂)
‖w‖ .

22

2.3 method 19

3. Check for 0 < θc < acos
(
−〈n(p̂),v(p̂)〉
‖v(p̂)‖

)
.

Condition 2 uses td to ensure that Dwκw is positive and to suppress
regions with frequent changes of the sign of Dwκw that might result
from noise. The purpose of condition 3 is to discard suggestive con-
tour lines that would appear in regions where the angle between v
and n is too small. With increasing θc, suggestive contours are only
visible the closer they are to actual contours.

If two or more edges of a triangle meet the conditions, sugges-
tive contour patches are generated similarly to the method in Sec-
tion 2.3.2. The suggestive contour patches are oriented orthogonally
to their corresponding triangle surface. This has the effect that sugges-
tive contour lines close to actual contours appear thicker, since they
are oriented (almost) perpendicular to the view ray. Recall that actual
contours appear where the surface normal and the view ray are or-
thogonal. In contrast, suggestive contours further away from actual
contours will be drawn in a less thick style, because their orientation
tilts away from the camera.

2.3.4 Line Search based Hatching

In NPR, hatching is a technique to cover a surface with a large num-
ber of line strokes that support the spatial impression of the surface.
Line integral convolution (LIC) has been used to achieve hatching-
like results [127], based on a LIC algorithm by Huang et al. [79]. The
method by Huang et al. proposes to integrate the streamlines over a
depth dependent noise texture, resulting in a very dense set of thin
lines with a low black-white contrast. In our work, we are interested
in more distinctive strokes with more contrast. A noise texture is not
suitable for our needs, because a coarse noise texture is either blocky
or blurred. Furthermore, we want to disregard texture coordinates
with respect to medical data sets, because surface data generated
from medical volume data does not usually feature texture coordi-
nates. To address the goal of distinctive strokes, we suggest to map a
coarse distribution of seed regions - called smart seeds - onto M, from
which the strokes can pick up their color. Since we are not integrat-
ing over a noise texture, we simply perform a line search, which we
describe in Section 2.3.4.3. The following tasks arise from our require-
ments:

1. Map seeds onto M without texture coordinates (Section 2.3.4.1).

2. Define a function to generate seed regions from the seed loca-
tions (Section 2.3.4.2).

3. Compute a line search such that single strokes do not merge
(Section 2.3.4.3).

22

20 sline

Figure 2.3: Projection example: points are projected along their normals.

Merging strokes occur when two strokes touch and result in a sin-
gle, broadened stroke, which is undesirable. One stroke ending in
the start of another stroke is still allowed, because that results in an
extended stroke of equal width.

2.3.4.1 Seed Mapping

A solution for task 1 can be found in the polycube maps approach by
Tarini et al. [215]. They subdivide the space around a mesh into an
isotropic grid and practically inflate the mesh until it fills a specific set
of grid cells. Figure 2.3 depicts how the mapping of surface points to
the grid faces (or edges in 2D) is done. Each point is projected along
its surface normal n. For p1 we can see that 〈nv, n1〉 > 〈nh, n1〉, so that
p1 is projected onto the vertical edge. In the case of p2 we see that
〈nv, n2〉 > 〈nh, n2〉 as well, so that p2 is projected onto the vertical
edge, even though the projection crosses the horizontal edge. This
concept is used analogously for the faces of a 3D grid cell. In general,
a point with surface normal pn is projected on face f with normal fn,
if 〈pn, fn〉 is the maximum of the dot products of all face normals and
pn. The fact that surface points can be projected outside their original
grid cell, results in less distortion of the mapped texture. We define
the grid in local coordinates of M and use the cell faces to generate
smart seeds. Therefore, we do not need any further processing for the
mapping. For each cell face, we generate a texture as shown in the left
of Figure 2.4.

2.3.4.2 Smart Seeds

Our goal is to generate thick lines that do not merge with other lines.
To achieve this, our seeds are made up from three different regions,
namely a core region, a halo region and a contact region (see Figure 2.4).
The core region is used to produce the actual stroke and is always
black, while the halo region can be adjusted in brightness to control
the contrast among different strokes. The contact region will be used
to prevent multiple strokes from merging. Strokes that run through

22

2.3 method 21

Figure 2.4: Core region (black), halo region (dark gray), contact region (light
gray) (left), gradient of the seed center (k) (center), and larger
radii on faces turning away from the camera (right).

the contact region of other seeds will be drawn in a lighter way, with
the effect that different core strokes cannot appear in immediate con-
tact. Due to our implementation of the line search (see Section 2.3.4.3),
we trim the seed in the direction of the local light gradient k to make
all regions accessible from outside (see Figure 2.4, center). Addition-
ally, the radius of a seed is increased for faces that turn away from the
view, to compensate for perspective distortion (see Figure 2.4, right
and Eq. 2.3). We do this because small, perspectively clinched seeds
contain less fragments and are thus more likely to be discarded by
the rasterizer.
The computation of the smart seeds proceeds dependent on their lo-
cal k. A screen space representation of Mesh M is rendered into a
preparation texture TEXp. In the fragment shader, each fragment’s
3D location p is projected based on their normal as described in
Section 2.3.4.1 and we get the projected point p ′. k(p) is projected
onto the corresponding grid cell face and yields the normalized vec-
tor k ′(p). Let the center of the grid cell face be c, the size of the cell be
cs and the seed radius be sr = 1

4cs. cs should be chosen dependent
on F and the distance of M to the camera.

Dependent on its location, p ′ is classified as a seed region C ∈
{Core, Halo, Contact} . The boundaries of the regions are given by
the distance ‖p ′ − c‖ at 12sr, sr and βsr, where β > 1 is a factor to
determine the contact region size, which is set to β = 1.8 in this work.
The trimming of the seed is done using:

q1 = c +
sr · k ′(p)

4

q2 = c −
sr · k ′(p)

4

d1 = 〈k ′(p), (q1 − p ′)〉
d2 = 〈k ′(p), (q2 − p ′)〉

(2.2)

If d1 and d2 have the same sign, the fragment at p is invalid. Us-
ing k ′(p) instead of k ′(c) allows the trimmed seed to adapt to the

22

22 sline

Figure 2.5: The seed trimming is calculated per fragment, based on the frag-
ment’s projected light gradient k ′. This aligns the valid seed re-
gion with the vector field (right). Valid regions are colored based
on their properties (black to red).

surrounding vector field k (see Figure 2.5, right). Seeds on faces that
turn away from the viewer have their radius increased by

srm = sr(2− |〈v, n〉|), (2.3)

where srm is the modified seed radius. Figure 2.5 (left) shows a sec-
tion of the resulting texture TEXp, which includes the contour of the
mesh and will be used as input for our line search computation. The
last step is to encode seed region properties in the color channel of
each fragments output. The red (R) color channel stores the stroke
color, which is set to 0 for the core region and some value ∈ [0, 1[for
the halo region (we use 0.6 for our figures). For the contact region
we set R to 1, since 1 is used as the background color, e.g., no stroke
should be drawn from here. To prevent different strokes from merg-
ing we assign a permeability factor ρ to each fragment and store it
in the green (G) color channel. Core and halo regions are set to zero
permeability, to stop any merging strokes. For the contact region we
set

ρ =
‖p − c ′‖− sr
sr ·β− sr

(2.4)

to produce a smooth gradient from outside the contact region to the
edge of the halo region. The next section will describe the application
of TEXp.

2.3.4.3 Line Search

For any starting point on M our line search algorithm follows the
underlying vector field k in positive and negative direction, until it
hits a smart seed. The color for M at that starting point is determined
by the distance traveled from the starting point to the smart seed

22

2.3 method 23

and by the seed region that has been hit. The computation is done
in the fragment shader. Each fragment has access to a texture TEXv,
containing the view projected vector field k and TEXp. In contrast
to common LIC algorithms we follow the vector field in both, its for-
ward and backward direction. Another difference is that we do not
integrate over the color along a line. Instead, we search for the first
occurrence of a seed region to stop the iteration. Thus we use a line
search method, instead of LIC. Let x be the position of a fragment
in screen space, then TEXp(x){R,G} gives access to the texture’s color
channels and TEXv(x) gives access to the vector field at position x. Let
d ∈ [−1, 1] define the positive or negative direction of the iteration, i
be the number of iterations, τ be a dampening factor that accumu-
lates the loss of permeability when iterating through a seed’s contact
region with τw controlling the impact of τ and λ be the step size of
the iteration. S is the aggregate of all smart seed Core and Halo pixel
locations except for pixels of the smart seed covering x, when x is
used as the starting position of our line search. Our algorithm to find
a fragment’s color in one direction of the vector field is then given by
Algorithm 1.

Algorithm 1 Line search algorithm

1: id = 0;
2: x ′ = x
3: τ = 1

4: while x ′ 6∈ S ∧ x ′ 6= contour do
5: id ++

6: x ′ = x ′ + d λ TEXv(x ′)
7: τ = τ (1− τw (1− TEXp(x ′)G)

Rd = τ TEXp(x ′)R + (1− τ)

Algorithm 1 runs for d = −1 and d = 1 and we get the result
Rd with the number of required iterations id. The final color for the
fragment is computed as an interpolation of both results:

R =
R−1 i1 + R1 i−1

i1 + i−1
(2.5)

The interpolation yields a smooth transition between core and halo
regions of extendingextending strokes. Figure 2.6 (right) shows the
result of this process. It can be observed that our method is capable
of generating thick strokes with good contrast.

We do not want to draw hatching lines over the full mesh, but
rather only in regions where they support the (suggestive) contour
lines. A solution for this problem is presented in the next section.

2.3.4.4 Blending

Our intention is to show the hatching lines only in regions where they
support the contour and suggestive contour lines of the model. The

22

24 sline

contours basically rely on the light gradient direction k and on 〈n, v〉,
while actual contours are restricted to both vectors being orthogonal
and the suggestive contours allow the threshold „c. Thus, we want to
find a function that takes n, v, k and θc and outputs a value Oh ∈ [0, 1]
that would be used as opacity for the hatching strokes. We define Oh
as follows:

wk = 〈k, v〉

wa = clamp[0,1]

(
acos(− 〈n, v〉) − θc

1
2π− θc

)
Oh = max(wa ·wk ·F, 0)

(2.6)

As clamp[l,u](...), we define a mapping to [l,u], where values < l or
> u are set to l or u respectively. wk weighs the light gradient in
dependence of the view. wa is a mapping of valid angles ∈ [θc, 12π]
to [0, 1].

We multiply all of these factors. Thus, either the viewing angle or
the projected k can be responsible for eliminating hatching lines. As
we disregard negative results, only regions where k points away from
the viewer can have hatching lines, e.g., where curvature increases
with distance to the camera. Note that k is not normalized to take the
curvature magnitude into account. See Figures 2.2f and 2.6 (right) for
the final result of our hatching method.

We can interpret the blending as a hint to where suggestive con-
tours might appear in nearby camera positions and that it relates to
suggestive contours in the same way as suggestive contours relate to
actual contours. If we rotate the camera such that a suggestive con-
tour line appears where hatching was visible in the previous camera
position, the line becomes more distinct and will finally transition
into an actual contour. Rotating into the opposite direction leads the
suggestive contour line to fade away (see Figure 2.7).

2.3.4.5 Robustness

The visual output of the presented hatching method mainly depends
on the grid cell size (or seed radius) and the brightness of the halo re-
gion. The grid is defined in model space, so if we zoom out the seeds
shrink in screen space. This will ultimately result in heavy flickering
when moving the camera, as soon as the seeds are smaller than a
pixel. In that case, seeds may or may not appear in TEXp and so will
the hatching lines that depend on them. A simple approach to reduce
this kind of artifact is to increase the grid cell size with increasing dis-
tance of the camera to the object. Consequently, the hatching strokes
of distant objects are bigger and fewer, in relation to the object’s size.
As we zoom in, the hatching becomes more detailed. Another factor
that can reduce flickering is the color of the halo region. Hatching
strokes of the lighter halo region color are less salient and if these

22

2.3 method 25

(a) LIC (b) Line Search

Figure 2.6: Comparison of the noise texture based LIC (a) and our method
(b) applied to a tumor model. While the LIC method produces
blurry lines, our method yields characteristic strokes.

pop in and out, the flickering is less severe.
The curvature vector field is view dependent, because we compute
the light gradient with the light source positioned in the camera cen-
ter. Thus, it changes smoothly as the camera moves. This is true, ex-
cept for regions where the surface normal is (almost) perpendicular to
the view vector. Here, the direction of k can change rapidly. This also
affects the hatching lines and causes visual artifacts. Using Eq. 2.6,
these regions are discarded, since Oh = 0 at these locations if θc is
large enough.

2.3.5 Transition Parameterization

The rendering techniques described in Section 2.3 depend on one or
more parameters. For simplicity and intuitive interaction, without re-
quiring user knowledge about the underlying parameters, we map a
single parameter to all feasible input of one shading technique. Fea-
sibility of a parameter to be mapped is given, if that parameter can
support the seamless transition among our shader stages. We will
now define the mapping of our transition parameters for the differ-
ent stages defined at the beginning of this section.
The user sets a parameter Γ ∈ [0, 5] to define the transition level. The

22

26 sline

Figure 2.7: From top left to bottom right, the camera is rotated to the left.
The suggestive contour (blue) appears nearby a hatched area and
then moves along the hatched area and becomes an actual con-
tour (green).

parameters T{S,C,SC,H,P} ∈ [0, 1] describe the transition from one ren-
dering style to the next and depend on Γ (recall Figure 2.2).

Silhouettes: TS = 1

Contours: TC = clamp[0,1] (Γ)

Suggestive contours: TSC = clamp[0,1] (Γ − 1) (2.7)

Hatching: TH = clamp[0,1] (Γ − 2)

Phong shading: TP = clamp[0,1] (Γ − 3)

That way, the stage in transition is modified by Γ , while all previous
stages are in a fixed, visible state.

silhouettes and contours : According to Eq. 2.1, we set the
width a:

a = width · T{S,C}. (2.8)

This will fade in contours from 0 to width, where width is a prede-
fined parameter controlling the maximal width of the contour and is
set to 0.006 for our examples.
Note that a is scaled by F in Eq. 2.1, so thatwidth defines the contour
width as a fraction of the bounding sphere of M.

suggestive contours : According to Condition 2 and 3 in Sec-
tion 2.3.3, we set td and θc:

td = (1− TSC)tdmin + tdmin

θc =
π

2
− (
π

2
− θcmin)TSC

(2.9)

where tdmin and θcmin are predefined minimal thresholds. This will
cause suggestive contours to grow from actual contours, by decreas-
ing θc and td from high values to their respective minimal values.

22

2.4 results 27

hatching : According to Eq. 2.6, we set θc:

θc =
1

2
π(1− TH) (2.10)

This will expand the regions around contours and suggestive con-
tours where hatching will be enabled.

phong shading : We want to fade in Phong shading from loca-
tions where hatching is not visible and define the Phong opacity Op
as:

θc(TP) =
1

2
π(1− TP)

wa(TP) = clamp[0,1]

(
acos(−〈n, v〉) − θc(TP)

1
2π− θc(TP)

)
wk(TP) = −〈k, v〉(1− TP) − TP

Op = clamp[0,1](wa(TP) wk(TP))

(2.11)

[θc(TP), π2] defines the range of valid angles between v and n. wa(TP)
will always be positive for valid angles and zero for invalid angles.
wk(TP) is only positive if k points towards the camera, thus Op can
only be positive in that case. θc(TP) and wk(TP) practically result
in the opposite of what we defined for valid hatching regions (re-
call Eq. 2.6) and Phong shading will first be visible in regions with-
out hatching. With Γ = 4 we get a combined result of all shading
techniques (see Figure 2.2h). A final transition (with Γ > 4) applies
T{S,C,SC,H,P} = 1− clamp[0,1](Γ − 4) equally to all stages and we mod-
ify Op for the Phong shading as

Opm = TP Op + (1− TP), (2.12)

where Opm is the modified Phong opacity. At the highest parameter
setting, all illustrative shading will fade away an leave simple Phong
shading as the final stage.

2.4 results

To evaluate the utility of our application, we had a semi-structured in-
terview with five domain experts, based on three case studies shown
in demo videos. We chose to use videos to reach as many domain
experts as possible, including ones that are not in the same physical
location as us, and to avoid having these experts needing to install
our software. In this way, all users have the same experience and
impression of the presented technique. The five experts consisted of
two medical doctors, two pharmacists, and one biologist. For the case
studies, we used anatomical data from the abdomen and pelvis (see
Figure 2.8 and 2.9), as well as a protein dataset (see Figure 2.1 (left)).

22

28 sline

Figure 2.8: Abdomen dataset: by setting the rendering styles of the struc-
tures, users can shift the focus from the internal organs (left) to
the vascular structures (right).

Figure 2.9: Pelvis dataset: hatching the organs as focus with other anatomy
as context (left), and branching structures as focus (right).

22

2.4 results 29

The abdomen dataset features surface reconstructions based on seg-
mentations from the Visible Human cryosection and CT scan. The
pelvis dataset is the Virtual Surgical Pelvis atlas [106], which is based
on cryosectional data from the Visible Korean Female and insights
gained from histology studies. The protein dataset features PDB-ID
5H9N from the protein data bank (PDB), and contains the crystal
structure of LTBP1 Y114A mutant in complex with leukotriene C4.

medical experts : After seeing the pelvis case study, the first
expert envisions using Sline for treatment planning of oncologic sur-
gical procedures, e.g., cervix or prostate carcinoma, since these proce-
dures are usually accompanied by interdisciplinary communication
of different domain experts. The same applies to patient-doctor com-
munication in such cases, as well as for teaching purposes to edu-
cate students in the spatial relations of the anatomy. According to her,
patient-doctor communication is a very important field and especially
operations are very difficult to explain, because there are no informa-
tion sheets. She stated that patients do appreciate when physicians
explain complicated operations to them, and Sline can definitely help
there. A function to export user defined 3D scenes and annotations,
with certain structures highlighted, would improve the usability of
Sline for communication with students.

The second expert said that the tool looks very intuitive, quick and
easy to use. She estimates she could set up a visualization for the
whole Virtual Surgical Pelvis dataset, featuring 28 anatomical struc-
tures, within ten minutes. She appreciates the schematic and simpli-
fied representations that can be made using Sline, and sees potential
for use in treatment planning, education and doctor-patient commu-
nication. Furthermore, she proposes to use it in interdisciplinary com-
munication, in presentations to peers for instance. She states that the
combination of rendering styles and colors can really help focus at-
tention of the viewer, but care must be taken to pick the right colors
for the right structures.

pharmacy/biology experts : Experts from the pharmaceutical
domain see a potential to quickly highlight different protein and lig-
and configurations for comparison. This requires the overlay of mul-
tiple 3D objects, to make structural differences visible. With our tech-
nique, different structures can be quickly set to focus or context, e.g.,
to flexibly support a presentation in interdisciplinary communication
or for teaching purposes. The size and shape of docking cavities in
the protein, where ligands can bind to, are also important information
and would preferably be highlighted separately, which is not possible
at this time, since we set Γ per complete mesh.
The biology expert stated that Sline helped him to remedy visual
overload by reducing the amount of detail for uninteresting parts of

22

30 sline

the model, while still keeping enough details to see the shape of the
context. By using a medium level of abstraction in combination with
color, interesting objects can be shown in a clear way. The color also
provides a highlight, which makes it easier to focus on certain objects.
He states the main advantage of Sline is the simplicity and ease of
use, and having just one parameter to obtain the desired level of ab-
straction. He commented that the hatching-like effect seemed to be
a bit too strong, since it creates darker images than the local light-
ing at the end. An additional, hierarchical list of groups of available
structures contained in the scene would help to select objects of inter-
est even quicker. Besides the current application domain, he believes
Sline could also be useful for preparation of illustrative renderings
for black-and-white print.

case study conclusion : All experts agreed that Sline can help
focus the viewer’s attention on important structures, and that the or-
dering of decreasing abstraction levels is intuitive. They also affirm
that creating a meaningful visualization, based on the available op-
tions, is intuitive, easy and fast, which is credited to the single param-
eter concept.

2.5 discussion

Our new hatching algorithm is inspired by LIC, but is capable of pro-
ducing more characteristic strokes, as illustrated in Figure 2.6. To be
consistent with the suggestive contours, it is based on the light gradi-
ent k and the radial curvature κw. Since the light gradient changes if
the camera position changes, the hatching technique has to be com-
puted in real time. We achieved interactive frame rates for scenes of
up to 800k faces on an NVIDIA GTX 580 graphics card using smart
seeds and a simple line search. To address clinical data, the hatch-
ing does not require texture coordinates. Another positive property
of our hatching is, that it relates to suggestive contours such as sug-
gestive contours relate to actual contours (see Section 2.3.3). E.g. the
hatching represents locations of suggestive contours in nearby cam-
era locations. As Figure 2.10 shows, we can easily reduce the hatching
to a stippling effect.

Our hatching concept has several limitations. In Section 2.3.4.5, we
mentioned the flickering that we were not able to fully suppress. Also,
Figure 2.5 reveals, that the simple seed mapping approach is not op-
timal. It can be observed, that some seeds are not drawn completely
and are cut off at triangle edges. We assume that this is due to the
ratio between grid cell size and the seed radius, which is not opti-
mal. Another visual artifact appears when zooming in and out as we
adjust the grid cell size. Doing so leads the seeds to move over the
object, because they are bound to their grid cell. This effect could be

22

2.6 conclusion and future work 31

Figure 2.10: Stippling applied to a clinical MRI-based bladder model, using
only one iteration of Algorithm 1.

eliminated, if we would allow multiple seeds per grid cell face. From
a far distance, only a few large seeds should be visible. As the cam-
era moves closer, the large seeds would shrink and new smaller seeds
would fade in. We expect this to result in a seamless transition from
a coarse to fine hatching.

One more drawback is illustrated in Figure 2.11. Hatching strokes
do neither merge, nor do they extend each other. The result is a re-
gion of many short strokes that give the impression of a stippling
technique. This happens due to the uniform grid and the radius that
we use for the mapping of our seeds. In the presented case, a stroke
can not penetrate the contact region of neighboring strokes and is pre-
vented from merging with strokes further away. Contrarily, the reduc-
tion of the impact of the contact region might allow other strokes to
merge. Imagine the seeds in Figure 2.11 were larger, then the strokes
would probably merge in vertical direction and produce a thick, ver-
tical hatching line. This would give a false impression of the underly-
ing vector field. The issue might be addressed by a more sophisticated
line search algorithm, which does not only consider single pixels on
a line, but also pixel neighborhoods. We hope that such an approach
will also reduce the flickering effect while rotating an object. Our fea-
ture size parameter F is based on the approximation of M as a sphere,
which is feasible for compact structures. More filigree structures, such
as vessels, would profit of a more precise approach, that incorporates
the average surface curvature of M, for example.

2.6 conclusion and future work

We have presented Sline, a technique for seamless interactive transi-
tioning along various levels of abstraction, from silhouettes to Phong
shading, for bio-medical surface data. The transition among the in-
volved rendering states is reduced to a single parameter, to allow for

22

32 sline

Figure 2.11: From left to right: Result of increasing number of iterations in
Algorithm 1. Single strokes are prevented from merging with
others, but also fail to extend other strokes.

simple interaction without any additional training for the user. For
this, we defined a set of parameters that can be mapped to that sin-
gle input parameter and thus modify the individual rendering tech-
niques. By adjusting this single parameter, users can quickly and intu-
itively generate focus-and-context visualizations for bio-medical sur-
face data.

As future work, we would like to explore smart visibility tech-
niques to deal with occlusion, while still providing shape cues. In
its current state, our framework only supports simple blending to
suggest transparency of multiple objects. A proper use of order in-
dependent transparency, like the approximating algorithm by Vasi-
lakis [225], could open up more areas of application and flexibility
for our framework to deal with occlusion issues. For instance, the
biology experts suggested to highlight cavities, which is done by a
transparency mapping in the work by Borland [19]. It could be of ad-
vantage to apply this transparency mapping, or any other mapping
of features, on our levels of abstraction, such that regions of interest
are highlighted based on their functionality.
From the usability point of view, the simplicity of parameterization
presented here, can be utilized to conduct a large scale evaluation
on which rendering techniques users prefer to create their own focus
and context scenes. Results from such an evaluation might be used to
automate the creation of focus-and-context scenes. We plan to release
Sline as an open source tool, so that it becomes freely available for
people to use in their own bio-medical applications.

acknowledgements This project was partly funded by the DFG:
LA 3855/1-1 and HA 7819/1-1. We would like to thank the domain
experts D. Komm, M. Krone, D. Imhof, P. Heimer and A. Kraima for
their support.

333

3
R E A L - T I M E F I E L D A L I G N E D S T R I P E PAT T E R N S

abstract In this paper, we present a parameterization technique
that can be applied to surface meshes in real-time without time con-
suming preprocessing steps. The parameterization is suitable for the
display of (un-)oriented patterns and texture patches, and to sam-
ple a surface in a periodic fashion. The method is inspired by ex-
isting work that solves a global optimization problem to generate a
continuous stripe pattern on the surface, from which texture coordi-
nates can be derived. We propose a local optimization approach that
is suitable for parallel execution on the GPU, which drastically re-
duces computation time. With this, we achieve on-the-fly texturing of
3D, medium-sized (up to 70k vertices) surface meshes. The algorithm
takes a tangent vector field as input and aligns the texture coordi-
nates to it. Our technique achieves real-time parameterization of the
surface meshes by employing a parallelizable local search algorithm
that converges to a local minimum in a few iterations. The calcula-
tion in real-time allows for live parameter updates and determination
of varying texture coordinates. Furthermore, the method can handle
non-manifold meshes. The technique is useful in various applications,
e.g., bio-medical visualization and flow visualization. We highlight
our method’s potential by providing usage scenarios for several ap-
plications.

3.1 introduction

In surface visualization, there is often a need to visualize additional
features of the data directly on the surface. If there is only one value
that needs to be shown, color mapping is often employed to provide a
qualitative impression of the value distribution over the surface. How-
ever, for multivariate data, the need can arise to visualize multiple
values simultaneously, and simple color mapping will no longer suf-
fice. Multiple views can be presented in such cases, but this requires
mental integration for the viewer. Glyph-based or layering techniques
are also able to convey multiple quantities, but may lead to clutter
and occlusion [95]. To provide the user with an integrated view of
multiple features, advanced visualization techniques such as illustra-
tive visualization can be used to encode additional information. For
such techniques, however, preprocessing is often required. This has
the unfortunate side-effect that those techniques can no longer be em-
ployed to display dynamic changes, and there may be cases where
preprocessing is undesirable or even impossible. Furthermore, when

33

333

34 real-time field aligned stripe patterns

Figure
3.

1:O
ur

surface
param

eterization
m

ethod
is

able
to

dealw
ith

dynam
ic

changes
on-the-fly

and
can

be
used

in
a

range
of

real-tim
e

applications.
From

left
to

right:(
1)

selectively
discarding

fragm
ents

achieves
a

transparency
effect,w

ithout
affecting

colors
of

underlying
structures,(

2)
dynam

ic
flow

field
visualization,w

ith
tw

o
spheres

representing
vortex

cores,and
arrow

textures
around

them
indicating

flow
direction,

(
3)

visualization
of

a
stress-tensor

on
aneurysm

surface
data

[
1

1,
8

7]
(w

hen
zoom

ing
in,the

frequency
of

the
pattern

increases
to

allow
for

m
ore

detail),(
4)

param
eterization

of
the

H
yperballw

ith
a

4-w
ay

rotationalsym
m

etry
field

as
input.

333

3.2 related work 35

relying on precalculation, it is not possible to update any parameters
involved at run-time. Therefore, there is a need for a method that is
able to provide parameterization of a surface mesh without prepro-
cessing and that can be adjusted on-the-fly.

We propose a technique to parameterize a triangulated surface and
generate a global stripe pattern on the surface, based on an under-
lying tangent vector field. If no vector input is available, principal
curvature directions could be computed as a backup strategy. This
is also possible in real-time as stated by Griffin et al. [57]. The re-
sulting parameterization can then be used for different visualizations
tasks. Existing methods [86, 103, 176] already address this kind of
problem. However, these do at most focus on interactivity, while we
aim for a real-time visualization, allowing dynamic input properties.
Further, our problem formulation is suitable for an optimized recon-
struction of the parameterization in the fragment shader. This is bene-
ficial, e.g., if our method is used to generate local texture coordinates.
To make our method suitable for real-time applications, we adapt ex-
isting approaches and aim for a local solution through local iterative
optimization steps. The locality of our approach allows handling of
non-manifold surfaces. Also, we can update visualizations and their
parameters on-the-fly, for instance driven by dynamic vector fields,
or reactive to scene changes resulting from interaction. With this, our
main contributions are the following:

• We propose a technique to derive local texture coordinates from
tangent vector-fields on a surface mesh, through local iterative
optimizations.

• Our technique can be executed in real-time for medium-sized
meshes, and thus can be used in visualization of both dynamic
meshes, as well as dynamic parameter input.

• We demonstrate the potential of our technique in several usage
scenarios from various domains, and compare the performance
of our technique both quantitatively and qualitatively to refer-
ence methods.

We obtain periodic 1D texture coordinates based on a 1D parameteri-
zation aligned to an unoriented vector field. This can be employed for
field visualization using a stripe pattern. The parameterization based
on two orthogonal vector fields can be used to obtain periodic 2D
texture coordinates. These can be used to visualize vector fields or
arbitrary scalar properties using different textures or patterns, as we
demonstrate in several examples.

3.2 related work

In this section, we examine related work from a technical perspective,
as well as from a visualization application perspective.

333

36 real-time field aligned stripe patterns

surface parameterization techniques Surface parameter-
ization has been intensely researched for a long time [47]. Global
parameterization plays an important role in global quad remeshing
algorithms in order to find an optimal remeshing across the whole
mesh. A survey on this topic is provided by Bommes et al. [16]. Such
methods are usually complex to implement, run at most at interac-
tive timings [43] and thus, are not applicable in real-time applications.
Jakob et al. [86] proposed a method that relinquishes global optimiza-
tion, yet is still able to create meshes that align with features on a
global scale. This local approach makes their method parallelizable,
which makes finding a solution faster by several orders of magni-
tude. Such techniques define, or get as input, a direction field on the
surface, along which the parameterization is aligned. Proper genera-
tion of such direction fields is crucial to guarantee mesh quality for
these methods. Design of these direction fields has emerged from
the above requirements as an additional research area. Details can
be found in the state of the art report by Vaxman et al. [227]. Our
work uses as input an unoriented vector-field and does not address
its further optimization. The methods mentioned so far generate vec-
tor fields, or at least require an optimized vector-field as input, and
use them in successive steps. The design and visualization of direc-
tion fields is often closely coupled to allow for a visual feedback of
applied changes [118]. The visualization is often done using line in-
tegral convolution (LIC) [27, 165]. However, LIC does only convey
the ambiguous orientation of a vector direction d ∼ −d and cannot
be used to display textures. Other methods, like the generation of
texture coordinates, utilize vector-valued input to control texture ori-
entation. Then, attention has to be paid to whether the vector field is
oriented or non-oriented. Methods that take orientability into account
can be used for a controlled display of orientable textures, but have
to take care of visual seams [131, 171, 205], while methods that work
on unoriented fields have to rely on symmetric textures [157, 221].

The most important prior art to the work presented here are the po-
sition field optimization of the Instant Field Aligned Meshes (IFAM)
algorithm by Jakob et al. [86] and the technique for stripe pattern
synthesis on surfaces (SPS) by Knöppel et al. [103]. The IFAM algo-
rithm has introduced a local and parallel solution to global parame-
terization and the patterns that result from applying SPS are globally
smooth and applicable for design and texture synthesis tasks. The
interpolation scheme by Knöppel allows for a globally continuous
pattern away from isolated singular points. Global continuity refers
to the property that no jumps in the pattern can be found across the
surface (i.e., no seams are visible). More precisely, if a piecewise con-
tinuous pattern is given and the pattern is based on a periodic func-
tion, the periodicity results in repetitive piecewise continuity across
the surface, hence achieving global continuity. In contrast to SPS, our

333

3.2 related work 37

technique finds a locally optimized solution through local iterative
optimization steps, which makes it suitable for real-time applications
without requiring any precalculation.

related visualization applications One of the potential
application areas for our technique is to employ the generated stripe-
patterns as an additional visual encoding channel for multivariate
data visualization. Multivariate data is defined in the comprehensive
survey by Fuchs and Hauser as information which has an attribute
vector for each data item [49]. In the field of multivariate data visual-
ization, Rocha et al. [185] recently proposed a real-time technique to
map decals onto surfaces as a new way of representing multivariate
data. The sets of images or patterns mapped to the surface are able
to represent attributes of the data at the location they are mapped
to, and can be used in combination with additional layered visual-
ization elements. In contrast to their approach, we are able to handle
dynamic flow patterns in addition to real-time texture coordinate syn-
thesis, since we generate a globally continuous pattern. The work by
Schroeder and Keefe [199] specifically caters to time-varying multi-
variate data visualization by providing an artist with an interface to
sketch such visualizations. In their work, they allow artists to sketch
illustrative elements that can be used as animated glyphs in a layered
2D visualization. However, their technique is focused on visualiza-
tion design on a flat 2D surface. In earlier work by Kirby et al. [102],
the potential of using illustrative techniques borrowing concepts from
painting to visualize multivalued 2D flows was highlighted. Our tech-
nique is also able to generate illustrative strokes for flow, but extends
to more complex 3D surfaces. Furthermore, we are able to animate
these strokes to represent time-varying vector fields. Recent work by
Roy et al. [192] use LIC to visualize the sheets of branched covering
spaces. However, LIC is not suitable for expressing the unambiguous
directionality of vector fields, and thus they require animations to
express this aspect.

To the best of our knowledge, ours is the first work to use a glob-
ally smooth parameterization for visualization purposes, based on
dynamic input data that can be updated in real-time. This concept,
w.r.t. visualization purposes, is inspired by the work by Knöppel et
al. [103], who generate a continuous stripe pattern on a surface, based
on an input vector field. They also present details on the proper vi-
sualization of their parameterization results and, e.g., how to obtain
texture coordinates from that. Their approach in turn is based on the
method to generate a periodic global parameterization (PGP) as de-
scribed by Ray et al. [176], who focus on re-meshing purposes. The
stripe pattern algorithm introduces several changes in order to dras-
tically improve the performance. Jakob et al. [86] were the first to
translate the problem addressed by the above mentioned methods

333

38 real-time field aligned stripe patterns

to a formulation that allows a local and thus parallel execution of
the optimization. However, their CPU implementation is suitable for
interactive, but not for real-time performance. Furthermore, the fre-
quency of their periodic pattern is limited by the mesh resolution.

We incorporate ideas and concepts of the above mentioned work
and extend these with the goal to come up with an algorithm that
allows for parameterization in real-time and is suitable for visualiza-
tion purposes. We contrast the prior work in the way that we ob-
tain coordinates for orientable textures, how these coordinates can
be aligned with the underlying field on a pixel basis and we employ
a convergence term for the optimization process. Furthermore, we
show a range of application scenarios that can be seen as an inspi-
rational basis for future visualizations tasks, based on dynamic field
visualization.

3.3 method

To obtain a surface parameterization, we aim to determine a globally
smooth stripe pattern on the triangle mesh. The basic idea of the
algorithm is to interpret each vertex on the mesh as a sample of an
individual wave (i.e, a periodic function). This wave is described by
an individual direction, which passes the vertex at a specific phase
with a certain frequency. Hence, the input to our algorithm is a vector
field that defines the wave directions and a scalar field that defines
the wave frequencies. For a globally optimal solution all vertices can
be interpreted as samples of the same wave as in Figure 3.2. The
elongation of each sample on the wave can then be used to generate
a periodic stripe pattern.

notation For the remainder of this paper, we use the following
notation. For a triangulated mesh M, we denote V , E, F as its vertices,
edges, and triangles respectively. If (i, j) ∈ E with i, j ∈ V then vertex
i and j are connected. Similarly, (i, j,k) ∈ F means that the vertices
i, j, k form a triangle. Additionally, we use N(i) to describe the set
of neighbors of vertex i. With vi ∈ R3, we denote the position of
the vertex i in R3. Furthermore, we define W as the wave set, which
consists of a set of wave directions D, phases P, and frequencies F.
Thus, every vertex i is assigned an individual wave wi with normal-
ized vector di ∈ D, which defines the direction of the wave, and a
phase Φi ∈ P with frequency fi ∈ F. Note that we consider the (nor-
malized) direction vector di ∈ D at vertex i as an equivalence class
with di ∼ −di. This means that, although this vector has a direction,
the solution of a global stripe pattern is independent of this direction
and is, therefore, non-oriented.

333

3.3 method 39

v0 v1

v2
v3

Φ0

Φ1

Φ2
Φ3

Figure 3.2: For an optimal stripe pattern, the vertex phases Φi along a sur-
face align with one continuous wave, e.g., the vertex phases sam-
ple a single wave along the surface.

3.3.1 Basics

The phase shift Φji, i.e., the signed difference of the phases from
vertex j to i, is computed as follows:

Φji = 2π · dji · fji, (3.1)

where dji is the aligned distance between vi and vj and the wave
frequency is taken into account by the geometric mean, such that
fij = fji =

√
fifj. The aligned distance is the distance relative to a

common reference point and is used to account for differences in the
wave directions di and dj (i.e., the divergence of the vector field).

Basically, we cannot directly compute a phase shift (or distance)
between i and j, because both represent individual 1D waves along
the surface as in Figure 3.3 (top, left). If we find an intersection C
of the waves (Figure 3.3 top, right), we can regard C as the common
source of the waves i and j. Thus, the phase shift is computed relative
to the intersection point C. In the smooth setting, we would use the
geodesic distance to C. If multiple intersection points along the sur-
face exist, we take the closest one. Since we want to process a discrete
mesh, a different attempt is made: As shown in Figure 3.3 (bottom),
the direction d lies in the respective tangent plane. Consequently, if
the tangent planes are not equal, the waves will likely not intersect in
3D space. This is why we create a plane that contains the points vi,
vj and p = 0.5(vi + di + vj + dj) (Figure 3.4, left). Then, dpi and dpj ,
which represent the projections of the respective directions into that

333

40 real-time field aligned stripe patterns

C

vi
di vj

dj

vidi
vj

dj

vidi vjdj

vi
di vj

dj

C C

ni nj

Figure 3.3: In the smooth setting, we can find an intersection C of two waves
(top left), by the trace of d along the surface (top right). If the
tangent planes of vi and vj are not the same, we cannot find
an intersection of the wave traces in 3D, because d lies in the
respective tangent plane (bottom).

vi
di

dj

C

vj
C

vi

vRivj

dpj

dpi

dpi

dpj
p

Figure 3.4: Computation of the wave intersection C (left). Rotation of vi
about C for alignment with vj, where C can be thought of the
common source of both waves, indicated by the concentric circle
sections (right).

plane, are used to compute C. As Φji represents a signed difference,
we have to take the direction of the waves into account:

dji = (|C− vj|− |C− vi|) · 〈
C− vj
|C− vj|

, dj〉, (3.2)

where 〈., .〉 denotes the Euclidean dot product. Then, dji is virtually
the distance between vj and vRi (see Figure 3.4, right). Eq. 3.2 cannot
handle the non-orientable property of the direction d ∈ D that is de-
picted in Figure 3.5. If dpi and dpj are counter-oriented with respect to
their common source C (i.e., one pointing towards and one pointing
away from C), we have to take care of the ambiguity of dij. A sim-
ple adjustment to the calculation to solve this problem is described
in Section 3.3.2, Eq.3.7. If the phases are consistent on the mesh, then
the equation Φi = Φji +Φj would hold for every edge (i, j) ∈ E. In

333

3.3 method 41

0

1
2π

w

d

Φ
ΦR ΦL

v

Figure 3.5: Interpreting w (left) as a sine-wave has two solutions on the unit
circle (right), depending on the direction of d. The elongation at
Φ is either increasing or decreasing. In general, if ΦR represents
the phase of the wave traveling to the right, and ΦL the one
traveling to the left, π−ΦR = ΦL holds.

general, this cannot be guaranteed, thus we aim to find the phase set
P that minimizes the following energy:

E(P) =
∑

(i,j)∈E

wji|Φji +Φj −Φi|
2, (3.3)

where wji is a weight which can be chosen arbitrarily for each edge.
We used wji = |〈di, dj〉|. Knöppel et al. [103] formulated the same
minimization problem (regarding the energy formulation) and de-
scribed how they can achieve a globally optimal solution. In this pa-
per, we present a local algorithm, tailored to the GPU. Furthermore,
we do not compute the energy based on the phase-shift directly. As
previously done by Marcias et al. [146], it is based on the difference
of the phases after transforming the phases into 2D Cartesian coordi-
nates on the unit circle:

Ei =
∑
j∈N(i)

wji‖
1

2
(ϕji −ϕi)‖2, (3.4)

where ϕi = (cos(Φi), sin(Φi)) and ϕji = (cos(Φj +Φji), sin(Φj +
Φji)). This energy is equivalent to the one in [103], utilizing a single
variable for each vertex and each edge. Our global energy is defined
as:

EV =
∑
i∈V

Ei. (3.5)

The rationale for using Cartesian coordinates is the handling of mis-
matching phases, similar to an outlier treatment, and will be de-
scribed in more detail in Section 3.3.2. The relation between radial

333

42 real-time field aligned stripe patterns

and Euclidean distances is depicted in Figure 3.6 (left). With our ap-
proach, we achieve similar results to the ones presented by Knöppel
et al. [103] by finding a local solution Φi such that Ei is minimal. We
will later show (in Section 3.3.6) that only small changes to the imple-
mentation are necessary, such that we can process unit cross-fields.

3.3.2 Local Optimization

Our optimization strategy iteratively adjusts Φi to minimize the glo-
bal energy EV . First, we initialize Φi with a pseudo-random value,
assigning a value obtained by using the vertex ID as input for the
One-at-a-Time hash, that can be found in the online version of [88].
The minimization is done in parallel for each vertex i and iteration k
in two main steps:

1. For every (oriented) edge (j, i) ∈ E, a target phase Ψk(j,i) is com-
puted. (Section 3.3.2.1)

2. Φk+1i is determined such that Ek+1V 6 EkV . (Section 3.3.2.2)

In step 2 we explicitly do not ask for every vertex that Ek+1i 6 Eki
holds, but we ensure that Ek+1V 6 EkV holds. This is inspired by Sim-
ulated Annealing (SA), which randomly allows locally negative up-
dates during optimization [29]. More details about the convergence
are given in Section 3.3.3.

3.3.2.1 Target Phase (Step 1)

The goal in this step is to determine Φk+1i for vertex i. As a prelimi-
nary value, we set

Ψ̂k(j,i) = Φ
k
ji +Φ

k
j , (3.6)

as we would expect Φi = Φji+Φj for a perfect stripe pattern. At this
point, we have to take the wave directions d into consideration. If the
waves of the vertex i and j are counter-oriented with respect to their
common source (Figure 3.4), errors occur due to the directionality of
the wave function. In particular, Ψ̂k(j,i) does not correctly reflect the
target phase that is necessary to match two such waves. In this case
we have to adjust Ψ̂k(j,i) (see Figure 3.4 right and Figure 3.5):

Ψk(j,i) =

π− Ψ̂k(j,i), 〈di, dj〉 · 〈C− vi,C− vj〉 < 0

Ψ̂k(j,i), otherwise
(3.7)

With this adjustment Ψk(j,i) matches the waves of vertex i and j across
the edge (j, i) by their elongation rather than by their phase, and thus
takes counter-oriented directions into account.

333

3.3 method 43

x

y

ϕki

ϕk0,i

ϕk1,i

ϕk2,i

Figure 3.6: Comparison of Euclidean and radial distances of two points
on the unit circle (left). ϕki is the average target phase
based on the Cartesian coordinates on the unit circle (ϕkj,i =

(cos(Ψk(j,i)), sin(Ψk(j,i)))). We can observe that the Cartesian mean
phase (green dots) differs from the radial mean phase (mean
phase along the arc, orange dot) (right).

3.3.2.2 Phase Alignment (Step 2)

In step two, we compute the mean target phase ϕki of vertex i in
Cartesian coordinates, which is based on the target phases Ψk(j,i) along
the (oriented) edges (j, i) ∈ E:

ϕki =
∑
j∈N(i)

wjiϕ
k
j,i, with ϕkj,i = (cos(Ψk(j,i)), sin(Ψk(j,i))) (3.8)

with wji = |〈di, dj〉|. Since in our local approach each vertex should
fit as best as it can to its neighborhood with respect to the wave di-
rection, we favor parallel wave directions and prune orthogonal or
diverging directions. We average the Cartesian coordinates of the tar-
get phases on the unit circle, because this reduces the influence of
phases that are far away from the average. This has two reasons:

1. Normalization of the 2D coordinate ϕki within the unit circle
does not affect the result of atan2(ϕki) (Figure 3.6, right). Thus,
if a phase ϕkj,i has drawn ϕki towards the center of the unit
circle, that effect is partly compensated by the normalization of
ϕki . Consequently, such disagreeing phases have less impact on
the result, which is an important property of this representation,
as it helps connected vertices to share a common phase more
quickly.

2. When considering the distance of two points on the unit circle,
the relation between the Euclidean and the radial distance is
not linear (see Figure 3.6, left). In the Euclidean representation
distances greater than

√
2 are distinctly compressed, compared

the radial counterpart. This reduces the contribution of phases

333

44 real-time field aligned stripe patterns

far from ϕki , (i.e., outliers get pruned). We compared the pre-
sented averaging method with averaging the phases directly in
radial space and found that the Cartesian averaging resulted a
more uniform pattern, with less bifurcations and lower residue
energy Ev.

To estimate Φk+1i , we compute ϕki in Cartesian space. We obtain the
following offset to the current phase:

∆ϕki = ϕki −ϕ
k
i (3.9)

with ϕki = (cos(Φki), sin(Φki)). Finally, we obtain Φk+1i by:

Φk+1i = atan2(ϕki +m
k
i +∆ϕ

k
i), (3.10)

where mki is a momentum. mk+1i is updated for each iteration as

mk+1i = sm∆ϕ
k
i (3.11)

with sm = 0.2 being the momentum strength. For the first iteration,
we set m0i = (0, 0). The momentum can help to keep vertex phases
flexible, to avoid a premature local convergence.

3.3.3 Convergence

To achieve convergence, we ensure that for every iteration Ek+1V 6 EkV
holds. We compute the vertex energy EkV (Eq. 3.5), after each iteration
k, to keep track of the optimization progress. Then, the relative energy
improvement

∆Ek+1V =
EkV − Ek+1V

EkV
(3.12)

is computed for every step. Note that, if a vertex reduces its local
energy, the global energy is also decreased, because |Φji| = |Φij| (see
Eq. 3.1). The above assumption holds, as we ensure that updates of
neighboring vertices do not interfere, by applying a graph-coloring
to the mesh. Details on the graph-coloring are given in Section 3.4.
Convergence is detected when ∆EkV drops below a threshold εG. The
convergence term allows the algorithm to stop as soon as a certain
optimization quality is reached, but also requires to keep track of
the convergence progress. This is also useful during the hierarchical
optimization that is described in the next section.

3.3.4 Hierarchical Optimization

Our algorithm can optionally employ the hierarchical structure pre-
sented in [86]. In this section we recap the purpose of this hierarchy
for completeness. In the local approach, the phase of a vertex is only

333

3.3 method 45

optimized with respect to its direct neighbors. In order to find a so-
lution that is globally satisfactory, the information of a vertex has
to propagate across the mesh, which is problematic for high reso-
lution meshes. This propagation of information can be speeded up
by running the optimization in multiple resolutions of the mesh. A
coarse resolution will quickly converge, while a fine resolution will
take small features of the mesh into account. Thus, we optionally
utilize the multi resolution hierarchy depicted in [86], to obtain a
set of meshes that approximately halves the number of vertices with
each coarser hierarchy level. We can start our optimization in a coarse
level and propagate the results to the next finer level until the orig-
inal mesh is reached. We switch levels as soon as the current level
has converged as described in the previous section. However, it has
to be mentioned that the input wave directions and frequencies in
the finest level are consecutively smoothed (area weighted average of
merged vertices) in coarser levels. If the smoothed properties differ
greatly from the original input, the results of coarse hierarchy levels
will not properly represent the final result. Hence, the hierarchy is
less feasible if the input properties are not smooth.

3.3.5 Texture Coordinates

If we want to render a periodic texture or pattern with the values
given in W, we have to compute a per-pixel phase ΦP in the fragment
shader. Each fragment’s phase is determined by the vertex phases
Φi,Φj,Φk, where (i, j,k) ∈ F are the vertices of the triangle gener-
ating the fragment. We cannot simply interpolate the vertex phases
linearly, due to the periodicity of the wave function [103]. This is im-
portant if the actual phase shift between two vertices along a wave is
larger than 2π. In these cases we have to incorporate the frequency
f. Next, we describe our interpolation method, which takes f into
account.

per-fragment phase To compute the fragment’s phase ΦP, we
need information about the wave direction dP at the 3D coordinate
of fragment P.

dP =
∑

m∈{i,j,k}

sm · bm · dm, (3.13)

where bm is the barycentric weight of each vertex to the fragment and
sm takes care of the direction of dm. If the wave of a vertex m in a
triangle is counter-oriented relative to the other two, we set sm = −1,
otherwise we set sm = 1.

This is required to avoid null vectors and to consider the equiva-
lence di ∼ −di. The adjustment through sm is crucial for the proper

333

46 real-time field aligned stripe patterns

Figure 3.7: Wave pattern on a sphere. The close-up shows how our in-
terpolation method is capable of aligning each individual frag-
ment with the wave pattern. The direction of the pattern visi-
bly changes even inside individual triangles, reflecting the vector
field divergence.

display of textures (see Figure 3.5). Note that this can only be applied
to triangles that can be oriented in a general direction. If this is not
the case, we only make sure that the pattern is continuous across the
triangle edges. This is achieved by using a barycentric subdivision of
the triangle as described in [103].

With the 3D-coordinate of the fragment and dP we can obtain a
fragment phase ϕ̄P, similar to Eq. 3.8. In this case wji is replaced
by the barycentric weight, the vertex i is replaced by the fragment,
and the neighboring vertices j are replaced by the three vertices, that
generate the fragment. Finally, we compute the fragment phase:

ΦP = atan2(ϕ̄P). (3.14)

The computation of individual fragment phases yields a pixel perfect
alignment of the wave pattern, as shown in Figure 3.7 and the bend-
ing arrow texture in Figure 3.1 (center, left). This is an advantage over
a linear interpolation as Figure 3.17 (left) shows. The IFAM source
code uses linear interpolation to reconstruct the fragment parame-
ters. This leads to visible linear segments in curved regions of the
parameterization and limits the pattern frequency by the mesh reso-
lution. The interpolation method used in [103] can handle the pattern
frequency independent of the mesh resolution, but still generates lin-
ear segments inside triangles. Note that our fragment interpolation is
only feasible because it is equivalent to the interpolation of vertices
during the optimization process. Differing interpolation approaches
would lead to distortion of the pattern.

2d coordinates Computing two wave patterns U,V , based on
orthogonal vector fields allows to display 2D textures. For this, we

333

3.3 method 47

map ΦUP ,ΦVP ∈ [−π,π] to a range of [0, 1] and use this value for tex-
ture access. Note that we need to take d into account again. Even if
the peaks and troughs of counter-oriented waves match after our op-
timization, d still affects the texture access. Through the application
of sm in Eq. 3.13, two neighboring triangles can be counter-oriented
with respect to their texture access. This happens if vertices on an
edge (i, j) are counter-oriented, and for one triangle i is flipped, while
for the other triangle j is flipped. Then, the texture coordinates along
the edge are flipped as well. To obtain matching texture coordinates
at sites of counter-oriented waves, we simply add π/2 to each frag-
ment phase and then compute the texture coordinates. This matching
only applies to textures that are symmetric along both axes (i.e., with
a 180° symmetry). As in Figure 3.5, the direction in which we sample
a texture depends on the wave direction. This does not account for
textures that are symmetric along both axes.

3.3.6 Cross-Fields

As described in the previous paragraph, we can use two orthogo-
nal vector fields to generate 2D coordinates for, e.g., texture access.
Here, we shortly describe how the implementation can be optionally
changed to handle two orthonormal vector fields as a cross-field with
rotational symmetry. In our problem formulation the wave direction
d was treated as an equivalence class d ∼ −d, hence two orthonormal
vector fields resemble a unit cross-field in the notation by Vaxman
et al. [227]. We can extend the implementation to manage unit cross-
fields by optimizing 2 linked stripe patterns (see Figure 3.1, right). In
this case, each vertex vi references 2 directions di,r, with correspond-
ing phases Φi,r, r ∈ {0, 1}. The directions di,r are given by rotations
of an input direction di about the normal of vi by r/2π. During op-
timization, the individual waves are not isolated. Instead, the mean
target phase ϕi,r for a given Φi,r (Eq. 3.8) is computed after remov-
ing the ambiguity (i.e., the rotational symmetry) of the cross-field: For
each neighbor j ∈ N(i) we obtain Ψ(j,i) based on Φj,m and dj,m. Here,
m ∈ {0, 1} is chosen such that |〈di,r, dj,m〉| is maximized. This has the
effect, that ϕi,r is computed by taking the neighboring waves into
account, that minimize the orientational difference to the direction
di,r. Note that this modification is optional. For the display of tex-
tures, two separate orthogonal vector fields are better suited, because
they allow textures of 180° symmetry. A cross-field for example (that
represents a 90° symmetry) is suitable for textures of 90° symmetry.

333

48 real-time field aligned stripe patterns

3.4 implementation

We have defined our optimization method as a highly parallelizable
problem. In this section, we describe our implementation of the algo-
rithm on the GPU.

Generally, we would like to compute as many vertices as possible in
parallel. Care has to be taken in terms of memory consistency, because
the update for each vertex per iteration depends on the state of the
neighboring vertices. By applying a graph coloring C to the mesh, we
can find disjoint subsets c ∈ C of the mesh, such that there is no edge
between any nodes in c, i.e., neighbored vertices do not share the
same color. We can then iterate over the subsets c ∈ C and update all
nodes belonging to c in parallel. In this case we do not need to take
care of race conditions or memory consistency. The pipeline consists
of four main steps:

1. Initialization

2. Graph Computation

3. Phase Evaluation

4. Pattern Extraction

step 1 We initialize the optimization by setting vertex phases to
an initial pseudo-random value and calculate per vertex properties, if
necessary. Per vertex properties might for instance consist of individ-
ual frequencies, or modifications to the underlying vector field. For
example, the frequency might change based on the distance of a ver-
tex to a dynamic reference point or the vector field might change with
respect to time resolved vector field data. This step is performed in
a vertex-shader. We do not apply further modifications to the data in
order to achieve a most appropriate visualization of the input.

step 2 According to Jakob et al. [86] and with the neighborhood
information obtained from the mesh topology, we compute a graph-
coloring such that two neighboring vertices never share the same
color. For this we implemented the Jones-Plassman-Luby algorithm
described in the work by Naumov et al. [158]. To enable a vertex
to access information to its neighbors, we store the vertex IDs of all
neighbors per vertex. All data is stored in Shader Storage Buffer Ob-
jects (SSBO), so that arbitrary reads are possible.

step 3 We invoke a render pass, consisting of a vertex-shader, for
each color of the graph and only process vertices of that active color.
Like this, an active vertex can read data from its neighbors and write
its updated data, without interfering memory access with its neigh-
bors. Such a division into disjunctive sets has also been used in the

333

3.4 implementation 49

work by Choong et al. [29] within the context of a parallel SA im-
plementation. At first, the mean target phase ϕki is computed as in
Eq. 3.8. Along with ϕki we can compute the vertex energy Eki , based
on the state of the previous iteration. Eki is summed up over all ver-
tices i using an atomic float counter. Thus, the convergence is checked
against the energy of the last but one iteration and we can immedi-
ately obtain and apply Φk+1i as in Eq. 3.10.

step 4 After the optimization has stopped, a final render-call de-
termines the per fragment phase ΦP as in Eq. 3.14 and extracts a
pattern or texture coordinates to either display a stripe pattern or a
texture. The GPU storage size which our SSBOs require, depends on
how many vector fields we want to process simultaneously and on
the maximum number of neighbors per vertex.

Our current implementation reserves memory for 4+ 7V +N com-
ponents per vertex for V vector fields, if the maximum number of
vertex neighbors is N. This contains: the world coordinate (3), the
number of neighbors (1), the neighbor IDs (N), the direction d (4V),
the phase Φ (1V), the frequency f (1V) and the energy E (1V). In
this very straight-forward implementation, the color-graph allows us
to neglect any memory barriers, other than separate render calls. A
positive side-effect is that colors that are processed later, can already
use the updated information of neighboring vertices. This effectively
speeds up the propagation of information across the mesh. Further,
while a graph subset c ∈ C is processed, we can be sure that the neigh-
bors of the nodes in c do not change. Thus, a positive update of the
vertices in c cannot be undone by parallel execution of their neigh-
bors. However, the graph-coloring reduces the grade of parallelism,
but if the GPU is still working at capacity, even if only vertices of sin-
gle colors are computed, we expect the overhead to be at a minimum.
Another optimization we can utilize depends on the quality of the
graph-coloring. We utilize a naive parallel graph coloring approach
and found that the last third of assigned colors covers only about
1.5% of the graph. With that in mind, we process the vertices of the
last third of colors only every second iteration, to save computation
time. We found that the influence on the result’s quality is negligible
in that case.

branches During the optimization, our algorithm automatically
inserts branches to the stripe pattern. Such locations are also known
as singularities of a positional symmetry field as in [86]. For com-
pleteness, we provide a short recap of this topic. A branch adds or re-
moves a stripe segment to ensure an isometric spacing of the stripes,
adapting to the surface morphology or to vector field divergence.
These branches occur at locations where our interpolation (Eq. 3.8)
results in an undefined phase (i.e., in the center of the unit circle

333

50 real-time field aligned stripe patterns

Figure 3.8: Branch properties: Area around undefined phase (left), angular
deviation of the parameter gradient and the vector field, where
a full red location represents a deviation of 90°(center), and an-
gular deviation larger than 5°(right).

in Figure 3.6 (right)) for a given triangle of the input mesh. Such a
location is marked in red in Figure 3.8 (left). We can find triangles
that contain such a singularity by using the properties wi of each of
the triangle’s vertices, and estimating the presence of such an unde-
fined phase. Generally speaking, the less branches a parameterization
contains, the higher its quality. The minimum number of branches
depends on the mesh morphology and pattern frequency. It can be
observed that the input vector field cannot be correctly depicted by
the stripe pattern in branch regions. In the optimal case, the gradi-
ent of the parameterization (i.e., ∇Φ) is parallel to the vector field.
The angular deviation of the gradient and the vector field are shown
in Figure 3.8 (center and right). Regions where the parameterization
does not properly agree with the underlying vector field are limited
to branch regions. Away from branch regions, the stripe pattern is
well suited to represent the vector field in a precise manner.

dynamic input The implementation can easily handle dynamic
input (e.g. changing frequency, vector field direction or vertex posi-
tion). If one of these properties changes from frame n to frame n+ 1,
the output P at n can be used as input for n+ 1. Very few iterations
of our optimization are necessary, to adjust Φ with respect to the dy-
namic input change. The number of iterations required to achieve a
visually smooth update depends on the ratio of the frame rate and the
rate at which the dynamic property changes. Rapid property changes
require a higher number of update iterations. We found that updat-
ing P with 1-3 iterations per frame yields good visual results, while a
higher number adjusted P too fast, resulting in jittery movements of
the visualized pattern.

3.5 results

In this section, we present several usage scenarios in which we ap-
plied our technique to surface meshes from both real and artificially
generated datasets. Additionally, we provide a qualitative and quan-

333

3.5 results 51

Figure 3.9: Magenta dots mark detected sample points (top, left).
Anisotropic (top, center) and importance (top, right) sampling
combined with arrow decals (using decal maps [185]) placed
by our sampling technique visualize a vector field. The sam-
ple density is increased in the highlighted area. Electrostatics of
a molecule (bottom): Comparison of a color map and user de-
fined texture patches that represent positive (orange, +), negative
(green, -) and neutral (gray, ·) charges.

Figure 3.10: Artistic hatching achieved by rendering surface aligned quads
with a stroke texture (left). Visualization of a vector and scalar
field (right, the scalar field is depicted in the inset).

333

52 real-time field aligned stripe patterns

titative performance comparison to the work of Knöppel et al. [103]
and Jakob et al. [86].

3.5.1 Usage scenarios

Our technique can be employed in a range of scenarios in which in-
formation needs to be visualized on surface meshes on-the-fly, that
is based on scalar or tangent vector input. It can also be utilized in
the course of multi-variate data visualization to some extent, because
the patterns generated by our method can be employed as an infor-
mation channel in addition to color or glyphs, for instance. Here, we
present several concrete usage scenarios for our technique based on
bio-medical and vector field visualization.

surface sampling Our method can be employed for structured
surface sampling. After the optimization process, we can find loca-
tions on the surface with Φ = n · 2π, n ∈ {0, 1}, which can be thought
of as the peak of a cosine wave. If two orthogonal stripe patterns are
given, the intersection of their wave representations’ peak locations
sample the surface in a regular pattern. The search of these samples
can be implemented in the geometry shader, since for each triangle,
the peak locations can be estimated based on their vertices’ phases Φ,
directions d and frequencies f. In Figure 3.9 (top,left) the green and or-
ange stripes show locations around wave peaks of orthogonal vector
fields. The intersections of these peaks sample the surface in a regu-
lar pattern, with respect to the wave directions and frequencies. An
anisotropic sampling has been achieved by simply using different fre-
quencies for two orthogonal stripe patterns (Figure 3.9, top, center).
Similar to the Poisson-sampling proposed by Corsini et al. [34], we
can introduce an importance sampling, by increasing the frequency in
more important regions (Figure 3.9, top, right). More sampling-based
visualizations are shown in Figure 3.10. For the bunny on the left, we
generate tangent vector field-aligned quads, based on the sampling.
These quads are then rendered with an artistic hatching texture, al-
lowing us to draw across the original mesh boundary. In Figure 3.10

(right) a vector field is visualized using arrow glyphs. An additional
scalar field is used to modulate the pattern frequency, which can be
employed to draw the glyphs in varying size. In this context, we think
of applications in tensor field visualization, where the glyph size and
spacing is controlled by the eigenvalues of the tensor. The adaptive
sampling is then able to resemble a sort of glyph packing [100].

illustrative bio-medical visualization Our technique can
be employed for illustrative bio-medical visualization applications.
As shown in the work by Ritter et al. [184], illustrative vascular vi-
sualization methods can be used to enhance spatial perception for

333

3.5 results 53

Figure 3.11: Liver vasculature is visualized using our technique, with a tu-
mor displayed in brown and a surgical instrument indicated in
green. The hatching frequency dynamically updates to encode
the distance of the vessel to the needle, when the needle tip is
further away (left), or closer to a vessel (right).

complex vascular structures. By using texture to encode shape and
topology, the color channel is left free to encode additional informa-
tion. Lawonn et al. [122] followed up on the work by Ritter et al. by de-
veloping a visualization technique for 3D vascular models in the liver,
in which they used hatching styles to encode distances [184]. While
their approach required preprocessing in the form of streamline cal-
culation based on curvature, our current technique can be employed
for similar purposes without any offline calculation. Curvature infor-
mation, for instance, can be computed in real-time as well [57].

Since our technique is able to dynamically adjust the hatching fre-
quency and stroke width, we can adjust our visualization on-the-fly
to take novel information into account, such as changes to the scene
resulting from interaction. In a surgical guidance context, hatching
stroke frequency for instance could be based on the current distance
to the camera [184] or one of the surgical instruments employed dur-
ing an operation, as can be seen in Figure 3.11. The surfaces in this
figure were reconstructed from a clinical CT dataset. By varying the
hatching frequency based on instrument proximity, as the instrument
gets closer to the vessel, the stripe size adjusts proportionally, such
that the line width is approximately 1/10 of the distance to the nee-
dle. The hatching style and color are then still free to encode other
information, for instance to use pseudo-chroma-depth to enhance
depth perception. Furthermore, an interactive focus-and-context vi-
sualization can be generated using dynamic cutaways via a binary
transparency. This effect is similar to the screendoor focus in [38], though
our pattern follows the mesh surface, preserving geometrical features.
This can be used to provide a view on nested structures, for instance
the vasculature and tumor, which reside inside the liver, without al-
tering the color perception of the structures within (see Figure 3.1,
left).

333

54 real-time field aligned stripe patterns

Several methods address the generation of hatching strokes, based
on dynamic properties, such as focus-and-context driven line gen-
eration [136] or apparent ridges [91]. Our technique is able to gen-
erate strokes of adjustable width and spacing and allows dynamic
stroke directions without pre-computation. An example, along with
a comparison to existing techniques by Lawonn [121] and high qual-
ity hatching by Zander [233] is given in Figure 3.12. The example
shows that the parameterization can be used to draw locally vary-
ing hatching strokes, or to render a dashed silhouette, to obscure less
important parts of a mesh.

When introducing color to the stripe pattern, we can display vector
and scalar fields in a combined view, as done in Figure 3.1 (center,
right). Here, we show the first eigenvector of a stress-tensor on the
vessel surface of an aneurysm. The first eigenvector is represented
by the stripe pattern. The first two eigenvalues are shown in green
and orange. Purple and magenta highlight areas, where the respec-
tive eigenvalue exceeds a user-defined threshold. The space between
the strokes depends on another user-defined threshold and provides
information about the global relation of the tensor magnitudes. I.e.,
thin and thick strokes represent low and high eigenvalues, respec-
tively. The pattern frequency can be dynamically adjusted, e.g., based
on the target object’s distance to the camera. As the user zooms in,
the frequency increases. Our algorithm’s ability to dynamically up-
date the pattern yields a smooth transition while zooming. A similar
visualization of surface stress, that requires pre-computation, can be
found in Meuschke et al. [149]. However, single stream-lines that are
employed to depict the tensor data in their work, may overlap and
therefore impair the perception. The idea of visualizing tensor fields
with orientable patterns is also implemented in the work by Auer et
al. [4].

Visualizations of biological information can also benefit from illus-
trative visualization techniques [127, 223]. For example, molecular vi-
sualization often aims to abstract context information, or has to deal
with occlusion [105], or time-varying simulation data. In Figure 3.9
(bottom) we visualize electrostatic properties of a molecule. While
the color map is a common way to do so, we can use our periodic
texture coordinates for a space-filling mapping of texture patches to
the surface. This way, the color channel is left free for representa-
tion of other properties. In general, there are many cases in which
bio-medical multivariate or dynamic data needs to be visualized on
meshes where preprocessing is not possible and/or not desirable.

vector field visualization Besides handling cases in which
we visualize dynamically changing scene information at run-time,
such as updates based on instrument location, we are also able to
handle dynamically changing vector fields on the surface itself. This

333

3.5 results 55

Figure 3.12: Illustrative visualization of vascular structures of the liver: Lo-
cally varying hatching strokes (center), cross hatching (left, bot-
tom) and dashed silhouette (left, top). Comparative visualiza-
tions using the ConFis method by Lawonn [121] (right, top) and
high quality hatching by Zander [233] (right, bottom).

is useful for instance in flow visualization, specifically when visual-
izing unsteady flow, i.e., flow which is changing over time. In the
flow visualization survey by McLoughlin et al. [148], it was stated
that unsteady flow is more challenging to visualize, and animation
is a natural way of representing this time-dependent flow. In Fig-
ure 3.1 (center, left), we provide an example of visualizing an artifi-
cially generated time-dependent vector field on a surface. The vortex
cores, represented by the orange and blue spheres in the figure, move
over time and influence the vector field on the surface. Close to the
vortex cores, we visualize the vector field with an animated arrow
texture, while further away we animate the field with a less salient
texture to emphasize the flow around the vortices. The flow can be
animated, by shifting the texture access based on a periodic time pa-
rameter. The speed of the flow is then represented by the pattern
frequency. For example, texture patches in regions of high frequency
move slower, because they cover a smaller region in 3D space during
a constant time period. Due to the globally continuous pattern that
is generated every timestep, we are able to update changes to the
flow on-the-fly. We further visualize a synthetic vector field on the
bunny model in Figure 3.9 (top), utilizing the Decal-Maps method by
Rocha et al. [185]. The decal positions are defined by our sampling
method. The more regular distribution of our samples might be an ad-
vantage when sample positions are used for flow visualization. With
our method, the sampling itself is able to resemble the flow direction,
because the samples are found along wave peaks. It has to be noted
that our technique - since it is an optimization - can only represent
an approximation of the underlying vector field.

333

56 real-time field aligned stripe patterns

Figure 3.13: Timings for two orthogonal parameterizations of our approach
compared to SPS, applied to the Horse mesh at different reso-
lutions. The lower bound of the filled line displays the timings
for one optimization iteration in [103] Alg. 6. The upper bound
represents the total time their algorithm takes for both, building
up their matrix representation ([103] Alg. 4) and computing one
optimization iteration. Numbers are given for our optimization
for εG = 0.05 and εG = 0.02 in log scale. The visual results are
shown in Figure 3.15.

3.5.2 Performance

To assess the performance of our algorithm, we generated 2D-stripe
patterns for several meshes of various sizes, ranging from 2.5k to
110k vertices per mesh. The performance tests were executed on a
desktop computer environment with a 4.00 GHz i7-6400 processor,
a GTX-1070 GPU and 16GB RAM. Since the problem that we solve
is very similar to that targeted by SPS [103] and IFAM [86], we pro-
vide a quantitative comparison of our technique with their methods.
To make the comparison with Knöppel et al. [103], we compiled the
original code provided by the authors, together with the SuiteSparse
and CHOLMOD packages from the Ubuntu package-manager. Both
algorithms get a vector field as input, that we obtain by projecting the
same global vector into the tangent plane of each vertex. Depending
on the optimization parameter εG (see Section 3.3), we can optimize
for speed, with lower quality pattern generation results, or optimize
for quality, at the cost of computation speed. The stripe pattern al-
gorithm can be tuned in a similar way. Their computation relies on
an energy-matrix build-up, and an iterative optimization of this ma-
trix ([103], Alg.4 and Alg.6). The number of optimization iterations
in their publicly available implementation is 20. We found that the
results after 4 iterations was visually difficult to distinguish from the
results after 20 iterations. Nevertheless, we chose to conduct our com-
parison with their results after only one optimization iteration, to ob-

333

3.5 results 57

Figure 3.14: Timings of our approach for different models with 30k vertices
and 60k faces each. The number of iterations correlates strongly
with the runtime, indicating that GPU work-load is distributed
similarly across different meshes. The number of colors in our
color-graph does not correlate with the timings.

tain the lowest possible timings and to account for probable real-time
ability. For the comparison with the IFAM algorithm, we use the code
that was published by Jakob et al. [86]. Here, both algorithms find a
solution based on a cross-field input using 10 hierarchy levels.

quantitative perspective The plot in Figure 3.13 shows that
our method computes stripe patterns faster than the globally optimal
stripe pattern, for sufficiently large meshes. Very small meshes do not
benefit enough from the parallelism of our approach. The presented
timings were achieved without using the hierarchy levels mentioned
in Section 3.3.4. We did this, because the hierarchy is not generally
feasible. In cases where we update the parameterization frame-by-
frame and use the result of the previous frame as input, we cannot
take advantage of the hierarchy. Re-using results in coarser hierarchy
levels for consecutive frames would not yield a frame-coherent visu-
alization at the finest level, since the propagation to the coarser levels
would smooth the input. We compare the timings our algorithm takes
to converge, with the total time of the stripe pattern method, which
includes building up an energy-matrix representation and optimiz-
ing that energy over one iteration. We do so, because their energy-
matrix is computed based on the mesh morphology and the target
frequency or orientation per vertex. Thus, for morphology changing
meshes, or dynamic input, the timings displayed in Figure 3.13 rep-
resent the minimum timings per frame. Even if the energy-matrix
build-up would not be completely recomputed for each frame, our
algorithm still completes faster, than one optimization iteration of the
reference algorithm. Convergence of our algorithm depends on the

333

58 real-time field aligned stripe patterns

|V| = 110k

εG = 0.02

|V| = 110k

Reference

114 ms

1708 ms

no hierarchy

|V| = 110k

εG = 0.02
123 ms

hierarchy

|V| = 10k

εG = 0.05
9 ms

no hierarchy

Figure 3.15: Comparison of our method and SPS (Reference, after one iter-
ation). Note that the timings were measured while computing
two orthogonal patterns, but we show only one pattern to avoid
visual clutter.

Figure 3.16: Timings of our algorithm (with εG = 0.02) compared to the
position field optimization by Jakob et al. [86] using a cross-
field on the horse mesh at different mesh resolutions.

threshold εG. To account for this, we show timings for two configura-
tions.

For dynamic input, our approach is superior to the stripe pattern al-
gorithm. When updating an existing parameterization with dynamic
input, 1-3 iterations of our algorithm are sufficient and thus only a
fraction of the timings given in Figures 3.13 and 3.14 are required.
The plot in Figure 3.16 compares our method with the parallel CPU
optimization by Jakob et al. [86]. It shows that our GPU approach
scales better with the number of vertices and is able to complete the
parameterization significantly faster. From Figure 3.14 we can observe
that our algorithm’s performance is drastically mesh-dependent.

qualitative perspective If computation speed is less crucial,
εG can be decreased. As processing time increases, the quality of

333

3.5 results 59

Figure 3.17: Visualization of similar parameterization results of the same
sphere model (left). The horse mesh (225k faces) parameterized
with a cross-field by our method and the method by Jakob et
al. [86] (right). Note that the cross-fields are not the same, since
these are based on a random seeding.

the output pattern increases as well. However, we can observe in
Figure 3.15 (center, left) that the quality is nonetheless limited for
high resolution meshes. In comparison we show the same model (Fig-
ure 3.15, center, right), after the optimization using 10 hierarchy levels.
The processing time has slightly increased, but the visual outcome is
close to the optimal reference (Figure 3.15, right). Also, in this exam-
ple, the number of branches for the hierarchical optimization has been
reduced by about 33% compared to the non-hierarchical one. Similar
quality is achieved for a lower resolution of the mesh, without using
the hierarchy (Figure 3.15, left). A visual comparison of to the method
by Jakob et al. [86] can be found in Figure 3.17.

robustness Our method is robust against noise and incomplete
meshes (see Figure 3.18) and can as well be applied to non-manifold
meshes. As long as D, F and the neighborhood N are defined, the al-

Figure 3.18: Our method can process incomplete (left) and non-manifold
(center, left) meshes. The low quality tumor segmentation with
unconnected parts (center, right) can also be handled, as well a
noisy meshes (right).

gorithm is independent of any topological restrictions. It would even
run on point clouds, but we leave this for future work.

333

60 real-time field aligned stripe patterns

limitations The most significant limitation of the proposed al-
gorithm is that it does not scale well with mesh resolution. We can
address this problem with the hierarchical optimization, which al-
lows us to parameterize large meshes at the cost of building up the
hierarchy. However, the hierarchy is only applicable if the input pa-
rameters on the original mesh are already smooth. Furthermore, if
we apply a frame-by-frame update of the parameterization to adapt
to dynamic input, we also have to renounce the hierarchy. In such a
case it might still be feasible to use the hierarchy for an initial parame-
terization, which can then be modified in consecutive frames. Process-
ing dynamic input only on the level of the original mesh is crucial to
maintain a frame-coherent appearance of the result. Regarding the
results of our quantitative evaluation, we can state that the proposed
algorithm is capable of processing meshes of up 70k vertices with
approximately 30 fps. Beyond that, interactive rates are still possible
but the parameterization quality is significantly impaired if not us-
ing the hierarchy (see Figure 3.15). However, the stated mesh size is
appropriate for the proposed visualization tasks and especially for
applications in the medical domain. Further, it might be desirable
that the stripe pattern aligns with sharp features of the mesh. This is
currently not supported but could be addressed by incorporating the
extrinsic energy formulation in [86].

We assume that our implementation, which mainly resides in the
vertex-shader, is straightforward on the GPU and sufficiently proves
the real-time capability of our method. With the presented structure,
there is no need for further synchronization of memory access. Con-
trarily, the CPU is likely to be a bottleneck here, since the GPU and
CPU have to communicate for each render-call. During the optimiza-
tion iterations, the number of calls amounts to the number of itera-
tions times the number of colors in the color-graph. An implementa-
tion using CUDA, OpenCL, or compute shaders, which offer more
flexibility and manually defined memory barriers, might improve the
computation times for our algorithm.

3.6 conclusion and future work

We present a technique for the parameterization of surfaces that can
be applied to surface meshes in real-time without time-consuming
preprocessing steps. Our method generates a stripe pattern on arbi-
trary morphology on-the-fly. The work incorporates several ideas of
existing work [86, 103, 176]. We adopt the representation of the pe-
riodicity in our parameterization through waves (i.e., the sine and
cosine of the parameter space as in PGP), since their formulation
is most intuitive in our opinion. The PGP algorithm parameterizes
triangles and reconstructs per-vertex parameters from them. Hence,
each vertex is initially processed n times, with n being the valence of

333

3.6 conclusion and future work 61

the vertex. In our method, vertices are parameterized directly, with
respect to their neighbors, making it more suitable for parallel execu-
tion. This adopts the energy from SPS [103], defining one parameter
for each vertex and each edge in a mesh (instead of parameters per
vertex per triangle as in PGP). Knöppel et al. have introduced a sub-
triangle interpolation scheme, to allow a pattern frequency higher
than the mesh resolution. We use an extended interpolation method
that is able to resemble the changes of the parameterization (espe-
cially with respect to vector field divergence, see Figure 3.7) within
a triangle on a fragment basis. The interpolation method takes the
vector field directions into account to compute the distance between
two points on the surface. This approach is incorporated into our op-
timization process, to make the parameterization compatible with the
interpolation method. A by-product of this action is, that we can ob-
tain periodic patterns on the surface, that have an arbitrarily higher
resolution than the mesh. This stands in contrast to IFAM, where the
pattern resolution has to be lower than the mesh resolution. We fur-
ther use a convergence term for our optimization process, whereas
IFAM uses a fixed number of optimization iterations.

The performance evaluation and comparison to the reference meth-
od by Knöppel et al. [103] and Jakob et al. [86], reveal that aestheti-
cally pleasing and accurate results can be generated under real-time
conditions. We bring the topic of periodic parameterization to the
context of data visualization, as shown by multiple examples that ad-
dress different tasks. Besides animated textures on static surfaces, our
technique is also capable of handling morphological changes in the
surface mesh, and can be used for animated meshes. The computation
for the Ramses model shown in Figure 3.19, containing 826k vertices,
took 400 ms using 10 hierarchy levels. Hierarchies which support dy-
namic changes of the input have been proposed by Schertler [198].
Thus, future work should address the utility of the hierarchy for dy-
namic input in the context presented here, as to overcome the current
limitations of this work.

Further, we would like to analyze the behavior of our approach on
tessellation changing meshes, which could be applied to tasks that
use several levels-of-detail.

However, with respect to the current results, we consider our meth-
od a powerful approach that provides convincing visual results. It has
the potential to provide an important basis for future visualization
applications.

acknowledgements Funding: This work was supported by the
DFG: LA 3855/1-1 and HA 7819/1-1, and the Bergen Research Foun-
dation [grant number 811255].

333

62 real-time field aligned stripe patterns

Figure 3.19: The Ramses model with 826k vertices, parameterized in 400 ms.

Part III

V E S S E L V I S U A L I Z AT I O N

All works in this part deal with the visualization of liver
vasculature. The predominant aspect is the enhancement
of spatial and depth perception (Chapter 4), which is why
this part also lays weight on view-dependent methods
(Chapter 5, which is an extension of [133]). With these, the
Visualization Pipeline by Haber and McNabb [59] forms a
loop, since rendering results affect the subsequent data
mapping. The part proceeds with a novel vascular tree ab-
straction and screen-space parameterization method (Chap-
ter 6). A screen-based parameterization can, for example,
be used to augment the void space around an object with
texture patterns. Thus, even filigree structures can be high-
lighted by surrounding patterns. Finally, a comparative
summary of a novel and existing depth-enhancement meth-
ods is given (Chapter 7), defining Auxiliary Tools as a visu-
alization concept.

This part consists of the following papers:

Lichtenberg, N., Hansen, C., Lawonn, K., “Concentric Circle
Glyphs for Enhanced Depth-Judgment in Vascular Models.”
In: Eurographics Workshop on Visual Computing for Biology and
Medicine. The Eurographics Association, 2017, pp. 178–188. doi:
10.2312/vcbm.20171252

Lichtenberg, N., Lawonn, K., “Parameterization and feature ex-
traction for the visualization of tree-like structures.” In: Euro-
graphics Workshop on Visual Computing for Biology and Medicine.
Eurographics Association. 2018, pp. 145–155. doi: 10 . 2312 /

vcbm.20181240

Lichtenberg, N., Lawonn, K., “Parameterization, Feature Ex-
traction and Binary Encoding for the Visualization of Tree-Like
Structures.” In: Computer Graphics Forum (2019). doi: 10.1111/
cgf.13888

Lichtenberg, N., Lawonn, K., “Auxiliary Tools for Enhanced
Depth Perception in Vascular Structures.” In: Biomedical Visu-
alisation. Ed. by Paul M. Rea. Springer International Publishing,
2019, pp. 103–113. doi: 10.1007/978-3-030-14227-8

Lichtenberg, N., Krayer, B., Hansen, C., Müller, S., Lawonn, K.,
“Distance Field Visualization and 2D Abstraction of Vessel Tree
Structures with on-the-fly Parameterization.” In: Eurographics
Workshop on Visual Computing for Biology and Medicine. The Euro-
graphics Association, 2019. doi: 10.2312/vcbm.20191251

https://doi.org/10.2312/vcbm.20171252
https://doi.org/10.2312/vcbm.20181240
https://doi.org/10.2312/vcbm.20181240
https://doi.org/10.1111/cgf.13888
https://doi.org/10.1111/cgf.13888
https://doi.org/10.1007/978-3-030-14227-8
https://doi.org/10.2312/vcbm.20191251

4444

4
C O N C E N T R I C C I R C L E G LY P H S F O R E N H A N C E D
D E P T H - J U D G M E N T I N VA S C U L A R M O D E L S

abstract Using 3D models of medical data for surgery or treat-
ment planning requires a comprehensive visualization of the data.
This is crucial to support the physician in creating a cognitive image
of the presented model. Vascular models are complex structures and,
thus, the correct spatial interpretation is difficult. We propose view-
dependent circle glyphs that enhance depth perception in vascular
models. The glyphs are automatically placed on vessel end-points in a
balanced manner. For this, we introduce a vessel end-point detection
algorithm as a pre-processing step and an extensible, feature-driven
glyph filtering strategy.

Our glyphs are simple to implement and allow an enhanced and
quick judgment of the depth value that they represent. We conduct
a qualitative evaluation to compare our approach with two existing
approaches, that enhance depth perception with illustrative visual-
ization techniques. The evaluation shows that our glyphs perform
better in the general case and decisively outperform the reference
techniques when it comes to just noticeable differences.

4.1 introduction

Medical 3D models can be used for surgery planning. The vascular
structures within these models, that are located in certain risk areas,
can be of special interest for the surgeon. In a liver tumor resection
scenario, for example, the vessels around a tumor may have a signifi-
cant impact on the resection strategy that is defined by a surgeon [62,
66]. Based on their spatial location, vessels might be included in a re-
section volume, or represent risk structures that need to be preserved.
High-quality 3D models can be obtained via CT or MRI and help a
surgeon to obtain a full overview of the vasculature. It is known that
depth cues are crucial for the perception of 3D scenes [178]. Thus,
augmenting a scene with supporting depth cues can help a surgeon
with the interpretation of medical data.

The perception of a 3D object can be naturally enhanced by stere-
opsis or by rotating the object in an animation, taking advantage of
motion parallax. When no interactive visualization is desired or pos-
sible, other perceptual cues are necessary. Such a situation may occur
in an operation room, where an interactive application may be too dis-
tractive for surgeons. Furthermore, static images might be useful for

65

4444

66 concircles

physician-patient communication, medical documentation, and aug-
mented reality visualization [184].

When displaying a 3D object on a 2D screen, the most significant
property that is missing is the distance of a point on the surface to
the viewer - or simply the depth of a point. This gap has to be filled
in order to allow the observer to create a cognitive image of the 3D
object. While perspective projection can be used in still images, it may
however be insufficient to reveal small differences in depth. When no
prior knowledge of the viewed structure is available, then perspective
projection may even have no advantage at all, because single parts of
the structure can be misinterpreted. For example, the projection of a
circle with a larger radius, that is further away, may be as large as the
projection of a smaller circle that is closer to the viewer.

In this work, we introduce a circle glyph, that is suitable to repre-
sent depth information. With this, we aim to augment static, as well
as dynamic, 3D scenes with further depth information to help the
viewer to get a thorough and precise understanding of a presented
3D object. We do this by the example of several vascular models, ob-
tained from CT scans of the lung and liver. To cover the vasculature
with glyphs, we come up with a graph-based selection method, that
can take several properties into account. The selection method is view
dependent and places more glyphs at depth-complex features, while
maintaining an even distribution among the screen-space.

We examine the advantages and disadvantages of the new circle
glyphs in a quantitative evaluation, that conducts a direct compari-
son with two existing methods. Our method is flexible and can easily
be integrated into existing visualizations. The accuracy of our glyphs
will be underlined by our evaluation. In summary, we make the fol-
lowing contributions:

1. A vessel end-point detection.

2. A feature-driven, filtered glyph placement strategy.

3. A circle glyph design, that allows for precise depth measure-
ment in orthographic and perspective 3D visualizations.

4.2 related work

For this work, we have to cover two main topics. The first is the field
of research that deals with depth perception in computer graphics,
especially in the medical domain. Secondly, there has been intensive
research in the area of glyph-supported visualization. The literature
also addresses general guidelines for the proper design and place-
ment of glyphs, which strongly depend on the data and task at hand.

4444

4.2 related work 67

4.2.1 Spatial Perception

Spatial perception is naturally given through stereopsis. Hardware
like 3D monitors or head-mounted displays (HMDs) employ this to
give the viewer an impression of depth. However, HMDs can only be
used by one person at a time. Hence, they require specially designed
applications, particularly if collaboration of several users is desired.
Stereoscopic images are further not suitable for print. Thus, it is still
desirable to offer monoscopic visualizations for specific tasks. In the
context of vascular structures, Kersten-Oertel [96] has covered a range
of depth cues in an evaluation. In their setup aerial perspective and
pseudo-chromadepth performed as better depth cues than stereop-
sis. Aerial perspective is an atmospheric effect, due to scattered light.
Objects that are further away are perceived with less contrast [53].
An application of aerial perspective was tested for digitally recon-
structed radiographs by Kersten et al. [97]. Chromadepth utilizes a
similar approach. It has first been used by Steenblik [207] and uses
the visible color spectrum, rather than the contrast, to encode depth.
An extension, pseudo-chromadepth, has been proposed by Ropinski
et al.[189]. Instead of the visible color spectrum, a range of colors
from red to blue is utilized. The color-range has been chosen with
respect to psychological foundations. Other approaches have used il-
lustrative visualization techniques to enhance depth perception. For
example, Ritter et al. have used illustrative shadows to emphasize the
distance between vessels. Shadows between vessels of different dis-
tances can be distinguished by different numbers of hatching strokes.
Generally, hatching can be employed to convey shape as done by In-
terrante et al. [83]. Less salient visualizations use feature lines and
focus on geometric properties to make a visualization more compre-
hensive, as done by Zhang et al. [237]. Rendering geometry with such
line-drawings can also help to address occlusion issues. A combina-
tion of line-drawings as mentioned above has been implemented in
the work by Lichtenberg et al. [136]. Instead of modifying the ap-
pearance of a 3D model itself, ideas have been proposed that add
supporting geometry to a scene. The first to mention is the work by
Bichlmeier [13] who added a virtual mirror to a visualization. The
virtual mirror allowed to add a second view perspective which can
help to resolve problems with occluding geometry. Lawonn et al. used
such supporting geometry as a shadow plane [122] or a cut-away ob-
ject with depth information [124] to support depth perception. Fur-
ther techniques that address medical visualization with respect to
different tasks can be found in the report by Preim et at. [175].

In scenes with many objects, or complex objects such as vessel trees,
occlusion is often a problem. Then, transparency can be used to dy-
namically highlight structures of interest [44]. The flexible manage-

4444

68 concircles

ment of order-independent-transparency rendering is feasibly, thanks
to modern GPU architecture [226].

4.2.2 Glyphs

Glyphs are a well accepted concept to display multivariate data. Ward
et al. [228] have first introduced a taxonomy on glyph placement.
Their taxonomy distinguishes between data-driven and structure-driven
placement. In data-driven placement, the glyph location depends on
the data that it represents, e.g., in a 2D plot. An example for structure-
driven placement would be the visualization of a graph, using glyphs
to represent the graph nodes.
As Ward’s taxonomy can not be applied to 3D images or surface
data, Ropinski et al. [188] introduced an additional placement strat-
egy. Their feature-driven and data set-driven placement addresses glyph
placement in the medical domain. Glyphs based on the iso-surface
of a 3D image are feature-driven, while the placement on the nodes
of a voxel-grid are data set-driven. Examples for Ropinski’s feature-
driven placement are given in [124], [190] and [153], where glyphs
are placed on an iso-surface, orientated based on surface normal. A
data set-driven approach is given in [162], where glyphs are placed
on nodes of a voxel grid or segments of the AHA-heart-model.

A third possible placement strategy mentioned in their work is
based on filtering. Filtering aims for the reduction of possible glyph
positions to emphasize certain properties of the underlying data and
to guide the viewers attention. Our placement method can be clas-
sified as a feature-driven, filtered placement. Anyway, we think that
this classification is very general and allows for a more fine grained
subdivision that distinguishes between multiple features that can be
combined. We return to this topic in Section 4.3.2.

Despite the regular appearance of glyph placement strategies in litera-
ture, information is rare on how to filter glyphs on the surface of a 3D
mesh to achieve a well balanced and task-oriented glyph distribution.
Generally, data set-driven (including meshes) approaches place glyphs
randomly and relax the distribution [153] or use a grid as an ini-
tial placement and avoid the underlying grid structure by jitter [119].
Mesh based approaches [149, 224] apply a vertex selection method to
evenly cover the surface at different zoom levels. To our knowledge,
the filtered glyph placement strategy proposed in [124] is the first to
take features into account and to place glyphs at most representative
locations. This approach can also be affiliated with Ropinski’s feature-
driven placement, but it is a much more restrictive example, where
multiple features are combined. In the work by Rieder et al. [181]
only a single circular glyph is placed at a point of interest. This glyph
represents the depth of the point of interest along the view ray and is

4444

4.3 method 69

comparable to the approach that we are going to present in this work.
A thorough survey on the history and application of glyphs has been
published by Borgo et al. [17]. They also composed a wide range of
guidelines for the design of glyphs.

4.2.3 Direct Foundation for this Work

The work proposed in this paper is directly related to the publica-
tions by Lawonn et al.: Supporting Lines [122] (see Figure 4.8, center)
and Supporting Anchors [124] (see Figure 4.8, left). Both approaches
aim to enhance depth perception of vascular models by augmenting
a 3D scene with supporting geometry. Selected locations on the vas-
culature are projected to simpler geometries that allow for an easier
depth perception. A plane, situated beneath the mesh, is used for the
supporting lines and a cylinder, surrounding a region of interest, is
used for the supporting anchors. The vasculature casts a shadow on
the plane and locations on the mesh are connected to their projections
within the shadow by lines. Since the shadow is a natural depth cue,
depth perception is supported in an intuitive way. For the supporting
anchors, selected locations on the mesh are projected onto the closest
point of the surrounding cylinder. Anchor shaped drawings are then
used to build up a reference between the original location in the mesh
and its projection. We also want to improve the depth perception by
highlighting the depth of selected points on a mesh, but want to omit
such additional geometry. Instead of building up a relation between
surface points and their projections on simplified geometry, we place
glyphs directly at the positions that these glyphs represent.

4.3 method

The vascular data is represented by the mesh M, containing vertices
V and edges E. An edge eij ∈ E exists if the vertices vi, vj ∈ V are
connected. We aim to place glyphs at locations of vessel end-points,
because these are the most representative locations on the structure
when it comes to depth perception [124]. Furthermore, we want that
k glyphs should evenly cover the mesh, where k is a user-defined
value. Our method is split into two main parts:

1. Detection of vessel end-points (Section 4.3.1)

2. Graph based glyph placement and filtering (Section 4.3.2)

The set P ⊂ V represents possible vessel end-points, that we get as
input. Then the detection of actual vessel end-points C ⊂ P follows.
This is done by examining the neighborhood of each p ∈ P, which is
denoted by Np, while considering the boundary vertices of a neigh-
borhood, denoted by Bp ⊂ Np.

4444

70 concircles

From the vertices in C we then build a complete graph G for further
filtering of the candidate glyph positions. Throughout this section, we
use several distance measures. For readability, any label in a variation
of the following letters refers to scalars or functions related to a cer-
tain distance measure: d (geodesic distance), h (screen-space distance)
and z (depth).

4.3.1 Vessel End-Points

Figure 4.1: All locations in P, found by the method by Lawonn [124] (left).
Vessel end-points C, detected by our method (center). Filtered
glyph locations S, for k = 20 (right).

We want to detect vessel end-points of the given mesh for the place-
ment of our glyphs. In this work, we refer to a vessel end-point as the
location of a half-spherical ending of a tubular section of the ves-
sel model. As a first step, we determine a set P ⊂ V of probable
end-points that we obtain with the algorithm proposed by Lawonn
et al. [124]. Their method incorporates the shape index and a con-
nected component analysis for the end-point detection. However, the
algorithm does not distinguish between vessel end-points and convex
regions in general. Thus, we further classify these convex locations P

to distinguish between vessel end-points and non-end-points.
We obtain sets of vertices Np that form a neighborhood around

each end-point candidate p ∈ P.

Np := {v ∈ V |d(v, p) 6 dp} (4.1)

where

dp = clamp
[dmin,dmax]

π

2

m

κ̄p
(4.2)

and d(v, p) results in the geodesic distance between the points p and
v, for which we employ the heat method by Crane et al. [35]. The
parameter m is a factor to control the magnitude of dp and κ̄p is
the mean curvature at p. Thicker vessels will have a lower curvature
and consequently dp will be larger because it increases with 1/κ̄p,
yielding larger neighborhoods. As a default set of parameters, we use
m = 3(dimensionless factor), dmin = 3 mm, dmax = 20 mm. Note
that dmax = 20 mm assumes, that no vessel has a circumference
larger than 40 mm, as will be clarified next.

4444

4.3 method 71

p

1
κ̂p

dmin

dmax

dp

vessel surface

Np

B

A

Figure 4.2: Schematic depicting Np (left). Valid end-point A and invalid can-
didate example B (right, top). Both example sets are shown as a
mesh section of the vascular model (right, bottom). The bound-
aries of the sections are highlighted in orange.

We examine the graph topology of each neighborhood Np and store
the boundary vertices in a set Bp ⊂ Np. If the edges among the ver-
tices in Bp form exactly one cycle, we classify p as a vessel end-point
and add it to the set of vessel end-points C. The rationale behind this
idea can be explained by the mesh illustration in Figure 4.2 (right).
If a set Np is located at a vessel end-point, it will basically have the
shape of a cup (i.e., the topology is equal to a disc). Hence, the edges
between the vertices in Bp will represent one cycle. In contrast to
this, a set Np, that is located somewhere on a branch, will not have
this property. As shown in Figure 4.2 (right), example B covers a mid-
section of a vessel. The corresponding Bp contains two cycles, because
of the two open ends. This method works only, if a set Np, whose p is
not located at a vessel end-point, covers the full circumference of the
vessel. We ensure this with dp, which depends on the curvature (i.e.,
the approximated vessel radius) at p. Further, the factor m introduces
a large safe-margin by increasing the set size, while the parameters
dmin,dmax control the minimum and maximum extent. A compari-
son of the locations in P and the end-points C detected by our method
can be found in Figure 4.1.

4.3.2 Multi-Feature Glyph Placement

After the vessel end-point detection, we have obtained a set C of pos-
sible glyph locations on the input mesh. The cardinality of C depends
on the mesh (i.e., the organ) and on the parameters used for the com-
putation. Vasculatures in lung data sets exhibit more branchings, and
thus more vessel endings compared to, for example, liver data sets.
Displaying glyphs at all locations quickly overloads the visualization.
Hence, we want the user to be able to control the number k of glyphs

4444

72 concircles

that are visible. The selection of the k glyphs however, should be done
automatically by an appropriate filter method.

Results of the quantitative evaluation in [122] have shown, that sub-
jects found it most difficult to find the correct depth relation between
two points, when the points were far away from each other (in screen
space) and had a similar depth. Consequently, we would like to prefer
such combinations of point pairs to show glyphs at. Another aspect
we have to consider is the effect of size constancy, which is a well-
known theorem in perception psychology. It says that the perceived
size of an object remains constant, even though its projective image
on the retina changes (i.e., an object moving away from the viewer).
Due to the size constancy theorem, a thicker vessel might appear to be
closer to the viewer than a thinner vessel, independent of the actual
depth. For each vessel end-point p ∈ C we know its approximated
thickness in world space, given by

rp :=
1

κ̄p
. (4.3)

This is even more important to consider when using orthographic pro-
jection which may lead to misinterpretation of the depth. To attribute
for this, we want to prefer locations that represent either a thick ves-
sel with a high depth value, or a thin vessel with a low depth value,
to avoid false interpretations. Our objectives for the filter method are
then:

R1 Balanced screen space distribution, preferring locations far away
from each other (camera dependent).

R2 Depth aware distribution, preferring locations with similar depth
(camera dependent).

R3 Favor locations that are critical with respect to size constancy
(geometry dependent).

Extracting k glyph locations from C is done by using a graph based
algorithm. The graph build-up and the selection of k glyph locations
based on that graph are described in the following sections.

4.3.2.1 Graph Buildup

At first, we build a weighted complete graph G that connects all pos-
sible glyph locations p ∈ C. Edge costs Gij between two locations pi
and pj are computed as a combination of three terms (see Eqs. 4.6,4.7),
covering the aforementioned objectives. Main parameters for the com-
putation are the depth and screen space position of a location, as well
as the vessel thickness rp. Given the minimal and maximal depth in
C for a given camera position, we map the actual depth zi of a loca-
tion pi to the normalized range z̄i ∈ [0, 1].The normalized Euclidean

4444

4.3 method 73

t = 7

a
2

1

a0

Screen plane

1

Bounding rectangle

Figure 4.3: The approximated Heaviside function for different values of t
(left). Bounding rectangle of the glyph locations in C (right).

depth distance of two possible glyph locations pi and pj is then ob-
tained by ẑij = |z̄i − z̄j|. A similar mapping is applied to the screen
space coordinates of C. After a minimal screen axis aligned bound-
ing rectangle has been computed around all locations of C, the screen
space coordinates are normalized, such that the bounding rectangle’s
diagonal has length 1 (see Figure 4.3, right). The maximum euclidean
distance between two coordinates within that normalized rectangle
is 1 and the distance between two possible glyph locations is given
by ĥij. To stick with the notation used by Lawonn et al. [122], we
denote the screen-space and depth relation with the distance labels:
FF, FN, NF, NN. Here, F means far and N means near, where the first
capital refers to the screen-space distance ĥij and the second capital
to the depth distance ẑij. For ĥij > 1

2 we use the label F and N other-
wise. The same is done for ẑij. For example, a pair of locations where
ĥij >

1
2 and ẑij < 1

2 would be notated with FN.
To compute the edge cost Gij, we further apply an approximated

Heaviside function, which is a scaled sigmoid function, to the values
obtained by ẑij and ĥij. The Heaviside function resembles the parti-
tioning by the F and N labels, because it can be used to map half of
the parameter space to values close to zero (N) and the other half to
values close to one (F). A general formulation for the approximated
Heaviside function is:

fa,t(x) =
1

1+ exp(−(x− a
2)t)

(4.4)

where the parameter t controls the sharpness of the approximated
Heaviside function and [0,a] is the range of the input parameter x.
As we want to compute f for the values z̄ij and h̄ij, we can fix a = 1:

zt(i, j) := f1,t(z̄ij), ht(i, j) := 1− f1,t(h̄ij) (4.5)

With that we obtain small values for FN labelled pairs (i, j), and high
values for NF labelled pairs. We set t = 7 as a default value in our im-
plementation (see Figure 4.3, left). The rather smooth transition does
not completely binarize the input value a, thus allowing a differentia-
tion inside the labels F and N. In ht(i, j) we invert the results, so that

4444

74 concircles

we obtain low values for high screen space distances. The edge cost
Gij is then defined as:

Gij =
zt(i, j) + ht(i, j)

2
(4.6)

covering the requirements R1 and R2. The size constancy (R3) is taken
care of with a bonus term

Gij ←


Gij − b, if rpi > rpj and zi > zj

Gij − b, if rpi < rpj and zi < zj

Gij, otherwise

(4.7)

where b is the bonus. Thus, edges between nodes that are critical
due to the size constancy get their cost reduced by b. In this work
b = a

2 = 0.5 was used as a default value, because this is the location
of the transition in the Heaviside function.

4.3.2.2 Graph Filtering

The selection of k nodes from the graph is done as follows: As an
initial point pair, we select the nodes ni,nj with the lowest edge cost
in G and add these to the set of selected, visible nodes S. These are
typically far away from each other in screen space and have a similar
depth, thus, their distance is labelled FN. In order to find the remain-
ing k− 2 locations, we do an iterative search, consecutively adding
nodes that best fit to the nodes in S. We add a parameter to the graph
based selection condition, that controls the minimal screen space dis-
tance hmin between two nodes in S.This parameter can be used to
avoid overlapping glyphs and we set a default value of hmin = 0.075
(7.5% of the maximum distance in the normalized ROI). Our selection
method can be summarized in 3 steps:

1. For every node ni ∈ G, compute the average edge cost ei and
the minimal screen space distance hi to all nodes nj ∈ S

2. Pick node ni ∈ {G| arg mini ei}, (i.e.,ni ∈ G with the lowest aver-
age edge cost):

a) If hi > hmin, add ni to the visible set S← S∪ni.
b) Remove ni from the graph G← G \ni.

3. Repeat steps 1 and 2 until |S| = k or G = ∅.

Exemplar results of the filtering are shown in Figure 4.1.

4.4 glyph design

For the design of our glyph, we have to take several considerations
into account. From [188] we know, that visual stimuli are processed

4444

4.4 glyph design 75

in a pre-attentive and an attentive phase. Thus, we want to base our
glyph on two main components, such that each component satisfies
the conditions for either of these phases. Also they state, that glyph
shapes should be unambiguously perceivable independent of view-
ing direction. Pop-out effects are described in literature, where color
is the most significant channel, followed by size, shape and orienta-
tion. From [124] we already know that pseudo-chroma depth does
not support small differences very well. So, to take advantage of the
pop-out effect without losing precision, we choose to address the pre-
attentive perception of our glyph by its size. A less salient property
is the angle or orientation of a glyph, which is also listed as part of
the geometric channel in [17]. We want to use this as the precise in-
formation channel during the attentive phase. Summed up, we want
our glyph to meet the following criteria:

1. Pre-attentive stimuli through glyph size.

2. Attentive stimuli through angle/orientation.

3. Perceivable independent of view direction

Keeping in mind that we only want to display one scalar value - the
depth, we can come up with a very simple glyph to match the above
conditions.

pre-attentive phase : We use a circle as a very basic shape (base
circle). Mapping the depth to the radius of the base circle perfectly
matches the size constancy theorem. We can take advantage of the
size constancy effect to exaggerate depth differences in a perspective
view, or to imitate the effect in orthographic view. This way, the user
can quickly identify clusters of glyphs that are closer or further away
and hence get an overview of the vessel structure.

attentive phase : In the attentive phase, we want to use an ori-
entation attribute to allow for precise depth-judgment. We can com-
bine this with an aspect that Ropinski et al. [190] attribute to the pre-
attentive phase: The continuous or discrete mapping of an attribute
to the glyph can communicate information. The discrete mapping en-
ables better discrimination of fewer values. The continuous mapping
allows to distinguish between small, just noticeable differences. Here,
we combine the continuous with the discrete mapping, by filling the
base circle with three concentric circles. If zmax is the maximum and
0 the minimal depth in a scene, and z the depth of a glyph, then we
display one full inner circle if z = 1

3zmax, two full inner circles if
z = 2

3zmax and three full inner circles if z = zmax. This yields a dis-
crete glyph attribute, that supports the pre-attentive phase, but can
also be useful in the attentive phase. As illustrated in Figure 4.4, the
depth range is subdivided into three bins reflected by the three cir-
cles. Furthermore, we cover the range between the discrete steps by

4444

76 concircles

Figure 4.4: Combined discrete and continuous mapping. Depth rep-
resented by the glyph components are (left to right):
zmax
12 , 4zmax12 , 6zmax12 , 9zmax12 , 12zmax12 . The base circle is displayed

in purple.

gradually filling the inner circles, which is the continuous part of our
attribute mapping. During the attentive phase, the circle fill-status al-
lows the user to precisely compare depth relations. Since every circle
covers only one third of the depth range, the fill-status is more sen-
sitive to differences and thus easier to read. The glyph could also be
designed with two, or more than three circles, but we observed that
three gave a good balance between sensitivity and readability.

further information channels : If it is desired to represent
a second scalar value through the glyphs, where precise perception is
not crucial, other visual channels can be applied. An example is given
in Figure 4.5, where the distance of a glyph location to the tumor is en-
coded in color and geometrical variations of the glyph. The geometric

Figure 4.5: Tumor distance encoded in additional geometric channels:
Close: Red, circular shape; Far: Yellow, rectangular shape.

modification only requires an adjustment of the fragment coordinates
(x,y) during rendering (compare Figure 4.6, left and Eq. 4.8) The ex-
ample shows, that three scalar values can be reflected by our glyph,
with each scalar using a distinct visual channel.

4444

4.5 implementation 77

summary : The proposed glyph is designed with respect to as-
pects of the pre-attentive and attentive perception phases. The pre-
attentive phase is attributed to by modifying the base circle size in
dependence of depth and by the discrete mapping to the three in-
ner circles. The attentive phase is covered by the circle fill-status. The
filling contains an orientational attribute that can be used for a rela-
tive comparison of the mapped value. For rendering, the glyph can
be implemented as a camera-aligned billboard and is thus indepen-
dent of camera direction or lighting. Details on the implementation
and further considerations to make the glyph feasible in the actual
visualization are given in Section 4.5.2.

4.5 implementation

In this section we describe implementation details for the glyph loca-
tion selection as well as for the glyph visualization and the hatching
technique that we apply to the vascular models.

4.5.1 Glyph Selection

The selection of glyph locations is split into two main parts. The
offline pre-processing to find possible locations and the online fil-
tering of glyphs that selects glyph locations with respect to the dy-
namic camera features. The pre-processing time scales linearly with
the number of input candidates of the set P and further depends
on the mesh resolution. Thus, we provide timings for two exemplar
meshes to give a rough estimate: For a mesh with 30k vertices, we
measured an averaged time of 0.33s per candidate, while the compu-
tation of the geodesic distances, using the heat method [35], took 63%
of that time. Another mesh, with 8k vertices, took 0.1s per candidate,
with 71% consumed by the heat method. Note that the pre-processing
can be potentially run in parallel for each candidate. In the current
implementation of the online filtering, we recalculate the glyph posi-
tions for each frame. Thus, the k glyph locations may vary with each
slight move of the camera. A thinkable modification would be to up-
date the glyphs only after the camera rotation/movement exceeds a
certain threshold, ensuring a stable visualization. The complete graph
G is built up and the edge weights are computed (see Section 4.3.2.1,
Eq. 4.6,4.7). Then we apply our filtering method to find k valid glyph
locations (see Section 4.3.2.2) and send these to the OpenGL pipeline.
The timings for the filtering depend on the number of possible loca-
tions |G| and the parameter k. For example, the graph buildup and the
selection of k = 15 glyphs required 1.2 ms for a number of n = 136

possible glyph locations and 0.05 ms for n = 25 possible glyph lo-
cations, exhibiting real-time capabilities. The performance was tested

4444

78 concircles

x

y

α

h f

Figure 4.6: Fragment (green dot) properties obtained from gl_PointCoord
(left). Fragments in the striped area are discarded. Final glyph
rendering with one and a half concentric circles (right). The dot
at the glyph center can help to identify the actual glyph position
on the mesh.

on a desktop computer environment with a 4.00 GHz i7-6400 proces-
sor and 16GB RAM.

4.5.2 Glyph Visualization

Our glyphs can be added to an existing rendering pipeline in a simple
way. As the world locations of the glyphs are given by C, we can use
point primitives to draw view-aligned quads. The size of the quads
can be set in dependence of the depth of each location to account
for perspective projection, or to imitate perspective distortion when
using an orthographic camera. In the fragment shader, each fragment
knows its location within the point primitive, given by gl_PointCoord.
From the fragment coordinate within the quad, we can derive an an-
gle α and a distance hf to the quad’s center (see Figure4.6, left). The
distance can be modified with:

h2f =
(

sgn(x) · |x|q
)2

+
(

sgn(y) · |y|q
)2 (4.8)

where q ∈ [0.5, 1] is the mapped distance of the glyph to a reference
position (the tumor in Figure 4.5). This modification implements the
transition from circular glyphs (q = 1) to quadratic glyphs (q = 0.5).
Extending the range of q allows for more shape variations, but then
the inner circles become hard to read. Along with the depth z, these
are the properties that are necessary to render the glyph (see Fig-
ure4.6, right). Based on α, hf and z, each fragment can be appro-
priately rendered. The base circle is filled with a purple transparent
area. The concentric inner circles have two components. A thick, or-
ange component with dashes and a green border between consecutive
concentric circles. The dashes help to distinguish between glyphs of
very similar depth. In our implementation, we integrated the glyph
rendering into an existing order independent transparency pipeline.
This allows us to react to situations, where glyphs are occluded by

4444

4.5 implementation 79

surrounding parts of the vessel structure as in Figure 4.7, left. Here,
vessels occluding a glyph are rendered with increased transparency.
The transparency is unaffected at the glyph edge and increases to-
wards the center. If the base circle (purple) is occluded, one can tell
that it is actually behind the vessel. Hence, overlapping depth cues
remain visible.

Figure 4.7: Surrounding vessels that occlude the glyph have their trans-
parency increased (left). Visualization of the continuous parame-
terization based on Knöppel [103] (right, top). Hatching applied
(right, bottom).

4.5.3 Hatching

In our visualization, the glyphs are desired to be the most promi-
nent aspect. Therefore, we employ a less salient hatching technique
that is based on a continuous parameterization, to draw the mesh.
The parameterization is based on the work by Knöppel et al. [103].
Their method yields a globally continuous parameterization that is
aligned with a given vector field. Using the principal curvature di-
rection allows us to draw stripes with respect to the vessel geometry.
Figure 4.7 (right) shows the parameterization and the hatching results.
A 4-colored patch (yellow, green, black, orange in Figure 4.7, right
top) represents texture coordinates in the range [0, 1]. Using these tex-
ture coordinates, we can render multiple strokes with varying length
and intensity (see Figure 4.7, right bottom). The stroke variation is
repeated for every 4-colored patch. We apply the hatching within a
margin of the vessel contour that is nearly independent of the vessel
thickness, by employing the method by Kindlmann et al. [101].

4444

80 concircles

4.6 evaluation

To assess the performance of our visualization, we conducted a qual-
itative, comparative, online study. Generally, a comparison to a stan-
dard non-depth-enhanced (e.g. phong shading) and a depth-enhanced
(e.g. pseudo chroma-depth [96]) visualization would be feasible to re-
veal the benefit of a new technique. Such evaluations have already
been performed in the works by Lawonn et al. [122, 124]. The results
of their questionnaires have proven that their illustrative visualiza-
tions can outperform standard techniques. Consequently, our analy-
sis focuses on a direct comparison with the methods by Lawonn et al.
Our evaluation is formulated in the same way as the previous ones by
Lawonn in order to be comparable with the aforementioned standard
techniques.

We implemented the depth-enhancement strategies found in [122]
(supporting lines) and [124] (supporting anchors) along with our new
technique. For five different data-sets, each including a vessel struc-
ture and tumor data, we randomly selected two locations to attach
the supporting visualization. Then, images were captured for three
camera positions for each of the three techniques. This totaled to 45

images that we used for the survey. Example images are shown in
Figure 4.8. The approaches by Lawonn et al. both create a relation
between the vessel structure and a supporting structure. Therefore,
these techniques are expected to have less complication with overlap-
ping vessel structures. Contrarily, our circle glyphs are placed directly
at the vessel location that they represent. Hence, we assume that over-
lapping vessel structures will have a negative impact on their perfor-
mance. The three camera positions were chosen such that the follow-
ing cases were matched for the two selected vessel end-points and
thus yield three difficulty levels:

1. High distance difference (L1, label FF/FN)

2. Circle glyphs partly obstructed (L2)

3. Very low depth difference (L3, label NN/FN)

Case 1 is the simplest task, and inquiries how fast decisions can be
made with the respective visualization. With case 2 we aim to learn
if overlapping is really a problem for the circle glyphs. The last case
probes for the ability of the glyphs to distinguish just noticeable depth
differences. The survey was implemented as an online questionnaire,
because this enabled us to measure exact timings during the process.
However, this means that we did an unsupervised study and did not
observe the subjects. Subjects were first introduced to their task in a
learning phase. For each visualization technique an example image
was shown. The example image contained a description of the tech-
nique and two selected vessel end-points (as in Figure 4.8). Also, a

4444

4.7 results 81

Figure 4.8: Supporting anchors (left), supporting lines (center), circle glyphs
(right). Vessel end-points in question are tagged with (+) and (#).

solution to the question which vessel was further away, was included
with an explanation. Then, subjects were shown two sample images
per method and had to select the vessel that appeared to be further
away. Answers during this training phase have not been included in
the evaluation results.

After the training questions, participants were shown the 45 evalu-
ation images in a fixed, but previously shuffled, order. Timings were
measured from the point where an image was displayed until the sub-
ject selected an answer ((+) or (#) or undecided). Further, participants
had to estimate their decision confidence with a 5-point Likert scale
(1 = most inconfident, 5 = most confident). In the evaluation undecided
answers were treated as a wrong answer, i.e., we were interested in
the percentage of correct answers.

4.7 results

Our study was carried out with 24 participants (16 male, 8 female,
average age 29.75 with a range of 22-57). Most of them (83%) came
with a background in computer science and visualization. 29.1% of
them had experience with visualizations of blood vessels. Neverthe-
less, we think that the results are also representative for expert users,
since the depth perception is a general task and not only restricted to
the medical context. Table 4.1 depicts the overall results of the study,
averaged for each enhancement technique (15 questions each). Most
correct answers were given with the proposed circle glyphs (93.6%),
directly followed by the supporting lines (92.2%). The supporting an-
chors lead to 87.2% of right answers. Participants were most confident
in their answers with the circle glyphs (4.35), succeeded by support-
ing anchors (4.21) and supporting lines (4.08). Hence, all averages are
between the very confident (5) and confident (4) estimations. Subjects de-
cided most quickly with our new method (5.92 s), closely followed by
the supporting lines (6.09 s) and the supporting anchors (6.42 s) just
behind. The timings for individual questions initially ranged from 1.8
to 126.2 seconds. We assume that some subjects were interrupted dur-
ing the process, which lead to the high values. Hence, we computed

4444

82 concircles

Table 4.1: Averaged results over all questions for each technique (Circle
glyphs, Supporting Lines, Supporting Anchors).

Lines Anchors Circle

Correct answer (%) 92.2 87.2 93.6

Confidence (1-5) 4.08 4.21 4.35

Time (s) 6.09 6.42 5.92

the 75% quartile (7.735 s) and removed outliers that lay above three
times the 75% quartile (23.205 s). This high tolerance is in order to
cover the more difficult questions. The portion of outliers was 1.82%.
As mentioned in Section 4.6, the questions of the survey were subdi-
vided into three levels of difficulty. Charts in Figures 4.9, 4.10, 4.11

show the evaluation results for the individual task levels L1, L2 and
L3. The percentage of correct answers (Figure 4.9) is highest for the

L1 L2 L3

0.8
0.82

0.84

0.86

0.88

0.9
0.92

0.94

0.96

0.98

1

Lines
Anchors
Circles

Pe
rc

en
ta

ge
of

co
rr

ec
t

an
sw

er
s

Figure 4.9: Estimation precision.

L1 L2 L3

3.2
3.4
3.6
3.8
4

4.2
4.4
4.6
4.8
5

Lines
Anchors
Circles

Sc
or

e

Figure 4.10: Confidence.

supporting lines in L1. This is likely due to the fact, that the shadow
plane in the supporting lines visualization resembles depth cues in
the most natural way. The confidence (Fig 4.10) in L1 is very simi-
lar among the techniques and higher than for the other levels. As L1

represented the easiest task, the timings (Figure 4.11) are relatively
low compared to L2 and L3. But we can observe, that the support-
ing anchors lack behind the other two methods. For task level L2 we

4444

4.7 results 83

L1 L2 L3

0

1

2

3

4

5

6

7

8

9

Lines
Anchors
Circles

Ti
m

e
(s

)

Figure 4.11: Task duration.

expected our new method to perform worse than for L1. Recall, that
L2 contained situations, where the circle glyphs were partially ob-
structed. Since the depth difference was also smaller in this case, we
can observe a negative impact on all three methods in the estimation
precision, the confidence and the task duration. Contrarily to our as-
sumption, the circle glyphs did not lose most precision (-5.56%) com-
pared to supporting lines (-6.72%) and supporting anchors (-3.03%).
Nevertheless, the fact that subjects were most confident with the circle
glyphs but made the most correct choices with supporting lines in L2,
underlines that overlapped glyphs were likely to be misinterpreted.
The L3 task clearly shows that our approach outperforms the oth-
ers in terms of accuracy. Here, 94.8% of answers were correct, while
for the reference techniques 85.0% (supporting lines) and 84.1% (sup-
porting anchors) were correct. This is accentuated by the participants’
confidence. Surprisingly, the supporting anchors have now the lowest
timings. A reason for this might be, that anchors were located very
close to each other in L3. Thus, comparing them took less time than
comparing two oppositely situated anchors.

In summary, and with the overall results in Table 4.1 at hand, we
can state that all three techniques performed similarly well, with a
slight advantage for the new circle glyphs. Only when it came to
very small depth differences, our approach was able to outperform
the others. We did not evaluate the performance of the glyph filter-
ing technique with subjects but plan this for future work. The new
approach does not require the solution of a bipartite graph matching
as done for the supporting anchors [124]. Their method tries to find a
best matching of two positional properties: The distribution of glyphs
around the depth-cylinder, and the depth distribution (refer to Hall’s
marriage theorem). The graph matching is computationally more in-
tensive and less flexible than our strategy. For example, as described
in Section 4.3.2.2, we use the variable hmin to avoid overlapping of
glyphs. Such an extension to the filtering approach can not be sim-
ply added to the bipartite matching. However, as we place glyphs on

4444

84 concircles

Table 4.2: Glyph placement quality in terms of screen-space distribution.

µ σ2

Bipartite 0.090 0.00210

Random 0.078 0.00241

Ours 0.104 0.00085

Figure 4.12: Comparison of glyph filtering methods. Bipartite matching as
described in [124] (left). Our approach (right).

top of the vascular model, it is crucial that glyphs do not overlap,
i.e., that glyphs have enough space around them. Hence, we are inter-
ested in maximizing the minimal distance among the visible glyphs.
For an objective measurement, around 1000 random camera positions
were generated for four different vascular models. For each scene, we
used our technique, the bipartite matching and a random selection,
to pick 16 glyph positions. We then computed the minimal distance
of each glyph position to the remaining positions, to obtain variance
and mean values. The results shown in Table 4.2 are averaged over
the values obtained for all camera positions. The maximum possible
distance between two glyphs is 1 (compare Figure 4.3, right). Also,
for a uniform distribution of glyph positions, the minimal distance is
maximized and equal for each sample. Thus, larger minimal distances
(i.e., larger mean values) and a smaller variance can be interpreted as
a hint for a more uniform distribution. From Table 4.2 it it can be
observed, that the averaged minimal distance of our method is 16%
larger than for the bipartite matching and 33% larger than for the ran-
dom picking. More significant is the difference in variance σ2. Here,
σ2 for the bipartite matching exceeds our approach by 145%, while
the random picking yields a 181% larger value. Thus, we conclude
that our technique results in a more balanced distribution across the
screen-space, that is suitable for our glyphs. A comparison of glyphs
placed with our technique and the bipartite matching is shown in
Figure 4.12.

4444

4.8 discussion and future work 85

4.8 discussion and future work

We have proposed a vessel end-point detection algorithm as an offline
pre-processing step. These locations are further filtered by an online
feature-driven and graph-based approach to select a subset of vessel
end-points that cover the vasculature in a representative way. To sup-
port spatial perception of the presented 3D model, we place circle
glyphs at the filtered locations. The glyphs are designed with respect
to aspects of the pre-attentive and attentive phase in human percep-
tion. Further, our parameter mapping employs a combination of a
discrete and continuous mapping to allow for a precise reading of the
mapped parameter. An advantage over the reference techniques sup-
porting lines and supporting anchors lies in the simplicity of the glyph
design. We do not need to add any supporting geometry (like the
shadow plane or cylinder) to the scene. Our glyphs work indepen-
dently and ’in place’. As we omit such additional geometry, we can
use the glyphs at any zoom level. The shadow plane for the support-
ing lines in contrast, is only reasonable when the whole vasculature is
visible. However, the circle glyphs come with a deficiency. The angu-
lar attribute of the inner concentric circles has no relation to natural
depth perception. Thus, it requires additional cognitive effort to cor-
rectly interpret filled and empty glyphs. An issue with positioning
glyphs right at the position they refer to is overlap or obstruction by
other structures. We have approached this problem by rendering oc-
cluding geometry with increased transparency. While the glyph itself
is then better perceivable, the impression of the overall visualization
might suffer.

The graph-based glyph filtering method proposed in this work
takes different features into account to select a specific subset of pos-
sible glyphs. This formulation is flexible, as further features could
be added to modify the resulting edge costs in G. We conducted a
quantitative evaluation and were able to show that the proposed cir-
cle glyphs are suitable for a precise and quick estimation of relative
depth. We expect that the glyphs perform similar for representation
of scalar fields in general. A deficiency of the evaluation is that we
only tested for scenes with two glyphs visible. In a situation where
multiple glyphs (10-15) are shown to allow for a general overview
of the data in question, the results might be different. In this case the
supporting lines and anchors probably overlap in many locations and
it becomes very hard to obtain a satisfactory estimation of depth.

The example in Figure 4.5 shows, that our glyph can be modified
with low effort to represent three scalar magnitudes. However, the
performance of the these extended glyphs has to be assessed in an-
other evaluation. Furthermore, a subsequent study should investigate
the discretization of the (so far) continuous mappings to geometrical
features. E.g., the depth dependent glyph size could be mapped to

4444

86 concircles

ordered bins, so that an ordering of multiple glyphs is perceivable,
even if the actual (un-binned) depth differences are very low. Apart
from this, our glyphs embody a simple to implement, effective and
flexible representation for scalar values on arbitrary meshes.

acknowledgements This project was partly funded by the DFG:
LA 3855/1-1 and HA 7819/1-1. We would like to thank the subjects
of our evaluation for their contribution.

55555

5
PA R A M E T E R I Z AT I O N , F E AT U R E E X T R A C T I O N
A N D B I N A RY E N C O D I N G F O R T H E
V I S U A L I Z AT I O N O F T R E E - L I K E S T R U C T U R E S

abstract The study of vascular structures, using medical 3D mod-
els, is an active field of research. Illustrative visualizations have been
applied to this domain in multiple ways. Researchers made the geo-
metric properties of vasculature more comprehensive and augmented
the surface with representations of multivariate clinical data. Tech-
niques that head beyond the application of color-maps or simple
shading approaches require a surface parameterization, i.e., texture
coordinates, in order to overcome locality. When extracting 3D mod-
els, the computation of texture coordinates on the mesh is not always
part of the data processing pipeline. We combine existing techniques
to a simple parameterization approach that is suitable for tree-like
structures. The parameterization is done w.r.t. a pre-defined source
vertex. For this, we present an automatic algorithm, that detects the
tree root.

The parameterization is partly done in screen-space and recom-
puted per frame. However, the screen-space computation comes with
positive features that are not present in object-space approaches. We
show how the resulting texture coordinates can be used for varying
hatching, contour parameterization, display of decals, as additional
depth cues and feature extraction. A further post processing step
based on parameterization allows for a segmentation of the structure
and visualization of its tree topology.

5.1 introduction

The visualization community actively works on techniques for the
display of vascular 3D models. The motivation for this is based on
the clinical relevance for surgical planning and guidance of interven-
tions. Different imaging modalities [123] and also physical simula-
tions [160] contribute to the generation of data that is desired to be
visualized along with medical volume or surface data. However, vi-
sual information channels are limited, and therefore new techniques
emerge that aim to ease the perception and comprehension of task ori-
ented data [175]. This also plays an important role in medical educa-
tion [174], where illustrative techniques are found to highlight certain
data features or to guide the attention of the viewer. Understanding
the spatial structure of a given 3D object is an important aspect, espe-
cially if the user looks at the 2D projection on a common computer

87

55555

88 pfb for tree-like structures

monitor. In this case depth cues are missing which then have to be
encoded in another way. Another broad topic is the visualization of
blood flow [152]. In this area users are interested in spatial data inside
a blood vessel, but also want to obtain information about surface re-
lated aspects. To encode the multitude of available data, advanced (il-
lustrative) visualization techniques can be applied [128]. We can gen-
erally state that advanced techniques require parametric guidance on
the rendered surface data. This may be texture coordinates (to display
textures or patterns) or tangent vector fields (to guide pattern orienta-
tion or streamline generation). Unfortunately, such parameterizations
are not always available from the medical data acquisition pipeline.
Furthermore, texture coordinates can be generated in various ways,
exposing different advantages and disadvantages.

In this work, we introduce a technique to generate texture coordi-
nates that is suitable for the processing of tubular, tree-like structures,
e.g., blood vessel surface data. Because of the restricted target mor-
phology that our algorithm is designed for, we can take advantage
of that morphology and come up with a very simple approach, uti-
lizing existing and more generally designed algorithms. The initial-
ization of the algorithm can be automated by a method that detects
the end-points and root of a tree structure. Additionally, the resulting
parameterization can be used for the extraction of branch locations of
the mesh. We also show how we can use the output of our algorithm
as an additional depth cue for a scene and the parameterization of
contours. In this way, our approach can be used for the improvement
of structure and depth perception, and the application of illustrative
rendering techniques in order to encode multivariate data. The pa-
rameterization can be used as input for a segmentation algorithm
that subdivides the vasculature at branching points. The resulting
segments are arranged in a binary tree hierarchy that enables further
visualization applications Thus, our main contributions are:

• A simple approach to generate texture coordinates on tree-like
structures.

• An automatic, parameter free branch- and end-point detection
algorithm.

• As an extension to [133], we apply a segmentation that results
in a binary tree and can be used for the visualization of the
vascular tree topology.

The results are brought to use in several examples.

5.2 related work

The parameterization of surface meshes has been researched for a
long time [47]. In the past this field was highly motivated by the

55555

5.2 related work 89

topic of remeshing algorithms [16]. For remeshing purposes it is usu-
ally sufficient to come up with parameterizations that are locally bi-
jective. Globally, 1-to-nmappings from the parameter space to the do-
main may exist (as in a periodic function). For the display of textures
or decals on a surface this can be a disadvantage, because different
locations on the surface cannot be sufficiently distinguished in the
parameter space. However, such periodic texture coordinates can be
useful in the visualization domain, as shown by Knöppel et al. [103]
and Lichtenberg et al. [138]. Other techniques aim to find a 1-to-1
mapping between the parameter and domain space. An important
one to mention in this context is the one by Kälberer et al. [93]. They
cut open a given mesh to obtain disc-topology and then apply an it-
erative integration of texture coordinates. Then, discontinuities at the
cut seams are removed by a repair operation. While their approach
yields reasonable results in the sense of the pure mapping, the algo-
rithm itself relies on three complex steps and the iterative nature of
the algorithm restricts it from scaling well with the mesh size. In our
approach, the units in parameter space and domain space are approx-
imately equal, which can be of advantage when mapping textures or
patterns w.r.t. the object size. Another possibility is to calculate tex-
ture coordinates locally in screen-space and has been proposed by
Rocha et al. [185]. They sample the surface and render spheres for
each sample to activate the fragment shader. Texture coordinates can
then be approximated for the activated pixels in order to draw small
decals on the surface. These decals are used to represent multivariate
data values.

As mentioned in the introduction, the spatial perception on 2D
monitors is restricted due to missing depth cues. Consequently a
range of publications can be found in the literature that address this
problem, using different kinds of artificial or nature-inspired ways to
encode depth. Kersten-Oertel et al. [96] provide a good reference for
the performance of different depth cues in the vascular domain. Us-
ing the color channel, pseudo chroma-depth proposed by Ropinski et
al. [189] employs aspects of the natural perception to intuitively map
depth to a red-to-blue color scale. Applying pseudo chroma-depth to
a whole mesh, however, impairs the ability to use other shading tech-
niques to convey structure or to display additional information on the
surface itself. To cope with this issue, Behrendt et al. [6] proposed to
apply pseudo chroma-depth only to the contour region of a mesh to
make space for supplementary data. Apart from coloring or texturing
a given surface to convey data, additional geometry can be added as
glyphs to an existing scene [188]. Then, one has to decide how many
or where glyphs should be placed in order to achieve a clean and
informative result. Later, we will present a simple method to extract
branch locations and vessel end-points from a vascular mesh. Being
structurally significant locations, these could be used for glyph place-

55555

90 pfb for tree-like structures

ment, as done by Lichtenberg et al. [132]. With their work, they fol-
lowed up on previous methods by Lawonn et al. [122, 124], who used
additional geometry in a scene to improve the spatial perception. The
problem of spatial perception can be omitted when transferring the
visualized data to the 2D domain, as surveyed by Kreiser et al. [109].

When color is used to encode data on a surface a trade-off has
to be made. Either the colormap is disturbed by an additional shad-
ing, or geometric features are not perceivable due to missing shad-
ing. A workaround is then to use hatching strokes, which do not
interfere with the colormap but are still able to depict the geometry.
Hatching along a 3D surface has first been done by Hertzmann and
Zorin [75] who computed integral lines along principal curvature di-
rections. Praun et al. [172] followed with a texture based approach.
Further insights into this illustrative rendering area can be obtained
from the survey by Lawonn et al. [128] while an example of illustra-
tive rendering in the context of vascular models is given by Ritter et
al. [184] .

Scalar functions that are defined on a surface have been used for
shape analysis. The Reeb Graph (RG) emerged from Morse theory [177]
and has developed into an application for 3D shape topology analy-
sis [167, 204]. The RG captures topological information of a surface
based on the level-sets of a continuous scalar function defined on the
surface. The Contour Tree (CT) [22] is a special case of the RG that
does not allow cycles, i.e., a binary tree is constructed. We use an im-
plementation by Carr et al. [26] to capture the topology of our tree
structures.

5.3 method

Our goal for this work is to obtain texture coordinates T ∈ R2 for the
visualization of a tubular and tree-like mesh M. The two dimensions
of this set are denoted by (U,V) ∈ T. Important for our work here are
the Geodesics in Heat (GiH) method by Crane et al. [35] and the Jump
Flood Algorithm (JFA) by Rong and Tan [187]. These two algorithms
have a very general domain of application and provide the basis for
our parameterization of U and V . Further, we use the resulting U
parameter for a segmentation based on a CT, for which we use the
algorithm by Carr et al. [26]. First, we obtain an augmented CT Ŷ that
contains a node for every vertex in M. A segmentation of Ŷ yields the
CT Y that contains an edge for every segment obtained from Ŷ. More
details on the CTs follow in Section 5.3.2.

5.3.1 Parameterization

This section covers the computation of the (U,V) coordinates for M.
Our approach is split into an object-space and a screen-space part.

55555

5.3 method 91

The rationale for this will be clarified in the respective paragraphs
that follow.

object-space : u We intend to compute U as a continuously in-
creasing scalar field across the mesh. The source of U (where U = 0)
is a pre-defined vertex vs, which should be placed at the root (i.e.,
the source of blood flow) of a given vessel, to achieve the most in-
tuitive results. We provide an automatic root-point detection algo-
rithm that will be described later in this section. Our approach is
now to define a vector field Z, so that ∇U = Z (i.e., the gradient of
U equals Z). Hence, the quality of U is determined by the quality
and orientation of Z. To define Z we first compute the directions of
minimal curvature C for each triangle of M by applying the method
presented by Rusinkiewicz [193]. The orientation of individual ele-
ments ci ∈ C is ambiguous (i.e., ci ∼ −ci). To resolve the ambiguity,
we compute the geodesic distance G of each vertex to vs, using the
GiH method [35]. The GiH utilizes a relationship between heat trans-
port from the physics domain and distance, achieving quick approx-
imations or even exactly computed geodesic distances on arbitrary
topologies through differential operators. Then, ∇G∆ is computed as
the gradient of G for each triangle. We then obtain Z element-wise as:

zi =

ci, if 〈ci, gi〉 > 0

−ci, otherwise
(5.1)

where gi ∈ ∇G∆. By incorporating C, we make sure that Z well de-
scribes the geometry of M. Using ∇G∆, we force Z to have a single
source at vs. Finally, we smooth Z to remove noise and high frequency
features of the vector-field. We do an element-wise Lapacian smooth-
ing in the dual graph of Z (i.e., per vertex). The result is then lifted
back to each triangle, while keeping Z in the tangent space of M.
Now, we can put Z into an equation system to compute U, such that
∇U = Z. Applying the divergence on both sides yields the Poisson
equation

∆U = ∇ ·Z. (5.2)

Solving Eq. 5.2 in a least squares sense results in the coordinate U.
As a last step, we rescale U to the range of [0, max(G)]. This brings U
into a relation of spatial distances along the surface of M. Figure 5.1
shows an example result for U. It can be observed that U increases
strictly monotonously away from vs. Generally, we can compute the
distances w.r.t. an arbitrary point, but the results are most intuitive
if a vessel end-point is chosen as the source. We have to note that
setting U = G works fine for very straight structures. In these cases
the geodesic distances sufficiently capture the mesh structure. This is
not true for more convoluted vasculature, which brings up the neces-
sity to incorporate C. Figure 5.2 shows the final U compared to an

55555

92 pfb for tree-like structures

Figure 5.1: Resulting U for a given source vertex (marked orange). Isolines
underline the smoothness of the result.

anticipated geodesic between two points on the surface. The geodesic
in this convoluted section would not properly cover the geometry.
The singularities found in U can be used for extraction of structural
features as described in Section 5.4.1. Note that the assignment of U
could be described as a semi-global parameterization. It is global in
the sense that a set of isolines with unique U-values can be found on
the shortest path from vs to any given vertex. However, isolines of a
certain U-value are not unique on paths to multiple vertices that are
found on different branches of the tree-structure. This means that we
can identify unique, individual isolines per branch segment, but not
for the whole mesh.

object-space : root-point Instead of defining vs manually, we
provide an automatic approach to find the root of an input mesh. The
algorithm consists of two steps:

1. Identify all vessel end-points.

2. From the given end-points find the root.

While previous approaches [124, 132] presented methods to find end-
points, we propose a faster approach to identify these points. Lawonn
et al. [124] determined the shape index of all points, then the Otsu
method was applied to extract regions around the end-points and
finally a shrinking was applied to get one end-point per region. Licht-
enberg et al. [132] improved the technique by incorporating topologi-
cal information via geodesic distances and graph analysis. Neverthe-
less, their approach requires some pre-defined parameters that may
depend on the input mesh, making it less robust. For the first step

55555

5.3 method 93

Figure 5.2: Delineated geodesic from a vertex vi to a source vs (orange)
compared with the path along the gradient of U (purple).

Figure 5.3: First, we apply a thinning to the mesh (top, right). Afterwards,
a sphere is created for every point to test if the created plane
separates the points inside the sphere (bottom). If this is not the
case, an end-point is found.

55555

94 pfb for tree-like structures

Figure 5.4: Result of our root-point (orange) detection for various meshes.
Other end-points are marked magenta.

of our method we apply a thinning to the entire mesh, following
the approach by Au et al. [3]. Their method is based on an iterative
shrinking determined by(

WHL

WH

)
p ′ =

(
0

WHp,

)
(5.3)

where WL and WH are diagonal weighting matrices that change per
iteration. For every iteration, Eq. 5.3 is solved in a least squares sense,
resulting in Figure 5.3 (top, right). Afterwards, we iterate over every
point pi and create a sphere Bi with radius r = kē, where ē is the
average edge length of the thinned mesh. The factor k = 3 was cho-
sen empirically to set r well above the average edge length in the
thinned mesh. This ensures to capture enough sample points in the
following step. We extract all points pij on the contracted mesh that
lie inside the radius of each sphere Bi (see Figure 5.3, bottom). Finally,
we take the vector ni = pij − pi, with j = argmaxpij∈Bi

‖pij − pi‖. If

all points pij lie in the same half space created by the plane with the
origin pi and normal vector ni, then pi is an end-point. Otherwise
it is not an end-point (see Figure 5.3, bottom). With this, a parameter
free detection of end-points is possible. A root-point can be found
as the end-point where the absolute mean curvature is minimal, i.e.,
where the approximated vessel diameter is maximal. Several example
results are shown in Figure 5.4.

screen-space : v The task of obtaining the V coordinate in object-
space is conceptually more involved. In an optimal scenario, the gra-
dient of V would be orthogonal to the gradient of U, and therefore
be aligned to the direction of maximal curvature in our scenario. This

55555

5.3 method 95

means that V evolves along the circumference of the vessel structure,
which will result in discontinuous seams, where minimum and maxi-
mum values of V meet. Previous work by Kälberer et al. [93] has tack-
led this problem by repairing the parameterization in order to match
seams with integer values. Another approach has been proposed by
Ray et al. [176] and followed up upon by Lichtenberg et al. [138] who
used periodic functions to avoid seams. Their methods, however, are
more complex to implement and yield parameterizations with iso-
lines that are only unique within a single periodic interval.

Instead of treating seams and singularities of V in object-space, we
utilize the JFA to compute V in screen-space. This choice removes the
necessity to treat seams in the parameterization, because we are only
looking at the flat projection of the mesh. Furthermore, the algorithm
is relatively easy to implement and executes in a few milliseconds on
modern consumer graphics hardware. The drawback is that V has to
be recomputed each time the projection of the mesh changes.

In our approach the JFA is used to compute the minimum distance
of each pixel to the contour of a mesh M. Thus, V will always be zero
at locations next to contours, regardless of the rotation of the camera
or M, and increase away from contours (see Figure 5.5). The JFA is a
method that works on grid structures and is capable of distributing
content of a node in log2 n iterations to all other nodes. If we render
to a view port of resolution (x,y), then n = max(x,y). As described
in their paper, the JFA [187] can be used to assign each pixel to a
Voronoi cell of a set of seed pixels. For each pixel, the final result con-
tains the minimal distance of a pixel to its referred seed pixel. In our
case, the contour of a mesh is rendered and the resulting pixels are
used as the set of seed pixels. Hence, after running the JFA, each pixel
contains its minimal distance to the contour. A first result is shown
in Figure 5.6 (left), where thin black strokes represent isovalues of
V . Here, two overlapping vessel segments are shown and the result
is not optimal. Some pixels that belong to the segment in the back-
ground (horizontal) are parameterized based on the distance to the
contour of the foreground (vertical) segment. We address this with a

Figure 5.5: Minimal distance of each pixel on the mesh projection to the
projected mesh contour, mapped to a gray scale.

55555

96 pfb for tree-like structures

single modification: As an additional parameter, we store the depth
of the pixels in camera space. Now, pixels that are not part of the con-
tour are only allowed to reference contour pixels, that have a higher
depth value. Assuming that the 3D model has no self-intersections, we
use this modification to make sure that each pixel cannot reference
parts of the contour that belongs to a closer, overlapping vessel seg-
ment. The result of this change can be seen in Figure 5.6 (right). Note

Figure 5.6: Unmodified JFA (left) and modified JFA, incorporating pixel
depth (right).

that more complex overlaps result in less meaningful approximations
of V , which we will address in Section 5.6. Finally, we rescale V so
that (U,V) is isotropic:

V ← V · dp (5.4)

where dp is a local (per pixel) approximation of the distance of two
points in world space (i.e., on the actual surface of M), represented
by two neighboring pixels. Therefore, units of V are mapped to world
space as well. A combined example showing the results of the object-
and screen-space parameterization is shown in Figure 5.7.

parameterization of remaining pixels The results shown
so far only include V for pixels representing the surface of M. How-
ever, since the JFA is executed on the GPU for all pixels, we also
obtain a parameterization for pixels that are otherwise discarded (i.e.,
the background pixels). Section 5.4.2 shows how this can be utilized.

5.3.2 Graph generation and segmentation

The isolines of a certain U-value are not bound to form a connected
component. This is the case when isolines of a certain value are found
on different branches of the vascular tree. This ambiguity can be re-
solved by constructing a CT Y based on U. We use the algorithm
proposed by Carr et al [26] to do so on a surface mesh. For this, the

55555

5.3 method 97

Figure 5.7: Example result showing isolines for (U,V).

Figure 5.8: Level sets depicted for a height field h (left). Critical points
(purple) as well as regular points (white) are present in the aug-
mented CT Ŷ (center). The CT Y only contains the the critical
points.

U-values associated with individual vertices have to be unique across
the mesh M. If this is not the case, small permutations of duplicate
values can be applied to solve the issue. The CT represents the topo-
logical changes of the level sets of U (i.e., the connected isolines). The
nodes of the CT are associated with vertices of M that represent local
minima, local maxima or saddle points of U. These points are also
known as critical points from Morse theory [155]. As shown in Fig-
ure 5.8, the topology of the level sets for a certain scalar value changes
at critical points (purple). Following the height field h (see Figure 5.8)
from its minimal to maximal value, a level set is created at the mini-
mum hmin, splits into two sets at a saddle point h2 and vanishes at
the two local maxima h4 and hmax. These critical points appear as
nodes in the CT Y (Figure 5.8, right). Figure 5.8 (center) depicts the
idea of the augmented CT Ŷ, which is the primary output of the algo-
rithm [26]. The augmented CT Ŷ contains critical nodes (purple) with
degree equal to one or three, as well as regular nodes (white) with
degree equal to two. In practice, all vertices of an input mesh, that

55555

98 pfb for tree-like structures

are not critical points, are represented by regular nodes. For clarity,
Figure 5.8 (right) contains only one example regular node per edge.
Each regular node resides on the path between two critical nodes. The
scalar value of a regular node will always be between the scalars of
the two associated critical nodes.

We use Ŷ to trace the paths emanating from each critical point, be-
ginning at the lowest U value, i.e., the vessel root, and process the
remaining points in order of increasing U (or increasing h as in Fig-
ure 5.8). In this way, we find all nodes (i.e., vertices) that lie on a path
i between two critical nodes and aggregate these in a segment with
index i. The terminating critical node of each path is also included
in the segment. With this, a segment represents a connected space of
associated vertices with Umax > U > Umin, where Umax and Umin
are the U values of the two critical points. The node representing the
root vertex (i.e., the vertex with the global minimum of U) is a spe-
cial case because it has no edge incident from a node with a lower
U value. It is inserted into the segment emanating from itself, i.e.,
the root segment. Segments and their associated nodes and edges are
depicted in Figure 5.9 (left) with an orange underlay. If we refer to
a segment i of Ŷ, we refer to all vertices of M that were aggregated
into that segment. By reducing all regular nodes from Ŷ, we obtain Y.
The reduce operation maintains the connectivity of the tree: removing
a node with neighbors A and B creates a new edge between A and
B. Thus, a segment i of Y includes a critical node i and its incident
edge. Finally, a segment i of Y is a representative for all vertices in
M that are associated with the segment i in Ŷ. Instead of referring
to individual nodes or edges of Y and Ŷ, we will refer to these seg-
ments throughout the paper. Since Y is a binary tree, we obtain n− 1

segments, if n is the number of critical points.
The binary structure of the tree further allows us to augment each

segment with a binary code Bi, that represents the path to reach that
segment from the tree root. The root is represented by a single bit set
to 1. The transition to the first/second child segment is denoted with
a bit set to 1/0, as depicted in Figure 5.9 (left). Consecutive bits are
appended to the right. The length of the binary code is equal to the
layer l(Bi) that the segment occupies within the tree, with l(Bi) =

ai + 1, where ai is the number of ancestor segments of segment i.
Hence, Bi ∈ {0, 1}l(Bi). Based on that binary code, a simple bit-shift
operation can be implemented to find out whether a segment is an
ancestor or descendant of another segment. The example in Figure 5.9
(right) shows two binary codes B1 and B2, with l(B1) = 2 and l(B2) =
5. We then shift the binary code B2 associated with the higher layer
(l(B2) > l(B1)) by k right-shift operations, where k = |l(B1)− l(B2)| is
the layer difference, i.e., three in the example. This aligns the highest
set bits. If the codes of B1 and B2 are now equal, the segment of the
lower layer (B1) is an ancestor of the segment in the higher level (B2).

55555

5.4 applications 99

1

1110

111101100

B2: 00000010101
B1: 00000010

B2: 00010101
B1: 00000010

10101

B1

B2

Figure 5.9: Binary encoding for CT segments (left, segments underlain or-
ange). The root segment contains two nodes, including the root
node (purple). Determination of the segment relationship by bit-
shift operations (right).

Otherwise, the two segments are not found in the same sub-tree. We
will address the utility of the binary code and the bit-shift operation
in Section 5.4.

5.4 applications

This section describes various applications of the (U,V) parameters
that we obtained in Section 5.3. We provide a detection of branch lo-
cations and vessel end-points, as well as a hatching technique and
the rendering of parameterized contours and depth cues. These tech-
niques may be useful for, or inspire, a range of visualization ap-
proaches in the context of vascular visualization.

5.4.1 Branch and end-points

We can use U as obtained in Section 5.3.1 to extract branch locations
as well as vessel end-points. For this, we look at the one-ring of each
vertex. It can be observed that vessel end-points are found at local
maxima of U and branch points are found in saddle-shaped config-
urations of U. This is due to the use of ∇G∆ in Section 5.3.1, which
creates a sink in the vector field Z at local maxima of G. As depicted
in Figure 5.10, we can visit the ordered vertices v0 to vn of the one-
ring of vertex vi and check for the difference of the U value. If U(vi)
is local maximum, a vessel end-point has been found (see Figure 5.10,
left). If we find four regions of differing sign of dji along the one-ring,
then a saddle shaped area, and hence a branch location, has been de-
tected (see Figure 5.10, right). Here, dji = U(vj) −U(vi), where j are
vertices of the one-ring of vi. The points found here may be used
for the placement of glyph objects, as in the work by Lichtenberg et

55555

100 pfb for tree-like structures

- -

--

- -

- -

+

- -

+

- -

+-

-+

-
-

-

--

-

Figure 5.10: Configuration of U to detect vessel end-points (maximum, left)
and branch locations (saddle, right). The reference vertex is col-
ored purple and vertices of the one-ring with higher or lower
values U are marked with a + or - sign, respectively.

al. [132], since the vessel end-points and branch locations are struc-
turally significant features.

5.4.2 Using V to enhance depth perception

In Section 5.3.1 we mentioned that the JFA also assigns V values to
pixels that are not part of the surface representation (i.e., background
pixels). Thus, background pixels also refer to their closest contour
pixel. In order to incorporate the depth information of the contour
pixels, we can modify the distance function used for the background
pixels’ JFA iterations. Instead of searching for the contour pixel with
the minimal euclidean distance dc, we incorporate the depth, e.g.
dc ← dc · da and determine the minimum of that term to obtain V .
Here, d is the depth of a contour pixel and a controls the impact of
the depth difference. With a = 3we achieve a depth aware parameter-
ization of the background pixels as shown in Figure 5.11. The result
appears similar to the Void Space Surfaces by Kreiser et al. [108]. The
difference is, however, that we do not extend the depth information
into the background pixels with a smart interpolation approach. Our
combination of depth and distance information results in distinguish-
able regions that refer to individual branch regions. The boundary of
these regions are visible through the abruptly changing isolines. This
can, for example, be used to draw outlines or glow effects around
a given structure. Figure 5.12 shows the effect, where a larger glow
radius (in screen-space) refers to less distance to the viewer. In this
way, one can easily obtain information about the global orientation of
a visualized structure.

55555

5.4 applications 101

Figure 5.11: The parameterization of the background pixels in dependence
of the contour depth values. Spacing of the isolines is larger in
regions that are closer to the viewer.

Figure 5.12: The parameterization of the background pixels is used to draw
a depth dependent glow. The surface itself is rendered with
varying hatching strokes.

55555

102 pfb for tree-like structures

Figure 5.13: Different generic variations to the hatching strokes: no varia-
tion (left), varying length (center, left), varying width (center,
right), final result after overlay of multiple strokes (right).

5.4.3 Hatching

Here we describe an approach to achieve varying and overlapping
hatching strokes using the (U,V) coordinates. At first, we subdivide
the range of U into b disjunct bins.

bi = floor((U+ o) · f) (5.5)

ûi = (U+ o) · f− bi; (5.6)

where o is an offset to U and f controls the number (i.e., frequency)
of bins. Usually, f is set to a rather large number, as it represents the
number of hatching strokes within each integer interval of U. The
offset o can be arbitrarily chosen, as a constant or as a function of V ,
for example.

Thus, each point i on the surface is assigned an integer value bi and
a bin-wise mapping ûi of U to the range [0, 1]. We can then obtain an
intensity value via

hi = cos(ûi · 2π)0.5+ 0.5+wi) (5.7)

to draw smooth strokes at the center of each bin along the isovalues
of U, where wi controls the width of the stroke. A maximum stroke
length li can be applied by using V :

t = clamp0,1(
vi
li
)s (5.8)

hi ← (1− t)hi + t (5.9)

where s controls the falloff of the stroke intensity. An initial render-
ing of equally shaped strokes is shown in Figure 5.13 (left). How-
ever, to achieve a visually appealing hatching, it is important to avoid
repetitive patterns of strokes. We address this by feeding bi into a
pseudo-random generator that yields a value ri in the range [0, 1].
By modifying a random seed based on bi, multiple different random
distributions rij can be generated for each bi. This can be used to
modify the stroke length li ← li ·a · (2ri1− 1) (see Figure 5.13, center,
left) and the stroke width wi ← ri2 (see Figure 5.13, center, right).
Finally, multiple sets of hatching strokes can be drawn with an over-
lap by modifying the offset o. This offset can also be calculated in

55555

5.4 applications 103

Figure 5.14: The variation of hatching strokes is shown in dependence of a
scalar field (increasing from left to right).

dependence of V to achieve tilted strokes (see Figure 5.13, right). As
the offset to U affects the calculation of rij, locally varying parameters
for wi and li are obtained. A whole vessel data set rendered with this
technique is shown in Figure 5.12. The variation of strokes contrasts
a reference method by Lawonn et al. [125] shown in Figure 5.24. Fig-
ure 5.14 shows how the hatching variability could be used to encode
scalar information. In the illustration, parts of the surface to the left
are rendered with uniform strokes, while moving towards the right,
the strokes are more and more varied. In the context of clinical appli-
cations, this representation could be used to encode the distance to a
reference object (e.g. a tumor or surgical instrument).

5.4.4 Contour parameterization

If a visualization should be used to encode multiple scalar fields the
number of available information channels is often quickly exhausted.
In this case one can use additional geometry to encode information.
Due to the rather thin, tubular structure of vessel, the contour of the
structure is a viable option to do this. The smaller the diameter of
a vessel segment, the better can information from the contour repre-
sent the data of the affiliated vessel segment. For example, this has
previously been done by Behrendt et al. [6], who encoded the depth

55555

104 pfb for tree-like structures

of vasculature by coloring its contour using pseudo chroma-depth.
Instead of defining the contour on the surface itself (e.g. by using a
Fresnel approximation), we aim to create additional geometry at loca-
tions of the rendered mesh, where the surface normal is orthogonal
to the view direction. The vertices of the generated faces adopt the U
values of the generating surface. Additionally, V values can be created
based on the width of the contour in world space (see Figure 5.15),
and therefore their scale matches the scale of V as computed in Sec-
tion 5.3.1. The V-value of a point on the contour is then its distance to
the generating surface. We can then display small texture patches on
the contour as shown in Figure 5.16 (top). In this example, the gen-
eral direction of blood flow is depicted by an arrow decal at the vessel
boundary. In Figure 5.17 we use U to draw a dashed contour, which
could be applied to focus-and-context applications. Alternatively, the
contour can simply be colored w.r.t. the pseudo chroma-depth spec-
trum as in Figure 5.18, leaving the surface free for other encodings.
This addresses an issue which has been tackled by Behrendt et al. [6].
They mixed the color coding of a scalar field and pseudo chroma-
depth using a Fresnel term. A drawback of their method is that for
small vessel segments neither the depth, nor the scalar encoding is ac-
curately perceivable. With our method, we are able to draw contour
margins of invariant size on the mesh (see Figure 5.19). Hence, for
thin vessels only the contour color remains, which is still not optimal
but should be preferred over a hard-to-read mixture of color scales.
Additionally, we omit the shading of the object in this example, in
order properly retain the color scale. Geometric features are instead
depicted by the hatching strokes.

5.4.5 Binary tree coloring

The binary code that is associated with each segment of Y can be used
for an automatic coloring of the vasculature, that highlights individ-

Figure 5.15: Additional contour geometry (triangles delineated at the top)
is created from the data of the input mesh.

55555

5.4 applications 105

Figure 5.16: The contour of the mesh is labeled with decals that emphasize
the direction of blood flow (top). The same example using the
(U,V) coordinates of the initial parameterization to draw decals
directly on the surface (bottom).

Figure 5.17: U is used to draw a dashed contour. The spacing of the dashes
decreases with the distance from the tumor.

55555

106 pfb for tree-like structures

Figure 5.18: Contour used to display pseudo chroma-depth (right).

Figure 5.19: Pseudo chroma-depth applied to a contour margin. The remain-
ing surface color codes the blood pressure on the surface.

55555

5.4 applications 107

Figure 5.20: Overview plot with HSV colors (left) mapped to the 3D mesh
(right). The closeup (center) underlines how the HSV colors cov-
ered by a graph segment (center, bottom) are mapped to the 3D
mesh (center, top).

ual sub-trees. We compute a vector H whose elements i refer to each
tree segment i:

Hi =

l(Bi)∑
j=1

δ(Bi, l(Bi) − j)
2j

, (5.10)

where δ(Bi, j) returns 1 if the j’th bit in Bi is set to 1 and −1 otherwise.
Note that indexing into δ(Bi, j) is 0-based. The resulting H can be
used as input to a color map. Further, each Hi will always be in the
range (0, 1) and the highest impact on the results have the higher bits,
i.e., the bits associated with segments close to the tree root. Therefore,
branches that occur in higher levels of Y can be better distinguished
than branches that occur at a deeper level. For instance, the binary
code 100 would result in a sum 0.5 − 0.25 − 0.125 = 0.125. In our
example (see Figure 5.20, right), we employ H as the hue value in
HSV color space. We additionally calculate the saturation S based on
the layer ni of each segment, except for the root segment:

Si =

(
1−

(ni − 2
d− 2

)p)
(smax − smin) + smin, with i > 1 (5.11)

where d is the maximum layer of Y, i.e., the maximum length of all
segment binary codes, and p = 0.8 controls how quick S falls off
between the maximum smax and minimum smin saturation values.
With Eq. 5.11, the leaf segments of Y will have a saturation of smin
while the two child segments of the root segment are assigned a sat-
uration of smax. A graph plot can then be generated by deriving 2D
coordinates for each node i from Hi and Ss of the associated segment
i. We plot this graph on an HSV color disc with a constant value set to
1, as in Figure 5.20 (left). The saturation is inverted, i.e., the saturation
decreases from the center to the edge. This graph representation can
be used for a color-guided integration with the 3D visualization (Fig-
ure 5.20, right). As we did not define H and S for the root segment,
we place it in the center of the HSV disc and draw it in plain white
in the 3D representation. The center of Figure 5.20 shows how color
values are interpolated across each segment in 3D, according to the

55555

108 pfb for tree-like structures

Figure 5.21: Selected segment (magenta), ancestor segments (green) and de-
scendant segments (orange).

HSV graph representation. The inverted saturation in the overview
plot allows to draw the graph in a more intuitive manner, with the
more meaningful branches located at the center with a more percep-
tive, saturated color. The 2D plot is also an indicator for the balance
of the branch topology. The magenta area in Figure 5.20 (left) is occu-
pied only by a single end-point, revealing that an early branch with
no further ramifications is present in the data set.

Another application for the binary code is to determine the lineage
(i.e., ancestors and descendants) of a selected segment, as depicted
in Figure 5.21. This kind of visualization may come in handy in the
context of liver resections, where the segments affected by a cut are
highlighted.

5.5 implementation

In this section we describe details of our implementation.

offline calculation of U Since U is defined in object-space,
it only has to be calculated once. Therefore we implemented the cal-
culation of U in Matlab (the code is provided with the original pub-
lication [133]). In order to solve Eq. 5.2, we calculate the minimal
curvature direction C and the gradient of the geodesic distances ∇G∆.
We then use a Matlab solver to obtain the results.

online calculation of V The evaluation of V is done anew
for every frame. At first the input mesh M is rendered in a prepara-
tion pass. Here we generate a mask that distinguishes between back-

55555

5.5 implementation 109

Initialize
JFA

k = 1

read

read read

k = i

k = n

Buffer 1

Buffer 2

Figure 5.22: Process of the JFA execution. A mask image (left, top) deter-
mines whether a pixel belongs to background (white), contour
(blue) or surface (red). A depth image (left, center) is used for
our depth aware modification of the JFA. The result of each JFA
iteration k is read in the next iteration by swapping two buffers.
After the final iteration, the last write-buffer is used to assemble
a final image based on V .

ground, contour and surface pixels (see Figure 5.22, left, top) and a
depth texture (see Figure 5.22, left, center) that is used to implement
the depth awareness of the the JFA as depicted earlier in Figure 5.6.
From then on we use two buffers that are read from an written to in
each JFA iteration k. After each iteration the read and write buffers
are swapped. The JFA finds for each surface pixel the distance to the
closest contour pixel. We only edited the original algorithm in a way,
such that a surface pixel skips contour pixels that have a lower depth
value than the surface pixel (see the shader provided with the original
publication [133]). For more details on the JFA we refer to the original
paper by Rong et al. [187]. After the JFA has terminated, we can read
from the recent write buffer and use V as a texture coordinate.

root-point detection As an optional pre-processing step, we
provide a method to find the root end-point of a vessel. The detection
is done in Matlab, using our own implementation of the thinning al-
gorithm proposed by Au et al. [3] and an iterative search over each
vertex as described in Section 5.3.1 (the code is provided in the sup-
plementary material).

55555

110 pfb for tree-like structures

Table 5.1: Execution times for the JFA in milliseconds and frames per second
(FPS) of our prototype application.

Resolution JFA (ms) FPS

1024 × 768 3.5 110 - 141

1920 × 1080 9 52 - 65

contour tree and binary code computation The CT com-
putation and binary code generation are implemented in Matlab (see
supplementary materials). To store the binary code as, for example,
an Int8 data type the binary code is padded with zeros to the left
in order to fill the data type. For example, the code 10011 is stored
as 00010011, i.e., a value of 19. Ambiguities cannot be introduced by
the leading zeros, because the bit representing the root segment is al-
ways set to 1. To load the binary code into our prototype application,
we stored each code Bi in three Int32 variables along with the code
length ni. Therefore our prototype can handle binary codes of length
up to 96 bits. The bit-shift then has to be done across the three 32-bit
values. For the implementation of the bit-shift we refer to the shader
sample provided in the supplementary materials.

performance Our performance tests were executed on a desk-
top computer environment with a 4.00 GHz i7-6400 processor, a GTX-
1070 GPU and 16GB RAM. As the offline computation of U is less
crucial for the overall performance of our approach, we only pro-
vide some key data: The largest mesh that we tested, consisting of
200k triangles, took 3.5 seconds to execute. The smallest mesh with
17.5k triangles took 0.25 seconds. Considering that parts of that al-
gorithm could be executed on the GPU, we argue that this is suffi-
ciently fast for an interactive adjustment of U. The computation of
V was found to be independent of the mesh size. As shown in Ta-
ble 5.1 our prototype implementation is able to obtain V in full HD
resolution in real-time. The FPS are given in ranges. Here, the lower
bound of the range is the performance when we zoom very close to
the mesh. This means that more pixels have to be treated in the as-
sembly of the final images and the frame rate decreases. The upper
bound is what we measured for a lower zoom factor (as found in Fig-
ures 5.12,5.14). The JFA execution time has not changed in these cases,
since always all pixels are processed. The mesh shown in Figure 5.3
contains 30k vertices and the computation of the end-points includ-
ing the root-point detection took ∼ 10 seconds. This is twice as fast
as the method by Lichtenberg et al. [132]. We observed that our new
approach detects end-points more faithfully while the results further
depend on the choice of the detection sphere radius determined by k
(recall Section 5.3, paragraph about root-point detection). A larger ra-
dius yields less end-points, detecting only more protruding branches

55555

5.6 discussion 111

Figure 5.23: Detected vessel end-points from left to right: Changing factor
k = 3, 9, 25 to the search sphere radius for our method and the
reference method by Lichtenberg et al. [132] on the far right.

as compared in Figure 5.23. The proportion of the individual steps
are 40% for the thinning, 45% for the sphere tests and 10% for the
curvature test. For a mesh containing 100k vertices our algorithm
took ∼ 110 seconds, while the reference approach took 154 seconds.
Especially the iterative execution of vertices for the sphere test (see
Figure 5.3, bottom) could be improved by a parallel implementation.

contour generation The contours that we used for the con-
tour parameterization in Section 5.4.4 (see Figure 5.15) and for the
contour mask (see Figure 5.22, left, top) are generated in the geome-
try shader. We compute si = 〈ni, vcam〉, where ni is the normal of
vertex i in a triangle and vcam is the current view direction. Then we
search for zero crossings of sij between two vertices i and j. If we find
zero crossings on two edges of a triangle, we generate a quad with
two vertices at the crossing points and two vertices that are extruded
by a distance d w.r.t. the interpolated normal directions at the cross-
ings. In the same way as the normal direction, we can interpolate U
from the generating triangle. The V coordinate is then determined by
setting V = 0 for the vertices at the crossing points and V = d for the
extruded vertices. This yields U coordinates that fit to the generating
mesh and the V coordinates are also scaled according to the result of
the JFA.

5.6 discussion

We presented an algorithm to compute texture coordinates for tubu-
lar, tree-like structures. The input is a user-defined source vertex or a
vessel root-point detected by our proposed method. While techniques
like that by Kälberer [93] exist, our parameterization is simpler to im-
plement and computationally less costly. We were also able to show
that the U coordinate can be used to find branch-points of the vessel.
Another advantage over existing parameterization methods is that
the background pixels are also addressed, allowing depth cues as in

55555

112 pfb for tree-like structures

Figure 5.24: The ConFis method by Lawonn et al. [125]. Compare with Fig-
ures 5.12,5.18,5.16,5.14.

Figure 5.12. This is due to the screen-space computation of V , but
at the cost of recomputing V for each frame. Nonetheless, our al-
gorithm performs in real-time on modern consumer hardware. The
properties of V can further be used for a camera oriented display of
decals on a mesh. On cylindrical parts of a structure (i.e., away from
branch- and end-points) we find that the gradients of U and V are
mostly orthogonal and therefore suitable for the display of patterns
and textures (see Figure 5.28). The CT algorithm yields a binary tree
representation of the input structure. This restriction can be seen as
a limitation, because meshes with a genus other than zero can not be
represented faithfully. Nonetheless, meshes with handles are robustly
processed, with the handles simply being ignored by the employed
algorithm [26].

limitations The parameterization approach presented in this pa-
per is simpler than existing approaches and yields good results for
tubular structures. It is tailored to vessel trees in the sense that pix-
els that represent points on a vessel segment are relatively close to
the contour pixels associated with the same segment. Therefore, the
V approximation works well. This also accounts for the modification
that we did to the JFA algorithm, where pixels may only refer to
contour pixels that have a higher depth value. The shading that is
usually applied to a mesh is also a factor. The locations where V
is locally maximal (i.e., the centerline of the projected contour as in
Figure 5.5) are often locations of specular lights. Hence, these peak
locations of V , where the gradient of V is undefined, can be hidden
by the shading. Regarding these susceptibilities the parameterization
quality decreases as the mesh morphology is less tubular. We show
a stippling pattern applied to an aneurysm in Figure 5.25. It can be
observed that part of the parameterization is highly distorted. This is
due to an improper computation of V , as the associated pixels refer

55555

5.6 discussion 113

Figure 5.25: Close-up of an aneurysm data set. Our approach has issues
with the spherical shape, introducing high distortion in V .

Figure 5.26: A tiny branch on the vessel structure is omitted by U.

to wrong parts of the contour. This behavior may change with a small
rotation of the object, when other parts of the contour become visible
or hidden. Therefore frame coherence is also an issue.

We described in Section 5.3.1 that we smooth the vector-field Z

in order to remove noise and high frequency features. While this is
a crucial step to obtain a proper and smooth U, it can also lead to
smoothing out geometric features of the mesh. Figure 5.26 shows a
close-up of a small branch segment, which is predominantly ignored
in U.

Our root-point detection algorithm relies on two main assumptions:
First, we assume that vessel end-points are cap-shaped, and second,
we assume that the diameter of the root is larger than any other diam-
eter. This means that we are likely to detect the head of an aneurysm,
if it is larger than the healthy parts of the vessel.

The 2D graph representation of the vasculature as in Figure 5.20

(left) is currently generated by a straight-forward computation of hue
and saturation values based on the segments’ binary codes. While
this underlines the balance of Y, only a subset of the color map is
used (see Figure 5.27, left). Therefore, a further optimization of the

55555

114 pfb for tree-like structures

Figure 5.27: Binary tree coloring applied to the whole tree (left) and applied
to user-defined sub-trees (center, right).

color assignment may be feasible. Another option is to only color
user-selected sub-trees as in Figure 5.27 (center, right).

outlook As discussed, the proposed method is tailored to be ap-
plied to tubular meshes. However, we hope that the examples shown
in this paper are able to support or inspire future work in this domain.
In our opinion, one can build up on this work in two different ways.
The first one would be to further improve the methodical details and
implementation. Here, the frame coherence should be addressed. We
are also optimistic that the U computation can be done real-time as
well, which might open further interactive application scenarios. As
a screen-space approach is independent of the mesh size, this may
have the potential to overcome the size limit of the method by Licht-
enberg et al. [138]. The second direction would be to use the current
method and integrate it into more sophisticated medical tasks. Using
different visual channels and additional geometry (i.e., the contour),
multiple scalar fields can be independently visualized with our ap-
proach. However, the effectiveness of different combinations in a real-
world task needs to be evaluated. In conclusion we are confident that
particular aspects of the proposed technique are feasible in various
scenarios and that it therefore creates a basis for further research.

acknowledgements Funding: This work was supported by the
DFG: LA 3855/1-1.

55555

5.6 discussion 115

Figure 5.28: Our method applied to the fertility model, using a brick tex-
ture. A root point (orange) was also found by our method in a
reasonable location.

55555

666666

6
D I S TA N C E F I E L D V I S U A L I Z AT I O N A N D 2 D
A B S T R A C T I O N O F A N AT O M I C T R E E S T R U C T U R E S
W I T H O N - T H E - F LY PA R A M E T E R I Z AT I O N

abstract In this paper, we make several contributions to the vi-
sualization of vascular structures. We show an efficient algorithm to
create a distance field volume, based on a skeletal tree. Sphere-tracing
this volume allows to visualize the vasculature in a flexible way, with-
out the need to recompute the volume. Illustrative techniques, that
have been frequently applied to vascular visualizations often require
texture coordinates. Therefore, we propose an image-based, hierarchi-
cal optimization process that allows to derive periodic texture coordi-
nates in a frame-coherent way and suits the implicit representation of
the vascular structures. In addition to a 3D surface visualization, we
propose a simple algorithm that applies a 2D parameterization to the
skeletal tree nodes. This parameterization can be used to color-code
the vasculature or to plot a 2D overview-graph. Depending on the
weights applied to the nodes during parameterization, the overview-
graph can highlight different aspects, e.g., the branching topology of
the skeleton. We transfer measurements, done in 3D space, to the 2D
plot in order to minimize visual clutter and self occlusions in the 3D
representation. A visual link between the 3D and 2D views is estab-
lished via color codes and texture patterns. The utility of our methods
is shown in several prototypical application scenarios.

6.1 introduction

Visualization methods for the investigation of vasculature have been
actively researched in the past and are still a current topic. Challenges
in this field range from surface extraction and generation over en-
hanced visualization techniques to interactive concepts for the appli-
cation during a surgery. While the extraction of vascular structures
dates back to the work by Gerig et al. [52], more modern and more
controllable methods have been developed in the meanwhile [161].
A common goal of advanced visualization techniques is to communi-
cate complex information about the vasculature in an understandable
and comprehensible way. For this, basic concepts of human percep-
tion are considered [175]. Illustrative techniques [128] are also often
applied in this context. Those are likely to require a parameteriza-
tion of the surface, in order to control placement of hatching strokes,
or texture patterns. For example, field-guided periodic parameteriza-
tions [176] can be employed to place stippling dots along feature lines.

117

666666

118 vessel sdf parameterization and abstraction

Such a structural alignment is an improvement over unconstrained
placement of dots, because it helps to accentuate geometric properties.
Similar techniques have been used in stylistic applications [206]. The
reduction of spatial dimension can also contribute to an improved
tangibility of the presented data. Overlaps and visual clutter can be
better controlled and avoided in a 2D representation, than in a 3D
representation [109].

We position this paper in the field of surface generation and ad-
vanced vascular visualization techniques. Modern GPU architectures
allow to handle larger data in a more complex way to generate images.
Whereas iso-surfaces can be extracted from volume data, a special-
ized, volume-based representation for an implicit surface is a signed
distance field (SDF). While the SDF helps to rapidly trace the im-
plicit surface, the generation of the SDF itself can also be done at
highly interactive rates [107]. The properties of the SDF allow sim-
plified implementations of otherwise more complex visual effects.
Therefore, our first contribution is to generate a SDF from skeletal
vascular data and to render an exact surface from it. Second, we pro-
pose a simple algorithm to transform the 3D skeleton to an abstract
2D graph representation. The graph representation will highlight the
branch-topology of the vasculature and allows to view related prop-
erties of the whole model in one gaze. To apply illustrative effects
to the generated 3D surface, we require a surface parameterization.
As the implicit generation of the displayed surface does not allow
an off-line pre-computation of the parameterization, we introduce an
image-based, hierarchical optimization process that allows to derive
periodic texture coordinates. This screen space parameterization (SSP)
method works on the rendered surface and executes just-in-time. A
byproduct of the screen-space approach is the parameterization of the
unoccupied space next to the surface, which may also be utilized for
visualization purposes. Finally, we describe the applicability and use-
fulness of our main contributions through selected applications that
benefit from the combined 2D and 3D view.

6.2 related work

The immediate reconstruction of vascular structures from MRI or CT
data, using direct volume rendering or maximum intensity projec-
tion, is not free of artifacts. Reconstruction methods that can assure,
e.g. continuity of vessels, are a more sophisticated way to go. These
methods can be model-free or model-based [110], with the model-
based methods dominating the literature. A reason for this may be
that most hemodynamics simulation applications require an explicit
surface representation [160]. For example, the method by Oeltze et
al. [161] uses a directed graph as input. Each node is assigned with
a radius, determining the vessel thickness and each edge represents

666666

6.2 related work 119

a segment of the vasculature. Using convolution surfaces [14], they
reconstruct a smooth implicit surface, which can then be triangulated
for visualization. This allows for a faithful representation of the in-
put radii, but does not allow arbitrary cross-sections. Schumann et
al. [201] used a point-based implicit representation to achieve arbi-
trary cross-sections. The input is taken directly from binary masked
volume data. The work by Kretschmer et al. [110] transforms signed
distance fields to a potential function that describes the implicit sur-
face. A further overview of vascular surface reconstruction literature
can be found in the work by Saalfeld et al. [194], who use meta-balls
to define and render an implicit surface on-the-fly. While most tech-
niques that aim for an explicit reconstruction use an implicit repre-
sentation as an in-between-step, it is not obvious whether the im-
plicit representations are suitable for direct rendering. We therefore
contrast the current state-of-the-art by employing an SDF to directly
render the implicit surface, using an exact sphere-tracing approach.
With the SDFs, we gain more flexibility in the visualization of the
vasculature, as will be shown in the application examples.

SDFs are a common geometry representation in many areas rang-
ing from collision detection using the distance information [50], sur-
face reconstruction [164] to general rendering applications. 2D fields
can be used to encode low resolution text or glyphs. These can be re-
constructed without magnification artifacts encountered with bitmap
data as shown by Green [56]. Information about surrounding geome-
try can be obtained from an SDF and be used for various effects, that
are typically hard to do with traditional rendering techniques, such
as soft shadows or volumetric ambient occlusion [230]. An overview
over three-dimensional distance fields can be found in Jones et al.
[89].

To render structured patterns on the implicit surface, a parameteri-
zation is required. The range of parameterization applications is very
wide and well covered in the summary by Sheffer et al. [202]. As men-
tioned earlier, parameterizations can be aligned to an input guiding
field. Vaxman et al. [227] provide a thorough survey of the synthesis
of such guiding fields. The alignment with a guiding field can allow
artistic freedom or be used to highlight structural features. An addi-
tional common goal is to reduce the distortion that is introduced by
the mapping from a 2D to 3D domain. For this task, energy functions
are defined and attempted to be minimized. This is a difficult task,
depending on the target topology and morphology. Surfaces that can-
not be trivially mapped to a plane are especially problematic. The
approach by Praun et al. [171] attempts to circumvent this problem
by locally mapping parts of a surface onto a 2D plane. The discon-
tinuities across the mappings are resolved by blending during the
texture application. The property of locality can also be introduced
by using periodic mappings. In the remeshing domain this was done

666666

120 vessel sdf parameterization and abstraction

by Ray et al. [176]. The feasibility of employing a periodic param-
eterization, that is aligned to a guiding vector field, for artistic or
visualization purposes has been exemplified in the works by Knöp-
pel et al.[103] and Son et al. [206]. The former works on meshes and
the latter on images as input. While the execution times of both are
interactive, they did not aim for real-time capabilities. Real-time ex-
ecution has recently been tackled by Lichtenberg et al. [138] (trian-
gles), where they moved an approach, similar to the work by Jakob et
al. [86] (triangles and point-clouds), to the GPU. The idea is to solve
a global optimization problem by local approximations. By lifting the
data into a multi-resolution hierarchy structure, locality can be over-
come. Such an approach is highly suitable for parallel execution of
the local approximations in one hierarchy level. As our implicitly ren-
dered surface is given in image space, we adapt this idea and apply
it to the image space. The hierarchy structure will then be an image
pyramid. Multi-resolution hierarchies expose the ability to propagate
global features (coarse hierarchy level) into local regions (fine hierar-
chy level). This is why the Pull-Push Algorithm (PPA) by Gortler et
al. [55] is an important tool for our work. We use this algorithm to
traverse the hierarchy levels in order to propagate information across
the screen space. The PPA is commonly used for hole-filling purposes
(see [147] for an example). Thus, we can use the PPA to substitute the
empty space around an object. This is also of interest in the visualiza-
tion community as the work by Kreiser et al. [108] shows. Alternative
methods to apply structured patterns were proposed: Kim et al. [99]
deform an input hatching texture to align with a given guiding field,
which is computed on the fly. This allows them to display animated
meshes in an illustrative manner. At the downside, the screen space
projection introduces shower-door effects. Breslav et al. [23] were able
to reduce these artifacts to a certain grade by 2D similarity trans-
forms. They incorporate information of the rendered 3D model to
adjust their results approach accordingly. Our method contrasts the
above by providing texture coordinates that are closely related to the
input 3D structure (i.e., no shower-door effect occurs) and are glob-
ally periodic (i.e., no seams occur). However, we cannot utilize the
whole morphology of the input structure, as we only work on the
visible projection. This again, can also be of advantage because the
complexity of the visible surface may be lower than that of the whole
surface.

A common goal in the advanced visualization of vasculature is to
encode multivariate data on the surface or to enhance spatial percep-
tion of the geometry. Recent attempts to improve spatial perception
through auxiliary tools [175] have been made by Lawonn et al. [122,
124], Lichtenberg et al. [132] or Kreiser et al. [108]. Further, flattening
techniques [109] are a prominent way to reduce the complexity of
a visualization and to overcome self-occlusion. We contribute to this

666666

6.3 method 121

area by proposing a combined 2D and 3D view of the vasculature,
that are visually linked by color-codes and texture patterns.

6.3 method

The vascular trees to be visualized are given as a directed graph T

with nodes N and edges E. A directed edge e(i, j) ∈ E connects two
nodes (i, j) ∈ N and a node i is associated with a point pi ∈ R3

and a radius ri ∈ R. Further, we assume that the directed edges
point away from the root and each node has at most two children
and one parent. We assume this binary branching restriction, because
branches of higher degree can be broken down to binary branches
by adding nodes with edges of zero length. The root is restricted
to one child and no parent, so that there exists one root edge that
then further branches into the successive sub-trees. We call nodes
that have one child and one parent regular node, nodes that have no
child and one parent leaf node and nodes that have two children and
one parent branch node. By removing all regular nodes, only the root,
leaf- and branch nodes remain in a reduced tree Tr which represents
the branching structure of the vascular tree.

This section can be wrapped up as follows: First, the input graphs
Tr and T are used to generate a 2D (Section 6.3.1) and 3D (Sec-
tion 6.3.2) depiction of the vasculature. Then, a recap of the PPA (see
Section 6.3.3) is given, which is then used for a background recon-
struction (see Section 6.3.4). With the background reconstruction, we
assign information to all pixels in the 2D and 3D views, that are not
occupied by the vessel structure. Kreiser et al. [108] already did this
to obtain Void Space Surfaces (VSS). In our pipeline, the background
reconstruction ensures that the successive SSP does not need to han-
dle void pixels. Before the SSP is applied to the 3D view (see Sec-
tion 6.3.6), we generate a guiding field (see Section 6.3.5). To ensure
a frame coherent parameterization, successive frames are optimized
based on the results of the previous frame (see Section 6.3.7). Fig-
ure 6.1 depicts the main sections of the method.

6.3.1 2D Graph Layout

This section describes the transfer of the 3D vessel tree to a 2D graph
representation. The goal is to layout the graph in a way that highlights
the branching topology of the 3D skeletal tree. Thus, we use the re-
duced tree Tr and arrange the nodes in a way that allows to easily
identify different sub-trees. Previous work [135] has already made an
attempt in this direction, but fails to capture very unbalanced trees.
We propose a new, simple algorithm that takes node weights into
account and assigns to each node a parameter pair (h, s) ∈ [0, 1]2, to
achieve a more intuitive or even task oriented graph layout. Here, h is

666666

122 vessel sdf parameterization and abstraction

Figure
6.

1:
O

verview
of

our
m

ethod
pipeline.(a)

The
input

graph
T

is
transferred

to
a

2D
and

3D
representation

(Sections
6.

3.
1

and
6.

3.
2).The

2D
layout

param
eters

are
used

as
hue

and
saturation

to
obtain

segm
ent

colors.(b)
The

background
is

reconstructed
(Sections

6.
3.

3
and

6.
3.

4).
H

ere,a
pseudo-chrom

a
depth

m
apping

is
applied

as
an

exam
ple,im

itating
V

SS
[
1

0
8].(c)

The
SSP

is
applied

to
the

3D
view

(Section
6.

3.
6),

the
2D

view
is

param
eterized

w
ith

a
uniform

grid.
(d)

The
results

are
utilized

to
apply

a
color-

and
pattern-m

apping.
In

this
exam

ple,
the

m
inim

aldistance
of

vesselsegm
ents

to
the

tum
or

surfaces
is

encoded
by

color,w
hile

the
pattern

overlay
highlights

regions
w

here
the

distance
is

sm
aller

than
1

5
m

m
.

666666

6.3 method 123

the horizontal and s the vertical layout parameter. By default, we set a
node’s weight wi to the number of nodes in the sub-tree represented
by this node. We initialize the (h, s) parameter for the root and its
child node with (0.5, 1). By putting them into the same location, the
first edge has zero length and will be hidden in consecutive visualiza-
tions. If n1 is the root’s child node, then we start to recursively param-
eterize the successive nodes by calling ChildLayout(n1, 0, 1), which
is depicted in Algorithm 2. The call with bounds 0 and 1 means that
child nodes may occupy a range between 0 and 1 for the h-parameter.
If ni is not a leaf node, i.e., it has two child nodes, we obtain the
child nodes and their weights (lines 3-4). The weights are used to de-
termine the vertical s-parameter in dependence of a user-parameter
ps = 0.4 (lines 5-6). Then, the available h-space is divided at a value
rt (line 7). The basic idea here is to assign a larger fraction of the
available h-space to the child node with the higher weight. For very
unbalanced weights, it can be beneficial to allow an overlap of the
children’s h-space. We account for this by computing a weight wr,
which reflects the ratio of the node weights (line 8). The impact of
the weight difference is controlled by a parameter ph = 4

Nr
, where

Nr is the number of nodes in Tr. Offsets m to the children’s ranges
are computed (lines 9-10) and applied in the call to the next recursive
iteration of our procedure (lines 13-14). The h-parameter is obtained
as the center of the assigned range (lines 11-12). Note, that in Tr a
node is either a leaf node or a node with children, except for the root
node. In a final step, the (h, s) parameter is scaled to the range [0, 1].

Algorithm 2 2D Node Layout

1: procedure ChildLayout(ni, r1, r2)
2: if NumberOfChildren(ni) = 2 then
3: c1, c2 = getChildNodes(ni)
4: w1 = weight(c1), w2 = weight(c2)
5: s(c1) = s(ni) − (w1/max(w1,w2))ps

6: s(c2) = s(ni) − (w2/max(w1,w2))ps

7: rt = (w2r1 +w1r2)/(w1 +w2)

8: wr = min(
w1
w2

, w2w1)
(ph·max(

w1
w2

,w2w1))

9: m1 = (wr − 1)(
1
2r1 +

1
2rt − h(ni))

10: m2 = (wr − 1)(
1
2rt +

1
2r2 − h(ni))

11: h(c1) = mean(r1 +m1, rt +m1)
12: h(c2) = mean(rt +m2, r2 +m2)
13: ChildLayout(c1, r1 +m1, rt +m1)
14: ChildLayout(c2, rt +m2, r2 +m2)

The layout parameters can be used to draw the vessel graph. Using
(h, s) as is, a linear layout (see Figure 6.1 (top) is achieved. By map-
ping h ∈ [0, 1] to [0, 2π] and using 1− s as a radius, we can as well
plot the graph in a radial layout, with the root at the center as in Fig-

666666

124 vessel sdf parameterization and abstraction

ure 6.11 (bottom). The (h, s) parameter can also be directly used to
as hue and saturation values in HSV color space, as done throughout
this paper. As the h-space is subdivided by individual sub-trees of Tr
the coloring is able to highlight the respective sub-trees.

6.3.2 Signed Distance Field Generation

We use a specialized algorithm to prepare a fast sampled signed dis-
tance field for skeletal data. This algorithm requires special care, as
the geometry that the skeleton represents is not just the lines them-
selves, but a surface of revolution around them, which is not given
explicitly. The final geometry of the full skeleton is given as the union
of the geometries for each segment, specified by the edges e(i, j) ∈ E

with their respective radii and endpoints.

the signed distance field for skeletal segments is de-
rived by geometric considerations, similar to Barbier et al. [5]. In con-
trast to them we use a full SDF instead of using zero for all points
inside of the object. The base-geometry is a sphere-cone, which com-
prises of two spheres at the endpoints of a line segment connected by
a tube aligned with the outer tangents. The shape can be described
as a surface of revolution around the line segment so we can reduce
the problem to two dimensions (see Fig. 6.2). We fix the origin at pi
and orient the x axis to coincide with the direction pj − pi. We de-
fine the distance between both points s = |pj − pi| and the relative
radius rd = ri − rj. We fix a second coordinate system (i, j) located
around the point where the outer tangents of both circles coincide
and intersect the first circle. Its second axis j is parallel to the vector
c − pi, which by definition is perpendicular to the outer tangent line,
thus determining the first axis i. With some geometric considerations,
the center point c is found by computing the offsets from pi in the
x and y directions along with the length between c and the tangent

intersection with the second circle l =
√
s2 − r2d.

c =

(
di

hi

)
=
1

s

(
rdri

ril

)
(6.1)

This formulation is valid regardless of whether ri or rj is larger. If
|rd| > s, one circle encloses the other. In that case the above formula
does not work and the distance is the distance to the larger circle. The
orthonormal coordinate system around c is then computed as

i =
1

s

(
l

−di

)
(6.2)

j =
1

s

(
di

l

)
(6.3)

666666

6.3 method 125

Figure 6.2: The geometry for each line segment, consisting of two points
and spheres around them, which are connected by their outer
tangents. The three-dimensional shape is a surface of revolution
and can thus be reduced to a two-dimensional problem.

A given query point q in the first coordinate system can then be trans-
formed as

q ′ =

(
iT

jT

)
(q − c) (6.4)

The signed distance is then determined as the signed distance to one
of the circles or the tubular segment:

s(q) =


|q|− ri , if q ′x < 0

|q − pj|− rj , if q ′x > l

q ′y , else

(6.5)

The distance field of the surface of revolution in three dimensions is
obtained by projecting a query point p into the first two-dimensional
space and then evaluating the field there. The two-dimensional co-
ordinates are given as the projection of a query point onto the line
segment and its distance to the line through pi and pj.

d = pj − pi (6.6)

q =

 |pi|2+d·p−pi·pj
|d|

|(p−pi)×(p−pj)|
|d|

 (6.7)

fast signed distance field generation We use a fast GPU
based algorithm to compute a sampled distance field. It is a vari-
ant of the unsigned distance field generation used in [107], which is
modified to support the special non-triangle geometry for the line
segments. The first step is the creation of a dynamic uniform grid.
For this we adapted a common approach for triangle rasterization.
For more details on the general technique, we refer to Hasselgren et

666666

126 vessel sdf parameterization and abstraction

Figure 6.3: The oriented bounding box around the line is projected onto
the rasterization surface to generate all fragments, that would
be touched by the actual three-dimensional object under an or-
thographic projection.

al. [69]. The basic idea is to render all primitives with an orthographic
projection in a bounding box and use the rasterized fragments to fill
a uniform grid in parallel. Each primitive’s coordinates are swapped
such that the largest amount of fragments is generated. For triangles
the largest absolute component of the normal is used as the projec-
tion direction. For a line segment we determine the three-dimensional
bounding box and choose the dimension with the least extent. This
ensures, that the rasterized bounding box area is maximized resulting
in a better sampling of the line. This can be achieved with a geometry
shader. As the geometry extends further than the line segments them-
selves, we generate triangles around the line. To avoid problems with
extending too far into the projection direction and thus triggering
clipping of needed fragments, the line is projected onto the viewing
plane in a first step. Around this projected line a bounding box, ori-
ented along the line direction, is constructed. Its size is determined
by the segment length and the bigger of the two endpoint radii. Dur-
ing rasterization, fragments are then back projected to find the center
depth value. Each fragment can then check a range around that center
given by the radius. The setup for the projection is shown in Fig. 6.3.
Each cell in the depth range will be tested and if the distance to the
actual surface is one cell away, the cell is recorded as a cell to be used
for sampling. This process is done twice, in the first step the num-
ber of primitives per cells is counted with an atomic add operation.
These counts are combined with a prefix sum algorithm to determine
indices to be used for storing primitive data for each cell. The second
pass then stores all line segments per cell.

Afterwards, a distance transform is performed, which records the
nearest cell. This is used in a last step, to refine distance by computing
the exact values of a cell center to the geometry stored in the nearest

666666

6.3 method 127

Figure 6.4: Illustration of the sphere tracing algorithm. A ray can be tra-
versed quickly by moving by the amount specified by the SDF.

neighbor cell. Due to the analytic expressions for the distance field,
this allows for determining the correct sign without any need for
additional computations, that are needed when dealing with triangle
meshes.

sdf tracing algorithm SDFs carry with them geometric in-
formation that can be used for various purposes. One of these is to
treat it similar to a spatial acceleration data structure. For more gen-
eral implicit surfaces a ray marching algorithm is required, since the
surface is only given as the zero set. Depending on the type of ray
marching and implicit some zeros can be missed. In contrast, SDFs
can be traversed quicker while not missing any surfaces. This was
observed by Hart [68] who developed the sphere tracing algorithm.
It is based on the observation, that the SDF provides a minimimum
distance in which no geometry can be as otherwise that closer geom-
etry would provide a smaller distance. This empty sphere is called an
unbounding sphere. It provides a safe distance to move along a ray
guaranteeing that no geometry is missed. This is shown in Fig. 6.4.
Some problems may arise when only using a sampled distance field.
Most notably, small structures can be missed, as the interpolation may
not have a negative value to correctly represent a boundary. This is
especially problematic when dealing with fine tree structures. To over-
come this problem without introducing high resolution fields which
are costly both in computation time and storage, we instead use the
data computed by the SDF generation algorithm. The tracing uses
the sampled distance field as long as it reports a distance larger than
the cell size. For smaller distances, the nearest grid cell is looked up
and the exact SDF is computed for the geometry contained in it. This
also yields the index of the closest line segment. Fig. 6.5 shows the
difference of using only the sampled SDF and our exact version. The
per-pixel i output of the tracing is the surface position pi, the closest

666666

128 vessel sdf parameterization and abstraction

Figure 6.5: Tracing only with a sampled SDF may result in missing small
structures due to values being only interpolated (left). Our ver-
sion, where we move close to the surface with the cheap sampled
SDF before switching to the exact computation utilizing the near-
est grid cell computed before (right).

line segment’s index ∈ E and the normal, given by the SDF’s gradient.

6.3.3 Pull-push algorithm

The PPA was introduced by Gortler et al. [55] and makes use of
a multi-resolution image pyramid to interpolate scattered data or
to reconstruct missing data of an input image. As stated by Rosen-
feld [191] such pyramids are an application of the divide-and-conquer
principle. Hence, for a given problem, solutions are first found for
coarser representations of data (pyramid top) and then successively
propagated to finer representations (pyramid bottom). This succes-
sive propagation allows to compute individual parts of the image
space in parallel, while maintaining a global relationship among all
the parts. Therefore, the PPA is perfectly suited for execution on the
GPU, which we will exploit for our real-time screen-space parameter-
ization approach. Next, we give a short recap of the PPA as described
by Gortler et al. [55] and provide the required formulae for later ref-
erence.

We denote each unique pixel in the pyramid with index i and the
neighbors of i with three sets: the set A•i is the set of neighbors of i
in the same pyramid level (the four horizontal and vertical neighbors
of a pixel). The sets A−

i and A+
i describe the neighbors of i in the

next lower (finer) and next higher (coarser) level of the pyramid. This
topology follows the method described in [147].

666666

6.3 method 129

the pull-phase constructs the image pyramid from the input
image by iteratively computing the coarser levels:

wi =
∑
j∈A−

i

hj,imin(wj, 1) (6.8)

gi =
1

wi

∑
j∈A−

i

hj,imin(wj, 1)gj (6.9)

where hj,i ∈ [0, 1] (default: 1
|A−
i |

).

the push-phase iteratively reconstructs data from coarse to fine
levels in the pyramid, where hj,i ∈ [0, 1] (default: 1

|A+
i |

):

ŵi =
∑
j∈A+

i

hj,imin(wj, 1) (6.10)

ĝi =
1

ŵi

∑
j∈A+

i

hj,imin(wj, 1)gj (6.11)

The above ŵi and x̂i contain the reconstructed information from the
coarser level. If the current pixel i has already obtained information
during the pull phase (i.e., wi > 0), then both can be blended:

α = 1− (1−wi)
k (6.12)

gi ← ĝi(1−α) +wigi, wi ← ŵi(1−α) +wi (6.13)

By default, we use k = 1, however, increasing this value decreases
the influence of the information reconstructed by the push equations.
Generally, this means that less attention is given to the global aver-
age of data (residing at the pyramid peak) and instead, reconstructed
values depend more on their local neighborhood.

6.3.4 Background reconstruction

This section describes the reconstruction of the background for the 3D
view. The SSP (see Section 6.3.6) is going to parameterize all pixels in
screen space of the 3D view. In order to avoid that empty or unde-
fined pixels need to be handled, we construct a valid background
from the rendered vascular surface. Kreiser et al. [108] used inverse
distance weighting (IDW) to build a VSS. However, we can as well use
the PPA to fill the background. This does not yield the same results as
IDW, but since there is no ground truth for a correct VSS, we use the
faster PPA approach. The reconstruction cannot be directly applied
to the 3D positions pi, because previously undefined pixels, where
wi = 0, would tend to assume the local average of the data being re-
constructed. Hence, restored 3D positions would be located towards
the center of the rendered surface. Instead, we only reconstruct the

666666

130 vessel sdf parameterization and abstraction

Figure 6.6: Background (orange) reconstructed from a vascular tree. Isolines
highlight the depth profile, resembling VSS [108].

depth of a pixel. This yields a smooth height profile that connects
with the foreground. Note that during the push phase, we set hj,i to
bi-quadratic b-spline weights as used by [147] and the parameter k
in Eq. 6.12 is set to 25. The larger k results in a more local approx-
imation of the depth values, which yields a more expressive height
profile. We can then use the inverse projection of the graphics pipeline
to obtain a valid 3D position pi for the given depth value and loca-
tion of i in screen space [117]. A normal ni can be obtained by the
second derivative of the newly obtained positions. An example result
is given in Figure 6.6. Note that the input surface information is not
bound to originate from an SDF sphere tracing. Figures found in this
paper that show surfaces other than vasculature are based on mesh
inputs, since per-pixel 3D positions and normals can, of course, as
well be obtained by rasterizing triangle meshes.

The above procedure is applied to the projection of the 3D surface.
For the 2D view, we can as well obtain a background reconstruction.
When rendering the line segments of the 2D graph layout, we write
the 3D positions of the associated nodes of the input structure into
the occupied pixels. The PPA is then applied with default weights to
fill the background with 3D positional information. It is not purpose-
ful to reconstruct the background based on the depth values, as done
for the 3D view, because the 2D node layout does not live in a projec-
tive space. The reconstructed background of the 2D view will help to
visualize 3D-based magnitudes, as will be shown in Section 6.5.

666666

6.3 method 131

6.3.5 Screen space guiding field

Here, we describe how a guiding field for the SSP can be generated
from the rendered surface contour. The (U,V) coordinates that we
are going to generate will be aligned to a guiding vector-field Z. We
assume that no field is defined on the input structure and construct
it from the so far available data. For this, we look at the depth image
produced by the input surface and apply the Sobel filter to obtain a
gradient τi at each pixel i that is part of the foreground. The resulting
gradients are normalized through division by the size of the surface’s
bounding box size. If |τi| is larger than a threshold t (default: 0.2),
then the pixel is considered as a contour generator and we set zi ∈ Z

to the 2D projection of the normal at pixel i. We can then run the PPA
with wi = wf for the contour pixels and wi = 0 for all other pixels to
propagate the contour directions into the undefined pixels. The vari-
able wf (default: 0.2) can be used to introduce a smoothing into the
existing data. Note that Z is considered in screen space and we pro-
cess it as a 2D field. Now, in the pull and push Eqs. 6.8 through 6.11

the element g (i.e., the element being reconstructed) is a matrix repre-
sentation of the 2D vector z ∈ Z. If z = (a,b), then

g =

(
aa ab

ba bb

)
(6.14)

We obtain the resulting 2D vector as the first eigenvector of the av-
eraged matrices. This matrix representation handles the ambiguity
of Z. Z only defines an orientation and not a direction, i.e., Z ∼ −Z.
If the eigenvalues of the resulting matrix are equal, i.e., no specific
eigenvectors are defined, we simply use one of the considered vec-
tors as a substitute. Further, we set hj,i = 1 during the pull phase.
During the push phase, hj,i is additionally scaled by 1

|pi−pj|2
, so that

fragments whose 3D positions are further away have less influence
in the weighted average. After a full run of the PPA, the background
pixels are populated with directions that smoothly connect to the fore-
ground. Figure 6.7 shows two example images of parameterizations
using the SPP, which will be described in the next section.

6.3.6 Screen space parameterization

This section describes how we employ the method proposed by Licht-
enberg et al. [138] to obtain 2D periodic texture coordinates (U,V)
in screen-space that are aligned to Z, utilizing the PPA. Note that at
this point, each pixel in the image pyramid is populated with a 3D
position, normal, and guiding field direction. At the bottom-line, we
simply take the formulation from Lichtenberg et al. [138] and apply it
to the topology of the image pyramid, instead of to the topology of a
triangulated mesh. Recall that the topology within one hierarchy level

666666

132 vessel sdf parameterization and abstraction

Figure 6.7: Texture coordinates (U,V) aligned to a guiding field created
based on the surface contour (insets).

of the PPA pyramid is given by A• and the topology across hierarchy
levels is given by A±. We now initialize the top hierarchy level (con-
sisting of a single pixel i) with wi = 1 and (ui, vi) = (0, 0). Then, the
push operation and r (default: 4) optimization operations take turns
until the lowest pyramid level is reached. Details on both operations
are described next. Since the U and V coordinates are computed sep-
arately, we only refer to U in the following. The computation of V is
done analogously with a guiding field orthogonal to Z. Since the field
Z is defined in 2D screen space, but the parameterization algorithm
takes a 3D field as input, we project each z ∈ Z into the tangent plane
of the respective pixel.

the parameter push operation reconstructs ui ∈ U based on
the values at A+

i . The element g in Eq. 6.11 (i.e., the element being
propagated through the hierarchy levels) now refers to the Cartesian
target coordinate ϕj,i as in Eq. 8 in [138]. It represents the optimal
parameter that a pixel i should assume w.r.t. the pixel j, in order to
minimize the energy term used in [138]. The energy of two neighbor-
ing pixels is zero, if |〈zi, pi−pj〉| = |ui−uj|f, where f is a scale factor.
This means that the energy is at a minimum if the scaled distance in
parameter space is equal to the distance of the two points pi and pj,
projected to the guiding direction zi. The weight hj,i to obtain ϕj,i
from a higher hierarchy level is assembled by several measures:

hj,i =
1

(pi − pj)2
· bj · |〈zi, zj〉| (6.15)

666666

6.3 method 133

where p is the 3D position represented by a pixel, z the direction
of the guiding field at that pixel and b is a penalty applied to back-
ground pixels:

bj = 1− (1−m)pb (6.16)

where pb (default: 0.99) controls the pruning and m is the fraction
of (level zero) foreground pixels represented by the pixel of the cur-
rent level. For example, the pixel at the highest pyramid level repre-
sents the whole image and m would be equal to the fraction of fore-
ground pixels in the whole image, while at the pyramid bottom m

is either 0 or 1 for background and foreground pixels, respectively.
We can observe that employing bj stabilizes the parameterization
at the boundary of the projection of the surface, because the back-
ground yields to the foreground. With this modification, we can ap-
ply Eq. 6.11 to compute an average Cartesian target coordinate and
obtain ui = atan2(ϕj,i).

the parameter optimization operation recomputes U within
a single hierarchy level and therefore optimizes the result. We do the
same procedure as in the parameter push operation (i.e., optimize the
target coordinate as in Eq. 8 of [138]) but use the A• neighborhood
instead of the A+ neighborhood. By optimizing the top hierarchy
levels and propagating the results down to the lower levels, which
are again optimized, a globally periodic parameterization is obtained.
Example results can be found in Figure 6.7.

6.3.7 Frame coherence

The pipeline described up to this point can be applied to the initial
input given by the projection of an input surface, i.e., for a static
frame. If a dynamic scene is considered, e.g. a rotating object, then
processing the pipeline from scratch for each frame will cause heavy
coherency artifacts. In this case we attempt to recycle the results of a
frame to initialize the computation of the next frame.

While the 3D reconstruction of the background pixels are smooth
as long as the object movements are smooth, very abrupt changes
may introduce a hectic visual appearance. To circumvent this, we
smoothen the changes to the background morphology over the frames.
This is easily achieved by a small adjustment to the procedure in Sec-
tion 6.3.4. We render the surface as before, but instead of initializing
the background with zeros, we copy pixel values from the previous
frame. The weight wi for the background pixels is set to a param-
eter SB ∈ [0, 1] (default: 0.01). Thus, a part of the previous frame’s
information is pulled into the pyramid (see Eqs. 6.8 and 6.9). As a re-
sult, the reconstruction of the background becomes inert and abrupt
changes are softened.

666666

134 vessel sdf parameterization and abstraction

The next issue that we will consider is the re-initialization of the
U and V parameters. For the background, we copy the parameters
from the previous frame. This does not suffice for the pixels that
represent the foreground. To establish a link between a pixel in the
new frame and its represented location in the old frame, we perform
a reprojection. The 3D location of a pixel is transformed back into
world space, using the graphics pipeline’s inverted view matrix and
then projected to screen space with the view matrix of the previous
frame. This yields the screen space coordinate to read the previous
frame’s parameter from. Instead of starting at the pyramid peak as
in Section 6.3.6, we pull the information of the last frame into the
image pyramid. This is done analogously to the push operation in
Section 6.3.6 with the A− neighborhood and Eq. 6.9. As utilizing all
pyramid levels in this procedure may introduce large changes from
frame to frame, we limit the PPA execution to a level lp (default:
3). Thus, only a local update is performed, achieving a temporally
smooth update of U and V .

6.4 implementation

This section briefs the implementation and the computation time of
the individual pipeline steps. The 2D graph layout (Section 6.3.1) is
computed in a C++ application, based on the input graph Tr, the node
weights and the user parameters ps and ph. The 2D node positions
are then loaded onto the GPU and edges of Tr are rendered as triangle
strips into the 2D view window. For the 3D sphere tracing, a screen-
filling quad is generated to invoke the fragment shader and a SDF-
accelerated tracing is executed. The data structure for the PPA is a
set of frame buffer objects (FBO), one FBO for each level of the image
pyramid. The base resolution m is set to a power of 2. Each FBO
has texture attachments for each data field in our pipeline with an
appropriate mipmap-level. The communication among the different
steps is done solely via these textures, using the OpenGL pipeline
and the main steps of our algorithm are the following:

S1 Generate SDF volume (Section 6.3.2)
S2 Compute 2D graph layout (Section 6.3.1)
S3 Render input images (Section 6.3.2)
S4 Reconstruct background (Section 6.3.4)
S5 Compute SSP (Section 6.3.6)

Step S1 is only done once, because the input graph T is static. The 2D
graph layout is recomputed if the user-parameters oder the weights
that are assigned to Tr change. Then, in S3 we obtain textures for the
3D view by the SDF sphere tracing (as done for some of the figures
in this paper, simply rendering a triangle mesh), holding per pixel
3D positions and normals, as well as a flag defining whether a pixel

666666

6.5 applications 135

Table 6.1: Execution time in milliseconds for steps S3-S5 of our pipeline. The
values in the last column refer to timings obtained for lp = 3.

Pixels

Step
S3 S4 S5

5122 6-12 0.34 4.36

10242 20-30 1.15 15.09

belongs to the foreground or background and a pointer to the closest
edge of Tr. For the 2D view, the line segments of Tr are drawn. In S4,
we use the positional information from the input images to recon-
struct the background positions for the 2D and 3D view, as described
in Section 6.3.4. Lastly, S5 is executed to obtain texture coordinates
(U,V) for the 3D surface and background. Here, we use two textures
per pyramid level to hold the current parameter information. These
texture pairs are used to synchronize the read and write access during
the iterative optimization process in a ping-pong fashion. If informa-
tion from a previous frame is available, we compute the reprojection
and initialize the image pyramid according to Section 6.3.7.

After processing the above steps, information about the rendered
surface, the reconstructed background and a periodic parameteriza-
tion is available for the current frame. Section 6.5 will show several
example visualization strategies that can be achieved based on the
prepared data.

performance To asses the performance of our implementation,
we use OpenGL time queries. This means the time of a render pass
to execute on GPU is measured. Anything in between render passes
(i.e., overhead on the CPU) is not taken into account. We executed our
algorithm on a machine with a 4.00 GHz i7-6400 processor, a GTX-
1080 GPU and 16GB RAM. The SDF generation is only done once,
but could also be incorporated in a dynamic pipeline as our timings
show. Generating an SDF volume of size 643 took on average 2.1 ms
for input trees consisting of about 1000 edges. The generation of a
1283 volume took 13.1 ms on average. Executing the 2D graph layout
algorithm is in sub-millisecond range. Table 6.1 shows the execution
times for steps S3-S5 and different screen resolutions. For step S5

we did the measures based on the recycling of U and V with a given
hierarchy recycling depth lp = 3.

6.5 applications

This section depicts potential application areas of our method.

666666

136 vessel sdf parameterization and abstraction

Figure 6.8: The sphere tracing iteration marked in orange depicts the min-
imal steps size, before the step size increases (left). It represents
the minimal distance to a surface passed by the ray. Example
of overlapping vessel segments with contours of constant world
size (right).

illustrative rendering styles for implicit surfaces

We can use the periodic texture coordinates directly to run a stippling
and hatching shader. The distribution of dot and line primitives will
be aligned to the guiding field, which allows us to produce results
similar to Son et al. [206], whose description we follow to generate the
primitives (see Figure 6.10, left). The artistic style can also be applied
to the reconstructed background in order to produce a shade effect
around the object. In Figure 6.1 (right) the minimal distance of vessel
segments to the tumor surfaces is encoded. Regions that fall below
a threshold (15 mm) are highlighted by a stippling pattern, which is
applied to both, the 2D and 3D view. By extending the pattern to the
reconstructed background, even small affected areas are more easily
recognizable.

Silhouettes and contours of user-defined width can be generated
with information from the SDF sphere tracing. For each ray that is
traced to generate the surface, we keep track of the minimal SDF
value that this ray has passed (i.e., the radius of the smallest sphere
as in Fig 6.4). We can then draw the silhouette for at the pixel of each
ray that does not hit the implicit surface, but passes it at a minimal
distance dmin < ds, where ds is the thickness of the silhouette. To
draw contours, a modification is required. We only check and update
the minimal distance dmin if the tracing step size would increase in
the next iteration of the sphere tracing. In this way, dmin represents
the minimal distance to a point on the surface, that the ray passed by,
before hitting another surface (see Figure 6.8). An advantage of the
above described contour generation is the possibility to obtain the 3D
point on the ray, that is associated with dmin as well. This allows to
render depth-dependent shadows as proposed by Ritter et al. [184]. If
dshadow is the distance of the traced surface to the point associated
with dmin, we draw a depth shadow if dmin < min(m · dshadow,a),
where m is the ratio of shadow-depth and shadow-thickness and a
is the maximum thickness for the shadow. The texture coordinates

666666

6.5 applications 137

Figure 6.9: Ray A has minimum distance dmin < min(m ·dshadow,a) and
casts a shadow. This is not the case for ray B (left). The depth de-
pendent shadows support depth perception as described in [184]
(right).

obtained by the SSP can then be used to apply a hatching scheme.
See Figure 6.9 for an illustration and example.

sample extraction The (U,V) parameters can be used to ex-
tract sample positions from the rendered surface. We propose to ap-
ply a flattening to the rendered surface prior sample extraction, so
that the distortion of U and V along the surface vanishes. Thus, the
samples follow the contour of the surface, but not its curvature. For
example, if the 3D positions of each pixel are projected into the cam-
era plane and the normals are set to the normal of that plane, we
obtain a flat representation of the input surface. Then, extracted 3D
sample positions from a surface can be evenly spaced in screen space.

For each pixel i we compute its distance to the local period inter-
val as |(ui, vi)| and store the results in a texture. The texture is then
sub-sampled to half resolution via linear interpolation. From this sub-
sampled distance texture we extract pixels that represent local min-
ima by looking at the eight immediate neighbors of each pixel. We
then extract the 3D position of these pixels from the image pyramid
constructed in Section 6.3.4. In a fragment shader, the extracted po-
sitions can be fed into a buffer with the aid of an atomic counter
variable that guarantees unique write indices. An example showing
point primitives rendered at extracted sample locations can be found
in Figure 6.10 (right). These positions could be used in glyph based in-
formation visualization or other methods that require a near-uniform
sampling [149]. We have to point out that if the parameterization

666666

138 vessel sdf parameterization and abstraction

Figure 6.10: Stippling and hatching shader by the formulation of Son et
al. [206] applied to a shaded surface (left). Sample points ex-
tracted from the U,V pattern (right). The orange dots are drawn
as point primitives at the extracted 3D locations.

changes (e.g. under rotation), sample points appear and disappear
due to the creation and collapse of periodic intervals in U and V .
This leads to a visually unstable appearance that may be removed by
tracking sample points in order to apply a blending. We leave this for
future work. An advantage of this approach may be, that the space of
extracted samples is optimized for the view of the current frame.

surgical risk assessment We propose a risk assessment visu-
alization to highlight the strength of the combined 2D and 3D view.
Fig 6.11 shows the same vasculature three times in 2D and 3D view
with different example access paths. The minimal distance of the ves-
sel segments to the respective path is color-coded in the 2D view and
an additional stippling pattern points out regions that are closer to
the path than a threshold (20 mm). While it is not obvious in the
3D view, the 2D view clearly reveals which parts of the vasculature
are affected. The scalar field which is color-coded in the 2D view is
additionally smoothed. This helps to achieve smoother and more ex-
pressive isolines. The parts which fall into the risk area, however, are
not smoothed and precision is maintained. Another assessment ex-
ample has already been given in Figure 6.1 (right). In this depiction,
the color- and pattern-overlay simply encode the distance of the vas-
culature to the tumor tissue. Again, the 2D view allows for a quick
determination of which parts of the vessel are close - or within a
certain range - to the tumor surfaces.

666666

6.5 applications 139

Fi
gu

re
6
.1

1
:

A
n

ex
am

pl
e

pa
th

to
th

e
la

rg
es

t
tu

m
or

ti
ss

ue
is

de
pi

ct
ed

by
a

gr
ee

n
lin

e
(t

op
).

Th
e

m
in

im
al

di
st

an
ce

of
ea

ch
tr

ee
se

gm
en

t
to

th
e

pa
th

is
co

lo
r-

co
de

d
in

th
e

2
D

vi
ew

(b
ot

to
m

).
A

st
ip

pl
in

g
pa

tt
er

n
is

ap
pl

ie
d

to
al

lr
eg

io
ns

(2
D

an
d

3
D

)
th

at
ar

e
cl

os
er

th
an

2
0

m
m

to
th

e
pa

th
).

666666

140 vessel sdf parameterization and abstraction

surgical navigation With the methods proposed in this work,
segment borders within organs, e.g. segments of the liver or lung,
could be approximated and visualized in real time. Up to now, these
segment borders have only been simulated during the surgical plan-
ning process and a change of the object geometry is associated with
a considerable computing effort [63]. Using the SDF generation and
tracing (See Section 6.3.2), it is possible to adapt the segment bound-
aries in real time, taking into account the intra-operative deformation
of the vascular tree and the organ. Furthermore, the presented visu-
alization method reduces the 3D complexity of the vascular tree to
a 2D map. Through the improved overview and reduction of visual
clutter, the method has the potential to reduce the risk of accidental
vascular injury for future vascular interventions. It enhances existing
approaches in the field of 2D map visualization for surgical naviga-
tion[65, 120].

background reconstruction for medical visualization

Recently, the work by Kreiser et al. [108] used the so called Void Space
Surfaces (VSS) around projections of medical vascular data to enhance
depth perception. They use IDW [203] to interpolate depth values
from the vessel contour into the background. A similar result can be
obtained by our background reconstruction described in Section 6.3.4,
as shown in Figure 6.1 (center, left) and Figure 6.6. The depth approx-
imation of our approach is executed via the PPA on the GPU and
therefore distinctly faster than the reference method. The authors re-
port execution times of 25 − 165 ms on a 1024 × 768 image, while
our method executes at relatively constant 1.15ms for a 10242 im-
age. This allows to freely rotate the vasculature, while maintaining
a smooth background reconstruction. Nevertheless, qualitative differ-
ences remain to be evaluated. Further, while Kreiser et al. [108] used
color-codes and isolines to encode information on the VSS, our SSP
could be used to add additional information channels that employ
texture patterns.

sdf modification The SDF volume holds information about the
distance to the closest surface point for each voxel and thus accel-
erates the tracing of the implicit surface. If the voxel information is
modified while maintaining crucial properties of the SDF, the implicit
surface can be modified [68]. For instance, primitive combinations
can be applied by calculating the union, intersection or subtraction
of different primitives’ SDFs. Figure 6.12 shows an example, where
vessel segments are cut in dependence of their distance to tumor tis-
sue. Note that a cut always produces a valid surface and the implicit
surface appears like a solid object (see Figure 6.13, right).

666666

6.5 applications 141

Fi
gu

re
6
.1

2
:

Bo
ol

ea
n

op
er

at
io

ns
,

w
he

re
o
=
2
5

m
m

is
ad

de
d

to
th

e
tu

m
or

SD
F
T

an
d

co
m

bi
ne

d
w

it
h

th
e

ve
ss

el
SD

F
S

(r
ig

ht
).

Pl
ai

n
S

(l
ef

t)
.
T

+
o

su
bt

ra
ct

ed
fr

om
S

(c
en

te
r,

le
ft

).
In

te
rs

ec
ti

on
of
T

+
o

an
d
S

(c
en

te
r,

ri
gh

t)
.T

he
m

at
he

m
at

ic
al

op
er

at
io

ns
ar

e
di

sp
la

ye
d

be
lo

w
th

e
fig

ur
es

.

666666

142 vessel sdf parameterization and abstraction

Figure 6.13: Coloring the tumor surface according to the closest vessel seg-
ment (left). Combining Boolean operations to expose the vascu-
lature close to the tumor, by carving the liver SDF.

label transition The surface tracing described in Section 6.3.2
employs a quick look-up of the segment of T closest to a traced sur-
face point in order to trace the surface without approximation errors.
This step further allows to obtain information from the respective
segment and to associate it with the traced surface point, as done
in the figures throughout this paper to color the 3D surface and 2D
graph segments. It can also be applied to transition information to
other surfaces as depicted in Figure 6.13, where the tumor surface
is colored based on the closest vessel segments. Admittedly, this is a
very simple example, but we want to point out that such a parame-
ter look-up is part of our pipeline and can be done with practically
no overhead. However, the look-up precision is restricted by the SDF
volume resolution.

2d layout focus The layout of the 2D graph view can be used
to guide a viewers attention. A default and an alternative layout are
shown in Figure 6.14, with a color-code depicting the distance of
graph segments of Tr to a reference point in 3D world space. Assume
the user is interested in parts of the vessel that are close to this refer-
ence point. The default layout tries to achieve a balanced distribution
of the sub-trees (Figure 6.14, left). In contrast, to obtain the alternative
layout (Figure 6.14, left) we assigned higher weights to the sub-trees
whose nodes are closer to the above mentioned reference point in 3D.
This allows the closer nodes to take more space of the 2D layout (see
the sub-trees that are color-coded in a red hue, indicating minimal
distance values). Hence, the user’s attention can be brought to the
important parts of the tree by modifying the tree layout.

6.6 discussion and conclusion

We have presented a pipeline that takes a graph representation of a
vascular structure as input and creates a combined 2D and 3D view.
The 3D surface is implicitly represented as a SDF and efficiently and
exactly traced by our proposed procedure. The 2D view is a simple

666666

6.6 discussion and conclusion 143

Figure 6.14: 2D graph layout with default weights, based on the number
of sub-tree nodes (left). Alternative layout based on scalar field
(right).

abstraction of the input graph’s branching topology and can be em-
ployed to gain a quick overview of measured magnitudes obtained
from the medical data. Using different weights for the nodes, dif-
ferent layouts can be generated. As the 3D surface is generated im-
plicitly, we cannot store texture coordinates in order to support the
visualization with illustrative styles. As a consequence, we propose a
screen-space based parameterization method, that finds periodic and
frame-coherent texture coordinates for each rendered frame. It has to
be noted that we currently stop the SSP optimization as long as the
input parameters do not change. We do this to bring the optimization
to a halt, because actual convergence is at the earliest reached after
several hundreds of iterations. However, the visual results are already
satisfying with this workaround. Further, the recycling depth lp (see
Section 6.3.6) is an important factor to the coherence. A high value
will abruptly introduce changes, because updates in a very coarse
hierarchy level are propagated to the final image with large impact.
A low value may fail to update changes of the input image quickly
enough. This is linked to a notable limitation, which is an issue that
occurs as soon as the surface to be parameterized leaves and re-enters
the view port. Figure 6.15 shows a sequence of frames while the
bunny model enters the view port. As no reprojection information
is available for the entering part of the surface, the parameterization
takes several frames to adapt. A higher value for lp reduces this effect,
but may introduce other coherency artifacts.

The background, i.e., the void space [108] around a vessel, is recon-
structed as part of the SSP process. It can be further utilized with the
aid of texture coordinates, as shown in the applications section.

We were able to show some introductory examples of the abili-
ties of SDF rendering in visualization. Once the SDF creation and
tracing are implemented, the Boolean operations are a way to cre-

666666

144 vessel sdf parameterization and abstraction

Figure 6.15: Left to right: Sequence of the bunny entering the view port.

ate focus and context applications with low effort and high visual
quality. In the future, we would like to investigate to which extent
hypertextures [169] can be employed to encode data. Hypertextures
can be used to modify the SDF in order to deform and alter surfaces.
For example, a rough/noisy surface could indicate segmentation un-
certainty, while a smooth/even surface indicates high segmentation
confidence. The concept of magic lenses, to spatially hide or highlight
user-defined parts of the data, could also be implemented on SDF ba-
sis. What our SDF procedure currently lacks is the ability to handle
input data with non-circular cross-sections. This is an important fea-
ture for the faithful representation of vascular data that we would
like to tackle in the future.

Finally, we hope that the proposed algorithms and the ability to
generate and trace a SDF from model-based input data, as well as
to parameterize the traced surface on-the-fly, will motivate further
development into this direction.

7777 77 7

7
A U X I L I A RY T O O L S F O R E N H A N C E D D E P T H
P E R C E P T I O N I N VA S C U L A R S T R U C T U R E S

abstract This chapter discusses the concept of Auxiliary Tools in
depth perception. Four recent techniques are considered, that apply
the concept in the domain of liver vasculature visualization. While an
improvement is evident, the evaluations and conducted studies are
found to be biased and not general enough to provide a convincing
assessment. The chapter provides background information about hu-
man visual perception and a brief history on vascular visualization.
Then the four state-of-the-art methods are discussed. Finally, a com-
parative discussion points out objectives for future follow-up work.

7.1 introduction

Comprehensive visualizations of medical data are assumed to im-
prove the accuracy and success of existing surgical and interventional
approaches. For instance, 3D images conveying a patient’s anatomy
or the morphology of organs can be used as a basis to refine surgery
planning or to detect anomalies. Such volumetric data, obtained from
CT, MRI or ultrasound devices can be visualized on a monitor di-
rectly, using volume-rendering techniques, or indirectly. For the indi-
rect approach, the data is segmented, e.g., in order to extract a specific
organ. The segmentation yields a surface representation of the object
in question, which can be triangulated for efficient storage and ren-
dering. No matter what technique is used, if the morphological prop-
erties of the data are of interest they have to be represented faithfully
by the computer-generated images. This means that cues, which sup-
port the spatial perception in the human visual system, have to be em-
ployed. To address this challenge, recent methods employ advanced
rendering techniques to communicate information through auxiliary
geometry and illustrative styles. The survey by [175] covers a wide
range of perceptually motivated visualization techniques in the medi-
cal field. They draw a clear line between shape and depth perception
but state that both aspects can reinforce each other to support the
perception of 3D structures. Both classes are further subdivided to
distinguish between different techniques. One of these categories are
the Auxiliary Tools that were introduced to the medical visualization
domain with the work of [122]. Auxiliary Tools describe techniques
that populate the free space in 3D visualizations with additional ge-
ometric constructs. These constructs encode further data or activate
and enhance existing depth cues. While the literature often speaks

145

7777777

146 auxiliary tools

of depth cues and depth perception, it has to be pointed out that
several depth cues are combined by the visual system to derive a
three-dimensional perception of an object [80]. In that manner, the
predominant motivation of depth perception techniques is usually to
improve the spatial perception of a presented 3D object and the depth
cue is only a tool for that. However, it can generally be stated, that the
encoding of depth in computer graphics occupies parts of the avail-
able information channels. Hence, its encoding competes with the
encoding of other magnitudes in a visualization. The goal of recent
work was therefore to combine depth and parameter encoding in a
task-oriented, efficient way. While a common choice is the use of color
codes, shading would influence the color map. Renouncing shading
means to give up on a natural depth cue, i.e., the influence of light
sources. Thus, other depth cues have been brought to attention. In this
course, new methods have come up with complex, task-oriented 3D
scenes, that more and more creatively utilize the unoccupied virtual
space. While more complex scenes allow to pack more information
into a generated image (i.e., depth information and medical parame-
ters), questions about the practical feasibility and usability, real-time
applicability and extensibility arise.

This chapter will pursue the topic of Auxiliary Tools for the enhance-
ment of depth perception in the context of blood vessel visualization.
This basically extends the survey by [175], focusing on the Auxiliary
Tools category which is underrepresented in their survey due to the
lack of existing works at their time of publication. At first, a recap of
basic information on spatial perception and a short history of blood
vessel visualization will be provided. Then, recent work will be pre-
sented and discussed in order to provide an overview of Auxiliary
Tools in depth enhancement. The chapter concludes with a discussion
of open question in order to motivate further research in this area.

7.2 human perception

The spatial perception in human vision is the result of the combi-
nation of a range of visual cues [80]. These cues are evaluated by
the visual system and brain to, for example, estimate the distance
between two objects. Hubona et al. [80] state that different models,
to describe how depth cues interact, exist. While these models aim
to provide a general understanding of the processes of combining
several depth cues, one common aspect is important: the posture of
the eyes is one of the plenty depth cues. This leads to the assump-
tion that 2D monitors cannot induce natural spatial perception as
familiar from within the real world. Even if a real world scene and
a 2D image would produce the same projective image on the retina,
the posture of the eyes would still be different. In the 2D image, the
focus point is always within the image plane. Even stereovision in

7777 77 7

7.3 history of depth enhancement 147

head mounted displays (HMD) cannot fully compensate for this, as
the study by [212] shows. The work by [80] further wraps up sev-
eral important depth cues that are also known from natural percep-
tion: while stereopsis does not apply to the context of this chapter,
motion, shadows, occlusion and partial-occlusion are important monovi-
sion depth cues. Partial-occlusion refers to a transparency effect, that
reduces an object’s contrast if it is situated further away (e.g., the per-
ception of an object through fog). Of course, even if natural depth
cues are present, a subject may not be able to perfectly estimate dis-
tances or depth. Therefore the utilization of depth cues in visualiza-
tion does not only aim to reproduce natural perception, but also to
enhance it. With this, the estimation of spatial properties which are
prone to human error are sought to be reduced. As mentioned ear-
lier, apart from encoding spatial properties of a 3D scene, it is desired
to encode and visualize further magnitudes. A computer-generated
scene that is observed by a subject is processed in two phases [186].
The visual cues that are processed in these phases are categorized in
the survey by [188] and can also be applied to the context of auxil-
iary objects. The formulation is brought into a larger context by [18].
Namely, a pre-attentive and attentive phase is considered in the human
perception process. During the pre-attentive phase, which covers a
short time span after visual cues are exposed to the viewer, stimuli
like color, size, shape and orientation are perceived in a cumulative
manner. These can trigger a pop-out effect, influencing the viewers at-
tention. During the attentive phase, the viewer is more focused on
details and interactive exploration of the data. In depth perception,
for example, the attentive process may cover the explicit comparison
of two points in a scene w.r.t. their depth. More information on hu-
man perception in the context of visualization can be found in the
work by [71].

7.3 brief history of depth enhancement in vascular vi-
sualization

The area of enhanced vascular visualization is actively being dealt
with in the medical visualization community, because of the signifi-
cance of vascular morphology in different medical subjects. For ex-
ample, the blood vessels around a liver tumor may significantly in-
fluence the intervention strategy for an ablation or resection [66]. The
visualization of blood vessels has emerged from magnetic resonance
angiography (MRA) imaging. Due to the high intensity values as-
signed to vasculature, the maximum intensity projection (MIP) is a
common way to visualize the obtained image data. A first method
to extract and visualize 3D surface data obtained from MRA was
introduced by [52]. After that, more extraction and visualization tech-
niques emerged and also the incorporation of depth cues received at-

7777777

148 auxiliary tools

tention. A concise overview with further references is given by [189].
Their work also embodies the first implementation of methods to en-
hance depth perception in 3D angiographic data, that rely on mono-
scopic features only. Their depth cues are inspired by natural depth
cues, but are realized in an exaggerated way to improve their effect.
The pseudo chromadepth (PCD) introduced by [189] can be seen as
a variation of the chromaDepth (CD) [207]. These techniques induce
depth perception through chromatic aberration.

From then on, the monoscopic depth cues that received the most
attention are the following: Overlap, PCD, aerial perspective and ki-
netic depth. These cues have been evaluated and compared against
stereopsis in the work by [96]. The overlap is usually magnified by vi-
sually enhancing edges or rendering halos and the aerial perspective
is induced by reducing the contrast of points that are further away
from the viewer. The kinetic depth cannot be employed in still im-
ages and is restricted to interactive applications. The techniques to
this point can be directly applied to the surface of a rendered vascu-
lar structure. More recent publications have designed more complex
but, to some extent, less general approaches. Instead of applying vari-
ations to the visual appearance of the vasculature in question, they
use additional geometry to encode information.

Additional geometry can contribute to various depth cues. It can
introduce further overlapping cues or be used to simulate perspective
distortion. If the shape of the geometry is very simple (e.g. a circle,
rectangle or bar), variations in size are easier to perceive. For exam-
ple, if the circles in Figure 7.2 (left) are assumed to have the same
real world size, then the green circle must be assumed to be further
away, because of its smaller projection. Another advantage here is
that such objects can be decoupled from the vasculature in the graph-
ics pipeline. Therefore orthographic projection can be used to depict
the medical data in a common manner, while helper objects are re-
sized to simulate perspective projection, expressing the related depth
cues. Additional objects in a scene to encode information are known
as glyphs (surveyed in the medical to domain by [188]). However,
the following section will discuss techniques that utilize additional
geometry whose concepts exceed the common goals of glyphs.

The use of enhanced depth perception in vascular visualization can
be divided into three categories. The most basic category covers the
natural cues, such as occlusion, fog, shadows and perspective distor-
tion. Examples can be found in [52, 60, 73, 97]. At the next stage, au-
thors began to alter the appearance of depicted vascular models in order
to encode depth information. Prominent examples are CD [207] and
PCD [189], that applied a color function to the surface. [24] used ha-
los (i.e., exaggerated contours) to enhance depth perception and [184]
drew illustrative shadows on vascular surfaces to highlight overlaps.
Recently, the category of Auxiliary Tools has emerged. Here, additional

7777 77 7

7.4 auxiliary tools 149

Figure 7.1: Overview of the four techniques: SL (left, top), SA (right, top),
CCG (left, bottom) and VSS (right, bottom, courtesy of Julian
Kreiser, Ulm University).

geometric entities are used to convey depth. These entities can be data
glyphs, but may also extend to more complex designs. The next sec-
tion will discuss four techniques from this field.

7.4 auxiliary tools

This section describes four techniques that utilize Auxiliary Tools to
enhance depth perception. The examined methods are the Supporting
Lines (SL) and Supporting Anchors (SA) by [124], the Concentric Circle
Glyphs (CCG) by [132] and the Void Space Surfaces (VSS) by [108]. All
techniques are depicted in Figure 7.1. Though introduced as a cate-
gory of depth perception techniques by [175], Auxiliary Tools are not
properly defined as such. A definition can be phrased as follows:
Auxiliary Tools in depth perception describe visual entities, (i.e., geometric
objects) that augment a generated image of spatial data in order to encode
depth information or to trigger and/or exaggerate depth cues.
Figure 7.2 shows an example of how an auxiliary object can trigger
a depth cue. While the illustrative shadows by [184] can technically

7777777

150 auxiliary tools

Figure 7.2: The depth difference of the two circles can not be perceived
(left). The depth difference of the two circles becomes evident af-
ter adding an auxiliary object (purple bar) that triggers an over-
lapping depth cue (right).

be achieved by drawing geometry based hatching strokes, we refrain
from including this work to auxiliary tools. The rationale is, that the
hatching strokes are rather perceived as a shading style than as ad-
ditional objects. The fact that additional objects are added to a scene
leads to the problem that the Auxiliary Tool may negatively interfere
with or obstruct the actually visualized data. Therefore a careful and
task-oriented design of Auxiliary Tools is crucial. This also means that
certain Auxiliary Tools may only be suitable for a limited range of
types of data. For example, vascular trees cover the 3D and screen
space rather sparsely, hence, room remains to add further objects.
Additionally, the vessel branch- and end-points provide expressive
landmarks that can be used to attach auxiliary objects to. The tech-
niques that will be presented in the following subsections all aim at
the improvement of depth perception in the visualization of liver vas-
cular trees.

7.4.1 Supporting Lines

In the given medical context, SL [122] embody the first occurrence of
Auxiliary Tools [175] (Figure 7.1, left top). The supporting geometry
used in this method comprises of a plane, situated below the vascu-
lar structure, and supporting lines that connect user-defined points
on the vasculature with the plane. Further, a depth dependent con-
tour is drawn. The plane works as a canvas to cast a shadow of the
3D structure, triggering an additional depth cue. Further, the shadow
can be drawn in various styles to encode information like the source
of the shadow (e.g., vessel or tumor tissue). A grid on the plane en-
hances the capability to sort multiple supporting lines by their depth.
The supporting lines (inspired by [54]) provide a further link between
the vessel and its shadow to simplify the reading and are drawn in a
ruler-like style to allow assessment of the distance to the plane. At the
same time, the lines trigger overlap cues, so that depth differences of
distant vascular branches can also be estimated. The contour width
(inspired by [24]) decreases quadratically with increasing depth. This
exaggerates the effect that a perspective distortion would have on
the width, therefore amending depth perception. The combination of

7777 77 7

7.4 auxiliary tools 151

these cues supports a precise (support lines) and a global (contour)
perception of depth.

7.4.2 Supporting Anchors

The SA [124] can be seen as a follow-up work on SL (Figure 7.1, right
top). Instead of a shadow plane, a cylinder is used as a reference
object. The height of the cylinder is aligned with the view direction.
The cylinder can be placed anywhere, also intersecting the vascula-
ture, and therefore allows to define a focus-region. The cylinder is a
simple structure and the user looks along the height of the cylinder,
hence it is intuitive to determine the relative depth of points on the
cylinder. As the depth of a point increases, the perspective distortion
will move the point closer to the center of the cylinder’s projection.
Similar to SL, points on the blood vessel are linked to that cylinder.
This link has an anchor-like shape that clings to the cylinder and
helps to trace the point’s depth along the cylinder’s circumference.
The surrounding vessel branches may intersect the cylinder, which
also indicates the depth of the intersection. In this way, SA helps to
lift the complex vascular shape to a more comprehensive geometry
and finally enhances depth perception. However, it is difficult to infer
information about parts of the vascular structure that are not attached
to anchors and do not intersect the cylinder.

The work further addresses the issue of overlapping auxiliary ob-
jects, as the authors provide an algorithm that automatically finds a
pre-defined number of vessel end-points that are linked to the cylin-
der. The selection of the end-points is done in a way that balances the
distribution across the depth and the cylinder so that a clean visual
result is achieved.

7.4.3 Concentric Circle Glyphs

The CCG [132] are an attempt to encode depth information with-
out relying on spacious reference geometry like the previous shadow
plane or cylinder (Figure 7.1, left bottom). Semi-transparent disc ob-
jects are attached to selected vessel end-points. The discs are gradu-
ally filled with up to three concentric circles, as the object’s distance
to the viewer increases. Further, overlapping cues are created in the
close proximity of selected points. The filling of the concentric circles
is done by completing the circles one after another in a clock-wise
manner. The subdivision into three circles therefore allows a very
fine-grained distinction of mapped depth values. It is also stated that
the disc shape itself can be altered (e.g., to a rectangle) in order to
encode additional data. Moreover, the size of the discs is dependent
on the depth, therefore an exaggerated effect of perspective distortion

7777777

152 auxiliary tools

is possible. As a drawback, structures away from CCG instances do
not benefit from the technique.

The method includes, similar to SA, an approach to avoid overlaps.
In this case, the disc objects should not interfere and the selected
points are chosen so that the screen space is evenly covered. Addi-
tionally, pairs of vessel end-points with a low depth difference are
preferred to help with specifically difficult situations.

For this article, a further analysis of the data obtained during the
evaluation of [132] is done to augment the descriptive results pre-
sented in the original paper and to bring it in line with the eval-
uations of the other techniques. Two subjects were removed from
the data, as they achieved less than 40% of correct answers for at
least one of the tested techniques. A Shapiro-Wilk test reveals that
the obtained measurements are not normally distributed. Therefore a
Friedman’s ANOVA to test for the statistical significance is conducted
with a post-hoc Wilcoxon signed-rank test, as recommended by [195].
Results are obtained as χ2(2) = 18.9,p < 0.0001 for the precision,
χ2(2) = 7.96,p = 0.0187 for the reaction time and χ2(2) = 18.9,p <
0.0001 for the confidence. This means, that statistically significant dif-
ferences among the tested groups (SL, SA, CCG) are present. As sug-
gested by [175], the effect size that describes the difference between
groups is also reported. Because of the non-parametric nature of the
measured data, the Wilcoxon signed-rank test is applied to obtain a
z-score for each pair of techniques. From that, effect sizes are derived
for the precision measure: CCG-SL = 0.122, CCG-SA = 0.157, SL-SA
= 0.042. This reveals that the actual difference in performance of the
tested techniques ranges from small to very small, while the CCG is
still ahead of the other approaches.

7.4.4 Void Space Surfaces

The VSS [108] follow a very different approach (Figure 7.1, right bot-
tom). Instead of attaching supportive objects to selected points on the
vasculature, they augment the whole free background (the void space)
of a scene with a surface as an Auxiliary Tool. The surface is attached
to the contour of the 3D structure and smoothly interpolates between
sections of different depth. For this, Inverse Distance Weighting [203] is
used, that allows to control the VSS smoothness by a user parameter.
It is further equipped with isolines that allow the user to trace regions
of similar depth. Illumination of the VSS introduces extra depth cues
and amplifies the improved depth perception. This approach is by its
concept free of any overlaps. Also, it is not required to pre-select any
points of interest from the vessel. Instead it applies to the whole con-
tour. Another advantage is that the method does not interfere with
the projection of the vessel tree. The vascular surface can therefore
be used to encode other parameters. A difficulty arises when two

7777 77 7

7.5 evaluation 153

Figure 7.3: Closeup of all four techniques (SL, SA, CCG, VSS) with two
vessel end-points marked each. The green (+) label indicates the
point with a higher depth.

points that one wants to compare are not directly connected by the
VSS. However, in such a case the surface itself can be color mapped,
for example with PCD colors, to allow a comparison.

7.5 evaluation

This section examines the quantitative evaluations conducted in the
previously described works w.r.t. their study and task setup. After
that, a comparative discussion of the results is provided to derive
question for future work.

7.5.1 Evaluation Overview

All evaluations follow the scheme presented by [96]: the subject is
shown a vascular structure, with two points on that structure clearly
marked. The subject is then asked to determine the point that is closer
or further away. Examples with the correct answer indicated are de-
picted in Figure 7.3. This task is repeated several times with alter-
nating point sets, vascular structures and visualization techniques.
The quantitative measures include the percentage of correct decisions
(i.e., precision) and the time required for a decision (i.e., reaction time).
These quantities were then used to derive a sound ranking of the
tested depth perception enhancement techniques. Table 7.1 gives an
overview of the average precision for the tested techniques per paper,
along with the number of participating subjects and stimuli per sub-
ject. It can be observed that the performances for basic Phong shading
and PCD vary significantly across the papers, indicating that the tasks
were notably different. The overview excludes the results from [96],
because they tested a range of classical depth cues, but here we focus
on Auxiliary Tools. A link to their findings can be established via the
results for PCD, which was rated best by [96] and therefore serves as
the reference visualization.

More considerations were made w.r.t. the precise task and stimuli
setup. The first is that in all publications, the tested point pairs were
located at vessel end-points. However, while the auxiliary elements

7777777

154 auxiliary tools

Table 7.1: Average precision for evaluated techniques in percent, number of
subjects and number of stimuli per subject for each paper.

Phong CD PCD SL SA CCG VSS Subjects Stimuli

SL [122] 26 54 84 50 24

SA [124] 48 79 87 81 24

CCG [132] 92.2 87.2 93.6 24 45

VSS [108] 73 91 94 92 20 150

in SL, SA and CCG are directly attached to individual end-points,
the VSS is attached to the whole vessel outline and fills the whole
background. Therefore the VSS evaluation utilizes additional cross-
hair pointers to indicate the points in question. All works describe
criteria that were used to come up with a set of tasks with a balanced
difficulty level.

[96] found that the screen-space and depth distance of two points
affect the decision performance. As a consequence, this has been con-
sidered in the surveyed evaluations, however, not in a mutual way.
[122] (SL) used labels XY, where X describes the screen-space dis-
tance and Y the depth distance. The labels can be set as F (far), if
the individual distance is more than half of the maximal possible dis-
tance for a given vascular model and N otherwise. In the follow-up
work [124] (SA) this labelling was omitted. Instead, the tasks were
restricted to point pairs with a depth distance of less than 20 mm.
The work by [132] (CCG) used the F and N labels again. As an addi-
tional challenge, point pairs were chosen such that the circle glyphs
would overlap, making readings more difficult. This is a design choice
quite specific to the visualization method. [108] (VSS) assured that
the depth distance of point pairs was at least 10% of the total depth
range in the image. The screen-space distance was covered such that
each point was clearly assignable to either the left or right part of the
screen. A more specific criterion applied was whether the point pairs
were directly connected through the void space or not. In summary,
all papers did an attempt to reduce the data selection bias [173].

Intuitively, the complexity of the vascular structures used during
the individual tasks is also expected to have an effect on the results.
[124] employed eight models, while [132] and [108] had, respectively,
five and six data sets available. Unfortunately, the complexity of the
structures was not considered in the analysis in any of the publi-
cations. Supposedly, properties like number of end-points, branch
segment length or the ratio of vessel thickness and vasculature size
may provide a rudimentary description of structural complexity. Such
could then be incorporated into further statistical analyses.

The actual tasks were all performed in an automated application.
Before, training questions were completed to familiarize the subjects
with the task. Then, stimuli with different visualization techniques,

7777 77 7

7.5 evaluation 155

point pairs or vessel trees were shown to the subjects. For SL, SA
and CCG the subjects hat to mouse-click a radio button in order to
submit their decision. Additionally, they were asked to estimate their
decision confidence. The VSS paper describes that the subjects were
to press one out of two keys to choose between the presented points.
This is a cleaner design when it comes to the reaction time, because
the interactive and cognitive overhead is minimized. However, asking
for the perceived confidence for each stimulus allows to better inter-
pret the perceived usefulness of individual techniques. An aspect that
is missing in the present studies is to compare user confidence sepa-
rately for correct and wrong decisions. It may occur that some visual-
ization techniques induce an overly high confidence while suggesting
wrong decisions. Therefore, confidence ratings have to be treated care-
fully. Another difference in the conducted studies concerns the type
of projection used to display the 3D data. Orthographic projection is
common in the medical context because of the physicians being fa-
miliar with CT or MRI slice views, that resemble parallel projections.
While CCG and VSS used orthographic projections, the methods SL
and SA are bound to perspective projection. Therefore an additional
depth cue was present in the latter methods.

The subject selection bias [173] is of importance if subjects from dif-
ferent domains and with varying abilities or knowledge are selected.
For the medical context of the presented techniques it would be de-
sirable to access a pool of subjects from a physicians or surgeons do-
main, but specialists are not always available. For the SL study, five
out of 50 subjects were physicians and 19 had experience with vascu-
lar visualization. The SA study contained 81 subjects, with 15 being
physicians and 25 with vascular visualization experience. There were
no physicians in the CCG study and seven out of 24 had experience
with vascular visualization. The VSS study was also conducted with-
out medical experts. Based on the results presented by [96], we can
state that experts do not necessarily perform better than lay people,
which leads to the assumption that the tested techniques apply well
to the general perception of depth, regardless of additional knowl-
edge. However, there are differences in performance among different
subject groups, indicating that certain groups better accept certain
techniques than others. Regardless of this observation, the studies of
the four techniques in this chapter do not distinguish between subject
groups.

7.5.2 Comparative discussion

As described previously, the setup of the four evaluations have a com-
mon denominator but are nonetheless quite different. Therefore a di-
rect comparison of the results is not possible. Instead, a comparative
discussion of the methods follows.

7777777

156 auxiliary tools

The methods SL, SA and CCG can be grouped together, as they
all utilize additional geometry that is attached to pre-selected points
on the vasculature. From their evaluation results, it can be concluded
that this positively affects the precision of the subjects. The evalua-
tions, however, do not cover the performance when deriving informa-
tion about points that are not attached to the auxiliary objects. It is to
be expected that the precision drops drastically in this case. In this as-
pect the VSS can be assumed to be superior, as it supports the whole
vessel contour. Unfortunately, the VSS evaluation does not underline
this strength. In return VSS lacks the ability to provide a distinct per-
ception of differences if two compared points are not connected by
the VSS. Here, the other methods prevail, because a visual link can
always be established. The necessity to examine differently difficult
tasks is underlined by the evaluation for SL and CCG and should be
taken into account in future works.

The precision of the first three methods comes at the cost of addi-
tional visual load and overlaps. Depending on the situation, this may
lead to unwanted obstruction of the visualized structure and intro-
duce visual clutter. Hence, the VSS has the cleanest appearance of all
the methods. This should also be beneficial if the VSS is combined
with the encoding of other parameters on the vessel surface.

Another aspect to be considered is the region of interest (ROI) that
a user might focus on. While SA nicely defines such a ROI through
the cylinder, SL always needs to keep the shadow plane visible. There-
fore, SL is not suitable for zooming in to a structure. CCG as well as
VSS do not suffer from this restriction, as they are not bound to exte-
rior context geometry.

It would further be interesting to examine whether combinations of
the above methods can achieve generally better results. Augmenting
the VSS’s global depth overview with the CCG’s precision might be
a viable option.

From the above observations, the necessity for extended evaluation
setups arises: while all methods claim to leave visual information
channels open to encode additional data, none of the publications
addresses this aspect in their analysis. VSS exemplifies this by dis-
playing wall shear stress on the vessel using a color map. This map-
ping may interfere with the color mapping of depth, so a combined
evaluation should be conducted. This also applies to the other tech-
niques Generally, applying a color mapping to the vascular surface is
problematic due to employed shading effects. If the shading is omit-
ted, structural features are lost and the overall spatial perception suf-
fers. Further, the range of differently difficult tasks should be more
carefully designed and evaluated. In particular, global comparisons
(i.e., comparison of any arbitrary point pairs) and precise compar-
isons (i.e., comparisons of pre-selected point pairs with just noticeable
depth differences) should be considered. The task difficulty should

7777 77 7

7.6 conclusion 157

further incorporate vascular models of varying complexity. However,
a definition for this complexity would be required beforehand. As
stated in Section 7.2, depth cues are combined to a spatial impression
of a 3D scene. Therefore, tasks in a study should not only test the
performance of depth perception, but also of spatial perception. For
this, subjects should be asked to estimate distances in all spatial di-
mensions. With respect to the two phases of human visual perception
(pre-attentive and attentive), tasks should be created to target one of
these specifically in order to determine how well a visualization tech-
nique exploits each phase. The F and N labels introduced by [122]
may be suitable to support this as one would expect attentive, precise
readings for NN configurations and quick determinations for FF con-
figurations. From the results presented by [96], it can be concluded
that different groups of subjects perform differently well with pre-
sented depth enhancement methods. This should be considered in
future studies as well.

The above suggestions are only concerned to consolidate the study
results w.r.t. the depth and space perception task. However, as pointed
out by [173], research in the medical visualization domain often lacks
a direct connection to actual clinical requirements and potential to be
integrated into clinical work flows. This also applies to the methods
presented in this chapter, what becomes already apparent in the low
number of subjects with clinical knowledge. In order to design stud-
ies that better reflect a potential clinical application of the techniques,
the focus needs to be shifted away from the sole improvement of
depth perception, towards integrated and task-oriented applications.
It should be an application that heavily relies on spatial comprehen-
sion of the presented vasculature such as a needle guiding scenario
for liver ablations [2]. Finally, all techniques report statistical signif-
icance for their improvement in depth perception in comparison to
previous methods Such reports would be more convincing when cov-
ering the above mentioned aspects in order to more formally depict
the strengths and weaknesses of each technique.

7.6 conclusion

A recent category for the improvement of depth perception, Auxil-
iary Tools, has been surveyed in this chapter. The methods show that
advanced rendering and visualization techniques can contribute to
an improved depth perception. This improvement of depth percep-
tion itself is motivated by the necessity to comprehensively visualize
complex structures, such as vascular trees. Evaluation results, how-
ever, indicate that the studies were conducted under significantly dif-
fering circumstances, which includes the task difficulty, selection of
data and selection of subjects. To align the methods’ performance a
more extensive study is required. Aspects to consider for this were

7777777

158 auxiliary tools

suggested earlier. The framework proposed by [150] may serve as the
basis for such. Subjects with clinical knowledge could be tested un-
der lab conditions, while lay subjects can be reached via the online
questionnaire generated by their tool.

In summary, the existing methods prove to fulfill the task of im-
proved depth perception. However, this is only a small piece of the
cake and insights into their performance in real world clinical ap-
plications are still to be gained. Thus, the topic of Auxiliary Tools in
depth perception should be further pursued, especially with the aid
of clinicians.

Part IV

D I M E N S I O N R E D U C T I O N

The previous part made a contribution to the dimensional
abstraction of vascular tress. This part is further about
data abstraction through dimension reduction, but covers
different data sets and goals. In MD simulation data, com-
plex 3D structures are given over a time range. Reducing
this 3D+t data to a 2D map allows domain experts to gain
novel insights into their data (Chapter 8). A second contri-
bution is presented in the context of mitral valve analysis
(Chapter 9). Convoluted 3D surface data of the valve is un-
folded to a 2D representation. The new abstraction object
allows to display existing and to derive novel physiologi-
cal parameters that may be interesting for clinical analysis.

This part consists of the following papers:

Lichtenberg, N., Menges, R., Ageev, V., George, A. P., Heimer,
P., Imhof, D., Lawonn, K., “Analyzing Residue Surface Prox-
imity to Interpret Molecular Dynamics.” In: Computer Graphics
Forum. Vol. 37. 3. Wiley Online Library. 2018, pp. 379–390. doi:
10.1111/cgf.13427

Lichtenberg, N., Eulzer, P., Romano, G., Brčić, A., Karck, M.,
Lawonn, K., De Simone, R., Engelhardt, S., “Mitral valve flatten-
ing and parameter mapping for patient-specific valve diagno-
sis.” In: International Journal of Computer Assisted Radiology and
Surgery (2020). doi: 10.1007/s11548-019-02114-w

https://doi.org/10.1111/cgf.13427
https://doi.org/10.1007/s11548-019-02114-w

88888888

8
A N A LY Z I N G R E S I D U E S U R FA C E P R O X I M I T Y T O
I N T E R P R E T M O L E C U L A R D Y N A M I C S

abstract The surface of a molecule holds important information
about the interaction behavior with other molecules. In dynamic fold-
ing or docking processes, residues of amino acids with different prop-
erties change their position within the molecule over time. The atoms
of the residues that are accessible to the solvent can directly con-
tribute to binding interactions, while residues buried within the molec-
ular structure contribute to the stability of the molecule. Understand-
ing patterns and causality of structural changes is important for ex-
perts in the pharmaceutical domain, e.g., in the process of drug de-
sign. We apply an iterative computation of the Solvent Accessible
Surface in order to extract virtual layers of a molecule. The extraction
allows to track the movement of residues in the body of the molecule,
with respect to the distance of the residue to the surface or the core
during dynamics simulations. We visualize the obtained layer infor-
mation for the complete time span of the molecular dynamics simula-
tion as a 2D-map and for individual time-steps as a 3D-representation
of the molecule. The data acquisition has been implemented along-
side with further analysis functionality in a prototypical application,
which is available to the public domain. We underline the feasibil-
ity of our approach with a study from the pharmaceutical domain,
where our approach has been used for novel insights into the folding
behavior of µ-conotoxins.

8.1 introduction

The surface of a molecule provides important information about its
binding behavior. In 1971, Lee and Richards described the topology
of the surface as directly related to the function and interaction of a
molecule with other molecules [129]. The topology is of high inter-
est in fields like drug design or medical research where molecules
are arranged, simulated and evaluated to investigate their interaction
behavior with existing molecules. Since the outcome of these evalu-
ations is an important indicator for the scientists about their design
decisions, the process is worth to be supported by data acquisition
methods and advanced visualization techniques.

Molecular Dynamics (MD) simulations have become a staple ingre-
dient to any drug discovery pipeline used by both academics and
pharmaceutical companies [39]. MD simulations produce data that
contains hundreds of thousands of time-steps, covering the time span

161

88888888

162 residue surface proximity

0 1 2

Slice

Figure 8.1: From an input molecule (top, left), we derive a surface proximity
term (top, center, left) that represents the closeness of an atom to
the molecule surface. We apply this method to a Molecular Dy-
namics simulation to obtain a color-coded map, representing the
trajectory for each atom or residue (bottom). Single time-steps
can be visualized in 3D (top, right), e.g., VdW-spheres or in a
combined backbone-helix form.

of a molecular reaction or folding process. The time-resolution of the
data may vary in dependence of the application. The amount of data
and possibilities for altering the simulation conditions is constantly
growing with the advance of computer hardware [67]. Working with
large data requires great effort for analysis by the experts. Thus, meth-
ods exist that reduce the acquired data to lower dimensions in order
to make it more accessible to the user. A common example is the
application of the Root Mean Squared Distance (RMSD) of an atom
to an individual reference position. The RMSD of all atoms can be
averaged to obtain a single scalar value that represents the spatial
similarity of an assembly of atoms to a reference assembly. Also pop-
ular is the Radius of Gyration (RG), which is the average distance of
atoms to the molecule’s center of mass. However, RMSD or RG treat
atoms individually (i.e., the molecule is processed as a cloud of un-
related points) and therefore do not capture spatial relations within
the molecule. The computation of such magnitudes can be time con-
suming, depending on the data size. However, for an application, du-
ration of precomputations and display of the computed data is a key
factor for an efficient expert’s work flow. Especially, when parameters
of data evaluation are dynamic, time consuming recomputations for
the visualization are not desired.

This work introduces a new perspective on changes in molecu-
lar structure and tackles the above mentioned issues. Experts from
the pharmaceutical domain, who tested our approach, stated that it
reveals additional insights and serves as a glue between measures

88888888

8.2 background 163

like RMSD or RG. We employ an analytic data acquisition method
and an appropriate visualization of the obtained data. The results
have been implemented in a stand-alone application that allows the
user to investigate MD simulation data with our approach. A sur-
face atom extraction algorithm builds on previous work by Totrov
and Abagyan [220] and we further incorporate the idea to form vir-
tual surface layers, which is inspired by the work by Karampudi et
al. [94]. We visualize the layer information in a 2D-map that provides
an overview of the complete time span of a MD simulation or we dis-
play the information directly in a 3D-representation of the individual
time-steps. The user is able to modify and filter the acquired data for
further analysis, by employing a flexible filter syntax. This filtering
supports the search for specific features. The main contributions of
this paper are:

• A feature extraction approach, called Residue Surface Proximity,
applied to trajectory data from Molecular Dynamics simula-
tions.

• An interactive, flexible and extensible filtering framework for
the analysis of the extracted data.

• An implementation of our approach as an open-source stand-
alone application, which is based on modern OpenGL and the
Qt-Framework [216]. The application allows for convenient data
and visualization export and has been evaluated in a pharma-
ceutical workflow.

8.2 background

This section shortly describes the background of the chemical domain,
covering proteins and the analysis of trajectory data, as well as a com-
mon molecular surface representation that is crucial for our contribu-
tion.

proteins The smallest building blocks of a molecule that we con-
sider in this work are atoms. Certain groups of atoms of different
elements form the so called amino acids, where instances are called
residues. Chains of these amino acids (primary sequence) form macro-
molecules, known as proteins. In a dynamic folding process, the pri-
mary sequence folds and settles down into a state of energetic equilib-
rium. The resulting spatial structure of the sequence is also referred
to as its conformation. Depending on the conditions under which the
folding occurs, different conformations are possible for the same pri-
mary sequence, which is crucial for its biological activity. Atoms of
residues that are on the surface play a significant role in determining
the folding behavior and consequently the function of a protein [143].
The residues that form the core of the protein affect the stability of

88888888

164 residue surface proximity

SAS
SES

VdW
Probe

Figure 8.2: Definitions of molecular surface. VdW-spheres (gray). Probe
sphere (green). Extended hull (magenta). SAS (dashed hull). SES
(purple). Internal atom (orange).

the protein. Usually, a stable protein core is the consequence of a
tightly packed combination of hydrophobic amino acids [156]. Sur-
face residues with charge have also been found to influence protein
stability [209]. In nature, a vast amount of different proteins and con-
formations can be found. Depending on their respective bioactivity,
they can be utilized in medical treatment. In such a case, it is de-
sired to synthesize these proteins, in order to make them available
in sufficient quantities. Pharmacists study these potential sequences,
aiming to understand their folding behavior. This is necessary to find
the optimal folding conditions that result in the desired conforma-
tion, with the desired bioactivity. The obtained knowledge enables
synthesization of the bio-active proteins. Identification and tracking
of the behavior, which involves protein-protein interactions, is a task
of significance in elucidation of mechanisms that contribute to bio-
logical function. This has been done right from the primary sequence
level [90]. Such studies are commonly conducted by employing MD
simulations, which output trajectory data. The trajectory data con-
tains the movements of each atom throughout a simulated folding
process under predefined conditions. The course of understanding a
protein’s folding behavior is what we aim to support with the pre-
sented work.

solvent accessible surface The surface of a molecule is a
relevant factor of its bioactivity. Therefore, we shortly describe a com-
mon and well accepted formulation for the surface of a molecule. A
basic representation for atoms is to draw them as spheres with their
respective Van der Waals (VdW) radius (see Figure 8.1, top, second
from the right). We therefore refer to atoms as spheres throughout

88888888

8.3 related work 165

this work. The Solvent Accessible Surface (SAS) is a representation de-
rived from the VdW-spheres. For each atom, an extended hull is cre-
ated by adding a probe radius to the VdW radius. The union of these
extended hulls yields the SAS. A structure that is no larger than a
probe sphere can access (i.e., get in contact with) the atoms that are
part of the SAS. A 2D-illustration is given in Figure 8.2, where the SAS
is displayed as a dashed curve. The orange atom can not be reached
from the outside through the extended hulls and we call it an inter-
nal atom. The gray atoms that are accessible to the probe are labeled
external. The SAS representation has first been described by Lee and
Richards [129]. An efficient algorithm that yields the external atoms
for a given probe radius as a by-product has been proposed by Totrov
and Abagyan [220] and is called Contour-Buildup Algorithm (CBA).

8.3 related work

The acquisition and visualization of properties of molecular data is a
field of extensive research. Here we cover existing work that handles
the extraction of molecular surface atoms, as this is an important as-
pect of our software prototype. Then, we shortly outline publications
that describe the work with surface or surface-derived data.

surface extraction Since the original publication about the
SAS in 1971 [129] and the extension to the SES [179], several meth-
ods have been proposed to calculate the surface of a molecule in an
efficient manner. Voxel-based algorithms place a molecule inside a 3D-
grid and determine surface atoms based on cells that are occupied
by atoms. The algorithm by Lee et al. [130] does not yield an exact
result, since it depends on empirically derived parameters that may
vary for different input molecules. A sample-based algorithm has been
proposed by Byungjoo et al. [98]. They create samples on spheres
that represent atoms. Samples that are inside the spheres of neighbor-
ing atoms are discarded. Surviving samples refer to surface atoms.
The accuracy of this approach depends on the number of samples.
An approach that disassociates from the common surface definitions
is introduced by Karampudi and Bahadur [94]. They spawn cylin-
ders along the x,y, z directions of the 3D-space for each atom center.
Periphery atoms within these cylinders are potential surface atoms.
The granularity of the surface representation can be controlled by
the cylinder radius. Earlier, Connolly [33] has proposed an analyti-
cal algorithm to compute the SES area of a molecule. Following their
definition, an exact algorithm to extract the actual SES is described
by Totrov and Abagyan [220]. Their definition of the CBA yields an
exact result with respect to the SAS definition and. The CBA can be
parallelized [142] and has also been brought to the GPU by Krone et
al. [114]. An alternative algorithm by Sanner et al. [196] obtains the

88888888

166 residue surface proximity

reduced surface of a molecule, which also contains the information
that is necessary to build the SAS. A thorough list of algorithms that
deal with the computation and construction of molecular surfaces can
be found in the report by Kozlíková et al. [105] and in the work by
Daenda et al. [41]. Because of the correctness of the CBA, we use the
approach by Totrov and Abagyan as the basis for the implementation
in our application.

structure visualization Several approaches that improve the
acquisition and visualization of dynamic molecular surfaces exist [113,
141, 142]. However, to understand the behavior of biomolecules, the
necessity arises to visualize structural changes. Comparing complex
3D structures is a difficult task and may be solved by switching to
a more simple representation. Recent work by Kocincová et al. [104],
for instance, tackles this task by bridging between 1D amino acid se-
quences and their 3D-representations. This is useful to compare time-
steps of a MD simulation of the same sequence, but fails to capture
global correlations between the changes of individual elements of the
sequence. An approach by Malzahn et al. [145] unfolds proteins to al-
low the view on parts of the molecule that are usually buried in tun-
nels. Krone et al. [115] compute 2D projections of molecular surfaces
and use the time-steps of a MD simulation as the third dimension in a
space-time cube. A proper visualization of the cube allows to quickly
find surface- and time-dependent features. A disadvantageous prop-
erty is that information from inside the molecule is disregarded.

This paper contrasts these approaches, by attempting to capture
structural changes on the surface and on the inside of a molecule
over time and visualizing the results in a single 2D map. We stick to a
surface-based formulation, but take the whole molecule into account
by defining virtual surface layers inside the molecule. Such advances
can also be found in the chemical domain, e.g., Saunders et al. [197]
infer information from the relative surface participation of individual
residues. Further, Xu et al. [232] compute the distance of an atom to
the SAS. This magnitude reflects how deep an atom is buried inside
a molecule and it is shown to be an interesting, additional feature,
besides RMSD or RG. A similar, but very coarse approach was pro-
posed by Karampudi and Bahadur [94]. Instead of obtaining a precise
distance of each atom to the surface, they strictly define three layers,
independent of the size of the molecule. Despite of the precision, both
methods could be applied to track movements of atoms or residues
inside the molecule, independent of absolute spatial movements. The
depth of an atom has also been used in the context of cavity predic-
tion by Tan et al. [213]. We argue that Karampudi’s approach lacks
the incorporation of the SAS, while Xu’s methods misses the atom-
istic structure and order within a molecule. Hence, the work at hand
is influenced by both these methods and transfers their ideas to MD

88888888

8.4 requirements 167

trajectory data. By constructing virtual inner layers, we basically in-
troduce a way to capture the entire structure of a molecule.

8.4 requirements

Here, we describe the requirements from the point-of-view of a phar-
maceutical expert and derive goals in order to support the scientific
work flow. This work was carried out in the context of research of
µ-conotoxins, which are taken from the venom of the marine cone
snail [1]. For example, these small proteins (10-50 amino acids) are
of interest in the area of drug design (e.g., for the fabrication of pain
killers). Studying their folding behavior and applications is an active
field of research [218, 219]. MD simulations may contain several hun-
dreds of thousands of time-steps, each representing the conformation
of the molecule in a folding process. Thus, the obtained data has to
be broken down and simplified in order to make it seizable and com-
prehensive in practice. We divide the workflow into four main steps:

1. Acquisition Novel data is extracted from input trajectory data.

2. Presentation The extracted data is presented to the user in a way
that allows immediate insights into the data.

3. Analysis The extracted data is filtered in order to reveal individ-
ual features and to allow in-depth interpretation.

4. Distribution The extracted data is prepared for publication as a
basis for discussion with the expert community.

In the following, we describe the above steps in more detail with
respect to our research contribution.

acquisition RMSD or RG measures help identifying sections of
the MD data, in which a molecule’s conformation is similar to a ref-
erence conformation and where larger deviations occur. Experts can
draw conclusions from these values to further analyze certain time-
steps. The drawback is that each atom is treated individually (i.e.,
the molecule is treated as a cloud of unrelated points). The spatial
relation of atoms is, however, very important for further interpreta-
tion. In general, the surface of a protein determines its interaction
behavior with other molecules. In conotoxins, Structure Activity Re-
lationship studies indicate that the residues that are important for
the toxin’s binding and interaction with its ion channel target are
found on the surface of the molecule [1], while the core determines
its stability [156]. This last statement yields the basis for the approach
proposed in this work that introduces the concept of Residue Surface
Proximity (RSP). We design the RSP as a scalar measure for atoms and
residues that reflects the proximity of an atom or residue to the molec-
ular surface. Doing so, the relative ordering of atoms and residues

88888888

168 residue surface proximity

within the molecule will be taken into account. Details on the RSP
can be found in Section 8.5.1.

presentation With a large amount of data at hand, it is neces-
sary to present the data in a clear manner. A good representation aids
the user in finding certain features within the data. In our case, the
experts are interested in the change of RSP per residue. During a fold-
ing process, some residues are expected to be more mobile and also
correlations between pairs of residues are expected. Thus, we want to
give the user an overview in which the RSP value of residues is easily
perceivable and comparable to other residues. We additionally map
the derived RSP data to the original 3D-structure to create a visual
link between them. The 3D-visualization helps the user to mentally
integrate the derived RSP data into the original MD simulations data
(see Section 8.5.2).

analysis When working with new data, it is not always clear
what to focus on or what to search for. In such a case, it is benefi-
cial for the user to quickly filter the data in order to manually extract
certain features. Predefined filters may not always cover the needs
for individual data sets and exporting the data for filtering in exter-
nal programs delays the workflow. Hence, we want to provide the
user with a flexible filtering framework that can be tailored inside the
application. The framework allows for an immediate visual feedback
through the visual data representation, as described in Section 8.5.3.

distribution After the analysis, the user might want to share the
extracted data with colleagues and the research community. Hence, it
is imperative to provide convenient modes to export the visual rep-
resentation of the RSP in publication quality (see Section 8.5.4). Ex-
porting the raw data does also allow further processing by external
software, if required. The four workflow steps described above yield
the main features that we want to cover with our application. In the
next section we describe our approaches to address the listed require-
ments.

8.5 application concept

This section describes the approaches with which we address the re-
quirements established in Section 8.4. The user workflow and the as-
sociated feature flow of our application is depicted in Figure 8.3. The
concrete steps are described next.

88888888

8.5 application concept 169

Figure 8.3: User workflow and the application feature flow. The Presenta-
tion and Analysis steps form a repetitive process, where filtered
data is visualized, motivating further analysis and filtering.

8.5.1 Acquisition: Residue Surface Proximity

We aim to provide an algorithm that is capable of capturing the ar-
rangement of atoms. The relation we are looking for is the ordering
of atoms with respect to their proximity to the molecule surface. The
concept is delineated in Figure 8.1 (top, second from the left), where
atoms are represented by their extended hull. The outer layer (blue)
is made up of the atoms that are part of the SAS. The next (cyan) layer
can be computed by removing the first layer and extracting the SAS
of the remaining atoms. This process is repeated until no more atoms
remain (yellow core layer). Let A be the set of all atoms of a molecule.
Then, atom i ∈ A is labeled with a layer number Li ∈ {0,N − 1},
where N is the total number of layers. Such a layering approach has
initially been used by Karampudi and Bahadur [94]. Their method
is based on their own definition of the surface of a molecule and re-
stricts the number of layers to three distinct classes for both, atoms
and residues. We argue that the SAS is a more suitable representation
to create layers, because it is an accepted method to determine the ac-
cessibility of atoms. Further, we allow a continuous layer spectrum for
residues. Let o be a residue consisting of atoms Ao, then we compute
the averaged residue layer Lo as the arithmetic mean of the layers of
atoms Ao. In this way, we obtain a scalar value Lo ∈ [0,N− 1] ∈ IR for
each residue and each time-step. We see this approach as a trade off
between Xu et al. [232] and Karampudi and Bahadur [94]. While the
algorithm by Xu et al. yields a precise distance value of each atom to
the surface, it neglects the SAS property that we maintain through the
layer approach. In contrast to Karampudi and Bahadur, the averaging
of atom layers allows us to faithfully process small proteins. Their ap-
proach uses the minimum atom layer to define the residue layer. For
small molecules, most residues are likely to have at least one atom in
the outermost (lowest) layer, which would make the representation
less discriminative.

As the layer membership is based on the SAS definition, it also de-
pends on the applied probe radius. An increased probe radius leads
to less accessible atoms per layer, increasing the maximum number of
layers. This way the user can control the granularity of the assigned
layers. A standard radius of 1.4 Å represents the size of a solvent

88888888

170 residue surface proximity

Surface Core

39ns 43ns 48ns

R
es

id
ue

s

Simulation Time

Figure 8.4: Link between RSP-map (top, showing one residue) and 3D-view
(center). The highlighted residue (inverted colors) is part of the
core until 39ns (center, left). It then emerges for a short period
(center) before going back to the core after 48ns (center, right).
Information per atom can also be obtained in a detail view (bot-
tom). A tracker (top, red bar) selects a time-step from the RSP-
map.

water molecule, which is usually applied for the SAS calculation. In
our experiments a radius of 2.8 Å was observed to yield better results
and has been used for the figures and experiments in this work, if
not stated otherwise. It was chosen based on testing different radii
with the trajectories at hand. The optimal radius may vary in depen-
dence of the data set. We describe the SAS layer extraction in detail
in Section 8.6.1.

8.5.2 Presentation: RSP-map and 3D-visualization

The data presentation in our application is divided in two parts: A
RSP-map (based on the heat-map concept) and a 3D-visualization
of the molecule with RSP data mapped to it. The RSP-map contains
a row for each residue and each row is made up of the time-steps
of the MD data. An example RSP-map is depicted in Figure 8.4. To
provide an integration with the 3D-structure, a time-step tracker can
be used to select time-steps that are then rendered in a 3D-view. The
residues (or atoms) of a molecule are then colored accordingly to
the RSP-map. The example in Figure 8.4 shows that the RSP-map is
able to reflect conformational changes of the molecule. Having the
3D-visualization of the molecule helps the experts to quickly make

88888888

8.5 application concept 171

judgments from a certain time-step of the simulation. The integration
within our tool negates the need to have the trajectory playing in
another external application to follow the progress of the simulation
along with the RSP-map perspective. One of the main components of
MD simulation trajectory analysis is to see changes in the molecule
at different time-steps in the simulation. A usual way of doing this
is to collect snapshots from interesting time-steps from the trajectory
and to visually compare them. In our tool, from looking at the RSP-
map, experts can identify interesting time-steps, e.g., points where
the layer membership of a residue changes. Given this, the tool allows
to visualize these multiple time-steps in side-by-side 3D views for
comparison. The figures shown in this work use a blue to yellow
color map, where blue represents the molecule surface and yellow
the core. In our application, the colors can be customized.

8.5.3 Analysis: Filter Expressions

Manipulation and filtering of data is a crucial step when searching
for certain features, or preparing the data for further tasks. We pro-
vide a flexible and extensible basis, which allows the user to directly
process the data through a filtering interface inside the application.
The user can submit C-like expressions through a command-line in-
terface for filtering. Currently, two types of expressions are supported,
distinguished by their return type:

• Boolean Expressions return true or false. They hide an item or
items from the data if true. (E.g., AtomElement == H hides all
hydrogen atoms from the RSP-map and 3D-visualization)

• Numerical Expressions return a numerical value. They set the
displayed RSP values with the returned value. (E.g., the differ-
ence of RSP for each time-step (frame) and time-step 600 is re-
turned by ResidueLayer(frame) - ResidueLayer(600).)

Hiding certain amino acids may be useful when working with larger
molecules. In that case, the RSP-map can be reduced to the set of
residues of interest. Multiple expressions can be chained together to
form more complex expressions, which accept standard arithmetic,
relational and logical operators. Basically, the input to an expression
is either a variable or a numerical value. Variables are defined inside
our application and return the associated value. The previously men-
tioned variable frame, for example, returns the time-step of each data
element that the filter is applied to. Chained expressions might, how-
ever, become too complex for the user to express. Such expressions
can be wrapped in functions that are implemented in the source code
of the application and are then available through the filtering inter-
face. For instance, Figure 8.5 (top) shows a raw and a filtered version
of a RSP-map. The modified version (center) makes it much easier to

88888888

172 residue surface proximity

Figure 8.5: The raw RSP-map data (top) has been modified by a filter expres-
sion (center) to highlight significant changes in the representa-
tion. The following expression was used: Quantize(Sum(-100, 100,
ResidueLayer(Frame + x), x) / 201, 0.5). This command smooths the
residue layer in a window of 201 time-steps and rounds them to
the next multiple of 0.5. Another filter has been applied (bottom)
to display the smoothed layer difference of adjacent time steps.

88888888

8.6 implementation 173

detect significant changes in the RSP values. It might also be feasi-
ble to compute the layer difference of adjacent time-steps. Figure 8.5
(bottom) reveals that the marked (orange box) residues change their
layer membership frequently throughout the simulation. For further
details and more possible filter expressions, we refer to the applica-
tion prototype and source code that we supply in the supplementary
files. Details on the processing and extensibility of the filter expres-
sions can be found in Section 8.6.3.

8.5.4 Distribution: Data Export

Data that has been generated by our application can be exported
in several ways. RSP values can be stored as Comma Separated Val-
ues (.csv) file, which is suitable for loading into external software for
further processing. A binary format Binary Atom Layer Data (.bald) is
also available. It reduces the memory consumption and is faster to
load, and should be preferred to store data that will later be loaded
again by our application. Additionally, it is possible to output the RSP
data in an .html file, which allows plotting the RSP-map in an inter-
active representation in the browser (requires the Plotly API [170]).
Further, the RSP-map as well as the 3D-visualization can be written
to disk as images with user defined resolution to provide high quality
renderings.

8.6 implementation

This section describes the extraction of surface atoms, the visualiza-
tion and the implementation of filter expressions in more detail.

8.6.1 Surface Atom Extraction

In order to compute the RSP as described in Section 8.5.1, we extract
the atoms that are part of the SAS. The basis of our implementation
is the CBA [220]. While the CBA can be employed to find the SES,
we only need to compute a part of the algorithm’s possible output,
which yields the external atoms. This is similar to the work by Zhang
and Shi [235]. As described in Section 8.2, the SAS is defined with
respect to the radius of a probe sphere. Atoms i ∈ A of a molecule
are treated as a sphere cloud, where each sphere radius is given by
the respective VdW radius, extended by the probe radius (pr): ri =
ri,VdW +pr. Each extended sphere is then tested for overlapping with
neighboring spheres. If the surface of a sphere i resides completely
within neighboring spheres, that sphere is not part of the SAS. The
algorithm is applied to each sphere i ∈ A individually and classifies
i as internal or external. The process is subdivided into four steps:

88888888

174 residue surface proximity

(a) (b) (e)(d)(c)

Figure 8.6: Neighbor configurations for two spheres.

nij ci

eij

oij

dij

cj

rirj

Figure 8.7: Illustration of the intersection distance eij in dependence of the
cutting plane (x − oij) · nij = 0.

S1 Build cutting face list.

S2 Filter cutting face list.

S3 Build end-points.

S4 Filter end-points.

We closely follow the original algorithm, but utilize a geometric prop-
erty to speed up the computation of S2 and S3. In order to derive that
geometric property, we provide a detailed recap of the required parts
of the CBA.

S1 Let Ni ⊂ A be the set of neighbors of sphere i. Then, j ∈ Ni if
and only if dij < ri+ rj and dij > |ri− rj|, where dij is the Euclidean
distance between the centers of spheres i, j. Hence, Ni contains all
spheres that intersect with i, as depicted in Figure 8.6(c). A cutting
face is computed for each intersection and represented in Hessian
Normal Form: (x− oij) ·nij = 0, where nij =

cj−ci
|cj−ci|

is the normalized
vector between the two sphere centers c. The support vector for the
plane is given by oij = ci+ eij ·nij. Here, eij is the intersection distance
of two spheres (w.r.t. ci, see Figure 8.7):

eij =
d2ij + r

2
i − r

2
j

2 · dij
(8.1)

S2 The next step is to filter the set of cutting faces, as there are cases
where a cutting face can be discarded or the classification of sphere

88888888

8.6 implementation 175

Ca Cb Cc Cd

Intersection

Figure 8.8: Cutting face configurations. The striped area is cut from the gray
sphere by the respective cutting face.

i can already be terminated. For this, we require the normalized in-
tersection distance (i.e., on the unit sphere), given by êij =

eij
ri

. The
value êij resides within (−1, 1). The excluded bounds 1 and −1 are
depicted by Figure 8.6(b) and (d), respectively (where i is shown as
the gray and j as the green sphere).

Let A,B ∈ Ni,A 6= B be two neighboring spheres of i. In the follow-
ing figures, the observed sphere i is shown in gray, A in green and
B in orange. Four general configurations are possible as illustrated in
Figure 8.8:

Ca The cutting planes intersect within the observed sphere i.

Cb The green face is cut away by the orange face and is discarded
(this covers an analogue case, where orange is discarded).

Cc The observed sphere i can be classified as internal, since it is com-
pletely cut away by both faces.

Cd Both faces survive, but no intersection is found inside the ob-
served sphere.

Instead of explicitly calculating the intersections between each pair of
cutting faces, and checking for the given configurations as suggested
by the original algorithm, we speed up the computation, as follows:
The configurations in Figure 8.8 can be described by the orientations
niA, niB and the normalized intersection distances êiA, êiB. The rela-
tive orientation ofA and B is depicted by the included angle α and the
resulting dot product: cos(α) = 〈niA, niB〉. Thus, the cutting face con-
figurations can be described by three degrees of freedom: {α, êiA, êiB}.
From that we derive a formula, which immediately determines one
of the cutting face configurations. As illustrated in Figure 8.9 (left),
we can obtain the half of the normalized intersection range

ĥi,AB = r̂iA · sin(α) (8.2)

where,

r̂iA =
√
1− ê2iA (8.3)

88888888

176 residue surface proximity

êiA

α
m̂i,AB

ci

oiA

ci

oiA r̂iA
α

ĥi,AB

Figure 8.9: Determination of the variables ĥi,AB and m̂i,AB, where A

(green) and B (orange) cut i (gray sphere). The orange cutting
planes represent the minimal and maximal cutting distance for
B. The dashed orange lines depict the center of the range.

Ca

Cd

CbB

CbA

Cc

cos(α)

Figure 8.10: Plot for a fixed intersection depth êiA = 0.5. The labels refer
to the cutting face configurations in Figure 8.8, where CbA, CbB
cover the case Cb (A or B survives, respectively). The orange line
depicts the possible values for êiB, if nA and nB are orthogonal.

is the radius of the cutting plane of A with respect to i, mapped
to the unit sphere. Further, we compute the normalized shift of the
intersection range as in Figure 8.9 (right):

m̂i,AB = êiA · cos(α). (8.4)

Finally, if spheres A and B intersect with i for a given intersection
distance êiA, we obtain the minimal (êminiB) and maximal (êmaxiB) in-
tersection distances for B, such that A and B intersect within i:

êminiB = m̂i,AB − ĥi,AB, êmaxiB = m̂i,AB + ĥi,AB (8.5)

In Figure 8.10 we plot the respective minimum and maximum val-
ues for a fixed êiA with varying cos(α). The resulting graph has the
shape of an ellipse, which subdivides the parameter range (−1, 1) into

88888888

8.6 implementation 177

1 IF êiB <= êminiB THEN:
IF cos(α) >= −êiA THEN:

case CbB ;
ELSE :

case Cc ;
6 ELSE IF êiB >= êmaxiB THEN:

IF cos(α) > êiA THEN:
case CbA ;

ELSE :
case Cd ;

11 ELSE :
case Ca ;

Listing 8.1: The five possible configurations of two cutting faces

five segments. From these segments we can immediately derive the
configurations from Figure 8.8, by looking up the point (cos(α), êiB)
within the graph:

Ca Inside the ellipse

Cb Bottom right (B survives), Top right (A survives)

Cc Bottom left

Cd Top left

The segments can be quickly determined as in Listing 8.1. After op-
timizing the cutting faces for i in the above described manner, only
configurations Ca and Cd remain. If only Cd occurs, i can be classified
as external, otherwise we have to further process the intersections of
Ca, which will be covered by S3 and S4.

S3 For each pair A,B that results in configuration Ca we compute
the intersection line of both cutting faces. The previously computed
values êminiB , êmaxiB and êiB allow us to do this efficiently.

p0 = k + v0 · l, p1 = k − v0 · l (8.6)

where p0,1 are the intersection points, k is the closest point on the
intersection line of A,B to the sphere center ci, v0 = niB × niA is the
direction of the intersection line and l2 = r2A − q2 is the distance of
the intersection points to k, with r2A = r2i − e

2
iA. Here,

q = 2 · rA ·
(
0.5−

êiB − êminiB

êmaxiB − êminiB

)
(8.7)

is the distance of the intersection line to the ci. With that, we obtain

k = oiA + v1 · q (8.8)

where v1 = niA × v0. See Figure 8.11 for an illustration of the com-
putation. The intersection points for all pairs A,B, A 6= B in configu-
ration Ca are maintained in the set Pi.

88888888

178 residue surface proximity

oiA

ci

k

eiA
ri

rA

lq

p0

v1
v0

p1

Figure 8.11: Determination of the intersection points p0,1 on sphere i in
dependence of the intersection planes of spheres A (green) and
B (orange).

S4 The last step is equal to the original algorithm. All intersection
points in Pi are tested against all cutting planes of configuration Ca.
If an intersection point p ∈ P lies in the positive half-space (i.e., in the
portion that gets cut away) of a cutting plane, it is removed from P.
Finally, if P = ∅, then i is an internal atom, otherwise it is external.

To compute the layer membership for all atoms of the molecule,
multiple iterations of the following algorithm are employed, where
k = 0 is the index of the first iteration and Ar ← A is the set of
remaining atoms:

1. The steps S1-S4 are executed for each atom i ∈ Ar to obtain the
set of external atoms As ⊆ Ar.

2. The atoms j ∈ As are assigned the layer membership Lj = k.

3. The external atoms are removed from further processing and
the iteration index is increased: Ar ← Ar \ As, k← k+ 1.

4. The iteration stops when Ar = ∅.

In our implementation, the above process is executed in parallel for
individual time-steps of the MD simulation data, utilizing full multi-
processor CPU power.

validation Theoretically, the CBA yields an exact result with re-
spect to the SAS definition. As a proof, we validate our implemen-
tation with a sampling algorithm by covering the extended sphere
of an atom with sample points. The sample points inherit the clas-
sification of the associated atom (internal or external). Then we test
each sample against the extended hulls of all other atoms. If all inter-
nal samples are inside of at least one extended hull, then all internal
atoms are classified correctly. If at least one sample of an external
atom is not included in any extended hull, then the associated atom
is correctly classified as external. We applied this test to several data

88888888

8.6 implementation 179

Table 8.1: Number of atoms in the outermost SAS layer, for 1.4Å and 2.8Å
probe radii. |A| is the total number of atoms of the input molecule.

PDB ID |A| # 1.4Å # 2.8Å

1A19 1438 951 548

2PLT 804 498 358

1AF6 10050 6153 3001

sets and simulation time-steps to ensure the correctness of our im-
plementation. Table 8.1 shows the number of atoms in the outermost
layer for three sample molecules from the Protein Data Bank [12].

8.6.2 3D Visualization

The integration of the RSP value and the actual 3D-structure is an
important part of the analysis process. To achieve this, the user can
choose from a set of standard techniques to render the molecule in 3D,
with the RSP values mapped to the atoms or residues. The techniques
are Space-fill, Ball & Stick, Licorice and Backbone. While the backbone
gives an overview of the structure, its pattern is usually highlighted
by a secondary structure visualization, whose basic elements are α-
helices and β-sheets [105, 180]. A recent algorithm for the efficient dis-
play of such has been proposed by Hermosilla et al. [72], who extend
to the idea by Krone et al. [112]. However, these approaches require a
classification per atom, which determines the secondary structure ele-
ment that it belongs to [48]. This classification may change with every
time-step in a trajectory. Thus, we decided to combine the backbone
representation with a light-weight helix approximation. The approx-
imation allows us to accentuate helical sections of the backbone on
the fly.

We draw the backbone as a tube, based on a B-spline. Let bi ∈ B be
the support points of the backbone spline B (i.e., the Cα atoms). Then
we compute a weight wi for each support point, which depends on
the convolutedness of a spline section around bi with

hi =
i+k−1∑
j=i−k

bj+1 − bj
|bj+1 − bj|

, (8.9)

where hi is the convolution vector at bi. Note that if the spline from
bi−k to bi+k is a straight line, |hi| = 2k holds. For any convoluted
spline section, we obtain |hi| < 2k. The relation wi = 1 −

|hi|
2k can

then be used to express the convolutedness of the section around bi.
We use wi to flatten the tubular spline as depicted in Figure 8.12

(right). It can be observed that helical sections are flattened, while
straight sections are tubular. In our implementation, we chose k = 10.
This representation approximates the depiction of α-helices and can

88888888

180 residue surface proximity

Figure 8.12: 3D representations, from left to right: Space-fill, Ball & Stick,
Licorice, Backbone, Helix approximation.

easily be updated on the fly. It is therefore suitable for a cost efficient
animation of trajectory data.

8.6.3 Filter Expressions

Filter expressions that are submitted by the user are parsed and split
into tokens, which are inserted into a tree structure. Five different
types of tokens exist (see Figure 8.13, top). After extracting a list of to-
kens from the filter expression, a processing tree is constructed. Each
node in that tree has a type, which defines the number of children
it can have. The type also defines a pattern that must be present in
the token list to create that node. If a pattern matches the token list, a
node is created and the list is divided into sublists (a sublist for each
child node). The sublists are then processed in the same manner, until
leaf nodes are reached. There are five types of nodes:

• Bracket Pair Pattern: Brackets enclosing n tokens. Children: 1.

• Operator Pattern: x tokens left and y tokens right. Children: 2.

• Function Pattern: Function name, followed by x parameters, di-
vided by commas and enclosed by brackets. Children: x.

• Variable Pattern: String token with attached value. Leaf node.

• Number Pattern: Single numerical token. Leaf node.

An example tree is given in Figure 8.13 (bottom). The tree is then eval-
uated, beginning at the leaf nodes, to obtain the final result. The func-
tions and variables used in the filter expression determine whether
the filter is called by each atom, each residue, or both. For example
the variable AtomIndex can only be called by atoms, while frame can
be called by atoms and residues. If the result is a boolean value, it is
used to toggle the visibility of the calling data item in the RSP-map
and the 3D-visualization. A numerical value is used to overwrite the
respective RSP value. This basic structure allows to combine the avail-
able tokens to complex expressions. Furthermore, the interpretation
of function and variable strings is well extensible. Developers are able
to define new function names that take a number of parameters and

88888888

8.7 results 181

Figure 8.13: A filter expression can contain up to five different token types
(top). The tokens are then evaluated and inserted into a tree
structure (bottom).

Figure 8.14: Screen-shot of our application with a PIIIA protein loaded.

map these to an actual C++ implementation. In this manner, the filter
interface can be augmented with arbitrary functionality.

8.7 results

In this section, we examine our application from a performance’s and
the domain experts’ point-of-view, focusing on the expert user accep-
tance, based on the questionnaire by Davis [37]. A screen-shot of the
application is shown in Figure 8.14, where the RSP-map is displayed
along with two 3D-render-views. The render-views can be used to
compare different time-steps or to apply different visualizations or
color styles. The filter panel is shown at the bottom right (the applied
filter expression is marked in red).

88888888

182 residue surface proximity

Table 8.2: Timings of our application to compute the RSP for 20k time-steps.
Results are shown in seconds for a probe radius of 1.4Å and 2.8Å.
The maximum number of extracted atom layers was 3 and 5, re-
spectively.

Protein # Atoms s 1.4Å s 2.8Å

GIIIA 352 41 104

KIIIA 235 25 60

PIIIA 350 39 99

SIIIA 274 31 79

SmIIIA 337 40 98

8.7.1 Performance

To assess the performance of our implementation, we computed the
RSP values for five MD simulation trajectories of known µ-conotoxins.
The trajectories contained 100k time-steps each and were sampled
down to 20k steps. This down-sampling was applied, as our domain
experts usually work on the lower-resolution data, in order to speed
up their workflow. The probe radius for the layer calculation was set
to 1.4Å and 2.8Å. The performance tests were executed on a desk-
top computer environment with a 4-core 4.00 GHz i7-6400 processor,
a NVIDIA GTX 1070 GPU and 16GB DDR4 RAM. As depicted in
Table 8.2, the probe radius has a significant impact on the computa-
tional workload. A larger radius requires the observation of a larger
neighborhood per atom. The size of the neighborhood also depends
on how compact the molecule is (i.e., the number of layers). How-
ever, the timings to precompute the RSP values are in the range of
few minutes, which is feasible for an efficient work flow, since the
values only have to be calculated once. Note that the time to obtain
the MD trajectories is in the range of a couple of hours on consumer
hardware, hence, our timings are negligible.

8.7.2 User Experience

To validate the expert user acceptance of the software prototype, a
survey was conducted with domain experts that used the application
during their professional work. The experts’ task was to investigate
the effect of breaking disulfide bonds on conformational changes of
the respective molecule during an MD simulation. To obtain insights
into conformational changes, they commonly use magnitudes like
RMSD. Now, they used our software prototype in addition to gain
more information through the RSP-maps. This includes loading tra-
jectory data, setting up the probe radius for the RSP-map calculation
and executing the algorithm. The experts were then able to use the

88888888

8.7 results 183

RSP-map, filter expressions and 3D views of our prototype to locate
interesting sections of the MD trajectory for further analysis. More
detail about the incorporation of the RSP-maps during the workflow
is given in Section 8.7.3. The significance of our study is underlined
by the fact that it was conducted within a professional work environ-
ment and not in an artificial survey setup. The survey contained the
12 questions proposed by Davis [37]. The questions are separated into
two categories. One measures the perceived usefulness and the other
the perceived ease of use. Both can be correlated to powerfulness and
simplicity. A useful application is powerful as it has all the features
needed to perform a task efficiently. While simplicity is not directly
ease of use, it does result in ease of use.

Three subjects participated in the survey. The subjects were classi-
fied into three categories, namely novice, intermediate and advanced
user, based on their previous experience of conducting molecular sim-
ulations and using related software. The ratings of Usefulness and
Ease of Use after Davis for each user are displayed in Table 8.3. The
novice user was a pure experimentalist with minimal experience in
usage of computational tools related to molecular simulations. Initial
problems arose due to lack of knowledge of how simulation files are
generated and stored. Once the concept of structure and trajectory
files were explained, the application was much easier to handle and
the user could independently navigate through the application in an
intuitive way. Because of the missing experience with MD simulation
data, the Usefulness was rated with 3 out of 5 points. However, the
Ease of Use rating was rated 4.6. The intermediate user was again an ex-
perimentalist but had occasionally used online tools for protein struc-
ture predictions. The user also had some knowledge on molecular
simulations and rated the Usefulness with a score of 4. The additional
experience with online tools supported the Ease of Use, resulting in a
rating of 5. The advanced user was a computational chemist who was
highly accustomed to running molecular simulations, analyzing tra-
jectory data and presenting them to experimentalists to make further
biological deductions from the computational findings. Both, overall
Usefulness and the Ease of Use, were rated with 5 points.

The experts stated that the RSP approach is a new and intuitive
perspective on MD simulations, which allows to extract informations
from complex trajectory data more easily. They see potential that
our approach serves as a tool to study molecular motion and sur-
face properties, adding to more common approaches. The advanced
user found that the tool is a must-have in the analysis pipeline of
any computational dynamic simulation of biomolecules. In general,
it was stated that one of the biggest advantages that our prototype
provides, is that RSP values are displayed as a color coded map. This
enables the user to skip the redundant time-consuming process of
playing the trajectory multiple times in an animation to observe and

88888888

184 residue surface proximity

Table 8.3: Ratings of the Usefulness and Ease of Use after Davis [37]. The
maximum possible ratings in the questionnaire were 5.

User Usefulness Ease of Use

Novice 3 4.6

Intermediate 4 5

Advanced 5 5

interpret the movement or layer membership of individual amino
acid residues or individual parts of the protein. The additional dis-
play of 3D-visualizations of multiple selected time-steps has also been
pointed out as an important aspect for a convenient work-flow. The
ability to super-impose these selected time-steps would be an addi-
tional improvement. Further benefits that the domain experts see are
summarized in the following section.

8.7.3 Accompanying Study using RSP

A pharmaceutical study (currently unpublished in submission) aims
to clarify the factors that contribute to the conformational stability of
µ-conotoxins. Here we describe how this work could benefit from the
RSP method.

In general, the experts employ RMSD and the variance of atom po-
sitions (Root Mean Squared Fluctuation, RMSF) throughout MD simula-
tions to obtain insights into how disulfide bonds affect the stability of
the observed proteins. For instance, in certain cases the RMSF reveals
that the removal of disulfide bonds may lead to increased structural
stability (i.e., the RSMF is lowered). The removal leads to the forma-
tion of α-helices that could be visualized by our helix approximation
visualization.

The RSP method adds information to the analysis of residue move-
ments and reveals that it is also important to consider global, relative
movements within a protein that are not captured by fast thermal vi-
brations (reflected by RMSF). For instance, our approach supports the
experts in finding which residues form the core of the molecule. The
RSP-map, which covers the whole simulation time, then allows the
user to determine whether core residues stay within the core during
the entire course of the simulation. This is important for determi-
nation and retaining of the 3D-structure characteristics of the bioac-
tive protein. For example, core residues moving to the surface can be
an indicator for increased solvent accessibility and at times loss of
molecular compactness and rigidity. It is also straightforward to de-
termine in which part of the simulation a rearrangement of residues
occurs. This is of interest, because residues that move to the surface
at later stages of a simulation have stronger implications on the be-

88888888

8.8 discussion and conclusion 185

havior of the protein in solution. The RSP-map being plotted as a
function of the simulation time makes this sort of useful interpreta-
tions possible. The above statements also apply to surface residues
and further to correlated movements of core and surface residues.
Correlated movements reveal, for example, whether the rearrange-
ment of a core residue has impact on the surface residues in a way
that they tend to move towards the core. It has already been shown
by Das and Mukhopadhyay [36] that information about directionality
and amplitude of residue movements contains valuable information
about folding processes. The mentioned benefits contrast common
magnitudes like RMSD, RMSF or RG, which rely on euclidean space
and consider atoms or groups of atoms individually.

The domain experts see the RSP-map as a glue between the other
measures mentioned above. Since RMSD and the RSP-map use the
same time scale, it is easy to visually compare the RSP and RMSD
plots to interpret atomistic events from the trajectory. If a particular re-
gion of the trajectory has a noticeable spike or dip in RMSD, the RSP-
map can be looked up at the same time-step to check which residual
movements contribute to this RMSD change. Since our prototype, in
its current state, only computes the RSP-map, comparisons with other
magnitudes were conducted by using the export functions of our tool.
The same kind of intuitive visual comparison can be made between
the RG graph and RSP-map in identifying which residual movements
are responsible for an increase or decrease in RG values that quantify
molecular compactness. The first derivative (i.e., the magnitude of
change, as in Figure 8.5, bottom) of the RSP values and RMSF plots
can be visually compared to find out if the thermal fluctuations quan-
tified by the RMSF for each residue have an influence on the residue’s
movement between the surface and the core. As a simple example,
residues such as Arg with long side chains and found on the surface
show high RMSF values due to thermal fluctuations. However, these
residues still remain on the surface of the bioactive molecule. In the
chance that this residue tends to move towards the core, this would
be considered as a key event captured by the RSP-map.

8.8 discussion and conclusion

In this work, we have integrated existing algorithms[220] and ideas
[94, 232] to a novel measurement, Residue Surface Proximity, which
reflects the closeness of the atoms or residues of a molecule to its
surface or core. The novel aspect is that this is done with respect
to virtual layers of the Solvent Accessible Surface definition and ap-
plied to MD simulation trajectories, providing a domain expert with
a quick overview over the whole trajectory. We developed an applica-
tion that extracts the data as described in our definition (Section 8.6)
and which further allows the filtering of the obtained data, in order to

88888888

186 residue surface proximity

support the analysis step. The RSP values were successfully utilized
in a real-world pharmaceutical workflow and have proven to be a use-
ful addition to available analysis tools (see Section 8.7.3 and 8.7.2).

The timings obtained for the computation of the RSP values of the
µ-conotoxins used in this work were in the range of few minutes.
Larger datasets (containing more atoms or time-steps) will quickly
exceed these timings, which impairs the Usefulness of the application
(as pointed out by the subjects of our study). Hence, a desired addi-
tion to the current implementation is the ability to define time-ranges
or sub-sampling of the input data, to reduce computational effort. We
would also like to investigate the extraction of further morphology
based properties that are available through our RSP algorithm. E.g.,
the ellipse in Figure 8.10 is the result of a fixed intersection depth êi,A.
Adding êi,A as a third dimension to the plot would result in a volume
representation of all possible intersection configurations. Gathering
the intersection configurations that occur for a given molecule and
probe radius would yield a structure profile, which reflects the spa-
tial relations among neighboring atoms in a new way.

The source code of our application is publicly available (see sup-
plementary files). While there are already many free tools available
for molecular processing, we do not aim to compete with these. Ex-
isting solutions (e.g., VMD [81], YASARA [111] and GROMACS [10])
have been developed over a long time and already have established
a big community. However, we argue that these programs are too
restrictive for the development of modern visualization techniques
(only partially open source or based on legacy libraries, software and
programming interfaces). The use of modern OpenGL and Qt as the
basis for the user interface allows programmers to develop visualiza-
tion techniques without any legacy restrictions. Further, the filtering
system is extensible and can be adjusted to fit the needs of expert
users. We consider connecting the filtering back-end to a graphical
node interface, which we expect to be more user friendly. Extending
the output of filters to change multiple different visualization param-
eters would also be conceivable. In this context, it is not necessary
that a programmer defines a fixed set of functionalities. More likely,
filters can be used to provide the expert user with a number of high
level commands, which the user can then further combine to complex
expressions. We think that this has the potential to accelerate the pro-
cess of defining the right set of functionalities or parameters that are
required for an effective usage of new developed techniques. Hence,
making the interdisciplinary work process more efficient. A final step
could then be to translate successful techniques to existing and more
sophisticated applications with a larger community.

In summary, we consider our application prototype as a basis for in-
terdisciplinary work between experts from the chemical and pharma-
ceutical domain and experts from the visualization community. Our

88888888

8.8 discussion and conclusion 187

accompanying work from the pharmaceutical domain (currently un-
published in submission) shows that our approach is a useful aug-
mentation to the domain experts’ tools. We see potential that the
given functionalities are capable of accelerating the development of
further visualization or data acquisition approaches in the context
of molecular research. Finally, we are confident that the open source
character will benefit the exchange of applicable algorithms among
the molecular visualization community and that our software proto-
type is valuable for further research in the pharmaceutical domain.

acknowledgements This project was partly funded by the DFG:
LA 3855/1-1 and DFG SFB 813 (to D.I.), University of Bonn (to D.I.).

88888888

9999 99 99 9

9
M I T R A L VA LV E F L AT T E N I N G A N D
PA R A M E T E R - M A P P I N G F O R PAT I E N T- S P E C I F I C
VA LV E Q U A N T I F I C AT I O N

abstract Intensive planning and pre-operative analysis from echo-
cardiography is a crucial step before reconstructive surgeries are ap-
plied to malfunctioning mitral valves. Volume visualizations of 3D
echocardiographic data are often used in clinical routine, however,
despite being very helpful, they lack a clear visualization of the cru-
cial factors for decision making.

We are building upon patient-specific geometric mitral valve sur-
face models segmented from echocardiography. These models include
rich information about the valve’s geometry, but suffer from self-
occlusions due to their complex 3D-shape. Therefore, we transfer
their 3D-structures to 2D-maps by unfolding their geometry to a
planar space. Customized pathophysiological mappings are applied,
which facilitate comprehension of the underlying pathology by rep-
resenting distribution of coaptation zone area or prolapsed regions.
This helps the physicians to grasp information about the mitral valve
anomaly in one gaze without the need for further scene interaction.

Quality and effectiveness of the proposed methods were evaluated
through a user survey conducted with domain experts. We assessed
pathology detection accuracy using 3D valve models in comparison
to the novel visualizations. Classification accuracy increased by 5.3%
across all tested valves and by 10.0% for prolapsed valves. Further,
the participants’ understanding of the relation between 3D- and 2D-
view was evaluated. A questionnaire, that focused on the utility of
our method in a clinical work flow, was answered by the subjects and
underlines the potential of the method.

In summary, our survey shows that pathology detection can be
improved in comparison to simple 3D-surface visualizations of the
mitral valve. The correspondence between the 2D and 3D represen-
tations is comprehensible and pathophysiological magnitudes, de-
picted by color-codes, further support the clinical assessment.

9.1 introduction

Surgeries and catheter-based interventions to fix mitral valve (MV) de-
fects are complex and require thorough planning and post-operative
evaluation. Transesophageal echocardiography (TEE) is a standard
clinical modality to obtain image data of the MV, which can suffer
from multiple and very complex pathologies that alter the geometry

189

999999999

190 flattening mitral valve geometry

Figure 9.1: A healthy and prolapsed MV and functional MI during systole.
The healthy valve separates the ventricle from the atrium (left).
The prolapsed valve does not close due to ruptured chrodae
tendineae (center). The functional MI prevents closure due to
dilation (right).

of the valve and that ultimately affect their function. Especially 3D
probes allow physicians to obtain an insightful view on the valve.
Most clinical workstations offer a direct volume visualization of the
captured data. However, they lack the ability to highlight important
clinical pathology indicators at a glance. Thus, more enhanced visu-
alization techniques should be added to the available tools for im-
proved clinical assessment and surgical planning.

The MV consists of two leaflets, embedded into the mitral annulus
and connected to the papillary muscles by chordae tendineae. The
function of the MV is to prevent the back flow of blood into the left
atrium during systole. Different pathologies can hamper this function-
ality, resulting in mitral regurgitation (MR). Our approach primarily
supports the analysis of prolapsed MVs and valves with functional
mitral insufficiency (MI). In prolapsed MVs, which is a degenerative
form of MR, the chordae tendineae are either prolonged or ruptured
and fail guide the MV leaflets into a closed state during systole. The
prolapse can either affect a single leaflet segment or multiple seg-
ments, making qualitative and quantitative assessment on 2D-TEE
data error-prone. Functional MI is caused by a dilated left ventricle,
i.e., the MV leaflets are not large enough to close the valve, resulting
in a small coaptation area. An illustration of a healthy MV and the
two pathologies during systole is given in Figure 9.1.

The 3D convoluted surfaces of the MV leaflets are difficult to be
fully understood on volume rendered TEE images, hence, advanced
visualization strategies are a valuable asset. For analysis tasks, flat-
tened representations of anatomic structures are becoming increas-
ingly popular in the domain of medical visualizations. Such 2D rep-
resentations allow the assessment of a whole object in a single view.
Flattening techniques are predominantly projection-based and rely
on mesh parameterization. This requires the creation of bijective map-
pings between a parameter domain in R2 and a triangulated surface
embedded in R3. In this way, every point in the parameter domain is
uniquely associated with a point in the target domain. This is a well
known problem in the computer graphics field, where 2D texture

9999 99 99 9

9.1 introduction 191

Coaptation Zone MappingGreen: very close to other lea etYellow: close to other lea etWhite: not close to other lea et

Coaptation Zone Threshold (mm)

2

 2

 4

 6

mm

Figure 9.2: Image-based MV assessment: Volume rendering of TEE image
allows for initial assessment. More detailed analysis is obtained
by means of a MV segmentation. The 2D representation allows
for a novel perspective onto the data and new insights. Model-
based visualizations are shown with coaptation mapping (cf. Sec-
tion 9.3.3) and allow thorough evaluation of the data.

images are mapped to 3D surfaces [9]. A bijective mapping applied
to the whole target domain is also referred to as a global mapping,
because the whole target domain is considered in the process of map-
ping to the parameter domain.

In this work, we will transfer the MV models to a disc-like topology
and apply a global mapping. We propose a flattened view of patient
specific MVs through global parameterization that preserves original
structure in terms of tissue area and shape. We use a boundary-free
approach that allows us to fix certain landmarks in the parameter
space, enhancing overall comparability. This is, for instance, crucial
as a basis for the pre- and post-operative comparison of the same
patient. As a novel depiction of the MV, the resulting 2D view of a
MV should be used in connection with the original 3D representation.
Pathophysiological parameters can then be mapped to both, 2D and
3D view, in order to facilitate the visualization of the MV properties.
The performance of this combined representation will be evaluated
in a user study. Our core objectives can be wrapped up as follows:

section 9 .3 .2 : A bijective, landmark-based, equiareal mapping be-
tween the 3D and 2D representation.

section 9 .3 .3 : Application of pathophysiological mappings and lo-
calization supporting mappings in order to facilitate
comprehension of the MV.

section 9 .4 : A user study that evaluates the performance of our vi-
sualization approach w.r.t. the application in a clinical
workflow.

In this paper, we build upon our previous publication [46] by provid-
ing additional detail on the background, related work and method
and conduct a more comprehensive user study. With our contribution,
we envision to augment the existing image-based MV assessment ca-
pabilities provided by clinical work stations. An overview of the envi-
sioned work flow is given in Figure 9.2. Here, the volume rendering

999999999

192 flattening mitral valve geometry

provided by a clinical work station is used for initial assessment of
the valve. An extracted 3D model and its 2D projection are then used
for further in-depth quantification and decision-making. The flatten-
ing technique proposed in this paper (Fig 9.2, right) builds upon a
MV segmentation based on Engelhardt et al. [45] (Fig 9.2, center) and
provides a novel, supportive view of the MV to enhance diagnosis
and therapy decisions.

9.2 related work

This section will cover previous work from the mesh parameteriza-
tion domain and visualization of MV data sets. A general overview
of mesh parameterization techniques can be found in [77]. This field
is based on early work in graph theory [222] and most commonly ap-
plied to computer graphics in purposes of texture mapping [9, 144].
Here, a one-to-one mapping from 3D surfaces to the 2D domain is
sought in order to map textures to the surface with minimized or
user-controlled distortion. Other approaches can reduce distortion
even better, even for arbitrary topology, but do this at the cost of the
one-to-one mapping property. Then, bijectivity is only given locally,
as in Ray et al. [176].

The visualization of 3D MV models has been applied in the context
of MV simulation. For example, Rim et al. [182] studied the effect
of leaflet-to-chordae contact interaction and visualize the result as a
color map. In a virtual leaflet resection scenario Rim et al.[183] color
code leaflet stress measurements before and after the virtual resection.
Similar depictions of mapped magnitudes can be found in the work
by Zhang et al. [234]. While the applied color maps allow to perceive
distinct differences of individual data sets, a precise comparison may
be hampered by the convoluted leaflet morphology. In such a case, a
flattened representation, exposing the whole surface in one view, may
provide an advantage. Thus, a comprehensible overview of the MV
is not only required in the clinical context, but also in the domain of
simulation and modelling.

Flattened depictions have been proposed for the circulatory system,
the colon, the brain and the bones. A 2D representation of aortic valve
prostheses has been introduced as well [21]. Properties like stent com-
pression were assessed after implantation in order to analyze compli-
cation co-occurrences. A recent state of the art report [109] reviews a
variety of medical visualization techniques focused on planar repre-
sentations.

9.3 materials and methods

We target patient-specific maps and rely on an already existing semi-
automatic method to extract MV surface models from 4D ultrasound

9999 99 99 9

9.3 materials and methods 193

Figure 9.3: MV similar to depictions in anatomy books with closed (left) and
flattened valve (right), cut along the lateral commissure. Impor-
tant anatomical features are marked.

scans [45], consisting of annulus and leaflets. This segmentation al-
gorithm provides separate triangulations for both MV leaflets and
the annulus. Anatomical markers (cf. Figure 9.3) are already embed-
ded in the representation (cf. Figure 9.4, left) and can be utilized dur-
ing the flattening. Chordae tendineae and papillary muscles are not
part of these models. Please note that TEE images are not capable
of depicting the small branching structures of the chordae tendineae,
therefore, our work mainly focuses on leaflets and annuli. We will
now provide details concerning the notation and requirements. Then,
the following section describes the flattening process. Finally, color-
and texture mapping approaches are depicted, that help to grasp the
MV morphology and 3D to 2D correspondence.

9.3.1 Requirements and notation

The mathematical notation of the valve models is described as follows:
each 3D valve mesh consists of vertices V ⊂ R3. A 3D vertex is always
denoted as pi = (xi,yi, zi) and its counterpart in 2D as qi = (ui, vi).
The points qi make up the parameter domain Ω ⊂ R2, i.e., repre-
sent the coordinates of the flattened 2D model. An important sub-
set consists of vertices lying on the annulus Va = {p1, . . . , pm} ⊂ V,
where m is the number of annulus vertices (cf. Figure 9.4, green
points, left). Each annulus point is also the first point in a subset
Vl = {p1, . . . , pn} ⊂ V, l ∈ {1, . . . ,m}, which forms a single line from
an annulus vertex (pl ⊂ Va) = (p1 ⊂ Vl) to the coaptation (cf. Fig-
ure 9.4, red points, left). Moreover, the topology of the MV mesh is
described by a set of triangles t ∈ T, t = {pi, pj, pk}, with the corre-
sponding set t̄ ∈ T̄, t̄ = {qi, qj, qk}. An illustration of V andΩ is given
in Figure 9.4 (right), where the red edge represents the cut along the
lateral commissure. The goal of our parameterization will be to find
a solution for the function X, to map the points pi ∈ V to q ∈ Ω. The
quality of a flattening technique can be determined through metrics
describing the amount of (inevitable) distortions. Usually, parame-
terization methods either focus on preserving angles (conformal) or

999999999

194 flattening mitral valve geometry

p
i

p
j

p
k

q
i

q
j

q
k

Figure 9.4: The annulus points Va (green), the first one being the point on
the lateral commissure (left). Vertices of one topological longi-
tude Vl (red, left). In the 3D domain, V consists of points p and
triangles t ∈ T and is mapped via X to Ω in the 2D domain with
points q and triangles t̄ ∈ T̄ (right). Red edges depict where the
original model is cut to form a disc-like topology.

area (equiareal) of an input mesh [58]. Fulfillment of both character-
istics would result in an isometric or length-preserving parameteriza-
tion. It is desirable that a 2D-view of the MV is close to isometric or
at least equiareal. Retaining the proportions of the MV is a primary
goal of our method, which should enable the possibility of area and
length quantification on the flattened surface. Further, a physician us-
ing the 2D-view should develop an intuition for its orientation and
scale. Hence, apart from minimizing distortions, the 2D-view should
also target comparability across different data sets through a uniform
appearance. Lastly, spatial context should be preserved, i.e., the rela-
tion between the 3D- and 2D-domain should be clear.

The general idea of the proposed flattening algorithm is to cut the
MV along its lateral commissure and to unroll it along its diameter.
This results in a perspective similar to the valve’s depiction in stan-
dard textbooks [25] (cf. Figure 9.3, right). In our algorithm we split
the flattening process into three steps:

section 9 .3 .2 .1 : Annulus parameterization.

section 9 .3 .2 .2 : Leaflet initialization.

section 9 .3 .2 .3 : Leaflet relaxation optimization.

The shape of the annulus can give important hints during pathology
analysis, therefore we parameterize it as a curve, independent from
the MV leaflets.

9.3.2 Flattening

The three flattening steps will be detailed in this section. After the
annulus parameterization, its configuration will remain unchanged
during all further steps, preserving the annulus shape and arc length

9999 99 99 9

9.3 materials and methods 195

and increasing comparability across different data sets. The subse-
quent steps for the leaflet parameterization are then based on the
annulus curve.

9.3.2.1 Annulus parameterization

The annulus’ height is plotted along the v- and its length along the
u-axis of the 2D-view (cf. Figure 9.5). The correspondence of the u-
axis in 3D is a reference plane through the annulus curve. An in-
tuitive approach to compute the reference plane would be the least-
squares (LS) method, resulting in a plane with minimal distances to
points on the annulus. However, this approach does not always lead
to good results, i.e., the annulus’ height is over- or underestimated
(cf. Figure 9.5, top). Further, the anterior saddle horn is an important
feature that we would like to accentuate. Height of the saddle horn
can be different in dependence of pathologies, e.g., functional MI can
be associated with a more planar annular shape [159], while normal
or prolapsed valve have a non-planar saddle shaped shape. There-
fore, we employ a landmark-based approach, defining the annulus
plane through three points: the two commissure points on the annu-
lus, which form a natural axis through the MV and the barycenter
of the posterior annulus, which usually approximates a planar lay-
out. This yields an annulus plane Pa with normal na. The annulus
parameterization is then obtained as:

vi = 〈na, (pi − proj(pi,Pa))〉,

ui =

0 if i = 1,

ui−1 +
√
||pi − pi−1||2 − (vi − vi−1)2 otherwise.

(9.1)

where proj(p,P) is the projection of a point p onto the plane P and
〈·, ·〉 denotes the dot-product. In this way, the distance of two adjacent
points in Vl is equal to the distance of the corresponding parameter-
ization in Ω: ||qi − qi−1|| = ||pi − pi−1||. The resulting 2D view now
allows to compare the annulus curve in relation to the u-axis, i.e.,
the location and height of the anterior saddle horn can be assessed
in relation to the rest of the curve. Figure 9.5 compares the result of
the landmark-based approach (bottom) with the LS approach (top). It
can be observed that the landmark-based method achieves a more in-
tuitive representation of the 3D annuls shape and the anterior saddle
horn can be clearly pointed out in the 2D depiction.

9.3.2.2 Leaflet initialization

The leaflet geometry is placed below the annulus, similar to the ap-
pearance of Figure 9.3. First, a valid configuration is initialized, i.e.,
a leaflet layout without self-intersections or triangle-flips. We exploit

999999999

196 flattening mitral valve geometry

c

s

c

s

u

v

u

v

Figure 9.5: 3D MV model and annulus plane (left) constructed by a LS
method (top) and the landmark-based method (bottom). Param-
eterization of annulus (right). Lateral commissure (c) and saddle
horn (s) including its iso-u line are marked.

Figure 9.6: Wireframe of the initial layout of the mapping from 3D (left) to
2D (right) below the already parameterized annulus. An example
iso-u curve is shown in red.

the spline-like lines Vl which are interpreted as iso-u curve approxi-
mations and points of each line Vl are mapped to a shared u-coordinate
while the distance between points is preserved in v-direction:

ui = u1 ∀i ∈ [2,n]

vi = vi−1 − ||pi − pi−1|| ∀i ∈ [2,n].
(9.2)

where q1 = (u1, v1) corresponds to the previously parameterized ver-
tex p1 ∈ Va on the annulus. Note that this approach requires the ver-
tices in Vl to be ordered from annulus to coaptation. An intermediate
result of this initialization step is shown in Figure 9.6.

9.3.2.3 Leaflet relaxation optimization

As all lines Vl are now parallel in parameter space, the parameter-
ization does not faithfully reflect the area and morphology of the
original 3D valve. Therefore, we optimize towards a more equiareal
parameterization. We aim to minimize an energy term describing the
distortion amount of the mesh’s edge lengths. If the 3D mesh con-
sists of vertices pi, corresponding to uv-coordinates qi and the set Ni

9999 99 99 9

9.3 materials and methods 197

contains the indices of all neighbors of pi, a per-vertex edge length
energy can be described as

El =
1

|Ni|

∑
j∈Ni

||qi − qj||
||pi − pj||

+
||pi − pj||
||qi − qj||

. (9.3)

Note that this energy reaches its minimum El = 2, if and only if all
observed edge lengths in the 3D mesh are equal to their counterpart
in the parameter domain and therefore both fractions evaluate to 1.

We use an iterative Euler method to minimize this energy, mod-
elling the mesh edges in the parameter space Ω as a network of
springs. The points qi are displaced each iteration in the direction
of a summed spring force F calculated based on the model’s edge
lengths:

Fi =
∑
j∈Ni

k
(
||pj − pi||− ||qj − qi||

) qj − qi
||qj − qi||

, (9.4)

with k = 1 being a constant stiffness parameter. A similar method
was proposed to simulate MV closure [61]. The above force vector
calculation does not take the angles of the edges between the points
into account. However, due to our initialization (cf. Eq. 9.2), the layout
of Ω is already in a shape that allows to omit this aspect.

9.3.3 Mappings

After the parameter space has been established, a variety of parame-
ters can be color-mapped onto the 2D and 3D surface. To support a
clinical work flow, we address two kinds of mappings:

• Localization mappings help to understand the 3D/2D correspon-
dence, by applying the same color or texture pattern in both
views.

• Pathophysiology mappings display medical information, which can
facilitate MV analysis.

We implemented two pathophysiology mappings. The first one shows
an approximated coaptation zone, where we used a 2 mm distance
threshold between anterior and posterior leaflet to determine the
parts of the surface that collide. The other one is similar to a height-
map. It marks areas of the MV which are above and below the annulus-
plane. All mappings are applied to both, the 3D- and 2D-view, which
are always rendered side-by-side. To support localization, we delin-
eate anterior and posterior leaflet segments on the surface as pro-
posed by Carpentier et al. [25] (cf. Figure 9.7). The subdivision is
based on the parameterization Ω. For the posterior leaflet, all three
segments occupy an equal range of the u parameter. The anterior

999999999

198 flattening mitral valve geometry

v (mm)

10 20 4030 50 60 70 80 10090

10

-10

0

u (mm)

Figure 9.7: Leaflet subdivision improves 3D-2D correspondence. User-
defined points (magenta and white sphere) allow a look-up of
points of interest. The grid overlay supports size estimation.

leaflet is split up such that the three segments join at the vertex rep-
resenting the center of the anterior annulus curve, while at the coap-
tation, the segments occupy an equal range of the u parameter. Fig-
ure 9.7 additionally shows two spheres (magenta and white), placed
on the 2D and 3D surface. The spheres can be placed by the user
to get a precise feedback of the point correspondence and, e.g., to
measure the distance of the selected points, or to compare local mag-
nitudes derived from the model data. Finally, a grid overlay with 10

mm spacing allows for a quick estimation of the leaflet size.

9.4 evaluation

The evaluation of our technique is split into a technical and practical
part. The technical part covers the performance of the parameteri-
zation algorithm and the practical part covers the evaluation of our
visualization approach in the context of MV assessment user study.

9.4.1 Parameterization Evaluation

To evaluate the employed optimization step, we performed measure-
ments concerning area, angle and edge-length deformation (Eq. 9.3)
using 50 MV models and compared the results before and after the
spring relaxation method. The area distortion was measured as:

EA,i =
A(ti)

A(t̄i)
+
A(t̄i)

A(ti)
(9.5)

where A(t) is the area of a triangle. The angle distortion is computed
according to the formulation found in [78]:

EM,i =
cotα|a|2 + cotβ|b|2 + cotγ|c|2

2A(ti)
. (9.6)

where a,b and c are the edge lengths of a triangle ti and α,β and
γ are the interior angles of t̄i, opposite of the respective edges. The
minimum of EM = 2 is reached if t and t̄ have equal angle-to-edge
proportions.

9999 99 99 9

9.4 evaluation 199

Figure 9.8: Localization task without localization mapping. In this example,
the correct corresponding grid cell for the point shown in 3D
would be D2.

9.4.2 User Study

We assessed the capabilities of the proposed visualization in a user
study conducted with one visualization expert, three cardiac surgeons
and one anesthetist. After an introductory video, subjects were given
a point-localization task, where they were asked to mark correspond-
ing points in the 3D- and 2D-view. The tasks were given with the
leaflet segments shown as in Figure 9.7 and without the segments. In
each task, a point was given either in the 3D or 2D view and the 2D or
3D view was augmented with a grid layout. Subjects were then asked
to point out the cell in the 2D grid that corresponds to the marked
point in 3D (cf. Figure 9.8).

The next task was designed to simulate clinical decision making.
Within an interactive prototype of our implementation participants
were subsequently shown 20 MV models, each in two alternating
formats, resulting in 40 tasks: half of the tasks displayed models
only in 3D (without color-coding) and the other half in a combined
3D/2D-view (with color-coding). In the latter, participants could ac-
cess the coaptation and the height map (cf. Figure 9.9). Participants
were asked to assign each valve to a category: normal, prolapsed or
functional mitral regurgitation. The tasks were presented in a ran-
domized order, making direct comparison possible. Participants were
further instructed to mark their confidence in their classification on a
Likert-scale from one (not confident) to five (very confident).

After the hands-on part of the evaluation, participants filled out a
questionnaire, which mainly consisted of providing approval-ratings
for specific statements concerning the 2D-view. Again, a Likert-scale
from one (strongly disagree) to five (strongly agree) was given. Each
participant had to rate the following statements:

C1 The correspondence between the 3D- and 2D-view is clear.

C2 Different valves result in distinguishable 2D-views.

C3 Pathologies of the MV are easier to identify when the 2D-view
is provided.

C4 Analysis of the MV is facilitated through the 2D-view.

999999999

200 flattening mitral valve geometry

-5

 0

 5

mm

Figure 9.9: Combined 3D (left) and 2D (right) view with pathophysiological
mapping for a healthy valve (top) and prolapsed valve (bottom).
The depicted prolapse (height) mapping shows the signed dis-
tance of a leaflet point to the annulus plane.

9.5 results

Evaluation of the relaxation step showed that we were able to op-
timize the average edge-length energy El from 2 + 0.78 before the
relaxation to 2+ 0.07 afterwards. The area distortion dropped from
2+ 1.9 to 2+ 0.2. This is at the cost of the angular distortion, which
was not addressed in the optimization formulation and remained al-
most equal at a value of 2+ 1.4. With this, the goal of achieving an
equiareal mapping of the MV is met to a satisfying amount. Remem-
ber, that the minimum of each magnitude is 2 and that distortion is
inevitable due to the transformation from the complex MV morphol-
ogy to a planar representation.

The point localization task revealed that the 3D-2D correspondence
can be well understood, especially with the leaflet segments being dis-
played. Without leaflet segments, the average distance of the correctly
mapped 2D point to the point selected by the subject (measured from
correct grid cell center to selected grid cell center) was approximately
4 mm (or 0.74 cells). The average distance with leaflet segments on
was zero, w.r.t. the grid cell size. This means that all subjects were able
to select the correct grid cell in every task with segments displayed.

Two examples of the resulting visualization can be seen in Fig-
ure 9.2 (right) and Figure 9.9. The visual analysis of the 2D maps
provide a much more detailed understanding of the pathology: in
the 3D-view it is not clearly visible whether the valve fully closes or
not. In contrast to that, the 2D-coaptation view (Figure 9.2, right) in-
dicates a part where the leaflets do not touch. Beyond that, the height
map (Figure 9.9) illustrates the extent of prolapsing areas very well,
i.e., tissue which surpasses the annulus plane in systole is marked in
red.

The pathology assessment survey showed an increase in the pathol-
ogy detection rate in 4 out of 5 participants when they had access to

9999 99 99 9

9.6 discussion 201

Table 9.1: Average of the pathology identification task per participant P re-
garding accuracy Ai, confidence Ci and time Ti for 3D-only-view
(i = 0) and 3D/2D combination (i = 1).

P A0 A1 C0 C1 T0 T1

1 78.9% 84.2% 3.89 4.16 11.5s 15.4s

2 68.4% 73.7% 4.37 4.53 14.0s 15.7s

3 78.9% 89.5% 4.58 4.84 15.9s 12.6s

4 84.2% 73.7% 3.00 3.00 13.9s 13.2s

5 84.2% 100% 4.53 4.68 15.9s 16.0s

Total 78.8% 84.2% 4.07 4.24 14.3s 14.6s

the 3D surface and the flattened MV, including the coaptation and
prolapse color maps (cf. Tab. 9.1). A total average of 5.3% increased
accuracy was measured. Most noticeably, global detection accuracy
for prolapsed valves rose from 85% to 95%. The time required for
one classification averaged at about 14s, regardless of the view mode.
Participants were slightly more confident in their decisions when us-
ing the combined view. Average confidence (discrete scale from 1 to
5) rose from 4.07 to 4.24. When making incorrect classifications, par-
ticipants reported an average confidence of 3.53 in both view-modes.
For correct classifications, average confidence increased from 4.08 (3D-
only) to 4.28 (3D/2D).

The scores obtained for the four categories of the questionnaire
underline that the subjects are in favor of the proposed visualization
technique and see the potential for improvement of MV assessment.
The average scores from 1 (strongly disagree) to 5 (strongly agree)
were: (C1, 4.9), (C2, 4.2), (C3, 4.6), (C4, 4.6).

9.6 discussion

We presented an approach for flattening patient-specific 3D MV mod-
els, that results in an expressive 2D depiction across different data
sets. The visualization targets clinical MV analysis, a process that ap-
pears to benefit from the proposed 2D-view with color-maps. This
is underlined by the increased pathology detection rate measured
in our survey, which holds especially true for prolapsed valves. The
coaptation zone can be assessed at a glance, as well as the prolapsed
valve area. A landmark-based parameterization of the annulus makes
comparison of height deviations possible. Low area and edge-length
distortions of the leaflet geometry allow size quantification of the flat-
tened MV. The evaluation shows that spatial context is preserved as
the domain experts had no difficulties understanding 3D/2D corre-
spondence. Participants claimed pathologies were easier to identify
and MV analysis was facilitated when the 2D-view was provided.

999999999

202 flattening mitral valve geometry

They pointed out that determining the valve part affected by a pro-
lapse was aided by the flattened representation, even though the
study was not particularly designed for this aspect. The comparison
of pre- and post-operative leaflet stress as done by Rim et al. [183]
would also benefit from our approach. While the pathophysiologi-
cal mappings used in our study were derived from 3D data, it may
be interesting to evaluate whether measurements obtained from the
2D representation can also be employed for the quantification and
comparison of MVs. The planar MV view could also be extended by
inclusion of functional information.

Our leaflet relaxation optimization (cf. Section 9.3.2.3) treats all
parts of the MV equally and does not optimize angular distortion.
Hence, the final distortion is predominantly influenced by the leaflet
initialization step (cf. Section 9.3.2.2). A future extension may involve
a more user-controlled parameterization, that favors regions of inter-
est and relocates the distortion to less important regions. This would
support the faithful visualization for in-depth analyses. Another in-
teresting aspect would be incorporation of the time variable. Using
a stacked view of 2D representations or applying a suitable form of
dimensional reduction, samples over the whole cardiac cycle could
be visualized in 2D at once, simplifying assessment of annulus and
leaflet shape variation. Our landmark-based parameterization might
aid in the registration of multiple time-steps in order to establish
meaningful correspondences over time.

A possible drawback of our method is its low generalizability. The
approach is tailored to the MV and our implementation relies on the
structure of the MV model by Engelhardt et al. [45]. However, our re-
sults should motivate the extension to more generic representations
of the MV and the incorporation of more controllable parameteriza-
tion methods, as well as additional clinically relevant magnitudes.

acknowledgements This work was supported by the German
Research Foundation (DFG) project 398787259, EN1197/2-1, DE 2131/2-
1 and LA 3855/1-1.

Part V

C O N C L U S I O N

This part wraps up the contributions of this thesis to the
visualization community and discusses open research di-
rections.

10101010 1010 1010 1010

10
S U M M A RY

This thesis made several contributions down along the Visualization
Pipeline, with a focus on data abstraction. With respect to the con-
cept of interactive, visual reasoning, the proposed methods were de-
signed with a secondary focus on quick, responsive execution. Multi-
ple technical disciplines come together to reach from data preparation
to a final visualization. These disciplines can be examined individu-
ally, to find generalized solutions. In contrast, they can be designed
w.r.t. the whole pipeline formulation or a certain task, which was at-
tempted throughout this thesis. Therefore, the work at hand stepped
into each part of the Visualization Pipeline and thus provided a broad
overview of challenges, solutions and opportunities at the example of
bio-medical data visualization.

Previous works already describe the visualization pipeline in other
ways, that allow for more interactivity or larger datasets [8, 200]. From
the contributions of Part III an augmented formulation of the Visual-
ization Pipeline by Haber and McNabb [59] can be extracted (recall the
Data Enrichtment, Visualization Mapping and Rendering steps). If the re-
sults of the Rendering step, i.e., the generated image or the applied
transformations, are used to adjust, optimize or adapt the visualiza-
tion in the successive frame, then the Visualization Pipeline forms a
loop. This was shown in Chapter 4, where data glyphs are placed in
dependence of the view parameters and distributed in an optimized
way. Further, Chapters 5 and 6 used the result of a rendered image
to augment the screen-space with a parameterization of the depicted
surface. The parameterizations can be directly employed for visual-
ization tasks. Thus, the linear pipeline property of the definition by
Haber and McNabb [59] dissolves. The baseline for the loop prop-
erty was given by the view-dependent interactivity of the proposed
techniques. Future work could pick up this track to formulate a vi-
sualization pipeline definition that is suitable to describe such visual-
ization concepts. Figure 10.1 depicts the Visualization Pipeline with an
additional step Render Adaption that closes the loop. It further lists all
contributing Chapters for each part of the extended pipeline.

The main focus of this work was on the visual abstraction of spa-
tial or spatio-temporal bio-medical data. Part II dealt with continu-
ous visual abstraction for focus-and-contact visualization, using line-
drawing techniques. Especially for hatching, the question on where
(surface sampling) and along which direction (field alignment) to put
lines arose. As a solution, an algorithm of the mesh processing do-
main was picked up and made suitable for pixel-precise generation

205

10101010101010101010

206 summary

Figure 10.1: Affiliation of each chapter with the steps of the extended Visu-
alization Pipeline. Major affiliations marked in bold face.

of periodic texture coordinates that are field-aligned. It was further
shown that underlying parameters can be changed and the resulting
texture coordinates be frame-coherently updated. This enables inter-
active visualizations that encode dynamic information using patterns
based on the texture coordinates. Also, the texture coordinates can be
utilized to extract surface samples with a user-defined spacing and
orientation. These sample locations may be used for placement of
data glyphs, as done by Hombeck et al. [76].

Part III focused on the visualization of liver vasculature. An active
topic regarding such data sets is the improvement of depth percep-
tion. Novel techniques were presented to contribute to this area. As
a part of this, feature-extraction methods were introduced to extract
vascular end- or branch-locations from surface data, that are useful
to support subsequent visualization strategies. Using additional geo-
metric objects that are more complex than data glyphs was identified
as the concept of Auxiliary Tools. The term has been used by Preim et
al. [175] in the context of depth perception, but without a definition,
which is now provided with this thesis based on the current state-of-
the art. This state-of-the-art was further examined and goals for fu-
ture work were extracted, that focus on how to conduct reproducible
user studies in this area. The part proceeded with another contribu-
tion to the visual abstraction of vascular structures. Here, a linear or
radial 2D graph depicts the branching topology of the vasculature.
The background of the graph plot can be color coded or augmented
with abstract patterns in order to encode data that corresponds to
the nearby tree segments. In this way, the whole tree-structure can
be analyzed in one gaze to point out critical information. Latterly,
the utility of SDFs for visualization was studied. Once calculated, an
SDF provides a handy framework for the implementation of differ-
ent illustrative effects or focus-and-context applications. To provide a
parameterization that fits the implicitly rendered SDF, a screen-space
parameterization method was introduced. It is based on the param-
eterization described in the previous part, but does not require an
explicit surface representation.

Part IV further pursued the visualization of data through data
abstraction and dimension reduction, applied to data from the bio-
medical domain. Here the spatio-temporal data of MD simulations

10101010 1010 1010 1010

summary 207

were reduced to a 2D heatmap. In this course, the spatial information
for a single time-step is highly limited. In return, spatial correlations
over time can be better perceived. The resultant overview enabled
the domain experts to narrow their analysis to time-frames of inter-
est. For the mitral valve, a convoluted 3D structure was unfolded to
make it displayable in the 2D domain. This maintains spatial relations
and allows to view the full surface at one gaze in a single view. At
the same time, the novel representation yields parameters that may
support clinical analysis tasks or serves as a canvas for common data-
derived magnitudes. The incorporated domain experts assumed great
potential for these purposes.

10101010101010101010

11111111 1111 1111 1111 11

11
F U T U R E W O R K

The contributions of this thesis are already discussed w.r.t. future
work in the respective chapters. However, this chapter wraps up pos-
sible future goals for each part of the thesis and therefore gives a
broader overview on what can be done to build up on this thesis.

Part II presented a screen- and sample-based line drawing tech-
nique in combination with existing feature line methods to achieve
continuous visual abstraction. The sampling used to initialize the line-
drawing was not found to be optimal and the parameterization-based
sampling technique presented later in this part could be applied as
a substitute. This would allow for a more controllable distribution
of line samples and therefore a better hatching quality would be ex-
pected. Further, objects that are presented with a high abstraction
level are depicted only with a few lines and occupy only a fraction
of the visual foreground. It needs to be investigated how this can
be combined with transparency effects in order to allow for a bet-
ter visibility of nested objects. The proposed periodic texture coordi-
nates could be as well combined with this task, as exemplified with
the binary transparency in Chapter 3. A broad user-study should be
conducted that investigates on how people perceive different levels
of abstraction and whether there are limits w.r.t. the comparability
and granularity of different levels (compare the study by Chung et
al. [31]). A strong limitation of the parameterization approach is the
resolution of the input mesh. While a hierarchical structure speeds
up the computation and improves the quality of results significantly,
adaption to dynamic mesh input can not easily be handled. Dynamic
update of resolution hierarchies has already been investigated [198],
but should be applied to the parameterization task in order to proof
the applicability of the respective method.

Part III dealt with the visualization and enhancement of depth per-
ception of vascular structures. The presented glyph-based method is
already recapped and compared against other existing methods in
Chapter 7. The most important open questions in the evaluation of
these methods is how difficult the study tasks actually were. This
seems to differ greatly among the individual papers. Thus, the study
setup needs to be more carefully designed. Phases of human visual
perception, vascular complexity, sample selection, just noticeable depth
differences (JNDD) and the generalizability of an approach have to be
taken into account. Only then can different methods be faithfully com-
pared. Another contribution of this part is the parameterization of
tubular structures. The proposed hybrid approach allows to combine

209

111111111111111111 1111

210 future work

an object-space static parameter, with a dynamic view-dependent,
screen-space parameter. This enables a convenient way to align a
texture coordinates-based visualization with the user’s view. On the
down-side, frame-coherency of the screen-space part is an issue, which
should be addressed to make this approach more sophisticated. While
a full screen-space approach is already covered in this part, the two
methods differ in an important aspect: the hybrid approach yields
global parameters, i.e., each 2D parameter is unique, but the full
screen-space approach yields periodic texture coordinates. A very in-
teresting direction would be to remove the periodicity of the parame-
terization (globally or patch-wise) while adjusting or maintaining the
spacing of the mapped parameters. Moreover, the screen-space pa-
rameterization can be used for sample extraction on implicit surfaces.
Since the sampling runs in real-time and in screen-space, the tech-
nique has the potential to maintain frame-coherent surface samples,
even if the surface morphology changes. For this, a tracking of sam-
ples over multiple frames would be required. Concerning the SDF
visualization, this chapter should be able to motivate further work in
this direction. Here, future work should cover questions on how more
elaborate illustrative techniques can be applied to implicitly rendered
surfaces, based on the information given by an SDF. While sophisti-
cated line drawing techniques exist that can be applied to implicit
surfaces extracted from volume data [168, 231], SDFs can be expected
to enable new solutions. This is due to the fact that an SDF holds
information in a 3D volume extracted from a single surface. Therefore,
much more specific information about that surface is available. In
contrast, for common volume visualizations the result is a surface ex-
tracted from a 3D volume. Also, SDFs may greatly support the ease
of implementation and possibilities for focus-and-context as well as
magic-lens interaction paradigms via Boolean operations on multiple
SDFs. SDFs could also prove useful for surface feature extraction, for
example, based on morphological operations.

Part IV presented two task-oriented data abstraction approaches.
Both developed techniques remain as the first iteration of a proto-
typical solution. Application in clinical practice and real-world work-
flows should be considered to extract more capabilities and limita-
tions of the methods. In both cases, a focus should be lain at the data
analysis part of the software prototypes. As the previous focus was on
data abstraction and visualization, the analytics part has come short.
Integrating the novel methods with existing analysis tools would al-
low to asses the benefit of the respective method more faithfully. The
mitral valve unfolding should further be investigated w.r.t. the sus-
ceptibility to and control of distortion [58]. Moving the inevitable dis-
tortion to less interesting anatomical landmarks may further improve
the feasibility of the approach. Additionally, the time variable should
be considered to capture whole cardiac cycles in one visualization.

future work 211

More generally, the methods presented in this thesis should be con-
sidered within the light of Visual Analytics, i.e., the concept of Visually
Enabled Reasoning. As mentioned in the introduction, the visualiza-
tion alone is only one step on the path to gaining insight into data.
The interaction of the user with the data or with the visualization
represents another important aspect. Therefore, advanced interaction
concepts should be investigated that are enabled by the novel foun-
dations provided by this dissertation.

B I B L I O G R A P H Y

[1] Akondi, K. B., Muttenthaler, M., Dutertre, S., Kaas, Q., Craik, D. J., Lewis,
R. J., Alewood, P. F., “Discovery, Synthesis, and Structure-Activity Relation-
ships of Conotoxins.” In: Chemical Reviews 114.11 (2014), pp. 5815–5847.

[2] Alpers, J., Hansen, C., Ringe, K., Rieder, C., “CT-Based Navigation Guidance
for Liver Tumor Ablation.” In: Eurographics Workshop on Visual Computing for
Biology and Medicine. 2017, pp. 83–92.

[3] Au, O. K.-C., Tai, C.-L., Chu, H.-K., Cohen-Or, D., Lee, T.-Y., “Skeleton Ex-
traction by Mesh Contraction.” In: ACM Transactions on Graphics (TOG) 27.3
(Aug. 2008), 44:1–44:10.

[4] Auer, C., Stripf, C., Kratz, A., Hotz, I., “Glyph- and Texture-Based Visualiza-
tion of Segmented Tensor Fields.” In: GRAPP/IVAPP. 2011, pp. 670–677.

[5] Barbier, A., Galin, E., “Fast Distance Computation Between a Point and
Cylinders, Cones, Line-Swept Spheres and Cone-Spheres.” In: Journal of
Graphics Tools 9.2 (2004), pp. 11–19.

[6] Behrendt, B., Berg, P., Preim, B., Saalfeld, S., “Combining Pseudo Chroma
Depth Enhancement and Parameter Mapping for Vascular Surface Models.”
In: Eurographics Workshop on Visual Computing for Biology and Medicine. 2017,
pp. 159–68.

[7] Belkin, M., Sun, J., Wang, Y., “Discrete laplace operator on meshed sur-
faces.” In: Proceedings of Symposium on Computational Geometry. ACM, 2008,
pp. 278–287.

[8] Benger, W., Ritter, G., Ritter, M., Schoor, W., “Beyond the visualization
pipeline: The visualization cascade.” In: Proc. of High-End Visualization Work-
shop. Lehmanns Media GmbH. 2009, pp. 35–49.

[9] Bennis, C., Vézien, J. M., Iglésias, G., “Piecewise Surface Flattening for non-
distorted Texture Mapping.” In: ACM SIGGRAPH Computer Graphics 25.4
(1991), pp. 237–246.

[10] Berendsen, H., Spoel, D., Drunen, R., “GROMACS: A Message-Passing Par-
allel Molecular Dynamics Implementation.” In: Computer Physics Communi-
cations 91.1 (1995), pp. 43 –56. issn: 0010-4655.

[11] Berg, P., Roloff, C., Beuing, O., Voss, S., Sugiyama, S.-I., Aristokleous, N.,
Anayiotos, A. S., Ashton, N., Revell, A., Bressloff, N. W., “The computa-
tional fluid dynamics rupture challenge 2013 - phase II: variability of hemo-
dynamic simulations in two intracranial aneurysms.” In: Journal of biome-
chanical engineering 137.12 (2015), p. 121008.

[12] Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H.,
Shindyalov, I. N., Bourne, P. E., “The Protein Data Bank.” In: Nucleic Acids
Research 28 (2000), pp. 235–242. url: www.rcsb.org.

[13] Bichlmeier, C., Heining, S. M., Feuerstein, M., Navab, N., “The virtual mir-
ror: a new interaction paradigm for augmented reality environments.” In:
IEEE Transactions on Medical Imaging 28.9 (2009), pp. 1498–1510.

[14] Bloomenthal, J., Shoemake, K., “Convolution surfaces.” In: ACM SIG-
GRAPH Computer Graphics 25.4 (1991), pp. 251–256.

[15] Bommes, D., Zimmer, H., Kobbelt, L., “Mixed-integer quadrangulation.” In:
ACM Transactions on Graphics (TOG) 28.3 (2009), p. 77.

213

www.rcsb.org

214 bibliography

[16] Bommes, D., Lévy, B., Pietroni, N., Puppo, E., Silva, C., Tarini, M., Zorin, D.,
“Quad-mesh generation and processing: A survey.” In: Computer Graphics
Forum. Vol. 32. 6. Wiley Online Library. 2013, pp. 51–76.

[17] Borgo, R., Kehrer, J., Chung, D. H. S., Maguire, E., Laramee, R. S., Hauser,
H., Ward, M., Chen, M., “Glyph-based Visualization: Foundations, Design
Guidelines, Techniques and Applications.” In: Eurographics State of the Art
Reports. 2013, pp. 39–63.

[18] Borgo, R., Kehrer, J., Chung, D. H., Maguire, E., Laramee, R. S., Hauser,
H., Ward, M., Chen, M., “Glyph-based Visualization: Foundations, Design
Guidelines, Techniques and Applications.” In: Eurographics State of the Art
Reports. 2013, pp. 39–63.

[19] Borland, D., “Ambient Occlusion Opacity Mapping for Visualization of In-
ternal Molecular Structure.” In: Journal of WSCG 19.1 (2011), pp. 17–24.

[20] Born, S., Markl, M., Gutberlet, M., Scheuermann, G., “Illustrative Visualiza-
tion of Cardiac and Aortic Blood Flow from 4D MRI Data.” In: IEEE Pacific
Visualization. 2013, pp. 129 –136.

[21] Born, S., Sündermann, S. H., Russ, C., Hopf, R., Ruiz, C. E., Falk, V., Gessat,
M., “Stent maps - Comparative visualization for the prediction of adverse
events of transcatheter aortic valve implantations.” In: IEEE Transactions on
Visualization and Computer Graphics 20.12 (2014), pp. 2704–2713.

[22] Boyell, R. L., Ruston, H., “Hybrid techniques for real-time radar simula-
tion.” In: Proceedings of the November 12-14, 1963, fall joint computer conference.
ACM. 1963, pp. 445–458.

[23] Breslav, S., Szerszen, K., Markosian, L., Barla, P., Thollot, J., “Dynamic 2D
patterns for shading 3D scenes.” In: ACM Transactions on Graphics (TOG).
Vol. 26. ACM. 2007, p. 20.

[24] Bruckner, S., Gröller, E., “Enhancing depth-perception with flexible volu-
metric halos.” In: IEEE Transactions on Visualization and Computer Graphics
13.6 (2007), pp. 1344–1351.

[25] Carpentier, A, Adams, D. H., Filsoufi, F, Carpentier’s Reconstructive Valve
Surgery. Maryland Heights, Missouri: Saunders/Elsevier, 2010.

[26] Carr, H., Snoeyink, J., Axen, U., “Computing contour trees in all dimen-
sions.” In: Computational Geometry 24.2 (2003), pp. 75–94.

[27] Chen, G., Kwatra, V., Wei, L.-Y., Hansen, C. D., Zhang, E., “Design of 2d
time-varying vector fields.” In: IEEE Transactions on Visualization and Com-
puter Graphics 18.10 (2012), pp. 1717–1730.

[28] Chen, M., Floridi, L., “An analysis of information visualisation.” In: Synthese
190.16 (2013), pp. 3421–3438.

[29] Choong, A., Beidas, R., Zhu, J., “Parallelizing simulated annealing-based
placement using GPGPU.” In: Proceedings - 2010 International Conference on
Field Programmable Logic and Applications, FPL 2010 (2010), pp. 31–34. issn:
1946-1488.

[30] Chu, A., Chan, W.-Y., Guo, J., Pang, W.-M., Heng, P.-A., “Perception-aware
Depth Cueing for Illustrative Vascular Visualization.” In: BioMedical Engi-
neering and Informatics, International Conference on 1 (2008), pp. 341–346.

[31] Chung, D. H., Archambault, D., Borgo, R., Edwards, D. J., Laramee, R. S.,
Chen, M., “How ordered is it? On the perceptual orderability of visual chan-
nels.” In: Computer Graphics Forum. Vol. 35. 3. Wiley Online Library. 2016,
pp. 131–140.

[32] Cleary, K., Peters, T., “Image-guided interventions: technology review and
clinical applications.” In: Annual Review of Biomedical Engineering 12 (2010),
pp. 119–142. issn: 1523-9829.

bibliography 215

[33] Connolly, M. L., “Analytical Molecular Surface Calculation.” In: Journal of
Applied Crystallography 16.5 (1983), pp. 548–558.

[34] Corsini, M., Cignoni, P., Scopigno, R., “Efficient and flexible sampling with
blue noise properties of triangular meshes.” In: IEEE transactions on visual-
ization and computer graphics 18.6 (2012), pp. 914–924.

[35] Crane, K., Weischedel, C., Wardetzky, M, “Geodesics in heat: A new ap-
proach to computing distance based on heat flow.” In: ACM Transactions on
Graphics (TOG) 3 (2013), p. 10.

[36] Das, A., Mukhopadhyay, C., “Application of Principal Component Analysis
in Protein Unfolding: An All-Atom Molecular Dynamics Simulation Study.”
In: The Journal of Chemical Physics 127.16 (2007), 10B625.

[37] Davis, F. D., “Perceived Usefulness, Perceived Ease of Use, and User Ac-
ceptance of Information Technology.” In: Management Information Systems
Quarterly (1989), pp. 319–340.

[38] De Moura Pinto, F., Freitas, C. M., “Importance-aware composition for il-
lustrative volume rendering.” In: Proceedings - 23rd SIBGRAPI Conference on
Graphics, Patterns and Images (2010), pp. 134–141.

[39] De Vivo, M., Masetti, M., Bottegoni, G., Cavalli, A., “Role of Molecular Dy-
namics and Related Methods in Drug Discovery.” In: Journal of medicinal
chemistry 59.9 (2016), pp. 4035–4061.

[40] DeCarlo, D., Finkelstein, A., Rusinkiewicz, S., Santella, A., “Suggestive Con-
tours for Conveying Shape.” In: Proceedings of SIGGRAPH (2003), pp. 848–
855.

[41] Deanda, F., Pearlman, R. S., “A Novel Approach for Identifying the Surface
Atoms of Macromolecules.” In: Journal of Molecular Graphics and Modelling
20.5 (2002), pp. 415–425.

[42] Dong, F., Clapworthy, G. J., Lin, H., Krokos, M. A., “Nonphotorealistic Ren-
dering of Medical Volume Data.” In: IEEE Computer Graphics and Applications
23.4 (2003), pp. 44–52.

[43] Ebke, H.-C., Schmidt, P., Campen, M., Kobbelt, L., “Interactively controlled
quad remeshing of high resolution 3D models.” In: ACM Transactions on
Graphics (TOG) 35.6 (2016), p. 218.

[44] Elmqvist, N., Assarsson, U., Tsigas, P., “Employing Dynamic Transparency
for 3D Occlusion Management: Design Issues and Evaluation.” In: Human-
Computer Interaction – INTERACT 2007: 11th IFIP TC 13 International Confer-
ence. Springer Berlin Heidelberg, 2007, pp. 532–545.

[47] Floater, M. S., Hormann, K., “Surface Parameterization: a Tutorial and Sur-
vey.” In: Advances in Multiresolution for Geometric Modelling. Springer, 2005,
pp. 157–186. isbn: 978-3-540-26808-6.

[48] Frishman, D., Argos, P., “STRIDE: Protein Secondary Structure Assignment
from Atomic Coordinates.” In: Proteins 23 (1995), pp. 455–479.

[49] Fuchs, R., Hauser, H., “Visualization of Multi-Variate Scientific Data.” In:
Computer Graphics Forum 28.6 (2009), pp. 1670–1690.

[50] Fuhrmann, A., Sobotka, G., Groß, C., “Distance fields for rapid collision
detection in physically based modeling.” In: Proceedings of GraphiCon 2003.
Citeseer. 2003, pp. 58–65.

[51] Gasteiger, R., Tietjen, C., Baer, A., Preim, B., “Curvature- and Model-Based
Surface Hatching of Anatomical Structures Derived from Clinical Volume
Datasets.” In: Smart Graphics. 2008, pp. 255–262.

216 bibliography

[52] Gerig, G., Koller, T., Székely, G., Brechbühler, C., Kübler, O., “Symbolic de-
scription of 3-D structures applied to cerebral vessel tree obtained from MR
angiography volume data.” In: Biennial International Conference on Informa-
tion Processing in Medical Imaging. Springer. 1993, pp. 94–111.

[53] Gibson, J. J., The Perception Of The Visual World. Boston: Houghton Mifflin,
1950.

[54] Glueck, M., Crane, K., Anderson, S., Rutnik, A., Khan, A., “Multiscale 3D
reference visualization.” In: Proceedings of the 2009 symposium on Interactive
3D graphics and games. ACM. 2009, pp. 225–232.

[55] Gortler, S. J., Grzeszczuk, R., Szeliski, R., Cohen, M. F., “The lumigraph.” In:
Proceedings of the 23rd annual conference on Computer graphics and interactive
techniques. ACM. 1996, pp. 43–54.

[56] Green, C., “Improved Alpha-tested Magnification for Vector Textures and
Special Effects.” In: ACM SIGGRAPH 2007 Courses. SIGGRAPH ’07. ACM,
2007, pp. 9–18. isbn: 978-1-4503-1823-5. url: http://doi.acm.org/10.1145/
1281500.1281665.

[57] Griffin, W., Wang, Y., Berrios, D., Olano, M., “GPU curvature estimation
on deformable meshes.” In: Symposium on Interactive 3D Graphics and Games.
ACM. 2011, pp. 159–166.

[58] Grossmann, N., Köppel, T., Gröller, M. E., Raidou, R. G., “Visual Analysis
of Distortions in the Projection of Biomedical Structures.” In: Eurographics
Workshop on Visual Computing for Biology and Medicine. Eurographics Associ-
ation. 2018.

[59] Haber, R. B., McNabb, D. A., “Visualization idioms: A conceptual model
for scientific visualization systems.” In: Visualization in scientific computing
74 (1990), p. 93.

[60] Hahn, H. K., Preim, B., Selle, D., Peitgen, H.-O., “Visualization and interac-
tion techniques for the exploration of vascular structures.” In: Visualization,
2001. VIS’01. Proceedings. IEEE. 2001, pp. 395–578.

[61] Hammer, P. E., Perrin, D. P., Pedro, J, Howe, R. D., “Image-based mass-
spring model of mitral valve closure for surgical planning.” In: Proc. SPIE.
Vol. 6918. International Society for Optics and Photonics. 2008, 69180Q.

[62] Hansen, C., Zidowitz, S., Hindennach, M., Schenk, A., Hahn, H., Peitgen,
H.-O., “Interactive Determination of Robust Safety Margins for Oncologic
Liver Surgery.” In: International Journal of Computer Assisted Radiology and
Surgery 4.5 (2009), pp. 469–474.

[63] Hansen, C., Zidowitz, S., Hindennach, M., Schenk, A., Hahn, H., Peitgen,
H. O., “Interactive determination of robust safety margins for oncologic
liver surgery.” In: International Journal of Computer Assisted Radiology and
Surgery 4.5 (2009), pp. 469–474.

[64] Hansen, C., Wieferich, J., Ritter, F., Rieder, C., Peitgen, H.-O., “Illustra-
tive Visualization of 3D Planning Models for Augmented Reality in Liver
Surgery.” In: International Journal of Computer Assisted Radiology and Surgery
5.2 (2010), pp. 133–141. issn: 1861-6410.

[65] Hansen, C., Zidowitz, S., Ritter, F., Lange, C., Oldhafer, K., Hahn, H. K.,
“Risk maps for Liver Surgery.” In: International Journal of Computer Assisted
Radiology and Surgery 8.3 (2013), pp. 419–428.

[66] Hansen, C., Zidowitz, S., Preim, B., Stavrou, G., Oldhafer, K. J., Hahn, H. K.,
“Impact of model-based risk analysis for liver surgery planning.” In: Inter-
national journal of computer assisted radiology and surgery 9.3 (2014), pp. 473–
480.

http://doi.acm.org/10.1145/1281500.1281665
http://doi.acm.org/10.1145/1281500.1281665

bibliography 217

[67] Hansson, T., Oostenbrink, C., Van Gunsteren, W. F., “Molecular Dynamics
Simulations.” In: Current Opinion in Structural Biology 12.2 (2002), pp. 190–
196.

[68] Hart, J. C., “Sphere tracing: a geometric method for the antialiased ray trac-
ing of implicit surfaces.” In: The Visual Computer 12.10 (1996), pp. 527–545.
issn: 1432-2315. url: https://doi.org/10.1007/s003710050084.

[69] Hasselgren, J., Akenine-Möller, T., Ohlsson, L., “Conservative Rasteriza-
tion.” In: GPU Gems 2. Ed. by Matt Pharr. Addison-Wesley, 2005, pp. 677–
690.

[70] Hauser, H., “Generalizing focus+ context visualization.” In: Scientific visual-
ization: The visual extraction of knowledge from data. Springer, 2006, pp. 305–
327.

[71] Healey, C., Enns, J., “Attention and visual memory in visualization and
computer graphics.” In: IEEE transactions on visualization and computer graph-
ics 18.7 (2012), pp. 1170–1188.

[72] Hermosilla, P, Guallar, V, Vinacua, A, Vázquez, P. P., “Instant Visualization
of Secondary Structures of Molecular Models.” In: Eurographics Workshop on
Visual Computing for Biology and Medicine (2015), pp. 51–60.

[73] Hernández-Hoyos, M., Anwander, A., Orkisz, M., Roux, J.-P., Douek, P.,
Magnin, I. E., “A Deformable Vessel Model with Single Point Initialization
for Segmentation, Quantification, and Visualization of Blood Vessels in 3D
MRA.” In: International Conference on Medical Image Computing and Computer-
Assisted Intervention. Springer. 2000, pp. 735–745.

[74] Hertzmann, A., “Introduction to 3D Non-Photorealistic Rendering : Silhou-
ettes and Outlines.” In: Non-Photorealistic Rendering. SIGGRAPH 99 (1999),
pp. 1–14.

[75] Hertzmann, A., Zorin, D., “Illustrating smooth surfaces.” In: Proceedings of
the 27th annual conference on Computer graphics and interactive techniques. ACM
Press/Addison-Wesley Publishing Co. 2000, pp. 517–526.

[77] Hormann, K, Polthier, K, Sheffer, A, Mesh Parameterization: Theory and Prac-
tice. 2008.

[78] Hormann, K., Greiner, G., “MIPS: An Efficient Global Parameterization
Method.” In: Curve and Surface Design: Saint-Malo 1999 (2000), pp. 153–162.

[79] Huang, J., Pei, W., Wen, C., Chen, G., Chen, W., Bao, H., “Output-coherent
image-space lic for surface flow visualization.” In: Visualization Symposium
(PacificVis), IEEE Pacific. 2012, pp. 137–144.

[80] Hubona, G. S., Wheeler, P. N., Shirah, G. W., Brandt, M., “The relative contri-
butions of stereo, lighting, and background scenes in promoting 3D depth
visualization.” In: ACM Transactions on Computer-Human Interaction 6 (1999),
pp. 214–242. issn: 10730516.

[81] Humphrey, W., Dalke, A., Schulten, K., “VMD – Visual Molecular Dynam-
ics.” In: Journal of Molecular Graphics 14 (1996), pp. 33–38.

[82] Interrante, V., Anderson, L., Ries, B., “Distance Perception in Immersive
Virtual Environments, Revisited.” In: In proceedings of IEEE Virtual Reality.
2006, pp. 3–10.

[83] Interrante, V., Fuchs, H., Pizer, S. M., “Conveying the 3D shape of smoothly
curving transparent surfaces via texture.” In: IEEE Transactions on Visualiza-
tion and Computer Graphics 3.2 (1997), pp. 98–117.

[84] Interrante, V., Fuchs, H., Pizer, S., “Enhancing Transparent Skin Surfaces
with Ridge and Valley Lines.” In: IEEE Transactions on Visualization and Com-
puter Graphics (1995), pp. 52–59.

https://doi.org/10.1007/s003710050084

218 bibliography

[85] Jainek, W. M., Born, S., Bartz, D., Straßer, W., Fischer, J., “Illustrative Hybrid
Visualization and Exploration of Anatomical and Functional Brain Data.”
In: Computer Graphics Forum 27.3 (2008), pp. 855–862.

[86] Jakob, W., Tarini, M., Panozzo, D., Sorkine-Hornung, O., “Instant Field-
Aligned Meshes.” In: ACM Transactions on Graphics (Proceedings of SIG-
GRAPH ASIA) 34.6 (2015).

[87] Janiga, G, Berg, P, Sugiyama, S, Kono, K, Steinman, D., “The Computational
Fluid Dynamics Rupture Challenge 2013—Phase I: prediction of rupture
status in intracranial aneurysms.” In: American Journal of Neuroradiology 36.3
(2015), pp. 530–536.

[88] Jenkins, B., Algorithm Alley: Hash Functions. http : / / www . drdobbs . com /

database/algorithm-alley/184410284. Accessed: 2017-03-31. 1997.

[89] Jones, M. W., Baerentzen, J. A., Sramek, M., “3D distance fields: a survey
of techniques and applications.” In: IEEE Transactions on Visualization and
Computer Graphics 12.4 (2006), pp. 581–599. issn: 1077-2626.

[90] Jordan, R. A., Yasser, E.-M., Dobbs, D., Honavar, V., “Predicting Protein-
Protein Interface Residues using Local Surface Structural Similarity.” In:
BMC Bioinformatics 13.1 (2012), p. 41.

[91] Judd, T., Durand, F., Adelson, E., “Apparent ridges for line drawing.” In:
ACM Transactions on Graphics (TOG) 26.3 (2007), p. 19.

[92] Kälberer, F., Nieser, M., Polthier, K., “QuadCover - Surface parameterization
using branched coverings.” In: Computer Graphics Forum 26.3 (2007), pp. 375–
384.

[93] Kälberer, F., Nieser, M., Polthier, K., “Stripe parameterization of tubular
surfaces.” In: Mathematics and Visualization 202489 (2011), pp. 13–26. issn:
2197666X.

[94] Karampudi, N. B. R., Bahadur, R. P., “Layers: A Molecular Surface Peeling
Algorithm and its Applications to Analyze Protein Structures.” In: Scientific
Reports 5 (2015).

[95] Kehrer, J., Hauser, H., “Visualization and visual analysis of multifaceted
scientific data: A survey.” In: IEEE Transactions on Visualization and Computer
Graphics 19.3 (2013), pp. 495–513.

[96] Kersten-Oertel, M., Chen, S. J. S., Collins, D. L., “An evaluation of depth
enhancing perceptual cues for vascular volume visualization in neuro-
surgery.” In: IEEE Transactions on Visualization and Computer Graphics 20.3
(2014), pp. 391–403. issn: 10772626.

[97] Kersten, M., Stewart, J., Troje, N., Ellis, R., “Enhancing depth perception
in translucent volumes.” In: IEEE Transactions on Visualization and Computer
Graphics 12.5 (2006).

[98] Kim, B., Kim, K.-J., Seong, J.-K., “GPU Accelerated Molecular Surface Com-
puting.” In: Applied Mathematics & Information Sciences 6 (2012), pp. 185–194.

[99] Kim, Y., Yu, J., Yu, X., Lee, S., “Line-art illustration of dynamic and specular
surfaces.” In: ACM Transactions on Graphics (TOG) 27.5 (2008), p. 156.

[100] Kindlmann, G., Westin, C.-F., “Diffusion tensor visualization with glyph
packing.” In: IEEE Transactions on Visualization and Computer Graphics 12.5
(2006).

[101] Kindlmann, G., Whitaker, R., Tasdizen, T., Moller, T., “Curvature-Based
Transfer Functions for Direct Volume Rendering: Methods and Applica-
tions.” In: Proceedings of the 14th IEEE Visualization 2003. 2003, pp. 67–.

[102] Kirby, R. M., Marmanis, H., Laidlaw, D. H., “Visualizing Multivalued Data
from 2D Incompressible Flows Using Concepts from Painting.” In: Proceed-
ings of Visualization’99. IEEE. 1999, pp. 333–540.

http://www.drdobbs.com/database/algorithm-alley/184410284
http://www.drdobbs.com/database/algorithm-alley/184410284

bibliography 219

[103] Knöppel, F., Crane, K., Pinkall, U., Schröder, P., “Stripe patterns on sur-
faces.” In: ACM Transactions on Graphics (TOG) 34.4 (2015), 39:1–39:11.

[104] Kocincová, L., Jarešová, M., Byška, J., Parulek, J., Hauser, H., Kozlíková,
B., “Comparative Visualization of Protein Secondary Structures.” In: BMC
Bioinformatics 18.Suppl 2 (2017), pp. 1–12.

[105] Kozlikova, B., Krone, M., Lindow, N., Falk, M., Baaden, M., Baum, D., Viola,
I., Parulek, J., Hege, H.-C., “Visualization of biomolecular structures: State
of the art.” In: Eurographics Conference on Visualization (EuroVis)-STARs. The
Eurographics Association. 2015, pp. 061–081.

[106] Kraima, A, Smit, N., Jansma, D, West, N., Quirke, P, Rutten, H., Vilanova, A,
Velde, C., DeRuiter, M., “62. The virtual surgical pelvis: A highly-detailed
3D pelvic model for anatomical education and surgical simulation.” In: Eu-
ropean Journal of Surgical Oncology 40.11 (2014), S32.

[107] Krayer, B., Müller, S., “Generating signed distance fields on the GPU with
ray maps.” In: The Visual Computer (2019).

[108] Kreiser, J., Hermosilla, P., Ropinski, T., “Void Space Surfaces to Convey
Depth in Vessel Visualizations.” In: ArXiv e-prints (2018). arXiv: 1806.07729
[cs.GR].

[109] Kreiser, J, Meuschke, M, Mistelbauer, G, Preim, B, Ropinski, T, “A Survey of
Flattening-Based Medical Visualization Techniques.” In: Computer Graphics
Forum. Vol. 37. 3. Wiley Online Library. 2018, pp. 597–624.

[110] Kretschmer, J., Godenschwager, C., Preim, B., Stamminger, M., “Interactive
patient-specific vascular modeling with sweep surfaces.” In: IEEE transac-
tions on visualization and computer graphics 19.12 (2013), pp. 2828–2837.

[111] Krieger, E., Yet Another Scientific Artificial Reality Application. 1993. url: www.
yasara.org.

[112] Krone, M., Bidmon, K., Ertl, T., “GPU-based Visualisation of Protein Sec-
ondary Structure.” In: Theory and Practice of Computer Graphics 8 (2008),
pp. 115–122.

[113] Krone, M., Bidmon, K., Ertl, T., “Interactive Visualization of Molecular Sur-
face Dynamics.” In: IEEE Transactions on Visualization and Computer Graphics
15.6 (2009), pp. 1391–1398.

[114] Krone, M., Grottel, S., Ertl, T., “Parallel Contour-Buildup Algorithm for the
Molecular Surface.” In: Biological Data Visualization. IEEE. 2011, pp. 17–22.

[115] Krone, M., Frieß, F., Scharnowski, K., Reina, G., Fademrecht, S.,
Kulschewski, T., Pleiss, J., Ertl, T., “Molecular Surface Maps.” In: IEEE Trans-
actions on Visualization and Computer Graphics 23.1 (2017), pp. 701–710.

[116] Kruijff, E., Swan II, J. E., Feiner, S., “Perceptual Issues in Augmented Reality
Revisited.” In: Proc. of IEEE International Symposium on Mixed and Augmented
Reality. IEEE Computer Society, 2010, pp. 3–12.

[117] Laan, W. J., Green, S., Sainz, M., “Screen space fluid rendering with curva-
ture flow.” In: Proceedings of the 2009 symposium on Interactive 3D graphics and
games. ACM. 2009, pp. 91–98.

[118] Lai, Y.-K., Jin, M., Xie, X., He, Y., Palacios, J., Zhang, E., Hu, S.-M., Gu, X.,
“Metric-driven rosy field design and remeshing.” In: IEEE Transactions on
Visualization and Computer Graphics 16.1 (2010), pp. 95–108.

[119] Laidlaw, D. H., Ahrens, E. T., Kremers, D., Avalos, M. J., Jacobs, R. E., Read-
head, C., “Visualizing Diffusion Tensor Images of the Mouse Spinal Cord.”
In: Proceedings of the Conference on Visualization ’98. Research Triangle Park,
North Carolina, USA, 1998, pp. 127–134.

https://arxiv.org/abs/1806.07729
https://arxiv.org/abs/1806.07729
www.yasara.org
www.yasara.org

220 bibliography

[120] Lamata, P., Lamata, F., Sojar, V., Makowski, P., Massoptier, L., Casciaro, S.,
Ali, W., Stüdeli, T., Declerck, J., Elle, O. J., “Use of the Resection Map sys-
tem as guidance during hepatectomy.” In: Surgical endoscopy 24.9 (2010),
pp. 2327–2337.

[121] Lawonn, K., Moench, T., Preim, B., “Streamlines for illustrative real-time
rendering.” In: Computer Graphics Forum 32.3 (2013), pp. 321–330. issn:
01677055.

[122] Lawonn, K., Luz, M., Preim, B., Hansen, C., “Illustrative Visualization of
Vascular Models for Static 2D Representations.” In: Proceedings of Medical Im-
age Computing and Computer-Assisted Intervention (MICCAI) 9350.Pt 2 (2015),
pp. 399–406.

[123] Lawonn, K, Smit, N., Bühler, K, Preim, B, “A Survey on Multimodal Medical
Data Visualization.” In: Computer Graphics Forum. Vol. 37. 1. Wiley Online
Library. 2018, pp. 413–438.

[124] Lawonn, K., Luz, M., Hansen, C., “Improving spatial perception of vascular
models using supporting anchors and illustrative visualization.” In: Com-
puters and Graphics 63 (2017), pp. 37–49.

[125] Lawonn, K., Mönch, T., Preim, B., “Streamlines for Illustrative Real-Time
Rendering.” In: Computer Graphics Forum. Vol. 32. 3pt3. Wiley Online Library.
2013, pp. 321–330.

[126] Lawonn, K., Preim, B., “Feature Lines for Illustrating Medical Surface Mod-
els: Mathematical Background and Survey.” In: Visualization in Medicine and
Life Sciences III (2015), to appear.

[127] Lawonn, K., Krone, M., Ertl, T., Preim, B., “Line Integral Convolution for
Real-Time Illustration of Molecular Surface Shape and Salient Regions.” In:
Computer Graphics Forum 33.3 (2014), pp. 181–190.

[128] Lawonn, K., Viola, I., Preim, B., Isenberg, T., “A Survey of Surface-Based
Illustrative Rendering for Visualization.” In: Computer Graphics Forum. Wiley
Online Library. 2018.

[129] Lee, B., Richards, F. M., “The Interpretation of Protein Structures: Estimation
of Static Accessibility.” In: Journal of Molecular Biology 55.3 (1971), pp. 379–
400.

[130] Lee, L. W., Bargiela, A., “Protein Surface Atoms Extraction: Voxels as an
Investigative Tool.” In: Engineering Letters 20.3 (2012).

[131] Lefebvre, S., Hoppe, H., “Appearance-space texture synthesis.” In: ACM
Transactions on Graphics (TOG) 25.3 (2006), p. 541.

[141] Lindow, N., Baum, D., Hege, H. C., “Ligand Excluded Surface: A new Type
of Molecular Surface.” In: IEEE Transactions on Visualization and Computer
Graphics 20.12 (2014), pp. 2486–2495.

[142] Lindow, N., Baum, D., Prohaska, S., Hege, H. C., “Accelerated Visualization
of Dynamic Molecular Surfaces.” In: Computer Graphics Forum 29.3 (2010),
pp. 943–952.

[143] Lins, L., Thomas, A., Brasseur, R., “Analysis of Accessible Surface of
Residues in Proteins.” In: Protein Science 12.7 (2003), pp. 1406–1417.

[144] Maillot, J., Yahia, H., Verroust, A., “Interactive Texture Mapping.” In: Pro-
ceedings of the 20th Annual Conference on Computer Graphics and Interactive
Techniques (1993), pp. 27–34.

[145] Malzahn, J, Kozlíková, B, Ropinski, T, “Protein Tunnel Reprojection.” In:
Eurographics Workshop on Visual Computing for Biology and Medicine (2017),
pp. 1–10.

bibliography 221

[146] Marcias, G., Pietroni, N., Panozzo, D., Puppo, E., Sorkine-Hornung, O.,
“Animation-Aware Quadrangulation.” In: Computer Graphics Forum (proceed-
ings of EUROGRAPHICS/ACM SIGGRAPH Symposium on Geometry Process-
ing) 32.5 (2013), pp. 167–175.

[147] Marroquim, R., Kraus, M., Cavalcanti, P. R., “Efficient Point-Based Render-
ing Using Image Reconstruction.” In: SPBG. 2007, pp. 101–108.

[148] McLoughlin, T., Laramee, R. S., Peikert, R., Post, F. H., Chen, M., “Over Two
Decades of Integration-Based, Geometric Flow Visualization.” In: Computer
Graphics Forum 29.6 (2010), pp. 1807–1829.

[149] Meuschke, M., Voß, S., Beuing, O., Preim, B., Lawonn, K., “Glyph-Based
Comparative Stress Tensor Visualization in Cerebral Aneurysms.” In: Com-
puter Graphics Forum 36.3 (2017), pp. 99–108. issn: 1467-8659.

[152] Meuschke, M., Voß, S., Preim, B., Lawonn, K., “Exploration of blood flow
patterns in cerebral aneurysms during the cardiac cycle.” In: Computers &
Graphics 72 (2018), pp. 12 –25. issn: 0097-8493.

[153] Meyer-Spradow, J., Stegger, L., Döring, C., Ropinski, T., Hinrichs, K.,
“Glyph-based SPECT visualization for the diagnosis of coronary artery dis-
ease.” In: IEEE Transactions on Visualization and Computer Graphics 14.6 (2008),
pp. 1499–1506. issn: 10772626.

[154] Meyer, J., Thomas, J., Diehl, S., Fisher, B., Keim, D. A., “From Visualization
to Visually Enabled Reasoning.” In: Scientific Visualization: Advanced Con-
cepts. Ed. by Hans Hagen. Vol. 1. Dagstuhl Follow-Ups. Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2010, pp. 227–245.

[155] Milnor, J. W., Spivak, M., Wells, R., Morse theory. Princeton university press,
1963.

[156] Munson, M., Balasubramanian, S., Fleming, K. G., Nagi, A. D., O’Brien, R.,
Sturtevant, J. M., Regan, L., “What Makes a Protein a Protein? Hydrophobic
Core Designs that Specify Stability and Structural Properties.” In: Protein
Science 5.8 (1996), pp. 1584–1593.

[157] Myles, A, Pietroni, N, Zorin, D, “Robust field-aligned global parametriza-
tion.” In: ACM Transactions on Graphics (TOG) 33 (2014), pp. 1–14.

[158] Naumov, M, Castonguay, P, Cohen, J, Parallel graph coloring with applications
to the incomplete-LU factorization on the GPU. Tech. rep. NVIDIA, Tech. Rep,
2015.

[159] Nguyen, T. C., Itoh, A., Carlhäll, C. J., Bothe, W., Timek, T. A., Ennis, D. B.,
Oakes, R. A., Liang, D., Daughters, G. T., Ingels Jr, N. B., “The effect of pure
mitral regurgitation on mitral annular geometry and three-dimensional sad-
dle shape.” In: The Journal of thoracic and cardiovascular surgery 136.3 (2008),
pp. 557–565.

[160] Oeltze-Jafra, S, Meuschke, M., Neugebauer, M., Saalfeld, S., Lawonn, K.,
Janiga, G., Hege, H.-C., Zachow, S., Preim, B., “Generation and Visual Ex-
ploration of Medical Flow Data: Survey, Research Trends and Future Chal-
lenges.” In: Computer Graphics Forum. Wiley Online Library. 2018.

[161] Oeltze, S., Preim, B., “Visualization of vasculature with convolution surfaces:
method, validation and evaluation.” In: IEEE Transactions on Medical Imaging
24.4 (2005), pp. 540–548.

[162] Oeltze, S., Hennemuth, A., Glasser, S., Kühnel, C., Preim, B., “Glyph-Based
Visualization of Myocardial Perfusion Data and Enhancement with Contrac-
tility and Viability Information.” In: Eurographics Workshop on Visual Comput-
ing for Biomedicine. The Eurographics Association, 2008, pp. 11–20.

[163] Ohtake, Y., Belyaev, A., Seidel, H.-P., “Ridge-Valley Lines on Meshes via
Implicit Surface Fitting.” In: Proceedings of SIGGRAPH 23 (2004), pp. 609–
612.

222 bibliography

[164] Ohtake, Y., Belyaev, A., Alexa, M., Alexa, M., Turk, G., Seidel, H.-P., “Multi-
level Partition of Unity Implicits.” In: ACM SIGGRAPH 2003 Papers. SIG-
GRAPH ’03. ACM, 2003, pp. 463–470. isbn: 1-58113-709-5. url: http://doi.
acm.org/10.1145/1201775.882293.

[165] Palacios, J., Zhang, E., “Interactive visualization of rotational symmetry
fields on surfaces.” In: IEEE transactions on visualization and computer graphics
17.7 (2011), pp. 947–955.

[166] Parulek, J., Ropinski, T., Viola, I., “Seamless Visual Abstraction of Molecular
Surfaces.” In: Spring Conference. ACM, 2013, pp. 107–114.

[167] Pascucci, V., Scorzelli, G., Bremer, P.-T., Mascarenhas, A., “Robust on-line
computation of Reeb graphs: simplicity and speed.” In: Acm transactions on
graphics (tog). Vol. 26. 3. ACM. 2007, p. 58.

[168] Pelt, R., Bartroli, A. V., Wetering, H., “Illustrative volume visualization us-
ing GPU-based particle systems.” In: IEEE transactions on visualization and
computer graphics 16.4 (2010), pp. 571–582.

[169] Perlin, K., Hoffert, E. M., “Hypertexture.” In: ACM Siggraph Computer Graph-
ics. Vol. 23. 3. ACM. 1989, pp. 253–262.

[170] Plotly Technologies Inc. Collaborative Data Science. 2015. url: https://plot.
ly.

[171] Praun, E., Finkelstein, A., Hoppe, H., “Lapped textures.” In: Proceedings of
the 27th Annual Conference on Computer Graphics and Interactive Techniques
SIGGRAPH 00 1 (2000), pp. 465–470.

[172] Praun, E., Hoppe, H., Webb, M., Finkelstein, A., “Real-time hatching.” In:
Proceedings of the 28th annual conference on Computer graphics and interactive
techniques. ACM. 2001, p. 581.

[173] Preim, B., Ropinski, T., Isenberg, P., “A Critical Analysis of the Evaluation
Practice in Medical Visualization.” In: Eurographics Workshop on Visual Com-
puting for Biology and Medicine. The Eurographics Association, 2018.

[174] Preim, B., Saalfeld, P., “A survey of virtual human anatomy education sys-
tems.” In: Computers & Graphics 71 (2018), pp. 132–153.

[175] Preim, B., Baer, A., Cunningham, D., Isenberg, T., Ropinski, T., “A survey
of perceptually motivated 3d visualization of medical image data.” In: Com-
puter Graphics Forum. Vol. 35. 3. Wiley Online Library. 2016, pp. 501–525.

[176] Ray, N., Li, W. C., Lévy, B., Sheffer, A., Alliez, P., “Periodic global param-
eterization.” In: ACM Transactions on Graphics (TOG) 25.4 (2006), pp. 1460–
1485.

[177] Reeb, G., “Sur les points singuliers d’une forme de pfaff completement inte-
grable ou d’une fonction numerique [on the singular points of a completely
integrable pfaff form or of a numerical function].” In: Comptes Rendus Acad.
Sciences Paris 222 (1946), pp. 847–849.

[178] Reichelt, S., Häussler, R., Fütterer, G., Leister, N., “Depth cues in human
visual perception and their realization in 3D displays.” In: Proc. SPIE.
Vol. 7690. 2010, 76900B–76900B–12.

[179] Richards, F. M., “Areas, Volumes, Packing, and Protein Structure.” In: An-
nual Review of Biophysics and Bioengineering 6.1 (1977), pp. 151–176.

[180] Richardson, J. S., “The Anatomy and Taxonomy of Protein Structure.” In:
Advances in Protein Chemistry 34 (1981), pp. 167–339.

[181] Rieder, C., Ritter, F., Raspe, M., Peitgen, H. O., “Interactive visualization of
multimodal volume data for neurosurgical tumor treatment.” In: Computer
Graphics Forum 27.3 (2008), pp. 1055–1062.

http://doi.acm.org/10.1145/1201775.882293
http://doi.acm.org/10.1145/1201775.882293
https://plot.ly
https://plot.ly

bibliography 223

[182] Rim, Y., McPherson, D. D., Kim, H., “Effect of leaflet-to-chordae contact
interaction on computational mitral valve evaluation.” In: Biomedical engi-
neering online 13.1 (2014), p. 31.

[183] Rim, Y., Choi, A., McPherson, D. D., Kim, H., “Personalized computational
modeling of mitral valve prolapse: virtual leaflet resection.” In: PloS one 10.6
(2015), e0130906.

[184] Ritter, F., Hansen, C., Dicken, V., Konrad, O., Preim, B., Peitgen, H.-O., “Real-
time illustration of vascular structures.” In: IEEE Transactions on Visualization
and Computer Graphics 12.5 (2006), pp. 877–884.

[185] Rocha, A., Alim, U., Silva, J. D., Sousa, M. C., “Decal-maps: Real-Time Lay-
ering of Decals on Surfaces for Multivariate Visualization.” In: IEEE Trans-
actions on Visualization and Computer Graphics 1 (2017), pp. 821–830.

[186] Rodrigues, J. F., Traina, A. J., Oliveira, M. C. F., Traina, C, “Reviewing data
visualization: an analytical taxonomical study.” In: Tenth International Con-
ference on Information Visualisation (IV’06). IEEE. 2006, pp. 713–720.

[187] Rong, G., Tan, T.-S., “Jump flooding in GPU with applications to Voronoi
diagram and distance transform.” In: Proceedings of the 2006 symposium on
Interactive 3D graphics and games - SI3D ’06 (2006), p. 109.

[188] Ropinski, T., Oeltze, S., Preim, B., “Survey of glyph-based visualization tech-
niques for spatial multivariate medical data.” In: Computers and Graphics 35.2
(2011), pp. 392–401.

[189] Ropinski, T., Steinicke, F., Hinrichs, K., “Visually Supporting Depth Percep-
tion in Angiography Imaging.” In: Smart Graphics: 6th International Sympo-
sium, SG 2006. 2006, pp. 93–104.

[190] Ropinski, T., Specht, M., Meyer-Spradow, J., Hinrichs, K., Preim, B., “Sur-
face glyphs for visualizing multimodal volume data.” In: Proceedings of the
12th International Fall Workshop on Vision Modeling and Visualization D (2007),
pp. 3–12.

[191] Rosenfeld, A., Multiresolution image processing and analysis. Vol. 12. Springer
Science & Business Media, 2013.

[192] Roy, L., Kumar, P., Golbabaei, S., Zhang, Y., Zhang, E., “Interactive Design
and Visualization of Branched Covering Spaces.” In: IEEE Transactions on
Visualization and Computer Graphics 2626.c (2017).

[193] Rusinkiewicz, S., “Estimating Curvatures and Their Derivatives on Triangle
Meshes.” In: Symposium on 3D Data Processing, Visualization, and Transmission.
Sept. 2004.

[194] Saalfeld, P., Stojnic, A., Preim, B., Oeltze-Jafra, S., “Semi-Immersive 3D
Sketching of Vascular Structures for Medical Education.” In: Eurographics
Workshop on Visual Computing for Biology and Medicine. 2016, pp. 123–132.

[195] Saalfeld, P., Luz, M., Berg, P., Preim, B., Saalfeld, S., “Guidelines for quanti-
tative evaluation of medical visualizations on the example of 3d aneurysm
surface comparisons.” In: Computer Graphics Forum. Vol. 37. 1. Wiley Online
Library. 2018, pp. 226–238.

[196] Sanner, M. F., Olson, A. J., Spehner, J.-C., “Reduced Surface: An Efficient
Way to Compute Molecular Surfaces.” In: Biopolymers 38.3 (1996), pp. 305–
320.

[197] Saunders, C. T., Baker, D., “Evaluation of Structural and Evolutionary Con-
tributions to Deleterious Mutation Prediction.” In: Journal of Molecular Biol-
ogy 322.4 (2002), pp. 891–901.

[198] Schertler, N., Tarini, M., Jakob, W., Kazhdan, M., Gumhold, S., Panozzo,
D., “Field-aligned Online Surface Reconstruction.” In: ACM Transactions on
Graphics (TOG) 36.4 (July 2017), 77:1–77:13. issn: 0730-0301.

224 bibliography

[199] Schroeder, D., Keefe, D. F., “Visualization-by-Sketching: An Artist’s Inter-
face for Creating Multivariate Time-Varying Data Visualizations.” In: IEEE
Transactions on Visualization and Computer Graphics 22.1 (2016), pp. 877–885.

[200] Schulz, H.-J., Angelini, M., Santucci, G., Schumann, H., “An enhanced visu-
alization process model for incremental visualization.” In: IEEE transactions
on visualization and computer graphics 22.7 (2016), pp. 1830–1842.

[201] Schumann, C., Oeltze, S., Bade, R., Preim, B., Peitgen, H.-O., “Model-free
surface visualization of vascular trees.” In: EuroVis. Citeseer. 2007, pp. 283–
290.

[202] Sheffer, A., Praun, E., Rose, K., “Mesh parameterization methods and their
applications.” In: Foundations and Trends® in Computer Graphics and Vision
2.2 (2007), pp. 105–171.

[203] Shepard, D., “A two-dimensional interpolation function for irregularly-
spaced data.” In: Proceedings of the 1968 23rd ACM national conference. ACM.
1968, pp. 517–524.

[204] Shinagawa, Y., Kunii, T. L., “Constructing a Reeb graph automatically from
cross sections.” In: IEEE Computer Graphics and Applications 6 (1991), pp. 44–
51.

[205] Singh, R. V. P., Namboodiri, A. M., “Efficient texture mapping by homo-
geneous patch discovery.” In: Proceedings of the Eighth Indian Conference on
Computer Vision, Graphics and Image Processing - ICVGIP ’12 (2012), pp. 1–8.

[206] Son, M., Lee, Y., Kang, H., Lee, S., “Structure grid for directional stippling.”
In: Graphical Models 73.3 (2011), pp. 74–87.

[207] Steenblik, R. A., “The Chromostereoscopic Process: A Novel Single Image
Stereoscopic Process.” In: Proc. SPIE. Vol. 0761. 1987, pp. 27–34.

[208] Steinicke, F., Bruder, G., Hinrichs, K. H., Steed, A., “Gradual Transitions and
their Effects on Presence and Distance Estimation.” In: Computers & Graphics
34.1 (2010), pp. 26–33.

[209] Strickler, S. S., Gribenko, A. V., Gribenko, A. V., Keiffer, T. R., Tomlinson,
J., Reihle, T., Loladze, V. V., Makhatadze, G. I., “Protein Stability and Sur-
face Electrostatics: A Charged Relationship.” In: Biochemistry 45.9 (2006),
pp. 2761–2766.

[210] Svakhine, N. A., Ebert, D. S., Andrews, W. M., “Illustration-Inspired Depth
Enhanced Volumetric Medical Visualization.” In: IEEE Transactions on Visu-
alization and Computer Graphics 15.1 (2009), pp. 77–86.

[211] Svetachov, P., Everts, M. H., Isenberg, T., “DTI in Context: Illustrating Brain
Fiber Tracts In Situ.” In: Computer Graphics Forum 29.3 (2010), pp. 1023–1032.

[212] Swan, J. E., Singh, G., Ellis, S. R., “Matching and Reaching Depth Judgments
with Real and Augmented Reality Targets.” In: IEEE Transactions on Visual-
ization and Computer Graphics 21.11 (2015), pp. 1289–1298.

[213] Tan, K. P., Nguyen, T. B., Patel, S., Varadarajan, R., Madhusudhan, M. S.,
“Depth: A Web Server to Compute Depth, Cavity Sizes, Detect Potential
Small-Molecule Ligand-Binding Cavities and Predict the pKa of Ionizable
Iesidues in Proteins.” In: Nucleic Acids Research 41.Web Server issue (2013),
pp. 314–321.

[214] Tarini, M., Cignoni, P., Montani, C., “Ambient Occlusion and Edge Cueing
for Enhancing Real Time Molecular Visualization.” In: IEEE Transactions on
Visualization and Computer Graphics 12.5 (2006), pp. 1237–1244.

[215] Tarini, M., Hormann, K., Cignoni, P., Montani, C., “Polycube-maps.” In:
ACM transactions on graphics (TOG) 23.3 (2004), pp. 853–860.

bibliography 225

[216] The Qt Company, Complete Software Development Framework - Qt. 2017. url:
https://www.qt.io/.

[217] Tietjen, C., Isenberg, T., Preim, B., “Combining Silhouettes, Surface, and Vol-
ume Rendering for Surgery Education and Planning.” In: Computer Graphics
Forum. 2005, pp. 303–310.

[218] Tietze, A. A., Tietze, D., Ohlenschläger, O., Leipold, E., Ullrich, F., Kühl, T.,
Mischo, A., Buntkowsky, G., Görlach, M., Heinemann, S. H., “Structurally
Diverse µ-Conotoxin PIIIA Isomers Block Sodium Channel NaV1. 4.” In:
Angewandte Chemie International Edition 51.17 (2012), pp. 4058–4061.

[219] Tosti, E., Boni, R., Gallo, A., “µ-Conotoxins Modulating Sodium Currents
in Pain Perception and Transmission: A Therapeutic Potential.” In: Marine
Drugs 15.10 (2017), p. 295.

[220] Totrov, M, Abagyan, R, “The Contour-Buildup Algorithm to Calculate the
Analytical Molecular Surface.” In: Journal of Structural Biology 116.1 (1996),
pp. 138–143.

[221] Turk, G., “Texture Synthesis on Surfaces.” In: Proceedings of the 28th Annual
Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’01.
ACM, 2001, pp. 347–354.

[222] Tutte, W. T., “Convex Representations of Graphs.” In: Proceedings of the Lon-
don Mathematical Society 10 (1960), pp. 304–320.

[223] Van Der Zwan, M., Lueks, W., Bekker, H., Isenberg, T., “Illustrative molecu-
lar visualization with continuous abstraction.” In: Computer Graphics Forum
30.3 (2011), pp. 683–690.

[224] Van Pelt, R., Gasteiger, R., Lawonn, K., Meuschke, M., Preim, B., “Compara-
tive blood flow visualization for cerebral aneurysm treatment assessment.”
In: Computer Graphics Forum 33.3 (2014), pp. 131–140.

[225] Vasilakis, A. A., Fudos, I., “k+-buffer: Fragment Synchronized k-buffer.” In:
Proceedings of the 18th Meeting of the ACM SIGGRAPH Symposium on Interac-
tive 3D Graphics and Games. 2014, pp. 143–150.

[226] Vasilakis, A. A., Papaioannou, G., Fudos, I., “K-buffer: An efficient, memory-
friendly and dynamic K-buffer framework.” In: IEEE Transactions on Visual-
ization and Computer Graphics 21.6 (2015), pp. 688–700.

[227] Vaxman, A., Campen, M., Diamanti, O., Panozzo, D., Bommes, D., Hilde-
brandt, K., Ben-Chen, M., “Directional field synthesis, design, and process-
ing.” In: Computer Graphics Forum. Vol. 35. 2. Wiley Online Library. 2016,
pp. 545–572.

[228] Ward, M. O., “A Taxonomy of Glyph Placement Strategies for Multidimen-
sional Data Visualization.” In: Information Visualization 1.3-4 (2002), pp. 194–
210.

[229] Weber, J. R., “ProteinShader: illustrative rendering of macromolecules.” In:
BMC Structural Biology 9:19 (May 2009).

[230] Wright, D., “Dynamic occlusion with signed distance fields.” In: ACM SIG-
GRAPH. 2015.

[231] Xie, X., He, Y., Tian, F., Seah, H.-S., Gu, X., Qin, H., “An effective illustrative
visualization framework based on photic extremum lines (PELs).” In: IEEE
Transactions on Visualization and Computer Graphics 13.6 (2007), pp. 1328–1335.

[232] Xu, D., Li, H., Zhang, Y., “Protein Depth Calculation and the Use for Im-
proving Accuracy of Protein Fold Recognition.” In: Journal of Computational
Biology 20.10 (2013), pp. 805–816.

[233] Zander, J., Isenberg, T., Schlechtweg, S., Strothotte, T., “High Quality Hatch-
ing.” In: Computer Graphics Forum 23.3 (2004), pp. 421–430.

https://www.qt.io/

226 bibliography

[234] Zhang, F., Kanik, J., Mansi, T., Voigt, I., Sharma, P., Ionasec, R. I., Subrah-
manyan, L., Lin, B. A., Sugeng, L., Yuh, D., “Towards patient-specific mod-
eling of mitral valve repair: 3D transesophageal echocardiography-derived
parameter estimation.” In: Medical image analysis 35 (2017), pp. 599–609.

[235] Zhang, J., Shi, Z., “Triangulation of Molecular Surfaces based on Extracting
Surface Atoms.” In: Computers & Graphics 38 (2014), pp. 291–299.

[236] Zhang, L., He, Y., Seah, H. S., “Real-time computation of photic extremum
lines (PELs).” In: The Visual Computer 26.6-8 (2010), pp. 399–407.

[237] Zhang, L., He, Y., Xia, J., Xie, X., Chen, W., “Real-Time Shape Illustration
Using Laplacian Lines.” In: IEEE Transactions on Visualization and Computer
Graphics 17 (2011), pp. 993–1006.

[238] Zwan, M., Lueks, W., Bekker, H., Isenberg, T., “Illustrative Molecular Visu-
alization with Continuous Abstraction.” In: Computer Graphics Forum 30.3
(2011), pp. 683–690.

P U B L I C AT I O N S

[45] Engelhardt, S., Lichtenberg, N., Al-Maisary, S., De Simone,
R., Rauch, H., Roggenbach, J., Müller, S., Karck, M., Meinzer,
H.-P., Wolf, I., “Towards Automatic Assessment of the Mitral
Valve Coaptation Zone from 4D Ultrasound.” In: Functional
Imaging and Modeling of the Heart. Vol. 9126. Springer, 2015,
pp. 137–145. doi: 10.1007/978-3-319-20309-6.

[46] Eulzer, P., Lichtenberg, N., Arif, R., Brcic, A., Karck, M., La-
wonn, K., De Simone, R., Engelhardt, S., “Mitral Valve Quan-
tification at a Glance.” In: Bildverarbeitung für die Medizin 2019.
Springer, 2019, pp. 296–301. doi: 10.1007/978-3-658-25326-
4.

[76] Hombeck, J. N., Lichtenberg, N., Lawonn, K., “Evaluation of
Spatial Perception in Virtual Reality within a Medical Con-
text.” In: Bildverarbeitung für die Medizin 2019. Springer, 2019,
pp. 283–288. doi: 10.1007/978-3-658-25326-4.

[132] Lichtenberg, N., Hansen, C., Lawonn, K., “Concentric Cir-
cle Glyphs for Enhanced Depth-Judgment in Vascular Mod-
els.” In: Eurographics Workshop on Visual Computing for Biology
and Medicine. The Eurographics Association, 2017, pp. 178–188.
doi: 10.2312/vcbm.20171252.

[133] Lichtenberg, N., Lawonn, K., “Parameterization and feature
extraction for the visualization of tree-like structures.” In:
Eurographics Workshop on Visual Computing for Biology and
Medicine. Eurographics Association. 2018, pp. 145–155. doi:
10.2312/vcbm.20181240.

[134] Lichtenberg, N., Lawonn, K., “Auxiliary Tools for Enhanced
Depth Perception in Vascular Structures.” In: Biomedical Visual-
isation. Ed. by Paul M. Rea. Springer International Publishing,
2019, pp. 103–113. doi: 10.1007/978-3-030-14227-8.

[135] Lichtenberg, N., Lawonn, K., “Parameterization, Feature Ex-
traction and Binary Encoding for the Visualization of Tree-
Like Structures.” In: Computer Graphics Forum (2019). doi: 10.
1111/cgf.13888.

[136] Lichtenberg, N., Smit, N., Hansen, C., Lawonn, K., “Sline:
Seamless Line Illustration for Interactive Biomedical Visualiza-
tion.” In: Eurographics Workshop on Visual Computing for Biology
and Medicine. The Eurographics Association, 2016, pp. 133–142.
doi: 10.2312/vcbm.20161281.

227

https://doi.org/10.1007/978-3-319-20309-6
https://doi.org/10.1007/978-3-658-25326-4
https://doi.org/10.1007/978-3-658-25326-4
https://doi.org/10.1007/978-3-658-25326-4
https://doi.org/10.2312/vcbm.20171252
https://doi.org/10.2312/vcbm.20181240
https://doi.org/10.1007/978-3-030-14227-8
https://doi.org/10.1111/cgf.13888
https://doi.org/10.1111/cgf.13888
https://doi.org/10.2312/vcbm.20161281

228 bibliography

[137] Lichtenberg, N., Menges, R., Ageev, V., George, A. P., Heimer,
P., Imhof, D., Lawonn, K., “Analyzing Residue Surface Prox-
imity to Interpret Molecular Dynamics.” In: Computer Graphics
Forum. Vol. 37. 3. Wiley Online Library. 2018, pp. 379–390. doi:
10.1111/cgf.13427.

[138] Lichtenberg, N., Smit, N., Hansen, C., Lawonn, K., “Real-
time field aligned stripe patterns.” In: Computers & Graphics
74 (2018), pp. 137–149. doi: 10.1016/j.cag.2018.04.008.

[139] Lichtenberg, N., Krayer, B., Hansen, C., Müller, S., Lawonn,
K., “Distance Field Visualization and 2D Abstraction of Ves-
sel Tree Structures with on-the-fly Parameterization.” In: Euro-
graphics Workshop on Visual Computing for Biology and Medicine.
The Eurographics Association, 2019. doi: 10 . 2312 / vcbm .

20191251.

[140] Lichtenberg, N., Eulzer, P., Romano, G., Brčić, A., Karck, M.,
Lawonn, K., De Simone, R., Engelhardt, S., “Mitral valve flat-
tening and parameter mapping for patient-specific valve diag-
nosis.” In: International Journal of Computer Assisted Radiology
and Surgery (2020). doi: 10.1007/s11548-019-02114-w.

[150] Meuschke, M., Smit, N., Lichtenberg, N., Preim, B., Lawonn,
K., “Automatic Generation of Web-Based User Studies to Eval-
uate Depth Perception in Vascular Surface Visualizations.” In:
Proceedings of the Eurographics Workshop on Visual Computing
for Biology and Medicine. Vol. 3. 2018. doi: 10 . 2312 / vcbm .

20181227.

[151] Meuschke, M., Smit, N. N., Lichtenberg, N., Preim, B., La-
wonn, K., “EvalViz – Surface visualization evaluation wizard
for depth and shape perception tasks.” In: Computers & Graph-
ics (2019). doi: https://doi.org/10.1016/j.cag.2019.05.
022.

https://doi.org/10.1111/cgf.13427
https://doi.org/10.1016/j.cag.2018.04.008
https://doi.org/10.2312/vcbm.20191251
https://doi.org/10.2312/vcbm.20191251
https://doi.org/10.1007/s11548-019-02114-w
https://doi.org/10.2312/vcbm.20181227
https://doi.org/10.2312/vcbm.20181227
https://doi.org/https://doi.org/10.1016/j.cag.2019.05.022
https://doi.org/https://doi.org/10.1016/j.cag.2019.05.022

E R K L Ä R U N G

Hiermit erkläre ich gemäß § 10 Abs. 3 Punkt 4 der Promotionsord-
nung des Fachbereichs 4: Informatik der Universität Koblenz-Landau,

• dass ich die vorliegende Dissertation mit dem Titel Abstraction
of bio-medical surface data for enhanced comprehension and analysis
selbst angefertigt und alle benutzten Hilfsmittel in der Arbeit
angegeben habe,

• dass ich die Dissertation oder Teile der Dissertation noch nicht
als Prüfungsarbeit für eine staatliche oder andere wissenschaft-
liche Prüfung eingereicht haben, und

• dass ich weder diese noch eine andere Abhandlung bei einer
anderen Hochschule als Dissertation eingereicht habe,

• dass ich meine individuellen Beiträge kooperativ an koopera-
tiv erzielten Forschungsergebnissen in der Dissertation an den
entsprechenden Stellen gekennzeichnet habe und dass meine
Koautoren diese Einschätzung meines Beitrages teilen (siehe
gesonderte Bestätigung der Koautoren nach § 10 Abs. 4).

Koblenz, den

Nils Lichtenberg

C U R R I C U L U M V I TÆ

N I L S L I C H T E N B E R G

personal information

Born in Germany, 06 April 1989

Email lichtenberg.nils@gmail.com

work experience

04/2015–07/2019 PhD student and Research Associate

Conducting lecture exercises and supervising final theses. University of
Koblenz-LandauWorked on thesis related dfg-project

05/2014–01/2015 Research Assistant

Worked on Master’s Thesis dkfz, Heidelberg

07/2012–07/2013 Research Assistant

Supported teaching and lab demonstrations for the University of
Koblenz-LandauComputer Graphics Group

07/2011–12/2011 Research Assistant

Supported project work for the Image Recognition Lab University of
Koblenz-Landau

education

05/2014–01/2015 dkfz, Heidelberg

Thesis supervised by the Medical and Biological Master of Science,
ThesisInformatics department of the German Cancer Research

Center. Thesis title: Semi-Automatic Segmentation of the
Mitral Valve Leaflets on 4D Ultrasound Images

08/2013–12/2013 University of Georgia, USA

daad student exchange programme Exchange semester

10/2012–03/2015 University of Koblenz-Landau

Grade 1.2 Master of Science

04/2009–09/2012 University of Koblenz-Landau

Grade 2.0 Bachelor of
Science

mailto:lichtenberg.nils@gmail.com

publications

Engelhardt, S., Lichtenberg, N., Al-Maisary, S., De Simone, R.,
Rauch, H., Roggenbach, J., Müller, S., Karck, M., Meinzer, H.-P.,
Wolf, I., “Towards Automatic Assessment of the Mitral Valve
Coaptation Zone from 4D Ultrasound.” In: Functional Imaging
and Modeling of the Heart. Vol. 9126. Springer, 2015, pp. 137–145.
doi: 10.1007/978-3-319-20309-6.

Eulzer, P., Lichtenberg, N., Arif, R., Brcic, A., Karck, M., Lawonn, K.,
De Simone, R., Engelhardt, S., “Mitral Valve Quantification at a
Glance.” In: Bildverarbeitung für die Medizin 2019. Springer, 2019,
pp. 296–301. doi: 10.1007/978-3-658-25326-4.

Hombeck, J. N., Lichtenberg, N., Lawonn, K., “Evaluation of Spatial
Perception in Virtual Reality within a Medical Context.” In:
Bildverarbeitung für die Medizin 2019. Springer, 2019, pp. 283–288.
doi: 10.1007/978-3-658-25326-4.

Lichtenberg, N., Hansen, C., Lawonn, K., “Concentric Circle Glyphs
for Enhanced Depth-Judgment in Vascular Models.” In:
Eurographics Workshop on Visual Computing for Biology and
Medicine. The Eurographics Association, 2017, pp. 178–188. doi:
10.2312/vcbm.20171252.

Lichtenberg, N., Lawonn, K., “Parameterization and feature
extraction for the visualization of tree-like structures.” In:
Eurographics Workshop on Visual Computing for Biology and
Medicine. Eurographics Association. 2018, pp. 145–155. doi:
10.2312/vcbm.20181240.

Lichtenberg, N., Lawonn, K., “Auxiliary Tools for Enhanced Depth
Perception in Vascular Structures.” In: Biomedical Visualisation.
Ed. by Paul M. Rea. Springer International Publishing, 2019,
pp. 103–113. doi: 10.1007/978-3-030-14227-8.

Lichtenberg, N., Lawonn, K., “Parameterization, Feature Extraction
and Binary Encoding for the Visualization of Tree-Like
Structures.” In: Computer Graphics Forum (2019). doi:
10.1111/cgf.13888.

Lichtenberg, N., Smit, N., Hansen, C., Lawonn, K., “Sline: Seamless
Line Illustration for Interactive Biomedical Visualization.” In:
Eurographics Workshop on Visual Computing for Biology and
Medicine. The Eurographics Association, 2016, pp. 133–142. doi:
10.2312/vcbm.20161281.

Lichtenberg, N., Menges, R., Ageev, V., George, A. P., Heimer, P.,
Imhof, D., Lawonn, K., “Analyzing Residue Surface Proximity to
Interpret Molecular Dynamics.” In: Computer Graphics Forum.
Vol. 37. 3. Wiley Online Library. 2018, pp. 379–390. doi:
10.1111/cgf.13427.

https://doi.org/10.1007/978-3-319-20309-6
https://doi.org/10.1007/978-3-658-25326-4
https://doi.org/10.1007/978-3-658-25326-4
https://doi.org/10.2312/vcbm.20171252
https://doi.org/10.2312/vcbm.20181240
https://doi.org/10.1007/978-3-030-14227-8
https://doi.org/10.1111/cgf.13888
https://doi.org/10.2312/vcbm.20161281
https://doi.org/10.1111/cgf.13427

Lichtenberg, N., Smit, N., Hansen, C., Lawonn, K., “Real-time field
aligned stripe patterns.” In: Computers & Graphics 74 (2018),
pp. 137–149. doi: 10.1016/j.cag.2018.04.008.

Lichtenberg, N., Krayer, B., Hansen, C., Müller, S., Lawonn, K.,
“Distance Field Visualization and 2D Abstraction of Vessel Tree
Structures with on-the-fly Parameterization.” In: Eurographics
Workshop on Visual Computing for Biology and Medicine. The
Eurographics Association, 2019. doi: 10.2312/vcbm.20191251.

Lichtenberg, N., Eulzer, P., Romano, G., Brčić, A., Karck, M.,
Lawonn, K., De Simone, R., Engelhardt, S., “Mitral valve
flattening and parameter mapping for patient-specific valve
diagnosis.” In: International Journal of Computer Assisted Radiology
and Surgery (2020). doi: 10.1007/s11548-019-02114-w.

Meuschke, M., Smit, N., Lichtenberg, N., Preim, B., Lawonn, K.,
“Automatic Generation of Web-Based User Studies to Evaluate
Depth Perception in Vascular Surface Visualizations.” In:
Proceedings of the Eurographics Workshop on Visual Computing for
Biology and Medicine. Vol. 3. 2018. doi: 10.2312/vcbm.20181227.

Meuschke, M., Smit, N. N., Lichtenberg, N., Preim, B., Lawonn, K.,
“EvalViz – Surface visualization evaluation wizard for depth and
shape perception tasks.” In: Computers & Graphics (2019). doi:
https://doi.org/10.1016/j.cag.2019.05.022.

qualifications

C++, OpenGL, GLSL, Matlab Computer Skills

Advanced English (C1), native German Language Skills

other information

2018 · Honorable Mention Award at VCBM 2018 for Awards
Parameterization and Feature Extraction for the Visualization
of Tree-like Structures.

https://doi.org/10.1016/j.cag.2018.04.008
https://doi.org/10.2312/vcbm.20191251
https://doi.org/10.1007/s11548-019-02114-w
https://doi.org/10.2312/vcbm.20181227
https://doi.org/https://doi.org/10.1016/j.cag.2019.05.022

	Dedication
	Abstract
	Acknowledgements
	Contents
	Preamble
	1 Introduction
	1.1 Motivation and Overview
	1.2 Thesis Structure

	Illustrative Abstraction
	2 Sline
	2.1 Introduction
	2.2 Related Work
	2.3 Method
	2.3.1 Preprocessing
	2.3.2 Silhouettes and Contours
	2.3.3 Suggestive Contours
	2.3.4 Line Search based Hatching
	2.3.5 Transition Parameterization

	2.4 Results
	2.5 Discussion
	2.6 Conclusion and Future Work

	3 Real-Time Field Aligned Stripe Patterns
	3.1 Introduction
	3.2 Related Work
	3.3 Method
	3.3.1 Basics
	3.3.2 Local Optimization
	3.3.3 Convergence
	3.3.4 Hierarchical Optimization
	3.3.5 Texture Coordinates
	3.3.6 Cross-Fields

	3.4 Implementation
	3.5 Results
	3.5.1 Usage scenarios
	3.5.2 Performance

	3.6 Conclusion and Future Work

	Vessel Visualization
	4 ConCircles
	4.1 Introduction
	4.2 Related Work
	4.2.1 Spatial Perception
	4.2.2 Glyphs
	4.2.3 Direct Foundation for this Work

	4.3 Method
	4.3.1 Vessel End-Points
	4.3.2 Multi-Feature Glyph Placement

	4.4 Glyph Design
	4.5 Implementation
	4.5.1 Glyph Selection
	4.5.2 Glyph Visualization
	4.5.3 Hatching

	4.6 Evaluation
	4.7 Results
	4.8 Discussion and Future Work

	5 PFB for Tree-like Structures
	5.1 Introduction
	5.2 Related Work
	5.3 Method
	5.3.1 Parameterization
	5.3.2 Graph generation and segmentation

	5.4 Applications
	5.4.1 Branch and end-points
	5.4.2 Using V to enhance depth perception
	5.4.3 Hatching
	5.4.4 Contour parameterization
	5.4.5 Binary tree coloring

	5.5 Implementation
	5.6 Discussion

	6 Vessel SDF Parameterization and Abstraction
	6.1 Introduction
	6.2 Related Work
	6.3 Method
	6.3.1 2D Graph Layout
	6.3.2 Signed Distance Field Generation
	6.3.3 Pull-push algorithm
	6.3.4 Background reconstruction
	6.3.5 Screen space guiding field
	6.3.6 Screen space parameterization
	6.3.7 Frame coherence

	6.4 Implementation
	6.5 Applications
	6.6 Discussion and conclusion

	7 Auxiliary Tools
	7.1 Introduction
	7.2 Human Perception
	7.3 History of Depth Enhancement
	7.4 Auxiliary Tools
	7.4.1 Supporting Lines
	7.4.2 Supporting Anchors
	7.4.3 Concentric Circle Glyphs
	7.4.4 Void Space Surfaces

	7.5 Evaluation
	7.5.1 Evaluation Overview
	7.5.2 Comparative discussion

	7.6 Conclusion

	Dimension Reduction
	8 Residue Surface Proximity
	8.1 Introduction
	8.2 Background
	8.3 Related Work
	8.4 Requirements
	8.5 Application Concept
	8.5.1 Acquisition: Residue Surface Proximity
	8.5.2 Presentation: RSP-map and 3D-visualization
	8.5.3 Analysis: Filter Expressions
	8.5.4 Distribution: Data Export

	8.6 Implementation
	8.6.1 Surface Atom Extraction
	8.6.2 3D Visualization
	8.6.3 Filter Expressions

	8.7 Results
	8.7.1 Performance
	8.7.2 User Experience
	8.7.3 Accompanying Study using RSP

	8.8 Discussion and Conclusion

	9 Flattening Mitral Valve Geometry
	9.1 Introduction
	9.2 Related Work
	9.3 Materials and Methods
	9.3.1 Requirements and notation
	9.3.2 Flattening
	9.3.3 Mappings

	9.4 Evaluation
	9.4.1 Parameterization Evaluation
	9.4.2 User Study

	9.5 Results
	9.6 Discussion

	Conclusion
	10 Summary
	11 Future Work
	Bibliography
	Publications
	Declaration
	Curriculum Vitae

