
Fachbereich 4: Informatik

Prototyping a Verification Tool for
Decision Model and Notation

Masterarbeit
Zur Erlangung des Grades Master of Science (M.Sc.)

im Studiengang Wirtschaftsinformatik

vorgelegt von

Jonas Blatt

Erstgutachter: Prof. Dr. Patrick Delfmann

Institut für Wirtschafts- und Verwaltungsinformatik

Zweitgutachter: M. Sc. Carl Corea

Institut für Wirtschafts- und Verwaltungsinformatik

Koblenz, im April 2020

Erklärung

Ich versichere, dass ich die vorliegende Arbeit selbständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Ja Nein

Mit der Einstellung der Arbeit in die Bibliothek bin ich ein-
verstanden.

� �

Der Veröffentlichung dieser Arbeit im Internet stimme ich
zu.

� �

Koblenz, 14. April 2020
. .

(Ort, Datum) (Jonas Blatt)

Abstract

The industry standard Decision Model and Notation (DMN) has enabled a new

way for the formalization of business rules since 2015. Here, rules are mod-

eled in so-called decision tables, which are defined by input columns and output

columns. Furthermore, decisions are arranged in a graph-like structure (DRD

level), which creates dependencies between them. With a given input, the de-

cisions now can be requested by appropriate systems. Thereby, activated rules

produce output for future use. However, modeling mistakes produces erroneous

models, which can occur in the decision tables as well as at the DRD level. Ac-

cording to the Design Science Research Methodology, this thesis introduces an

implementation of a verification prototype for the detection and resolution of

these errors while the modeling phase. Therefore, presented basics provide the

needed theoretical foundation for the development of the tool. This thesis further

presents the architecture of the tool and the implemented verification capabilities.

Finally, the created prototype is evaluated.

Zusammenfassung

Der Industriestandard Decision Model and Notation (DMN) ermöglicht seit 2015

eine neue Art der Formalisierung von Geschäftsregeln. Hier werden Regeln in so-

genannten Entscheidungstabellen modelliert, die durch Eingabespalten und Aus-

gabespalten definiert sind. Zudem sind Entscheidungen in graphartigen Struk-

turen angeordnet (DRD Ebene), die Abhängigkeiten unter diesen erzeugen. Nun

können, mit gegebenen Input, Entscheidungen von geeigneten Systemen ange-

fragt werden. Aktivierte Regeln produzieren dabei einen Output für die zukün-

ftige Verwendung. Jedoch erzeugen Fehler während der Modellierung fehler-

hafte Modelle, die sowohl in den Entscheidungstabellen als auch auf der DRD

Ebene auftreten können. Nach der Design Science Research Methodology fokus-

siert diese Arbeit eine Implementierung eines Verifikationsprototyps für die Erken-

nung und Lösung dieser Fehler während der Modellierungsphase. Die vorgestell-

ten Grundlagen liefern die notwendigen theoretischen Grundlagen für die En-

twicklung des Tools. Diese Arbeit stellt außerdem die Architektur des Werkzeugs

und die implementierten Verifikationsfähigkeiten vor. Abschließend wird der er-

stellte Prototyp evaluiert.

Contents

1 Introduction 1
1.1 Motivation and Problem Statement 2

1.2 Research Aim . 6

1.3 Research Approach . 7

1.4 Structure of the Thesis . 8

2 Basics 11
2.1 Decision Model and Notation (DMN) 12

2.2 Existing error type classifications 17

2.2.1 Verification and Validation by Vanthienen et al. (1998) 17

2.2.2 Verification Capabilities by Smit et al. (2019) 18

2.2.3 DMN Change Pattern by Hasić et al. (2020) 20

2.2.4 Terminology Mapping 21

2.3 Status Quo on DMN Verification 23

3 Implementation 25
3.1 DMN Verification API . 26

3.1.1 Defining the Architecture 27

3.1.2 Overview of important Dependencies 29

3.1.3 Defining REST Endpoints 30

3.1.4 Defining the Verification Result Object 32

3.1.5 Defining the Abstract Verifier 34

i

ii CONTENTS

3.2 Implementation of DMN Verifiers 36

3.2.1 Decision Requirements Diagram Level Verifiers 37

3.2.1.1 Lonely Data Input 37

3.2.1.2 Missing Input . 38

3.2.1.3 Missing Input Column 40

3.2.1.4 Multiple Input Data 41

3.2.1.5 Wrong Data Type 43

3.2.2 Decision Logic Level Verifiers 44

3.2.2.1 Missing Input Value 44

3.2.2.2 Missing Output Value 46

3.2.2.3 Missing Predefined Value 47

3.2.2.4 Unused Predefined Value 48

3.2.2.5 Subsumption Rule 50

3.2.2.6 Identical Rule . 54

3.2.2.7 Overlapping Rule 56

3.2.2.8 Partial Reduction 59

3.2.2.9 Missing Rule . 61

3.2.2.10 Equivalent Strings 65

3.2.2.11 Empty Output . 66

3.2.2.12 Missing Column 67

3.2.3 Syntax Level Verifiers 68

3.2.3.1 Date Format . 68

3.2.3.2 Input Value Syntax 69

3.3 Front-end of the DMN Verification Tool 71

3.4 Demonstration . 74

4 Evaluation 79

5 Conclusion 85

CONTENTS iii

Bibliography 89

Appendices 93
A Appendix: Project Information . 93

B Appendix: Implementation . 94

B.I Java Annotation REST Endpoint 94

B.II JSON Result of Verification Types 95

B.III JSON Result of Verification Configuration 96

B.IV JSON Result of Action Types 97

B.V JSON Result of Action Scopes 97

B.VI JSON Result of Action Config 98

B.VII JSON Result of Performance Metrics 99

B.VIII JSON Result of Verification Request 100

B.IX Java Example Verifier Implementation 103

C Appendix: Evaluation . 104

C.I DMN Generator . 104

List of Figures

1 Business Process Example . 3

2 Business Process Example with Business Rule Task 3

3 Example Decision Table . 4

4 Business Rule Management Lifecycle 4

5 Structure of the thesis . 9

6 Example of a Decision Requirements Diagram (DRD) 14

7 Example of a decision table (Decision logic) 15

8 Verification and Validation classification by Vanthienen, Mues &

Aerts (1998) . 18

9 Verification Framework by Smit et al. (2019) 19

10 Terminology mapping of verification capabilities 22

11 Project Architecture . 28

12 Result Object UML Class Diagram 33

13 Abstract Verifier UML Class Diagram 35

14 Minimal example – Lonely Data Input 37

15 Minimal example – Missing Input 39

16 Minimal example – Missing Input Column 40

17 Minimal example – Multiple Input Data 42

18 Minimal example – Wrong Data Type 43

19 Minimal example – Missing Input Value 45

20 Minimal example – Missing Output Value 46

21 Minimal example – Missing Predefined Value 48

22 Minimal example – Unused Predefined Value 49

23 Minimal example – Subsumption Rule 50

24 Minimal example – Identical Rule 54

25 Minimal example – Overlapping Rule 56

iv

LIST OF FIGURES v

26 Minimal example – Partial Reduction 59

27 Minimal example – Missing Rule . 61

28 Extended example – Missing Rule – Decision table 62

29 Extended example – Missing Rule – Geometric interpretation . . . 62

30 Minimal example – Equivalent Strings 65

31 Minimal example – Empty Output 66

32 Minimal example – Missing Column 67

33 Minimal example – Date Format . 69

34 Minimal example – Input Value Syntax 70

35 Front-end overview . 71

36 Front-end – Connection to DMN repository 72

37 Demonstration - Initial DMN model 74

38 Demonstration - Overlapping rules 75

39 Demonstration - Missing Input . 75

40 Demonstration - Missing Input Value (1/2) 76

41 Demonstration - Missing Input Value (2/2) 76

42 Demonstration - Missing Output . 77

43 Demonstration - Missing Predefined Value 77

44 Performance test 1 – Run-time for the analysis of synthetic deci-

sion tables with up to 10 columns and 500 rows. 81

45 Performance test 2 – Run-time statistics for the analyzed synthetic

decision models with up to 180 nodes on the DRD-level and 100

rules per table. 82

List of Tables

1 Overview of verification capabilities covered by existing approaches 23

2 External Project Dependencies . 29

vi

List of Algorithms

1 Lonely Data Input algorithm . 38

2 Missing Input algorithm . 39

3 Missing Input Column algorithm . 41

4 Multiple Input Data algorithm . 42

5 Wrong Data Type algorithm . 43

6 Missing Input Value algorithm . 45

7 Missing Output Value algorithm . 47

8 Missing Predefined Value algorithm 48

9 Unused Predefined Value algorithm 49

10 Subsumption algorithm (1/5) . 50

11 Subsumption algorithm (2/5) . 51

12 Subsumption algorithm (a) (3/5) . 52

13 Subsumption algorithm (b) (4/5) . 53

14 Subsumption algorithm (c) (5/5) . 53

15 Identical Rule algorithm . 55

16 Overlapping algorithm (1/3) . 57

17 Overlapping algorithm (2/3) . 57

18 Overlapping algorithm (3/3) . 58

19 Partial Reduction algorithm (1/2) . 60

20 Partial Reduction algorithm (2/2) . 60

21 Missing Rule algorithm (1/3) . 63

22 Missing Rule algorithm (2/3) . 63

23 Missing Rule algorithm (3/3) . 64

24 Equivalent Strings algorithm . 65

25 Empty Output algorithm . 67

26 Missing Column algorithm . 68

vii

viii LIST OF ALGORITHMS

27 Date Format algorithm . 69

28 Input Value Syntax algorithm . 70

Chapter 1

Introduction

1

2 Introduction

In the context of Business Process Management (BPM), business process mod-

els are used to prescribe how to perform company activities. Process models

often contain complex decision-logic, governing the allowed execution of activi-

ties. Here, instead of including complicated gateways in the process model, de-

cision logic is often abstracted from the process model representation to hide this

complexity from the user, by means of linking process models to decision mod-

els. Then, during process execution, rule engines can compute how to proceed

based on case-specific data and can route the process accordingly. The industry-

standard Decision Model and Notation (DMN), which is defined by the Object

Management Group (OMG), is a popular formalism to represent such decision

models, and is the counterpart to the process modelling standard Business Pro-

cess Model and Notation (BPMN). DMN decision models can be linked to the

BPMN model via so-called business rule tasks, which can trigger the associated

decision models, e.g. via DMN rule engines, to handle the company decision

logic. However, as decision models are usually maintained by multiple model-

ers, such DMN models can contain various undiscovered errors, which impedes

using the decision models for their intended purpose of governing process exe-

cution. Thus, these errors must be found and, if possible, resolved. This thesis

therefore investigates a novel tool for the verification of DMN decision models.

The following chapter motivates this topic and introduces the scope and structure

of this thesis.

1.1 Motivation and Problem Statement

BPMN and DMN are popular standards to model process models, respectively

decision models. Many vendors provide technologies, offer modelling- and repos-

itory tools. To name two, Signavio1 or Camunda2 supply software, which sup-

ports modeling and storing of process- and decision models (Both using the BPM-

N/DMN standard). Furthermore, Camunda provides a decision engine, which

includes a repository for storing and executing these rules. Besides that decision

engine, Camunda provides a workflow engine where Business Process Model

and Notation (BPMN) models can be executed. As mentioned, BPMNs can con-

1https://www.signavio.com/
2https://camunda.com/

https://www.signavio.com/
https://camunda.com/

1.1 Motivation and Problem Statement 3

tain special activities, named Business Rules Tasks, where the decision engine is

used to execute connected DMNs. The decision engine receives the input from

the workflow engine, executes the DMN, and returns the output of the executed

DMN back to the process. Now the BPMN has processed a potentially compli-

cated activity without using any complex gateway logic. This aspect is visually

shown within the two BPMN models in Figure 1 and Figure 2.

Prepare
customer

report
Inform customer

Create premium
customer status

report

Create standard
customer status

report

Create no
customer status

report

is premium
customer

is standard
customer

is no
customer

Figure 1 Business Process Example

Instead of explicitly modeling the gateways as in Figure 1, the three service tasks

in the middle of the process can be replaced by a Business Rule Task in the process

of Figure 2. Here, the (in this simple example) complexity of the gateway logic is

resolved by the underlying DMN of the Business Rule Task.

Receive
customer status

report

Prepare
customer

report
Inform customer

Figure 2 Business Process Example with Business Rule Task

This task is associated with a decision model (or here, more specifically, a deci-

sion table), shown in Figure 3.

4 Introduction

Figure 3 Example Decision Table

The individual table rows shown in Figure 3 can be read as “if (‘premium’),

then (‘Dear special . . . ’)”, and allow to capture the company logic as so-called

business rules. In short, a business rule has the form ‘If A then X‘ and represents

a policy or a procedure of an enterprise (Graham & Wiley 2006).

Decision models, respectively the contained business rules, are created and

maintained within business rules management (BRM). BRM is a concept for an

implemented system based on business rules (Graham & Wiley 2006). A Business

Rule Management System (BRMS) stores business rules in repositories where the

rule base is separated form data and the control logic (Graham & Wiley 2006). Fol-

lowing Schlosser et al. (2014), a typical BRM lifecycle usually contains the phases

of elicitation, authoring, verification, deployment/implementation and monitor-

ing. A possible lifecycle is inspired by these phases and shown in Figure 4.

Elicitation

Verification

Deployment /

Implementation

Monitoring

Authoring

BRM

Figure 4 Business Rule Management Lifecycle inspired by Schlosser et al. (2014)

1.1 Motivation and Problem Statement 5

The phases are described by Schlosser et al. (2014) as BRM tasks and are here

shortly summarized:

• Elicitation. The task in this phase is the requirements analysis for gathering

all relevant information. Policies and related rules form various sources

have to be identified.

• Authoring. The previously identified rules and policies have to been doc-

umented. This is done in a formalized way so that they are readable by

business users and executable by special systems. The formal notation pro-

vides further the possibility for consistency and integrity checks.

• Verification. When policies have changed, rules usually must be changed,

too. Because of the high risk of new arising inconsistencies, these rules have

to be checked for errors. This phase deals with it.

• Deployment / Implementation. The rules need to be implemented in processes

and deployed to a system that can execute them.

• Monitoring. Reporting relevant metrics is the task of this phase. While the

execution of business rules, monitoring tools measure the performance and

other KPIs for an efficient business behavior.

This thesis focuses on the verification phase within the BRM lifecycle. That is

where the existing rules have to be analyzed. This analysis contains verifica-

tion activities, where existing rules could be checked for inconsistencies or other

anomalies. These verifications can also be done while modeling to support the

modeler and to avoid mistakes within the rule base.

So, why is the verification of business rules an important issue? Resolving er-

rors in rule bases while modeling before the rules are running in a production

system prevents problems in processes of enterprises during run-time. For exam-

ple, incomplete or inconsistent rules need to be detected and resolved by such a

verification tool. The error types investigated in this work (cf. chapter 2 and 3)

are not only theoretical, but they also exist in practice. For instance, Batoulis

et al. (2017) analyzed 62 decision tables for automated refunding of invoices in

a healthcare insurance company. The results of this study revealed that only 8%

of the tables were complete, 27% of the rules were unreachable, and in 80% of

6 Introduction

the tables exist overlapping rules. Furthermore, Smit et al. (2019) has conducted

a survey in Dutch authorities. This confirmed the problems in practical environ-

ments, where multiple modelers produce erroneous decision models. Here, miss-

ing rules, overlapping rules, and unreachable rules were also found. Previously

mentioned modeling tools and other tools support such verification capabilities

only at a limited scope or provide no support at all. This aspect is further dis-

cussed in section 2.3.

Consequently, there is a need for a verification tool that assists a business rule

modeler. This thesis should fill this gap and provide an implementation of such a

verification tool. The following section introduces the research aim, which should

lead throw the thesis.

1.2 Research Aim

The research aim of this work is subdivided into four sub-questions, which scope

the concrete chapters of this work and should lead through it. The main research

aim RA is defined as:

RA:
Implementation of a verification tool for DMN models.

Thus, the goal is prototyping a verification tool for DMN models, which supports

modelers in developing decision models in the DMN standard. Moreover, the

theory of the prototype should be based on literature. Towards the main research

aim, we raise five subsidiary research questions.

SQ1:
What are the major verification types?

SQ2:
How can verification errors be fixed by the verification tool?

SQ3:
How should an architecture for the verification tool look like?

1.3 Research Approach 7

SQ4:
How should the algorithms for the verifications look like?

SQ5:
How can a verification tool be evaluated?

The sub-questions SQ1 and SQ2 aim at the point of the theoretical foundation.

They should lead the implementation of the prototype to a clear idea of which

verification types are needed and what fixes should be provided. Furthermore,

sub-question SQ3 aims at the architecture of the tool, and SQ4 aims at the used al-

gorithms for the verification types. Finally, the last sub-question SQ5 aims at the

evaluation of the final prototype. Section 1.4 further introduces the structure of

this work and arranges these questions into this structure. The following section

introduces the research approach.

1.3 Research Approach

Following the presented research aim, this thesis has a design-oriented goal (Becker

et al. 2003). Based on this design-oriented focus, the Design Science Research
Methodology (DSRM), developed by Peffers et al. (2007), is adopted for this

work. Fundamental elements of this methodology are earlier defined by Hevner

et al. (2004). Furthermore, DSRM consists of six activities (A1 – A6), which are

summarized by Hevner & Chatterjee (2010) and here shortly described:

A1 Problem identification and motivation.
The first activity includes the definition of the concrete problem and moti-

vates the necessity of a solution, which should be realized by the develop-

ment of an artifact.

A2 Define the objectives for a solution.
The objectives of a potential solution are derived by the problem identifi-

cation and describe how the new artifact should solve the problem better

than existing solutions or to not previous existing problems. This phase

implicit defines the requirements, which are the basis for the artifact.

8 Introduction

A3 Design and development.
The activity contains the description of the architecture, the implemen-

tation or creation of the specific artifact, which can either be a model, a

method, or another construct, where the design contains the research con-

tribution.

A4 Demonstration.
The artifact is used to solve the previously mentioned problems in experi-

ments.

A5 Evaluation.
To measure how good the artifact solves the problems is the goal of this

activity phase. Results from the demonstration activity can be used here as

an input. The measurement is done with the help of metrics and analysis

tools and can be quantitative performance measures.

A6 Communication.
The final activity in DSRM is to communicate the importance of the prob-

lem and the solution in form of the artifact to the publicity.

Consequently, this work also strives after the goal of developing an artifact within

the DSRM. The artifact is a prototype of a DMN verification tool, which fulfills the

objectives of the research aim. The DSRM activities are arranged in the structure

of the thesis in the next section 1.4.

1.4 Structure of the Thesis

Figure 5 shows the coarse structure of this thesis, which is inspired by the pre-

viously mentioned research approach. Thus, the DSRM activities are assigned

to the corresponding chapters. Also, all research questions are assigned to the

corresponding chapters so that there is an overview, where the answers to these

questions can be found. While the overall research aim RA refers to all chap-

ters, the sub-questions refer to specific chapters. The next chapter 2 provides the

theoretical foundation, based on literature and standard definitions and answers

questions SQ1 and SQ2. Besides the DMN standard, it further introduces two

1.4 Structure of the Thesis 9

Research Aim/Questions

Design Science Research Methodology

Introduction
Chapter 1

Basics
Chapter 2

Implementation
Chapter 3

Evaluation
Chapter 4

Conclusion
Chapter 5

SQ1
?

SQ5
?

SQ3
?

SQ2
?

RA

A1: Problem

identification

 and motivation

A2: Define the

objectives

 for a solution

A3: Design

and

development

 A4:

Demonstration

A5:

Evaluation

A6:

Communication

SQ4
?

Figure 5 Structure of the thesis

frameworks, which contain theoretical ideas for finding and solving DMN mod-

eling errors. These verification frameworks are partly used in chapter 3 to imple-

ment the DMN verification tool, which is the artifact of this work. That chapter

firstly describes the general architecture of the prototype and then describe more

precisely implementations of concrete realized verifiers. At the end of that chap-

ter, the implementation of a front-end is presented and demonstrated. Therefore,

the description of the architecture and the implementation of the verification tool

is the answer to questions SQ3 & SQ4. According to the research approach, the

developed prototype is evaluated in chapter 4, which answers question SQ5. Fi-

nally, this thesis gives a conclusion of the whole work in chapter 5, including an

outlook for future work.

Chapter 2

Basics

11

12 Basics

This chapter introduces general basics as relevant background information. After

a definition about business rules, this chapter further presents the industry stan-

dard Decision Model and Notation (DMN) in section 2.1. The DMN standard is

used within the prototype as the model language for business rules which makes

it relevant for the implementation part in the next chapter 3. Section 2.2 intro-

duces frameworks and other capabilities of relevant verification types which is

the theoretical foundation of the prototype implementation. The last section 2.3

shows an overview about existing tools regarding verification of DMN.

Early definitions of business rules focus more in particular in rules for databases

(Graham & Wiley 2006). Definition 1 is based on Morgans’s (2002) definition,

and Graham & Wiley (2006) extended it to address more than one business. Gra-

ham & Wiley (2006) define a business rule as follows:

Definition 1. A business rule is a compact, atomic, well-formed, declarative state-

ment about an aspect of a business that can be expressed in terms that can be

directly related to the business and its collaborators, using simple, unambigu-

ous language that is accessible to all interested parties: business owners, business

analysts, technical architects or customers. This simple language may include

domain-specific jargon.

To use business rules in a business rule management system, they should be

well-formed so that they can be executed (Graham & Wiley 2006). Furthermore,

rules should be compact and atomic, which means that they “cannot be bro-

ken down without the loss of important information”(Graham & Wiley 2006,

p. 6). Concerning Graham & Wiley (2006) ”Business rules are always interpreted

against a defined domain ontology”. All these aspects of the definition of busi-

ness rules are realized in the Decision Model and Notation (DMN) standard,

which is introduced in the next section.

2.1 Decision Model and Notation (DMN)

DMN is defined by the Object Management Group (OMG)1 which is an inter-

national organisation for defining and developing enterprise standards concern-

ing computer technologies in multiple industries (Object Management Group R©
1https://omg.org

https://omg.org

2.1 Decision Model and Notation (DMN) 13

2019a). The first version 1.0 of DMN was published in September 2015, ver-

sion 1.1 in June 2016, and the current version 1.2 in January 2019. DMN pro-

vides a notation for defining business rules, where the language is able to express

business decisions precisely (Object Management Group R© 2019a). Furthermore,

this language is understandable and easily readable by all business users (Object

Management Group R© 2019b). This includes stakeholders from technical devel-

opers who are responsible for implementations in information systems, to busi-

ness people who define requirements and monitor these DMN models (Object

Management Group R© 2019a). DMNs are represented in XML, and the corre-

sponding XSD supports interchangeability between organizations (Object Man-

agement Group R© 2019b). The OMG also defines the business process model

standard Business Process Management and Notation (BPMN), where DMN can

work besides this standard with interfaces and mechanisms for an integrated sys-

tem (Object Management Group R© 2019a). In a BPMN model, a ‘Business Rule

Task’ triggers the execution of a decision-making component. DMN provides

such a component as a “bridge between business process models and decision

logic models” (Object Management Group R© 2019b, p. 23). The purpose of the

DMN is useful in many use cases. For instance, risk assessments could be evalu-

ated with decision tables. Based on ages, salaries and other customer properties

in bank institutions, credit limits or creditworthiness can easily be expressed by

DMN (Rücker 2016). Other use cases are located at feasibility checks, approvals,

validations, fraud detection or calculations.

Camunda published a public model API of the DMN specification 1.1. Fur-

thermore, they provide in their integrated Business Process Management System

APIs for accessing and executing DMN models. For that reason, DMN was cho-

sen for representing business rules in the implementation of the prototype.

The relevant levels of DMN are the Decision Requirements Diagram (DRD) and

the Decision logic level (DLL), which are precisely defined by Object Management

Group R© (2019b). They are summarized in the following paragraphs.

Decision Requirements Diagram (DRD). This level of abstraction shows

how the elements are graphically arranged and how the relations between the

components are structured. The DRD defines the dependencies of the elements.

The main components (elements) in the DRD level are: Decision, Input Data,

14 Basics

Business Knowledge Model, Knowledge Source and Decision Service. However,

for the scope of this thesis, only decisions and input data elements are relevant.

A decision expresses an element that produces an output from a given input with

a given decision logic. An Input data element corresponds to information that

is used by one or more decisions. These two elements can be connected in a

not circular graph with so-called Information Requirement arcs to express the

dependencies. Figure 6 shows an example DRD where two Decisions are defined.

Decision 1

Decision 2

Input 3

Input 2Input 1

Figure 6 Example of a Decision Requirements Diagram (DRD)

While Decision 1 has two Input data nodes as input, Decision 2 has one Input

data node and the output from Decision 1 as input. As seen in the figure, a de-

cision could not only use Input data nodes as input but also outputs from other

decisions.

A formal definition (without Business Knowledge Model, Knowledge Source

and Decision Service) of a DRD is given as followed:

Definition 2. A Decision Requirement Diagram DRD is a tuple (N, IR, T, f),

where

• N is a set of nodes, where N = D ∪ I . D is a set of decision nodes and I is

a set of input data nodes.

• IR ⊆ N × N is a set of information requirements (directed arcs), which

connects nodes to a non-circular graph:

2.1 Decision Model and Notation (DMN) 15

– (I,D): An information requirement between an input data node and

a decision node

– (D,D): An information requirement between two decision nodes

• T is a set of names

• f is a function f : N → T , that maps the names to the nodes

Decision logic. This level describes a decision in a more granular level as a de-

cision table. Decision tables define details about rules and their input and output

columns. These rules define which specific input values apply to which output

value. This is where the decision logic is defined. The various elements of a deci-

sion table is shown in Figure 7.

Figure 7 Example of a decision table (Decision logic)

A decision table has a name and a unique id 1 which is important for connect-

ing the decision to a Business Rule Task in a BPMN. Input Columns 2 define

the inputs of decision tables. They should correspond to the Input data nodes (or

output columns of other decision tables) on the DRD level which are connected

with the Information Requirement arc. Output Columns 3 define the outputs

of the decision table. Both the input columns and the output columns also have

a name. A single rule is defined in a row 4 where concrete values for the in-

put and output columns are defined. The cells are called ‘Input/Output entries’.

These values are expressed in the so call Friendly Enough Expression Language

(FEEL) 5 . This expression language places for different data types 6 various

16 Basics

operations. For instance, comparisons or ranges for numerical data types are sup-

ported. Supported data types are: strings, integers, longs, doubles, booleans and

dates. Columns with strings as data type can further define predefined values.

These values are then suggested as input entries or output entries. Furthermore,

a decision table has a Hit Policy 7 , which further defines how the decision table

is executed, or the output is computed. Some hit policies allow overlapping rules

(e. g. ‘First’ or ‘Collect’); others do not allow overlapping rules and determine that

the decision table is complete. In the scope of this thesis, the hit policy ‘Unique’

is most relevant. Unique means that at maximum, only one rule is allowed to be

selected. For deeper insights about DMN, we refer the reader to the full definition

of the standard in Object Management Group R© (2019b).

Calvanese et al. (2018) provides a formal definition for a decision table. That

definition is partly adapted as followed:

Definition 3. A decision table D is a tuple (T, I,O, Type,R,Order,H), where

• T is the table name

• I and O are disjoint, finite sets of input and output attributes (represented

as strings)

• Type : I] O → Γ is a typing function that associates each input/output

attribute to its corresponding data type (in Γ)

• R is a finite set of rules {r1, . . . , rn}. Each rule r is a pair < Ifi, Theni >,

where Ifi is an input entry function that associates each input attribute

m ∈ I to a condition over Type(m), and Theni is an output entry function

that associates each output attribute n ∈ O an object in Type(n)

• Order: R → {1, . . . , |R|} is a priority function injectively mapping rules in

R to a corresponding rule number defining its priority (important for ‘first’

hit indicator)

• H ∈ {u, f, c} is the hit indicator, where u = unique, f = first and c =

collect

2.2 Existing error type classifications 17

2.2 Existing error type classifications

There are many pieces of research in literature presenting approaches and frame-

works for classifying errors in business rules. Some depict more theoretically

aspects, and others present concrete implementations of DMN verification tools.

For the purpose of a theoretical foundation of the implementation in the next

chapter, this section introduces the idea of an early approach by Vanthienen,

Mues & Aerts (1998) in section 2.2.1, and two frameworks for business rule veri-

fication by Smit et al. (2019) (section 2.2.2) and Hasić et al. (2020b)2 (section 2.2.3).

At the end, section 2.2.4 lists an overview of major verification types from these

frameworks and maps them to the verification types used in this thesis. These

verification types should be implemented in the next chapter.

2.2.1 Verification and Validation by Vanthienen et al. (1998)

Vanthienen, Mues, Wets & Delaere (1998) investigated a tool which verifies and

validates decision tables in PROLOGA (in the year 1998). For this, they define

classifications of decision table anomalies, which are shortly presented in the

following. First of all, they differ between ‘Intra-tabular anomalies’ and ‘Inter-

tabular anomalies’. Intra-tabular anomalies exist between the components of one

single table while Inter-tabular anomalies describe interactions between differ-

ent tables (Vanthienen, Mues & Aerts 1998). This two levels can be adapted to

the DRD level and the decision logic level of DMN. An overview of the anoma-

lies inside these both categories is shown in Figure 8. For instance, in the Intra-

tabular level they define redundancy anomalies of rules. The redundancy de-

scribe e.g. overlapping rules. Furthermore, they define ambivalence as anoma-

lies, where the conclusion of rules differ even though the inputs are redundant.

Moreover, they define on the Inter-tabular level unfirable columns, which means

that a column of a decision is not used or not defined as an output column from

previous tables. Other anomalies describe an unusable action row where given

output values from previous tables do not cover all rows of the current decision

table.

2co-author of this paper

18 Basics

Intra-tabular anomalies Inter-tabular anomalies

redundancy redundancy

ambivalence

circularity

deficiency

on a column level

 - subsumed column pair
 - duplicate column pair
 - unsatisfiable condition

on a row level

 - redund. cond. row:
 irrelevant cond. subject
 - action row pair redundancy

on a column level on a row level

redundant action entry

unusable action row

unfirable column

ambivalence

circularity

deficiency

ambivalent action entries

Figure 8 Verification and Validation classification by Vanthienen, Mues & Aerts (1998)

In section 2.2.4 these classifications are mapped to other classifications of the both

next sections and to the verification types implemented in this thesis. These au-

thors define more concrete verification types and provide ideas and actions to fix

such verifications issues.

2.2.2 Verification Capabilities by Smit et al. (2019)

Smit et al. (2019) conducted a survey in Dutch public administration. Concretely,

in that research, they addressed the DMN standard because just a little research

was done for the verification steps there Smit et al. (2019). Furthermore, the adop-

tion and use of DMN increases more and more (Smit et al. 2017). Five large Dutch

government institutions take part in this round base survey. In focus groups,

they discussed possible verification capabilities. The outcome was 28 verifica-

tion capabilities of a verification framework, which is shown in Figure 9. They

subdivide these 28 verification capabilities into four classifications. These cate-

gories are shortly described in the following. The Decision requirements level

verification category addressed the highest level of abstraction and is related to

the DRD level of DMN. For instance, the ‘Input verification’ capability checks the

correctness of decisions inputs. The information requirements (connected input

data or connected decisions) of a decision should be equal to the input columns

2.2 Existing error type classifications 19

Decision Requirements
Diagram Level Verification

Capabilities

Decision Logic Level
Verification Capabilities

Fact Level Verification
Capabilities

Generic Level Verification Capabilities

Atomicity verification
Grammatical

conformance verification
Omission verificationDeclarativity verification

Conclusion verification

Condition verification

Input verification

Existing business knowledge

verification

Invalid business knowledge

verification

Circularity verification

Transitive dependency

verification

Conflicting conclusion

verification

Identical business rule

verification

Equivalent business rule

verification

Subsumed business rule

verification

Unnecessary fact verification

Interdeterminism verification

Overlapping fact value range

verification

Specific partial reduction

verification

Missing business rule

verification

Valueless fact label verification

Unused fact verification

Domain violation verification

One value-collection verification

Exclusivity/overlap verification

Lexical error verification

Typographical and mechanical

verification

Documentation verification

Figure 9 Verification Framework by Smit et al. (2019)

of the decision. Neither more nor less information requirements are allowed. The

second category defines verifications on the decision logic level. For example,

overlapping rules of a decision table are addressed in one capability. They dis-

tinguish between ‘overlapping’, ‘subsumption’, and ‘identical’ rules. While the

first-mentioned should find rules where every input entry should be equal, the

second one finds rules, where one or more rules completely subsume other rules.

Furthermore, ‘Interdeterminism verification’ describes rules where the same in-

put values lead to different conclusions. In the third category, they define verifi-

cation capabilities on the fact level. The needed facts for these verifications types

are present in a running instance. Documentation issues or lexical errors are also

part of this category. The fourth classification aims general aspects. The generic

level capabilities consider atomic design principle or general syntax checks.

Pre-work for this thesis is a verification tool, which cover the middle column

of this framework (Corea et al. 2019). Beside the implementation of these veri-

20 Basics

fiers, this prototype is able to validate multiple tables verifications, and finds for

instance overlapping rules, which are defined in different decision tables.

2.2.3 DMN Change Pattern by Hasić et al. (2020)

For the DMN standard, Hasić et al. (2020b) identify and analyse change patterns.

Change patterns can occur in a DMN model and describe changes in both, the

DRD level and DLL. The problem here is that every change could generate incon-

sistencies, which may cause problems. For instance, adding a new column in a

decision table results in a missing input data node on the DRD level. Moreover,

they define actions that should solve the inconsistency. These resolving recom-

mendations are also changes that can trigger further change patterns, which leads

to the next resolution actions. This cycle repeats until there are no more incon-

sistencies. One possible resolving solution for the missing input data from the

previous example can easily be to add the missing input data node in the DRD.

This knowledge about resolving inconsistencies is important for the subsidiary

research questions SQ2. All concrete actions to resolve these inconsistencies are

described in chapter 3. Based on the change pattern by Hasić et al. (2020b) the

following categories of verification categories can be extracted:

• Inconsistencies of input columns and corresponding information require-
ments on DRD level. These information requirements can either be input

data nodes or other decisions with corresponding output columns. For in-

stance, an inconsistency exists if an input data node is connected to a deci-

sion wherein the decision table exists no matching input column. A resolu-

tion action is to delete the input data node or to add a new input column in

the decision table.

• Inconsistencies of output columns which are information requirements
for following decisions. If a decision A is connected to the following deci-

sion B and there is no matching input column in B for any output column

in A then there exists an inconsistency. A possible solution here is to add a

new matching input column in decision table B.

• Inconsistencies in string-based columns between predefined values and
value entries. Predefined values define the possible values, which can be

2.2 Existing error type classifications 21

used in the entries of the rules. Now, either the entries can use values

that are not predefined values, or there can exist predefined values that

are never used in the complete column. This leads to inconsistencies that

can be resolved.

• Inconsistencies between input entries of a decision table and output en-
tries of a preceding decision table. This verification type should check

if values that are produced by output entries of a decision are covered in

the following decision table. A possible resolution action for a uncovered

output entry is to delete the corresponding rule.

• Inconsistencies between output entries of a decision table and input en-
tries of a succeeding decision table. This verification type should check

if values that are used by input entries of a decision are produced in the

preceding decision table. A possible resolution action for a missing input

entry is to add a new rule with this value entry.

Finally, these change patterns are great for the modeling phase because these

changes occur every time the modeler perform a change action. For instance,

if he adds a new rule, a column, a new input data node, or delete an output

column. In the next subsection, all the verification types are also mapped to the

other capabilities from the previous frameworks. Within the implementation part

of the next chapter, these verification types are more precisely described and the

implementations of the corresponding resolving recommendations are shown.

2.2.4 Terminology Mapping

The three previously presented verification frameworks differentiate in vocabu-

lary so that a mapping between the relevant elements is needed. As a result, we

define names for ‘verification capabilities’ and map the capabilities of the three

frameworks to these verification capabilities. This mapping is visualized in Fig-

ure 10. At this stage of work, not all verification capabilities are covered. For

instance, the DRD level does not allow circularises and Smit et al. (2019) define a

verification type that looks at this aspect. Also Vanthienen, Mues & Aerts (1998)

defines such a circularity anomaly on the Intra-tabular level. However, we iden-

tified the major verification capabilities as shown in Figure 10 which is the an-

22 Basics

This work - Verification Capabilities Smit et al. (2019)

Vanthienen et al. (1998)

Hasic et al. (2020) *

D
R

D
 le

ve
l

D
e

ci
si

o
n

 lo
g

ic
 le

ve
l

Identical Rules

Equivalent Rules

Subsumed Rules

Indeterminism

Overlapping Conditions

Partial Reduction

Missing Rules

Unused Predefined Value

Missing Predefined Value

Missing input value

Missing output value

Missing input column

Missing output column

Idle data input

Missing (data) input

Multiple (data) input

Conclusion verification

Condition verification

Identical business rule verification

Equivalent business rule verification

Subsumed business rule verification

Interdeterminism verification

Overlapping fact value range verification

Specific partial reduction verification

Missing business rule verification

Inconsistencies of input columns and
corresponding information
requirements on DRD level

Inconsistencies of output columns
which are information requirements

for following decisions

Inconsistencies in string-based columns
between predefined values and value

entries

Inconsistencies between input entries
of a decision table and output entries

of a preceding decision table

Inconsistencies between output entries
of a decision table and input entries of

a succeeding decision table

Inter-tabular anomalies

redundancy

ambivalence

circularity

deficiency

Intra-tabular anomalies

redundancy

ambivalence

circularity

deficiency

Inconsistent types

Input verification

Figure 10 Terminology mapping of verification capabilities; * Co-author, providing a
framework of resolving actions

swer to the subsidiary research questions SQ1. Future investigations and further

research should take a closer look at the missing capabilities. This assumption re-

sults in a requirement for the prototype. The architecture of the prototype should

be designed in a way that more verification types can be added easily. Such a

design has the advantage that also other company- or branch-specific verification

types can be implemented. As an example, the verification capability ‘Incon-

sistent types’ is not mentioned in any of these frameworks, but is an important

aspect for a verification tool. This type should check if an output column has

a same datatype to the connected input column of a succeeding decision table.

2.3 Status Quo on DMN Verification 23

In this thesis, the term ‘verifier’ describes one implementation of an algorithm

that fulfills an entirely or partly aspect of a verification capability. To avoid re-

dundancy, in the next chapter 3, these verifiers are described precisely beside the

implementation.

2.3 Status Quo on DMN Verification

Various researchers presented tools that solve errors in rule bases. Corea & Delf-

mann (2020) conducted a survey and analyzed existing tools solving such errors

while design-time, during run-time, or after the execution of the rules. Table 1

shows an overview of some of these tools, where the used rule engine is DMN. As

Decision logic level DRD level

Literature Id
en

ti
ca

lR
ul

es

Eq
ui

va
le

nt
R

ul
es

Su
bs

um
ed

R
ul

es

In
de

te
rm

in
is

m

O
ve

rl
ap

pi
ng

C
on

di
ti

on
s

Pa
rt

ia
lR

ed
uc

ti
on

M
is

si
ng

R
ul

es

U
nu

se
d

Pr
ed

efi
ne

d
V

al
ue

M
is

si
ng

Pr
ed

efi
ne

d
V

al
ue

M
is

si
ng

in
pu

tv
al

ue

M
is

si
ng

ou
tp

ut
va

lu
e

M
is

si
ng

in
pu

tc
ol

um
n

M
is

si
ng

ou
tp

ut
co

lu
m

n

Id
le

da
ta

in
pu

t

M
is

si
ng

(d
at

a)
in

pu
t

M
ul

ti
pl

e
(d

at
a)

in
pu

t

In
co

ns
is

te
nt

ty
pe

s
Calvanese et al. (2016) X o X X X

Laurson & Maggi (2016) X X o X o X

Batoulis & Weske (2017) X X X X

Calvanese et al. (2017) X o X o X X

Ochoa & González-Rojas (2017) X X

Batoulis & Weske (2018b) X X X o

Calvanese et al. (2018) X o X o X o X

Corea et al. (2019)* X X X X X X X

This work X X X X X X X X X X X X X X X X X

Table 1 Overview of verification capabilities covered by existing approaches (X = full
support, o = partial support. * = co-authors of this work). Content based on Corea &
Delfmann (2020) and Hasić et al. (2020a)

an initial step, this table was created by Corea & Delfmann (2020) and extended in

Hasić et al. (2020a). These approaches aim at various modeling mistakes, which

were previously presented in section 2.2.4 and defined as verification capabilities.

For instance, Calvanese et al. (2016) present a tool, which finds overlapping rules

and missing rules, based on a geometric algorithm on decision logic level. This

24 Basics

idea of a geometric interpretation of DMN tables is also used in some algorithms

in this thesis. Batoulis & Weske (2018a) implemented a tool which algorithm con-

verts a decision table with overlapping rules and the hit policy ‘Rule Order’ into

a decision table without overlapping rules, with the hit policy ‘Unique’. Further-

more, Corea & Delfmann (2018) developed a tool for searching for inconsisten-

cies during process execution. All these tools uses Camunda as implementation

provider for the DMN specification. Future approaches may contain more verifi-

cation capabilities currently not listed in the table.

As can be seen, only a few capabilities are covered by previous approaches.

Therefore, to address the missing capabilities, we present in the following a mod-

eling tool, which covers all verification capabilities listed in the table.

Chapter 3

Implementation

25

26 Implementation

As the central part of the thesis, this chapter introduces the implementation of the

DMN verification tool, which refers to the sub-research-questions SQ3 and SQ4.

First, the architecture of the implementation is explained in section 3.1. Here,

project-specific aspects are defined, and conceptual structures for the verification

API are outlined. Because of the used programming paradigm ‘Representational

State Transfer (REST)’, a web service has to be implemented. This paradigm is

often used as a modern and suitable solution approach for distributed systems.

Besides the components around the web service, the abstract definition of a ver-

ifier is defined (called ‘Abstract Verifier’). Also, the structure for the response,

more precisely the output of the verifiers, is defined in this first sub-section. The

response object defines what is wrong, which elements are concerned, and if pos-

sible, how can the error be fixed.

The second part of this chapter section 3.2 introduces the concrete implementa-

tions of the verification capabilities. The previously presented verification capa-

bilities are implemented as so named verifiers. They use the abstract verifier as

the basic structure. In addition to the description of the verifiers, the used algo-

rithm is explained. Additionally, the respective resolving actions are presented,

too.

Finally, section 3.3 describes a front-end solution for this DMN verification API

shortly. This front-end displays a DMN and provides the functionality for editing

the model. Furthermore, it uses the previously defined REST service for receiving

the errors existing in the DMN. The proposed resolving actions for the model are

implemented, too. Section 3.4 then demonstrates the usage of the front-end in a

small scenario.

3.1 DMN Verification API

This section introduces the DMN verification API and is structured as followed.

First, the general architecture of the whole project is described in section 3.1.1.

This architecture gives an overview and depicts the responsibilities and the inner

dependencies of the components. After that, the external dependencies required

for the project are shortly described in section 3.1.2. As this API provides a web

service, the REST endpoints for accessing the API are described in section 3.1.3.

Furthermore, the result object for the verification endpoint of the webservice is

3.1 DMN Verification API 27

described in section 3.1.4. Finally, the abstract verifier, providing a skeleton for

the concrete implementation of the verification capabilities, is explained in sec-

tion 3.1.5.

3.1.1 Defining the Architecture

The foundation of the DMN verification API is the underlying architecture. Some

of the verification algorithms may need processing power, so a server providing

power as a central solution is suitable. As the API should further provide an in-

terface for multiple clients, a scalable web service at this server is the component

that provides the required architecture. Figure 11 shows the general architecture

of the complete project. The components of the web service and the implementa-

tion of the verifiers is bundled in a Java Maven project, named ‘Back-end’. This

figure shows the ‘Front-end’ as a black box, which is later discussed in section 3.3.

Any front-end (e.g. the Camunda DMN Modeler or other DMN modeling tools)

can send verification requests 1 to the defined REST endpoints (cf. section 3.1.3).

In the verification request, the complete DMN is contained as XML format. Other

endpoints handle configuration settings or provide information about perfor-

mance measurements. However, in this figure these aspects are faded out. The

Quarkus project fulfills the requirements of a distributed system and provides

a Java EE application server. This component has the needed functionalities al-

ready included. For instance, it handles HTTP-requests or provides mechanisms

for defining the web service endpoints.

The central component of the API is the ‘DMN Verification Service’. It is re-

sponsible for handling the organizational logic of the API, for instance, calling the

requested verifiers. Hence, the endpoint method uses this service and forwards

the request and the XML of the DMN model 2 . Now, the DMN Verification

Service uses the ‘DMN Parser’, which converts the XML into a Java object using

the ‘Camunda DMN model API’ 3 . The ‘Verification DMN Model’ (VDMN) is a

component, which provides additional functionalities, which are later useful for

the verifiers. The DMN Parser creates such an object 4 , which is returned to the

DMN Verification Service 5 .

At this point, this central component calls the requested verifiers 6 , which

calculate the verification capabilities. These verifiers use the ‘Abstract Verifier’,

28 Implementation

Back-end Application: Java Maven Project

Front-end Application (DMN Verification Tool)

Webservices
REST Endpoints

DMN Parser

Verifier 1

Verifier 2

Camunda DMN model
(Maven dependency)

Verification DMN Model

...

POST /api/dmn/verification

GET /api/dmn/verification/types

Abstract Verifier

DMN Verification
Service

Quarkus
Java Application Server

(Maven dependency)

GET / POST ...

Verification type

DMN elements

Fix actions

Result Object

DMN
XML

model

Result

Object

DMN

model

Legend Component

Data Object

Component Requirements

Data Flow

DMN
XML

model

Result
Object

(JSON)

DMN

model

DMN
XML

model

1

2

3

4 5

6 7

8

9

Figure 11 Project Architecture

which provides basic functionalities and interfaces for creating the ‘Result Object’

(cf. section 3.1.5). Moreover, all implemented verifiers are precisely described in

section 3.2. Because of the independence of the verifiers, they can be executed

in parallel threads to optimize the total execution time. Each verifier adds their

verification output to the ‘Result Object’, which is returned to the DMN Verifica-

tion Service 7 . This object contains all the vital information about the identified

errors (cf. section 3.1.4). After each verifier is executed, the final result object is

now returned to the web service endpoint 8 and then returned to the front-end

in text-based JSON format 9 .

3.1 DMN Verification API 29

3.1.2 Overview of important Dependencies

Table 2 shows an overview about the required dependencies.

Table 2 External Project Dependencies

Dependency Scope Usage

Quarkus1 Back-end
(Java / Maven)

This framework contains a Java EE server
and has included many required exten-
sions for developing Java REST web ser-
vices (e.g. port listing, handling JSON,
defining Rest Endpoints, handling security
aspects, . . .).

Camunda, DMN API2 Back-end
(Java / Maven)

This API provides a Java Object representa-
tion of the DMN standard. Furthermore, it
provides functions to convert the XML rep-
resentation into a Java Object.

Java Wordnet Interface3 Back-end
(Java / Maven)

This library provides functions for access-
ing the dictionary ‘Wordnet’. It is needed
for the verifier ‘Equivalent Strings’ to find
synsets of given words.

JUnit 54 Back-end
(Java / Maven)

A Java test framework for unit testing.

dmn-js5 Front-end
(JavaScript)

Modeling environment framework for
DMN models including DRD level and
table level.

jQuery6 Front-end
(JavaScript)

JavaScript framework for accessing and
manipulating HTML documents.

1https://quarkus.io/
2https://github.com/camunda/camunda-bpm-platform/tree/master/

model-api/dmn-model
3https://projects.csail.mit.edu/jwi/ - (Finlayson 2014)
4https://junit.org/junit5/
5https://github.com/bpmn-io/dmn-js
6https://jquery.com/

https://quarkus.io/
https://github.com/camunda/camunda-bpm-platform/tree/master/model-api/dmn-model
https://github.com/camunda/camunda-bpm-platform/tree/master/model-api/dmn-model
https://projects.csail.mit.edu/jwi/
https://junit.org/junit5/
https://github.com/bpmn-io/dmn-js
https://jquery.com/

30 Implementation

For the back-end a Java Maven7 project, is set up. Maven provide a func-

tionality to include external dependencies by just require them inside the Maven

‘pom.xml’. These external resources, in the form of frameworks, provide needed

functionalities. There is no need for redeveloping those functions because many

developers thoroughly test these frameworks. Some of them are mentioned in

the previous section. However, for an overview, they are here further described

with their scope and their role in this project. Moreover, their usage is shortly

described so that they can be classified.

Besides the dependencies for the back-end, the two essential front-end depen-

dencies are listed, too. These two JavaScript frameworks are important for sec-

tion 3.3.

3.1.3 Defining REST Endpoints

As the web service provides interfaces for the verification of DMN models, the

corresponding REST endpoints have to been defined. Quarkus offer a simple

annotation construct to define such endpoints which is shown in appendix B.I. We

divide the definition of the endpoints into four categories, which are described as

followed.

Verifier Information.
First of all, the front-end has to know which verifier types can be requested. For

that, a single endpoint is defined, which provides a list of all enabled verifiers.

This list contains all verifiers that can be requested by any front-end to calculate

the verification errors of DMN models.

GET

/api/dmn/verification/types

Produces: application/json

The HTTP-GET request does not contain any further parameters and produces a

JSON list with the verification types. Beside the name of this verifier, a format-

ted name, a description and the classification (e.g. DRD or Decision logig) of the

verifier is given. An example of the result list is partly given in appendix B.II.

7https://maven.apache.org/

https://maven.apache.org/

3.1 DMN Verification API 31

Verification Request.
The DMN verification can be requested at two different endpoints. First, if the

front-end likes to request all verification types, this endpoint is used.

POST

/api/dmn/verification?[token={token}]

Consumes: text/xml

Produces: application/json

Second, if the front-end just need some verification capabilities, a preselected set

of verifiers can be submitted by parameters. Here, just the name of the verifier is

sufficient after the ‘typeName’ parameter name.

POST

/api/dmn/verification/types?typeName={a}&typeName={b}..[&token={token}]

Consumes: text/xml

Produces: application/json

Both endpoints require the DMN in XML format as body parameter and produce

a JSON result which is described in section 3.1.4. Furthermore, they can receive

the optional ‘token’ parameter which can be used by clients to measure the exe-

cution time performance.

Configuration.
A few configuration endpoints provide the possibility to make a few adjustments

to the web service. The first endpoint provide a list of all verifiers, that are regis-

tered in the current environment. This list contains a string - boolean pair and de-

fines, if a verifier is enabled or not. An example output is listed in appendix B.III.

GET

/api/dmn/verification/config

Produces: application/json

To enable or disable one verifier, the following endpoint can be called, where

‘verifier’ is the name and ‘enabled’ the boolean value.

POST

/api/dmn/verification/config/{verifier}/{enabled}

Furthermore, verifiers may create fix actions. Fix actions provide a solution for

solving the inconsistency, which was found by the verifier. These fix actions are

defined with an action type (show / create / update / delete) and an action scope

(decision, input data, output column, ..) For instance, an action can suggest cre-

32 Implementation

ating a new rule. To get a list of action types this endpoint can be requested

(cf. appendix B.IV):

GET

/api/dmn/verification/actions/actionTypes

Produces: application/json

To get a list of action scopes this endpoint can be requested (cf. appendix B.V):

GET

/api/dmn/verification/actions/actionScopes

Produces: application/json

To get the configuration for allowed actions scopes and action types this endpoint

can be called. An example output is listed in appendix B.VI.

GET

/api/dmn/verification/actions/allowedActions

Produces: application/json

To set the boolean value to enable or disable the allowed action type / action

scope, this endpoint can be called:

POST

/api/dmn/verification/actions/allowedActions/scope/type/value

Produces: text/plain

Performance Metrics.
If the verification request is called with a token parameter, this endpoint provides

a small performance overview of the executions. Besides the total and average

execution time, the total and the average number of detected errors are provided.

GET

/api/dmn/verification/metrics?token=token

Produces: application/json

A part of the JSON result is listed in appendix B.VII.

3.1.4 Defining the Verification Result Object

The verification API has to define a suitable data structure of the verifiers’ out-

put. In this context, the output determines the definition of the found errors and

possible fix actions of these errors. Simultaneous, the data structure is used as the

3.1 DMN Verification API 33

output format of the defined verification web service endpoints. Therefore, the

result object has to be defined. A class-based structure defines this result object,

which is shown in a UML class diagram in Figure 12.

Set<VerifierResult>verifierResults

VerifierResultSet

VerificationTypeverificationType

LongexecutionTime

Set<VerificationResultEntry>verificationResultEntries

VerifierResult

UPDATE

CREATE

DELETE

SHOW

ActionType

ActionTypeactionType

ActionScopeactionScope

HashMap<String, String>values

Action

RULE

INPUT_ENTRY

OUTPUT_ENTRY

INPUT_DATA

INPUT_COLUMN

OUTPUT_COLUMN

DECISION

ActionScope

Map<String, AbstractId>identifier

VerificationResultEntryElement

NamefixName

List<Action>actions

VerificationFix

List<VerificationFix>verificationFixes

Set<VerificationResultEntryElement>verificationResultEntryElements

Messagemessage

VerificationClassificationverificationClassification

VerificationResultEntry

*

1

1

1
*

1

*

1

11

*

1

*
1

Figure 12 Result Object UML Class Diagram

For the web service endpoint, Quarkus offer the possibility to convert this Java

Object automatically to the JSON format, so that there is nothing more to do. This

automatic conversation is made by an annotation, which is shown in appendix B.I

(Line 8).

In a nutshell, the central architecture component ‘DMN Verification Service’

creates the root component of the result object, and each activated verifier adds

its output to the structure. The root element is the ‘VerifierResultSet’, which con-

tains only a set of ‘VerifierResults’. One ‘VerifierResult’ represents a container

for the output of one verifier. Beside the verification type (name, description,

..), this element contains also the execution time (determines how long the veri-

34 Implementation

fier calculated the output) and the set of ‘VerificationResultEntries’. A ‘Verifica-

tionResultEntry’ describes one single error found by one verifier. This element

contains a human-readable message “There is an error in. . . ” and a set of en-

try elements. The ‘VerificationResultEntryElement’ contains a map of strings and

Ids. The string value points to a DMN element (e. g. Input data), and the value

of the unique Id identifies the specific element. Moreover, the ‘VerificationResul-

tEntryElement’ contains a ‘VerificationClassification’ which declare a result entry

as ‘WARNING’ or ‘ERROR’. Furthermore, the ‘VerificationResultEntryElement’

has a list of ‘VerificationFixes’ included. This list represents all fixes, which can

be activated by a user to resolve the error (or display the error in the DMN model).

One fix contains a list of one or more actions, which describes what the front-end

has to do (enum ActionType) and which element is involved (enum ActionScope).

Furthermore, it contains a map of string pairs for further information. Each ele-

ment has further a unique Id and additionally the number of containing elements

(Not shown in this diagram). An example of a JSON formatted representation of

this data structure is shown in appendix B.VIII.

3.1.5 Defining the Abstract Verifier

As the verification capabilities are each independent and as they require differ-

ent algorithms to compute the errors, an appropriate solution is necessary. Fur-

thermore, an easy way to give the verifier a name and a description is needed.

For this, the template method pattern in combination with a Java annotation is

adapted. This construct is illustrated as an UML class diagram in Figure 13, where

besides the ‘AbstractVerifier’ and the annotation ‘DMNVerifier’, three concrete

verifiers are displayed. The ‘AbstractVerifier’ class defines fundamental methods

and attributes, which are important for the central component ‘DMN Verification

Services’ and the implementation of concrete verifiers. The verification service

class call the ‘verify’ method to generate a new ‘VerifierResult’ object (cf. sec-

tion 3.1.4). Moreover, the abstract verifier calculate the execution time of the con-

crete verifiers by measuring the time for the execution of the ‘doVerification()’

method. This method is the template method, and the point where the imple-

mentation of the algorithm takes part. Other attributes and methods are helpers

for the verifier implementation (e. g. access to the DMN model, or methods for

creating results). The annotation ‘DMNVerifier’ defines the name, the descrip-

3.1 DMN Verification API 35

VerificationTypegetVerificationType()

Future<VerifierResult>verify(ExecutorService)

voiddoVerification()

longgetExecutionTime()

AbstractVerifier

Class<? extends ClassificationType>classification()

Stringname()

StringniceName()

Stringdescription()

DmnVerifier

voiddoVerification()

MissingColumnVerifier

voiddoVerification()

PredefinedExistingValueVerifier

voiddoVerification()

DateVerifier

Figure 13 Abstract Verifier UML Class Diagram

tion, and the corresponding classification (DRD level, Decision Logic Level, ..) of

a verifier. The attributes of the annotation are then automatically converted into a

‘VerificationType’ object, which is then handed over to the result object of the ver-

ifier. Furthermore, this annotation is used by the DMN verification service class

for scanning for verifiers. If a class has this annotation, it is automatically added

to the pool of verifiers.

As a result, defining a new verifier requires three actions:

1. Creating a new Class, which extends AbstractVerifier.

2. Adding the annotation ‘DmnVerifier’ and defining the name, the classifica-
tion, the description, and a niceName for the verifier.

3. Implementing the ‘doVerification()’ method. There, the found errors are

added to the result object.

An example verifier class is shown in appendix B.IX. The implementations of

the ‘doVerification()’ method of all implemented verifiers are discussed in the

following section.

36 Implementation

3.2 Implementation of DMN Verifiers

Now, as the abstract verifier is defined as an underlying construct, this section de-

scribes all implemented verifiers. Each subsection considers a single verifier and

is structured as followed. A short description introduces the verifier, which con-

tains the classification of the related verification capability and the designation

of the involved DMN elements. Furthermore, each description includes a small

minimal example, so that the intention of the verifier is clear. It follows a presen-

tation of a formal algorithm and the corresponding description of the algorithm.

Furthermore, feasible verification fixes are introduced. The algorithm represents

the ‘doVerification()’ method as a pseudocode. All defined variables within the

algorithms are written lowercase. For an overall consistent naming of the DMN

elements, the following shortcuts are defined:

M The complete DMN model

N One (abstract) Node of a DMN model (decisions & input data)

m.n is a list of N , where m is a M

D One Decision of a DMN model

m.d is a list of D, where m is a M

ID One Input Data of a DMN model

m.id is a list of ID, where m is a M

IC One Input Column of a Decision

d.ic is a list of IC, where d is a D

OC One Output Column of a Decision

d.oc is a list of OC, where d is a D

R One Rule of a Decision

d.r is a list of R, where d is a D

IE One Input Entry of a Rule / Input Column

r.ie is a list of IE, where r is a R

ic.ie is a list of IE, where ic is a IC

OE One Output Entry of a Rule / Output Column

r.or is a list of OE, where r is a R

oc.or is a list of OE, where oc is a OC

PV One Predefined Value of a string-based column

ic.pv is a list of PV , where ic is a IC

oc.pv is a list of PV , where oc is a OC

3.2 Implementation of DMN Verifiers 37

DT The Data Type of a column

ic.dt is the data type DT , where ic is a IC

oc.dt is the data type DT , where oc is a OC

IR one Information Requirement between an Input Data or Decision and an

other Decision

This section is subdivided by the DMN levels. First, section 3.2.1 defines veri-

fiers for the Decision Requirements Diagrams level, then section 3.2.2 verifiers for

the Decision Logic Level, and at the end two further syntax checking verifiers in

section 3.2.3.

3.2.1 Decision Requirements Diagram Level Verifiers

This section introduces five verifiers, which are related to the Decision Require-

ments Diagrams Level. These verifier are: ‘Lonely Data Input’ (section 3.2.1.1),

‘Missing Input Data’ (section 3.2.1.2), ‘Missing Input Column’ (section 3.2.1.3),

‘Multiple Input Data’ (section 3.2.1.4), and ‘Wrong Data Type’ (section 3.2.1.5).

3.2.1.1 Lonely Data Input

This verifier detects input data nodes, which has no connection to at least one

decision table. On the one hand, this modeling error is trivial. On the other hand,

this verification capability offers fixes, which can help the modeler while model-

ing which is indeed essential. The related verification capability of this verifier is

the Idle data input capability. For the error detection, only the input data nodes

and the information requirements are relevant. However, for the determination

of fixes, decision tables and their input columns are relevant, too.

Figure 14 Minimal example – Lonely Data Input

38 Implementation

Algorithm. The algorithm is defined as followed:

Algorithm 1 Lonely Data Input algorithm
1: function DOVERIFICATION(M m)
2: for all ID id : m.id do
3: if id.ir.isEmpty() then . No information requirement is connected to the input data
4: addToResult(id) . Add input data to result
5: createF ixes(id) . Add feasible fixes

This verifier iterates over all input data nodes (line 2) and checks for each of

these nodes if there exists no information requirement which is connected to the

input data node (line 3). If this condition is met, the input data node can be added

to the result object (line 4) and the feasible fixes can be created (line 5).

Feasible Fixes. These fixes are created by the presented verifier:

• Show the ‘lonely’ input data node.

• Delete the ‘lonely’ input data node.

• Create a new information requirement to a decision, which has a equal

naming input column .

• Create a new decision (with a corresponding input column) and a new in-

formation requirement between the input data node and the new decision

node.

3.2.1.2 Missing Input

This verifier is responsible for detecting input columns of decisions, which has no

reference to any input data node. Therefore, this verifier is related to the Missing
(data) input verification capability. However, in this implementation, this verifier

also checks if the input column has simultaneously no connection to any output

column of a connected decision, which is related to the Missing output column
verification capability. This has the reason that input columns, which have an

information requirement to an input data node, do not need to have a connected

output column and the outer way around. As a result, the relevant elements are

the input data nodes, and the (incoming) information requirements with their

input data, or decisions as a source.

3.2 Implementation of DMN Verifiers 39

Figure 15 Minimal example – Missing Input

Algorithm. The algorithm is defined as followed:

Algorithm 2 Missing Input algorithm
1: function DOVERIFICATION(M m)
2: for all D d : m.d do . For each decision
3: inNodes← d.ir.sourceNodes . All incoming nodes (input data & decisions)
4: for all IC ic : d.ic do . For each input column
5: checkExistingInput(ic, inNodes)

6: function CHECKEXISTINGINPUT(IC ic, N inNodes)
7: if ic.hasName() then
8: columnName← ic.name
9: for all N node : inNodes do . Check for each node

10: if node.isInputData() & node.name = columnName then . Names are equal
11: return . Exit function
12: if node.isDecision() then
13: for all OC oc : node.oc do . Check for each output column
14: if oc.name = columnName then . Names are equal
15: return . Exit function
16: addToResult(ic) . Add input column to result
17: createF ixes(ic) . Add feasible fixes

First, this verifier iterates over all input columns of all decisions (lines 2 & 5),

and then checks for each source nodes of the information requirements, if there

exists a related element (lines 3 & 5). In this check, these source nodes are iterated

and checked (lines 9− 15). If a node is an input data node, and the name of this

node is equal to the name of the current input column, then there is no error for

this input column present (lines 10 & 11). Also, if the node is a decision and has

an output column with an equal name with the current input column, then there

is no error for this input column present, too (lines 12− 15). Only if the algorithm

passed this check, the input column is added to the result object and the fixes are

calculated.

Feasible Fixes. These fixes are created by the presented verifier:

• Show the input column.

• Name an output column of a connected decision with the name of the input

column. This output column needs to have no name and the same data type

of the input column.

40 Implementation

• Rename the input column with the name of a connected input data node or

an output column of connected decisions.

• Delete the input column.

• Create a new input data node with the name of the input column and an

information requirement for the current decision.

• Create a new decision with a equal named output column and an informa-

tion requirement for the current decision.

• Create an information requirement from an equal named existing input

data node.

• Create an information requirement from an existing decision with an equal

named output column.

• Create a new equal named output column in an connected decision.

3.2.1.3 Missing Input Column

The aim of this verifier is finding missing input columns. Hence, Missing in-
put column is the related verification capability. The verifier detects input data

nodes and decisions, which have an information requirement to decisions with no

matching input columns. Therefore, this verifier has two steps. The first step is

considering input data nodes and their connected decisions. If the connected de-

cisions have no equal named input column, then there exists an error in the DRD.

The second step is considering decisions (A) and their connected decisions (B)

(A → B). If a decision B has no input column, which has an equal name of any

output column of a decision A, then there exists an error in the DRD, too.

Figure 16 Minimal example – Missing Input Column

Algorithm. The algorithm is defined as followed:

As mentioned, this verifier checks first all input data nodes (lines 2− 4) and

then all decisions (lines 5−7). While the check of the input data requires only the

name of the node (line 3), the check for each decision requires all names of the

3.2 Implementation of DMN Verifiers 41

Algorithm 3 Missing Input Column algorithm
1: function DOVERIFICATION(M m)
2: for all ID id : m.id do . Check for each input data node
3: outNames = singletonList(id.name) . Name of the input data (List of Strings)
4: checkInput(id, outNames) . Check the input data node
5: for all D d : m.d do . Check for each decision
6: outNames = d.oc.names . Names of all output columns (List of Strings)
7: checkInput(d, outNames) . Check the decision node
8: function CHECKINPUT(N node, List<String> outNames)
9: for all D d : node.ir.d do . Check for each information providing decision

10: inNames = d.ic.names . Names of all input columns (List of Strings)
11: if outNames.doesNotContainAnyOf(inNames) then
12: addToResult(node, d) . Add node and decision to result
13: createF ixes(node, d) . Add feasible fixes

output columns (line 6). The check itself iterates over all connected (outgoing in-

formation requirements) decisions (line 9) with its input column names (line 10),

and tests if there exists an equal string pair in both lists (line 11). If this is not

the case, the current node (input data or decision) and the connected decision is

added to a new result object.

Feasible Fixes. These fixes are created by the presented verifier:

• Show the input data / decision with its connected decision, where the input

column is missing.

• Delete the input data node.

• Create a new equal named input column in the connected decision.

• Delete the output column of the source decision.

• Delete the source decision.

3.2.1.4 Multiple Input Data

This verifier is related to the Multiple (data) input verification capability and

detects input columns that have more than one input data (or output columns

from decisions) as information requirement. Hence, the relevant elements are the

input columns with the information requirements of the decisions.

42 Implementation

Figure 17 Minimal example – Multiple Input Data

Algorithm. The algorithm is defined as followed:

Algorithm 4 Multiple Input Data algorithm
1: function DOVERIFICATION(M m)
2: for all D d : m.d do . For each decision
3: inNodes← d.ir.sourceNodes . All incoming nodes (input data & decisions)
4: for all IC ic : d.ic do . For each input column
5: checkMultipleInputData(ic, inNodes)

6: function CHECKMULTIPLEINPUTDATA(IC ic, List<N> inNodes)
7: mn← ∅ . New empty list for matching nodes
8: for all N node : inNodes do . For each node (of the information requirement)
9: if node.isInputData() & ic.name = node.name then

10: mn.add(node)

11: if node.isDecision() then
12: for all OC oc : node.oc do . For each output column
13: if ic.name = oc.name then
14: mn.add(node)

15: if mn.size() > 1 then . Amount of found nodes greater than one
16: addToResult(ic, mn) . Add input column and related elements to result object
17: createF ixes(ic, mn) . Add feasible fixes

In the first statements, the algorithm iterates over all decisions (line 2) and over

all output columns (line 4). The verifier creates a new empty list for caching nodes

for later (line 7). Then, the check function iterates over the nodes of incoming

information requirements of the current decision (line 8). If the node is an input

data, and the name of the input data is equal to the input column name, then the

input data node is added to the list (lines 9,10). If the node is a decision, then all

output columns are checked for an equal name. Also, here, if the test passed, this

decision node is added to the list. Finally, if the size of the list is larger than one,

the input column and all detected nodes are added to a new result object.

3.2 Implementation of DMN Verifiers 43

Feasible Fixes. The only fix that is created by the ‘Multiple Input Data’ verifier

is the ‘Show’ action. Here, all elements that are relevant for the verification error

need to be highlighted. These elements are the input column and all detected

related nodes (input data nodes and decision nodes).

3.2.1.5 Wrong Data Type

The task of this verifier is the detection of output columns and their connected

input columns (of connected decisions) where the data types differentiate (Incon-
sistent types verification capability). If an output column produces a string value

and a connected input column requires integer values, then it implies a signifi-

cant modeling error. Relevant elements are all decisions with their information

requirements and their input/output columns.

Figure 18 Minimal example – Wrong Data Type

Algorithm. The algorithm is defined as followed:

Algorithm 5 Wrong Data Type algorithm
1: function DOVERIFICATION(M m)
2: for all D d : m.d do . For each decision
3: for all D fd : d.ir.followingDecisions do . For each following decision
4: checkWrongDataTypes(d, fd)

5: function CHECKWRONGDATATYPES(D d, D fd)
6: for all OC oc : d.oc do . For each output column
7: for all IC ic : fd.ic do . For each input column
8: if oc.name = ic.name& oc.dt 6= ic.dt then . Names are equal and data types are not equal
9: addToResult(ic, oc) . Add input column and output column to result object

10: createF ixes(ic, oc) . Add feasible fixes

First, this verifier iterates over all decisions d (line 2) and in an inner loop

over the following corresponding decisions fd of the information requirements

44 Implementation

(line 3). The check function iterates over all output columns of decision d (line 6)

and in an inner loop over all input columns of decision fd (line 7). Then, if the

names of both columns are equal, and simultaneously the data types are not

equal, then these two columns are added to a new result object of this verifier.

Feasible Fixes. These fixes are created by the presented verifier:

• Show the erroneous output and input column.

• Update one of the columns with a new data type (from the respective other

column data type).

3.2.2 Decision Logic Level Verifiers

This subsection presents the verification capabilities of the Decision Logic Level

of DMN models. Looking at a single decision table or looking at rules and entries

of single tables is the focus of this abstraction level. Therefore, the following ver-

ifiers are introduced: Missing Input Value (section 3.2.2.1), Missing Output Value

(section 3.2.2.2), Missing Predefined Value (section 3.2.2.3), Unused Predefined

Value (section 3.2.2.4), Subsumption Rule (section 3.2.2.5), Identical Rule (sec-

tion 3.2.2.6), Overlapping Rule (section 3.2.2.7), Partial Reduction (section 3.2.2.8),

Missing Rule (section 3.2.2.9), Equivalent Strings (section 3.2.2.10), Empty Output

(section 3.2.2.11), Missing Column (section 3.2.2.12).

3.2.2.1 Missing Input Value

The Missing Input Value verifier detects output values of output entries in deci-

sion tables which are never used in the connected decision table in input entries.

This has especially interests for string columns for ensuring, that all provides val-

ues are also used. Missing input value is the equal named related verification

capability. Relevant elements are the input and output entries and the informa-

tion requirements to find the connections between the decisions.

3.2 Implementation of DMN Verifiers 45

Figure 19 Minimal example – Missing Input Value

Algorithm. The algorithm is defined as followed:

Algorithm 6 Missing Input Value algorithm
1: function DOVERIFICATION(M m)
2: for all D d : m.d do . For each decision
3: for all D fd : d.ir.followingDecisions do . For each following decision
4: checkMissingInputV alues(d, fd)

5: function CHECKMISSINGINPUTVALUES(D d, D fd)
6: for all OC oc : d.oc do . For each output column
7: for all IC ic : fd.ic do . For each input column
8: if oc.name = ic.name& oc.dt = ic.dt then . Names are equal and data types are equal
9: checkColumns(oc, ic)

10: function CHECKCOLUMNS(OC oc, IC ic) . Output Column & Input Column
11: outerLoop:
12: for all OE oe : oc.oe do . For each output entry
13: for all OE ie : ic.ie do . For each input entry
14: if ie.isInContactWith(oe) then . Check if ie and oe are in contact
15: continue outerLoop . Next output entry
16: addToResult(ic, oe) . Add input column and output entry to result object
17: createF ixes(ic, oe) . Add feasible fixes

First, this verifier iterates over all decisions d (line 2) and in an inner loop

over the following corresponding decisions fd of the information requirements

(line 3). Then, the called function iterates over the output columns of the first-

mentioned decision (line 6), and in an inner loop over the input columns of the

second-mentioned decision (line 7). If a column mapping was found (line 8), all

output entries and input entries of both columns are iterated (lines 12,& 13). Here,

if the output entire is used in any input entry (line 13& 14), then there is no exist-

ing problem for this output entry, and the next output entry is looked up (line 15).

If all input entries are iterated, this output entry is added to a new result object

(as missing input entry), and the fixes are created.

46 Implementation

Feasible Fixes. These fixes are created by the presented verifier:

• Show the output entry and the input column, where the output entry is not

covered.

• Delete the rule, that contains the output entry.

• Add a new rule in the following decision that covers the output entry.

3.2.2.2 Missing Output Value

This verifier provides the opposite of the previously presented verifier. Here, the

aim is the detection of input entries in input columns that are not defined in the

decision of an information requirement as output value. Missing output value
is the equal named related verification capability. Relevant elements are the in-

put and output entries and the information requirements to find the connections

between the decisions.

Figure 20 Minimal example – Missing Output Value

Algorithm. The algorithm is defined as followed:

The idea is the same as the previous presented ‘Missing input value’ in sec-

tion 3.2.2.1. First, this verifier iterates over all decisions d (line 2) and in an inner

loop over the following corresponding decisions fd of the information require-

ments (line 3). Then, the called function iterates over the input columns of the

second-mentioned decision (line 6), and in an inner loop over the output columns

of the first-mentioned decision (line 7). If a column mapping was found (line 8),

all output entries and input entries of both columns are iterated (lines 12,& 13).

However, the loops inside the ‘checkColumns’ function are reversed, so that the

focus is on the missing out values. Here, if the input entire is used in any output

3.2 Implementation of DMN Verifiers 47

Algorithm 7 Missing Output Value algorithm
1: function DOVERIFICATION(M m)
2: for all D d : m.d do . For each decision
3: for all D fd : d.ir.followingDecisions do . For each following decision
4: checkMissingOutputV alues(d, fd)

5: function CHECKMISSINGOUTPUTVALUES(D d, D fd)
6: for all IC ic : fd.ic do . For each input column
7: for all OC oc : d.oc do . For each output column
8: if oc.name = ic.name& oc.dt = ic.dt then . Names are equal and data types are equal
9: checkColumns(oc, ic)

10: function CHECKCOLUMNS(OC oc, IC ic) . Output Column & Input Column
11: outerLoop:
12: for all OE ie : ic.ie do . For each input entry
13: for all OE oe : oc.oe do . For each output entry
14: if oe.isInContactWith(ie) then . Check if oe and ie are in contact
15: continue outerLoop . Next input entry
16: addToResult(oc, ie) . Add output column and input entry to result object
17: createF ixes(oc, ie) . Add feasible fixes

entry (line 13& 14), then there is no existing problem for this input entry, and the

next input entry is looked up (line 15). If all output entries are iterated, this input

entry is added to a new result object (as missing output entry), and the fixes are

created.

Feasible Fixes. These fixes are created by the presented verifier:

• Show the input entry and the output column, where the input entry is not

covered.

• Delete the rule, that contains the input entry.

• Add a new rule in the decision (connected with the information require-

ment) that covers the input entry.

3.2.2.3 Missing Predefined Value

String columns in DMN models provide the functionality of predefined values.

After defining string values in the column head, these values then can be used

in the entries of the column. However, not all defined values may be used in

the entries. The task of the verifier is the detection of string values that are not

defined in the list of predefined values of the column. The related verification

capability is the Missing Predefined Value capability, and the related elements

are the string-based input and output columns with their entries.

48 Implementation

Figure 21 Minimal example – Missing Predefined Value

Algorithm. The algorithm is defined as followed:

Algorithm 8 Missing Predefined Value algorithm
1: function DOVERIFICATION(M m)
2: stringColumns← m.getAllStringColumns() . Get all string columns existing in the model
3: for all Column sc : stringColumns do . For each (string) column
4: predV al← sc.getPredefinedV alues() . Get the predefined values of the column
5: for all Entry entry : sc.entries do . For each entry in the string column
6: if ! predV al.contains(entry.values) then . Check if the string values are not predefined
7: addToResult(entry) . Add the entry to the result object
8: createF ixes(entry) . Add feasible fixes

The verifier requires a list of all string-based columns existing in the complete

model. Hence, the abstract function ‘getAllStringColumns()’ provides this list

(line 2). Then, this list is iterated (line 3), and the list of predefined values of the

current column is requested (line 4). In an inner loop, all entries are iterated. If

any value of an entry does not exist in the list of predefined values (line 6), the

entry is added to the result list.

Feasible Fixes. These fixes are created by the presented verifier:

• Show the entry, where the string value is missing in the predefined values.

• Add the missing string to the predefined values.

• Delete the rule, which contains the missing string value.

3.2.2.4 Unused Predefined Value

The counterpart of the previous presented verifier is the Unused Predefined Value

verifier with the equal named Unused Predefined Value verification capability.

This time, the verifier detects predefined string values, which itself are never used

3.2 Implementation of DMN Verifiers 49

in entries at the column. Here, the related elements are the string-based input and

output columns with their entries, too.

Figure 22 Minimal example – Unused Predefined Value

Algorithm. The algorithm is defined as followed:

Algorithm 9 Unused Predefined Value algorithm
1: function DOVERIFICATION(M m)
2: stringColumns← m.getAllStringColumns() . Get all string columns existing in the model
3: for all Column sc : stringColumns do . For each (string) column
4: predV al← sc.getPredefinedV alues() . Get the predefined values of the column
5: for all Entry entry : sc.entries do . For each entry in the string column
6: if predV al.contains(entry.values) then . Check if the string values is predefined
7: predV al.remove(entry.values) . Remove the value from the list of predefined values
8: for all String val : predV al do . For each remaining predefined value
9: addToResult(val) . Add the string value result object

10: createF ixes(val) . Add feasible fixes

Like the previous verifier, this verifier requests a list of all string-based columns

by the abstract function ‘getAllStringColumns()’ (line 2). Then, all string-based

columns are iterated (line 3), and the list of predefined values is saved into a new

list (line 4). After that, all entries of the column are iterated (line 5). If the values of

the entry exist in the list of the predefined values (line 6), they are removed from

that list (line 7). Finally, all remaining strings in the list are unused and added to

the result object (line 8).

Feasible Fixes. These fixes are created by the presented verifier:

• Show the column with the unused predefined string value.

• Remove the unused value from the list of predefined values.

• Create a new rule, where the unused predefined string value is used.

50 Implementation

3.2.2.5 Subsumption Rule

The term ‘subsumption’ indicates the inclusion of values. Accordingly, ‘sub-

sumption rule’ expresses the detection of individual rules which are subsumed

by other rules. For instance, rules containing wildcards often render more spe-

cific rules unnecessary due to subsumption. Subsumed rules often mean that they

are not necessary, and if they have equal output, they can be deleted. As the name

of this verifier is saying, it is related to the Subsumed Rules verification capabil-

ity. Moreover, if the output of a subsumed rule differentiates to the subsuming

rule, a Indeterminism verification capability is detected. The relevant elements

are rules of decisions and their input entries. The output entries are relevant for

the second mentioned verification capability.

Figure 23 Minimal example – Subsumption Rule

Algorithm. The algorithm is defined as followed:

Algorithm 10 Subsumption algorithm (1/5)
1: function DOVERIFICATION(M m)
2: for all D d : m.d do . For each decision
3: checkSubsumptions(d.ic, 0, d.r, false, ∅) .→ algorithm 11

The idea of this algorithm is adapted from Calvanese et al. (2016) and uses

an extended version of a line-sweep algorithm for two-dimensional spatial joins

which is introduced by Arge et al. (1998). However, this modified algorithm only

finds subsumptions and no overlapping or identical rules. In general, each deci-

sion table is checked for subsuming rules (algorithm 10 lines 2–3).

Algorithm 11 shows the main construct of the verifier and outlines the com-

plete function ‘checkSubsumptions()’. This algorithm is more complicated than

the previous presented. As a result, all parts of the function ‘checkSubsump-

tions()’ are discussed in their own parts (a→ Algorithm 12, b→ Algorithm 13 &

3.2 Implementation of DMN Verifiers 51

Algorithm 11 Subsumption algorithm (2/5)
1: function CHECKSUBSUMPTIONS(List<IC> ic, . Input columns

int i, . Index for current input column
List<R> cr, . List of current rules
boolean hasS, . Boolean flag for found subsumption
List<R> rootSR) . Current subsuming root rules

2: if i = ic.size() then . All columns processed?
3: if hasS & cr.size() > rootSR.size() then . Is a subsumption present?
4: dc← differentConclusions(cr) . Check if different output
5: addToResult(cr, dc) . Add the subsuming rules to result object
6: createF ixes(cr, dc) . Add feasible fixes
7: else
8: List sb← getColumnEntriesByFilteredRules(ic[i], cr) . List of current entries
9: List areS ← ∅ . List for indication of subsumption

10: List subC ← ∅ . 2-dimensional list for subsumption clusters
11: List subV ← ∅ . 2-dimensional list for subsumption values
12: if rootSR.isEmpty() then . If subsuming rules are existing
13: → a→ Algorithm 12
14: else . No subsumption was found yet
15: → b→ Algorithm 13
16: removeDuplicates(subC) . Remove duplicate clusters
17: → c→ Algorithm 14

c → Algorithm 14). This recursive function has five parameters and is called

for each decision individually. The first parameter ic contains a list of all input

columns of the current decision and is never changed in the function. The index

parameter i defines the current index of the column and is responsible for leaving

the recursive call stack. The third parameter cr contains a list of rules, which are

currently activated. Initially, this list contains all the rules of the decision. Later,

this list contains only rules, which are detected as a set of subsuming rules. The

boolean parameter hasS indicants, if the current recursive call contains already a

subsumption. Finally, the parameter rootSR contains a list of rules, which are the

root rules, that subsumes all other founded rules in cr. This list is initially empty.

Inside this function, the first check (line 2) tests the end of the recursion. If i it

higher than the size of the list of columns, the next check (line 3) tests the existence

of a subsumption. If this is the case, the trivial function ‘differentConclusion()’

(line 4) checks all outputs of the found rules, and these rules are added to the

result (line 5, 6).

If the end of the recursion is not reached, four lists are created, which are used

in the following parts of the algorithm. First, sb is a list, which contains all column

entries of the current column (ic[i]) and the current selected rules (cr). Then, areS

is a list of boolean values, which indicates if the current index of the following lists

is a subsumption or not. Furthermore, subC and subV are 2-dimensional lists,

52 Implementation

which contain clusters of rules, where subsumptions were found. Where subC

contains all involved rules, subV only contains the subsuming rules. List subC

may contain rules, and subV does not contain any rule. Then only identical rules

were found yet, which means that there can still exist subsumptions when other

columns are considered. Both lists are initially empty. The next part depends on

the size of the list rootSR. If this list is empty, the next statements are described

in algorithm 12, else in algorithm 13. Finally, the recursive call is described in

algorithm 14.

Algorithm 12 Subsumption algorithm (a) (3/5)
1: for all IE sbe1 : sb do . For each current entries
2: List c← ∅ . Subsumption cluster
3: foundSub← false
4: for all IE sbe2 : sb do . For each current entries
5: fs← sbe1.subsumes(sbe2) . Check if sbe1 subsumes sbe2
6: foundSub = foundSub | fs
7: if fs then
8: c.add(sbe)

9: List rsl← ∅ . List for subsumption values
10: for all IE sbe2 : sb do . For each current entries
11: if sbe1.isIdentical(sbe2) then
12: rsl.add(sbe2)
13: if foundSub then
14: c.add(sbe2)

15: if c.size() > 1 then . Add cluster to list of clusters
16: subC.add(c)
17: areS.add(foundSub)
18: if foundSub then
19: subV.add(rsl)
20: else
21: subV.add(∅)

Algorithm 12 is executed if no subsumption was found yet. The whole part

iterates over all input entries sbe1 of the current rules in sb (line 1). An empty list

c for a cluster of subsuming rules is created (line 2), and a boolean flag foundSub

is set to false (line 3). Then, in an inner loop over sb (line 4), each input entry

sbe2 is checked to be a subsumption of sbe1 (line 5). If this is the case, sbe2 is

added to the current cluster (line 8), and the flag of founded subsumption is set

to true (line 6). An empty list rsl for the root subsumption rules is created (line 9).

Then in a second inner loop, all input entries are iterated again (line 10). Now,

if the entries sbe1 and sbe2 are identical (line 11), the entry sbe2 is added the list

rsl (line 12). Furthermore, if previously a subsumption was found, the identical

entry is added to the current cluster c (line 14). The last step checks if the size

of the cluster has more than one element (line 15). If this is the case, the created

3.2 Implementation of DMN Verifiers 53

cluster c is added to the 2-dimensional list subC (line 16). Furthermore, the flag of

the found subsumption is saved for the next recursion step, and if a subsumption

was found, the root elements of the found subsumption are saved, too (line 19). If

no subsumption was found (only identical rules), an empty list is added (line 21).

Algorithm 13 Subsumption algorithm (b) (4/5)
1: for all R r : rootSR do . For each subsumption rule
2: entry ← r.get(i) . Current entry
3: List rsl← ∅ . List for subsumption values
4: List c← ∅ . Subsumption cluster
5: foundSub← false
6: for all IE sbe : sb do . For each current entries
7: fs← entry.subsumes(sbe) . Check if r subsumes sbe
8: foundSub = foundSub | fs
9: if fs then

10: c.add(sbe)
11: else if entry.isIdentical(sbe) then
12: c.add(sbe)
13: if rootSR.contains(sbe) then
14: rsl.add(sbe)

15: if c.size() > 1 then . Add cluster to list of clusters
16: subC.add(c)
17: areS.add(foundSub)
18: subV.add(rsl)

Algorithm 13 is executed if a previous recursion step found a subsumption.

This time, the whole part iterates over the list rootSR (line 1). This list contains

rules, which subsumes all rules in the list sr. The variable entry is the input entry

of the current rule of rootSR and current column ic (line 2). Like the previous

part, two empty lists rsl and c, and a boolean flag foundSub, are created. Now, in

an inner loop, all entries of sb are iterated (line 6) and checked for a subsumption

with entry (line 7). If this is the case, the current entry of sb is added to the cluster

(line 10). Furthermore, if an identical rules is detected (line 11), it is also added

to the cluster. If the rule is already detected as root rule, it is added to the rsl list

(line 14). Like before, if a subsumption is detected, the lists subC, subV and areS

are filled with the detected rules.

Algorithm 14 Subsumption algorithm (c) (5/5)
1: for int x = 0;x < subC.size();x++ do . For each found cluster
2: checkSubsumptions(ic, . Next column

i+ 1, . Next column index
subC[x].getAllRules(), . Subsuming rules of the current cluster
areS[x] | hasS, . Flag if a subsumption was found
subV [x].getAllRules() . Root subsumption rules of current cluster

)

54 Implementation

The last part of the verifier is shown in algorithm 14. Here all clusters are it-

erated (line 1) and for each cluster the function checkSubsumptions() is called

recursively. The input columns are passed through as they are. However, the

index for the current column is incremented. The parameter of the clusters of the

current iteration step (the lists subC and subV) are passed, too. Furthermore, the

boolean value areS, or is passed hasS. However, if the parameter hasS was true

before, it still remains true.

Feasible Fixes. These fixes are created by the presented verifier:

• Show the rules, which are detected as subsuming rules. The message text of

a result entry should contain a description of which rules subsumes other

rules. Furthermore, if the output entries are different, an Indeterminism
verification capability is detected and has to been displayed.

• Delete all subsumed rules, if the output entries of all detected rules are the

same.

3.2.2.6 Identical Rule

This verifier is related to the Identical Rules verification capability and searches

rules, that are identical in their inputs. Meaning, that all detected rules are trig-

gered for each possible input variation at the same time. Detecting rules which

have an identical input is essential for detecting redundancies. If the output of

the found rules is identical, too, rules can be deleted. If not, there exists a incon-

sistency so that a Indeterminism verification capability is found. The relevant

elements are all input and output entries of all rules of all decisions.

Figure 24 Minimal example – Identical Rule

3.2 Implementation of DMN Verifiers 55

Algorithm. The algorithm is defined as followed:

Algorithm 15 Identical Rule algorithm
1: function DOVERIFICATION(M m)
2: for all D d : m.d do . For each decision
3: checkForIdenticalRules(d.ic, 0, d.r)

4: function CHECKFORIDENTICALRULES(List<IC> ic, . Input columns
int i, . Index for current input column
List<R> cr) . List of rules

5: if i = ic.size() then . All columns processed?
6: addToResult(cr) . Add the rules to result object
7: createF ixes(cr) . Add feasible fixes
8: else
9: List curInV als← ∅ . List for identical rules

10: List sortInV als← getColumnEntriesByFilteredRules(ic[i], cr) . Get all current input entries
11: sortInV als.sort() . Sort list by values of entries
12: lastV al← null
13: for all IE cv : sortInV als do . For each sorted input entry cv
14: if lastV al 6= null then
15: if cv.values.equals(lastV al) then . Check for equal input entries
16: curInV als.add(lastV al)
17: else
18: if curInV als.size() > 1 then
19: curInV als.add(lastV al) . Add last entry
20: checkForIdenticalRules(ic, i+ 1, curInV als.rules) . Recursive call
21: curInV als← ∅
22: lastV al← cv . Set lastV alue to current value cv
23: if curInV als.size() > 1 then
24: curInV als.add(lastV al) . Add last entry
25: checkForIdenticalRules(ic, i+ 1, curInV als.rules) . Recursive call

Like the subsumption algorithm, the idea of this verifier is adapted from Cal-

vanese et al. (2016). The verifier checks identical rules for each decision (line 2).

The recursive check function is called with three parameters: The input columns

ic of the decisions, the index i of the current column, and the list of rules cr. This

list initially contains all the rules of the decisions. In further recursion steps, only

candidates for identical rules. The first step is the check of the recursion ending

(line 5). The algorithm tests if the last column was processed in the previous it-

eration. If the check is true, the rules are added to the result object, and fixes

are created. If the check is false, a new empty list curInV als is created, which is a

temporary list. The list sortInV als contains all entries of the current rules and the

current column (line 9). This list is sorted by the values of the entries (line 10) so

that all identical entries are one after the other. Furthermore, the variable lastV al

is initially null and represents the previous entry of the next loop. This loop iter-

ates over the sorted list (line 13) of entries. The first entry is ignored (line 14) but

set as lastV al in line 22. Then the current entry is compared with the last entry,

56 Implementation

and if they are identical, the lastV al is added to the curInV als list (line 16). If

the entries are not equal and curInV als has more than one element (line 18), the

function is called recursively with the new identical rules of curInV als and the

incremented column index. Furthermore, the list curInV als is cleared (line 21),

because the entires are not identical. After the loop, if curInV als contains more

than one element, the function is called recursive again, like inside the loop.

Feasible Fixes. These fixes are created by the presented verifier:

• Show the identical rules in their decisions.

• Delete all but one identical rules.

3.2.2.7 Overlapping Rule

The detection of overlapping rules is an essential aspect of finding inconsistencies

in decision tables. The term ‘overlapping’ in this context means that at least two

rule conditions are at least at one point in contact. This type of error may occur

quickly while modeling. If one rule has the condition ‘<= 10’ and the modeler

creates a second rule with the condition ‘>= 10’, then the values 10 is the over-

lapping part of these two rules. Also, if a decision is complex and has many input

columns, this type of error can arise fast. Thereby, it is important that no subsum-

ing or identical rules are found because other verifiers detect them. As a result,

this verifier does not show identical rules or subsumptions. Overlapping Condi-
tions is the related verification capability. Furthermore, if the overlapping rules

produce different outputs, a Indeterminism verification capability is found.

Figure 25 Minimal example – Overlapping Rule

3.2 Implementation of DMN Verifiers 57

Algorithm. The algorithm is defined as followed:

Algorithm 16 Overlapping algorithm (1/3)
1: function DOVERIFICATION(M m)
2: for all D d : m.d do . For each decision
3: checkOverlapping(d.ic, 0, d.r, false, ∅) .→ algorithm 17

Like the subsumption algorithm and the identical rule algorithm, the idea of

this verifier is adapted from Calvanese et al. (2016). However, this algorithm only

finds real overlaps. Meaning, that subsuming or identical rules are deliberately

not detected by this verifier. First, the overlaps are checked for each decision in

algorithm 16.

Algorithm 17 Overlapping algorithm (2/3)
1: function CHECKOVERLAPPING(List<IC> ic, . Input columns

int i, . Index for current input column
List<R> cr, . List of current rules
boolean hasO, . Boolean flag for found overlapping rules
List<R> sR) . Current subsuming rules

2: if i = ic.size() then . All columns processed?
3: if hasO then . Is a overlap present?
4: dc← differentConclusions(cr) . Check if different output
5: addToResult(cr, dc) . Add the overlapping rules to result object
6: createF ixes(cr, dc) . Add feasible fixes
7: else
8: → Algorithm 18

The parameters of the function ‘checkOverlapping’ in algorithm 17 are similar

to the subsumption algorithm. The first parameter ic are all input columns of the

current decisions, while i is the index for this column. Furthermore, cr contains

all rules, that are marked to be overlapping. The flag hasO marks the current

status of the existence of an overlap. Because subsuming rules can also exist, the

list sR contains these rules.

The first step of this function is the test of the recursion ending. So, if the index i

reaches the size of the column list (line 2), then no more columns can be processed.

If this is the case and overlap exists in the list of rules cr (line 3), then these rules

are added to the result object. Moreover, if these rules have different conclusions

(line 4) an Indeterminism verification capability is detected.

The second part of this function is shown in algorithm 18. An empty list

curOvV als is created to cache the overlapping rules for the next recursive calls.

Next, the input entries sortInV als of the current rules and current input column

58 Implementation

Algorithm 18 Overlapping algorithm (3/3)
1: List curOvV als← ∅ . List for identical rules
2: List sortInV als← getColumnEntriesByFilteredRules(ic[i], cr) . Get all current input entries
3: sortInV als.sort() . Sort list by values of entries
4: z ← 0
5: foP ← false . Flag for ‘found overlap’ for prev. iteration
6: for all IE ie : sortInV als do . For each input entry
7: z ← z + 1
8: fo← hasO . Flag for ‘found overlap’
9: List curOvV alsCp← curOvV als . Copy of the list

10: curOvV als.add(ie)
11: fnic← false . Flag for ‘found not in contact’
12: for int x = 0;x < curOvV als.size();x = x+ 1 do
13: if ie.isNotInContact(curOvV als[x]) then . Are both entries not in contact?
14: curOvV als.remove(x) . Remove the entry at x
15: fnic← true
16: else
17: fo← fo | ie.isOverlapping(curOvV als[x]) . Is overlapping?
18: if fnic& curOvV alsCp.size() > 1 then
19: List nSR← searchSubsumingElements(curOvV alsCp)
20: checkOverlapping(ic, i+ 1, curOvV alsCp.rules, . Recursive call

hasO | fo | . Existing overlap? Or..
noDuplicateRules(nSR, sR), . .. subsuming rules changed
nSR) . New subsuming rules

21: if z = sortInV als.size() & curOvV als.size() > 1 then
22: List nSR← searchSubsumingElements(curOvV als)
23: checkOverlapping(ic, i+ 1, curOvV als.rules, . Recursive call

hasO | fo | . Existing overlap? Or..
noDuplicateRules(nSR, sR), . .. subsuming rules changed
nSR) . New subsuming rules

24: foP ← foP | fo

are requested (line 2). These entries are sorted by their values (line 3). The vari-

able z (line 4) is a counter variable and incremented each iteration (line 7). The

variable foP , which caches the status of a found overlap in a previous iteration,

is initially set to false (line 5). The loop (line 6) iterates over all sorted entries in

sortInV als. The variable fo indicates a found overlap in this iteration step and

is set to the value of hasO (line 8). A list curOvV alsCp is created as a copy of

the list curOvV als (line 9), and then the current input entry is added to the list

curOvV als (line 10). The variable fnic is a flag for indicating that the current

entry has no contact with any element of the newly created list curOvV alsCp.

This aspect is checked in the inner loop (line 12). Here all entries of curOvV als

are iterated and checked for ‘no contact’ (line 13). If this is the case, the compared

value is removed from curOvV als and fnic is set to true (line 15). If this is not the

case, the flag fo is set to true if an overlap to the current entry is present (line 17).

After the loop, it is checked whether the function should call itself. This is the

case when fmoc is true, and if the list curOvV alsCp contains more than one ele-

3.2 Implementation of DMN Verifiers 59

ment (line 18). Also, when the last entry was processed, and the list curOvV als

contains more than one element (line 21), the function calls itself. However, a

new list nSR, which contains all subsuming entries of the current entries, is cre-

ated before. This list is essential for finding only overlapping rules, which are

no subsumptions. The hasO variable is true for the next step if it was previously

true, an overlap was found, or the subsuming rules differentiate to previous sub-

sumption entries. Now, the next column of the decision table is processed, and

the algorithm starts in algorithm 17 again.

Feasible Fixes. The only reasonable fix for this verifier is the ‘Show’ fix. It

enables a lookup and fast finding of the overlapping rules in the DMN model for

the user. To combine overlapping (if possible), identical, or subsuming rules, the

following verifier Partial Reduction provides the fixes to do that.

3.2.2.8 Partial Reduction

This verifier provides a simplification fix by searching rules, that can be com-

bined. It checks whether ranges can be combined to simplify decision tables.

Subsuming, overlapping or identical rules, presented before, may be candidates

to be part of this verifier. An essential aspect of this verifier is that the output

of possible rule combinations has to be identical. For instance, if a rule specifies

an integer entry to be lower than 100 (< 100) as input, and another rule with the

same output specifies the input entry to be between 100 and 200 ([100..200[), then

these two rules can be combined as a new rule with an input entry < 200. The rel-

evant elements are all input and output entries of all rules of all decisions. Partial
Reduction is the related verification capability.

Figure 26 Minimal example – Partial Reduction

60 Implementation

Algorithm. The algorithm is defined as followed:

Algorithm 19 Partial Reduction algorithm (1/2)
1: function DOVERIFICATION(M m)
2: for all D d : m.d do . For each decision
3: List ior = getIdenticalOutputRulePairs(d) . Nested list of rule pairs with identical outputs
4: for all List<R> rules : ior do
5: findPartialReduction(d.ic, 0, rules, false, null) .→ algorithm 20

The first part of the verifier is described in algorithm 19. This verifier checks for

each decision in the model if there exist rules that can be combined. Therefore, the

first step is to iterate over these decisions (line 2) and create a nested list of rule

pairs. The function getIdenticalOutputRulePairs() generates such a list, where

rule pairs are received that have identical output. For each of these rule pairs the

function findPartialReduction() is called, which is described in algorithm 20.

Algorithm 20 Partial Reduction algorithm (2/2)
1: function FINDPARTIALREDUCTION(List<IC> ic, . Input columns

int i, . Index for current input column
List<R> cr, . List of rules
boolean hasC, . Boolean flag for found combination
R subR) . Current subsuming root rules

2: if i = ic.size() then . All columns processed?
3: addToResult(cr) . Add the rules to result object
4: createF ixes(cr) . Add feasible fixes
5: else
6: List entries← getColumnEntriesByFilteredRules(in[i], cr) . Get entries of both rules
7: found← false
8: comb← true
9: if ! hasC | subR = entries[0] then

10: if entries[0].subsumes(entries[1]) then . Check for subsumption entries
11: if subR = null | subR = entries[0] then
12: subR← entries[0]
13: found← true

14: else if ! hasC | subR = entries[1] then
15: if ! hasC & entries[1].subsumes(entries[0]) then . Check for subsumption entries
16: if subR = null | subR = entries[1] then
17: subR← entries[1]
18: found← true

19: else if entries[1].isIdentical(entries[0]) then . Check for identical entries
20: comb← false
21: found← true
22: else if entries[0].combinationPossible(entries[1]) then . Check for combination of entries
23: found← true

24: if found then
25: findPartialReduction(ic, i+ 1, rules, comb, subR)

This recursive function has five parameters: ic all columns of the current deci-

sion, i the index for the current column, cr the rule pair with the identical output,

hasC a boolean flag for the indication of a found combination, and subR the rule

3.2 Implementation of DMN Verifiers 61

for the indication of a subsumption. First, the exit condition for the recursion

is testes. If all columns are processed, and the index is equal to the size of the

column array ic (line 2), both rules in cr can be combined and are added to the

result object. If the end of the recursion is not reached, several tests are processed

to evaluate the possible existence of a combination of the two rules. First, both

rules are checked to be a subsumption (lines 10 & 15). However, this can only be

done if there was no combination previously found, or the current rule is the rule,

which was a subsumption before (lines 9 & 14). The next checks test if the entries

are identical (line 19) or the entries can be combined (line 22). If one of these tests

are passed, the flag found is set to true. At this point, if found is true (line 24),

the function calls itself recursively (line 25) with the incremented index i for the

column ic.

Feasible Fixes. These fixes are created by the presented verifier:

• Show both rules, that can be combined.

• Delete both rules, that can be combined, and add a new rule, which covers

both rules.

3.2.2.9 Missing Rule

The detection of missing business rules is essential for error-free decision tables.

So the verifier detects whether rules are missing for expected inputs. Missing
Rules is the equal named verification capability. The crucial elements for this

algorithm are the input entries of all decision tables. For instance, in Figure 27

exists no output for an input value of 100. As a result, the missing rule has the

input entry >= 10.

Figure 27 Minimal example – Missing Rule

62 Implementation

In a more complex example, shown in Figure 28, the determination of the miss-

ing rules is more complicated. Hence, a geometric interpretation helps to find

these missing rule areas.

Figure 28 Extended example – Missing Rule – Decision table

Figure 29 shows this geometric interpretation. The green areas on the left side

show the defined rules, and the red area covers the missing rules. The problem

now is to define these areas such that no overlapping rules are created. The right

side of the figure shows with the colored areas one possible solution for defining

the missing rules. The following algorithm detects exactly these missing rules.

Figure 29 Extended example – Missing Rule – Geometric interpretation

3.2 Implementation of DMN Verifiers 63

Algorithm. The algorithm is defined as followed:

Algorithm 21 Missing Rule algorithm (1/3)
1: function DOVERIFICATION(M m)
2: for all D d : m.d do . For each decision
3: missingRules(d) .→ algorithm 22

Algorithm 21 shows that the missing rule algorithm is executed for each deci-

sion of the DMN model.

Algorithm 22 Missing Rule algorithm (2/3)
1: function MISSINGRULES(D d)
2: List lmr ← ∅ . List of missing rules
3: lmr.add(createNewDefaultRule()) . Rule with only wildcards
4: for all R r1 : d.r do
5: List lnmr ← getInContactRules(lmr, r1) . Get all ‘in contact’ rules
6: for all R r2 : lnmr do
7: lmr.remove(r2)
8: for all IC cic : d.ic do
9: R nr ← createNewRule(LO, cic, d.ic, r1, r2) .→ algorithm 23

10: lmr.addIfNotNull(nr)
11: R nr ← createNewRule(HI, cic, d.ic, r1, r2) .→ algorithm 23
12: lmr.addIfNotNull(nr)

13: merge(lmr)
14: addToResult(lmr) . Add the rules to result object
15: createF ixes(lmr) . Add feasible fixes

The first step of the algorithm 22 is the creation of an empty list lmr (line 2),

which contains later the missing rules. Then, a first rule, which only contains

‘wildcards’ as entries, is added to this newly created list (line 3). A wildcard en-

try means that all possible input values can trigger this entry as applicable. The

next step is an iteration over all loops existing in the decision (line 4), where r1

represents the rule of the current iteration step. Now, in line 5, the list lnmr is

created from all current missing rules (lmr), which are in contact with the current

rule r1 (cf. subsumption, overlap, or identical algorithm). This created list is iter-

ated in an inner loop (line 6), where r2 represents the current rule of this list. Rule

r2 is removed from the list lmr because the next steps create new, more specific

missing rules (line 7). The next inner loop is an iteration over all input columns

of the current decision (line 8). Now, the algorithm tries to create new rules and

add these new rules to the list lmr (lines 9–12). This creation is done for each cur-

rent input column twice: One time for the part that is lower (LO) than the current

entry and the second time for the part that is higher (HI) than the current entry.

64 Implementation

This rule generation is explained below in algorithm 23. At the end of this algo-

rithm, when all rules of the decision are processed, the created rules are merged

lmr because of subsuming, or overlapping rules (line 13). Now, all missing rules

lmr are added to the result object, and the fixes are created.

Algorithm 23 Missing Rule algorithm (3/3)
1: function CREATENEWRULE(ENUM state, IC cic, List<IC> ic, R r1, R r2)
2: R nr ← null
3: for all IC ic2 : ic do
4: if ic2.index < cic.index then
5: nr.ie← r1.ie
6: else if ic2.index > cic.index then
7: nr.ie← r2.ie
8: else if ic2.index == cic.index then
9: if state = LO then

10: nr.ie← (r1.lowerBound, r2.lowerBound.rev())
11: else if state = HI then
12: nr.ie← (r2.upperBound.rev(), r1.upperBound)

13: return nr | null on Exception

The function ‘createNewRule’ in algorithm 23 describes the creation of a new

rule for the missing rule verifier. Here, the variable nr describes a new rule, which

is initially null (line 2). The function iterates over all columns (iteration value

ic2) of the decision (line 3) and sets the respective input entry for the new rule.

The values of the input entries depend on the parameter cic, which is the input

column from the inner iteration in algorithm 22. If the column index of ic2 is

lower than the column index of cic, than the input entry of r1 is used as the new

input entry (lines 4 & 5). If the column index of ic2 is higher than the column

index of cic, than the input entry of r2 is used as the new input entry (lines 6 & 7).

However, if the index is equal, two opportunities are possible (line 8). If the state

value is LO, than the new input entry is created with the lower bounds of the rule

r1 and the reversed lower bound of rule r2 (line 10). If the state value is HI than

the new input entry is created with the reversed upper bound of the rule r2 and

the upper bound of rule r1 (line 12).

For instance, an entry of r1 has the range [0..20] and an entry of r2 has the range

[5..15[. Then, the new entry for LO equals [0..5[and the new entry for UP equals

[15..20].

If one of these actions is not possible, the complete function returns null, and

no rule is created (line 13).

3.2 Implementation of DMN Verifiers 65

Feasible Fixes. These fixes are created by the presented verifier:

• Show the decision, which has the missing rule. The message text of an

result entry should contain a description of the values of the missing rule.

• Add the detected missing rule in the decision.

3.2.2.10 Equivalent Strings

This verifier detects string-based entries which are not identical, but still seman-

tically equivalent. Here, the verifier checks if there exists a pair of entries in the

same column which use synonyms as inputs and are therefore equivalent, based

on synonym relations via Wordnet. It may accrue, that rules, which have appar-

ent equal, are not detected as equal by humans. For instance, the word ‘invoice’ is

used in one rule, and in the other rule, the word ‘bill’. These words are synonyms

and may have the same intention. However, they are not detected as identical

by the rule engine. Equivalent Rules is the related verification capability, and all

string based columns with their entries are the relevant elements.

Figure 30 Minimal example – Equivalent Strings

Algorithm. The algorithm is defined as followed:

Algorithm 24 Equivalent Strings algorithm
1: function DOVERIFICATION(M m)
2: stringColumns← m.getAllStringColumns() . Get all string columns existing in the model
3: for all Column sc : stringColumns do . For each (string) column
4: checkForSynonyms(sc)

5: function CHECKFORSYNONYMS(Column sc)
6: for int i = 0; i < sc.entries.size(); i = i+ 1 do
7: for int u = i+ 1;u < sc.entries.size();u = u+ 1 do
8: if Dictionary.areSynonyms(sc.entries[i], sc.entries[u]) then . Check for synonyms
9: addToResult(sc.entries[i], sc.entries[u]) . Add both strings to result object

10: createF ixes(sc.entries[i], sc.entries[u]) . Add feasible fixes

66 Implementation

This verifier checks straight forward for each string-based column (line 3) if in-

put entries contain pairs of synonyms. Therefore, each entry is compared directly

with each input entire in two nested loops (lines 6 & 7). So, if any values of the

compared entries are synonyms (line 8), they are added to the result object. The

Dictionary.areSynonyms() function is provided by a service, which has access

to the Wordnet8 dictionary, and provides the functionality to check if two words

are synonyms or not. This function further reduces the words to the base form so

that more matching cases are covered. Future versions may consider predefined

values or include all columns at once to guarantee a model-wide consistency.

Feasible Fixes. These fixes are created by the presented verifier:

• Show and highlight the entries, where the synonyms occur.

• Rename one of both values inside the entries (not implemented yet).

3.2.2.11 Empty Output

This verifier detects rules with empty output values. An empty output value can

create inconsistencies because unknown outputs for the following decisions or

processes can result in unexpected issues. However, this verifier is not related

to a defined verification capability, because it is more a recommendation for the

modeler. Related elements are the output columns with their output entries.

Figure 31 Minimal example – Empty Output

Algorithm. The algorithm is defined as followed:

The strait forward iteration over all decisions (line 2), over their output column

(line 3), and finally over the output entries (line 4), is the basic structure of this

8https://projects.csail.mit.edu/jwi/

https://projects.csail.mit.edu/jwi/

3.2 Implementation of DMN Verifiers 67

Algorithm 25 Empty Output algorithm
1: function DOVERIFICATION(M m)
2: for all D d : m.d do . For each decision
3: for all OC oc : d.oc do . For each output column
4: for all OE oe : oc.oe do . For each output entry
5: if oe.value.isEmpty() then . Check if the output entry contains no value
6: addToResult(oe) . Add the output entry to the result object
7: createF ixes(oe) . Add feasible fixes

verifier. The check tests if the output entry is empty, meaning that the triggered

rule does not provide a value.

Feasible Fixes. These fixes are created by the presented verifier:

• Show the detected output entry.

• Delete the rule, which contains the empty output entry.

3.2.2.12 Missing Column

As presented verifiers provide fixes, which deletes columns in decisions, theses

decisions may have no input column or output column remaining. As a conse-

quence, the aim of this verifier is the detection of decision which has no input

columns or no output columns. This verifier is not related to a specific verifi-

cation capability. However, it is necessary for previously executed fixes of other

verifiers (Deletion of columns). The relevant elements are the decisions with their

columns.

Figure 32 Minimal example – Missing Column

Algorithm. The algorithm is defined as followed:

First, the algorithm iterates over all decisions (line 2) and secondly checks if the

current decision has no input column or no output column (line 3). Both tests

lead to adding the decision to the result object.

68 Implementation

Algorithm 26 Missing Column algorithm
1: function DOVERIFICATION(M m)
2: for all D d : m.d do . For each decision
3: if d.ic.size() = 0 | d.oc.size() = 0 then . Amount of input or output columns is zero
4: addToResult(d) . Add decision to result object
5: createF ixes(d) . Add feasible fixes

Feasible Fixes. These fixes are created by the presented verifier:

• Show the decision, where no input column or output column is present.

• Delete the detected decision.

3.2.3 Syntax Level Verifiers

This subsection introduces verifiers for syntactical checks of a DMN model. The

current version of the dmn.js modeler9 only provides limited syntactical checks,

which are defined by the XSD definition10 of DMN. For instance, it is not possible

to create an information requirement arc between two input data nodes. How-

ever, concrete syntactical checks of entries are not part of this definition. This the-

sis only describes two syntactical aspects, which are defined and implemented

in this section. Section 3.2.3.1 defines a date format check and section 3.2.3.2 de-

scribes a verifier for a general syntax validation of input values. Further aspects

can be easily added with the definition of new verifiers.

3.2.3.1 Date Format

This verifier performs an example syntactical verification by checking the specific

formal syntax of date-based entries. It checks the correctness of the date format

for all date entries in columns, which require dates as values. Each date value

need to be in the format “data and time(yyyy-MM-ddTHH:mm:ss)”. Besides this

syntactical correctness, it checks the veracity of the concrete date. For instance,

modeling an unknown date like “data and time(2020-02-30T00:00:00)” makes no

sense. This date does not exist and is as a result of this recognition not valid.

9https://bpmn.io/toolkit/dmn-js/
10https://www.omg.org/spec/DMN/20180521/DMN12.xsd

https://bpmn.io/toolkit/dmn-js/
https://www.omg.org/spec/DMN/20180521/DMN12.xsd

3.2 Implementation of DMN Verifiers 69

Figure 33 Minimal example – Date Format

Algorithm. The algorithm is defined as followed:

Algorithm 27 Date Format algorithm
1: function DOVERIFICATION(M m)
2: dateColumns← m.getAllDateColumns() . Get all date columns existing in the model
3: for all Column dc : dateColumns do . For each (date) column
4: for all Entry entry : dc.entries do . For each entry in the date column
5: if ! checkCorrectDate(entry.values) then . Check if the date values are correct
6: addToResult(entry) . Add the entry to the result object
7: createF ixes(entry) . Add feasible fixes

The verifier iterates straight forward all the date-based columns (lines 2 & 3).

Then it checks for each entry (line 4) if the date values are correct (line 5). First,

the date is checked for syntactical correctness with a regular expression. Second,

the program tries to parse the date value to a Java date object. If this is not pos-

sible, the semantic validation for the date value failed. Non-existing dates (e. g.

2020/02/30) are automatically detected by catching a parsing exception. If a date

value is syntactical or semantical incorrect, the entry is added to the result object.

Feasible Fixes. The only reasonable fix for this verifier is the ‘Show’ fix. It

enables a lookup and fast finding of the error in the DMN model for the user.

3.2.3.2 Input Value Syntax

This verifier checks the syntactical correctness of all the input entries. The Ca-

munda Modeler does not directly detect syntactical errors in the model. However,

the model produces errors when the engine executes the DMN. At this point, it

is to late to maintain the DMN model, because it is already deployed to the BRM

system. The modeler has to redeploy the model. Therefore, it is more significant

to detect these errors directly while modeling.

70 Implementation

Figure 34 Minimal example – Input Value Syntax

Algorithm. The algorithm is defined as followed:

Algorithm 28 Input Value Syntax algorithm
1: function DOVERIFICATION(M m)
2: for all D d : m.d do . For each decision
3: for all R r : d.r do . For each rule
4: for all IE ie : r.ie do . For each input entry
5: if id.isV alid() then . Check for syntactical correctness
6: addToResult(ie) . Add input entry to result

This algorithm checks straight forward for each existing input entry the syntac-

tical correctness (lines 2–4). The important part is the isV alid() function (line 5),

which depends on the data type of the current column. For instance, strings has to

start and end with double quotes. Other syntactical specifications are defined by

the FEEL standard11 and here black boxed as isV alid() function. However, this

validation test ignores the date values, because they are checked by the previous

presented verifier.

Feasible Fixes. The only fix that is created by the ‘Input Value Syntax’ verifier

is the ‘Show’ action. Here, all elements that have syntactical errors need to be

highlighted so that users can easily find them and correct these errors manually.

11https://docs.camunda.org/manual/7.4/reference/dmn11/feel/
language-elements/

https://docs.camunda.org/manual/7.4/reference/dmn11/feel/language-elements/
https://docs.camunda.org/manual/7.4/reference/dmn11/feel/language-elements/

3.3 Front-end of the DMN Verification Tool 71

3.3 Front-end of the DMN Verification Tool

The previous sections introduced the back-end system as well as the algorithms

of the implemented verifiers. This back-end works as a standalone system, which

provides a web service for the detection of errors in DMN models. Though this is

entirely sufficient for the automatic detection of errors, humans are not able to in-

teract directly with this web service. Therefore, third-party systems, which have

to interact with DMN models, are now able to request these verification capabil-

ities and can handle them. Users of these systems are then able to recognize and

improve the faulty models. Hence, a first modeling tool using this web service is

introduced in the following.

This web-based prototype is a modeling tool for DMN models, which consid-

ers the verification aspect. An overview of this tool is shown in Figure 35. It is

divided into three components, which are described separately.

5

6

14 7
8 9 10

11

12 13

1 2 3 4

A

B

C

Figure 35 Front-end overview

Component A. This upper part of the tool provides some general functions. It

contains besides the headline four buttons for loading or for saving the current

72 Implementation

DMN model. Button 1 offers an upload function so that the user can upload a

DMN model from his personal computer. The counterpart provides the button

2 , which starts the download of the current model. Furthermore, button 3

creates a new empty DMN model. This model only contains one empty decision

table. Finally, button 4 provides some further functions to connect the prototype

with a DMN repository. These functionalities are shown in Figure 36.

Figure 36 Front-end – Connection to DMN repository

In this tool, the Camunda process engine, which also includes a DMN engine,

can be requested to load existing models. Furthermore, the ‘Deploy DMN’ button

redeploys the changed model to the DMN engine. The redeployment increments

the version of the model inside the DMN engine, where this model is directly

executable.

Component B. The center part considers the modeling aspect of the proto-

type. Here, the DMN modeling library dmn-js12 is used do display the model 5 .

It provides all needed functions for editing the Decision Requirement Diagram

(DRD) (shown in Figure 35), and all needed functions for editing the decision

tables (e.g. adding or deleting of columns / rules). Furthermore, tabs at the bot-

tom of the modeling area 6 helps to navigate between the DRD and the decision

models.

Component C. The part below the modeling section is all about the verifica-

tion aspect. Several functions enable access to the verification service and provide

12https://github.com/bpmn-io/dmn-js

https://github.com/bpmn-io/dmn-js

3.3 Front-end of the DMN Verification Tool 73

the functionality for the calculated fix actions. First of all, a multi-select combo

box 7 is filled with all verifiers, which are provided by the back-end, and allows

the user to preselect the needed verifiers. Now, the user can press the ‘Verify’

button 8 manually. The front-end sends the complete DMN model (as XML) to

the back-end, which does the verification magic (cf. section 3.1), and receive the

verification result as JSON. Furthermore, the checkbox ‘Reverify’ 9 enables an

automatic verification mechanism, so that after each change on the model, the

verification results are refreshed. The combo box 10 provides the functionality

of selecting a single verifier so that the verification results are listed in the next

lines. Alternatively, all results can be displayed. Each verification result starts

with a name and a short description of the verifier 11 , which is also provided by

the web service. The list below now contains all verification results, which were

found by the verifier 12 . Furthermore, the fix actions are rendered as buttons

13 . If the user clicks the button, the front-end executes the intentioned behav-

ior of the button and shows the relevant elements in the model or does other

actions (e.g. deletion of a column). If the ‘Show’ button was clicked, the rele-

vant elements in the model are highlighted. The ‘Clear’ action 14 removes these

highlights again. Some of the actions are demonstrated in the following section.

74 Implementation

3.4 Demonstration

The following scenario is introduced to illustrate the usage of the modeling tool

in combination with the verification aspect. An insurance company calculates the

insurance rate with the help of a DMN model. This model is shown in Figure 37.

Figure 37 Demonstration - Initial DMN model

Several inputs are used to calculate this rate. First, the ‘Customer classifica-

tion’ decision abstracts the age of the customer and the number of children into a

classification. The ‘Insurance rate’ decision uses this classification as input. Fur-

thermore, it uses the income of the customer as the second input to calculate the

rate.

Now, a new requirement has to be implemented by an employee. The boolean

value of the criminal past (yes or no) should affect the calculation. If a customer

has a criminal past, the classification should be the value ‘E’, which is currently

not present in the model. However, the employee adds the new input column

‘CriminalPast’ to the decision ‘Customer classification’ and adds the new rule,

which fulfills the requirement. However, the verifiers have just found several

errors. One verifier detects that the new added rule is overlapping with other

rules, so the employee has to change the other rules, too. This overlap with rule

3.4 Demonstration 75

six is shown in Figure 38. The employee can now take a close look and can correct

the error.

Figure 38 Demonstration - Overlapping rules

The ‘Missing Input’ verifier detects another error. Although the employee added

the new column (cf. Figure 38), he forgets to add the Input data node in the DRD

level. Figure 39 shows the execution of the fix action ‘New Data Input’, which

creates a new Input Data node in the DRD.

Figure 39 Demonstration - Missing Input

76 Implementation

Furthermore, Figure 40 shows the finding of the Missing Input Values verifier.

The classification value ‘E’ is never used in the following ‘Insurance rate’ decision

table (cf. Figure 37), which may cause problems.

Figure 40 Demonstration - Missing Input Value (1/2)

Therefore, the employee can click the green highlighted button to create a new

rule, which contains that missing value. This newly created rule is shown in

Figure 41.

Figure 41 Demonstration - Missing Input Value (2/2)

However, the verifier does not know which output value (the rate) is valid for

this rule because this is knowledge, which should be provided by the employee.

Another verifier detects this empty output value and creates a verification result

3.4 Demonstration 77

for this type of error (cf. Figure 42). Now, the employee can add this value man-

ually.

Figure 42 Demonstration - Missing Output

Finally, the verifier ‘Missing Predefined Value’ indicates the value ‘E’ as missing

predefined value in the corresponding column definition (cf. Figure 43). A click

on the button ‘Add pred. value “E”’ fixes this issue.

Figure 43 Demonstration - Missing Predefined Value

As seen in this short demonstration, a simple change in a DMN model can

result in further required changes. This prototype can support the employee in

his modeling work by highlighting modeling errors or suggesting various fixes.

Chapter 4

Evaluation

79

80 Evaluation

An essential task in the Design Science Research Methodology (DSRM) is the

evaluation. Testing the created artifact is a crucial component of the research

process (Hevner et al. 2004). This chapter aims at the research question SQ5.

Hence, the verification prototype, as the artifact of this thesis, has to be evalu-

ated, too. ”IT artifacts can be evaluated in terms of functionality, completeness,

consistency, accuracy, performance, reliability, usability, fit with the organization,

and other relevant quality attributes” (Hevner et al. 2004). Moreover, Corea &

Delfmann (2020) summarised a guideline for the evaluation in Business Process

Compliance. First, a demonstration should show the approach in action conduct-

ing an example. The demonstration of the DMN verification tool was presented

in the previous section 3.4. Second, the approach should be applied in case-

studies, where the tool can be used in real-world scenarios. Comparisons with

other approaches, a complexity analysis, or experiments with qualitative feed-

back are further techniques to evaluate the tool (Corea & Delfmann 2020). How-

ever, in this thesis, run-time experiments are used as a first evaluation step, which

is presented in the following. Other evaluation techniques (e.g. Case-Studies or

Experiments) are planned for future work with this tool.

Setting up the evaluation. The general idea for this evaluation is to measure

the execution time of the implemented verifiers with different input parameters.

Then, the measured run-times of the different inputs can be plotted to illustrate

the performance of the verification tool. The inputs of these performance tests are

synthetic DMN models. Parameters should define the DMN model and deter-

mine the number of decisions and input data nodes, the number of columns, and

the number of rules. As a result, randomly generated DMN models are needed.

Therefore, a small Java library for the generation of random DMN models was

created. The generator object in appendix C.I demonstrates a small example

for the generation of random DMN models. Different parameters determine the

number of decisions, the possible data types, the number of rules, and further set-

tings for the randomization. Then, the generator generates a DMN model as XML

String or as DMN Model object with the given parameters. The entries are filled

with randomly ranges for number-based columns or random words for string-

based columns. Input data nodes and decisions are connected with information

requirements randomly, too. In this way, erroneous DMN models are created

automatically.

81

For the experiments, the verification tool is requested with different input pa-

rameters multiple times. Two parameters determine the dimensions of the plot-

ted graph, and the third dimension determines the execution time. To suppress

random irregularities, each input parameter combination is executed multiple

times, from which the average execution time is calculated.

Results. The evaluation is divided into two parts. The first experiment was

executed for the previous version of the prototype, which was used as the demo

tool in Corea et al. (2019). This prototype mainly focuses on the decision logic

level and the verification capabilities by Smit et al. (2017). As a result, the syn-

thetic DMN models always contain one decision, and the running parameters for

the generation are the number of rules (50, 100,. . . , 500) and the number of in-

put columns (1, 2,. . . , 10). The algorithms used in that tool are the same as the

algorithms used in this thesis. The following decision level verifiers are part of

this evaluation: Subsumption Rule, Identical Rule, Overlapping Rule, Identical

Rule, Partial Reduction, Missing Rule, and Equivalent Strings. This experiment

was run on a Windows 10 PC with an i7 processor and 16GB DDR4 RAM. As

5

10

200

400

0

5,000

Number of columnsNumber of rules

R
un

-t
im

e
in

m
ill

is
ec

on
ds

Figure 44 Performance test 1 – Run-time for the analysis of synthetic decision tables with
up to 10 columns and 500 rows.

seen in Figure 44, the run-time mainly depends on the number of rules, where

the number of columns is mostly not relevant. The longest run-time with 500

82 Evaluation

rules is around five seconds, which is acceptable for synthetic decisions. An eval-

uation with real data-sets from industry sectors should perform better because

they should have much less noise in their models, which is less stressful for the

verifiers. However, this is a task for future work.

The second experiment was executed with the verification tool, which was

created for this thesis and presented in the previous chapter 3. This prototype

was created as a proof of concept in Hasić et al. (2020b) and evaluated in Hasić

et al. (2020a). For this evaluation, the number of nodes (decisions and input data

nodes) is most relevant. Therefore, one dimension displays the number of nodes

(0, 20,. . . ,180; ratio 1:4 of input data : decisions), and the second dimension dis-

plays the number of rules per decision (0, 10, . . . , 100). The evaluated verifiers for

this part are: Lonely Data Input, Missing Input, Missing Input Column, Multiple

Input Data, Wrong Data Type, Missing Input Value, Missing Output Value, Miss-

ing Column, Date Format Input Value Syntax, Missing Predefined Value, Unused

Predefined Value, and Empty Output. The experiment was run on Ubuntu Xe-

nial with E312 processor and 16GB RAM. As seen in Figure 45, the execution time

10050

100
0

200

400

Number of nodesNumber of rules

R
un

-t
im

e
in

m
ill

is
ec

on
ds

Figure 45 Performance test 2 – Run-time statistics for the analyzed synthetic decision
models with up to 180 nodes on the DRD-level and 100 rules per table.

depends on both: the number of nodes and the number of rules. With 200 nodes

and 100 rules per decision, the run-time is still under 500 milliseconds, which is

feasible for production tasks.

83

Future tests may include more differentiation of input parameters. For in-

stance, changing the number of output columns, differentiate between data types,

or changing the probabilities of connected nods.

Chapter 5

Conclusion

85

86 Conclusion

This thesis introduced the implementation of a verification tool for DMN models.

This aim was subdivided into five subsidiary research questions. These questions

were answered with the content of the related chapters. First, fundamental basics

and verification frameworks were presented in chapter 2. Besides these basics,

major verification types have been identified, which was the answer to the re-

search question SQ1. Moreover, approaches for fixes were mainly applied from

Hasić et al. (2020b) (related to research question SQ2). The next chapter 3 pre-

sented the architecture of the tool (answer to research question SQ3), explained

the algorithms of the implemented verifiers (answer to research question SQ4),

and described the front-end. Finally, chapter 4 answers research question SQ5
with the evaluation of the created tool. Furthermore, the created prototype was

demonstrated in section 3.4. With this tool, errors in rule bases can be resolved

while modeling before the rules are running in a production system. So it pre-

vents problems in processes of enterprises during run-time.

Further developments. The prototype has several points for improvements

and adjustments that can be future development extensions. First, the back-end

was dynamically implemented, so that new verifiers are addable without much

effort. The abstract verifier provides a skeleton for further verifier, which enables

new verification checks. On the one hand, missing verification capabilities can

be implemented as new verifiers. For instance, the Decision Requirement Dia-

gram (DRD) prohibits a cyclic arrangement of the decisions, and a new verifier

can detect these circles. An error message created by the new verifier can help an

inexperienced modeler to avoid these types of errors. On the other hand, poten-

tial company requirements to rule bases can also be implemented in the form of a

new verifier that checks the individual constraints. For instance, a company has

the requirement that a decision should only have at maximum 50 rules, and the

new verifier produces a warning for those oversized decisions. More than these

amount of rules indicates that the decision can be simplified by implementing

new sub-decisions or by remodeling the decision with a new hit policy.

Furthermore, the Camunda Modeler, which is a modeling environment for

BPMN or DMN models, provides extensions points for plugins for further func-

tionalities. As the current prototype is designed in two layers (back-end & front-

end), the front-end can easily be replaced. With a new plugin as the new front-

87

end, the verification API (back-end) can be requested to show modeling errors

directly in the Camunda Modeler.

Finally, the used DMN version in this prototype is 1.2, which is the current

supported version of the Camunda DMN model API. However, the new DMN

version 1.3, which was introduced in early 2019, should be supported in a future

version.

Further evaluation. The first steps of an evaluation of the presented artifact

were presented in chapter 4. Here, performance tests with synthetic DMN mod-

els were conducted. Future tests should also use real models from industry to

test the performance of the algorithms. However, as mentioned by Corea &

Delfmann (2020), further techniques can be applied for the evaluation of such

artifacts. These techniques can further test and improve the prototype. For in-

stance, in addition to the performance experiments, complexity analysis of the

algorithms helps to evaluate the verifiers.

Further ways for the evaluation are usability experiments, which can indicate if

the verification tool creates additional benefits for modelers. Compared to a non-

verification-detection supported DMN modeling tool, a faster finding of errors

in DMN models can be the result of this evaluation. Furthermore, case-studies

with a survey of employees, which use this tool in production systems, can create

more insights about usability and relevance in practice.

Miscellaneous aspects. As the prototype can detect and resolve several errors

in DMN models, it is an added value for modelers. However, some of the verifiers

are very straight forward and does not require a lot of calculation power. Hence,

verifications like the ‘Lonely Data Input’ (cf. section 3.2.1.1) can be implemented

directly inside the modeling tool and not by the external DMN verification API.

Here, the manufacturers of such software are in demand.

Furthermore, adjustments in the DMN standard can prevent modelers from

modeling some of these errors from the beginning. For instance, an information

requirement currently only contains information about the source and sink of the

edge. As a suggestion, the information requirement has to be extended with more

information about the source and sink by adding the name of the related column

of the connected decisions. Now, the modeler can create a more precise model,

88 Conclusion

where the ‘Missing Input Column’ verification (cf. section 3.2.1.3) can never oc-

cur. This aspect may be included in future versions of the DMN specification.

To conclude, a well-working prototype was developed during this thesis. Sev-

eral verification aspects were covered by the tool, and easy mechanisms for re-

solving these errors are implemented, too.

Bibliography

Arge, L., Procopiuc, O., Ramaswamy, S., Suel, T. & Vitter, J. S. (1998), ‘Scalable

Sweeping-Based Spatial Join’, VLDB (November 1998).

Batoulis, K., Nesterenko, A., Repitsch, G. & Weske, M. (2017), ‘Decision manage-

ment in the insurance industry: Standards and tools’, CEUR Workshop Proceed-
ings 1985, 52–63.

Batoulis, K. & Weske, M. (2017), A Tool for Checking Soundness of Decision-

Aware Business Processes., in ‘BPM (Demos)’, pp. 1–5.

Batoulis, K. & Weske, M. (2018a), ‘A tool for the uniqueification of DMN decision

tables’, CEUR Workshop Proceedings 2196, 116–119.

Batoulis, K. & Weske, M. (2018b), Disambiguation of {DMN} decision tables, in
‘International Conference on Business Information Systems’, Springer, pp. 236–

249.

Becker, J., Holten, R., Knackstedt, R. & Niehaves, B. (2003), Forschungsmethodis-

che Positionierung in der Wirtschaftsinformatik: epistemologische, ontologis-

che und linguistische Leitfragen, Technical report, Arbeitsberichte des Instituts

für Wirtschaftsinformatik, Westfälische˜. . . .

Calvanese, D., Dumas, M., Laurson, Ü., Maggi, F. M., Montali, M. & Teinemaa, I.

(2016), ‘Semantics and analysis of DMN decision tables’, Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) 9850 LNCS(i), 217–233.

Calvanese, D., Dumas, M., Laurson, Ü., Maggi, F. M., Montali, M. & Teinemaa, I.

(2018), ‘Semantics, analysis and simplification of DMN decision tables’, Infor-
mation Systems 78, 112–125.

89

90 BIBLIOGRAPHY

Calvanese, D., Dumas, M., Maggi, F. M. & Montali, M. (2017), Semantic {DMN}:

Formalizing Decision Models with Domain Knowledge, in ‘International Joint

Conference on Rules and Reasoning’, Springer, pp. 70–86.

Corea, C., Blatt, J. & Delfmann, P. (2019), A Tool for Decision Logic Verification

in DMN Decision Tables, in ‘Proceedings of the Dissertation Award, Doctoral

Consortium, and Demonstration Track at BPM 2019 co-located with 17th In-

ternational Conference on Business Process Management, BPM 2019, Vienna,

Austria, September 1-6, 2019.’, pp. 169–173.

URL: http://ceur-ws.org/Vol-2420/papeDT11.pdf

Corea, C. & Delfmann, P. (2018), A Tool to Monitor Consistent Decision-Making in

Business Process Execution, in ‘Proceedings of the Dissertation Award, Demon-

stration, and Industrial Track at BPM 2018 co-located with 16th International

Conference on Business Process Management (BPM 2018), Sydney, Australia,

September 9-14, 2018.’, pp. 76–80.

URL: http://ceur-ws.org/Vol-2196/BPM_2018_paper_16.pdf

Corea, C. & Delfmann, P. (2020), ‘Using Business Rule Organizing Approaches

for Business Process Compliance’, Submitted to: Enterprise Modelling and Infor-
mation Systems Architectures .

Finlayson, M. A. (2014), ‘Java libraries for accessing the Princeton Wordnet: Com-

parison and evaluation’, GWC 2014: Proceedings of the 7th Global Wordnet Con-
ference pp. 78–85.

Graham, I. & Wiley, J. (2006), Business rules management and service oriented archi-
tecture: a pattern language, John wiley & sons.

Hasić, F., Corea, C., Blatt, J., Delfmann, P. & Serral, E. (2020a), ‘A Tool for the Veri-

fication of Decision Modeland Notation (DMN) Models’, Research Challenges in
Information Science .

Hasić, F., Corea, C., Blatt, J., Delfmann, P. & Serral, E. (2020b), ‘Decision Model

Change Patterns for Dynamic System Evolution’, Knowledge and Information
Systems .

BIBLIOGRAPHY 91

Hevner, A. R. & Chatterjee, S. (2010), Design Research in Information Systems: The-
ory and Practice, Vol. 2.

URL: http://link.springer.com/10.1007/978-1-4419-6108-2

Hevner, A. R., March, S. T., Park, J., Ram, S. & Ram, S. (2004), ‘Design Science in

Information Systems Research’, MIS Quarterly 28(1), 75–105.

URL: https://www.jstor.org/stable/25148625

Laurson, Ü. & Maggi, F. M. (2016), A Tool for the Analysis of {DMN} Decision

Tables., in ‘BPM (Demo Track)’, pp. 56–60.

Morgan, T. (2002), Business rules and information systems: aligning IT with business
goals, Addison-Wesley Professional.

Object Management Group R© (2019a), ‘Datasheet OMG Standards for Decision

Model and Notation OMG Standard for Decision Model and Notation’.

URL: https://www.omg.org/intro/DMN.pdf

Object Management Group R© (2019b), ‘Decision Model and Notation Version 1.2’,

p. 208.

URL: http://www.omg.org/spec/DMN/

Ochoa, L. & González-Rojas, O. (2017), Analysis and Re-configuration of Deci-

sion Logic in Adaptive and Data-Intensive Processes (Short Paper), in ‘OTM

Confederated International Conferences’, Springer, pp. 306–313.

Peffers, K., Tuunanen, T., Rothenberger, M. A. & Chatterjee, S. (2007), ‘A Design

Science Research Methodology for Information Systems Research’, Journal of
Management Information Systems 24(3), 45–77.

Rücker, B. (2016), ‘Decision Model and Notation : Digitalisierung von Entschei-

dungen mit DMN’, OBJEKTspektrum pp. 40–45.

Schlosser, S., Baghi, E., Otto, B. & Oesterle, H. (2014), ‘Toward a functional ref-

erence model for business rules management’, Proceedings of the Annual Hawaii
International Conference on System Sciences pp. 3837–3846.

Smit, K., Zoet, M. & Berkhout, M. (2017), ‘Verification capabilities for business

rules management in the Dutch governmental context’, International Conference
on Research and Innovation in Information Systems, ICRIIS pp. 1–6.

92 BIBLIOGRAPHY

Smit, K., Zoet, M. & Berkhout, M. (2019), ‘A Verification Framework for Business

Rules Management in the Dutch Government Context’, International Journal on
Advances in Systems and Measurements 12(1), 101–112.

Vanthienen, J., Mues, C. & Aerts, A. (1998), ‘An illustration of verification and

validation in the modelling phase of KBS development’, Data and Knowledge
Engineering 27(3), 337–352.

Vanthienen, J., Mues, C., Wets, G. & Delaere, K. (1998), ‘A tool-supported

approach to inter-tabular verification’, Expert systems with applications 15(3-

4), 277–285.

Appendices 93

A Appendix: Project Information

Bookmarks. The following lists relevant links of the DMN verification tool.

• GitLab project

https://gitlab.uni-koblenz.de/jonasblatt/ma-jonasblatt-

dmn-verifier

• Running back-end

http://dmn.fg-bks.uni-koblenz.de:8080

• Running front-end

http://dmn.fg-bks.uni-koblenz.de

• Configuration for front-end

http://dmn.fg-bks.uni-koblenz.de/config.html

• Metrics of verifiers

http://dmn.fg-bks.uni-koblenz.de/metrics.html

Packages. The following lists major packages of the DMN verification project.

The base package is de.unikoblenz.fgbks.*.

• DMN Rest API

*.api

• DMN Verification Model

.core.dmn.domain.vdmn.

• DMN Verification Service

.core.dmn.verification.

• DMN Verifier

.core.dmn.verification.verifier.

• DMN Verification Result structure

.core.dmn.verification.result.

• DMN Generator

*.dmn.generator

• Performance test

*.dmn.performancetest

https://gitlab.uni-koblenz.de/jonasblatt/ma-jonasblatt-dmn-verifier
https://gitlab.uni-koblenz.de/jonasblatt/ma-jonasblatt-dmn-verifier
http://dmn.fg-bks.uni-koblenz.de:8080
http://dmn.fg-bks.uni-koblenz.de
http://dmn.fg-bks.uni-koblenz.de/config.html
http://dmn.fg-bks.uni-koblenz.de/metrics.html

94 Appendices

B Appendix: Implementation

B.I Java Annotation REST Endpoint

1 @Path("/api/dmn/verification")

2 public class VerificationApi {

3

4 @Inject

5 protected DmnVerificationService dmnVerificationService;

6

7 @POST

8 @Produces(MediaType.APPLICATION_JSON)

9 @Consumes(MediaType.TEXT_XML)

10 public Response verifyAll(String payload) {

11 return dmnVerificationService.generate(payload);

12 }

13 ..

14 }

Appendices 95

B.II JSON Result of Verification Types

1 [

2 {

3 "description": "Detecting .. values.",

4 "name": "MissingInputValueVerification",

5 "niceName": "Missing Input Value",

6 "classification": {

7 "description": "..",

8 "name": "LogicModelingLevel",

9 "niceName": "Logic Modeling Level"

10 }

11 },

12 {

13 "description": "Detecting rules which ..",

14 "name": "EquivalentStringVerification",

15 "niceName": "Equivalent Strings",

16 "classification": {

17 "description": "..",

18 "name": "LogicModelingLevel",

19 "niceName": "Logic Modeling Level"

20 }

21 },

22 ..

23]

96 Appendices

B.III JSON Result of Verification Configuration

1 {

2 "PredefinedExistingValueVerification": true,

3 "EquivalentStringVerification": true,

4 "OverlappingRulesVerification": true,

5 "MultipleInputDataVerification": true,

6 "SubsumptionRulesVerification": true,

7 "EmptyOutputVerification": true,

8 "MissingInputDataVerification": true,

9 "InputValueSyntaxVerification": true,

10 "PredefinedMissingValueVerification": true,

11 "DateFormatVerification": false,

12 "IdenticalRuleVerification": false,

13 "MissingInputValueVerification": true,

14 "LonelyDataInputVerification": true,

15 "WrongDataTypeVerification": true,

16 "MissingOutputValueVerification": true,

17 "MissingColumnVerification": false,

18 "MissingInputColumnVerification": true,

19 "PartialReductionVerification": false,

20 "MissingRulesVerification": false

21 }

Appendices 97

B.IV JSON Result of Action Types

1 [

2 "UPDATE",

3 "CREATE",

4 "DELETE",

5 "SHOW"

6]

B.V JSON Result of Action Scopes

1 [

2 "RULE",

3 "INPUT_ENTRY",

4 "OUTPUT_ENTRY",

5 "INPUT_DATA",

6 "INPUT_COLUMN",

7 "OUTPUT_COLUMN",

8 "DECISION"

9]

98 Appendices

B.VI JSON Result of Action Config

1 {

2 "RULE": {

3 "UPDATE": true,

4 "DELETE": false,

5 "CREATE": false,

6 "SHOW": false

7 },

8 "INPUT_COLUMN": {

9 "UPDATE": true,

10 "DELETE": true,

11 "CREATE": true,

12 "SHOW": true

13 },

14 "OUTPUT_COLUMN": {

15 "UPDATE": true,

16 "DELETE": true,

17 "CREATE": true,

18 "SHOW": true

19 },

20 "DECISION": {

21 "UPDATE": true,

22 "DELETE": true,

23 "CREATE": true,

24 "SHOW": true

25 },

26 "INPUT_DATA": {

27 "UPDATE": true,

28 "DELETE": true,

29 "CREATE": true,

30 "SHOW": true

31 }

32 ..,

33 }

Appendices 99

B.VII JSON Result of Performance Metrics

1 {

2 "verificationMetrics": [

3 {

4 "averageExecutionTime": 638700.0,

5 "averageExecutionTimeInMs": 0.6387,

6 "averageNumberOfElements": 1.4444444444444444,

7 "numberOfExecutions": 18,

8 "totalExecutionTime": 11496600,

9 "totalExecutionTimeInMs": 11,

10 "totalNumberOfElements": 26,

11 "type": {

12 "description": "Detecting columns ..",

13 "name": "MissingInputDataVerification",

14 ..

15 }

16 },

17 {

18 "averageExecutionTime": 160728.57142857142,

19 "averageExecutionTimeInMs": 0.16072857142857142,

20 "averageNumberOfElements": 0.0,

21 "numberOfExecutions": 14,

22 "totalExecutionTime": 2250200,

23 "totalExecutionTimeInMs": 2,

24 "totalNumberOfElements": 0,

25 "type": {

26 "description": "Detecting rules ..",

27 "name": "IdenticalRuleVerification",

28 ..

29 }

30 },

31 ..

32]

33 }

100 Appendices

B.VIII JSON Result of Verification Request

1 {

2 "id":988,

3 "size":2,

4 "verifier":[

5 {

6 "id":998,

7 "entries":[

8 {

9 "id":1043,

10 "elements":[

11 {

12 "id":1041,

13 "identifier":{

14 "inputId":"input_1",

15 "decisionId":"Decision_d5wskPnC",

16 "ruleId":"DecisionRule_1goyka6",

17 "decisionTableId":"decisionTable_1",

18 "inputEntryId":"UnaryTests_01mpi41",

19 "definitionId":"Definitions_kj2sMCzC"

20 }

21 }

22],

23 "message":"Decision \"Decision 1\", Column \"x\": .. was not found.....",

24 "size":1,

25 "verificationClassification":"WARNING",

26 "verificationFixes":[

27 {

28 "actions":[

29 {

30 "id":92,

31 "actionScope":"INPUT_ENTRY",

32 "actionType":"SHOW",

33 "actionValues":{ }

34 }

35],

36 "fixName":"Show"

37 },

38 {

39 "actions":[

40 {

41 "id":1045,

42 "actionScope":"INPUT_COLUMN",

43 "actionType":"UPDATE",

44 "actionValues":{

45 "inputId":"input_1",

46 "addPredVal":"x",

47 "decisionId":"Decision_d5wskPnC"

48 }

49 }

50],

51 "fixName":"Add pred. value \"x\""

52 },

53 {

54 "actions":[

55 {

56 "id":1048,

57 "actionScope":"RULE",

58 "actionType":"DELETE",

59 "actionValues":{

60 "decisionId":"Decision_d5wskPnC",

61 "ruleId":"DecisionRule_1goyka6"

62 }

63 }

64],

Appendices 101

65 "fixName":"Delete rule 1"

66 }

67]

68 }

69],

70 "executionTime":285901,

71 "size":1,

72 "type":{

73 "description":"Detecting string ...",

74 "name":"PredefinedExistingValueVerification",

75 "niceName":"Predefined Existing Value",

76 "classification":{

77 ...

78 }

79 }

80 },

81 {

82 "id":990,

83 "entries":[

84 {

85 "id":1013,

86 "elements":[

87 {

88 "id":1009,

89 "identifier":{

90 "inputId":"input_1",

91 "decisionId":"Decision_d5wskPnC",

92 "decisionTableId":"decisionTable_1",

93 "definitionId":"Definitions_kj2sMCzC"

94 }

95 }

96],

97 "message":"Decision 1: Input column has no input data node.",

98 "size":1,

99 "verificationClassification":"WARNING",

100 "verificationFixes":[

101 {

102 "actions":[

103 {

104 "id":98,

105 "actionScope":"INPUT_COLUMN",

106 "actionType":"SHOW",

107 "actionValues":{ }

108 }

109],

110 "fixName":"Show"

111 },

112 {

113 "actions":[

114 {

115 "id":1019,

116 "actionScope":"INPUT_DATA",

117 "actionType":"CREATE",

118 "actionValues":{

119 "name":"x",

120 "decisionId":"Decision_d5wskPnC"

121 }

122 }

123],

124 "fixName":"New Data Input"

125 },

126 {

127 "actions":[

128 {

129 "id":1026,

130 "actionScope":"DECISION",

131 "actionType":"CREATE",

102 Appendices

132 "actionValues":{

133 "name":"Decision x",

134 "outputColumnName":"x",

135 "outputColumnTypeRef":"string",

136 "toDecisionId":"Decision_d5wskPnC"

137 }

138 }

139],

140 "fixName":"New Input Decision"

141 },

142 {

143 "actions":[

144 {

145 "id":1037,

146 "actionScope":"DECISION",

147 "actionType":"DELETE",

148 "actionValues":{

149 "decisionId":"Decision_d5wskPnC"

150 }

151 }

152],

153 "fixName":"Delete decision"

154 }

155]

156 }

157],

158 "executionTime":526299,

159 "size":1,

160 "type":{

161 "description":"...",

162 "name":"MissingInputDataVerification",

163 "niceName":"Missing Input",

164 "classification":{

165 ...

166 }

167 }

168 }

169]

170 }

Appendices 103

B.IX Java Example Verifier Implementation

1 @DmnVerifier(

2 classification = DrdModelingLevelVerification.class,

3 name = "ExampleVerification",

4 niceName = "Example DRD verification",

5 description = "Detection of awesome input data nodes.")

6 public class ExampleVerifier extends AbstractVerifier {

7

8 @Override

9 protected void doVerification() {

10 // iterate over all InputData nodes

11 for (VDmnInputData i :

12 dmnObjectContainer.getVDmnDefinition()

13 .getVDmnInputData()) {

14 // add element to result

15 if (awesomeCheckFunction(i)) {

16 // Add the id of the input data to the result object

17 vreFactory

18 .addElement(VerificationResultEntryElement.create(i))

19 // add show fix

20 .addVerificationFix(SHOW_INPUT_DATA)

21 // add to result object with message

22 .addToEntry(INFO, "Input data is awesome!.",

i.getName());

23 }

24 }

25 }

26

27 private boolean awesomeCheckFunction(VDmnInputData i) {

28 // awesome check

29 return i.getName().get().getValue().contains("awesome");

30 }

31 }

104 Appendices

C Appendix: Evaluation

C.I DMN Generator

1 DmnGenerator dmnGenerator = new DmnGenerator();

2 List<String> dmns = dmnGenerator.generateModelsAsString(

3 GeneratorConfiguration.getBuilder()

4 .withNumberOfDefinitions(8)

5 .withNumberOfDecisions(4)

6 .withNumberOfInputData(1)

7 .withProbabilityOfConnectionDecision(0.2d)

8 .withProbabilityOfConnectionInputData(0.5d)

9 .withNumberOfUniqueNames(4)

10 .withNumberOfUniqueStringValues(10)

11 .withMinNumberOfInputColumns(3)

12 .withMaxNumberOfInputColumns(3)

13 .withMinNumberOfOutputColumns(2)

14 .withMaxNumberOfOutputColumns(2)

15 .withMinNumberOfRules(10)

16 .withMaxNumberOfRules(100)

17 .addHitPolicy(HitPolicy.UNIQUE)

18 .addPossibleTypeRef("string")

19 .addPossibleTypeRef("integer")

20 .addPossibleTypeRef("boolean")

21 .build());

	Introduction
	Motivation and Problem Statement
	Research Aim
	Research Approach
	Structure of the Thesis

	Basics
	Decision Model and Notation (DMN)
	Existing error type classifications
	Verification and Validation by Vanthienen et al. (1998)
	Verification Capabilities by Smit et al. (2019)
	DMN Change Pattern by Hasić et al. (2020)
	Terminology Mapping

	Status Quo on DMN Verification

	Implementation
	DMN Verification API
	Defining the Architecture
	Overview of important Dependencies
	Defining REST Endpoints
	Defining the Verification Result Object
	Defining the Abstract Verifier

	Implementation of DMN Verifiers
	Decision Requirements Diagram Level Verifiers
	Lonely Data Input
	Missing Input
	Missing Input Column
	Multiple Input Data
	Wrong Data Type

	Decision Logic Level Verifiers
	Missing Input Value
	Missing Output Value
	Missing Predefined Value
	Unused Predefined Value
	Subsumption Rule
	Identical Rule
	Overlapping Rule
	Partial Reduction
	Missing Rule
	Equivalent Strings
	Empty Output
	Missing Column

	Syntax Level Verifiers
	Date Format
	Input Value Syntax

	Front-end of the DMN Verification Tool
	Demonstration

	Evaluation
	Conclusion
	Bibliography
	Appendices
	Appendix: Project Information
	Appendix: Implementation
	Java Annotation REST Endpoint
	JSON Result of Verification Types
	JSON Result of Verification Configuration
	JSON Result of Action Types
	JSON Result of Action Scopes
	JSON Result of Action Config
	JSON Result of Performance Metrics
	JSON Result of Verification Request
	Java Example Verifier Implementation

	Appendix: Evaluation
	DMN Generator

