itut £ UNIVERSITAT
ﬁ ahiIFdr KOBLENZ - LANDAU
B &8 & 7 Softwaretechnik

Fachbereich 4: Informatik

Data Protection Assurance by Design:
Support for Conflict Detection, Requirements
Traceability and Fairness Analysis

by
M.Sc. Qusai Ramadan

Approved Dissertation thesis for the partial fulfillment of the requirements for a
Doctor of Natural Sciences (Dr. rer. nat.)
Fachbereich 4: Informatik
Universitat Koblenz-Landau

Chair of PhD Board: Prof. Dr. Jan Jurjens
Chair of PhD Commission: Prof. Dr. Karin Harbusch
Examiner and Supervisor: Prof. Dr. Jan Jiirjens
Further Examiner: Prof. Dr. Andreas Mauthe
Co-Supervisor: Dr. Daniel Striiber

Date of the doctoral viva: June 19,2020

iii

Erklarung

Hiermit erkldre ich gemafs § 10 Abs. 3 Punkt 4 der Promotionsordnung des
Fachbereichs 4: Informatik der Universitit Koblenz Landau,

* dass ich die vorliegende Dissertation mit dem Titel “Data Protection Ass-
urance by Design: Support for Conflict Detection, Requirements Traceability
and Fairness Analysis” selbst angefertigt und alle benutzten Hilfsmittel in
der Arbeit angegeben habe,

¢ dass ich die Dissertation oder Teile der Dissertation noch nicht als Priifungs-
arbeit fiir eine staatliche oder andere wissenschaftliche Priifung eingereicht
habe, und

e dass ich weder diese noch eine andere Abhandlung bei einer anderen
Hochschule als Dissertation eingereicht habe,

¢ dass ich meine individuellen Beitrdge an kooperativ erzielten Forschungser-
gebnissen in der Dissertation an den entsprechenden Stellen gekennzeichnet
habe und dass meine Koautoren diese Einschdtzung meines Beitrages teilen.

Koblenz, den 23. Juni 2020

Qusai Ramadan (Unterschrift)

Abstract

Data-minimization and fairness are fundamental data protection requirements to
avoid privacy threats and discrimination. Violations of data protection require-
ments often result from: First, conflicts between security, data-minimization and
fairness requirements. Second, data protection requirements for the organizational
and technical aspects of a system that are currently dealt with separately, giving
rise to misconceptions and errors. Third, hidden data correlations that might lead
to influence biases against protected characteristics of individuals such as ethnicity
in decision-making software. For the effective assurance of data protection needs,
it is important to avoid sources of violations right from the design modeling phase.
However, a model-based approach that addresses the issues above is missing.

To handle the issues above, this thesis introduces a model-based methodology
called MoPrivFair (Model-based Privacy & Fairness). MoPrivFair comprises three
sub-frameworks: First, a framework that extends the SecBPMN2 approach to al-
low detecting conflicts between security, data-minimization and fairness require-
ments. Second, a framework for enforcing an integrated data-protection manage-
ment throughout the development process based on a business processes model
(i.e., SecBPMN2 model) and a software architecture model (i.e., UMLsec model)
annotated with data protection requirements while establishing traceability. Third,
the UML extension UMLfair to support individual fairness analysis and reporting
discriminatory behaviors. Each of the proposed frameworks is supported by auto-
mated tool support.

We validated the applicability and usability of our conflict detection technique
based on a health care management case study, and an experimental user study,
respectively. Based on an air traffic management case study, we reported on the
applicability of our technique for enforcing an integrated data-protection manage-
ment. We validated the applicability of our individual fairness analysis technique
using three case studies featuring a school management system, a delivery man-
agement system and a loan management system. The results show a promising
outlook on the applicability of our proposed frameworks in real-world settings.

vi

Abstract

vii

Kurzfassung

Moderne Softwaresysteme verwenden personenbezogene Daten, um automatisiert
Entscheidungen zu treffen. Um Bedrohungen der Privatsphédre und Diskriminie-
rung effektiv zu verhindern, sind relevante Datenschutzanforderungen, insbeson-
dere beziiglich Datenminimierung und Fairness, zum Gegenstand der Anforde-
rungsanalyse geworden. Solche Datenschutzanforderungen sind momentan drei
wesentlichen Arten von Bedrohungen ausgesetzt: 1. Inhdrente Konflikte zwischen
Sicherheits-, Datenminimierungs- und Fairness-Anforderungen. 2. Die fehleran-
fallige separate Behandlung von Datenschutzanforderungen fiir die organisatori-
schen und technischen Belange eines Systems. 3. Versteckte Korrelationen zwischen
Daten, die zu einer unbeabsichtigten Diskriminierung aufgrund von geschiitzten
Personenmerkmalen, wie z.B. der ethnischen Zugehorigkeit einer Person, fithren
konnen. Um die Datenschutzanforderungen wirksam zu gewihrleisten, ist es wich-
tig, relevante Schwachstellen bereits wahrend der Entwurfsmodellierung zu erken-
nen und geeignete Losungen zu finden. Momentan fehlt jedoch ein Ansatz, der die
genannten Probleme auf der Modell-Ebene adressiert.

Diese Arbeit stellt eine modellbasierte Methodik vor, um die oben genannten
Probleme zu losen. Die vorgeschlagene Methodik heifst MoPrivFair: Model-based
Privacy & Fairness. MoPrivFair umfasst drei Teilansdtze: Erstens eine Erweiterung
des SecBPMN2-Ansatzes zur Erkennung von Konflikten zwischen Sicherheits-,
Datenminimierungs- und Fairness-Anforderungen. Der Ansatz basiert auf einem
Katalog von Konflikt-Mustern, der eine systematische Abdeckung der moglichen
Konflikte zwischen den verschiedenen Anforderungstypen bietet. Zweitens ein
Framework zur Durchsetzung eines integrierten Datenschutzmanagements wih-
rend des gesamten Entwicklungsprozesses auf der Grundlage eines Geschéftspro-
zessmodells (basierend auf SecBPMNZ2) und eines Softwarearchitekturmodells (ba-
sierend auf UMLsec). Annotationen beider Modelle mit Datenschutzanforderun-
gen und eine automatische Transformation gewdahrleisten die Nachverfolgbar-
keit zwischen technischen und organisatorischen Belangen. Drittens die UML-
Erweiterung UMLfair fiir die Analyse von Fairnessanforderungen und diskrimi-
nierendem Verhalten. Jeder der drei vorgeschlagenen Ansitze wird durch geeigne-
te Softwarewerkzeuge unterstiitzt.

viii Kurzfassung

Im Rahmen der Arbeit wurde die Anwendbarkeit und Verwendbarkeit des Kon-
flikterkennungsverfahrens anhand einer Fallstudie zum Gesundheitsmanagement
und einer experimentellen Anwenderstudie validiert. Basierend auf einer Fallstu-
die zum Flugverkehrsmanagement untersuchten wir die Anwendbarkeit unseres
Verfahrens zur Durchsetzung eines integrierten Datenschutzmanagements. An-
hand von drei Fallstudien mit einem Schulverwaltungssystem, einem Lieferver-
waltungssystem und einem Kreditverwaltungssystem wurde die Anwendbarkeit
des Fairness-Analyseverfahrens untersucht. Die Ergebnisse zeigen einen vielver-
sprechenden Ausblick fiir die Verwendung der Ansétze in der Praxis.

ix

Acknowledgements

I have been truly fortunate to work with and be inspired by several outstanding
people. Having arrived at the end of this challenging, but gratifying journey, I
want to thank these people who have made this thesis possible.

Firstly, I am very grateful to Prof. Dr. Jan Jiirjens, my main supervisor, not only
for his supervision, guidance, and continuous support but for believing in me and
pushing me to do more than I thought I could. Through the course of the last four
years, I have learned a lot from Jan. In fact, Jan has been a great example to me, and
it has been an honor to work under his supervision.

I want to express my appreciation to my co-supervisor Dr. Daniel Striiber for his
constructive suggestions that helped me to improve many important details in my
thesis. Thank you Daniel for the stimulating ideas and the insightful suggestions.

I wish to thank Prof. Dr. Andreas Mauthe for immediately agreeing to be my
second referee, and for his feedback which enhanced several parts of this thesis.
My sincere thanks also go to the Ph.D. committee.

I am very thankful to Prof. Dr. Steffen Staab who co-supervised my work on fair-
ness analysis. The discussion with him contributed to improving many essential
details in the second and fourth chapters of this thesis.

I am very thankful to my collaborator and co-author, Dr. Mattia Salnitri (Polytech-
nic University of Milan). It has been a real pleasure working with you, and I hope
we continue our collaboration, which has been very fruitful.

I would like to express my thanks to the members of the research group of Prof.
Dr. Jan Jirjens, namely Dr. Amir Shayan Ahmadian, Dr. Jens Biirger, Julian
Flake, Katharina Grofer, Dr. Marco Konersmann, Matthias Lohr, Sven Peldszus
and Joachim Stocker for the stimulating discussions during our seminars, off-site
meetings but also during the social events. I owe special thanks to Dr. Volker Riedi-

X Acknowledgements

ger for the feedback he has provided me since the very beginning of my research,
as well as for his advice on choices I had to make.

My sincere thanks also go to my friends Mahmood Al-Doori, Ahmed Al-Dulaimy
and Dr. Zeyd Boukhers for the great academic discussions during the coffee breaks.
I wish also to thank the secretaries in our department, namely Sabine Hiilstrunk,
Silke Werger, and Anne Heibel for their help and support.

I am very thankful to Prof. Dr. Paolo Giorgini and the development team at the
University of Trento for providing me with access to the source code of the STS
tool, which I extended to automate my work on conflict detection.

Thank you Ahed, my true love, for the great patience, understanding, and uncon-
ditional love. You were always around at times I thought that it is impossible to
continue. Thank you for always believing in me, and for standing by me through
the course of these years, I know it has not been easy. In fact, without you this
thesis would not be possible. I appreciate my daughters, my little princesses, Siwar
Al-Dahab and Kenda for being the inspiration source. I consider myself extremely
fortunate to have such a lovely and caring family. Ahed, Siwar, and Kenda you are
the best, and this achievement is dedicated to you.

From my heart thanks to my beloved father and mother for their love and being
always so proud of me. I am forever indebted to both of you for all you have done
for me. I also wish to thank my parents-in-law for their love and support; I feel
lucky to have you in my life.

Finally, I wish to acknowledge the financial supported of: (i) The Deutscher
Akademischer Austauschdienst (DAAD); and (ii) the project "Engineering Respon-
sible Information Systems" financed by the University of Koblenz-Landau.

xi

Contents

Abstract

Kurzfassung

Acknowledgements

1 Introduction

1.1 Challenges and Research Directions
1.1.1 Conflictdetection
1.1.2 Integrating business process and software modeling
1.1.3 Fairnessanalysis

1.2 Research Contribution

1.3 Research Methodology

14 ThesisOutline

1.5 Listof Publications

2 BPMN-based Framework for Detecting Conflicts between Data Protec-

tion Requirements

2.1 Introduction
2.1.1 Problem statement and research questions
212 Contributiono

22 Background
22.1 Data-minimizationconcepts.
2.2.2 Overview of data-minimization: legal aspects and standards .
223 PFairnessconcepts
224 Overview of discrimination from the legal aspects
2.2.5 BPMN-based data-protection engineering
2.2.6 SecBPMN?2 security concepts, .
227 SecBPMN2-Q e

23 RunningExample L 0 oL

2.4 Modeling Security-, Data-Minimization- and Fairness-Requirements
24.1 Data-minimization and fairness annotations
242 The underlying background of the linkage constraints

2.5 Framework for Detecting Conflicts

vii

N O\ =

O

10

14
15
16

19
20
22
23
24
25
25
27
28
31
32
34
34
37
37
46

Contents

2.6 AlignmentChecking
2.6.1 Modeling SecBPMN2-Q patterns
2.6.2 Automated alignment checking
2.7 Conflict Detection
2.7.1 Automated conflict detection using anti-patterns.
2.7.2 Catalog of domain-independent conflicts: an overview
2.7.3 Full textual description of the proposed catalog of conflicts . .
28 ToolSupport
2.8.1 Algorithm for alignment checking
2.8.2 Algorithm for conflict detection.
29 CaseStudy
2.10 User Experiment
2.10.1 Set-up of theexperiment
2.10.2 Results of the experiment
210.3 Threatstovalidity
2.11 Limitations and Future Work
2.12 Related Work
2.12.1 Conflicts between data protection requirements
2.12.2 Model-based conflict detection approaches
2.12.3 Other conflict detection approaches
2.12.4 Data-minimization-aware approaches
2.12.5 Fairness-aware approaches
213 Conclusion

Integrating BPMN- and UML-based Data-Protection Engineering
3.1 Introduction
3.1.1 Problem statement and research questions
3.1.2 Contribution
32 Background L
321 SecBPMN2 (Revisit)
322 UMLsecprofile
3.3 Framework for Integrating BPMN- and UML-based Data-Protection
Engineering
3.4 SecBPMN2 to UMLsec Transformation
3.4.1 Mapping schema from SecBPMN2 to UMLsec elements
3.4.2 Transformation rules from SecBPMN2 to UMLsec
35 ToolSupport
36 CaseStudy
3.6.1 Applying the integration framework
3.6.2 Transformationresults
3.7 Discussionand Future Work
3.7.1 Threats to validity and limitations
3.72 FutureWork

Contents

xiii

3.8 Related Work
3.8.1 Automated transformation
3.8.2 Manual transformation

39 Conclusion e e e

4 Individual Fairness Analysis based on Software Design Models
41 Introduction
411 Problem statement and research question
412 Contribution 0 0 L.
42 RunningExample L 0 L L
43 Framework for Analyzing Individual Fairness
4.4 Annotating the UML Model with Fairness Information
4.5 Generating Temporal LogicClaims
451 Algorithm for generating temporal logic claims
46 ModelChecking
4.7 Reporting on Individual Fairness
471 Algorithm for reporting on individual fairness
4.8 Optional: Generating Proxies From a Database
49 ToolSupport
410 CaseStudies
411 Discussion
411.1 Using the framework atrun-time
4.11.2 Threats to validity, limitations and future work
412 Related Work
412.1 Software model-based development
4.12.2 Discrimination detection approaches
413 Conclusion L

5 Conclusions, Limitations, and Outlook
51 Conclusion L
511 Evaluationresults., .
512 Limitations,
52 Outlook.
521 Conflictresolution
5.2.2 Tracing requirements in legacy and evolutionary systems . . .
5.2.3 Support group fairness analysis based on software models . .

A Conflict Detection: A Walk Through Artifacts and Tool Support
B SecBPMN2 to UMLsec: A Walk Through Artifacts and Tool Support
C Curriculum Vitae

Bibliography

144
144
145
145

147
148
149
150
151
153
158
160
164
167
168
169
170
171
172
175
175
176
177
177
178
179

181
181
183
185
187
187
187
187

189

191

199

201

XV

List of Figures

1.1
1.2

1.3

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
29
2.10
211
212
2.13
2.14
2.15

2.16

217

The MoPrivFair (Model-based Privacy & Fairness) methodology.
Mapping between the research questions and the frameworks of the
MoPrivFair methodology.
Mapping between the research papers that are written by the author
of this thesis and the frameworks of the MoPrivFair methodology. . .

The highlighted part (dashed lines) denotes how Chapter 2 con-
tributes to the overall workflow of the MoPrivFair methodology.
Running example: Specifying security, data-minimization, and fair-
ness requirements in a healthcare business process.
All variants of SecBPMN’s non-repudiation annotation.
Meta-model of our BPMN extension.
All variants of our data-minimization and fairness annotations.

The proposed BPMN-based framework for conflict detection.
Requirements specified as SecBPMN2-Q patterns.
Conflicts C1-C5 between non-repudiation and anonymity as anti-
patterns.
Potential conflicts between non-repudiation and anonymity as anti-
patterns.
Conflicts and potential conflicts between fairness, undetectability, and
anonymity as constrained anti-patterns.
Example 2: A simplified version of our running example model with
different security and data-minimization annotations.
Potential conflicts PC1 and PC2 between accountability and anonymity
asanti-patterns. Lo Lo Lo
Conflicts C1 and C2 between authenticity and anonymity as anti-
patterns.
Conflicts C1 and C2 between auditability and anonymity as anti-
patterns.o
Potential conflicts PC1 and PC2 between non-delegation and
anonymity as anti-patterns. Lo L0 L.
Potential conflict PC1 between binding-of-duties and unlinkability as
anti-patterns. oo o
Conflict C1 between anonymity and unobservability as anti-patterns.

16

19
35
37
38
41
49
55
60
62
64
71
74
75
76
78

79

xvi List of Figures

2.18 Potential conflict C1 between confidentiality and anonymity as anti-
patterns. 82

2.19 Potential conflicts PC1 and PC2 between availability and anonymity
asanti-patterns. L L o 84
2.20 Analysis results view fromourtool. 86
2.21 Results for RQ1: Error-proneness of manual conflict detection 96
2.22 Results for RQ2: Perceived helpfulness of automated conflict detection 96

3.1 The highlighted part (dashed lines) denotes how Chapter 3 con-
tributes to the overall workflow of the MoPrivFair methodology. . . 105

3.2 Example model: SecBPMN2 model representing a business process
for flight plan negotiation. 111
3.3 UML deployment diagram of SecBPMN2 example 113
3.4 UML class diagram of SecBPMN2 example. 115
3.5 The proposed integrated management framework. 118
3.6 Henshin rule for adding «abacRequire» UMLsec stereotype. 124
3.7 Henshin rule for adding UMLnodes.. 125
3.8 Henshin rule for adding «encrypted» to communication paths. 126
3.9 Henshin rule for adding «integrity» to dependencies.. 127

3.10 Henshin rule for adding «encrypted» to communication paths corre-
spond with SecBPMN2 message flows. 128
3.11 Henshin rule for adding «secure links» stereotype. 128
3.12 Henshin rule for importing core UML classes. 129
3.13 Henshin rule for transforming SecBPMN2 data object to UML class. . 130
3.14 Henshin rule for transforming Accountability-annotated task. 132
3.15 Henshin rule for adding «secure dependency» stereotype. 133
3.16 Process with involved tasks and artifacts. 134
3.17 Example of the generated trace models (excerpt). 138

4.1 The highlighted part (dashed lines) denotes how Chapter 4 con-
tributes to the overall workflow of the MoPrivFair methodology. . . 147

42 Example Model: Excerpt from the class and the state machine dia-
grams of the school software. 152

4.3 The semi-automated, model-based process for analyzing individual
fairness 154
44 Excerpt from the generated trace ofevents. 168

xvii

List of Tables

2.1
2.2
2.3
24

2.5
2.6

3.1
3.2
3.3
34
3.5

4.1
4.2
43
44
4.5
4.6

Definitions of the considered data-minimization concepts in our work. 25

Definitions of the considered fairness concepts in our work. 27
Mapping data protection threats to BPMN elements 47
Overview of conflict + potential conflict anti-patterns per pair of re-

quirements. 68
Experience levels of participants in our experiment. 94
Execution time of conflict detection technique. 98
UMLsec adversary patterns. 113
SecBPMN?2 elements to UML elements. 120
SecBPMN?2 security annotations to UMLsec security policies. 122
Detailed Summary for the transformationresults 140
The overall transformation results and the execution time. 141
The UMLfairprofile. 158
The verification results of the LTL claims 167
Studentdata oo 170
Correlationsresults o L. 171
An overview about the analyzed UML models 173
The Detected Individual-Fairness Violations 174

Chapter 1

Introduction

The seemingly never-ending collection of data by many of today’s systems and
organizations and the advances in the amount of storage and processing power
have raised public and legal awareness on security, privacy [32] and data-misuse con-
cerns [30]. While security-specific data protection goals are focusing on prevent-
ing unauthorized data access and data manipulation that could undermine trusted
systems, people, however, have relatively low confidence that organizations and
IT systems will use their data in a responsible way. For example, according to
PricewaterhouseCoopers’s (PwC) 2017 report!, only 25% of customers believe that
companies handle sensitive personal data responsibly. Even fewer—only 15%—be-
lieve companies will use these data to improve their lives.

The risk that personal data might be misused is Europeans’ top worry, according to
a 2017 European Union public opinion survey?. Restrictions on data collection, in
the first place, and data usage play a central role in the European Union’s General
Data Protection Regulation (GDPR, [2]). The GDPR aims, as specified in Article 1(2),
to protect the fundamental rights and freedoms of natural persons and their right
to the protection of personal data.

Apart from security, two key data protection goals are data-minimization [53, 139]
and fairness [7, 27], which aim at mitigating the risks of unauthorized reveal-
ing of data subjects’ real identities and discrimination, respectively. The clearest

The PwC report is available online at https://www.pwc.com/us/en/advisory—
services/publications/consumer—intelligence-series/protect-me/cis—
protect-me-findings.pdf (accessed: 06/12/2019).

2The survey is available online at https://ec.europa.eu/commfrontoffice/
publicopinion/index.cfm/Survey/getSurveyDetail/instruments/SPECIAL/
surveyKy/2171 (accessed: 06/12/2019).

https://www.pwc.com/us/en/advisory-services/publications/consumer-intelligence-series/protect-me/cis-protect-me-findings.pdf
https://www.pwc.com/us/en/advisory-services/publications/consumer-intelligence-series/protect-me/cis-protect-me-findings.pdf
https://www.pwc.com/us/en/advisory-services/publications/consumer-intelligence-series/protect-me/cis-protect-me-findings.pdf
https://ec.europa.eu/commfrontoffice/publicopinion/index.cfm/Survey/getSurveyDetail/instruments/SPECIAL/surveyKy/2171
https://ec.europa.eu/commfrontoffice/publicopinion/index.cfm/Survey/getSurveyDetail/instruments/SPECIAL/surveyKy/2171
https://ec.europa.eu/commfrontoffice/publicopinion/index.cfm/Survey/getSurveyDetail/instruments/SPECIAL/surveyKy/2171

2 1 Introduction

mention for these two risks occurs in Recital 75 of the GDPR, which states that
"the risk to the rights and freedoms of natural persons, [....], may result from personal
data processing which could lead to physical, material or non-material damage, in partic-
ular: where the processing may give rise to discrimination, [.....], unauthorized rever-
sal of pseudonymization, [....]". Pseudonymization is a data-minimization mech-
anism where a pseudonym can be used as an identifier for a data subject other
than one of the data subject’s personal identifiable information. Based on Recital 28
of the GDPR, the explicit introduction of "pseudonymization" in the GDPR is not
intended preclude any other measures of data protection.

Data-minimization aims at minimizing "the possibility to collect personal data about oth-
ers" and "within the remaining possibilities, [to minimize] collecting personal data" (Pfitz-
mann et al. in [103], p.6). Article 5(c) of the GDPR refers to data-minimization
as one of the main principles of processing personal data. Addressing data-
minimization is of vital importance to support user’s privacy and to avoid legal
concerns. According to Article 25(1), organizations and IT systems need to imple-
ment appropriate technical and organizational measures, such as pseudonymiza-
tion, which are designed to implement data-minimization, in an effective manner.

Fairness aims to ensure equal treatment between data subjects by preventing the
misuse of data in decision-making processes to discriminate data subjects on the
ground of protected characteristics such as gender and ethnicity [14]. Worth not-
ing that fairness in this context is mention in the GDPR in the sense of non-
discrimination. For instance, Recital 71 states a requirement to "implement techni-
cal and organizational measures appropriate to [...], and prevent, inter alia, discriminatory
effects on natural persons on the basis of racial or ethnic origin, political opinion, [...]".
These characteristics are referred to in Article 9 of the GDPR as “special categories”.
Moving beyond the Recitals, algorithmic discrimination is addressed by Article 22,
which prevents decision making based on special categories of personal data.

In today’s systems, security, data-minimization, and fairness are more vital and
intertwined than ever before. Beyond many security-specific concepts such as con-
fidentiality and integrity, five data-minimization concepts, namely Pseudonymity,
Anonymity, Unlinkability, Undetectability and Unobservability, and two fairness con-
cepts, namely Individual- and Group-Fairness, are considered fundamental to avoid
privacy and fairness violations, respectively. Data-minimization concepts were first
defined by Pfitzmann et al. [103] and later included in the ISO 15408 standard of
common criteria for information technology security evaluation [60]. The two fair-
ness concepts are formally explored by many research works in the algorithmic
fairness field (e.g., [7, 45, 49]).

There exist a range of protection mechanisms and approaches [146, 157] that ad-
dress specific security, data-minimization and fairness needs. However, data pro-

tection violations often do not come from loopholes in the applied protection tech-
nologies [54], but rather from three distinct sources: first, conflicts between security,
data-minimization and fairness protection requirements [50, 52]. For example, in health-
care, users have strong privacy concerns about how and for what purpose their
health information is handled, which may interfere with an organization’s doc-
umentation responsibilities for ensuring complete accountability. Second, a non-
alignment between the organizational and technical data protection requirements [11, 118].
Data protection requirements for the organizational and technical aspects of a sys-
tem are currently dealt with separately, giving rise to substantial misconceptions
and errors. Third, hidden dependencies between the data in the system that might lead
to influence unappropriated biases against individuals based on protected characteristics
[49, 112]. For instance, most recently, it is reported that algorithms used to set

credit limits in Apple’s credit card might be inherently biased against women®.

For the effective assurance of data protection needs and for reducing difficulties
of finding the sources of vulnerabilities in the later stages of system development,
it is important to avoid the above three issues right from the start of the develop-
ment process. In many application domains (including finance, health, automotive
etc) there exist regulations which require detailed documentation of the software to
support the needed certification, and this requirement can be fulfilled using models
[141]. Using process and software models, the complexity of systems can be han-
dled through abstraction, enabling their analysis and optimization [47]. Although
the use of process and software models in practice varies between different do-
mains [141], they have been considered as a key enabler for important tasks of high
business value, such as security and privacy analysis [47]. In fact, there has been
a significant amount of model-based analysis approaches that aims to incorporate
data protection requirements, specifically, security and privacy requirements, into
the design phase of the system development life cycle. Approaches in this direc-
tion can be classified into business process model-based approaches [82] and software
model-based approaches [78].

Business process model-based approaches rely on business process modeling for
organizational data protection requirements (e.g., [17, 89, 119, 126]). These ap-
proaches abstract from technical details to allow the specification of high-level data
protection requirements by non-technical stakeholders, such as business analysts.
In contrast, software model-based approaches allow the developers to design ar-
chitectural and behavioral aspects of the system while considering low-level tech-
nical details to support the validation against pre-defined technical data protection
policies (e.g., [5, 62, 81]). The software model is a cornerstone for further devel-
opment stages, such as generating code for the implementation. Hence, software
models can be seen as an approximation to the actual execution semantics of the

Information about the discriminatory behavior of Apple’s algorithms is available online at
https://www.bbc.com/news/business-50365609 (accessed: 06/12/2019)

https://www.bbc.com/news/business-50365609

4 1 Introduction

developed software. There is also much work on model-and-code synchronization
(e.g.,[19]). Therefore, data-protection analysts can benefit from the software mod-
els at the run time of a system [15]. In legacy systems, data-protection analysts can
generate business process models from the log files of the system by using a process
mining technique (e.g, [132]) while software models can be generated in a reverse
engineering process from the source code of the system (e.g., [20]).

Despite the variety of model-based approaches that provide data protection anal-
ysis in the system design phase, there is no model-based approach that permits any
of the following challenges: (i) detecting conflicts between data protection require-
ments; (ii) establishing traceability between high-level (i.e., organizational) data
protection requirements and verifiable technical data protection policies; (iii) and
analyzing individual fairness. In the following, we provide a brief overview of the
state of the art with respect to the considered challenges above.

Conflict Detection. A few existing approaches are available to deal with different
types of data protection requirements in the early stages of development (e.g.,
[16, 32, 65, 95]). These approaches focus on the identification of security and data-
minimization requirements in the elicitation phase without detecting conflicts be-
tween them. Ganiji et al. [50] and Alkubaisy [10] highlight the importance of detect-
ing conflicts between security and privacy requirements, specifically for data-mini-
mization requirements. Both papers discuss the components required for a poten-
tial approach, however, without providing a complete solution. Furthermore, to
our knowledge, no approach supports fairness requirements in the early develop-
ment stages. Hence, an approach that permits detecting conflicts between security,
data-minimization and fairness requirements in the early stages of the system de-
velopment is currently not available.

Integration and Traceability. The fact that different modeling languages are extended
to cover data protection aspects such as security and privacy, attracted many re-
searchers to study the traceability of these aspects via the integration between these
languages through the use of automated transformation support. However, earlier
automated transformation approaches used Unified Modeling Language (UML,
[3]) as sole modeling language throughout the entire process [55], thereby leav-
ing the role of business analysts unaddressed, or focused on representing data
protection-related requirements “at the business analyst views” ([120], p.2), leaving
technical data protection concerns and the verification of data protection aspects to
future work [120]. Therefore, support for integrated management of organizational
and technical data protection requirements is generally missing.

Fairness Analysis. Existing fairness analysis approaches do not analyze the system
ex-ante but ex-post, namely during the testing phase of the system development life
cycle (e.g, [29, 49]) or at the run-time of the system (e.g., [7, 8]). Considering the

ﬁPMN-based Framework ﬂh
Detecting Conflicts (Chapter 2) ﬂramework for Integrating BPMN

and UML-based Data-Protection ﬁML-based Framework fON
& Create/Update data protection- Engineering (Chapter 3) Individual-Fairness Analysis
annotated BPMN models (Chapter 4)
% Transform BPMN models to
software architecture model & Annotate the software
model with fairness-
& Reuse/Create/Update procedural & Resolve l specific information
data protection patterns conflicts -
2, Refine the software l
architecture model
%, Alignment Checking (% Method for verifying]
qr’ Verify technical data protection individual-fairness
polici inst the e
\ architecture model /

\’% Conflicts Detection j

Legend
E] Manual process Automated process ——p Sequence flow

Figure 1.1: The MoPrivFair (Model-based Privacy & Fairness) methodology.

fairness of a software system after implementing it raises substantial difficulties in
identifying and explaining the discriminatory behavior of the software. Despite the
availability of many model-based approaches [68], we have not found an existing
approach described in the literature that would use software models for fairness
analysis. The need for fairness analysis based on software models has been mo-
tivated by Brun et al. [18]. However, the work in [18] is not supported by an
approach, that realizes the idea of analyzing fairness based on software models.

In this thesis, we propose a model-based methodology called MoPrivFair (Model-
based Privacy & Fairness) that addresses the three challenges above. Figure 1.1
provides an overview of the MoPrivFair methodology. As shown in Figure 1.1, our
proposed MoPrivFair methodology comprises three sub-frameworks:

e First, a BPMN-based framework for detecting conflicts between data protection
requirements. The goal of this framework is to analyze business process mod-
els annotated with security, data-minimization and fairness requirements to
detect conflict among them.

* Second, a framework for integrating BPMN- and UML-based data-protection en-
gineering. This framework aims at specifying data protection-aware software
architecture models based on business process models annotated with data
protection requirements.

¢ Third, a UML-based framework for fairness analysis. The goal of this framework
is to analyze UML-based software designs in order to detect discrimination
between individuals on the basis of their protected characteristics.

In the MoPrivFair methodology, conflicts between data protection requirements
have to be resolved before any further development. Conflicts resolution tech-

6 1 Introduction

niques are varied and might require negotiation with different users of the system
and trade-off analysis [42, 57]. Discussion about conflict resolution is, therefore,
out of the scope of this thesis. The focus of Figure 1.1 is to illustrate our main
contribution and the overall work-flow of our work in this thesis. The MoPrivFair
methodology is explained in more detail in Section 1.2.

1.1 Challenges and Research Directions

We identify and address three challenges in this thesis:

¢ Conflict detection: The variety of requirements arising from security, data-
minimization, and fairness considerations gives rise to various types of con-
flicts. Importantly, conflicts between data protection-related requirements if
propagated to the final system can lead to severe effects, including user dis-
satisfaction, privacy infringement, and legal sanctions. Detecting conflicts be-
tween security, data-minimization, and fairness requirements is a challenging
task, as such conflicts are context-specific and their detection requires a thor-
ough understanding of the underlying business processes. Therefore, con-
flicts should be detected and reported as early as during the design of the
business process models of the targeted system.

* Integration and traceability: In the system development process, data pro-
tection requirements for the organizational and technical aspects of a sys-
tem are currently dealt with separately, giving rise to substantial misconcep-
tions and errors. Specifically, existing business process model- and software
model-based data protection-oriented approaches support engineering data
protection-aware systems in distinct development phases and from distinct
stakeholders’ perspectives. Therefore, vulnerabilities may arise from misun-
derstandings between these stakeholders. The raised vulnerabilities may be
notoriously hard to detect due to the lack of a traceability mechanism for data
protection requirements across the different modeling phases of the system.

* Fairness analysis: A system may have undesirable hidden data-flows that
might indirectly leak personal protected characteristics such as gender, and
as a result, influence biases in an automated decision-making process against
individuals based on the leaked protected characteristic. Considering the fair-
ness of a system after implementing it raises substantial difficulties in iden-
tifying and explaining the discriminatory behavior of the system. To reduce
difficulties in the later stages of the system development process, it is impor-
tant to deal with fairness from the early stages of system development.

The three main research directions of this thesis span over these challenges. In
the following sections, we introduce these research directions and formulate the
research questions of this thesis.

1.1 Challenges and Research Directions 7

1.1.1 Conflict detection

Requirements are prone to conflicts [48, 148]. Data protection requirements
such as security, data-minimization and fairness requirements are no exception
[50, 52, 54, 95]. The need to account for multiple types of data protection require-
ments at once has been known to result in conflicting requirements. According to
Mouratidis et al. [95], "The successful analysis of security and privacy individually does
not necessarily lead to the successful cooperation". The same can be said about the anal-
ysis of fairness and other data protection requirements individually. For instance,
according to recent research from Google Al [52], one of the main challenges in the
field of algorithmic fairness is conflicts with data-minimization requirements.

Kim et al. [69] define requirements conflicts as “The interactions and dependencies
between requirements that can lead to negative or undesired operation of the system”. Ac-
cording to Easterbrook [38], two main sources of such conflicts are clashes between
system users’ needs and misinterpretation of requirements. Clashes between system
users’ needs represent trade-offs between users” and organization” needs. For ex-
ample, data subjects may require that an activity with a service evaluation purpose
should be executed in a full-anonymous way. This requirement may interfere with
an organizations” needs. In some scenarios, it is important to store information
about the executors of service-evaluation activities for accountability issues. Mis-
interpretation of the elicited requirements can happen intentionally or unintention-
ally while implementing the requirements in business processes. Misunderstand-
ing the specifications of the elicited requirements or intentionally deviating from
them due to business needs will result in a non-alignment between the business
processes and the requirements [129]. These deviations may result in unexpected
conflicts between the requirements that may lead to unwanted vulnerabilities.

Detecting conflicts between data protection requirements is a challenging task.
Since such conflicts are context-specific, their detection requires a thorough under-
standing of the underlying business processes [50]. Specifically, conflicts not only
result from trade-offs between requirements related to the same asset in the system
(e.g., anonymous vs. accountable execution of a task), but also from those related to
different assets. For example, a task may be required to be executed anonymously,
while writing data to a secure data storage where the identity of the writer must be
known for accountability reasons.

Importantly, undetected conflicts will have serious effects on the remainder of the
system development process. A few existing approaches are available to deal with
different types of data protection requirements in the early stages of development
[16, 32, 65, 95]. These approaches focus on the identification of security and data-
minimization requirements in the elicitation phase without detecting conflicts be-

8 1 Introduction

/BPMN-based Framework fo:@ RQ2 RQ3
Detecting Conflicts (Chapter 2) /Framework for Integrating BPMN-
and UML-based Data-Protection UML-based Framework for
& Create/Update data protection- Engineering (Chapter 3) Individual-Fairness Analysis
annotated BPMN models (Chapter 4)
q’ Transform BPMN models to
l [software architecture model] & Annotate the software
AR Y Resol model with fairness-
euse/Creat'elUpdate procedural eSO_ ve N specific information
data protection patterns conflicts
[A Refine the software]
architecture model
% Alignment Checking % Method for verifying
Verify technical data protection individual-fairness
policies against the software
\ architecture model / \

\ ’% Conflicts Detection /

Legend
E l Manual process l% lAutamated process ——p Sequence flow

Figure 1.2: Mapping between the research questions and the frameworks of the
MoPrivFair methodology.

tween them. Furthermore, to our knowledge, no approach supports fairness re-
quirements in the early development stages. Hence, an approach that permits de-
tecting conflicts between security, data-minimization and fairness requirements in
the early stages of the system development is currently not available. Considering
support for conflict detection between these requirements during the design of a
system business process models, we investigate the following research question:

RQ1. How to detect conflicts between security, data-minimization, and fairness
requirements by analyzing business process models?

Our objective is to help business process designers in detecting conflicts between
security, data-minimization and fairness requirements during the design of the
business process models of the system in question. The answer to RQ1 requires:
(i) an appropriate graphical modeling language for designing business processes
annotated with security, data-minimization and fairness requirements; (ii) an align-
ment checking technique to avoid conflicts that may result from possible non-
alignments between the users” data protection requirements and their specifica-
tions in business process models. (iii) a conflict detection technique that permits
to report and visualize conflicts between specified security, data-minimization and
fairness requirements in business process models.

Figure 1.2 shows which parts of the proposed MoPrivFair methodology are sup-
ported by which research question. As shown in left part of Figure 1.2, the MoPriv-
Fair methodology addresses the research question RQ1 by a semi-automated BPMN-
based framework for detecting conflicts between security, data-minimization and
fairness requirements. This contribution is explained in more detail in Section 1.2.

1.1 Challenges and Research Directions 9

1.1.2 Integrating business process and software modeling

There has been a significant amount of model-based approaches that aim to sup-
port the management of organizational and technical data protection requirements
in the design phase of the system development process. Business process-based ap-
proaches are abstract from technical details to support business analysts in speci-
fying organizational data protection requirements as part of business processes for
the target system (e.g., SecBPMN2 [129]). Different from business process model-
based approaches, software model-based approaches support system developers in
specifying technical data protection requirements and data protection assumptions
in architectural models. The resulting models can be validated against pre-defined
technical data protection-related policies (e.g., UMLsec [62]).

Since these existing approaches address data protection requirements in distinct
development phases and from the perspectives of different stakeholders, they deal
with data protection requirements separately; therefore, an alignment of data pro-
tection requirements across the business process- and software architecture-models
is not guaranteed [11, 118]. For building systems that preserve data protection re-
quirements, it is important to manage data protection requirements consistently, so
that the introduction of vulnerabilities during the development process is avoided
[152]. A main source of vulnerabilities are misunderstandings between expert
stakeholders, as triggered by their implicit knowledge about terminology. Accord-
ing to Yu et al. [152], "a single inaccurate requirement traceability link assumed by de-
velopers may already be exploited by malicious attackers". Ensuring traceability of data
protection requirements between representations of the system in different abstrac-
tion levels is therefore important.

Model transformation [134] is a promising direction to address this problem. Gen-
erally, models are used to describe the system in question from different viewpoints
and at different levels of abstraction. The use of different kinds of models during
the system design phase leads to the challenge of keeping the models consistent
with each other. At this point, model transformation techniques play a central role.
Thus we need a model transformation from business process models to software
models which ensures traceability of data protection requirements.

Earlier automated transformation approaches used Unified Modeling Language
(UML, [3]) as sole modeling language throughout the entire process [55], thereby
leaving the role of business analysts unaddressed, or focused on representing data
protection-related requirements “at the business analyst views” ([120], p.2), leaving
technical data protection concerns and the verification of data protection aspects to
future work [120]. Therefore, support for integrated management of organizational
and technical data protection requirements is generally missing. Concerning this,
we investigate the following research question:

10 1 Introduction

RQ2. How to support the integrated management of modeling business process
and software architecture models, such that the traceability of data protection
requirements is guaranteed?

Our objective is to support the management of data protection requirements from
the views of the involved expert stakeholders, in particular, business analysts and
systems engineers, consistently in an integrated manner to: First, avoid the intro-
duction of vulnerabilities during the development process due to the conceptual
gap between the involved stakeholders. Second, ensure traceability for data pro-
tection requirements across business process- and software architecture-models.

RQ2 is about how to support the traceability of the data protection requirements in
the system design phase. The answer to this research question requires: (i) map-
ping the business process model elements to software architecture model elements;
(ii) mapping high-level data protection concepts in the business process level to
verifiable technical data-protection policies in the software architecture; (iii) a model
transformation supporting the automatic translation of business process models an-
notated with data protection requirements to software architectural models while
establishing traceability for the data protection requirements.

Integrating and tracing data protection requirements from business process models
to software architecture is a complicated task. Business processes are mainly about
behavior and tasks which specify how a system achieves its goals, while software
architecture refers to the structural aspects of the system, which specify how the
system should be built to achieve its goals. Therefore, it is not possible to automat-
ically specify all the architectural details based on a given business process. There-
fore, as shown in the middle part of Figure 1.2, our proposed MoPrivFair methodol-
ogy addresses the research question RQ2 by a semi-automated BPMN-based frame-
work for integrating BPMN- and UML-based data-protection engineering. This
contribution is explained in more detail in Section 1.2.

1.1.3 Fairness analysis

Automated decision-making software became responsible for sensitive decisions
with far-reaching societal impact in many areas of life. However, the risk that a
falsely developed decision-making software may lead to unlawful discrimination
against persons, illegally exploiting their protected characteristics has raised public
and legal awareness of software fairness [140, 153]. For example, Article 22, Para-
graph 4 of the European General Data Protection Regulation (GDPR, [2]) forbids
decisions based on special personal characteristics as defined in Article 9 of the
same regulation, such as ethnicity, religion, and gender.

1.2 Research Contribution 11

Existing fairness analysis approaches do not analyze the system ex-ante but ex-post,
namely during the testing phase of the system development life cycle (e.g, [29,
49]) or at the run-time of the system (e.g., [7, 8]). Considering the fairness of a
software system after implementing it raises substantial difficulties in identifying
and explaining its discriminatory behavior. To avoid complicated explanations and
expensive fixes, fairness awareness has to be pro-actively embedded in the design
phase of the system development, similar to other data protection requirements
such as security and privacy [18]. Despite the significant amount of work that uses
software models to support reasoning about critical issues such as security [68], so
far there is no approach that uses software models to support fairness analysis.

A distinguished type of fairness is called individual fairness. A decision-making
software preserves the individual fairness if it produces the same decision for ev-
ery two individuals whose data, that are given as input to the decision-making
software, are identical except for the protected characteristics [49]. Considering
support for individual fairness at the system design phase, a model-based approach
that permits detecting discrimination during the design of system models is lack-
ing. Thereby, we investigate the following research question:

RQ3. How to detect undesired discriminatory behavior, that violates individual
fairness, by analyzing software design models?

Our objective is to reduce the effort needed for uncovering discrimination in the
later stages of the development. Answering RQ3 requires: (i) an extension to a
software modeling language to permit annotating software models with fairness
information; (ii) a method for verifying individual fairness of annotated models. As
shown in the right part of Figure 1.2, our MoPrivFair methodology addresses the
research question RQ3 by a semi-automated UML-based framework for individual
fairness analysis. This contribution is explained in more detail in Section 1.2.

1.2 Research Contribution

In the previous section, we have outlined the research questions that are related to:
First, detecting conflicts between data protection requirements. Second, integrating
business process and software architecture modeling while supporting traceabil-
ity for data protection requirements. Third, fairness analysis at the system design
level. In this thesis, we address the proposed research questions by a model-based
methodology called MoPrivFair (Model-based Privacy & Fairness).

12 1 Introduction

As shown in Figure 1.2, the proposed MoPrivFair methodology addresses our re-
search questions with a three-fold contribution:

¢ a BPMN-based data-protection engineering framework for detecting conflicts
between data protection requirements (Chapter 2).

* a framework for integrating BPMN- and UML-based data-protection engi-
neering while supporting traceability (Chapter 3).

¢ a UML-based framework for analyzing individual fairness during the system
design level (Chapter 4).

In the MoPrivFair methodology, detected conflicts between data protection require-
ments have to be resolved before any further development. Conflicts resolution
techniques are varied and may require human intervention [42, 57]. However, as
mentioned earlier in this chapter, discussion about conflict resolution is out of the
scope of this thesis. In the following, we briefly describe our main contribution:

First, a BPMN-based framework for detecting conflicts. To address the problem of
detecting conflicts between security, data-minimization and fairness requirements
in RQ1, we propose (as shown in the left part of Figure 1.2) a semi-automated BPMN-
based data-protection engineering framework that supports:

(i) the design of business processes considering security, data-minimization and
fairness requirements;

(ii) the encoding of such requirements as reusable, domain-specific patterns;

(iif) the checking of alignment between the encoded requirements and annotated
BPMN models based on these patterns; and

(iv) the detection of conflicts between the specified requirements in the business
process models based on a catalog of domain-independent anti-patterns.

The security annotations in our BPMN extension were reused from an existing
security-oriented BPMN extension called SecBPMN?2 [129]. To express the domain-
specific patterns and domain-independent anti-patterns, we extended a graphical
query language for BPMN 2.0 models called SecBPMN2-Q [129]. While the security
annotations were reused from the SecBPMN2, our proposed framework is novel
because it is the first to directly support modeling data-minimization and fairness
requirements in BPMN models. It is also the first to support automatic conflict de-
tection between specified security, data-minimization and fairness requirements in
BPMN models. We report on the feasibility and the usability of our conflict detec-
tion technique based on a case study featuring a healthcare management system,
and an experimental user study during the design of the business process models.

1.2 Research Contribution 13

Second, a framework for integrating BPMN- and UML-based data-protection en-
gineering. To address RQ2 that is concerned with integrating BPMN- and UML-
based data-protection engineering while supporting traceability for data protec-
tion requirements, we propose (as shown in the middle part of Figure 1.2) a semi-
automated framework that suggests to iteratively:

(i) transform business process models enriched with organizational data protec-
tion requirements using the SecBPMN2 to a preliminary software architec-
tural model enriched with data protection policies using UMLsec [62];

(ii) refine the generated UMLsec architecture model manually with additional
design decisions; and

(iii) verify the resulting UMLsec architecture model against their contained data
protected policies by using an automated tool called CARiSMA [4].

The novelty of our framework is that we automatically establish traceability be-
tween high-level data protection requirements and verifiable technical data protec-
tion policies. We report on the applicability of our framework based on a case study
featuring an air traffic management system.

Third, a UML-based framework for analyzing individual fairness. To address
RQ3 that is concerned with reasoning on individual fairness by analyzing the soft-
ware models, we present (as shown in the right part of Figure 1.2) a semi-automated
framework that supports the analysis of UML-based software designs with regard
to individual fairness. The analysis in our framework is established by generat-
ing temporal logic claims, whose verification against the targeted software model
enables reporting on the individual fairness of the software. Our framework for
individual fairness analysis includes the following contributions:

(i) a UML profile UMLfair for annotating UML software models with fairness-
specific information; and

(ii) a method for verifying individual fairness of annotated UML models.

Given a UML model annotated with fairness-specific information, our method
for reasoning about individual fairness includes: First, generating temporal logic
claims from the UML model. Second, reporting on individual fairness based on
the verification results of the generated claims. Our framework for individual fair-
ness analysis is novel in the sense that it is the first that permits fairness analysis
based on software models at system design time. We applied our framework to
three case studies featuring a school management system, a delivery management
system and a loan management system.

14 1 Introduction

1.3 Research Methodology

The research methodology guiding this thesis is explained in the taxonomy of soft-
ware engineering proposed by Shaw [135]. Shaw distinguishes five approaches
to address a software engineering problem, namely qualitative or descriptive model,
techniques, systems, empirical predictive model, and analytic model.

Each of the three main contributions put forward by this thesis is supported by a
technique supported by an analytic model:

"Technique: Invent new ways to do some tasks, including procedures
and implementation techniques.

Analytic model: Develop structural (quantitative or symbolic) models
that permit formal analysis." ([135], p.660)

The proposed MoPrivFair methodology provides novel automated techniques to:
(i) conduct conflict detection between data protection requirements on the business
process modeling level, (ii) integrate BPMN- and UML-based data protection en-
gineering while establishing traceability for data protection requirements, and (iii)
analyze software models with regard to individual fairness.

Our techniques based on standard graph-oriented modeling languages, namely,
the Business Process Modeling Notation (BPMN) [1] and the Unified Modeling
Language (UML) [3]. The semantics of these languages are formally specified by
algebraic graph transformations [35, 74]. Thereby, our techniques are amenable to
a formal analysis for evaluating their correctness.

Furthermore, in [135], Shaw distinguishes five kinds of validation techniques to
show that a research result satisfies the requirements posed by the motivating prob-
lem: persuasion, analysis, implementation, evaluation, and experience.

In this thesis, we apply all of these validation techniques. Throughout the thesis,
persuasion is used to motivate our design choices and rationales. In our contribu-
tions, we use practical case studies to analyze and evaluate the applicability of our
techniques. In first contribution, a user experiment is used to study the usefulness
of our conflict detection technique. For all of our contributions, we provide and
discuss implementations. All of our contributions are validated using narrative
demonstrations exemplifying potential experiences of applying the techniques.

1.4 Thesis Outline 15

1.4 Thesis Outline

In the next chapters, we elaborate on the sub-frameworks of our proposed Mo-
PrivFair methodology, their tool support, and their evaluation. Specifically, the
remaining chapters are structured as follows.

¢ In Chapter 2, we propose a semi-automated BPMN-based data protec-
tion engineering framework for detecting conflicts between security, data-
minimization and fairness requirements. We first introduce the key data
protection-related concepts that are used in this chapter. We also present the
SecBPMN?2 and the SecBPMN2-Q on which our contributions are built. We
then introduce an extension of BPMN that permits the specification of these
requirements in business process models, based on existing security annota-
tions from the SecBPMN2 [129] and new data-minimization and fairness an-
notations. Afterward, we demonstrate our conflict detection framework by
example, discuss tool support, and validate the applicability and usability of
our conflict detection techniques based on a case study featuring a healthcare
management system, and an experimental user study, respectively.

¢ In Chapter 3, we propose a semi-automated framework for supporting inte-
gration management between BPMN- and UML-based data protection engi-
neering while establishing traceability. We first present the research work and
the technologies on which our contributions are built. In this chapter, data
protection requirements are captured via the language extensions SecBPMN2
[129] and UMLsec [62]. We then provide a model transformation to bridge
the conceptual gap between SecBPMN2 and UMLsec. We demonstrate our
integration-management framework by example, discuss tool support, and
validate show how our framework can be practically applied based on a case
study featuring an air traffic management system.

* In Chapter 4, we propose a model-based framework that permits an analysis
for individual fairness. The framework is based on UML system design mod-
els. We first introduce a UML profile UMLfair that extends the UMLsec profile
[62] to permit annotating the system design models with fairness-specific in-
formation. Afterward, we demonstrate our framework for individual fairness
by example, discuss tool support, and validate the applicability of our work
based on three case studies featuring a school management system, a delivery
management system and a loan management system.

¢ In Chapter 5, we summarize and conclude this thesis. We also give an outline
on possible future research directions.

16

1 Introduction

1.5 List of Publications

This thesis shares material with seven research papers written by the author of
this thesis. These research papers are listed below. The co-authors have explicitly
confirmed the individual contributions of the author of this thesis to these papers*.
Figure 1.3 shows a mapping between these research papers and the frameworks of
the proposed MoPrivFair methodology.

/BPMN-based Framework for | [1110114] |

Detecting Conflicts (Chapter 2)
Create/Update data protection-
annotated BPMN models

¢
1

Engineering (Chapter 3)

software architecture model

[q’ Transform BPMN models to

)

a Reuse/Create/Update procedural
data protection patterns

a Resolve
conflicts

;-

’% Alignment Checking

\ q, Conflicts Detection /

Legend

!

2 Refine the software
architecture model

!HO&H1W|

/Framework for Integrating BPMN-
and UML-based Data-Protection

Verify technical data protection
policies against the software
architecture model

C

)

[109][112][113]

UML-based Framework for
Individual-Fairness Analysis

(Chapter 4)
[.&

% Method for verifying]

model with fairness-

Annotate the software
specific information

individual-fairness

E l Manual process lﬂ: lAutomated process ——p Sequence flow

Figure 1.3: Mapping between the research papers that are written by the author of
this thesis and the frameworks of the MoPrivFair methodology.

[114] Qusai Ramadan, Daniel Striiber, Mattia Salnitri, Jan Jiirjens, Volker Riediger,
Steffen Staab. A Semi-Automated BPMN-based Framework for Detect-
ing Conflicts between Security, Data-Minimization and Fairness Require-
ments. To appear in a special journal issue of SOSyM (Software and Systems
Modeling). This paper is an extension to our ECMFA’18 paper, which was in-
vited for submission to a special journal issue in SoOSyM for extended versions
of best papers at ECMFA’18.

[113]

Qusai Ramadan, Marco Konersmann, Amir Shayan Ahmadian, Jan Jiirjens,

Steffen Staab. Analyzing Individual Fairness based on System Design
Models. Submitted, 2019.

[112]

Qusai Ramadan, Amir Shayan Ahmadian, Jan Jiirjens, Steffen Staab, Daniel

Striiber. Explaining Algorithmic Decisions with respect to Fairness. In:
SE/SWM 2019: Multikonferenz Software Engineering und Management,
Special Track on Explainable Software. pp. 161-162.

*The signed confirmations are submitted to the PhD committee.

1.5 List of Publications 17

[111] Qusai Ramadan, Daniel Striiber, Mattia Salnitri, Volker Riediger, Jan Jiir-
jens. Detecting Conflicts Between Data-Minimization and Security Re-
quirements in Business Process Models. In: ECMFA 2018: European Con-
ference on Modeling Foundations and Applications. Springer. pp. 179-198.

[109] Qusai Ramadan, Amir Shayan Ahmadian, Daniel Striiber, Jan Jiirjens, Steffen
Staab. Model-based discrimination analysis: a position paper. In: Fair-
Ware@ICSE 2018: IEEE/ACM International Workshop on Software Fairness.
IEEE/ACM. pp. 22-28.

[110] Qusai Ramadan, Mattia Salnitri, Daniel Striiber, Jan Jiirjens, Paolo Giorgini. In-
tegrating BPMN- and UML-based Security Engineering via Model Trans-
formation. In: SE 2018: Fachtagung des GI-Fachbereichs Softwaretechnik.
Gesellschaft fiir Informatik. pp. 63-64.

[108] Qusai Ramadan, Mattia Salnitri, Daniel Striiber, Jan Jiirjens, Paolo Giorgini.
From Secure Business Process Modeling to Design-Level Security Verifi-
cation. In: MODELS 2017: ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems. IEEE. pp. 123-133.

19

Chapter 2

BPMN-based Framework for
Detecting Conflicts between Data
Protection Requirements

This chapter presents a sub-framework of the proposed MoPrivFair (Model-based Privacy
& Fairness) methodology in this thesis. An overview of the MoPrivFair methodology is
provided in Section 1.2 in the first chapter of this thesis.

I/ BPMN-based Framework for RQ2 RQ3

| Detecting Conflicts (Chapter 2) /Framework for Integrating BPMN-
1 Y 1 and UMI..-bas.ed Data-Protection UML-based Framework for
| |#= Create/Update data protection- | | Engineering (Chapter 3) Individual-Fairness Analysis
1 annotated BPMN models 1 (Chapter 4)
1 1 Transform BPMN models to
1 software architecture model & Annotate the software
1 2 1 Y R I model with fairness-
Reuse/Create/Update procedural esolve N specific information
data protection patterns | conflicts

2 Refine the software
architecture model

’% Alignment Checking

Verify technical data protection
policies against the software

architecture model]
\ *f, Conflicts Detection 7 i /

~ 4

[% Method for verifying]

individual-fairness

Figure 2.1: The highlighted part (dashed lines) denotes how Chapter 2 contributes
to the overall workflow of the MoPrivFair methodology.

Requirements are inherently prone to conflicts [48, 148]. Data protection require-
ments such security, data-minimization and fairness requirements are no excep-
tion. In this chapter, we address the problem of detecting conflicts between secu-
rity, data-minimization and fairness requirements early during the business pro-
cess modeling to avoid difficulties of detecting conflicts in later stages of system

2 BPMN-based Framework for Detecting Conflicts between Data Protection
20 Requirements

development!. According to Easterbrook [38], "Failure to recognize conflict between
the perspectives of the participants will cause confusion throughout the lifecycle. Partici-
pants” understanding of the specification will differ, leading to further misunderstandings
during design and implementation".

Specifically, in this chapter, we propose a BPMN-based data protection engineer-
ing framework that supports: (i) the design of business processes considering se-
curity, data-minimization and fairness requirements, (ii) the encoding of such re-
quirements as reusable, domain-specific patterns, (iii) the checking of alignment
between the encoded requirements and annotated collaboration BPMN 2.0 mod-
els based on these patterns, and (iv) the detection of conflicts between the speci-
fied requirements in the BPMN models based on a catalog of domain-independent
anti-patterns. The security requirements were reused from SecBPMN?2, a security-
oriented BPMN 2.0 extension, while the fairness and data-minimization parts are
an original contribution. In order to formulate patterns and anti-patterns, we ex-
tended a graphical query language called SecBPMN2-Q. We report on the feasibil-
ity and the usability of our approach based on a case study featuring a healthcare
management system, and an experimental user study.

2.1 Introduction

The seemingly never-ending collection of customers’ data by many of today’s sys-
tems and organizations and the advances in the amount of storage and processing
power have raised public awareness on privacy [32] and data-misuse concerns [30].
Therefore, protecting the privacy of users and preventing data-misuse concerns be-
come a key activity in companies and governmental organizations.

Apart from security, key data protection concepts are data minimization [53,139] and
fairness [7, 27]. Data-minimization aims at minimizing "the possibility to collect per-
sonal data about others" and "within the remaining possibilities, [to minimize] collecting
personal data" (Pfitzmann et al. in [103], p.6). Fairness aims to ensure equal treat-
ment between data subjects by preventing the misuse of data in decision-making
processes to discriminate data subjects on the ground of personal protected charac-
teristics as defined by laws or organizational policies [14]. For example, Article 22(4)
of the European General Data Protection Regulation (GDPR, [2]) prohibits decision
making based on protected characteristics as defined in Article 9 of the same regula-
tion, such as ethnicity, religion, and gender.

This chapter shares material with the paper accepted for publication in the journal SoSyM
"A Semi-Automated BPMN-based Framework for Detecting Conflicts between Security, Data-
Minimization and Fairness Requirements" [114] and the ECMFA’18 paper "Detecting Conflicts be-
tween Data-Minimization and Security Requirements in Business Process Models"[111].

2.1 Introduction 21

As mentioned in Chapter 1, beyond traditional security concepts such as confi-
dentiality and integrity, five data-minimization concepts, namely Pseudonymity,
Anonymity, Unlinkability, Undetectability and Unobservability, and two fairness con-
cepts, namely Individual- and Group-Fairness, are considered fundamental data
protection concepts to avoid privacy and fairness threats, respectively. Data-
minimization concepts were first defined by Pfitzmann et al. [103] and later in-
cluded in the ISO 15408 standard of common criteria for information technology
security evaluation [60]. The two fairness concepts are formally explored by many
research works in the algorithmic fairness field [7, 45, 49].

While privacy-enhancing technologies [146] and algorithmic fairness techniques
[157] respectively address specific data-minimization and fairness needs, security,
privacy and fairness violations often do not come from loopholes in the applied
protection technologies [54], but from conflicts between data protection interests at
the business level of the target system [10, 50, 52-54, 92]. For example, according to
recent research from Google Al [52], one of the main challenges in the field of the
algorithmic fairness is conflicts between data-minimization and fairness require-
ments. Importantly, undetected conflicts between such requirements can lead to
severe effects, including privacy infringement and legal sanctions.

Detecting conflicts between security, data-minimization, and fairness requirements
is a challenging task, as such conflicts are context-specific and their detection re-
quires a thorough understanding of the underlying business processes. The variety
of requirements arising from security, data-minimization, and fairness considera-
tions gives rise to various types of conflicts. According to Easterbrook [38], two
main sources of such conflicts are:

* Clashes between the system users” needs. Data subjects may require that any
activity with a decision-making purpose should not be able to distinguish
whether their protected characteristics exist or not in the data store from
where the activity retrieves data (Undetectability). This requirement may in-
terfere with an organization’s needs. In some scenarios, different treatments
between data subjects might be authorized. For example, it might be legal
that car insurers charge a premium to male drivers to account for gender dif-
ferences in accident rates [14].

* Misinterpretation of requirements. Misunderstanding the specifications of the
requirements or intentionally deviating from them due to business needs will
result in a non-alighment between the business processes and the require-
ments [129]. These deviations may result in unexpected conflicts between the
requirements that may lead to unwanted vulnerabilities.

For example, for two persons who only differ in their gender and are otherwise
identical, the activity may be required to produce the same output (Individual Fair-

2 BPMN-based Framework for Detecting Conflicts between Data Protection
22 Requirements

ness). To fulfill this requirement, a business analyst may specify that the value of
some gender attribute should not be accessed by the decision-making activity (Un-
detectability). However, this solution does not prevent indirect discrimination [30],
which may arise from the availability of other data that are highly correlated with
gender, such as a person’s first name. In fact, to prevent discrimination, it might
be necessary to access protected characteristics to identify correlated data or re-
balance the output such that no group is discriminated against. In this scenario,
as a consequence, the undetectability and the individual fairness requirements are
conflicting with each other because we can not preserve both requirements.

Contflicts resulting from non-alignments between elicited data protection require-
ments and their specifications in the business processes, if not avoided early, can
make the process of locating their root causes in later development stages difficult.
To avoid these conflicts, the alignment between the requirements and the specifica-
tions in business processes should be ensured.

2.1.1 Problem statement and research questions

A few existing approaches are available to deal with different types of data pro-
tection requirements in the early stages of development. These approaches focus
on the identification of security and data-minimization requirements in the elici-
tation phase without detecting conflicts between them [16, 32, 65, 95]. The output
of these approaches is usually a set of textual requirements. Relying on textually
specified data protection requirements to manually discover conflicts between them
is a difficult and error-prone task for two main reasons.

First, conflicts between the data protection requirements depend on the context of
how the technical and organizational components of the target system interact with
each other. Specifically, conflicts not only result from trade-offs between require-
ments related to the same asset in the system (e.g., anonymous vs. accountable
execution of a task), but also from those related to different assets. For example,
a task may be required to be executed anonymously while writing data to a se-
cure data storage where the identity of the writer must be known for accountabil-
ity reasons. The detection of such conflicts requires an understanding of the un-
derlying business processes and their included interactions between security and
data-minimization requirements, which is a difficult task if the requirements are
provided in a textual format and distributed through multiple documents.

Second, a single data protection concept may have multiple meanings based on
what (which of the system assets) and from whom (i.e., adversary type) to protect.
These variations make it hard to decide whether two specific requirements are con-

2.1 Introduction 23

flicting. For example, providing fully anonymous execution of a specific task hin-
ders the ability of the system to keep the task’s executor accountable, leading to a
conflict. In contrast, providing partial anonymity by means of using pseudonyms is
not conflicting with accountability. Such details, if provided in a textual format, will
make it difficult to keep track of what should be protected, from whom it should
be protected, and how it should be protected.

Furthermore, to our knowledge, there is no approach supports fairness require-
ments in the early development stages. Detecting conflicts between fairness and
other data protection requirements in the early stages of the system development
is currently not possible. A textual syntax with precise semantics amenable to au-
tomatic analysis may be a solution to address the above challenges. However, we
believe that expressing conflicts between data-protection requirements as graphical
patterns during the design of the business process models of a system is a powerful
way to communicate conflicts with the system’s stakeholders. A graphical solution
helps to manage the complexity of the models of large-scale real-world systems.
Motivated by this, in this chapter, we investigate the following research question:

RQ1. How to detect conflicts between security, data-minimization and fairness require-
ments by analyzing business process models?

Our objective is to support business analysts with an approach that permits detect-
ing conflicts between security, data-minimization and fairness requirements early
as during the business process modeling time in order to reduce the effort needed
for detecting conflicts in the later stages of system development.

2.1.2 Contribution

To address the research question RQ1, we present an extension of the Business
Process Modeling Notation (BPMN 2.0, [1]) in two main directions: First, in order
to address the challenge of possible non-alignments between the users’ needs and
their specifications in business process models, we propose an alignment checking
technique based on reusable domain-specific patterns. Second, in order to address
the challenge of detecting conflicts between security, data-minimization, and fair-
ness requirements, we propose a conflicts detecting technique based on a catalog
of domain-independent anti-patterns. Specifically, our contributions are:

1. a semi-automated BPMN-based data-protection engineering framework for sup-
porting: (i) the enrichment of collaboration BPMN models with security, data-
minimization, and fairness requirements, (ii) the encoding of such require-
ments as reusable, domain-specific patterns, (iii) the checking of alignment

2 BPMN-based Framework for Detecting Conflicts between Data Protection
24 Requirements

between the encoded requirements and annotated BPMN models based on
these patterns, and (iv) conflict detection between the requirements in anno-
tated BPMN models based on a catalog of domain-independent anti-patterns,

2. a catalog of domain-independent anti-patterns to support the automatic conflict
detection of among security, fairness, and data-minimization requirements,
where each anti-pattern represents a conflict or potential conflict,

3. a case study featuring a healthcare management system, showing how our
process can be used to uncover conflicts between security, data-minimization
and fairness requirements, and

4. a user evaluation, in which we studied the usefulness of our conflict detection
technique in an experiment with 30 participants.

The security annotations in our BPMN 2.0 extension were reused from an existing
security-oriented BPMN extension called SecBPMN?2 [129]. To express the domain-
specific patterns and domain-independent anti-patterns, we extended a graphical
query language for BPMN 2.0 models called SecBPMN2-Q [129]. While the secu-
rity annotations were reused from the SecBPMN2, our proposed framework is the
first to directly support modeling data-minimization and fairness requirements in
BPMN models. It is also the first to support automatic conflict detection between
specified security, data-minimization and fairness requirements in BPMN models.

This chapter is organized as follows. Section. 2.2 provides the necessary back-
ground. Section 2.3 provides a running example that will be used throughout the
chapter to explain our contribution. Section 2.5 describes our proposed framework
for detecting conflicts between security, data-minimization and fairness require-
ments. Section 2.4 introduces our BPMN extension. Section 2.6 presents our align-
ment verification approach. Section 2.7 presents the considered types of conflicts
and our approach to detect them. Section 2.8 presents the tool support for our ap-
proach. Section 2.9 and 2.10 are devoted to the validation based on a case study
and a user evaluation. Section 2.11 discusses the limitations of our approach and
future work. Section 2.12 and 2.13 survey related work and conclude, respectively.

2.2 Background

In this section, we introduce the fundamental data-minimization and fairness con-
cepts used in our work. We also provide an overview of discrimination and data-
minimization from the legal aspects. In addition, we introduce a BPMN-oriented
security engineering approach whose security concepts we reused.

2.2 Background 25

Table 2.1: Definitions of the considered data-minimization concepts in our work.

Data-minimization

Definition as provided by Pfitzmann et al. [103]
concept

is the inability of an adversary (i.e., outsider or insider) to sufficiently
identify a subject within a set of subjects, called the anonymity set.
is a special case of anonymity where a pseudonym is used as an
Pseudonymity identifier for a data subject other than one of the data subject’s
personal identifiable information.

is the inability of an adversary to sufficiently distinguish whether
two Items Of Interests (IOIs, e.g., subjects, messages, actions, ...)
within a system are related. Although it is not explicitly mentioned
in [103], the definition of unlinkability implies that the two or more
IOIs are of comparable types, otherwise it is infeasible to make the
comparison ([32], p.8).

is the inability of an adversary to sufficiently distinguish whether
an IOl exists or not. By the definition [103], undetectability of an
IOI can only hold against outsider adversary (i.e., neither being

the system nor one of the participants in processing the IOI).

is the undetectability of an IOI against all subjects uninvolved in it
(i.e., outsider adversary) and the anonymity of the subject(s)
involved in the IOI against other subject(s) involved in that

IOl (i.e., insider adversaries).

Anonymity

Unlinkability

Undetectability

Unobservability

2.2.1 Data-minimization concepts

Pfitzmann et al. [103] define five data minimization concepts that can be refined
into privacy requirements for the target system [16, 32, 65, 95]. In Table 2.1, the five
data-minimization concepts that are considered in our work are listed, each with
its definition as provided in [103].

2.2.2 Overview of data-minimization: legal aspects and standards

In this section, we provide a brief overview of data-minimization from the cur-
rent legal and standard frameworks. In what follows we focus on: (1) the con-
cept of data-minimization under the European General Data Protection Regulation
(GDPR); and (2) The data-minimization concepts of the Common Criteria for Infor-
mation Technology Security Evaluation (referred to as Common Criteria).

The European General Data Protection Regulation (GDPR). The general goal of
the GDPR, as specified in Article 1(2), is to protect the fundamental rights and free-
doms of natural persons and their right to the protection of personal data [2]. The
GDPR consists of articles and recitals. The articles represent legal requirements or-
ganizations must follow to demonstrate compliance while the recitals provide ad-
ditional information to supplement the articles.

2 BPMN-based Framework for Detecting Conflicts between Data Protection
26 Requirements

Article 5 of the GDPR defines six principles that a data controller should demon-
strate compliance with them when processing personal data. Among the defined
principles, Article 5(c) states that personal data shall be "adequate, relevant and lim-
ited to what is necessary in relation to the purposes for which they are processed (data-
minimization)". Often to stay in compliance with this principle, system developers
design the functionalities of the system in a way that allows processing personal
data for the purposes they are collected only. However, this does not necessarily
ensure that the collection of personal data is limited to what is necessary to achieve
the system objectives.

Article 25 of the GDPR states that a data controller should adopt organizational
and technical measures to meet data protection by design and data protection
by default. The article suggests pseudonymizing personal data as one of the mea-
sures to achieve data-minimization by default. The GDPR does not mention other
data-minimization concepts such as anonymity, unlinkability, and unobservability.
However, Recital 28 of the GDPR states that "the explicit introduction of "pseudonymi-
sation’ in this Regulation is not intended to preclude any other measures of data protection".
This means that the GDPR introduces the pseudonymity as an example of one pos-
sible technical measure for achieving data-minimization.

Common Criteria. The Common Criteria for Information Technology Security
Evaluation is an international standard (ISO/IEC 15408) for computer security cer-
tification. The Common Criteria provide support in building a secure system by
offering classes of functional security and privacy components that a developer
can select from. Specifically, the classes of the security and privacy components
provides a standard framework that establishes the general concepts and princi-
ples of IT security evaluation. Together with the security refinement guidelines, the
classes support a data protection expert in eliciting data protection requirements.
The privacy function component, which is defined in the second part2 of the Com-
mon Criteria, is restricted to the following data-minimization concepts: Anonymity,
Pseudonymity, unlinkability, and Unobservability.

In comparison with the taxonomy of Pfitzmann et al. [103] whose definitions for
the data-minimization concepts are reused in our work, we find that the Common
Criteria are restricted in several directions: First, the Undetectability is not consid-
ered by the Common Criteria as one of the privacy requirements. Second, the out-
sider perspective in the Common Criteria is not considered. More specifically, all
the considered data-minimization concepts by the Common Criteria are defined to

>The Common Criteria consists of three parts. The first part introduces the general concepts used
throughout the Common Criteria. The second part presents the security and privacy functional
components. The third part provides measures for evaluating the security assurance. The second
part of the Common Criteria is available online at https: //www.commoncriteriaportal.org/
files/ccfiles/CCPART2V3.1R5_marked_changes.pdf (accessed: 16/12/2019).

https://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R5_marked_changes.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R5_marked_changes.pdf

2.2 Background 27

protect a data subject from the software in question or from a set of users for that
software. However, both the software and its users reflect the insider adversary
perspective only. For example, the anonymity in the Common Criteria requires that
"other users or subjects are unable to determine the identity of a user bound to a subject
or operation." ([60], p.119). However, one may be interested in protecting the users’
identities of a system from an outsider adversary who is not part of the system.
Third, some of the data-minimization concepts in the Common Criteria are applied
to a specific item of interest. For example, the unlikability in the Common Criteria
requires that “users and/or subjects are unable to determine whether the same user caused
certain specific operations”([60], p.123). Differently, the definition of the unlikability
by Pfitzmann et al. [103] is not restricted to the users” operations but it considers
other possible item of interests such as data objects and messages.

2.2.3 Fairness concepts

Although there is no single definition of what fairness means [149], two main types
of fairness are distinguished namely, individual fairness and group fairness. These
concepts are provided in Table 2.2 as defined by Galhotra et al. [49].

Table 2.2: Definitions of the considered fairness concepts in our work.

Fairness concept Definition as provided by Galhotra et al. [49]

An activity with a decision-making purpose preserves the individual
fairness if it produces the same decision for every two individuals
whose data, that are given as input to the decision-making activity, are
identical except for the protected characteristics.

An activity with a decision-making purpose preserves the group fairness
if it produces equally distributed outputs for each protected group.

Individual fairness

group fairness

Consider, for example, a decision-making activity in a bank to decide if loan appli-
cants should be given loans. We say that the activity preserves individual fairness
with respect to gender if the activity produces the same result (i.e., loan vs not loan)
for every two identical loan applicants who differ only in their gender. We say the
activity preserves group fairness with respect to gender if the outcome fractions of
males and females who will get a loan are equal.

It is worth mentioning that protected characteristics are not limited to those listed
as protected by the laws and regulations such as the GDPR [2] and the UK Equality
Act 2010. Depending on the organizations’ policies and the context other data may
be considered as protected. For example, the type of technology that people use to
access the web is not considered as protected characteristic in Article 9 of the GDPR
[2], but it can act as protected in the policies of a specific organization in the case
of, for example, advertising decisions.

2 BPMN-based Framework for Detecting Conflicts between Data Protection
28 Requirements

However, avoiding using protected characteristics in a decision-making activity
does not necessarily ensure fairness. Other data may act as proxies for protected
characteristics due to correlations between them, and as a consequence, may lead
to indirect discrimination [29]. For example, in 2016, it was found that a decision-
making software by Amazon.com, Inc., excluded minority neighborhoods with
African American community in the United States from being able to participate
in a delivery-free service?, although the software did not explicitly use ethnicity for
making the decisions.

The decision on whether a piece of data is correlated with a protected characteristic
or not depends on a correlation metric and a threshold value that can be specified
by domain experts. On the other hand, discrimination on the ground of protected
characteristics might be allowed if there is a legitimate purpose that can justify it.
For example, it might be legal to discriminate on age for life insurance decisions.
Data whose effect on the outputs of a decision-making activity can be justified are
called explanatory data [145].

2.24 Overview of discrimination from the legal aspects

In this section, we provide a brief overview of discrimination from the current legal
frameworks. Two important sources of law when considering fairness are equality
laws and data protection laws. The goal of any equality law of a country is to pro-
vide guidance and notice to individuals, organizations, corporations, and agencies
regarding the parameters of illegal discrimination, including the characteristics that
are legally-protected, such as gender and age. Second, the aim of any data protec-
tion law of a country or a region is to regulate the processing of personal data such
as identifying when it is allowed to process a specific data item of an individual.

In what follows we focus on: (1) the concept of non-discrimination under the Euro-
pean General Data Protection Regulation (GDPR); (2) the German General Act on
Equal Treatment 2006; (2) the UK Equality Act 2010.

The General Data Protection Regulation (GDPR). As mentioned earlier in Section
2.2.2, the GDPR consists of articles and recitals. The articles represent legal require-
ments organizations must follow to demonstrate compliance while the recitals pro-
vide additional information to supplement the articles.

The risk of discrimination is explicitly mentioned in Recital 75 of the GDPR, which
states that "the risk to the rights and freedoms of natural persons, [....], may result from
personal data processing which could lead to physical, material or non-material damage,

*Detailed description for the discriminatory behavior of Amazon’s software is available at ht t ps :
//www.bloomberg.com/graphics/2016-amazon—-same—-day/ (accessed: 05/12/2019).

 https://www.bloomberg.com/graphics/2016-amazon-same-day/
 https://www.bloomberg.com/graphics/2016-amazon-same-day/

2.2 Background 29

in particular: where the processing may give rise to discrimination, [.....]". This recital
demonstrates that preventing discrimination is one of the fundamental rights and
freedoms of natural persons.

Fairness in the context of preventing discrimination is mention indirectly in the
GDPR in the sense of non-discrimination. For instance, Recital 71 states a require-
ment to "implement technical and organizational measures appropriate to [...], and prevent,
inter alia, discriminatory effects on natural persons on the basis of racial or ethnic origin,
political opinion, [...]". This recital adds more information to Article 22 of the GDPR,
which prevents decision making based on special categories of personal data. Arti-
cle 9 of the GDPR refers to the following list of personal data as special categories:
racial or ethnic origin, political opinions, religious or philosophical beliefs, or trade union
membership, and genetic data, biometric data, data concerning health or data concerning
a natural person’s sex life or sexual orientation. Article 9(2) of the GDPR adds excep-
tions for the prohibition of processing special categories of data, including reasons
of public interest in the area of public health.

The GDPR does not provide a precise definition of discrimination. However, the
term "discriminatory effects" in Recital 71 shows that the GDPR takes into considera-
tion the so-called indirect discrimination. However, the GDPR does not provide or
suggest mechanisms for preventing indirect discrimination. It also does not define
fairness measures or requirements such as individual fairness and group fairness.

The German General Act on Equal Treatment (General Act). This Act is a German
federal law that aims to prevent or to stop discrimination on the ground of pro-
tected characteristics *. The General Act defines the following list of personal data
as protected characteristics that should not be subject to discrimination: race or eth-
nic origin, gender, religion or belief, disability, age or sexual orientation. The General Act
does not apply in all social and legal areas. Rather, it only prohibits discrimination
in certain situations if it is based on the ground of specific protected characteristics.
Examples of situations where the General Act applies include: employment, health
services, and education.

The General Act provides a distinction between five forms of discrimination. These
five forms are defined with respect to Section 1 of the General Act, which defines
the list of the protected characteristics:

(i) Direct discrimination: less favourably treatment of one person than another in
a comparable situation on any of the grounds referred to under Section 1 of
the General Act.

“The German General Act on Equal Treatment is available online at http: //www.gesetze—im—
internet.de/englisch_agg/ (access: 16/12/2019).

http://www.gesetze-im-internet.de/englisch_agg/
http://www.gesetze-im-internet.de/englisch_agg/

2 BPMN-based Framework for Detecting Conflicts between Data Protection
30 Requirements

(ii) Indirect discrimination: discrimination through an apparently neutral provi-
sion, criterion or practice would put persons at a disadvantage compared
with other persons on any of the grounds referred to under Section 1 of the
General Act, unless that provision, criterion or practice is objectively justified
by a legitimate aim.

(iif) Harassment: discrimination when unwanted conduct in connection with any
of the grounds referred to under Section 1 of the General Act takes place with
the purpose or effect of violating the dignity of the person concerned and of
creating an intimidating, degrading, humiliating or offensive environment.

(iv) Sexual harassment: is concerned with any sexually determined behavior
through which a person feels uncomfortable and hurt in his/her dignity.

(v) Instruction to discriminate: an instruction to discriminate against a person on
any of the grounds referred to under Section 1 of the General Act shall be
deemed as discrimination. This situation happens when someone instructs
someone else, such as an employee, to discriminate against another person.

The General Act does not specify what the term “comparable” in the definition of
direct discrimination exactly means. For example, one can interpret the term com-
parable as two persons who are identical in their data and only differ in their pro-
tected characteristics. If this is the case, then this definition of direct discrimination
reflects the violation of the so-called individual fairness, which states that two per-
sons who are identical in their data and only differ in their protected characteristics
or their proxies should receive the same treatment.

In the General Act, there might be some situations where indirect discrimination is
allowed if it can be justified. However, this case does not apply to direct discrimi-
nation as the definition of direct discrimination in the General Act does not provide
any exception for directly processing protected characteristics.

The UK Equality Act 2010. The goal of this Act is to provide a single framework
for numerous prior discrimination Acts in the United Kingdom such as the Equal
Pay Act 1970, the Sex Discrimination Act 1975, and the Race Relations Act 1976.

The UK Equality Act® 2010 provides nine categories of protected characteristics:
Age, disability, gender reassignment, marriage and civil partnership, pregnancy and ma-
ternity, race, religion or belief, sex, sexual orientation. In compassion to the special cate-
gories of data that are provided by the European General Data Protection (GDPR),
the list of the protected characteristics in the UK Equality Act 2010 seems to be

5The UK Equality Act 2010 is available online at http: //www.legislation.gov.uk/ukpga/
2010/15/pdfs/ukpga_20100015_en.pdf (access: 16/12/2019).

http://www.legislation.gov.uk/ukpga/2010/15/pdfs/ukpga_20100015_en.pdf
http://www.legislation.gov.uk/ukpga/2010/15/pdfs/ukpga_20100015_en.pdf

2.2 Background 31

restricted. For example, according to the GDPR, making decisions on the basis of
genetic information is not allowed. However, the genetic information is not defined
as a protected characteristic in the UK Equality Act 2010.

Similar to the GDPR and the German General Act, the UK Equality Act 2010 does
not differentiate between specific types of fairness requirements such as individual
fairness and group fairness. However, different from the GDPR, the UK Equal-
ity Act 2010 states explicitly that discrimination can happen directly or indirectly.
These two forms of discrimination are defined as follows:

* Direct discrimination is defined in Section 13(1) of the UK Equality Act 2010 as:
if with respect to a specific protected characteristic, A (i.e., a person) treats B
(i.e., another person) less favourably than A treats or would treat others.

e Indirect discrimination is defined in Section 19(1) of the UK Equality Act 2010
as: A (i.e., a person) applies to B (i.e., another person) a provision, criterion or
practice which is discriminatory in relation to a relevant protected character-
istic of B's.

Similar to the GDPR the UK Equality Act 2010 adds exceptions for processing pro-
tected characteristics. For example, Sections 158-159 of the Equality Act 2010 permit
positive actions under certain circumstances. Positive action is a range of measures
under the Equality Act 2010 which can be lawfully taken to encourage and train
people from under-represented groups. For example, if an academic organization
has a low rate of applications from women for an academic career in certain sub-
jects, then positive actions may be undertaken by the organization to encourage
women and improve this situation.

2.2.5 BPMN-based data-protection engineering

Modeling data protection requirements during the design phase of the business
processes models is a promising research direction in the field of data protection
engineering [82]. The key idea is to extend graphical business process modeling
languages such as BPMN [1] to support the modeling and analysis of data protec-
tion requirements.

In the state of the art, there is a lack of research work on supporting data-
minimization and fairness requirements in business process models. For data-
minimization requirements, we are only aware of the work proposed in [120],
which considers one data-minimization requirement, namely anonymity. How-
ever, fairness and further fundamental data-minimization requirements such as

2 BPMN-based Framework for Detecting Conflicts between Data Protection
32 Requirements

unlinkability were not addressed yet. Readers interested in a comprehensive
overview of the concepts that have been considered by previous BPMN data
protection-oriented extensions are referred to Maines et al.’s survey in [82].

To capture conflicts between security, data-minimization, and fairness require-
ments, a unified framework for modeling these types of requirements is needed.
Compared to other BPMN data protection-oriented extensions, we found that
SecBPMNZ2 [129] offer the following advantages:

¢ First, in contrast to the research work in [13, 17, 75, 89, 120, 124, 151] which
support only a restricted set of security aspects, SecBPMN2 enriches BPMN
2.0 modeling language with 10 security concepts. Reusing the SecBPMN2 se-
curity concepts allows us to study interactions between a comprehensive set
of security, data-minimization, and fairness requirements, enabling a pow-
erful approach to conflict detection. In Section 2.2.6, we list the 10 security
concepts of SecBPMN?2 together with their annotations and definitions.

* Second, while other works [96, 150] use textual stereotypes to enrich busi-
ness process models with security requirements (e.g., «confidentiality»),
SecBPMN2 represents security requirements using graphical annotations
[129]. Compared to textual annotations, graphical ones can reduce the cogni-
tive complexity for understanding the resulting business process models [91],
and as a result, contribute to usability.

* Third, SecBPMN?2 provides a security query language for specifying queries
that can be matched against a given SecBPMN2 model, called SecBPMN2-
Q [129]. We reuse and extend this query language in our approach for
two dependent purposes: First, formulating the security, data-minimization,
and fairness requirements of the system in questions as patterns that can be
used later for reasoning about the alignment between these requirements
and the corresponding SecBPMN2 model of system-to-be. Second, specify-
ing domain-independent conflicts between security, data-minimization, and
fairness requirements as anti-patterns that can be used later for uncovering
conflicts in SecBPMN2 models. Details description on the query engine of
SecBPMN2-Q is provided in Section 2.2.7.

2.2.6 SecBPMN?2 security concepts

The security concepts of SecBPMN2 are designed with respect to security con-
cepts of the Reference Model on Information Assurance and Security (RMIAS) [25],
which was assembled through an analysis of security aspects proposed by known
reference models such as the Confidentiality-Integrity-Availability (CIA) triad.

2.2 Background 33

In what follows, we list the 10 security concepts that are supported by SecBPMN?2,
each with its corresponding annotation and definition as provided in [129]. Worth
noting that the binding of duties, separation of duties and non-delegation SecBPMN2
security concepts are not considered as part of the RMIAS. These concepts were
added to the SecBPMN?2 by the authors of [129] in order to support a comprehen-
sive set of security concepts.

- @ Accountability specifies that the system should hold the executors of the
activities responsible for their actions.

— @® Authenticity imposes that the identity of a given activity’s executor must be
verified, or that it should be possible to prove a given data object as genuine,
respectively.

- @ Auditability indicates that it should be possible to track of all actions per-
formed by an executor or accessor of an activity, data object, or message flow.

- &8 Non-delegation specifies that an activity shall be executed only by assigned
users.

- 7; Non-repudiation imposes that an executor or accessor of an activity, data
object, or message flow should not be able to deny his/her actions.

- @& Binding of duties requires that the same person should be responsible for
the completion of two related tasks.

- .k Separation of duties requires that different persons should be responsible
for the completion of two related tasks.

- 'ﬁ' Confidentiality indicates that only authorized users are allowed to read
data from a given activity, message flow, or data object.

- -j"; Integrity indicates that only authorized users are allowed to modify data
from a given activity, message flow, or data object.

- © Awailability indicates that it should be possible to ensure that an activity,
data object, or message flow is available and operational when they are re-
quired by authorized users.

In what follows, the data protection concept, otherwise it is mentioned, is used to
refer to all kind of security, data-minimization, and fairness concepts that are con-
sidered in this chapter.

2 BPMN-based Framework for Detecting Conflicts between Data Protection
34 Requirements

2.2.7 SecBPMN2-Q

SecBPMN2-Q is a security query language for specifying queries that can
be matched against a given SecBPMN2 model [129]. For query evaluation,
SecBPMN2-Q uses an artificial intelligence system based on disjunctive logic pro-
gramming, DLV [80]. In particular, it is based on planner functionality called DLV-
K [40]. The planner uses a knowledge base and defines possible plans to be ex-
ecuted in order to achieve given objectives. In case of SecBPMN?2, the knowledge
base consists of the business process(es) analyzed, while the objectives are the (anti-
)patterns to verify. SecBPMN2 instructs DLV-K to search possible executions of the
process(es) that satisfy the patterns; if it finds at least one, it means that the (anti-
)pattern is matched. This solution allows to overcome performance issues due to
the possible very complex design of business processes.

2.3 Running Example

In this section, we provide the running example business process model that will
be used throughout this chapter. Figure 2.2 represents a business process in the
context of healthcare management. A patient uses a telemedicine device to receive
an over-distance healthcare service and evaluates the service through an online
evaluation portal. A patient who wishes to donate in one of his vital organs can fill
a donation form and send it through an online donation portal.

Executors of a business process are represented by pools® and lanes such as “Tele-
medicine Device” and “System Portal”, respectively. Communication between pools
is represented by message flows; the content of such communications is represented
using message. For instance, “Tele-medicine Device” sends the message “measures” to
“System Portal”. Atomic actions are represented with tasks, for example, “measure
vital signs”. A task is positioned inside a pool with the meaning that the actor repre-
sented by the pool will execute the task. For example, “measure vital signs” task will
be executed by “Tele-medicine Device”.

Data Objects represent data used in a business process model. For example “EHR”
represents an electronic healthcare record, i.e., data about patients. Data objects are
connected to tasks using a data association: a directional relation used to model the
flow of data between a task and a data object. If a data association starts from the data
objects and targets the task, then the task reads the data object. If the data association
targets the data objects then the task writes the data objects. If the data objects is
connected to the same task with two data associations with different orientations,

®In this chapter, we use italic for concepts and “sans serif font” for examples.

2.3 Running Example 35

autoPropagation: True
dataSubjectRole: {Patient}
anonymizedWithin: {All Patients}

% level: full anonymous
{ 2 \I insider: True
i # 1‘ . | | enforcedBy: {zero-knowledge proof}
[! .
Tele-medicine Device e-Health Care Service Provider Patient
System Portal Emergency Unit l.l"j Start
/"'> Start every f’é\) Receive R o -
b two hours /ol "E/ dai gcone.a - Y
o W
-w i No Yes
No 8 Yes = Check i
! the case | i donator?
K -r-- measures i Fill evaluation
Measure | “* > config? I EHR Mt _ _
vital signs | s i ia @Yes : = | Fill donation
i —— | s
.- | v form
= 1| emergency =
End 2 E call? . q_’_‘--—\
I e
\epefCate| || 1@ | .
Send data /= Donoris ! pal i { J
to portal ===t Br.' P i] i [Evaluation i
Ny avaialble ! & Form i Donation
: i, Form
Ej Submit i
=y evaluation Submit donation
atients in ;
i -] uest
needofa | ‘ pr- T req
transplant ; : End3 i - | v
Determine : VEvaluation; -oTTTTTTTTTY '"'D ® !
s a1 (2 sReceive 1| il evaluation i
the ! -y " >N |
beneficiary i — evaluation (g5 489 !
! - i
1 |
5@ =
1
n
End 6 Fs i
autoPropagated: False autoPropagated: False donation
dataSubjectRole: {Patient} dataSubjectRole: {Patient} request
type: individual-faimess protect: {age, insurance type}
protect: {insurance type} insider: True
useExplanatory: {age, medical history} y:{privacy-p ving data mining method}
threshold: 0.5
er y: {discrimination-free algorithm}

e - = . ;
'v Confidentiality '-b’ Accountability «p Anonymity % Unlinkability L% Faimess

Non-repudiation .'. Binding of duties % Undetectability <@ Unobservability

Figure 2.2: Running example: Specifying security, data-minimization, and fairness
requirements in a healthcare business process.

then the task modifies the data object. For instance, “Check the case” task reads the
“EHR” data object, while “Update the EHR” writes the same data object.

Events represent external actions/states that interact with a business process.
Events in SecBPMN?2 are represented with circles. There are two types of events
(relevant for the purpose of our running example): (i) start events, which represent
the initial point of a business process; (ii) end events, which represent the terminal
point of a business process. For example, the start event of the process executed in
the pool “Tele-medicine Device” specifies that the process will start every two hours,

2 BPMN-based Framework for Detecting Conflicts between Data Protection
36 Requirements

while the two start events in the swimlane “System portal” specifies that the pro-
cesses will start when a message is received.

Gateways specify deviations of the execution sequence, they split the processes in
two or more branches and allow an executor of the process to execute one branch
based on a condition specified. For example, the gateway “measures>=config?” in
swimlane “System portal”, specifies that if “measures” is higher than the parameter
“config”, then the right branch is executed, otherwise, the left branch is executed.

Security concepts are represented with orange annotations. As explained in Sec-
tion 2.2.6, SecBPMN2 supports 10 security annotations. However, in our running
example, we use only 4 of them, described as follows:

o Confidentiality (%¥) is associated to message flows, meaning that the content of
the message is to be preserved and not to be accessed by unauthorized users,
respectively. Depending on the security mechanism used to enforce such se-
curity annotations, the communication channel that is used to exchange the
messages, represented in the business process, will encrypt messages or use
technologies such as Virtual Private Networks (VPN).

o Accountability (@) can be associated with tasks and expresses the need for
monitoring the execution of the tasks. In Figure 2.2 is associated to “Send data
to portal” meaning that the task’s executor must be monitored. Implementing
such monitors will require a monitoring component that intercepts the calls
to the tasks or store the logs of the task’s execution, for later inspections.

* Bind of Duty (@) requires the same actor to be responsible for the completion
of a set of related activities. This annotation must be linked to two pools or
two lanes and can be enforced using an access control security mechanism,
which forces a set of activities to be executed by the same user.

* Non-repudiation (7*) indicates that the execution (or non-execution) of a
BPMN element must be provable.

Some of the security annotations of SecBPMN2 can be defined in one or more vari-
ants, depending on which element the annotation is connected. For example, as
shown in Figure 2.3, Non-repudiation (3_&}) has three variants.

Our new fairness and data-minimization concepts, discussed in this chapter, are
represented with yellow annotations in Figure 2.2, expressing that these concepts
are more directly related to data-minimization and fairness than security. The data-
minimization and fairness annotations are an original contribution of our work and
we will describe them through the next sections of this chapter.

2.4 Modeling Security-, Data-Minimization- and Fairness-Requirements 37

Non-repudiation

Non-repudiation-Activity Non-repudiation-DataObject
Th 4 ds t t ™ . The system needs prevent an
TOTCR| B coiirion b s taten | (T &% accessor to the data object from being
= J Fxecutor-from beirg;able o geny able to deny that she read/modified
that she executed the task. Data Object data in that data object.

Non-repudiation-MessageFlow

Pool Pool

’ The system needs to prevent a sender from being able to deny that she
-> sent that message.

Message

Figure 2.3: All variants of SecBPMN's non-repudiation annotation.

2.4 Modeling Security-, Data-Minimization- and Fairness-
Requirements

In this section, we propose a BPMN extension for specifying security, data-
minimization, and fairness requirements. Our support for data-minimization and
fairness requirements for the design of business processes is an original contribu-
tion, while the security-specific elements are reused from SecBPMN2, an existing
security-oriented BPMN 2.0 extension.

2.4.1 Data-minimization and fairness annotations

The meta-model of our BPMN extension with data-minimization and fairness con-
cepts is shown in Figure 2.4. Gray parts in the meta-model are part of SecBPMN2
elements while the white parts are new elements. As shown in Figure 2.4, in order
to allow users to enrich business process models with data-minimization and fair-
ness requirements, we extended the artifact class from BPMN with five concepts,
namely anonymity (o), undetectability (3,), unlinkability () and unobservability
(@), and fairness (£Z). The first four concepts are data-minimization-specific.

8¢

<<EEnum>> <<EEnum>> <<EEnum>>
AnonymityLevel FairnessType ElementType
Association Artifact — - - Activity
- FullAnonymous - IndividualFairness | | _ MessageFlow
AN AN - Pseudonymous - GroupFairness - DataAssociation
- DataObject
Element 1 SecurityAssociation 0.1 Data-Protection Annotation DataSubiectRol o0.*
- type : ElementType 1.2 +source - ; — protectDataSubjectRole » atasubjectrole

+target 1.0 autoPropagated : EBoolean = false d name : EString 0.%
Mechanism 4 enforcedBy 1..* |- canBeLinkedWith : EList<ElementType> 0.. 0..* A
* £
- name : EString 0- ZF =

s

I I I | g

N
53 Fairness @ Unlinkability % Undetectability < Anonymity & Unobservability g.

- type: FairnessType = individualFairness| |_insider : EBoolean = false - level : AnonymityLevel = pseudonymous R g

- threshold:EDouble T [o.* - insider : EBoolean = false 0.
0.* 0.* S 0.% |o..*
S
protect » v1o0.* anonymizedWithin »
0* SensitiveData «anonymize
- name : EString 0..*

useExplanatory » 0..*

** Attributes show their default values.

Figure 2.4: Meta-model of our BPMN extension.

uonosajolJ ere(] usamiaq SIdIfjuo) 811[.]39.]80 J0] yromoawel paseq-NJANJLI ¢

spuswaImbayy

2.4 Modeling Security-, Data-Minimization- and Fairness-Requirements 39

Since an additional concept described by Pfitzman et al., pseudonymity, is a special
case of anonymity, we use one annotation for both concepts. Similarly, since both
individual- and group-fairness concepts are special types of fairness, as described in
Section 2.2.3, we use the same annotation for both of them. However, to allow cap-
turing the variations between these concepts, a type attribute in the fairness anno-
tation allows specifying the fairness type (i.e., group- or individual fairness), while
a level attribute in the anonymity annotation allows specifying the required level
of anonymity (i.e., fully anonymous vs pseudonymous). Using one annotation to
represent related concepts is recommended to reduce graphical complexity [82].

Also for the purpose of reducing graphical complexity, we introduced a specific
annotation for unobservability, although it, by definition, can be achieved by pre-
serving both anonymity against insider adversaries and undetectability against
outsider adversaries. We designed the graphical syntax of our annotations by fol-
lowing Moody’s guidelines for increasing the usability of modeling languages [91].
The data-minimization and fairness annotations share two common visual aspects
with the security annotations of the SecBPMN2: they all have a solid texture, and
a circular shape; they differ in their fill color, using yellow instead of orange. We
believe that having different colors for security on one hand and fairness and data-
minimization, on the other hand, contributes to usability, as one can easily dis-
tinguish between fairness and data-minimization annotations from security ones.
Given the graphical syntax of our annotations is described, in what follows we
describe the meta-model of our BPMN extension.

A special type of association called SecurityAssociation is used to link the proposed
annotations with elements in the BPMN model. Each of the proposed annotations
is constrained to be linked with one or a list of BPMN elements of the following
types: activity, message flow, data association or data object. That is to avoid over-
lapping semantics of different annotations. For example, two messages cannot be
linked to each other as related (i.e., unlinkability) if they are sent anonymously (i.e.,
anonymity). Therefore, having both unlinkability and anonymity annotations for
message flows would be redundant. The linkage constraints are enforced by the
SecBPMNZ2 editor. Details on the linkage constraints and the rational beyond them
are provided in 2.4.2.

As shown in Figure 2.4, our proposed data-protection annotations have a refer-
ence to the Mechanism class called enforcedBy. This reference can be used as an at-
tribute to allow business analysts to specify the mechanism(s) needed to enforce a
data-minimization and fairness requirement in later phases of development. Other
details for specifying data-minimization and fairness requirements are captured
using other attributes. For example, in the case of a fairness annotation, specific
references can be used to describe in particular protected characteristics and explana-
tory data, which are described in Section 2.2.3.

2 BPMN-based Framework for Detecting Conflicts between Data Protection
40 Requirements

To reduce specification overhead, the proposed annotations have an attribute au-
toPropagated which supports the propagation of the requirement to other elements
in the model. Four cases of propagation are possible, depending on the type of the
element the annotation is linked with:

1. for an activity, the requirement is propagated to all following tasks in the
same lane,

2. for a message flow, the requirement is propagated to all message flows that
goes from the source pool of the considered message flow to its target pool,

3. for a data input association, the requirement is propagated to all data input
associations that read data from that data object in the same lane, and

4. for a data output association, the requirement is propagated to all data output
associations that write data to that data object in the same lane.

In the rest of this section, the proposed data-minimization and fairness annotations
are defined. Each of them is defined in terms of one or more variants since the se-
mantic of annotations change based on which element the annotation is connected.
The definitions are summarized in Figure 2.5. Next, we describe the definitions and
the attributes that can be used to shape the exact semantics of the annotations.

Anonymity, as shown in Figure 2.5, comes in four variants, based on the BPMN 2.0
element it is linked to:

(i) Anonymity-Activity specifies that the executor of the task should be anony-
mous within a set of executors for the task with respect to a given adversary
perspective.

(ii) Anonymity-MessageFlow specifies that the sender of the message should be
anonymous within a set of senders for the message with respect to a given
adversary perspective.

(iif) Anonymity-DatalnputAssociation specifies that the task should only read an
anonymized variant of a predefined list of sensitive data when retrieved from
the data object.

(iv) Anonymity-DataOutputAssociation specifies that the task should not write a
predefined list of sensitive data to the data object.

Based on our meta-model in Figure 2.4, the following attributes can be used to
shape the exact semantic of the anonymity annotation: the reference attribute pro-

2.4 Modeling Security-, Data-Minimization- and Fairness-Requirements 41

Anonymity
Anonymity-Activity Anonymity-DatalnputAssociation

A4

= The executer of the task should be anonymous [Thetaskshould only retrieve an

Task ~-4a Task (- . A X
‘ W \ith respect to a given adversary perspective. et anonymized version of the data object.
ata Object

Anonymity-DataOutputAssociation Anonymity-MessageFlow
:’ o Pool = Pool The sender of the message should
[o } i D The tfa%k should not write given personal v, + be anonymous with respect to a
Dats Obiect identifiers to the data object. Message given adversary perspective.
Undetectability
Undetectability-Activity Undetectability-MessageFlow
‘ Task ‘___,c}; An adversary should not be able to detect o -1 The message should not be
whether the task is executed or not.) detectable by outsider adversaries
Undetectability-DatalnputAssociation || [i (i-e., cannot distinguish the message
from noise). By its definition,
The task should not be able to distinguish undetectability is only possible
’, Teak ‘ e whether given data are exists in the data against outsider adversaries.
Data Object gbject or not.
Unlinkability
Unlinkability-Process Unlinkability-DataObject
R P

i From adversary perspective, it should
not be possible to link the two data

DataObject ~ DataObject ~Objects as related.
A B

Pool Podl From an adversary perspective, the
execution of the two processes should
not be linked as related.

Unobservability Fairness
Unobservability-MessageFlow Fairness-Activity

Pool @ Pool The sender of the message should
' be anoymous with respect to insider Task Wm The task should not discriminate with respect
"""" ,i fooncs. adversaries and the message it self to some given protected charachteristics.
should not be detectable by

outsider adversaries.

Figure 2.5: All variants of our data-minimization and fairness annotations.

tectDataSubjectRole specifies the roles who can execute an activity or send a mes-
sage in case anonymity linked to an activity or a message flow, respectively. While
in case anonymity linked to a data association, it specifies the roles of the data sub-
jects whom the data are about. The reference attribute anonymizedWithin can be
used to specify the anonymity set that an involved data subject should be anony-
mous within. In case anonymity is linked to a data association, the reference at-
tribute anonymize can be used to specify the list of sensitive data that should be
anonymized when writing/reading them to/from a data object.

The attribute level specifies the required anonymity level (i.e., fully anonymous or
pseudonymous). In some scenarios, the system requires the executor of an activity

2 BPMN-based Framework for Detecting Conflicts between Data Protection
42 Requirements

should be accountable, and thus, pseudonyms should be used to de-identify the
executor of the activity. The attribute insider specifies against who to protect. The
considered adversary type is either just outsider (false) or both outsider and insider
(true). We define the outsider adversary as any entity being part of the surround-
ing of the system considered. The insider is any entity being part of the system
considered, including the system itself.

The example model Figure 2.2 shows four anonymity annotations associated to
different BPMN elements. Consider, for example, the one associated with the “Fill
evaluation form” activity, which is at the right hand of the model. This annotation
specifies that a patient shall be able to execute the “Fill evaluation form” task anony-
mously within the set of “all patients” without being identifiable by either outsider or
insider adversaries. The annotation suggests using the “zero-knowledge proof” [90]
mechanism to enforce anonymous authentication. Since the requirement is propa-
gated, the same requirement applies to the “Submit evaluation” task.

Unlinkability, as shown in Figure 2.5, comes in two variants, based on the BPMN
2.0 element it is linked to:

(i) Unlinkability-Process can be linked with two pools/lanes to specify that an ad-
versary of the given type shall not be able to identify two executed processes
as related. In other words, if linked to two pools, this annotation imposes that
a subject may make use of multiple services without allowing others to link
these uses together as related [103].

(ii) Unlinkability-DataObject can be linked with two data objects to specify that,
from the given adversary perspective, it should not be possible to identify
the two data objects as related. More specifically, if linked to two data objects,
this annotation specifies that the two data objects should do not share data
that may allow others to profile a data subject by linking information from
different sources about the data subject as related to each other.

Based on our meta-model in Figure 2.4, the reference attribute protectDataSubjec-
tRole can be used to specify the data subjects who should be protected from the
linkability threats in terms of using their roles. Since unlinkability can only be ap-
plied to two specific processes or data objects, it cannot be propagated to other
elements. The attacker type is specified using the insider attribute, in the same way
as in the anonymity case. The example model in Figure 2.2 includes two unlinka-
bility annotations. Consider, the unlinkability annotation associated with the two
data objects namely, “EHR” and “Evaluation”. This annotation specifies that both out-
sider and insider adversaries must not be able to link an “EHR” and an “Evaluation”

2.4 Modeling Security-, Data-Minimization- and Fairness-Requirements 43

data objects as related. The annotation suggests using the “Role-based Access Con-
trol Mechanism (RBAC)” [46] and the “k-anonymity” [143] mechanisms to enforce this
requirement. We did not show these specifications in the model to keep it readable.

Undetectability, as shown in Figure 2.5, has three variants, based on the BPMN 2.0
element it is linked to:

(i) Undetectability-Activity specifies that an adversary should not be able to detect
whether an activity is executed or not.

(ii) Undetectability-DatalnputAssociation specifies that the task should not be able
to distinguish whether a predefined list of sensitive data exists in a data object
or not.

(iii) Undetectability-MessageFlow specifies that an adversary cannot sufficiently
distinguish true messages from false ones (e.g., random noise).

Based on our meta-model in Figure 2.4, the following attributes can be used to
shape the exact semantic of the undetectability annotation: The reference attribute
protectDataSubjectRole can be used to specify the roles of the involved data subjects
whom their sensitives data should be protected from the detectability threats. In
case an undetectability annotation is linked to a data input association, an addi-
tional reference attribute to the SensitiveData class called protect is applied. This
attribute allows us to specify the predefined list of sensitive data and that a conclu-
sion about their existence in the data object in question should not be possible.

By definition ([103], p.16), undetectability is only possible against outsider adver-
saries. This is true only when the target of undetectability is to protect a sensitive
message or the execution of a sensitive activity from the detectability threat, as the
work in [103] defines the undetectability at the network level. However, in an in-
formation system, one may be interested in preventing insiders from being able to
draw a conclusion about whether, at least, some sensitive data are available in a
specific data object or not. Thereby, in our work, the considered adversary type if
an undetectability annotation is linked to an activity or message flow is the out-
sider adversary. While if an undetectability annotation is linked to a data input
association, then insider is the considered adversary.

The example model Figure 2.2 shows two undetectability annotations. Consider,
for example, the undetectability annotation linked with the data-input association
between the “Determine the beneficiary” task and the “patients need of a transplant”
data store in the “System Portal” pool. The annotation specifies that the “Determine
the beneficiary” task, as insider activity in the business process, should not be able

2 BPMN-based Framework for Detecting Conflicts between Data Protection
44 Requirements

to draw a conclusion about whether the “age” and the “insurance type” of the patient
are stored as part of their data in the “patients need of a transplant” data store. The
annotation suggests to use a “privacy-preserving data-mining method” (e.g., [88]) as a
mechanism to enforce this requirement.

Unobservability, as shown in Figure 2.5, can only be applied to message flows,
leading to one variant called Unobservability: the sender of the message should be
anonymous with respect to insider adversaries and the message itself should not
be detectable by outsider adversaries.

Based on the meta-model in Figure 2.4, the following reference attributes can be
used to specify the exact semantic of the unobservability annotation: the attribute
protectDataSubjectRole specifies all roles that can act as the sender for the message.
The attribute anonymizedWithin can be used to specify the anonymity set that the
involved data subjects should be anonymous within.

The example model includes an unobservability annotation linked with the mes-
sage flow between the “Submit evaluation” task and the “Receive evaluation” event.
This annotation specifies that an outsider adversaries should not be able detect true
messages being sent over the message flow from false ones, and the patient who
sent messages over the message flow must be anonymous to the insider adversary
within all patients. The annotation suggests to use the “DC-networks” [24] and the
“Dummy traffic” [115] as mechanisms to enforce this unobservability requirement.

Fairness, as shown in Figure 2.5, can only be applied to activities, leading to pre-
cisely one variant called Fairness: it specifies that the activity should not discrimi-
nate between the data subjects based on a specific list of their sensitive data, called
protected characteristics.

Based on the meta-model in Figure 2.4, the exact semantic of the fairness annotation
can be shaped by the protectDataSubjectRole, Protect and useExplanatory reference at-
tributes and the type attribute, as it follow. The reference attribute protectDataSub-
jectRole specifies the set of the data subjects that may be affected by the output of
the fairness-annotated activity in terms of their roles in the system.

Depending on the business needs, in one context, discrimination between data sub-
jects based on their SensitiveData (i.e., in this case, sensitive data represent protected
characteristics) may not be allowed (e.g., age- and gender-based discrimination for
hiring decisions), while in another context discrimination between data subjects
based on the same SensitiveData or a subset of them might be allowed (e.g., age-
based discrimination for life insurance). Such data can be specified in the fairness-
annotated activity by using the protect and useExplanatory attributes. The former
permits specifying the list of protected characteristics that should not influence the

2.4 Modeling Security-, Data-Minimization- and Fairness-Requirements 45

output of the fairness-annotated activity. The latter specifies explanatory data, i.e.,
sensitive data whose usage in the fairness-annotated activity can be justified in the
given context to counter discrimination.

The attribute type specifies the required fairness type (i.e., individual- or group-
fairness). In some scenarios, the output of the fairness-annotated activity should be
equally distributed between the fractions of the affected data subjects with respect
to their protected characteristics (group fairness). In other scenarios, the fairness-
annotated activity must produce the same output for every two data subjects who
differ only in their protected characteristics (individual fairness).

The attribute threshold is used for proxy discrimination. More specifically, in ad-
dition to what is defined as protected characteristics and explanatory data, a task
may process other data which are not protected by law, but can act as proxies for
protected characteristics if there is high correlations between them. For example,
although the address data item is not defined as a protected characteristic by the
recent regulations, in some countries such as the United States, the address can act
as a proxy for the ethnicity due to a high correlation between them.

Deciding when two data items are correlated so strongly that the one acts as a
proxy for the other requires a correlation metric and a numeric threshold, which
have to be determined by domain experts. Varying metrics have been used in
previous work to measure correlations [145]. For example, the term “Pr(insurance
type = Private | job = Engineer)” represents the probability that a person is privately-
insured given that the person is working as an engineer. In contrast, the term “En-
tropy(insurance type = Private | job = Engineer)” measures the uncertainty that a person
is privately-insured given that the person is working as an engineer. It is note-
worthy that variant correlation metrics may lead to different results, and a domain
expert has to choose the most appropriate metric carefully.

The example model in Figure 2.2, specifically at the bottom of the pool “System Por-
tal”, shows one fairness annotation associated with the “Determine the beneficiary”
task. The specifications of this annotation are shown in a box linked with the fair-
ness annotation. This annotation specifies that the “Determine the beneficiary” task
should consider an equal priority for every two patients who need an organ trans-
plant and differ only in their “insurance type” (i.e., public or private insurance) unless
there is something that prevents such a difference in their “ages” and/or their “med-
ical histories”. For instance, a privately-insured kid with a critical medical history
may receive a higher priority than a publicly-insured aged patient. Although this
decision discriminates against the second patient twice, as an aged and a publicly-
insured patient, this may be considered legal if it can be justified. The annotation
suggests using a “discrimination-free algorithm” (e.g., [22]) to enforce fairness and “0.5”
as the threshold for when to consider a data item as a proxy for the “insurance type”.

2 BPMN-based Framework for Detecting Conflicts between Data Protection
46 Requirements

2.4.2 The underlying background of the linkage constraints

In our work, as described in Section 2.4.1, an annotation can be linked with a BPMN
element if that element may act as a subject to the corresponding data-protection
threat of that annotation. In this section, we give details on the rationale beyond the
linkage constraints of our proposed data-minimization and fairness annotations.

The underlying background for our linkage constraints benefits from the research
work of Deng et al.[32], that aims to elicit data protection requirements based on
the data flow diagram of a targeted system. However, differently from our work,
the authors in [32] mapped every data-protection threat to all elements of the data
flow diagram, while in our work we argue that some data-protection threats are
the consequence of other threats in the system.

Specifically, we mapped the threats to specific elements in a restricted list of BPMN
model elements to avoid overlapping meaning of different data-minimization an-
notations. Generally, Table 2.3 shows that the BPMN activities, data associations, data
objects, and message flows can be subject to one or more privacy threats.

In our work, as shown in Table 2.3, we consider the following threats:

* identifying data subjects who their real identity should not be uncovered for
privacy reasons (Identifiability).

* linking different activities/data from different sources as related (Linkability).

¢ leaking sensitive information about private communications or stored data
even if they are encrypted (Detectability).

* identifying data subject by insiders and detecting privacy information about
them by outsiders if happen together they can lead to the so-called Observ-
ability threat.

e discriminating data subjects on the ground of protected characteristics (e.g.,
gender) (Discrimination).

The aforementioned threats can be mitigated by achieving the data protection goals
behind our proposed annotations, respectively, as follows: Anonymity, Unlinkabil-
ity, Undetectability, Unobservability, and Fairness. Table 2.3 displays the mapping
between the basic elements of BPMN and the set of privacy threats identifiability,
linkability, detectability, observability, discrimination.

Table 2.3: Mapping data protection threats to BPMN elements

Data Protection Threats

Category Element e ntifiability | Linkability | Detectability | Observability | Discrimination
Activity ° o ° o °
Flow Objects Event — — — — —_
Gateway — — — — —
. Data Object _
Data Objects Data Store o o o o —
Sequence Flow — — — — _
Connect Objects | Message Flow o o . . —
Data Association o o o o —
. Lane o o o o —
Swimlanes Pool S . 5 S —

The symbol (e) indicates a potential data-protection threat at the corresponding BPMN element. The symbol (o) indicates that the BPMN element
can be subject to the corresponding data-protection threats. The symbol (—) indicates that the BPMN element cannot be subject to the corresponding

data-protection threats.

sjuawaIIbay[-ssauIre,] pue -UORRZIWIUIA-BIB(] -AJ1INd9G SUIPPON ¥'C

Ly

2 BPMN-based Framework for Detecting Conflicts between Data Protection
48 Requirements

Each intersection in Table 2.3 marked with the symbol (e) indicates a potential data-
protection threat at the corresponding BPMN element. This is because these ele-
ments can be used to either: (i) store sensitive data (e.g., data object), (ii) represent
sensitive activity /process (e.g., activity) or (iii) transmit sensitive data (e.g., message
flow). Consider for instance sensitive messages being transmitted over a message
flow. These messages can be subject to a number of data-protection threats such
as identifiablity where adversaries can trace back a message to its actual sender, de-
tectability where adversaries are able to distinguish true messages from false ones,
and observability where both the messages are detectable and the sender of these
messages is identifiable by adversaries. Such threats can be mitigated by achieving
anonymity, undetectability, and unobservability, respectively.

Entries with the symbol (—) in Table 2.3, indicate that the BPMN element cannot
be subject to the corresponding threats. Table 2.3 shows that none of the data-
protection threats can be mapped to events, gateways, and sequence flows. The ratio-
nale of this is that these BPMN elements do not store, process or transmit personal
data. Specifically, as defined in the BPMN 2.0 [1] specification, these elements can
be used to either show/control the order of activities in a BPMN model such as
sequence flows and gateways or to represent changes in the system such as events.
Therefore, we did not consider them as subject to data-protection threats.

The symbol (o) in Table 2.3 indicates that the BPMN element can be subject to the
corresponding data-protection threats. However, because these threats are the con-
sequences of other threats, we did not map them to the corresponding BPMN el-
ements. The main reason for that is to avoid having multiple annotations whose
semantics overlap, as suggested by Moody’s guidelines for increasing the usability
of modeling languages [91]. For example, a data object that stores personal identifi-
able information can be subject to the identifiability threat. However, this threat is
the result of performing either an activity that retrieves a non-anonymized variant
of that data object or linking the data object, in case it is an anonymized data ob-
ject related to another non-anonymized data object. Since we already mapped the
identifiablitiy threat to the data associations (to show how the data can be stored to-
or retrieved from- a data object) and the linkability threat to the data objects, there is
no need to map the identifiability threat to the data object.

2.5 Framework for Detecting Conflicts

In this section, we propose a semi-automated framework for conflict detection be-
tween security, data-minimization and fairness requirements. We describe the in-
volved roles (i.e, stakeholders), the main activities of our framework, and the inputs
and the outputs of each activity.

Start

Legend

Ele: SecBPMN2-trained business analyst
1

L

patterns

P "

Reusable domain- Dgzﬂﬁ:;r:te nts
+ specific SecBPMN2-Q

SecBPMN2
® g 2T TR del
#=& Create/Update data-protection-annotated ’D-T?---‘i ..
business processes models .

Yes

4
I

Conflicts Catalog
------- : (SecBPMN2-Q
: anti-patterns)

QConﬂict

X
Aligned?

J

ole: SecBPMN2-trained requirement engineer with

| R
domain and data-protection expertise

- Alignment
...................... Verification
Report

& Reuse/Create/Update procedural |
data protection patterns |

SecBPMN2-Q
patterns

E Manual process Automated process D Artifact

——— Sequence flow

---------- » Data input/output @ Parallel Gateway

8 Data Store

<<> Exclusive Gateway

Figure 2.6: The proposed BPMN-based framework for conflict detection.

Detection

Conflicts
Detection
Report

End

spIuo)) 8Urdd39(] 10§ JIOMOWRL] G°F

(17

2 BPMN-based Framework for Detecting Conflicts between Data Protection
50 Requirements

Detecting conflicts between data protection requirements is a challenging task.
Since such conflicts are context-specific, their detection requires a thorough under-
standing of the underlying business processes [111]. As mentioned in Section 2.1,
sometimes the source of conflicts is a non-alignment between the requirements and
their implementations in the business processes.

The main source of non-alignment issues is when the business analysts who are
responsible for modeling the business processes, misunderstand the requirements
specifications or deliberately deviate from them due to business needs [129]. These
deviations may result in unexpected conflicts between the requirements that may
lead to unwanted vulnerabilities. This is not a new conclusion but a fundamental
expectation. For example, Kim et al. [69] define requirements conflicts as “The
interactions and dependencies between requirements that can lead to negative or undesired
operation of the system”. To overcome these challenges, we propose in this section a
semi-automated process for conflict detection, as shown in Figure 2.6.

Our conflict detection framework permits:

* To ensure that the specified data protection requirements in a business pro-
cess model are aligned with the elicited requirements. As byproducts, first,
conflicts that may happen due to the non-alignment reason can be avoided,
and second, the efforts that are needed for specifying the source of conflicts
in later stages for resolving conflicts will be reduced, as the possibility that a
detected conflict might result from a non-alignment is excluded.

¢ To detect and report conflicts between data protection requirements that are
hard to foresee based on textually-specified requirements (due to the earlier
described challenges in Section 2.1.1).

Roles and assumptions about their skills. The process of the proposed frame-
work in this section can be executed by a team of business analysts and requirements
engineers. The business analysts are responsible for designing a BPMN model en-
riched with elicited data protection requirements. The requirements engineers are
responsible for modeling elicited requirements as procedural business process pat-
terns that can be automatically matched to the enriched BPMN model with data
protection requirements.

The mapping between the elicited requirements and the procedural patterns is not
a one-to-one mapping, as it might be preferable to model two or more supplement-
ing requirements in one procedural pattern. Two or more requirements are consid-
ered as supplementing requirements if they support each other towards achieving
shared goals. For example, confidentiality and integrity are two supplementing

2.5 Framework for Detecting Conflicts 51

security-specific requirements that aim to prevent unauthorized access and mod-
ification for system resources. Moreover, since business projects within the same
domain can share business practices [43], some data protection patterns can be de-
fined in a domain-specific way to allow their reuse in future business projects within
the same domain. Thereby, requirements engineers do not need to create patterns
for all the elicited requirements every time a new business project starts.

However, decisions about when two or more requirements can be considered
as supplementing and when a procedural pattern can be specified in a domain-
specific way are critical and require domain knowledge and solid background
knowledge about the considered data protection requirements. To this end, our
assumptions on the skills of the involved business analysts are light-weight, as they
do not have to be data protection experts. The involved business analysts have to
be SecBPMN2-trained. Still, to ensure the correct use of our approach, some ad-
ditional background about the used data protection concepts in our approach is
appropriate. While in addition to the training, we assume more skills on the in-
volved requirements engineers, as they have to be domain experts with a remarkable
set of skills in data protection.

With these assumptions, our aim is to address the common situation in which data
protection experts are not always available in all system development phases [58].
In this situation, we aim to support non-experts stakeholders with tools to report
on non-aligned and conflicting data protection requirements. However, even in
presence of data protection experts in every phase of our process—which is clearly
the preferable situation—, our process can still be helpful, as the involved expert
and non-expert stakeholders benefit from the early conflict detection as during the
business processes modeling phase.

Inputs. As shown in Figure 2.6, three inputs are required: First, a requirements docu-
ment containing data protection requirements. During the requirements elicitation
phase of the system development, the business analysts produce this document
while interacting with the users. Second, a set of reusable domain-specific patterns,
each of them specifying a particular data protection requirement. The patterns
are designed as graphical queries using our extension of SecBPMN2-Q. Having
a repository of these patterns allows to reuse them over similar projects in the same
domain (such as healthcare in our upcoming running example) while ensuring that
new patterns can be added on demand. Third, a domain-independent conflicts cata-
log. This catalog is one of our main contributions and it resulted from our analysis
of all possible situations where conflicts or potential conflicts between a security,
a data-minimization, and a fairness requirement may happen. For each identified
situation, we specified an anti-pattern using the SecBPMN2-Q. Details about our
catalog of conflicts are described in Section 2.7.

2 BPMN-based Framework for Detecting Conflicts between Data Protection
52 Requirements

Outputs. The outputs of the process are: (i) a SecBPMN2 model enriched with data
protection requirements; (ii) a set of SecBPMN2-Q patterns which can be used to
check the alignment of these requirements with the enriched SecBPMN2 model;
(iii) a textual alignment verification report that describes the mismatched patterns in
the SecBPMN2 model; and (iv) a textual conflict detection report that describes the
detected conflicts in the SecBPMN2 model. On-demand, both the non-aligned and
the conflicting requirements can be highlighted in the SecBPMN2 model.

The process of our proposed conflict detection framework consists of four phases.
The numbers in Figure 2.6 represent the phases, described below.

Phase 1. In this phase, business analysts manually model the business processes of
the target system, one process at a time, with respect to the data protection needs.
The business analysts derive business processes from the provided requirements doc-
ument to create a BPMN model and they use our extension of the SecBPMN2 lan-
guage to enrich the BPMN model with data protection requirements, again based
on the requirements document. The output model is stored as a SecBPMN?2 model.
Details description on the SecBPMN2 extension is provided in Section 2.4.

Phase 2. In this phase, requirements engineers: First, identify the set of domain-
specific patterns to be reused for alignment checking. This step can be performed
by mapping data protection requirements extracted from the requirements document
to existing domain-specific patterns. Second, design procedural patterns for those
requirements that do not have corresponding patterns. Newly identified domain-
specific patterns may be added to the patterns’ repository. Patterns can be for-
mulated in our specialized query language that extends SecBPMN2-Q [129]. For
managing the patterns, we assume a certain directory structure, based on naming
conventions. The management is currently performed manually; we discuss au-
tomation opportunities as part of future work.

The output of this phase, as shown in Figure 2.6, is a set of SecBPMN2-Q patterns
that combines all the new patterns from the second step with the retrieved ones
from the first step, which, for alignment checking, will be automatically matched
to the SecBPMN2 model obtained in phase 1. Note that, as depicted in Figure 2.6,
phase 1 and phase 2 can be executed in parallel. Details on our extension to the
SecBPMN2-Q are given in Section 2.6.

Phase 3. In real-world scenarios, the number of elicited requirements and the size
of the business process models tend to be large, making it difficult for the involved
business analysts to manually check whether the requirements are correctly spec-
ified in the business process models or not [130]. To support an automatic check,
we extended the query engine of SecBPMN2-Q [129], which permits an alignment
checking of security requirements and SecBPMN2 models based on SecBPMN2-

2.5 Framework for Detecting Conflicts 53

Q patterns. Our extension supports the alignment checking of procedural data-
minimization and fairness requirements as well.

As shown in Figure 2.6, the inputs of alignment checking are a SecBPMN2 model
enriched with data protection requirements from phase 1; and the data protection
requirements specified as SeccBPMN2-Q patterns from phase 2. The output is an align-
ment checking report that describes the mismatched patterns. In case mismatched
patterns are reported, the process in Figure 2.6 starts from the beginning. This will
give the stakeholders two options for fixing the sources of mismatching:

e First, in phase 1, the requirements specifications in the SecBPMN2 model can
be fixed to match their specifications in the mismatched patterns.

* Second, in phase 2, the specifications of the mismatched patterns can be re-
laxed to match their counterparts in the SecBPMN2 model.

The process of fixing the targeted SecBPMN2 model should be repeated until the
alignment is ensured; after that phase 4 can start. More details on alignment check-
ing are given in Section 2.6.

Phase 4. Detecting conflicts between data protection requirements during the de-
sign of the business processes models can help in reducing the needed effort to fix
the conflicts if they are discovered in later development phases. However, data-
protection experts cost a lot of money and they are busy with developing new
solutions for new data protection challenges so it is preferable to reduce them or
optimize their time by automating the process of conflict detection. Moreover, the
business process models frequently are composed of many model elements, a man-
ual detection for conflicts between specified data protection requirements in the
business process models is a challenging and error-prone task.

One possible scenario to avoid having conflicting requirements in the designed
business process is to design a tool that prevents a business analyst from being
able to enrich a business process models with conflicting requirements in phase 1.
However, since the data protection requirements represent preferences for differ-
ent users in the system, decisions about resolving conflicts during the run-time
of designing a business process models cannot be easily taken. Conflicts should
be reported and discussed with the stakeholders. Therefore, this phase supports
automatic detection and reporting for conflicts between specified security, data-
minimization, and fairness requirements in the input model.

As shown in Figure 2.6, the inputs of this phase are: First, a SecBPMN2 model that
is aligned with the data protection requirements. Second, the domain-independent

2 BPMN-based Framework for Detecting Conflicts between Data Protection
54 Requirements

conflicts catalog as SecBPMN2-Q anti-patterns. These anti-patterns can then be au-
tomatically matched to the SecBPMN2 model. The conflict detection benefits from
our query engine from phase 3. The output of this phase is a conflict detection re-
port that textually shows conflicts in the SecBPMN2 model as errors and potential
conflicts as warnings to the user. Details about this phase are given in Section 2.7.

2.6 Alignment Checking

In this section, we propose an extension to the SecBPMN2-Q query language to
allow specifying procedural security, data-minimization and fairness requirements
as graphical queries. The queries can be automatically matched to security-, data-
minimization-, and fairness-enriched SecBPMN2 models in order to check the
alignment between the requirements and their specification in the models. This
check helps to avoid unwanted consequences, such as conflicts between the speci-
fied requirements in the BPMN models. For example, consider the following two
requirements from the healthcare management scenario:

* Requirement 1: A telemedicine-device should execute the “Send data to portal”
task anonymously by using pseudonyms.

* Requirement 2: A telemedicine-device should be accountable when it per-
forms the “Send data to portal” task.

If a business analyst unintentionally uses the anonymity level fully anonymous in-
stead of pseudonymous for specifying Requirementl in Figure 2.2, a conflict with
Requirement2 will arise, since a telemedicine device with the ability to execute
the “Send data to portal” task full anonymously cannot be accountable as required
by Requirement2. Conflicts resulting from such non-alignments between the pro-
vided requirements and the enriched BPMN models, if not avoided early, can make
the process of locating conflict root causes in later development stages difficult. To
avoid these conflicts, the alignment between the requirements specifications and
the enriched BPMN models should be ensured, a tedious and error-prone task for
smaller models and an infeasible one with models with hundreds of elements.

To overcome this challenge, we present an automated alignment checking tech-
nique which takes as input: (i) an enriched SecBPMN2 model with security, data-
minimization, and fairness annotations, and (ii) a set of security, data-mini-
mization, and fairness requirements specified as SecBPMN2-Q patterns. The
SecBPMN2-Q patterns can then be automatically matched to the annotated
SecBPMN2 model to discover any non-alignment.

2.6 Alignment Checking 55

2.6.1 Modeling SecBPMN2-Q patterns

SecBPMN2-Q supports custom queries enriched with security requirements that
can be matched to SecBPMN2 models [129] for alignment checking. We extended
SecBPMN2-Q so that it supports our data-minimization and fairness annotations
as well, allowing involved requirements engineers to formulate fairness, data-
minimization and security requirements as patterns that can be matched to a given
SecBPMN2 model.

@8 @A
3

! Fill evaluation |

,] @5 form ;

‘ Determine the i . wr
beneficiary ! f

| i SO !

;---L-- ."1 @x

P1 P2

Figure 2.7: Requirements specified as SecBPMN2-Q patterns.

Based on the provided requirements, it might be preferable to: First, encode two
or more requirements into one pattern to model situations where two or more dif-
ferent requirements support each other. Second, encode a requirement or a set of
requirements as domain-specific SecBPMN2-Q patterns that can be reused in future
projects within the same domain. Examples of these two ways of encoding require-
ments into SecBPMN2-Q patterns are captured in Figure 2.7.

Pattern P1 in Figure 2.7 specifies that the business process model should have a
fairness-annotated task called “Determine the beneficiary”, regardless of its executor.
This is because the “Determine the beneficiary” in pattern P1 is not part of a specific
pool or swim-lane, which are usually used to illustrate that participants in the process
[1]. Listing 2.1 shows how the properties of the fairness annotation in this pattern
are specified. For alignment checking, our query engine considers annotations and
their properties as part of the pattern to be matched to the targeted BPMN model.

Listing 2.1: Properties of Fairness in pattern P1

autoPropagated=False,
dataSubjectRole={Patient},

type=individual fairness,
protect={insurance type},
useExplanatory={age, medical history},
threshold=0.5,
enforcedBy={discrimination-free algorithm}.

N OOl W=

2 BPMN-based Framework for Detecting Conflicts between Data Protection
56 Requirements

A common practice is to reuse procedural processes from already existing busi-
ness process models when designing a business process model for a new business
project within the same domain. The main reason is the shared business needs be-
tween stakeholders of different projects or applications within the same domain
[43]. For example, in Figure 2.2, the procedural process that starts by the “Fill do-
nation form” task and ends by the “Determine the beneficiary” task can be reused in
the business process models of future clinical projects. The reuse is not restricted
only to the procedural description of business processes. If a business process pro-
cedure is associated with data protection requirements, the procedure description,
and its associated data protection requirements can be considered together when
the business process procedure is reused. This is because, within the same domain,
the data protection requirements are mainly derived from the same laws and regu-
lations. Therefore, if the procedural part that describe how the organ transplant is
managed in our example model, in Figure 2.2, is reused in a new BPMN model, a
requirement engineer can reuse pattern P1 to ensure that the fairness specifications
on the “Determine the beneficiary” task are correctly specified as in pattern P1.

Considering pattern P2 in Figure 2.7, a label of the form "@" followed by a string
acts as a placeholder for element names. This allows assigning any element of the
same type when the pattern is matched to the input model. The walk relation (il-
lustrated by an edge with double arrowhead), which is can be defined for pairs
of activities, events or gateways, allows matching all pairs of elements in the in-
put model for which there is a control dependency path between the source and the
target element. Therefore, pattern P2 specifies that regardless who are the two par-
ticipants in the considered process, the “Fill evaluation form” task has to be anonymity-
annotated and the first message flow that allows transmitting messages between
the two participants, after the “Fill evaluation form” task is reached, has to be unobserv-
ability-annotated. Listings 2.2 and 2.3 show how the properties of the anonymity
and the unobservability annotations are specified in pattern P2, respectively.

Listing 2.2: Properties of Anonymity in pattern P2

autoPropagated=True,
dataSubjectRole={Patient},
anonymizedWithin={All Patients},
level=fully anonymous,
insider=True,
enforcedBy={zero-knowldge proof}.

NGl WIN -~

Listing 2.3: Properties of Unobservability in pattern P2

1 autoPropagated=False,

2 dataSubjectRole={Patient},

3 anonymizedWithin={All Patients},

4 enforcedBy={Dummy traffic, DC-network}.

2.6 Alignment Checking 57

The reason for specifying the anonymity and the unobservability requirements to-
gether in pattern P2 is that a full anonymous accessing for the “Fill evaluation form”
task by a participant against insiders (i.e., other participants in the process) can
be violated, if there is a control-dependency path between the “Fill evaluation form”
task and another task that sends messages to other participants without support-
ing unobservability or at least full anonymity against insiders during the messages
transmission. More precisely, without unobservability the message recipient will
be able to trace the messages back to its original sender and, as a result, indirectly
violates her anonymity. Also, outsider adversaries will be able to detect that there
is a communication between the participants in the process. Since this violation
can arise regardless of who the involved participants in the process are and what
task sends messages between them, the Pool BPMN elements in pattern P2 and the
task sending messages between them are labeled with the "@" wildcard to specific
a reusable domain-specific pattern.

2.6.2 Automated alignment checking

Once the data protection patterns to be checked in the SecBPMN2 model are iden-
tified, the business analyst can have the check performed automatically, by using
our extension of the SecBPMN2 query engine.

For example, a match for both patterns P1 and P2 in Figure 2.7, together with the
specifications of their properties, can be found in the SecBPMN2 model in Figure
2.2. More precisely, with respect to pattern P1, the SecBPMN2 model has a fair-
ness-annotated “Determine the beneficiary” task and the specifications of the fairness
annotation are similar to those for pattern P1. For pattern P2, the SecBPMN2 model
has an anonymity-annotated “Fill evaluation form” task that has a control dependency
with a task that sends messages over an unobservability-annotated message flow to
another participant. The specifications of both annotations in the model are also
matched to their specifications in pattern P2.

In the case of mismatched patterns, our query engine reports a set of textual mes-
sages that describe the mismatches. The involved stakeholders can then fix the
SecBPMN2 model so that it matches the reported mismatched patterns, or relax
the mismatched patterns so that they match the model. This process should be
repeated until all the considered patterns are matched to the model.

By checking the alignment between the requirements and their specifications in
the business process models, conflicts that may result from non-alignment can be
avoided. Consequently, the results of the actual conflict detection (Section 2.7) are
easier to interpret by users. However, performing the alignment check can have

2 BPMN-based Framework for Detecting Conflicts between Data Protection
58 Requirements

broader positive implications. At its heart, it serves to detect inconsistencies be-
tween requirements and design artifacts and therefore may help to avoid costly
fixes later in the development process arising from these inconsistencies. Details
description of the alignment detection algorithm is provided in Section 2.8.1.

2.7 Conflict Detection

We propose an automated conflict detection technique that relies on encoded
knowledge about conflicts and potential conflicts between pairs of requirements.
Specifically, we propose a catalog of conflict SecBPMN2-Q anti-patterns which can
be matched against business process models in order to detect conflicts and potential
conflicts. Conflicts represent definitive trade-offs between the requirements; while
the potential conflicts may result in conflicts under certain circumstances. Our tool
shows conflicts as errors and potential conflicts as warnings to the user.

2.7.1 Automated conflict detection using anti-patterns

The reason for choosing SecBPMN2-Q for automating the conflict detection pro-
cess is its expressiveness way for encoding conflict anti-patterns. Specifically,
SecBPMN2-Q has a relation called walk which, as mentioned earlier in Section 2.6.1,
allows to match all business processes in which there is a control dependency path
between its source and the target elements. This property allowed us to capture
conflicts that may arise due to a control dependency path between different require-
ments for different inter-dependent BPMN elements in the input business process
model. In total, we designed 143 domain-independent anti-patterns, which we
combined into one catalog. The anti-patterns in our catalog can be classified into
four categories, as follows:

(A) conflicts between data-minimization and security requirements. Out of 143
anti-patterns in our catalog, 47 anti-patterns belong to this category.

(B) potential conflicts between data-minimization and security requirements. In
total, our catalog contains 93 anti-patterns that belong to this category.

(C) conflicts between data-minimization and fairness requirements. Our catalog
contains 2 constrained anti-patterns that belong to this category.

(D) potential conflicts between data-minimization and fairness requirements.
Our catalog has 1 constrained anti-patterns that belongs to this category.

2.7 Contflict Detection 59

If an anti-pattern has a match in the business process model, a conflict or poten-
tial conflict is reported, respectively. A constrained anti-pattern has an additional
constraint that must be satisfied so that a conflict or potential conflict arises.

Our patterns are not designed to take into account specific data-protection mech-
anisms for implementing the given requirements, as can be specified using the en-
forcedBy attribute. While this information may be helpful to identify whether two
requirements are conflicting or not, addressing available data protection mecha-
nisms is not feasible because of the following two reasons:

* First, the number of available data protection mechanisms grows continu-
ously [146]. This makes it difficult to have a database that contains updated
information about all available data protection mechanisms and their abilities
to preserve data protection requirements.

* Second, the knowledge of security engineers on how to design data protec-
tion mechanisms and the knowledge of adversities on how to break data pro-
tection mechanisms grows continuously as well [21]. A mechanism that to-
day has the ability to preserve a specific data protection requirement might
be broken tomorrow.

Consequently, our anti-pattern catalog would be outdated very soon if it addressed
this knowledge. Therefore, our patterns generally do not use the enforcedBy at-
tribute. To still raise awareness on possible conflicts, we model situations where
the decision on whether two requirements are in conflict depends on the applied
mechanisms, as potential conflicts.

In the following, we discuss how our approach can be used to detect conflicts and
potential conflicts between security, data-minimization, and fairness requirements
by using examples from the four categories of our catalog of anti-patterns. The
selected examples do not cover all the (potential) conflicts that can happen between
the data protection concepts in our catalog. An overview of our catalog can found
in Section 2.7.2, while a more detailed account is provided in Section 2.7.3. Details
description of the conflict detection algorithm is provided in Section 2.8.2.

A. Conflicts between data-minimization and security requirements. Conflicts be-
tween data-minimization and security requirements occur in two flavors: First, re-
quirements related to the same asset in the system may be conflicting. Second,
requirements related to different but dependent assets may be conflicting.

For example on conflicting requirements related to the same asset, consider the
accountability and anonymity annotations linked with the “Send data to portal” task

2 BPMN-based Framework for Detecting Conflicts between Data Protection

60 Requirements
- . o
i & -> -
@x } """" : : i ’-’1 ‘E’
| e D - E
_ @Y
“r
Cl C2 (Variant 1 out of 2)
C3 (Variant 1 out of 2)
@x @y
@x @y
% _-lf‘—q*
S
e |
} \T' i @
———————— B -@A -
“r
C4 (Variant 1 out of 2) c5

** All the anonymity annotations are specified as follows: {level=full anonymous, insider=trie}

Figure 2.8: Conflicts C1-C5 between non-repudiation and anonymity as anti-patterns.

in the “Tele-medicine Device” pool at the left-hand side of Figure 2.2. For account-
ability, the system needs to track the executor of this task’s responsibility, while
the anonymity annotation specifies that the executor should be fully anonymous
against insider adversaries.

For example on conflicting requirements related to different but dependent assets,
in Figure 2.2 at the right-hand side, consider the anonymity and non-repudiation an-
notations linked with the “Fill evaluation form” task and the “Evaluation form” data ob-
ject, respectively. The former imposes that an executor to the “Fill evaluation form”
task should be fully anonymous against insider adversaries; the latter indicates
that an accessor to the “Evaluation form” data object should not be able to deny that
she accessed the “Evaluation form”. Since the “Fill evaluation form” task writes data to
the “Evaluation form” data object, a conflict is reported.

In Figure 2.8 we show a selection of anti-patterns defined using our SecBPMN2-
Q extension. Together, the depicted anti-patterns represent all conflicts that can
happen between anonymity and non-repudiation. As explained in Section 2.4.1, the
anonymity level can be either full anonymous or pseudonymous. A pseudonym is
an identifier for a data subject other than one of the data subject’s personal iden-
tifiable information. However, a pseudonym can be linked with the real iden-
tity of a data subject for accountability reasons. Hence, an anonymity require-

2.7 Contflict Detection 61

ment with pseudonyms is not conflicting with a non-repudiation requirement.
Also a full anonymous against outsider adversaries is not conflicting with non-
repudiation, as non-repudiation requirement aims at keeping data subjects ac-
countable with respect to insiders. Therefore, the only situation where anonymity
and non-repudiation requirements are in conflict is when the anonymity level is
fully anonymous and against insiders. Therefore, as provided in Figure 2.8, all
anonymity annotations in shown anti-patterns in Figure 2.8 are specified with the
following attributes: {level=full anonymous, insider=true}.

Consider, for example, conflicts C1 and C5 in Figure 2.8. These conflicts arise when
non-repudiation and anonymity annotations are linked to the same task or message
flow, respectively. C1 can be matched to one place in the example model in Fig-
ure 2.2, as follows: in the “Patient” pool at the right-hand side of the model, the
anonymity annotation of the “Fill evaluation form” task is propagated to the “Submit
evaluation” task, which is annotated with a non-repudiation annotation.

The anti-patterns C2, C3 and C4 in Figure 2.8 come in two variants since the data
object call (read or write) can be inverted, and the assignment of requirements to
elements can be swapped. The anti-pattern C2 can be matched to two places in
the example model, as follows: First, in the “Patient” pool, the anonymity-annota-
ted “Fill evaluation form” task is writing a data to the “Evaluation form” data object,
which is annotated with a non-repudiation annotation. Second, in the “Patient” pool,
the “Submit evaluation” task is annotated with anonymity (due to the propagation of
the anonymity annotation that is linked with the “Fill evaluation form” task) and it is
reading data from the non-repudiation-annotated “Evaluation form” data object.

The anti-pattern C3 can be matched to one place in the example model, as follows:
the “Submit evaluation” task in the “Patient” pool is annotated with anonymity and it
is sending messages over the non-repudiation-annotated message flow between the
“Patient” and the “Emergency Unit” pools.

In contrast to the anti-patterns C1-C3 in Figure 2.8, C4 and C5 does not occur in
the example model. Specifically: First, C4 does not have a match in the example
model in Figure 2.2 because the model does not have a task that reads or writes data
to/from a non-repudiation-annotated data object and in the same time sends mes-
sages over an anonymity-annotated message flow. Second, C5 does not occur in the
example model, since the model does not have an anonymity- and non-repudiation-
annotated message flow.

B. Potential conflicts between data-minimization and security requirements. Po-
tential conflicts between security and data-minimization requirements as consid-
ered in our work result from control dependencies between activities with specified
requirements. For example, Figure 2.2 includes a control dependency path between

2 BPMN-based Framework for Detecting Conflicts between Data Protection
62 Requirements

@A @x

Bc Il @

¥

., -

PC1 PC 2 (Variant 1 out of 2) PC 4 (Variant 1 out of 2)

** All the anonymity annotations are specified as follows: {level=full anonymous, insider=true}

Figure 2.9: Potential conflicts between non-repudiation and anonymity as anti-
patterns.

the anonymity-annotated “Fill evaluation form” task and the non-repudiation-annotated
“Submit evaluation” task. As explained in the next paragraph, such situations not
necessarily give rise to a conflict.

Imagine, for example, a control dependency between two tasks where the first task
allows a customer to anonymously use a service and the second task allows the ser-
vice provider to prevent a customer from being able to deny his payment for receiv-
ing a service. In this situation, it may be sufficient for a service provider to prove
that a customer performed the payment task without uncovering which service a
customer is paying for, and as a consequence, preserve the customer anonymity.
Potential conflicts should be reported and discussed.

In Figure 2.9 we show three anti-patterns specifying potential conflicts between
anonymity and non-repudiation. In these patterns, we use a walk relation to match
all pairs of elements in the input model for which there is a control dependency
path between the source and the target element. Note, Figure 2.9 shows only 3 out
of 8 overall potential conflicts for the considered pair of requirements. Two addi-
tional cases called PC3 and PC5 are formed in analogy to C3 and C5 in Figure 2.8;
three additional variants arise from duality like in the discussion of the conflicts.
Again, as provided in Figure 2.9, all anonymity annotations are specified with the
following attributes: {anonymity level=full anonymous, insider=true}. We specified
these attributes with these values for the same reason in Figure 2.8.

The potential conflict PC1 in Figure 2.9 illustrates the situation where a potential
conflict can arise due to the existence of a control dependency path between an

2.7 Contflict Detection 63

anonymity-annotated task and a non-repudiation-annotated task. PC2 represents
the situation where a potential conflict can arise due to a control dependency
path between a task that reads or writes data from/to a non-repudiation-annotated
data object and an anonymity-annotated task. While PC4 specifies a path between
an anonymity-annotated task and another task that sends messages over a non-
repudiation-annotated message flow. All these situations may lead to conflict, de-
pending on the actual circumstances in the system.

Using PC1, PC2 and PC4 of Figure 2.9 with the example model in Figure 2.2, four
warnings will be reported, due to the following reasons:

¢ The example model has a control dependency path between the anonymity-
annotated “Fill evaluation form” task and the non-repudiation-annotated “Submit
evaluation” task, thus violating PC1.

e PC2 is violated twice:

(i) the example model has a control dependency path between the anon-
ymity-annotated “Submit evaluation” task and the “Fill evaluation form” task,
which writes data to the non-repudiation-annotated data object.

(ii) the example model has a control dependency path between the “Sub-
mit evaluation” task, which reads data from the non-repudiation-annotated
data object, and the anonymity-annotated “Fill evaluation form” task.

¢ The example model has a control dependency path between the anonymity-
annotated “Fill evaluation form” task and the “Submit evaluation” task which sends
messages over a non-repudiation-annotated message flow, leading to a viola-
tion of PC4.

C. Conflicts between data-minimization and fairness requirements. From con-
sidering all possible combinations of requirements, we identified two critical situ-
ations that can lead to conflicts. We captured these situations as constrained conflict
anti-patterns (shown in Figure 2.10.a). If the constrained-conflict anti-patterns CC1
and CC2 are matched in the input BPMN model conflicts are only reported if a
corresponding constraint (described below) is satisfied. The constraints check how
some relevant attributes of the annotations in the BPMN model are related.

The undetectability annotation in the constrained-conflict CC1 is specified with the
attribute {insider=true}. The fairness annotations in both constrained conflicts CC1
and CC2 are not further specified. This means these anti-patterns can be matched
to the input model irrespective of the attributes’ values of its fairness annotations.

2 BPMN-based Framework for Detecting Conflicts between Data Protection
64 Requirements

H
® |8
>
8
%
|x
H
c)
®
~N

(a) Constrained conflict anti-patterns 1 (b) Constrained potential

| conflict anti-patterns
1

** The undetectability annotation in CC1 and the anonymity annotation in CPC1 are specified with
the attribute {insider=true}

Figure 2.10: Conflicts and potential conflicts between fairness, undetectability, and
anonymity as constrained anti-patterns.

The constrained conflict CC1 specifies the situation where a fairness-annotated task
reads undetectability-constrained data from a data object. Generally, to preserve
fairness, the fairness-annotated task in the model should have access to the data
defined by the protect and the useExplanatory attributes of the fairness annotation.
These two attributes, as explained in Section 2.4.1, define the protected characteris-
tics that the output of the fairness-annotated activity should be fair with respect to,
and the data that, from the perspective of the domain experts, is legitimate to use as
input to the fairness-annotated task. If group fairness is required, the task needs to ac-
cess what is defined as protected characteristics in the fairness annotation to ensure
equal distribution for its outputs between the protected group fractions. In the case
of individual fairness, the task needs to access what is defined as protected to find
out which of its inputs may act as a proxy for protected characteristics [7]. This is
important to avoid influencing the outputs of an individual-fairness-annotated task
by protected characteristics.

With respect to the explanatory data, a fairness-annotated task needs to access what
is defined as explanatory data by the fairness annotation to achieve business needs,
regardless of the required type of fairness. Therefore, if CC1 is matched in a busi-
ness process model and the matched undetectability annotation in the model re-
quires undetectability for data specified as protect or explanatory data by the fairness
annotations in the model, conflict should be reported. This is because it is impos-
sible to have the same data undetectable and using it as input to fulfill the fairness
requirement in the context described by the constrained conflict CC1.

The graphical pattern for CC1 alone is not sufficient to implement this intuition,
since it does not check whether the undetectability and fairness annotations refer to

2.7 Contflict Detection 65

the same data, thus inducing a conflict. Therefore, in addition to matching the anti-
pattern, our query engine evaluates an additional constraint on how the relevant
attributes are specified in the model. Given a SecBPMN2 model m and a match of
CC1 to a part of m that includes the fairness annotation fair and the undetectability
annotation undetict, a conflict is reported if:

(fair.getProtected() U fair.get Explanatory()) ﬂ undetict.get Protected() # ()

Here, fair.getExplanatory() and fair.get Protected() retrieve the set of data de-
fined by fair as explanatory data and protected characteristics, respectively, while
undetict.get Protected() retrieves the set of data specified as protected by undetict.

Matching the anti-pattern CC1 to the example model in Figure 2.2 yields one con-
flict to be reported: There is a match for CCl1, as the “System Portal” pool has an un-
detectability-annotated data input association between the “Patient in need of a trans-
plant” data store (represented as a data object) and the fairness-annotated “Determine
the beneficiary” task. The constraint is fulfilled since there is an intersection between
the data that should be undetectable when the task reads data from the data store
and the data that are defined as protected and explanatory in the fairness annotation.
More specifically, the “insurance type” and the “age” data which are, respectively,
defined as part of the protect and the useExplanatory attributes of the fairness anno-
tation, are also required to be undetectable, as specified by the protect attribute of
the undetectability annotation.

The constrained conflict CC2 in Figure 2.10 describes the critical situation where a
fairness-annotated task is control-dependent on another fairness-annotated task, in
the sense that the one task is only reached under some condition (here expressed
by gateway "@Z") that depends on the output of the other task. Irrespective of
the required fairness type of each fairness annotation, this situation may lead to a
conflict if the explanatory data set that is defined by the fairness annotations of first
task intersects with the protected characteristics set that is defined by the fairness
annotation of the second task.

For example, let “identify insurance tariff” and “identify reimbursement factor” be two
decision-making activities in a private health insurance company. The first activ-
ity aims to decide about the insurance tariff that a customer should have, while
the second activity aims to decide about the reimbursement factor that the insurance
company can offer for a customer. In this company, depending on the output of the
“identify insurance tariff” decision-making activity, the customer’s reimbursement fac-
tor will be either the output of executing the “identify reimbursement factor” decision-
making activity or a fixed value that can be retrieved from a predefined list of re-
imbursement factors. Irrespective the type of fairness (i.e., group- or individual-
fairness) that each decision-making activity aims to provide, assume the following:

2 BPMN-based Framework for Detecting Conflicts between Data Protection
66 Requirements

e First, the gender is defined as explanatory data for the “identify insurance tariff”
activity, as it might be legally authorized to use the gender for identifying the
insurance tariffs of customers.

* Second, the gender is defined as protected characteristic for the “identify reim-
bursement factor” activity, as it might be not allowed to use gender for deciding
about the reimbursement factor.

Since “identify insurance tariff” discriminates on gender to identify the insurance tariff
and since the decision of whether to execute “identify reimbursement factor” or not de-
pends on the insurance tariff, neither individual-fairness nor group-fairness can be
achieved. More specifically, based on the insurance tariff which can act as a proxy
for gender: First, two customers who differ only in their gender will receive different
reimbursement factors. This is because one customer will receive the reimburse-
ment factor as an output for executing the “identify reimbursement factor” activity,
while the second customer will receive it as a retrieved value from a predefined list
of reimbursement factors, which does not guarantee equal reimbursement factors
and, as a consequence, violating individual-fairness with respect to gender. Second,
since males customers will receive insurance tariffs different than females customers,
not all of them will receive their reimbursement factors as outputs for “identify the
reimbursement factor”. Hence, the reimbursement factors will not be equally dis-
tributed between the fractions of both males and females, which is a violation of
group-fairness with respect to gender.

The necessary agreement between the attributes is captured in the following con-
straint. Given a SecBPMN2 model m and a match of CC2 to a part of m that includes
the fairness annotations fairy and fairs for the tasks to which "@X" and "@Y" are
mapped, respectively, a conflict is reported if:

fairy.get Explanatory() N faire.get Protected() # ()

Here, fairy.get Explanatory() and faire.get Protected() retrieve the set of data that
are defined as explanatory data and protected characteristics, respectively.

From matching the constrained conflict CC2 to the example model in Figure 2.2, no
conflicts are reported, since CC2 has no matches in the example model.

D. Detecting potential conflicts between data-minimization and fairness require-
ments. Our catalog of conflict anti-patterns contains one constrained anti-pattern that
if matched in the input model and if its corresponding constraint is satisfied, de-
tects a potential conflict. Figure 2.10 shows the constrained potential conflict CPCI.
The anonymity annotation in CPC1 is specified with the following attribute: {in-
sider=true}. For the fairness annotation, no attribute values are specified.

2.7 Contflict Detection 67

The anti-pattern CPC1 specifies the critical situation where a fairness-annotated task
reads anonymized data from a data object. This situation, if matched in the input
model, may lead to a potential conflict if the set of data specified by the protect and
the useExplanatory attributes of the fairness annotation intersects with the data to
be anonymized when the fairness-annotated task reads data from the data object.

A decision on whether the situation in CPC1 represents a conflict depends on the
applied anonymization technique. In some situations, providing anonymized data
to a fairness-annotated task may not prevent it from being able to [52]:

* First, detect proxies for protected characteristics in the case of individual-
fairness is required.

* Second, produce equally distributed outputs fractions between protected
groups in the case of group-fairness is required.

A potential conflict between a fairness and an anonymity requirement arises if the
following constraint is fulfilled. Given a SecBPMN model m and a match of CPC1
to a part of m that includes the fairness annotation fair and the anonymity anno-
tation ann, a conflict is reported if:

(fair.getProtected() U fair.get Explanatory()) ﬂ anon.get Protected() # ()

Here, anon.getProtected() retrieves the set of data that are specified as protected
by the matched anonymity annotation in m, while fair.getExplanatory() and
fair.get Protected() retrieve the set of data that are defined by the matched fairness
annotation in m as explanatory data and protected characteristics, respectively.

From matching the constrained potential conflict CPC1 to the example model in
Figure 2.2, no conflicts are identified, as the anti-pattern has no matches in the
example model.

2.7.2 Catalog of domain-independent conflicts: an overview

As provided in Section 2.2.6, SecBPMN2 supports 10 different security require-
ments. Similar to our proposed annotations, the same security annotations can
be linked to different BPMN elements. We analyzed the situations where conflicts
or potential conflicts between two data-protection annotations, i.e., security, data-
minimization, or fairness annotations, may arise. For each identified situation, we
specified an anti-pattern using our extension of SecBPMN2-Q.

68

2 BPMN-based Framework for Detecting Conflicts between Data Protection

Requirements

Table 2.4: Overview of conflict + potential conflict anti-patterns per pair of requirements.

lololo
Ss3 il B g e
Wire FiS|o|=
Oimqey, 2222
&wbﬂb olo|o|—
Aﬁ? oo lo
‘I1qe TIE|T
QH:&J& Slolo|lo
i
A1 T IZ(E|T
u..rnwwﬁq Slololo
\DJS Colil=g i N T
..Emvwc + |+ [+ £
JUoy |olo|o|o
Aﬁs\m o (O |ov |y
: £ T |+
Uoury, NS
Sonn oclo|lo|o
) Qwo:oam T T\ T
..:wQ.wm,,lOOO
Sonn ol—|o|lo
djo T+ |F|F
wwsvsm — o oo
Uo N[O |+ |
aww&mb-c g g g
o (N |o =
Uo; w oo
TeIpng,,. e g e
Uop; || |||
ba w o<t |o
JIqe
Tnpny, 5|33
bacc.w TZRF
f:«w O o |n o
A oo |—|o
nrqeyy,
qeyyy,, g g g
D)% Ao |~ o
R
5 2
- i
o =R
= 2= =
= =R
Q maeS
R SRR
5 g.512 g
o O|l=|Q| =
S ACIGEIE
& <2 [P |=

2.7 Contflict Detection 69

To assure the correctness and completeness of our technique, each possible com-
bination of requirements and their resulting conflicts were discussed by at least
two experts in data protection. In absence of a more formal validation for the cor-
rectness and completeness of our technique, a manual check complementing our
automated one may be desirable; still we argue that our automated check can sup-
port developers in effectively discovering conflicts in the system (see Section 2.10).
Together our anti-patterns represent a basic catalog for finding conflicts that can
be extended by advanced users, thus improving the confidence in the overall ap-
proach. Table 2.4 gives an overview of the resulting catalog of anti-patterns.

Specifically, Table 2.4 views all pairs of requirements for which we identified a (po-
tential) conflict of the resulting catalog of anti-patterns. A more detailed account
is provided in Section 2.7.3. Each cell in Table 2.4 shows the number of conflicts,
plus the number of potential conflicts between the considered pair of requirements.
For example, there are 8 conflicts and 8 potential conflicts for non-repudiation and
anonymity. The origin of these numbers is explained in the previous descriptions
of Figure 2.8 and Figure 2.9. The other numbers arise from the various possibilities
of linking a data-minimization or a security annotation with other BPMN elements.
In total our catalog contains 143 anti-patterns.

Considering conflicts and potential conflicts, Accountability, Authenticity, Audibility,
and Non-delegation represent different requirements to keep insider users account-
able for their actions. To preserve them, the identity of an action’s executor must
be verified. Therefore, all of these security concepts may have conflicts or poten-
tial conflicts with Anonymity (where required against insiders) and Unobservability,
since part of its definition implies full anonymity against insiders.

While the Separation and Binding of duties can conflict with Anonymity if any of
the activities to which they are applied also require to be executed anonymously.
For instance, it will be hard, in case of Binding of Duties, to prove that two fully-
anonymously executed activities are executed by the same person or not.

A potential conflict between the Binding of duties and Unlinkability is also possible.
For example, as shown in Figure 2.5, Unlinkability can be linked with two pools to
indicates that the two process executions can not be linked to each other as related.
Therefore, it may conflict with Binding of Duty.

Confidentiality, Integrity, and Availability represent different requirements to allow
authorized users to read, modify, or access a system asset, respectively. The sat-
isfaction of these requirements relies on authorization, which, however, does not
necessarily imply identification: The literature provides many techniques for per-
forming authorization without uncovering the real identity of an action executor,
for example, zero-knowledge protocols [90]. However, the system developers may

2 BPMN-based Framework for Detecting Conflicts between Data Protection
70 Requirements

choose to implement these requirements by a mechanism that relies on identifica-
tion, such as access control, which may lead to conflicts with data-minimization re-
quirements. Hence, a decision about whether a conflict arises cannot be made at the
abstraction level of process models. Therefore, as shown in Table 2.4, we classified
the interactions between these security requirements and the data-minimization
requirements as potential conflicts.

In some cases, Confidentiality and Integrity are considered as supplementing re-
quirements to Anonymity [54]. For instance, anonymity against outsider adver-
saries implies that the outsider adversaries should not be able to trace a message
back to its sender. However, if the sent message contains personal identifiable in-
formation and it is sent in clear (i.e., without encryption), an outsider attacker can
easily link the messages to its sender. This kind of interaction can not be considered
as conflicts or potential conflicts, and thus, they are omitted from Table 2.4.

Conflicts may not only occur between different categories of requirements (e.g., se-
curity requirements vs data-minimization requirements). Table 2.4 indicates that a
particular Anonymity annotation might conflict with other Anonymity or Unobserv-
ability annotations. For example, requiring full anonymous accessing for an activity
against insiders is in conflict with requiring the output of the same task to be sent
anonymously using the pseudonyms of the accessors for the task.

Since the security concepts that are considered in our work aim either to monitor
the insiders” activities such as (e.g., Non-Repudiation) or to prevent malicious access
to assets that store or process data such as (e.g., Confidentiality), they can not have
conflicts with Fairness. This is because Fairness is not about preventing access to
data but it is about controlling the use for the data when access to them is provided.
For this, during our analysis for all the possible situations where a security or a
fairness annotation can interact with each other, we did not detect a situation that
may lead to a conflict or a potential conflict between fairness and all other security
concepts. In specific situations, a Fairness requirement can have conflicts with other
fairness requirement or (potential) conflicts with data-minimization requirements.
As shown in Table 2.4, Fairness can have conflicts with Undetectability or another
Fairness requirement, and potential conflicts with Anonymity. The anti-patterns of
these conflicts and potential conflicts are shown in Figure 2.10 and discussed in the
previous section. The two intersections in Table 2.4 with a (*) symbol represent the
same potential conflict between fairness and anonymity.

Different from all other anti-patterns in our catalog, the three anti-patterns in Figure
2.10 are constrained anti-patterns, meaning that a match of any of them in the input
model is insufficient to report a conflict. In addition, an associated constraint has
to be checked in order to detect a conflict, as explained in detail in Section 2.7.1.

2.7 Contflict Detection 71

2.7.3 Full textual description of the proposed catalog of conflicts

This section provides a textual description of our catalog of conflicts (C) and poten-
tial conflicts (PC) between security, data-minimization and fairness requirements.
It textually describes 143 anti-patterns. All the anti-patterns are specified by our
extension to the SecBPMN2-Q and they are provided as part of our tool support
online at http://www.sts-tool.eu/downloads/secbpmn—dm. Information
of our tool support is provided in Section 2.8.

Figure 2.11 is a simplified version of our running example in Figure 2.2 and it is
annotated with different security and data-minimization annotations, in compari-
son with Figure 2.2. In the following, we refer to Figure 2.11 to discuss conflicts and
potential conflicts that occur due to matches between anti-patterns in our proposed
catalog and the model in Figure 2.11.

.
. . S— -‘,
|| grrssmsssssmsnmamnsemussiEnta g ® e s i
. - : |
Tele-medicine Device e-Health Care Service Provider Patient
\'_“) Start every System Portal Emergency Unit
W a0 hours {= Receive o -
o % : tart
""" S Receive alert - i 6
L F
No @Yes : Fill evaluation|---*
i i form :
measures [i
Measure e i EHR e :
¥ £ qr 1 A i
vital signs il No ® : 5 i ﬂ
| R . 4
F 5 T
[| emergency . &
i ca T !
End 2 ! Submit Samcs i
1 = - . =
! i | evaluation |
! (&) .
Send data : i T i____ = Evaluation
to portal |- @ ! Form
L = i
% Update i
'\.,‘ the EHR ! End 4
D’ [
i -, . evaljation
End 1 autoPropagation: false i 'lﬁ,"‘ q.
dataSubjectRole: {Patient} = ! ,~=~. End3 o | autoPropagation: false
anonymizedWithin: {All Patients} Evaluation -*—‘\ e f—d_-", dataSubjectRole: {Patient}
level: pseudonymous { E) e’jjﬁ?l‘rgﬁ _I‘ anonymizedWithin: {All Patients}
insider: True v r level: full anenymous
enforcedBy: {zero-knowledge proof} insider: True
enforcedBy: {zero-knowledge proof}

confidentiality @B Accountability (@© Avaitabiity &3 Non-delegation) Unlinkability

(&) Auditabitity u!..* Binding of duties '!‘Authenticity o Anonymity <&@ Unobservability

Figure 2.11: Example 2: A simplified version of our running example model with
different security and data-minimization annotations.

http://www.sts-tool.eu/downloads/secbpmn-dm

2 BPMN-based Framework for Detecting Conflicts between Data Protection
72 Requirements

Non-repudiation. Non-repudiation in SecBPMN2 can be linked with: First, an activ-
ity to indicate that it should be possible to prevent an executor from being able to
deny that she executed the activity. Second, a data object to impose that it should be
possible to prevent an accessor to the data object from being able to deny that she
read/modified data in that object. Third, a message flow to specify that it should
be possible to prevent a sender from being able to deny that she sent messages.

¢ C1.1 Non-repudiation vs Anonymity. A conflict between an anonymity and
a non-repudiation requirement occurs if the business process model has: (1)
an Anonymity- and a Non-repudiation-annotated task, (2) an Anonymity- and
Non-repudiation-annotated message flow, (3) an Anonymity-annotated task
reads data from a Non-repudiation-annotated data object (because of different
data directions, two anti-patterns are defined), (4) an Anonymity-annotated
task sends messages over a Non-repudiation-annotated message flow or vice
versa (because of two possible representations, two anti-patterns are defined),
or (5) a task that reads data from a Non-repudiation-annotated data object and
sends messages over an Anonymity-annotated message flow (because of dif-
ferent data directions, two anti-patterns are defined).

¢ C1.2 Non-repudiation vs Unobservability. A conflict between an unob-
servability and a non-repudiation requirement occurs if the business pro-
cess model has: (1) an Unobservability- and a Non-repudiation-annotated mes-
sage flow, (2) a Non-repudiation-annotated task sends messages over an Unob-
servability-annotated message flow, or (3) a task that reads data from a Non-
repudiation-annotated data object and sends messages over an Unobservabil-
ity-annotated message flow (because of different data directions, two anti-
patterns are defined).

¢ PC1.1 Non-repudiation vs Anonymity. A potential conflict between an
anonymity and a non-repudiation requirement occurs if the business pro-
cess model has: (1) a path between an Anonymity-annotated task and a Non-
repudiation-annotated task, (2) a path between an Anonymity-annotated task
and a task that writes data to a Non-repudiation-annotated data object (because
of different data directions, two anti-patterns are defined), (3) a path between
a task that sends messages over a Non-repudiation-annotated message flow
and a task that sends messages over an Anonymity-annotated message flow,
(4) a path between an Anonymity-annotated task and a task that sends mes-
sages over a Non-repudiation-annotated message flow or vice versa (because
of the different possible representations, two anti-patterns are defined), or (5)
a path between a task that reads data from a Non-repudiation-annotated data
object and a task that sends messages over an Anonymity-annotated message
flow (because of different data directions, two anti-patterns are defined).

2.7 Contflict Detection 73

* PC1.2 Non-repudiation vs Unobservability. A potential conflict between
an unobservability and a non-repudiation requirement occurs if the business
process model has: (1) a path between a task that sends messages over an
a Non-repudiation-annotated message flow and a task that sends messages
over an Unobservability-annotated message flow, (2) a path between a Non-
repudiation-annotated task and a task that sends messages over Unobservabil-
ity-annotated message flow, or (3) a path between a task that reads data from a
Non-repudiation-annotated data object and a task that sends messages over an
Unobservability-annotated message flow (because of different data directions,
two anti-patterns are defined).

Examples on conflicts between non-repudiation and data-minimization annota-
tions are already discussed in Section 2.7.1.

Accountability. Accountability in SecBPMN2 can be linked with activities and it
specifies that the system should hold the executors of the activities responsible for
their actions. Accountability may conflict with anonymity and unobservability.

¢ (C2.1 Accountability vs Anonymity. A conflict between an anonymity and an
accountability requirement happens if the business process model in question
has any of the followings: (1) an Anonymity- and Accountability-annotated
task, or (2) an Accountability-annotated task that sends messages over an
Anonymity-annotated message flow.

¢ (C2.2 Accountability vs Unobservability. A conflict between an unobserv-
ability and an accountability requirement occurs if the business process
model has: (1) an Accountability-annotated task that sends messages over an
Anonymity-annotated message flow.

e PC2.1 Accountability vs Anonymity. A potential conflict between an
anonymity and an accountability requirement occurs if the business process
model has: (1) a path between an Anonymity-annotated task and an Account-
ability-annotated task, or (2) a path between an Accountability-annotated task
and a task that sends messages over an Anonymity-annotated message flow.
PC1 and PC2 in Figure 2.12 are two SecBPMN2 anti-patterns that represent
the first and the second situation, respectively. PC1 can be matched to one
place in the model in Figure 2.11, as follows: in the “Patient” pool there is
a path between the accountability-annotated “Fill evaluation form” task and the
anonymity-annotated “Submit evaluation” task. PC2 can be matched to one place
in Figure 2.11, as follows: in the “Patient” pool there is a path between the ac-
countability-annotated “Fill evaluation form” task and the “Submit evaluation” task
which sends messages over anonymity-annotated message flow.

2 BPMN-based Framework for Detecting Conflicts between Data Protection
74 Requirements

o | £

2;
[]
F
@B

-

L b d
@B i
. i
T Vool

L N
w

PC1 PC2

** All the anonymity annotations are specified as follows: {level=full anonymous, insider=trie}

Figure 2.12: Potential conflicts PC1 and PC2 between accountability and anonymity
as anti-patterns.

¢ PC2.2 Accountability vs Unobservability. A potential conflict between an
unobservability and an accountability requirement occurs if the business pro-
cess model has: (1) a path between an Accountability-annotated task and a task
that sends messages over an Unobservability-annotated message flow.

Authenticity. Authenticity in SecBPMN2 can be linked with: First, an activity to
impose that the identity of the activity executor must be verified. Second, a data
object to indicate that it should be possible to prove the data object is genuine.

¢ C3.1 Authenticity vs Anonymity. A conflict between an anonymity and an
authenticity requirement occurs if the business process model has: (1) an
Anonymity- and Authenticity-annotated task, (2) an Anonymity-annotated task
that writes data to an Authenticity-annotated data object (because of different
data directions, two anti-patterns are defined), (3) an Authenticity-annotated
task that sends messages over an Anonymity-annotated message flow, or (4)
a task that reads data from an Authenticity-annotated data object and sends
messages over an Anonymity-annotated message flow (because of different
data directions, two anti-patterns are defined). C1 and C2 in Figure 2.13 are
two SecBPMN2 anti-patterns that represent the second and the fourth situ-
ation, respectively. C1 can be matched to one place in the model in Figure
2.11, as follows: in the “Patient” pool the anonymity-annotated “Submit eval-
uation” task reads data from the authenticity-annotated “Evaluation form” data
object. C2 can be matched to one place in the model in Figure 2.11, as fol-
lows: in the “Patient” pool the “Submit evaluation” task is sending messaging

2.7 Contflict Detection 75

@x @Y
3 2
v E \,
5 ‘.
: = i @B
..................... v i
@Y
C1 (variant 1 of 2) C2 (variant 1 of 2)

** All the anonymity annotations are specified as follows: {level=full anonymous, insider=true}

Figure 2.13: Conflicts C1 and C2 between authenticity and anonymity as anti-
patterns.

over an anonymity-annotated message flow and it reads data from the authen-
ticity-annotated “Evaluation form” data object.

¢ (3.2 Authenticity vs Unobservability. A conflict between an unobservabil-
ity and an authenticity requirement occurs if the business process model in
question has: (1) an Authenticity-annotated task that sends messages over an
Unobservability-annotated message flow, or (2) a task that reads data from an
Authenticity-annotated data object and sends messages over an Unobservabil-
ity-annotated message flow (because of different data directions, two anti-
patterns are defined).

e PC3.1 Authenticity vs Anonymity. A potential conflict between an
anonymity and an authenticity requirement occurs if the business process
model has: (1) a path between an Anonymity-annotated task and an Authentic-
ity-annotated task, (2) a path between an Anonymity-annotated task and a task
that writes data to an Authenticity-annotated data object (because of differ-
ent data directions, two anti-patterns are defined), (3) a path between an Au-
thenticity-annotated task and a task that sends messages over an Anonymity-
annotated message flow, or (4) a path between a task that reads data from
an Authenticity-annotated data object and a task that sends messages over an
Anonymity-annotated message flow (because of different data directions, two
anti-patterns are defined).

e PC3.2 Authenticity vs Unobservability. A potential conflict between an un-
observability and an authenticity requirement occurs if the business process
model has: (1) a path between an Authenticity-annotated task and a task that
sends messages over an Unobservability-annotated message flow, or (2) a path
between a task that reads data from an Authenticity-annotated data object and
a task that sends messages over an Unobservability-annotated message flow
(because of different data directions, two anti-patterns are defined).

2 BPMN-based Framework for Detecting Conflicts between Data Protection
76 Requirements

@ 2y

@X

£n

C2 (variant 1 of 2)
** All the anonymity annotations are specified as follows: {level=full anonymous, insider=trie}

Figure 2.14: Conflicts C1 and C2 between auditability and anonymity as anti-
patterns.

Audibility. Audibility in SecBPMN2 can be linked with: First, an activity to indicate
that it should be possible to keep track of all the actions performed by the executor
of the activity. Second, a data object to impose that it should be possible to keep
track of all the read and write actions concerning the data object. Third, a message
flow to specify that it should be possible to keep track of all the actions executed to
handle the communication (send/receive actions) within the message flow.

¢ C4.1 Auditability vs Anonymity. A conflict between an anonymity and an
auditability requirement occurs if the business process model has: (1) an
Anonymity- and Auditability-annotated task, (2) an Anonymity- and Auditabil-
ity-annotated message flow, (3) an Anonymity-annotated task that reads data
from an Auditability-annotated data object (because of different data direc-
tions, two anti-patterns are defined), (4) an Anonymity-annotated task that
sends messages over an Auditability-annotated message flow or vice versa
(because of two possible representations, two anti-patterns are defined), or
(5) a task that reads data from an Auditability-annotated data object and sends
messages over an Anonymity-annotated message flow (because of different
data directions, two anti-patterns are defined). C1 and C2 in Figure 2.14 are
two SecBPMN2 anti-patterns that represent the second and the fourth situa-
tion, respectively. C1 can be matched to one place in the model in Figure 2.11,
as follows: the “Patient” pool is communicating with the “Emergency Unit” lane
via an auditability and anonymity-annotated message flow. C2 can be matched
to one place in the model in Figure 2.11, as follows: in the “Patient” pool the
anonymity-annotated “Submit evaluation” task is sending messaging over an au-
ditability-annotated message flow.

¢ (C4.2 Auditability vs Unobservability. A conflict between an unobservability
and an auditability requirement occurs if the business process model has: (1)

2.7 Contflict Detection 77

an Unobservability- and Auditability-annotated message flow, (2) an Auditabil-
ity-annotated task sends messages over an Unobservability-annotated message
flow, or (3) a task that reads data from an Auditability-annotated data object
and sends messages over an Unobservability-annotated message flow (because
of different data directions, two anti-patterns are defined).

e PC4.1 Auditability vs Anonymity. A potential conflict between an
anonymity and an auditability requirement occurs if the business process
model has: (1) a path between an Anonymity-annotated task and an Auditabil-
ity-annotated task, (2) a path between an Anonymity-annotated task and a
task that writes data to an Auditability-annotated data object (because of dif-
ferent data directions, two anti-patterns are defined), (3) a path between a
task that sends messages over an Auditability-annotated message flow and a
task sends messages over an Anonymity-annotated message flow, (5) a path
between an Anonymity-annotated task and a task that sends messages over
an Auditability-annotated message flow or vice versa (because of the different
possible representations, two anti-patterns are defined), or (6) a path between
a task that reads data from an Auditability-annotated data object and a task
that sends messages over an Anonymity-annotated message flow (because of
different data directions, two anti-patterns are defined).

e PC4.2 Auditability vs Unobservability. A potential conflict between an un-
observability and an auditability requirement occurs if the business process
model has: (1) a path between a task that sends messages over an Auditabil-
ity-annotated message flow and a task that sends messages over an Unobserv-
ability-annotated message flow, (2) a path between an Auditability-annotated
task and a task that sends messages over an Unobservability-annotated mes-
sage flow, or (3) a path between a task that reads data from an Auditability-
annotated data object and a task that sends messages over an Unobservabil-
ity-annotated message flow (because of different data directions, two anti-
patterns are defined).

Non-delegation. Non-delegation in SecBPMN2 can be linked with an activity and
it specifies that the activity shall be executed only by the users assigned. Non-
delegation may conflict with anonymity and unobservability.

¢ C5.1 Non-delegation vs Anonymity. A conflict between these two require-
ments occurs if the business process model has: (1) an Anonymity- and Non-
delegation-annotated task, or (2) a Non-delegation-annotated task that sends
messages over an Anonymity-annotated message flow.

¢ (5.2 Non-delegation vs Unobservability. Since unobservability can only
be linked with message flows, conflicts between unobservability and non-

2 BPMN-based Framework for Detecting Conflicts between Data Protection

78 Requirements
@A
i @x @y
et
y
@B v ‘g
! e .
v
PC1 PC2

** All the anonymity annotations are specified as follows: {level=full anonymous, insider=true}

Figure 2.15: Potential conflicts PC1 and PC2 between non-delegation and anonymity
as anti-patterns.

delegation requirements occur if the business process model has: (1) a Non-
delegation-annotated task that sends messages over an Anonymity-annotated
message flow.

¢ PC5.1 Non-delegation vs Anonymity. A potential conflict between an
anonymity and a non-delegation requirement occurs if the business process
model in question has: (1) a path between an Anonymity-annotated task
and a Non-delegation-annotated task, or (2) a path between a Non-delegation-
annotated task and a task that sends messages over an Anonymity-annotated
message flow. PC1 and PC2 in Figure 2.15 are two SecBPMN2 anti-patterns
that represent the fist and the second situation, respectively. PC1 can be
matched to one place in Figure 2.11, as follows: in the “Patient” pool there
is a path between the non-delegation-annotated “Fill evaluation form” task and
the anonymity-annotated “Submit evaluation” task. PC2 can be matched to one
place in Figure 2.11, as follows: in the “Patient” pool there is a path between
the non-delegation-annotated “Fill evaluation form” task and the “Submit evalua-
tion” task, which sends messages over anonymity-annotated message flow.

¢ PC5.2 Non-delegation vs Unobservability. A potential conflict between an
unobservability and a non-delegation requirement occurs if the business pro-
cess model has: (1) a path between a Non-delegation-annotated task and a task
that sends messages over an Unobservability-annotated message flow.

2.7 Contflict Detection 79

P — T—
1 1
1 1
¥ mereancd s i
Ty
P i

@A @B

PC1

Figure 2.16: Potential conflict PC1 between binding-of-duties and unlinkability as
anti-patterns.

Binding of Duties. Binding of Duties in SecBPMN2 can be linked with two pools
and it specifies that the same person should be responsible for the completion of
related activities. Binding of duties may conflict with anonymity and unlinkability.

¢ PCé6.1 Binding-of-Duties vs Anonymity. A conflict between an anonymity
and a binding-of-duties requirement occurs if the business process model has:
(1) two pools that both are annotated with Binding-of-Duties, and each one of
them includes an Anonymity-annotated task with the configuration {level=full
anonymous, insider=true}.

¢ PCé6.1 Binding-Of-Duties vs Unlinkability. A potential conflict between an
unlinkability and a binding-of-duties requirement occurs if the business pro-
cess model has: (1) a Binding-Of-Duty- and Unlinkability-annotated two pools,
where the latter has the configuration {insider=true}. PC1 in Figure 2.16 is a
SecBPMN?2 anti-pattern that represents this situation. PC1 can be matched to
one place in Figure 2.11, as follows: the “Patient” pool and the “Tele-medicine
Device” pool are annotated with binding-of-duties and unlinkability.

Anonymity. Anonymity as specified in Section 2.4 can be specified differently based
on the anonymity level (i.e., full anonymous vs. pseudonymous) and the type of
adversaries considered (i.e., outsider+insider vs. only outsider adversaries). Thus
anonymity requirements may conflict with other data minimization requirements.

80

2 BPMN-based Framework for Detecting Conflicts between Data Protection
Requirements

@x @Y

o
1
g
1
1
r
i
1
I
]
L
i
H -L__—‘ |l

C1 (variant 1 of 2)

** The anonymity annotation is specified as follows: {level=pseudonymous, insider=true}

Figure 2.17: Conflict C1 between anonymity and unobservability as anti-patterns.

¢ C7.1 Anonymity vs Anonymity. A conflict between two anonymity require-

ments occurs if the business process model has: (1) an Anonymity-annotated
task that sends messages over an Anonymity-annotated message flow, the for-
mer with the configuration {level=full anonymous} and the latter with the con-
figuration {level= pseudonymity}, or vice versa. (because of two possible rep-
resentations, two anti-patterns are defined), or (2) an Anonymity-annotated
task that sends messages over an Anonymity-annotated message flow, the for-
mer with the configuration {insider= false} and the latter with the configura-
tion {insider=true}, or vice versa (because of two possible representations, two
anti-patterns are defined).

C7.2 Anonymity vs Unobservability. A conflict between an anonymity and
an unobservability requirement occurs if the business process model has: (1)
an Anonymity- and Unobservability-annotated message flow, the former with
the configuration ({insider = false}, or (2) an Anonymity-annotated task that
sends messages over an Unobservability-annotated message flow, the former
with the configuration {level= pseudonymous}. C1 in Figure 2.17 is a SecBPMN2
anti-pattern that represents the second situation. C1 can be matched to one
place in Figure 2.11, as follows: in the “Tele-medicine Device” pool the “Send
data to portal” task is annotated with anonymity and it requires that the {level=
pseudonymous}. The “Send data to portal” task is also sending messages over
unobservability-annotated message flow.

PC7.1 Anonymity vs Anonymity. A potential conflict between two
anonymity requirements occurs if the business process model has: (1) a
path between two Anonymity-annotated tasks, the second with configura-
tion {level=pseudonymous}, (2) a path between two tasks that send messages

2.7 Contflict Detection 81

over an Anonymity-annotated message flow, the first with the configura-
tion {level= pseudonymous}, (3) a path between two tasks that send messages
over an Anonymity-annotated message flow, the first with the configuration
{insider=false}, (4) a path between an Anonymity-annotated task and a task
that sends messages over an Anonymity-annotated message flow, the latter
with the configuration {insider=false}, or (5) a path between an Anonymity-
annotated task and a task that sends messages over an Anonymity-annotated
message flow, the latter with the configuration {level= pseudonymous}.

e PC7.2 Anonymity vs Unobservability. A potential conflict between these
two requirements occurs if the business process model has: (1) a path be-
tween a task that sends messages over an Anonymity annotated message flow
and a task that sends messages over an Unobservability-annotated message
flow, the former with the configuration {level = pseudonymity}, or (2) a path
between an Anonymity-annotated task and a task that sends messages over
an Unobservability-annotated message flow, the former with the configuration
{level=pseudonymous}.

Separation of Duties. Separation of Duties in SecBPMN2 can be linked with two
pools and it specifies that two or more distinct persons should be responsible for the
completion of related activities. Separation of duties may conflict with anonymity.

* (8.1 Separation-of-Duties vs Anonymity. A conflict between an anonymity
and a separation-of-duties requirement occurs if the business process model
has: (1) two pools being annotated with Separation-of-Duties, and each one of
them includes an Anonymity-annotated task with the configuration {level=full
anonymous, insider= truej.

Confidentiality. Confidentiality in SecBPMN2 can be linked with: First, a data object
to impose that only authorized users can read data from the data object. Second, a
message flow to specify that only authorized users can receive and read the mes-
sages on that message flow.

e PC9.1 Confidentiality vs Anonymity. A potential conflict between an
anonymity and a confidentiality requirement occurs if the business process
model has: (1) an Anonymity-annotated task that reads data from a Confiden-
tiality-annotated data object (because of the different possible representations,
two anti-patterns are defined), (2) a path between an Anonymity-annotated
task and a task that reads data from a Confidentiality-annotated data object
(because of different data directions, two anti-patterns are defined), (3) a path
between a task that reads data from a Confidentiality-annotated data object

82

2 BPMN-based Framework for Detecting Conflicts between Data Protection
Requirements

v -
e
@Y

PC1 (variant 1 of 2)

** All the anonymity annotations are specified as follows: {level=full anonymous, insider=true}

Figure 2.18: Potential conflict C1 between confidentiality and anonymity as anti-
patterns.

and a task the sends messages over an Anonymity-annotated message flow
(because of the different possible representations, two anti-patterns are de-
fined), or (4) a task that reads data from a Confidentiality-annotated data ob-
ject and sends messages over an Anonymity-annotated message flow (because
of the different possible representations, two anti-patterns are defined). C1
in Figure 2.18 is a SecBPMN2 anti-pattern that represents the first situation.
C1 can be matched to one place in Figure 2.11, as follows: in the “Patient”
pool the anonymity-annotated “Submit evaluation” task is reading data from the
confidentiality-annotated “Evaluation Form” data object.

PC9.2 Confidentiality vs Unobservability. A potential conflict between an
unobservability and a confidentiality requirement occurs if the business pro-
cess model has: (1) a path between a task that reads data from a Confiden-
tiality-annotated data object and a task that sends messages over an Unob-
servability-annotated message flow (because of the different possible repre-
sentations, two anti-patterns are defined), or (2) a task that reads data from
a Confidentiality-annotated data object and sends messages over an Unobserv-
ability-annotated message flow (because of the different possible representa-
tions, two anti-patterns are defined).

Integrity. Integrity in SecBPMN2 can be linked with: First, a data object to impose
that only authorized users can read data from the data object. Second, a message
flow to specify that only authorized users can receive and read the messages on that
message flow. Third, a task to impose that only authorized users can do changes to
the functionalities of the task.

¢ PC10.1 Integrity vs Anonymity. A potential conflict between an anonymity

and an integrity requirement occurs if the business process model has: (1)

2.7 Contflict Detection 83

an Integrity- and Anonymity-annotated task, (2) a path between an Integrity-
annotated task and an Anonymity-annotated task, (3) an Anonymity-annotated
task that reads data from an Infegrity-annotated data object (because of the
different possible representations, two anti-patterns are defined), (4) a path
between an Anonymity-annotated task and a task that reads data from an In-
tegrity-annotated data object (because of different data directions, two anti-
patterns are defined), (5) a path between a task reads data from an Integrity-
annotated data object and a task that sends messages over an Anonymity-
annotated message flow (because of the different possible representations,
two anti-patterns are defined), (6) a task that reads data from an Integrity-
annotated data object and sends messages over an Anonymity-annotated mes-
sage flow (because of the different possible representations, two anti-patterns
are defined), or (7) an Integrity-annotated task that sends messages over an
Anonymity-annotated message flow.

e PC10.2 Integrity vs Unobservability. A potential conflict between an un-
observability and an integrity requirement occurs if the business process
model has: (1) a path between an Integrity-annotated task and a task that
sends messages over an Unobservability-annotated message flow, (2) an In-
tegrity-annotated task that sends messages over an Unobservability-annotated
message flow, (3) a path between a task that reads data from an Integrity-
annotated data object and a task the sends messages over an Unobservability-
annotated message flow (because of the different possible representations,
two anti-patterns are defined), or (4) a task that reads data from an Integrity-
annotated data object and sends messages over an Unobservability-annotated
message flow (because of the different possible representations, two anti-
patterns are defined).

Availability. Awvailability in SecBPMN2 can be linked with: First, a data object to
impose that the data object should be available when required by authorized users.
Second, a message flow to specify that the transmission media that will be used to
transfer messages should be available when requested by authorized users. Third,
a task should be ready for execution by authorized users whenever the task is en-
countered in the control flow of the business process.

e PC11.1 Availability vs Anonymity. A potential conflict between an
anonymity and an availability requirement occurs if the business process
model has: (1) an Awvailability- and Anonymity-annotated task, (2) a path be-
tween an Availability-annotated task and an Anonymity-annotated task, (3) an
Anonymity-annotated task that reads data from an Awvailability-annotated data
object (because of the different possible representations, two anti-patterns are
defined), (4) a path between an Anonymity-annotated task and a task that

84

2 BPMN-based Framework for Detecting Conflicts between Data Protection
Requirements

@x

®

- S|

"

PCl PC2

** All the anonymity annotations are specified as follows: {level=full anonymous, insider=true}

Figure 2.19: Potential conflicts PC1 and PC2 between availability and anonymity as
anti-patterns.

reads data from an Awvailability-annotated data object (because of different
data directions, two anti-patterns are defined), (5) a path between a task reads
data from an Availability-annotated data object and a task that sends messages
over an Anonymity-annotated message flow (because of the different possible
representations, two anti-patterns are defined), (6) a task that reads data from
an Availability-annotated data object and sends messages over an Anonymity-
annotated message flow (because of the different possible representations,
two anti-patterns are defined), or (7) an Availability-annotated task that sends
messages over an Anonymity-annotated message flow. PC1 and PC2 in Figure
2.19 are SecBPMN?2 anti-patterns that represent the first and the seventh situa-
tions, respectively. PC1 can be matched to one place in Figure 2.11, as follows:
in the “Patient” pool the “Submit evaluation” task is annotated with availability
and anonymity. PC2 can be matched to one place in Figure 2.11, as follows: in
the “Patient” pool the availability-annotated “Submit evaluation” task is sending
messages over an anonymity-annotated message flow.

PC11.2 Availability vs Unobservability. A potential conflict between an un-
observability and an availability requirement occurs if the business process
model has: (1) a path between an Awvailability-annotated task and a task that
sends messages over an Unobservability-annotated message flow, (2) an Avail-
ability-annotated task that sends messages over an Unobservability-annotated
message flow, (3) a path between a task that reads data from an Availabil-
ity-annotated data object and a task the sends messages over an Unobserv-
ability-annotated message flow (because of the different possible representa-
tions, two anti-patterns are defined), or (4) a task that reads data from an
Availability-annotated data object and sends messages over an Unobservabil-
ity-annotated message flow (because of the different possible representations,
two anti-patterns are defined).

2.7 Contflict Detection 85

Fairness. Fairness as specified in Section 2.4 can be linked with a task BPMN el-
ement. This annotation can be specified differently based on: First, the data that
should not discriminate based on them. Second, the data that their effects on the
output can be justifiable due to business needs. These two kinds of data can be
specified using the protect and the useExplanatory attributes, respectively. Thus fair-
ness requirements may conflict with other data-minimization requirements. In spe-
cific situations, two fairness requirements may also have a conflict with each other.
However, since a conflict situation between a fairness and another requirement
depends on how the protect and the useExplanatory attributes of the fairness an-
notation are specified. Since the specifications of these two attributes are domain-
dependent, we define the conflicting situations as constrained conflicting situations
such that if a match for the situation is found in an input model a corresponding
constraint should be satisfied in order to report a conflict. Examples are already
provided in Section 2.7.1.

¢ (C12.1 Fairness vs Undetectability. In our work, a conflict between a fairness
and an undetectability annotation can be reported:

if (the CC1 anti-pattern of Figure 2.10.a is matched in m) and
(fair.getProtected()Ufair.get Explanatory()) ﬂ undetict.get Protected() # ()

Here, m is a SecBPMN2 model, fair.getExplanatory() and fair.get Prot-
ected() retrieve the set of data defined by fair as explanatory and protected
data, respectively. The und.get Protected() retrieves the set of data specified
as protected by und.

e (C12.2 Fairness vs Fairness. In our work, a conflict between two fairness re-
quirements can be reported:

if (the CC2 of Figure 2.10 is matched in m) and
(fairi.get Explanatory() N faire.getProtected() # 0)

Here, fairi.getExplanatory() and faire.getProtected() retrieve the set of
data that are defined as explanatory data and protected characteristics, re-
spectively.

¢ PC12.1 Fairness vs Anonymity. In our work, a potential conflict between a
fairness annotation and an anonymity annotation can be reported:

if (the CPC1 anti-pattern of Figure 2.10.b is matched in m) and
(fair.getProtected() U fair.get Explanatory()) ﬂ anon.get Protected() # ()

Here, anon.getProtected() retrieves the set of data that are speci-
fied as protected by the matched anonymity annotation in m, while
fair.getExplanatory() and fair.get Protected() retrieve the set of data that
are defined by the matched fairness annotation in m as explanatory data and
protected characteristics, respectively.

2 BPMN-based Framework for Detecting Conflicts between Data Protection
86 Requirements

2.8 Tool Support

We developed a prototypical implementation of our work on top of STS-tool’, the
supporting tool for SecBPMN2 [129]. STS-tool is a security requirement software
tool that allows creating diagrams using the SecBPMN2 language, it supports au-
tomated analyses and enforcement of security constraints. An executable version
of our implementation is available at http: //www.sts-tool.eu/downloads/
secbpmn-dm. Details on how to use our tool are provided in Appendix (A) of
this thesis. Our implementation supports the contribution of our proposed BPMN-
based framework for detection conflicts between data protection requirements:

(i) modeling of security, data-minimization and fairness requirements in BPMN
models, using a suitable model editor.

(ii) modeling of security, data-minimization and fairness requirements as proce-
dural patterns and anti-patterns.

(iif) automatic alignment verification between security-, data-minimization- and
fairness-procedural requirements specified as patterns and their specifica-
tions in the annotated BPMN models.

(iv) automatic conflict detection between security, data-minimization and fairness
requirements in annotated BPMN models with data-protection requirements,
based on our catalog of domain-independent anti-patterns.

Shows “Error” if the matched anti-pattern represents
a conflict and “Warning" if the matched anti-pattern ‘ -
represents a potential conflict. The name of the matched anti-pattern A description of the matched anti-pattern
7 — W —
("] Propertjgs ™ Mapping | %2 Analysis results - =~ i
> il -

‘ e 5 g Description
[(o Rep)(] |
)
oW
o
<

Figure 2.20: Analysis results view from our tool.

The examples shown in Figures. 2.2 and 2.7-2.10 come from screenshots of our im-
plementation. Our alignment checking and conflict detection approaches require as
an input a BPMN model with security, data-minimization and fairness annotations.
The output of the alignment verification is a set of textual messages that describe
the detected non-aligned requirements with their specifications in the model. The

"The STS-tool is available online at http: //www.sts-tool.eu (accessed: 17/12/2019).

http://www.sts-tool.eu/downloads/secbpmn-dm
http://www.sts-tool.eu/downloads/secbpmn-dm
http://www.sts-tool.eu

2.8 Tool Support 87

output of the conflict detection is a set of textual messages that describe the de-
tected conflicts. Figure 2.20 shows a dedicated view from our tool, listing the mes-
sages. On demand, a non-aligned requirement or a conflict can be highlighted in
the model. For example, the red-highlighted path in Figure 2.2 is the result of select-
ing the conflict message that describes the PC1 anti-pattern in Figure 2.9. Support
for the constrained anti-patterns in Figure 2.10 is not yet implemented in the cur-
rent version of our tool and it is part of future work.

In the following, we provide and describe the alignment checking and conflict de-
tection algorithms®.

2.8.1 Algorithm for alignment checking

Algorithm 2.1 illustrates the alignment checking algorithm. The algorithm takes
as input a SecBPMN2 model model annotated with the data protection annotations
and a set of patterns. The patterns are specified by using the SecBPMN2-Q lan-
guage. The algorithm returns an alignment report called alignReport. The report
shows the result of the alignment verification as textual messages. On-demand, if
a message shows that a SecBPMN2-Q is matched in the SecBPMN2 model, one can
click on that message to highlight the matched pattern in the SecBPMN2 model.
The following is a details description of the alignment checking algorithm.

First, as shown in line 1 of Algorithm 2.1, our algorithm is a function that takes
as input a SecBPMN2 model and a set of SecBPMN2-Q patterns . The function
starts by creating an empty report called alignReport. This report, as explained
earlier, will be used to store the alignment verification results. Our algorithm iter-
ates over all the SecBPMN2-Q patterns in the patterns set to search for matching in
the SecBPMN2 model. Specifically, as shown in the lines 3-35 of Algorithm 2.1, for
each SecBPMN2-Q pattern in patterns, the algorithm will perform the following;:

¢ inline 4, an empty set called bpmnPaths will be created. This set will be used
to store the BPMN paths in the SecBPMN2 model that match the specified
BPMN parts in the SecBPMN2-Q pattern.

¢ in line 4, a function called find BPM N Path will be invoked. This function
takes as input the SecBPMN2 model and the SecBPMN2-Q pattern. This func-
tion searches for BPMN paths in the SecBPMN2 model that match the speci-

8We do not share the implementation of the algorithms because it depends on several plug-
ins of the STS tool, which is not an open-source tool. However, an executable version of the al-
gorithms is available online at http://www.sts-tool.eu/downloads/secbpmn-dm (accessed:
17/12/2019)

http://www.sts-tool.eu/downloads/secbpmn-dm

88

2 BPMN-based Framework for Detecting Conflicts between Data Protection
Requirements

Algorithm 2.1: Alignment checking

1 checkAlignment (model, patternsSet);

2 create alignmentReport;
3 foreach pattern € patternsSet do

4 bpmnPaths < 0, bpmnPaths < findBPM N Path(model, pattern);
5 if bpmnPaths # emptyset then
6 foreach path € bpmnPaths do
7 not M atchedSpeci f cations < 0;
8 annotPatternSet <+ 0, annotPathSet + {;
9 annotPatternSet < get Annotations(pattern);
10 annotPathSet < get Annotations(path);
11 if satisfies(annotPatternSet,annotPathSet) then
12 foreach annotPattern € annotPatternSet do
13 foreach annotPath € annotPathSet do
14 if annot Pattern.type == annotPath.type then
15 if checkTarget(annot Pattern, annotPath) then
16 notM atchedSpeci fcations <
checkSpec(annot Pattern, annot Path);
17 end
18 end
19 end
20 end
21 if not M atchedSpeci f cations == () then
22 linkText ="a full match for the "+pattern.get Name()+"
and its specification is found in the SecBPMN2 model";
23 alignReport.add(path,linkT ext);
24 end
25 end
26 else
27 linkT ext ="Error: a match for the BPMN parts of the
"+pattern.getName()+" is found but not for its annotations;
28 alignReport.add(path,linkText);
29 end
30 end
31 end
32 else
33 alignReport.add("Error, our algorithm can not find a match for the
"+pattern.getname()+" in the model");
34 end
35 end

36 return alignReport

2.8 Tool Support 89

tied BPMN parts in the SecBPMN2-Q pattern regardless of the specified data
protection annotations in the SecBPMN2-Q pattern.

e if the findBPM N Path returns an empty set bpmnPaths, this means that
there is no BPMN path in the SecBPMN2 model that matches the specified
BPMN parts in the SecBPMN2-Q pattern. Therefore, as shown in line 31, an
"Error” message will be added to the align Report. The error message informs
the user that the SecBPMN2-Q pattern in question does not have a match in
the SecBPMN2 model.

o if the set bpmn Paths that is not empty, the satis fies function will be invoked.
This satis fies function returns true if: (1) the data protection annotations of
the matched BPMN path in the SecBPMN2 model are of the same type of
those in the SecBPMN2-Q pattern, and (2) they are linked to the same BPMN
elements. If the satis fies function returned true, then the algorithm iterates
over the matched annotations to check if the specifications of their attributes
are also matched. For this, as shown in line 16, a function called checkSpec
will be invoked. The checkSpec return the attributes of the annotations in
the SecBPMN2-Q pattern that are not correctly specified in the matched data
protected annotations of the SecBPMN2 model.

¢ For each BPMN path, the algorithm checks if the notMatchedSpeci fication
is empty; see line 21. If this is the case this means that: the specifications of
the data protection annotations in the SecBPMN2-Q pattern match the spec-
ifications of the data protection annotations in the BPMN path. As a result,
in line 23, a message will be added to the alignReport to inform the user that
a full match for the SecBPMN2-Q pattern is found in the SecBPMN2 model.
The matched BPMN path is also stored align Report. This to allow the user to
highlight the matched SecBPMN2-Q pattern in the SecBPMN2 model.

2.8.2 Algorithm for conflict detection

Algorithm 2.2 illustrates the conflict detection algorithm” . The algorithm takes
as input a SecBPMN2 model annotated with the data protection annotations and a
catalog of conflicts called antiPatternsCatalog. The conflicts in our catalog are
specified as SecBPMN2-Q anti-patterns. The SecBPMN2-Q anti-patterns in the
antiPatternsCatalog are of two types: conflict and potential conflict. The algorithm
returns a report called con flict Report. This report shows the result of the conflict

? Algorithm 2.2 applies for all of our proposed anti-patterns except for the constrained anti-
patterns that represent conflicts between fairness and data-minimization annotations (see Figure
2.10). In these cases, a match for the anti-pattern is not enough to report conflicts. In addition to
the matching, other constraints should be satisfied in order to report conflict. The constraints are
already explained through examples in Part (C) of Section 2.7.1

2 BPMN-based Framework for Detecting Conflicts between Data Protection
90 Requirements

detection as textual messages. The message shows “Error” if a conflict anti-pattern
matched in the SecBPMN2 model and “"Warning” if the matched anti-pattern repre-
sents potential conflict. On-demand, the user can click on the message to highlight
the matched (potential)conflict in the SecBPMN2 model.

The conflict detection algorithm is quite similar to Algorithm 2.1 of the alignment
checking. However, Algorithm 2.1 searches for matches of SecBPMN2-Q patterns in
a given SecBPMN2 model while Algorithm 2.2 searches for matches of SecBPMN2-
Q anti-patterns in a given SecBPMN2 model. In the following, we provide a details
description of the conflict detection algorithm.

First, as shown in line 1 of Algorithm 2.2, our conflict detection algorithm is
a function that takes as input a SecBPMN2 model and a catalog of conflict
called antiPatternsCatalog. As mentioned earlier, the conflicts in our cata-
log are specified as SecBPMN2-Q anti-patterns. As shown in line 2 of Algo-
rithm 2.2, the detectCon flict function starts by creating an empty report called
conflictReport. This report will be used to store the detected conflicts and po-
tential conflicts. Our algorithm iterates over all the SecBPMN2-Q anti-patterns in
the antiPatternsCatalog to search for matching in the SecBPMN2 model, see lines
3-27 of Algorithm 2.2.

Specifically, as shown in the lines 3-27 of Algorithm 2.2, for each SecBPMN2-Q
antiPattern in antiPatternsCatalog, the algorithm will perform the following;:

¢ in line 4, an empty set called bpmn Paths will be created. This set will be used
to store the BPMN paths in the SecBPMN2 model that match the specified
BPMN parts in the SecBPMN2-Q antiPattern.

* in line 4, a function called findBPM N Path will be invoked. This function
takes as input the SecBPMN2 model and the SecBPMN2-Q antiPattern. This
function searches for BPMN paths in the SecBPMN2 model that match the
specified BPMN parts in the SecBPMN2-Q antiPattern regardless of the spec-
ified data protection annotations in the SecBPMN2-Q antiPattern.

¢ if the set bpmnPaths that is returned by findBPM N Path is not empty,
the lines from 7-11 will be executed. In line 9, the data protection annota-
tions of the SecBPMN2-Q antiPattern will be retrieved and stored in the
annotAntiPatternSet. In line 10, the data protection annotations of the
BPMN path will be retrieved and stored in the annot PathSet. In line 20, the
satis fies will be invoked. This satisfies function returns true if: (1) the data
protection annotations of the matched BPMN path in the SecBPMN2 model
are of the same type of those in the SecBPMN2-Q antiPattern, and (2) they
are linked to the same BPMN elements.

2.8 Tool Support 91

Algorithm 2.2: Conflict Detection

1 detectConflict (model, antiPatternsCatalog);
2 create con flict Report;
3 foreach antiPattern € antiPatternsCatalog do

4 bpmnPaths < 0, bpmnPaths < findBPM N Path(m, antiPattern);
5 if bpmnPaths # emptyset then
6 foreach path € bpmnPaths do
7 matchedSpeci fcations < false;
8 annotAntiPatternSet + 0, annotPathSet + {;
9 annotAntiPatternSet < get Annotations(antiPattern);
10 annotPathSet < get Annotations(path);
11 if satisfies(annotPatternSet,annotPathSet) then
12 foreach annot AntiPattern € annotAntiPatternSet do
13 foreach annotPath € annotPathSet do
14 if annot Anti Pattern.type == annotPath.type then
15 if checkT arget(annot Anti Pattern, annot Path)
then
16 matchedSpeci fcations +
verifySpeci fic(annot AntiPattern, annot Path);
17 end
18 end
19 end
20 end
21 if matchedSpeci fcations == true then
22 if antiPattern.type == con flict then
23 linkText ="Error:"+ antiPattern.get Name();
24 conflict Report.add(Path,linkText);
25 end
26 else
27 linkText ="Warning:"+ antiPattern.get N ame();
28 conflict Report.add(Path,linkText);
29 end
30 end
31 end
32 end
33 end
34 end
35 if con flict Report is empty then
36 con flict Report.add("None of the anti-patterns in the conflicts catalog
has a match in the SecBPMN2 model");

37 end
38 return con flict Report

2 BPMN-based Framework for Detecting Conflicts between Data Protection
92 Requirements

e If the satisfies function returned true, then the algorithm iterates over the
matched annotations to check if the specifications of their attributes are
also matched. For this, a function called verifySpecific will be invoked.
This function does not check the specifications of all the attributes of the
data protection annotations. The verifySpeci fic looks for the specified at-
tributes in the data protection annotations of the SecBPMN2 antiPattern.
The verifySpeci fic returns true if the specified attributes in the SecBPMN2
antiPattern are matched in the BPMN path. The returned values will be
stored in a Boolean flag called machedSpeci fics.

* inline 21, the algorithm checks whether the machedSpeci fics is true. If this is
the case this means that the specifications of the data protection annotations
in the SecBPMN2-Q antiPattern are also matched in the data protection an-
notations of the BPMN path. As a result, in line 22, the algorithm checks
whether the matched SecBPMN2-Q antiPattern represents conflict. If this is
the case an "Error” message together with the matched BPMN path will be
added to the con flict Report. Otherwise, a “"Warning” message together with
the matched BPMN path will be added to the con flict Report. On-demand,
the user can click on the message to highlight the matched SecBPMN2-Q
antiPattern in the SecBPMN2 model.

¢ in line 29, the algorithm checks if the con flict Report is empty. If this is the
case, this means that none of the SecBPMN2-Q anti-patterns in our catalog is
matched in the SecBPMN2 model.

2.9 Case Study

To study the feasibility of our approach, we applied it in a healthcare scenario. We
extended a teleconsultations healthcare management case study from the Ospedale
Pediatrico Bambino Gest1 (OPBG), a pediatric Italian hospital. The case study was
part of the VisiOn research project'®. The main objective of VisiOn consisted of in-
creasing the citizens” awareness of data protection. The final outcome of the project
was a platform that can be used by public administrations and companies to design
their systems, using security and privacy as first-class requirements. The telecon-
sultations case study described a situation where a patient health care record can
be transferred from the OPBG system to specialists in another hospital for telecon-
sultations purposes. In this scenario, many security requirements are considered
(e.g., confidentiality, accountability) but the privacy preferences were more related
to data anonymization. In this chapter, we extended this scenario to cover situa-
tions where data minimization and fairness play an important role in protecting the

Phttp://www.visioneuproject.eu/ (accessed: 08/12/2019)

http://www.visioneuproject.eu/

2.10 User Experiment 93

users’ data. To this end, we modeled a process featuring an over distance healthcare
service!l, an excerpt being shown in Figure 2.2. Using our approach, as explained
in Section 2.4, we were able to enrich the model with data-minimization and fair-
ness requirements that represent data-protection preferences for patients.

For conflict detection, we annotated the model with security requirements that rep-
resent security needs from the system point of view. Assessing the accuracy of
conflict detection based on this model required a ground truth. To this end, we
manually analyzed the model and identified 9 conflicts and 21 potential conflicts, a
subset being discussed in Section 2.7. Applied to the model, our conflict detection
technique detected 8 out of the 9 manually detected conflicts. This is because one
of the manually detected conflicts can be detected with a constrained anti-pattern
which is not yet implemented. Our tool detects 21 potential conflicts as expected.

2.10 User Experiment

We further aimed to study the practical usefulness of our technique for conflict de-
tection between security, data-minimization and fairness requirements. We focused
on two main goals: first, to study if our initial assumption that the manual detec-
tion of conflicts is error-prone can be confirmed. Second, to study if users find the
output of our technique helpful for supporting the conflict detection.

Based on these goals, we derived the following research questions:

* RQ1: How error-prone is conflict detection when performed manually?

¢ RQ2: How helpful do users find the output of the proposed automated con-
flict detection approach?

The research questions (i.e, RQ1 and RQ2) were studied in a user experiment with
30 new participants, a significantly larger sample than in our earlier preliminary
study, which was based on 7 participants [108] and did not address RQ]1, as it was
based on a subject assessment only.

The model with all security, data-minimization, and fairness requirements is publicly
available at https://github.com/QRamadan/MoPrivFair-ConflictsDetection/blob/
master/README . md (accessed: 31/12/2019).

https://github.com/QRamadan/MoPrivFair-ConflictsDetection/blob/master/README.md
https://github.com/QRamadan/MoPrivFair-ConflictsDetection/blob/master/README.md

2 BPMN-based Framework for Detecting Conflicts between Data Protection
94 Requirements

2.10.1 Set-up of the experiment

Our overall sample consists of 30 participants, specifically, 18 master students, 1
bachelor student, 8 researchers, and 3 practitioners. Thus, we relied primarily on
students as participants. We justify this choice with earlier research findings, ac-
cording to which students perform nearly equally well when faced with a novel
software development approach, and are therefore suitable as stand-ins for prac-
titioners [125]. As a baseline, our technique assumes the user to be familiar with
BPMN. Therefore, the students were recruited from a course in which BPMN was
introduced and students completed relevant assignments two weeks before the ex-
periment. BPMN-experienced researchers and practitioners were recruited based
on the personal network of the author (convenience sampling).

Table 2.5: Experience levels of participants in our experiment.

Mean Median St.dev

BPMN 255 2 1.27
Security 3.14 3 1.06
Privacy 297 3 0.99

The participants were asked to self-asses their expertise in the relevant background
fields BPMN, security, and privacy on a 5-point likert scale. For each background
field, Table 2.5 reports the mean and average, response values and the standard de-
viation. With expertise levels of 2.55/5 for BPMN, 3.14/5 for security, and 2.97/5 in
privacy (means of response values), this distribution approximates the background
of the intended user group, characterized by relevant knowledge, but absence of
expert knowledge in business process modeling, security, and privacy.

We presented the participants with a questionnaire and an auxiliary "cheatsheet"
with explanations and specifications of our notations'?. The questionnaire con-
sisted of four tasks in total. Tasks 1 and 2 were warm-up tasks for making the par-
ticipants familiar with the security and data-minimization annotations from our
approach. Tasks 3 and 4, elaborated below, focused on conflict detection. The
tasks were based on the running example of this chapter as introduced in Sec-
tion 2.4. We showed excerpts from the contained BPMN model and security, data-
minimization, and fairness requirements. All the participants worked on the same
tasks. All the tasks share the same BPMN model but in each task the number of
security, data-minimization and fairness annotations in the BPMN model was dif-
ferent. Depending on the availability of a laptop, participants filled out the ques-
tionnaire on their computers or on a paper printout.

12Eor transparency we share all our experimental materials and raw data online at https:
//github.com/QRamadan/MoPrivFair-ConflictsDetection/blob/master/README.md
(accessed: 31/12/2019).

https://github.com/QRamadan/MoPrivFair-ConflictsDetection/blob/master/README.md
https://github.com/QRamadan/MoPrivFair-ConflictsDetection/blob/master/README.md

2.10 User Experiment 95

Tasks 3 and 4 represent the experimental tasks. We used a variant of the within-
subject experimental design [23], in which all participants act as their own control:
Every participant was exposed to two treatments, conflict detection without tool
support (RQ1) and with tool support (RQ2). In task 3, we studied RQ1 by hav-
ing the participants manually identify conflicts and potential conflicts as detected
by our technique. To this end, we showed them an annotated BPMN model with
annotations of various types and asked them to identify conflicts and potential con-
flicts. As a first question, we asked them to identify conflicts manually and, in the
positive case, write down the conflict. As a second question, we presented them
with a list of types of potential conflicts and asked them in a multiple-choice ques-
tion which type actually occurs.

Afterwards in Task 4, to study RQ2, we presented them with the output of our
technique when applied to the examples. Specifically, we showed them screen-
shots of the user interface of our tool. Sources of conflicts are highlighted in the
diagram, and a textual explanation of the identified conflict is given. We asked the
participants to rate the helpfulness of this presentation on a 5-point Likert scale, 1
indicating "not helpful" and 5 indicating "very helpful". We also asked them for
free-form feedback regarding the overall technique.

2.10.2 Results of the experiment

Regarding RQ1, Figure 2.21 shows the results of the task regarding manual conflict
detection. Only a minority of 17% and 34% of all participants gave the correct an-
swer in the conflict and potential-conflict cases, respectively. 72% and 28% of all
participants, respectively, gave an incorrect answer in the conflict and potential-
conflict cases: they stated that the model does not contain any conflicts, or selected
the wrong conflicts types. A portion of 10% or 38% chose not to answer the ques-
tion, indicating a varying difficulty level between both questions.

The weak performance of our participants in identifying conflicts manually con-
firms our initial assumption that this is an error-prone task.

Regarding RQ2, Figure 2.22 shows the results of the subjective assessment of the
helpfulness of our conflict detection output. Overall, in both cases, we found a
positive sentiment. Majorities of 54% and 68% gave a helpfulness score above the
medium of the scale: A score of 5 was chosen by 39% in the conflict case and 25%
in the potential-conflict case. A score of 4 was chosen by 29% in both cases. Scores
below the medium were in a clear minority, 3.5% each for a score of 1 or 2 for
conflicts and potential conflicts. The positive tendency is in line with the comments
we received in the free-form feedback, such as: "I liked the implementation of detecting

2 BPMN-based Framework for Detecting Conflicts between Data Protection
96 Requirements

Correctness of answers
|

Patential conflict | 72% 10% 17%
|
Conflict | 28% 38% 34%
|
100 50 0 50 100
Percentage
Response Incorrect Mo answer Carrect

Figure 2.21: Results for RQ1: Error-proneness of manual conflict detection

Perceived helpfulness of conflict detection
|

For potential conflicts 7% 39% 54%
|
For conflicts T% 25% G8%
|
100 50 0 50 100
Percentage
Response Not helpful 1 2 3 4 5 Verny helpful

Figure 2.22: Results for RQ2: Perceived helpfulness of automated conflict detection

the conflicts in figure E” and "The notation is really helpful. In my opinion, it can facilitate
the process of designing critical systems with sensitive information.”

We also analyzed the written free-form feedback for negative comments which may
explain the comparatively large share of mid-ranged answers (39% for potential
conflicts and 25% for conflicts, respectively). While we did not find any related
comments on specific aspects of the output, one participant pointed out the need
for careful instructions: "It is very hard to give meaningful feedback without a clear ex-
planation of the proposes notation and the respective semantics.” We do not find that this
comment is in line with the feedback from the majority of our participants, who did
not comment negatively on the provided "cheatsheet" and its descriptions of the an-
notation and its semantics. Provided with the cheatsheet, a third of all participants
were able to specify correct answers during manual conflict detection, indicating
its general understandability. Still, this comment is significant, as it emphasizes the
need for adequate training when applying our technique in real-life scenarios.

2.10 User Experiment 97

The two main observations from our study can be summarized as follows:

e First, our technique supports the detection of errors that are hard to identify
manually (RQ1).

* Second, users generally perceive the output of our technique as helpful (RQ2).

2.10.3 Threats to validity

Our experimental design is subject to a number of threats to validity, as discussed
below. The three main types of validity threats to our study are external, internal,
and construct validity.

A. External validity. Our experimental design is subject to various threats to exter-
nal validity: the obtained results may not generalize to other cases. There are two
threats to external validity: First, a threat concerns the expressiveness of our lan-
guage for catering to a wide variety of scenarios with their distinct requirements:
Our experimental material was based on one particular case study. Second, we
relied to a large extent on students as participants in the study. We provided a
rationale for this decision in Section 2.10.1. Despite these limitations, our results
can be generalized to case studies from other domains due to the following rea-
sons: First, based on the results of previous study [125], students perform nearly
equally well when faced with a novel software development approach, and are
therefore suitable as stand-ins for practitioners. Second, the considered security,
data-minimization, and fairness requirements in our healthcare case study are ap-
plicable to other system from different domains. Consider, for example, a confer-
ence management system such as the easy-chair. In such systems, various security
and data-minimization requirements can be considered.

B. Internal validity. A threat to internal validity are experimenter expectations.
Subjective assessments, such as those regarding the usefulness, may be affected by
apparent expectations. Specifically, in RQ2, participants might have assessed our
technique positively without having understood its output.

We point out that the participants were presented with detailed insights as pro-
vided by our technique, including a highlighting of the offending model elements
and textual error messages such as: “Error: The process requires anonymous execution
for a task that writes data to a secure storage, where the executor should not be able to deny
that she modified data.” We argue that this kind of feedback is key for establishing
understandability. In line with this rationale and related positive textual feedback,
the majority of participants assessed the helpfulness of our technique positively.
The lower average score for the case of potential conflicts may come from this case
being harder to understand.

2 BPMN-based Framework for Detecting Conflicts between Data Protection
98 Requirements

Table 2.6: Execution time of conflict detection technique.

Number of Number of Time
SecBPMN Model BPMN elements | Annotations | in Seconds
Model 1 21 1 24 sec
Model 2 54 7 45 sec
Model 3 92 17 82 sec

C. Construct validity. The validity of our experiments may be disputed due to con-
struct validity. When studying the practical applicability of our approach, we only
considered the output of the conflict detection technique, rather than the full pro-
cess, including the assumption that a user manually annotates the involved BPMN
model. Even though annotating the models is an involved task, the resulting an-
notations arguably provide several benefits for communication and getting an in-
tuitive overview of the contained requirements. This task can be made easier by
providing appropriate tool support, as shown in earlier work of SecBPMN?2 [130].

2.11 Limitations and Future Work

A limitation is that our proposed notation is currently not equipped with a for-
mal semantics. We provided structured textual descriptions of all considered data
protection requirements. The textual descriptions incorporate feedback from sev-
eral rounds of revisions, and from the participants of an earlier experiment [111].
However, generally speaking, we cannot exclude the existence of cases that require
additional formal investigation. While doing so is outside the scope of this work,
we consider it a possible direction for follow-up work.

Regarding the performance of the conflict detection technique, the performance
bottleneck is the use of SecBPMN-Q’s query engine. Previous evaluation results for
the engine show that execution time grows linearly with the number of activities
and exponentially with the number of processes [131]. To still offer first insights
into the scalability of our technique, we performed a preliminary assessment based
on our running examplew, showing the results in Table 2.6.

Models 1 and 2 in Table 2.6 are smaller versions of the complete model (a.k.a. model
3), which we produced by removing connected parts. The tests were performed on
a computer with a 2.2 Ghz processor and 8 GB of memory. Taking around one
minute for the largest model and not showing an exponential slowdown, the per-
formance of the proposed conflict detection technique seems adequate for practical
use on models of the considered size.

¥0ur example model is available online at https://github.com/QRamadan/MoPrivFair—
ConflictsDetection/blob/master/README .md (accessed: 17/12/2019))

https://github.com/QRamadan/MoPrivFair-ConflictsDetection/blob/master/README.md
https://github.com/QRamadan/MoPrivFair-ConflictsDetection/blob/master/README.md

2.11 Limitations and Future Work 99

Moreover, as in any practical software system, we cannot rule out the possibility of
implementation defects in the implementation of our conflict detection technique.
Our technique is based on declarative conflict patterns, which are automatically
evaluated by a query engine. This pattern-based approach aims to reduce cog-
nitive complexity during implementation, and thus may be less error-prone than
hard-coding the technique in a general-purpose language. Yet, giving proof of this
intuition requires additional work.

We outline four important directions for future work: First, while we made a sys-
tematic effort to assure completeness and correctness, we did not provide a formal
validation. To address this gap, we suggest relying on algebraic graph transforma-
tions in the following way:

(i) Specify the semantics of each data-protection requirement using one or sev-
eral graph transformation rules. The rules would describe forbidden and in-
tended flows of information between different actors.

(ii) Apply a formally based conflict detection technique [76, 77], which can dis-
cover all possible conflicts arising from a set of rules.

Other possibilities for future work are:

e First, to extend our approach to support the resolution of conflicts. Although
a fully automated process would be appreciated, the resolution of conflicts
may require human intervention [42, 57], a further challenging task that in-
volves reasoning on the privacy impact of different solution strategies [6, 87].

* Second, to refine our technique to consider the specified enforcement tech-
nologies during conflict detection. Similar to the work in [106], our approach
allows specifying enforcement technologies for data protection annotations.
Consider the specified enforcement technologies during conflict detection
will reduce the number of reported potential conflicts by our technique. This
requires as input a database with up-to-date information about enforcement
technologies and their abilities to preserve data protection requirements.

* Third, to automate the tasks of maintaining our data protection patterns.
Specifically, a possible future work is to provide an automated approach for:
(1) mapping textual requirements to existing domain-specific patterns; (2) cre-
ating patterns for those data protection requirements that do not have cor-
responding patterns. Automating these two tasks can benefit from existing
research work (e.g., [127]), and will allow avoiding badly modeled and du-
plicated patterns in the pattern repository.

2 BPMN-based Framework for Detecting Conflicts between Data Protection
100 Requirements

2.12 Related Work

Having given an on overview of existing BPMN security-oriented extensions and
their limitations in Section 2.2.5, we now provide a comprehensive discussion of
other related work in the field of security and privacy engineering.

212.1 Conflicts between data protection requirements

To our knowledge, no existing approach supports conflict detection between se-
curity, data-minimization and fairness requirements. For example, Hansen et al.
[54] define six privacy and security goals for supporting the privacy needs of users.
The authors considered a subset of the data-minimization concepts in [103], namely
anonymity and unlinkability, and discuss their relationships. However, conflicts
are discussed at the conceptual level, abstracting from concrete systems, while we
show that the specific conflicts arising in a system can be identified by analyzing
the data-system’s minimization and security requirements.

The perspective papers of Ganji et al. [50] and Alkubaisy [10] highlight the impor-
tance of detecting conflicts between security and privacy requirements, specifically
for data-minimization requirements. Both papers discuss the components required
for a potential approach, however, without providing a complete solution. Ganji et
al. [50] envision a realization for an automated conflict detection approach based
on the SecureTropos framework as future work. However, to our knowledge, an
automated approach that realizes the research work in [50] is still missing.

2.12.2 Model-based conflict detection approaches

We are not the first to use models for detecting conflicts between data protection
properties. Paja et al. [99] propose an extension of Socio-Technical Systems (STS),
a security goal-oriented approach, to allow checking if the stakeholders have con-
flicting authorization requirements such as who allowed to read, delete, modify
and transfer data and for which purpose. Different from our approach, this ap-
proach does not support conflict detection between security, data-minimization
and fairness requirements. However, our approach can be seen as complementary
to this one due to the following reasons: First, the prototypical implementation of
our work is developed on top of the STS environment, which supports the BPMN
extension SecBPMN?2 [129]. Second, a technique that supports the transformation
from STS models to SecBPMN2 models is available [127].

2.12 Related Work 101

Elahi et al. [42] propose an extension to a goal-oriented modeling language called
i* to model and analyze security trade-offs among competing requirements of mul-
tiple users. The main goal is to allow identifying an optimal set of security mech-
anisms that together can achieve a good-enough security level without violating
usability issues. However, this research work does not consider conflicts analysis
between security, data-minimization and fairness requirements. Moreover, the au-
thors considered the design of catalog reusable knowledge about security trade-offs
for automating the trade-offs analysis as part of future work.

Saadatmand et al. [123] propose an approach that automatically, based on fuzzy
logic extension of the TOPSIS decision-making method, analyzes UML class mod-
els annotated with non-functional requirements in order to evaluate different de-
sign alternatives and identify which one leads to the better overall satisfaction of
non-functional requirements. For the same purpose, Pasquale et al. [100] propose
to use the KAOS goal-oriented approach to study interactions between security
requirements such as confidentiality and other organizational and non-functional
requirements such as cost budget and performance, respectively. The proposed ap-
proach uses a Satisfiability Modulo Theories (SMT) solver to interpret the KAOS
models and automate the execution of the trade-off analyses. This helps the secu-
rity engineer in selecting security mechanisms and configurations that can maxi-
mize security without violating other goals such as usability. Different from our
work, the works do not support conflict analysis between data protection related
requirements. Instead, they support trade-offs analysis between security require-
ments and other quality or organizational related requirements such as the usabil-
ity and the cost budget, respectively. Furthermore, they do not consider the con-
text of how the requirements interact with each other. Models are used to support
conceptual modeling for security and quality concepts and relationships between
them, without considering the underlying behavior of the target system.

2.12.3 Other conflict detection approaches

The literature is rich with approaches that rely on textually specified requirements
to identify conflicts between them. A comprehensive overview of these approaches
can be found in [9]. In what follows, we discuss the approaches that consider secu-
rity or privacy as part of their supported concepts.

Like we do, Egyed et al. [39] argue that detecting conflicts between the require-
ments requires an understanding of their dependencies. To overcome this chal-
lenge, the authors propose an approach that takes as input a set of textual non-
functional requirements. The approach then automatically finds out the require-
ments that have trace dependencies between each other. The trace dependencies

2 BPMN-based Framework for Detecting Conflicts between Data Protection
102 Requirements

are created among requirements if their test scenarios execute the same or simi-
lar lines of code. In a final step, the approach uses a matrix of conflicts to decide
whether two dependent requirements are conflicting or not. Mairiza et al. [84]
propose a catalog of conflicts between non-functional concepts. The catalog is a
two-dimensional matrix that shows conflicts between the non-functional concepts
at the conceptual level without considering their context. The same authors have
proposed an ontology-based framework that aims to manage the relative conflicts
among non-functional requirements, particularly those between security and us-
ability requirements [83]. However, the work does not provide technical details
about how the framework can be automated. Technical support and framework
evaluation are proposed as future work.

Poort et al. [105] propose a framework called Non-Functional Decomposition,
which aims to detect conflicts between non-functional requirements and suggest
strategies to resolve them. For conflict detection, the framework suggests to group
the requirements based on their functionalities and then study trade-offs between
the non-functional requirements that belong to the same functional requirement.
However, this framework provides only a methodological solution for conflict de-
tection at a high-level of abstraction without supporting a concrete solution for how
trade-offs between the requirements can be automatically detected.

Different from our work, the works in [39, 83, 84, 105] do not support conflict detec-
tion between data protection concepts. They aim to detect conflicts between non-
functional requirements such as security, usability, efficiency, and maintainability.
Surprisingly, although the proposed matrix in [84] consider the privacy and the se-
curity as two non-functional concepts, it does not show that privacy and security
can be (potentially) in conflict. Moreover, these approaches rely on informally tex-
tually specified requirements to detect conflicts between them, which may lead to
inaccurate results due to inexact semantics.

2.12.4 Data-minimization-aware approaches

Various works in data-protection requirements engineering aim to specify privacy
requirements using the data-minimization concepts proposed in [103]. In Deng et
al.’s LINDDUN framework [32], both misuse cases and data-minimization require-
ments can be identified by mapping predefined threat-tree patterns to the elements
of a data-flow diagram. Kalloniatis et al. [65] propose the Pris methodology, which
maps data-minimization and other security concepts to a system’s organizational
goals to identify privacy requirements. Pris introduces privacy-process patterns
that describe the effect of privacy requirements to organizational processes.

2.13 Conclusion 103

Mouratidis et al. [95] present a conceptual framework that combines security and
data-minimization concepts, and show its use to specify details about privacy goals
such as the involved actors and threats. Beckers et al. [16] propose a privacy-threats
analysis approach called ProPAn that uses functional requirements modeled in the
problem-frame approach to check if insiders can gain information about specific
stakeholders. Diamantopoulou et al. [34] provide a set of privacy process patterns
for security and data-minimization concepts, aiming to provide predefined solu-
tions for different types of privacy concerns in the implementation phase. In addi-
tion to textual description of the patterns, BPMN design patterns were provided to
guide operationalization at the business process level.

Since none of these approaches considers conflicts between data-protection require-
ments, our approach can be seen as complementary: Their output can be used as
input for our approach to allow the enrichment of the business process models with
data protection requirements and then to perform conflict detection.

2.12.5 Fairness-aware approaches

Fairness is currently dealt with as an algorithmic problem at the implementation
phase. Approaches in this field can be classified into detection and prevention ap-
proaches. Approaches of the former type aim to test whether a given software dis-
criminates against protected characteristics. Approaches of this type can be further
classified into while-box (e.g., [7]) and black-box (e.g., [29, 52, 145]) approaches.

The trade-offs between fairness and privacy needs are recently considered as a chal-
lenge in the field of algorithmic fairness [29]. However, so far there is exists no ap-
proach that allows modeling fairness requirements and detecting conflicts between
them and other data protection requirements as early as during the design phase
of the targeted system. The need for integrating fairness in the early design stages
has been highlighted by our position papers in [109, 112].

2.13 Conclusion

We proposed an BPMN-based framework for supporting the detection of conflicts
between security, data-minimization, and fairness requirements. To this end, we
first proposed an extension of BPMN that permits the specification of these require-
ments in business process models, based on existing security annotations from the
SecBPMN2 [129] and new data-minimization and fairness annotations.

2 BPMN-based Framework for Detecting Conflicts between Data Protection
104 Requirements

Based on this extension, first, we enabled checking the alignment between the se-
curity, data-minimization and fairness requirements and their specifications in the
BPMN models. We automated this process by extending a graphical query lan-
guage called SecBPMN2-Q to allow formulating the requirements as reusable pro-
cedural patterns. The patterns can be matched to BPMN models from the same
domain. Second, we introduced a technique for conflict detection between the spec-
ified requirements in the BPMIN models. Our technique analyses enriched models
using a catalog of a domain-independent anti-patterns, which was created using
our SecBPMN2-Q extension as well. Alignment checking is required to avoid con-
flicts arising from changes to the requirements during their specifications in the
business process models, which if detected later will make the process to find their
root causes more difficult.

We validated the feasibility and usability of our conflict detection technique based
on a case study featuring a healthcare management system, and an experimental
user study, respectively.

105

Chapter 3

Integrating BPMN- and
UML-based Data-Protection

Engineering

This chapter presents a sub-framework of the proposed MoPrivFair (Model-based Privacy
& Fairness) methodology in this thesis. An overview of the MoPrivFair methodology is
provided in Section 1.2 in the first chapter of this thesis.

RQ1 | oo | RQ2 |

/BPMN-based Fr k for ,°

Detecting Conflicts (Chapter 2) ’ Framework for Integrating BPMN-""

and UML-based Data-Protection
Engineering (Chapter 3)

RQ3

UML-based Framework for
Individual-Fairness Analysis
(Chapter 4)

[‘ Annotate the software]

& Create/Update data protection-
annotated BPMN models

l

a Reuse/Create/Update procedural a Resolve
data protection patterns conflicts

software architecture model

!

2, Refine the software
architecture model

[q’ Transform BPMN models to]

model with fairness-
specific information

’% Alignment Checking

individual-fairness

I S

[% Method for verifying]

policies against the software

\ architecture model
\ % Conflicts Detection /
N o e e e e o e == -

Figure 3.1: The highlighted part (dashed lines) denotes how Chapter 3 contributes
to the overall workflow of the MoPrivFair methodology.

R SR

Verify technical data protection]
7/

Tracing and integrating data protection requirements throughout the system de-
velopment process is a key challenge in the field of data protection engineering. A
main reason for that is, in a system development process, data protection require-
ments for organizational and technical aspects of a system are currently dealt with
separately, giving rise to substantial misconceptions and errors.

106 3 Integrating BPMN- and UML-based Data-Protection Engineering

In this chapter, we present a model-based framework! for supporting the design
of a data protection-aware system on both organizational- and technical-level. The
key idea is to allow involved experts in the system design phase to specify data pro-
tection requirements in languages they are familiar with: business analysts use the
Business Process Modeling Notation (BPMN) for procedural system’s descriptions;
system architects/developers use the Unified Modeling Language (UML) to design
and specify a software architectural model. Data protection requirements are cap-
tured via the language extensions SecBPMN2 and UMLsec. To specify a UMLsec
architecture model based on a SecBPMN2 model, we provide a model transforma-
tion technique. Using UMLsec policies, various data protection properties of the
resulting software architecture model can be verified. We applied our framework
to a case study featuring an air traffic management system.

3.1 Introduction

The vast majority of today’s software systems are part of Socio-Technical Systems
(STSs). These systems involve a rich interplay of organizational (humans and
organizations) and technical (software and hardware) components to accomplish
shared objectives [138]. Examples include air traffic management, smart cities, and
healthcare systems. Socio-technical systems open up a new class of data protec-
tion challenges. Socio-technical systems are decentralized and their components
are autonomous and loosely controllable. Hence, a violation of a data protection
requirement in a single component may affect other components, leading to un-
pleasant consequences such as privacy violations, data misuse, law infringements,
and safety risks. For instance, in an air traffic management system, unauthorized
modification of the flight plan of a flying plane can threaten the safety of passen-
gers, with severe consequences for the airline and airport companies.

For the effective data protection engineering in a socio-technical system, it is im-
portant to consider both organizational and technical data protection requirements
right from the start of the system development process. Therefore, various ap-
proaches have been proposed to incorporate data protection requirements into the
design phase of the system development life cycle.

A number of BPMN-based approaches (e.g., SecBPMN2 [111, 129], SecureBPMN [17])
rely on business process modeling for organizational data protection requirements
such as security and privacy requirements. These approaches abstract from tech-
nical details to allow the specification of high-level data protection requirements by
non-technical stakeholders, such as business analysts [126]. Moreover, a number

!This chapter shares material with the MoDELS'17 paper "From Secure Business Process Modeling
to Design-Level Security Verification" [108] and the SE’18 paper "Integrating BPMN- and UML-based
Security Engineering via Model Transformation"[110].

3.1 Introduction 107

of UML-based approaches (e.g., UMLsec [62], SecureUML [81]) allow system devel-
opers to design a software model while considering data protection requirements.
This software model is enriched with technical details at a low-level of abstraction to
support the validation against pre-defined technical data protection policies. The
software model is a cornerstone for further development stages, such as generating
code for the implementation [62, 67].

In system development process, the business process models represent an impor-
tant source of requirements for the software architecture construction [31, 72, 117,
120]. For example, the business process modeling represents an essential first phase
in the rational unified process, which provides a disciplined software engineering
approach [73]. Since building systems that preserve data protection requirements
is a sensitive task, it is important to manage data protection requirements in a sys-
tem’s business process model and its software architecture consistently.

3.1.1 Problem statement and research questions

Data protection requirements are dealt with separately. This is because existing
BPMN- and UML-based approaches address data protection needs in distinct de-
velopment phases and from the perspectives of different stakeholders. As a conse-
quence, an alignment of data protection requirements across the business process-
and software architecture-models is not guaranteed [11, 118].

A non-alignment of data protection requirements may lead to security and privacy
vulnerabilities. A main source of vulnerabilities are misunderstandings between
expert stakeholders, as triggered by their implicit knowledge about terminology
[11]. For instance, one of the most common uses of swimlanes in BPMN is to express
internal roles in an organization, while the BPMN standard leaves their semantics
undefined [1]. Without this implicit knowledge about the usage of swimlanes, sys-
tem developers may neglect the use of an appropriate role enforcement mechanism
(e.g., role-based access control), resulting in security loopholes. Worse, such loop-
holes may be notoriously hard to detect due to the lack of a traceability mechanism
for data protection requirements across the different modeling phases. According
to Yu et al. [152], "a single inaccurate requirement traceability link assumed by devel-
opers may already be exploited by malicious attackers". Ensuring traceability of data
protection requirements is therefore important.

Model transformation [134] is a promising direction to address this problem. The
use of different kinds of models during the system design phase leads to the chal-
lenge of keeping the models consistent with each other. At this point, model trans-
formation techniques play a central role. Thus we need a model transformation
from business process models to software architecture models which ensures trace-
ability of data protection requirements.

108 3 Integrating BPMN- and UML-based Data-Protection Engineering

Earlier automated transformation approaches used UML as sole modeling lan-
guage throughout the entire process [55], thereby leaving the role of business ana-
lysts unaddressed, or focused on representing data protection requirements “at the
business analyst views” ([120], p.2), leaving technical security concerns and the verifi-
cation of security aspects to future work [120]. The specification of a UML software
model based on business processes represented by BPMN or UML activity mod-
els has been subject to previous works [31, 72, 117, 120]. However, except for the
discussed work in [120], none of these works considered data protection aspects
during the transformation. Support for integrated management of organizational
and technical data protection requirements throughout the entire development pro-
cess is generally missing. Motivated by this, we investigate the following research
question in this chapter:

RQ2. How to support the integrated management of modeling business process and soft-
ware architecture models, such that the traceability of data protection requirements is guar-
anteed?

Our objective is to support the management of data protection requirements from
the views of the involved stakeholders, in particular, business analysts and systems
engineers, consistently in an integrated manner in order to: First, avoid the intro-
duction of vulnerabilities during the development process due to the conceptual
gap between the involved stakeholders. Second, ensure traceability for data pro-
tection requirements across business process- and software architecture-models.

3.1.2 Contribution

To address research question RQ2, we propose a framework for integrating BPMN-
and UML-based data-protection engineering while ensuring traceability. In partic-
ular, our framework suggests to iteratively:

(i) create business process model enriched with organizational data protection
requirements using the SecBPMN2 modeling language,

(ii) transform the SecBPMN2 model to a preliminary system architecture model
enriched with data protection policies using UMLsec [62],

(iii) refine the generated UMLsec model manually with additional design deci-
sions, and

(iv) verify the resulting UMLsec model against its contained data protection poli-
cies by using an automated tool, called CARiSMA [4].

3.2 Background 109

The novelty of our framework is that we automatically establish traceability be-
tween high-level data protection requirements and verifiable technical data protec-
tion policies. In doing so, we integrate the views of business analysts and system
developers, the two main kinds of expert stakeholders during the development of
the targeted system. Our contributions in this chapter are:

1. a semi-automated process for enforcing an integrated data-protection manage-
ment throughout the system development process.

2. a model transformation supporting the translation of business process models
annotated with data protection requirements to system architectural models
while establishing traceability for data protection requirements.

3. a case study featuring an air traffic management system, showing how our
framework can be used to establish integrated management and traceability
of data protection requirements.

This chapter is structured as follows. Section 3.2 describes the necessary back-
ground. Section 3.3 describes our proposed framework for supporting the inte-
gration between BPMN- and UML-based data-protection engineering approaches.
Section 3.4 describes the model transformation. Section 3.6 demonstrates the in-
tegrated approach on a case study describing an air traffic management system .
Section 3.7 discusses limitations of our current approach and presents future work.
Section 3.8 and 3.9 survey related work and conclude, respectively.

3.2 Background

In this section, we describe necessary background for understanding this chapter,
focusing on the approaches SecBPMN2 and UMLsec, which we illustrate with ex-
ample models from our case study.

3.2.1 SecBPMN2 (Revisit)

In this section, we revisit the background information of SecBPMN2. A detailed
account of SecBPMN?2 is already provided in Section 2.2.6. SecBPMN2 [111, 126] is
a data protection-oriented modeling language that allows business analysts to ex-
press and reason with organizational data protection requirements using the BPMN
[1]. Similar to other BPMN-based data protection-oriented extensions, SecBPMN2
hides technical details of the targeted system, while permitting non-technical stake-
holders to specify high-level data protection requirements in an intuitive way [126].

We selected SecBPMN2 [129] as a basis for our framework due to its expressiveness
and the ability to model both business processes and data protection requirements.

110 3 Integrating BPMN- and UML-based Data-Protection Engineering

To specify security-specific requirements in business process models, SecBPMN2
provides 10 security annotations, such as Accountability(@)), Confidentiality(ig¥),
and Integrity (@) that can be added and linked to BPMN 2.0 elements such as
tasks, data objects, and message flows. In Chapter 2 of this thesis, we extended the
SecBPMN2 modeling language with 4 data-minimization-specific annotations and
1 fairness-specific annotation. A number of alternative approaches have been pro-
posed in the literature where specific annotations are introduced to extend BPMN
with data protection aspects [17, 89, 119]. However, different from the SecBPMN2
these approaches are not designed to express requirements [89], or they permit to
represent only a restricted set of data protection aspects [17, 119]. More details
about the 10 security concepts that are supported by the SecBPMN2 and our exten-
sion are provided in Section 2.2.6 and Section 2.4, respectively.

SecBPMN2 example model

In the following, we introduce a SecBPMN2 example model, which will be used
through this chapter to explain our contribution?. Figure 3.2 shows a SecBPMN2
model representing a business process for flight plan negotiation in an air traffic
management system. Executors of a business process are represented by Pools such
as “Airplane” and “Local authority”. Communications between pools are represented
by Message Flows; the content of such communications are Messages: “Notify local
authority” sends the message “Flight plan” to “Local authority”. Atomic activities in Fig-
ure 3.2 are represented with Tasks, for example “Take off”. The sequence of elements
executed is represented with thick arrows, which specify that the element attached
to the source of an arrow is executed before the element attached to its tip.

Events are represented with circles. Start events and End events mark the initial and
terminal points of business processes. Catch events represent points in a business
process where an event needs to to happen, for example “20 minutes before new
aerospace”. Event that receive or send message is represented by a circle with a
message data item. For example, “Start Event2” denotes that the “Local authority” will
start after receiving a “Flight plan” message. Gateways are used to specify deviations
of the execution sequence: Exclusive Gateway specify decisions points: the gateway
“Flight plan created?” allows the upper or lower branch to be executed, depending
on whether the question is answered “Yes” or “No”.

The orange solid circles are security-specific concepts. In particular, Integrity ({))
and Confidentiality (&%) are associated to the message flow meaning respectively
that the content of the message is preserved and it will not be accessed by unautho-
rized users. Accountability (@) is associated to “Check flight plan” meaning that the
task’s executor must be monitored.

’In this chapter, we use italic for concepts and “sans serif font” for examples.

3.2 Background 111

- Local authority
Airplane

Start Event 2
Start Event 1

20 minutes
. to new

aerospace &
.
Flight plan .
End Event 2
Flightplan | : E Flight plan
created? ; :I e
Negotiate flight Notify local
plan authority i i

End Event 1

Figure 3.2: Example model: SecBPMN2 model representing a business process for
flight plan negotiation.

3.2.2 UMLsec profile

UMLsec [5, 62] is a UML profile that can be used to enrich UML diagrams with data
protection information. A profile is a generic extension mechanism that permits
refining the meta-model of the UML to be tailored for specific domains or plat-
forms. UMLsec extends UML with security- and privacy-specific «stereotypes» and
{tags}, that permit checking whether the architectural and the behavioral aspects of
an annotated UML model preserve specific security or privacy policies. Verifying
UMLsec policies can be done automatically by a tool support called CARiSMA? [4].

S3CARISMA is available online at https://rgse.uni-koblenz.de/carisma/ (accessed:
05/12/2019). Details description of how to install and use CARiISMA is provided in Appendix (B) of
this thesis.

https://rgse.uni-koblenz.de/carisma/

112 3 Integrating BPMN- and UML-based Data-Protection Engineering

UMLsec has shown its usefulness in several industrial applications [61, 64, 133],
in-house training courses exist at several companies. This section focuses on UML
deployment and class diagrams, which are typically used to define a software archi-
tecture. The UMLsec provides three main security-specific data-protection policies
that parts of software architecture are supposed to obey. These policies are:

1. «secure links» to ensure that security requirements on the communication such
as «secrecy» and «integrity») are met by the physical layer [62].

2. «secure dependency» to ensure that dependent parts in the architecture model
preserve the security requirements relevant to the part they depend on [62].

3. «abac» to define central elements of the Role Attribute-Based Access Control
(RABAC) mechanism such as roles and permissions and verify them against
the designed architecture [5].

In the following, we explain these policies through the use of UML architecture
models from an air traffic management system. The architecture models reflect the
parts that are relevant to the flight plan negotiation process, which is discussed in
Section 3.2.1. An account and a formal foundation of the UMLsec stereotypes and
tags is given in [62]; the RABAC extension was introduced in [5].

Secure links

The «secure links» is a UMLsec policy that aims to ensure that security requirements
on the communication are met by the physical layer [62]. The physical layer of a
system is modeled by a deployment diagram. Figure 3.3 is a deployment diagram
annotated with the «secure links» policy and its related annotations.

A deployment diagram aims at capturing the relationship between the physical ele-
ment of a modeled system and the software Artifacts ([3], p. 653). A physical ele-
ment is represented as a Node and shown as a perspective view of a cube labeled
with the name of the physical element. For instance, the “Airplane_Client” and “Air-
plane_Subsystem” in Figure 3.3 are examples of nodes. An artifact represents an
information asset that is used or produced by a software process ([3], p. 656).

An artifact is deployed on a node and represented as a rectangle with the stereotype
«artifact». For instance, in Figure 3.3, the “airplane_GUI” represents a Graphical-User-
Interface artifact. Artifacts are used to manifest systems” components and they may
have operations that can be performed on its instances.

The nodes may be connected by solid lines representing Communication Paths. A
communication path is an association between two nodes, through which they may

3.2 Background 113

l«secure Iinks»|._. adversary={default} lj
EIATM

Airplane_Client
«artifact»
Airplane_GUI

;«call, secrecy, integrity»

Local authority_Client
«artifact»
Localauthority_GUI

Communication Path2

Communication Path1 : «call, secrecy, integrity»

«encrypteds «encrypted»
«encrypted>»
Airplane_Subsystem !, R Local authority_Subsystem
i Communication Path3 \
‘ «artifact» F «artifact»
Airplane Process_Application «call, secrecy, integrity» | [Local authority Process_Application
«artifact» «artifact»
Flight Plan_Database Plan_Database

Figure 3.3: UML deployment diagram of SecBPMN2 example

exchange signals and messages. Examples of communications paths in Figure 3.3
include “Communication Path1” and “Communication Path2”. In UMLsec a communica-
tion path can be stereotyped with «Internet», «<encrypted», «<LAN», or «wire». These
stereotypes on communication paths denote the respective kinds of communica-
tion paths. Based on the UMLsec specifications, each communication path should
be stereotyped with at most one of these stereotypes ([62], p. 56).

The «secure links» policy is specified in relation to a specific adversary pattern,
showing the potential threats that can be posed by certain types of attackers with
respect to the type of the communication path (e.g, «Internet» and «encrypted»).
Table 3.1 shows the threats posed by two examples adversaries, called default
(i.e., outsider) and insider (i.e., one of the involved roles, such as sender). For
a given adversary of type A, the function T'hreat 4(s) returns which kinds of ac-
tions the adversary can apply to a communication path annotated with the stereo-
type s. For example, considering an «Internet»-annotated communication path, the
Threat e fquit(Internet) returns that a default adversary can delete, read and insert
messages over this «Internet»-annotated communication path.

Table 3.1: UMLsec adversary patterns.

Stereotype | Threatefauir(s) Threat;,side:(s)

«Internet» {delete,read,insert} | {delete,read,insert}
«encrypted» | {delete} {delete,read,insert}
«LAN»] {delete,read,insert}
«wire» 0 {delete,read,insert}

Artifacts may be connected by broken arrows representing communication Depen-
dencies. A dependency may be annotated with the stereotype «call» or «send». A
dependency stereotyped «call» between two artifacts indicates that instances of the

114 3 Integrating BPMN- and UML-based Data-Protection Engineering

source artifact may call operations of instances of the target artifact. A dependency
stereotype «send» between two artifacts indicates that instances of the source arti-
fact may send signals to instances of the target artifact. Different from the com-
munication paths, dependencies describe the connection between the artifacts. In
UMLsec a dependency can be also annotated with «secrecy», «integrity», and «high».
These stereotypes are used in the constraint for the stereotype «secure links».

The «secure links» when label a deployment diagram enforces that for each depen-
dency d with stereotype r € {«secrecy», «integrity», «<high»} between two artifacts
deployed on two nodes n, m, we have a communication path [between n and m
annotated with stereotype s such that:

* in case of r = «high», we have Threat(s) =),
* in case of r = «secrecy», we have read ¢ Threat 4(s), and

* in case of r = «integrity», we insert ¢ Threat(s).

For example, if a communication path [between two nodes n, m is annotated with
«Internet», and the dependency between two artifacts al and a2 that are deployed
on n and m, respectively, is annotated with «secrecy», then the security constraint
associated with the stereotype «secure links» with respect to the de fault adversary is
violated. Specifically, the dependency annotated with «secrecy» requires that a de-
fault adversary should not be able to read messages over the communication path
between n and m. However, the communication path is annotated with «Internet»,
meaning that the adversary is capable of reading messages over the communication
path. As aresult, the security requirement of the communications is not supported.

Secure dependency

As mentioned earlier, «secure dependency» is a UMLsec policy that aims to ensure
that dependent parts in the architecture model preserve the security requirements
relevant to the part they depend on [62]. In the «secure dependency» policy, the «crit-
ical» stereotype labels classes with sensitive data and operations. The associated
tags with the «critical» stereotype such as {secrecy} and {integrity} specify security
requirements on these data and operations. Specifically, each class specifies the
stipulated requirements of its own members and the fulfilled requirements of other
classes” members. Verifying «secure dependency» entails checking whether: First, all
requirements stipulated by a class are fulfilled by all dependent classes. Second,
the «call» and «send» dependencies between classes respect the stipulated security
requirement by the classes on the data that may be communicated between them.

punoidyoeq 7€

|<secure dependency>
B ATM
role={(Subject,Airplane),(Subject,Local authority)} < '| w«abac» |
right={(Airplane read_Flight plan),(Airplane,modify_Flight plan)} = RBAC
. " Notify local authority()}
secrecy={Notify local authority()} .secret.:y={ i .
integrity={Notify local authority()} lT‘ integrity={Notify local authority(}}
h I |
- «all, , integritys . «critical»
[eerieat] ol nomme Ptparies g LTy
= Message, T N P,
Negotiate flight plan() 1 " Start Event 2(in Flight plan: Message, out obj: Flight Plan)
Take off() " I«abacRequEre» ICheck flight plan(in obj: plan)
|«ahacRequirea Notify local authority(out Flight plan: Message, in obj: Flight plan) 1 J:,
1 . N | right={access_Check flight plan]H
right={read_Flight plan, modify_Flight plan} Iﬁ = Flight plan 4{) E pata <]— 5 Plan

Figure 3.4: UML class diagram of SecBPMN2 example.

It

116 3 Integrating BPMN- and UML-based Data-Protection Engineering

Figure 3.4 is a class diagram annotated with the «secure dependency» along with its
related annotations. A class diagram describes the structure of a software by show-
ing its classes, their attributes, operations, and the relationships among classes.
Figure 3.4 shows a call dependency from the “Localautority” class to the “Airplane”
class. Specifically, the “Localautority” class does not implement the “Notifylocalauthor-
ity()” operation to get the “Flight plane”, therefore, it calls the “Airplane” class.

In the “Localautority” class, the tags {secrecy} and {integrity} are stated for the oper-
ation “Notifylocalauthority()”, denoting that the “Notifylocalauthority()” should be pro-
tected from unauthorized access (secrecy) and manipulation (integrity). Since both
the «call» dependency and the “Airplane” class provide similar security require-
ments, we say that the secure dependency between the “Localautority” class and the
“Airplane” class is preserved.

RABAC (Role attribute-based access control)

The purpose of RABAC is to check the access rights of each role and the access
constraints assigned to specific operations based on predefined attributes. UMLsec
implements the RABAC access control model via the policy «abac». The stereotype
«abac» uses two tags called {role} and {right} to assign roles to subjects and rights to
roles, respectively. For instance, in Figure 3.4, consider the “RABAC” class which is
annotated with «abac» stereotype. The {role} tag of «abac» specifies two roles namely,
the “Airplane” and the “Local authority”. The {right/ tag specifies multiple rights to the
“Airplane” as follows: “{(Airplane,read_Flight plan), (Airplane,modify_Flight plan)}”. This
means that the Airplane has the right to read and modify the flight plan.

In «abac», operations in need of an access restriction can be annotated with the
«abacRequire» stereotype along with its associated {right} tag. For example, in Figure
3.4, the “Notifylocalauthority()” operation is annotated with «abacRequire» stereotype.
This stereotype specifies that the “Notifylocalauthority()” operation can be accessed by
roles that have the rights to “(read_Flight plan, modify_Flight plan)”. In our example,
the output result for the RABAC check will show that the Airplane role has access
to Notify local authority operation.

3.3 Framework for Integrating BPMN- and UML-based
Data-Protection Engineering

Business processes are mainly about behavior, tasks, and flows, which specify how
a system achieves its goals, while architectural deployment and class diagrams
focus on structural elements such as components, classes, and operations, which
specify how a software architecture in a system should be built to achieve its goals.

3.3 Framework for Integrating BPMN- and UML-based Data-Protection
Engineering 117

Therefore, it is not possible to automatically specify all the architectural details
based on a given business process. For example, while a task in the business pro-
cess can be transformed to an operation in the architectural model, a one-to-one
mapping is not always possible, as it might be preferable to represent the task by
a set of operations rather than one. For this reason, our framework proposes the
semi-automated process shown in Figure 3.5.

The proposed framework in Figure 3.5 aims at supporting the management of data
protection requirements from the views of the involved expert stakeholders, in par-
ticular, business analysts and systems engineers, in an integrated manner. To this
end, as shown in Figure 3.5, we integrate the two well-known model-based secu-
rity approaches SecBPMN2 and UMLsec via model transformation. In the follow-
ing we explain: First, the roles that should be involved in the proposed framework.
Second, the input and the output of the our framework. Third, the phases of our
proposed framework.

Roles: At a minimum, the process of the proposed framework involves a team of
SecBPMN2-trained business analysts and UMLsec-trained system developers. The as-
sumptions on the skills of these involved stakeholders are light-weight, as they
do not have to be experts in data protection. Still, to ensure the correct use of
SecBPMN2 and UMLsec, some additional instruction on top of their regular train-
ing is appropriate. With these assumptions, our aim is to address the common sit-
uation in which experts of data protection are absent [58]. In this situation, we aim
to make the software more reliable than it would be when ignoring data protection
from the start. However, even in presence of experts in data protection—which is
clearly the preferable situation—, the proposed framework can still be helpful, as
the involved expert and non-expert stakeholders may benefit from the traceability
of data protection requirements across development phases.

Input/Output: As input, the process receives a requirements document containing
organizational, technical, and data protection requirements. During the require-
ments elicitation, the business analysts produce this document in interaction with
the customer. In our work, we assume that the requirements document is given.
The output is a data-protection-aware software architecture and a verification re-
port, showing the results of validating the architectural model against the data pro-
tection policies of the UMLsec.

E}Ie: SecBPMN2-trained business analyst E)Ie: UMLsec-trained system developer
1 2 3
&Cre?te/Update data-protection-annotated 'rl;:‘:gzlf::?sBoFf’xlvl:re & Refine the software ¢
business processes models € architecture model
architecture model p,
Start
D » 4 Yes
—_——— > %%, Verify technical data
Requirements SecBPMN2 ”nT:§§° D protection policies Violations?
Document Model Trace Model against the software

Final architecture model No

Report
Legend
End
E] Manual process Automated process D Artifact ———5 Sequence flow

— —p Trace oo » Datainput/output <>> Exclusive Gateway O Start O End

Figure 3.5: The proposed integrated management framework.

SIL

Burrsaurduyg uondd30.I -eye(] Paseq-TN N PUt -NJJg Sunerdajuy ¢

3.3 Framework for Integrating BPMN- and UML-based Data-Protection
Engineering 119

Phase 1. In this phase, business analysts design the business processes of the sys-
tem in question with respect to data protection needs. As a first step, they derive
business processes from the provided requirements document to create a BPMN 2.0
model. In a second step, they use SecBPMN2 to specify organizational data protec-
tion requirements, again based on the requirements document. The output of this
phase is a SecBPMN2 model. The SecBPMN2 model is a BPMN 2.0 model annotated
with data protection requirements.

Phase 2. Business process models deal with organizational aspects in a high level,
abstracting from technical details. Consequently, they are not sufficient for gener-
ating software implementation directly. To this end, business processes and their
included data protection requirements are now transformed into a data protection-
aware architecture model. We provide an automated model transformation from
SecBPMN2 to UMLsec models (i.e., UML class and deployment diagrams anno-
tated with the UMLsec profile). As a byproduct, this transformation creates a trace
model of mappings to source and target elements, allowing us to keep processes
model and a software architecture aligned and bridge the gap between organiza-
tional requirements and technical ones. Section 3.4 elaborates on the transforma-
tion implementation using the Henshin transformation language [12]. Since it is
infeasible to foresee all desirable architectural details from the input business pro-
cess, the generated output from this phase can be seen as a preliminary architecture
model that needs to be revised by the system developers.

Phase 3. In this phase, system developers can refine the preliminary architecture
model in two ways. First, missing details can be inserted, such as the associations’
names, attributes, and permissions of certain roles generated during Phase 2. Sec-
ond, a UML element can be refined into multiple ones. For instance, classes with
many contained operations can be split into several ones. Third, using the trace
models, system developers can check whether a UMLsec data protection-related
stereotype is in place for each data protection-related annotation specified in the
SecBPMN2 model.

Phase 4. The architectural model in phase 3 can be verified against the included
data protection policies using CARISMA [4]. The considered data protection
policies (i.e., «secure links», «secure dependency» and «abac») are explained in Sec-
tion 3.2.2. The output final report contains the result of the check of each verified
policy. If the architectural model does not satisfy all data protection policies, the ar-
chitectural model needs corrections; the process then jumps back to phase 3. If all
data protection policies are correctly enforced, the involved stakeholders have ev-
idence that the architecture meets the organizational data protection requirements
specified in the business processes model. Therefore, one can guarantee that the ar-
chitecture model is aligned with the business processes and can serve as the basis
for an implementation that preserves data protection requirements.

120 3 Integrating BPMN- and UML-based Data-Protection Engineering

3.4 SecBPMN2 to UMLsec Transformation

The specification of a software architectural model from a business processes
model is not straightforward in real-world systems, which are large and complex.
To address this challenge, we define an automated model transformation from
SecBPMN2 models to UMLsec architectural diagrams (i.e., deployment and class
diagrams), using the model transformation language Henshin and its associated
toolset [12, 142]. Henshin is based on the Eclipse platform and the Eclipse Model-
ing Framework (EMF). It supports a graph-based specification of model transfor-
mation rules for EMF-based meta-models. The rationale for using Henshin was its
convenient application to our setting with respect to our goals, including the pos-
sibility to create a trace model during the transformation to manage traceability.
The trace model has a single class Trace. The Trace class has two non-containment
n-ary references of type EObject called source and target. In our transformation, the
source is a SecBPMN2 model element while the target is a UMLsec model element.
We focus on the part of SecBPMN2 that can be translated to an architectural model
expressed using deployment and class diagrams. These diagrams enable the spec-
ification of data protection policies in different design views of the system.

3.4.1 Mapping schema from SecBPMN2 to UMLsec elements

To specify the transformation rules systematically, we first define a mapping
schema from SecBPMN2 to UMLsec elements. In Table 3.2, the considered busi-
ness model elements are linked to suitable UML elements in the deployment and
class diagrams as follows:

Table 3.2: SecBPMN?2 elements to UML elements.

BPMN Model UML]?eployment UML Class
Diagram Diagram

Process Node —
Pool Node Class
SwimLane Node Class
Data Object Artifact Class
Task — Operation
Event — Operation
Message Flow Comnlljli?;cahon Association
Data Association — Association
Security Association Dependency Dependency

** The symbol (—) indicates that the BPMN element has no mapping to a UML element in the
corresponding UML diagram.

3.4 SecBPMN?2 to UMLsec Transformation 121

* [Process To Node]: Since one cannot automatically identify from the
SecBPMN2 model whether a set of processes is to be run on one node in the
UML deployment diagram or a set of nodes, we assume that each Process is
running on a separate node, and therefore, is mapped to a Node. The node
name is the name of the process, followed by "_Subsystem".

¢ [Pool/SwimLane To Node]: A role played by a participant (i.e., Pool or Swim-
lane) in the SecBPMN2 model is mapped to a Node in the UML deployment
diagram. The node has the name of the participant, followed by "_Client".

* [Message Flow To Communication Path]: A Message Flow in SecBPMN2
is used to pass messages between two processes. Since the processes are
mapped to nodes in the deployment diagram, a Message Flow is mapped to a
Communication Path that carries the communications between the correspond-
ing nodes in the UML deployment diagram.

¢ [Data Object To Artifact]: Each Data Object in the SecBPMN2 model, identi-
fied by a name, is mapped to an Artifact* in the UML deployment diagram.
The artifact name is the name of the data object followed by "_Database".

* [Pool/SwimLane To Class]: A role played by a participant (i.e., Pool or Swim-
lane) in the SecBPMN2 model is mapped to a Class in the UML class diagram.
The name of each class will be the name of the corresponding participant.

* [Security Association To Dependency]: In SecBPMN?2, a data-protection an-
notation is linked to a specific element by using a Security Association. In
UMLsec, a dependency between the communicated nodes or classes is used
to show the corresponding data protection requirements. Therefore, Security
Association in SecBPMN?2 is mapped to a dependency in the UML class and
deployment diagrams.

¢ [Data Object To Class]: Each Data Object in SecBPMN2 model is mapped to
a Class of the same name in the class diagram. SecBPMN?2 uses data objects
to specify dataflow. To support a technical realization of this dataflow, the
class diagram needs to provide appropriate classes, which are instantiated
by objects in the running system. There can be multiple of these objects as
repeated executions of the process require fresh objects.

¢ [Task/Message Event To Operation]: Each Task or Message Event owned by a
participant in the SecBPMN2 model is mapped to an Operation in the corre-
sponding class of the participant in the class diagram.

*In earlier UMLsec versions, this information was expressed using components in deployment
diagrams, which is not supported in UML2. We mapped the data objects to artifacts which are used
to manifest system components.

122 3 Integrating BPMN- and UML-based Data-Protection Engineering

Table 3.3: SecBPMN2 security annotations to UMLsec security policies.

SecBPMN2 Security UMLsec Security Policies
Annotations Deployment diagram Class diagram
_ 1 «abac»
{ b Accountability — «abacRequire» {right}
«abac»

«secure links» {adversary]
«encrypted»
«secrecy»

& | Confidentiality «abacRequire» {right}
«secure dependency
«critical» {secrecy}
«secrecy»

«abac»
«abacRequire» {right}
«secure dependency
«critical» {integrity}
«integrity»

«secure links» {adversary]
«encrypted»
«integrity»

':) Integrity

** The symbol (—) indicates that the SecBPMIN2 security annotation has no mapping to a UMLsec
security policy in the corresponding UML diagram.

¢ [Data Association To Assocation]: A Data Association in SecBPMN2 is used
to link a task or an event to a data object. The Data Association is mapped to
an (1 : n) association between the class that represents the participant owning
the task/event, and the class representing the data object.

The underlying background for our mapping schema benefits from related works
aiming to relate BPMN with UML structural diagrams [31, 72, 117, 120]. However,
we extended the mapping specifications proposed in these works for supporting
the transformation to other UML elements that are needed for specifying data pro-
tection requirements, such as dependencies, communication paths, and artifacts.
More details about the mapping specifications are provided as part of our discus-
sion for the transformation rules in Section 3.4.2. In what follows, we explain our
rationale for the mapping of SecBPMN?2 security-specific data-protection annota-
tions to UMLsec architectural security-specific policies, as shown in Table 3.3.

Confidentiality/Integrity (Data Object/Message Flow). In the SecBPMN?2, the Confiden-
tiality and the Integrity annotations can be attached to a data object or a message
flow. The Confidentiality, when attached to a data object or a message flow, denotes
that the data object or the message can be accessed by only authorized users [129].
The Integrity annotation, when attached to a data object or a message flow, denotes
that the data object or the message can be modified by only authorized users [129].
A UMLsec model aligned with the Confidentiality and the Integrity annotations of
the SecBPMN2 needs to include three policies:

e First, a «secure links» policy in the UML deployment diagram, to check if con-
fidentiality and integrity of the data are preserved during transmissions. As

3.4 SecBPMN?2 to UMLsec Transformation 123

per Table 3.1, encrypting the data on the communication links can guarantee
the confidentiality and integrity of the data against default adversary, but it
does not shield against insider attackers.

* Second, the integrity and confidentiality of the corresponding data can be
ensured via access control. To this end, the «abac» stereotype enforces the use
of Role-centric Attribute-Based Access Control.

¢ Third, classes in a UML class diagram have dependencies via operation calls.
To ensure that the dependencies between UML classes respect the security-
specific data-protection requirements on the data communicated between
them, the UMLsec «secure dependency» policy can be used.

Accountability/Integrity (Task). The Accountability and Integrity annotations of
SecBPMN2 can be attached to tasks. In this case, they express the need of mon-
itoring a set of users when executing the task, and that the functionality of task
should be protected from intentional corruption, respectively. These annotations
can be enforced by employing an access control mechanisms. Therefore, we trans-
formed the Accountability and Integrity annotations of SecBPMN2 to the UMLsec
«abac» policy.

3.4.2 Transformation rules from SecBPMN2 to UMLsec

Given the mapping schema and the existing EMF implementations of SecBPMN2
and UMLsec, we define a set of Henshin transformation rules. The rules are defined
graphically and applied to the input model via an interpreter engine provided by
Henshin. Each rule is specified in terms of a graphs pattern, where nodes and edges
represent source and target models elements and their connections, respectively.
Figure 3.6 shows one of these rules, in which a Confidentiality SecBPM2 annotation
attached to a data object is transformed into a «abacRequire» UMLsec stereotype.

Each rule element has an associated action, such as «preserve» or «create». Elements
with a «preserve» action must be matched in the model to trigger the rule’s ap-
plication; elements with a «create» action describe modifications. Trace elements
allow correspondences between source and target models elements to be main-
tained, as is key for establishing traceability of data protection requirements. Rule
AddAbacRequire, in Figure 3.6, adds a «abacRequire» UMLsec stereotype and its
tagged value right to a given operation if a match for the whole preserved part is
found. The trace element created together with the «abacRequire» is stored as part
of a trace model, thus establishing traceability between the models.

124 3 Integrating BPMN- and UML-based Data-Protection Engineering

= Rule AddAbacRequire(out result var dataObiName:EString)

lkepreserve®/class/operations [ERRESEIVE. J s

tDatalnputAssociation z = Siireckiet ~DataObject |

; a | =name=dataObjName
l datalnputAssociations targetRef

5 ‘ zpresernve®iclasss

"SecurityAssociation

sourceRef

| source
‘ preserve”/class/operation» '/
I:Trac@ create™/class/operation
| SecBPMN2 b -
crea Ciass/op
elements = ¥
UMLsec target
elements \preserve/class/operatons

cre

eate”/class/operation

|
resultabacRequire 1
= right="Read_"+data ObjName :

Figure 3.6: Henshin rule for adding «abacRequire» UMLsec stereotype.

Due to the large variability of possible SecBPMN2 models, we proposed 255 Hen-
shin transformation rules. The proposed rules are divided into a set of groups,
being devoted to particular goals. In the following, an abbreviated account of all
transformation rules is given in textual form®. An application for the transforma-
tion rules on our example model in Figure 3.2, is provided in Section 3.6.

A. Deployment diagram transformation rules (DR): Based on the mapping spec-
ifications in Table 3.2 and Table 3.3, the transformation to deployment diagrams
includes the transformation to deployment diagram elements, and to stereotypes
related to the UMLsec «secure links» policy. For better readability, the rules are di-
vided into a set of groups:

Nodes and Communication paths (DR1). Based on the mapping schema in Ta-
ble 3.2, this set is responsible for producing nodes, their deployed artifacts and
communication paths from the respective SecBPMN2 elements.

A full account of our Henshin transformation rules is provided as part of our transforma-
tion tool support, which is available online at https://github.com/QRamadan/MoPrivFair-
SecBPMN2UMLsec (accessed: 31/12/2019).

https://github.com/QRamadan/MoPrivFair-SecBPMN2UMLsec
https://github.com/QRamadan/MoPrivFair-SecBPMN2UMLsec

3.4 SecBPMN?2 to UMLsec Transformation 125

= Rule AddNodeForEachlane(var processName:EString)

| : source create*/Node target I l«create*/Node
:Process I —|Trace I«;‘[\lode
1
1
1

| create*/Nos o R _ " "
| = name=processName | rente ke create’/Nodg» | = name=processName+"-Subsystem

A
laneSets create*/Node ‘

preserve* Nbde

packagedElement|

— =
preserve*/Node
:LaneSet

|«preserve

[Model |

| SecBPMN2 UMLséc
1 elements elements

Figure 3.7: Henshin rule for adding UML nodes.

¢ DR1.1 Since one can not automatically identify from the SecBPMN2 model
whether a set of SecBPMN?2 processes is running on one UML node or a set
of UML nodes, we assume that each SecBPMN2 Process is running on a sep-
arated UML node, and therefore, is transformed into a Node. The UML node
name is the name of the SecBPMN2 process contacted with "_Subsystem".
Each participant in a SecBPMN?2 process has an objective that can be accom-
plished by one or a set of system components, therefore, each resulted UML
subsystem-node has a number of artifacts based on the number of partici-
pants in the SecBPMN?2 process. The name of each UML artifact is the name
of the corresponding SecBPMN2 participant contacted with "_Application".

Figure 3.7 is an example of the transformation rules that belong to DR1.1
group. The rule AddNodeForEachProcessLane, in Figure 3.7, adds a node to the
deployment diagram for each SecBPMN process that has swimlanes. Based
on the rule, each resulted node has the name of the corresponding process,
followed by "_Subsystem".

* DR1.2 A role played by a participant (i.e., SecBPMN2 Pool or Swimlane) is
transformed into a UML Node. The name of each node is the name of the
corresponding SecBPMN2 participant contacted with "_Client". Each client
node has a deployed artifact called GUI (Graphical User Interface).

e DR1.3 A UML Communication Path is added between each resulted client
node and its corresponding subsystem node.

* DR1.4 If two participants, in a SecBPMN2 model, are communicating with
each other via a Message Flow, the Message Flow is transformed into a UML
Communication Path between the corresponding UML subsystem-nodes of the
communicated participants in the deployment diagram.

¢ DR1.5 Each SecBPMN2 Data Object, identified by a name, is transformed into
a UML Artifact deployed on the corresponding subsystem node. The artifact
name is the name of the SecBPMN2 data object contacted with "_Database".
If two SecBPMN2 data objects have the same name, it is assumed that they
are identical, so they will be represented by the same artifact.

126 3 Integrating BPMN- and UML-based Data-Protection Engineering

= Rule AddEncrypted(out reslut)

preserve*/Lane/Node

! I
| h o srve*/La rde serve*/La / de

| |DataObject : preserve*/Lane/Node .|J|ese.r e Lil-]t?'HOdt-‘ :
I targetRef :SecurityAssociation i
! 1 |
! targetRef 1
: preserve*/Lane/Node sourceRef]
| preserve*/Lane/Node>» :
: preserve*/Lane/Node preserve*/Lane/Node ' :
1 [:DataOutputAssociation :Confidentiality [
[I
]

4 A
_______ o e e e e e
source create*/Lane/Node ‘t source
lode

|]JIt’SE‘r"'!:‘. /Lane/\ «create*/Lane/Node:
preserve*/Lane/Node SecBPMN2 Trace
T UMLsec €lements
| elements
YL Nod X «create*/Lane/Node L

______ preservejlane/Node» N\ _ _ _ _ _ _ _target | — - — o - o
r # target !l !
! -) «create*/Lane/Node: 1
l«preserve*/Lane/Nodex»| __ «create*/Lane/Node 1
1, i ; resultencrypted |
1 :CommunicationPath base_CommunicationPath I
| 1

Figure 3.8: Henshin rule for adding «encrypted» to communication paths.

Security (DR2). This set is responsible for transforming SecBPMN?2 security-
specific data-protection annotations to «secure links» policy based on the mapping
schema in Table 3.3.

* DR2.1 If a participant, in a SecBPMN2 model, carries out a task or an event
that manipulates a Confidentiality- or Integrity-annotated data object, the com-
munication path between the corresponding UML client and subsystem node
is stereotyped as «encrypted». For example, rule AddEncrypted, in Figure 3.8,
shows that the Confidentiality SecBPMN2 annotation attached to a data object
via a security association will be transformed to «encrypted» UMLsec stereo-
type. Based on the rule, the «encrypted» UMLsec stereotype will annotate
the UML communication path in the deployment diagram that corresponds
to the SecBPMN2 data output association whose target is the Confidentiality-
annotated data object in the SecBPMN2 model.

* DR2.2If a participant, in a SecBPMN2 model, carries out a task manipulating
a data object that is linked with a security association to a Confidentiality or
Integrity SecBPMN2 annotation, the Security Association is transformed into a
UML «call,secrecy»- or «call,integrity»-annotated Dependency from the GUI ar-
tifact of the participant to the corresponding artifact of the data object. For
example, rule AddIntegrity, in Figure 3.9, shows that the Integrity SecBPMN2

3.4 SecBPMN?2 to UMLsec Transformation 127

= Rule AddintegrityToDependency(out result)
y T I 1
e A em 1 preserve*/dependency/sec
I |«preserve*/dependency/sec \ source T
| ; e Trace
b 1 .
1 [:SecurityAssociation preserve®/dependency/sec]
! 1
' |
1
] sourceRef !
: preserve* (‘lepenclpnr.; sec target
| s ! ! preserve*/dependency/sec
| [«preserve*/dependency/sec : Mo s sy
: 1
! tntegrity I I [«preserve*/dependency/sec
integ 1
1 l
\ '\‘SeCBPMNZ , :Dependency 1
| | elements il |
__________________ i
UMLsec /1 :
source |
slements base_Dependency :
«create*/dependency/sec el yses
. create*/d¢pendency/sec :
I
/de / target I P == !
create*/dependency/sec ; create*/dependency/sec 1
Trace I |resultintegri !
create*/dependency/sec» <A :
| % i

Figure 3.9: Henshin rule for adding «integrity» to dependencies.

annotation attached to a data object in the SecBPMN2 model will be trans-
formed to «integrity» UMLsec stereotype on the corresponding UML depen-
dency to the security association. The UML «call» stereotype is added to the
dependency by performing separate transformation rules.

¢ DR2.3 If two participants, in a SecBPMN2 model, are communicating with
each other via a Confidentiality- or Integrity-annotated Message Flow, the com-
munication path between the corresponding UML subsystem-nodes of the
communicated participants is stereotyped as «encrypted». In addition, the
UML communication path between the client and the subsystem node cor-
responding to each SecBPMN2 participant is stereotyped as «encrypted». For
example, rule AddEncryptedToCommunicationPath, in Figure 3.10, shows that
each Confidentiality-annotated Message Flow whose source in the SecBPMN2
model is a task will be transformed into an «encrypted»-annotated Communi-
cation Path in the UML deployment diagram.

* DR24 If two participants, in a SecBPMN2 model, communicate via a mes-
sage flow that is linked with a security association to a Confidentiality
or Integrity SecBPMN2 annotation, the Security Association is transformed
to a «call,secrecy»- or «call, integrity»-annotated UML Dependency between
the application artifacts which are deployed on the corresponding UML
subsystems-nodes to the SecBPMN2 participants. In addition, a «call,secrecy»-
or «call, integrity»-annotated dependencies are added between the GUI artifact
and the application artifact corresponding to each participant.

128 3 Integrating BPMN- and UML-based Data-Protection Engineering

= Rule AddEncryptedToCommunicationPath(out result)
Fm—mmmm——mmmmmm—— == =
I = ok, - 1ok 1 . | - ok
I preserve®s!| preservet» [<Preserve’s|| lepreserve qpreserve
: Process = |Participant ‘]—I Trace
I processRef | Source O——
|
T e e ——— : vers
| : - - - larget |_«preservels_
I flowElements | 1 «preserve*s !
1 eserve®s | | : !
" i %) i :Node I
| R \.SecBPMN2 ! ' ;
I L 1 elements |0WnedAtIIibute preserve™ |
1 i s I 1 v |
1 . ok, I 1 vaks, |
preserve I v «preserve™ "
1 :
| sourceRef I : ‘Property I
| [E——— ! [- |
preserve*s I == \ gy]
I I «preserve «preserve™
1 [:MessageFlow | g |
N | association | memberknd |
: : L:MLsefS : «preserve* :
1 preserve®s | elemen | :CommunicationPath I
1 targetRef 1 I | |
1 " 1 |
: | base_CotnmunlcatlonPalh [CoRN |
I . 1 = [- «create*s |
«preserve™» - k. |«Clreate™s aClregie™s
:i‘S}ecurityAssociaﬁon f“(léate Trace : ot laldridisy :
1 solirce [tayget I
L____________l o o

Figure 3.10: Henshin rule for adding «encrypted» to communication paths corre-
spond with SecBPMN2 message flows.

* DR2.5 The AddSecureLinks rule, in Figure 3.11, shows that a generated UML
deployment model is annotated with «secure links» stereotype being tagged
with {adversary=default}. This rule is applied if the generated UML deploy-
ment model has at least two nodes communicated over an «encrypted»- or «In-
ternet»-annotated Communication Path with «secrecy»- or «integrity»-annotated
Dependency between their artifacts.

= Rule AddSecurelinks(out result)
r __ 1
\|«preserves «creates «Creates E
: ‘Model - resultsecurelinks :
! base_Package = adversary="default" |
L UMLsec elements

Figure 3.11: Henshin rule for adding «secure links» stereotype.

3.4 SecBPMN?2 to UMLsec Transformation 129

= Rule CreateClassModel(out result) /UMLsec elements
T l
| |«create: I
! IresultModel packagedElement | C(I:site : :
I'l = name="RootElement" N : T '
: o . . create = name="RBAC" :
i L= qualifiedName="RootElement |
1 |
: ate I

: packagedElement Create Er— I
| +:Class general !
: create = name="Data" | !
1

|
: create :
: :Generalization|

I
: T |
| 1
packagedElement .create ,—, !
N Class generalization !
! «Create o x !
] 5 = name="Message «create !

Figure 3.12: Henshin rule for importing core UML classes.

B. Class diagram transformation rules (CR): Based on the mapping schema, the
transformation from SecBPMN2 models to UML class diagrams includes the trans-
formation to class diagram elements, and to stereotypes related to UMLsec’s «abac»
and «secure dependency» policies. The rules are divided into a set of groups:

Initialization (CR1). This set is responsible for creating the UMLsec-annotated
class diagram with some important core classes to aggregate information recurring
across data protection requirements, thus improving readability. The set contains
the following rule groups:

¢ CR1.1 Add a class with the name RBAC. This class will be a super-class for
all classes that play specific roles in the target system.

¢ CR1.2 Add a class with the name Data. This class will be a super-class for all
classes that are generated from transforming SecBPMN2 data objects.

* CR1.3 Add a class with the name Message. Each message being sent between
different participants (e.g., Pools) in a SecBPMN2 model becomes an instance
of this class in the UML class diagram.

For example, following CR1.1-CR1.3, the rule CreateClassModel in Figure 3.12 adds
three classes to the UML model namely, RBAC, Data, and Message. In addition, the
rule specifies the data class as a generalization for the message class.

130

3 Integrating BPMN- and UML-based Data-Protection Engineering

Classes (CR2). Based on the mapping schema in Table 3.2, this set is responsible for
producing classes and their operations from the respective SecBPMN2 elements.

¢ CR2.1 A role played by a participant (i.e., Pool or Swimlane) in a SecBPMN2

model, is transformed into a Class in the UML model. The name of each class
is the name of the corresponding participant.

CR2.2 Each Data Object in a SecBPMN2 model is transformed into a Class in
the UML model. The class name is the name of the SecBPMN2 data object. If
two data objects in a SecBPMN2 have the same name, it is assumed that they
are identical, so they will be represented by the same class in the UML model.

Following CR2.2, the rule CreateClassFromDataObject in Figure 3.13 shows
that a SecBPMN2 Data Object will be transformed to a Class in the UML
model. The class has the same name of the data object and specified as a
subclass to the Data class which is added to the UML model by performing
the rule CreateClassModel in Figure 3.12.

CR2.3 Each Task or Message Event owned by a participant in a SecBPMN?2 is
transformed into an Operation in the corresponding UML class of the partic-
ipant. If the SecBPMN2 Task or Message Event represents the source for an
Output Data Association or a Message Flow, it is transformed to an Operation
with a return parameter of type Data Object or Message, respectively. Other-
wise, if the SecBPMN?2 Task or Message Event represents the target for an Input
Data Association or a Message Flow it is transformed into an Operation with an
input parameter of type Data Object or Message, respectively.

= Rule CreateClassFromDataObject(var dataObjName:EString)

~ L 200BTMIZ soment, create*/class
preserve*/class I source Trace
:DataObject 1 . - UMLsec
= create*/class{ = name=dataObjName elements
= name=dataObjName :
= 1

- - =

generalization «create*/class ST YT <preserve :

<(Class : < Model :

create*/class/association = name=dataObjName packagedElement E :
packagedElement | «<preserve i

J 1
«Create*/class/associations general preserve :
:Generalization =:Class :
create*/class/association o pame="Data"| 1

1

Figure 3.13: Henshin rule for transforming SecBPMN2 data object to UML class.

3.4 SecBPMN?2 to UMLsec Transformation 131

Relationships (CR3). This set is responsible for producing the UML relationships
between the created classes, based on the mapping schema defined in Table 3.2.

* CR3.1 A UML class that is corresponding to a SecBPMN2 Pool divided into
multiple Swimlanes is set as super-class for the UML classes representing the
Swimlanes. While the semantics of both Pools and Swimlanes are not defined
by the BPMN 2.0 standard [1], we assume that a company will use them to
represent main roles and internal sub-roles, which is also one of their most
common usages in the field of business process modeling.

* CR3.2 A UML class that is corresponding with a SecBPMN2 Pool is set as
sub-class of the class RBAC in the class diagram.

¢ CR3.3 If a participant, in a SecBPMN2 model, is responsible for a task or
an event that manipulates a data object, the UML class that represents the
participant is related to the class of the data object. Since the task or the event
can be triggered several times either directly by the participant or indirectly
by the system, the association between the class for the participant and the
class for the data object will be (1 : n). The rationale behind this is that BPMN
uses the concept of data objects to specify dataflow. To support a technical
realization of this dataflow, the software design (which is specified using class
diagrams) needs to provide appropriate classes, which are then instantiated
by objects in the running software. There can be multiple of these objects
because repeated executions of the process require a "fresh" object.

* CR3.4 If a participant in a SecBPMN2 model is responsible for a task/event
that is the source/target for a message flow, the UML class for the participant
is related to the Message class. Since a task or an event can be triggered several
times, the association between the class for the participant and the Message
class will be (1 : n).

Security (CR4). This set is responsible for transforming SecBPMN2 data-protection
related annotations to UMLsec «abac» and «secure dependency» policies based on the
mapping specification in Table 3.3.

* CR4.1 If a SecBPMN2 task is Accountability- or Integrity-annotated, the
corresponding UML operation to the task is stereotyped with «abacRe-
quire», being tagged {right=access_taskName} or {right=modify_taskName} in
case of Accountability or Integrity SecBPMN2 annotation, respectively. For
example, Figure 3.14 shows that an Accountability-annotated task in a
SecBPMN2 model will be transformed into «abacRequire»-operation being
tagged {right=access_taskName).

132 3 Integrating BPMN- and UML-based Data-Protection Engineering

= Rule TransformAccountabilityAnnotatedTask(out result, var taskName:EString)

preserve*/class/operation
‘Task

preserve*/class/operation
Trace

source

1
1
I
: preserve*/class/operation
1

| targetRef i target
preserve*/classfoperation preserve*/class/operation
1

preserve*/class/operation:
:Operation
= name=taskName

e
1

¢ DI'GSE‘I'\-"E"."C|JSS-‘O|JE‘I'JUOH |

1

]
I

]

i

]

i

I

i

I

i

]]

o i iati]
i :SecurityAssociation | SecBPMN2 */:
]

I

]

i

]

i

]

i

I

i

I elements UMLsec |

i A
saumeeiled I elements 1hase Operation
«preserve*/class/operation lsee

\ «Create ‘Il“(lasse‘opemnon

preserve*/class/operation

: l«create*/class/operation
“Accountability : | [resultabac Require
‘" ____1 : = right="Access_" +taskName
«create*/class/operation: BT T ===
source TacE target
«create*/class/operation .create*/class/operation:

Figure 3.14: Henshin rule for transforming Accountability-annotated task.

* CR4.2 If a participant, in a SecBPMN2 model carries out a task or an event
manipulating a Confidentiality- or Integrity-annotated data object, (i) the corre-
sponding UML classes for the participant and the data object are stereotyped
as «critical» along with {secrecy=TaskName} or {integrity=TaskName}, (ii) the
UML operation representing the SecBPMN2 task is stereotyped with «abacRe-
quire», tagged {right=read_DataObjectName} or {right=modify_DataObjectName}
in case of Confidentiality or Integrity, respectively, and (iii) a «call,secrecy»- or
«call,integrity»- annotated Dependency between the classes for the data object
and the participant is created.

Following CR4.2, the rule AddAbacRequire in Figure 3.6 shows that a Confiden-
tiality-annotated task in a SecBPMN2 model will be transformed to «abacRe-
quire»-stereotyped operation with the {right=read_DataObjectName/ tag.

* CR4.3 If a participant carries out a task or an event being the source
or the target for a Confidentiality- or Integrity-annotated message flow,
the class for the participant is stereotyped with «critical» along with {se-
crecy=TaskName} or {integrity=TaskName} , (ii) the operation representing the
task is stereotyped with «abacRequire», tagged {right=read_MessageName} or
{right=modify_MessageName} with respect to the SecBPMN2 security annota-
tion, and (iii) a Dependency stereotyped with «call,secrecy» or «call, integrity»
between the classes for the participants is created.

* CR4.4 If the generated class model has at least one «abacRequire»-annotated
operation, «abac» stereotype is attached to the generated class "RBAC", along

3.5 Tool Support 133

= Rule AddSecureDependency(out result) JPireteents
F e————— T :
1 AT A AR IS
! r\:“‘;t’l’ e create s
i:Mode .
! base_Package resultsecuredependency !
e ___Cre@te» T l

Figure 3.15: Henshin rule for adding «secure dependency» stereotype.

with two tags {role} and {right]. The {role} tag specifies a set of roles, where
roles are the names of all subclasses for "RBAC" class. The {right} tag needs to
be specified by the user after the transformation; it specifies the permissions
associated with each role.

* CR4.5 The AddSecureDependency rule, in Figure 3.15, shows that the gener-
ated UML class model will be annotated with «secure dependency» UMLsec
stereotype. This rule is applied, if the generated class model has at least one a
«critical»-annotated class that is being the source for a «secrecy»- or «integrity»-
annotated dependency.

3.5 Tool Support

We developed a prototypical implementation of our work in this chapter®. In Fig-
ure 3.16, we show an artifact-centric representation of the process for applying our
framework in Figure 3.5, including two automated tasks’.

The first task in Figure 3.16 is an automated model transformation process from
SecBPMN2 models to corresponding UMLsec structural diagrams (i.e., deployment
and class diagrams), using the model transformation language Henshin. This task
is implemented using a set of transformation rules (.henshin files) and some Java
code for rules orchestration. The rules are defined graphically and applied to the
input models (i.e., SecBPMN models) via an interpreter engine provided by Hen-
shin. The output of this task is a UMLsec model, and a trace model. The trace
model links the SecBPMN2 and UMLsec models. Using the trace models, one can
check whether a UMLsec security stereotype is in place for each security annotation
specified in the SecBPMN2 model.

®Our implementation is available online at https://github.com/QRamadan/MoPrivFair—
SecBPMN2UMLsec (accessed: 31/12/2019).

"Details description of how to install and use our transformation tool and CARISMA is provided
in Appendix (B) of this thesis.

https://github.com/QRamadan/MoPrivFair-SecBPMN2UMLsec
https://github.com/QRamadan/MoPrivFair-SecBPMN2UMLsec

134 3 Integrating BPMN- and UML-based Data-Protection Engineering

Trace Model

Output

SecBPMN2 to Output
UMLsec

Transformation

SecBPMN2 Models | Input
(.bpmn)

UMLsec Models
(.uml)

Includes

Includes

CARiISMA

Transformation Rules

(.henshin) Verification
Rules Orchestration Output
(Java) Final Report

(.txt)

Figure 3.16: Process with involved tasks and artifacts.

In the second task of Figure 3.16, we use CARISMA to automatically verify the
generated UML models against UMLsec policies. The output of this process is a
text file that summarizes the results of the verification process.

3.6 Case Study

To study if the proposed approach satisfies the specified goals of integrated man-
agement and traceability, we applied it in a real case study featuring the System
Wide Information Management® (SWIM) of the Federal Aviation Administration of
the United States. SWIM is a technology program focusing on information sharing
for Air Traffic Management (ATM) systems. ATM systems consist of a large num-
ber of autonomous and heterogeneous components that interact with each other
to enable ATM operations: pilots, airports, national airspace managers, weather
forecast services, radars, etc. In such a complex information system, ensuring data
protection is critical. For example, the leakage of secure data may result in severe
consequences on safety and confidentiality. Below, we first describe and exemplify
our application of the approach and then discuss if the goals are satisfied.

$Information about SWIM is available online at https://www.faa.gov/about/office_
org/headquarters_offices/ato/service_units/techops/atc_comms_services/
swim/documentation/ (accessed: 02/12/2019)

https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/atc_comms_services/swim/documentation/
https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/atc_comms_services/swim/documentation/
https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/atc_comms_services/swim/documentation/

3.6 Case Study 135

3.6.1 Applying the integration framework

In this section, we explain how we applied the proposed framework in Figure 3.5
on the ATM case study.

Phase 1: Create SecBPMN2 models. In the first phase of the framework in Figure
3.5, we assumed the role of a business analyst in our process. The task was to create
SecBPMN2 models from the given requirements description. However, the docu-
mentations were already analyzed by the authors of the work in [128] for modeling
and verifying of Air Traffic security requirements with SecBPMN2. Therefore, in-
stead of creating SecBPMN2 models, we reused the created SecBPMN2 models in
[128]. These SecBPMN2 models focus on three aspects’:

1. Flight plan negotiation. Every time an airplane enters a new aerospace, a new
flight plan is negotiated with the local authority. To model the procedures
which regulate such negotiation, the authors in [128] defined a SecBPMN2
model with 74 elements (data objects, tasks, events and data associations),
3 participants, and 22 security-specific annotations (accountability, confiden-
tiality, and integrity).

2. Landing. Landing procedures are executed to negotiate the last part of the
flight plan, which includes the approach to the airport and the waiting trajec-
tory. The defined SecBPMN2 model contains 84 elements, 4 participants, and
19 security-specific annotations (accountability, confidentiality and integrity).

3. External services. The new ATM SWIM architecture permits to use external
services for providing information such as the weather forecast. Services
are selected based on a trust value which is updated every time a service
is used and evaluated. For better readability, the authors in [128] created two
separate SecBPMN2 models for this aspect, containing 164 elements, 9 par-
ticipants, and 30 security-specific annotations (accountability, confidentiality,
and integrity) in total.

Phase 2: Transform SecBPMN2 models to UMLsec architecture models. In the
second phase of the framework in Figure 3.5, we automatically applied our trans-
formation to the three aspects of the ATM case study described above. As described
above, the Flight plan and Landing aspects are each represented by a SecBPMN2
model, the External services aspect is represented by two models for readability.
Based on the rules in Section 3.4.2, a UMLsec deployment and class models are
automatically generated for each SecBPMN2 model.

*The SecBPMN2 models created for the ATM case study are provided online at https://
github.com/QRamadan/MoPrivFair-SecBPMN2UMLsec (accessed: 31/12/2019)

https://github.com/QRamadan/MoPrivFair-SecBPMN2UMLsec
https://github.com/QRamadan/MoPrivFair-SecBPMN2UMLsec

136 3 Integrating BPMN- and UML-based Data-Protection Engineering

To illustrate the outcomes, Figure 3.3 and Figure 3.4 show the produced UML de-
ployment and class diagrams, respectively, from the input SecBPMN2 model in
Figure 3.2. In the following, we explain the utilized transformation rules for pro-
ducing the deployment and class diagrams.

The deployment diagram in Figure 3.3 is produced from the SecBPMN2 model in
Figure 3.2 as follows:

1. Following the specifications in DR1, the SecBPMN2 processes have become
UML subsystem-nodes each with an application deployed artifact, while the
SecBPMN?2 participants are now UML client-nodes, each with, GUI as a de-
ployed artifact. For example, “Airplane”, a SecBPMN2 process with one partici-
pant, is transformed into two UML nodes; the first is the “Airplane_Subsystem”
node with a deployed artifact called “Airplane Process_Application”, while the
other is the “Airplane_Client” node with “Airplane_GUI” as a deployed artifact.

2. Following the same specifications in DR1, three communication paths be-
tween the resulted nodes are added and the SecBPMN2 “Flight plan” data
object has become a “Flight plan_Database” artifact deployed on the “Air-
plane_Subsystem” node.

3. Based on DR2.3, since the “Airplane” and the “Local authority” in the SecBPMN2
model are communicating via Confidentiality- and Integrity-annotated mes-
sage flow, the resulted UML communications paths (i.e., “Communication
Path1”, “Communication Path2” and “Communication Path3”) are annotated with
the UMLsec stereotype «encrypted».

4. Following the specification of DR2.4, a «call,secrecy,integrity»-annotated de-
pendency is added between the UML artifacts namely, the “Local author-
ity Process_Application” and “Airplane Process_Application”. Accordingly, two
«call secrecy,integrity»-annotated dependencies are added, one is between the
artifacts namely, “Airplane_GUI” and “Airplane Process_Application”, while the
other is between the artifacts namely, “Local authority_GUI” and “Local authority
Process_Application”.

5. As a final step for the transformation to the deployment diagram a «secure
links» with {adversary=default} is added to the diagram based on DR2.5. Due
to the fact that most UML modeling tools do not display tagged values of
stereotypes in the diagram view, we show the tagged value as a note linked
to the corresponding stereotype. The resulted diagram can be automatically
verified against the «secure links» policy.

3.6 Case Study 137

The class diagram in Figure 3.4 is produced from the SecBPMN2 model in Figure
3.2 as follows:

1. Following the specifications in CR2.1, each participant in the SecBPMN2
model has become a class in the class diagram. For example, the “Airplane”
SecBPMN?2 participant is transformed to a UML class with the same name.

2. Following the specification in CR2.2, each data object in the SecBPMN2 has
become a class in the class diagram. For example, the “Flight plan” data object
is transformed into a class with the same name.

3. Following the specification CR2.3, each task or Message Event owned by a
participant in a SecBPMN?2 is transformed into operation in the correspond-
ing UML class of the participant. For example, the “Notify local authority()” task
is transformed into operation in the “Airplane” class.

4. Classes are annotated with security-specific annotations. For instance, as per
CR4.3, both the Confidentiality and Integrity SecBPMN2 annotations linked to
the Flight plan message flow in Figure 3.2 are transformed into «abac» and
«secure dependency» UMLsec security policies, as follows:

(i) the transformation to «abac» involved the attachment of «abacRequire»
stereotype along with a tag {right=read_Flight plan, modify_Flight plan} to
“Notify local authority()” operation. Again, we show the tagged values as
notes connected to the corresponding stereotype.

(ii) following the same specification in CR4.3, the transformation to «se-
cure dependency» stereotype involved the attachment of «critical» stereo-
types to the corresponding classes of the participants along with {se-
crecy=Notify local authority()} and {integrity=Notify local authority()} as
tags. Subsequently, the Message Flow is transformed to UML «call» De-
pendency stereotyped with «secrecy» and integrity.

(iii) based on CR4.1 the transformation of SecBPMN2 Accountability secu-
rity annotation involved the attachment of «abacRequire» along with
{right=access_check flight plan} to the “check flight plane()” operation.

(iv) based on CR4.4-CR4.5 «abac» and «secure dependency» stereotypes are
add to the generated RBAC class and to class diagram respectively.

Phase 3: Refine the resulted architecture model. Since the BPMN-based ap-
proaches do not contain the information required to generate complete UML mod-
els, our framework in Figure 3.5 suggests a refinement phase where the system
developers can split large classes and specify missing details, such as attributes
and association names. Also, classes with many contained operations can be split
into several ones.

138 3 Integrating BPMN- and UML-based Data-Protection Engineering

| Check flight plan:Task |L/ source target\\l| Check flight plan:Operation
7y A

targetRef

| :SecurityAssociation | base_Operation

sourceRef /_\
| :Accountability |/ source target *| :abacRequire

SecBPMN2 Trace UMLsec

Figure 3.17: Example of the generated trace models (excerpt).

Trace model. As a prerequisite for managing traceability, our transformation rules
create a trace model, consisting of traceability links between the source (i.e., input)
and target (i.e, output) models. The generated trace model is an Eclipse Modeling
Framework (EMF) model which permits generic and flexible support for traceabil-
ity in Henshin. The trace model has a single class Trace. The Trace class has two
non-containment n-ary references of type EObject called source and target. The
main important utilize of the Trace model is the exogenous model transformations.
Exogenous transformations are transformations between models expressed using
different modeling languages such as our proposed transformation in this chapter.
In our transformation, the source is SecBPMN2 model while the target is a UMLsec
architecture model.

Figure 3.17 represents the trace model generated as a result of applying the Hen-
shin transformation rule in Figure 3.14. The trace model links the SecBPMN2 and
UMLsec models. Using the trace models, one can check whether a UMLsec data
protection-related stereotype is in place for each data protection-related annotation
specified in the SecBPMN2 model. For example, in Figure 3.17 one can see that
the Accountability-annotated task in the SecBPMN2 (i.e., “Check flight plan”) model is
transformed to «abacRequire»-annotated operation in the UMLsec model.

Phase 4: Verify technical data protection-related policies. Once the refinement
phase is completed, the system developers can verify the designed UMLsec class
diagram against the specified security policies using CARISMA. For instance, the
deployment diagram in Figure 3.3 allows the secrecy and integrity of the data com-
municated between “Airplane_Client” and “Local authority_client” nodes to be pre-
served against the default attacker pattern, see Table 3.1.

Moreover, as shown in Figure 3.4, using the «abac» policy, system developers can
specify a list of rights for each role, and thereby, they can define the set of operations
that can be accessed by a certain subject who plays a specific role in the system.

3.6 Case Study 139

For example, a given subject plays an airplane role has access to the “Notify local
authority()” operation. One can also observe in Figure 3.4 that the “Airplane” class and
«call» dependency provide the security levels (i.e., secrecy and integrity) on the
Notify local authority() operation that are required by “Local authority” class, and thus,
the security dependency is preserved. Per comparison between the source model
in Figure 3.2 and the target models namely, the deployment diagram in Figure 3.3
and the class diagram in Figure 3.4, one can guarantee that the considered security
requirements are correctly traced and both models are aligned.

3.6.2 Transformation results

We summarize the transformation results in terms of the number of the elements in
the source and the target models!?. Table 3.4 denotes the source and target models
of each transformation!!. Each row represents one of the four model pairs Flight
plan, Landing, External services 1 and 2. For example, the Flight plan model contains
3 processes, each with one participant, and 5 Accountability, 7 Confidentiality and 10
Integrity security annotations.

In the Flight plan SecBPMN2 model, the Confidentiality and Integrity annotations
are linked to 10 out of 14 message flows, where the sources of message flows were
generally tasks, while the targets were message-receive events. To transform the se-
curity annotations, a «encrypted» stereotype is assigned to the UML communication
paths between the corresponding communicated nodes. Based on our expectation,
the target model should include 6 nodes, and 5 «encrypted»-annotated communica-
tion paths as it is matched by the number in Table 3.4.

In the class diagram, a «abacRequire» stereotype is assigned to the linked task (in
case of Accountability-annotated task CR4.1) and to the source and target task (in
case of Confidentiality- or Integrity-annotated message flow CR4.3). In contrast to
the tasks, the message-receive events are not human-controlled and, therefore, are
not subject to access control in our transformation rules. 10 out of 23 tasks are a
source of a Confidentiality- or Integrity-annotated message flow, and 5 of them are
also Accountability-annotated tasks. Therefore, we should have 10 «abacRequire»
stereotypes for the tasks and 1 «abac» stereotype attached to RBAC class, as it is
matched by the numbers in the Table 3.4.

A1 artifacts used for the evaluation are archived at https://github.com/QRamadan/
MoPrivFair—-SecBPMN2UMLsec (accessed: 31/12/2019).

""Readers who are interested in reproducing the summarized results in Table 3.4 can follow the
provided description in Appendix B of this thesis.

https://github.com/QRamadan/MoPrivFair-SecBPMN2UMLsec
https://github.com/QRamadan/MoPrivFair-SecBPMN2UMLsec

Table 3.4: Detailed Summary for the transformation results

SecBPMN2 UMLsec
Model Pa. DO. MFE Ac. Cf Ig. No. Cl. EP. Ab. AR. Cr. ST. IT. Dp.
Flight plan 3 6 14 5 7 10 6 12 5 1 10 3 17 26 11
Landing 4 5 15 5 5 9 8 12 7 1 10 4 16 24 16
External services 1 4 4 5 3 2 4 8§ 11 7 1 6 4 6 11 10
External services 2 5 5 17 4 3 14 10 13 10 1 18 5 8 42 21

** SecBPMN2 models with the numbers of: Participants (Pa), Data Objects (DO), Message Flows (MF) and Accountability (Ac), Confidentiality (Cf),
and Integrity (Ig) annotations.

** UMLsec models with the numbers of: Nodes (No), Classes (Cl), and Encrypted Paths (EP), and Abac (Ab), AbacRequire (AR), Critical (Cr),
Secrecy (ST), and Integrity (IT) annotations and Dependencies (Dp).

ovL

SuresurSug uonosajoi J-erec] paseq-TN1 PUe -NJIg Suneidajur ¢

3.6 Case Study 141

Table 3.5: The overall transformation results and the execution time.

Model SecBPMN2 UMLsec Time[ms]
Element | Security annotation | Elements | Security annotations
Flight plan negotiation 77 22 349 83 20481
Landing procedures 88 19 366 78 24465
External services (1+2) 173 30 818 150 49945

Again based on CR4.3, for each Confidentiality or Integrity, two «critical» stereotypes
must be generated each with same tag type (i.e., secrecy or integrity) and values; the
first will be assigned to the corresponding class of the sender while the second will
be assigned to the recipient class. Since we have in total 3 classes for the partic-
ipants, we expect the target model to have 3 «critical» stereotypes each with one
secrecy and one integrity as tags. In total, the secrecy tags should have 17 values,
while the integrity tags should have 26. Table 3.4 shows that this is the case.

In the input model, the annotated message flows can be grouped into four sender-
receiver pairs: (1,2), (2,1),(2,3), and (3,2). Following the specifications of CR4.3, the
number of «secrecy»-and «integrity»-annotated dependencies in the target class dia-
gram depends on the number of these pairs: we should have 4 dependencies in the
class diagrams. Conversely, via DR2.4, the deployment diagram should include 7
«secrecy»-and «integrity»-annotated dependencies; 4 between the subsystem nodes
and 3 between the clients and subsystem nodes. Therefore, our target model should
have in total 11 «secrecy»-and «integrity»-annotated dependencies, as is the case in
the table. Therefore, we can conclude that the SecBPMN2 security requirements are
correctly transformed into verifiable UMLsec policies.

This chapter does not include a systematic performance evaluation of the transfor-
mation technique. To still offer first insights into the scalability of our technique,
we performed a preliminary assessment based on our case study. Table 3.5 shows a
summary of the overall transformation results and the execution time of our trans-
formation technique. The first column shows the name of the model, the second
and the third columns show the number of the BPMN elements and the security
annotations in the SecBPMN2 model, respectively. The fourth and fifth column
show the number of UML elements and the security annotations in the correspond-
ing UMLsec model. The last column shows the time needed by our technique for
transforming the corresponding SecBPMN2 model to the UMLsec model. The time
does not include the initialization time for our transformation. The initialization
time for transforming each model is 17402 [ms]. The tests were performed on a
computer with a 2.2 Ghz processor and 8 GB of memory.

Based on the results in Table 3.5, the performance of the proposed transformation
technique seems adequate for practical use on models of the considered size. For
example, our technique requires in total around 70 seconds for transforming both

142 3 Integrating BPMN- and UML-based Data-Protection Engineering

the “External services 1” and “External services 2” SecBPMN2 models to UMLsec mod-
els that consists of 818 UML elements and 150 security annotations. Taking 70 sec-
onds for the transformation represents a very low time comparing with the needed
time needed for a manual transformation process, which may take hours.

3.7 Discussion and Future Work

In Section 3.6, we demonstrate through a case study of an air traffic management
system how our proposed framework in this chapter allows security-specific data
protection requirements to be managed and traced throughout the different design
phases of the system development process.

Integrated management of data protection requirements across different phases is es-
tablished via our automated transformation that integrates the involved languages.
Our proposed framework for integrating SecBPMN2 and UMLsec models focuses
on a subset of SecBPMN2 of those security-specific data-protection annotations
with an equivalent on the architectural level (i.e., class and deployment diagram).
We did not consider the transformation of BPMN models to UML behavioral mod-
els such as activity and sequence diagrams because the BPMN model and these
UML behavior diagrams provide the same level of information and almost share
the same semantics. For example, generating UML activity diagrams from BPMN
models would be a straightforward transformation.

As business analysts, we focused on expressing the organizational requirements
and data protection requirements. As system engineers, we could concentrate on
designing and implementing the data protection-aware software architecture, with-
out having to learn the specifics of business process modeling. From Table 3.5, we
can infer that the automated transformation saved us from re-implementing a large
number of security annotations, which would have been daunting and error-prone.

Traceability is established via the trace models generated by our transformation
rules. The trace models contain traceability links from source to target model el-
ements. As one possible use for these links, an interested stakeholder could check
whether a UMLsec data-protection policy is in place for each data-protection an-
notation in the SecBPMN2 model. Therefore, trace models are a promising means
to increase trust in the produced models. Altogether, our case study highlights the
potential benefits of integrating SecBPMN2 and UMLsec via our framework.

3.7 Discussion and Future Work 143

3.7.1 Threats to validity and limitations

Our study for the applicability of the proposed framework in this chapter is subject
to a number of threats to external and internal validity. Two main threats to external
validity are: First, we emulated the involved stakeholders in the process of our
proposed framework, rather than involving actual ones. Second, we focus on a
single case study instead of applying the process of our proposed framework to
a broader selection of cases. While a key benefit of our process is its reliance on
notations familiar to the involved users, an empirical usefulness study is left to
future work. We also aim to apply our process to a broader selection of cases.

A threat to internal validity is the lack of a formal validation of the correctness
of our transformation. Our transformation benefits from the capability to check
the output models against UMLsec data-protection policies, which, however, does
not ensure that the intention of the business analyst is accurately reflected. Due
to the large variability of SecBPMN2 models, our transformation for integrating
SecBPMN2 and UMLsec models could be affected by errors. However, by apply-
ing our proposed 255 transformation rules to the SecBPMN2 model of the air traffic
management system case study, we did not report errors. Although we studied this
on a single case study, we assume that the same result will be reported when ap-
plying our transformation rules to other cases because the used SecBPMN2 model
in our case study is large and it consists of several corner cases.

3.7.2 Future Work

A possible future work is to extend our proposed framework to legacy situations,
in which the UML design models are already given, rather than developed from
scratch. Our mapping between SecBPMN2 and UMLsec security concepts can pro-
vide a foundation for addressing such legacy scenarios.

Systems are continuously evolving due to changes at the organizational level or at
the technical level [44]. Any change at the organizational or the technical level of
a system may be accompanied by changes in data protection requirements. There-
fore, a possibility for future work is to extend our framework in order to support
traceability of data protection requirements in case of changes to a business process
model of a system or its architecture models.

Other possibilities for future work are: First, to generalize our approach to the
remaining SecBPMN?2 annotation types by mapping them to various UMLsec dia-
grams. Second, to extend the framework to incorporate the semantics of both lan-
guages, which would allow us to formally guarantee the correctness of our trans-
formation. Third, to perform a user study to study the usability of our framework.

144 3 Integrating BPMN- and UML-based Data-Protection Engineering

3.8 Related Work

There has been a significant amount of model-based analysis approaches that aim
to reason about security- and privacy-specific data protection requirements in the
early phase of system design models. An overview can be found in [78], which
reviews existing approaches for security analysis of model-based object-oriented
software designs, and identifies ways in which these approaches can be improved
and made more rigorous. Some research addresses linking the model to the code
level within model-based security engineering [85, 86, 102]. Other work addresses
the model-based use of security-specific patterns [66, 97]. Further research makes
use of aspect-oriented modeling for model-based security [51]. [56] proposes an
approach for model-based security verification.

The specification of a software architecture model based on business processes rep-
resented by BPMN or UML activity models has been subject to previous works
[31, 72, 117, 120]. However, except for the following ones, none of these works
considered data protection aspects such as security during the transformation. The
fact that different modeling languages are extended to cover data protection aspects
such as security and privacy, attracted many researchers to study the traceability of
these aspects via the integration between these languages. Approaches in this di-
rection can be classified into automated and manual approaches. In the following,
we highlight the differences between our work in this chapter and these studies.

3.8.1 Automated transformation

In [120], the authors used QVT specifica’cion12 (Query/View /Transformation) to
specify a mapping from UML activity models annotated with security-specific an-
notations to UML class diagrams. The mapping is of a one-to-one kind, where each
security requirement is transformed into a class or annotation with the same name.
Hence, as stated by the authors, the resulting security policies remain at a high
level of abstraction, representing the view of business analysts. As a result, secu-
rity experts are needed for manually refining the security annotations to a technical
security aspects. In contrast, our framework:

(i) supports the transformation to two UML structural diagram types in which
data protection requirements at different design-level views of the system are
captured, and

(ii) does not require the involvement of data protection experts, since high-level
data protection needs are transformed to verifiable data protection policies
that encapsulate data protection knowledge. However, the presence of a data
protection expert is still preferable.

2https://www.omg.org/spec/QVT/1.3/PDF (accessed: 08/12/2019).

https://www.omg.org/spec/QVT/1.3/PDF

3.9 Conclusion 145

Conversely, the authors in [55] proposed a method to systematically develop
UMLsec design models from requirements models annotated with security-specific
requirements. The requirements models in their approach were UML models with
secure problem frame annotations. While this approach makes the formal valida-
tion of UMLsec applicable, it is not tailored to business analysts, one of the main
stakeholder types in business process analysis of system-to-be. In [41], the authors
presented the transformation from misuse-cases [137] to mal-activity models [136].
Different from UMLsec, mal-activity models are not verifiable against the specified
activities and represents the view of business analysts.

3.8.2 Manual transformation

Different from our work, other works have provided informal guidelines for ad-
dressing data protection requirements while transitioning between stages in the
development process.

For example, the authors in [94] proposed an approach for designing secure soft-
ware system models, using UMLsec [62], starting from organizational security re-
quirements, using Secure Tropos [93]. For the same purpose, the authors in [79] pro-
posed an approach to generate a UML class diagram represented by SecureUML
[81] from organizational requirements represented by the KAOS [147] method. In
[58], the authors connect UMLsec security-specific policies with elicited require-
ments based on heuristics. This approach takes as input a set of requirements to
predict a suitable UMLsec security policy for each security requirement. In these
approaches, the software models must still be built and annotated with security
annotations manually, which is a non-trivial and error-prone task.

3.9 Conclusion

In this chapter, we present a framework for tracing high-level data protection re-
quirements to verifiable technical data protection policies and, as a result, for bridg-
ing the conceptual gap between them. The main benefit is the management of
data protection requirements from the views of the involved expert stakeholders,
in particular, business analysts and systems engineers, in an integrated manner.
To this end, we integrate the two well-known model-based security approaches
SecBPMN2 and UMLsec via model transformation. We illustrated the aforemen-
tioned benefits in a case study, in which our framework was suitable to render the
early development stages of an air traffic management system less error-prone and
more systematic. Our results are not restricted to any particular data protection-
oriented extension of BPMN or UML, but can be applied to other ways of using
BPMN and UML to address data protection requirements.

147

Chapter 4

Individual Fairness Analysis
based on Software Design Models

This chapter presents a sub-framework of the proposed MoPrivFair (Model-based Privacy
& Fairness) methodology in this thesis. An overview of the MoPrivFair methodology is
provided in Section 1.2 in the first chapter of this thesis.

RQ1
/BPMN-based Framework for Q RQ2 RQ3
Detecting Conflicts (Chapter 2) ﬂramework for Integrating BPMN- e m—————
and UML-based Data-Protection / UML-based Framework for
& Create/Update data protection- Engineering (Chapter 3) Individual-Fairness Analysis
annotated BPMN models (Chapter 4)

software architecture model

[& Reuse/Create/Update procedural] a Resolve I l

data protection patterns conflicts
[& Refine the software]

model

[q’ Transform BPMN models to]

model with fairness-
specific information

[‘ Annotate the software]

’% Alignment Checking

(g Method for verifying]

individual-fairness

SR A

policies against the software

architecture model J \ - _ 4
\ % Conflicts Detection / ——————————

Figure 4.1: The highlighted part (dashed lines) denotes how Chapter 4 contributes
to the overall workflow of the MoPrivFair methodology.

[Verify technical data protection

Decision-making software is prone to undesired discrimination against individuals
based on protected characteristics such as gender or ethnicity. Considering the
individual fairness of software after implementing it raises substantial difficulties
in the identification and explanation of the discriminatory behavior of the software.

In this chapter, we propose a semi-automated model-based framework that sup-
ports the analysis for individual fairness already in the software design phase,
thereby avoiding the possibility of discrimination from the onset of the software

148 4 Individual Fairness Analysis based on Software Design Models

development process'. Specifically, we proposed a UML profile called UMLfair

to annotate a software model with fairness-specific information. Using UMLfair,
we enabled the generation of temporal logic claims, which can be verified against
the model to uncover discriminatory behavior. We have applied our framework to
three case studies featuring a school management system, a delivery management
system and a loan management system.

4.1 Introduction

Automated decision-making software became responsible for sensitive decisions
with far-reaching societal impact in many areas of our lives. However, the risk that
a falsely developed decision-making software may lead to unlawful discrimination
against persons, illegally exploiting their protected characteristics, has raised public
and legal awareness on software fairness [140, 153]. For example, Article 22, Para-
graph 4 of the European General Data Protection Regulation (GDPR, [2]) forbids
decisions based on special categories of data as defined in Article 9 of the GDPR,
such as ethnicity, religion, and gender. These data are known in the state of the art
as protected characteristics [49].

Although there is no single definition of what fairness means [149], a distinguished
type of fairness is called individual fairness. A decision-making software provides
the individual fairness if it produces the same decision for every two individuals
whose data that are given as input to the decision-making software are identical ex-
cept for the protected characteristics [37]. One should note that not every discrimi-
nation concerning a protected characteristic is forbidden. For example, although
the age is a protected characteristic, it might be legal that insurance companies
differentiate based on the age for various life insurance rates. Data whose effects
on sensitive decisions can be justified are called explanatory data [145]. Details de-
scription of fairness-related concepts is provided in Section 2.2.3 of this thesis. An
overview of discrimination from the legal perspective is provided in Section 2.2.4.

Only avoiding protected characteristics in a decision-making software does not
prevent discrimination. Due to data correlations, other data may act as proxies
for protected characteristics, thereby causing indirect discrimination [49]. For exam-
ple, in 2016, a delivery software by Amazon? excluded some neighborhoods with

!This chapter shares material with the paper "Analyzing Individual Fairness based On System
Design Models" [113], the SE/SWM’19 "Explaining Algorithmic Decisions with respect to Fairness"
[112] and the FairWare@QICSE’18 workshop paper "Model-Based Discrimination Analysis: A Position
Paper" [109].

*Detailed description for the discriminatory behavior of Amazon’s software is available at ht t ps :
//www.bloomberg.com/graphics/2016-amazon—-same—-day/ (accessed: 05/12/2019).

 https://www.bloomberg.com/graphics/2016-amazon-same-day/
 https://www.bloomberg.com/graphics/2016-amazon-same-day/

4.1 Introduction 149

African American communities in the United States from being able to participate
in a free-delivery service, although the software did not explicitly use the ethnicity
of the customers for making the decisions. There are two main explanations for
data correlations [112]:

(i) societal fact. For instance, it turns out that the discriminatory behavior of
Amazon’s delivery software results from the use of the zip-code which is
highly correlated with the ethnicity of local area residents in the USA.

(ii) data flow. The actual input of a decision-making software may contain data
resulting from processed protected characteristics. For example, assume for a
moment that Amazon uses age to decide about a prime membership application.
If the delivery decision-making software depends on the prime membership
status, the delivery software indirectly discriminates against age.

4.1.1 Problem statement and research question

The data flow issue is typical for the problem that Dwork et al. [36] observed: “fair-
ness is not a property of software in isolation, fairness is a property of the software composed
into its system”. However, existing fairness analysis approaches do not analyze the
software ex-ante but ex-post, namely during the testing phase of software develop-
ment life cycle (e.g, [29, 49]) or at the run-time of the software (e.g., [7, 8]). To reduce
difficulties in the later stages of software development, it is important to deal with
fairness from the early stages of software development. According to Brun et al.
[18] "as with software security and quality, [...], fairness needs to be a first-class entity
in the software engineering process". Considering support for individual fairness at
the software design phase, a software model-based approach that permits detecting
discriminations during the design of software models is missing.

The software model-based development is a promising direction in the software en-
gineering field and it has been widely used in the literature for reasoning about
critical issues such as security and privacy [5, 62, 81]. In many application domains
(including finance, health, automotive etc) there exist regulations which require de-
tailed documentation of the software to support the needed certification, and this
requirement can be fulfilled using software models. Modeling languages such as
the Unified Modeling Language (UML [3]) allow for designing software models in
a high-level specification in which its components with their inputs and outputs
can be analyzed. Although the use of software models in practice varies between
different software domains, they can be a key enabler for important tasks of high
business value, such as the fairness analysis. The need for engineering fairness-
aware software based on software models has been motivated by Brun et al. [18].
However, the authors did not provide an approach that supports their idea.

150 4 Individual Fairness Analysis based on Software Design Models

In this chapter, we address the following research question:

RQ3. How to detect undesired discriminatory behavior, that violates individual fairness,
by analyzing software design models?

Our objective is to support software developers/analysts with an approach that
permits uncovering discrimination against individuals during the software design
time in order to reduce the effort needed for uncovering discrimination in the later
stages of development.

4.1.2 Contribution

To address the research question RQ3, we present a semi-automated framework that
supports the analysis of UML-based software designs with regard to individual
fairness. The analysis of individual fairness in our framework is established by
generating temporal logic claims, whose verification against the targeted software
model enables reporting on the individual fairness of the software. Specifically,
our framework includes the following contributions: (1) a UML profile UMLfair for
annotating UML models with fairness-specific information; (2) a method for verifying
individual fairness of annotated UML models; and (3) three case studies, that show the
applicability of our method.

Our framework is novel in the sense that it is the first that permits fairness analysis
during the design phase of software models. It is worth noting that, our frame-
work is not concerned with analyzing the individual fairness of a software that
uses a machine learning algorithm. Fairness is not a property that should be pre-
served by machine learning-based software only. Even IF-THEN-ELSE rule-based
decision software can be unfair. Algorithmic systems without machine learning
still make up a vast percentage of real-life software, especially in new systems
where a sufficient amount of relevant training data is not available. For exam-
ple, many of today’s insurance systems still use preplanned IF-THEN-ELSE rules,
instead of machine-learning algorithms. Hence, the fact that previous studies focus
on machine learning-based software does not mean to underestimate fairness in
non-machine learning based software.

The remaining sections of this chapter are organized as follows. Section 4.2 pro-
vides the running example that will be used throughout the chapter to explain our
contribution. Section 4.3 presents our proposed framework. Section 4.4 presents
our proposed UMLfair profile. Section 4.5 presents the generation of temporal logic
claims. Section 4.6 describes how we use model checking to verify the claims. In
Section 4.7 we describe how the verification results are mapped to discrimination
issues. Section 4.8 presents an optional to support uncovering proxies of protected
characteristics based on a database when expert knowledge about proxies of pro-
tected characteristics is not available. Section 4.9 presents the tool support. Section

4.2 Running Example 151

4.10 shows the applicability of our proposed framework based on three case stud-
ies. Section 4.11 presents the limitations and future work. Section 4.12 and Section
4.13 discuss related work and conclude, respectively.

4.2 Running Example

Consider a school interested in leveraging automatic decision-making to decide
about different kinds of applications, that can be submitted by its students, such as:
(i) application for a basketball team membership, or (ii) application for a scholar-
ship. Deciding about a scholarship application is sensitive. In particular, the school
policies disallow discriminating among applicants to a scholarship based on their
protected characteristics such as gender and physical health status.

The software model. Figure 4.2 shows an excerpt from the school’s software
model. It focuses on the parts that are related to the basketball and the scholarship
applications. Figure 4.2(a) is a UML class diagram [3]. A class diagram describes the
structure of software by showing its classes, attributes, operations, and the rela-
tionships among classes. A central class in the class diagram is the “StudentProfile”.

The “gender” is a boolean data attribute. It is “true” if the gender is male and “false”
if the gender is female. The “height” is an integer attribute. It shows the height of
a student in cm. The “outstandingEducation” attribute is “true” if a student has a very
good education level, else “false”. The “normalWeight” is “true” in case a student is not
overweight, else “false”. The attributes that are denoted with “/” symbol are derived
attributes. A derived attribute is a data item that is not given by the user but resulted
from processing other user’s data. The derived attributes in the “StudentProfile” class
are described as follows: The “bbMembership” is a boolean attribute, that is “true” if a
student is a member in the basketball team, else “false”. The “membershipNum” is an
integer attribute, that shows the number of memberships that a student owns. The
“scholarshipStatus” is “true” if a student is admitted to a scholarship, else “false”.

An example of an operation is the “verifyScholarApp()”. The «Signal»-annotated
“done” represents a received signal that an object of the “StudentProfile” class may
receive during its life-cycle. An object reacts to the receiving of a signal according
to the specified behavior by its class ([3], p.169). Figure 4.2(b) is a UML state ma-
chine diagram [3] that describes the behavior of the “StudentProfile” class. UML state
machines describe the sequences of states that an entity, such as an object or a com-
ponent, can go through in response to events such as call operations or received
signals, together with its responding actions. A state machine contains states and
transitions. A state is "a situation in the execution of a state machine behavior during
which some invariant condition holds" ([3], p.308). States are denoted by boxes. Exam-
ples of states in Figure 4.2(b) are “Idle” and “VerifyBbApp”.

<<critical>>
{protectedData=
{(gender, physicalHealthStatus)}}

StudentProfile

gender:boolean

height:int
normalWeight:boolean
outstandingEducation:boolean
| bbMembership:boolean

| membershipNum:int

| scholarshipStatus:boolean

verifyBbApp()
verifyScholarApp()
<<Signal>> done

(a) Class Diagram

<<individual-Fairness>> {explanatoryData={((outstandingEducation,(scholarshipStatus))}}
{sensitiveDecisions={(scholarshipStatus)}} {metric={(conditionalEntropy)}} {threshold={0.5}}

StProf_StateMachine

f VerifyingBasketballApplication \

[normalWeight==true && height>=170]
| bbMembership=true;

membershipNum=+1
VerifyBbApp

AcceptedToBb

Start [else]
arty RejectedToBb
o t Y,
: done
VerifyingScholarshipApplication \

[outstandingEducation==true && membershipNum>=1]
| scholarshipStatus=true;

AcceptedToScholar|t;,

[else] End

RejectedToScholar t,

y

(b) State Machine Diagram for Class StudentProfile

Figure 4.2: Example Model: Excerpt from the class and the state machine diagrams of the school software.

(448

S[OPOJN USIS9(T 918MIJOS UO paseq SISA[euy, SSaulre] [enpIAIpul

4.3 Framework for Analyzing Individual Fairness 153

Transitions are denoted by arrows between the states. A transition with label ¢[g]/a
indicates that an object in the first state will perform the action a and enter the tar-
get state when the event e occurs and the guard condition g is satisfied ([3], p.314).
The event can be either a call operation or a received signal. The guard represents
a logical formula, involving, for example, equality and inequality between data ex-
pressions and logical connectives such as conjunctions. The action can be a data
assignment for an attribute, a call for an operation or a send signal. For example,
in Figure 4.2(b), if an object is in the “verifyScholarApp” state and the guard condi-
tion “[outstandingEducation==true && membershipNum>=1]" is true, first the transition
“t;1” will be fired, then the “scholarshipStatus” will be set to true and the “Accepted-
ToScholar” state will be entered.

Proxies for protected characteristics. The software design uses personal informa-
tion about students to decide about applications. In this example, experts identify
that “outstandingEducation” and “height” can act as proxies for “gender”, and “normal-
Weight” can act as a proxy for “physicalHealthStatus”. 3,

The challenge. Given the UML model in Figure 4.2 and the definition of proxies,
our question is: Does the behavior of the “StProf_StateMachine” violate individual
fairness with respect to for example, “gender” when deciding about the “scholarship-
Status™? If it does, then how could this happen? In the following sections, we will
show that it is possible to discriminate between two scholarship applicants whose
data are identical except for the “height”, which is a proxy of the “gender”.

4.3 Framework for Analyzing Individual Fairness

Manually analyzing a UML software model to uncover violations of individual
fairness is an error-prone task because information about how data is propagated
in the software model and how data items depend on each other are hidden and
distributed in multiple diagrams. In addition, the software model alone is not
sufficient for identifying the proxies of protected characteristics. A data item is
a proxy for a protected characteristic if the two are strongly correlated with respect
to a threshold [29]. For detecting indirect discrimination, it is necessary to iden-
tify proxies for protected characteristics. This information can be provided by an
expert, who takes this information from laws, compliance documents, and expe-
rience. In systems where personal data is available or can reliably be generated,
this data can be used to identify proxies for protected characteristics by performing
statistical analysis, using metrics such as the conditional probability [145].

3This is an example use case and the proxies should be adapted to be used in other contexts.

@oles: software developers/analysts with expertise in UM

Annotated AL EEELEECLLLLLLLEL
Software Model : Proxies B
. InformationD :
: * Document “
= 1 v v 2
& Annotate the Software %Generate Temporal
Model with Fairness- Logic Claims
Specific Information .

e

Requirements Software Batches_of Temporal Logic
Document Model Claims (e.g., LTL)

Legend |

L and fairness

ﬁodel Checking ?

3.1

Verification Language

Formal
Specificati

(e.g., PROM
I ’[{gl'ransform into a Formaq_ ﬂ

I >[ﬁ; Verify Temporal Logic

52l :

o

Verification
Results

Claims via Model Checking]t..D.... D

3
ons\

ELA)

4

1%, Reporting on
Individual Fairness|
A

j Fairness Report

@ start © End E]Manual Process Automated Process D Artifact —— Sequence Flow

Data Input/Output 8 Data Store

Figure 4.3: The semi-automated, model-based process for analyzing individual fairness

218

S[OPOJN USIS9(T 918MIJOS UO paseq SISA[euy, SSaulre] [enpIAIpul

4.3 Framework for Analyzing Individual Fairness 155

To address the challenges above, we propose a semi-automated framework that
applies formal model checking techniques to a given UML model in order to support
the analysis for individual fairness*. An overview of our framework is shown in
Figure 4.3. Formal verification techniques are best applied in the early stages of
software design when the cost is relatively low and the benefits are high [59]. The
goal of model checkers such as NuSMV® and SPIN® is to determine whether given
temporal logic claims are violated by exploring the entire state space of a model.

Temporal logic is a symbolic logic, which permits specifying claims (i.e., propo-
sitions) that have truth values. The claims can be described using an abstract
concept of time [59]. For example, consider the following temporal logic claim:
(gender == female — (scholarshipStatus == true). This claim expresses that
the “scholarshipStatus” will eventually (i.e., has to hold at some point in any execu-
tion path) be true given the “gender” is female. The model type in this chapter is a
state machine, which uses an abstract concept of time. State machines are a way to
express decision-making algorithms that use if-then-else rules. We are interested
in checking whether a protected characteristic will eventually directly or indirectly
influence the decision. Therefore, with a collection of temporal logic claims, we can
uncover whether specific values (or value intervals) of protected characteristics or
proxies later affect the sensitive decision. In our work, a sensitive decision is to set
a specific data attribute value or to call an operation. These sensitive decisions
should not discriminate on the basis of protected characteristics.

In the following, we provide an overview of our proposed framework in Figure
4.3. The overview covers information about the involved roles in the process of
our framework, the input and output of our framework, and a brief description for
the phases of the framework. Latter each phase will be explained in more details
through the use of the running example in Figure 4.2.

Involved Roles. The process of our framework can be executed by software devel-
opers/analysts who are responsible for designing the software model and annotating
it with details such as protected characteristics, sensitive decisions in the software,
explanatory data that their effects on decisions can be justified (e.g., admitting ap-
plicants to a basketball team based on their physical health status is allowed), and
correlation metrics and the thresholds that have to be used for identifying proxies
of protected characteristics. The involved roles should have expertise in UML and

*Worth noting that term fairness was already used as a constraint in the formal model checking
area. Different from what fairness means in our work, in the model checking the fairness constraint
is imposed on (the scheduler of) the system that it fairly selects the process to be executed next. For
example, if an activity is infinitely often enabled then it has to be executed infinitely often [107].

>The NuSMV model checker and detailed account on its usage are available online at http:
//nusmv. fbk.eu/ (accessed: 05/12/2019).

*The SPIN model checker and information on its usage are available online at http://
spinroot.com/spin/whatispin.html (accessed: 05/12/2019).

http://nusmv.fbk.eu/
http://nusmv.fbk.eu/
http://spinroot.com/spin/whatispin.html
http://spinroot.com/spin/whatispin.html

156

4 Individual Fairness Analysis based on Software Design Models

fairness. Still, to ensure correct use for the proposed framework, the involved roles
should be trained on the usage of our framework.

Inputs. As shown in Figure 4.3, three inputs are considered:

(i)

(ii)

(iii)

a Software Model in UML. Structural aspects of software are specified by class
diagrams. Behavioral aspects are specified by state machine diagrams. An
overview of the class and state machine diagrams is provided in Section 4.2.

a Requirements Document. During the requirements elicitation, domain ex-
perts, based on organizational policies and equality acts such as the UK
Equality Act” 2010, can identify the protected characteristics and the purposes
in which discrimination on the basis of a protected characteristic is allowed.

a Proxies Information Document. Domain experts can provide information
about the proxies of protected characteristics. The provided proxies will help
in uncovering indirect discrimination against protected characteristics. Op-
tionally, in the absence of knowledge about proxies of protected characteris-
tics, historical personal data can be used to identify proxies. Therefore, the
domain experts will define metrics, thresholds, and a database of historical
personal data in the requirements document. Statistical analysis, using the
correlation metric and the threshold, will be used to identify proxies.

Outputs. as shown in Figure 4.3, the final output of the process is a Fairness Report.
The report summaries the overall analyzes result. For each detected violation of
individual fairness, the report shows:

(i)
(if)

(iii)

(iv)

the effected sensitive decision by the violation of individual fairness,

the source of the individual fairness violation (i.e., the data item that caused
the discrimination, which might be a protected characteristic or a proxy of a
protected characteristic),

all the side effects of the source of the violation on the sensitive decision. The
side effects here refers to all the possible changes on the sensitive decision
with respect to all possible values that can be assigned to the data attribute,
which represents the source of the violation, and

references to counterexamples that explain how some of the side effects on
the sensitive decision occurred. A counterexample can also help in locating
the source of discrimination in the model.

"The Equality Act 2010 is an Act of Parliament of the United Kingdom and it aims at protecting
people from discrimination. The Act is available online at http://www.legislation.gov.uk/
ukpga/2010/15/pdfs/ukpga_20100015_en.pdf (accessed:05/12/2019).

http://www.legislation.gov.uk/ukpga/2010/15/pdfs/ukpga_20100015_en.pdf
http://www.legislation.gov.uk/ukpga/2010/15/pdfs/ukpga_20100015_en.pdf

4.3 Framework for Analyzing Individual Fairness 157

In the following, we explain the phases of our framework. The numbers in Figure
4.3 represent the phases, as follows:

Phase 1. Software developers manually design a UML model and annotate it with
fairness-specific information, based on the requirements document. Hence, we pro-
pose a UML profile called UMLfair to allow annotating a UML model with de-
tails such as the protected characteristics, and the explanatory data. The output,
as shown in Figure 4.3, is an annotated software model. A detailed description of the
UMLfair profile is provided in Section 4.4.

Phase 2. Batches of temporal logic claims are generated with respect to the targeted
decision-making state machine in the software model. Each batch contains claims
analyzing the effects of a protected characteristic or a proxy of it on the behavior
of a sensitive decision in the software model. The inputs to this phase, as shown
in Figure 4.3, are an annotated software model and proxies information document. The
output is a set of batches of temporal logic claims.

Although different kinds of temporal logic are available such as Linear Temporal
Logic (LTL) [104], Computation Logic Tree (CTL) [26], and p-calculus [71], they all
share the basic capabilities and semantics we use in our work. Hence, our proposed
framework is not restricted to a specific kind of temporal logic. To explain our con-
tributions, in what follows, we use LTL to express claims. A detailed description
on the generation of temporal logic claims is provided in Section 4.5.

Phase 3. The generated claims in phase 2 are automatically verified against the
software model. This phase is divided into two sub-phases:

* Phase 3.1. The annotated software model is transformed into a formal verifi-
cation language, using a transformation tool such as Hugo/RT 8 UML-VT?,
or SMUML !°. As shown in Figure 4.3, the input to this phase is an annotated
software model while the output is a formal specifications file that the model
checker accepts as an input. For example, the model checker SPIN accepts
a software model described by the Process Meta-Language (PROMELA) lan-
guage while the model checker NuSMV accepts a software model described
by the Symbolic Model Verifier (SMV) language.

8Hugo/RT is available online at https://www.informatik.uni-augsburg.de/en/
chairs/swt/sse/hugort/ (accessed: 05/112/2019).

SUML-VT is available online at https://www.cs.umd.edu/~rance/projects/uml-vt/
(accessed: 02/01/2020).

WYSMUML is available online at http://www.tcs.hut.fi/Research/Logic/SMUML. shtml
(accessed: 02/01/2020).

https://www.informatik.uni-augsburg.de/en/chairs/swt/sse/hugort/
https://www.informatik.uni-augsburg.de/en/chairs/swt/sse/hugort/
https://www.cs.umd.edu/~rance/projects/uml-vt/
http://www.tcs.hut.fi/Research/Logic/SMUML.shtml

158 4 Individual Fairness Analysis based on Software Design Models

® Phase 3.2. The claims from phase 2 are automatically verified against the for-
mal specifications of the UML model using a model checking technique. If
a claim is violated, the model checker will generate a counterexample in the
form of a trace of events that explains how the violation occurred. As shown
in Figure 4.3, the inputs to this phase are batches of claims and a formal speci-
fications file while the output is a report, that contains the verification results
of the claims. A detailed description of the verification of claims against the
software model is provided in Section 4.6.

Phase 4. The claims’ verification results of each batch of claims are analyzed to
check whether the software model preserves individual fairness. As shown in Fig-
ure 4.3, the input to this phase is the claims’ verification results while the output is a
fairness report. The fairness report is introduced earlier and its contents describe the
detected violations for individual fairness. A detailed description on how the veri-
fication results of the temporal logic claims permit reasoning on individual fairness
is provided in Section 4.5.

4.4 Annotating the UML Model with Fairness Information

In this section, we describe phasel of the proposed framework in Figure 4.3. In
this phase, the UML model is annotated with fairness information. We propose a
UML profile called UMLfair. UMLfair is an extension of UML and it permits the
involved stakeholders to specify fairness information in a UML model. We propose
the UMLfair as a sub-profile for the UML security extension profile UMLsec [62].
Details on the UMLsec profile are provided in the previous chapter in Section 3.2.2.
In what follows, we describe the «stereotypes» and the {tags/ of the UMLfair profile.
The «stereotypes» and the {tags} of UMLAair are provided in Table 4.1.

Table 4.1: The UMLfair profile

Stereotype Tag
«critical» {protectedData={(string[1...*])}} / /required
{explanatoryData={((string[1],string[1...*])*)}} / /optional
windivi o N {sensitiveDecisions={(string[1...*])}} / /required
individual-Fairness» | (o —(string[0])) / Joptional
{threshold={double[0]}} / / optional

Data in UML, in this context, is specified as attributes in UML class diagrams. For
specifying protected characteristics, our profile has a stereotype called «critical».
We reused this stereotype from the UMLsec profile [62]. In UMLsec this stereo-
type annotates classes that may contain confidential data. In our work, we use this

4.4 Annotating the UML Model with Fairness Information 159

stereotype to annotate classes that may contain protected characteristics or proxies
to protected characteristics. As shown in Table 4.1, we extended this stereotype
with a {protectedData} tag to permit defining the protected characteristics with re-
spect to a class annotated «critical». For example, in Figure 4.2(a), the {protectedData}
tag of the annotation «critical» on class “StudentProfile” specifies the “gender” and the
“physicalHealthStatus” as protected characteristics.

The «individual-Fairness» stereotype annotates a state machine, that describes the
behavior of a class, that is annotated «critical». As provided in Table 4.1, this stereo-
type has several tags:

* The {sensitiveDecisions}. This tag is required and it allows defining that setting
values of specific data attributes or calling operation events are decisions that
should not discriminate on the basis of protected characteristics or proxies
of protected characteristics. For example, the state machine annotated with
«individual-Fairness» in Figure 4.2(b), specifies the “scholarshipStatus” data at-
tribute as a sensitive decision.

* The {explanatoryData} tag. This is an optional tag and it allows defining that
it is acceptable to use these data attributes to differentiate in sensitive deci-
sions. For example, in Figure 4.2(b), the “outstandingEducation” is defined as an
explanatory data attribute for the “scholarshipStatus”.

* The {metric} tag. This is an optional tag and it allows specifying the corre-
lation metric to use for measuring correlations. Various correlation metrics
have been used in the literature to identify proxies such as the conditional
probability, information gain, and others [145]. For a flexibility issue, the
specification of the {metric} tag is not restricted to a specific set of metrics.
The {metric} tag can take any string as an input as long it has a mapping to a
function in the implementation.

* The {threshold} tag. This is an optional tag and it allows to specify the numeric
threshold that is needed to determine based on the correlation results whether
two pieces of data are strongly correlated so one can act as a proxy for another.

The {metric} and {threshold} can be used to identify proxies of protected characteris-
tics based on a database of historical data in case the information about proxies is
not available. As explained in Section 4.3, the correlation metric and the threshold
that have to be used for identifying proxies of protected characteristics can be re-
trieved from the requirements document. In our running example, information about
proxies is available. A detailed account on the generation of proxies based on a
database is provided in Section 4.8.

160 4 Individual Fairness Analysis based on Software Design Models

4.5 Generating Temporal Logic Claims

In this section, we describe phase2 of our framework in Figure 4.3. We first show
through an example how we analyze individual fairness of software models using
temporal logic and then we propose the generalization of our proposed technique.

From a technical view, a software model preserves individual fairness if it produces
the same decision for any two feasible traces of events, whose configuration data
(i.e., values used in guard conditions) are identical except for the protected char-
acteristics or their proxies. This notion of individual fairness is derived from the
no down-flow policy in the field of information security [33]. Intuitively, no down-
flow means, that a public output of a system does not depend on secure inputs.
Generating all possible traces of events is a difficult task as the number of possible
traces may be infinitely large. Therefore, we introduce the use of temporal logic to
formulate the side effects of protected characteristics and their proxies on sensitive
decisions as claims, while leaving the process of exploring all the possible traces of
events in a software model to a model checking technique.

Example 1. In our running example, the “height” is identified as a proxy of the “gen-
der”. To check whether the “StProf_StateMachine” in Fig. 4.2 preserves individual
fairness with respect to the “height” when deciding about the “scholarshipStatus”, one
needs to: First, express all the possible effects of the “height” on the “scholarshipSta-
tus” in pairs of claims, where each pair, in isolation, considers claims about one
possible side effect. Second, verify if the claims of exactly one pair are satisfied at
some point in any execution path (i.e., eventually true) while the claims of the other
pairs are violated (i.e., eventually false). That is the “scholarshipStatus” always has
the same value independent of the “height”.

Based on the “(height>=170)” condition in Fig. 4.2(b), there might be two side ef-
fects for the “height” on the value of the “scholarshipStatus”. These side effects are
expressed as LTL claims in the pairs namely, pair]l and pair2. The claims of pairl
check whether the “scholarshipStatus” is true, independently of the “height”, while
the claims of pair2 check whether it is false, independently of the “height”.

<height >= 170 —QscholarshipStatus == true,

(pairl)
—(height >= 170) — QscholarshipStatus == true)

(height >= 170 = scholarshipStatus == false,

(pair2)
—(height >= 170) — {scholarshipStatus == false)

4.5 Generating Temporal Logic Claims 161

Specifically, the first claim of pair]l expresses that if the “height” is greater than or
equal to “170”, the “scholarshipStatus” will eventually <) (i.e., at some point in any
execution path) equal true. The second claim of pairl expresses that if the “height”
is less than “170”, the “scholarshipStatus” will eventually equal true. The first and
second claims of pair2 are similar to the first and the second claims of pairl, re-
spectively, but with claiming that the “scholarshipStatus” will eventually equal false
instead of true. Since, in the end, a value has to be assigned to the “scholarshipSta-
tus”, it is impossible that all the claims of pairl and pair2 will be violated. We have
individual fairness when the claims of pairl are satisfied while the claims of pair2
are violated or vice versa.

In our work, we use the eventually { operator instead of the globally [operator to
consider the effect of other data that are not part of the claims on the final decision.
Also, to declare that the possible discrimination can happen at any latter moment in
the software behavior. In other words, our analysis consider fairness to be violated
already if it would be violated at some intermediate stage of the model execution.
Different from the eventually operator, the globally L] operator does not take the
effect of other data in the system on the final decision because it requires a condition
to hold in any execution path until the end of the path execution. The following two
claims clarify our argument:

height >= 170 — UscholarshipStatus == true (1)
height >= 170 — {QscholarshipStatus == true (2)

By verifying the claims (1) and (2) against our running example, claim (1) is vio-
lated because based on the specifications of the state machine in Figure 4.2(b) the
“scholarshipStatus” does not depend only on the “height”. In addition to the “height”,
the “scholarshipStatus” depends on the “outstandingEducation” and the “normalWeight”.
Therefore, given the height is greater than “170” does not mean that the “scholar-
shipStatus” will always be true at the end of the execution. In contrast, claim (2) is
satisfied, meaning that if the “height” is greater than “170”, there is the possibility
that the “scholarshipStatus” will equal “true” sometimes. Based on the state machine
in Figure 4.2(b), this can happen when the “outstandingEducation” equals “true” and
the “normalWeight” equals “true”.

Generating batches of claims. The pairs pairl and pair2 in Example 1 together rep-
resent a batch that analyzes the effects of the “height” on the “scholarshipStatus”. To
check whether a state machine sm preserves the individual fairness, for each sensi-
tive decision s in sm we generate a batch of claims for (a) each protected character-
istic (in the {protectedData} tag) and (b) for each proxy of those.

To reduce the number of the claims to be generated, the generation of batches of
claims with respect to a sensitive decision s has to consider every atomic guard

162 4 Individual Fairness Analysis based on Software Design Models

condition g whose data attribute:

e First, is not defined as an explanatory piece of data with respect to s in the
{explanatoryData} tag of sm. This is to avoid generating claims with respect to
data that are acceptable to differentiate based on them among individuals.

* Second, is defined as protected characteristic in the {protectedData} tag or is
a proxy of a protected characteristic, that does not belong to the explanatory
data of s. This is to ensure that only claims are generated with respect to
protected characteristics or their proxies.

e Third, is not defined as a derived data attribute. This is to avoid generating
claims with respect to generated proxies. For example, in our UML model,
the “membershipNum” is a generated proxy because its value depends on the
value of the “height” which is a proxy of the “gender”. In this case, the “mem-
bershipNum” is a mask for the “height”. Hence, knowing that discrimination
happened because of using the “membershipNum”, will not uncover the origi-
nal source for the discrimination.

An atomic guard condition g whose data attribute satisfies the properties above is
called a used condition with respect to the sensitive decision s. For example, in our
UML model, the “(height>=170)" is a used condition with respect to the “scholarship-
Status”, because the height: is not a derived attribute, is not defined as explanatory
with respect to the “scholarshipStatus”, and is a proxy of the “gender”, which does not
belong to the explanatory data of the “scholarshipStatus”.

To explain the generation of batches of claims with respect to a state machine sm
annotated with the «individual-Fairness» stereotype, we assume the following:

e s; € SensitiveDecisions, where SensitiveDecisions is the set of all the data
attributes and call operations in the {sensitiveDecisions} tag of sm and it is of
the size n.

* g € usedConditionss, where usedConditionss, is the set of the used condi-
tions with respect to s; and it is of the size k.

* v € Vg, where Vg is the set of all values in the range space of a sensitive data
attribute s; and it is of the size (.

e cvent_queues?|call_s;| is a logical condition. It returns true if the sensitive
call-operation event s; belongs to the event_queues set, which includes the
triggered events while executing the software model m.

4.5 Generating Temporal Logic Claims 163

Given the defined notations, Definition 1 shows how we define the set of all batches
of claims B, which has to be generated with respect to a state machine sm anno-
tated with the «individual-Fairness» stereotype. The definition shows that for each
sensitive decision s; with k used conditions, k batches of claims have to be gener-
ated, each batch with respect to a used condition g; of s;.

Definition 1 (Batches of Claims). Given sm is an «individual-Fairness»-
annotated state machine in a software model m, the set B of all batches
with respect to sm is defined as follow:

sn 9k

B={J U batehsg }

5i=1 9j=1

where, in case s; is a data attribute:

Yl

batchsig]. = { U ((g] — <>Si == vh), (—\g]' — <>Si == Uh))} (Rule 1)
Vh=1

while in case s; is a call operation:

batchsy = ; —><>event_queues? call_sil),
s = ((9 [i) (Rule 2)
(mgj — Qevent_queues?[call_si]))

When s; is a data attribute, a batchsigj has to be defined according to Rule 1 of
Definition 1. In this case, the batchgg; is a set of pairs. According to Rule 1, the
number of the pairs in a batchsigj is [, where [is the number of the possible values
that can be assigned to s;. Although this may theoretically be infinitely large, we
assume, that in practice the number of the possible values that can be assigned
to a decision data-attribute, is finite. Following Rule 1, each pair, that belongs to
a batchsg,, consists of two claims: (1) a claim expresses that if the g; condition is
true, the value of the sensitive data attribute s; will eventually equal vy,. (2) a claim
expresses that if the gj condition is false, the value of the sensitive data attribute s;
will eventually equal vy,. Where vy, is one possible value that can be assigned to s;.

For example, recall the pairs of claims pair]l and pair2 in Example 1. By Rule 1
of Definition 1, pairl and pair2 together are a batch of claims with respect to the
“StProf_StateMachine” in the example model shown in Figure 4.2(b).

164 4 Individual Fairness Analysis based on Software Design Models

When s; is a call-operation event, a batchsg; has to be defined according to Rule 2
of Definition 1. Following the specification of Rule 2, the batchs,g consists of a pair
of two claims: (1) a claim expresses that if the g; condition is true, the call-operation
event s; will eventually be added to the event_gueues (i.e., s; will eventually be
triggered). (2) a claim expresses that if the g; condition is false, the call-operation
event s; will eventually be added to the event_queues.

Example 2. Assume for a moment that our UML model has a transition labeled
with “[membershipNum>=1] predict()”, where: (1) “predict()” is a call-operation event
that, once triggered, will call a black-box operation that implements a scholar-
ship decision-making algorithm. (2) “predict()” is defined as sensitive call-operation
event with respect to the “scholarshipStatus”. Based on these assumptions, by Rule
2 of Definition 1, the following pair will be a batch with respect to the «individual-
Fairness»-annotated state machine in Figure 4.2(b).

(height >= 170 %Qevent_queues?[call_predict],

—(height >=170) — Oevent_queues?[call_predict])

With this pair, we can check with respect to the software behavior whether the “pre-
dict()” call-operation event will be triggered for every two scholarship applicants
which have identical data except for the “height”. This is to ensure that the scholar-
ship decisions result from the same decision-making algorithm. Further analysis is
required to ensure the fairness of the called algorithm.

4.5.1 Algorithm for generating temporal logic claims

Algorithm 4.1 illustrates the generation of temporal logic claims. Our algorithm
takes as input a UML model m annotated with the UMLfair profile and a list con-
tains information about proxies of protected characteristics proxList. The algo-
rithm returns B (the set of all batches of claims) with respect to sm, where sm is an
«individual-Fairness»-annotated state machine in m.

First, in line 2 of the algorithm, the state machine that is annotated with the
«individual-Fairness» stereotype will be retrieved. In the lines from 3-8 of the al-
gorithm, the followings are declared and initialized:

1. the protectedSet. A set contains all the data that are defined as protected
characteristics in the {protectedData} tags of the UML model m.

2. the sensitiveSet. A set contains all the data that are defined as sensitive deci-
sions in the {sensitiveDecisions} of sm.

3. the guardSet. A set contains all atomic guards conditions in the model m.

4.5 Generating Temporal Logic Claims 165

Algorithm 4.1: Generating batches of claims from a UML model annotated
with the UMLfair profile

1
2
3
4
5
6
7

8

9
10
11
12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36

generateBatchesOfClaims (m, proxList);

Inputs : a UMLfair-annotated model m and a a list of proxies proxList
Output: a set of batches of claims B
sm < getIndividual FairnessState M achine(m);

protectedSet < ();

sensitiveSet < 0;
guardSet < (;

protectedSet < getProtected(m);

sensitiveSet < getSensitive(sm);
guardSet < getGaurds(m);

B+ 0;

foreach s € sensitiveSet do

explanatorySet < 0;
explanatorySet < get Explanatory(sm, s);
usedConditionsSet — 0;
usedConditionsSet <
getU sedConditions(m, s, prox List, protectedSet, explanatorySet, guardSet);
if s is a data attribute then
rangeSpaceSet <+ (;
rangeSpaceSet < get RangeSpace(s,m);
foreach g € usedConditionsSet do
batch «+ 0;
foreach v € rangeSpaceSet do
batch.add(
{g =><> s ==}, {lg <> s ==v});
end
B.add(batch);
end
end
else
foreach g € usedConditionSet do
batch + 0;
batch.add(
{g = <> (event_queues?[call_s])},
{lg =»<> (event_queues?|call_s|)});
B.add(batch);
end
end
end
return B

166 4 Individual Fairness Analysis based on Software Design Models

In line 9 of Algorithm 4.1, an empty set B is declared. This set will be used to store
all batches of claims that can be generated. In line from 10-14 of the algorithm, for
each sensitive decision s, the followings will be performed:

1. in the lines from 11-12, the explanatory data with respect to s will be retrieved
from the {explanatroyData} tag of sm are and stored in the explanatorySet.

2. in the lines from 13-14, all the used conditions in m with respect to s will
be stored into the usedConditionsSet. This will be performed by calling the
getU sedConditions(s, m, proxList, protectedSet, explanatorySet, guardSet)
function. This function takes as input a UML model m, the sensitive decision
s, the list of proxies prox List, the set of protected data protectedSet, the set of
explanatory data explanatorySet and the set of the atomic guard conditions
guardSet in the model. The function returns all used conditions in m with
respect to the sensitive decision s. Details on how the properties of the used
conditions are explained in Section 4.5.

In the line 15, for each sensitive decision s that is defined as a data attribute in m ,
the followings will be performed:

1. in the lines from 16-17, all the possible values that can be assigned to s will be
retrieved from the UML model m and stored in the rangeSpaceSet.

2. in the lines from 18-24, for each used condition g with respect to the sensi-
tive decisions s, a batch of temporal claims will be defined as follows: for
each value belongs to the rangeSpaceSet, a pair of claims will be defined
and added to the batch. Each pair should have the format of the temporal
logic pair in line 22 of Algorithm 4.1. After iterating overall values in the
rangeSpaceSet, the batch will be added to the set of all batches of claims B.

In the line 28, for each sensitive decision s that is defined as a call-operation event
in m, the followings will be performed:

1. in the lines from 29-32, for each used condition g with respect to the sensitive
decisions s, a batch of claims will be defined. Each batch must consist of two
claims that conform to the format of the claim in line 31 of Algorithm 4.1.

2. Each generated batch will be added to the set of all batches of claims B.

4.6 Model Checking 167

4.6 Model Checking

In this section, we describe phase3 of the proposed framework in Figure 4.3. After
the batches of claims are generated, we verify the claims against the UML model.
For this, the UML model has to be transformed into a formal verification language
by using a transformation tool. The verification language depends on the model
checker that will be used to verify the claims. The goal of any model checker is to
search for a feasible trace of events in the targeted software model that violates a
given claim. During the search, the model checker non-deterministically assigns
values to the model’s data attributes, that are not part of the claim.

To verify the claims of pairl and pair2 in Example 1 against the UML model in Figure
4.2 by using the SPIN model checker, we first automatically transformed the UML
model into PROMELA specifications by using the transformation tool Hugo/RT.
The verification results are provided in Table 4.2. The result column shows “satis-
fied” if the corresponding claim is true at some point in any execution path. Other-
wise, it shows “violated”.

Table 4.2: The verification results of the LTL claims

Pair LTL Claim Result
height >= 170 — {scholarshipStatus == true Satisfied
—(height >=170) — OscholarshipStatus == true | Violated
height >= 170 — {QscholarshipStatus == false Satisfied
—(height >= 170) — OQscholarshipStatus == false | Satisfied

pairl

pair2

We have individual fairness if the claims of one pair are satisfied while the claims
of the other pairs are violated. However, Table 4.2 shows that this is not the case.
Specifically, Table 4.2 shows that the first claim of pairl is satisfied, meaning that if
the “height” is greater than “170”, there is the possibility that the “scholarshipStatus”
will eventually equal “true”. Based on the specifications of the state machine in
Figure 4.2(b), this can happen when the “outstandingEducation” equals “true” and the
“normalWeight” equals “true”.

In contrast, since in the UML model there is no other membership possibility ex-
cept the basketball membership, when the “height” is less than “170”, it is impossible
that the “scholarshipStatus” will eventually equal “true”. Therefore, the second claim
of pairl is violated. Concerning the claims of pair2, they are both satisfied because
the value of the “scholarshipStatus” in our UML model does not depend only on the
“height”. Thereby, whatever the value of the “height”is, there is the possibility that the
“scholarshipStatus” will eventually equal “false”. As a consequence, the “scholarship-
Status” will not always have the same value independent of the “height”. Thereby,
there is the possibility to discriminate between scholarship applicants on the basis
of their “height”, which is defined as a proxy for the “gender”.

168 4 Individual Fairness Analysis based on Software Design Models

[variable values] model.pml:118 [state = Start]
outstandingEducation=true model.pml:119 [transition = t,]
normalWeighted =true |

membershipNum = 0 model.pml:450 [BbAppVerified = true]
scholarshipStatus = false model.pml:453 [ScholarAppVerified = true]

Figure 4.4: Excerpt from the generated trace of events.

If we removed the guard condition “height>=170" from transition “t4” in Figure 4.2,
all the claims in Table 4.2 will be satisfied. This is because the “height” is not used in
the model and, thereby, each claim will be satisfied because the “scholarshipStatus”
depends on the values of the other attributes in the model. However, assuming that
all the claims in Table 4.2 are satisfied, this is does not mean that there is no possi-
bility to discriminate between scholarship applicants on the basis of their “gender”
becuase there might be other proxies for the “gender” in the model.

We have shown that the individual fairness regarding the “height” in Example 1 is
not preserved due to the verification results of pairl and pair2. We now show how
to interpret the results to explain why the “height” can affect the “scholarshipStatus”,
although it is only required for deciding about the basketball team membership.

To interpret the results, we rely on the counterexamples that the model checker gen-
erates for the violated claims. Figure 4.4 shows an excerpt from the trace of events
that is generated by SPIN as a counterexample on violating the second claim of
pairl in Example 1. Consider the two instructions in Figure 4.4: “bbAppVerified=true”
and “scholarAppVerified=true”. The former indicates that transition “ts” in Figure 4.2
is fired while the later indicates that transition “t15” is fired. Based on the order
of the executed instructions, transition “ts” is fired before transition “ts”. Thereby,
there is a relation between being admitted to a scholarship and being admitted to a
basketball membership.

4.7 Reporting on Individual Fairness

In this phase, we analyze the claim’s verification results to check if the individ-
ual fairness is preserved. Our proposed check for individual fairness is a function
indFairness(B, R), that takes as inputs: First, a set of generated batches of claims
B with respect to an «individual-Fairness»-annotated state machine sm in a software
model m. Second, a set R that contains the results of verifying the claims in B
against the software model m. The function returns "sm preserves the individual fair-
ness" if each batch in B has exactly one pair whose claims are satisfied while all the
claims of the other pairs in that batch are violated.

4.7 Reporting on Individual Fairness 169

The rationale behind our proposed check is that each batch in B consists of pairs of
claims that together analyze the side effects of the data attribute of a used condition
g on a sensitive decision s, where each pair, in isolation, considers claims about one
possible side effect. Therefore, we have individual fairness with respect to the data
attribute of g when deciding about s if the claims of only one pair in the batch
are satisfied while the claims of the other pairs are not satisfied, that is, the data
attribute of g always has the same side effect on s. For example, based on the
verification results in Table 4.2, neither the claims of pairl are satisfied while the
claims of pair2 are violated, nor vice versa. Thereby, it is possible to discriminate
between two scholarship applicants whose data are identical except for the “height”,
which is a proxy of the “gender”.

4.7.1 Algorithm for reporting on individual fairness

Algorithm 4.2: Individual-fairness-check
1 indFairness (B, R);
Inputs : a set of batches of claims B and a set contains the claims’
verification results R
Output: fairnessReport a report shows the result of the individual fairness
analysis
2 create fairnessReport;
3 foreach batch € B do

4 if 3 pair € batch whose claims are satisfied while the claims of batch \{pair}
are not satisfied then
5 ‘ do nothing;
6 end
7 else
8 create explainReport;
9 explainReport.add(get Resutls(batch, R));
10 fairnessReport.add("a violation for individual fairness in the model
is detected"+ explain Report);
11 end
12 end
13 if fairnessReport is empty then
14 fairnessReport.add("the analyzed state machine preserves individual

fairness");
15 end
16 return fairnessReport;

Algorithm 4.2 shows the proposed individual fairness-check. Algorithm 4.2 takes
as inputs: (1) a set of generated batches of claims B with respect to a state machine
sm annotated with «individual-Fairness» stereotype. (2) R a set contains the results

170 4 Individual Fairness Analysis based on Software Design Models

of verifying the claims in the set B against the targeted software model m by using
a model checking technique. Algorithm 4.2 returns fairnessReport that shows
whether the software model in question preserves individual fairness.

First, in line 2 of Algorithm 4.2, an empty fairnessReport will be created. In line 3,
for each batch in B if there is only one pair in the batch whose claims are satisfied
while the other pairs in the batch are all not satisfied, we do nothing. Otherwise, a
violation will be reported in the fairness report together with all verification results
of the claims in that batch. In line 13, if after iterating over all the batches in B the
fairness report remains empty, the following sentence will be added to the fairness
report: “the analyzed state machine preserves individual fairness”.

4.8 Optional: Generating Proxies From a Database

In our framework, when expert knowledge about proxies of protected character-
istics is not available, a database that contains historical personal data of a true
distribution can be a source for identifying such proxies. To support uncovering
proxies of protected characteristics, the database needs to contain both protected
characteristics and not protected characteristics. To find whether a piece of data
in a software model is a proxy of protected characteristics, we assume a mapping
from all not derived data attributes in the class diagram to the database schema,
which could be given by the user or determined (semi-)automatically. Proxies will
be statistically derived by using the correlation metric and the threshold that are
specified in the software model. In the following, we show through an example
how proxies of protected characteristics can be identified based on historical data.

Table 4.3: Student data

st_ID | gender | healthy | outstanding.. | normalWeight | height | height*
stl Female True True True 169 False
st2 Female True True True 173 True
st3 Female True True True 165 False
std Female False True False 167 False
st Female False True False 160 False
st6 Male True False True 178 True
st7 Male True False True 183 True
st8 Male False False False 185 True
st9 Male True False False 175 True
st10 Male True True False 180 True

Table 4.3 shows the “Student Data” table from the running example, the school
database. The attributes namely “gender”, “height”, “outstandingEducation”, and “nor-
malWeight” are identical to those that have been described in the software model in
Figure 4.2. The “healthy” is mapped to the “physicalHealthStatus” which is defined as
protected in Figure 4.2. The “healthy” attribute is “True” if the student has no physical
health issues and “False” otherwise.

4.9 Tool Support 171

Table 4.4: Correlations results

Conditional Entropy Result
Entropy(gender | outstandingEducation) 0.39
Entropy(gender | normalWeighted) 0.97
Entropy(gender | height*) 0.39
Entropy(healthy | outstandingEducation) | 0.875
Entropy(healthy | normalWeighted) 0.485
Entropy(healthy | height*) 0.79

Before measuring correlations, each data attribute in the database with a large
range of possible values has to be transformed into a boolean data attribute based
on its usage context in the model. For example, based on the “(height >= 170)” con-
dition in Figure 4.2(b), the model will deal with any value of the “height” as either a
value that can evaluate the “(height >= 170)” condition to a true or a false. Therefore,
a new column called “height*” is added to Table 4.3. It is “True” if the corresponding
cell in “height” column satisfies the “(height >= 170)” condition and “False” otherwise.

In our model in Figure 4.2(b), the “conditionalEntropy” is specified in the {metric} tag
as the correlation metric and the {threshold} tag sets the threshold value to “0.5”.
The conditional entropy measures the uncertainty in a piece of data given another
piece of data. The output of the conditional entropy is a value between “0” and “1”,
where “0” means high correlation (i.e, low uncertainty) and “1” means no correlation
(i.e, high uncertainty). Using the conditional entropy, we measured the correlations
among the protected characteristics and other data attributes in the software model
in Figure 4.2. The correlation results are summarized in Table 4.4. The results are
calculated based on the data that are provided in Table 4.3. Each piece of data
reduces the entropy in a protected characteristic to less than the specified threshold
in the model (i.e., 0.5) is a proxy for that proctored characteristic. Based on Table
4.4, we consider the following data attributes as proxies: “outstandingEducation” and
“height*” each is a proxy for “gender” while “normalWeight” is a proxy for “healthy”.

4.9 Tool Support

Towards tool support, we developed!!: (i) a Papyrus editor extension permits an-
notating UML models with the stereotypes and tags of the UMLfair profile, (ii)
a pseudo-code describes our function to generate batches of LTL claims, (iii) a
launch configuration to the transformation tool Hugo/RT, and (iv) a pseudo-code
describes our check for individual fairness.

""The developed artifacts towards a tool support are provided online at https://github.com/
QRamadan/MoPrivFair-FairnessAnalysis (accessed: 31/12/2019)

https://github.com/QRamadan/MoPrivFair-FairnessAnalysis
https://github.com/QRamadan/MoPrivFair-FairnessAnalysis

172 4 Individual Fairness Analysis based on Software Design Models

Based on our pseudo-codes, in the worst case, the number of the generated claims
from a model will belong to O(ns*ng*nv), where: ns is the number of the sensitive
decisions that are defined as data attributes, ng is the number of the used atomic
guard conditions with respect to a sensitive decision and nv is the number of values
in the range of a sensitive decision. In the following, we provide and explain the
proposed pseudo-codes.

410 Case Studies

To study the applicability of our framework in Figure 4.3, we applied it to three case
studies '? featuring a school management system, a delivery management system
and a loan management system.

The School Management System (shown in the running example) is an artificial case
study, that describes situations where a student can apply for several activities or-
ganized by a school. Among the activities, deciding about a scholarship application
is critical, since it should not discriminate between applicants based on their pro-
tected data such as their gender and their physical health status.

An excerpt from the resulted UML model is shown in Figure 4.2. A dataset of
artificial data is created in order to uncover proxies for protected characteristics.
The dataset contains information for 20 individuals and 6 data attributes for each
individual. An excerpt of the dataset is shown in Table 4.3. The UML model and
the dataset are created by master students in the context of a research seminar.

The Delivery Management System presents a real incident based on Amazon’s de-
livery management system. The UML model of the delivery system is designed
based on the incident’s description!®. In particular, Amazon’s software offers a
free-delivery service for prime customers whose orders exceed 35% and who live
in zip-codes that are near to the locations of Amazon’s stores. To uncover proxies
of protected data, we created a dataset that contains data for 30 individuals and
5 data attributes for each individual. Our goal is to check if the delivery system
model preserves individual fairness with respect to ethnicity when deciding about
the free-delivery service.

2The artifacts used in this section are provided online at https://github.com/QRamadan/
MoPrivFair-FairnessAnalysis (accessed: 31/12/2019). Our artifacts include: the analyzed
UML models, the generated PROMELA specifications, the generated claims, and verification results
of the generated claims.

BDetailed description for the discriminatory behavior of Amazon’s software is available at ht t ps :
//www.bloomberg.com/graphics/2016-amazon—-same—-day/ (accessed: 05/12/2019).

https://github.com/QRamadan/MoPrivFair-FairnessAnalysis
https://github.com/QRamadan/MoPrivFair-FairnessAnalysis
 https://www.bloomberg.com/graphics/2016-amazon-same-day/
 https://www.bloomberg.com/graphics/2016-amazon-same-day/

4.10 Case Studies 173

Table 4.5: An overview about the analyzed UML models

Operation + . State Fork | Orthogonal i
System Model Total | Class pSignal Attribute Machine State Gate S tagte Transition
School system model 55 2 6 8 2 15 2 1 29
Delivery system model | 34 2 3 5 2 7 1 0 14
Loan system model 27 2 4 3 2 6 0 0 10

The Loan Management System is based on a real loan management business pro-
cess model (BPMN) [132] which has been automatically generated from an event
log recording the loan management process of a Dutch financial institute!®. The
BPMN model consists of two main processes, namely the loan request management
and the risk analysis management. The former verifies whether a loan request will
be accepted. The latter creates a loan proposal for each accepted loan request and
performs a risk analysis to decide whether the proposal will be granted.

The UML model of the loan management system is generated from the business
process model in [132] as follows: First, a class diagram is automatically generated,
using our proposed transformation technique in Chapter 3. Second, for each sub-
process, a state machine is manually created, based on the transformation rules in
[116]. Due to the lack of details about the data used in the business process model,
we assume the following: First, a loan request will be accepted if the applicant’s
account has no critical credit history and if the saving amount exceeds 1,000 Euro.
Second, the risk analysis process is a black box decision-making component that
preserves individual fairness. To uncover proxies, we derived data from the Stat-
log Credit dataset!®, which stores 20 data attributes for 1,000 individuals. Among
the 20 attributes, 3 attributes are considered as protected, namely gender, age, and
marital status. Our goal is to check if the risk analysis component will be invoked
for every two loan applicants who their data differ only in the protected character-
istics and their proxies.

All the modeled procedures in our case studies are IFF-THEN-ELSE rules that are
almost similar to the example model in Figure 4.2. An overview of the analyzed
UML models is provided in Table 4.5. The table shows the total number of UML
elements in each of the analyzed models. It also provides an overview of the con-
sidered UML elements.

For example, the model of the loan system consists of 27 elements. The number
of the elements in this model includes the number of the classes, attributes, opera-
tions, state machines, states, and transitions.

“The event log is available online at https://www.win.tue.nl/bpi/doku.php?id=2012:
challenge (accessed:07/12/2019)

5The Statlog Credit is available online at datasethttps://archive.ics.uci.edu/ml/
datasets/statlog+ (german+credit+data) (accessed: 07/12/2019)

https://www.win.tue.nl/bpi/doku.php?id=2012:challenge
https://www.win.tue.nl/bpi/doku.php?id=2012:challenge
datasethttps://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
datasethttps://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)

174 4 Individual Fairness Analysis based on Software Design Models

Table 4.6: The Detected Individual-Fairness Violations

Num. Num. | Time Sensitive Num. Against

Model Element | Claims | (Sec) Decision Violations Protected Source Through
. gender height Data Flow
School System 65 8 72 scholarshipStatus 2 physicalHealthStatus normalWeight Data Flow

Delivery System 34 4 36 | freeDeliveryStatus 1 ethnicity zipCode 8::;
call-operation (2 tai?rgr?es) crEdltPsI;:iorg et Data Flow

Loan System z 4 36 riskAnalysis() 4 citizenship creditHistoryStatus
. - Data Flow
(2 times) saving

Applying our framework. We first annotated the UML models with individual
fairness requirements, using our proposed UMLfair profile. To identify proxies for
identified protected characteristics in the UML models, we used the conditional
entropy with 0.5 as a threshold. We then generated batches of Linear Temporal
Logic claims that conforms to Definition 1 by manually simulating Algorithm 4.1.
The resulting claims were then automatically verified against the UML models,
using the SPIN model checker.

Since the SPIN model checker accepts only PROMELA specifications, we first au-
tomatically transformed the UML models into PROMELA by using the Hugo/RT
transformation tool. The verification results of the claims were then analyzed by
manually simulating Algorithm 4.2 to check whether the designed UML models
preserve individual fairness.

Table 4.6 summarizes the results of our analyses. The first column shows the total
number of UML elements in the analyzed models. An overview of the considered
UML elements in each model is provided in Table 4.5. The second and the third
columns of Table 4.6 provide the number of the generated claims from the models
and the time needed for their verification, respectively. For example, 4 claims were
generated from the model of the loan system. The 4 claims took 32 seconds to be
verified by the SPIN model checker. The tests were performed on a computer with
a 2.2 Ghz processor and 8 GB of memory.

Table 4.6 also provides the number of detected fairness violations with respect to
the defined sensitive decisions in the analyzed models. For each detected violation,
the table provides: (1) the protected data, against which the violations occurred, (2)
the source of the violation (i.e., the piece of data that caused the violation), and
(3) whether the violation happened due to flow or a direct usage for the source of
the violation. For example, the table shows four violations of individual fairness
in the loan system model when deciding about triggering the “riskAnalysis()” call-
operation. Two of the violations are against the “age” while the other two are against
the “citizenship”. The violations against the “age” and “citizenship” happened due to
flow for the “creditHistoryStatus” and the “saving”, which act as proxies for both the
“age” and the “citizenship”.

4.11 Discussion 175

411 Discussion

The proposed case studies demonstrate how our proposed framework allows for
detecting violations against individual fairness. The analysis for individual fairness at
design time is established via generating temporal logic claims that permit study-
ing the effects of protected characteristics and their proxies on sensitive decisions.

In all case studies, proxies were identified using an underlying dataset to avoid us-
ing experts knowledge, because even when an expert for proxies in the domain is
available, the approach using metrics and thresholds can assist the expert. As pro-
vided by Table 4.6, our approach helps in detecting violations for individual fair-
ness at the design time of a software model, which avoids faulty implementations
for the considered systems. For example, by applying our approach to the delivery
system model, which is designed based on the description of Amazon’s incident,
the same discriminatory behavior against the ethnicity is detected at design time.
To check if our framework can detect discrimination in models that have concur-
rent executions, an orthogonal state machine is considered in the school system’s
model. Applying our framework, all the expected discrimination are detected. Al-
though the used models in our evaluation are small, our results may extrapolate
to larger models. It is not necessary to always analyze a large model as a whole.
There are techniques to analyze subsystems in separation such as the work in [98].

Software analysts (who are in charge of certifying the behavior of software with
respect to individual fairness) can use our proposed framework without having
software modeling expertise. Software developers (who are responsible for design-
ing a fairness-aware software system) can use our proposed framework to detect
discrimination early during the software design.

411.1 Using the framework at run-time

The usage of our proposed framework is not limited to the design time of the soft-
ware system. As long as the software implementation is compliance with the soft-
ware models, analysts can use our framework to reason about individual fairness
at the run-time of the software system.

For instance, if the source code of a software system is derived from software mod-
els, the software models can be seen as an approximation to the software’s execu-
tion semantics, and therefore, the models can be used as a basis for the analysis.
In legacy systems, models might be not available because of poor documentation
for the system specifications. However, the models in a legacy scenario can be ex-

176 4 Individual Fairness Analysis based on Software Design Models

tracted from the code using reverse engineering techniques (e.g., [70, 144, 156]).
Also there some work on model and code synchronization [19]. All of these as-
pects make it possible to use our framework for individual fairness analysis at the
run-time of the software system.

Also, we would expect that professionals who apply our framework are not light-
heartedly swayed that if there was no discrimination issue at a specific point of
time, that no discrimination issues could happen in the future. For example, as
discussed in this chapter, a source for discrimination on the basis of a protected
characteristic is the use of a proxy for it (i.e., a data item that is highly correlated
with the protected characteristic). It is possible that a data item that does not act
as a proxy for protected characteristics at a specific point of time starts acting as
a proxy at some point in the future. For this, our framework should be applied
regularly from time-to-time using an updated database.

4.11.2 Threats to validity, limitations and future work

Our study for the applicability of our proposed software model-based individual-
fairness analysis is subject to a number of threats to external and internal validity. A
threat to external validity is that detecting violations for individual fairness in our
process highly depends on the robustness of the used model transformations and
model checking tools. Therefore, a possibility for future work is to apply our pro-
cess to a broader selection of cases using different model transformation and model
checking tools to recommend which of them can perform best with our approach.

Threats to internal validity are: First, our approach searches only for a single at-
tribute proxy while sometimes a proxy to a protected piece of data can be found in
multiple attributes together. For example, maybe the zip-code alone is not a proxy
for the ethnicity but the zip-code and education level together can do. A possible future
work in order to addressing this limitation is to extend the process of generating
claims to consider multi-attributes proxies. Second, since our framework considers
fairness to be violated already if it would be violated at some intermediate stage
of the model execution, false positives results may be reported (i.e. cases where
our framework finds a violation of individual fairness although it is not really a
violation). For example, if in Figure 4.2 “scholarshipStatus” is always set to true just
before the final state (independently of whether “height>=170" holds), our analysis
still would consider this model to violate individual fairness, because it does so at
some state before the end (namely before it is set to true in all executions).

Another possibility for future work is to extend our framework to allow reasoning
about other types of fairness such as group fairness. Different from individual fair-

4.12 Related Work 177

ness, a decision-making software preserves the group fairness property if it pro-
duces equally distributed outputs for each protected group [49, 149]. Consider,
for example, a loan decision-making software to decide whether loan applicants
should be given loans. The software preserves group fairness with respect to gen-
der if the outcome fractions of males and females who will get a loan are equal.
Extending our framework to permit group fairness analysis is a further challeng-
ing task that requires, in the first place, extending our UMLfair profile to allow
annotating system models with specific information regarding group fairness.

412 Related Work

Having proposed our framework for analyzing individual fairness based on soft-
ware models, we now provide a discussion for the related work.

4.12.1 Software model-based development

Despite the availability of many model-based approaches [68], we have not found
an existing approach described in the literature that would use software models for
fairness analysis. The need for fairness analysis based on software models has been
motivated by Brun et al. [18]. However, the work in [18] is not supported by an
approach, that realizes the idea of analyzing fairness based on software models.

From a conceptual perspective, the closest model-based checks to our work are: the
no down flow-check in [62] and the purpose-check in [5]. According to [62], the no
down flow-check verifies whether a software model produces the same outputs for
any two traces of events that differ only in their secret data. Although this check
is very related to our work, different from our work, the no down flow-check does
not consider proxies for secret data through the analysis. According to [5], the
purpose-check is a static check that can be used to identify whether a software model
processes users” data only for authorized purposes. With the purpose-check, we can
avoid unauthorized direct discrimination, but not indirect discrimination, because
it does not support the indirect effects of protected characteristics on the outputs.

From a technical perspective, the work in [63] is relevant to the proposed work in
this chapter. The authors propose a software model-based approach that depends
on temporal logic and the model checker SPIN to support reasoning about cryp-
tography related issues in UML models, that are annotated with UMLsec profile.

178 4 Individual Fairness Analysis based on Software Design Models

4.12.2 Discrimination detection approaches

Most of the proposed discrimination detection approaches in the literature can be
used as fairness testing components during the testing phase of the software devel-
opment life cycle, which is only after the software is implemented. Most of the
proposed approaches in this direction are black-box approaches [49, 101, 121, 122,
145, 154, 155]. These approaches apply different strategies and methods to study
the changes in the overall software’s output based on historical observations.

For example, FairTest [145] and Themis [49] are two methods that uncover discrim-
ination in a software system by studying the correlations between its outputs and
its inputs. Different from the FairTest[145], which requires a dataset of possible in-
puts to be given, Themis [49] automatically generates input test cases based on a
schema describing valid software inputs.

The authors of [101, 121] proposed a method that extracts classification rules from
a dataset of historical decision records. The classification rules are then directly
mined to search for discrimination with respect to protected characteristics and
their proxies. In [154, 155], the authors propose an algorithm for detecting discrim-
ination by analyzing a causal network that captures the causal structure among the
data stored in a historical decision records. In [122], the authors deploy privacy
attack strategies to detect discrimination under hard assumptions about a given
dataset of historical decision records, such as that the dataset is preprocessed to
hide illegal discrimination from being detected. In [28] a domain-specific method
called AdFisher is proposed. AdFisher aims to detect violations of individual fair-
ness with respect to the ads that web users receive when visiting a web page. Ad-
Fisher monitors the changes in the ads based on web users” behaviors and privacy
preferences specified in their web browsers.

The main drawback of black-box approaches is their inability to provide witnesses,
that allow locating and explaining the source of detected discrimination. To ad-
dress this challenge, in [29], the authors proposed a white-box approach that an-
alyzes decision-making software and returns witnesses, that describe where and
how discrimination happened. However, the work in [29] supports only the de-
tection of discrimination in decision-making software, that make use of machine
learning prediction models. FairSquare [7, 8] is a method to detect discrimina-
tion at runtime. The method verifies probabilistic assertions in the source code of
decision-making software during its execution.

Different from our proposed work in this chapter, all the discussed approaches
above require the software to be implemented. Hence, none of them can be used
as a testing/verification component during the design phase of software models.
However, since a UML model is an approximation to the actual behavior of its

4.13 Conclusion 179

corresponding software and since the UML language does not support modeling
the behavior of machine learning algorithms well, our framework and existing dis-
crimination detection approaches support each other, as follows:

¢ First, our framework can be used to avoid violations against individual fair-
ness already during the design of software models. The goal is to reduce the
difficulties of identifying and explaining the causes of detected discrimina-
tion in the later stages of the software development life cycle.

¢ Second, existing discrimination detection approaches can be used in the later
stages of the software development process to check if the implementation of
a decision-making software preserves individual fairness requirements.

413 Conclusion

In this chapter, we proposed a semi-automated, model-based framework that per-
mits an analysis of individual fairness. The framework is based on UML software
design models. We proposed a UML profile called UMLfair that allows annotat-
ing UML models with fairness-specific information. Using UMLfair, we enabled
the generation of temporal logic claims, whose verification results against the UML
models permit checking whether an individual fairness requirement is preserved
by the software model. The novelty of our framework is that it is the first that per-
mits fairness analysis during the design phase of software models. We validated
the applicability of our framework using three case studies featuring a school man-
agement system, a delivery management system and a loan management system.

181

Chapter 5

Conclusions, Limitations, and
Outlook

In this chapter, we summarize the key contributions of this thesis. We also discuss
limitations of our work. Finally, we describe the directions for future research work.

5.1 Conclusion

We introduced a model-based methodology called MoPrivFair (Model-based
Privacy & Fairness). = The MoPrivFair methodology comprises three sub-
frameworks to support: First, detecting conflicts between data protection require-
ments. Second, integrating BPMN- and UML-based data-protection engineering
while supporting traceability for data protection requirements. Third, detecting
discrimination against individuals on the basis of their protected characteristics.

In the following, we briefly describe the frameworks of the MoPrivFair methodol-
ogy and then we elaborate on their evaluations.

First, a BPMN-based framework for detecting conflicts. This framework helps
business analysts in detecting conflicts between security, data-minimization and
fairness requirements during the business process modeling time. The framework
supports: First, the specification of security, data-minimization and fairness re-
quirements in business process models, based on security, data-minimization and
fairness annotations. The security annotations in our BPMN extension were reused
from an existing security-oriented BPMN extension called SecBPMN2, while the

182 5 Conclusions, Limitations, and Outlook

data-minimization and fairness annotations are part of our contribution.

Second, checking the alignment between the security, data-minimization and fair-
ness requirements and their specifications in the BPMN models. We automated
this process by extending a graphical query language called SecBPMN2-Q to allow
formulating the requirements as reusable procedural patterns. The patterns can
be matched to BPMN models from the same domain. Third, detecting conflicts be-
tween the specified requirements in the BPMN models. Our technique for detecting
conflicts analyses enriched models using a catalog of a domain-independent con-
flict anti-patterns, which was created using our SecBPMN2-Q extension as well.
Alignment checking is required to avoid conflicts arising from changes to the re-
quirements during their specifications in the business process models, which if de-
tected later will make the process to find their root causes more difficult.

While the security annotations were reused from the SecBPMN2, our proposed
framework is novel because it is the first to directly support modeling data-
minimization and fairness requirements in BPMN models. It is also the first to
support automatic conflict detection between specified security, data-minimization
and fairness requirements in BPMN models.

Second, a framework for integrating BPMN- and UML-based data-protection
engineering. This framework aims at integrating BPMN- and UML-based data-
protection engineering while supporting traceability for data protection require-
ments. The main benefit is the management of data protection requirements from
the views of the involved expert stakeholders, in particular, business analysts and
systems engineers, in an integrated manner. To this end, we integrate the two
well-known model-based security approaches SecBPMN2 and UMLsec via model
transformation. Our framework suggests to iteratively: (i) transform business pro-
cess models enriched with organizational data protection requirements using the
SecBPMN?2 to a preliminary software architectural model enriched with data pro-
tection policies using UMLsec [62]; (ii) refine the generated UMLsec architecture
model manually with additional design decisions, and (iii) verify the resulting
UMLsec architecture model against their contained data protected policies by using
an automated tool called CARISMA [4].

This framework is novel because it is the first that establishes an automatic trace-
ability between high-level data-protection requirements and verifiable technical
data-protection policies.

Third, a UML-based framework for analyzing individual fairness. This frame-
work supports the analysis of UML-based software designs with regard to individ-
ual fairness. The analysis of individual fairness in our framework is established by
generating temporal logic claims, whose verification against the targeted software

5.1 Conclusion 183

model enables reporting on the individual fairness of the software. Our frame-
work includes the following contributions: (i) a UML profile UMLfair for annotat-
ing UML software models with fairness-specific information; (ii) a method for veri-
fying individual fairness of annotated UML software models. Given a UML model
annotated with fairness-specific information, our method for reasoning about in-
dividual fairness includes: First, generating temporal logic claims from the UML
model. Second, verifying the generated claims against the UML model by using
a model checking technique. Third, reporting on individual fairness based on the
verification results of the claims.

Our framework for individual fairness analysis is novel in the sense that it is the
first that permits fairness analysis based on software models at system design time.

5.1.1 Evaluation results

In the following, we provide the key evaluation results for our proposed work.

Evaluating the BPMN-based framework for detecting conflicts. We validated the
applicability and usability of our conflict detection technique based on a case study
of a healthcare management system, and an experimental user study, respectively.

As part of the case study, we designed a business process model featuring an over dis-
tance healthcare service. Using our framework, we were able to enrich the model
with data-minimization and fairness requirements that represent data-protection
preferences for patients. For conflict detection, we annotated the model with se-
curity requirements that represent security needs from the system point of view.
Applied to the model, our conflict detection technique precisely detected 8 conflicts
and 21 potential conflicts as expected (i.e, comparing to the manually detected con-
flicts and potential conflicts). Using models that differ in their sizes, we provided
first insights into the scalability of our technique. By comparing the needed time
for detecting conflicts in the different versions, we show that our technique does
not show an exponential slowdown. The tests were performed on a computer with
a 2.2 Ghz processor and 8 GB of memory.

In an experimental user study, we studied the usefulness of our technique for conflict
detection between security, data-minimization and fairness requirements. The two
main observations from our study can be summarized as follows: First, our tech-
nique supports the detection of conflicts that are hard to identify manually. Second,
users generally perceive the output of our technique as helpful.

184 5 Conclusions, Limitations, and Outlook

Evaluating the framework for integrating BPMN- and UML-based data-
protection engineering. We validated the applicability of this framework based
on a case study featuring an air traffic management system.

As part of the case study, we showed how our proposed framework allows data
protection requirements to be managed and traced throughout the design of
SecBPMN2 and UMLsec models. Integrated management of data protection require-
ments across different phases is established via our automated transformation that
integrates the involved languages. Traceability is established via the trace models
generated by our transformation rules. Based on the transformation results, we
showed how the automated transformation saved us from re-implementing a large
number of UMLsec annotations, which would have been daunting and error-prone.
Our results are not restricted to any particular data protection-oriented extension
of BPMN or UML, but can be applied to other ways of using BPMN and UML to
address data protection requirements.

To offer insights into the scalability of our transformation technique, we performed
a preliminary assessment based on our case study. The results showed that the
performance of the proposed transformation technique seems adequate for practi-
cal use. For example, our technique took 7 seconds for transforming a SecBPMN2
model of 203 elements into a UMLsec model of 968 elements. Taking 7 seconds for
the transformation represents a very low time comparing with the needed time for
a manual transformation process, which may take hours. The tests were performed
on a computer with a 2.2 Ghz processor and 8 GB of memory.

Evaluating the UML-based framework for analyzing individual fairness. We val-
idated the applicability of our framework for analyzing individual fairness based
on three case studies featuring a school management system, a delivery manage-
ment system and a loan management system.

As part of the case studies, we demonstrated how our proposed framework allows
for detecting violations against individual fairness at systems design time, which
would avoid faulty implementations for the considered systems. For example, by
applying our approach to the delivery system model, which presents a real incident
based on Amazon’s delivery management system, the same discriminatory behav-
ior against ethnicity is detected at design time. To check if our framework can de-
tect discrimination in models that have concurrent executions, an orthogonal state
machine is considered in the school system’s model. Applying our framework, 2
violations in the UML model of the school management system and 4 violations in
the UML model of the loan management system were detected. The detected vio-
lations for individual fairness in the models precisely matched our exception (i.e,
the manually detected violations).

5.1 Conclusion 185

5.1.2 Limitations

Concerning our BPMN-based framework for conflict detection. Our proposed
extension to the SecBPMN2 allows specifying enforcement technologies for data
protection annotations. However, we did not take into account the specified en-
forcement technologies during the conflict detection. While this information may
be helpful to identify whether two requirements are conflicting or not, address-
ing available data protection mechanisms is not feasible because of the following
two reasons: First, the number of available data protection mechanisms grows con-
tinuously [146]. This makes it difficult to have a database that contains updated
information about all available data protection mechanisms and their abilities to
preserve data protection requirements.

Second, the knowledge of security engineers on how to design and the knowledge
of adversities on how to break data protection mechanisms grows continuously as
well [21]. A mechanism that today has the ability to preserve a specific data protec-
tion requirement might be broken tomorrow. Consequently, our catalog of conflict
would be outdated very soon if it addressed this knowledge. To still raise aware-
ness on possible conflicts, we model situations where the decision on whether two
requirements are in conflict depends on the applied mechanisms, as potential con-
flicts. We made a systematic effort to assure completeness and correctness of our
catalog of conflicts. We provided structured textual descriptions of all considered
data protection requirements. The descriptions incorporate feedback from several
rounds of revisions, and from the participants of an earlier experiment [111].

As mentioned earlier, we performed a user experiment to study the practical use-
fulness of our technique for conflicts detection between data protection require-
ments. Although that the used experimental material was based on one particular
case study from the health care domain and relied to a large extend on students as
participants in the study, our results can be generalized to case studies from other
domains due to the following reasons: First, based on the results of previous study
[125], students perform nearly equally well when faced with a novel software de-
velopment approach, and are therefore suitable as stand-ins for practitioners.

Second, the considered security, data-minimization, and fairness requirements in
our healthcare case study are applicable to other system from different domains.
Consider, for example, a conference management system such as the easy-chair. In
such systems, various security and data-minimization requirements can be consid-
ered. For instance, authors of a submitted paper and the reviewers of that paper
may would like to be anonymous. In the same time, the system needs to prevent
a paper submitter from being able to deny that she submitted the paper. Also,
the system needs to prevent a reviewer from being able to deny that she wrote
the review for a specific paper. However, since the usability of our conflicts de-

186 5 Conclusions, Limitations, and Outlook

tection technique was assessed through a subjective questionnaire, performing an-
other user experiment to assess the usability of our technique through an objective
performance measures will provide us with more rigorous insights about the ap-
plicability of our approach in practice.

Concerning our framework for integrating BPMN- and UML-based data-
protection engineering. Our proposed framework for integrating SecBPMN2 and
UMLsec models focuses on a subset of SecBPMN?2 of those security-specific data-
protection annotations with an equivalent on the architectural level (i.e., class and
deployment diagram). We did not consider the transformation of BPMN models
to UML behavioral models such as activity and sequence diagrams because the
BPMN model and these UML behavior diagrams provide the same level of infor-
mation and almost share the same semantics. For example, generating UML activ-
ity diagrams from BPMN models would be a straightforward transformation.

Due to the large variability of SecBPMN2 models, our transformation for integrat-
ing SecBPMN2 and UMLsec models could be affected by errors. However, by
applying our proposed 255 transformation rules to the SecBPMN2 model of the
air traffic management system case study, we did not report errors. Although we
studied this on a single case study, we assume that the same result will be reported
when applying our transformation rules to other cases because the used SecBPMN2
model in our case study is large and it consists of several corner cases.

Concerning our framework for analyzing individual fairness. In our framework,
we use Hugo/RT for transforming UML models into PROMELA specifications,
which can be verified by the SPIN model checker. However, Hugo/RT does not
transform any given UML model. It only allows the transformation of consistent
UML diagrams. Also, some UML elements are not supported by the current ver-
sion of Hugo/RT. For example, Hugo/RT does not allow the transformation of
UML models that have classes of type "Enumeration”. As a result, potential vio-
lations of individual fairness might be undetected by our approach if Hugo/RT
is used for the transformation without conforming to these restrictions. However,
our framework does not rely on a specific transformation tool. It can use any other
transformation tool such as UML-VT! and SMUML?.

Moreover, although that the used models in evaluating our framework for individ-
ual fairness analysis are small, our results may extrapolate to larger models. It is
not necessary to always analyze a large model as a whole. There are techniques to
analyze subsystems in separation such as the work in [98].

'UML-VT is available online at https://www.cs.umd.edu/~rance/projects/uml-vt/
(accessed: 02/01/2020).

2SMUML is available online at http://www.tcs.hut.fi/Research/Logic/SMUML. shtml
(accessed: 02/1/2020).

https://www.cs.umd.edu/~rance/projects/uml-vt/
http://www.tcs.hut.fi/Research/Logic/SMUML.shtml

5.2 Outlook 187

5.2 Outlook

Based on the outlined conclusions, it is apparent that the our proposed MoPrivFair
methodology represents a step forward towards supporting data protection assur-
ance by design. In addition to the discussed challenges in Section 1.1, a variety of
research directions remains to be explored. This section mainly relies on the dis-
cussion and future work sections of previous chapters in this thesis. The scope of
the proposed MoPrivFair methodology may be widened in several directions.

5.2.1 Conflict resolution

We aim to extend our BPMN-based framework for detecting conflicts, to support
the resolution of conflicts. Once a conflict is detected, a solution strategy for solving
the conflict should be decided. Although a fully automated process would be ap-
preciated, the resolution of actual conflicts (e.g., between two requirements related
to different views of system users) may require human intervention [42, 57], a fur-
ther challenging task that involves reasoning on the security and privacy impacts
of different solution strategies [6, 87]. For semi-automated support, we suggest a
recommendation system that provides suggestions for resolving strategies based
on historical decisions made by experts.

5.2.2 Tracing requirements in legacy and evolutionary systems

In the future, we aim to extend our proposed framework for integrating SecBPMN2
and UMLsec models to legacy situations, in which the UML design models
are already given, rather than developed from scratch. Our mapping between
SecBPMN2 and UMLsec security concepts can provide a foundation for address-
ing such legacy scenarios. Moreover, systems are continuously evolving due to
changes at the organizational level or at the technical level [44]. Any change at the
organizational or the technical level of a system may be accompanied by changes in
data protection requirements. Considering the evolving nature of systems, we plan
to extend our framework to support traceability of data protection requirements in
case of changes to the business process model of a system or its architecture model.

5.2.3 Support group fairness analysis based on software models

As part of future work, we aim to extend our UML-based framework for analyzing
individual fairness to allow reasoning about group fairness. Different from individ-
ual fairness, a decision-making software preserves the group fairness property if
it produces equally distributed outputs for each protected group [49, 149]. Con-
sider, for example, a decision-making activity in a bank to decide if loan applicants

188 5 Conclusions, Limitations, and Outlook

should be given loans. We say the activity preserves group fairness with respect
to gender if the outcome fractions of males and females who will get a loan are
equal. Extending our framework to permit group fairness analysis requires, in the
first place, extending our UMLfair profile to allow annotating system models with
specific information regarding group fairness.

189

Appendix A

Conflict Detection: A Walk
Through Artifacts and Tool
Support

In this appendix, we present the artifact used in Chapter 2, which describes our
proposed BPMN-based framework for detecting conflicts between security, data-
minimization and fairness requirements. We also provide a manual for our proto-
typical implementation on top of STS, the supporting tool for the BPMN exten-
sion SecBPMN2, whose security requirements we reused. Our implementation
supports: First, the modeling of security, data-minimization and fairness require-
ments in BPMN models, using a suitable model editor. Second, formulating se-
curity, data-minimization and fairness requirements as SecBPMN2-Q queries that
can be verified against security-, data-minimization- and fairness-annotated BPMN
model for alignment verification purpose. Third, automated conflict analysis in
data-minimization-, security-, and fairness-annotated BPMN models, based on our
catalog of anti-patterns.

Resources. We list the artifacts that are used in Chapter 2. One can use these
artifacts to reproduce the conflict detection results that are reported in Chapter 2.

e Artifact: Mirrors of the STS-tool current versions:
http://www.sts-tool.eu/downloads/secbpmn-dm
* The Experimental Evaluation Artifacts: for transparency we share all our ex-

perimental materials: https://github.com/QRamadan/MoPrivFair—
ConflictsDetection/blob/master/ExperimentalArtifacts.zip

http://www.sts-tool.eu/downloads/secbpmn-dm
https://github.com/QRamadan/MoPrivFair-ConflictsDetection/blob/master/ExperimentalArtifacts.zip
https://github.com/QRamadan/MoPrivFair-ConflictsDetection/blob/master/ExperimentalArtifacts.zip

190 A Conflict Detection: A Walk Through Artifacts and Tool Support

o Artifact: a healthcare case study and a catalog of conflicts speci-
fied as anti-patterns: https://github.com/QRamadan/MoPrivFair-
ConflictsDetection/blob/master/Telemedicine.exp

Performing automatic conflicts detection. To view and analyze our designed mod-
els please follow the instructions:

e Install the STS tools from
http://www.sts-tool.eu/downloads/secbpmnn-dm

* Download the telemedicine.exp file to your desktop. This file is automatically
generated from the STS tool and it contains all the SecBPMN2 models of our
case study. The file can be downloaded from:

https://github.com/QRamadan/MoPrivFair-
ConflictsDetection/blob/master/Telemedicine.exp

¢ To view and modify the models in this file you need to import it into the STS:

¢ In the STS tool, do File — Import — project — next — select the "telemedicine.exp"
file from your desktop.

* The projects contains two SecBPMN2 models namely, "SoSyM19-
PaperExample.bpmnl" and "Full_annotatedModel.bpmnl".

* The project contains a catalog of domain-independent anti-patterns.

¢ To run a conflict analysis open the SecBPMN2 model you want to analyze
from the following directory:

/SoSym19-telemedicine/Models/SecBPMN2/Business process/
¢ In the STS tool, do Analysis — Check Security Policy.
* The analysis will take a few minutes. Once the analysis is finished press OK.

* The analysis result will be shown as textual messages in a new window. The
messages will be of two types "Error" or "Warning". The former represents
conflict while the later represents potential conflict.

¢ To view the anti-patterns find the following directory:
/SoSyM19-telemedicine/Models/SecBPMN2/Conflicts_Patterns

https://github.com/QRamadan/MoPrivFair-ConflictsDetection/blob/master/Telemedicine.exp
https://github.com/QRamadan/MoPrivFair-ConflictsDetection/blob/master/Telemedicine.exp
http://www.sts-tool.eu/downloads/secbpmn-dm
https://github.com/QRamadan/MoPrivFair-ConflictsDetection/blob/master/Telemedicine.exp
https://github.com/QRamadan/MoPrivFair-ConflictsDetection/blob/master/Telemedicine.exp

191

Appendix B

SecBPMN2 to UMLsec: A Walk
Through Artifacts and Tool
Support

This appendix presents the artifacts used in Chapter 3, which provides a Frame-
work for Integrating BPMN- and UML-based Data-Protection Engineering. This
framework is a sub-framework of the proposed MoPrivFair methodology. This ap-
pendix includes the model transformation from SecBPMN2 to UMLsec models as
well as four examples models from the Air Traffic Management System case study.
It explains the process of using the transformation, and the verification of the gen-
erated UMLsec models using the CARiSMA tool.

Resources. In the following, we list the artifacts that are used in Chapter 3. We also
provide access to the implementation of our transformation tool.

* Artifact: Eclipse Project package (myexample.zip):
https://github.com/QRamadan/MoPrivFair—-SecBPMN2UMLsec/
blob/master/myexample.zip

¢ Artifact: A mirror of the CARISMA update site:
https://github.com/QRamadan/MoPrivFair-SecBPMN2UMLsec/
blob/master/CARiISMA.zip

* Artifact: A mirror of the Henshin update site:

https://github.com/QRamadan/MoPrivFair—-SecBPMN2UMLsec/
blob/master/org.eclipse.emf.henshin.sdk_1.5.0.zip

https://github.com/QRamadan/MoPrivFair-SecBPMN2UMLsec/blob/master/myexample.zip
https://github.com/QRamadan/MoPrivFair-SecBPMN2UMLsec/blob/master/myexample.zip
https://github.com/QRamadan/MoPrivFair-SecBPMN2UMLsec/blob/master/CARiSMA.zip
https://github.com/QRamadan/MoPrivFair-SecBPMN2UMLsec/blob/master/CARiSMA.zip
https://github.com/QRamadan/MoPrivFair-SecBPMN2UMLsec/blob/master/org.eclipse.emf.henshin.sdk_1.5.0.zip
https://github.com/QRamadan/MoPrivFair-SecBPMN2UMLsec/blob/master/org.eclipse.emf.henshin.sdk_1.5.0.zip

192

B SecBPMN2 to UMLsec: A Walk Through Artifacts and Tool Support

¢ Artifact: Air Traffic Management Case Study SecBPMN2 models:

https://github.com/QRamadan/MoPrivFair-SecBPMN2UMLsec/
blob/master/projects.exp

e Artifact: Mirrors of the STS-tool current versions: https://figshare.
com/s/b322d002077d99577949

Artifact contents. The project package myexample.zip has the following contents:

* src/my.example directory:

Externalservices1.bpmn, Externalservices2.bpmn, Flightplan.bpmn, Land-
ing.bpmn: Input models from the ATM case study.

examplel.bpmn:small input model for testing purposes.
*henshin files: Henshin modules implementing the transformation.

BpmnToUml.java: Java class for executing the transformation via orches-
tration of Henshin modules.

BpmnToUmlIMetricsPrinter.java: Java class for computing metric values
for input and output models.

e Testing directory: Additional test input models

Prerequisite. We recommend using Eclipse Neon, Modeling Tools distribution,
with installed Henshin and CARiISMA plug-ins. These plug-ins can be installed
either using online update sites, or the mirrored update sites provided as part of the
artifact. From the CARiISMA update site, please only install the main features (BPMN2
and UML2 support).

* Installation from online update site: In Eclipse, do Help — Install New Soft-
ware.... Use the following online update sites: http://carisma.umlsec.
de/updatesite for CARISMA, and http://download.eclipse.org/
modeling/emft/henshin/updates/release for Henshin.

¢ Installation from mirrors: Download the mirrored update sites of CARISMA
and Henshin to your computer — install both of them in Eclipse, using Help
— Install New Software... — Add — Archive.

https://github.com/QRamadan/MoPrivFair-SecBPMN2UMLsec/blob/master/projects.exp
https://github.com/QRamadan/MoPrivFair-SecBPMN2UMLsec/blob/master/projects.exp
https://figshare.com/s/b322d002077d99577949
https://figshare.com/s/b322d002077d99577949
http://carisma.umlsec.de/updatesite
http://carisma.umlsec.de/updatesite
http://download.eclipse.org/modeling/emft/henshin/updates/release
http://download.eclipse.org/modeling/emft/henshin/updates/release

193

Performing the transformation. To execute the transformation from SecBPMN?2 to
UMLsec models, please follow the following instruction.

¢ Import our project package to your local Eclipse workspace.

¢ Right-click on the main class “src¢/my.example/BpmnToUml.java” — Run As
JUnit Plug-in Test. By default, our transformation takes as input the exam-
plel.bpmn file. To change the input file, first copy the name of one of the
BPMN files that are provided in myexample — src — my.example directory.
Second, find line 91 in the BpmnToUml.java file (public static final String EX-
AMPLE = "examplel.bpmn'";) and replace the file name “examplel” with the
name of the selected BPMN file. Please note that you cannot directly view or
modify these bpmn models from you Eclipse. For viewing and modifying the bpmn
models please look into the last section of this Appendix viewing and modifying
the SecBPMN2 models.

¢ After running the BpmnToUml.java file, you should see the console output
informing you about the generation process. The process could take a few
minutes, and there might be some warnings/error messages related to the
underlying plug-ins. As these do not concern us, we can ignore them. The
process is finished when the following line is printed to the console: Saved
result in "examplel-generated-result.uml’. The name of the .uml file in this line
is the name of the selected .bpmn file as input to our transformation followed
by -generated-result.umil.

¢ The results of the transformation process are three files that will be stored to
the myexample/src/my.example directory:

— The first file contains the generated UMLsec model. The name of this
file is the name of the selected .bpmn file as input to our transformation
followed by -generated-result.uml (e.g., examplel-generated-result.uml).

— The second file contains the generated trace model which links the
SecBPMN2 and UMLsec models. The name of this file is the name
of the selected .bpmn file followed by -generated-result-trace.xmi (e.g.,
examplel-generated-result-trace.xmi).

— The third file contains the UMLsec operations that have access restric-
tions together with rights the should be assigned to the roles to grant
them access for these operations. The name of this file is the name
of the selected .bpmn file followed by -generated-result-rights.txt (e.g.,
examplel-generated-result-rights.txt).

194 B SecBPMN2 to UMLsec: A Walk Through Artifacts and Tool Support

Performing the verification. In this step, we use CARISMA checks to verify the
generated UML models against UMLsec security policies. For this, please follow
the following instructions.

* Right-click on the myexample project in the Project Explorer view — New —
Other — CARiSMA — Analysis — Next — in the dialog select the file that is
generated from the last step (e.g., examplel-generated-result.uml) and then
click finish.

* From the analysis editor window click on the add checks to list icon — select the
check that you want to perform (e.g., secure links UMLsec check and secure
dependency UMLsec check) then click RUN.

¢ For RABAC policy, you have to select both RABACsec: Create transformation
input and RABACsec: Use transformation input checks checks. The former al-
lows you to select the role that you want to verify his accessibility to the sys-
tem operations, while the second return the set of operations that the selected
role have access to them.

* The verification results are provided in the Analysis Results view. One can
right-click on the result and select create a report for the selected analysis. The
report will be stored to the project root directory. Please note that all the checks
should pass except for RABAC which depends on rights that the user would like to
assign to each role during berforming RABACsec: Use transformation input checks.

* More details about the execution of abac checks will provided below. Other
information can be found in the user manual of CARiISMA. After installing
CARiSMA, the manual is available under: Help — Help Contents — CARiSMA.

More details information about performing CARiSMA checks. In what follows,
we walk through the three checks supported by our transformation output: «se-
cure links» (for deployment diagrams), «secure dependency» (for class diagrams), and
RABAC (for class diagrams).

1. «secure links» UMLsec check.

Purpose: To check whether the communication links between physical nodes
are secure or not with respect to the adversary type and the data communi-
cated across them. To perform this check on the generated UML file from the
earlier steps (e.g., examplel-generated-result.uml), please mind the following
instructions:

¢ From the analysis editor window click on the add checks to list icon — select
the secure links UMLsec check — click OK and then click RUN.

195

2. «secure dependency» UMLsec check.

Purpose: To check whether the dependencies between objects or subsystems
respect the security requirements on the data communicated across them. To
perform this check on the generated UML file from the earlier steps (e.g.,
examplel-generated-result.uml), please follow the following instructions:

¢ From the analysis editor window click on the add checks to list icon — select
the secure dependency UMLsec check — click OK and then click RUN.

3. RABAC (Role Attribute-based Access Control).

Purpose: To check the access rights of each role and the access constraints
assigned to specific operations based on predefined attributes. UMLsec im-
plements the RABAC access control model via the policy «abac», which uses
two tags called {role} and {right} to assign roles to subjects and rights to roles,
respectively. Operations in need of an access restriction can be annotated with
the «abacRequire» stereotype along with its associated {right} tag.

Prerequisite: In our transformation, we can automatically assign roles to sub-
jects and the rights that are needed for restricting the access for some opera-
tion. Since our transformation does not allow to automatically specify all the
required information for executing the RABAC check, some information still
needs to be inserted manually: One needs to manually assign rights to roles,
based on the following instructions:

¢ Right click on the generated UML file from the last step (e.g., examplel-
generated-result.uml) — open with — UML Model Editor.

¢ Click on platform:/resource/myexample/examplel-generated-result.uml —
open the model — select the RABAC class.

¢ In the properties view, assign a value to the "right” property. The value
should have the following format: {(role_name,right)}. For instance,
{(Airplane,Modify_Flight plan)}, means that the Airplane has the right to
modify a flight plan data. Multiple rights can be given to the same role
as follows: {(Airplane,Modify_Flight planRead_Flight plan)}. This means
that the Airplane has the right to both read and modify the flight plan.

* One can also get benefits from the generated examplel-generated-result-
rights.txt file that contains all the operations that have an access restrac-
tion together with the rights that should be asigned to the system roles
to grant them an access to these operations. In what follows, we will as-
sume that {(Airplane,Modify_Flight planRead_Flight plan)} is the specified
as a value for the "right” property. Please a void whitespaces in your entries,
otherwise a matching cannot be found and the check will fail.

¢ Save the changes you made on the models. Perform RABAC
checks: To perform this check on the generated UML file (i.e., Trans-

196 B SecBPMN2 to UMLsec: A Walk Through Artifacts and Tool Support

formed_serialized_profile.uml) from the last steps, please mind the fol-
lowing instructions:

— In the analysis editor window, select both the RABACsec: Create trans-
formation input and RABACsec: Use transformation input checks checks
and click OK.

— In the checks list, you will see the selected RABAC checks. To per-
form the checks, first unselect the selected checks, only select the
RABACsec: Create transformation input and click RUN.

— Save the configuration file “rabac_configuration.xml” into myexam-
ple/src/my.example directory.

In the pop-up window "RABACsec transformation input”, first click
on the droplist of the users and select “subject”.

From the droplist of the roles, we can select a role for which we want
to view the accessible operations. For example, select Airplane.

The Active checkbox allows you to identify whether the selected role
is active or not. Please tick the checkbox.

Put the cursor inside the Value textbox and press enter to save the
changes. This textbox can be used to specify some attributes for the
selected role. However, this not part of our work. Therefore, please
leave the textbox empty.

— Click Save and close the window.

Hint: Please press enter in the textbox to save the changes, ignoring the Save button.
This because of a bug in the implementation of the check.

¢ In the analysis editor window, uncheck the last performed check (RABACsec:
Create transformation input), only select RABACsec: Use transformation input
checks check and click Run.

* Press OK in the pop-up window and select the generated configuration file
from the last step (i.e., "rabac_configuration.xml") and click Open.

¢ The result of the verification is provided in the Analysis Results view.

To generate the report text file for the generated checks, you can right-click on the
result and select create a report for the selected analysis. The report will be stored to
the myexample/src/my.example directory. In our example, the output result for the
RABAC check will show that the selected Airplane role has access to Notify local
authority operation.

197

Viewing and Modifying the SecBPMN2 Models. The BPMN models that are pro-
vided in my.example directory represents a SecBPMN2 models for our Air Traf-
fic Management System case study. Please note that you can not open or modify
these models directly from your Eclipse. These models are designed by using the
Socio-Technical-System (STS) tool. To view and modify these BPMIN models please
follow the instructions:

e Install the STS tools from (http://www.sts-tool.eu/) or from the mir-
rored files of the current STS-version provided as part of the artifacts (avail-
able from https://figshare.com/s/b322d002077d995779409).

* Download the projects.exp file from (https://github.com/QRamadan/
MoPrivFair-SecBPMN2UMLsec/blob/master/projects.exp) to your
desktop. This file is automatically generated from the STS tool and it contains
all the SecBPMN2 models of our case study.

* To view and modify the models in this file you need to import it into the STS:

— In the STS tool, do File — Import — project — next — select the
"projects.exp" file from your desktop.

¢ In case you want to insert a new designed SecBPMN2 model or a modefied
version of the provied SecBPMN2 models into our transformations approach,
please follow the following instructions:

— First, from the workspace of the STS tool please finde the SecBPMN?2
model file that you want to transform.

- Second, simply copy and paste the file into the my.example directory.

— Third, since our approach take an inpt a (.bpmn) files, please right click
on the inserted file — rename — change the file extension to bpmn.

Viewing the generated UMLsec model. To create a Papyrus UML diagram ini-
tialized with the contents of a given .uml model file (e.g., examplel-generated-
result.uml), please follow the below instructions:

* create a new Papyrus model by right-clicking the UML model (e.g., examplel-
generated-result.uml) — New — Other — select Papyrus Model — Select UML
— save the model to the root directory (i.e., myexample) — Finish.

* From the Repair Stereotypes and some profiles have changed pop-up win-
dows press OK. After that, the .di and .notation files are created. By following
the previous instructions, the required files to work with the UML model in
Papyrus can be initialized.

http://www.sts-tool.eu/
https://figshare.com/s/b322d002077d99577949
https://github.com/QRamadan/MoPrivFair-SecBPMN2UMLsec/blob/master/projects.exp
https://github.com/QRamadan/MoPrivFair-SecBPMN2UMLsec/blob/master/projects.exp

198

B SecBPMN2 to UMLsec: A Walk Through Artifacts and Tool Support

* Now make sure that you are working on the Papyrus modeling perspective

— open the created Papyrus model — create view — select the root element of our
UML model — select the desired type of UML diagrams that you want to create
— enter a name to the diagram. Please note that our .uml file only contains
elements related to the Deployment and Class diagrams.

After opening the created diagram you will see nothing but a blank window.
This because in general .uml file has no information regarding any diagram.
All you have is the model elements, but no diagrams. Therefore, you have to
create the diagrams manually by dragging and dropping the model elements
to the desired diagram view (e.g., class). To do so, make sure that you are
working in Papyrus modeling perspective view and the Model Explorer view
is visible. Since one can see that dragging and dropping the UML elements to
the diagram view manually is a time and efforts consuming, we can suggest
another way to perform this task.

After creating the desired UML diagram, select Diagram from the menu bar of
your Eclipse — Filters — Synchronized with Model. Then all the UML classifiers
elements will be automatically inserted to your diagram. Personally speak-
ing, this suggestion is useless since you need to remove all the classifiers that
are not related to your diagram. For example, if you want to create a class
diagram, by following the last suggestion not only the classes will be inserted
into your class diagram view but also the UML nodes and artifacts which are
part of our deployment diagram. Moreover, you still need to drag and drop
the missing details such as the operations, dependencies, and associations
manually from the Model explorer view. For further information, please see
https://www.eclipse.org/forums/index.php/t/1071157/.

Computing the metric values for input and output models. The Eclipse project
package myexample.zip has a BpmnToUmlMetricsPrinter.java class for computing the
metric values for input and output models (i.e., SecBPMN2 and UMLsec models).
To run the metrics printer, please follow the following instructions:

e First, you need to transform all example BPMN models, namely “exam-

i

plel.bpmn”,”Flightplan.bpmn”,” Landing.bpmn”,” Externalservices1.bpmn”, and
"Externalservices2.bpmn” to UMLsec models.

* Right-click on the BymnToUmlMetricsPrinter.java class — Run As — Java Appli-

cation. There might be some warnings/error messages related to the under-
lying plug-ins.

¢ The result is a console output shows the models and their metrics values.

https://www.eclipse.org/forums/index.php/t/1071157/

199

Appendix C

Curriculum Vitae

Personal Data

Name: Qusai Ramadan
Date and place of birth: 09/07/1986, Al-Ramtha, Jordan
Address: Am alten Schiitzenplatz 1, 56072 Koblenz

gramadan@uni-koblenz.de

Contact: +49 261 287-2795

Working Experience

Researcher at Software Engineering Research Group,
10/2015 - till present: (Prof. Dr. Jan Jiirjens),
Koblenz-Landau University, Germany. (Full Time)

) Lecturer at Preparatory Year Deanship,
11/2011 - 08/2013: Najran University, Saudi Arabia. (Full Time)

Teacher assistance at Computer Science Department,
Jordan University of Science and Technology,
Jordan. (Part Time)

12/2010 - 06/2010 and
06/2008 - 11/2008

200 C Curriculum Vitae

Grants

- A research grant from the German Academic Exchange Service (DAAD)
for the time period between 09/2015 and 09/2019.

Education

- M.Sc. in Information Technology (2009-2010), Information Technology Dept.,
Utara University, Malaysia, Rating (Excellent).

- B.Sc. in Computer Science (2005-2008), Computer Science Dept.,
Al Al-Bayt University, Jordan, Rating (Very Good).

201

Bibliography

(1]

[7]

Business Process Model and Notation (BPMN) Version 2.0. Number
formal/2011-01-03. Object Management Group (OMG), January 2011. URL
https://www.omg.org/spec/BPMN/2.0/PDF (accessed: 18/12/2019).

Regulation (EU) 2016/679 on the protection of natural persons with regard
to the processing of personal data and on the free movement of such data.,
2016.

OMG® Unified Modeling Language® (OMG UML®) Version 2.5.1. Number
formal/2017-12-05. Object Management Group (OMG), December 2017. URL
https://www.omg.org/spec/UML/2.5.1/PDF (accessed: 18/12/2019).

Amir Shayan Ahmadian, Sven Peldszus, Qusai Ramadan, and Jan Jiirjens.
Model-Based Privacy and Security Analysis with CARISMA. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering, pages 989—
993. ACM, 2017.

Amir Shayan Ahmadian, Daniel Striiber, Volker Riediger, and Jan Jiirjens.
Model-based privacy analysis in industrial ecosystems. In European Confer-
ence on Modelling Foundations and Applications, pages 215-231. Springer, 2017.

Amir Shayan Ahmadian, Daniel Striiber, Volker Riediger, and Jan Jiirjens.
Supporting privacy impact assessment by model-based privacy analysis. In
Proceedings of the 33rd Annual ACM Symposium on Applied Computing, pages
1467-1474. ACM, 2018.

Aws Albarghouthi and Samuel Vinitsky. Fairness-aware Programming. In
Proceedings of the Conference on Fairness, Accountability, and Transparency, pages
211-219. ACM, 2019.

Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and Aditya V. Nori.
FairSquare: Probabilistic Verification of Program Fairness. Proceedings of the
ACM on Programming Languages, (Object-Oriented Programming, Systems,
Languages & Applications), 2017.

https://www.omg.org/spec/BPMN/2.0/PDF
https://www.omg.org/spec/UML/2.5.1/PDF

202

Bibliography

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Maysoon Aldekhail, Azzedine Chikh, and Djamal Ziani. Software Require-
ments Conflict Identification: Review and Recommendations. International
Journal of Advanced Computer Science and Applicatoins, 7(10):326-335, 2016.

Duaa Alkubaisy. A framework managing conflicts between security and pri-
vacy requirements. In International Conference on Research Challenges in Infor-
mation Science, pages 427-432. IEEE, 2017.

Sascha Alpers, Roman Pilipchuk, Andreas Oberweis, and Ralf Reussner. The
Current State of the Holistic Privacy and Security Modelling Approach in
Business Process and Software Architecture Modelling. In International Con-
ference on Information Systems Security and Privacy, pages 109-124. Springer,
2018.

Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause, and
Gabriele Taentzer. Henshin: advanced concepts and tools for in-place EMF
model transformations. In International Conference on Model Driven Engineer-
ing Languages and Systems, pages 121-135. Springer, 2010.

Wihem Arsac, Luca Compagna, Giancarlo Pellegrino, and Serena Elisa Ponta.
Security validation of business processes via model-checking. In International
Symposium on Engineering Secure Software and Systems, pages 29-42. Springer,
2011.

Solon Barocas and Andrew D. Selbst. Big data’s disparate impact. Cal.
L. Rev., 104:671, 2016. URL http://www.cs.yale.edu/homes/jf/
BarocasSelbst .pdf (accessed: 18/12/2019).

Andreas Bauer, Jan Jiirjens, and Yijun Yu. Run-time security traceability for
evolving systems. The Computer Journal, 54(1):58-87, 2010.

Kristian Beckers, Stephan Fafibender, Maritta Heisel, and Rene Meis. A
Problem-based Approach For Computer-Aided Privacy Threat Identifica-
tion. In Annual Privacy Forum, pages 1-16. Springer, 2012.

Achim D. Brucker, Isabelle Hang, Gero Liickemeyer, and Raj Ruparel. Se-
cureBPMN: Modeling and enforcing access control requirements in business
processes. In ACM Symposium on Access Control Models and Technologies, pages
123-126. ACM, 2012.

Yuriy Brun and Alexandra Meliou. Software Fairness. In Proceedings of the
2018 26th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages 754-759. ACM,
2018.

http://www.cs.yale.edu/homes/jf/BarocasSelbst.pdf
http://www.cs.yale.edu/homes/jf/BarocasSelbst.pdf

Bibliography 203

[19] Hugo Bruneliere, Jordi Cabot, Frédéric Jouault, and Frédéric Madiot.
MoDisco: a generic and extensible framework for model driven reverse engi-
neering. In Proceedings of the IEEE/ACM international conference on Automated
software engineering, pages 173-174. ACM, 2010.

[20] Jens Biirger, Stefan Gartner, Thomas Ruhroth, Johannes Zweihoff, Jan Jiir-
jens, and Kurt Schneider. Restoring security of long-living systems by co-
evolution. In 2015 IEEE 39th Annual Computer Software and Applications Con-
ference, volume 2, pages 153-158. IEEE, 2015.

[21] Jens Biirger, Daniel Striiber, Stefan Gértner, Thomas Ruhroth, Jan Jiirjens, and
Kurt Schneider. A framework for semi-automated co-evolution of security
knowledge and system models. Journal of Systems and Software, 139:142-160,
2018.

[22] Toon Calders and Sicco Verwer. Three naive Bayes Approaches For
Discrimination-Free Classification. Data Mining and Knowledge Discovery, 21
(2):277-292, 2010.

[23] Gary Charness, Uri Gneezy, and Michael A. Kuhn. Experimental methods:
Between-subject and within-subject design. Journal of Economic Behavior &
Organization, 81(1):1-8, 2012.

[24] David Chaum. Security without identification: Transaction systems to make
big brother obsolete. Communications of the ACM, 28(10):1030-1044, 1985.

[25] Yulia Cherdantseva and Jeremy Hilton. A reference model of information
assurance & security. In 2013 International Conference on Availability, Reliability
and Security, pages 546-555. IEEE, 2013.

[26] Edmund M. Clarke and E. Allen Emerson. Design and Synthesis of Synchro-
nization Skeletons Using Branching Time Temporal Logic. In Workshop on
Logic of Programs, pages 52-71. Springer, 1981.

[27] Amit Datta. Fairness and Privacy Violations in Black-Box Personalization Systems:
Detection and Defenses. PhD thesis, Carnegie Mellon University, 2018.

[28] Amit Datta, Michael Carl Tschantz, and Anupam Datta. Automated Exper-

iments on Ad Privacy Settings. Proceedings on privacy enhancing technologies,
2015(1):92-112, 2015.

[29] Anupam Datta, Matt Fredrikson, Gihyuk Ko, Piotr Mardziel, and Shayak
Sen. Proxy Non-Discrimination In Data-Driven Systems. arXiv preprint
arXiv:1707.08120,2017. URL https://arxiv.org/abs/1707.08120 (ac-
cessed: 18/12/2019).

https://arxiv.org/abs/1707.08120

204

Bibliography

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Anupam Datta, Matthew Fredrikson, Gihyuk Ko, Piotr Mardziel, and Shayak
Sen. Use Privacy in Data-Driven Systems: Theory and Experiments with
Machine Learnt Programs. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS’17, pages 1193-1210. ACM,
2017.

Narayan Debnath, Carlos Alejandro Martinez, Fabio Zorzan, Daniel Riesco,
and German Montejano. Transformation of business process models BPMN
2.0 into components of the Java business platform. In Industrial Informatics
(INDIN), 2012 10th IEEE International Conference on, pages 1035-1040. IEEE,
2012.

Mina Deng, Kim Wuyts, Riccardo Scandariato, Bart Preneel, and Wouter
Joosen. A privacy threat analysis framework: supporting the elicitation
and fulfillment of privacy requirements. Requirements Engineering, 16(1):3—
32,2011.

Dorothy E. Denning. A Lattice Model of Secure Information Flow. Commu-
nications of the ACM, 19(5):236-243, 1976.

Vasiliki Diamantopoulou, Nikolaos Argyropoulos, Christos Kalloniatis, and
Stefanos Gritzalis. Supporting The Design Of Privacy-Aware Business Pro-
cesses via Privacy Process Patterns. In International Conference on Research
Challenges in Information Science, pages 187-198. IEEE, 2017.

Remco Dijkman and Pieter Van Gorp. BPMN 2.0 execution semantics for-
malized as graph rewrite rules. In International Workshop on Business Process
Modeling Notation, pages 16-30. Springer, 2010.

Cynthia Dwork and Christina Ilvento. Fairness Under Composition. arXiv
preprint arXiv:1806.06122, 2018. URL https://arxiv.org/abs/1806.
06122 (accessed: 18/12/2019).

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard
Zemel. Fairness Through Awareness. In Proceedings of the 3rd innovations in
theoretical computer science conference, pages 214-226. ACM, 2012.

Steve Easterbrook. Resolving requirements conflicts with computer-
supported negotiation. Requirements engineering: social and technical issues,
1:41-65, 1994.

Alexander Egyed and Paul Grunbacher. Identifying Requirements Conflicts
and Cooperation: How Quality Attributes and Automated Traceability can
Help. IEEE software, 21(6):50-58, 2004.

T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. Planning under in-
complete knowledge. In Proc. of Computational Logic, volume 1861, pages
807-821. 2000.

https://arxiv.org/abs/1806.06122
https://arxiv.org/abs/1806.06122

Bibliography 205

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Mohamed El-Attar. From misuse cases to mal-activity diagrams: bridging
the gap between functional security analysis and design. Software & Systems
Modeling, 13(1):173-190, 2014.

Golnaz Elahi and Eric Yu. A Goal Oriented Approach for Modeling and Ana-
lyzing Security Trade-offs. In International Conference on Conceptual Modeling,
pages 375-390. Springer, 2007.

Marcelo Fantinato, Maria Beatriz Felgar de Toledo, Lucinéia Heloisa Thom,
Itana Maria de Souza Gimenes, Roberto dos Santos Rocha, and Diego
Zuquim Guimardes Garcia. A survey On Reuse In The Business Process
Management Domain. International Journal of Business Process Integration and
Management, 6(1):52-76, 2012.

Michael Felderer, Basel Katt, Philipp Kalb, Jan Jiirjens, Martin Ochoa, Feder-
ica Paci, Thein Than Tun, Koen Yskout, Riccardo Scandariato, Frank Piessens,

et al. Evolution of security engineering artifacts: a state of the art survey. In-
ternational Journal of Secure Software Engineering (IJSSE), 5(4):48-98, 2014.

Michael Feldman, Sorelle A. Friedler, John Moeller, Carlos Scheidegger, and
Suresh Venkatasubramanian. Certifying and Removing Disparate Impact.
In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 259-268. ACM, 2015.

David Ferraiolo, Janet Cugini, and D. Richard Kuhn. Role-based Access Con-
trol (RBAC): Features and Motivations. In Proceedings of 11th annual computer
security application conference, pages 241-48, 1995.

Robert France and Bernhard Rumpe. Model-driven development of complex
software: A research roadmap. In 2007 Future of Software Engineering, pages
37-54. IEEE Computer Society, 2007.

Ariel Fuxman, Marco Pistore, John Mylopoulos, and Paolo Traverso. Model
checking early requirements specifications in tropos. In Proceedings Fifth IEEE
International Symposium on Requirements Engineering, pages 174-181. IEEE,
2001.

Sainyam Galhotra, Yuriy Brun, and Alexandra Meliou. Fairness testing: Test-
ing Software for Discrimination. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, pages 498-510. ACM, 2017.

Daniel Ganji, Haralambos Mouratidis, Saeed Malekshahi Gheytassi, and Mil-
tos Petridis. Conflicts Between Security and Privacy Measures in Software
Requirements Engineering. In International Conference on Global Security,
Safety, and Sustainability, pages 323-334. Springer, 2015.

206

Bibliography

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Geri Georg, Indrakshi Ray, Kyriakos Anastasakis, Behzad Bordbar, Manachai
Toahchoodee, and Siv Hilde Houmb. An aspect-oriented methodology for
designing secure applications. Information & Software Technology, 51(5):846—
864, 2009.

Maya Gupta, Andrew Cotter, Mahdi Milani Fard, and Serena Wang. Proxy
Fairness. arXiv preprint arXiv:1806.11212,2018. URL https://arxiv.org/
abs/1806.11212 (accessed: 18/12/2019).

Seda Giirses, Carmela Troncoso, and Claudia Diaz. Engineering pri-
vacy by design. Computers, Privacy & Data Protection, 14(3), 2011.
URL https://software.imdea.org/~carmela.troncoso/papers/
Gurses—CPDP11.pdf (accessed: 18/12/2019).

Marit Hansen, Meiko Jensen, and Martin Rost. Protection goals for privacy
engineering. In Security and Privacy Workshops (SPW), 2015 IEEE, pages 159—
166. IEEE, 2015.

Denis Hatebur, Maritta Heisel, Jan Jiirjens, and Holger Schmidt. System-
atic development of UMLsec design models based on security requirements.
In International Conference on Fundamental Approaches to Software Engineering,
pages 232-246. Springer, 2011.

Constance L. Heitmeyer, Myla Archer, Elizabeth I. Leonard, and John
McLean. Applying formal methods to a certifiably secure software system.
IEEE Trans. Software Eng., 34(1):82-98, 2008.

Jennifer Horkoff and Eric Yu. Finding solutions in goal models: an interac-
tive backward reasoning approach. In International Conference on Conceptual
Modeling, pages 59-75. Springer, 2010.

Siv Hilde Houmb, Shareeful Islam, Eric Knauss, Jan Jiirjens, and Kurt Schnei-
der. Eliciting Security Requirements and Tracing them to Design: an integra-
tion of Common Criteria, heuristics, and UMLsec. Requirements Engineering,
15(1):63-93, 2010.

Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and Rea-
soning about Systems. Cambridge university press, 2004.

ISO and IEC. Common Criteria For Information Technology Security Evalu-
ation - Part 2 Security Functional Components. 2017. URL https://www.
commoncriteriaportal.org/cc/(accessed: 16/12/2019).

Jan Jiirjens. Modelling audit security for smart-card payment schemes with
UMLsec. In IFIP International Information Security Conference, pages 93-107.
Springer, 2001.

https://arxiv.org/abs/1806.11212
https://arxiv.org/abs/1806.11212
https://software.imdea.org/~carmela.troncoso/papers/Gurses-CPDP11.pdf
https://software.imdea.org/~carmela.troncoso/papers/Gurses-CPDP11.pdf
https://www.commoncriteriaportal.org/cc/
https://www.commoncriteriaportal.org/cc/

Bibliography 207

[62] Jan Jiirjens. Secure systems development with UML. Springer Science & Business
Media, 2005.

[63] Jan Jiirjens and Pasha Shabalin. Tools for Secure Systems Development with
UML. International Journal on Software Tools for Technology Transfer, 9(5-6):527—
544, 2007.

[64] Jan Jiirjens and Guido Wimmel. Formally testing fail-safety of electronic
purse protocols. In Proceedings 16th Annual International Conference on Au-
tomated Software Engineering (ASE 2001), pages 408—411. IEEE, 2001.

[65] Christos Kalloniatis, Evangelia Kavakli, and Stefanos Gritzalis. Addressing
privacy requirements in system design: the PriS method. Requirements Engi-
neering, 13(3):241-255, 2008.

[66] Basel Katt, Matthias Gander, Ruth Breu, and Michael Felderer. Enhancing
model driven security through pattern refinement techniques. In Interna-
tional Symposium on Formal Methods for Components and Objects, pages 169-183.
Springer, 2011.

[67] Alan Kennedy, Kennedy Carter, William Frank, and Domain Architects.
MDA Guide Version 1.0. Technical report, 2003.

[68] Lano Kevin, Clark David, and Androutsopoulos Kelly. Safety and Security
Analysis of Object-Oriented Models. In International Conference on Computer
Safety, Reliability, and Security, pages 82-93. Springer, 2002.

[69] Minseong Kim, Sooyong Park, Vijayan Sugumaran, and Hwasil Yang. Man-
aging Requirements Conflicts In Software Product Lines: A Goal and Sce-
nario Based Approach. Data & Knowledge Engineering, 61(3):417-432, 2007.

[70] Ralf Kollmann and Martin Gogolla. Capturing dynamic program behaviour
with UML collaboration diagrams. In Proceedings Fifth European Conference on
Software Maintenance and Reengineering, pages 58—67. IEEE, 2001.

[71] Dexter Kozen. Results on the propositional p-calculus. Theoretical computer
science, 27(3):333-354, 1983.

[72] Abdelouahed Kriouile, Najiba Addamssiri, Taoufiq Gadi, and Youssef
Balouki. Getting the static model of PIM from the CIM. In Information Sci-
ence and Technology (CIST), 2014 Third IEEE International Colloquium in, pages
168-173. IEEE, 2014.

[73] Philippe Kruchten. The rational unified process: an introduction. Addison-
Wesley Professional, 2004.

208

Bibliography

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

Sabine Kuske, Martin Gogolla, Ralf Kollmann, and Hans-Jorg Kreowski. An
integrated semantics for UML class, object and state diagrams based on
graph transformation. In International Conference on Integrated Formal Meth-
ods, pages 11-28. Springer, 2002.

Wadha Labda, Nikolay Mehandjiev, and Pedro Sampaio. Modeling of
privacy-aware business processes in BPMN to protect personal data. In ACM
Symposium on Applied Computing, pages 1399-1405. ACM, 2014.

Leen Lambers, Daniel Striiber, Gabriele Taentzer, Kristopher Born, and Jev-
genij Huebert. Multi-Granular Conflict and Dependency Analysis in Soft-
ware Engineering based on Graph Transformation. In International Conference
on Software Engineering. IEEE/ACM, 2018. to appear.

Leen Lambers, Kristopher Born, Jens Kosiol, Daniel Striiber, and Gabriele
Taentzer. Granularity of conflicts and dependencies in graph transformation
systems: A two-dimensional approach. Journal of logical and algebraic methods
in programming, 103:105-129, 2019.

Kevin Lano, David Clark, and Kelly Androutsopoulos. Safety and security
analysis of object-oriented models. In Computer Safety, Reliability and Security,
21st International Conference, SAFECOMP 2002, Catania, Italy, September 10-13,
2002, Proceedings, pages 82-93, 2002.

Yves Ledru, Jean-Luc Richier, Akram Idani, and Mohamed-Amine Labiadh.
From KAOS to RBAC: A case study in designing access control rules from

a requirements analysis. In Conference on Network and Information Systems
Security, pages 1-8. IEEE, 2011.

Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob,
Simona Perri, and Francesco Scarcello. The DLV system for knowledge rep-
resentation and reasoning. ACM Trans. Comput. Logic, 7(3):499-562, July 2006.

Torsten Lodderstedt, David Basin, and Jiirgen Doser. SecuretUML: A UML-
based modeling language for model-driven security. In International Confer-
ence on the Unified Modeling Language, pages 426—441. Springer, 2002.

Curtis L. Maines, David Llewellyn-Jones, Stephen Tang, and Bo Zhou. A cy-
ber security ontology for BPMN-security extensions. In International Confer-
ence on Computer and Information Technology; Ubiquitous Computing and Com-
munications; Dependable, Autonomic and Secure Computing, pages 1756-1763.
IEEE, 2015.

Dewi Mairiza and Didar Zowghi. An Ontological Framework to Manage the
Relative Conflicts between Security and Usability Requirements. In Managing
Requirements Knowledge (MARK), 2010 Third International Workshop on, pages
1-6. IEEE, 2010.

Bibliography 209

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

Dewi Mairiza, Didar Zowghi, and Nur Nurmuliani. Towards a catalogue of
conflicts among non-functional requirements. In International Conference on
Evaluation of Novel Approaches to Software Engineering. SciTePress, 2010.

Salvador Martinez, Joaquin Garcia-Alfaro, Frédéric Cuppens, Nora
Cuppens-Boulahia, and Jordi Cabot. Model-driven extraction and analysis
of network security policies. In International Conference on Model Driven Engi-
neering Languages and Systems (MODELS), pages 52—-68. Springer, 2013.

Salvador Martinez, Valerio Cosentino, and Jordi Cabot. Model-based analy-
sis of Java EE web security configurations. In Proceedings of the 8th Interna-
tional Workshop on Modeling in Software Engineering, pages 55-61. ACM, 2016.

Rene Meis and Maritta Heisel. Systematic Identification Of Information
Flows From Requirements To Support Privacy Impact Assessments. In Inter-
national Joint Conference on Software Technologies, volume 2, pages 1-10. IEEE,
2015.

Ricardo Mendes and Jodo P. Vilela. Privacy-Preserving Data Mining: Meth-
ods, Metrics, and Applications. IEEE Access, 5:10562-10582, 2017.

Michael Menzel, Ivonne Thomas, and Christoph Meinel. Security require-
ments specification in service-oriented business process management. In In-
ternational Conference on Availability, Reliability and Security, pages 41-48. IEEE,
2009.

Austin Mohr. A survey of zero-knowledge proofs with applications to cryp-
tography. Southern Illinois University, Carbondale, pages 1-12, 2007.

Daniel Moody. The "physics" of notations: toward a scientific basis for con-
structing visual notations in software engineering. IEEE Transactions on Soft-
ware Engineering, 35(6):756-779, 2009.

Anthony Morton and Angela Sasse. Privacy is a process, not a PET: A the-
ory for effective privacy practice. In Proceedings of the 2012 workshop on New
security paradigms, pages 87-104. ACM, 2012.

Haralambos Mouratidis. A security oriented approach in the development of mul-
tiagent systems: applied to the management of the health and social care needs of
older people in England. PhD thesis, University of Sheffield, 2004.

Haralambos Mouratidis and Jan Jiirjens. From goal-driven security require-
ments engineering to secure design. International Journal of Intelligent Systems,
25(8):813-840, 2010.

Haralambos Mouratidis, Christos Kalloniatis, Shareeful Islam, Marc-Philippe
Huget, and Stefanos Gritzalis. Aligning Security and Privacy to Support the

210

Bibliography

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

Development of Secure Information Systems. Journal of Universal Computer
Science, 18(12):1608-1627, 2012.

Jutta Miille, Silvia von Stackelberg, and Klemens Bohm. A security language

for BPMN process models. KIT, Fakultat fiir Informatik, 2011.

Phu H Nguyen, Koen Yskout, Thomas Heyman, Jacques Klein, Riccardo
Scandariato, and Yves Le Traon. SoSPa: A system of Security design Patterns
for systematically engineering secure systems. In 2015 ACM/IEEE 18th Inter-
national Conference on Model Driven Engineering Languages and Systems (MOD-
ELS), pages 246-255. IEEE, 2015.

Martin Ochoa, Jan Jiirjens, and Daniel Warzecha. A sound decision proce-
dure for the compositionality of secrecy. In International Symposium on Engi-
neering Secure Software and Systems, pages 97-105. Springer, 2012.

Elda Paja, Fabiano Dalpiaz, and Paolo Giorgini. Managing Security Require-
ments Conflicts in Socio-Technical Systems. In International Conference on Con-
ceptual Modeling, pages 270-283. Springer, 2013.

Liliana Pasquale, Paola Spoletini, Mazeiar Salehie, Luca Cavallaro, and
Bashar Nuseibeh. Automating trade-off analysis of security requirements.
Requirements Engineering, 21(4):481-504, 2016.

Dino Pedreschi, Salvatore Ruggieri, and Franco Turini. Integrating Induction
and Deduction for Finding Evidence of Discrimination. In Proceedings of the
12th International Conference on Artificial Intelligence and Law, pages 157-166.
ACM, 2009.

Sven Peldszus, Katja Tuma, Daniel Striiber, Jan Jiirjens, and Riccardo Scan-
dariato. Secure data-flow compliance checks between models and code based
on automated mappings. In 2019 ACM/IEEE 22nd International Conference
on Model Driven Engineering Languages and Systems (MODELS), pages 23-33.
IEEE, 2019.

Andreas Pfitzmann and Marit Hansen. A Terminology For Talking About
Privacy by Data Minimization: Anonymity, Unlinkability, Unobservabil-
ity, Pseudonymity, and Identity Management. TU Dresden and ULD Kiel,
Tech. Rep, 2011. URL http://www.maroki.de/pub/dphistory/2010_
Anon_Terminology_v0.34.pdf (accessed:18/12/2019).

Amir Pnueli. The Temporal Logic of Programs. In 18th Annual Symposium on
Foundations of Computer Science (SFCS 1977), pages 46-57. IEEE, 1977.

Eltjo R. Poort and Peter de With. Resolving Requirement Conflicts through
Non-Functional Decomposition. In Proceedings. Fourth Working IEEE/IFIP
Conference on Software Architecture (WICSA 2004), pages 145-154. IEEE, 2004.

http://www.maroki.de/pub/dphistory/2010_Anon_Terminology_v0.34.pdf
http://www.maroki.de/pub/dphistory/2010_Anon_Terminology_v0.34.pdf

Bibliography 211

[106] Pille Pullonen, Raimundas Matulevi¢ius, and Dan Bogdanov. PE-BPMN:
privacy-enhanced business process model and notation. In International Con-
ference on Business Process Management, pages 40-56. Springer, 2017.

[107] Jean-Pierre Queille and Joseph Sifakis. Fairness and related properties in
transition systems—a temporal logic to deal with fairness. Acta Informatica,
19(3):195-220, 1983.

[108] Qusai Ramadan, Mattia Salnitriy, Daniel Striiber, Jan Jiirjens, and Paolo
Giorgini. From Secure Business Process Modeling to Design-level Security
Verification. In 2017 ACM/IEEE 20th International Conference on Model Driven
Engineering Languages and Systems (MODELS), pages 123-133. IEEE, 2017.

[109] Qusai Ramadan, Amir Shayan Ahmadian, Daniel Striiber, Jan Jiirjens, and
Steffen Staab. Model-based discrimination analysis: a position paper. In Pro-
ceedings of the International Workshop FairWare@ICSE 2018, Gothenburg, Sweden,
2018.

[110] Qusai Ramadan, Mattia Salnitri, Daniel Striiber, Jan Jiirjens, and Paolo
Giorgini. Integrating BPMN-and UML-based Security Engineering via
Model Transformation. Software Engineering und Software Management, 2018.

[111] Qusai Ramadan, Daniel Striiber, Mattia Salnitri, Volker Riediger, and Jan Jiir-
jens. Detecting Conflicts Between Data-Minimization and Security Require-
ments in Business Process Models. In European Conference on Modelling Foun-
dations and Applications, pages 179-198. Springer, 2018.

[112] Qusai Ramadan, Amir Shayan Ahmadian, Jan Jiirjens, Steffen Staab, and
Daniel Striiber. Explaining Algorithmic Decisions with respect to Fairness.
Software Engineering and Software Management, 2019.

[113] Qusai Ramadan, Marco Konersmann, Amir Shayan Ahmadian, Jan Jiirjens,
and Staab Steffen. Analyzing Individual Fairness besed on Software Design
Models. 2019. Submitted. A long version of the submitted paper is available
online at https://figshare.com/s/c7f3c5fb9b337595a6a4.

[114] Qusai Ramadan, Daniel Striiber, Mattia Salnitri, Jiirjens Jan Riediger, Volker,
and Staab Steffen. A Semi-Automated BPMN-based Framework for De-
tecting Conflicts between Security, Data-Minimization and Fairness Require-
ments. 2019. To appear in a special journal issue in SoSyM: Software and
Systems Modeling.

[115] Jean-Frangois Raymond. Traffic analysis: Protocols, attacks, design issues,
and open problems. In Designing Privacy Enhancing Technologies, pages 10-29.
Springer, 2001.

https://figshare.com/s/c7f3c5fb9b337595a6a4

212

Bibliography

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

Yassine Rhazali, Youssef Hadi, and Abdelaziz Mouloudi. Transformation
Approach CIM to PIM: From Business Processes Models to State Machine
and Package Models. In 2015 International Conference on Open Source Software
Computing (OSSCOM), pages 1-6. IEEE, 2015.

Yassine Rhazali, Youssef Hadi, and Abdelaziz Mouloudi. A New Method-
ology CIM to PIM Transformation Resulting from an Analytical Survey. In
Proceedings of the 4th International Conference on Model-Driven Engineering and
Software Development, pages 266-273, 2016.

Alfonso Rodriguez, Eduardo Ferndndez-Medina, and Mario Piattini.
Analysis-level classes from secure business processes through model trans-
formations. In International Conference on Trust, Privacy and Security in Digital
Business, pages 104-114. Springer, 2007.

Alfonso Rodriguez, Eduardo Fernandez-Medina, and Mario Piattini. A
BPMN extension for the modeling of security requirements in business pro-
cesses. IEICE transactions on information and systems, 90(4):745-752, 2007 .

Alfonso Rodriguez, Eduardo Fernandez-Medina, Juan Trujillo, and Mario Pi-
attini. Secure business process model specification through a UML 2.0 activ-
ity diagram profile. Decision Support Systems, 51(3):446—465, 2011.

Salvatore Ruggieri, Dino Pedreschi, and Franco Turini. Data Mining for Dis-
crimination Discovery. ACM Transactions on Knowledge Discovery from Data
(TKDD), 4(2):9, 2010.

Salvatore Ruggieri, Sara Hajian, Faisal Kamiran, and Xiangliang Zhang.
Anti-discrimination Analysis Using Privacy Attack Strategies. In Joint Eu-
ropean Conference on Machine Learning and Knowledge Discovery in Databases,
pages 694-710. Springer, 2014.

Mehrdad Saadatmand and Sahar Tahvili. A Fuzzy Decision Support Ap-
proach for Model-Based Tradeoff Analysis of Non-Functional Requirements.
In 2015 12th International Conference on Information Technology-New Generations
(ITNG), pages 112-121. IEEE, 2015.

Muhammad Qaiser Saleem, Jafreezal Jaafar, and Mohd Fadzil Hassan. A
domain-specific language for modelling security objectives in a business pro-
cess models of soa applications. AISS, 4(1):353-362, 2012.

Iflaah Salman, Ayse Tosun Misirli, and Natalia Juristo. Are students rep-
resentatives of professionals in software engineering experiments? In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering (ICSE),
volume 1, pages 666-676. IEEE, 2015.

Bibliography 213

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

Mattia Salnitri. Secure Business Process Engineering: a socio-technical approach.
PhD thesis, University of Trento, 2016.

Mattia Salnitri and Paolo Giorgini. Transforming Socio-Technical Security
Requirements in SecBPMN Security Policies. In iStar, 2014.

Mattia Salnitri and Paolo Giorgini. Modeling and verification of ATM secu-
rity policies with SecBPMN. In 2014 International Conference on High Perfor-
mance Computing & Simulation (HPCS), pages 588-591. IEEE, 2014.

Mattia Salnitri, Fabiano Dalpiaz, and Paolo Giorgini. Modeling and verify-
ing security policies in business processes. In Enterprise, Business-Process and
Information Systems Modeling, pages 200-214. Springer, 2014.

Mattia Salnitri, Elda Paja, and Paolo Giorgini. From Socio-Technical Re-
quirements to Technical Security Design: an STS-based Framework. DISI-
University of Trento, 2015.

Mattia Salnitri, Elda Paja, and Paolo Giorgini. Maintaining secure business
processes in light of socio-technical systems” evolution. In 2016 IEEE 24th In-
ternational Requirements Engineering Conference Workshops (REW), pages 155
164. IEEE, 2016.

Mattia Salnitri, Mahdi Alizadeh, Daniele Giovanella, Nicola Zannone, and
Paolo Giorgini. From security-by-design to the identification of security-
critical deviations in process executions. In International Conference on Ad-
vanced Information Systems Engineering, pages 218-234. Springer, 2018.

Kurt Schneider, Eric Knauss, Siv Houmb, Shareeful Islam, and Jan Jiirjens.
Enhancing security requirements engineering by organizational learning. Re-
quirements Engineering, 17(1):35-56, 2012.

Shane Sendall and Wojtek Kozaczynski. Model transformation: The heart
and soul of model-driven software development. IEEE software, 20(5):42-45,
2003.

Mary Shaw. The coming-of-age of software architecture research. In Proceed-
ings of the 23rd international conference on Software engineering, page 656. IEEE
Computer Society, 2001.

Guttorm Sindre. Mal-activity diagrams for capturing attacks on business pro-
cesses. In International Working Conference on Requirements Engineering: Foun-
dation for Software Quality, pages 355-366. Springer, 2007.

Guttorm Sindre and Andreas L. Opdahl. Eliciting security requirements with
misuse cases. Requirements engineering, 10(1):34-44, 2005.

214 Bibliography

[138] Ian Sommerville, Dave Cliff, Radu Calinescu, Justin Keen, Tim Kelly, Marta
Kwiatkowska, John McDermid, and Richard Paige. Large-scale complex IT
systems. Commun. ACM, 55(7):71-77, 2012.

[139] Sarah Spiekermann and Lorrie Faith Cranor. Engineering privacy. IEEE
Transactions on software engineering, 35(1):67-82, 2009.

[140] Steffen Staab, Sophie Stalla-Bourdillon, and Laura Carmichael. Observ-
ing and recommending from a social web with biases. arXiv preprint
arXiv:1604.07180, 2016. URL https://arxiv.org/abs/1604.07180 (ac-
cessed: 18/12/2019).

[141] Harald Storrle. How are conceptual models used in industrial software de-
velopment?: A descriptive survey. In Proceedings of the 21st International Con-
ference on Evaluation and Assessment in Software Engineering, pages 160-169.
ACM, 2017.

[142] Daniel Striiber, Kristopher Born, Kanwal Daud Gill, Raffaela Groner, Timo
Kehrer, Manuel Ohrndorf, and Matthias Tichy. Henshin: A usability-focused
framework for emf model transformation development. In International Con-
ference on Graph Transformations, pages 125-141, 2017.

[143] Latanya Sweeney. Achieving k-anonymity privacy protection using gener-
alization and suppression. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 10(05):571-588, 2002.

[144] Paolo Tonella and Alessandra Potrich. Reverse engineering of the interaction
diagrams from C++ code. In International Conference on Software Maintenance,
2003. ICSM 2003. Proceedings., pages 159-168. IEEE, 2003.

[145] Florian Tramer, Vaggelis Atlidakis, Roxana Geambasu, Daniel J. Hsu, Jean-
Pierre Hubaux, Mathias Humbert, Ari Juels, and Huang Lin. Discover-
ing Unwarranted Associations in Data-Driven Applications with the Fairtest
Testing Toolkit. CoRR, abs/1510.02377, 2015.

[146] GW Van Blarkom, John J Borking, and JG Eddy Olk. Handbook Of Privacy
and Privacy-Enhancing Technologies. Privacy Incorporated Software Agent
(PISA) Consortium, The Hague, 2003.

[147] Axel Van Lamsweerde. Requirements engineering: From system goals to UML
models to software, volume 10. Chichester, UK: John Wiley & Sons, 2009.

[148] Axel Van Lamsweerde, Robert Darimont, and Emmanuel Letier. Managing
conflicts in goal-driven requirements engineering. IEEE transactions on Soft-
ware engineering, 24(11):908-926, 1998.

https://arxiv.org/abs/1604.07180

Bibliography 215

[149] Sahil Verma and Julia Rubin. Fairness Definitions Explained. In 2018
IEEE/ACM International Workshop on Software Fairness (FairWare), pages 1-7.
IEEE, 2018.

[150] José L. Vivas, José A. Montenegro, and Javier Lépez. Towards a business
process-driven framework for security engineering with the UML. In Inter-
national Conference on Information Security, pages 381-395. Springer, 2003.

[151] Christian Wolter and Andreas Schaad. Modeling of task-based authorization
constraints in BPMN. Business process management, pages 64-79, 2007.

[152] Yijun Yu, Jan Jiirjens, and Jorg Schreck. Tools for traceability in secure soft-
ware development. In 2008 23rd IEEE/ACM International Conference on Auto-
mated Software Engineering, pages 503-504. IEEE, 2008.

[153] Tal Zarsky. The trouble with algorithmic decisions: An analytic road map to
examine efficiency and fairness in automated and opaque decision making.
Science, Technology, & Human Values, 41(1):118-132, 2016.

[154] Lu Zhang and Xintao Wu. Anti-discrimination Learning: a causal modeling-
based framework. International Journal of Data Science and Analytics, 4(1), 2017.

[155] Lu Zhang, Yongkai Wu, and Xintao Wu. On Discrimination Discovery Using
Causal Networks. In International Conference on Social Computing, Behavioral-
Cultural Modeling and Prediction and Behavior Representation in Modeling and
Simulation, pages 83-93. Springer, 2016.

[156] Tewfik Ziadi, Marcos Aurélio Almeida da Silva, Lom Messan Hillah, and
Mikal Ziane. A fully dynamic approach to the reverse engineering of uml
sequence diagrams. In 2011 16th IEEE International Conference on Engineering
of Complex Computer Systems, pages 107-116. IEEE, 2011.

[157] Indre Zliobaite. A survey on measuring indirect discrimination in machine
learning. arXiv preprint arXiv:1511.00148,2015. URL https://arxiv.org/
abs/1511.00148 (accessed: 18/12/2019).

https://arxiv.org/abs/1511.00148
https://arxiv.org/abs/1511.00148

Typeset June 23, 2020

	Abstract
	Kurzfassung
	Acknowledgements
	Introduction
	Challenges and Research Directions
	Conflict detection
	Integrating business process and software modeling
	Fairness analysis

	Research Contribution
	Research Methodology
	Thesis Outline
	List of Publications

	BPMN-based Framework for Detecting Conflicts between Data Protection Requirements
	Introduction
	Problem statement and research questions
	Contribution

	Background
	Data-minimization concepts
	Overview of data-minimization: legal aspects and standards
	Fairness concepts
	Overview of discrimination from the legal aspects
	BPMN-based data-protection engineering
	SecBPMN2 security concepts
	SecBPMN2-Q

	Running Example
	Modeling Security-, Data-Minimization- and Fairness-Requirements
	Data-minimization and fairness annotations
	The underlying background of the linkage constraints

	Framework for Detecting Conflicts
	Alignment Checking
	Modeling SecBPMN2-Q patterns
	Automated alignment checking

	Conflict Detection
	Automated conflict detection using anti-patterns
	Catalog of domain-independent conflicts: an overview
	Full textual description of the proposed catalog of conflicts

	Tool Support
	Algorithm for alignment checking
	Algorithm for conflict detection

	Case Study
	User Experiment
	Set-up of the experiment
	Results of the experiment
	Threats to validity

	Limitations and Future Work
	Related Work
	Conflicts between data protection requirements
	Model-based conflict detection approaches
	Other conflict detection approaches
	Data-minimization-aware approaches
	Fairness-aware approaches

	Conclusion

	Integrating BPMN- and UML-based Data-Protection Engineering
	Introduction
	Problem statement and research questions
	Contribution

	Background
	SecBPMN2 (Revisit)
	UMLsec profile

	Framework for Integrating BPMN- and UML-based Data-Protection Engineering
	SecBPMN2 to UMLsec Transformation
	Mapping schema from SecBPMN2 to UMLsec elements
	Transformation rules from SecBPMN2 to UMLsec

	Tool Support
	Case Study
	Applying the integration framework
	Transformation results

	Discussion and Future Work
	Threats to validity and limitations
	Future Work

	Related Work
	Automated transformation
	Manual transformation

	Conclusion

	Individual Fairness Analysis based on Software Design Models
	Introduction
	Problem statement and research question
	Contribution

	Running Example
	Framework for Analyzing Individual Fairness
	Annotating the UML Model with Fairness Information
	Generating Temporal Logic Claims
	Algorithm for generating temporal logic claims

	Model Checking
	Reporting on Individual Fairness
	Algorithm for reporting on individual fairness

	Optional: Generating Proxies From a Database
	Tool Support
	Case Studies
	Discussion
	Using the framework at run-time
	Threats to validity, limitations and future work

	Related Work
	Software model-based development
	Discrimination detection approaches

	Conclusion

	Conclusions, Limitations, and Outlook
	Conclusion
	Evaluation results
	Limitations

	Outlook
	Conflict resolution
	Tracing requirements in legacy and evolutionary systems
	Support group fairness analysis based on software models

	Conflict Detection: A Walk Through Artifacts and Tool Support
	SecBPMN2 to UMLsec: A Walk Through Artifacts and Tool Support
	Curriculum Vitae
	Bibliography

