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Abstract

This work introduces a Petri net representation for the propagation of probabilities

and likelihoods, which can be applied to probabilistic Horn abduction, fault trees,

and Bayesian networks. These so-called “probability propagation nets” increase the

transparency of propagation processes by integrating structural and dynamical as-

pects into one homogeneous representation. It is shown by means of popular ex-

amples that probability propagation nets improve the understanding of propagation

processes – especially with respect to the Bayesian propagation algorithms – and

thus are well suited for the analysis and diagnosis of probabilistic models. Represent-

ing fault trees with probability propagation nets transfers these possibilities to the

modeling of technical systems.

Keywords

Petri nets, Bayesian networks, fault trees, probability, propagation, uncertain reason-

ing, diagnosis
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Zusammenfassung

In der vorliegenden Arbeit wird eine Petri-Netz-Repräsentation für die Propagation

von Wahrscheinlichkeiten und Evidenzen (Likelihoods) vorgestellt und auf proba-

bilistische Horn-Abduktion sowie Fehlerbäume und Bayes-Netze angewendet. Diese

sogenannten Wahrscheinlichkeits-Propagations-Netze (probability propagation nets)

machen Propagations-Prozesse transparent, indem sie strukturelle und dynamische

Aspekte in einer homogenen Darstellung vereinen. Anhand populärer Beispiele wird

verdeutlicht, dass Wahrscheinlichkeits-Propagations-Netze die Propagations-Prozesse

– besonders im Hinblick auf die Bayes-Netz-Algorithmik – anschaulich darstellen

und gut nachvollziehbar machen, so dass sie sich für die Analyse und Diagnose

probabilistischer Modelle eignen. Durch die Repräsentation von Fehlerbäumen mit

Wahrscheinlichkeits-Propagations-Netzen können diese Vorzüge auf die Modellierung

technischer Systeme übertragen werden.

Stichworte

Petri-Netze, Bayes-Netze, Fehlerbäume, Wahrscheinlichkeit, Propagation, unsicheres

Schließen, Diagnose
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1. Introduction

This thesis deals with the representation of Bayesian networks and the propagation of

probabilities and likelihoods with Petri nets. The aim is to couple structural aspects

and the propagation algorithms of Bayesian networks in one homogeneous represen-

tation, thus improving transparency and creating a clear structure of propagation

flows. Additionally, it is shown how these Petri nets can be used to represent fault

trees. Figure 1.1 shows the relationship between the different graph classes used in

this thesis, which are now further characterized.

Fault
Trees

Bayesian Networks

Petri Nets

Figure 1.1.: Inclusion of Graph Classes

Petri Nets

In his PhD thesis [Petri62], Carl Adam Petri invented a new graph class which has

been subject of intensive research and extension. After a short period of time, the

corresponding graphs were called Petri nets. The basic idea may seem quite sim-

ple: A Petri net is a bipartite directed graph whose nodes are places and transitions.

Places can hold (anonymous) objects called tokens which can be removed and cre-

ated by transitions according to certain rules. Thus, transitions are responsible for

representing dynamics, whereas places represent a distributed state or a situation.
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1. Introduction

It may show through that the integration of structure, situation and dynamics

in one representation is a versatile approach. The basic concept of a Petri net has

been enhanced for example by making the tokens distinguishable, which extends the

expressiveness. Usually, the corresponding net classes are called high-level Petri nets

(cf. [GenLau79, Jensen81, GenLau83, WagLew99, VanBil05]).

Bayesian Networks

Compared to Petri nets, Bayesian networks are more specialized. In their original form

they focus on expressing and quantifying probabilistic dependencies between random

variables. Bayesian networks are directed acyclic graphs (DAGs) whose nodes repre-

sent random variables. These variables have a finite set of discrete values. An edge

from node A to B means, that B directly (probabilistically) depends on A. In addi-

tion, to every node a conditional probability table is attached which either quantifies

the conditional probabilities of the corresponding variable given the values of the in-

put variables or which contains the prior probabilities for the variable’s elementary

values if the node is a root node.

At present, Bayesian networks are used in a variety of application areas. Very popu-

lar is the so-called “Bayesian spam filter” [Sahami∗98, Robi03], which is used to detect

junk e-mails by a scoring algorithm relying on Bayesian techniques. Although this

algorithm is implemented without the graphical representation of Bayesian networks,

the underlying concepts and assumptions are identical.

In the research concerning operational risk and uncertain reasoning, Bayesian net-

works also play an important role. There is a lot of recent work investigating how

Bayesian networks can benefit to solve problems in the context of operational risk

(for example [Alex00, Yoon03, RaArGh05, PetSis06, SheWüt06]).

An outstanding theory related to Bayesian networks which is extensively used for

example in biological applications – but also in the Bayesian spam filtering algorithms

mentioned above – is the automated learning of network structure and parameters

based on data [Heck99, Neap03]. Considering the very complex and large data which

is collected in biological applications such as genomes or gene networks, automated

organization and analysis of data is vital. Currently, a lot of cutting edge research is

done in this area [Frie∗00, Need∗06, Need∗07, WaChCl07].

2



Fault Trees

Fault trees are commonly used to model dependability in technical systems. There

are different types of fault trees, for example static and the more expressive dynamic

fault trees. Although the models built with static fault trees are quite simple since the

functions expressing dependabilities between components are binary, this kind of mod-

eling language is widely used and perfectly accepted in technical applications. Yet,

the transformation of fault trees into Bayesian networks (cf. [Bobbio∗99, PorBob99])

can grade up the modeling approach by adding certain features for example allowing

easier diagnosis in the modeled systems.

By representing fault tree models with probability propagation nets via the trans-

formation into Bayesian networks, all the advantages of the Petri net representation

introduced in this work – such as transparency, clear structure, precise representation

of causality, and integration of dynamics – can be transferred to the “fault tree world”.

Additionally, since other kinds of Petri nets can be used for modeling and controlling

technical systems, a homogeneous representation with Petri nets offer opportunities

to couple probabilistic models with established models in technical applications and

process modeling.

Conceptual Formulation

As mentioned above, the primary objective of this thesis is to introduce a clear rep-

resentation of Bayesian network propagations. Since Bayesian network models show

the static probabilistic dependencies but the propagation, that means the message

flow in Bayesian networks, is just defined by propagation algorithms and not repre-

sented in the network itself, the structure of Bayesian networks might be considered

a bit meager. A Petri net representation of Bayesian networks helps to overcome

this disadvantage, because Petri nets allow the integration of structure, situation and

dynamics in one homogeneous representation.

To represent Bayesian networks together with their propagation flows, the so-called

“probability propagation nets” are introduced in this thesis. As a precondition, the

Bayesian networks have to be singly-connected, that means there must not be a loop

contained in the Bayesian network which is to be transformed into a probability prop-

agation net. The problem of eliminating loops in Bayesian networks is not trivial. In

most tool implementations so-called “junction trees” combined with the propagation

algorithms according to Shenoy and Shafer [SheSha88] or Lauritzen and Spiegelhal-

3



1. Introduction

ter [LauSpi88, SpiLau90] are used. In contrast to that, the conditioning method (cf.

[Pearl88]) is used in this thesis to eliminate loops, which results in singly-connected

Bayesian networks that are closer to the original (multiply-connected) networks.

By transferring the complexity of eliminating loops into the Petri net structure

as well as the tokens (or the marking), the linearity of propagation algorithms in

probability propagation nets is preserved. Thereby, the complexity of “worst-case

structures” is put into the size of the matrices being propagated.

It has to be pointed out that the Bayesian network propagation algorithms are not

to be improved by the introduced Petri net representation. Yet, probability propaga-

tion nets can add transparency, define a clear structure, represent causality precisely,

and integrate dynamics of the modeled system in a homogeneous representation,

which may be useful for some real-life applications.

Outline

This thesis is organized as follows: In chapter 2 the basic concepts of Petri nets,

probabilistic Horn abduction, Bayesian networks and fault trees are introduced. Low-

level probability propagation nets, which allow for the representation of probabilistic

Horn abduction, are defined in chapter 3. Foldings of these Petri nets, which are

called high-level probability propagation nets, are capable of representing Bayesian

networks and the message propagation as described in chapter 4. Chapter 5 shows

the transformation of fault trees into probability propagation nets with the aid of the

corresponding Bayesian network representations and gives some clues regarding future

integration with Petri nets modeling and controlling technical systems. Conclusion

and outlook finish the considerations in chapter 6.
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2. Preliminaries

In this chapter, the relevant concepts of Petri nets, probabilistic Horn abduction,

Bayesian networks, and fault trees will be introduced.

2.1. Petri Nets

Carl Adam Petri invented a special class of bipartite directed graphs which were later

on called Petri nets. The interesting things about Petri nets are firstly, that they

represent the static structure of a modeled system as well as its dynamics. Both

aspects are expressed in a Petri net model via the graph structure and the so-called

“token game”. Secondly, and in contrast to for example finite automata, the state or

situation of a Petri net is not limited to one marked node in the graph but is spread

all over the net by its so-called “marking”, thus representing a distributed state or

situation. Thirdly, Petri nets are closely related to linear algebra and there are plenty

of possibilities to use linear mathematical operations and related algorithms to analyze

a model. Some of these analyses will be used exhaustively in this thesis. Fourthly, it

is possible to define a hierarchical or modular refinement of Petri nets, which plays

an important role for including abstraction in models with a considerable complexity

— according to the principle “Divide and conquer”. Fifthly, the original definition of

Petri nets was extended to different classes of Petri nets. By that, concepts like time,

fuzziness or stochastics can be represented and included in the analysis algorithms.

The net classes can basically be devided into low-level Petri nets and high-level Petri

nets. Usually, low-level nets can easily be represented by mathematical constructs

and effectively be analyzed. The basic Petri net class will now be defined according

to [Laut02]:

5



2. Preliminaries

Definition 2.1 (Place/Transition Net)

1. A place/transition net (p/t-net) is a quadruple N = (S, T, F,W ) where

(a) S and T are finite, non empty, and disjoint sets. S is the set of places

(in figures represented by circles). T is the set of transitions (in figures

represented by boxes).

(b) F ⊆ (S × T ) ∪ (T × S) is the set of directed arcs.

(c) W : F → N \ {0} assigns a weight to every arc. In case of W : F → {1},
N = (S, T, F ) is written as an abridgment.

2. The preset (postset) of a node x ∈ S∪T is defined as ·x = {y ∈ S∪T | (y, x) ∈
F} (x· = {y ∈ S ∪ T | (x, y) ∈ F}).
The preset (postset) of a set H ⊆ S ∪ T is ·H =

⋃
x∈H ·x (H· = ⋃x∈H x·).

For all x ∈ S ∪ T it is assumed that |·x|+ |x·| ≥ 1 holds; that means there are

no isolated nodes.

3. A place p (transition t) is shared iff |·p| ≥ 2 or |p·| ≥ 2 (|·t| ≥ 2 or |t·| ≥ 2).

4. A place p is an input (output) boundary place iff ·p = ∅ (p· = ∅).

5. A transition t is an input (output) boundary transition iff ·t = ∅ (t· = ∅).

This definition represents the structural aspects of a Petri net. The dynamics are

defined on behalf of a special function called “marking” and a so-called “firing rule”

as given in the next definition (again according to [Laut02]):

Definition 2.2

Let N = (S, T, F,W ) be a p/t-net.

1. A marking of N is a mapping M : S → N. M(p) which indicates the number of

tokens on p under M . p ∈ S is marked by M iff M(p) ≥ 1. H ⊆ S is marked

by M iff at least one place p ∈ H is marked by M . Otherwise p and H are

unmarked, respectively.

6



2.1. Petri Nets

2. A transition t ∈ T is enabled by M , in symbols M [t〉, iff

∀p ∈ ·t : M(p) ≥ W ((p, t)).

3. If M [t〉, the transition t may fire or occur, thus leading to a new marking M ′,

in symbols M [t〉M ′, with

M ′(p) :=



M(p)−W ((p, t)) if p ∈ ·t \ t·
M(p) +W ((t, p)) if p ∈ t· \ ·t
M(p)−W ((p, t)) +W ((t, p)) if p ∈ ·t ∩ t·
M(p) otherwise

for all p ∈ S.

4. The set of all markings reachable from a marking M0, in symbols [M0〉, is the

smallest set such that

M0 ∈ [M0〉

M ∈ [M0〉 ∧M [t〉M ′ ⇒M ′ ∈ [M0〉.

[M0〉 is also called the set of follower markings of M0.

5. σ = t1 . . . tn is called a firing sequence or occurrence sequence for transitions

t1, . . . , tn ∈ T iff there exist markings M0,M1, . . . ,Mn such that

M0[t1〉M1[t2〉 . . . [tn〉Mn holds;

in short M0[σ〉Mn. M0[σ〉 denotes that σ starts from M0. The firing count σ̄(t)

of t in σ indicates how often t occurs in σ. The (column) vector of firing counts

is denoted by σ̄.

6. The pair (N ,M0) for some marking M0 of N is a p/t-system or a marked

p/t-net. M0 is the initial marking.

7. A marking M ∈ [M0〉 is reproducible iff there exists a marking M ′ ∈ [M〉,
M ′ 6= M s.t. M ∈ [M ′〉.

7



2. Preliminaries

8. Moreover, the p-column-vector 0 stands for the empty marking. A p/t-net is

0-reproducing iff there exists a firing sequence ϕ such that 0[ϕ〉0. A transition

t is 0-firable iff t can be enabled by some follower marking of 0.

semaphore

critical1 critical2

pending1 pending2

idle1 idle2

t1

t2

t3

t4

t5

t6

Figure 2.1.: A simple p/t-net modeling mutual exclusion for two processes

Example 2.1 (Mutual Exclusion, cf. [Kind02])

As stated in Definition 2.1, transitions are visually represented by boxes, places by

circles. Figure 2.1, which is taken from [Kind02], shows a simple p/t-net model

representing a mutual exclusion for two processes, that means it must be guaranteed

that at most one process is running at a time.

To visualize the dynamics of the example net, tokens are usually represented by

little filled circles and put on the places to indicate the current marking of a place. A

certain firing sequence can now be investigated by simulating the net starting from

the initial marking. One possible simulation run could be:

1. The initial marking indicates that both processes are idle. Place semaphore is

marked, too. Transitions t1 and t4 are activated, either of them could fire.

2. Assume t1 has fired. Now, pending1, semaphore and idle2 are marked with one

8



2.1. Petri Nets

token. All other places are unmarked. Transitions t2 and t4 are both activated.

3. After that, t4 fires. The places pending1, pending2 and semaphore are marked

afterward. Transitions t2 and t5 are activated.

4. Now, let t2 fire. It removes the tokens from pending1 and semaphore, thus

deactivating t5 (because the token on semaphore is missing, now). It should be

pointed out, that either t2 or t5 could have fired but no matter which transition

fires, it deactivates the other one. By that, the mutual exclusion is guaranteed.

After firing of t2 only t3 is activated. Only the places critical1 and pending2 are

marked.

5. When t3 fires, it removes the token from critical1 and puts one token on idle1

and semaphore, respectively. Additionally, pending2 is still marked. Transi-

tions t1 and t5 are both activated.

6. Analogously, after a subsequent firing of t5 and t6 the initial marking is reached.

Obviously, this is only one of many different possibilities to restore the initial marking

or to run simulations on the net. �

Some properties and notations concerning p/t-nets remain to be defined:

Definition 2.3

Let N = (S, T, F,W ) be a p/t-net;

1. N is pure iff 6 ∃(x, y) ∈ (S × T ) ∪ (T × S) : (x, y) ∈ F ∧ (y, x) ∈ F .

2. A place vector (|S|-vector) is a column vector υ : S → Z indexed by S.

3. A transition vector (|T |-vector) is a column vector ω : T → Z indexed by T .

4. The incidence matrix of N is a matrix [N ] : S × T → Z indexed by S and T

9



2. Preliminaries

such that

[N ](p, t) =



−W ((p, t)) if p ∈ ·t \ t·
W ((t, p)) if p ∈ t· \ ·t
−W ((p, t)) +W ((t, p)) if p ∈ ·t ∩ t·
0 otherwise.

υt and At are the transposes of a vector υ and a matrix A, respectively. The columns

of [N ] are |S|-vectors, the rows of [N ] are transposes of |T |-vectors. Markings are

representable as |S|-vectors, firing count vectors as |T |-vectors.

Example 2.2 (Mutual Exclusion: Incidence Matrix)

The mathematical representation of the mutual exclusion Petri net is the tuple N =

(S, T, F ) with

• S = {idle1, idle2, pending1, pending2, critical1, critical2, semaphore}

• T = {ti | i = 1 . . . 6}

• F = {(idle1, t1), (t1, pending1), (pending1, t2), (t2, critical1),

(critical1, t3), (t3, idle1), (t3, semaphore), (idle2, t4), (t4, pending2),

(pending2, t5), (t5, critical2), (critical2, t6), (t6, idle2), (t6, semaphore),

(semaphore, t2), (semaphore, t5)}

t1 t2 t3 t4 t5 t6
critical1 1 -1
critical2 1 -1
idle1 -1 1
idle2 -1 1
pending1 1 -1
pending2 1 -1
semaphore -1 1 -1 1

Table 2.1.: Incidence Mapping of Places and Transitions (Example 2.1)

Assuming the ordering of places and transitions according to Table 2.1, the inci-
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2.1. Petri Nets

dence matrix of the example net N is given by

[N ] =



0 1 −1 0 0 0

0 0 0 0 1 −1

−1 0 1 0 0 0

0 0 0 −1 0 1

1 −1 0 0 0 0

0 0 0 1 −1 0

0 −1 1 0 −1 1


�

The incidence matrix is useful to analyze the net with respect to different structural

properties by means of linear algebra. Amongst others, the following properties are

related to the incidence matrix representations of the Petri nets (cf. [Laut02]):

Definition 2.4 (Invariants)

Let I be a place vector and J a transition vector of N = (S, T, F,W ).

1. I is a place invariant (p-invariant) iff I 6= 0 and I t · [N ] = 0t

2. J is a transition invariant (t-invariant) iff J 6= 0 and [N ] · J = 0

3. ‖I‖ = {p ∈ S | I(p) 6= 0} and ‖J‖ = {t ∈ T | J(t) 6= 0} are the supports of I

and J , respectively.

4. A p-invariant I (t-invariant J) is

• non-negative iff ∀p ∈ S : I(p) ≥ 0 (∀t ∈ T : J(t) ≥ 0)

• positive iff ∀p ∈ S : I(p) > 0 (∀t ∈ T : J(t) > 0)

• minimal iff I (J) is non-negative

and 6 ∃ p-invariant I ′ : ‖I ′‖  ‖I‖ ( 6 ∃ t-invariant J ′ : ‖J ′‖  ‖J‖)
and the greatest common divisor of all entries of I (J) is 1.

11
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5. The net representation NI = (SI , TI , FI ,WI) of a p-invariant I is defined by

SI := ‖I‖

TI := ·SI ∪ SI·
FI := F ∩ ((SI × TI) ∪ (TI × SI))

WI is the restriction of W to FI .

6. The net representation NJ = (SJ , TJ , FJ ,WJ) of a t-invariant J is defined by

TJ := ‖J‖

SJ := ·TJ ∪ TJ·
FJ := F ∩ ((SJ × TJ) ∪ (TJ × SJ))

WJ is the restriction of W to FJ .

7. N is covered by a p-invariant I (t-invariant J) iff ‖I‖ = S (‖J‖ = T ).

Proposition 2.1

Let (N ,M0) be a p/t-system, I a p-invariant; then

∀M ∈ [M0〉 : I t ·M = I t ·M0.

Proposition 2.2

Let (N ,M0) be a p/t-system, M1 ∈ [M0〉 a follower marking of M0, and σ a firing

sequence that reproduces M1 : M1[σ〉M1; then the firing count vector σ̄ of σ is a

t-invariant.

Definition 2.5

Let N = (S, T, F,W ) be a p/t-net, M0 a marking of N , and r ≥ 0 a |T |-vector; r is

realizable in (N ,M0) iff there exists a firing sequence σ with M0[σ〉 and σ̄ = r.
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Proposition 2.3

Let N = (S, T, F,W ) be a p/t-net, M1 and M2 markings of N, and σ a firing sequence

s.t. M1[σ〉M2; then the linear relation

M1 + [N ]σ̄ = M2 holds.

In the above linear relation, the state equation, the order of transition firings is lost.

For some Petri net classes which will be introduced later on, natural multisets and

special vector products are needed:

Definition 2.6 (Natural Multiset)

Let A be a non-empty set;

• m : A→ N is a natural multiset over A;

• M(A) is the set of all natural multisets over A.

Definition 2.7

Let A = (a1, . . . , am), B = (b1, . . . , bn) be non-negative real vectors;

A×B := (a1 · b1, . . . , a1 · bn, a2 · b1, . . . , a2 · bn, . . . , am · b1, . . . , am · bn).

If additionally m = n holds,

A ◦B := (a1 · b1, a2 · b2, . . . , am · bm).

When representing folded Bayesian networks with a special variant of high-level

probability propagation nets, which is introduced in section 4.4, these products have

to be generalized in order to be applied to matrices. This is defined as follows:

13
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Definition 2.8

Let

A =

a11 a12 . . . a1k

a21 a22 . . . a2k

al1 al2 . . . alk


be a (l × k)-matrix and

B =

b11 b12 . . . b1m

b21 b22 . . . b2m

bl1 bl2 . . . blm


be a (l ×m)-matrix.

Then,

A⊗B :=

(a11, a12, . . . , a1k)× (b11, b12, . . . , b1m)

(a21, a22, . . . , a2k)× (b21, b22, . . . , b2m)

(al1, al2, . . . , alk)× (bl1, bl2, . . . , blm)


is a (l × (k ·m))-matrix.

If additionally k = m holds, then

A ◦B :=

a11 · b11 a12 · b12 . . . a1k · b1k
a21 · b21 a22 · b22 . . . a2k · b2k
al1 · bl1 al2 · bl2 . . . alk · blk


is a (l × k)-matrix.

Remark 2.1

Obviously, A ◦B = B ◦A holds for A and B being vectors of equal length as well as

matrices of equal dimension. �

Example 2.3 (Mutual Exclusion: Invariants)

The net corresponding to the mutual exclusion example (see Figure 2.1) has two
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2.2. Probabilistic Horn Abduction

minimal t-invariants J1, J2 and three minimal p-invariants I1, I2, I3:

J1 =



1

1

1

0

0

0


; J2 =



0

0

0

1

1

1


; I1 =



1

0

1

0

1

0

0


; I2 =



0

1

0

1

0

1

0


; I3 =



1

1

0

0

0

0

1


�

Remark 2.2

T-invariants indicate that starting from an initial marking, after complete simula-

tion of the t-invariant this marking is reached again. P-invariants express that the

weighted sum of tokens on the places included in the p-invariant is constant. The

token count for each place included in the invariant’s support is thereby multiplied

by the corresponding entry of the invariant to calculate the weighted sum. �

2.2. Probabilistic Horn Abduction

Based on propositional logic, specifically Horn formulas, probabilistic Horn abduction

(see [Poole93a, Poole93b, PorTor97]) assigns probabilities to assumptions and rules.

It can be used for abduction and diagnosis in models governed by uncertainty. This

section introduces relevant terms and gives an example (cf. [LaPhPi06]).

2.2.1. Canonical Net Representation of Horn Formulas

First, the basic concepts of Horn formulas and thus probabilistic Horn abduction have

to be defined:

Definition 2.9

The alphabet of propositional logic consists of atoms a, b, c, . . . , operators ¬,∨,∧,

and brackets ( and ).

The formulas α are exactly the words which can be constructed by means of the
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following rules:

• all atoms are formulas;

• if α is a formula, the negation ¬α is a formula, too;

• if α and β are formulas, the conjunction (α∧β) and the disjunction (α∨β) are

formulas, too.

The implication (α→ β) is an abbreviation for ((¬α)∨β); the biimplication (α↔ β)

is an abbreviation for ((α→ β)∧(β → α)). For omitting brackets, the usual operator

hierarchy is used.

Definition 2.10

A literal is an atom or the negation of an atom. A clause is a disjunction of literals.

Usually, � denotes the empty clause.

Definition 2.11

Let τ = ¬a1 ∨ · · · ∨ ¬am ∨ b1 ∨ · · · ∨ bn be a clause;

in set notation: τ = ¬A ∪B for ¬A = {¬a1, . . . ,¬am} and B = {b1, . . . , bn};

• τ is a fact clause iff ¬A = ∅,

• τ is a goal clause iff B = ∅,

• τ is a rule clause iff ¬A 6= ∅ ∧B 6= ∅,

• τ is a Horn clause iff |B| ≤ 1.

Let α be a conjunction of clauses, that means α is a conjunctive normal form (CNF)

formula;

• A(α) denotes the set of atoms of α,

• C(α) denotes the set of clauses of α,

• F(α) denotes the set of fact clauses of α,

• G(α) denotes the set of goal clauses of α,

16



2.2. Probabilistic Horn Abduction

• R(α) := C(α) \ (F(α) ∪G(α)) denotes the set of rule clauses of α;

α is a Horn formula iff its clauses are Horn clauses.

Remark 2.3

As the amount of positive literals of a Horn clause is limited by 1, Horn logic is

decidable. �

Definition 2.12 (Complementary Atom)

Let a ∈ A(α) be an atom of a Horn formula α. If there is another atom ā such that

a↔ ¬ā and ¬a↔ ā holds, ā (a) is called the complementary atom of a (ā).

Remark 2.4

The property of an atom being the complementary atom of another one can either

be expressed explicitly by the above equivalences or it can be an implicit assertion

for the modeled system described for example in natural language. �

The following example taken from [PorTor97] illustrates the introduced terms.

Example 2.4 (Lack of Oil, cf. [PorTor97])

Let α be the Horn formula that is the conjunction of the clauses given in Table 2.2

where the atoms are lo (lack of oil), nolo (no lack of oil), igir (ignition irregular),

igno (ignition normal), owon (oil warning lamp on), owof (oil warning lamp off),

acde (acceleration delayed), and acno (acceleration normal).

Obviously, lo (igir, owon, acde) is the complementary atom of nolo (igno, owof ,

acno) and vice versa.

Clauses 1 to 12 are rule clauses as they consist of negative as well as positive literals.

Clauses 13 to 16 are fact clauses as they have only one positive literal and no negative

one. Clauses 17 to 20 build the set of goal clauses as they only consist of negative

literals. The conjunction of these Horn clauses is a Horn formula. �

One can use p/t-nets to represent a Horn formula with Petri nets. The transfor-

mation of a logical Horn formula into the canonical net representation is described in

detail in [Laut03b]. After defining the canonical net representation the example will
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1 ¬nolo ∨ ¬igno ∨ acno
2 ¬nolo ∨ ¬igir ∨ acno
3 ¬nolo ∨ ¬igno ∨ acde
4 ¬nolo ∨ ¬igir ∨ acde
5 ¬lo ∨ ¬igno ∨ acno
6 ¬lo ∨ ¬igir ∨ acno
7 ¬lo ∨ ¬igno ∨ acde
8 ¬lo ∨ ¬igir ∨ acde
9 ¬nolo ∨ owof

10 ¬lo ∨ owof
11 ¬nolo ∨ owon
12 ¬lo ∨ owon



R(α)

13 igno
14 igir
15 nolo
16 lo

F(α)

17 ¬acno
18 ¬acde
19 ¬owof
20 ¬owon

G(α)

Table 2.2.: Horn Clauses (Example 2.4)

be continued by showing the corresponding p/t-net.

Definition 2.13 (Canonical Net Representation)

Let α be a CNF-formula and let Nα = (Sα, Tα, Fα) be a p/t-net;

Nα is the canonical p/t-net representation of α iff

• Sα = A(α) (set of atoms of α) and Tα = C(α) (set of clauses of α)

• for all τ = ¬a1 ∨ · · · ∨ ¬am ∨ b1 ∨ · · · ∨ bn ∈ C(α),

where {a1, . . . , am, b1, . . . , bn} ⊆ A(α), Fα is determined by

·τ = {a1, . . . , am}, τ· = {b1, . . . , bn}, that means the atoms a1, . . . , am which are

negated in the clause τ are the input places, the non-negated atoms b1, . . . , bn

are the output places of the transition τ .

The transition τ is called fact (goal, rule) transition iff the clause τ is a fact (goal,

rule) clause.

According to the definition, every clause is represented by a transition. Thus, for

building the canonical net representation out of a Horn formula one could start with

creating one transition for each clause and labeling it correspondingly. After that, for

every transition its related clause is investigated. Every negated atom contained in

the clause becomes an input place, every non-negated atom becomes an output place
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owon owof acde acno

lo nolo igir igno

t16

lack of oil

t15

no lack of oil

t14

ignition irregular

t13

ignition normal

t1t2t3t4t5t6t7t8t9t10t11t12

t17

acceleration
normal

t18

acceleration
delayed

t19

oil warning
light on

t20

oil warning
light off

Figure 2.2.: Nα of Example 2.4

of the transition. If the respective place already exists, just the corresponding edge

has to be added.

Example 2.5 (Lack of Oil: Canonical Net Representation)

Applied to Example 2.4, the resulting p/t-net is shown in Figure 2.2. The transi-

tions are labeled with a ’t’ indexed by the number of the related clause according to

Table 2.2. �

Remark 2.5

In non-canonical p/t-net representations, the set of places Sα contains negated atoms

(see [Laut03b]). �

For reasoning, abduction and diagnosis with Horn formulas, explanations for some

clauses play an important role. Informally, an explanation for an outcome consists of
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facts that – by applying the appropriate rules – lead to the outcome. Formally, this

term is defined as follows:

Definition 2.14

Let α be a Horn formula,

let H ⊆ F(α) be a set of fact clauses called the “assumable hypotheses”,

let be E ⊆ H the focused potential explanations and R ⊆ R(α) ∪ (F(α) \ E),

let ε =
∧
ϕ∈E ϕ, % =

∧
κ∈R κ be the corresponding Horn formulas,

let γ = ¬g1 ∨ · · · ∨ ¬gm, γ ∈ G(α) be a goal clause.

Then ε is an explanation (diagnosis) of ¬γ = g1 ∧ · · · ∧ gm iff

• ¬γ = g1 ∧ · · · ∧ gm is a logical consequence of ε ∧ % and

• ε ∧ % is not contradictory.

The representation of logical Horn formulas with Petri nets allows to find expla-

nations or reasons of clauses by using t-invariants in the net representation. This is

associated with an important theorem about the reproducibility of the empty marking

in p/t-nets given and proved in [Laut03b]:

Theorem 2.1 Let α be a Horn formula and let Nα = (Sα, Tα, Fα) be its canonical

p/t-net representation; then the following statements are equivalent:

(1) α is contradictory.

(2) Nα is 0-reproducing.

(3) Nα has a t-invariant R ≥ 0 with R(g) > 0 for some goal transition g.

(4) In Nα a goal transition g is 0-firable.

(5) In Nα there exists a set Y of reverse paths from a goal transition to fact tran-

sitions such that with any transition t of a path of Y its incidenting places

p ∈ ·t ∪ t· are nodes of a path of Y , too.

Proof See [Laut03b]. �
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Explanations for a goal clause can be found by collecting all t-invariants which

have the corresponding transition in their support. This is similar to a proof by

contradiction. Assume there is a t-invariant “going through” the goal transition.

According to Theorem 2.1 the Horn formula is contradictory. As the goal transition

represents the negated atoms, this contradiction is associated with the given facts,

rules and the negated goals. If the facts are not contradictory, the only reason for

the contradiction can be the negated goal atoms. Thus, the non-negated goals would

not lead to that contradiction. An explanation for the non-negated goal atoms in this

case would be the support of the investigated t-invariant intersected with the set of

facts.

Remark 2.6

A minimal t-invariant of Nα has only one goal transition g, because α is a Horn

formula. �

Example 2.6 (Lack of Oil: T-Invariants)

The t-invariants of Nα (see Figure 2.2 and Table 2.3) are 0-reproducing which can

easily be verified by simulation. There are four t-invariants passing through t18 =

¬acde (for which I(t18) > 0 holds), namely I5, I6, I7, I8.

According to Theorem 2.1 ((3), (2), (1)) in the net representation of all these t-

invariants (regarded as single canonical net representations) acde is a logical conse-

quence of the other clauses. For example I7:

γ7 = t18 = ¬acde

ε7 = {t16, t14} = {lo, igir} = lo ∧ igir

%7 = t8 = ¬lo ∨ ¬igir ∨ acde = lo ∧ igir → acde

so, ¬γ7 = acde is a logical consequence of ε7 ∧ %7.

Moreover, ε7 ∧ %7 is not contradictory since in its canonical net representation t18

is missing such that the empty marking 0 is not reproducible (see Theorem 2.1). So

ε7 is an explanation of ¬γ7 = acde.
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t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

I1 1
I2 1
I3 1
I4 1
I5 1
I6 1
I7 1
I8 1
I9 1
I10 1
I11 1
I12 1

t13
igno

t14
igir

t15
nolo

t16
lo

t17
¬acno

t18
¬acde

t19
¬owof

t20
¬owon

I1 1 1 1
I2 1 1 1
I3 1 1 1
I4 1 1 1
I5 1 1 1
I6 1 1 1
I7 1 1 1
I8 1 1 1
I9 1 1
I10 1 1
I11 1 1
I12 1 1

Table 2.3.: T-invariants of Nα (Example 2.5)

Alltogether,

ε5 = {lo, igno} = lo ∧ igno

ε6 = {nolo, igno} = nolo ∧ igno

ε7 = {lo, igir} = lo ∧ igir

ε8 = {nolo, igir} = nolo ∧ igir

are the explanations of acde. �
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Remark 2.7

It may seem strange that ε6 = nolo ∧ igno is an explanation for a delayed accelera-

tion, because there is no lack of oil nor is there an irregular ignition. When adding

probabilities as described in the next section, the probability of this explanation will

be 0.0 which is consequential. �

2.2.2. Extending Horn Formulas by Probabilities

By assigning probabilities to fact and rule clauses, a logical Horn formula can be

enriched with aspects of uncertainty. Together with some other extensions and re-

strictions, this leads to a basis for probabilistic Horn abduction [Poole93a, Poole93b,

PorTor97]:

Definition 2.15

Let α be a Horn formula and Pα : C(α) → [0, 1] a real function, called a probability

function of α;

let H ⊆ F(α) be a set of fact clauses; let {D1, . . . , Dn} be a partition of H

(that means Di ∩ Dj = ∅ for i 6= j,
⋃n
i=1Di = H) where for all Di, 1 ≤ i ≤

n,
∑

ϕ∈Di Pα(ϕ) = 1;

then the sets D1, . . . , Dn are called disjoint classes;

let be Pα(γ) := 1 for all goal clauses γ ∈ G(α), let be E ⊆ H, R ⊆ R(α) ∪ F(α)

and let ε =
∧
ϕ∈E ϕ, % =

∧
κ∈R κ be the corresponding Horn formulas, where ε is an

explanation (diagnosis) of ¬γ.

The probability of ε is given by Pα(ε∧ %). The problem to find explanations is the

probabilistic Horn abduction (PHA).

The ’Lack of Oil’-example is continued by assigning appropriate probabilities to

each clause and defining the disjoint classes, thus making the formula analyzable by

means of probabilistic Horn abduction.

Example 2.7 (Lack of Oil: Additional Probabilities)

According to [PorTor97], the probability for a lack of oil equals 0.4 (P (lo) = 0.4).

The complementary probability is taken for ’no lack of oil’ (P (nolo) = 0.6). The

probabilities for igir and igno are 0.1 and 0.9, respectively.
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The oil warning light deterministically depends on a lack of oil, that means the

oil warning light is on, if and only if there is a lack of oil. If there is no lack of oil,

the warning light is always off. This behavior is modeled by appropriate probability

assignments to the corresponding rules. The probability assigned to the rule lo →
owon equals 1, whereas the rule lo→ owof has a probability of 0.

To express some kind of vagueness or uncertainty, rules may have probabilities

between 0 and 1. For instance the probability of no lack of oil and irregular ignition

leading to a delayed acceleration is set to 0.6 (P (nolo ∧ igir → acde) = 0.6).

Clause Probability Disjoint Class
1 ¬nolo ∨ ¬igno ∨ acno 1.0
2 ¬nolo ∨ ¬igir ∨ acno 0.4
3 ¬nolo ∨ ¬igno ∨ acde 0.0
4 ¬nolo ∨ ¬igir ∨ acde 0.6
5 ¬lo ∨ ¬igno ∨ acno 0.2
6 ¬lo ∨ ¬igir ∨ acno 0.0
7 ¬lo ∨ ¬igno ∨ acde 0.8
8 ¬lo ∨ ¬igir ∨ acde 1.0
9 ¬nolo ∨ owof 1.0

10 ¬lo ∨ owof 0.0
11 ¬nolo ∨ owon 0.0
12 ¬lo ∨ owon 1.0
13 igno 0.9 D1

14 igir 0.1 D1

15 nolo 0.6 D2

16 lo 0.4 D2

17 ¬acno 1.0
18 ¬acde 1.0
19 ¬owof 1.0
20 ¬owon 1.0

Table 2.4.: Probability Assignment and Disjoint Classes (Example 2.4)

The complete probability function is shown in Table 2.4. �

For probabilistic Horn formulas, the probability of explanations found by Proba-

bilistic Horn Abduction correlates with the probability of explanations induced by

0-reproducing t-invariants in the canonical net representation, as stated in the fol-

lowing definition:
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Definition 2.16 (continuing Definition 2.15)

Let furthermore I be a t-invariant of the canonical net representation Nα of α such

that I performs the 0-reproduction, induced by ε ∧ % ∧ γ being contradictory; then∏
t∈‖I‖\{γ} Pα(t) equals the probabilities of ε and of ¬γ with respect to I.

Thus, t-invariants are well-suited not only to find explanations for clauses of Horn

formulas but also to calculate the corresponding probabilities in a quite simple way.

Remark 2.8

The atoms of α are now to be interpreted as random variables. The atoms of the fact

clauses in a disjoint class D together with Pα form a finite probability space. �

Remark 2.9

For interpreting the probability function Pα, let τ = ¬a1 ∨ · · · ∨ ¬am ∨ b be a Horn

clause of α where ¬A = {¬a1, . . . ,¬am}, B = {b}:

• if τ is a fact clause (τ ∈ F(α),¬A = ∅, B 6= ∅), Pα(τ) is the prior probability

P (b) of b,

• if τ is a rule clause (τ ∈ R(α),¬A 6= ∅, B 6= ∅), Pα(τ) is the conditional

probability P (b | a1, . . . , am) of b given a1, . . . , am (see Definition 2.17),

• if τ is a goal clause (τ ∈ G(α),¬A 6= ∅, B = ∅), the value of Pα(τ) is not

relevant for any calculation;

from a logical point of view, the value 0 is justified because every 0-repro-

duction is an indirect proof and results in a contradiction; the value 1 (see

Definition 2.15) is a very handy compromise.

�

The use of t-invariants to calculate probabilities will be demonstrated by continuing

the example.

Example 2.8 (Lack of Oil: Calculating Probabilities)

The probability function Pα with two disjoint classes is shown in Table 2.4. Now, the

probabilities of a delayed acceleration (acde) and its explanations are to be calculated
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by means of the canonical Petri net representation in conjunction with the given

probability function Pα according to Definition 2.16.

In simple cases like this one or when it is not necessary to watch the simulation of

the (net representations of the) t-invariants, results can be calculated immediately:

P (εi) =
∏
t∈‖Ii‖

Pα(t).

(Please note that for the goal transitions Pα(t) = 1.0 holds.)

P (ε5) = 0.9 · 0.4 · 0.8 · 1.0 = 0.288 (max.)

P (ε6) = 0.9 · 0.6 · 0.0 · 1.0 = 0.0

P (ε7) = 0.1 · 0.4 · 1 · 1.0 = 0.04

P (ε8) = 0.1 · 0.6 · 0.6 · 1.0 = 0.036

P (acde) sums up to 0.364. In case of simulating the four t-invariants, transition t18

(acceleration delayed) would fire for ad = 0.288, 0, 0.04, and 0.036.

Not very surprisingly, all of these values coincide with the values calculated by

probabilistic Horn abduction in [PorTor97]. �

Until now, these probabilities are not represented in the Petri net itself. In chapter 3

an approach to directly integrate probabilities into the Petri net representation will

be presented.

2.3. Bayesian Networks

In probability theory so-called “Bayesian networks” are commonly used to describe

probabilistic dependencies between random variables qualitatively and quantitatively.

Basically, Bayesian networks are directed acyclic graphs whose nodes represent prob-

abilistic variables each one having distinct elementary events and probability tables

attached. The notion of conditional probability thereby plays a very important role.

Thus, the introduction of Bayesian networks given in the next section starts with

the definition of conditional probability and probabilistic dependencies. Afterwards,

Bayesian networks are defined and their functionality is described. The problem of
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loopiness is addressed to in section 2.3.3.

2.3.1. Static Structure

Thomas Bayes (1702–1761) introduced a mathematical expression in [Bayes63]1 which

nowadays is commonly used to describe conditional probabilities. In fact the Bayesian

formula introduces a measure for the probability of an event provided that another

event is given. This is expressed via the following ratio formula:

Definition 2.17 (Bayesian Conditional Probability, cf. [Pearl88])

Let A and B be some (stochastic) events.

P (A | B) :=
P (A ∧B)

P (B)

is called the conditional probability of A given B.

• If P (A | B) = P (A) holds, A and B are called independent.

• If P (A | B ∧ C) = P (A | C), A and B are called conditionally independent

given C.

Bayes’ formula is a kind of ’diagnostic’ probability. It answers the question, “Given

a symptom B, how probable is the explanation (or diagnosis) A?” If there are different

conceivable diagnoses, the other direction is interesting, too: “Given the diagnosis Ai,

how probable is it that Ai causes B?” These two notions of conditional probabilities

can be combined by the Bayesian rule:

P (A | B) =
P (A ∧B)

P (B)

⇔ P (A ∧B) = P (A | B) · P (B)

1This essay written by Bayes was published two years after his death.
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P (B | A) =
P (B ∧ A)

P (A)
=
P (A ∧B)

P (A)

⇔ P (A ∧B) = P (B | A) · P (A)

Therefore,

P (A | B) · P (B) = P (B | A) · P (A)

⇔ P (B | A) =
P (A | B) · P (B)

P (A)

As mentioned before, this ’causal’ probability is a degree of confirmation that A is

the cause for B. This is also called likelihood :

Definition 2.18 (Likelihood)

Let A be dependent on B, that means P (A | B) 6= P (A).

Then,

L(A | B) := P (B | A)

is called the likelihood of A given B.

Based on the concepts of probabilities, conditional probabilities and likelihoods,

Bayesian networks, a special class of directed acyclic graphs (DAGs), have been de-

veloped to model conditional dependencies between random variables. Basically, a

variable which directly depends on other variables is represented as a child node of

these variables. Conditionally independent variables have no parents. Probabilities

are annotated in so-called “conditional probability tables (CPTs)”. For root elements,

the prior probabilities are taken, whereas for child nodes, the conditional probabilities

determine the nodes’ conditional probability tables. Formally, Bayesian networks are

defined as follows (cf. [Pearl88, Jensen96, Neap90, Neap03]):

Definition 2.19 (Bayesian Network)

Let B = (R,E) be a directed acyclic graph with the set R of nodes and the set E of

edges; let for every r ∈ R par(r) be the set of parent nodes of r;

B is a Bayesian network (BN) iff R equals a set of random variables and to every
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r ∈ R the table P (r | par(r)) of conditional probabilities is assigned. P (r | par(r))
indicates the prior probabilities of r if par(r) = ∅.

Remark 2.10

The following notations are commonly used for random variables A,B,C and stochas-

tic events d, e, f with respect to a probability function P :

P (A | BC) := P (A | B ∩ C)

P (d | e, f) := P (d | e ∧ f).

�

Example 2.9 (Lack of Oil: Bayesian Network)

The directed acyclic graph in combination with the probabilities assigned to the

nodes in Figure 2.3 is a Bayesian network B. Furthermore, it is noted that messages

π (probabilities) and λ (likelihoods) flow in both directions via the edges from node

to node. Table 2.5 shows the conditional probability tables assigned to the nodes of

the Bayesian network. �

ad

lo(0.4 0.6) ii (0.1 0.9)

πad(lo)

λad(lo)

πad(ii)

λad(ii)

Figure 2.3.: Bayesian Network B of Example 2.9

2.3.2. Message Propagation

Obviously, a Bayesian network models static probabilistic dependencies between some

random variables or random events. Given a Bayesian network consisting of different

variable nodes and some edges, the question is how the prior probabilities of the input

29



2. Preliminaries

P (lo) =
lo 1 0

0.4 0.6
P (ii) =

lo 1 0
0.1 0.9

P (ad | lo, ii) =

ad
lo ii 1 0
1 1 1.0 0.0
1 0 0.8 0.2
0 1 0.6 0.4
0 0 0.0 1.0

Table 2.5.: Conditional Probability Tables of B

variables influence the other variables’ probabilities. This is done by so-called “mes-

sage propagations” according to special algorithms defined for Bayesian networks.

The messages are divided into λ- and π-messages. Basically, λ-messages represent

likelihood propagations and π-messages propagate probabilities.

The algorithms mentioned before are not visually represented in the Bayesian net-

work graph. As they play a very important role, they will be completely quoted

according to [Neap90] below. Before that, the two message types are defined. Neapoli-

tan defines message propagation for causal networks which are more generalized than

Bayesian networks. Yet, the algorithms apply to Bayesian networks, too, because

they build a subclass of causal networks.

Remark 2.11

In the following definitions and rules s(X) means the set of child nodes of a Bayesian

network node X. Furthermore, λ(xi) (π(xi)) is the current likelihood (probability)

assigned to the elementary event xi of X (cf. [Pearl88, Neap90]) with respect to the

current situation of the Bayesian network. �

Definition 2.20 (λ Message, cf. [Neap90])

Let C = (V,E, P ) be a causal network in which the graph is a tree, W a subset of

instantiated variables, B ∈ V a variable with k possible values, and C ∈ s(B) a child

of B with m possible values. Then for 1 ≤ i ≤ k, we define

λC(bi) =
m∑
j=1

P (cj|bi)λ(cj).

30



2.3. Bayesian Networks

The entire vector of values λC(bi) for 1 ≤ i ≤ k, is called the λ message from C to B

and is denoted λC(B).

Definition 2.21 (π Message, cf. [Neap90])

Let C = (V,E, P ) be a causal network in which the graph is a tree, W a subset of

instantiated variables, B ∈ V a variable which is not the root, and A ∈ V the father

of B. Suppose A has m possible values. Then we define for 1 ≤ j ≤ m

πB(aj) =


1 if A is instantiated for aj

0 if A is instantiated, but not for aj

π(aj)
∏

C∈s(A)
C 6=B

λC(aj) if A is not instantiated,

where λC(aj) is defined in definition 2.20. Again, if there are no terms in the product,

it is meant to represent the value 1. The entire vector of values, πB(aj) for 1 ≤ j ≤ m,

is called the π message from A to B and is denoted πB(A).

One term for Bayesian networks still has to be introduced: The so-called “belief” is

the current feeling that a probabilistic variable has the corresponding values. Simply

spoken, π-values (“probabilities”) represent statistical data or experience, whereas

λ-values (“likelihoods”) represent evidences or observations. Beliefs combine these

two notions. Together with the component product defined in Definition 2.7, belief

can be defined as follows:

Definition 2.22 (Belief, cf. [Pearl88])

Let B = (R,E) be a Bayesian network, X ∈ R be a node of B and thus a random

variable, and let λ(X) and π(X) be its current λ- and π-values.

Then, with α being a normalizing constant,

BEL(X) := α (λ(X) ◦ π(X))

is called the current belief of X.

Remark 2.12

Often, instead of BEL(X) the notation P (X) is used. This must not be mixed up
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with the (prior) probability of X which usually is denoted π(X) in this case. �

Now, the different propagation rules are quoted from [Neap90]:

Operative Formulas

1. If B is a child of A, B has k possible values, A has m possible values, and B has

one other parent D, with n possible values, then for 1 ≤ j ≤ m the λ message

from B to A is given by

λB(aj) =
n∑
p=1

πB(dp)

(
k∑
i=1

P (bi | aj, dp)λ(bi)

)
.

2. If B is a child of A and A has m possible values, then for 1 ≤ j ≤ m the π

message from A to B is given by

πB(aj) =


1 if A is instantiated for aj

0 if A is instantiated, but not for aj
P ′(aj)
λB(aj)

if A is not instantiated,

where P ′(aj) is defined to be the current conditional probability of aj based on

the variables thus far instantiated.

3. If B is a variable with k possible values, s(B) is the set of B’s children, then

for 1 ≤ i ≤ k the λ value of B is given by

λ(bi) =


∏

C∈s(B) λC(bi) if B is not instantiated

1 if B is instantiated for bi

0 if B is instantiated, but not for bi.

4. If B is a variable with k possible values and exactly two parents, A and D, A

has m possible values, and D has n possible values, then for 1 ≤ i ≤ k the π

value of B is given by

π(bi) =
m∑
j=1

n∑
p=1

P (bi | aj, dp)πB(aj)πB(dp).
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5. If B is a variable with k possible values, then for 1 ≤ i ≤ k, P ′(Bi), the

conditional probability of bi based on the variables thus far instantiated, is

given by

P ′(bi) = αλ(bi)π(bi).

Initialization

A. Set all λ values, λ messages and π messages to 1.

B. For all roots A, if A has m possible values, then for 1 ≤ j ≤ m, set π(aj) =

P (aj).

C. For all roots A for all children B of A do

Post a new π message to B using operative formula 2. (A propagation flow will

then begin due to updating procedure C.)

Updating

When a variable is instantiated, or a λ or π message is received by a variable, one of

the following updating procedures is used:

A. If a variable B is instantiated for bj, then

1. Set P ′(bj) = 1 and for i 6= j, set P ′(bi) = 0;

2. Compute λ(B) using operative formula 3;

3. Post new λ messages to all B’s parents using operative formula 1;

4. Post new π messages to all B’s children using operative formula 2.

B. If a variable B receives a new λ message from one of its children, then if B is

not already instantiated,

1. Compute the new value of λ(B) using operative formula 3;

2. Compute the new value of P ′(B) using operative formula 5;

3. Post λ messages to all B’s parents using operative formula 1;

4. Post new π messages to B’s other children using operative formula 2.
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C. If a variable B receives a new π message from a parent, then if B is not already

instantiated,

1. Compute the new value of π(B) using operative formula 4;

2. Compute the new value of P ′(B) using operative formula 5;

3. Post new π messages to all B’s children using operative formula 2;

else if λ(B) 6= (1, 1, . . . , 1), then

4. Post new λ messages to B’s other parents using operative formula 1.

The application of these propagation rules is exemplified in [Neap90]. Even for

small Bayesian networks, the propagation may become considerably complex which

is induced by the recursion formulas. For bigger networks a supporting tool is vital.

Due to that, the propagation process of Bayesian networks is not shown in detail in

this thesis but the result for Example 2.9 after the initialization is given as follows:

Example 2.10 (Lack of Oil: Message Propagation Results)

Applying these propagation rules to Example 2.9 yields the same results after initial-

ization as calculated by probabilistic Horn abduction. The probability of a delayed

acceleration is: P (ad) = (0.364, 0.636). �

The message propagation described above works for singly connected Bayesian

networks. If a network has at least one loop, applying the algorithms can lead to

incorrect values, for example because a fact may be used several times which means

that the respective probability may be considered multiply in the operating formulas’

products. Pearl dedicates a whole chapter to this problem and calls it, “Coping with

Loops” [Pearl88]. The method used in this thesis will be introduced in the following

section.

2.3.3. Eliminating Loops: Conditioning

In Bayesian networks which have one or more loops and thus are multiply connected,

the message propagation according to the given algorithms generally leads to false

values because values of a variable are multiply considered in the propagation. In

[Pearl88], different ways to eliminate loops in Bayesian networks are described, namely
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clustering, conditioning, and stochastic simulation. In this thesis, the conditioning

method is used.

Generally speaking, since probabilities and likelihoods are always multiplied when

being propagated (see propagation rules in section 2.3.2) and the product a · a of a

variable a basically is not idempotent (except for two special values: a = 0 and a = 1),

the double effect of a probabilistic variable often results in too small values. To avoid

this double effect for critical values (a ∈ ]0, 1[ ), the variable a can be instantiated

with 1, thus taking advantage of the fact that the product a · a is idempotent for

a = 1. After propagation the results have to be adjusted by the original value of a.

Transferred to Bayesian networks, the basic idea of conditioning is to cut the net-

work for example at the root node of a loop and to duplicate this node, such that

every outgoing edge of the original root node now is connected to its own duplicated

instance, respectively. For message propagation, this node has to be instantiated

for all of its elementary events. The messages are afterwards propagated separately

for each instantiated event and the propagation results are at first weighted by the

original probabilities of the corresponding elementary events and then summed up.

This will be demonstrated by an example which was introduced in [Cooper84] and

referred to for example in [Spie85, PenReg86, Pearl88, Neap90]. The illustration in

this thesis is according to [Pearl88].

Example 2.11 (Metastatic Cancer, cf. [Cooper84, Pearl88])

The Bayesian network of Figure 2.4 indicates that “metastatic cancer” (A) has two

consequences: “increased total serum calcium” (B) and “brain tumor” (C). The

probabilities of A and ¬A are 0.2 and 0.8, respectively. The relevant probabilities

of B,¬B,C,¬C are the conditional probabilities given A. Similarly, B and C have

the consequence “coma” (D). Moreover, C has the consequence “severe headaches”

(E). Again, the relevant probabilities are the conditional probabilities given the

predecessors (parents). They are defined in the corresponding conditional probability

tables in Figure 2.4. �

By definition, Bayesian networks have no directed cycles but – as mentioned above

– they can have loops with (at least) two undesirable effects. The Bayesian network

in Figure 2.4 has the loop ABDCA. First of all, there is a double influence of A on
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AMetastatic Cancer

B
Increased total
serum calcium

CBrain tumor

DComa E
Severe

headaches

P (A) =
A 1 0

0.2 0.8

P (B | A) =

B
A 1 0
1 0.8 0.2
0 0.2 0.8

P (C | A) =

C
A 1 0
1 0.2 0.8
0 0.05 0.95

P (E | C) =

E
C 1 0
1 0.8 0.2
0 0.6 0.4

P (D | BC) =

D
B C 1 0
1 1 0.8 0.2
1 0 0.8 0.2
0 1 0.8 0.2
0 0 0.05 0.95

Figure 2.4.: Metastatic Cancer Bayesian Network B

D. On the one hand, from a logical point of view this does not matter because of

A ∧ A = A. However, from a probabilistic point of view this double influence leads

to wrong values. Since the probability P (A) of A is a factor in P (B) and in P (C),

(P (A))2 instead of P (A) becomes a factor in P (D). With the exception of P (A) = 1

and P (A) = 0, (P (A))2 6= P (A) causes wrong values. On the other hand, this is

the reason for the specific part P (A) = 1 and P (A) = 0 play in the “conditioning

approach” [Pearl88] to cope with loops.

Example 2.12 (Metastatic Cancer: Conditioned Bayesian Network)

The Bayesian network Bcut of Figure 2.5 is a modification of the Bayesian network

B of Figure 2.4 where the loop has been cut off at the root node A. Moreover, the

actual probabilities of A and ¬A (0.2, 0.8) have been replaced by two pairs P1(A) =

(1.0, 0.0) and P2(A) = (0.0, 1.0). Strictly speaking, Figure 2.5 shows two Bayesian

networks, where the above mentioned values 0.0 and 1.0 are the initial probabilities

for A and ¬A. After evaluating both Bayesian networks, the probabilities of all nodes
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DComa

B
Increased total
serum calcium

CBrain tumor

AMetastatic Cancer A

E
Severe

headaches

P1(A) = (1.0, 0.0)
P2(A) = (0.0, 1.0)

P1(A) = (1.0, 0.0)
P2(A) = (0.0, 1.0)

P (B | A) =

B
A 1 0
1 0.8 0.2
0 0.2 0.8

P (C | A) =

C
A 1 0
1 0.2 0.8
0 0.05 0.95

P (E | C) =

E
C 1 0
1 0.8 0.2
0 0.6 0.4

P (D | BC) =

D
B C 1 0
1 1 0.8 0.2
1 0 0.8 0.2
0 1 0.8 0.2
0 0 0.05 0.95

Figure 2.5.: Conditioned Metastatic Cancer Bayesian Network Bcut

are determined by calculating the weighted sum of the respective probabilities in

both networks, where the weights are the actual probabilities of A and ¬A; initially

P (A) = 0.2, P (¬A) = 0.8.

Applied to the conditioned Bayesian network shown in Figure 2.5, the following

π-values are calculated when initializing the Bayesian network:

π(A) =

(
1.0 0.0

0.0 1.0

)

π(B) =

(
0.8 0.2

0.2 0.8

)

π(C) =

(
0.2 0.8

0.05 0.95

)
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π(D) =

(
0.68 0.32

0.23 0.77

)

π(E) =

(
0.64 0.36

0.61 0.39

)

Since no evidence or observations are given, all likelihood values remain neutral:

λ(A) = λ(B) = λ(C) = λ(D) = λ(E) =

(
1.0 1.0

1.0 1.0

)

Thus, the beliefs for B,C,D and E with A being instantiated for 1 are:

BEL1(B) = (0.8, 0.2) ◦ (1.0, 1.0) = (0.8, 0.2)

BEL1(C) = (0.2, 0.8) ◦ (1.0, 1.0) = (0.2, 0.8)

BEL1(D) = (0.68, 0.32) ◦ (1.0, 1.0) = (0.68, 0.32)

BEL1(E) = (0.64, 0.36) ◦ (1.0, 1.0) = (0.64, 0.36)

and with A being instantiated for 0:

BEL0(B) = (0.2, 0.8) ◦ (1.0, 1.0) = (0.2, 0.8)

BEL0(C) = (0.05, 0.95) ◦ (1.0, 1.0) = (0.05, 0.95)

BEL0(D) = (0.23, 0.77) ◦ (1.0, 1.0) = (0.23, 0.77)

BEL0(E) = (0.61, 0.39) ◦ (1.0, 1.0) = (0.61, 0.39).

The actual probability P (A) = (0.2, 0.8) provides the weights for

P (B) = BEL1(B) · 0.2 +BEL0(B) · 0.8 = (0.32, 0.68)

P (C) = BEL1(C) · 0.2 +BEL0(C) · 0.8 = (0.08, 0.92)

P (D) = BEL1(D) · 0.2 +BEL0(D) · 0.8 = (0.32, 0.68)

P (E) = BEL1(E) · 0.2 +BEL0(E) · 0.8 = (0.616, 0.384).

That means, given the probability for metastatic cancer P (A) = (0.2, 0.8), the prob-

abilities for increased total serum calcium and brain tumor are P (B) = (0.32, 0.68)

and P (C) = (0.08, 0.92), respectively, while the probabilities for coma and severe
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2.4. Fault Trees

headaches are P (D) = (0.32, 0.68) and P (E) = (0.616, 0.384), respectively. �

Even though Bayesian networks are more expressive than the so-called “fault trees”,

the latter are usually used for the failure analysis of technical systems. Fault trees

model the dependencies of system components regarding their functionality. The next

section gives a short summary of relevant concepts and describes how fault trees can

be transformed into Bayesian networks to take advantage of the higher expressiveness

of Bayesian networks.

2.4. Fault Trees

Fault trees are commonly used in engineering science for dependability analysis. This

section briefly and informally introduces fault trees and describes how fault trees can

be represented with Bayesian networks. Formal definitions are given in [Vesely∗81,

Ireson88, DugTri89, RolMor90, Comm06], for example.

event
name

(a)

intermediate
event name

(b) (c) (d)

k:n

(e)

Figure 2.6.: Basic Symbols of a Fault Tree

In principle, a (static) fault tree is a graphical representation of a boolean logical for-

mula consisting of basic events (Figure 2.6(a)), intermediate events (Figure 2.6(b)),

OR-gates (Figure 2.6(c)), AND-gates(Figure 2.6(d)), and “k out of n”-gates (Fig-

ure 2.6(e)), which build a kind of a tree.

According to [PorBob99], fault trees have the following properties: The so-called

“top event”, which is the root node, represents a failure of the complete modeled

system or of a subsystem. Usually, the top event is represented as an intermediate

event. Intermediate events always have exactly one child which can be a gate or a

basic event. Gates have at least two children which must be intermediate or basic

events. A “k out of n”-gate always has exactly n children. The logical formula is

expressed by the nesting of the gates and events. The leaves of the tree always are

basic events, which represent certain components of the (sub)system. Basic events
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2. Preliminaries

are binary events, either valued true, meaning the component is faulty, or false,

meaning the component works properly.

AND-gates return true if every input event is true. Else they return false. So,

for an AND-gate to be faulty all input components/gates have to be faulty, too. OR-

gates return true if at least one input event is true, that means only one faulty

input component/gate suffices to cause an OR-gate to be faulty. Only if all input

components/gates are functional the OR-gate is functional, too. The result of a “k

out of n”-gate is true if at least k input events are true. Otherwise it returns false.

Remark 2.13

As mentioned above, fault trees consisting of the symbols shown in Figure 2.6 are

called static fault trees. There are also so-called “dynamic fault trees” which are

more expressive than static ones, as additional gates and dependencies are defined.

But in this thesis, only static fault trees are of interest. �

Example 2.13 (Multiprocessor System, cf. [MalTri95])

A very popular example is the fault tree model of a fault tolerant multiprocessor

system given in [MalTri95]. Figure 2.7 shows the corresponding fault tree.

The modeled multiprocessor system consists of two redundant subsystems, each

consisting of a processor P1(P2), a local memory M1(M2) and a (mirrored) disk array

D11, D12 (D21, D22). The subsystems are linked by a bus N and connected to a global

memory M3. The whole system is operational if at least one subsystem and the

bus works. A subsystem is operational if the processor works and at least one disk

is functional and the local or the global memory works. In the fault tree, this is

expressed as follows:

G1: If the bus N or G2 fails, then the whole system fails.

G2: If the first subsystem (G3) and the second subsystem (G4) fail, then G2 is faulty,

too.

G3: If the second local disk array (G5) or the memory for the second subsystem (G6)

or the second processor fails, then G3 is faulty, too.

G4: If the first local disk array (G7) or the memory for the first subsystem (G8) or

the first processor fails, then G4 is faulty, too.
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2.4. Fault Trees

D21 D22 P2 M2 M3 M1 P1 D12 D11 N

G5 G6 G8 G7

G3 G4

G2

G1

Figure 2.7.: Multiprocessor System Fault Tree

G5: If disk D21 and disk D22 fail, then the second disk array (G5) is faulty, too.

G6: If the local memory M2 and the global memory M3 fail, then the memory for

the second subsystem is faulty, too.

G7: If disk D11 and disk D12 fail, then the first disk array (G7) is faulty, too.

G8: If the local memory M1 and the global memory M3 fail, then the memory for

the first subsystem is faulty, too.

The corresponding boolean logical formula can be derived straight forward:

G1 =
((

(D21 ∧D22)∨ P2 ∨ (M2 ∧M3)
)
∧
(
(M1 ∧M3)∨ P1 ∨ (D11 ∧D12)

))
∨N.

Note that M3 appears twice which will be of interest later on. �
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2. Preliminaries

Until now, the given fault tree represents causal dependencies of different events

with respect to the functionality of the corresponding components. By adding proba-

bilistic data and making some basic assumptions on the independence of basic events,

the fault tree model can be used to calculate the probability of the top event, that

means the probability that the whole system fails. This is described in the next

section.

2.4.1. Calculating Probabilities

By assigning probabilities of a component’s failure to the corresponding basic events,

a fault tree representation can be used to calculate the failure probability of the top

event, that means the probability of a failure of the complete (sub)system. Thereby,

basic events are always assumed to be stochastically independent. Basically, the

probabilities for intermediate events are calculated as follows:

P (A ∧B) = P (A) · P (B) (AND-gate)

P (A ∨B) = P (A) + P (B)− P (A) · P (B) (OR-gate)

Unfortunately, considering OR-gates with more than two inputs, this formula gets

more complex. In addition, similar to Bayesian networks, problems with loops can

occur, because the failure probability of one basic event (in Example 2.13 M3) affects

the top event multiply (in Example 2.13 via G6 → G3 → G2 and G8 → G4 → G2).

Thus, the boolean formula as the logical representation of the fault tree has to be

made stochastically independent. This can be done by so-called “cutset generation”

or by binary decision diagrams (BDDs) (see [DoyDug95, Dugan01]). The latter is

now demonstrated by continuing Example 2.13:

Example 2.14 (Multiprocessor System: Binary Decision Diagram)

A binary decision diagram is a tree which represents a logical formula. Its intermediate

nodes are binary events – in case of a fault tree representation basic events –, its leaves

are usually two nodes 0 (representing a functional system) and 1 (representing a faulty

system). As the events are binary, every event E has exactly two outcomes: false

(functional, denoted ¬E) and true (faulty, denoted E). The outgoing edges of a

node are related to its outcomes. Usually, the left outgoing edge means false and
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0

P1

D11

D12

M1

M3

1

(a)

P2

D21

D22

M2

0

M3

1

(b)

Figure 2.8.: Binary Decision Diagrams for the two Subsystems

the right outgoing edge means true.

The binary decision diagram of a (sub)system is generated bottom up by recursively

connecting partial diagrams according to the function of the gate connecting these

parts. This is demonstrated for example in [Dugan01].

Figure 2.8 shows the binary decision diagrams corresponding to the two subsystems.

To generate stochastically independent components of the boolean formula (which is

needed to calculate probabilities), every possible path starting at the root node and

leading to the fault event 1 is traced. In Figure 2.8(a), for example, there are four

distinct paths (see Figure 2.9):

• P1 → 1 (see Figure 2.9(a)),

• ¬P1 → D11 → D12 → 1 (see Figure 2.9(b)),

• ¬P1 → D11 → ¬D12 →M1 →M3 → 1 (see Figure 2.9(c)),

• ¬P1 → ¬D11 →M1 →M3 → 1 (see Figure 2.9(d)).

The probability P (G4) that the first subsystem fails can then be determined as
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0

P1

D11

D12

M1

M3

1

(a)

0

P1

D11

D12

M1

M3

1

(b)

0

P1

D11

D12

M1

M3

1

(c)

0

P1

D11

D12

M1

M3

1

(d)

Figure 2.9.: Paths to the Fault Node of Subsystem 1

follows:

P (G4) =P (P1)

+ P (¬P1) · P (D11) · P (D12)

+ P (¬P1) · P (D11) · P (¬D12) · P (M1) · P (M3)

+ P (¬P1) · P (¬D11) · P (M1) · P (M3).

Figure 2.10 shows the complete binary decision diagram for the multiprocessor

system, which was built by applying the rules described in [Dugan01]. The loop

contained in the fault tree causes M3 to appear twice in the binary decision diagram.

Hence, it is possible to find contradictory paths through the diagram. The sequence
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N

P2

D21

D22

M2

0

M3

P1

D11

D12

M1

M3

1

Figure 2.10.: Binary Decision Diagram for the complete Multiprocessor System

¬N → ¬P2 → ¬D21 → M2 → M3 → ¬P1 → ¬D11 → M1 → ¬M3, for example, can

be located as a path in the diagram but is not valid because it contains M3 as well

as ¬M3. On the one hand, this could be regarded as a disadvantage of the binary

decision diagram representation. On the other hand, the primary purpose of the

diagram is to find paths leading to the fault node 1 and therefore it is essential that

those paths are consistent — which they are in this case. There is no contradictory

path from the root node to the fault node.

Obviously, the more nodes are contained in the diagram, the more distinct paths

from the root node to the fault node 1 can be found. In this case, there are 17

distinct paths, which lead to the following formula to calculate the probability for a
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non-operational system P (G1):

P (G1) = P (N)

+ P (¬N) · P (P2) · P (P1)

+ P (¬N) · P (P2) · P (¬P1) · P (D11) · P (D12)

+ P (¬N) · P (P2) · P (¬P1) · P (D11) · P (¬D12) · P (M1) · P (M3)

+ P (¬N) · P (P2) · P (¬P1) · P (¬D11) · P (M1) · P (M3)

+ P (¬N) · P (¬P2) · P (D21) · P (D22) · P (P1)

+ P (¬N) · P (¬P2) · P (D21) · P (D22) · P (¬P1) · P (D11) · P (D12)

+ P (¬N) · P (¬P2) · P (D21) · P (D22)

· P (¬P1) · P (D11) · P (¬D12) · P (M1) · P (M3)

+ P (¬N) · P (¬P2) · P (D21) · P (D22)

· P (¬P1) · P (¬D11) · P (M1) · P (M3)

+ P (¬N) · P (¬P2) · P (D21) · P (¬D22) · P (M2) · P (M3) · P (P1)

+ P (¬N) · P (¬P2) · P (D21) · P (¬D22) · P (M2) · P (M3)

· P (¬P1) · P (D11) · P (D12)

+ P (¬N) · P (¬P2) · P (D21) · P (¬D22) · P (M2) · P (M3)

· P (¬P1) · P (D11) · P (¬D12) · P (M1) · P (M3)

+ P (¬N) · P (¬P2) · P (D21) · P (¬D22) · P (M2) · P (M3)

· P (¬P1) · P (¬D11) · P (M1) · P (M3)

+ P (¬N) · P (¬P2) · P (¬D21) · P (M2) · P (M3) · P (P1)

+ P (¬N) · P (¬P2) · P (¬D21) · P (M2) · P (M3)

· P (¬P1) · P (D11) · P (D12)

+ P (¬N) · P (¬P2) · P (¬D21) · P (M2) · P (M3)

· P (¬P1) · P (D11) · P (¬D12) · P (M1) · P (M3)

+ P (¬N) · P (¬P2) · P (¬D21) · P (M2) · P (M3)

· P (¬P1) · P (¬D11) · P (M1) · P (M3).

Considering that the modeled multiprocessor system is not that complex, it is

obvious that real-life system models require adequate tool support.
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Variable Failure Probability
N 0.00001

P1, P2 0.0025
M1,M2,M3 0.00015

D11, D12, D21, D22 0.32968

Table 2.6.: Failure Probabilities of the Multiprocessor System Components

Assume the prior probabilities of the basic events as given in Table 2.14. The values

are chosen according to [Bobbio∗99]. Assigning these values to the variables in the

above formula leads to the probability

P (G1) = 0.0123125023 ≈ 0.01231

for a faulty system. �

The next section describes how to translate fault trees into Bayesian networks. By

that the higher expressiveness of Bayesian networks can be used to evaluate more

complex scenarios than the fault tree approach sketched above could. Additionally,

for example the conditioning method can be used to eliminate loops in the Bayesian

network representation of the fault tree which makes binary decision diagrams need-

less.

2.4.2. Translating Fault Trees into Bayesian Networks

Fault trees can be translated into Bayesian networks straightforward. The mapping

rules are described according to [PorBob99, Bobbio∗99]:

• Each basic event is represented by a root node in the Bayesian network. The

corresponding conditional probability table contains the prior probabilities of

the basic event.

• Each gate is represented by an (intermediate) node in the Bayesian network.

• The nodes in the Bayesian network are connected like the corresponding basic

events and gates are connected in the fault tree.
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• The conditional probability tables of the Bayesian network nodes corresponding

to gates are set as follows:

– If the node corresponds to an AND-gate, its conditional probability table

returns true with probability 1.0, if and only if all input variables are true,

else it returns false with probability 1.0 (and true with probability 0.0).

– If the node corresponds to an OR-gate, its conditional probability table

returns false if and only if all input variables are false, else it returns

true.

– If the node corresponds to a “k out of n”-gate, its conditional probability

table returns true, if at least k input variables are true, else it returns

false.

• The node corresponding to the top event of the fault tree is labeled as the Fault

node.

The translation is now demonstrated by continuing the Multiprocessor System ex-

ample.

M3M2P2D22D21 M1 P1 D12 D11 N

G5∧ G6∧ G8 ∧ G7∧

G3∨ G4∨

G2∧

G1

Fault

∨

Figure 2.11.: Bayesian Network for the Multiprocessor System
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Example 2.15 (Multiprocessor System: Bayesian Network)

Figure 2.11 (cf. [Bobbio∗99]) shows the Bayesian network representing the fault tree

of Example 2.13. Due to lack of space, the conditional probability tables are not

annotated in the figure but they are listed in Table 2.7. Obviously, the entries in

the conditional probability tables are trivial (either 1.0 or 0.0). As additionally every

variable is binary, this kind of Bayesian network is called a binary Bayesian network.

By initializing the Bayesian network, the system fault probability can be calculated.

This is best done with the help of a Bayesian network tool. For this thesis, the free

available tool “BNJ (Bayesian Network tools in Java)” [Hsu04] was used.2 It computes

P (G1) = 0.012, which – considering the accuracy of the displayed results – is equal

to the result determined by the binary decision diagram method. �

Remark 2.14

Since the Bayesian network shown in Figure 2.11 is binary, the corresponding inter-

pretation of the conditional probability tables is annotated at the gate nodes. These

annotations are not part of the Bayesian network syntax; it is just to ease the under-

standing of the Bayesian network and to show the analogy to the fault tree. �

2The XML-code of the network for this example is listed in appendix A. Since it is coded in the
so-called “Bayesian Networks Interchange Format (BIF)”, it should be compatible to all tools
supporting this standard format.
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Dij 1 0
0.32968 0.67032

Pi 1 0
0.0025 0.9975

Mk 1 0
0.00015 0.99985

N 1 0
0.00001 0.99999

i, j ∈ {1, 2}, k ∈ {1, 2, 3}

G1

G2 N 1 0
1 1 1.0 0.0
1 0 1.0 0.0
0 1 1.0 0.0
0 0 0.0 1.0

G2

G3 G4 1 0
1 1 1.0 0.0
1 0 0.0 1.0
0 1 0.0 1.0
0 0 0.0 1.0

G3

P2 G5 G6 1 0
1 1 1 1.0 0.0
1 1 0 1.0 0.0
1 0 1 1.0 0.0
1 0 0 1.0 0.0
0 1 1 1.0 0.0
0 1 0 1.0 0.0
0 0 1 1.0 0.0
0 0 0 0.0 1.0

G4

P1 G7 G8 1 0
1 1 1 1.0 0.0
1 1 0 1.0 0.0
1 0 1 1.0 0.0
1 0 0 1.0 0.0
0 1 1 1.0 0.0
0 1 0 1.0 0.0
0 0 1 1.0 0.0
0 0 0 0.0 1.0

G5

D21 D22 1 0
1 1 1.0 0.0
1 0 0.0 1.0
0 1 0.0 1.0
0 0 0.0 1.0

G6

M2 M3 1 0
1 1 1.0 0.0
1 0 0.0 1.0
0 1 0.0 1.0
0 0 0.0 1.0

G7

D11 D12 1 0
1 1 1.0 0.0
1 0 0.0 1.0
0 1 0.0 1.0
0 0 0.0 1.0

G8

M1 M3 1 0
1 1 1.0 0.0
1 0 0.0 1.0
0 1 0.0 1.0
0 0 0.0 1.0

Table 2.7.: Conditional Probability Tables of the Bayesian Network
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Nets

This chapter introduces the first class of probability propagation nets which are suited

to represent probabilistic Horn abduction. Their structure is defined in section 3.1.

Section 3.2 explains how the probabilities for goal variables can be calculated. A first

folding of these low-level probability propagation nets is shown in section 3.3.

3.1. Petri Net Representation of Probabilistic Horn

Abduction

A considerable limitation of the canonical Petri net representation of Horn formulas

with respect to probabilistic Horn abduction is that the probabilities are not directly

integrated in the Petri net representation. If they were contained in the Petri net

appropriately, it would be possible to calculate probabilities of explanations by simu-

lating the corresponding t-invariants. In the lack of oil example, this can be achieved

as follows:

Example 3.1 (Lack of Oil: Motivation of Net Extensions)

Consider explanation ε5 for acceleration delayed (acde). The Petri net representa-

tion of the corresponding invariant I5 is shown in Figure 3.1(a). For the calculation

of P (ε5) = P (lo ∧ igno) it would be convenient to have the following sequence of

markings:

1. M with M(lo) = M(igno) = M(acde) = ∅ (empty marking)

2. M ′(lo) = (P (lo)) = (Pα(t16)) = (0.4);

M ′(igno) = (P (igno)) = (Pα(t13)) = (0.9);
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acde

lo igno

t16 t13

t7

t18

(a)

acde

lo igno

t16

(0.4)

t13

(0.9)

t7

(λlo · λigno · 0.8)

(λigno)(λlo)

t18

(λacde)

(b)

Figure 3.1.: Invariant I5 of Example 2.8 as Part of the Canonical Net Representation
and the corresponding Probability Propagation Net

M ′(acde) = ∅ after one subsequent firing of t16 and t13

3. M ′′(lo) = M ′′(igno) = ∅
M ′′(acde) = (P (ε5)) = (P (lo)·P (igno)·P (acde | lo∧igno)) = (0.4·0.9·Pα(t7)) =

(0.4 · 0.9 · 0.8) = (0.288) after one subsequent firing of t7

4. M ′′′ = M (empty marking) after one subsequent firing of t18.

To get all that in accordance with the notation of a suitable higher level Petri net

(predicate/transition net notation in this case, cf. [GenLau79, GenLau83]) the net

must be completed as shown in Figure 3.1(b). �

The following definition (cf. [LauPin05, LaPhPi06]) describes this transformation

and thus the representation of probabilistic Horn formulas with a new class of Petri

nets.
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b

τ

(Pα(τ))

(a)

b

τ

(ξ1 · . . . · ξm · Pα(τ))

a1 am

(ξ1) (ξm)

. . .

(b)

τ

a1 am

(ξ1) (ξm)

. . .

(c)

Figure 3.2.: Arc Label Function Types for a Probability Propagation Net

Definition 3.1 (Low-Level Probability Propagation Net)

Let α be a Horn formula and τ = ¬a1 ∨ · · · ∨ ¬am ∨ b a Horn clause of α with

¬A = {¬a1, . . . ,¬am}, B = {b};
PN α = (Sα, Tα, Fα, Pα, Lα) is a (low-level) probability propagation net (PPN) for α

iff

• Nα = (Sα, Tα, Fα) is the canonical net representation of α,

• Pα is a probability function for α,

• Lα is an arc label function for α where for τ the following holds:

– if τ is a fact clause (τ ∈ F(α),¬A = ∅, B 6= ∅):

Lα(τ, b) = (Pα(τ)), (τ, b) ∈ Fα (see Figure 3.2(a))

– if τ is a rule clause (τ ∈ R(α),¬A 6= ∅, B 6= ∅):

Lα(ai, τ) = (ξi) for 1 ≤ i ≤ m

Lα(τ, b) = (ξ1 · · · ξm · Pα(τ))

where the ξi are variables ranging over [0, 1] (see Figure 3.2(b))

– if τ is a goal clause (τ ∈ G(α),¬A 6= ∅, B = ∅):

Lα(ai, τ) = (ξi) for 1 ≤ i ≤ m (see Figure 3.2(c)).
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3.1. Petri Net Representation of Probabilistic Horn Abduction

Example 3.2 (Lack of Oil: Probability Propagation Net)

Figure 3.3 shows the low-level probability propagation net of Example 2.4. It combines

the net Nα of Figure 2.2 and the probabilities of Table 2.4. �

Basically, the canonical net representation of the Horn formula is extended by

specific arc labels. To understand the functionality, the marking of probability prop-

agation nets has to be defined.

Definition 3.2 (Probability Propagation Net Marking)

Let α be a Horn formula and PN α = (Sα, Tα, Fα, Pα, Lα) a probability propagation

net for α; let W be a finite subset of [0, 1], and let (W ) := {(w) | w ∈ W} be the

corresponding set of 1-tuples; let be τ ∈ Tα with ·τ = {s1, . . . , sm}, τ· = {sm+1} (that

means τ = ¬s1 ∨ · · · ∨ ¬sm ∨ sm+1);

then M : Sα →M((W )) is a marking of PN α ;

τ is enabled by M for {(w1), . . . , (wm)} iff (w1) ∈M(s1), . . . , (wm) ∈M(sm),

the follower marking M ′ of M after one firing of τ for {(w1), . . . , (wm)} is given by

M ′(s1) = M(s1)− (w1),

...

M ′(sm) = M(sm)− (wm),

M ′(sm+1) = M(sm+1) + (w1 · w2 . . . wm · Pα(τ));

if (ξ1), . . . , (ξm) are the arc labels of (s1, τ), . . . , (sm, τ) ∈ Fα, one may write

M ′(s1) = M(s1)− (ξ1), . . . ,M
′(sm) = M(sm)− (ξm),

M ′(sm+1) = M(sm+1) + (ξ1 . . . ξm · Pα(τ)),

if the ξi are bound by the corresponding wi, 1 ≤ i ≤ m.

Example 3.3 (Lack of Oil: Probability Propagation Net Operation)

The prior probabilities of the source variables are annotated as constant arc labels

connecting the boundary transitions t13 . . . t16 and their postset places lo, nolo, igir,

igno. The variables inscribed on the outgoing arcs of these places bind tuples located

on the places to the variables lo, nl, ir, in, thus representing the probability for ’lack
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3. Low-Level Probability Propagation Nets

of oil’, ’no lack of oil’, ’ignition irregular’, and ’ignition normal’, respectively.

Transitions t1 . . . t12 are rule transitions. Their outgoing arcs weight products of

the input variables lo, nl, ii, in with the probabilities of the corresponding rules and

put the result on the postset places owon, owof, acde, acno.

After binding these results to the variables on, of, ad, an, the boundary transitions

t17 . . . t20 remove them from their respective input place. �

In analogy to the canonical net representation of Horn formulas, t-invariants play an

important role to structure probability propagation nets and to calculate probabilities

of certain events or explanations. This can easily be demonstrated by simulating the

t-invariants as shown in the next section.

3.2. Calculating Probabilities by Simulation

To calculate the probability of a goal variable, all t-invariants containing the cor-

responding goal transition in their support have to be simulated. Basically, the

single results (one-tuples being consumed by the goal transition to complete the

0-reproduction of the empty marking) represent single probabilities related to the

specific constellation of the input parameters. If the t-invariants used for the calcu-

lation do not contain any loop, the single probabilities can be summed up to get the

probability value of the goal variable. This is demonstrated in Example 3.4. In case

there is at least one loop in the set of used t-invariants, the double effect of one or

more input variable has to be eliminated as shown in Example 3.5.

Example 3.4 (Lack of Oil: Simulation of T-Invariants)

The probabilities of Example 2.8 will now be calculated by simulating the t-invariants

I5, I6, I7, I8. For example, simulating I5 yields the maximal probability P (ε5) = 0.288:

1. Firing t13 and t16 yields tuples (0.9) and (0.4) on places igno and lo, respectively.

2. Firing t7 removes these tuples and puts the tuple (0.4 · 0.9 · 0.8) = (0.288) on

place acde.

3. From there, it is removed by t18, thus completing the reproduction of the empty

marking by simulating I5.
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3.2. Calculating Probabilities by Simulation

Altogether,

I5 : P (ε5) = 0.9 · 0.4 · 0.8 · 1.0 = 0.288

I6 : P (ε6) = 0.9 · 0.6 · 0 · 1.0 = 0.0

I7 : P (ε7) = 0.1 · 0.4 · 1.0 · 1.0 = 0.04

I8 : P (ε8) = 0.1 · 0.6 · 0.6 · 1.0 = 0.036

are the simulation results of the four t-invariants, which are in accordance with the

values calculated by using the canonical net representation in Example 2.8 and the

results of probabilistic Horn abduction in [PorTor97], as well. �

A major problem, the “loopiness”, arises from the fact that the conjunction operator

∧ is idempotent (a ∧ a = a) but the corresponding product of probabilities is not

idempotent in general:

P (a) · P (a)

= P (a) if P (a) = 1 or P (a) = 0

6= P (a) else

The following example shows a case of loopiness and a method to get over that

difficulty.

Example 3.5 (Lack of Oil: Loopiness)

To calculate the probability of acde ∧ owon, the probability propagation net of Fig-

ure 3.3 is modified in several steps (cf. [LauPin07]):

• transitions (goal clauses) t18 = ¬acde and t20 = ¬owon are unified to one

transition (goal clause) t20 = ¬acde ∨ ¬owon = ¬(acde ∧ owon);

• the transitions t19 = ¬owof and t17 = ¬acno are omitted because they are not

needed any more; as a consequence, also t9, t10, t1, t2, t5, t6 are no longer needed.

• all rule transitions t where Pα(t) = 0 are omitted: t11, t3;

• t15 and t4 are omitted because the only t-invariant they belong to contains a

factual contradiction: t16 (lack of oil) and t15 (no lack of oil).
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3. Low-Level Probability Propagation Nets

owon acde

lo igir igno

t16

lack of oil

(0.4)

t14

ignition irregular

(0.1)

t13

ignition normal

(0.9)

t7

(lo · in · 0.8)

(igno)

(lo)

t8

(lo · ii · 1.0)

(igir)
(lo)

t12

(lo)

(lo · 1.0)

t20

oil warning
light on

(ad)(on)

Figure 3.4.: Probability Propagation Net PN α of Example 3.5

t5 t7 t8 t12
t13
igno

t14
igir

t16
lo

t20
¬owon

I1 1 1 1 2 1
I2 1 1 1 2 1

Table 3.1.: T-invariants of PN α (Example 3.5)

The result is the probability propagation net PN α shown in Figure 3.4. From a

structural point of view, this net is well suited for solving the given problem because its

set of t-invariants (see Table 3.1) is reduced to the relevant ones. From a probabilistic

point of view, it stands out that the net is loopy. On the other hand, the net is optimal

to apply a variation of Pearl’s conditioning method ([Pearl88], see section 2.3.3).

In contrast to his technique to cut the loops, in the Petri net representation there is

no need to cut the net because of the t-invariant structure that forces to fire t16 twice

in both t-invariants (see Table 3.1). This, in principle, leads to a double effect of (lo)

when t20 fires (via owon and via acde). For Lα(t16, lo) = (P (t16)) = (1.0), however,
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3.3. Folding Low-Level Probability Propagation Nets

this effect is neutralized. So, by simulating or simply multiplying the probabilities,

the following temporary values are calculated for the t-invariants:

I1 :Pα(t16)
2 · Pα(t14) · Pα(t12) · Pα(t8) · Pα(t20) = 0.1

I2 :Pα(t16)
2 · Pα(t13) · Pα(t12) · Pα(t7) · Pα(t20) = 0.72

Finally, both values have to be multiplied by the weight 0.4 which is the original value

of Pα(t16):

P (acde ∧ owon) = 0.04 w.r.t. I1

P (acde ∧ owon) = 0.288 w.r.t. I2

These values are also the probabilities for the two explanations:

ε1 : {lo, igir} = lo ∧ igir, P (ε1) = 0.04

ε2 : {lo, igno} = lo ∧ igno, P (ε2) = 0.288.

Finally, P (acde ∧ owon) = 0.04 + 0.288 = 0.328. �

3.3. Folding Low-Level Probability Propagation Nets

In low-level probability propagation nets every fact, rule, and goal clause of the un-

derlying Horn formula is represented by an own transition. This structure can be

simplified by a folding of corresponding places and transitions and by transferring the

complexity of the original graph structure to the labels, markings and the firing rule:

Definition 3.3 (Higher-Level Probability Propagation Net)

Let α be a Horn formula and let PN α = (Sα, Tα, Fα, Pα, Lα) be the corresponding

low-level probability propagation net. Let A(α) = {a1, . . . , an, ā1, . . . ān} be the set of

atoms of α where ai is the complementary atom of āi and vice versa for i = 1, . . . , n.

• Define a partial order on all atoms in A(α) such that for every set {a, ā} of

complementary atoms (see Definition 2.12) either a < ā or ā < a holds.

• For every pair (ai, āi) of complementary atoms ai, āi ∈ A(α) let a′i be a new
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3. Low-Level Probability Propagation Nets

variable, whose values are pairs (ai, āi) with ai < āi with respect to the partial

order defined above.

• Let S ′α := {a′i | 1 ≤ i ≤ n} be the set of the new variables created in the

previous step.

• Let fA : A(α)→ S ′α be the corresponding mapping, such that fA(ai) = fA(āi) =

a′i.

• For every τi ∈ C(α), τi = ¬a1 ∨ · · · ∨ ¬am ∨ b let τ ′i := ¬fA(a1) ∨ · · · ∨
¬fA(am)∨fA(b) = ¬a′1∨· · ·∨¬a′m∨b′ be the clause which results from applying

the mapping fA to every atom of τi.

• Let T ′α := {τ ′i | τi ∈ C(α)} be the set of new clauses which results from applying

the mapping fA to every atom of every clause τi ∈ C(α).

• Let fC : C(α) → T ′α be the corresponding mapping for the clauses, such that

fC(τi) = τ ′i . If τi is a fact (rule, goal) clause, τ ′i is called a fact (rule, goal)

clause, too.

• Let F ′α := {(a′i, τ ′j) | (ai, τj) ∈ Fα ∧ a′i = fA(ai) ∧ τ ′j = fC(τj)} ∪ {(τ ′i , a′j) |
(τi, aj) ∈ Fα ∧ τ ′i = fC(τi) ∧ a′j = fA(aj)} be the set of edges which results from

applying fA to the atoms and fC to the clauses of Fα.

• Let L′α be a new arc label function for α where for every clause τ ′ ∈ T ′α, τ ′ =

¬a′1 ∨ · · · ∨ ¬a′m ∨ b′, a′1, . . . , a
′
m, b

′ ∈ S ′α the following holds:

– if τ ′ is a fact clause and b′ = (b, b̄), b < b̄:

L′α(τ ′, b′) =
(
Pα(b), Pα(b̄)

)
,

– if τ ′ is a rule clause:

L′α(a′i, τ
′) = (ξi) for 1 ≤ i ≤ m

L′α(τ ′, b′) = (ξ1 × · · · × ξm) ·Mτ ′

where the ξi are pairs ranging over ([0, 1]× [0, 1]) and Mτ ′ is a (2m × 2)-
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3.3. Folding Low-Level Probability Propagation Nets

matrix built as follows:

Mτ ′ :=



Pα (¬a1 ∨ · · · ∨ ¬am ∨ b) Pα
(
¬a1 ∨ · · · ∨ ¬am ∨ b̄

)
Pα (¬a1 ∨ · · · ∨ ¬ām ∨ b) Pα

(
¬a1 ∨ · · · ∨ ¬ām ∨ b̄

)
...

...

Pα (¬ā1 ∨ · · · ∨ ¬am ∨ b) Pα
(
¬ā1 ∨ · · · ∨ ¬am ∨ b̄

)
...

...

Pα (¬ā1 ∨ · · · ∨ ¬ām ∨ b) Pα
(
¬ā1 ∨ · · · ∨ ¬ām ∨ b̄

)


for a′i = (ai, āi), ai < āi, 1 ≤ i ≤ m and b′ = (b, b̄), b < b̄,

– if τ ′ is a goal clause:

L′α(a′i, τ
′) = (ξi) for 1 ≤ i ≤ m.

Then

FPN α := (S ′α, T
′
α, F

′
α, Pα, L

′
α)

is a folding of PN α and is called a higher-level probability propagation net.

Remark 3.1

This definition assumes that the dependencies between fact and goal clauses are com-

pletely described by the rules, such that the matrix Mτ ′ can always be constructed.

In fact, probabilistic Horn formulas used in probabilistic Horn abduction should meet

this requirement. If the set of rule clauses is incomplete, the missing probabilities

must be added. For a rule clause ¬a1 ∨¬a2 ∨ b of a Horn formula α for instance, the

equation

Pα(¬a1 ∨ ¬a2 ∨ b) = 1− Pα(¬a1 ∨ ¬a2 ∨ b̄)

must hold. �

Example 3.6 (Lack of Oil: Folded Probability Propagation Net)

The results of Example 2.8 can be calculated in a simpler way by folding the probabil-

ity propagation net of Example 3.4 according to Definition 3.3. Figure 3.5 shows the
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3. Low-Level Probability Propagation Nets

lo ii

acdeowon

tad

acceleration
delayed

ad

towon

oil warning
light on

owon

tlo

lack of oil

(0.4, 0.6)

tii

ignition irregular

(0.1, 0.9)

tr1

lo

ii

ad = (lo× ii) ·


1.0 0.0
0.8 0.2
0.6 0.4
0.0 1.0


tr2

lo

owon = lo ·
(

1.0 0.0
0.0 1.0

)

Figure 3.5.: Folded Probability Propagation Net FPN α of Example 3.6

PN α FPN α

lo, nolo lo
igir, igno ii
owon, owof owon
acde, acno ad
t16, t15 tlo
t14, t13 tii
t20, t19 towon
t18, t17 tad
t1, . . . , t8 tr1
t9, . . . , t12 tr2

Table 3.2.: Variable Mapping of the Folded Probability Propagation Net

higher-level probability propagation net FPN α , which is a folding of the probability

propagation net PN α depicted in Figure 3.3. The variable mapping of the folding is

shown in Table 3.2. �
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3.3. Folding Low-Level Probability Propagation Nets

After defining the structure of higher-level probability propagation nets, their mark-

ing and the corresponding firing rule have to be defined, too:

Definition 3.4 (Higher-Level Probability Propagation Net Marking)

Let α be a Horn formula and FPN α = (S ′α, T
′
α, F

′
α, Pα, L

′
α) a higher-level proba-

bility propagation net for α; let W be a finite subset of [0, 1] and let (W ) :=

{(w1, w2) | w1, w2 ∈ W} be the corresponding set of pairs; let be τ ∈ T ′α with

·τ = {s1, . . . , sm}, τ· = {sm+1} (that means τ = ¬s1 ∨ · · · ∨ ¬sm ∨ sm+1);

then M : S ′α →M ((W )) is a marking of FPN α ;

τ is enabled by M for {(w1), . . . , (wm)} iff (w1) ∈M(s1), . . . , (wm) ∈M(sm),

the follower marking M ′ of M after one firing of τ for {(w1), . . . , (wm)} is given by

• M ′(s1) = M(s1)− (w1),

• M ′(s2) = M(s2)− (w2),

• . . .

• M ′(sm) = M(sm)− (wm),

• If τ is a fact transition and the arc label of (τ, sm+1) is (p1, p2):

M(sm+1) + (p1, p2),

• If τ is a rule transition and Mτ is the corresponding matrix (cf. Definition 3.3):

M ′(sm+1) = M(sm+1) + ((w1 × w2 × · · · × wm) ·Mτ ) ,

• If τ is a goal transition, there is no sm+1 because τ· = ∅.

If (ξ1), . . . , (ξm) are the arc labels of (s1, τ), . . . , (sm, τ) ∈ Fα and if the ξi are bound

by the corresponding wi, 1 ≤ i ≤ m, one may write

M ′(s1) = M(s1)− (ξ1),

...

M ′(sm) = M(sm)− (ξm),

M ′(sm+1) = M(sm+1) + (p1, p2)
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for the firing of fact transitions with p1, p2 ∈ W being the values of the corresponding

arc label and

M ′(s1) = M(s1)− (ξ1),

...

M ′(sm) = M(sm)− (ξm),

M ′(sm+1) = M(sm+1) + ((ξ1 × · · · × ξm) ·Mτ )

for the firing of rule transitions with Mτ being the corresponding matrix and

M ′(s1) = M(s1)− (ξ1),

...

M ′(sm) = M(sm)− (ξm)

for the firing of goal transitions.

This definition of markings and the firing rule for higher-level probability propa-

gation nets will now be applied to the folded net modeling the Lack of Oil example.

It will be shown how the probabilities are cumulatively calculated by the scalar and

matrix products of the arc labels.

In higher-level probability propagation nets probabilities are again calculated by

simulation of appropriate t-invariants and again, these t-invariants are related to the

underlying p/t-net and thus trivial to find.

Example 3.7 (Lack of Oil: Simulation of the Higher-Level Net)

Consider the folded probability propagation net shown in Figure 3.5. Assume that

the initial marking M0 is the empty marking.

After firing of tlo and tii, the marking changed to M1 with

M1(p) =


(0.4, 0.6) if p = lo

(0.1, 0.9) if p = ii

∅ else.
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If tr1 fires, lo and ii are cleared and ad = (lo× ii) ·


1.0 0.0

0.8 0.2

0.6 0.4

0.0 1.0

 is put on acde;

(lo× ii) = ((0.4, 0.6)× (0.1, 0.9)) = (0.04, 0.36, 0.06, 0.54)

ad = (0.04, 0.36, 0.06, 0.54) ·


1.0 0.0

0.8 0.2

0.6 0.4

0.0 1.0


= (0.04 + 0.288 + 0.036 + 0.0, 0.0 + 0.072 + 0.024 + 0.54)

= (0.364, 0.636) = (P (acde), P (¬acde)) = (P (acde), P (acno))

Again, the values coincide with the values calculated

• by probabilistic Horn abduction (see [PorTor97]),

• by canonical Petri net representation of the Horn formula enhanced with the

corresponding probability function (see Example 2.8),

• and by simulation of the corresponding low-level probability propagation net

t-invariants (see Example 3.4).

Note that these values have been calculated by one pass through the net, that means

in this case the simulation of one t-invariant suffices to calculate the probability for

a delayed acceleration (and a normal acceleration, as well). �

In general, because of the folding, the calculation of probabilities for goal clauses

in higher-level probability propagation nets requires less simulation steps than in the

equivalent low-level probability propagation nets. The reason for that is the folding

of rule clauses belonging together and their probabilities being represented in the

matrix of the corresponding label, such that the single components’ probabilities are

calculated and summed up by the scalar and matrix product in one simulation step.

On the one hand, one may consider it a disadvantage that – in contrast to the

low-level probability propagation net representation – single explanations for a goal
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cannot be found or evaluated in this net representation, because only accumulated

probabilities are calculated. On the other hand, the simplification of the net structure

caused by the folding has its advantages, too. Besides the single pass calculation of

probabilities, it is easier to find t-invariants as the net structure usually is much

smaller.

By the folding rules described above and by the extended marking concept and

firing rule not only probabilistic Horn formulas can be modeled. The approach can

also be transferred to the world of Bayesian networks, such that so-called “high-level

probability propagation nets” model the complete λ− and π−message propagation

in Bayesian networks. The next chapter describes how to represent Bayesian net-

works with probability propagation nets and shows the propagation process for the

initialization phase and when evidence is brought into the system.
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Propagation Nets

Low-level probability propagation nets are suited to model propagations of single

probabilities. In order to model more complex propagations such as π- and λ-messages

in Bayesian networks, the probability propagation nets can be lifted to a higher level

by special foldings. Instead of propagating single probabilities along the arcs, tuples

can be propagated. Instead of multiplying random variables with single constants (for

example conditional probabilities), the tuples being propagated can be multiplied

with matrices or other tuples in a special way. By that, the complexity of low-

level probability propagation nets is partially hidden in arc labels and propagations

according to the message passing in Bayesian networks can be represented straight

forward.

In section 4.1 the transformation rules for representing Bayesian networks with

high-level probability propagation nets are defined. Some popular examples demon-

strate the applicability and the advantages of the probability propagation net repre-

sentation. The initialization phase is explained in section 4.2, evidence and change

propagation in section 4.3. Another folding leads to probability propagation nets

which are suited to model the propagation flows of conditioned Bayesian networks as

described in section 4.4.

4.1. Transforming Bayesian Networks into High-Level

Probability Propagation Nets

In essence three structural elements in Bayesian networks exist, which are shown in

Figure 4.1. A simple chain is shown in Figure 4.1(a). It models the probabilistic

dependency of Y given X. Example 4.2 contains this type of graph structure.
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Figure 4.1(b) indicates the probabilistic dependency of Y given X1, . . . , Xn, n > 1.

So, the probability of Y is defined as P (Y | X1, . . . , Xn). Case n = 2 can be found in

Example 4.1. This kind of graph structure is called join.

X

Y

(a)

X1 X2 Xn

Y

. . .

. . .

(b)

X

Y1 Y2 Yn

. . .

. . .

(c)

Figure 4.1.: Basic Structures in Bayesian Networks

The structure shown in Figure 4.1(c) is called split and represents probabilistic

dependencies of variables Y1, . . . , Yn given X, n > 1. Example 4.2 is to throw light

on this structural element with n = 2.

In fact, from a structural point of view, a chain can be defined as a special kind

of join or split, namely for n = 1. For defining transformation rules it is more

comfortable to consider it as a special kind of join, because in this case the rules for

joins can be applied straight forward. Formally, joins and splits as substructures of

Bayesian networks can be defined as follows:

Definition 4.1

Let B = (R,E) be a Bayesian network, let be R′ := {X1, . . . , Xn, Y } with R′ ⊆
R, n > 0. Let be E ′ := {(Xi, Y ) | (Xi, Y ) ∈ E}, such that E ′ ⊆ E and |E ′| = n and

6 ∃V ∈ (R \R′) : (V, Y ) ∈ E.

The tuple (R′, E ′) is called

• a (Bayesian network) chain, if n = 1 (see Figure 4.1(a))

• a (Bayesian network) join, if n > 1 (see Figure 4.1(b)).

The different structures and their transformations into the Petri net representation

are demonstrated by means of two popular examples given in [Neap90]. The following

example shows a Bayesian network join.
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Example 4.1 (Burglar Alarm, cf. [Neap90])

In this example, Mr. Holmes is sitting in his office when he gets a call that his burglar

alarm is sounding (A). Of course he suspects a burglary (B) (even though there might

be other reasons for activating the alarm, for example an earthquake (C)). On his ride

home, he hears on the radio an announcement about some earthquake. How do the

phone call and the radio announcement influence his belief about getting burglarized?

The Bayesian network B with prior and conditional probabilities is shown in Fig-

ure 4.2. The random variables A,B,C have two attributes (–1 and –2 meaning “yes”

and “no”) listed in Table 4.1.

a1 Mr. Holmes’ burglar alarm sounds
a2 Mr. Holmes’ burglar alarm does not sound
b1 Mr. Holmes’ residence is burglarized
b2 Mr. Holmes’ residence is not burglarized
c1 there is an earthquake
c2 there is no earthquake

Table 4.1.: Random Variables of Example 4.1

B C

A

P (B) =
B 1 2

0.01 0.99
P (C) =

C 1 2
0.001 0.999

P (A | BC) =

A
B C 1 2
1 1 0.99 0.01
1 2 0.9 0.1
2 1 0.5 0.5
2 2 0.01 0.99

Figure 4.2.: Bayesian Network B of Example 4.1

The structure of this Bayesian network obviously is a join. �

69



4. High-Level Probability Propagation Nets

Definition 4.2

Let B = (R,E) be a Bayesian network, let be R′ := {X, Y1, . . . , Yn} with R′ ⊆
R, n > 1. Let be E ′ := {(X, Yi) | (X, Yi) ∈ E} such that E ′ ⊆ E and |E ′| = n and

6 ∃V ∈ (R \R′) : (X, V ) ∈ E.

The tuple (R′, E ′) is called a (Bayesian network) split (see Figure 4.1(c)).

Example 4.2 (Cheating Spouse, cf. [Neap90])

The scenario of this popular example given in [Neap90] consists of a spouse and

a strange man/lady. It has to be reported that spouse might be cheating. As a

consequence, there are four important random variables: spouse is cheating (A),

spouse dines with another (B), spouse is reported seen dining with another (C),

strange man/lady calls on the phone (D).

a1 spouse is cheating
a2 spouse is not cheating
b1 spouse dines with another
b2 spouse does not dine with another
c1 spouse is reported seen dining with another
c2 spouse is not reported seen dining with another
d1 strange man/lady calls on the phone
d2 no strange man/lady calls on the phone

Table 4.2.: Random Variables of Example 4.2

The Bayesian network with prior and conditional probabilities is shown in Fig-

ure 4.3. The random variables A,B,C,D have two attributes (–1 and –2 meaning

“yes” and “no”) which are listed in Table 4.2.

This Bayesian network’s structure is a combination of a split and a chain. �

Every Bayesian network can be recursively constructed with the basic structure

types shown in Figure 4.1, because due to the fact that Bayesian networks are acyclic

graphs, there can neither be any combination of nodes and edges containing incoming

as well as outgoing edges between the same nodes nor any other composition that

would lead to a cycle in the graph structure. Hence, for creating a Petri net repre-

sentation of Bayesian networks, it is sufficient first to find transformations for these

basic structures and second to develop rules to put the different parts together.
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C

B

A

D

P (A) =
A 1 2

0.1 0.9

P (B | A) =

B
A 1 2
1 0.7 0.3
2 0.2 0.8

P (D | A) =

D
A 1 2
1 0.8 0.2
2 0.4 0.6

P (C | B) =

C
B 1 2
1 0.4 0.6
2 0.001 0.999

Figure 4.3.: B of Example 4.2

4.1.1. Transforming Joins

The transformation rule for transforming chains (see Figure 4.1(a)) and joins (see

Figure 4.1(b)) is defined as follows:

Definition 4.3 (Chain and Join Transformation)

Let B = (R,E) be a Bayesian network, let (R′, E ′) be a chain or join contained in B
(and therefore R′ ⊆ R and E ′ ⊆ E). Let X1, . . . , Xn be the parent nodes and Y be

the child node, such that R′ = {X1, . . . , Xn, Y }.
The transformation rule for representing the Bayesian network join (chain) with a

probability propagation net is defined as follows:

• For every V ∈ R′ create two corresponding places V π and V λ.

• Create n+ 1 functional transitions f 0
Y , f

1
Y , . . . , f

n
Y .

• For every Xi ∈ {X1, . . . , Xn} create an edge from Xπ
i to f 0

Y labeled with πY (Xi).
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4. High-Level Probability Propagation Nets

• Create an edge from f 0
Y to Y π labeled with π(Y ).

• For every Xi ∈ {X1, . . . , Xn} create the following edges:

– One edge from f iY to Xλ
i labeled with λY (Xi).

– One edge from Y λ to f iY labeled with λ(Y ).

– For every j ∈ N, 1 ≤ j ≤ n, j 6= i create an edge from Xπ
i to f jY labeled

with πY (Xi) (in case of a chain, there will be no j matching this condition

and thus only the first two edges mentioned in this step will be created).

The Petri net consisting of the places, functional transitions, edges and edge labels

created by the rules above is called the probability propagation net representation of

the Bayesian network join (chain) (see Figure 4.4).

Xπ
1 Xλ

1 Xπ
2 Xλ

2 Xπ
n Xλ

n

f 0
Y

πY (X1)

f 1
Y

λY (X1)

πY (X2)

f 2
Y

λY (X2) πY (Xn)

fnY

λY (Xn)

Y π

π(Y )

Y λ

λ(Y )

. . .

. . .

. . .

Figure 4.4.: Probability Propagation Net Representation of a Bayesian Network Join

Remark 4.1

The boundary of this Petri net consists of places. To transform Bayesian networks

completely into probability propagation nets, the final step will be to add appropriate

boundary transitions in order to make the net transition-bounded. By that, the
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4.1. Transforming Bayesian Networks into High-Level PPNs

structure is an adequate representation of the message propagation because every t-

invariant of the Petri net corresponds to a propagation path of the Bayesian network.

This will be shown later on. �

Remark 4.2

To simplify the drawing of high-level probability propagation nets, it is possible to

omit the superscripted λ and π symbols of the place names, because the “category”

of a place (that means if it holds λ- or π-tuples) is closely related to the arc labels

and the net structure and thus can be determined apparently. Instead of naming

places Y π
1 and Y λ

1 , for example, both places can be named Y1. Nevertheless, to define

the transformation rules, these places must be distinguishable. Therefore the formal

definitions (Definition 4.3 and Definition 4.4) contain the superscripts. �

Example 4.3 (Burglar Alarm: Probability Propagation Net)

The Petri net version PB of B – which is a Bayesian network join, see Figure 4.2 – is

shown in Figure 4.5.

λB πB πC λC

Bλ

λ(B)

Bπ

(0.01, 0.99)

Cπ

(0.001, 0.999)

Cλ

λ(C)

f 1
A

λA(B)

πA(C)

f 0
A

πA(B) πA(C)

f 2
A

λA(C)

πA(B)

Aλλ(A)

λ(A)

Aπ

π(A)

πA

π(A)

λA

(1.0, 1.0)

Figure 4.5.: PB of Example 4.1

The boundary consists of additional transitions, as mentioned in the remarks above.
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In section 4.1.4 it is described how to create the transition boundary. �

Now, it will be shown how splits can be transformed into an adequate Petri net

representation.

4.1.2. Transforming Splits

The transformation rule for splits (see Figure 4.1(c)) is a bit more complex than the

one for chains and joins. This is due to the more complex message propagations as

messages have to be combined with other knowledge or other messages before sending

them to the appropriate destination node. For this reason, firstly the parent node

of the Bayesian network split is transformed into more than two places in the Petri

net representation. Secondly, so-called “multiplicative transitions” are inserted at an

intermediate level between parent and child nodes to combine the propagation flows

appropriately.

Definition 4.4 (Split Transformation)

Let B = (R,E) be a Bayesian network, let (R′, E ′) be a split contained in B (and

therefore R′ ⊆ R and E ′ ⊆ E). Let X be the parent node and Y1, . . . , Yn be the child

nodes, such that R′ = {X, Y1, . . . , Yn}.
The transformation rule for representing the Bayesian network split with a proba-

bility propagation net is defined as follows:

• Create two places Xπ and Xλ.

• For every Yi ∈ {Y1, . . . , Yn} ⊂ R′ create two corresponding places Y π
i and Y λ

i

and create two additional places Xπ
Yi

and Xλ
Yi

, which are called split places of

X referring Yi.

• Create n+ 1 multiplicative transitions m0
X ,m

1
X , . . . ,m

n
X .

• For every Yi ∈ {Y1, . . . , Yn} ⊂ R′ create two functional transitions f 0
Yi

and f 1
Yi

.

• Create one edge from the first multiplicative transition m0
X to Xλ labeled with

λ(X) and for every i = 1 . . . n create one edge from Xλ
Yi

to m0
X labeled with

λYi(X).
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• For the last n multiplicative transitions mi
X , i = 1 . . . n create the following

edges:

– One edge from Xπ to mi
X labeled with π(X).

– One edge from mi
X to Xπ

Yi
labeled with πYi(X).

– For every j ∈ N, 1 ≤ j ≤ n, j 6= i create one edge from Xλ
Yj

to mi
X labeled

with λYj(X).

• For every i = 1 . . . n create the following four edges:

– One edge from Xπ
Yi

to f 0
Yi

labeled with πYi(X).

– One edge from f 0
Yi

to Y π
i labeled with π(Yi).

– One edge from Y λ
i to f 1

Yi
labeled with λ(Yi).

– One edge from f 1
Yi

to Xλ
Yi

labeled with λYi(X).

The Petri net consisting of the places, multiplicative and functional transitions,

edges and edge labels created by the rules above is called the probability propagation

net representation of the Bayesian network split (see Figure 4.6).

Example 4.4 (Cheating Spouse: Probability Propagation Net)

The Bayesian network of the cheating spouse example is a composition of a split and

a chain. The corresponding probability propagation net is shown in Figure 4.7 which

also gives a first impression on how the two probability propagation nets representing

the split and the chain, respectively, can be combined. This is described in detail in

section 4.1.4. �

Considering the edge labels, it has to be admitted that they are not yet very

meaningful but it is easier to understand the transformation as a first approach.

Labels can be improved by inscribing functions (see section 3.3) which corresponds to

the operations of message propagation rules in Bayesian networks (see section 2.3.2)

or by interpreting them as variables containing knowledge about the modeled system

(for example evidence or observations). This will be shown in the next section.
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Xπ Xλ

m2
X

π(X)

m1
X mn

X m0
X

λ(X)

Xλ
Y1

λY1 (X)

Xπ
Y1

πY1 (X)

Xπ
Y2

πY2 (X)

Xλ
Y2

λY2 (X)

Xπ
Yn

πYn (X)

Xλ
Yn

λYn (X)

f 1
Yn

λYn (X)

f 0
Yn

πYn (X)

f 1
Y2

λY2 (X)

f 0
Y2

πY2 (X)

f 1
Y1

λY1 (X)

f 0
Y1

πY1 (X)

Y π
1

π(Y1)

Y λ
1

λ(Y1)

Y π
2

π(Y2)

Y λ
2

λ(Y2)

Y π
n

π(Yn)

Y λ
n

λ(Yn)

. . .

. . .

. . .

. . .

Figure 4.6.: Probability Propagation Net Representation of a Bayesian Network Split

4.1.3. Enhancing Labels to represent Message Propagation

To represent probability propagation according to the message passing in Bayesian

networks, the labels of edges connected to functional and multiplicative transitions

have to be enhanced.

There are transitions in the probability propagation nets which are closely related

to the conditional probabilities in Bayesian networks. The functional transition1 f 0
Y '

P (Y | X1, . . . , Xn) indicates f 0
Y to be the transition that calculates P (Y | X1, . . . , Xn).

The superscript 0 points to a conditional probability. Missing superscripts denote

prior probabilities. Superscripts ≥ 1 point to (generalized) transposes (or different

sortings) of the probability tables (see Tables 4.3 and 4.4 and the following definition).

Definition 4.5 (Conditional Probability Matrix)

Let B = (R′, E ′) be a Bayesian network chain (join, split). For every Y ∈ R′ let

1see Definition 4.3
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πA λA

Aπ

(0.1, 0.9)

Aλ

λ(A)

m0
A

λ(A)

m1
A

π(A)

m2
A

π(A)

AλB
λB(A)

λB(A)

AπB

πB(A)

AπD

πD(A)

AλD

λD(A)

λD(A)

f 0
B

πB(A)

f 1
B

λB(A)

f 0
D

πD(A)

f 1
D

λD(A)

Bπ

π(B)

Bλ

λ(B)

Dπ

π(D)

Dλ

λ(D)

f 0
C

πC(B)

f 1
C

λC(B)

πD

π(D)

λD

λ(D)

Cπ

π(C)

Cλ

λ(C)

πC

π(C)

λC

λ(C)

Figure 4.7.: PB of Example 4.2

CPTY be the corresponding conditional probability table assigning the conditional

probability P (Y | X1, . . . , Xn) of Y to the input variables X1, . . . , Xn. (If Y does not

have any input nodes, then P (Y ) is the prior probability of Y .)

Let Xi have mi disjoint values {xji | j = 1 . . .mi} for i = 1 . . . n and let Y have k

disjoint values y1, . . . , yk.

Let the conditional probability table CPTY representing the conditional probability

P (Y | X1, . . . , Xn) be given as follows:
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Y

X1 . . . Xn y1 . . . yk

x1
1 . . . x1

n P (Y = y1 | X1 = x1
1, . . . , Xn = x1

n) . . . P (Y = yk | X1 = x1
1, . . . , Xn = x1

n)

x1
1 . . . x2

n P (Y = y1 | X1 = x1
1, . . . , Xn = x2

n) . . . P (Y = yk | X1 = x1
1, . . . , Xn = x2

n)

. . .
. . .

x1
1 . . . xmn

n P (Y = y1 | X1 = x1
1 . . . , Xn = xmn

n ) . . . P (Y = yk | X1 = x1
1, . . . , Xn = xmn

n )

x2
1 . . . x1

n P (Y = y1 | X1 = x2
1, . . . , Xn = x1

n) . . . P (Y = yk | X1 = x2
1, . . . , Xn = x1

n)

. . .
. . .

x2
1 . . . xmn

n P (Y = y1 | X1 = x2
1 . . . , Xn = xmn

n ) . . . P (Y = yk | X1 = x2
1, . . . , Xn = xmn

n )

. . .
. . .

xm1
1 . . . x1

n P (Y = y1 | X1 = xm1
1 , . . . , Xn = x1

n) . . . P (Y = yk | X1 = xm1
1 , . . . , Xn = x1

n)

. . .
. . .

xm1
1 . . . xmn

n P (Y = y1 | X1 = xm1
1 . . . , Xn = xmn

n ) . . . P (Y = yk | X1 = xm1
1 , . . . , Xn = xmn

n )

The matrix CPM0
Y consisting of the conditional probabilities in the same order as

given in the conditional probability table (that means consisting of the lower right

part of the table) is called the conditional probability matrix for Y . Hence, the

dimension of CPM0
Y is ((

∏n
i=1mi)× k).

Additionally, different sortings of the original conditional probability table are

needed in which instead of Y a variable Xj, j ∈ {1, . . . , n} is the target variable

and Y is placed at the beginning of the input variables.

Let CPT
Xj
Y be a different sorting of CPTY , such that for ai = 1, . . . ,mi with

i = 1, . . . , n and for l = 1, . . . , k the table entries look as follows:

Xj

Y X1 . . . Xj−1 Xj+1 . . . Xn x1
j . . . x

mj
j

...
...

yl xa1
1 . . . x

aj−1

j−1 x
aj+1

j+1 . . . xann Pl
1 . . . Pl

mj

...
...

with

Pl
1 := P (Y = yl |X1 = xa1

1 , . . . Xj−1 = x
aj−1

j−1 ,

Xj = x1
j , Xj+1 = x

aj+1

j+1 , . . . , Xn = xann )
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and

Pl
mj

:= P (Y = yl |X1 = xa1
1 , . . . Xj−1 = x

aj−1

j−1 ,

Xj = x
mj
j , Xj+1 = x

aj+1

j+1 , . . . , Xn = xann ).

If Xj is the target variable of CPT
Xj
Y , the matrix CPM j

Y consists of the conditional

probabilities in the same order as given in CPT
Xj
Y and thus is called a different sorting

of CPM0
Y with target variable Xj.

Altogether, the matrices CPM1
Y , . . . , CPM

n
Y are different sortings of the condi-

tional probability matrix CPM0
Y , such that for CPM j

Y , with j = 1, . . . , n, in the

corresponding conditional probability table Xj is the target variable and Y becomes

the first input variable. The dimension of CPM j
Y is

(
(k · (

∏n
i=1;i 6=jmi))×mj

)
.

These matrices are needed to represent the message propagation in Bayesian net-

works with Petri nets. For every conditional probability table of a Bayesian network

node which is connected to another node, there exist several functional transitions

in the probability propagation net. Until now, the corresponding edge labels simply

consist of the name of the message which is propagated via the connected functional

transition. By making use of the conditional probability matrices, the operations for

message propagation can be expressed as extensions of the arc labels:

Definition 4.6 (Functional Transition Operations)

Let f 0
Y be a functional transition of a probability propagation net representation

of a Bayesian network chain (join, split) B = (R,E) connecting the input places

Xπ
1 , . . . , X

π
n (n ∈ N) with the output place Y π. Let Y ∈ R be the node in the

Bayesian network chain (join, split) corresponding to the places Y π and Y λ, and let

Y have k disjoint values.

Thus, f 1
Y , . . . , f

n
Y are the related functional transitions, such that for every j =

1, . . . , n the postset of f jY is {Xλ
j } (see Figure 4.4 and Figure 4.6).

Let furthermore CPM0
Y be the conditional probability matrix corresponding to the

conditional probability table CPTY assigned to Y .

Given the input probabilities πY (Xi) as defined in Definition 2.21, the transition
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f 0
Y calculates π(Y ) := P (Y | X1, . . . , Xn) according to the following formula:

π(Y ) =
(
πY (X1)× πY (X2)× · · · × πY (Xn)

)
· CPM0

Y

This is denoted f 0
Y ' P (Y | X1, . . . , Xn).

For j = 1, . . . , n and λ(Y ) being the current λ-message of Y (that means a vector

of length k, see Definition 2.20), the transition f jY operates as follows:

λY (Xj) :=
(
λ(Y )× πY (X1)× πY (X2)× . . .

× πY (Xj−1)× πY (Xj+1)× · · · × πY (Xn)
)
· CPM j

Y

This is denoted f jY ' PXj ← Y X1 . . . Xj−1Xj+1 . . . Xn(Y | X1, . . . , Xn).

By that, the label inscriptions for edges connected to functional transitions are

defined as follows:

• Edges from an input place Xπ
i to a functional transition keep their label πY (Xi)

(i = 1, . . . , n).

• The edge from f 0
Y to Y π is labeled with π(Y ) =

(
πY (X1) × πY (X2) × · · · ×

πY (Xn)
)
· CPM0

Y .

• The outgoing edges from Y λ to the functional transitions f 1
Y , . . . f

n
Y keep their

labels λ(Y ).

• Every edge from a functional transition f jY with j ∈ {1, . . . , n} to the corre-

sponding output place Xλ
j is labeled with λY (Xj) =

(
λ(Y )×πY (X1)×πY (X2)×

· · · × πY (Xj−1)× πY (Xj+1)× · · · × πY (Xn)
)
· CPM j

Y .

Remark 4.3

If for a Bayesian network node Y there are plenty of associated inbound nodes Xi

(see definitions above), the edge labels can become too complex to be completely

annotated in the net. In such cases the short version of the edge label (that means

either π(Y ) or λY (Xi)) is used as an abbreviation. �
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πB ' P (B) =
B

1 2
0.01 0.99

πC ' P (C) =
C

1 2
0.001 0.999

f 0
A ' P (A | BC) =

A
B C 1 2
1 1 0.99 0.01
1 2 0.9 0.1
2 1 0.5 0.5
2 2 0.01 0.99

f 1
A ' PB←AC(A | BC) =

B
A C 1 2
1 1 0.99 0.5
1 2 0.9 0.01
2 1 0.01 0.5
2 2 0.1 0.99

f 2
A ' PC←AB(A | BC) =

C
A B 1 2
1 1 0.99 0.9
1 2 0.5 0.01
2 1 0.01 0.1
2 2 0.5 0.99

Table 4.3.: Transition Functions of Example 4.1

Example 4.5 (Burglar Alarm: Transition Functions)

The transition functions of Example 4.3 are shown in Table 4.3. For example, f 2
A is

the transition that belongs to the sorting of (f 0
A ') P (A | BC) where C is written as

depending on A and B, in symbols PC←AB(A | BC), (for example the value belonging

to A = 2, B = 1, C = 2 is equal to 0.1 in both tables). For n = 1 the sortings coincide

with the transpose of a matrix (like f 0
B and f 1

B in Table 4.4). �

The transitions in the probability propagation nets representing structure elements

according to Figure 4.1(c) cause a multiplication of vectors with equal length by

components according to Definition 2.7.

Definition 4.7 (Multiplicative Transition Operations)

Let B = (R,E) be a Bayesian network split with R = {X, Y1, . . . , Yn} and E =

{(X, Yi) | i = 1, . . . , n}. Let X have m disjoint values.

Let m0
X , . . .m

n
X be the multiplicative transitions of the split’s probability propa-
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gation net representation. The λ- and π-messages being propagated by the edges

connected to the multiplicative transitions are vectors of length m, too.

Then, by the multiplicative transition m0
X , the vectors λY1(X), . . . , λYn(X) are

transformed into

λ(X) := λY1(X) ◦ · · · ◦ λYn(X)

=
( n∏
i=1

(λYi(X))1, . . . ,
n∏
k=1

(λYk(X))m
)

(see Definition 2.7).

For j = 1, . . . n, the multiplicative transition mj
X transforms the vectors

π(X), λY1(X), . . . , λYj−1
(X), λYj+1

(X), . . . , λYn(X)

into

πYj(X) := π(X) ◦ λY1(X) ◦ · · · ◦ λYj−1
(X) ◦ λYj+1

(X) ◦ · · · ◦ λYn(X)

= π(X) ◦
( n∏
i=1,
i 6=j

(λYi(X))1, . . . ,
n∏

k=1,
k 6=j

(λYk(X))m
)

=
(
(π(X))1 ·

n∏
i=1,
i 6=j

(λYi(X))1, . . . , (π(X))m ·
n∏

k=1,
k 6=j

(λYk(X))m
)
.

By that, the label inscriptions for edges connected to multiplicative transitions are

defined as follows:

• Every edge from the places Xλ
Yi

to a multiplicative transition keeps its edge label

λYi(X) for i = 1, . . . , n.

• The edge from m0
X to Xλ is labeled with λ(X) = λY1(X) ◦ · · · ◦ λYn(X).

• The outgoing edges of Xπ keep their labels π(X).

• For every j = 1, . . . , n, the edge from multiplicative transition mj
X to the place

Xπ
Yj

is labeled with πYj(X) = π(X) ◦ λY1(X) ◦ · · · ◦ λYj−1
(X) ◦ λYj+1

(X) ◦ · · · ◦
λYn(X).
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Remark 4.4

m0
x is the only transition that causes a product of only λ-factors. Superscripts ≥ 1

belong to mixtures of λ- and π-factors. �

Remark 4.5

Again, if there are too many nodes Yi involved in the split of X, the short version of

the edge label (that means either λY (X) or πYi(X)) is used as an abbreviation. �

Remark 4.6

Considering the normalization of vectors representing λ- and π-messages, there are

different alternatives. Usually, λ-messages are not normalized whereas π-messages

are (cf. [Neap90]).

In this thesis, the vectors or matrices (see section 4.4) are normalized whenever

necessary but the normalizing constants are omitted in the arc labels. �

πA ' P (A) =
A

1 2
0.1 0.9

f 0
B ' P (B | A) =

B
A 1 2
1 0.7 0.3
2 0.2 0.8

f 1
B ' PA←B(B | A) =

A
B 1 2
1 0.7 0.2
2 0.3 0.8

f 0
C ' P (C | B) =

C
B 1 2
1 0.4 0.6
2 0.001 0.999

f 1
C ' PB←C(C | B) =

B
C 1 2
1 0.4 0.001
2 0.6 0.999

f 0
D ' P (D | A) =

D
A 1 2
1 0.8 0.2
2 0.4 0.6

f 1
D ' PA←D(D | A) =

A
D 1 2
1 0.8 0.4
2 0.2 0.6

Table 4.4.: Transition Functions of Example 4.2
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Example 4.6 (Cheating Spouse: Transition Functions)

Table 4.4 shows the transition functions of the cheating spouse example. As men-

tioned before, the different sortings of conditional probability matrices having exactly

one input and one output variable simply are transposes of the original matrix. By

applying the rules of Definition 4.7, the labels of the edges connected to the multi-

plicative transitions change as follows:

• λ(A) changes to λ(A) = λB(A) ◦ λD(A),

• πB(A) changes to πB(A) = π(A) ◦ λD(A),

• πD(A) changes to πD(A) = π(A) ◦ λB(A).

The complete labels including the ones of the functional transitions are shown in the

t-invariants (see Figure 4.15 to Figure 4.17). �

In the following section, it is explained how complete Bayesian networks can be

translated into high-level probability propagation nets by composing the single prob-

ability propagation net representations of the Bayesian network’s basic structures.

4.1.4. Composing High-Level Probability Propagation Nets

The basic idea of connecting single probability propagation net representations of

basic Bayesian network structures is to take a look at the incoming and outgoing

edges in the Bayesian network. In general, edges of the Petri net representation of

a Bayesian network node X are connected to the places Xπ or Xλ. But if there is

a combination of a split and another basic structure, for example if X splits up into

Y1 and Y2 and besides X, Y2 has a second incoming node Z, the edges of the Petri

net corresponding to the connection of X and Y2 must be connected to Xπ
Y2

or Xλ
Y2

instead of Xπ or Xλ.

Altogether, in a Bayesian network incoming edges of a Bayesian network node are

always related to its π- and λ-places in the Petri net. But if there is a split, outgoing

edges are related to the π- and λ-split places referring the corresponding child node.

84



4.1. Transforming Bayesian Networks into High-Level PPNs

Definition 4.8 (High-Level Probability Propagation Net)

Let be B = (R,E) a loop-free Bayesian network. For every chain (join, split) B′ =

(R′, E ′) contained in B with R′ ⊆ R and E ′ ⊆ E create the corresponding probability

propagation net representation considering the following additional constraint:

When transforming a join X1, . . . , Xn → Y (n ∈ N, n > 1), check for all parent

nodes Xi with 1 ≤ i ≤ n if Xi has more than one child node. If Xi has at least two

child nodes (and thus is the root node of a split), then the Petri net edges related

to the Bayesian network edge between Xi and Y must be connected to Xπ
iY and Xλ

iY

instead of Xπ or Xλ, when transforming the join. Additionally, the edges between

{Xπ
iY , X

λ
iY } and {f 0

Y , f
1
Y } generated by the split transformation are omitted, because

they are substituted by the edges of the join transformation.

Let S be the set of places, T be the set of transitions, F ⊂ ((S × T ) ∪ (T × S)) the

set of edges and L the set of edge labels created by the rules above.

Then, PB := (S, T, F, L) is a Petri net which is place-bounded, until now. Make

finally the net PB transition-bounded by adding the following transitions and edges:

• For every boundary place Xπ

– create a transition πX ,

– if Xπ has no incoming edges, create an edge from πX to Xπ labeled

with π(X) = CPM0
X (which would be π(X) =

(
P (X = x1), P (X =

x2), . . . , P (X = xm)
)

if m is the number of disjoint values of X),

– if Xπ has no outgoing edges, create an edge from Xπ to πX labeled with

π(X)

• For every boundary place Xλ

– create a transition λX ,

– if Xλ has no incoming edges, create an edge from λX to Xλ labeled with

λ(X) =
(
L(X = x1), L(X = x2), . . . , L(X = xm)

)
, if m is the number of

disjoint values of X, where L(X = xi) is the likelihood of X being xi given

all current knowledge, observations and evidences of the modeled system

(see Definition 2.18),

– if Xλ has no outgoing edges, create an edge from Xλ to λX labeled with

λ(X).
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4. High-Level Probability Propagation Nets

The Petri net PB = (S, T, F, L) is called the high-level probability propagation net

representing the Bayesian network B.

Remark 4.7

The transformation rules are given for Bayesian networks, which are singly connected,

that means which are free of loops. If a loopy Bayesian network is to be transformed

into a probability propagation net, one has to eliminate the loops in the Bayesian

network first – for example by conditioning (see section 2.3.3) – and then apply the

transformation rules. �

A third popular example shows a combination of a split and a join illustrating the

composition of single probability propagation nets as defined above.

Example 4.7 (Wet Grass, cf. [Jensen96])

This is a version of the popular “wet grass example” (see for example [Jensen96]).

Mr. Holmes and Dr. Watson are living in LA. One morning, Holmes realizes that

his grass is wet. He thinks that there are two explanations: it is due to rain (R) or

he has forgotten to turn off the sprinkler (S). Next, he notices that the grass of his

neighbor, Dr. Watson, is also wet. Of course, now Holmes is almost certain that it

has rained.

The BN B describing the initial situation is shown in Figure 4.8.

h1 = Mr. Holmes’ grass is wet
h0 = Mr. Holmes’ grass is not wet
r1 = rain is the cause for Mr. Holmes’ grass being wet
r0 = rain is not the cause for Mr. Holmes’ grass being wet
s1 = sprinkler is the cause for Mr. Holmes’ grass being wet
s0 = sprinkler is not the cause for Mr. Holmes’ grass being wet
w1 = Dr. Watson’s grass is wet
w0 = Dr. Watson’s grass is not wet

Table 4.5.: Random Variables of Example 4.7

The random variables H,R, S,W have two attributes (1 and 0, “yes” and “no”)

whose meanings and probabilities are given in Table 4.5 and Figure 4.8, respectively.

The Bayesian network B consists of two basic structures:
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R S

W H

P (R) =
R 1 0

0.2 0.8
P (S) =

S 1 0
0.1 0.9

P (W | R) =

W
R 1 0
1 1.0 0.0
0 0.2 0.8

P (H | RS) =

H
R S 1 0
1 1 1.0 0.0
1 0 1.0 0.0
0 1 0.9 0.1
0 0 0.0 1.0

Figure 4.8.: Bayesian Network B of Example 4.7

• the split R→ {W,H},

• and the join {R, S} → H.

Figure 4.9 shows the probability propagation net representation of the split, Fig-

ure 4.10 the one of the join.

Obviously, the transformation of the join leads to edges between {Rπ, Rλ} and

{f 0
H , f

1
H , f

2
H}, whereas the split transformation leads to edges between {Rπ

H , R
λ
H} and

{f 0
H , f

1
H}. When composing the two probability propagation net representations, the

additional constraint of Definition 4.8 has to be considered. Thus, only the edges

related to Rπ
H and Rλ

H are used for the high-level probability propagation net, whereas

the edges from Rπ to f 0
H and f 2

H and from f 1
H to Rλ are omitted. The result is the

high-level probability propagation net PB , which is shown in Figure 4.11 and which

represents the Bayesian network B (see Figure 4.8). �

Compared to the graphical representation of Bayesian networks, probability prop-

agation nets may seem considerably complex. The number of nodes and edges is

greater than in the corresponding Bayesian network. At first glance, this may be

irritating but there are some advantages of the Petri net representation which will be
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Rπ Rλ

m2
R

π(R)

m1
R m0

R

λ(R)

Rλ
W

λW (R)

Rπ
W

πW (R)

Rπ
H

πH(R)

Rλ
H

λH(R)

f 1
H

λH(R)

f 0
H

πH(R)

f 1
W

λW (R)

f 0
W

πW (R)

W π

π(W )

W λ

λ(W )

Hπ

π(H)

Hλ

λ(H)

Figure 4.9.: Probability Propagation Net for the Split of Example 4.7

Rλ Rπ Sπ Sλ

f 1
H

λH(R)

πH(S)

f 0
H

πH(R) πH(S)

f 2
H

λH(S)

πH(R)

Hπ

π(H)

Hλ
λ(H)

λ(H)

Figure 4.10.: Probability Propagation Net for the Join of Example 4.7

demonstrated in the next sections. Two of them shall be mentioned here:

• First, the more complex Petri net structure is due to the propagation algo-

rithms of Bayesian networks, which are not at all represented in the Bayesian

network itself. For some applications it can be important to have network and

propagations combined in one representation. Additionally, this eases the un-
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Rπ Rλ

πR

π(R) = (0.2, 0.8)

λR

λ(R)

m2
R

π(R)

m1
R m0

R

λ(R)

Rλ
W

λW (R)

Rπ
W

πW (R)

Rπ
H

πH(R)

Rλ
H

λH(R)

f 1
W

λW (R)

f 0
W

πW (R)

W π

π(W )

W λ

λ(W )

πW

π(W )

λW

λ(W ) = (1.0, 1.0)

Sπ Sλ

πS

π(S) = (0.1, 0.9)

λS

λ(S)

f 1
H

λH(R)

πH(S)

f 0
H

πH(R) πH(S)

f 2
H

λH(S)

πH(R)

Hπ

π(H)

Hλ
λ(H)

λ(H)

πH

π(H)

λH

λ(H) = (1.0, 1.0)

Figure 4.11.: Probability Propagation Net PB of Example 4.7

derstanding of how probabilistic processes in Bayesian networks work and how

the random variables influence each other during propagation.

• Second, the marking concept of Petri nets allow for a distributed state repre-

sentation which is very close to the concept of situation in Bayesian networks,

that means the marking and arc labels completely represent the current state

of the modeled system in a quite descriptive way.

The next sections show how message propagation of Bayesian networks can be

reproduced by means of simulation in high-level probability propagation nets. In the
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4. High-Level Probability Propagation Nets

first part, the initialization process will be explained. After that, it will be described

how evidences or instantiations (for example caused by certain observations in the

modeled system) influence the beliefs and how they are propagated.

4.2. Initialization

The t-invariants of high-level probability propagation nets as solutions of a homoge-

neous linear equation system considering the p/t-net level result in net representations

in which markings are reproducible. The Petri nets are cycle-free and have a transition

boundary. This implies the reproducibility of the empty marking by every t-invariant

as a flow of tuples from input to output boundary. Fortunately, these flows describe

exactly the flow of λ- and π-messages. Thus, the net representations of t-invariants

are a framework for the propagation of λ- and π-tuples.

The invariants of the “black” net (that means the ones of the underlying p/t-

net) suffice to determine the propagation paths because only the graph structure is of

interest. The arc labels modifying propagated tuples have no influence on propagation

paths.

Hence, for message propagation in probability propagation nets, t-invariants are the

basic concept, because every propagation path in a Bayesian network corresponds to

a t-invariant in the Petri net representation. To initialize a probability propagation

net, all λ- and π-labels connected with the appropriate boundary transitions have to

be set to their initial (a priori) values. Then, all of the t-invariants are simulated

one by one, starting with and reproducing the empty marking. The tuples being

removed by the output boundary transitions indicate the current λ- and π-values for

the respective variables. These values have to be stored, because with these values the

initial beliefs for the corresponding variables are calculated according to the formula

given in Definition 2.22 (λ(X) and π(X) are the current λ- and π-values, which have

been calculated by the initialization process described above).

Remark 4.8

From now on in the context of probability propagation nets, simulation of a t-

invariant means the reproduction of the empty marking in the net representation

of the respective minimal t-invariant of the probability propagation net. The term is

used as an abbreviation. �
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4.2. Initialization

The initialization process will now be demonstrated by continuing the Exam-

ples 4.1, 4.2 and 4.7.

Example 4.8 (Burglar Alarm: Initialization)

The high-level probability propagation net of the burglar alarm example is shown in

Figure 4.5, the corresponding transition functions are given in Table 4.3. Due to lack

of space, the rules for calculating π(A), λA(B), λA(C) are missing in Figure 4.5 but

they are specified in the t-invariants (Figure 4.12 to Figure 4.14).

πB πC

Bπ

π(B) = (0.01, 0.99)

Cπ

π(C) = (0.001, 0.999)

f 0
A

πA(B) πA(C)

Aπ

π(A) = (πA(B)× πA(C)) ·


0.99 0.01
0.9 0.1
0.5 0.5
0.01 0.99



πA

π(A)

Figure 4.12.: π(A)-t-invariant Example 4.8

To open the initialization phase, all λ-tuples are set to (1.0, 1.0). This states that

there is no evidence to change the prior probabilities of B and C (initialization rule A,

see section 2.3.2). Moreover, π(B) = P (B) = (0.01, 0.99) and π(C) = P (C) =

(0.001, 0.999) are set (initialization rule B). Next, π(A) is calculated by reproducing

the empty marking in the π(A)-t-invariant of Figure 4.12. When firing, πB and πC

put tokens (0.01, 0.99) and (0.001, 0.999) on the places Bπ and Cπ, respectively.

Then f 0
A is activated and fires. By that, the tuples are removed from places Bπ
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λB πC

Bλ

λ(B)

Cπ

π(C) = (0.001, 0.999)

f 1
A

λA(B) = (λ(A)× πA(C)) ·


0.99 0.5
0.9 0.01
0.01 0.5
0.1 0.99


πA(C)

Aλ

λ(A)

λA

λ(A) = (1.0, 1.0)

Figure 4.13.: λ(B)-t-invariant of Example 4.8

πB λC

Bπ

π(B) = (0.01, 0.99)

Cλ

λ(C)

f 2
A

λA(C) = (λ(A)× πA(B)) ·


0.99 0.9
0.5 0.01
0.01 0.1
0.5 0.99

πA(B)

Aλ
λ(A)

λA

λ(A) = (1.0, 1.0)

Figure 4.14.: λ(C)-t-invariant of Example 4.8

and Cπ and the following tuple is put on place Aπ (operative formula 4):

π(A) = (πA(B)× πA(C)) ·


0.99 0.01

0.9 0.1

0.5 0.5

0.01 0.99


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4.2. Initialization

= ((0.01, 0.99)× (0.001, 0.999)) ·


0.99 0.01

0.9 0.1

0.5 0.5

0.01 0.99


= (0.019, 0.982).

So,

BEL(A) = α · (λ(A) ◦ π(A))

= α ((1.0, 1.0) ◦ (0.019, 0.981))

= (0.019, 0.982) for α = 1

Firing of πA completes the reproduction of the empty marking. �

Remark 4.9

As all λ-values are set to the neutral element (1.0, 1.0), the simulation of the two

λ-invariants (Figure 4.13 and 4.14) does not change any beliefs. Because of that, the

simulation of these invariants is not shown in detail. The λ-invariants are important

when evidence is brought into the system. This will be described later by continuing

this example and executing the simulation of the λ(B)-invariant step by step (see

Example 4.11). �

Now, that all t-invariants have been simulated, the net is initialized. In contrast to

the above example, when initializing the probability propagation net of the cheating

spouse example (see Figure 4.7), λ-values have to be considered as well, because they

are part of the π-invariants. This is shown in the following example.

Example 4.9 (Cheating Spouse: Initialization)

The net representations of the t-invariants of the high-level probability propaga-

tion net modeling the cheating spouse example (see Figure 4.7) are shown in Fig-

ure 4.15, 4.16 and 4.17. The functions belonging to the respective transitions are

given in Table 4.4. Due to lack of space, the rules for calculating the output tuples of

the transitions are not listed here but they are specified in the net representations of

all t-invariants. All three minimal t-invariants in vector form are given in Table 4.6.
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πA

Aπ

π(A) = (0.1, 0.9)

m1
A

π(A)

AπB

πB(A) = (π(A) ◦ λD(A))

AλD

λD(A)

f 0
B

πB(A)

f 1
D

λD(A) = λ(D) ·
(

0.8 0.4
0.2 0.6

)

Bπ

π(B) = πB(A) ·
(

0.7 0.3
0.2 0.8

)

Dλ

λ(D)

f 0
C

πC(B)

λD

λ(D) = (1.0, 1.0)

Cπ

π(C) = πC(B) ·
(

0.4 0.6
0.001 0.999

)

πC

π(C)

Figure 4.15.: π(C)-t-invariant of Example 4.9

πA λA πC λC πD λD f0
B f1

B f0
C f1

C f0
D f1

D m0
A m1

A m2
A

λ(A) 1 1 1 1 1 1 1
π(C) 1 1 1 1 1 1 1
π(D) 1 1 1 1 1 1 1

Table 4.6.: T-invariants of PB (see Example 4.2)

In the initialization phase, first all λ-tuples are set to (1.0, 1.0) (initialization

rule A), thus expressing that no external evidence concerning the random variables is

known. Next, by setting π(A) = P (A) = (0.1, 0.9) (initialization rule B), the propa-
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πA

Aπ

π(A) = (0.1, 0.9)

m2
A

π(A)

AλB

λB(A)

AπD

πD(A) = (π(A) ◦ λB(A))

f 1
B

λB(A) = λ(B) ·
(

0.7 0.2
0.3 0.8

)

f 0
D

πD(A)

Bλ

λ(B)

Dπ

π(D) = πD(A) ·
(

0.8 0.2
0.4 0.6

)

f 1
C

λC(B) = λ(C) ·
(

0.4 0.001
0.6 0.999

)
πD

π(D)

Cλ

λ(C)

λC

λ(C) = (1.0, 1.0)

Figure 4.16.: π(D)-t-invariant of Example 4.9

gation of P (a1) = 0.1, P (a2) = 0.9 as a π-message is prepared. Finally, BEL(C) and

BEL(D) have to be calculated. Thus the π(C)- and π(D)-t-invariant (Figure 4.15

and 4.16) are used. In Figure 4.15, the boundary transitions πA and λD are enabled

because they have no input places. When firing, πA puts the tuple π(A) = (0.1, 0.9)

on place Aπ (initialization rule B), λD puts λ(D) = (1.0, 1.0) on place Dλ (initializa-

tion rule A). Now, transition f 1
D is enabled and removes (1.0, 1.0) from place Dλ and

puts λD(A) = λ(D) · ( 0.8 0.4
0.2 0.6 ) = (1.0, 1.0) on place AλD (operative formulas 1 and 3).
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λA

Aλ

λ(A)

m0
A

λ(A) = (λB(A) ◦ λD(A))

AλB

λB(A)

AλD

λD(A)

f 1
B

λB(A) = λ(B) ·
(

0.7 0.2
0.3 0.8

)

f 1
D

λD(A) = λ(D) ·
(

0.8 0.4
0.2 0.6

)

Bλ

λ(B)

Dλ

λ(D)

f 1
C

λC(B) = λ(C) ·
(

0.4 0.001
0.6 0.999

)

λD

λ(D) = (1.0, 1.0)

Cλ

λ(C)

λC

λ(C) = (1.0, 1.0)

Figure 4.17.: λ(A)-t-invariant of Example 4.9

(The boundary transitions πA and λD are permanently enabled. But for reproducing

the empty marking they need to fire only once. See Table 4.6 where their entries are

1 in the corresponding row.)

The next transition to fire is m1
A. It removes π(A) = (0.1, 0.9) and λD(A) =

(1.0, 1.0) from the respective places Aπ and AλD and puts πB(A) = π(A) ◦ λD(A) =

(0.1, 0.9) on place AπB (Definition 2.20).

When a tuple is removed from a place X, that does not mean that the values of
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the tuple are no longer valid for X. It simply says that they have been used and that

they can be re-generated any time.

Next, the transitions f 0
B, f

0
C , πC are sequentially enabled and fire in that order. By

firing of f 0
B the tuple (0.1, 0.9) is removed from AπB, and the tuple π(B) = (0.1, 0.9) ·

( 0.7 0.3
0.2 0.8 ) = (0.25, 0.75) is put on Bπ (operative formula 4). This tuple is removed

by firing of f 0
C and the tuple π(C) = (0.25, 0.75) · ( 0.4 0.6

0.001 0.999 ) = (0.10075, 0.89925)

is put on Cπ (operative formula 4) from where it is removed by transition πC , thus

completing the reproduction of the empty marking.

The beliefs BEL(B) and BEL(C) are then calculated as follows:

BEL(B) = α (λ(B) ◦ π(B)) = α ((1.0, 1.0) ◦ (0.25, 0.75))

= (0.25, 0.75)

BEL(C) = α (λ(C) ◦ π(C))

= α ((1.0, 1.0) ◦ (0.10075, 0.89925))

= (0.10075, 0.89925) (operative formula 5).

Similarly BEL(D) = (0.44, 0.56) is calculated on the basis of the π(D)-invariant

(Figure 4.16). Again, the simulation of the λ-invariant does not influence any beliefs.

In conclusion the initialization of the probability propagation net results in the

beliefs

BEL(A) = (0.1, 0.9)

BEL(B) = (0.25, 0.75)

BEL(C) = (0.10075, 0.89925)

BEL(D) = (0.44, 0.56)

which are in accordance with the beliefs calculated by the propagation rules for

Bayesian networks as shown in [Neap90]. �

For the sake of completeness, the initialization process for the wet grass example

will now be sketched as well.
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Example 4.10 (Wet Grass: Initialization)

The probability propagation net of this example is shown in Figure 4.11. Table 4.7

shows the functions belonging to the respective transitions.

Rλ

λR

λ(R)

m0
R

λ(R) = λW (R) ◦ λH(R)

Rλ
W

λW (R)

Rλ
H

λH(R)

f 1
W

λW (R) = λ(W ) ·
(

1.0 0.2
0.0 0.8

)

W λ

λ(W )

λW

λ(W ) = (1.0, 1.0)

Sπ

πS

π(S) = (0.1, 0.9)

f 1
H

λH(R) = (λ(H)× πH(S)) ·


1.0 0.9
1.0 0.0
0.0 0.1
0.0 1.0


πH(S)

Hλ

λ(H)

λH

λ(H) = (1.0, 1.0)

Figure 4.18.: λ(R)-Invariant of Example 4.7

To start the initialization, the propagations within the net representations of the

four minimal t-invariants of the probability propagation net PB have to be executed.

The invariants are shown in Figure 4.18 to 4.21.

The initialization starts with the π(W )-t-invariant (Figure 4.19). Firing the bound-

ary transitions results in tuples (0.2, 0.8), (0.1, 0.9), (1.0, 1.0) on places Rπ, Sπ, Hλ,

respectively. This indicates that the probabilities of R,¬R, S,¬S are 0.2, 0.8, 0.1, 0.9,

respectively, and that there is no evidence to correct the probabilities of H and ¬H
(in case they are known or going to be calculated).
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Rπ

πR

π(R) = (0.2, 0.8)

m1
R

π(R)

Rπ
W

πW (R) = π(R) ◦ λH(R)

Rλ
H

f 0
W

πW (R)

W π

π(W ) = πW (R) ·
(

1.0 0.0
0.2 0.8

)

πW

π(W )

Sπ

πS

π(S) = (0.1, 0.9)

f 1
H

λH(R) = (λ(H)× πH(S) ·


1.0 0.9
1.0 0.0
0.0 0.1
0.0 1.0


πH(S)

Hλ

λ(H)

λH

λ(H) = (1.0, 1.0)

Figure 4.19.: π(W )-Invariant of Example 4.7

Next, transition f 1
H fires as follows: The tuples are removed from Sπ and Hλ.

λH(R) = (λ(H)× πH(S)) · CPM1
H = ((1.0, 1.0)× (0.1, 0.9)) · CPM1

H

= (0.1, 0.9, 0.1, 0.9) ·


1.0 0.9

1.0 0.0

0.0 0.1

0.0 1.0

 = (1.0, 1.0)

is put on place Rλ
H .

Now, transition m1
R fires as follows: Tuples (0.2, 0.8) and (1.0, 1.0) are removed
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πR ' P (R) =
R

1 0
0.2 0.8

πS ' P (S) =
S

1 0
0.1 0.9

f 0
W ' P (W | R) =

W
R 1 0
1 1.0 0.0
0 0.2 0.8

f 1
W ' PW←R(W | R) =

R
W 1 0
1 1.0 0.2
0 0.0 0.8

f 0
H ' P (H | RS)

H
R S 1 0
1 1 1.0 0.0
1 0 1.0 0.0
0 1 0.9 0.1
0 0 0.0 1.0

f 1
H ' PR←HS(H | RS)

R
H S 1 0
1 1 1.0 0.9
1 0 1.0 0.0
0 1 0.0 0.1
0 0 0.0 1.0

f 2
H ' P S←HR(H | RS)

S
H R 1 0
1 1 1.0 1.0
1 0 0.9 0.0
0 1 0.0 0.0
0 0 0.1 1.0

Table 4.7.: Transition Functions of Example 4.7

from their respective places Rπ and Rλ
H . Then

πW (R) = π(R) ◦ λH(R) = (0.2, 0.8) ◦ (1.0, 1.0) = (0.2, 0.8)

is put on the output place Rπ
W (see Definition 2.7).

Lastly, f 0
W fires by taking (0.2, 0.8) from Rπ

W and putting

π(W ) = πW (R) · CPM0
W = (0.2, 0.8) ·

(
1.0 0.0

0.2 0.8

)
= (0.36, 0.64)

on place W π. This tuple is removed in the end, thereby completing the reproduction

of the empty marking.
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Rπ

πR

π(R) = (0.2, 0.8)

m2
R

π(R)

Rλ
W

λW (R)

Rπ
H

πH(R) = λW (R) ◦ π(R)

f 1
W

λW (R) = λ(W ) ·
(

1.0 0.2
0.0 0.8

)

W λ

λ(W )

λW

λ(W ) = (1.0, 1.0)

Sλ

λS

λ(S)

f 2
H

λH(S) = (λ(H)× πH(R)) ·


1.0 1.0
0.9 0.0
0.0 0.0
0.1 1.0

πH(R)

Hλ

λ(H)

λH

λ(H) = (1.0, 1.0)

Figure 4.20.: λ(S)-Invariant of Example 4.7

Altogether,

BEL(R) = (0.2, 0.8)

BEL(S) = (0.1, 0.9)

BEL(W ) = (0.36, 0.64)

BEL(H) = (0.272, 0.728)

are the beliefs for R, S,W and H after the initialization process. All probabilities

and the corresponding beliefs coincide, because all the likelihoods turned out to be

(1.0, 1.0). �
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Rπ

πR

π(R) = (0.2, 0.8)

m2
R

π(R)

Rλ
W

λW (R)

Rπ
H

πH(R) = λW (R) ◦ π(R)

f 1
W

λW (R) = λ(W ) ·
(

1.0 0.2
0.0 0.8

)

W λ

λ(W )

λW

λ(W ) = (1.0, 1.0)

Sπ

πS

π(S) = (0.1, 0.9)

f 0
H

πH(R) πH(S)

Hπ

π(H) = (πH(R)× πH(S)) ·


1.0 0.0
1.0 0.0
0.9 0.1
0.0 1.0



πH

π(H)

Figure 4.21.: π(H)-Invariant of Example 4.7

In conclusion it can be pointed out that initializing the probability propagation

net is a quite simple task. Simulating every t-invariant suffices to get the initialized

values for the variables. If all likelihoods are set to neutral values, even simulating

only the π-invariants suffices. Considering that the firing rule is not that complex

and that it seems to be straight forward understandable for people who are familiar

with Petri nets, the probability propagation net representation of Bayesian networks

is a remarkable approach to reveal the complex propagation structure which is hidden

in the Bayesian network algorithms. So probability propagation nets make the world

of Bayesian networks more transparent. Furthermore, the t-invariants provide means

of structure by exactly representing the propagation paths in Bayesian networks and

therefore structuring the Petri net in a natural and adequate way. In addition, the
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marking concept and arc labels of probability propagation nets provide an appropriate

representation of the current situation in the Bayesian network or in the modeled

system, which is directly integrated in the Petri net.

The next section shows that also evidence propagation is done straight forward in

probability propagation nets, again by simulating corresponding t-invariants.

4.3. Evidence Propagation

Evidence in the context of Bayesian networks means particular observations about

the modeled system which influence the certainty of variable states. According to

[Jensen96], if the exact state of a variable is known, this is called hard evidence or

instantiation of the variable, if just the tendency for the states of a variable is adjusted,

this is called soft evidence.

In Bayesian networks this is done by changing the λ- or π-values of the correspond-

ing variables. If for example a variable X = (x1, x2) is instantiated for x1, both

λ- and π-values are changed to (1.0, 0.0). Obviously, in the Petri net representa-

tion this adjustment can be done by simply changing the corresponding labels of the

edges connected to the preset nodes. In this case, the arcs {(t,Xπ) | t ∈ ·Xπ} and

{(t,Xλ) | t ∈ ·Xλ} are set to (1.0, 0.0). Generally, the new label is a vector whose

entries are 0.0 except the entry corresponding to the instantiated value, which is 1.0.

To propagate the new evidence and update the beliefs only the associated t-

invariants have to be simulated. This will now be demonstrated by continuing the

above examples and bringing in evidence according to the original examples in the

cited literature.

Example 4.11 (Burglar Alarm: Evidence Propagation)

Now, it is assumed that Mr. Holmes got the call and knows that his alarm sounds.

That means A has to be instantiated for a1. Consequently, the arc label (1.0, 1.0)

of arc (λA, A
λ) has to be changed to (1.0, 0.0) in Figure 4.5 and Figure 4.12 to 4.14.

In order to calculate Holmes’ present beliefs about B (being burglarized) and C

(earthquake), the empty marking is being reproduced in the adjusted λ(B)- and

λ(C)-t-invariants (Figure 4.22 and 4.23).

In Figure 4.22, after firing λA and πC , tuples (1.0, 0.0) and (0.001, 0.999) are lying

on places Aλ and Cπ, respectively. Now, f 1
A is activated and fires thereby removing the
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λB πC

Bλ

λ(B)

Cπ

π(C) = (0.001, 0.999)

f 1
A

λA(B) = (λ(A)× πA(C)) ·


0.99 0.5
0.9 0.01
0.01 0.5
0.1 0.99


πA(C)

Aλ

λ(A)

λA

λ(A) = (1.0, 0.0)

Figure 4.22.: Evidence Adjustment for λ(B)-t-invariant of Example 4.11

πB λC

Bπ

π(B) = (0.01, 0.99)

Cλ

λ(C)

f 2
A

λA(C) = (λ(A)× πA(B)) ·


0.99 0.9
0.5 0.01
0.01 0.1
0.5 0.99

πA(B)

Aλ
λ(A)

λA

λ(A) = (1.0, 0.0)

Figure 4.23.: Evidence Adjustment for λ(C)-t-invariant of Example 4.11

tuples from places Aλ and Cπ, and the following tuple is put on place Bλ (operative
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formula 1):

λA(B) = (λ(A)× λA(C)) ·


0.99 0.5

0.9 0.01

0.01 0.5

0.1 0.99



= ((1.0, 0.0)× (0.001, 0.999)) ·


0.99 0.5

0.9 0.01

0.01 0.5

0.1 0.99


= (0.9, 0.01).

Removing that tuple by λB completes the reproduction of the empty marking.

In the same way, the λ(C)-t-invariant shown in Figure 4.23 returns λA(C) =

(0.505, 0.019). This leads to

BEL(B) = α (λ(B) ◦ π(B)) = α ((0.9, 0.01) ◦ (0.01, 0.99))

= α(0.009, 0.0099) = (0.476, 0.524) for α = 1
0.0189

BEL(C) = α (λ(C) ◦ π(C))

= α ((0.505, 0.019) ◦ (0.001, 0.999))

= α(0.000505, 0.018981) = (0.026, 0.974)

for α = 1
0.019486

Holmes’ belief in being burglarized has increased from 0.01 to 0.476. Even his belief

in an earthquake has increased from 0.001 to 0.026. Although compared to his belief

in being burglarized the belief in an earthquake is quite small, it has increased by a

factor of 26. Yet there is also the possibility of a false alarm which is not modeled

here but which can be assumed.

Next, Mr. Homes is assumed to have heard the announcement of an earthquake on

the radio. Now, the arc label (0.001, 0.99) of arc (πc, C
π) has to be substituted with

(1.0, 0.0), since C has to be instantiated for c1. To calculate Mr. Holmes’ belief about

B (being burglarized), again, the empty marking in the λ(B)-t-invariant (Figure 4.24)

has to be reproduced. After firing λA and πC , tuples (1.0, 0.0) are lying on places Aλ
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λB πC

Bλ

λ(B)

Cπ

π(C) = (1.0, 0.0)

f 1
A

λA(B) = (λ(A)× πA(C)) ·


0.99 0.5
0.9 0.01
0.01 0.5
0.1 0.99


πA(C)

Aλ

λ(A)

λA

λ(A) = (1.0, 0.0)

Figure 4.24.: Second Evidence for λ(B)-t-invariant of Example 4.11

and Cπ, respectively. After firing f 1
A these tuples are removed and the following tuple

is put on place Bλ:

λA(B) = (λ(A)× πA(C)) ·


0.99 0.5

0.9 0.01

0.01 0.5

0.1 0.99



= ((1.0, 0.0)× (1.0, 0.0)) ·


0.99 0.5

0.9 0.01

0.01 0.5

0.1 0.99



= (1.0, 0.0, 0.0, 0.0) ·


0.99 0.5

0.9 0.01

0.01 0.5

0.1 0.99


= (0.99, 0.5).

λB fires and removes that tuple from Bλ, thus completing the reproduction of the
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empty marking. Mr. Holmes’ new belief concerning B is

BEL(B) = α (λ(B) ◦ π(B)) = α ((0.99, 0.5) ◦ (0.01, 0.99))

= α(0.0099, 0.495) = (0.02, 0.98) for α = 1
0.5049

.

So, Holmes’ belief in being burglarized has changed from 0.01 via 0.476 to 0.02.

Holmes was worried after the phone call and calmed down after he heard the an-

nouncement on the radio. �

The values coincide with the values calculated by Bayesian message propagation in

[Neap90]. In the Petri net representation it is easy to trace the influences of evidence

on other variables by watching the t-invariant simulation, which is yet another facet of

transparency added to Bayesian network models by representing them as probability

propagation nets.

To exemplify the propagation of evidence in Bayesian networks containing a split,

Example 4.9 will now be continued.

Example 4.12 (Cheating Spouse: Evidence Propagation)

Now, spouse was seen dining with another. Hence, B is instantiated: λ(B) = π(B) =

(1.0, 0.0). The consequence for the corresponding Petri nets is quite simple: the

variable arc labels λC(B) and π(B) are replaced by the constant tuple (1.0, 0.0) (as

an example see Figure 4.27). That means whatever the input values enabling f 0
B and

f 1
C are, both transitions put (1.0, 0.0) on their respective output places B (operative

formulas 2, and 3).

The changes of the beliefs are as follows:
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πA

Aπ

π(A) = (0.1, 0.9)

m1
A

π(A)

AπB

πB(A) = (π(A) ◦ λD(A))

AλD

λD(A)

f 0
B

πB(A)

f 1
D

λD(A) = λ(D) ·
(

0.8 0.4
0.2 0.6

)

Bπ

π(B) = (1.0, 0.0)

Dλ

λ(D)

f 0
C

πC(B)

λD

λ(D) = (1.0, 1.0)

Cπ

π(C) = πC(B) ·
(

0.4 0.6
0.001 0.999

)

πC

π(C)

Figure 4.25.: Evidence Adjustment for π(C)-t-invariant Example 4.9

• For the adjusted λ(A)-t-invariant (see Figure 4.27):

λD(A) = (1.0, 1.0) as before;

λB(A) = λ(B) ·

(
0.7 0.2

0.3 0.8

)
= (1.0, 0.0) ·

(
0.7 0.2

0.3 0.8

)
= (0.7, 0.2) by firing of f 2

B;

λ(A) = λB(A) ◦ λD(A) = (0.7, 0.2) ◦ (1.0, 1.0)

= (0.7, 0.2).

108



4.3. Evidence Propagation

πA

Aπ

π(A) = (0.1, 0.9)

m2
A

π(A)

AλB

λB(A)

AπD

πD(A) = (π(A) ◦ λB(A))

f 1
B

λB(A) = λ(B) ·
(

0.7 0.2
0.3 0.8

)

f 0
D

πD(A)

Bλ

λ(B)

Dπ

π(D) = πD(A) ·
(

0.8 0.2
0.4 0.6

)

f 1
C

λC(B) = (1.0, 0.0)

πD

π(D)

Cλ

λ(C)

λC

λ(C) = (1.0, 1.0)

Figure 4.26.: Evidence Adjustment for π(D)-t-invariant Example 4.9

Therefore,

BEL(A) = α (π(A) ◦ λ(A)) = α ((0.1, 0.9) ◦ (0.7, 0.2))

= α(0.07, 0.18) = (0.28, 0.72) for α = 1
0.25

.

• For the adjusted π(C)-t-invariant (see Figure 4.25), f 0
B puts the tuple (1.0,0.0)
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λA

Aλ

λ(A)

m0
A

λ(A) = (λB(A) ◦ λD(A))

AλB

λB(A)

AλD

λD(A)

f 1
B

λB(A) = λ(B) ·
(

0.7 0.2
0.3 0.8

)

f 1
D

λD(A) = λ(D) ·
(

0.8 0.4
0.2 0.6

)

Bλ

λ(B)

Dλ

λ(D)

f 1
C

λC(B) = (1.0, 0.0)

λD

λ(D) = (1.0, 1.0)

Cλ

λ(C)

λC

λ(C) = (1.0, 1.0)

Figure 4.27.: Evidence Adjustment for λ(A)-t-invariant Example 4.12

on place B; then f 0
C is enabled and puts

π(C) = (1.0, 0.0) ·

(
0.4 0.6

0.001 0.999

)
= (0.4, 0.6)

110



4.3. Evidence Propagation

on place C. Hence

BEL(C) = α (λ(C) ◦ π(C)) = α ((1.0, 1.0) ◦ (0.4, 0.6))

= (0.4, 0.6)

• For the adjusted π(D)-t-invariant (see Figure 4.26), λB(A) = (0.7, 0.2) (see

above). Firing of m2
A puts

πD(A) = α (π(A) ◦ λB(A)) = α ((0.1, 0.9) ◦ (0.7, 0.2)) = (0.28, 0.72)

on place A; after firing of f 0
D

π(D) = πD(A) ·

(
0.8 0.2

0.4 0.6

)
= (0.28, 0.72) ·

(
0.8 0.2

0.4 0.6

)
= (0.512, 0.488)

and thus

BEL(D) = α (λ(D) ◦ π(D))

= α ((1.0, 1.0) ◦ (0.512, 0.488)) = (0.512, 0.488)

The interpretation is that after spouse dines with another (λ(B) = (1.0, 0.0)) the

beliefs that

• spouse is cheating

• spouse is reported seen dining with another

• strange man/lady calls on the phone

have increased.

As a second evidence, it is additionally assumed that no strange man/lady calls on

the phone (λ(D) = (0.0, 1.0)). So, the constant arc weight (1.0, 1.0) at the output arc

of transition λD has to be changed to (0.0, 1.0)2. This does not change BEL(B) and

2The updated invariants are not shown anymore, because the principle of adjusting the arc labels
should be clear by now.
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BEL(C). It changes BEL(D) and BEL(A):

BEL(D) = α (λ(D) ◦ π(D)) = α ((0.0, 1.0) ◦ (0.512, 0.488))

= α(0.0, 4.88) = (0.0, 1.0) for α = 1
0.488

The anew adjusted λ(A)-t-invariant puts

λD(A) = λ(D) · CPM1
C = (0.0, 1.0) ·

(
0.8 0.4

0.2 0.6

)
= (0.2, 0.6)

on place A after firing of transition f 1
D. Then, after firing of transition m0

A

λ(A) = λB(A) ◦ λD(A) = (0.7, 0.2) ◦ (0.2, 0.6) = (0.14, 0.12)

is put on A. Thus,

BEL(A) = α (π(A) ◦ λ(A)) = α ((0.1, 0.9) ◦ (0.14, 0.12))

= α(0.014, 0.108) = (0.1148, 0.8852) for α = 1
0.122

.

So, the belief that spouse is cheating decreased. �

Evidence propagation in the wet grass example is done the same way as described

in the two examples above. Hence, Example 4.10 is continued in terms of a short

summary.

Example 4.13 (Wet Grass: Evidence Propagation)

Now, Mr. Homes realizes that his grass is wet. This new evidence gives rise to slightly

change the net PB of Figure 4.11 and the net representations of the t-invariants:

λ(H) = (1.0, 1.0) is changed to λ(H) = (1.0, 0.0) thereby saying that Mr. Holmes’

grass is wet, indeed. As only one arc label has changed, the adjusted net and its t-

invariants are not displayed again. The resulting changes of the beliefs are put down
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in the second column of Table 4.5 (the first column shows the initialization results):

BEL(r1) = BEL(R = 1) = 0.2 changes to 0.735

BEL(w1) = BEL(W = 1) = 0.36 changes to 0.788

BEL(s1) = BEL(S = 1) = 0.1 changes to 0.338.

Even the probability that the sprinkler was the cause for Mr. Holmes’ grass being

wet (s1) increases. But it is more probable that rain was the cause and that as a

consequence Dr. Watson’s grass is also wet (w1).

Finally, Mr. Holmes discovers that Dr. Watson’s grass is also wet (w1). Again,

the new evidence results in a change of the net: λ(W ) = (1.0, 1.0) is changed to

λ(W ) = (1.0, 0.0). Now, the beliefs change as follows:

BEL(r1) = BEL(R = 1) = 0.735 changes to 0.93

BEL(s1) = BEL(S = 1) = 0.338 changes to 0.16.

Initialization Evidence 1 Evidence 2
λ(R) (1.0, 1.0) (1.0, 0.09) (1.0, 0.018)
π(R) given (0.2, 0.8) (0.2, 0.8) (0.2, 0.8)
BEL(R) (0.2, 0.8) (0.735, 0.265) (0.93, 0.07)
λ(S) (1.0, 1.0) (0.92, 0.2) (0.956, 0.56)
π(S) given (0.1, 0.9) (0.1, 0.9) (0.1, 0.9)
BEL(S) (0.1, 0.9) (0.338, 0.662) (0.16, 0.84)
λ(W ) given (1.0, 1.0) (1.0, 1.0) (1.0,0.0) new ev.!
π(W ) (0.36, 0.64) (0.788, 0.212) (0.788, 0.212)
BEL(W ) (0.36, 0.64) (0.788, 0.212) (1.0, 0.0)
λ(H) given (1.0, 1.0) (1.0,0.0) new ev.! (1.0, 0.0)
π(H) (0.272, 0.728) (0.272, 0.728) (0.272, 0.728)
BEL(H) (0.272, 0.728) (1.0, 0.0) (1.0, 0.0)

Table 4.8.: Simulation Results of Example 4.7 after Initialization and after Evidence
Propagations

As a result, the probability of r1 increases again (to 0.93). Now, it is virtually sure

that rain was the cause for Mr. Holmes’ grass being wet. On the other hand, the

belief of s1 decreases nearly to its initial value 0.1. It changes from 0.338 to 0.16
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which is absolutely consequential. �

Altogether, it has to be pointed out that the changes of probabilities and beliefs

induced by observations and evidences are directly propagated via the t-invariants in

the probability propagation net. Thereby, it is easy to follow how changes of one ran-

dom variable (for example by instantiation) influence the other beliefs. By that, the

Petri net approach adds transparency to the Bayesian network approach of message

propagation by integrating the propagation algorithms into the graph structure and

into the graph’s dynamics. The considerable complexity of the resulting Petri nets

indicates that the propagation algorithms – which are hidden in the Bayesian network

representation – are by far not trivial. Particularly, when model parameters have to

be adjusted or fine-tuned, the understanding of the propagation processes, depend-

abilities, and mutual influences is essential. Because of the advantages mentioned

above, the Petri net approach could be a good choice for the process of fine-tuning.

For some applications these information may not be important. Perhaps the models

are given and just the beliefs after initialization or after evidence propagation are of

interest. In such cases, the Petri net representation at first sight does not add any

benefit to the Bayesian network approach at all. There may be a benefit if the higher

expressiveness of Petri nets is used (which will be sketched later on) but if that is not

needed as well, the most convenient way in this case probably is to use a Bayesian

network tool to build the model and to calculate the desired results.

Yet, as some Petri net classes are a perfect means to describe (technical) processes,

it may be interesting to couple the abilities of probability propagation nets with Petri

net concepts for technical systems. As an example, fault tree analysis can be done

with the Petri net approach via the Bayesian network representation of fault trees

and the transformation of these Bayesian networks into probability propagation nets.

This will be shown in chapter 5.

Before that, the representation of conditioned Bayesian networks with probability

propagation nets is described in the next section. Another folding of the high-level

Petri net representation leads to matrices as tokens instead of vectors. By that, the

different instantiations for the cut variables can be evaluated in one pass through the

t-invariants.
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4.4. Representing Conditioned Bayesian Networks

with High-Level Probability Propagation Nets

The metastatic cancer example (see Examples 2.11 and 2.12) will now be used to

show how an additional (kind of) folding of high-level probability propagation nets

is capable of representing conditioned Bayesian networks. This section is just to

sketch the potential of probability propagation nets and since the basic idea is quite

plausible, there will be no formal definition or proof given in this section. Yet, it has to

be mentioned that if there are lots of loops in the Bayesian network, the conditioning

approach leads to complex structures which then are represented by big matrices in

this kind of probability propagation net.

For the understanding of the propagation process in this probability propagation

net, the special matrix products of Definition 2.8 are needed.

Example 4.14 (Metastatic Cancer: Probability Propagation Net)

The probability propagation net representing the conditioned Bayesian network(s) is

shown in Figure 4.28. Table 4.9 contains the transition functions of the functional

transitions. Note that transitions πA1 , πA2 , λD and λE create matrices instead of

pairs when firing. This is due to the folding of two conditioned Bayesian networks

into one representation. The upper row of the matrix represents the Bayesian network

in which A is instantiated for 1, the lower row represents A being instantiated for

0. As a consequence, matrices instead of pairs flow through the net. By that, both

instantiations can be evaluated simultaneously in one pass through the t-invariants.

In order to show how to work with the probability propagation net, the empty

marking in the π(D)-t-invariant (see Figure 4.29) is reproduced. The (constant) ma-

trix ( 1.0 0.0
0.0 1.0 ) is the arc label of both arcs (πA1 , A

π
1 ) and (πA2 , A

π
2 ). So, firing both

transitions πA1 and πA2 puts π(Ai) = ( 1.0 0.0
0.0 1.0 ) on places Aπ1 and Aπ2 . This is the

beginning of a simultaneous evaluation of both Bayesian networks in Figure 2.5. Sim-

ilarly, firing λE puts λ(E) = ( 1.0 1.0
1.0 1.0 ) on place Eλ. This indicates in both evaluations

that no evidence or observation is known that forces λ(E) to be adjusted. Next,

firing of f 0
B, f

0
C , f

1
E removes πB(A) = ( 1.0 0.0

0.0 1.0 ) , πC(A) = ( 1.0 0.0
0.0 1.0 ) , λ(E) = ( 1.0 1.0

1.0 1.0 ) from
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πA1 λA1
πA2 λA2

Aπ1

(
1.0 0.0
0.0 1.0

)
Aλ1

λ(A1)

Aπ2

(
1.0 0.0
0.0 1.0

)
Aλ2

λ(A2)

f0
B

πB(A1)

f1
B

(
1.0 0.0
0.0 1.0

)
f0
C

πC(A2)

f1
C

(
1.0 0.0
0.0 1.0

)

Bπ

π(B)

Bλ

λ(B)

Cπ

π(C)

Cλ

λ(C)

m1
C

π(C)

m2
C

π(C)

m0
C

λ(C)

CλE

λE(C) λE(C)

CπEπE(C)CλD

λD(C)

λD(C)

CπD

πD(C)

f2
D

πD(B)

λD(C)

f1
D

πD(C)

λD(B)

f0
D

πD(B)

πD(C)

f0
E

πE(C)

f1
E

λE(C)

Dπ

π(D)

Dλ

λ(D)
λ(D)

Eπ

π(E)

Eλ

λ(E)

πD

π(D)

λD

(
1.0 1.0
1.0 1.0

)
πE

π(E)

λE

(
1.0 1.0
1.0 1.0

)

Figure 4.28.: Probability Propagation Net for the Metastatic Cancer Example 4.14

Aπ1 , A
2π,Eλ and puts

π(B) = πB(A) ·

(
0.8 0.2

0.2 0.8

)
=

(
1.0 0.0

0.0 1.0

)
·

(
0.8 0.2

0.2 0.8

)
=

(
0.8 0.2

0.2 0.8

)
,
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f0
B ' P (B | A1) =

B

A1 1 0
1 0.8 0.2
0 0.2 0.8

f1
B ' PA1←B(B | A1) =

A1

B 1 0
1 0.8 0.2
0 0.2 0.8

f0
C ' P (C | A2) =

C

A2 1 0
1 0.2 0.8
0 0.05 0.95

f0
E ' P (E | C) =

E

C 1 0
1 0.8 0.2
0 0.6 0.4

f1
E ' PC←E(E | C) =

C

E 1 0
1 0.8 0.6
0 0.2 0.4

f1
C ' PA2←C(C | A2) =

A2

C 1 0
1 0.2 0.05
0 0.8 0.95

f0
D ' P (D | BC) =

D

B C 1 0
1 1 0.8 0.2
1 0 0.8 0.2
0 1 0.8 0.2
0 0 0.05 0.95

f1
D ' PB←CD(D | BC) =

B

C D 1 0
1 1 0.8 0.8
1 0 0.2 0.2
0 1 0.8 0.05
0 0 0.2 0.95

f2
D ' PC←BD(D | BC) =

C

B D 1 0
1 1 0.8 0.8
1 0 0.2 0.2
0 1 0.8 0.05
0 0 0.2 0.95

Table 4.9.: Transition Functions of Example 4.14

π(C) = πC(A) ·

(
0.2 0.8

0.05 0.95

)
=

(
1.0 0.0

0.0 1.0

)
·

(
0.2 0.8

0.05 0.95

)

=

(
0.2 0.8

0.05 0.95

)
,

and

λE(C) = λ(E) ·

(
0.8 0.6

0.2 0.4

)
=

(
1.0 1.0

1.0 1.0

)
·

(
0.8 0.6

0.2 0.4

)
=

(
1.0 1.0

1.0 1.0

)

on Bπ, Cπ and Cλ
E, respectively.
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πA1 πA2

Aπ1

π(A1) =
(

1.0 0.0
0.0 1.0

)
Aπ2

π(A2) =
(

1.0 0.0
0.0 1.0

)

f0
B

πB(A1)

f0
C

πC(A2)

Bπ

π(B) = πB(A) ·
(

0.8 0.2
0.2 0.8

)
Cπ

π(C) = πC(A) ·
(

0.2 0.8
0.05 0.95

)

m1
C

π(C)

CλE

λE(C)

CπD

πD(C) = π(C) ◦ λE(C)

f0
D

πD(B)

πD(C)
f1
E

λE(C) = λ(E) ·
(

0.8 0.6
0.2 0.4

)

Dπ

π(D)

Eλ

λ(E)

πD

π(D) = (πD(B)⊗ πD(C)) ·


0.8 0.2
0.8 0.2
0.8 0.2
0.05 0.95


λE

λ(E) =
(

1.0 1.0
1.0 1.0

)

Figure 4.29.: π(D)-Invariant of Example 4.14

Now, transition m1
C is enabled, removes π(C) and λE(C) from places Cπ and Cλ

E,

and puts

πD(C) = π(C) ◦ λE(C) =

(
0.2 0.8

0.05 0.95

)
◦

(
1.0 1.0

1.0 1.0

)

=

(
0.2 · 1.0 0.8 · 1.0
0.05 · 1.0 0.95 · 1.0

)
=

(
0.2 0.8

0.05 0.95

)

on place Cπ
D, thus enabling transition f 0

D.

Firing f 0
D consists of clearing the input places Bπ and Cπ

D and putting π(D) on Dπ
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which is calculated as follows:

π(D) = (πD(B)⊗ πD(C)) ·


0.8 0.2

0.8 0.2

0.8 0.2

0.05 0.95



=

((
0.8 0.2

0.2 0.8

)
⊗

(
0.2 0.8

0.05 0.95

))
·


0.8 0.2

0.8 0.2

0.8 0.2

0.05 0.95



=

(
0.8 · 0.2 0.8 · 0.8 0.2 · 0.2 0.2 · 0.8
0.2 · 0.05 0.2 · 0.95 0.8 · 0.05 0.8 · 0.95

)
·


0.8 0.2

0.8 0.2

0.8 0.2

0.05 0.95



=

(
0.16 0.64 0.04 0.16

0.01 0.19 0.04 0.76

)
·


0.8 0.2

0.8 0.2

0.8 0.2

0.05 0.95


=

(
0.68 0.32

0.23 0.77

)
.

In completing the 0-reproduction, transition πD empties the net representation of

the t-invariant. The results so far are the probabilities π(B), π(C), π(D). By 0-

reproduction in the remaining three t-invariants, the results listed in Table 4.14 are

calculated.

As a last step the beliefs are computed. They have to be adjusted by the actual

values for the cut variables. In this case, A was instantiated which led to the matrices

instead of vectors flowing through the Petri net. When computing the beliefs these

matrices are “flattened” by multiplying them with the current “belief-vector” of A:
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π(A) =

(
1.0 0.0
0.0 1.0

)
π(B) =

(
0.8 0.2
0.2 0.8

)
π(C) =

(
0.2 0.8
0.05 0.95

)
π(D) =

(
0.68 0.32
0.23 0.77

)
π(E) =

(
0.64 0.36
0.61 0.39

)
λ(A) = λ(B) = λ(C) = λ(D) = λ(E) =

(
1.0 1.0
1.0 1.0

)
Table 4.10.: Probability Propagation Net Initialization Results of the Metastatic Can-

cer Example

BEL(B) = BEL(A) · (π(B) ◦ λ(B))

= (0.2, 0.8) ·

((
0.8 0.2

0.2 0.8

)
◦

(
1.0 1.0

1.0 1.0

))

= (0.2, 0.8) ·

(
0.8 0.2

0.2 0.8

)
= (0.32, 0.68)

BEL(C) = BEL(A) · (π(C) ◦ λ(C))

= (0.2, 0.8) ·

((
0.2 0.8

0.05 0.95

)
◦

(
1.0 1.0

1.0 1.0

))
= (0.08, 0.92)

BEL(D) = BEL(A) · (π(D) ◦ λ(D))

= (0.2, 0.8) ·

((
0.68 0.32

0.23 0.77

)
◦

(
1.0 1.0

1.0 1.0

))
= (0.32, 0.68)
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BEL(E) = BEL(A) · (π(E) ◦ λ(E))

= (0.2, 0.8) ·

((
0.64 0.36

0.61 0.39

)
◦

(
1.0 1.0

1.0 1.0

))
= (0.616, 0.384).

That means: Given the probability for metastatic cancer P (A) = (0.2, 0.8), the

beliefs (probabilities) for increased total serum calcium, brain tumor, coma and se-

vere headaches are BEL(B) = (0.32, 0.68), BEL(C) = (0.08, 0.92), BEL(D) =

(0.32, 0.68) and BEL(E) = (0.616, 0.384), respectively. �

Remark 4.10

For this propagation, the normalization of vectors or matrices was not needed. In

analogy to the normalizing constant α for vectors, when bringing in evidence, some

matrix products need to be normalized (see Remark 4.6). In this case, normalizing

a matrix means multiplying each row ri separately with a corresponding constant αi

such that the components of ri sum up to 1.0. This can be done by multiplying the

matrix with the diagonal matrix
α1 0 . . . 0

0 α2 . . . 0
...

...
. . .

...

0 0 . . . αn


with αi := 1∑n

j=1 rij
. �

Example 4.15 (Metastatic Cancer: Evidence Propagation)

Now, the patient moans about severe headaches. Hence, E has to be instantiated

for 1. In the probability propagation net this is done by changing the labels of the

arc (λE, E
λ) into ( 1.0 0.0

1.0 0.0 ), which is not shown in picture. As a consequence, the belief

of A has to be adjusted as follows:
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π(E) =

(
P (E = 1 | A = 1) P (E = 0 | A = 1)

P (E = 1 | A = 0) P (E = 0 | A = 0)

)
=

(
0.64 0.36

0.61 0.39

)
,

P (A) = (0.2, 0.8) = BEL(A)

and thus

BEL(A | E = 1) = α · P (E = 1 | A) ◦ P (A) = α · (0.64 · 0.2, 0.61 · 0.8)

= α · (0.128, 0.488)

= (0.208, 0.792)

Hence, BEL′(A) = (0.208, 0.792).

The propagation is done by reproducing the empty marking in the π(D)-invariant.

After firing πA1 , πA2 , f
0
B and f 0

C , place Bπ is marked with ( 0.8 0.2
0.2 0.8 ) and Cπ is marked

with ( 0.2 0.8
0.05 0.95 ). But in contrast to the initialization shown above, λE now puts the

token ( 1.0 0.0
1.0 0.0 ) on place Eλ.

Then, f 1
E fires and puts the matrix

λE(C) = λ(E) ·

(
0.8 0.6

0.2 0.4

)
=

(
1.0 0.0

1.0 0.0

)
·

(
0.8 0.6

0.2 0.4

)
=

(
0.8 0.6

0.8 0.6

)

on place Cλ
E, which enables m1

C .

After firing of m1
C the matrix

πD(C) =

(
α1 0

0 α2

)
· (π(C) ◦ λE(C))

=

(
α1 0

0 α2

)
·

((
0.2 0.8

0.05 0.95

)
◦

(
0.8 0.6

0.8 0.6

))

=

(
α1 0

0 α2

)
·

(
0.16 0.48

0.04 0.57

)
=

(
0.25 0.75

0.066 0.934

)
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is put on place Cπ
D. Now, transition f 0

D fires and puts the token

π(D) = (πD(B)⊗ πD(C)) ·


0.8 0.2

0.8 0.2

0.8 0.2

0.05 0.95



=

((
0.8 0.2

0.2 0.8

)
⊗

(
0.25 0.75

0.066 0.934

))
·


0.8 0.2

0.8 0.2

0.8 0.2

0.05 0.95



=

(
0.2 0.6 0.05 0.15

0.0132 0.1868 0.0528 0.7472

)
·


0.8 0.2

0.8 0.2

0.8 0.2

0.05 0.95


=

(
0.6875 0.3125

0.2396 0.7604

)

on place Dπ from where it is removed by firing of transition πD, thus completing the

0-reproduction in the π(D)-invariant.

So, the new belief of D is:

BEL′(D) = BEL′(A) · (π(D) ◦ λ(D))

= (0.208, 0.792) ·

((
0.6875 0.3125

0.2396 0.7604

)
◦

(
1.0 1.0

1.0 1.0

))

= (0.208, 0.792) ·

(
0.6875 0.3125

0.2396 0.7604

)
= (0.3328, 0.6672).

In conclusion the belief in a coma (D) is almost unchanged. Simulating the λ(A1)-

invariant also does not influence the belief in increased total serum (B), so it will

not be demonstrated. In contrast to this, the λ(A2)-invariant shown in Figure 4.30

influences the belief in a brain tumor (C).

To reproduce the empty marking in the λ(A2)-invariant, πA1 , f
0
B, λD and f 2

D fire.
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πA1 λA2

Aπ1

π(A1) =
(

1.0 0.0
0.0 1.0

)
Aλ2

λ(A2)

f0
B

πB(A1)

f1
C

λ(A2) =
(

1.0 0.0
0.0 1.0

)

Bπ

π(B)

Cλ

λ(C)

m0
C

λ(C) = λD(C) ◦ λE(C)

CλE

λE(C)

CλD

λD(C)

f2
D

πD(B)

λD(C) = (πD(B)⊗ λ(D)) ·


0.8 0.8
0.2 0.2
0.8 0.05
0.2 0.95

 f1
E

λE(C) = λ(E) ·
(

0.8 0.6
0.2 0.4

)

Dλ

λ(D)

Eλ

λ(E)

λD

λ(D) =
(

1.0 1.0
1.0 1.0

)
λE

λ(E) =
(

1.0 0.0
1.0 0.0

)

Figure 4.30.: λ(A2)-Invariant of Example 4.14 with Evidence

This results in token

λD(C) = (πD(B)⊗ λ(D)) ·


0.8 0.8

0.2 0.2

0.8 0.05

0.2 0.95



=

((
0.8 0.2

0.2 0.8

)
⊗

(
1.0 1.0

1.0 1.0

))
·


0.8 0.8

0.2 0.2

0.8 0.05

0.2 0.95


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=

(
0.8 0.8 0.2 0.2

0.2 0.2 0.8 0.8

)
·


0.8 0.8

0.2 0.2

0.8 0.05

0.2 0.95

 =

(
1.0 1.0

1.0 1.0

)

put on Cλ
D by firing of f 2

D. To enable m0
C , transitions λE and f 1

E have to fire in that

order. This yields the tuple

λE(C) = λ(E) ·

(
0.8 0.6

0.2 0.4

)
=

(
1.0 0.0

1.0 0.0

)
·

(
0.8 0.6

0.2 0.4

)
=

(
0.8 0.6

0.8 0.6

)

on place Cλ
E.

Now, m0
C fires and puts

λ(C) = λD(C) ◦ λE(C) =

(
1.0 1.0

1.0 1.0

)
◦

(
0.8 0.6

0.8 0.6

)
=

(
0.8 0.6

0.8 0.6

)

on place Cλ. Firing f 1
C and λA2 completes the 0-reproduction but does not change

any values of A2, because A2 is instantiated.

So the belief of C has to be adjusted and is now:

BEL′(C) = BEL′(A) ·

((
α1 0

0 α2

)
· (π(C) ◦ λ(C))

)

= (0.208, 0.792) ·

((
α1 0

0 α2

)
·

((
0.2 0.8

0.05 0.95

)
◦

(
0.8 0.6

0.8 0.6

)))

= (0.208, 0.792) ·

((
α1 0

0 α2

)
·

(
0.16 0.48

0.04 0.57

))

= (0.208, 0.792) ·

(
0.25 0.75

0.0656 0.9344

)
= (0.1040, 0.8960).

To sum it up, observing severe headaches causes the belief in a brain tumor (C) to

increase from 0.08 to 0.1040.

Now, as the patient moans about severe headaches, it seems obvious that he did not
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fall into a coma. So to conclude the example, D has to be instantiated for ( 0.0 1.0
0.0 1.0 ).

The corresponding arc label (λD, D
λ) is adjusted properly. To check the influence of

these evidences on B and C, the λ(A1)- and λ(A2)-invariants have to be simulated.

First, because of the new evidence, the belief in A has to be updated:

P (A | E = 1, D = 0) = αP (D = 0 | A,E = 1) ◦ P (A | E = 1)

= α(0.3125 · 0.208, 0.7604 · 0.792)

= α(0.065, 0.602) = (0.0975, 0.9025).

Hence, BEL′′(A) = (0.0975, 0.9025) is the new weight for the beliefs of B and C.

After firing πA2 , f
0
C , λE, f 1

E, m1
C and λD, place Cπ

D is marked with ( 0.25 0.75
0.066 0.934 ) and

place Dλ is marked with ( 0.0 1.0
0.0 1.0 ).

Now transition f 1
D fires putting

λD(B) = (πD(C)⊗ λ(D)) ·


0.8 0.8

0.2 0.2

0.8 0.05

0.2 0.95



=

((
0.25 0.75

0.066 0.934

)
⊗

(
0.0 1.0

0.0 1.0

))
·


0.8 0.8

0.2 0.2

0.8 0.05

0.2 0.95



=

(
0.0 0.25 0.0 0.75

0.0 0.066 0.0 0.934

)
·


0.8 0.8

0.2 0.2

0.8 0.05

0.2 0.95


=

(
0.2 0.7625

0.2 0.9005

)

on place Bλ.

The remaining firings for completing the λ(A2)-invariant do not change any values.

As a last step, the λ(A2)-invariant has to be simulated to check the influence on C.

To save space, the beginning of the 0-reproduction is not shown in detail. The
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interesting part starts with firing of f 2
D putting

λD(C) = (πD(B)⊗ λ(D)) ·


0.8 0.8

0.2 0.2

0.8 0.05

0.2 0.95



=

((
0.8 0.2

0.2 0.8

)
⊗

(
0.0 1.0

0.0 1.0

))
·


0.8 0.8

0.2 0.2

0.8 0.05

0.2 0.95



=

(
0.0 0.8 0.0 0.2

0.0 0.2 0.0 0.8

)
·


0.8 0.8

0.2 0.2

0.8 0.05

0.2 0.95

 =

(
0.2 0.35

0.2 0.8

)

on place Cλ
D.

As Cλ
E by firing of λE and f 1

E is marked with ( 0.8 0.6
0.8 0.6 ), m0

C fires next:

λ(C) = λD(C) ◦ λE(C) =

(
0.2 0.35

0.2 0.8

)
◦

(
0.8 0.6

0.8 0.6

)

=

(
0.16 0.21

0.16 0.48

)

is placed on Cλ.

Firing of f 1
C and λA2 completes the 0-reproduction but does not influence the values

for A2 as A2 is instantiated.
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4. High-Level Probability Propagation Nets

Altogether, the given evidence leads to new beliefs for B and C:

BEL′′(B) = BEL′′(A) ·

((
α1 0

0 α2

)
· (π(B) ◦ λ(B))

)

= BEL′′(A) ·

((
α1 0

0 α2

)
·

((
0.8 0.2

0.2 0.8

)
◦

(
0.2 0.7625

0.2 0.9005

)))

= (0.0975, 0.9025) ·

((
α1 0

0 α2

)
·

(
0.16 0.1525

0.04 0.7204

))

= (0.0975, 0.9025) ·

(
0.512 0.488

0.0526 0.9474

)
= (0.0974, 0.9026)

BEL′′(C) = BEL′′(A) ·

((
α1 0

0 α2

)
· (π(C) ◦ λ(C))

)

= BEL′′(A) ·

((
α1 0

0 α2

)
·

((
0.2 0.8

0.05 0.95

)
◦

(
0.16 0.21

0.16 0.48

)))

= (0.0975, 0.9025) ·

((
α1 0

0 α2

)
·

(
0.032 0.168

0.008 0.456

))

= (0.0975, 0.9025) ·

(
0.16 0.84

0.0172 0.9828

)
= (0.0311, 0.9689).

Finally, it is discovered that the new evidence decreased the belief in a brain tumor

(C) by about two third. Also the belief in increased serum calcium (B) is way smaller

given the evidence that the patient has severe headaches (E) but has not fallen into a

coma (D). Additionally, compared to the initial probability, the belief in metastatic

cancer (A) was halved, which is absolutely consequential. �

As stated above, the structure of Bayesian networks is a bit meager and the steps of

probability propagation are “hidden” in the algorithms. In contrast to that, the Petri

net representation shows the probability propagation in detail, and the algorithms
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4.4. Representing Conditioned BNs with High-Level PPNs

are distributed over the net such that each transition’s share is of manageable size.3

On the one hand, in spite of the exactness of the Petri net representation, one

might consider the size of the net as a disadvantage. On the other hand, the size of

the probability propagation nets might indicate that Bayesian networks are indeed

a little under-structured. Moreover, the specific structure of probability propagation

nets causes an absolute appropriate partition into propagation processes. The min-

imal t-invariants (precisely their net representations) exactly describe the paths of

probabilities and likelihoods. The t-invariants do not have to be calculated on the

higher level, necessarily. It is sufficient to calculate them on the “black” net (that

means the underlying place/transition net without arc labels).

Additionally, even conditioned Bayesian networks can be represented with minimal

adaption of the firing rule allowing matrices instead of tuples to flow through the net,

whereby the Petri net structure is almost completely maintained. By that, probability

propagation nets are a perfect means to describe causality or mutual dependencies and

influence. Since Petri nets are widely-used to model technical systems or processes

which are influenced by risks, the Petri net representation of Bayesian networks could

be integrated with those Petri nets, thus joining the worlds of technical processes and

Bayesian networks.

3The proof that high-level probability propagation nets completely represent the Bayesian message
propagation is sketched in Appendix B.
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5. Representing Fault Trees with

High-Level Probability

Propagation Nets

In section 2.4.2 it was described how fault trees can be translated into Bayesian

networks. Hence, they can also be represented by probability propagation nets. As

fault trees may contain loops, the Bayesian network translation of the fault tree has

to be made loop-free before being transformed into a probability propagation net.

In the first instance, the Petri net representation does not add any expressiveness

compared to the Bayesian network approach. But it will be suggested later on that

they can easily be extended.

5.1. Representing the Fault Tree Semantics

Fault trees can be represented by probability propagation nets with the intermedi-

ate step of transforming them into Bayesian networks which, once the loops have

been eliminated for example by conditioning, are the input to generate the high-level

probability propagation nets. The Bayesian network representation of fault trees al-

ready adds expressiveness to the models, as stated and exemplified in [Bobbio∗99,

PorBob99]. Yet, the missing transparency of the Bayesian network message propa-

gation may be considered as a disadvantage. Thus, the probability propagation net

representation of fault trees can be used to increase transparency and to better adjust

the parameters. This will be shown by continuing Example 2.15.

Example 5.1 (Multiprocessor System: Conditioned Bayesian Network)

As the Bayesian network of Figure 2.11 – which results from applying the transforma-
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M2
3 M1

3M2P2D22D21 M1 P1 D12 D11 N

G5 G6 G8 G7

G3 G4

G2

G1

Fault

Figure 5.1.: Conditioned Bayesian Network for the Multiprocessor System

tion rules given in section 2.4.2 to the fault tree shown in Figure 2.7 – contains a loop,

and this loop has to be eliminated first. Again this is done by conditioning (see sec-

tion 2.3.3). As proposed above, the loop is cut at the root element. Figure 5.1 shows

the modified Bayesian network. The node M3 has been cut and is now represented

as M1
3 linked to the first subsystem and M2

3 linked to the second one. Hence, the

conditional probability tables of G6 and G8 must be slightly changed by substituting

M3 for M2
3 and for M1

3 , respectively. Except for this quite simple modification, the

conditional probability tables are preserved as given in Table 2.7. �

Remark 5.1

When propagating the messages in the conditioned Bayesian network, M3 (and thus

M1
3 and M2

3 ) has to be instantiated for all of its elementary events. For every instan-

tiation, the complete message propagation has to be executed (cf. section 2.3.3). In

contrast to the simultaneous evaluation of the instantiations by propagating matrices

instead of vectors as shown in section 4.4, this example demonstrates the separate

evaluation of the instantiations. �
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5. Representing Fault Trees with High-Level PPNs

Now that the Bayesian network has been made free of loops, it can be translated

into the corresponding high-level probability propagation net by applying the rules

defined in section 4.1. Similar to the Bayesian network message propagation, the

initial simulation of minimal t-invariants has to be executed for every instantiation of

M3 separately and the weighted simulation results have to be summed up in a final

step. This is demonstrated by continuing Example 5.1.

Example 5.2 (Multiprocessor System: Probability Propagation Net)

Figure 5.2 shows the high-level probability propagation net for the multiprocessor

system example. To save space, the arc labels are not included in the figure. The

corresponding transition functions are listed in extracts in Table 5.1. As the transition

functions are very simple, the different sortings of the corresponding matrices are

omitted in the table (that means f 1
G1
, f 2
G1
, f 1
G2
, . . . , f 2

G8
are missing).

In order to calculate the failure probability of the system it suffices to simulate the

only one minimal π-t-invariant (which is highlighted in Figure 5.2 by bold edges),

because – as no observations or evidences are given – all likelihoods are set to the

neutral value (1.0, 1.0). As the original Bayesian network is loopy and thus the prob-

ability propagation net is the representation of a conditioned Bayesian network, the

cut variable must be instantiated for its elementary events and separate simulations

have to be executed as described in section 2.3.3.

Instantiation: Faulty Global Memory

The simulation with M3 (M1
3 , M2

3 ) being instantiated for 1, i.e π(M3) = π(M1
3 ) =

π(M2
3 ) = (1.0, 0.0), looks as follows:

First, Transitions πD21 , πD22 , πP2 , πM2 , πM2
3
, πM1

3
,πM1 , πP1 , πD11 , πD12 and πN

fire, putting tuples (0.32968, 0.67032) on places Dπ
21, D

π
22, D

π
11, and Dπ

12, respectively,

tuples (0.0025, 0.9975) on places P π
2 and P π

1 , tuples (0.00015, 0.99985) on places Mπ
2

and Mπ
1 , tuples (1.0, 0.0) on M2π

3 and M1π
3 , and furthermore tuple (0.00001, 0.99999)

on place Nπ.
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5.1. Representing the Fault Tree Semantics

πDij ' P (Dij) =
Dij

1 0
0.32968 0.67032

πPi ' P (Pi) =
Pi

1 0
0.0025 0.9975

πMk
' P (Mk) =

Mk

1 0
0.00015 0.99985

πN ' P (N) =
N

N 1 0
0.00001 0.99999

i, j ∈ {1, 2}, k ∈ {1, 2, 3}

f0
G1
' P (G1) =

G1

G2 N 1 0
1 1 1.0 0.0
1 0 1.0 0.0
0 1 1.0 0.0
0 0 0.0 1.0

f0
G2
' P (G2) =

G2

G3 G4 1 0
1 1 1.0 0.0
1 0 0.0 1.0
0 1 0.0 1.0
0 0 0.0 1.0

f0
G3

[f0
G4

] ' P (G3) [P (G4)] =

G3 [G4]
P2 [P1] G5 [G7] G6 [G8] 1 0

1 1 1 1.0 0.0
1 1 0 1.0 0.0
1 0 1 1.0 0.0
1 0 0 1.0 0.0
0 1 1 1.0 0.0
0 1 0 1.0 0.0
0 0 1 1.0 0.0
0 0 0 0.0 1.0

f0
G5

[f0
G7

] ' P (G5) [P (G7)] =

G5 [G7]
Dl1 Dl2 1 0
1 1 1.0 0.0
1 0 0.0 1.0
0 1 0.0 1.0
0 0 0.0 1.0

f0
G6

[f0
G8

] ' P (G6) [P (G8)] =

G6 [G8]
Ml M3 1 0
1 1 1.0 0.0
1 0 0.0 1.0
0 1 0.0 1.0
0 0 0.0 1.0

l ∈ {1, 2}

Table 5.1.: Transition Functions Extract of the Multiprocessor Example
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5. Representing Fault Trees with High-Level PPNs

Now, transition f 0
G5

is activated and puts

π(G5) = (π(D21)× π(D22)) ·
(

1.0 0.0
0.0 1.0
0.0 1.0
0.0 1.0

)
= ((0.32968, 0.67032)× (0.32968, 0.67032)) ·

(
1.0 0.0
0.0 1.0
0.0 1.0
0.0 1.0

)
= (0.10868890, 0.22099110, 0.22099110, 0.44932890) ·

(
1.0 0.0
0.0 1.0
0.0 1.0
0.0 1.0

)
= (0.10868890, 0.89131110)

on place Gπ
5 . The same tuple is being placed on Gπ

7 by firing of transition f 0
G7

.

Transitions f 0
G6

and f 0
G8

fire symmetrically, too and put

π(G6) = π(G8) =
(
π(M2)× π(M2

3 )
)
·
(

1.0 0.0
0.0 1.0
0.0 1.0
0.0 1.0

)
=
(
π(M1)× π(M1

3 )
)
·
(

1.0 0.0
0.0 1.0
0.0 1.0
0.0 1.0

)
= ((0.00015, 0.99985)× (1.0, 0.0)) ·

(
1.0 0.0
0.0 1.0
0.0 1.0
0.0 1.0

)
= (0.00015, 0.0, 0.99985, 0.0) ·

(
1.0 0.0
0.0 1.0
0.0 1.0
0.0 1.0

)
= (0.00015, 0.99985)

on places Gπ
6 and Gπ

8 , respectively.

After that, transitions f 0
G3

and f 0
G4

are enabled and fire:

π(G3) = (π(G5)× π(P2)× π(G6)) · CPM0
G3

= ((0.10868890, 0.89131110)× (0.0025, 0.0075)× (0.00015, 0.99985))

·


1.0 0.0
1.0 0.0
1.0 0.0
1.0 0.0
1.0 0.0
1.0 0.0
1.0 0.0
0.0 1.0


= (0.11105054, 0.88894946)

Due to the symmetry, this tuple is placed on Gπ
3 by firing of f 0

G3
as well as on Gπ

4 by

firing of f 0
G4

.
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5.1. Representing the Fault Tree Semantics

Subsequently, f 0
G2

fires, marking place Gπ
2 with the tuple

π(G2) = (π(G3)× π(G4)) · CPM0
G2

= ((0.11105054, 0.88894946)× (0.11105054, 0.88894946)) · CPM0
G2

= ((0.01233222), (0.09871832), (0.09871832), (0.79023114)) ·
(

1.0 0.0
0.0 1.0
0.0 1.0
0.0 1.0

)
= (0.01233222, 0.98766778).

By that, f 0
G1

can fire putting

π(G1) = (π(G2)× π(N)) ·
(

1.0 0.0
1.0 0.0
1.0 0.0
0.0 1.0

)
= . . . = (0.01234210, 0.98765790)

on place Gπ
1 , which is removed by πG1 , thus completing the 0-reproduction.

As all likelihoods are neutral, the belief of G1 with M3 being instantiated as faulty

is

BELM3=1(G1) = (0.01234210, 0.98765790).

Instantiation: Functional Global Memory

Similarly, the simulation of the π-invariant is executed with M3 (M1
3 , M2

3 ) being

instantiated for 0, that means π(M3) = π(M1
3 ) = π(M2

3 ) = (0.0, 1.0). This results in

BELM3=0(G1) = (0.01231250, 0.98768750)

being the belief for G1 if M3 is operational.

Altogether, by weighting these beliefs with the actual probability of M3 (M1
3 , M2

3 )

and summing up,

BEL(G1) = 0.00015 ·BELM3=1(G1) + 0.99985 ·BELM3=0(G1)

= 0.00015 · (0.01234210, 0.98765790)

+ 0.99985 · (0.01231250, 0.98768750)

≈ (0.01231250, 0.98768750)
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is the overall probability for a faulty system. This value coincides with the values cal-

culated by the binary decision diagram method (see Example 2.14) and the Bayesian

network tool (see Example 2.15) with respect to the accuracy of the result display. �

Until now, this approach does not add any benefit compared to the fault tree

approach besides the fact that the t-invariants structure propagations and influences,

thus providing a reasonable representation of causality. In [PorBob99, Bobbio∗99]

it is described how using Bayesian networks to represent fault tree analysis can be

enhanced by taking advantage of the higher expressiveness of Bayesian networks. This

applies to the probability propagation net representation of fault trees, too, which will

be shown in the next section.

5.2. Adding Expressiveness by Bayesian Network

Methods

Static fault trees are somehow “binary”: Their variables can either be true or false

and the gates are binary as well. In contrast to that, Bayesian networks are more flex-

ible. Especially expressing causality and dependability can be fine-tuned by adjusting

the parameters of the conditional probability tables.

This can be of interest if a fault tree abstracts from certain very unlikely interre-

lationships. Consider a system relying on two redundant components. If at least one

component is functional the system works. Yet, there may be a cable connecting the

components which is not modeled in the fault tree and if this cable fails, the whole

system fails although the two redundant components work. This could of course be

modeled in the fault tree but real-life examples usually are governed by some level of

granularity and abstraction.

By adjusting the parameters of the Bayesian network conditional probability tables

and thus slightly adapting the “gate functionality” (for example the noisy or -gate, see

[HecBre96]), these unlikely interrelationships can easily be integrated into the model.

There are many approaches to quantify the parameters which is referred to as an

aspect of “learning” in the context of Bayesian networks (cf. [MeeHec97, Neap03]).

Not only the modification of gate functions may be of interest but also the evidence

propagation and the concept of situation in a Bayesian network. It is possible to eval-
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uate different scenarios of failure, for instance certain components can be assumed as

not functional and the failure probability for the whole system can then be calculated

by message propagation. By that, different constellations can be evaluated by means

of the Bayesian network propagation technique and for example critical components

or dependencies can be detected.

The Petri net representation of fault trees (as probability propagation nets cor-

responding to the respective Bayesian networks) can add transparency and a clear

structure, as mentioned above. This will be shown by continuing the multiprocessor

example.

Example 5.3 (Multiprocessor System: Evidence Scenario)

Assume it has been detected that the first disk of the first subsystem is faulty, that

means P (D11) = π(D11) = λ(D11) = (1.0, 0.0). Simulation of the π-invariant of the

probability propagation net shown in Figure 5.2 with respect to the conditioning of

variable M3 results in

BEL′(G1) = (0.037, 0.963).

Although the disk has a mirrored backup (D12) and the first subsystem itself has a

backup (namely the second subsystem), a failure of the first disk increases the risk of

a faulty system by a factor of three.

Now, additionally the second disk of the first subsystem D12 fails. A new simulation

of the π-invariant yields

BEL′′(G1) = (0.111, 0.889),

that means the risk of a faulty system is again increased by a factor of three.

Other combinations can be evaluated similarly. By that, different scenarios can

be analyzed by means of evidence propagation in Bayesian networks. As mentioned

before, the probability propagation net representation thereby helps to make the

propagations and influences transparent. This becomes even clearer when likelihoods

are propagated.

Assume for example that the system is known to have failed but no other observa-

tions have been made. In this case G1 has to be instantiated for π(G1) = λ(G1) =
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(1.0, 0.0) and all λ-invariants have to be simulated to update the λ-values of the input

variables and thus the corresponding beliefs. As an example, the reproduction of the

empty marking in the λ(M1)-invariant is shown in a compacted way:

First, M3 is instantiated for 1. λG1 and πN fire and put (1.0, 0.0) on place Gλ
1 and

(0.00001, 0.99999) on place Nπ. Now, f 1
G1

fires and puts λG1(G2) = (1.0, 0.00001)

on place Gλ
2 . For transition f 2

G2
to be enabled, Gπ

3 must be marked. π(G3) =

(0.11105054, 0.88894946) can be calculated as shown at the initialization.

Now, f 2
G2

fires putting

λG2(G4) = (λ(G2)× π(G3)) ·
(

1.0 0.0
0.0 0.0
0.0 1.0
1.0 1.0

)
= (0.11105943, 0.00001)

on place Gλ
4 .

After generating π(P1) = (0.0025, 0.9975) and π(G7) = (0.1086889, 0.891311) (see

initialization), f 1
G4

fires and puts

λG4(G8) = (λ(G4)× π(P1)× π(G7)) ·


1.0 1.0
1.0 1.0
1.0 1.0
1.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 1.0

 = (0.11105943, 0.80266019)

on place Gλ
8 .

Now, πM1
3

fires thus enabling f 2
G8

which in turn fires and puts

(0.11105943, 0.80266019)

on place Mλ
1 , which is removed by λM1 , thus completing the 0-reproduction.

The whole propagation has to be repeated with M3 being instantiated for 0 (that

means the global memory is functional). The resulting likelihood ofM1 is (0.80276397,

0.80276397). Note that the π-value for M1 still is (0.00015, 0.99985). The current

weight with respect to the conditioning of the Bayesian network is calculated as

BEL′′′(M3) = BEL′′′(M3 | G1 = 1) = α · P (G1 = 1 |M3) ◦ P (M3)

= α · (0.01234210 · 0.00015, 0.01231250 · 0.99985)

= α · (0.00000185, 0.01231065) = (0.00015025, 0.99984975).
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After simulating the other t-invariants, the following beliefs are calculated:

BEL′′′(Dij) = (0.984, 0.016), i, j ∈ {1, 2}

BEL′′′(P1) = BEL′′′(P2) = (0.023, 0.977)

BEL′′′(Mk) = (0.0002, 0.9998), k ∈ {1, 2, 3}

BEL′′′(N) = (0.001, 0.999).

Note that the beliefs partially changed dramatically. The belief in a faulty bus (N)

even increased by the factor of one hundred. But in relation to the other variables,

especially the disk failure probability, it still is very small. A technical engineer may

conclude that a running disk array seems to be the most critical component in the

system, because of the high failure probability given that the system is faulty. In

order to optimize the reliability of the whole system, first the reliability of the disk

arrays should be increased. �

In conclusion, the evidence propagation in Bayesian networks can be used to detect

critical components and thus to improve the system’s reliability.

Concluding Remarks

Besides using instantiations of likelihoods and probabilities to evaluate different sce-

narios, the interpretation of likelihoods as postulations can contribute to the failure

analysis of technical systems, too. Especially instantiating the top event for the

false-value, thus expressing that the system is operational, can help to check for

absolute essential components of the system. If a component X is vital for the sys-

tem to work, the likelihood propagation would result in X = (0.0, 1.0) (or similar

pairs in case the likelihood is not normalized), that means X must not be faulty.

Moreover, for variables which are not absolute essential but which contribute to an

operational system, the corresponding likelihoods change thus indicating a “quantity

of contribution”. The tendency of the induced changes of each input variable can be

an indicator which components should be optimized best to improve the reliability of

the system.

Since this interpretation of likelihoods has similar facets compared to evaluating

scenarios, an example is left out at this place. Basically, the two notions of likelihood

differ in the direction of the assumptions. Postulating a functional system and then
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looking at the effects on the input variables usually is part of the first interpretation,

whereas instantiating variables of input components and checking the effects on the

root event (that means the output variable) or intermediate gates may rather be

considered as evaluation of scenarios.

At this point, it should be repeated that the probability propagation nets do not

add functionality compared to the Bayesian network representation of fault trees. Yet,

by structuring the propagation paths and integrating the message flows into the graph

structure, the advantages of probability propagation nets mentioned for example in

chapter 4 can be completely transferred to fault tree analysis.

On top of that, since other kinds of Petri nets are used to model or to control

technical systems or processes (for example [HumFen05]), it is conceivable to combine

them with probability propagation nets. Depending on the values of some set of

input variables, for example different decisions could be triggered in the controlling

part of the Petri net. Hence, probability propagation nets offer possibilities to couple

probabilistic issues with technical processes in one homogeneous representation.
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Summary of Research Results

This thesis introduced a new class of Petri nets, namely probability propagation nets,

which are suited to model probabilistic propagations on different levels. Probabilistic

Horn abduction can be represented by low-level probability propagation nets, which

allow straight-forward analysis and diagnosis by exploiting structural properties of

the underlying p/t-nets.

A first folding of these Petri nets leads to higher-level probability propagation nets.

Their structure is compacted transferring the complexity into the edge labels and the

markings. Hence, pairs instead of one-tuples flow through the Petri net. Nevertheless,

the central means of structural analysis – namely t-invariants – are calculated on the

p/t-net level.

The higher-level probability propagation nets have proven to be suited to represent

propagations of π-messages in Bayesian networks. A second extension, which adds

likelihood propagations, leads to high-level probability propagation nets which are

capable of representing the complete message propagation process of Bayesian net-

works. On the one side, these nets are more complex than the underlying Bayesian

networks, which may be considered as a disadvantage. On the other side, the probabil-

ity propagation nets reveal the true complexity of Bayesian message propagations and

thus make the propagation processes in Bayesian networks transparent. Again, struc-

tural analysis is done on the p/t-net level, whereby the t-invariants are an excellent

means for structuring the message flows, because each invariant exactly corresponds

to one propagation path in the Bayesian network. By that, probability propagation

nets show how probabilities and evidences influence each other in Bayesian networks,

which is a precise representation of causality that eases the understanding of models

and may give hints for diagnosis and optimization.

A precondition for the transformation of Bayesian networks into probability propa-
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gation nets is that the Bayesian networks are singly-connected which means that they

do not contain any loop. Since this is fundamental for correct propagation results,

different methods to eliminate loops have been developed. In contrast to many ex-

isting implementations, the conditioning method was used in this thesis, because the

resulting loop-free Bayesian networks are structurally closer to the original networks

than the graphs calculated for example by the popular junction tree method.

As a consequence of using the conditioning method, a further folding of high-level

probability propagation nets allows simultaneous evaluation of all instantiated con-

ditioned versions of the corresponding Bayesian network. This is achieved by trans-

ferring the structural complexity once more into the edge labels and the markings.

Originally, for each instantiation of conditioned variables, a single instance of the

Bayesian network had to be evaluated. By the folding, these single instances are

molten together and matrices instead of vectors flow through the probability prop-

agation net. Thereby, a row of a matrix corresponds to the vector of the respective

conditioned Bayesian network instance. Again, the folding does not affect the sim-

plicity of structural analysis which is done on the p/t-net level as before.

Altogether, probability propagation nets are well-suited for representing Bayesian

network message propagations, because

• they integrate the dynamics into the graph structure,

• they reveal the true complexity of message propagations, thus increasing the

transparency of the Bayesian propagation algorithms,

• they clearly structure the propagation flows in Bayesian networks by means of

t-invariants,

• and they precisely represent causality.

Once more it has to be pointed out that probability propagation nets are not

intended to improve Bayesian networks but they are an adequate representation of

Bayesian networks which eases their understanding, in the first place.

In addition to that, it was described how fault trees can be transformed into proba-

bility propagation nets via the corresponding Bayesian networks such that the above

mentioned advantages of the Petri net representations are transferred to fault tree

analysis, too. The expressiveness of Bayesian networks thereby allows sophisticated
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possibilities regarding the analysis and diagnosis of technical systems. To look for-

ward, the idea of coupling probabilistic Petri nets with established Petri nets modeling

or controlling technical systems or processes was mentioned. This leads to the topics

which could not be treated in this thesis but which should be addressed to in future

research.

Future Work

First of all, a tool support for modeling, simulating and analyzing probability propa-

gation nets including a generator creating the corresponding probability propagation

nets out of Bayesian networks would be desirable. A supporting tool is essential for

examples which are more complex and closer to real-life than the examples given in

this thesis. Especially in the context of biological and technical applications it would

be interesting to evaluate the potential of probability propagation nets. It is planned

to extend the tool NeMo [PhPiRa05, Phil∗06, Pinl∗07] with support for probability

propagation nets and a corresponding generator.

Additionally, it would be interesting to see if the learning in Bayesian networks (cf.

[Heck99, Neap03]) applied to probability propagation nets can be profitable for Petri

nets in general. Perhaps some aspects of structure and parameter learning apply to

other kinds of Petri nets, too. This could be of interest for example in technical

applications to adjust Petri nets based on collected data.

Another interesting question is if there is a kind of duality (cf. [Laut03a, Müller04])

which can be found in probability propagation nets. First research in this context

indicates that there is a non-trivial duality between π- and λ-structures. This topic

will be addressed to in a forthcoming paper.

There is also an early but quite promising approach in extending probability propa-

gation nets to represent mass function propagations according to the Dempster-Shafer

theory [Demp68, Shafer76, Spie86, Pearl88, Pearl90, YaKaFe94]. The Dempster-

Shafer theory differentiates probability and plausibility and thus allows modeling

in a finer way. It is subject to future research if a probability propagation net rep-

resentation for mass functions can be found, which increases transparency the same

way as applied to Bayesian networks. A request for a research project in this context

is pending, at the moment.

To sum it up, probability propagation nets may be considered a reasonable ex-

tension of the Petri net world, because they allow for probabilities to be directly
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propagated in the Petri net representation, they have proven to be useful at repre-

senting established approaches such as fault trees, probabilistic Horn abduction and

Bayesian networks, and a high potential with respect to applications in biological and

technical contexts as well as Dempster-Shafer theory can be assumed.
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A. Bayesian Network of the

Multiprocessor System

<?xml version="1.0" encoding="US-ASCII"?>

<!--

Bayesian network in XMLBIF v0.3 (BayesNet Interchange Format)

Produced by BNJ 3.0 (http://bndev.sourceforge.net/

-->

<!-- DTD for the XMLBIF 0.3 format -->

<!DOCTYPE BIF [

<!ELEMENT BIF ( NETWORK )*>

<!ATTLIST BIF VERSION CDATA #REQUIRED>

<!ELEMENT NETWORK ( NAME, ( PROPERTY | VARIABLE |

DEFINITION )* )>

<!ELEMENT NAME (#PCDATA)>

<!ELEMENT VARIABLE ( NAME, ( OUTCOME | PROPERTY )* ) >

<!ATTLIST VARIABLE TYPE (nature|decision|utility) "nature">

<!ELEMENT OUTCOME (#PCDATA)>

<!ELEMENT DEFINITION ( FOR | GIVEN | TABLE | PROPERTY )* >

<!ELEMENT FOR (#PCDATA)>

<!ELEMENT GIVEN (#PCDATA)>

<!ELEMENT TABLE (#PCDATA)>

<!ELEMENT PROPERTY (#PCDATA)>

]>

<BIF VERSION="0.3">

<NETWORK>

<NAME>bn</NAME>

<VARIABLE TYPE="nature">

147



A. Bayesian Network of the Multiprocessor System

<NAME>D21</NAME>

<OUTCOME>True</OUTCOME>

<OUTCOME>False</OUTCOME>

<PROPERTY>position = (50,50)</PROPERTY>

</VARIABLE>

<VARIABLE TYPE="nature">

<NAME>D22</NAME>

<OUTCOME>True</OUTCOME>

<OUTCOME>False</OUTCOME>

<PROPERTY>position = (150,50)</PROPERTY>

</VARIABLE>

<VARIABLE TYPE="nature">

<NAME>P2</NAME>

<OUTCOME>True</OUTCOME>

<OUTCOME>False</OUTCOME>

<PROPERTY>position = (250,50)</PROPERTY>

</VARIABLE>

<VARIABLE TYPE="nature">

<NAME>M2</NAME>

<OUTCOME>True</OUTCOME>

<OUTCOME>False</OUTCOME>

<PROPERTY>position = (350,50)</PROPERTY>

</VARIABLE>

<VARIABLE TYPE="nature">

<NAME>M3</NAME>

<OUTCOME>True</OUTCOME>

<OUTCOME>False</OUTCOME>

<PROPERTY>position = (450,50)</PROPERTY>

</VARIABLE>

<VARIABLE TYPE="nature">

<NAME>M1</NAME>

<OUTCOME>True</OUTCOME>

<OUTCOME>False</OUTCOME>

<PROPERTY>position = (550,50)</PROPERTY>
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</VARIABLE>

<VARIABLE TYPE="nature">

<NAME>P1</NAME>

<OUTCOME>True</OUTCOME>

<OUTCOME>False</OUTCOME>

<PROPERTY>position = (650,50)</PROPERTY>

</VARIABLE>

<VARIABLE TYPE="nature">

<NAME>D12</NAME>

<OUTCOME>True</OUTCOME>

<OUTCOME>False</OUTCOME>

<PROPERTY>position = (750,50)</PROPERTY>

</VARIABLE>

<VARIABLE TYPE="nature">

<NAME>D11</NAME>

<OUTCOME>True</OUTCOME>

<OUTCOME>False</OUTCOME>

<PROPERTY>position = (850,50)</PROPERTY>

</VARIABLE>

<VARIABLE TYPE="nature">

<NAME>N</NAME>

<OUTCOME>True</OUTCOME>

<OUTCOME>False</OUTCOME>

<PROPERTY>position = (950,50)</PROPERTY>

</VARIABLE>

<VARIABLE TYPE="nature">

<NAME>G5</NAME>

<OUTCOME>True</OUTCOME>

<OUTCOME>False</OUTCOME>

<PROPERTY>position = (100,150)</PROPERTY>

</VARIABLE>

<VARIABLE TYPE="nature">

<NAME>G6</NAME>

<OUTCOME>True</OUTCOME>
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<OUTCOME>False</OUTCOME>

<PROPERTY>position = (400,150)</PROPERTY>

</VARIABLE>

<VARIABLE TYPE="nature">

<NAME>G8</NAME>

<OUTCOME>True</OUTCOME>

<OUTCOME>False</OUTCOME>

<PROPERTY>position = (500,150)</PROPERTY>

</VARIABLE>

<VARIABLE TYPE="nature">

<NAME>G7</NAME>

<OUTCOME>True</OUTCOME>

<OUTCOME>False</OUTCOME>

<PROPERTY>position = (800,150)</PROPERTY>

</VARIABLE>

<VARIABLE TYPE="nature">

<NAME>G3</NAME>

<OUTCOME>True</OUTCOME>

<OUTCOME>False</OUTCOME>

<PROPERTY>position = (250,250)</PROPERTY>

</VARIABLE>

<VARIABLE TYPE="nature">

<NAME>G4</NAME>

<OUTCOME>True</OUTCOME>

<OUTCOME>False</OUTCOME>

<PROPERTY>position = (650,250)</PROPERTY>

</VARIABLE>

<VARIABLE TYPE="nature">

<NAME>G2</NAME>

<OUTCOME>True</OUTCOME>

<OUTCOME>False</OUTCOME>

<PROPERTY>position = (450,350)</PROPERTY>

</VARIABLE>

<VARIABLE TYPE="nature">
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<NAME>G1</NAME>

<OUTCOME>True</OUTCOME>

<OUTCOME>False</OUTCOME>

<PROPERTY>position = (650,450)</PROPERTY>

</VARIABLE>

<DEFINITION>

<FOR>D21</FOR>

<TABLE>0.32968 0.67032 </TABLE>

</DEFINITION>

<DEFINITION>

<FOR>D22</FOR>

<TABLE>0.32968 0.67032 </TABLE>

</DEFINITION>

<DEFINITION>

<FOR>P2</FOR>

<TABLE>0.0025 0.9975 </TABLE>

</DEFINITION>

<DEFINITION>

<FOR>M2</FOR>

<TABLE>1.5E-4 0.99985 </TABLE>

</DEFINITION>

<DEFINITION>

<FOR>M3</FOR>

<TABLE>1.5E-4 0.99985 </TABLE>

</DEFINITION>

<DEFINITION>

<FOR>M1</FOR>

<TABLE>1.5E-4 0.99985 </TABLE>

</DEFINITION>

<DEFINITION>

<FOR>P1</FOR>

<TABLE>0.0025 0.9975 </TABLE>

</DEFINITION>

<DEFINITION>
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<FOR>D12</FOR>

<TABLE>0.32968 0.67032 </TABLE>

</DEFINITION>

<DEFINITION>

<FOR>D11</FOR>

<TABLE>0.32968 0.67032 </TABLE>

</DEFINITION>

<DEFINITION>

<FOR>N</FOR>

<TABLE>1.0E-5 0.99999 </TABLE>

</DEFINITION>

<DEFINITION>

<FOR>G5</FOR>

<GIVEN>D21</GIVEN>

<GIVEN>D22</GIVEN>

<TABLE>1.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 </TABLE>

</DEFINITION>

<DEFINITION>

<FOR>G6</FOR>

<GIVEN>M2</GIVEN>

<GIVEN>M3</GIVEN>

<TABLE>1.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 </TABLE>

</DEFINITION>

<DEFINITION>

<FOR>G8</FOR>

<GIVEN>M3</GIVEN>

<GIVEN>M1</GIVEN>

<TABLE>1.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 </TABLE>

</DEFINITION>

<DEFINITION>

<FOR>G7</FOR>

<GIVEN>D12</GIVEN>

<GIVEN>D11</GIVEN>

<TABLE>1.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 </TABLE>
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</DEFINITION>

<DEFINITION>

<FOR>G3</FOR>

<GIVEN>P2</GIVEN>

<GIVEN>G5</GIVEN>

<GIVEN>G6</GIVEN>

<TABLE>

1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 0.0 1.0

</TABLE>

</DEFINITION>

<DEFINITION>

<FOR>G4</FOR>

<GIVEN>P1</GIVEN>

<GIVEN>G8</GIVEN>

<GIVEN>G7</GIVEN>

<TABLE>

1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 0.0 1.0

</TABLE>

</DEFINITION>

<DEFINITION>

<FOR>G2</FOR>

<GIVEN>G3</GIVEN>

<GIVEN>G4</GIVEN>

<TABLE>1.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 </TABLE>

</DEFINITION>

<DEFINITION>

<FOR>G1</FOR>

<GIVEN>N</GIVEN>

<GIVEN>G2</GIVEN>

<TABLE>1.0 0.0 1.0 0.0 1.0 0.0 0.0 1.0 </TABLE>

</DEFINITION>

</NETWORK>

</BIF>
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B. Proof: Representation of Message

Propagation in Probability

Propagation Nets

Theorem B.1 The introduced high-level probability propagation nets, built accord-

ing to Definition 4.8, completely represent the message propagation according to the

Bayesian network propagation algorithm given in section 2.3.2.

Proof (sketch)

To prove this theorem, the propagation formulas (cf. [Neap90]) are inspected one by

one and it is shown how the respective formula is represented in the probability prop-

agation net.

Operative Formulas

1. Bayesian network operative formula:

If B is a child of A, B has k possible values, A has m possible values,

and B has one other parent D, with n possible values, then for 1 ≤
j ≤ m the λ message from B to A is given by

λB(aj) =
n∑
p=1

πB(dp)
( k∑
i=1

P (bi | aj, dp)λ(bi)
)
.

This kind of structure is a Bayesian network join (see Definition 4.1). In the

probability propagation net, this operational formula is represented by the firing
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of a functional transition f lB with l ≥ 1 and f lB· = Aλ. The arc label thereby is

λB(A) = (λ(B)× πB(D)) · CPM l
B

= (λ(b1) · πB(d1), . . . , λ(b1) · πB(dn), . . . ,

λ(bk) · πB(d1), . . . , λ(bk) · πB(dn)) · CPM l
B

= (λ(b1) · πB(d1) · P (b1 | a1, d1) + . . .

+ λ(b1) · πB(dn) · P (b1 | a1, dn) + . . .

+ λ(bk) · πB(d1) · P (bk | a1, d1) + . . .

+ λ(bk) · πB(dn) · P (bk | a1, dn), . . . ,

λ(b1) · πB(d1) · P (b1 | am, d1) + . . .

+ λ(b1) · πB(dn) · P (b1 | am, dn) + . . .

+ λ(bk) · πB(d1) · P (bk | am, d1) + . . .

+ λ(bk) · πB(dn) · P (bk | am, dn))

⇒ λB(aj) = (λ(b1) · πB(d1) · P (b1 | aj, d1) + . . .

+ λ(bk) · πB(dn) · P (bk | aj, dn))

=
n∑
p=1

πB(dp) ·
(
λ(b1) · P (b1 | aj, dp) + . . .

+ λ(bk) · P (bk | aj, dp)
)

=
n∑
p=1

πB(dp) ·

(
k∑
i=1

λ(bi) · P (bi | aj, dp)

)
,

which is equal to the result of the above operative formula, as the input variables

are bound analogously.

2. Bayesian network operative formula:

If B is a child of A and A has m possible values, then for 1 ≤ j ≤ m

the π message from A to B is given by

πB(aj) =


1 if A is instantiated for aj

0 if A is instantiated, but not for aj
P ′(aj)
λB(aj)

if A is not instantiated,
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where P ′(aj) is defined to be the current conditional probability of aj

based on the variables thus far instantiated.

The corresponding arc label in the probability propagation net simply is πB(A),

which binds the token on Aπ or, in case of a split, on AπB. If A is not in-

stantiated, A’s current π-value in a normalized form is used (see Remark 4.6).

With respect to the definition of the conditional probability (namely P ′(aj) =

αλB(aj)πB(aj)), this π-value is equal to
P ′(aj)
λB(aj)

.

If A is instantiated for aj, according to section 4.3 the edge labels are changed

to constant vectors. Their entries are all 0.0 except the entry for aj which is

1.0. This is in accordance with the above operative formula.

3. Bayesian network operative formula:

If B is a variable with k possible values, s(B) is the set of B’s children,

then for 1 ≤ i ≤ k the λ value of B is given by

λ(bi) =


∏

C∈s(B) λC(bi) if B is not instantiated

1 if B is instantiated for bi

0 if B is instantiated, but not for bi.

This kind of structure is a Bayesian network split (see Definition 4.2). Let

n be the number of B’s children, that means n = |s(B)| and let be s(B) =

{C1, . . . , Cn}. According to Definition 4.7 – which applies if B has not been

instantiated – the edge label calculating λ(B) is defined as follows:

λ(B) = λC1(B) ◦ · · · ◦ λCn(B)

=

(
n∏
j=1

λCj(b1), . . . ,
n∏
j=1

λCj(bm)

)

⇒ λ(bi) =
n∏
j=1

λCj(bi) =
∏

C∈s(B)

λC(bi).

If B is instantiated for bi, according to section 4.3 the corresponding λ-vector is

a vector whose entries are 0.0 except the entry corresponding to the instantiated

value, which is 1.0. So, the λ-value of B in the probability propagation net is
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equal to the one calculated by operative formula 3.

4. Bayesian network operative formula:

If B is a variable with k possible values and exactly two parents, A

and D, A has m possible values, and D has n possible values, then

for 1 ≤ i ≤ k the π value of B is given by

π(bi) =
m∑
j=1

n∑
p=1

P (bi | aj, dp)πB(aj)πB(dp).

This kind of structure is a Bayesian network join (see Definition 4.1). In the

probability propagation net, this operational formula is represented by the firing

of the join’s first functional transition f 0
B. The arc label thereby is π(B) =

(π(A)×π(D)) ·CPM0
B. Now it will be shown that the calculation induced by the

firing of f 0
B yields the same result as the above operational formula (the variables

and respective numbers of possible values are given above):

π(B) = (πB(A)× πB(D)) · CPM0
B

= (πB(a1) · πB(d1), . . . , πB(a1) · πB(dn), . . . ,

πB(am) · πB(d1), . . . , πB(am) · πB(dn)) · CPM0
B

= (πB(a1) · πB(d1) · P (b1 | a1, d1) + . . .

+ πB(a1) · πB(dn) · P (b1 | a1, dn) + . . .

+ πB(am) · πB(d1) · P (b1 | am, d1) + . . .

+ πB(am) · πB(dn) · P (b1 | am, dn), . . . ,

πB(a1) · πB(d1) · P (bk | a1, d1) + . . .

+ πB(a1) · πB(dn) · P (bk | a1, dn) + . . .

+ πB(am) · πB(d1) · P (bk | am, d1) + . . .

+ πB(am) · πB(dn) · P (bk | am, dn))
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⇒ π(bi) = (πB(a1) · πB(d1) · P (bi | a1, d1) + . . .

+ πB(a1) · πB(dn) · P (bi | a1, dn) + . . .

+ πB(am) · πB(d1) · P (bi | am, d1) + . . .

+ πB(am) · πB(dn) · P (bi | am, dn))

=
m∑
j=1

n∑
p=1

πB(aj) · πB(dp) · P (bi | aj, dp).

Since the variables πB(A), πB(D) are bound at the incoming edges and the cur-

rent π-values of the corresponding nodes are assigned to these variables, the

resulting tuple after firing of f 0
B is equal to the π-message calculated by the

above operative formula.

5. Bayesian network operative formula:

If B is a variable with k possible values, then for 1 ≤ i ≤ k, P ′(Bi),

the conditional probability of bi based on the variables thus far in-

stantiated, is given by

P ′(bi) = αλ(bi)π(bi).

The conditional probability, which is also called the belief, is not represented

in the structure of the probability propagation net but this formula is used to

calculate the beliefs based on the current λ- and π-messages as described in

Definition 2.22 and in section 4.2.

Initialization

1. Bayesian network initialization rule:

Set all λ values, λ messages and π messages to 1.

The initialization of λ-values is done by setting the arc labels of outgoing bound-

ary λ-transitions to the current λ-values of the corresponding variables as de-

scribed in Definition 4.8. Since at the initialization phase no evidence is given,

all λ-values are neutral (that means (1.0, . . . , 1.0)). Messages are in principle

represented by tokens flowing through the net representations of the t-invariants.
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Until now, only the structure is set and no simulation is started in the probability

propagation net.

2. Bayesian network initialization rule:

For all roots A, if A has m possible values, then for 1 ≤ j ≤ m, set

π(aj) = P (aj).

In the probability propagation net, this is also represented by the arc labels. In

this case the labels of the edges (πA, A
π) are initialized with the respective prior

probabilities (see Definition 4.8).

3. Bayesian network initialization rule:

For all roots A for all children B of A do

Post a new π message to B using operative formula 2. (A propagation

flow will then begin due to updating procedure C.)

This rule is represented by starting the reproduction of the empty marking in the

π-invariants. This is always the first dynamical step of the initialization process

in probability propagation nets as mentioned in section 4.2.

Updating

When a variable is instantiated, or a λ or π message is received by a

variable, one of the following updating procedures is used:

Instantiation in probability propagation nets is done by changing the corresponding arc

labels generating the π- and λ-values. Message reception is represented by the marking

which changes when transitions fire. In turn, this may enable other transitions. So,

receiving a message is represented by the enabling of a transition under the respective

marking (that means enabling by tokens or vectors on the input places), sending a

message is represented by the firing of the respective transition, which consumes the

“old” tokens and generates the corresponding new tokens on the output places. The

details are described below.

• Updating procedure A.

If a variable B is instantiated for bj, then

1. Set P ′(bj) = 1 and for i 6= j, set P ′(bi) = 0;
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2. Compute λ(B) using operative formula 3;

3. Post new λ messages to all B’s parents using operative formula 1;

4. Post new π messages to all B’s children using operative formula 2.

As mentioned above, the instantiation of variables in the probability propagation

net is done by setting the arc labels to the respective values. In this case, the

arcs {(Bπ, t | t ∈ Bπ·)} and {(t, Bλ | t ∈ ·Bλ)} are set to the vector which

entries are 0.0 except the entry of bj which is 1.0 as described in section 4.3.

• Updating procedure B.

If a variable B receives a new λ message from one of its children, then

if B is not already instantiated,

1. Compute the new value of λ(B) using operative formula 3;

2. Compute the new value of P ′(B) using operative formula 5;

3. Post λ messages to all B’s parents using operative formula 1;

4. Post new π messages to B’s other children using operative for-

mula 2.

The new value of λ(B) is computed by the arc label as described above. The

new belief is not represented in the Petri net itself. It has to be calculated

with the help of the current π- and λ-values according to operative formula 5.

The propagation of the new λ- and π-messages is again done by simulating the

different minimal t-invariants.

• Updating procedure C.

If a variable B receives a new π message from a parent, then if B is

not already instantiated,

1. Compute the new value of π(B) using operative formula 4;

2. Compute the new value of P ′(B) using operative formula 5;

3. Post new π messages to all B’s children using operative formula 2;

else if λ(B) 6= (1, 1, . . . , 1), then

4. Post new λ messages to B’s other parents using operative for-

mula 1.
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B. Proof: Representation of Message Propagation in PPNs

This case is similar to the propagation of λ-messages described in the previous

step. Once more, the simulation of t-invariants provides for the propagation to

be executed.

In conclusion, the properties of the Bayesian propagation algorithm are completely

represented in the corresponding probability propagation net. Since to each edge in

the Bayesian network the π- as well as the λ-direction in the probability propagation

exists, the t-invariants completely cover the Bayesian network’s propagation paths. �
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