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Abstract

Real-time operating systems for mized-criticality systems must support different
types of software, such as real-time applications and general purpose applications,
and, at the same time, must provide strong spatial and temporal isolation between
independent software components. Therefore, state-of-the-art real-time operating
systems focus mainly on predictability and bounded worst-case behavior. However,
general purpose operating systems such as Linux often feature more efficient—but
less deterministic—mechanisms that significantly improve the average execution
time. This thesis addresses the combination of the two contradicting requirements
and shows thread synchronization mechanisms with efficient average-case behavior,
but without sacrificing predictability and worst-case behavior.

This thesis explores and evaluates the design space of fast paths in the im-
plementation of typical blocking synchronization mechanisms, such as mutexes,
condition variables, counting semaphores, barriers, or message queues. The key
technique here is to avoid unnecessary system calls, as system calls have high
costs compared to other processor operations available in user space, such as
low-level atomic synchronization primitives. In particular, the thesis explores
futexes, the state-of-the-art design for blocking synchronization mechanisms in
Linux that handles the uncontended case of thread synchronization by using
atomic operations in user space and calls into the kernel only to suspend and wake
up threads. The thesis also proposes non-preemptive busy-waiting monitors that
use an efficient priority ceiling mechanism to prevent the lock holder preemption
problem without using system calls, and according low-level kernel primitives to
construct efficient wait and notify operations.

The evaluation shows that the presented approaches improve the average
performance comparable to state-of-the-art approaches in Linux. At the same
time, a worst-case timing analysis shows that the approaches only need constant
or bounded temporal overheads at the operating system kernel level. Exploiting
these fast paths is a worthwhile approach when designing systems that not only
have to fulfill real-time requirements, but also best-effort workloads.



Zusammenfassung

Echzeitbetriebssysteme fiir Systeme mit gemischten Kritikalitdten miissen unter-
schiedliche Arten von Software, wie z.B. Echtzeitanwendungen und Allzweckan-
wendungen, gleichzeitig unterstiitzen. Dabei miissen sie eine solide rdumliche und
zeitliche Isolation zwischen unabhéngigen Softwarekomponenten bieten. Daher
fokussieren sich aktuelle Echtzeitbetriebssysteme hauptsachlich auf Vorhersag-
barkeit und ein berechenbares Worst-Case-Verhalten. Allerdings bieten Allzweck-
Betriebssysteme wie Linux haufig effizientere, aber weniger deterministische Me-
chanismen, welche die durchschnittliche Ausfithrungszeit signifikant erhohen. Diese
Thesis befasst sich mit der Kombination der beiden gegensétzlichen Anforderungen
und zeigt Mechanismen zur Thread-Synchronisation mit einem effizienten Durch-
schnittsverhalten, ohne jedoch die Vorhersagbarkeit und das Worst-Case-Verhalten
zu beeintrachtigen.

Diese Thesis untersucht und bewertet den Entwurfsraum von Abkirzungen
(engl. fast paths) bei der Umsetzung von typischen blockierenden Synchronisati-
onsmechanismen wie Mutexen, Bedingungsvariablen, Zahl-Semaphoren, Barrieren
oder Nachrichtenwarteschlangen. Der Ansatz ist dabei, unndtige Systemaufrufe zu
vermeiden. Systemaufrufe haben im Vergleich zu anderen Prozessoroperationen,
die im Benutzermodus verfiighar sind, wie z.B. atomaren Operationen, héhere
Kosten. Insbesondere erforscht die Thesis Futeze, ein aktuelles Design fiir blockie-
rende Synchronisationsmechanismen in Linux, welches den konkurrenzfreien Fall
der Synchronisierung mithilfe atomarer Operationen im Benutzermodus 16st und
den Kern nur aufruft, um Threads zu suspendieren und aufzuwecken. Die Thesis
untersucht auch nicht-unterbrechbare Monitore mit aktivem Warten. Dort wird ein
effizienter Mechanismus mit Prioritétsschranken verwendet, um das sogenannte
Lock-Holder-Preemption-Problem ohne Systemaufrufe zu vermeiden. Ebenfalls
werden passende niedere Kernprimitive beschrieben, die effiziente Warte- und
Benachrichtigungsoperationen ermoglichen.

Die Evaluation zeigt, dass die vorgestellten Ansétze die durchschnittliche
Leistung vergleichbar zu aktuellen Ansétzen in Linux verbessern. Gleichzeitig
zeigt eine Analyse des Worst-Case-Zeitverhaltens, dass die Ansétze nur konstante
oder begrenzte zeitliche Mehraufwéande auf der Ebene des Betriebssystemkerns
bendétigen. Die Nutzung dieser Abkiirzungen ist ein lohnender Ansatz fiir den
Entwurf von Systemen, die nicht nur Echtzeitanforderungen erfiillen, sondern
auch Allzweckanwendungen gut unterstiitzen sollen.
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Chapter 1

Introduction

The trend of integrating multiple functions into a single computer system due
to size, weight and power (SWaP) considerations, as well as the rise of on-chip
multicore processors, bring new challenges to research in embedded operating
systems [BD19|. For such systems, the concept of mized criticality defines not only
the idea of higher relative importance of some functions compared to others, but
also that these functions have different requirements regarding safety and security
certification standards. Using safety-critical, mission-critical, and non-critical
software components on a single computer requires a system design that enforces
strict separation of these components [BBB109].

The way these systems are designed follows the specifications of domain
standards, such as ARINC 653 in avionics, which requires temporal and spatial
partitioning mechanisms to ensure the separation [AEE15|. Partitioning by itself
does not only ensure necessary fault isolation as required by safety standards, like
RTCA DO-178C for avionics and ISO 26262 for the automotive industry, but
also allows for independent analysis of the different software components. This
simplifies the design phase of such systems and allows to exchange or update
software components to a certain degree.

However, the strong focus on predictable timing and bounded worst-case be-
havior often neglects the demands of non-real-time software components, which
can have a vastly different and much more dynamic program structure. For exam-
ple, best-effort applications do not have the limitation to allocate and initialize
all resources at start time, as dynamic memory allocation is a source of non-
determinism. Also, non-real-time operating systems and execution environments
provide state-of-the-art techniques to optimize the average-case performance of
both the applications and the whole system. Examples include opportunistic
mechanisms like overcommit of virtual memory allocations, biased locking in a
Java Virtual Machine that pins shared objects without contention to the recent
thread [Kaw05|, or fair process scheduling to prevent starvation.
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1.1 Efficient Synchronization Mechanisms

When looking at mutual exclusion, there are different mechanisms that optimize
for the average-case in thread synchronization mechanisms in user space.

For example, the design of fast user space mutexes (futexes) in Linux is based
on the two observations that contention is usually rare and that system calls are
expensive. Here, both mutex_lock and mutex_unlock operations feature a fast path
based solely on atomic operations in user space, skipping system call overhead
most of the time and only calling the kernel to actually suspend or wake up
threads on contention [FRK02|. But futexes have not been developed for real-time
systems or mixed-criticality systems in the first place and predictability issues
have been raised |Brol6,ZK19].

Another example is the use of spinlocks for short critical sections in user space,
i.e. busy-waiting synchronization based on atomic primitives of the processor.
But using spinlocks in user space introduces a source of non-determinism due to
lock waiter preemption and lock holder preemption. Various techniques to address
these problems were proposed, e.g. preventing preemption while holding a lock,
recovery from preemption by spinning only for a limited time, or mitigating the
side effects of preemption which violate either scheduling or fairness constraints
[ELS88, KWS97, MS98, ULSD04, OL13].

When we compare these examples, we can observe that the main technique
to achieve better average execution time is to split a synchronization mechanism
into an efficient fast path and a robust slow path or fallback mechanism. The fast
path avoids system calls, as calls into the operating system kernel are expensive.
The slow path is always implemented as system call and deals with the parts that
require involvement of the operating system anyway, i.e. suspension and wake-up
of threads. Under the optimistic assumption that the slow path is rarely needed,
the usage of the fast path dominates and the average execution time improves.

However, as we will present in Chapter 3, avoiding system calls comes at a cost.
For example, futexes in their originally proposed form are prone to unbounded
loops when the blocking test in the kernel fails [FRK02]. And mechanisms to deal
with lock-holder preemption correctly include watchdog mechanisms, superfluous
spinning, or yielding execution time to a preempted lock-holder, see Section 2.1.3.
Even worse, these additional overheads must be accounted with their worst-case
impact when doing a worst-case execution time analysis.

For synchronization mechanisms, this thesis addresses the fundamental concern
of whether efficient average-case performance and predictable real-time behavior
can co-exist, as state-of-the-art synchronization mechanisms designed for best-
effort systems choose efficiency over determinism. Synchronization mechanisms
for mixed-criticality systems should be both deterministic, i.e. must not fail
unexpectedly and have predictable temporal behavior, and efficient, i.e. avoid
costly system calls.
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1.2 Predictability and Determinism

In this thesis, the terms predictability and determinism describe the following
different properties of software.

We use the term predictability in the sense that software shows predictable
timing and predictable resource usage. In our specific meaning as temporal property,
all parameters that contribute to the execution time of software are identified
and we can construct a timing model, and, if all these parameters are known,
either exactly or via an upper bound, we can compute the worst-case execution
time. Similarly, for resource usage, we can construct a model when all depending
parameters are defined, and we can derive the worst-case resource usage if these
parameters are known. This follows the common usage of predictability in the
real-time context [WEE108, AEFT14].

In contrast, determinism describes the functional property to deliver the
expected output for a given input in a given time. In the context of real-time
operating systems, the term determinism is used in a more colloquial sense of
“something behaves as intended, unexpected things must not going to happen”
instead of the more formal sense used in theoretical computer science.

This thesis analyzes the impact of techniques to improve efficiency of synchro-
nization mechanisms on the timeliness in a real-time system. In our particular
case, the key technique is to use a fast path with lower average costs, and a
fallback or slow path mechanism with higher average costs. Determinism ensures
that the results must be the same, regardless if the fast path or the slow path was
taken. Predictability ensures that, for both cases, non-conflicting timing models
exist, and actual worse cases can be determined from input parameters when
necessary. This requires that the timing model of the fast path must be included
in the model of the slow path, so the slow path defines the worst case, see also
Section 3.2.4.

1.3 Contributions

In this thesis, we provide synchronization mechanisms for mixed-criticality systems
which can handle both sides—best-effort and real-time—well. The proposed mech-
anisms provide good average-case performance, but without sacrificing predictabil-
ity and worst-case behavior. This does not only help best-effort applications. Also
real-time applications benefit from a faster average performance, as it helps to
achieve secondary design goals, such as reducing the overall power consumption.

The application-specific context of this thesis is to provide the higher-level
blocking synchronization primitives of POSIX PSE51, ARINC 653 part 1, and
AUTOSAR OS in an efficient way. These operating system standards cover the
domains of industrial, avionics, and automotive software systems with different
degrees of real-time requirements. For this, the thesis analyzes existing state-of-
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the-art mechanisms for efficient synchronization, in particular futexes, for the
usability in real-time environments, and then extends the state-of-the-art with
designs which address the problems of these best-effort approaches. In Linux and
other operating systems, futexes are the underlying synchronization primitives
to implement POSIX synchronization mechanisms, such as blocking mutexes,
condition variables, semaphores, and barriers.

The thesis provides the following contributions:

e The analysis decomposes blocking synchronization mechanisms into low-level
building blocks, identifies potential fast paths, and discusses the trade-offs
of moving these building blocks beyond the classical barrier between the
operating system kernel and user space.

o Deterministic futeres address the determinism and predictability issues
found in the Linux futex design. Deterministic futexes provide similar
features as futexes in Linux and target similar use cases.

e Static futezes are a futex design for statically configured systems and resource
constrained embedded systems. Static futexes provide a selected subset of
the futex features found in Linux by using only a minimal implementation
at the kernel level.

e Fuast priority switching is an efficient implementation of an immediate priority
ceiling protocol (IPCP) without using system calls in the average case and
can be used to temporarily disable preemption in user space. This enables
non-preemptive critical section in user space.

o Non-preemptive busy-waiting monitors' allow synchronization mechanisms
with richer semantics than futexes in user space. Key techniques here are
fast priority switching and optimized wait and wake-up primitives in the
operating system kernel which reduce the number of system calls to the
required minimum.

For each presented mechanism, the thesis provides an analysis of worst-case
behaviors and the impact on a timing analysis. For this, we do not perform
an actual WCET analysis, as this requires detailed knowledge of the underlying
processor architecture and the overall system, see e.g. [BSCT11]. Instead, we keep
the worst-case considerations on an abstract level and identify the worst case on
the level of the low-level building blocks of a synchronization mechanism in a
kernel using fine-grained locking. The analysis remains on a coarse functional
level and does not go down to the level of basic blocks. The individual worst cases
are often either constant or depend on a variable argument, such as the number of

n this thesis, the term monitor refers to the monitor synchronization mechanism [BFC95],
and not the monitor language construct first introduced in the Mesa programming language.



CHAPTER 1. INTRODUCTION

threads or the number of processors. We think this is the right level for a system
designer to decide for or against a mechanism in general, see Section 2.1.6.

As further boundary, the thesis addresses multicore interference problems only
at the software level and not at the hardware level, such as sharing of caches,
interconnects and memory controllers. Section 2.1.9 lists techniques and related
work to properly partition shared resources.

Parts of the content of this thesis have been presented in the following peer-
reviewed workshop and conference papers:

o Determunistic Fast User Space Synchronization, in OSPERT Workshop
2018 |Zuel3.

e Fuast User Space Priority Switching, in OSPERT Workshop 2014 |ZBK14].

o AUTOBEST: A United AUTOSAR-OS and ARINC 653 Kernel, in RTAS
2015 |ZBL15|.

e Deterministic Futexes: Addressing WCET and Bounded Interference Con-
cerns, in RTAS 2019 [ZK19].

o Turming Futexes Inside-Out: Efficient and Deterministic User Space Syn-
chronization Primitives for Real-Time Systems with IPCP, in ECRTS
2020 |Zue20].

The author of this thesis is the main author of these papers.

The presented mechanisms have been evaluated and are going to be used
in ecHypervisor, an automotive microkernel operating system developed in the
AUTOBEST project and commercially distributed by easycore GmbH?, in Marron,
a research kernel developed in the AQUAS project?, and in PikeOS, an avionics
partitioning kernel /hypervisor by SYSGO GmbH®". The author of this thesis is
the author of the first two systems and the author of the thread synchronization
mechanisms in PikeOS.

1.4 Organization

The rest of this thesis is organized as follows:

Chapter 2 explains necessary concepts of synchronization mechanisms from
both the operating systems and the real-time systems point of view and defines
the terminology used in this thesis.

Chapter 3 presents related work, describes the system model, and defines
metrics to evaluate efficiency and predictability. We then analyze higher-level

Zhttps://www.easycore.com/.
3https://aquas-project.eu/.
“https://www.pikeos.com/.
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synchronization mechanisms and their lower-level building blocks. Based on
the analysis, we identify potential approaches in the design space of blocking
synchronization mechanisms. Particularly we unroll the futex design in Linux
as a state-of-the-art approach for efficient synchronization mechanisms with a
special focus on predictability. We also analyze mechanisms to prevent lock holder
preemption problems and other low-level wait and wake-up mechanisms.

Chapter 4 presents different approaches for both efficient and predictable
synchronization mechanisms. The first three sections discuss different futex-
based designs. Section 4.1 presents deterministic futexes, a kernels-level design
for futexes which addresses the predictability issues found in the Linux kernel.
Section 4.2 provides a futex design for statically configured systems named static
futexes. Section 4.3 shows higher-level synchronization mechanisms in user space
on top of the presented futex primitives in the operating system kernel. The
next three sections present light-weight spin-based monitors. Its building blocks
are an efficient IPCP implementation discussed in Section 4.4.1, related wait
and wake-up primitives shown in Section 4.4.2; and higher-level synchronization
mechanisms described in Section 4.5.

Chapter 5 evaluates these presented approaches by benchmarking the gains
in average-case performance compared to a system-call-based baseline implemen-
tation on 32-bit ARM processors, and provides an analysis of the impact of fast
paths on the worst-case timing in a model of worst-case memory accesses.

Chapter 6 discusses the results and compares the different approaches.

Chapter 7 concludes and summarizes the thesis.

The writing style in this thesis uses the first person plural form “we”, even if
the author is a single person.

Listings and programming examples in this thesis use the C programming
language.



Chapter 2

Basics

Firstly, we define the terminology and basic concepts used in the rest of this thesis
in Section 2.1. Then, in Section 2.2, we present typical user-level synchronization
mechanisms with their APIs, and take a brief look at synchronization mechanisms
inside an operating system kernel.

2.1 Basic Concepts and Terminology

We first describe basic concepts of operating systems and resource management,
real-time scheduling and locking protocols, architectural concepts and operating
system standards, and the hardware architecture and its predictability issues.
With it, we define the terminology further used in this thesis.

2.1.1 Operating System Concepts

A process is an instance of a computer program executing in an address space.
Different processes have their own distinct address spaces, but processes can share
parts of their address spaces via shared memory segments. A shared memory
segment may be mapped at different virtual addresses in each address space.

A process comprises one or more threads, which are the executing parts of
a program and active entities in a system. From the operating system’s point
of view, a thread consists of a register context, a scheduling state, and further
attributes that define how and when threads are scheduled.

Next to threads, interrupt service routines (ISRs) are also active entities in
the system. ISRs are activated by hardware events to perform service activities
inside the operating system. Interrupt handling can have multiple steps, e.g. an
ISR can notify a thread for further non-urgent follow-up activities. Inter-processor
interrupts are a special class of interrupts that are activated internally by the
operating system to enforce housekeeping on remote processors.
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A resource partition consists of one or more processes and their threads as
the next logical level of grouping above processes. It defines an upper bound of
the physical resources that entities inside the partition may use. This concept of
spatial partitioning provides stronger separation than the Unix process model. All
communication channels between partitions must be explicitly configured, there
are no implicit communication channels.

Temporal partitioning provides partitioning of time and confines any temporal
misbehavior of threads. Here, multiple approaches are available: Time partition-
ing describes a two-level scheduling scheme mandated by the avionics standard
ARINC 653. On the lower level, a time partition defines a set of independently
schedulable threads. Threads inside a time partition compete against each other
for CPU time, but not against threads in other time partitions. On the higher
level, the different time partitions are scheduled using a repeating cyclic schedule
called major time frame. This cyclic schedule is the hyperperiod of the periodic
activation of all thread. On a multi-processor systems, partitions spanning more
than one processor use coscheduling or gang scheduling and run simultaneously on
all processors [Ous82|. Alternatives to time partitioning with its cyclic schedule
are server scheduling approaches, e.g. constant bandwidth server (CBS), which
guarantee an amount of execution time for periodically executing groups of threads,
or monitoring of execution time per thread in automotive systems. In any case,
temporal partitioning defines an upper bound of available CPU time threads can
consume and provides according mechanisms either to enforce these bounds or to
detect if these bounds are exceeded.

The operating system’s scheduler keeps threads eligible for scheduling on a
ready queue or run queue. We call these threads ready or runnable. The currently
executing thread on each processor is called current or running thread.

We say that the current thread is preempted when the thread is involuntarily
descheduled in favor of another thread. And when the current thread yields, it
voluntarily deschedules itself. Sometimes variants of a yield operation also allow
to specify a target thread to hand the execution over to. In all cases, the former
current thread remains in ready state.

In the context of a multi-processor system, threads can be scheduled on a
limited set of the available processors only. This set is called CPU affinity of
a thread and typically expressed by an affinity mask. Partitioning and process
settings usually impose a hard limit, while each thread may further refine this
set by a soft limit. A thread’s current or assigned processor is the processor the
thread is currently executing on or where the thread was already scheduled before.
A thread is said to be migrated when it is moved to another processor. A current
thread can also voluntarily change its assigned processor.
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2.1.2 Shared Resources and Critical Sections

Resources describe both physical entities of a computer system, such as memory,
[/O, and hardware devices, and virtual entities that require some kind of internal
consistency, such as shared data structures. We denote threads as in conflict when
two or more threads concurrently access a shared resource during an overlapping
time period. We call the parts of a program that access shared resources critical
sections. Race conditions happen when the accesses to a shared resource cause
different results depending on the temporal order of these accesses. Mutual
exclusion mechanisms ensure that only one thread can enter a critical section at
a time. In this thesis, we use the term critical sections in a colloquial sense for
all code sequences that need to be protected by a mutual exclusion mechanism
(regardless of its type) for correctness and consistency.

An operating systems usually provides various types of exclusive locks to
implement safe access to resources. A thread uses a lock acquire operation to get
exclusive access to a shared resource, and a corresponding lock release operation
marks the end of the exclusive access. We can further break down lock acquisition
into the following steps: at first, the thread issues a request for the shared resource,
and then the thread might have to wait until exclusive access to the resource
is granted. Eventually, the thread becomes the owner the lock and with that
owns the shared resource exclusively. Synonymously for the acquire and release
operations, we lock and unlock a specific lock or a shared resource. We also say
we enter and leave a critical section.

Next to exclusive locks, operating systems also often provide reader-writer
locks or shared locks. Reader-writer locks allow more than one thread to enter
a critical section if they access the resource in a non-modifying way as a reader.
However, a lock would be unnecessary if the resource never changes, so these locks
also provide exclusive access to a single writer. Reader-writer locks are beneficial
for resources that are modified rarely. Note that when we discuss locks in this
thesis, we refer to exclusive locks and to exclusive access to a resource.

Depending on its scope, a resource is local to a specific CPU if all accesses
are guaranteed to happen only on that CPU. Otherwise, the resource is global
and shared by all processors in a shared memory multi-processor system. In a
single processor system or when protecting a local resource against concurrent
access, it is already sufficient to temporarily inhibit scheduling, for example by
masking interrupts during the execution of the critical section. When the resource
is not immediately available, blocking mutexes are a viable solution. A waiting or
blocked thread suspends execution until the thread is woken up or unblocked again.
The waiting or blocking threads are often kept on a wait queue or blocking queue.
We will use the verb waiting when a thread is waiting for a hardware resource
or software signal, and blocking refers to any necessary waiting induced by other
threads because the resource is not immediately available. For global resources,
spinlocks in a shared memory segment serialize threads on remote processors of a
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tightly coupled multiprocessor system via busy-waiting on an atomic variable. We
further refine blocking to remote blocking caused by threads on remote processors
and local blocking caused by threads on the local processor.

2.1.3 The Lock Holder Preemption Problem

The lock holder preemption problem is specific to synchronization using busy-
waiting, e.g. spinlocks. It describes the problem that on one CPU, a thread
holding a lock is preempted, while on other CPUs, threads continue to spin to
acquire the lock. A related problem is the lock waiter preemption problem when
a faur spinlock is used. Here, an older waiting thread is preempted and hinders
younger waiting threads to acquire the lock when the lock is passed over to the
preempted thread [OL13|. In both cases, the spinning threads unnecessarily waste
CPU time (and energy), as they can not acquire a lock.

Note that spinning or busy-waiting synchronization primitives can easily
be implemented using atomic instructions in user space, but the problem with
spinning synchronization is that the operating system scheduler is not aware
whether a thread to preempt is currently inside a critical section or not. This is
typically less a problem when using blocking synchronization, as the scheduler is
notified implicitly.

Both the lock holder preemption and the lock waiter preemption problems
are well studied problems in the context of operating system design, e.g. [MS98,
ULSDO04, OL13, KWS97|. Next to simply ignoring the problems of lock holder
preemption and lock waiter preemption, proposed solutions to mitigate the prob-
lems fall into the following categories: (i) preventing or avoiding preemption while
holding or waiting for a lock, (ii) recovery from preemption, and (iii) mitigation
of side effects of preemption.

Preventing and avoiding preemption: Preventing preemption is the typical
approach used inside an operating system kernel. The operating system kernel
disables preemption on the local CPU before trying to lock a spinlock, and re-
enables preemption after unlocking.

Similarly, for spinlocks in user space, Edler et al.’s approach in Symuniz I1
temporarily disables preemption before trying to enter a critical section |[ELS8S|.
For uncooperative threads not enabling preemption, the kernel sets up a short
timeout to enforce preemption.

An alternative approach to avoid preemption is the two-minute warning
mechanism proposed by Marsh et al. in Psyche [MSLM91]: the kernel indicates
upcoming preemption (i.e. end of time slice) in a user readable flag, and a user
space thread then avoids acquiring any spinlocks and rather yields.

Lastly, in the context of real-time systems, the use of real-time locking protocols
such as the stack resource policy (SRP) |Bak91] or the immediate priority ceiling
protocol (IPCP) [BW09] can also prevent lock holder preemption.

10
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Preemption recovery: Ousterhout proposed a two-phase synchronization
scheme where a thread first spins for a limited time, and then changes to blocking
(first spin, then block). The time for spinning should be at least twice the time of
a context switch [Ous82|. Karlin et al. [KLMO91] and Lim and Agarwal [LA93|
later studied several strategies to adapt the spinning time. He et al. presented a
technique for queue-based spinlocks using time stamps to indicate activity of the
lock holder [HSSO05].

Black presented the thread_switch primitive in Mach that provides a hint
to the operating system which threads to schedule next. The mechanism was
primarily designed to optimize message passing, but is also used by spinning
threads to yield to a preempted lock holder and effectively push the preempted
thread out of its critical section [Bla90|. Anderson et al. presented a similar
mechanism with scheduler activations [ABLL92).

Takada and Sakamura proposed spinlocks with a helping scheme where a
spinning processor completes the critical section for a preempted processor [TS97].

Kontothanassis et al. presented scheduler-conscious synchronization where
a thread can determine and alter preemption indicators of other threads and
then pass a lock to another thread and notify the scheduler to make it non-
preemptible [KWS97].

Mitigating the side effects of lock holder preemption: Ousterhout’s
coscheduling puts threads that share locks into groups, and schedules all threads
of a group at the same time |[Ous82]. With this, preemption of a lock holder no
longer matters to the other threads, as they are preempted at the same time.

For virtual machine scheduling, Uhlig et al. observed that a virtual machine
is safe to be preempted w.r.t. internal locks of the virtualized operating system
kernel when the virtual machine executes in user mode [ULSDO04].

Interruptible critical sections for quantum scheduling were proposed by Johnson
and Harathi [JH95|. Takada and Sakamura presented an extension to MCS locks
to allow preemption to service interrupts [TS94]. Ouyang and Lange proposed
preemptible ticket locks for virtual machines [OL13|.

2.1.4 Real-Time Scheduling

The previous section described the entities of an operating system from a system’s
perspective, but different terminology is used in real-time scheduling theory.
Real-time scheduling theory formalizes a system and its entities w.r.t. timeliness.

A real-time system comprises a set 7 of np tasks 71,...,7,,. Each task
describes a repeatedly executed code sequence. When a task 7T; is activated or
invoked, e.g. at a specific time or by an internal or external event, it releases a
job. A job Tl-j is the specific instance of the j’s recurring execution of task T;.
The time the job is released is called release time Tf . After release, the job must
complete its execution in a specified time interval, the so-called relative deadline

11
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D;, which is an attribute of the task. The resulting absolute deadline of the job
is @/ = rJ + D;. The maximum execution time budget a task needs to complete
is called the worst-case execution time (WCET) e;. However, a job can (and
often will) finish earlier. We denote this time as finish or completion time ff
The overall response time or answer time of the job is a{ = fij — rg . Also, the
mazimum response time of the task is a; = mvz}x{a}, ..al

To further model a system, we also need to know the time between two releases
of a task. Liu and Layland’s seminal work [LL73| defines the periodic task model,
where the period p; describes the time between two job releases of T;. This model
was later extended to the sporadic task model where p; describes the minimum
time between two jobs releases. In this model, the utilization u; = e;/p; of a task
T; describes the share of execution time the task needs, and the total utilization
of the system is U(7) = > w;. We then say that a task set is schedulable under

T;eT
a specific scheduling algorithm if all jobs finish before their deadlines expire, i.e.
VT; € T : a; < D;. The exact way how this prioritization of tasks is achieved
depends on the actual scheduling algorithm.

Classic real-time scheduling algorithms are rate-monotonic scheduling (RMS)
and earliest deadline first (EDF) [LL73]. RMS uses fized priority (FP) scheduling
and assigns a higher priority m; the shorter a task’s period is. In contrast, EDF
schedules jobs of a task based on their current deadlines dg . Compared to RMS,
EDF uses dynamic priorities. The benefits of fixed-priority scheduling are a simpler
implementation with O(1) timing characteristics, and predictable behavior on
system overload!. In contrast, EDF provides a better utilization bound of 100%
processor time. In both cases, a scheduler implementation in the operating system
does not need to know or track execution times to operate correctly. The execution
time is used as a parameter in a prior offline analysis. Note that we express higher
priorities by higher integer numbers in this thesis.

Also, on a multi-processor system, we must consider the scope of the scheduler.
Partitioned scheduling considers that each CPU is scheduled independently of
each other CPU and does not migrate tasks between CPUs automatically. For
example, on a dual processor system, the first CPU has two tasks with priorities
100 and 99 in READY state, and the second CPU has one task with priority 1,
P-FP schedules the task with priority 100 on the first CPU, and the task with
priority 1 on the second CPU, even if a higher priority task 99 exists. In contrast,
global scheduling considers all CPUs at the same time and migrates tasks when
necessary. For example, G-EDF on a four processor system would schedule the
four tasks with the four earliest deadlines in the overall system in parallel. As
a hybrid approach, clustered scheduling groups different processors into clusters.
Tasks are then assigned statically to the specific clusters (partitioned), with global

"'With FP, a misbehaving task that exceeds its execution time budget only harms tasks with
a lower priority.

12
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scheduling inside a cluster. Clustering for example helps in situations where
processor cores of a multicore system share caches and the overhead of task
migration is cheap [CABO7|. In the context of this thesis, we will further focus on
P-FP only. For a recent overview of real-time scheduling theory, see the survey of
Davis and Burns [DB11] and Brandenburg’s dissertation [Brall].

Finally, the task and job model relates to threads as follows: we can consider
a thread to be an actual implementation of a task. In an endless loop, the thread
then waits for its release, e.g. for the next periodic activation or for an external
event, and when the thread is woken up, it executes the job in the specific iteration
of the loop.

In the rest of this thesis, we will mostly use the term thread instead of task
and job, as we focus only on parts of the overall execution of a job. Also, we will
omit the job-specific index j for readability where possible.

2.1.5 Real-Time Locking Protocols

Sharing of multiple resources by different threads can lead to problems such as
deadlock and priority inversion.

A deadlock occurs when multiple threads wait indefinitely for each other to
release shared resources. When modeling the lock acquisition requests in a graph,
deadlocks become visible as circular dependency. Deadlocks only can happen when
lock attempts need to be nested, and a common technique to prevent deadlocks is
to enforce a linear order on resource types that defines a strict sequential order
how locks must be taken.

The priority inversion problem is at best explained by the following example.
Assume a low priority thread T with priority 7 and a high priority thread
Ty with priority 7y share a resource. Thread T}, locks the shared resource, but
T}, is preempted inside its critical section by the high priority thread Ty. Now,
Ty also wants to access the shared resource, but has to wait until T}, releases
the resource. We call this direct blocking. Next, thread T} executes again, but
is subsequently preempted by a third thread T); of medium priority 7, with
7w < my < mg. In this scenario, the medium priority thread Ty, now indirectly
blocks the progress of the higher priority thread Ty and can cause a (potentially
unbounded) priority inversion. Real-time scheduling theory allows to handle
priority inversion problems.

Next to threads, a real-time system also includes a set of n, shared resources
ly,...,0,,. When a thread requires a resource ¢, with ¢ € {1, ...,n,}, it first issues
a request for [,. The request is satisfied when the thread eventually holds [,
and the request completes when the thread releases {,. This allows to model the
blocking time, i.e. the waiting time between issuing the request and holding the
lock, and the time spent inside the critical section.

Scheduling theory now provides different real-time locking protocols that ad-
dress priority inversion [Liu00]. We start with an overview of classic protocols

13
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for single processor systems, and later discuss their extensions for multiprocessor
systems.

Locking Protocols for Single Processor Systems

The non-preemptive critical section (NPCS) protocol is the simplest protocol
to avoid priority inversion. In NPCS, a thread performing any lock acquisition
attempt is assigned the highest scheduling priority, so it cannot be preempted by
other threads. This solves both the priority inversion and the deadlock problem,
but now low priority threads can block unrelated high priority threads and affect
their response time.

To address this problem, Sha et al. introduced the priority inheritance protocol
(PIP) [SRL90]. In the basic (non-nested) form of PIP, a thread acquires a free
lock immediately, but blocks when the lock is not free. In the latter case, the
blocked thread Ty must have a higher priority 7y than the current lock holder 77,
with priority 7 (otherwise T would not have preempted 77, in the first place).
To solve the priority inversion, the blocked thread Ty hands down its current
scheduling priority to the current lock holder 77, until 77, finally releases the lock
and Ty can in turn acquire the lock. When T}, releases the lock, the thread also
reverts back to its original scheduling priority 7.

Letting the lock holder 77, inherit the higher priority w5 of the blocked thread
Ty effectively prevents preemption by all threads with lower priority. With this,
the duration of the priority inversion for Ty is never longer than the time 77, spends
in the critical section [Liu00]. A limitation of PIP is that deadlocks can occur
when lock requests are nested. Also, PIP does not minimize the blocking time of
higher priority threads as far as possible, as any locking request is immediately
granted if the lock is free.

Both problems are addressed by the priority ceiling protocol (PCP) [SRLIO0].
PCP introduces the concept of priority ceilings and requires that resource requests
of all threads are known in advance: The resource priority ceiling Il,, is the
highest priority of all threads that can acquire a specific resource ¢,, and the
current priority ceiling f[(t) of the system is the highest priority ceiling of the
resources that are currently in use (or 0 if all resources are free). Now, when a
thread requests a resource, and the resource is not free, the thread blocks as usual.
Otherwise, when the resource is free, the following rules apply:

1. If the current priority m;(t) of the thread T; is higher than the current
priority ceiling I1(¢), the thread immediately acquires the resource.

2. If the priority of the thread is equal to the current priority ceiling I1(¢) and
the thread already holds another resource ¢, with same resource priority

A

ceiling II,, as 11(t), the thread acquires the resource.

3. Otherwise, the thread blocks.

14
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When a thread T; blocks, it hands down its current priority 7;(¢) to the lock holder
T}, until the lock holder T; releases all resources with a ceiling priority greater
than or equal to m;(t) and reverts to its previous priority. Firstly, the priority
ceilings of the resources define a strict order in which locks can be taken. This
prevents deadlocks. Secondly, the protocol effectively denies locking attempts
of sequences of nested locks by medium priority threads when one lock of the
sequence is already in use by a lower priority thread. This effectively shortens the
blocking time of higher priority threads.

Baker’s stack resource policy (SRP) is a variant of PCP that allows non-
blocking threads to share a single execution stack [Bak91|. Based on the same
concepts of system ceiling and resource ceilings, the main difference of this protocol
is to prevent any preemption in problematic locking scenarios instead of denying
lock attempts. In case a priority inversion might happen, the protocol delays
the release of any conflicting threads until the current thread completes. Also,
requests for resources of the current thread are always immediately satisfied. Still,
higher priority threads can preempt the current thread if they do not have any
conflicting resource requests.

SRP requires that jobs of the threads never suspend their execution. This
property allows the aforementioned stack sharing, as higher priority jobs simply
allocate new stack frames upon release and clean these stack frame when they
complete.

Another variant of PCP with similar analytical properties to SRP is the imme-
diate ceiling-priority protocol or immediate priority ceiling protocol (IPCP) [BW09).
The key idea here is to raise the priority of a thread on each resource request to
the ceiling priority of the resource and lower the priority back to the previous
priority when releasing the resource. Now, while executing in a critical section,
the thread can never be preempted by other threads competing for the same
resource. And again, any locking attempts are immediately satisfied.

A related variant to IPCP for EDF scheduling is the deadline floor inheritance
protocol (DFP) where instead of the thread’s priority its deadline is temporarily
set to the minimum (floor) of the relative deadlines of all threads that use a
resource [Burl2).

Locking Protocols for Multi-Processor Systems with Busy-Waiting

On multi-processor systems, shared resources that are local to a specific CPU,
i.e. when all requesting threads reside on the same CPU, can be effectively
managed by the single processor protocols discussed before. But resource sharing
between multiple processors (global resources) requires different protocols, and
the set of available protocols also depends on the scheduling strategy, namely
global scheduling or partitioned scheduling. We do not further consider clustered
scheduling in this thesis.
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A natural approach is to disable preemption locally and use spinlocks with
FIFO ordering (in short: FIFO spinlocks) for global synchronization. For example,
in the context of partitioned EDF scheduling, Gai et al. proposed MSRP, using
SRP for local resource requests and non-preemptible FIFO spinlocks for global
resources |[GLNO1]. With non-preemptive FIFO spinlocks on a system with m
processors, a thread has to spin for at most m — 1 other processors to complete
the same conflicting critical section. But non-preemptive spinning exposes the
same general problems as NPCS, namely that non-preemptive blocking of low
priority threads can severely affect the response time of unrelated high priority
threads.

The multiprocessor resource sharing protocol (MrsP) by Burns and Wellings
addresses this particular problem for P-FP scheduling and extends IPCP for
multiple processors [BW13]|. For both local and global resource requests, the
requesting threads increase their scheduling priorities to the resources’ ceiling
priorities first. For shared resources, MrsP then additionally uses FIFO spinlocks.
Now if the spinning threads detect that the current lock holder on a remote
processor is not executing (because the lock holder is currently preempted), they
try to help out the lock holder by migrating the lock holding thread to one of the
spinning processors and let it finish its critical section at the spinning thread’s
priority ceiling. MrsP effectively prevents that lower priority threads can impact
higher priority threads in any kind due to the priority ceiling, while the temporal
impact of higher priority threads on lower priority threads is bounded.

Locking Protocols for Multi-Processor Systems with Blocking

A different approach for global synchronization is to use blocking synchronization.
Rajkumar et al. proposed two extension of PCP, first the distributed PCP (DPCP)
and later the multi-processor PCP (MPCP), for systems with partitioned schedul-
ing [Raj91]. The key technique of both protocols is priority boosting. When a
thread successfully acquires a global resource, its priority is temporarily raised
above the priorities of threads not holding any resources, into a second boosted
priority space mimicking the order of the normal priorities?. Similar to NPCS,
this delays the release of new threads and prevents potential preemption by them.
However, boosted threads can still be preempted by other boosted threads.

In DPCP3, a protocol originally conceived for resource sharing in distributed
systems, all threads and all resources are statically assigned and bound to spe-
cific host processors, and we can calculate the different ceiling priorities up-

2In textbooks, where higher priorities are expressed by decreasing integer values, the boosted
priorities are often expressed by negative numbers. However, in an implementation using
increasing priority values, we can simplify this and for example assume that priorities 1 to 100
relate to normal thread priorities and that priorities 101 to 200 relate to boosted priorities.

3Rajkumar et al. first introduced DPCP as multiprocessor PCP in [RSL88|, but later Rajku-
mar renamed the protocol to DPCP in [Raj91].
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front [RSL88,Rajol]. Threads can only directly access the resources that are local
to their processors. To access global resources on remote processors, threads must
temporarily migrate to the resource’s remote host processor. Alternatively, we can
model this by sending remote procedure calls (RPC) to the target processors and
let remote threads handle the resource requests. While a thread is temporarily
migrated to a remote processor (or waiting for an RPC reply), its original processor
is free to schedule lower priority threads. Now, the rules of the PCP apply to
each processor, but with all global resources (local or on remote processors) using
their boosted priorities as ceiling. Note that local resources are only accessed by
local threads and they are not subject to priority boosting. In general, DPCP
tries to minimize remote blocking, as migrated threads are never preempted by
newly released local threads or local threads only holding local resources. On the
other hand, migration or sending RPCs to a resource’s target processor is a very
costly operation.

In contrast, MPCP allows resource requests to happen from any processor, as
resources are no longer bound to specific processors and migration or RPCs to
remote processors are no longer needed [Raj90,Rajo1l]. The protocol follows the
same rules as DPCP, where requests for local resources use PCP with non-boosted
priorities, and requests for global resources use PCP with boosted priorities®. The
priority ceiling for a global resource is based on the highest priority of any remote
thread that shares the resource. However, low priority threads accessing a global
resource enable priority boosting, which in turn causes local blocking to high
priority threads. Because of this, MPCP requires a much more complex analysis
to derive blocking times.

Another classic blocking protocol to extend for multiple processors is PIP.
However, priority inheritance by itself does not help in P-FP scheduling scenarios,
because thread priorities only have a meaning in relation to other threads on
the same local processor, but not necessarily in global scope. To solve this
problem, PIP can be combined with CPU migration of preempted lock holders
to the CPU where threads observe blocking on a shared resource. Hohmuth
and Peter proposed this approach as local helping in the context of the Fiasco
microkernel [HP01]. As a corner case, local helping must use busy-waiting when
the current lock holder is already running on another processor. To overcome this
issue and use blocking rather than spinning, Brandenburg and Bastoni proposed
migratory priority inheritance for locking in Linux [BB12|. Next to priorities, the
lock holder also inherits the blocked threads’ affinity masks and becomes eligible
for scheduling on all processors in the superset of the affinity masks of all blocked
threads. However, an implementation is not trivial.

4The protocol follows the spirit of the IPCP rather than PCP, as the priority boost is applied
unconditionally each time.
5Again, MPCP follows the spirit of IPCP when applying priority boosting unconditionally.
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Next to classic protocols, new approaches emerged in the recent decades due
to advances in schedulability analysis. These newer protocols were designed to
provide lower blocking bounds than the classic protocols by modeling suspensions
differently. As example of the newer protocols, we describe the FIFO Multiproces-
sor Locking Protocol (FMLP™) by Brandenburg [Brall, Bral4|. The protocol is a
refinement of Block et al.’s FMLP protocol [BLBAOQ7] for partitioned scheduling.
The protocol uses a FIFO-ordered blocking queue for each global resource and a
modified priority boosting rule to ensure progress of lock holders. In FMLP ", the
lock holders’ boosted priorities reflect the temporal order of their lock requests,
thus ordering the execution of lock requests in FIFO order as well. With this,
lock-holding threads are never preempted by local non-lock-holders and are never
delayed by later arriving requests.

Locking Protocols in Practice

In practice, both PIP and IPCP are found as mechanisms to handle priority
inversion in programming languages and operating system standards. IPCP is
called priority ceiling emulation in Java, ceiling-priority protocol in Ada, and
priority protect protocol in POSIX. PIP requires a sophisticated implementation
to handle nesting and corner cases correctly. Zhang et al. note that textbooks
like [Liu00| often get the corner cases of PIP wrong [ZUW20|, and Moylan et al.
observe that implementation often defer the restore to normal priority to the
outermost nested critical section [MBM93|. SRP is used in environments where
memory is scarce, and NPCS (combined with FIFO spinlocks) is used inside
OS kernels and typically implemented by disabling interrupts or preemption.
PCP is its original form is not used very often because of the complexity of its
implementation compared to the other approaches. However, PCP, SRP, and
IPCP requires upfront knowledge of all potential resources threads will use to

Table 2.1: Overview of locking protocols

Abbreviation Protocol Type Comment
Uni-processor protocols
NPCS non-preemptive critical section non-blocking  simple
PIP priority inheritance protocol blocking nesting: risk of deadlock
PCP priority ceiling protocol blocking complex
IPCP immediate priority ceiling protocol blocking simple
SRP stack resource policy (for EDF) blocking complex
DFP deadline floor protocol (for EDF) blocking simple
Multi-processor protocols
NPCS non-preemptive critical section busy-waiting  simple
MSRP multi-processor stack resource policy (EDF)  busy-waiting  non-preemptive spinning
MrsP multi-processor resource sharing protocol busy-waiting  migration
DPCP distributed priority ceiling protocol blocking priority boosting, migration
MPCP multi-processor priority ceiling protocol blocking priority boosting
- PIP + local helping blocking busy-waiting, migration
- migratory priority inheritance blocking migration, complex
FMLP*  FIFO Multiprocessor Locking Protocol blocking priority boosting
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determine the correct resource priority ceilings. When this is not possible, PIP
must be used. For multiprocessor systems with P-FP scheduling, PIP combined
with CPU migration can be found. Newer protocols like FMLP™ are currently not
widely used. Table 2.1 summarizes the locking protocols Brandenburg’s recent
review of real-time locking protocols provides an in-depth overview of further
real-time locking protocols [Bral9].

2.1.6 WCET Analysis Methods

For real-time scheduling, it is essential to know the upper bound of a thread’s
execution time, e.g. to determine the final system utilization and check utilization
bounds. However, determining a thread’s execution time is not an easy task, due
to loops and branches in the program and speculative hardware components, such
as caches, pipelines, and branch prediction. We denote the shortest execution
time best-case execution time (BCET), the average execution time average-case
ezecution time (ACET), and the longest execution time worst-case execution time
(WCET).

One common approach to determine the execution times is to use benchmarks
and specific testcases in a dynamic timing analysis. The resulting observed time
often depends on the overall system structure, such as the maximum number of
involved threads. However, results obtained by benchmarking are just approxima-
tions of the exact execution times. For the BCET, the result is an overestimate,
and for the WCET, the result is an underestimate [WEE108].

In contrast, techniques for static timing analysis use a computational approach
to consider all possible execution times of a thread. The static timing analysis
splits a program into smaller parts (down to sequential code sequences named
basic blocks), determines the execution time for each part, and then infers a bound
for the whole program with information on invariants such as loop bounds. Due to
abstractions of the program execution and the hardware platforms, the computed
WCET is usually an overestimate of the exact WCET. The presented bound can
be considered a worst-case guarantee, however, analysis results are often very
pessimistic [WEET08].

For this thesis, we do not need an exact WCET of either dynamic or static
timing analysis. Rather, we focus on a high-level decomposition of the code,
and determine loop bounds, algorithmic code complexity, and locking architecture,
based on input parameters such as the number of threads and the number of
involved processors. These results would be needed as first steps for both dynamic
or static timing analysis to derive more realistic values of the execution time. The
typical approach here is to decompose an application into separately measurable
parts, determine the execution times of the parts in isolation, and combine the
results into an overall execution time again.

The focus on these limited design aspects seems to be sufficient to detect
major design problems w.r.t. WCET. For example, when comparing linked lists to
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balanced binary search trees (BST), linked lists require O(1) time for operations
such as insertion at head or tail and removal, but O(n) time for sorted insertion.
In contrast, balanced BSTs such as AVL or red-black trees provide operations
like find, min/maz, insert, and remove in O(logn) time. For a large number
of queued objects n, when sorted insertion is needed, linked lists perform worse
than BSTs with algorithmic complexity and show significant trends towards their
worst case [ZK19].

2.1.7 Operating System Architectural Concepts

In this section, we provide a brief introduction to the common ideas and concepts
of real-time operating systems (RTOS). We focus on the domain-specific RTOS
standards for automotive, industrial, and avionics systems and related safety
standards that represent the application-specific background to this thesis.

The key aspects for the following systems and standards are best explained by
the two properties predictability and isolation. Predictability is a typical property
of real-time systems. In the functional sense, it guarantees correctness, and in the
temporal sense, it describes the precise behavior to derive precise bounds for the
execution time in a WCET analysis. In contrast, the second property isolation does
not necessarily improve timeliness, but it provides failure propagation boundaries
and therefore increases fault tolerance. In particular, isolation concepts become
necessary when different software components are put together on a single system
(integration), and a failure in one part could impact the other.

Real-Time Operating Systems

The main idea of an RTOS is to ensure that the applications on top of the OS
can react in a timely manner. In general, two different types of RT'OS designs
are considered, event-triggered and time-triggered systems. In an event-triggered
system, an activity (a thread or an interrupt handler) is started by the occurrence
of an external or internal event, while in a time-triggered system, the activities
(only threads) are started periodically at given points in time [Kop91|. Both types
result in an equal outcome when all deadlines can be met. However, time-triggered
systems are less flexible towards non-real-time applications but resilient against
event storms. Time-triggered systems can be considered a subset due to the
periodic nature of the more general sporadic model of event-triggered systems.

The RTOS helps the developer to implement a system based on the foundation
of real-time scheduling theory, and the RTOS provides a framework that helps to
ensure that timing constraints of the application are met, or, if something goes
wrong, the timing violation is at least detected. With this, the design philosophy
of an RTOS is to aim for a high level of determinism, and therefore the RTOS
can ensure timeliness. In contrast, general purpose operating systems like Linux
or Windows often optimize for throughput.
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The basic concepts of real-time operating systems follow the naming convention
of real-time theory and use the term task for a thread. Inside threads, jobs are
often modeled as repeated execution of waiting for an event and then reacting on
it.

Listing 2.1: Modeling a job as repeated execution of waiting in a loop

void task_bms (void)

{
time_t next_expiry;
err_t err;
next_expiry = current_time ();
while (1) {
// activate thread every 5 ms
next_expiry += TIME_MS(5);
err = sleep_abs(next_expiry);
if (err == ERROR_TIME_IN_THE_PAST) {
// implicit deadline missed
}
// run periodic jobs A and B
job_A Q) ;
job_B();
}
}

As Listing 2.1 shows, the thread waits with a period of 5ms (lines 9 and 10)
before running two non-blocking jobs A and B (lines 17 and 18). Running two
jobs in a single thread is not unusual if we consider that the tasks of both jobs
have the same period and therefore must also have the same priority under
rate-monotonic scheduling. However, the example above is not specific to any
RTOS and only shows one possible way to implement periodic waiting. For
example, the RTOS could also handle time keeping internally and provide a
sleep_until_next_period() function instead, or the RTOS could even hide the
full periodic task activation and simply call the job functions.

OSEK OS and AUTOSAR OS

In mid 1990s, German and French automotive manufacturing companies standard-
ized an RTOS API called OSEK OS (Open Systems and Interfaces for Electronics
in Motor Vehicles) for event-driven control systems on automotive electronic con-
trol units (ECUs) [OSE05]. ECUs are small, resource-constrained microcontrollers,
thus the focus of OSEK OS is to provide a light-weight and tailorable RTOS to
exploit existing hardware as much as possible. To achieve this, OSEK OS uses a
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static system design that is fully known at compile time, so unused features can
be omitted.

OSEK OS uses a task model based on preemptive P-FP scheduling and
proposes IPCP for synchronization. Threads come in two flavors: basic tasks
(threads) cannot enter a waiting state, while extended tasks (threads) can wait
for OSEK events. OSEK events are the only notification mechanism to wake up
blocked threads. An event relates to a bit in a per-thread bitmask a thread can
wait for. Basic tasks support a concept named multiple activation where pending
activations are queued up to a configured upper limit to immediately restart the
thread upon completion. Combined with non-preemptive scheduling, this allows
stack sharing between basic tasks on systems where memory resources are tight.
Different OSEK conformance classes further allow implementations to remove
support for extended tasks or to simplify ready queue management operations to
further save memory for small-scale automotive systems. In OSEK, ISRs can be
considered a special form of basic tasks that are activated by hardware interrupts
and execute above the priority range of normal threads.

Since 2003, the AUTOSAR (AUTomotive Open System ARchitecture) consor-
tium has taken over the standardization of automotive software®, and OSEK OS
became AUTOSAR OS. AUTOSAR defines a three layer architecture, comprising
standardized software modules and common interfaces at the base, a middleware
that abstracts communication and data-flow between and inside ECUs, and an
application layer on top.

Today, AUTOSAR defines a classic platform based on OSEK OS as AUTO-
SAR OS and targeting ECUs, and an adaptive platform based on POSIX PSE51
for novel driver assistant systems like autonomous driving. The computational
demand for the latter exceeds the possibilities of microcontrollers, therefore the
AUTOSAR Adaptive Platform lifts the strict resource constraints and targets high
performing CPUs. As the AUTOSAR adaptive platform is compliant to POSIX
PSE51 (see below), further use of the term AUTOSAR in this thesis exclusively
relates to the AUTOSAR classic platform and AUTOSAR OS or OSEK OS.

POSIX PSE51

In the mid 1980s, diverging Unix implementations complicated the development
of portable software. To ensure compatibility between different Unix implementa-
tions, a standardization process for a Portable Operating System Interface (POSIX)
was started, resulting in multiple IEEE 1003 and ISO/IEC 9945 standards over
time [[EE17]. The standards cover core services (POSIX.1), real-time (POSIX.1b)
and threads (POSIX.1c), but also shells and utilities (POSIX.2). The POSIX
standards were quite inclusive to existing implementations, and the standards
allow great flexibility in term of features.

SAUTOSAR standards are publicly available on https://www.autosar.org/.
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Since 2003, the POSIX standard defines four profiles that allow to use the
POSIX API in smaller embedded system: PSE51 defines a minimal profile for
single process multi-threading applications; PSE52 adds simplified file system
capabilities; PSE53 adds support for multiple processes and networking; and
PSE54 defines the full POSIX system with multi-user support and the full file
system. Note that even though the PSE53 and PSE54 profiles define an isolation
concept based on Unix processes, this isolation concept is too weak for today’s
safety-critical systems. Today’s Unix systems provide stricter mechanisms to
isolate groups of processes, like containers on Linux, jails on BSD, or zones on
Solaris. Therefore, many RTOS vendors only comply to the PSE51 profile for
real-time multi-threading and add selected parts of the higher profiles, while at
the same time using completely different process models or isolation concepts
than Unix [Jos04].

PSE51 defines preemptive P-FP or G-FP scheduling with a configurable
processor affinity and round-robin scheduling for non-real-time threads. As
locking protocols, the standard defines both PIP and IPCP. A wealth of POSIX
synchronization and communication mechanisms is available. We will further
discuss these in detail in Section 2.2. Lastly non-Unix PSE51 RTOSs often support
threaded interrupt handling, allowing ISRs to be scheduled like normal threads.

ARINC 653

Aeronautical Radio, Inc. (ARINC) is a standard body of aviation industry mem-
bers. First published in January 1997, the ARINC 653 specification defines the
API between the applications and the OS running on an avionics computer plat-
form [AEE15]. ARINC 653 currently comprises multiple sub-standards (parts).
Part 1 “required services” defines a process model based on statically configured
spatial partitions, time partitioning, multi-threading and thread synchronization,
health monitoring, and services for communication between partitions. Part 2
“extended services” describes a POSIX-like file system interface, logbooks and
networking extensions. Part 4 “subset services” describes a very minimal system
comprising just two threads for highly safety-critical systems.

With this, ARINC defines concepts for both predictability and isolation. The
authors of the standard put a special focus on the latter: the standard defines a
strict partitioning model that exceeds the rather weak process model of Unix by
far. Like Unix processes, ARINC partitions operate independently, have their own
address space, and their own access mechanisms to resources, but ARINC lacks a
concept of parent-child-relations between partitions and related mechanisms to
manipulate other processes, as partitions are statically configured in the systems.
Lastly, ARINC partition communication mechanisms are limited to pure data
exchange and allow a robust decoupling of partitions.

ARINC 653 uses preemptive P-FP or G-FP scheduling with a configurable
processor affinity. The standard defines NPCS and IPCP as locking protocols.

23



CHAPTER 2. BASICS

ARINC 653 also supports time-triggered thread activation and includes additional
thread attributes for period, deadline, and execution time budgets. We will
further discuss ARINC synchronization mechanisms in Section 2.2. Lastly, typical
avionic systems use cyclic polling instead of interrupt-driven workloads, therefore
ARINC 653 do not define an API for interrupt handling.

Commonalities and Differences of RTOS Standards

The three presented RTOS standards share many concepts, such as fixed-priority
scheduling and a common task model comprising running, ready and blocked /wait-
ing states. The author of this thesis provided an analysis for AUTOSAR and
ARINC 653 in prior work [ZBL15|.

Comparing the three standards, the OS part of AUTOSAR has the narrowest
scope and provides a very minimal set of mechanisms to construct simple but
robust real-time systems. The original focus of OSEK OS and AUTOSAR OS
was on predictability; isolation was added later.

In contrast, ARINC 653 defines already a much wider scope with a support
for time-triggered thread activation and a well-defined set of synchronization
mechanisms. Both predictability and isolation were included into the system
design from the beginning.

POSIX extends the possibilities even further, but also shows that it was not
designed as a real-time system in the first place, as unspecified behavior or even
conflicting mechanisms can be found, e.g. multi-threading and process creation do
not play well together [BAKR19|. Here, the original design focused on isolation,
and predictability is a retrofit.

Safety Standards

Safety standards define legal binding procedures and processes to ensure the general
safety of products. Safety standards are often driven by customer protection
rights, product liability laws, or environmental regulations, and usually define
best practices for the whole life cycle of a product, from design via production and
maintenance through to disposal. A producer of a product shows compliance to
relevant safety standards to ensure that the product is safe to use and to protect
the producer to a certain degree against recovery of damages in case of failures.
Independent third-party organizations supervise and certify compliance.
Depending on the technical domain, different relevant standards apply. The
standard IEC 61508 for functional safety of electrical/electronic/programmable
electronic (E/E/PE) systems is a general norm covering industrial automation
use cases [[EC98|. IEC 61508 is a general norm for a wide range of domains
and applicable if no specialized standard applies. In the automotive field, the
norm ISO 26262 for functional safety in road vehicles supersedes and refines
IEC 61508 [ISO11lal. For avionics software, the standard DO 178C for soft-
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ware considerations in airborne systems and equipment certification defines the
requirements of civil aviation agencies for certification [RTC11].

IEC 61508 uses a risk analysis based on both likelthood of occurrence and
consequence of failures, such as injuries or loss of life, of a system, and requires that
a certain safety integrity level (SIL) must be achieved. The standard distinguishes
between software without a functional safety impact (quality management, QM ),
and four levels SIL 1 to SIL 4, with SIL 4 being the strictest. For high SILs, the
standard recommends rigorous testing and analysis efforts. Applied to software
development, this means the higher the level is, the stricter the design process
needs to be, and the higher the resulting development costs will be. ISO 26262
refines this concept to automotive safety integrity levels (ASILs), where ASIL A
relates to SIL 1, ASIL-B/C to SIL 2, and ASIL-D (strictest) to SIL 3. SIL 4 is (at
least today) not relevant in the automotive context. Similarly, DO 178C defines
a concept of a design assurance level (DAL), where DAL-A (strictest) roughly
relates to SIL-4 and DAL-E to QM.

Mixed-criticality systems

The advances in computing power in the last decades allow to put functionality
previously provided by separate computing systems into a single system, and the
additional computing power allows to implement more functionality than before.
These concepts of integration and consolidation allows to reduce size, weight and
power (SWaP) concerns, which is an important topic in many industries, either
to save costs, or to achieve secondary goals such as environmental regulations.
However, tighter integration and consolidation brings the risk that an error in one
component can now impact other components, as the propagation of errors was
limited on the former physically separated computer systems.
For systems with multiple functions, IEC 61508 requires:

An E/E/PE safety-related system will usually implement more than
one safety function. If the safety integrity requirements for these safety
functions differ, unless there is sufficient independence of implementa-
tion between them, the requirements applicable to the highest relevant
safety integrity level shall apply to the entire E/E/PE safety-related
system.

This means that an operating system must comply to the SIL of the highest
critical application, and, if the operating system does not guarantee the required
independence between different applications, to all other software as well. For
automotive systems, ISO 26262 requires “freedom of interference” between software
components of different safety levels [[SO11al. Similar requirements are defined in
DO 178C for avionics software. This drives the need for strong isolation concepts
in operating systems to keep development efforts down when combining software
of different criticality levels into a single mized-critical system.
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Technical challenges in the design of mixed-critical systems comprise the
contrast of guaranteeing strict temporal decoupling of applications while at the
same time allowing timely reactions to events, efficient system utilization versus
overprovisioning, or mitigating the impact of resource sharing, especially on
multicore systems [BBBT09].

In the context of real-time scheduling, Vestal proposed the idea to assess the
WCET of a high critical application differently when running together with a low
critical application [Ves07|. Based on the observation that different techniques to
determine the WCET result in different bounds, e.g. a very pessimistic WCET
bound ep; obtained by a static code analysis tool and a less pessimistic and more
practical WCET bound e obtained by measurements, a valid schedule must allow
the critical application to always meet its deadlines by using ey in isolation, but
can use erp when running together with the low critical application and sacrifice
the execution of the low critical application in the worst case. Interpreting the high
critical application’s safety margins differently allows to utilize the time reserved
for overprovisioning. Later research applied and extended Vestal’s approach to
other fields of real-time research.

For an overview on mixed-criticality systems, see the review of Burns and

Davis [BD19].

2.1.8 Processor Architecture

For the processor architecture, we assume a contemporary 32-bit or 64-bit CPU,
like x86, ARM, PowerPC, or RISC-V. These processor architectures support at
least two processor modes: application code executes in user mode, while the
operating system kernel executes in supervisor mode or privileged mode. Further
levels, such as a hypervisor mode, can be supported, but are not necessary.

The CPU provides at least some kind of memory protection mechanism, so
that kernel and user applications reside in distinct address spaces. The kernel
can access data in user space, but code in user space cannot access any data
of the kernel. Also, user applications cannot access the data of each other user
applications unless this is explicitly configured. A memory management unit
(MMU) supporting virtual memory is not mandatory, but if used, the MMU
provides a small cache of virtual to physical memory translations, the translation
look-aside buffer (TLB). Memory protection without virtual addressing can be
provided by a memory protection unit (MPU).

To call into the operating system and perform a so-called system call, the
CPU provides a hardware trap mechanism for execution in user space. When
taking the trap exception, the CPU then continues execution at a function that
is under control of the operating system. This function will further dispatch the
system call. In any case, either the trap mechanism in hardware or the code of the
operating system in software switches from any previous user stack (stack in user
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space) to a kernel stack. When the system call operation returns, the previous
context in user space is resumed.

Similar transitions into the operating system must also happen on any further
synchronous exceptions, like arithmetic errors or memory access violations, and
on asynchronous interrupts, like the expiry of a timer or a hardware interrupt of
an /O device.

Today’s systems have multiple hardware execution units for threads. These
execution units can be dedicated processor cores on a multicore chip, or dedicated
processor modules accessing memory via a shared bus, a mesh, or a point-to-point
link, or any combination of the above. Typically, the first level of caches is not
shared with other processors, but other levels of caches might be shared among
processors, and the system memory definitively will be shared. Sharing causes
interference when a shared entity cannot provide the same level of service when
more than one processor uses it as compared to when only one processor uses the
entity in isolation.

As a low-level mechanism for atomic modification of memory, the proces-
sor architecture provides either compare-and-swap (CAS) or load-linked/store-
conditional (LL/SC) instructions. Both mechanisms allow to perform atomic
read-modify-write operations on values in memory and can be converted into each
other [AM95]. Both read and CAS and LL/SC sequences might observe that
the value in memory has changed between reading and writing. In this case, the
update of the value in memory fails, and an algorithm using atomic operations
might retry the sequence. This can lead to starvation problems. Additionally,
CAS does not detect if the value in memory has changed back and forth between
the initial read and the CAS instruction. This is known as ABA problem |[Mic04].
LL/SC prevents the ABA problem and always detects transient changes, but is
prone to spurious failures on SC due to other memory accesses near the addressed
memory, e.g. data in the same cache line. In this thesis, we will further use CAS
operating on 32-bit variables and on pointer-sized memory objects.

Lastly, modern processors execute out-of-order and may speculatively fetch
data earlier than needed, or re-order store operations. When the exact ordering of
memory accesses is necessary, the programmer must place memory barriers into
the instruction stream. These memory barriers often accept further parameters
to specify the exact type of ordering, i.e. loads with loads, loads with stores, stores
with stores, or stores with loads, or define load-acquire and store-release semantics.
Note that memory barriers typically only ensure that other cores observe the
desired ordering, but the memory barriers do not guarantee that memory accesses
have completed. This memory model depends on the actual processor architecture.
Recent revisions of the C and C++ language standards provide an abstract
memory model that supports current processor architectures [ISO11b].
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2.1.9 Predictability Issues on Multicore Processors
The old adage attributed to Henry Ford

“If I had asked people what they wanted, they would have said faster
horses,”

explains the relationship of real-time programming to multicore chips. Even if
the increased computing power of multicore processors allow consolidation of
multiple applications on a single platform, programming for multiple cores is
much more difficult than programming for a single core, real-time theory does not
provide optimal solutions, and multicore processors introduce a high level of non-
determinism. Multicore processors do no longer allow WCET analysis of programs
in isolation, as applications on additional processors cause interference due to
sharing of caches, interconnects and memory controllers. For example, Nowotsch
and Paulitsch show that the WCET of an application running on a multicore
system can be multiple times slower than the same application running on a
single core without other cores running interfering applications [NP12|. Because
of this, certification authorities in avionics demand mitigation of interference on
multicore systems in the CAST-32 and CAST-32A position papers, but leave
specific proposals open [FAA16].

In turn, different techniques were developed to mitigate these effects. The
strategies range from preventing side effects, e.g. by guaranteeing certain memory
bandwidth in a network-on-chip design, to detection of overuse and enforcement
of quotas [PMNT09]. Particular techniques such as MemGuard involve using
the CPU’s performance counters to monitor the bus bandwidth of shared caches
and react if the bandwidth is exceeded [YYP*13]. Under the term Single Core
Equivalence a whole set of related techniques for the whole memory stack were
developed [SCM*14]. Similarly, recent work on the “one-out-of-m” problem target
these hardware interference problems by several hardware and software partitioning
techniques, such as cache and memory partitioning [KWCT16].

With SPECK [WRSP15], Wang et al. present a kernel that provides scalable
predictability, where predictability bounds observed on a single core, remain
constant with an increase in cores.

For low-level synchronization mechanisms, David et al. [DGT13] and Guiroux
et al. [GLQ16| provide recent analyses on performance, scalability, and interference
of low-level synchronization mechanisms.

The review of Burns and Davis on mixed-criticality systems provides further
references to recent work on multicore interference [BD19].

2.2 User-Level Synchronization Mechanisms

We will now briefly discuss user-level synchronization mechanisms following the
conventions of POSIX PSE51, ARINC 653 part 1, and AUTOSAR OS, our
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systems of interest. This covers the full set of synchronization mechanisms
between threads in systems using these operating system standards. Note that
POSIX defines even more synchronization mechanisms, e.g. pipes, but these
mechanisms are not part of the PSE51 subset. We will furthermore explain the
futez mechanism in Linux [FRK02|. Futexes provide an efficient way to implement
most synchronization mechanisms in user space without system calls. For each
presented mechanism, we describe use cases and the overall semantics and give a
brief description of each operation.

We provide typical API names in a consistent and unique way in object-verb
order. For brevity, the following description omits the pthread_ prefix for POSIX
functions. ARINC 653 functions are shortened likewise, e.g. SEND_QUEUING_MESSAGE
becomes gport_send’. Similarly, the AUTOSAR event mechanism WaitEvent
becomes event_wait. We also omit any necessary functions to destroy the syn-
chronization objects when a description of these functions is not further relevant.

We will start with a brief overview and categorization of synchronization
mechanisms. Table 2.2 shows an overview of the synchronization mechanisms.

Synchronization mechanisms can be categorized by their type: A mechanism
might provide mutual exclusion (spinlock, mutex, reader-writer lock) or a notifica-
tion mechanism (condition variable, event), or even both on a low level (semaphore)
or a high level (monitor®). A notification mechanism might wake up one (event,
semaphore, monitor) or many waiting threads (event, monitor, reader-writer lock).
Also, the synchronization mechanism might define different queuing disciplines
for threads waiting on the mutual exclusion part or the notification part. And
for notifications without waiters, the notification might get recorded (semaphore,
event) or is lost (condition variable, monitor).

“In ARINC 653, endpoints for queuing messages are denoted queuing ports.
8We consider monitor synchronization constructs with Mesa-style condition variables. Sig-
naling a condition variable never blocks the caller.

Table 2.2: Overview of synchronization mechanisms

Mechanism Type Category ‘Wake-up POSIX ARINC AUTOSAR
spinlock mutual excl.  busy-waiting  notify next v v
mutex mutual excl.  blocking wake up one v v

condition variable notification blocking requeue one/all v

reader-writer lock mutual excl.  blocking wake up one/many v

semaphore mut./notif. blocking wake up one v v

barrier barrier blocking wake up all v

one-time initializer — barrier blocking wake up all v

queuing port queue blocking wake-up one v

buffer queue blocking wake-up one v

sampling port - non-blocking - v

blackboard barrier blocking wake-up all v

eventmask notification blocking wake-up one v
event notification blocking wake-up all v

futex complex blocking wake up/req. many (V)
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Another category to classify synchronization mechanisms is whether they use
busy-waiting |/ spinning or blocking to implement mutual exclusion. Higher-level
synchronization mechanisms might use a gradual transition between both types,
e.g. first use spinning for a limited time, then use blocking as fallback [Ous82].

Synchronization mechanisms can further be classified as blocking synchro-
nization when threads may need to block in the scheduler, or as non-blocking
or lock-free if not. Lock-free algorithms often use the atomic read-modify-write
primitives provided by the hardware, e.g. CAS and LL/SC, but bear the risk of
starvation due to retries of the atomic operations. A stronger variant of lock-free
algorithms are wait-free algorithms that prevent starvation. Internally, higher-level
synchronization mechanisms often use both mechanisms, lock-free mechanisms as
fast path and blocking mechanisms as fallback.

2.2.1 Spinlocks

Spinlocks provide busy-waiting synchronization and are most often implemented

without further involvement of the operating system kernel. Spinlocks operate on

variables in user space using atomic operations. Spinlocks are available in both

POSIX and AUTOSAR in user space, and are also used inside an OS kernel.
The operations on spinlocks are:

e spin_init to initialize a spinlock to unlocked state,

e spin_lock to acquire a spinlock with busy-waiting,

e spin_trylock to try to acquire a free spinlock without busy-waiting, and
e spin_unlock to release a spinlock.

Over time, different types of spinlocks were invented:

Simple spinlocks can be implemented in a single bit encoding the spinlock
state (free/locked) using a test-and-set (TAS) instruction. However, simple
spinlocks do not provide fairness and have scalability issues due to high bus
contention [And90, MS91]|. Approaches such as to use exponential back-off during
busy-waiting have been proposed to improve scalability [MS91].

Ticket locks address these issues by using two counters [RK79,MS91|. Lock
acquisition happens in two steps: first drawing a ticket by atomically incrementing
the first counter, then waiting until the ticket becomes serving as indicated in the
second counter. Still, ticket locks are criticized for poor performance on many-core
systems with high lock contention [BWKMZ12].

Queue locks address this scalability issue and distribute the spinning to acquire
the lock to different cache lines, e.g. to a state variable of the previous lock
holder. Typical queue locks are CLH locks, which were independently described by
Craig [Cra93a| and Landin and Hagersten [MLH94|, and MCS locks, named after
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their inventors Mellor-Crummey and Scott [MS91] (not related to mixed-criticality
systems). In practice, MCS locks are used, as they need less space. Array-based
queue locks exists as well [Cra93b, Rhe96, And90, GT90|, but are used less often in
practice, as they need an array to hold all possible threads trying to acquire a
lock.

The actual implementation choice for spinlocks depends on the operating
system or on the application. Operating system kernels usually use ticket locks or
MCS locks [Corl4]. User space applications often use simple locks and adapt the
lock to a queue-based approach on contention [LA94|.

As low-level synchronization primitives, the lock and unlock operations also
contain acquire and release barriers.

2.2.2 Mutexes

Mutexes (short for mutual exclusion) are a blocking synchronization primitive and
require support of the operating system kernel.

Mutexes are available in both POSIX and ARINC 653.

POSIX standardized the mutex API with a focus on performance, ease of use,
and real-time requirements. The latter are well defined, because the threading
workgroup within the standardization committee was also part of the POSIX
real-time extension specification.

POSIX defines the following behavior of mutexes:

Protocol: The mutex protocol defines the behavior of a mutex w.r.t. real-time
scheduling and to prevent priority inversion problems. POSIX defines three basic
protocols: (i) no protocol (default), (ii) a priority inheritance protocol (PIP)
(dynamic), and (iii) a priority ceiling protocol (PCP) (static). Both priority
protocols change the scheduling priority of a thread holding a mutex lock to
prevent priority inversion problems and follow the ideas discussed in Section 2.1.5.

Type: The type of a mutex defines the behavior regarding deadlock detection.
POSIX defines four types: (i) without deadlock detection, (ii) with deadlock
detection, (iii) recursive mutezes, and (iv) an implementation-specific default type.
Deadlock detection includes extra sanity checks. Recursive mutexes allow a lock
holder to acquire the same mutex multiple times (and requires the same amount
of unlock operations). This can be realized by an internal counter.

Sharing: Mutexes have a pshared attribute that defines if the mutex is private
to the creating process or can be shared with other processes.

Robustness: The optional robustness attribute was recently added to the
POSIX specification. When a lock holding thread or its process dies while having
a mutex locked, the critical section is usually in an invalid state. In this case, the
next locking attempt of another thread will return an error, and the new lock
owner can inspect the critical section and decide if the state is consistent.

Queuing Order / Fairness: POSIX does not explicitly define the queuing
order of threads being blocked on a mutex without a priority inheritance protocol.
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The standard only specifies: “[...] the scheduling policy shall determine which
thread shall acquire the mutex” [IEE17|, but implementations typically order
blocked threads by their priority, and use FIFO ordering for threads of the same
priority.

The API comprises the following functions:

e mutex_init to initialize a mutex to unlocked state,

e mutex_lock to acquire a mutex with blocking,

e mutex_trylock to try to acquire a free mutex without blocking,

e mutex_timedlock to try to acquire a mutex for a given time,

e mutex_unlock to release a mutex, and

e mutex_consistent to mark a mutex as consistent again after its owner died.

Mutexes in ARINC 653 follow the concepts of POSIX. The queuing discipline
is selectable and is either FIFO- or priority-ordered. ARINC 653 does not allow
nesting of mutexes, but always enables a priority ceiling protocol.

2.2.3 Condition Variables

Condition variables are a primitive for waiting and notification inside a critical
section. Simply using busy-waiting is not sufficient to wait until some condition
becomes true, as other threads cannot enter the critical section in the mean time.
Instead, a thread wanting to wait for a condition first releases a critical section
and then waits outside the critical section. After the condition has been asserted,
the thread can enter the critical section again. Condition variables are therefore
used to wait in mutex-based critical sections and require support of the operating
system kernel.

POSIX defines the usual sharing attribute and a clock attribute to select
different clock sources of the operating system for waiting with a timeout.

Similar to mutexes, in a POSIX system, the scheduling priority of the blocked
threads defines who is woken up first when signaling a condition variable. An
implementation can therefore sort the waiting threads in priority order in general
and in FIFO order on a priority tie.

The following functions are available:

e cond_init to initialize a condition variable,

e cond_wait to release the associated support mutex, to wait for the condition
variable to be signaled, and to acquire the associated mutex again after
waiting,
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e cond_timedwait additionally allows to specify a timeout while waiting,
e cond_signal to wake up only one waiting thread, and
e cond_broadcast to wake up all waiting threads.

POSIX specifies that condition variables can experience spurious wake-ups
and stolen wake-ups. Depending on the implementation, a single cond_signal
operation can wake up two or more threads due to a race condition when multiple
threads start to wait on a condition variable at the same time. Therefore, callers
of cond_wait should loop until the waiting condition becomes true. However, in a
real-time system, condition variables should neither show spurious wake-ups nor
stolen wake-ups.

While POSIX allows so-called naked notifies [LR80], i.e. a notification without
having the support mutex locked, the standard recommends that a wake-up
operation on a condition variable should only happen from within the related
critical section to achieve “predictable scheduling behavior” [IEE17]. This is also
recommended for real-time applications, as the test whether to perform a wake-up
and the actual wake-up are not atomic without a critical section.

The last side effect of condition variables is known as thundering herd effects
and can happen when after a cond_broadcast all woken-up threads compete to
acquire the mutex again [HG09|. An implementation should avoid this.

The described concept of condition variables were first implemented in moni-
tors in the Mesa programming language and are known as Mesa-style condition
variables [LR80]. See also Buhr et al. for further classification of monitor synchro-
nization constructs [BFC95|. Condition variables are not available in ARINC 653
and AUTOSAR.

2.2.4 Reader-Writer Locks

Reader-writer locks are an extension to mutexes. A reader-writer lock either grants
multiple reader threads shared access the same time, or grants a single writer
thread exclusive access to the data. Multiple interpretations of reader-writer locks
using busy-waiting or blocking are possible, however, POSIX expects reader-writer
locks to eventually block. Unlike for mutexes, POSIX does not specify a concept
like condition variables for reader-writer locks.

Due to the differentiation into readers and writers, different types of blocking
may occur. Reader-writer locks can either prefer readers over writers or vice
versa. Consider a reader-writer lock that is currently locked by a reader. Now
two additional threads, one writer and one reader, try to gain access to the lock.
The implementation could either give precedence to the reader thread, admit
an additional reader, and let the writer thread wait (probably unbounded if
more readers appear), or give precedence to the writer and let the reader wait.
POSIX does not define the preference type of reader-writer locks, but the Linux
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implementation does and also supports reader preferring or writer preferring locks,
while starving potential threads on the other side. For the ordering of blocked
threads, POSIX further defines that after wake-up of real-time threads, these
acquire the lock in priority order, and write locks take precedence over read locks
on priority tie.

The following operations on reader-writer locks are available:

e rwlock_init to initialize a lock to unlocked state,
e rwlock_{rdlock|tryrdlock|timedrdlock} for shared access to a lock,
e rwlock_{wrlockl|trywrlock|timedwrlock} for exclusive access to a lock, and

e rwlock_rdunlock and rwlock_wrunlock to unlock a lock in each mode. The
POSIX API only defines a single unified rwlock_unlock function, so an
implementation must additionally track whether the current caller was a
reader or a writer.

Note that a simple version of reader-writer locks can be implemented using
normal mutexes and condition variables. An implementation of fair reader-writer
locks is shown in the textbook by Herlihy and Shavit [HS08].

2.2.5 Counting Semaphores

Dijkstra introduced semaphores as one of the first mechanisms for process syn-
chronization. A semaphore defines an implicit resource counter that expresses
the number of available resources of a given type. The classic operations on the
counter are P or down to decrement this counter to acquire a resource. If the
counter is zero, the caller has to wait until resources become available again. The
classic operations V or up release the resource again and increment the counter
or wake up waiting threads. The operations are commutative, i.e. the order of P
and V operations does not matter for correctness. In contrast to mutexes, related
P and V operations on semaphores can be done by different threads. Semaphores
are always using blocking synchronization and therefore require support by the
operating system kernel.

In POSIX, the semaphore API is not part of the pthread library, but part
of an older real-time API. Therefore, semaphores are available to non-threaded
processes as well. Semaphores come in two flavors, named semaphores and
unnamed semaphores. Today, named semaphores are typically implemented in an
in-memory file system as small shared memory segments containing an unnamed
semaphore.

The semaphore API in POSIX consists of the following functions:

e sem_init to set the semaphore’s initial counter value,
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e sem_{wait|trywait|timedwait} to decrement the semaphore counter and to
wait on the semaphore if the counter is zero,

e sem_post to increment the semaphore and to wake up waiting threads, and
e sem_getvalue to get the current counter value of the semaphore.

When more than one thread is blocked waiting for a semaphore, POSIX
requires the usual priority ordering, like in mutexes and condition variables. But
POSIX also warns that semaphores might not be suitable for real-time applications
because of possible priority inversions. The recommended mitigation resembles
the priority ceiling protocol in the mutex specification [IEE17].

Counting semaphores are also available in ARINC 653. The queuing discipline
supports both priority ordering and FIFO ordering. No means to prevent priority
inversion is specified.

2.2.6 Barriers

A barrier is a synchronization construct that allows up to count threads to
synchronize themselves and coordinate their further progress. A thread reaching
the barrier has to wait until all other threads have reached the barrier as well. A
typical implementation uses a counter to be decremented by each incoming thread.
If the decremented counter is non-zero, the calling thread blocks. Otherwise, on
zero, the last thread has arrived, and the last thread then wakes up all other
threads. Note, since all threads are woken up at the same time, no internal
ordering of the blocked threads is needed. POSIX also notes that applications
using barriers “may be subject to priority inversion” [IEE17].
The barrier API comprises two function:

e barrier_init to initialize a barrier for a given number of threads, and

e barrier_wait to wait until all participating threads have reached the barrier.
The last thread reaching the barrier wakes up all waiters.

2.2.7 One-Time Initializers

POSIX defines so-called one-time initializers to lazily initialize certain data
structures or software components at runtime on first use. The first thread that
calls a service comprising an one-time initializer performs the initialization. Other
threads calling the service wait for the initialization to complete before proceeding.
One-time initializers were introduced mainly for better support of shared libraries
in a multi-threaded environment. Most applications typically only use a small set
of the features of a shared library, but the shared library may require an extensive
initialization that is deemed too expensive to do upfront if these features of the
library are not used.
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The POSIX API only consists of a static initializer and an once function to
perform the initialization on the first call. Other threads calling this function
block while any initialization is still ongoing, or just do nothing afterwards. The
actual initialization must be handled by a function that is passed via a function
pointer.

Again, the ordering of blocked threads during concurrent initialization at-
tempts is not important, as all threads are woken up at the same time when the
initialization finishes.

2.2.8 Queuing Ports and Buffers

Queuing ports and buffers are unidirectional blocking message queues with a
configurable maximum buffer size and queue depth in ARINC 653 systems. Buffers
are used inside a partition, while queuing ports handle the communication between
different partitions. If either the queue is empty on a receive operation or full on
send, both services allow the caller to wait for a new message to arrive (receiver
side) or for the queue to become writable again.

Both mechanisms queue messages in FIFO order. But as queuing discipline
for waiting threads, ARINC 653 supports both priority ordering and FIFO or-
dering. Unlike buffers, which have both sending and receiving ends in the same
partition, queuing ports are either the sending or the receiving side endpoint of a
communication channel and can have a different waiting discipline for sending and
receiving side. Further, an ARINC 653 system ensures that a selected queuing
port configuration (direction, buffer size, queue depth) in one partition matches
its counterpart in another partition.

The queuing port API comprises the following functions:

e gport_create to open a message queue and to specify port direction, maxi-
mum message size, queue depth, and queuing discipline,

e gport_send to send a message in a given time,
e gport_recv to receive a message in a given time,
e gport_clear to discard any unreceived messages on the receiver side, and

e gport_status to retrieve the current number of messages in the message
queue and the number of blocked threads.

The buffer API works likewise, except that there is no clear operation.

2.2.9 Sampling Ports and Blackboards

Sampling ports and blackboards provide non-buffering messages in ARINC 653
systems.
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Sampling ports are a non-blocking message store for communication between
partitions, with expiration of the validity of the stored data. The mechanisms
allows to write a message and read it afterwards. Sampling messages have a
built-in timer that starts when a message is written. The sampling message is
marked invalid when the timer expires. Reading a sampling port never blocks, but
always returns the message validity status as well. Like queuing ports, sampling
ports are used as either sending or receiving endpoints in a partition.

The sampling port API comprises:

e sport_create to open a sampling port and to specify port direction, maxi-
mum message size, and refresh period,

e sport_write to write a new valid message,
e sport_read to read a message and get its validity, and
e sport_status to retrieve the validity of the last message.

Blackboards provide non-buffering messages for use inside an ARINC 653
partition. Messages are read and written, but in contrast to sampling ports, a
blackboard shows the last message until the validity is explicitly cleared. Reading
a blackboard may block until a valid message becomes available. Writing a new
valid blackboard message also wakes all waiting processes.

The blackboard API comprises:

e bb_create to create a blackboard for a given maximum message size,

e bb_display to write a valid message to the blackboard and to wake up any
waiting threads,

e bb_clear to clear the current message,

e bb_read to read the current valid message or to wait until a new message is
displayed, and

e bb_status to retrieve the validity of the current message and the number of
waiting threads.

For the remainder of this thesis, we only focus on blackboards and not on
sampling ports, as sampling ports do not represent a blocking synchronization.

2.2.10 Events

For event APIs, we distinguish between events in AUTOSAR and ARINC 653.
In AUTOSAR OS, events are the only notification mechanism. Each thread in
AUTOSAR has a set of events it can wait for. Each event is represented by a bit
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in a bitmask, and the bitmask is typically 32 bits wide on 32-bit CPUs. An event
is considered pending if its bit is set, otherwise the event is cleared. A thread can
wait for any combination of its events to be set pending by other threads. While
waiting, a thread has two bitmasks to consider, the set of pending events, and the
set of events a thread is waiting for. Due to the internal bitmasks, we will further
refer to the AUTOSAR event mechanism as eventmask.

The event API in AUTOSAR consists of the following functions:

e eventmask_set to set a set of events in the event mask of a target thread to
pending state and wake the thread up if it is currently waiting for one of
these events,

e eventmask_wait to check if any bit of a given bitmask is already set in the
calling thread’s mask of pending events, and to wait for any of these events
to be set by other threads if not,

e eventmask_get to retrieve the bitmask of pending events of a thread, and
e eventmask_clear to clear the bitmask of pending events of the calling thread.

Implementations often provide a combined eventmask_wait_get_clear function
to atomically wait for specific events, get the set of then pending events, and clear
the events after reading.

In ARINC 653, events are implemented differently. Events exist independently
of threads, and each event can be addressed separately. A thread can only wait
for one event at at time, but more than one thread can wait for the same event to
be signaled. When an event is signaled, all waiting threads are woken up.

The event API in ARINC 653 provides similar functionality and comprises:

e event_create to initialize an event in non-signaled state,
e event_set to set an event and wake up all threads,

e cvent_wait to check if the event is already set, and to wait with timeout for
the event to be set by other threads if not,

e event_get to retrieve the state of an event,
e event_clear to clear (reset) an event, and

e cvent_status to retrieve the current status of an event and the number of

blocked threads.

The event system in ARINC 653 could be easily extended to support event
masks as well. However, due to the strict binding of events to threads in AUTO-
SAR, ARINC 653 events are more flexible than AUTOSAR events.
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2.2.11 Futexes

Fast user space mutexes (futexes) are a compare-and-block synchronization primi-
tive of the Linux operating system kernel. Futexes allow a thread to wait on a
variable in user space or to wake up a given number of waiting threads. The kernel
dynamically creates an internal wait queue based on the given user space address
and keeps the wait queue as long as threads are waiting. The third conceptual
futex operation allows to requeue waiting threads from one wait queue to another.

The original goal of the futex design was to implement fast mutexes in user
space. The frequent case of uncontended locking and unlocking operations can be
implemented by an atomic operation on a variable in user space, and the operating
system kernel provides a blocking primitive for the contended case [FRK02].

Nowadays, futexes are the underlying mechanism to implement all POSIX
thread synchronization objects in user space. Due to the dynamic handling of
wait queues, the futex concept does not enforce restrictions on the number of
synchronization objects or on the number of blocked threads, nor does it require
prior registration of synchronization objects in the kernel.

The futex API in Linux supports two different futex types, generic futexes
and mutexes. Each operation needs the address of the variable in user space, the
eponymous futex, which must be a 32-bit variable. Based on its address, the
operations first check whether a wait queue for the futex exists, and create a new
wait queue on demand, if necessary. The operations on generic futexes are:

e futex_wait to wait on a futex with a given timeout if the current value of
the futex still matches a given value,

e futex_wake to wake up a given number of threads,

e futex_requeue to wake up a number of threads and to move a number of
waiting threads to a second wait queue,

e futex_cmp_requeue to wake up and requeue threads after a successful com-
pare step,

e futex_wait_bitset to wait on a set given by a bitmask like in futex_wait,

e futex_wake_bitset to selectively wake up threads matching the bitmask,
and

e futex_wake_op to wake up threads waiting on up to two different futexes
after atomically modifying the second futex and checking if a condition still
holds for the second futex.

The last five operations were introduced to improve support of condition variables.
When signaling condition variables, instead of waking threads up and letting them
compete to lock the associated mutex, the requeue operations transfer waiting
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threads from the condition variable’s wait queue to the mutex’s one and thus
prevent thundering herd effects [HG09]. Waiting and wake-up of a subset of waiting
threads and the futex_wake_op operation can also help in certain implementations
of condition variables .

The Linux API also offers a specialized set of operations for the second futex
type, futexes representing mutexes. In this case, both user space and kernel need
to understand the mutex protocol in the futex value. The futex value encodes
two pieces of information: the thread ID (TID) of the current lock holder or
NULL if the mutex is free, and a WAITERS bit if the mutex has contention. The
WAITERS bit is set by the first waiting thread upon detection of contention and
by the kernel when handing over mutex ownership to the next thread, and it
remains set as long as the wait queue is in use. The Linux kernel additionally
supports priority inheritance (PI) mutexes for threads using POSIX real-time
scheduling. Operations on condition variables need special variants as well to
support requeuing to a PI mutex:

e futex_lock_pi to wait on a mutex with a given timeout if the mutex is
locked,

e futex_trylock_pi to try to lock a mutex atomically,

e futex_unlock_pi to unlock the mutex and to hand over mutex ownership to
the next waiting thread,

e futex_cmp_requeue_pi to wake up at most one thread and to move a given
number of remaining threads, and

e futex_wait_requeue_pi to wait on a condition variable for later requeuing
to a mutex.

For brevity, we will now omit the _pi suffix in the names of the operations.

Lastly, Linux distinguishes between shared futexes that can be placed in shared
memory segments and shared between different processes, and private futexes
that are restricted to a single process. The selected mode affects the kernel’s
indexing mechanism to locate wait queues: for shared futexes, the kernel uses the
underlying physical address of a futex variable, while for private futexes, it can
use the virtual address in user space.

Finally, robust futexes provide a lightweight means to notify pending waiters
on a crash or deletion of the lock holder.

2.2.12 Adaptive Mechanisms

Another important mechanism often found in synchronization for non-real-time
systems is to use a two-phase synchronization scheme. This describes a hybrid

9Linux manual pages, http://man7.org/linux/man-pages/man2/futex.2.html.
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of spinning and blocking. A thread first spins for a short time, and if it can-
not acquire the lock, it blocks. Ousterhout noted that the time for spinning
should be at least twice the time of a context switch [Ous82|. Adaptive locking
techniques consider further conditions on lock contention. Adaptive mutezes in
Solaris [Sun02| assume that critical sections are short and spin for a short time
when the lock owner is currently running on a different processor, or block if the
lock owner is running on the same processor or not running at all. Mutexes using
PTHREAD_MUTEX_ADAPTIVE_NP in Linux [Kyl14| spin for a short but variable time
derived from previous attempts to acquire a resource.

In both cases, adaptive locking techniques are opportunistic approaches, as
they do not ensure fairness. Adaptive mechanisms can be found in both mutex
and reader-writer lock implementations.

We do not further consider adaptive mechanisms in this thesis.

2.2.13 Waiting With Timeouts

Depending on the API, most blocking primitives!? allow to specify a timeout. We
can further classify timeouts as either relative timeouts or absolute timeouts. A
relative timeout ¢, is specified as delta to the current system time ¢.,; at the time
of the call, resulting in an absolute expiry time t, = t..; + t,.. Absolute timeouts
specify the absolute expiry time t, directly. We further denote the current system
time as t and say that a timeout is expired when the expiry time is in the past, i.e.
t, < t. The definition of the origin of time ¢y depends on the operating system.

POSIX has a concept of different clock sources, like a wall clock that refers
to the current system time and may experience forward or backward jumps in
time, e.g. daylight saving or to compensate for clock drift to a reference clock, or
a monotonically increasing clock without these jumps that is suitable for real-time
usage. Actual implementations often define further clock sources, e.g. clocks that
ignore wake-ups when the system is in energy saving mode, or coarse clocks that
can be read faster but with a coarser granularity. ARINC 653 only specifies a
monotonic clock.

Most operating systems support timeouts with nanoseconds resolution in the
API. But the actual timer implementation often has a much coarser granularity, as
timers are seldom clocked at gigahertz speed. Furthermore, an implementation may
program an even coarser time value as expiry time for the next timer interrupt't.
The actual timer granularity can be retrieved in most operating system APIs to
adjust for rounding errors.

0Except barriers and one-time initializers. These use an infinite timeout.

U Most timer implementations today operate in one-shot mode and program the expiration
time of subsequent timer interrupts with a small safety margin to prevent system overload by
too many interrupts. For non-real-time systems, a low resolution periodic timer is often already
sufficient.
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For the rest of the thesis, when referring to synchronization functions, we
assume that the base operations support a timeout, e.g. we will write cond_wait
instead of cond_timedwait.

2.3 Synchronization Inside an Operating System
Kernel

This section presents a short overview of synchronization mechanisms used inside
an operating system kernel. Note there is no standard for the internal operations
inside an operating system kernel but we typically find the functionality discussed
here. Locking at kernel level is different to locking in user space, mostly because
execution in privileged mode allows kernel threads'? to have more control about the
execution environment, e.g. to temporarily disable interrupts. Also, different API
conventions are used. We often see a decomposition of synchronization mechanisms
into simpler lower-level mechanisms, as there is no need to consolidate multiple
functionality into a single API call like user space APIs often do for performance
reasons. Lastly, programming models inside operating systems often mandate
that internal APIs are used correctly to remove or minimize superfluous error
checks.

2.3.1 Level of Indirection

In an operating system, we can observe a different level of indirection. Kernel
code can directly address a thread by a pointer to the thread control block (TCB).
This is not possible in a user-level API for robustness reasons. User APIs often
relate to kernel objects by (at least) one level of indirection, such as handles or
file descriptors, which are kept in a global namespace or in process-specific local
namespaces. The look-up of a kernel object from its handle is often realized by
multi-level look-up tables similar to page tables in O(1) time. Other mechanisms
for indirection are hash tables, dynamic arrays, and binary search trees. Sometimes
special constraints must be followed, e.g. POSIX requires linear allocation of file
descriptors. When opening new files, an implementation must always return the
lowest-numbered free file descriptor. This impacts scalability [CKZ*13|.

2.3.2 Queuing

Queues of blocked or waiting threads are realized as linked lists or binary search
trees. As a rule of thumb, when a queue needs FIFO ordering or sorted entries, but

12We assume a model similar to the Linux kernel where each thread in kernel mode has a
dedicated stack and can block at arbitrary blocking points. In an implementation where all
threads of a processor share the same kernel stack, blocking is only viable after a thread releases
the stack, i.e. completes its current operation and returns.
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the number of elements in the queue is small, linked lists are sufficient. Otherwise,
we see balanced binary search trees, like red-black, AA', or AVL trees, when a
high degree of predictability is needed. Also, specialized data structures with
different trade-offs between performance and complexity can be found, such as
timer wheels [VL87|. Lastly, there are varying assumptions on the usage patterns.
For example, connection timeouts in a network stack will almost always never
expire and nodes will be removed early. Or nodes will change their relative position
in a queue, e.g. when a waiting thread’s scheduling priority is changed.

2.3.3 Locking and Preemption Control

In an operating system targeting today’s multicore chips, a locking model com-
prising just a big kernel lock (or giant kernel lock) has fallen out of favor due to
its limited scalability, but seems to remain acceptable in some niches [PDEH15].
Instead, we often see fine-grained locking schemes. To support nested locking, i.e.
incrementally locking two or more locks, the operating system environment must
define a strict order in which different classes of locks can be acquired to prevent
deadlocks. Similar restrictions apply to hand-over-hand locking, which is used to
lock nodes during traversal of tree-like structures.

In an operating system, we see both suspension-based locks and spin-based
locks. Suspension-based locks are used for longer operations. They either are fully
preemptive or have explicit preemption points. Spin-based locks are used for short
critical sections. They require non-preemptive execution to prevent lock holder
preemption problems, see Section 2.1.3. There are two mechanisms to prevent
lock holder preemption: (i) temporarily disable interrupts, or (ii) allow interrupts,
but temporarily disable preemptive scheduling. Which mechanism is eventually
used depends on the users of the lock: if there is the possibility that the lock is
acquired from an interrupt handler, the lock must disable interrupts, otherwise
disabled preemption is sufficient.

To control interrupt handling and for preemption control, we use the following
names and conventions for the in-kernel operations:

e irqg_disable to disable local interrupts,

e irq_enable to enable local interrupts,

e irq_restore to restore a previous interrupt state,
e preempt_disable to disable preemption,

e preempt_enable to enable preemption,

e preempt_restore to restore a previous preemption state,

IBAA trees, named after their inventor Arne Andersson, are a variation of the red-black trees
with simpler insertion rules but more tree rotations [And93].
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e preempt_is_pending to check if preemption is pending, and

e preempt_point to insert an explicit preemption point.

2.3.4 Waiting and Wake-up

Finally, when a kernel thread needs to wait inside a critical section, it cannot
simply call the blocking function of the scheduler, but must release the critical
section first. To prevent the problem of missed wake-ups'*, the thread sets a wait
indicator flag'® inside the critical section, releases the critical section and then
calls the blocking function. The blocking function of the scheduler in turn acquires
a scheduler lock and evaluates the flag again. Only if the flag still indicates
waiting, the thread is suspended. Conversely, a wake-up operation first clears
the wait indicator flag inside a critical section, and then calls the scheduler. The
wake-up function checks the state of the target thread under the scheduler lock
and wakes up the target thread if it is really suspended. In any combination, the
wait indicator flag transfers state information between two non-nested critical
sections.
For the low-level scheduler API, we define the following functions:

e sched_wait to block or wait with a timeout in the kernel, and

e sched_wakeup to wake up a blocked or waiting thread.

1A second thread locks the critical section and then wakes up the first thread before it
actually reaches the scheduler.
15The logic of this flag follows Reed’s eventcounts [ReeT6].
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Analysis

As goal of this thesis, we want to have both efficient and predictable blocking
synchronization mechanisms for mixed-criticality systems. But as a starting
point, we can only make two contradicting observations: efficient synchronization
mechanisms are often not predictable, and predictable synchronization mechanisms
are often not efficient.

To achieve both goals, we must first define what both efficiency and predictabil-
ity means. When talking about efficiency, we want to improve the performance of
blocking synchronization mechanisms. We start with a review of related work on
techniques that make synchronization mechanisms more efficient in Section 3.1.

At the same time, changes to these low-level mechanisms often pose trade-offs
at design level and involve contradicting concerns. Our goal is to improve the
average-case performance, but without sacrificing the worst-case behavior too much.
In Section 3.2, we first introduce our system model and discuss the overhead of
system calls and relative costs of CPU Instructions. Also, we present requirements
for predictability and define the necessary metrics of efficiency.

In Section 3.3, we analyze applicable real-time protocols, identify common
building blocks, and discuss potential shortcuts.

Next, in Section 3.4, we will then analyze the blocking synchronization mecha-
nisms, and decompose them into their basic building blocks as well. With this,
we define a generic model of blocking synchronization mechanisms.

State-of-the-art approaches to improve efficiency include futeres and other
mechanisms to avoid system calls in common use case scenarios. Section 3.5
analyzes how futexes in Linux provide a fast path for blocking synchronization
mechanisms. We also discuss predictability problems in the Linux kernel imple-
mentation that prevent the use of Linux futexes in safety-critical environments.

Section 3.6 compares different approaches to blocking synchronization mech-
anisms and identifies an alternative approach for an efficient synchronization
mechanism. The resulting monitor approach is based on non-preemptible critical
sections in user space with according suspend and wake-up mechanisms.
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For non-preemptible critical section in user space, we then discuss state-of-the-
art mechanisms for preemption control in Section 3.7.

We also discuss the constraints of low-level wait and wake-up mechanisms
with direct addressing in Section 3.8.

Finally, Section 3.9 summarizes the analysis for efficient synchronization
mechanisms in user space and their building blocks, namely deterministic futexes
and non-preemptive busy-waiting monitors.

3.1 Related Work

Efficient synchronization mechanisms often exploit a fast path for the common
case or lazily postpone the costs of some actions into the future in the hope that
the won’t be needed. We discuss related work on the topic.

3.1.1 Futexes and Fast Synchronization Mechanisms

The observation that system call overheads are expensive is well known. Several
approaches were already proposed to improve the efficiency of synchronization
mechanisms in historical systems: Keedy describes atomic test-and-increment
and decrement-and-test operations on the ICL 2900 computer to implement P
and V operations on positive semaphores values without the need to call into the
operating system kernel [Kee77|. A similar approach is described with Benaphores
in BeOS [Sch96]. Birrell et al. describe an optimization for mutexes, condition
variables, and semaphores in the Taos operating system to only call the operating
system kernel when there is contention or a thread is blocked on a condition
variable [BGHLS87|. For synchronization in a Java virtual machine, Bacon et al.
proposed Thin Locks, based on atomic operations for uncontended cases, with a
fall-back to OS provided synchronization primitives [BKMS98|. Similar approaches
where the kernel is entered only on contention are used by C'ritical Sections in
Windows [RSI12].

Futexes extend these prior approaches as a generic compare-and-block mecha-
nism. They were first introduced in Linux to implement POSIX thread synchro-
nization objects in user space [FRK02,DM03,Drell]|, and then later refined for
real-time use cases using PIP [HG09]. Over time, scalability issues were addressed
and discussed |[BN14, Brol6]. Zuepke et al. presented approaches for determin-
istic futexes with FIFO ordering based on doubly-linked lists and look-up by
thread ID |Zuel3], and futexes using an index-based wait queue look-up [ZBL15].
Pizlo described an approach resembling futexes using cascaded locks and hashed
wait queues in user space for fine-grained locking and condition variables in the
WebKit browser |Piz16].

Another technique is to share data between user space and kernel to prevent
system call overheads: Wisniewski et al. describe scheduler-conscious synchroniza-
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tion mechanisms in user space that share information across the application-kernel
interface to prevent preemption by the kernel [WKS95|. Linux’s vDSO ! and 14’s
user-level TCB [LWO01| map a page into user space to share information, such as
the current thread’s control block and IPC arguments (L4), or current CPU and
system time (Linux). Spliet et al. evaluated the use of PCP, MPCP, and FMLP*
for futexes in the context of LITMUSRT, a Linux-based testbed for real-time
scheduling experiments [SVBD14|. The implementation uses an index-based wait
queue look-up and a lock page shared between user space and kernel. The lock
page contains a bitmap of acquired locks.

Besides futexes, Bershad et al.’s restartable atomic sequences for processor
architectures that do not provide atomic operations [BRE92| describe a similar
optimistic technique that favors a fast path at the cost of having to perform
more work elsewhere. Here, when the kernel detects that a thread is interrupted
inside an atomic sequence, it changes the instruction pointer of the thread to
restart the atomic sequence once the thread resumes. This technique simplifies the
implementation of atomic operations at the cost of extra checks during interrupt
and exception handling.

But even light-weight locking mechanisms still cause overheads on multi-
processor systems due to the required atomic operations and synchronization
barriers, see Section 2.1.8. With biased locking, Kawachiya et al. presented a
techniques to overcome these costs in the context of a Java Virtual Machines
(JVM) [KKO02, Kaw05|. Exploiting thread locality, the JVM reserves a lock for a
thread frequently using it. When a second thread appears, it breaks the bias, and
the JVM falls back to conventional locking.

3.1.2 Lazy Techniques and Optimization

In the context of the L4 microkernel, Liedtke presented lazy scheduling |Lie93|.
In synchronous microkernel systems like L4, threads often call servers that reply
quickly, causing frequent removal and addition of threads to the ready queue.
With lazy scheduling, threads remain in their place on the ready queue when they
are blocked in IPC calls. Any blocked threads will be finally removed from the
ready queue when the scheduler is invoked the next time, for example when the
current time slice runs out.

However, Blackham et al. reported that this optimization to the IPC path had
a negative impact on WCET analysis in sel.4, an L4 variant with a formal proof
of correctness [KEH'09], as a scheduling operation has to handle O(n) blocked
threads in the worst case, and lazy scheduling was removed. Instead, the sel.4
developers used a different trick internally known as Benno scheduling, where an
IPC operation switches directly to the target thread instead of placing the thread
on the ready queue first. As result, the currently executing thread is not kept on

!Linux manual pages, http://man7.org/linux/man-pages/man7/vdso.7.html.
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the ready queue in sel.4 [BSC*11,BSH12]. The same technique is used in PikeOS
to optimize fast priority switching.

In the context of operating systems, lazy FPU switching is another well-known
technique. On a context switch, the operating system skips saving of floating point
unit (FPU) registers and simply disables access to FPU registers for the next
thread, based on the assumption that the next thread will not use FPU registers
and the control flow switches back to the previous thread soon. If the next thread
accesses FPU registers, the hardware will generate an FPU unavailable exception
and the operating system will finally perform the context switch of the FPU
registers. This technique optimizes the average context switch time when threads
use the FPU rarely, at the cost of an extra exception when FPU registers are
actually accessed.

3.2 Settings and Requirements

3.2.1 System Model

In this thesis, we consider an operating system that supports real-time scheduling
for time-critical applications and optionally best-effort scheduling for other non-
time-critical applications. We assume that different applications are hosted, and
that some kind of resource partitioning is available to prevent threads to over-
commit on resource usage. This is typical for complex systems in the automotive
industry and for avionics. As such systems can be updated after deployment, the
exact number of partitions and threads per partition might not be known at design
time or initial integration time. To simplify the timing analysis when updating
the system, the operating system should ensure that adding new partitions and
threads has no impact on the timing analysis for existing partitions. This concept
is known as incremental certification in avionics [WP09]. We simply assume that
the system has m processors and that there are at most N threads in the system,
i.e. N is a reasonable upper bound.

As thread scheduling algorithm, we assume partitioned fized-priority (P-FP)
scheduling, which is also mandated by both automotive (AUTOSAR) and avionics
(ARINC 653) OS standards and used by real-time POSIX applications. Here,
in an offline step, the system integrator at first assigns real-time threads to
the available processors (or time partitions), as long as the processors (or time
partitions) have remaining capacity left, and then assigns a static priority to each
of the threads, as described in Section 2.1.4. The fixed assignment of threads
to processors reduces the complexity of multiprocessor scheduling to the well
known problem of single processor scheduling with its analysis techniques. For
convenience, we further assume that higher priority values also reflect a higher
scheduling priority. The scheduler will always select the thread with the highest
priority as current thread. When threads share the same priority, they will be
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scheduled in FIFO order. Further, thread scheduling is preemptive, that is, an
arriving higher priority thread interrupts the currently executing lower priority
thread. Also, to prevent preemption, threads can temporarily raise their effective
scheduling priority at runtime above higher priority threads, for example while
entering critical sections.

For the internal design of the operating system, we assume a threaded kernel
model, i.e. threads executing inside the kernel have their own dedicated stack
and can block or wait at any time, while ISRs have run-to-completion semantics
and simply use the current thread’s stack as well. We can further consider ISRs
as a class of highest priority threads that can always preempt all other threads.
An incoming interrupt can be handled in its ISR, or the ISR wakes up a normal
thread for further interrupt handling (threaded interrupts).

For synchronization mechanisms in user space, we assume the relevant syn-
chronization mechanisms described in Section 2.2. Further, we assume that the
operating system supports one or more real-time locking protocols to address
priority inversion problems.

For internal synchronization inside the operating system, we assume a fine-
grained locking model using spinlocks (busy-waiting) and mutexes (blocking), as
described in Section 2.3. We further assume that critical sections with spinlocks
are not preemptive, and critical sections that can be accessed by both ISRs and
threads must be protected by disabling interrupts. Also, the operating system
uses inter-processor interrupts to notify remote processor cores about rescheduling
updates.

We further assume that the operating system provides means to address
interference problems of shared hardware, for example by partitioning shared
caches or providing a cap on a processor’s bandwidth on a shared memory controller.
Techniques are described in Section 2.1.9. For the remainder of this thesis, we
only focus on wnterference at the software level inside the operating system due
to sharing of data between partitions. We assume that the operating system
avoids any unwanted interference between unrelated partitions, e.g. prohibits
(even read-only) access to other partitions’ resources and has no false sharing of
data in caches. This addresses concerns about termination of atomic operations.

Regarding safety and security aspects in the system, we define the following
convention. The general system design of a mixed-criticality system as described
in Section 2.1.7 already implies a system design that is restrictive by default,
i.e. access to resources must be explicitly granted. Therefore, any aspects that
impact the functional behavior of a software component are considered relevant
for safety. This includes any direct effects, such as modification of data in a
partition or change to state in the kernel that alters the behavior of the partition,
and any indirect effects, such as the temporal impact of operations. We expect
that the WCET of all operations is bounded and known to the system integrator.
As relevant for security, we define any side effects which can be exploited for
unintended communication (covert channel) or to infer secret information of others
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(side-channel attack). In short, safety covers all aspects that manipulate data.
For security, only aspects with an observing character remain. As we mainly deal
with safety-critical systems, this simplification is acceptable in the context of this
thesis.

3.2.2 Relative Costs of CPU Instructions

As a rule of thumb, we can assume that atomic operations on data in the L1
cache need one order of magnitude more time than simple ALU operations. For
example, Al Bahra measures about 15 cycles for an atomic CAS operation on an
Intel Core i7-3615QM [Al-13]. The overhead is mainly due to the guarantee of
atomicity of CAS on the x86 architecture.

Similarly, we assume that system calls take at least two orders of magnitude
more time than ALU operations. Soares and Stumm describe a system call
overhead of around 150 cycles on an earlier Core i7 generation [SS10]. Ousterhout
observed for contemporary processor architectures of the 1980s that /. ../ operating
system performance does not seem to be improving at the same rate as the base
speed of the underlying hardware |Ous90|. If we assume 16 MHz clock speed for
the MIPS R2000 CPU in Ousterhout’s paper, the presented system call overhead
for getpid would be about 300 cycles. For current Intel CPUs, Elphinstone and
Heiser note that the best-case IPC performance of sel.4 is around 300 cycles on a
Core i7-4770 [EH13]. The IPC operation is a non-trivial example of a system call,
but we can consider that the authors applied lots of optimization, as their results
for other architectures show, but still, at least half of the costs here is overhead.

Calls into the operating system kernel are expensive, but not only because
of the synchronous trap and overheads to save and restore registers, but also
because of the negative impact on performance due to pipeline flushes [SS10|
and mitigation against processor design flaws such as Meltdown [LSGT18] and
Spectre [KHF19].

While we can assume that processor design flaws like Meltdown will be fixed
in future processor generations, Spectre-like attacks on branch prediction by data
cache side channels are expected to stay [MST*19]. As mitigation, an operating
system must flush the branch predictor state on entry to supervisor mode and on
context switches. Therefore, we cannot assume that the overhead for system calls
improves soon.

Summarizing, for this thesis, we can assume that ALU operations are much
faster than atomic operations, and atomic operations are much faster than system
calls including operating system overheads:

tALU—operati(m < tatomie—operati(m < tsystem—call'
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3.2.3 Requirements for Predictability

As a general rule, synchronization mechanisms for real-time systems that target
certification must be predictable, i.e. have a WCET that is analyzable and bounded
in the first place. Likewise, the synchronization mechanisms must properly address
interference problems caused by sharing of resources. This includes shared memory,
namespaces, and related data structures, e.g. global identifiers for processes. We
thus require absence of interference for private mechanisms not shared between
partitions, and we require at least bounded interference for any shared mechanism,
as any shared resources can be accessed by all involved partners in parallel. These
general requirements help to reduce efforts in software certification following
avionic standards, as they allow to analyze independent software components in
isolation.

We will now discuss these requirements RQ1 to RQ9 in detail. The require-
ments will later guide the design and the implementation of the synchronization
mechanisms. In general, a certifiable design requires more scrutiny of corner cases
and often sacrifices best-case performance for robustness and determinism.

The first two requirements RQ)1 and RQ2 address general properties of cor-
rectness and robustness. The next four requirements RQ3 to RQ6 deal with
properties for analyzability. The last three requirements RQ7 to RQ9 discuss
long-running operations that should be preemptible. The requirements were
adapted from previous work of the author [ZK19].

RQ1 Correctness: Obviously, a synchronization mechanisms must be correct
and guarantee its desired properties, e.g. mutual exclusion, fairness, or freedom of
starvation.

RQ2 Robustness: This requirement calls for robustness against unexpected
failures and accidental misuse (or even abuse) of a mechanisms. For example,
the dynamic memory allocations are a source of unexpected failures, as dynamic
memory allocations can fail at runtime. Accidental misuse is particularly important
for waiting synchronization mechanisms with a timeout, where second order effects
already become visible. For example, a malicious partition could let a number of
threads wait on a timeout and then let the timeouts expire in a certain pattern so
that the next timeout always expires shortly after the previous one was processed.
The resulting storm of timer interrupts could then affect scheduling of unrelated
threads.

RQ@3 Analyzability: The specification and the design of synchronization mech-
anisms must be unambiguous. Also, the specification must be complete so that
all corner cases can be rigorously tested. An implementation must then precisely
follow the specification. It should not add another level of complexity that is not
covered by the specification. Otherwise one does not get the necessary coverage
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in software testing. Analyzability also aims to reduce unnecessary complexity, as
simpler implementations need less variables in an analysis. Also, having fewer
dependencies on other components simplifies the WCET analysis and certification.

RQ4 Bounded operations on queues: Queues of various types will be used
for different tasks, e.g. ready queues, timeout queues, or wait queues. We require
that operations on the queues, i.e. insert and remove to add and remove nodes,
and find, min, and max to locate nodes in a queue, must be bounded operations
w.r.t. the number of nodes n in the queue. As we require that the specification is
unambiguous, all queues must have a defined queuing discipline.

For FIFO- or LIFO-ordered (last-in first-out, a stack) queues, when the
implementation uses doubly linked lists, all operations except find are in O(1)
time regardless of n. With further restrictions, e.g. when no arbitrary nodes need
to be removed, even singly linked lists would be acceptable.

For queues ordered by a single key, such as priority-ordered queues, linked lists
are often problematic, because insert takes O(n) time. Operations in O(n) time
are acceptable for predictability if the upper bound is both known and small, but
this is often not the case for the synchronization mechanisms exported to user
space as described in Section 2.2. For large or unknown n, an implementation can
better use self-balancing binary search trees (BSTs) as discussed in Section 2.1.6.
Binary search trees, such as red-black, AA, or AVL trees, bound the complexity
of their operations to O(logn) time. Also, logarithmic complexity often allows
to perform an analysis of an overall system without having detailed knowledge
about all applications. For example, for wait queues, an upper bound for n
(blocked threads) can be easily approximated from system limits, e.g. the amount
of available memory limits the number N of threads in a system.

RQ5 Bounded loops and retries: Like for the queue operations mentioned
above, all loops in an implementation of a synchronization mechanism must be
bounded. When processing multiple elements in a loop, e.g. wake up of all blocked
threads, the overall number of loop iterations is bounded by the overall number of
threads. But this bound might not be acceptable in some situations, for example
from ISRs. Consider an example where a large number of threads set a timeout
to expire at the same time. In this case, the kernel’s timer interrupt handler
has to wake up a large number of threads from the timer ISR. Doing this with
interrupts disabled might have an unacceptable impact on the interrupt response
time. It might be better to process only a small number of threads and become
preemptive before processing the next set of threads.

Another important aspect are bounded retries of atomic operations. For
example, an atomic increment operation must first load a value from memory,
increment the value in a register, and then execute a CAS or SC instruction, which
can fail due to concurrent updates of the data in memory or arbitrary writes to
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the same cache line due to false sharing. Bounded retries are also relevant to
all kinds of atomic fast paths and shortcuts to bypass a potentially expensive
operation.

RQ6 Interference by shared namespaces: The use of global namespaces
that are shared between partitions can cause interference problems due to internal
shared locks to ensure consistency of the namespace. For example, one partition
could (accidentally or deliberately) cause an unwanted slowdown to a second
partition by frequently accessing an object in the namespace. In general, global
namespaces should be avoided, but this is not always possible, e.g. because of
compatibility reasons. Process creation in Unix must lock the global namespace for
process IDs to allocate a new process ID. The only way to address these problems
properly is to virtualize a global namespace for each partition and effectively
make it a private one. If this is not possible, access to global namespaces should
be handled at boot time only or restricted to privileged software that can be
rigorously analyzed. If the interference cannot be prevented, fine-grained locking
or a preemptive design can help to bound the time of interference.

RQ7 Preemptive operations: When an operation takes a potentially long
time, e.g. an operation that wakes up a large number of blocked threads, the
operation should be preemptive. A good practice for the implementation is to
become preemptive after processing a small number of elements, e.g. after wake
up of each thread. For example, in case of timeout expiration, this allows a higher
priority thread to become immediately eligible for execution and to remove itself
from a wait queue. This is a good compromise with respect to the worst-case time
an operation holds internal locks. The exact number of non-preemptible steps can
be fine-tuned when a timing analysis is available. But preemptive operations cause
side effects that require mitigation, as we will see in the following requirement.

RQ8 Termination: We require that any preemptive operation must eventually
terminate. This is not always the case. For example, a preemptible implementation
of a synchronization mechanism with a wait queue bears the risk that an already
processed thread reenters a wait queue again and causes unbounded loops. This
requirement is related to the bounded loop requirement R()5, however the emphasis
here is not to define an upper bound of the loop a priori, but to prevent unwanted
modification of wait queues.

RQ9 Hidden transience: Another side effect of preemptive operations is that
the already processed threads may observe the processing thread or the synchro-
nization object in a transient state. To affected threads, a preemptible operation
should appear to be atomic. In the context of synchronization mechanisms, if
threads follow the usage constraints properly, preemption should be hidden to
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threads on a wait queue and to other threads operating on the same synchroniza-
tion object. For example, when using condition variables, an application shall lock
the support mutex before calling cond_broadcast. Also, an implementation must
handle corner cases where already processed threads access the same synchro-
nization object again, e.g. when using barriers and a woken up thread completes
early and needs to wait for the next round. In these case, this thread must not be
added to the existing wait queue (this would also violate the requirement about
termination), but to a new one.

3.2.4 Metrics to Evaluate Efficiency and Predictability

As stated before, we want to improve the average-case performance of synchro-
nization mechanisms, but without sacrificing the worst-case behavior. This means
that we can effectively measure the average-case performance in a benchmark,
and we can look at the worst-case factors that impact the WCET in an analysis.

For the benchmarks, we have two baselines to compare performance results
to: (i) we can compare the performance of an implementation of a predictable
synchronization mechanism against an optimized, but non-predictable implemen-
tation, such as Linux, or (ii) we can compare the performance of an optimized
and predictable synchronization mechanism against a non-optimized, but still
predictable variant. To compare the worst-case timing behavior, we can only
use the predictable baselines. Comparing the predictable and non-predictable
implementations would be like comparing apples to oranges. Still, the results
show if an implementation is on par with other state-of-the-art mechanisms.

For benchmarking average-case performance, we can use typical hardware
platforms that are also used in certified systems. This includes current desktop
and embedded processors. We expect that the average execution time e of an
optimized variant €,y is smaller than that of the baseline variant €;,s.. Note that
these results will highly depend on the benchmark scenario.

However, comparing the actual WCET of two implementations using example
scenarios is not a task we can easily do. We neither have the resources to create a
test scenario to empirically assess a practical WCET bound, nor do we have the
tools to model the WCET down to pipepine level to derive a theoretical WCET
bound. Instead, we perform a timing analysis on an abstract level with symbolic
execution times and present the WCET e(n,m) as a formula for n threads, m
processors, and constant terms of included critical sections ecg;.

In general, operations in an operating system kernel as described in Section 2.3
are not computationally complex, therefore we assume an actual WCET analysis
to be dominated by data access and reduce the terms to the individual number
of accessed cache lines. Our empirical results in [ZK19| have shown that cold-
cache memory accesses dominate performance when traversing greater amounts
of thread control blocks (TCBs) in an operating system kernel, as queue nodes
are kept at the same offset within page-aligned TCBs, effectively causing trashing
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in the same cache set. Likewise, low-level system call code and context switching
mainly comprise saving and restoring registers and therefore are dominated by
data accesses as well, e.g. cache eviction on store and cache misses on load.

We further use the general observation that algorithms for queue operations
with constant time O(1) are better than ones with logarithmic time O(logn)
and algorithmic time is better than linear time O(n) as rough guideline to
evaluate approaches. This allows us to simplify an individual WCET term into a
constant part t..,n.s depending on n threads and m processors, €.g. tinked—list =
thead + M tper—node for linked-list traversal, and then further replace the constant
parts by the number of accessed cache lines, e.g. tjnred—1ist = 1 +n in the previous
example. This model is not accurate for a detailed WCET analysis and clearly
neglects instruction cache fetches, but it should be sufficient to evaluate the trends
when processing a large number of threads n and the interference by m — 1 other
Processors.

Using a timing analysis at such a level, we can now clarify how to evaluate
an approach. We compare the polynomial WCET terms of an optimized variant
eopt to the baseline variant ejqs.. But as the polynomial WCET terms depend on
two variables n and m, we cannot define a simple metric to compare the WCET
terms. Therefore, we must discuss the differences individually.

3.3 Building Blocks of Real-Time Locking Proto-
cols

We now analyze the different real-time synchronization protocols of Section 2.1.5
to decompose them into their key elements, identify the building blocks that must
be supported by an operating system, and discuss potential fast paths.

Overview: As an overview, we briefly summarize the real-time synchronization
protocols for P-FP scheduling described in Section 2.1.5 and categorize these
protocols w.r.t. immediate access to uncontended resources, busy-waiting, blocking,
and migration:

e NPCS (non-preemptive critical sections): A thread disables preemption
when accessing a local resource. Access is granted immediately; the thread
never waits.

e [PCP (immediate priority ceiling protocol)?: A thread temporarily changes
its priority to the ceiling priority of the local resource. No preemption by
new arriving threads with lower priority. Immediate access, no waiting.

2We choose IPCP instead of PCP due to the simpler implementation.
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e PIP (priority inheritance protocol): A thread simply accesses a local resource
and can get preempted. The thread inherits the priority of any higher
blocked thread. Again immediate access and no waiting. Any further action
is delegated to blocked threads on contention.

e NPCS with spinlocks uses non-preemptible FIFO spinlocks for global re-
sources. No preemption, but busy-waiting before access.

e MrsP (multiprocessor resource sharing protocol) combines IPCP with FIFO
spinlocks for global resources. Preempted lock holders are migrated to other
spinning processors. Busy-waiting and migration.

e DPCP (distributed PCP): A thread migrates to the resource’s local processor
and uses PCP with priority boosting locally. Immediate access is only
possible when resource is accessed on the resource’s local processor. Requires
blocking and migration.

e MPCP (multi-processor PCP) uses priority boosting and PCP for access
to global resources. Threads can get immediate access to uncontended
resources due to immediate priority boosting, otherwise threads must block.

o Multiprocessor PIP with local helping and migratory priority inheritance:
A thread immediately accesses a resource if it is free, otherwise the thread
blocks. PIP and migration is applied by the blocked threads on contention.

e FMLP™" uses priority boosting based on the time of the lock request and a
FIFO-ordered wait queue on contention. Immediate access and blocking.

Similarities: When comparing these protocols, we see certain similarities. Most
commonly, NPCS, IPCP, MrsP, DPCP, MPCP, and FMLP™" temporarily disable
preemption or change the priority of the requesting thread, and revert to the
previous state after the thread releases the resource. The non-preemptibility of
NPCS and MrsP can be alternatively implemented by using the highest possible
priority in IPCP. Also, the priority boosting in MPCP and DPCP can be imple-
mented as an additional priority band above normal priorities, or by splitting the
normal priority range in two halves. Lastly, [IPCP, DPCP, and MPCP require the
definition of ceiling priorities for the resources.

DPCP, multiprocessor PIP, and MrsP require migration. DPCP requires this
unconditionally, while PIP and MrsP require this only when blocked threads
detect that the lock holder is currently preempted.

Of the blocking protocols, single- and multi-processor PIP, DPCP, and MPCP
require a priority-ordered wait queue, while FMLP ™ requires a FIFO-ordered wait
queue. The busy-waiting protocols use FIFO ordering.

PIP in any form gives immediate access to an uncontended resource and
applies any protocol-specific mechanisms to resolve the priority inversion only
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on contention, i.e. in the context of blocked threads. However, PIP internally
requires to build a resource allocation graph to correctly track the dependencies
of nested critical sections and locate lock holders to apply priority inheritance

to [ZUW20].

Categorization: In their work on futexes in LITMUSRY, Spliet et al. catego-
rized protocols such as PCP, MPCP, and FMLP™" as anticipatory, as they take
actions to reduce priority inversion before issuing a lock request [SVBD14]. NPCS,
IPCP, MrsP, and DPCP are also anticipatory protocols. In contrast, PIP is
categorized as a reactive protocol, as it only becomes active on contended lock or
unlock operations.

We introduce a second category whether a protocol provide immediate access
to uncontended resources. All protocols besides DPCP fall into this category, as
DPCP might first migrate the resource requesting thread to the target processor.
Note that the PCP protocol described in Section 2.1.5 also does not fit into this
category, as the protocol might refuse access to an uncontended resource due to
the priority ceiling rules.

Identification of potential fast paths: PIP in any form fits well to futexes,
as the protocol (i) allows immediate access to an uncontended resource, and (ii) is
activated by the blocked threads on contention, and the blocked threads need to
perform system calls for blocking and wake-up anyway. Also, migration in PIP in
the multi-processor variants of the protocol also happens only due to contention.
Therefore, no additional mechanisms are needed here.

For the anticipatory protocols NPCS, IPCP, MrsP, DPCP, MPCP, and FMLP ",
an efficient mechanism to manipulate the scheduling priority of the currently exe-
cuting thread in user space would allow to implement the fast path for uncontended
lock and unlock operations completely in user space.

This applies partly for DPCP as well, but only if the requested resource is
on the current processor. For this, a thread must know on which processor it is
currently executing on. Otherwise, migration must be handled by the operating
system kernel.

Likewise, MrsP requires migration of preempted lock-holders on contention.
This additionally requires a robust mechanism to detect lock-holder preemption
in user space to prevent superfluous spinning.

3.4 Building Blocks of User-Level Blocking Syn-
chronization

In Section 3.4.1, we now analyze the blocking synchronization mechanisms de-
scribed in Section 2.2 from a high-level point of view. We discuss similarities and
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identify the underlying elementary synchronization mechanisms that compose all
user-level blocking synchronization mechanisms. We then classify the elementary
synchronization mechanisms and provide a generalized form that hides differences.
In Section 3.4.2, we dig deeper into the implementation level inside an operating
system kernel to identify the basic low-level building blocks and discuss their
interworkings and implications.

3.4.1 High-Level Analysis and Generalization

Overview: At start, we briefly summarize the blocking synchronization mecha-
nisms of Section 2.2 w.r.t. their type, semantics, blocking and wake-up behavior,
and queuing disciplines. The list does not include spinlocks and sampling ports.
Both do not block.

o Muteres: mutex_lock acquires the resource and blocks the caller with a
timeout when the resource is contended. mutex_unlock releases the resource
and wakes up at most one thread. Blocked threads are queued in priority
(POSIX) or FIFO order (ARINC 653-specific and configurable). Support
for different mutex types consists of additional error checks and a recursion
counter. Support for IPCP and PIP.

e (Condition variables: Require a locked support mutex. cond_wait lets the
caller wait with a timeout. The function unlocks the support mutex be-
fore waiting. After waiting, the support mutex might be locked or not.
cond_signal and cond_broadcast requeue one or all threads from the condi-
tion variable’s wait queue to the wait queue of the support mutex. Spurious
wake-ups are acceptable. Waiting threads are queued in priority order.

e Reader-writer locks: A lock operation acquires the resource in the requested
mode and blocks the caller with a timeout. An unlock operation releases
the resource and wakes up one writer or all reader threads. Blocked writers
are queued in priority order, while blocked readers are unordered.

e Counting semaphores: Semaphores have an internal counter. sem_wait
decrements the counter and blocks the caller with a timeout when the
counter resource was not greater than zero. sem_post increments the counter
and wakes up at most one thread. Waiting threads are queued in priority
order.

e Barriers and one-time initializers: The operations allow the caller to wait.
The last resp. first thread wakes up all waiting threads. There is no special
order of waiting threads.

e Queuing ports and buffers: Classic bounded-buffer problem. Two blocking
points if message queue is empty or full. A send or recv operation blocks
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with a timeout if the queue is full/empty; then performs a message transfer;
then wakes up at most one thread. Blocked threads are queued in priority
or FIFO order (configurable). The message transfer involves a data copy
operation that must be serialized to ensure the FIFO ordering of messages.

e Blackboards: Barrier with message transfer. bb_read allows the caller to
wait with a timeout. bb_display wakes up all waiting threads. There is
no special order of waiting threads. Data copy operation are performed in
parallel by the readers after wake-up. Multiple writers must be serialized.

e Fventmasks: Eventmasks are specific to a single thread. A wait operation
allows the caller to wait. When one or more events are set and the thread
is waiting for one of them, the waiting threads is woken up.

e Fuvents: A wait operation allows the caller to wait with a timeout. When
an event is set, all waiting threads are woken up. There is no special order
of waiting threads.

o [Futezres: futex_wait allows the caller to wait with a timeout. futex_wake
wakes up a given number of waiting threads. futex_requeue requeues a
given number of waiting threads from one futex wait queue to a second
one. Typically use cases wake or requeue either one or all threads. Waiting
threads are queued in priority order. Spurious wake-ups are acceptable.
Supports two modes; non-mutexes and mutexes with PIP.

Similarities and categorization: As we can see, all mechanisms have one or
two implicit wait queues, which have either a priority-ordered or a FIFO-ordered
queuing discipline. Notifications on a condition variable or by futex_requeue
requeue threads from one wait queue to another. All other wake-up operations
process either one or all blocked threads. Queuing operations combine a wait
and a wake-up operation. Waiting on a condition variable combines a wake-up
(mutex_unlock) with a wait operation. All other mechanisms let the caller perform
a wait or a wake-up operation, but not both at the same time. When a data copy
operation is involved, we need additional synchronization to serialize the message
transfers with FIFO ordering.

With this, we can now assign the blocking synchronization mechanisms to four
categories:

e CAT1: Simple blocking mechanisms comprise either a wait or a wake-up
operation.

e (CAT2: Requeuing operations move waiting threads between wait queues.

e CAT3: Complex operations combine both wake-up and waiting. Only
cond_wait is in this category.

29



CHAPTER 3. ANALYSIS

o CAT): Bounded-buffer synchronization handles two independent blocking
points.

Problem reduction: Note that by using only semaphores, or mutexes and
condition variables, or futexes, we can compose the remaining synchronization
mechanisms from these elementary synchronization mechanisms (see text books,
e.g. [HS08|, or [Drell] for futexes). Similarly, we can also compose the bounded-
buffer synchronization of CAT/ from elementary synchronization mechanisms
(see text books again), so we will not further discuss the latter for now.

The complex operation cond_wait of CATS can also be composed from
mutex_unlock and a waiting primitive. However, to prevent missed wake-ups
between both elementary operations, we need to carry over state information from
before unlocking the mutex. For now, we denote such an operation as a start
waiting primitive. The resulting sequence to compose cond_wait from is: start
waiting primitive — mutex_unlock — waiting primitive.

Such a sequence can now for example be implemented by using an event-
count |Ree76, RK79]. Using an eventcount, the start waiting primitive reads a
counter value. The waiting primitive checks if the counter value is still below a
given value before blocking the caller, otherwise the eventcount must have been
notified by an advance operation, which increments the counter and wakes all
already waiting threads where the counter value exceeds the waiting value. Note
that eventcounts are a simple blocking mechanism of the first category.

A similar technique is possible with futexes. Here, the start waiting primitive
simply reads the futex value, and the blocking primitive implemented in the kernel
blocks the caller only if the current futex value still matches the expected value. In
this regard, futexes have a different semantic (compare-if-equal) than eventcounts
(compare-if-below), but do not impose counter semantics.

The technique to split a waiting operating into two parts, into a first short
non-blocking operation to start a blocking operation, and a second operation that
eventually blocks, allows us to interleave different synchronizations mechanisms.

Summary: With this, we can compose the complex operations from primi-
tives, and only the first two categories CAT1 and CAT2 remain, comprising the
elementary synchronization mechanisms we further focus on.

Generalization: When looking at the different synchronization mechanisms,
we see lots of differences, for example semaphores implement counter semantics,
while eventmasks implement bitmasks of single events, but also many similarities,
such as blocking the caller. We now try to generalize the operations. We first
discuss an abstract waiting operation and then an abstract wake-up operation.
For generalization, we encapsulate the differences between the synchronization
mechanisms by defining a semantic operation, which hides the exact semantics of
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each synchronization mechanism and operates on some internal synchronization-
mechanism-specific state, which we denote as semantic state. For example,
sem_wait decrements the counter of a semaphore, mutex_lock checks the current
ownership of a mutex, or event_wait checks the state of an event. This pre-wait
semantic operation then either succeeds and returns to the caller, or blocks the
calling thread, e.g. on a negative counter for the semaphore, contention on the
mutex, or if the event is cleared. Also, when a calling thread must wait, each
synchronization mechanism requires a different queuing discipline. The pre-wait
semantic operation enqueues the calling thread on a specific wait queue and
suspends the thread in the scheduler.

After being woken up, a thread performs another semantic operation. This
post-wait semantic operation first checks the cause of the wake-up (e.g. a wake-
up operation, a timeout, cancellation for signals, etc.), might have to remove
the calling thread from the wait queue, and evaluates the semantic state again.
Depending on the synchronization mechanism, a waiting operation now usually
completes successfully or unsuccessfully. However, in case of cond_wait, a timeout
while waiting on the condition variable might require a second round of waiting
to acquire the support mutex.

We can model a wake-up operation using the same technique. First, a wake-up
semantic operation defines what needs to be done, e.g. sem_post increments the
semaphore counter, mutex_unlock releases a lock, or event_set sets an event. And
again, this semantic operation either succeeds and returns to the caller, or a
defined number of blocked threads will be woken up, e.g. one for the semaphore
or the mutex, or all waiting threads in case of the event. Then the semantic
operation removes the given number of threads from the wait queue and wakes
up the threads.

Lastly, we can also model requeue operations to notify condition variables this
way as well. A requeue semantic operation checks if there are threads waiting on
the condition variable and if the support mutex is locked. If the support mutex
is locked, the operation requeues one or all waiting threads from the condition
variable wait queue to the mutex wait queue. If the support mutex is not locked,
the operation wakes up one thread to become the next mutex owner, and requeues
the remaining threads. Note that such a requeue operation is not very generic, but
specific to condition variables and mutexes, so one could generalize requeuing as
wake a number of threads followed by requeue another number of threads. However,
the author is not aware of any other use case of requeuing except for condition
variables.

In summary, we can generalize waiting, wake-up, and requeue in blocking
synchronization (CAT1 and CAT2) by defining a synchronization-mechanism-
specific semantic operation, generic operations on wait queues, and suspend and
wake-up in the scheduler. For waiting, we have defined two semantic operation,
i.e. one before waiting and another one after waiting, while wake-up and requeue
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operations require one semantic operation before waking up or requeuing one or
more threads.

Identification of potential fast paths: The description of the semantic op-
eration already shows the potential to introduce shortcuts. The first steps of a
semantic operation already check if a thread must block or if there are threads
to wake up or to requeue. Section 3.1.1 on related work already explained how
this works for counting semaphores. Also, the futexes of Section 2.2.11 show that
a generalized form of this blocking decision can be moved to user space, as the
kernel is only needed for blocking and wake-up/requeuing.

3.4.2 Mapping to Low-Level Building Blocks in the Kernel

To further formalize the generalized waiting, wake-up, and requeue operations
(CAT1 and CAT?2) described in Section 3.4.1, we now take a look at a typical
implementation in an operating system kernel using fine-grained locking. We
compose the operations from their underlying building blocks: look-up mechanisms
to internal kernel data-objects, preemption control and internal critical sections,
FIFO- and priority-ordered wait queues, timeout handling, and suspension and
wake-up in the scheduler.

For this, we assume that the operating system represents each synchronization
object in user space by a related internal object in the kernel. The operating
system supports an indexing system to look-up the kernel object. The kernel
object and its associated wait queues are further protected by an internal spinlock.
To prevent lock holder preemption inside critical sections, preemption must be
disabled before acquiring any locks. The operating system further supports self-
suspension in the scheduler to either block or wait with a timeout, and a related
wake-up call. As low-level building blocks are interleaved with each other, we
present them in the graphical notation depicted in Figure 3.1.

In the following, we discuss the implementation of a typical blocking synchro-
nization mechanism comprising two operations, wait and wake-up of one thread.
We omit the case of waking up all threads, as this can be implemented by a loop
around the core functionality. We also omit a description of a requeue operation.
A requeue operation, which moves one or many threads between wait queues,
comprises the same building blocks as wait and wake-up operations, but requires
no interaction with the scheduler. Like in Section 3.4.1, we do not assume any
specific synchronization mechanism and abstract semantic differences away.

Wait: A wait operation comprises the following lower-level steps: first, it per-
forms the pre-wait semantic operation and evaluates the specific blocking condition,
which highly depends on the actual synchronization mechanism, and if this block-
ing condition yields true, the operation inserts the calling thread into a wait queue
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Figure 3.1: Graphical notation of building blocks.
The figure shows four sequences (a) to (d) which are read from left to right. The sequences
comprise different operations or steps. denoted by (1) to (7) for each sequence.
In the top left, @ represents a sequence of preemption control operations: preemption
disable (pd) (1), a preemption point (pp) without preemption (2), a preemption point
with preemption (3), resumption (4) and preemption enable (pe) (5).
Next on the top right, (b) shows a sequence of lock and unlock operations: lock acquire
without spinning (acq) (1) and lock release (rel) (2) operations, and a second sequence of
lock with spinning (spin) (3) until acquiry (acq) (4) and lock release (rel) (5) operations.
Sequence (c) shows a suspend operation comprising acquiry of the scheduler lock (1),
suspension (s) (2), eventual wake-up (change of color from black to white) (3), and
finally scheduling and release of the scheduler lock (4). A wake-up operation comprises
acquiry of the scheduler lock (5), wake-up of the target thread (w) (6), and release of
the scheduler lock (7).
Similarly, (d) shows the modification to a wait indicator state variable over time: the
variable is set to waiting state (black) (1), read (2), set to ready state (white) (3), and
read again (4). Lastly, (e) shows an atomic operation, and (f) shows a system call.
Note that dots at the bottom indicate preemptible progress, while dots at the top
indicate non-preemptible progress. All operations related to suspension are colored
black, while wake-up uses white color. Critical sections are encoded by different colors:
yellow for a kernel synchronization object, red for scheduling data.

of given order and then suspends the calling thread for a given time (timeout).
After wake-up, the post-wait semantic operation checks if it was woken up by a
timeout or any other unrelated condition, e.g. signal handling. In this case, the
wake-up is a spurious wake-up and the calling thread must be removed from the
wait queue, as it might be still enqueued. Finally, the operation returns with the
status of the operation.

Figure 3.2 depicts a graphical representation of a successful generic wait
sequence with all internal locking: At first, the generic wait operation disables
preemption (1) and acquires a spinlock protecting the internal kernel object and
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Figure 3.2: A successful generic wait operation over time.
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Figure 3.3: Related successful wake-up operation over time.

the wait queue (2). Inside the critical section, the pre-wait semantic operation
checks the wait condition and decides to suspend the calling thread (3). The
intention of the calling thread to block is indicated by the bar below the thread,
which changes its color from white (ready) to black (waiting). This step is a start
waiting primitive, as the thread can not block inside the critical section. The
operation then releases the spinlock protecting the wait queue (1) and calls the
scheduler to suspend the calling thread. The scheduler first acquires a spinlock
protecting its scheduling data (5). Then the scheduler checks if waiting is still
indicated (it is) (6), and then suspends the calling thread with a given timeout (7).
After some time, the thread is woken up and put onto the ready queue again (8). It
takes further time until the thread is scheduled again, and the scheduler operation
completes (9). After suspension in the scheduler, the generic wait operation must
acquire the spinlock protecting the wait queue again (10 and check if the thread is
still enqueued on the wait queue or was properly woken up by another thread (@1).
Finally, the operation releases the spinlock (2 and enables preemption again (13)
before returning to user space.

Wake-up: A related wake operation needs to perform the following lower-level
steps: when a given wake-up condition is met, the wake operation removes the
first waiting thread from the wait queue if the wait queue is not empty and then
wakes up this thread.

Figure 3.3 shows this with all internal locking: at first, the operation disables
preemption (1) and acquires a spinlock protecting the wait queue (2). Then, the
wake operation performs the wake-up semantic operation, decides to wake-up a
thread, checks the wait queue, and removes the first thread. To wake up the
thread, the operation first clears the wait indicator of this thread (3). The wait
indicator of the thread is depicted above the thread. The color changes from
black (waiting) to white (ready). Afterwards, the operation releases the spinlock
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protecting the wait queue (1) and calls the scheduler to finally wake up the waiting
thread. The scheduler locks internal scheduling data (5), puts the thread back
onto the ready queue (6), and releases the internal lock (7). The generic wake
operation completes by enabling preemption again (8). The thread then returns
to user space or is in immediately preempted by the woken up thread.

Preemption control: We see that both wait and wake operations are bracketed
in preempt_enable/preempt_disable pairs. After releasing the first critical section
((@) in both Figure 3.2 and 3.3), both wait and wake operations could also restore
the previous preemption state, but then would have to immediately disable
preemption again before acquiring the scheduler lock (5). Also, for the wait
operation, these extra preemption points would be superfluous, as the thread
anyway intends to suspend (before the scheduler’s critical section) or was recently
scheduled (after the scheduler’s critical section). Similarly, an extra preemption
point before the actual wake-up in the scheduler might introduce consistency
errors (ABA problem).

Consecutive locking: We also see that the locks do not nest. The lock pro-
tecting the wait queue (yellow) and the lock protecting scheduling data (red) are
taken consecutively. The wait indicator (line below or above the operations) is a
variable that is only modified in the first critical section protecting the wait queue
(change from white to black to indicate the start of waiting and change from black
to white to indicate the start of a wake-up), thus protecting the wait state as well.
In the wait operation, the wait indicator is then read by the scheduler before
suspension. If the indicator has not been changed by a concurrent wake operation,
the scheduler suspends the calling thread. The wake operation also follows this
convention. It first changes the wait indicator in the critical section protected
by the wait queue and wait state lock, and then calls the scheduler to put the
thread onto the ready queue again. In general, the wait indicator is a start waiting
primitive, as discussed in Section 3.4.1. For use in the kernel, a simple binary
state (waiting / woken-up) is sufficient.

The benefits of taking locks consecutively instead of nesting is that the locks
do not influence each other. It would also be possible to perform hand-over-hand
locking, e.g. lock wait queue — lock scheduler — unlock wait queue — ... —
unlock scheduler for the wait operation, but this inflates the WCET of the outer
critical section €yqit—quene With the full pessimism of the inner critical section
€scheduler s Le.

6hcmdfoverfhomdflockmg = m'<€waitfqueue + m'escheduler>
2
= M-Cyait—queue + M”-€scheduler

instead of

€consecutive—locking — T Cwait—queue + M-€scheduler
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Figure 3.4: Wait operation with suspension in scheduler and (a) normal wake-up, (b)
wake-up by timeout, and (¢) late normal wake-up.

and therefore

€consecutive—locking < €hand—over—hand—locking-

This is a problem of all designs using nested locking.

The TOWTTOS problem: Note that after wake-up, the wait operation
requires a second critical section (@9 to (2 in Figure 3.4) for the post-wait
semantic operation to handle wake-ups by timeouts or other OS-specific events.
In this case, the thread might still be on the wait queue and the caller must
remove itself from the wait queue (case (b)). However, note the emphasis on
might: when a thread is woken up by a timeout at first and then a regular wake
operation happens before the thread could acquire the lock of the wait queue
again (case (¢)), the thread was regularly woken up and already removed from the
wait queue. The thread can recognize this and could change its return code to
indicate a successful wake up. An appropriate reaction depends on the semantics
of the synchronization mechanism.

One obvious idea to solve this problem could be to let the interrupt handler
remove a thread from its wait queue. The interrupt handler would then have
to lock the wait queue as well. But this does not really solve the problem. A
parallel wake-up on another processor can still race between the time the interrupt
handler releases the critical section protecting timeout data and acquires the
critical section protecting the wait queue. Such a change would also require the
programmer to temporarily disable interrupts before acquiring the wait queue
lock. Also, this would have a rather huge impact on response time analysis of
interrupt handling in general, without providing further benefits.

As far as we know, any system using fine-grained consecutive locking will
observe this kind of time-of-wake-up-to-time-of-scheduling (TOWTTOS) race
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conditions® due to the use of multiple independent critical sections. The author of
this thesis is not aware of any mechanism for fine-grained locking without using
nested locks that prevents this kind of problems.

Summary: We have discussed that we can decompose complex user synchro-
nization mechanisms into elementary synchronization mechanisms. We can further
decompose these elementary synchronization mechanisms into wait and wake-up
primitives where a semantic operation implements the semantic of a specific
synchronization mechanism but the remaining steps follow the same blueprint.
We have then further described the low-level building blocks in an operating
system kernel. With this, we got a generic model of wait and wake-up primitives
implemented in the kernel.

3.5 Futexes in Linux Revisited

In this section, we look at how the futexes presented in Section 2.2.11 work in
detail. We extend the model and building blocks presented in Section 3.4 with a
fast path.

Section 3.5.1 examines the conceptual approach of how futexes provide a fast
path for blocking synchronization mechanisms, and Section 3.5.2 analyzes the
futex implementation in Linux. Section 3.5.3 then discuss the shortcomings of
futexes in general and the Linux implementation. Section 3.5.4 discusses safety
and security aspects of futexes. Finally, Section 3.5.5 summarizes.

The analysis of the Linux implementation is based on Linux kernel versions
4.14.59-rt37 and 4.16.12-rt5 with real-time patches, Linux kernel version 5.5
without real-time patches, and glibc versions 2.24 to 2.31 for the user space part
of the futex implementation.

3.5.1 Conceptual OS Implementation of Futexes

Following the discussion about the building blocks in Section 3.4, we see that
the main difference between futexes and in-kernel synchronization is that futexes
move the pre-wait semantic operation into user space and that futexes do not
need a complex critical section to decide whether to block or not. Instead, the
semantic operation is “compressed” into a single atomic operation in user space
(depicted by the green hexagon in (1) in Figure 3.5). This has certain benefits, as
the futex operation in user space does not experience any lock holder preemption
problems and a single atomic operation is faster than a full-blown critical section.

We will first discuss futexes using the non-PI mutex API as described in
Section 2.2.11. Here, futexes split the pre-wait semantic operation into two parts:

3We deliberately named this problem after the time-of-check-to-time-of-use (TOCTTOU)
problem [BD96].
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Figure 3.5: Consecutive locking and nesting of wait indicators at the beginning of a
futex_wait operation until the thread is suspended in the kernel.

(i) a first semantic operation in user space using atomic operations on 32-bit
variables, and (ii) a second semantic operation in the kernel comparing the futex
value to prevent missed wake-ups. The first semantic operation implements the
fast path for uncontended futex operation, and for this, it comprises both the
modification of the semantic state and the decision whether to block by using
atomic operations. At the same time, it acts as a start waiting primitive when
needing to block in the kernel. Then the futex value in user space acts as a
wait indicator for the critical section in the kernel, like in the consecutive locking
scenario discussed in Section 3.4.2. For futexes implementing the PI mutex
API, the semantic operation inside the kernel comprises additional steps besides
checking the value, such as trying to lock the mutex for the caller.

Figure 3.5 shows this consecutive locking in an example. When waiting on a
futex, a thread sets some specific value in the futex variable in user space as wait
indicator (lower horizontal bar in green/white) (1) and then calls the futex_wait
operation in the kernel (2). Internally, futex_wait locks (and creates) a wait
queue (3) and then evaluates the futex value in user space (1) before putting the
thread to sleep. However, the step of putting the thread to sleep uses a second
wait indicator in the kernel (upper horizontal bar) (5) before releasing the critical
section protecting the wait queue (6) and suspending the calling thread in the
scheduler as usual (steps (7) to (9)).

The previous description has deliberately left out how in-kernel objects and
wait queues are addressed. For this, we can assume two indirection approaches:
the in-kernel object can be addressed either by an index or descriptor ID, or by the
address of the futex value in user space (see also Section 2.3.1). For futexes, the
original designers opted for the second approach [FRK02|. With this, futexes do
not need prior registration of synchronization objects in the kernel. This property
increases the flexibility of futexes and allows the kernel to have an arbitrary
number of synchronization objects. However, this indirection mechanism requires
additional efforts in the implementation.

We now have identified the additional building blocks of futexes: atomic oper-
ations on 32-bit variables in user space, and a split pre-wait semantic operation.
We denote the synchronization-mechanism-specific encoding of the futex value in
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user space as futex protocol. The flexibility of a futex protocol in the first semantic
operation is limited to 32-bit variables. The kernel side supports two different
sets of semantic operations, one set of operations implementing compare-and-block
semantics, the other set of operations implementing Pl mutexr semantics. Addi-
tionally, the kernel requires an address — in-kernel object indirection mechanism
for futexes.

3.5.2 Linux Futex Implementation

We will now discuss both the user space implementation and kernel implementation
of futexes in Linux. Note that the user space parts are implemented as part of
the C library, while the kernel parts are implemented in the Linux kernel. In
the following, we restrict the analysis of the user space implementation part to
mutexes in both non-PI and PI forms as typical examples of the Linux futex API.

Data model: Besides the 32-bit futex data in user space, synchronization
objects in Linux comprise additional data defining the characteristics of a specific
synchronization object. For example, mutexes support a bunch of different modes
and attributes (see Section 2.2.2), or barriers must encode the maximum number
of waiting threads as well. Therefore, the 32-bit futex word is only a part of the
synchronization-mechanism-specific data structure in user space.

In the kernel, futexes are managed by hashed wait queues. The Linux kernel
hashes the futex address to derive the right hash bucket and an associated wait
queue. Due to the hashing, this wait queue can be shared by threads waiting on
different futexes. To identify the threads belonging to a specific futex, the Linux
kernel stores the current futex address for each waiting thread as well. Therefore,
we say “to address a wait queue” in the following, as there is no other in-kernel
object associated with a specific futex.

Implementation of non-PI mutexes: Non-PI mutexes are intended for best-
effort applications. The encoding of the futex value is as follows. A futex value
of 0 indicates an unlocked mutex. A locked mutex is indicated by the thread 1D
(TID) of the lock owner. In Linux, thread IDs are globally (system-wide) unique
identifiers of all threads in the system. Another important information in the
futex value is the WAITERS bit. The WAITERS bit is the top-most (most significant)
bit and indicates contention on the mutex.

mutex_lock evaluates the futex value in user space. The function tries to lock
the mutex object for the caller from 0 to TID by using atomic CAS operations.
When the CAS operation succeeds, the fast path completes. Otherwise the mutex
must be locked. If not set, mutex_lock sets the WAITERS bit atomically. Then
mutex_lock calls futex_wait to wait in the kernel. The current futex value is
provided for the compare operation in the semantic operation in the kernel. Recall

69



CHAPTER 3. ANALYSIS

that futex_wait does not interpret the futex value, but just compares the current
futex value to the given value as blocking condition. When the system call returns,
mutex_lock restarts the sequence from the beginning again. However, this time
the fast path CAS operation already sets the WAITERS bit, as there might be other
waiting threads.

Conversely, mutex_unlock atomically exchanges the current futex value with
0 to release the mutex. If the previous futex value had the WAITERS bit set,
mutex_unlock calls futex_wake to wake up one waiting thread.

Note that when a CAS-operation in user space fails, the whole sequence is
restarted all over. Concurrent locking attempts from mutex_lock and futex_lock
operations and false sharing is a cause of interference here.

Implementation of PI mutexes: PI mutexes are intended for real-time ap-
plications. The encoding of the futex value is the same as for non-PI mutexes.
Here, the kernel fully understands the protocol encoded in the futex value.

mutex_lock performs the same fast path as for non-PI mutexes, but does not
set the WAITERS bit if the fast path fails. Instead, the function directly calls
futex_lock_pi in the kernel. In the kernel, futex_lock_pi evaluates the futex
value again and either acquires the mutex for the caller, or sets the WAITERS bit
and suspends the thread. In the latter case, the kernel creates a resource allocation
graph and passes down the suspended thread’s priority to the current lock owner.

mutex_unlock first evaluates the futex value. If the WAITERS bit is set, the
function calls futex_unlock to handle situation and completes. Otherwise, it sets
the futex value to 0 with a CAS operation. If the CAS operation fails, i.e. the
WAITERS bit was set between reading the futex value and the CAS operation, the
function also calls futex_unlock to handle contention. In the kernel, futex_unlock
wakes the highest priority waiting thread, makes the thread the new lock owner
and updates the futex value in user space to the new TID. If other threads are
waiting on the futex, the kernel sets the WAITERS bit as well. The kernel also
adjust the scheduling priority of the current thread as priority inheritance on this
mutex ends.

Here, the CAS operation to set the WAITERS bit in the futex value moved from
user space into the kernel.

Implementation of condition variables: The condition variable implemen-
tation in glibc is quite complex. In POSIX, cond_wait is a cancellation point,
i.e. a thread can be synchronously cancelled (terminated) by other thread, while
waiting in cond_wait. Cancellation also defines a cleanup mechanism to release
any resources of the terminated thread. Due to changes in the POSIX standard
w.r.t. condition variables*, support for requeuing of waiters from the condition
variable wait queue to the futex wait queue was removed in glibc version 2.25

4See https://www.austingroupbugs.net/view.php?id=609.
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and not added again in later versions under the assumption that the number
of threads waiting on a condition variable is usually small and thundering herd
problems are rare®. Therefore, the condition variable implementation only uses
futex_wait and futex_wake.

Wait queue hash table and look-up: We now focus on the kernel side of
futexes. The futex implementation in the kernel uses a fixed-sized hash-table of
wait queue roots. The kernel creates this array at boot time and allocates 256
wait queue roots per available processor. The hash table is shared between all
processes in the system. To look up a wait queue for a futex, the kernel combines
the futex address with internal (process- or file-system-specific) data as hash
key and permutes the data into a unique index in the hash table in O(1) time.
As mentioned in Section 2.2.11, Linux distinguishes between shared and private
futexes. For shared futexes, the kernel uses the underlying physical address of
a futex variable, while for private futexes, it can use the virtual address in user
space. Wait queues are shared between futexes. Due to hash collisions, threads
waiting on unrelated futexes may end up in the same wait queue.

Wait queue: The wait queue implementation is based on a priority-sorted
linked list (plist), with 140 priority levels (100 real-time priority levels and 40
priority levels for nice levels from -20 to 19). The plist implementation comprises
a doubly-linked list of the longest waiting threads for each used priority level,
and a second doubly-linked list with all threads. Each wait queue root also
contains an internal lock to ensure consistency of the wait queue (the plist). This
wait-queue-specific lock is also taken when checking the expected futex value. For
the internal lock, a kernel with the real-time patch uses a priority inheritance
mutex. Without the real-time patch, the lock is realized as spinlock.

Waiting: For waiting operations, Linux prepares the futex key based on the
futex address and optional timeout data, locks the shared wait queue in the hash
table, and evaluates the futex value in user space. The kernel either compares
a generic futex value or tries to lock a mutex for the calling thread and ensures
that the WAITERS bit is set in the futex value. Then it inserts the thread into
the ordered wait queue, unlocks the shared wait queue, and finally suspends the
thread. Due to the priority-ordering in the plist data structure, insertion is the
most expensive operation on the wait queue and takes O(p) time for p priority
levels. After wake-up, the kernel removes the thread under the wait queue lock if
the thread is still enqueued on the wait queue and performs necessary cleanups
for timeouts. Removal only takes O(1) time.

See https://sourceware.org/bugzilla/show_bug.cgi?id=13165.
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Wake-up: For wake-up operations, the kernel iterates the wait queue in order
under lock and wakes up the requested number of threads matching the target
futex. Threads blocked on unrelated futexes are ignored. This takes up to O(n)
time for n threads on the wait queue.

In the mutex case, only one thread is woken up. This thread is made the new
owner of the mutex and the futex value is updated accordingly.

Requeue: For requeuing, Linux locks up to two wait queues in ascending order
in the hash table. The kernel then iterates the source wait queue, and for threads
matching the target futex, it wakes up a specific number of matching threads and
requeues any remaining requested number of matching threads to the destination
wait queue. Again, unrelated threads are ignored. If requeuing targets a different
wait queue, the kernel removes threads from the source plist and adds them to
the destination plist, preserving priority and FIFO ordering. Otherwise, threads
remain in their current position in the plist and just get their futex key updated.

Priority inheritance protocol: The Linux kernel supports a priority inheri-
tance protocol for PTHREAD_PRIO_INHERIT. For each PI mutex, the Linux kernel
raises a lock holder’s scheduling priority to the maximum priority of all blocked
threads. Internally, the kernel maintains a priority inheritance state (PI state)
data structure for each futex wait queue related to a PI mutex. Among other
data that is relevant to the Linux kernel for life-time tracking of futexes, the PI
state comprises a kernel-internal PI mutex that is the head of the queue of all
threads lending their priority to the current lock holder. The PI state data is
dynamically allocated on the first call to futex_lock_pi and freed on the last call
to futex_unlock_pi. Therefore, this data structure is always associated with the
associated futex rather than a blocked thread. The kernel supports nested PI
mutexes.

Priority ceiling protocol: In POSIX, PTHREAD_PRIO_PROTECT is the immediate
priority ceiling protocol. In Linux, this locking protocol is implemented in the
C library by temporarily changing a thread’s scheduling priority before locking
a mutex and after releasing a mutex. Changing a thread’s scheduling priority
requires a separate system call.

3.5.3 Issues with Futexes in Linux

In the following, we identify and discuss issues with futexes in Linux that violate
our requirements for predictability presented in Section 3.2.3. We start with
particular issues in the Linux implementation and end with general issues of using
futexes.
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Figure 3.6: Observed execution times of futex_requeue operations by one process to
requeue one of 512 blocked threads. In parallel, another process on another processor
requeues all of its 512 threads using unrelated futexes. The four tests use different
combinations of shared and non-shared hash buckets for source and destination futexes
in the requeue operation: In test A, all futexes share the same hash bucket. In test B,
the two processes use different hash buckets, but the source and destination futexes of
their requeue operations end up in the same hash bucket. In test C', the source futex of
one process uses the same hash bucket as the destination futex of the other process, and
vice versa. In test D, all futexes use dedicated hash buckets. The measurements were
performed on an i.MX6 SABRFE Lite board with four Cortex-A9 ARM cores clocked at
996 MHz and Linux kernel 4.14.59-rt37. Note that outliers (due to the not always reliable
synchronization in the tests) have not been removed. Diagram adapted from |ZK19|.

Problem: Hash table with shared wait queues: By using shared wait
queues, futexes of unrelated processes can share the same internal wait queue. Even
worse, futex operations on wait queues are not preemptible. This directly violates
RQ6 (interference by shared namespaces) and RQ7 (preemptive operations), and
indirectly harms predictability of futex operations. Consider an example system
where trusted (real-time) and untrusted (non-real-time) applications co-exist. The
untrusted applications can interfere with trusted ones by letting a large number
of threads block on the same wait queue. In this case, the system integrator must
assume worst-case behavior of untrusted applications.

We have demonstrated this effect in an experiment in our previous work [ZK19|
by using a worst-case scenario comprising requeue operations on private (non-
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shared) futexes in parallel by two unrelated processes. The requeue operation
is interesting here because two futex wait queues are involved, a source and a
destination wait queue, and both source and destination wait queues can end up
in the same hash bucket due to a hash collision. On a 996 MHz ARM processor,
we observed an interference of up to 400 ps, while the average case was handled in
8 ps. We repeat the key results of the experiment in Figure 3.6. We point out that
the scenario in this experiment is highly unrealistic in practice. We deliberately
chose this setting in order to demonstrate potential worst-case scenarios, as
futex_requeue locks two wait queues internally.

Problem: Resource exhaustion: A second problem is resource exhaustion
in the kernel: Assume a resource-intensive (or a malicious) non-real-time process
that allocates all kernel heap. In this case, even if a real-time application follows
recommendations for POSIX real-time programming and pre-allocates all its
resources, the allocation of a PI state data structure in a mutex_lock operation
can fail. Note that PI state is used to track the blocked threads of a PI futex and
the data structure exists as long as the according PI futex has contention, therefore
it cannot be pre-allocated, as Linux does not offer an API for initialization or
registration operation of futexes.

As a consequence, blocking on a mutex with contention can fail. This violates
RQ2 (robustness). The real-time application might be able to revert to a non-PI
mutex for blocking, but it cannot apply PI to the lock holder anymore. This might
lead to a priority inversion problem in the application. Even if we assume that this
problem usually never happens in reality, the Linux futex API of futex_lock_pi
specifies an error condition for memory allocation failures. Thus user applications
must provide additional error handling code for this. Note that for testing reasons,
Linux supports a fault injection interface to let arbitrary memory allocations of
PI state data fail.

Problem: Unbounded atomic operations: The different futex protocols
use atomic operations on the futex value. When a CAS operation fails, the
implementation repeats the atomic sequence again. This can happen due to
legitimate updates of the futex value or false sharing. But this make it hard to
obtain an upper bound on the number of retries of the CAS operations for RQ5
(bounded loops and retries).

Note that this is usually not a problem for well-behaving applications. In
this case, the corner cases of the specific futex protocol must be considered to
derive an upper bound for a correctly behaving operation. However, recall that
futex_lock performs atomic operations on the futex value from the kernel to lock
the mutex for the calling thread or set the WAITERS bit. If these CAS operations
fail, the kernel simply starts over and evaluates the futex value again. Note that
this provides an attack surface for a malicious application. By writing to the futex
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value or even accessing the same cache line in parallel, a malicious application
can prevent progress in the kernel.

This problem can be mitigated by bounding the number of retries of the atomic
operations in the kernel. The kernel could then return to user space with an error.
In turn, the user space code could retry the operation again. This would at least
remove the attack surface from the kernel.

Problem: Arbitrary priority boosting: In futex_lock_pi operations, the
kernel cannot check whether or not the target thread currently holds a PI mutex in
user space. A malicious thread can now use such an operation to apply a priority
boost using the kernel’s priority inheritance mechanism to arbitrary threads of
unrelated processes in the system. This not only violates the assumptions of
a strict process model where threads cannot alter the scheduling of threads in
other processes: arbitrarily boosting a real-time thread’s priority above others
may effectively invalidate a previous scheduling analysis and may lead to priority
inversion problems, and boosting of non-real-time threads may lead to starvation
of lower priority real-time applications. Effectively, this violates RQ2 (robustness)
and RQ6 (interference by shared namespaces).

However, this problem is not specific to futex_lock_pi, but to Linux processing
in general, as the Linux process model only provides weak separation between
processes. As real-time scheduling often requires root permissions, a malicious
thread could also invoke sched_setscheduler() to change the target thread’s
scheduling attributes directly. The impact of this arbitrary boosting can be
mitigated by defining appropriate control groups with separate namespaces for
processes and thread IDs, but this imposes an additional burden on the system
integrator and on the validation of the configuration.

General issues: The following discussion is not specific to the futex implemen-
tation in Linux, but to futexes in general. They show structural issues with the
futex approach.

The concept of using atomic operations for the semantic operations shows a
limitation. Futexes protocols must always be “compressible” to a single 32-bit
variable. The restriction to a single atomic word and the limited word size can
become a serious barrier for adoption of more complex synchronization mechanisms.
Note that using 64-bit atomic operations would be better here. However, when
futexes were conceived, most of the available computers running Linux were
32-bit architectures without 64-bit atomic operations, but had at least atomic
fetch-and-add or similar primitives [FRKO02|. Therefore, futexes in Linux are
limited to 32-bit variables.

The simplicity of futexes being a compare-and-block primitive also poses
problems. Consider the case where the compare operation in the kernel fails.
Then the futex_wait operation returns immediately, and the user space code
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has to handle this situation. This behavior is acceptable for a condition variable
implementation where the futex word is changed on each wake-up operation, but
it still causes spurious wake-ups, e.g. when two threads start call cond_wait while
another thread intends to wake up only one thread with cond_signal. For other use
cases where spurious wake-ups are not acceptable, the user space implementation
must hide failed waiting attempts, e.g. by repeating the call to futex_wait again.
And this could lead to unbounded loops.

A more general compare operations in the kernel could address parts of these
problems. Unnecessary looping could be prevented if the kernel has more semantic
information than the simple compare-if-equal comparison when evaluating the
futex value. However, this would require a more complex API. Also, parameterized
arithmetic operations can only test for limited patterns. In parts, the Linux API
supports this with the bitset variants.

Even more flexibility could be gained if the kernel operation could actually
modify the futex value. Then futexes would become a compare-and-modify-and-
block mechanism. The Linux API supports this partly on the wake-up side with
the futex_wake_op operation, see Section 2.2.11.

3.5.4 Safety and Security Aspects of Futexes

We briefly discuss safety and security aspects of futexes. In Section 3.5.3, we
already identified temporal interference problems due to shared futexes and
the problem of boosting arbitrary threads. Both problems are specific to the
implementation in Linux. Still, we must discuss the side effects of intended or
unintended changes to the semantic state exposed to user space, as this affects
futexes in general.

For threads in the same process or same partition, we assume that these threads
must trust each other anyway. A thread locking a mutex and then not releasing
the mutex is considered an application error, regardless of the implementation
of the mutex. Similarly, we can consider that all unintended modification of the
futex value are application errors. As the futex value in user space is kept in
memory of the partition, such errors are properly isolated to the affected partition.

For futexes shared between partitions, recall from Section 3.2.1 that the system
design is restrictive by default and that access to a shared memory containing
a futex value must be explicitly granted. Then we can compare the situation
to the use of shared mutexes or shared semaphores. When sharing a blocking
synchronization mechanism, the participants must trust each other and expect
that the other side plays fair and does not mess up the synchronization. Therefore,
any modifications to the futex value can be considered to be an application error
again. The fault remains isolated in the affected partitions and cannot harm the
kernel or impact unrelated partitions. Also, applications can still detect these
errors, e.g. by blocking with a timeout.
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3.5.5 Summary

The futex design in Linux strongly focuses on performance, as performance is
critical in real-world server and desktop applications. The implementation was
carefully tuned to avoid internal overheads where possible. The design is based
on the assumption that contention is rare when using mutexes, and, if contention
happens, only a small number of threads are blocked at all. This explains the
design decision to use a hash table and linked lists, as the necessary operations
take O(1) amortized time. Also, Linux developers are aware of the side effects of
this design, as [BN14,Brol6| and the fault injection interface for PI mutexes show.
In summary, futexes as implemented in Linux are efficient, but not predictable.

3.6 Alternative Approaches for Efficient Synchro-
nization Mechanisms

We now discuss alternative approaches to futexes for efficient blocking synchro-
nization mechanisms in user space. From the analysis of the futex building blocks
in Section 3.5.1, we can see that the main technique for efficiency is to implement
a fast path in user space to skip unnecessary overhead for system calls. We start
our discussion by addressing the specific limitations of futexes, and derive a more
generic model that uses full critical sections instead of just atomic operations.

The discussed techniques and Table 3.1 were presented in previous work of
the author [Zue20].

Wider atomic operations: Recall that futexes implement the fast path by
an additional semantic operation in user space, and that futexes “compress”
the semantic state into a 32-bit value due to the dependency on 32-bit atomic
operations. A first (and probably the most natural) approach to extend futexes is
to consider to lift the limitation of having only 32-bit semantic state. For this, we
could consider to use wider atomic operations. However, while atomic operations
on 32-bit, 64-bit, or even 128-bit variables are often available on today’s processor
architectures, larger state or disjoint memory locations cannot be handled by
simple atomic operations. Historical processor architectures, such as Motorola
68000 and Intel 1860, allowed to modify two (Motorola 68000) or more words
(Intel i860) atomically by holding the bus locked for a longer time [GH91|, but
such techniques have fallen out of favor for today’s systems due to the high impact
on scalability when using more than a few processor cores. Today, techniques like
transactional memory are favored [HM93]. Transactional memory requires special
hardware, but is not yet widely available on contemporary processors.

Spinlock-protected critical sections: Alternatively, a spin-based critical sec-
tion for mutual exclusion might be helpful. Spinlocks can be implemented ef-
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ficiently in user space. However, using spinlocks in user space introduces non-
determinism due to lock-holder preemption problems, see Section 2.1.3. Therefore,
we need to provide a mechanism for preemption control as well. With this, we get
non-preemptive spin-based critical section, similar to the ones inside an operating
system kernel, see Section 2.3.3. Note we leave open the question how preemption
control can be implemented efficiently.

When using spin-based critical sections, the described futex system calls are
still sufficient, but not optimal for waiting and wake-up in the operating system
kernel. They do not cope well with the critical section, as the system call for
blocking must be moved outside the critical section. In this case, the critical
section prepares a 32-bit futex value to encode sufficient information to prevent
missed wake-ups and other race conditions, and the actual call to futex_wait
happens after the critical section is unlocked, like when using eventcounts [RK79].
Note that this problem does not apply to the non-blocking futex_wake, which can
be called from within the critical section. But a wake-up operation inside the
critical section can lead to preemption (kernel interaction) right after the critical
section is released and preemption is enabled again.

Also, when using a spinlock-protected critical section to protect any state
information in user state, the 32-bit futex value does no longer need to be the
only value to block on. Instead, multiple futex values could be used, e.g. in the
context of reader-writer locks, one futex value could address blocked writers, while
a second futex value could address blocked readers. One could even think of
making the futex value private to a blocking thread.

These considerations show that spinlock-protected critical sections in user
space are promising, but futexes might not be the best mechanisms to support
them.

Non-preemptive spin-based monitors: An even more radical approach is to
move more steps from the kernel to user space. From the analysis of the building
blocks in Section 3.4.2, we can see that the in-kernel implementation comprises
the look-up of a kernel object, disabling preemption, internal locking, a semantic
operation, and a wait queue operation before finally suspending or waking up
threads in the context of the scheduler. Moving the scheduler operations into user
space is unrealistic, as the kernel must be able to suspend, preempt, or wake up
threads without interference from user space. But we can at least move all other
steps up to the scheduler interaction into user space.

This effectively extends the previously discussed approach (spinlock-protected
critical sections) with the handling of the wait queue and turns the approach
into something which resembles a non-preemptive spin-based monitor. At the
same time, this also enables a different approach to address the blocked threads
in wake-up operations, as the wait queue is kept in user space. Threads can be
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addressed directly by their thread ID instead of indirectly via an in-kernel wait
queue.

Comparison: Table 3.1 shows and compares the building blocks of three ap-
proaches for a generic blocking synchronization mechanism implemented as (i) a
baseline approach using system calls, (ii) a futex approach like in Linux, (iii) the
previously discussed monitor approach that handles the wait queue in user space.
Comparable operations and data objects are placed in the same rows.

System call: The baseline implementation in the left column uses system
calls to implement a blocking synchronization mechanism and shows the building
blocks as discussed in Section 3.4.2. Here, user space code calls the kernel with
an identifier to a kernel object. In turn, the kernel validates the identifier and
retrieves the kernel object comprising all necessary data in the look-up step. Then
the kernel disables preemption, locks the data in the kernel object, and performs
a semantic operation, such as checking and modifying the internal state. At this
point, the semantic operation decides whether the operation is completed or if
a wait queue operation is needed. In the latter case, the kernel either enqueues
the calling thread on the wait queue, or removes a waiting thread from the wait
queue, depending on the desired operation. Then the kernel must lock internal

Table 3.1: Comparison of three implementations of a generic blocking synchronization
mechanism. The upper part shows the layered operations from user space down to the
kernel. A “e” marks the operations in the fast path when no blocking is needed, i.e. in
the fast path, only the marked operations are performed. The lower part shows the
associated data in both user space and the kernel. A “¢” denotes global data.

operations system call (baseline) futex monitor
user space e disable preemption
e lock user space object
e 15t semantic op. (atomic) e 15t semantic operation
wait queue operation
e system call system call system call
kernel e look-up kernel object look-up futex wait queue look-up thread

e disable preemption

e lock kernel object

e semantic operation
wait queue operation
lock ready queue

suspend / wake-up

disable preemption
lock wait queue

2nd semantic operation
wait queue operation
lock ready queue

suspend / wake-up

disable preemption

lock ready queue
214 semantic operation
suspend / wake-up

data model

system call (baseline)

futex

monitor

user space ID of kernel object futex value (atomic) user space object lock
additional semantic state semantic state
wait queue
¢ thread states
kernel kernel object lock wait queue lock

semantic state
wait queue
¢ ready queue lock
¢ thread states

address

wait queue
o ready queue lock
© thread states

¢ ready queue lock
¢ thread states
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scheduling data (ready queue lock) before it can finally suspend the calling thread
or wake up a waiting thread.

Futex: A futex-based implementation with its building blocks as discussed
in Section 3.5.1 is shown in the middle column. Compared to the system call
approach, the main difference of the futex-based implementation is the 32-bit state
variable in user space expressing the semantic state. Depending on the atomic
operation on the variable, the semantic operation either succeeds immediately or
requires a system call. In the kernel, the look-up of an associated in-kernel wait
queue is based on the user space address of the atomic variable, but the following
steps are similar to the baseline approach. The second semantic operation in
the kernel is a check if the futex value has changed in the mean time or locks /
unlocks a mutex on behalf of the caller.

Monitor: The right column shows the building blocks of a monitor using a
non-preemptible spin-based critical section. The monitor-based implementation
differs from both previously discussed approaches. From the data point of view,
the user space object comprises a lock, semantic state, and a wait queue. From
the execution point of view, the user space code disables preemption and locks the
object before it evaluates the internal semantic state in the semantic operation.
In the fast path, the semantic operation succeeds and the operation completes. In
the slow path, a system call to the kernel is required to block or to wake up. For
blocking or wake-up, the wait queue operation either adds the current thread to
the wait queue or removes a thread from the wait queue and then in turn calls into
the kernel. The kernel first validates the given thread ID and locates the target
thread. Then the kernel disables preemption, locks the necessary scheduling data,
and performs a second semantic operation. The second semantic operation is
serialized by this last lock and detects parallel wake-up or suspend operations. If
the semantic check succeeds, a suspend or wake-up operation takes place.

Discussion: When comparing the three approaches, we can see that the baseline
approach and futexes have a similar overall structure, while the monitor approach
moves the steps concerning wait queue management from the kernel to user space.

When comparing futexes and the monitor approach, the monitor approach
allows more complex expressions to appear in the semantic operation, since the
semantic operation is protected by a critical section. However, for comparable
performance between futexes and monitor in the fast path, this critical section
must be kept short.

From Table 3.1, we can draw the following conclusions.

First, a non-preemptive spin-based monitor in user space is a blank spot on
the map in the design space of efficient blocking synchronization mechanisms.
Especially, the building block to temporarily disable preemption is critically
important for a well-performing implementation, as these operations should not
use system calls. From the predictability point of view, we can use much a simpler
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mechanism to suspend and wake up threads in the kernel. This clearly simplifies a
timing analysis of the operating system kernel. But at the same time, the overall
complexity is not reduced, but just moved to user space.

Second, both the baseline approach and the futexes show a quite similar
structure in the kernel. A different futex design that does not share wait queues
could improve on of the Linux implementation and solve the predictability issues
shown in Section 3.5.3.

3.7 Preemption Control Mechanisms

In this section, we analyze and compare different mechanisms for preemption
control. We use these mechanisms to temporarily disable preemption while
executing in a critical section to prevent lock holder preemption problems as
discussed in Section 2.1.3. Due to their conceptual relation to real-time locking
protocols, we use the term protocol for these mechanisms as well.

We start with an in-depth review on related work of different approaches
to mitigate the lock holder problem in Section 3.7.1. Then we look at the
implementation level of preemption control mechanisms inside operating system
kernels in Section 3.7.2. This provides a good starting point to identify particular
building blocks. We discuss these building blocks in Section 3.7.3. Section 3.7.4
discusses the details of the temporary non-preemption protocol in Symunix II, and
Section 3.7.5 analyzes the fast IPCP implementation by Almatary et al.. Finally,
Section 3.7.6 summarizes and discusses the results.

Our goal is firstly to design an efficient mechanism to effectively disable
preemption for the current thread in user space, when possible without using
expensive system calls. Secondly, the preemption mechanism should work well
with the monitor approach discussed in Section 3.6.

3.7.1 Related Work on Lock Holder Preemption

In the following, we review related work on the lock holder preemption problem.
As already stated in Section 2.1.3, measures comprise preventing or avoiding
preemption in the first place, recovery from preemption, and mitigation of side
effects of preemption. The first two categories describe preemption-safe lock
mechanisms [MS98|. The last category addresses the problem at the level of
scheduling, i.e. by scheduling threads that share locks at the same time in parallel,
e.g. coscheduling [Ous82|. As we mainly consider P-FP scheduling, we cannot
make assertions about the scheduling on other processors, and therefore we focus
on the first two categories in the following discussion.

Mechanisms of the first category can prevent any preemption in the first
place. Edler et al.’s temporary non-preemption mechanism in Symuniz II disables
preemption before entering a critical section and enables preemption again after

81



CHAPTER 3. ANALYSIS

leaving the critical section [ELS88|. This is an anticipatory mechanism, similar
to ceiling-based real-time protocols, especially IPCP. From the usage point of
view, this mechanism is easy to use and does not require any further information
about the critical section or the number of involved CPUs. The mechanism is also
robust as long as a thread follows the protocol and does not continue execution
with preemption disabled. Lastly, the mechanism is optimistic in that preemption
is delayed by at most the WCET of the critical section.

In contrast, the two-minute warning mechanism by Marsh et al. in Psy-
che [IMSLM91]| avoids preemption if the remaining time of the thread’s current
time slice is not sufficient to complete the critical section. Here, the user must
at least have the number of concurrent threads and the information how long it
will take to complete the critical section to use this mechanism correctly. This
makes the protocol both hard to use and pessimistic: if the time budget for the
critical section is too small, the thread observes lock holder preemption, if the
time budget is too large, the thread unnecessarily yields.

Note that both mechanisms were originally designed for systems with quantum
scheduling. They allow to shorten or extend the next quantum accordingly to
increase fairness. For Marsh et al.’s approach to work at all, we need the exact time
of the next preemption. However, this is impossible to achieve in an event-based
system. Only Edler et al.’s approach works in other scheduling systems.

Mechanisms of the second category provide means to recover from the fact that
a lock holder was preempted. We can further categorize the mechanisms as follows:
(i) passive ones that prevent wasting of too many CPU cycles on the waiter side
by changing from spinning to blocking; and (ii) active ones that try to solve
the problem, either by pushing the preempted thread out of its critical section
by yielding to the lock holder, or by helping the preempted thread otherwise
to finish the critical section. Compared to the mechanisms for prevention and
avoidance, we can see that these mechanisms here require an action on the side of
the spinning threads, but not on the side of the preempted threads. Note that the
passive mechanisms simply cope with the fact that the lock holder is preempted.
These mechanisms were primarily designed for best-effort systems. However, the
active mechanisms differ. We can categorize them as reactive mechanisms, similar
to the real-time protocols in Section 3.3. Also note the similarity of yielding CPU
time to a preempted lock holder here to non-recursive PIP.

We do not further consider both approaches of the second category. The
passive approaches just prevents further busy-waiting (best-effort), and the active
approaches inflate the WCET of critical exceptions too much. Explained in detail,
this means that yielding to a preempted lock holder quickly degrades to a scenario
similar to a futex-based PI-mutex where a higher priority waiting thread donates
its current priority to the preempted lock holder. And if now more than one
thread is blocked, the other threads will continue spinning.

With this, the only practical remaining approach is to temporarily disable
preemption while busy-waiting for a lock and during a critical section. How-
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ever, a mechanism to disable preemption also requires a safeguard mechanism
if applications abuse this. This might not be the case for real-time applications
except in error cases, as they are usually well designed, but we also want to
support best-effort applications. But there is a discrepancy to consider: when
the safeguard mechanism triggers and preempts a thread, the correctness of a
best-effort application is usually not affected, as other threads simply continue
spinning for a longer time and the situation clears up when the preempted thread
is scheduled again. However, for a time-critical application, the preemption might
be problematic.

3.7.2 Preemption Control inside OS Kernels

In operating systems for single processor systems, we see the pattern to disable
interrupts to achieve atomicity for actually non-atomic operations. For this, a
single bit in a CPU register to encode the enabled or disabled state of a CPU
to receive interrupts is sufficient. However, some hardware platforms provided
multiple levels of interrupts and —naturally— operating system developers started
to use these. For example, the set privilege level (spl) instruction of the PDP-
11 architecture with 8 interrupt levels influenced the mechanism for interrupt
handling in early and later Unix systems [MNNW14]. A similar mechanism is the
interrupt request level (IRQL) in the Windows NT kernel family [RSI12].

Sometimes, the instructions to control the interrupt level were costly, so
software workarounds were used instead and protocols to temporarily disable
preemption emerged, again supporting multiple interrupt levels. Operating system
implementers also optimized these mechanisms a lot. The protocols to disable
preemption were typically placed below interrupt privilege levels in the priority
space, and above user-level priorities. This shows the semantic relationship of
both mechanisms, and we can map thread priorities and interrupt priorities into a
single unified priority space. We can even push this relation further with threaded
interrupts in Solaris and map all interrupts to threads [KE95], or the other way
around and use the interrupt controller as scheduler as in Sloth [HLSS09].

The preemption control mechanisms in Linux® works as follows. Each thread
has two preemption related variables, a preemption counter preempt_counter and
a flag variable need_resched that indicates a pending preemption request.

Listing 3.1: Preemption control mechanisms in the Linux kernel

void preempt_disable ()
{

preempt_count++;

}

6The Linux kernel supports different preemption modes, depending on compile-time configu-
ration. Here, we consider a preemptible kernel.
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void preempt_enable ()

{
preempt_count --;
if ((preempt_count == 0) && need_resched) {
cond_resched () ;
}
}

The preemption counter is incremented each time when preemption is disabled
(line 3). Conversely, enabling preemption decrements the counter (line 8). The
counter becomes zero again when the last (outer) nested preemption request
completes. And if need_resched is set as well, the scheduler is invoked (line 10).

Linux supports nesting of disabled preemption requests. This helps in the
context of library functions that use nested spinlocks. The Linux implementation
does not support different priority levels. Instead, Linux supports different classes
of services, so-called softirgs, which run in the context of interrupt handlers, e.g.
timer handling and network packet processing. Processing of these is controlled
by changing different parts of the counter, e.g. incrementing and decrementing by
02100.

Note that the protocol exposes a short race condition: when a thread is
preempted after decrementing the preemption counter and testing the counter for
zero and checking the need_resched flag (line 9), but before calling cond_resched
(line 10), the thread still calls cond_resched after preemption.

Also note that inside an operating system, unlike to user space, there are
usually no safeguards necessary. Code executing in the operating system is trusted
and (usually) designed and optimized for latency, therefore critical sections are
short. Still, the Linux kernel provides a watchdog-based safeguard to print a
warning (“soft lockup detected”) when a thread executes non-preemptively in the
kernel for too long time and eventually reboot the system after a configurable
time.

3.7.3 Building Blocks of Preemption Control Mechanisms

Section 3.7.2 presented how preemption control mechanisms are usually imple-
mented inside an operating system kernel. The in-kernel mechanisms are protocols
for use in kernel space, which is trusted code and does not require any safeguards.

We now define the following terminology. A protocol to disable preemption
needs to have at least two preemption levels. We define that the lowest preemption
level means preemption enabled or base priority, and the highest preemption level
means preemption disabled or elevated priority. With this, we can map single bit
protocols into the priority world.

The current thread is said to be interrupted when an asynchronous interrupt,
e.g. a timer interrupt or a device interrupt, happens during a critical section.
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We denote a scheduling event when the interrupting ISR or the current thread
in its critical section wakes up another thread. Note that a scheduling event may
wake up a thread with (i) a higher priority than the current thread, (ii) a priority
between the base priority and the elevated priority, or (iii) a lower priority than
the current thread. In case (i), the current thread must be preempted immediately.
In case (ii), the current thread is expected to be preempted after the critical
section. We also say that preemption is pending. In case (iii), the current thread
is not expected to be preempted. When more than one thread is woken up, the
scheduling priority of the highest priority thread must be considered.

From this, we can derive the building blocks of preemption control mechanisms
for user space. A protocol starts at the low base level (preemption enabled), and
temporarily increases the preemption level to a higher level to disable preemption.
And the end of the critical section, the protocol reverts to the previous state. And
when preemption is pending, the protocol calls the scheduler.

The protocols may use a single bit or multiple priority levels to control pre-
emption. The protocols should support nesting of requests. Single bit preemption-
disable protocols can be easily extended to support nested requests by adding a
counter. To support nesting in multi-level protocols, the previous priority state or
level can be kept in a local variable on the caller’s stack.

Finally, a protocol should preferably not require system calls to change the
preemption level. The protocol should optimize for short critical sections. This
increases the likelihood that the calling code will effectively not be preempted
anyway.

3.7.4 Temporary Non-Preemption in Symunix II

We will now analyze the Symuniz II protocol [ELS88|. Edler et al. implemented
a preemption-disable mechanism with two levels for user space with a forced
preemption watchdog as safeguard mechanism. The protocol was originally
designed for a system with quantum scheduling (best-effort), so the protocol does
not support different scheduling priority levels.

The protocol uses two variables shared between user space and kernel. Both
variables are initially set to zero. With the first variable not_preempt_now > 1, user
space tells the kernel its wishes not to be preempted. The kernel uses the second
variable preempt_pending # 0 to notify user space about a pending preemption
request. Only in this case, the user space code needs a system call (sys_yield) to
finally preempt the current thread.

The implementation of the protocol is straight forward, as Listing 3.2 shows:

Listing 3.2: Preemption control mechanisms in Symunix II
1 void preempt_disable ()
2 o
3 not_preempt_now++;
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b
uint32_t preempt_enable ()
{
not_preempt_now--;
uint32_t pending = preempt_pending;
if ((not_preempt_now == 0) && (pending != 0)) {
preempt_pending = O0;
sys_yield ();
return pending;
¥
return O;
3

In the timer ISR (Listing 3.3), which handles the time slice scheduling, the
kernel sets preempt_pending to either 1 (pending, line 8) or 2 (overdue, line 13),
allowing user space to detect the situation:

Listing 3.3: Timer implementation in the Symunix II kernel

kernel_timer_isr ()

{

if (not_preempt_now == 0) {
// 0K to preempt mnow

} else if (preempt_pending == 0) {
// preempt later
preempt_pending = 1;
// do mot preempt

} else /* preemption already pending */ {
// safeguard time elapsed
// indicate forced preemption
preempt_pending = 2;
// 0K to preempt mnow

The protocol follows the same principles as the in-kernel protocol of Linux
discussed in Section 3.7.2. The first protocol variable not_preempt_now is a
preemption counter, and the second protocol variable preempt_pending indicates
a pending preemption request. The protocol shows the same small race condition
in lines 10 to 12 in Listing 3.2. Also, the protocol supports nesting, but is not
priority-based. However, we can easily adapt the protocol to priority scheduling if
we set the preempt_pending accordingly on scheduling events that wake up higher
priority threads, and replace sys_yield with sys_preempt.
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The safeguard mechanism is also shown here. When a thread remains in
preemption disabled state for more than a full time slice, the second timer
interrupt will enforce preemption.

A benefit of this protocol is that it requires no system call on average as long
as the thread is not interrupted by a timer interrupt. In the unlikely latter case,
the protocol requires exactly one system call.

3.7.5 Fast IPCP Implementation by Almatary et al.

Almatary et al. presented a protocol to implement IPCP (the immediate priority
ceiling protocol) and DFP (the deadline floor protocol) in user space [AAB15].
The variant with IPCP is for FP scheduling and supports nested requests, while
the variant using DFP is for EDF scheduling and does not. In the following, we
will discuss only the IPCP variant. We first analyze the non-nested case and then
the nested case.

The protocol uses three variables shared between user space and kernel. The
first variable new_pri refers to the elevated scheduling priority, the second variable
to_raise indicates that an elevated priority is active, and the last variable start
protects the priority restore operation. Additionally, the thread must know its
base priority base_pri. Initially, new_pri is set to base_pri, and both to_raise
and start are false.

In an acquire operation in the non-nested case, user space code sets both
new_pri and to_raise, and during the release operation, it additionally sets start
to indicate the start of a priority restore operation:

Listing 3.4: Fast IPCP by Almatary et al., non-nested case

void acquire_non_nested(prio_t prio)

{
new_pri = uprio;
to_raise = true;
}
void release_non_nested(void)
{
start = true;
if (to_raise) {
to_raise = false;
} else {
sys_set_prio(base_pri);
}
start = false;
}
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On a scheduling event, the kernel synchronizes new_pri with the effective
in-kernel priority of the thread if to_raise is set and start is not, as Listing 3.5
shows:

Listing 3.5: Kernel part to handle the non-nested case

kernel_sched_event (<...> new_thr)

{

// update priority if necessary

if (to_raise && !'start) {
to_raise = false;
kernel_set_prio(new_pri);

}

if (current_thr->prio < new_thr->prio) {
// 0K to preempt now
}

}

Here, current_thr refers to the current thread and new_thr refers to another
thread becoming ready. If start is set, the kernel knows that the current thread
is in a release operation and already has left its critical section. In this case, no
further actions are needed.

By using a dedicated variable to indicate the current execution of a release
operation, the protocol effectively solves the race condition visible in the Linux
kernel (Section 3.7.2) and in Symunix II (Section 3.7.4). For the non-nested case,
the protocol requires no system calls on average and only one system call in case
of a scheduling event during the critical section.

Also, the protocol assumes correct behavior of threads, so a safeguard mecha-
nism is not provided. However, unlike the Linux and Symunix II protocols that
disable preemption, this protocol only increases the scheduling priority of a thread.
If one considers a configurable process-specific upper bound of the scheduling
priorities of all threads in a process, the effect of an ill-behaving thread would be
limited to its process and can be mitigated.

For the nested case, the protocol introduces another shared variable level to
track the nesting level. In the following implementation, we use the same interface
as the previous two protocols for clarity:

Listing 3.6: Fast IPCP by Almatary et al., nested case

prio_t prio_raise(prio_t prio)

{
prio_t prev = new_pri;
new_pri = prio;
level ++;
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}

if ((level > 1) && !'to_raise)
sys_set_prio(new_pri);

} else {
to_raise = false;

}

return prev;

void prio_restore(prio_t prev)

{

level - -;
start = true;
new_pri = prev;
if (to_raise) {
if (level == 0) {
to_raise = false;
}
} else {
sys_set_prio(base_pri);
}

start = false;

Listing 3.7: Kernel part to handle the nested case

kernel_sched_event (<...> new_thr)

{

}

// update priority if necessary
if (to_raise && (!start || (level > 0))) {

to_raise = false;
kernel_set_prio(new_pri);

3

if (current_thr->prio < new_thr->prio) {

// 0K to preempt now
}

{

And the kernel part in Listing 3.7 changes accordingly:

The kernel now updates the in-kernel priority to the priority in user space on all
scheduling events (line 5). This leads to the problem that user space code needs a
system call in each prio_restore operation in the worst case when the scheduling
event happened at the deepest nesting level. But if no scheduling event happens
during the nested critical sections, no system calls are necessary.
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Lastly, the nested protocol is not easy to understand. The authors use model
checking to verify the correctness of their approach.

3.7.6 Discussion

Both the Symunix IT protocol discussed in Section 3.7.4 and the fast IPCP protocol
discussed in Section 3.7.5 can be used to implement short non-preemptive critical
sections in user space on a single processor system. For IPCP, one must simply use
a priority set to the maximum of the scheduling priorities of all involved threads.
Both protocols optimize for the case that critical sections are short and that the
temporary changes to the preemption state or the scheduling priority do not last
long, and the code will effectively not be preempted in most situations anyway.

Compared to a baseline approach that would use two system calls to implement
preempt_disable and preempt_enable, both protocols get rid of system calls in
the average case and require at most one system call in the non-nested case.
The system call is only needed at the end of a critical section, when a previous
preemption state or priority is restored, to finally preempt the thread. In the
nested case, the Symunix II protocol requires at most one system call for all
nested critical sections, while the fast IPCP protocol requires one system for each
critical section.

Also, the fast IPCP protocol synchronizes the priority in the kernel uncondi-
tionally on a scheduling event. However, this will be problematic for a wake-up
operation in the monitor approach discussed in Section 3.6. Then we would always
need a system call when enabling preemption again, even if the thread woken up
has a lower priority than the base priority of the caller. This is less a problem for
the Symunix II protocol, as it always operates on the base priority.

With this, we can summarize that both protocols support uninterrupted critical
sections without the need for system calls. Also, both protocols support nesting.
For a real-time system, the fast IPCP protocol by Almatary et al. would be a
good candidate, as it integrates into priority scheduling. However, if we consider
the nested case, the Symunix II protocol would be better, as it requires only one
system call in the worst case.

And we can conclude that there is still room for improvement. A better
protocol for preemption control should integrate nicely into priority scheduling
and should require a system call only when kernel interaction is really needed, i.e.
preemption is pending.

3.8 Low-Level Wait and Wake-up Mechanisms

In this section, we analyze and compare low-level mechanisms to suspend and
wake up threads. From the discussion about the monitor approach in Section 3.6,
we discussed to move the concept of a wait queue into user space and we concluded
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that a simpler scheme to suspend and wake up threads with direct addressing of
the threads would be helpful.

In his textbook on operating systems, Tanenbaum describes sleep and wake-up
primitives when introducing the producer-consumer problem |Tan09]. The sleep
primitive suspends the current thread in the operating system, and the wake-up
primitives wakes up one (sleeping) thread by a thread ID or a reference to the
thread.

However, in their simple form, the primitives expose a race condition due to the
problem of missed wake-ups. This problem is solved by introducing the “wake-up
waiting” switch by Saltzer [Sal66]. This is a flag that records a wake-up event in
case the target thread is not yet sleeping. When the flag is set, sleep clears the
flag and returns immediately. With this, the mechanism is now commutative, and
the order of the two operations no longer matters for correct signalization, like in
sem_wait and sem_post for binary semaphores.

In Section 2.3.4, we described the related sched_wait and sched_wakeup func-
tions of the low-level scheduler API used inside an operating system kernel. Here,
a different technique that uses a wait indicator flag prevents missed wake-up
problems. The flag is set by a start waiting primitive (see also the building blocks
of blocking synchronization in Section 3.4.1) inside a critical section, and evaluated
by the final waiting primitive sched_wakeup again. If the flag changed in the mean
time, the thread was successfully signaled. The split of the waiting primitive into
two operations follows the design of Reed’s eventcounts [Ree76|, but the state
encoded in the wait indicator flag still follows Saltzer’s simpler wake-up waiting
flag with two states instead of a counter.

The split of the waiting primitive into two operations is a key technique
that allows to block outside of a critical section. We can introduce the same
split for the wake-up side as well: the start wake-up primitive modifies the wait
indicator inside a critical section, and the wake-up primitive actually wakes up the
thread in the kernel. With this, the resulting sequence to wake up a thread is for
example: lock critical section — start wake-up primitive — unlock critical section
— wake-up primitive. As a wake-up operation is not blocking compared to a
waiting operation, we do not technically need to decouple the wake-up operation.
However, the benefit of this approach is that it helps to keep the critical section
short, as any system calls are now outside the critical section and do not inflate
the WCET of the critical section.

However, a wait indicator using just two states can cause spurious wake-up
problems. Consider a situation with two threads executing concurrently on two
processors, as Figure 3.7 shows. The first thread A is a waiting thread and
performs two waiting operations back to back. The second thread B wakes up
the waiting thread from the first blocking point, but is delayed after signaling
the wait indicator. Now, thread A performs the first wait operation and sets the
wait indicator to indicate waiting (1). The thread leaves the critical section and
performs the system call to wait in the kernel (2). In the mean time, thread B
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Figure 3.7: Spurious wake-up problem with simple wait indicators. Thread A performs
two wait operation back-to-back. Concurrently, thread B performs a wake-up operation
for the first wake-up, but the wake-up system call is delayed, e.g. by an interrupt. Now
thread B spuriously wakes up thread A in its second wait operation.

performed a wake-up operation and signaled the wait indicator (3). In turn, the
waiting system call of thread A sees the signaled wait indicator and does not block
thread A (1). Thread A returns from the system call and performs the second wait
operation. It sets the wait indicator to waiting state again (5), calls the kernel
(6), and successfully blocks (7). In the mean time, thread B was delayed before
it could finish the wake-up operation. Now B continues, calls the kernel and
spuriously wakes up thread A (9).

This particular problem can be solved by adding a check of the wait indicator
to the wake-up operation. However, the solution would not scale if we add another
thread C' to the game that sets the wait indicator to signaled state before B calls
the kernel. Instead, a wake-up operation should only succeed for the matching
wait operation. This problem can be solved in multiple ways, e.g. by adding a
barrier on the waiting side to check that the wake-up side has finished the wake-up
operation, or by using a unique key for matching wait and wake-up operations.
Such a unique key can be generated by a sequencer [RK79]. Conceptually, the
sequencer is a simple up-counter. A ticket operation increments the counter and
returns the current value. With this, a start waiting operation can start a new
waiting round by incrementing the wait indicator. Conversely, a start waiting
operation increments the counter for each wake-up. The system calls for waiting
and wake-up then only succeed if the wait indicator is still at the expected value
of the operation.

With this, we have identified the building blocks for low-level wait and wake-up
operations. By using a wait indicator, we can effectively split both the wait and
the wake-up operations into two phases, a first start phase that modifies the wait
indicator variable, and a second phase that requires a system call for blocking
or wake-up. The wait indicator is modified like a sequencer in the first phase,
and checked like an eventcount in the second phase. This prevents both missed
wake-up and spurious wake-ups problems.
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3.9 Analysis Summary

We will now summarize the results of the analysis chapter.

The main insight is that efficient synchronization mechanisms prevent unneces-
sary system calls, as these have a high constant overhead (Sections 3.1.1 and 3.2.2).
We analyzed blocking synchronization mechanisms, decomposed them into their
building blocks, and derived a generic model of these mechanisms (Section 3.4).
The key technique for a fast path is to provide a semantic operation in user space
that decides whether a thread has to block or not. Our analysis of futexes in
Linux (Section 3.5) has shown that futexes implement the semantic operation
by atomic operations. We also evaluated the design space for alternatives and
proposed spin-based critical sections in user space for the fast path operations
(Section 3.6). However, spin-based critical sections in user space need an addi-
tional mechanism to temporarily disable preemption (Section 3.7) or they risk lock
holder preemption and lock wait preemption. We additionally discussed low-level
wait and wake-up mechanisms different than futexes for the spin-based critical
sections (Section 3.8).

We analyzed real-time locking protocols that could help to address deter-
minism issues and improve analyzability (Section 3.3). Most of the protocols
unconditionally disable preemption or change the scheduling priority of the calling
threads. As an efficient technique to implement preemption control or changes
to the scheduling priority, we have identified that changes to specific state infor-
mation of a thread can be implemented by variables shared between user space
and the kernel instead of system calls (Section 3.7). The key technique here is
laziness under the assumption that a critical section does not see contention and
is not interrupted: user space code temporarily indicates a state change in a flag,
and reverses the change before the kernel notices as fast path. In the slow path,
additional synchronization with the kernel is needed, which requires a system call.

Another insight is that for predictability, the implementation of a synchro-
nization mechanism must fulfill certain requirements and must be analyzable in
the first place. To address the problems specific to mixed-criticality systems, we
additionally require that synchronization mechanisms shared between different
processes or partitions must especially address interference problems. Also, long
running operations should be preemptible and their remaining non-preemptible
elements should require at most O(logn) time (Sections 3.2.1 and 3.2.3). We
also discussed techniques to decouple critical sections by using consecutive lock-
ing in systems using fine-grained locking and the related TOWTTOS problem
(Section 3.4.2) and key techniques that prevents missed and spurious wake-up
problems (Section 3.8).

In general, we identified futexes and non-preemptive spin-based monitors
as two promising techniques emerged to implement blocking synchronization
mechanisms with a fast path in user space.
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The case for more deterministic futexes: Futexes offer a generic way to
blocking synchronization (Section 2.2.11). Futexes have the special property to
be registration-free, i.e. synchronization objects do not need to be known to the
kernel prior use. With this, the number of futex-based synchronization objects
user space code can use is only limited by the available memory. In a system with
n threads, at most n threads can wait on a futex, either on the same futex, or on
n different futexes. Internally, the kernel creates the necessary wait queues on
demand and destroys them after use.

However, the futex implementation in the Linux kernel has some drawbacks
w.r.t. determinism (Section 3.5), in particular a hash table with shared wait
queues, and a dependency to heap allocations when using priority inheritance.
Summarized, Linux futexes are efficient, but not predictable. We will address
these problems in Section 4.1. The presented design of deterministic futezes
improves on the Linux implementation.

As further alternative, we evaluate the impact of changing one of the key
properties of Linux futexes, namely creation of wait queues on demand. As
wait queues are created and destroyed dynamically, the Linux kernel needs an
indirection mechanisms to locate threads waiting on the same futex. The futex
address in user space provides a unique ID. Therefore, removing the need to
dynamically create wait queues on demand opens up new perspectives to address
one of the pain points of the Linux implementation, the shared hash table. In such
a design, the wait queues must be statically assigned to synchronization objects
prior use. This clearly deviates from futexes in Linux, but retains the property
of using atomic operations on futex words in user space and the higher-level
synchronization mechanisms known for Linux. We will discuss such a design
of static futexes in Section 4.2. The design is additionally focused on statically
configured embedded systems.

Non-preemptive spin-based monitors: The second promising technique are
non-preemptive spin-based monitors that manage a wait queue in user space and
directly address threads (Section 3.6). Using a spin-based critical section gives
more flexibility to implement a fast path and according wait queue operations
than futexes with their limitation to atomic operations on 32-bit variables. Also,
spinlocks can be implemented in user space already and do not depend on system
calls. However, spinlocks are prone to lock holder preemption and lock waiter
preemption problems, so we need efficient mechanisms for preemption control
(Section 3.7). Further building blocks for the monitors are simplified blocking and
wake-up system calls (Section 3.8).

In general, the monitor approach seems promising. However, the author of this
thesis is unaware of any synthesis of these building blocks to construct arbitrary
blocking synchronization mechanisms. And there are certain conflicting approaches
to consider. Especially, the efficiency of the preemption control mechanisms is
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based on the fact that the calling thread is not preempted; however, blocking
synchronization naturally requires to suspend or wake up threads. Therefore, we
must design a preemption control mechanism that better interacts with wake-
up requests during a critical section. We will address the preemption control
mechanism in Section 4.4.1 and the resulting monitor approach in Section 4.4.2.
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Design

In the design chapter, we present three different approaches to fast synchronization
mechanisms, two futex-based ones and one based on monitors with spinlock-
protected critical sections in user space.

The first three sections discuss the futex-based approaches. Section 4.1 presents
a deterministic futex design that provides a higher level of predictability at the
kernel level than futexes in Linux, while providing a similar feature set. Section 4.2
presents static futezes, a design for statically configured systems with a subset
of the features found in Linux. Section 4.3 discusses the design of higher-level
synchronization mechanisms on top of futexes.

The next two sections present the second approach, light-weight non-preemptive
busy-waiting monitors. The approach combines both efficient IPCP implemen-
tations as preemption control mechanism and waiting in spin-based fine-grained
locking to turn futexes inside-out. Section 4.4 discusses the synthesis of these
mechanisms into monitors. And Section 4.5 shows how to build higher-level
synchronization mechanisms from monitors.

4.1 Deterministic Futexes

In this section, we present a futex design that addresses some of the determinism
issues of futexes in Linux discussed in Section 3.5. The presented design focuses
on the main problem of predictability, the hash table with shared wait queues.

In 2011, the author of this thesis developed a first futex implementation for
PikeOS, supporting only a subset of the futex operations in Linux. Wait queues
were FIFO-ordered and implemented as doubly-linked lists. Instead of using a
hash table to address wait queues, the kernel kept the thread ID of the first
waiting thread of a wait queue next to the futex value in user space. This allowed
the kernel to locate the wait queue in O(1) time, as the look-up of threads by
their IDs use radix trees. This original design was presented in a workshop paper
in 2013 [Zuel3|.
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Over time, priority-ordered wait queues were added to the futex implementation
in PikeOS. Also, the PikeOS kernel design changed from a model using a global
kernel lock to fine-grained locking. In 2018, the author of this thesis redesigned
the kernel implementation in PikeOS to address the predictability and interference
issues of the original design. This redesigned futex design is the focus of the
following sections. It was first presented in a workshop paper [ZK18| and later in
a full conference paper [ZK19].

The presented deterministic futexes follow the general design principles of
futexes in Linux, i.e. a futex is a 32-bit atomic variable in user space, synchroniza-
tion objects do not need registration, and the kernel provides compare-and-block,
wake-up, and requeue primitives for general futexes and futex-based mutexes.
However, the presented futex design deviates from the Linux futex API at some
critical points and does not provide all interfaces, so it is not 100% compati-
ble to the Linux futex API and also not suitable as a replacement of the futex
implementation in the Linux kernel.

We start the discussion of the general design of deterministic futexes in Sec-
tion 4.1.1 with the general structure of the underlying data structures, explaining
key techniques, the design of the particular operations, and the available real-time
protocols in the following sections.

4.1.1 Design Considerations

A futex design that aims for predictability needs to fulfill the requirements
presented in Section 3.2.3. The main source of interference and non-determinism
of the futex implementation in Linux is the hash table with shared wait queues
that keep threads waiting on both private (per-process) and shared (global) futexes
in the same data structure.

Obviously, a more predictable futex design should separate private futexes
and global futexes into distinct sets. Private futexes can be kept in per-process
data structures, and only shared futexes should use a shared data structure.
This directly follows from RQ6 (interference by shared namespaces) to reduce
unnecessary interference. Also, a more predictable futex design should not share
wait queues between different futexes, but use dedicated wait queues for each futex.
This follows from RQ3 (analyzability).

Note that futexes do not require prior registration of synchronization objects.
To look-up a wait queue, the kernel uses the address of a futex object in user space.
RQ3 (analyzability) rules out solutions like hash tables for this. We use a binary
search tree (BST) instead. As the binary search tree addresses the wait queues by
their address, we name this data structure the address tree. Using BST satisfies
RQ/4 (bounded operations on queues) and bounds all operations to look-up a wait
queue and to dynamically insert new wait queues and remove empty wait queues
to logarithmic complexity.
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shared flag

shared global TJ(—)L_'] process private
address tree address tree
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Figure 4.1: Futex architecture using nested BSTs, address trees and wait queues. The
shared flag selects between the shared global address tree or a process private address
tree. The shared global address tree comprises wait queues (hexagons) «a, (3, and 7.
Address trees are ordered by futex addresses as keys. Wait queue « comprises four
waiting threads (circles) a; to ay. Wait queue S comprises two threads f; and [s.
Wait queue + comprises one thread v; only. Wait queues are ordered by thread priority.
Threads asg, 81, and 1 are wait queue anchors of their wait queues. BST node data is
kept in the TCBs of the involved threads. Figure taken from [ZK19].

For RQ1 (correctness), we have to consider the following functional require-
ments of the operating system standards: POSIX requires that threads with the
highest scheduling priority must be woken up first [IEE17|. This requires to use
a priority-ordered wait queue. However, ARINC 653 and other (non-POSIX)
purposes also require FIFO ordering. We implement the wait queue as BST again.
A BST can support both priority and FIFO ordering and satisfies RQ4 (bounded
operations on queues).

From this follows that a predictable design should use the following architecture:
(i) distinguish between global and private futexes, (ii) use the right address tree to
locate the wait queue with the futex address as look-up key, and (iii) keep blocked
threads in a dedicated per-futex wait queue. Figure 4.1 shows an overview of the
architecture.

For locking in the presented design, we first considered to use hierarchical
fine-grained locking with a lock for the address tree and dedicated locks for each
wait queue. The kernel would first lock the address tree, locate a wait queue, lock
the wait queue, and then unlock the address tree again. The hierarchical order in
which locks are taken prevents deadlocks. However, an empty (and locked) wait

98



CHAPTER 4. DESIGN

queue cannot be removed safely from the address tree without holding the address
tree lock. The kernel would have to unlock the wait queue first, then lock the
address tree, and finally lock the wait queue again. But this re-locking exposes
races, as the now re-locked wait queue may no longer be empty due to concurrent
insertion. We assume that a solution can be found, e.g. using a lock-free look-up
mechanism in the address tree to locate wait queues, but it is questionable if such
an approach would be able to provide the required level of predictability, especially
RQ5 (bounded loops and retries). We decided against fine-grained locking and use
a single lock that protects both the address tree and all its associated wait queues
instead.

A design that uses single lock for both data structures is fine for most futex
operations that operate on just one thread. In this case, all operations are already
properly bounded for predictability. But operations that address more than
one thread, i.e. futex_wake or futex_requeue, pose a problem. An artificially
restriction to process only a small number of threads would solve the problem
(this just increases the upper bound), but finding the right limit is hard and
this would seriously cripple the flexibility of futexes. Instead, we implement
these long-running operations in a preemptive way and follow RQ7 (preemptive
operations).

At first glance, such an architecture seems trivial to implement. One could
simply allocate a new wait queue data structure on demand and insert it into the
address tree. However, recall that RQ2 (robustness) demands not to use dynamic
memory allocations. Instead, all data related to futex management must be kept
inside the thread control block (TCB) of the blocked threads. Also, preemptible
operations are tricky. Recall the requirements for RQ8 (termination) and RQ9
(hidden transience).

4.1.2 Binary Search Trees

From a BST implementation, we require the standard operations find, min/maz,
insert, and remove, and additionally root and swap. Nodes in the BST use three
pointers: two for the left and right child nodes, and a third one to the parent
node. The root operation locates the root node of the BST from any given node
in O(logn) time. The swap operation allows to swap a node in the tree with
another node outside the tree in O(1) time without altering the order in the tree.
Lastly, the BST implementation requires a key to create an ordered tree. The key
may not be unique, e.g. threads with the same priority are allowed to exist in the
tree. We require FIFO ordering of nodes with the same key.

4.1.3 Address Tree Management

Separate address trees roots: Shared and private futexes are kept in different
address trees, as Figure 4.1 shows. Like in Linux, the user specifies in a flags
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argument for each futex operation if futexes are shared or private. Shared futexes
are kept in a global tree shared among all processes, while private futexes are kept
in the process descriptor of each process. The root of an address tree is called
address tree root.

Address tree: Address trees are ordered by increasing futex addresses as key.
To look up a wait queue by its futex address, we designate one of the blocked
threads in a wait queue as wait queue anchor. The anchor thread then holds the
root pointer to the wait queue. Hence, the address tree consists of wait queue
anchors as nodes.

Futex key: For shared futexes, the kernel uses the physical address of the futex
as key; and for private futexes, the kernel uses the virtual address as key. We use
the fact that futex variables in user space are naturally aligned 32-bit integers.
As the last two bits of a futex address are always zero, the kernel uses them to
encode further information.

Open/close state: We define that a wait queue is open if threads can be added
to it, i.e. new threads can block on a futex, and a wait queue is closed if new
threads cannot be added. The kernel encodes the state of a wait queue in its key.
An open wait queue has the lowest bit set in the key, for a closed wait queue the
bit is cleared. By clearing the open bit, the kernel can change a wait queue from
open to closed state without altering the structure of the address tree.

Drain ticket: For closed wait queues, we also define a drain ticket attribute.
The drain ticket determines the age of a closed wait queue. The drain ticket is
drawn from a global 64-bit counter that is incremented each time a wait queue is
closed. This counter should not overflow in practice.

Closed wait queues: We do not allow open wait queues with duplicate keys, as
each key relates to a unique futex in user space. But multiple closed wait queues
with the same key may exist. The closed wait queues become FIFO-ordered due
to the ordering constraints in the BST when changing a wait queue from open
to closed state. The closed wait queues also have increasing drain tickets that
help us to distinguish older from newer closed wait queues. We later exploit this
mechanism to wake up and requeue threads in a preemptible fashion.

Summary: This design for the address tree allows us to perform look-up,
insertion, and removal of wait queues in O(logn) time. Changing a wait queue
from open to closed state needs O(1) time. Thus, the design fulfills RQ/ (bounded
operations on queues).
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(a) (b) (c)

Figure 4.2: Wake-up of wait queue anchor thread. Step (a) shows thread as as wait
queue anchor thread. Thread ag is then removed from its wait queue. After rebalancing
of the BST, thread ay becomes the new wait queue anchor. In step (b), wait queue
state information is copied from ag to the new anchor ag. In step (c), nodes a2 and as
are swapped in the address tree, making ao the new wait queue anchor. Thread as is
no longer referenced afterwards. Figure taken from [ZK19).

4.1.4 Wait Queue Management

Wait queue anchor: As stated before, the wait queue anchor thread is an
arbitrarily chosen thread that holds the root pointer of the wait queue and other
wait queue attributes. We refine this now and define that the thread being the
current root node of the wait queue is to be used as anchor. If the current root
node changes due to rebalancing in the wait queue tree, the kernel first copies all
wait queue attributes from the old anchor to the new anchor thread, and then
swaps the old anchor thread in the address tree with the new current root node
without altering the structure of the address tree. Figure 4.2 shows this in an
example. Using the root node thread as anchor for a wait queue is not mandatory,
as any node in the wait queue would do. But this simplifies the implementation
when threads must be woken up for other reasons, e.g. timeout expiry.

Creation and destruction of wait queues: When a thread blocks on a
unique futex address, the kernel creates a new wait queue in open state and inserts
it into the address tree with this first thread as anchor. Note that this does not
involve allocation of memory, as the pointers comprising the wait queue are kept
in the blocked thread’s TCB. Similarly, the wait queue is implicitly destroyed
when the last thread (that again must be the anchor) is woken up. The kernel
then removes the wait queue from the address tree.
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a B Y a (B) Y a (B) B’ Y
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dt=42 dt=42
q, B, Y, q, B, Y, (a i @ @ Y,
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Figure 4.3: Preemptible draining of wait queue . Step (a) shows three wait queues a,
B, and v with their futex keys. The lowest bit in a futex key indicates an open wait
queue. In step (b), wait queue 3 is closed and the lowest bit in the key is cleared. The
wait queue is assigned a drain ticket of 42. In step (c), while the previous wait queue
B is emptied preemptively, a new wait queue [’ is inserted with the former open key.
Figure taken from [ZK19).

Insertion and removal in wait queues: The kernel supports both FIFO-
and priority-ordered wait queues. The user specifies the queuing discipline in a
flags argument for each futex operation. To support both modes with the same
data structure, the kernel defines a waiting priority for each thread. In FIFO
mode, the waiting priority is set to 0 for all waiting threads. In priority mode,
the waiting priority reflects the scheduling priority of a thread. The kernel inserts
threads in waiting priority order into an existing wait queue, with FIFO order on
tie. Also, the kernel removes the thread with the highest priority first in wake-up
and requeue operations.

Removal of an arbitrary node, e.g. on a timeout, requires to find the associated
wait queue root to rebalance the tree afterwards. The kernel does not look up the
wait queue in the address tree in this case, as it might have been set to closed
state in the mean time. Instead, the kernel simply traverses the wait queue tree
to the root node to locate the wait queue anchor and remove the thread. This
is also necessary when a thread’s scheduling priority changes while the thread is
blocked. In this case, the kernel first removes and re-inserts the thread with an
updated waiting priority.

Summary: This design allows to perform all internal operations on wait queues
in O(logn) time and fulfills RQ4 (bounded operations on queues). From this, we
can now construct all futex operations that operate on one thread.

4.1.5 Preemptible Operation

We now discuss preemptible operations on multiple threads: The overview of
futex operations in Section 2.2 shows that in all cases targeting multiple threads,
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the kernel always wakes up or requeues all threads in a wait queue. Therefore,
we restrict the implementation of futex_wake and futex_requeue to operate on
either one or all threads, but not on an arbitrary number, as Linux allows. This
simplifies the operations, as we simply can close a wait queue and then process
all its threads preemptively.

Therefore, when these operations target all threads, the kernel sets the wait
queue to closed state first, draws a unique drain ticket, and saves the drain ticket
in the anchor node in the wait queue. A closed wait queue can no longer be
found by other operations. This prevents already woken or requeued threads from
re-entering a wait queue again, as Figure 4.3 shows in an example.

Then the kernel wakes up or requeues one thread after another, but provides
a preemption point after handling each thread. After each preemption, the kernel
must look up the closed wait queue again. If multiple closed wait queues with
the same key are found, the stability in the BST ensures that nodes are ordered
by increasing drain ticket numbers. The kernel then continues to perform its
operations as long as the drain ticket number is less than or equal to its originally
drawn drain ticket. If the drain ticket number of a node is less than the originally
drawn ticket, the wait queue relates to an older, but still unfinished operation.
In this case, the operation drains older wait queues on behalf of other threads as
well.

Summary: Since at most n — 1 threads can be blocked before a draining
operation starts and a drain ticket is drawn, the upper limit of steps to complete a
futex_wake or futex_requeue operation is therefore n. This design satisfies RQ7
(preemptive operations) and RQ8 (termination), but not RQ9 (hidden transience).

4.1.6 Interference of Shared Futexes

One important aspect is to prevent unnecessary sharing of futexes. Like Linux,
the presented design supports both private and shared futexes. Private futexes
are always kept in a process-specific address tree root and therefore do not cause
interference with other processes. However, shared futexes use a global address
tree root and cause interference. Therefore, we suggest that shared futexes require
an explicit capability to prevent applications from causing interference at all and
to simplify the analysis.

Shared futexes require an analysis of all applications that potentially use
shared futexes to determine the WCET of futex operations. If we assume that the
system has m processors, the kernel uses fair ticket spinlocks, and m independent
processes currently using sharing futexes, then a process can observe m — 1
concurrent—but preemptive—futex operations in the worst case. Shared futexes are
therefore sub-optimal with respect to RQ6 (interference by shared namespaces).
Still, the global interference in bounded.
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4.1.7 Summary

We presented the design of a predictable futex implementation at the kernel
level. The design provides a subset of the features and interface of the Linux
implementation, but also provides new features not available in Linux, such as
FIFO-ordered wait queues. An implementation of the user space parts can follow
the implementation in a C-library in Linux.

In particular, the presented futex design does not support the priority inheri-
tance protocol (PIP) for mutexes as mandated by POSIX. Support for PIP must
be implemented at kernel level.

As an alternative to PIP, POSIX describes the immediate priority ceiling
protocol (IPCP) for mutexes. A mutex_lock raises the calling thread’s scheduling
priority to the defined ceiling priority of a mutex before locking the mutex and
lowers the scheduling priority after unlocking. IPCP can be implemented efficiently
with the protocols described in Section 3.7 and Section 4.4.1. For a mutex-based
critical section without contention, this would requires no system call overhead,
similar to uncontended futex operations.

4.2 Static Futexes

This section describes a futex design named static futexes which is especially
suitable for statically configured systems. Nevertheless, the results are portable
to dynamic systems as well.

In a statically configured system, all resources are known at compile time and
do not need to be allocated at runtime. For example, in OSEK and AUTOSAR,
a whole system is described in a system configuration, and code generators create
fixed size arrays for all resources at compile time or link time. The resources can
be indexed efficiently by their position in the arrays [OSE05|. Because of this,
kernels for statically configured systems tend to be much simpler than kernels for
dynamic systems.

Note that allocating wait queues statically changes a main property of futexes
that futexes are registration-free. The resulting design clearly deviates from futexes
in Linux.

Section 4.2.1 starts with a discussion on general design considerations for static
futexes. Section 4.2.2 then presents the design of static futexes in the context of
the AUTOBEST research kernel.

Static futexes were first presented in a conference paper by the author on

AUTOBEST [ZBL15].

4.2.1 Design Considerations

Recall the discussion on futexes in Linux in Section 3.5. When using futexes, the
kernel is involved only in the case of contention. In this case, the kernel allocates
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a wait queue on demand when the first thread starts to wait, and frees the wait
queue when the last thread was woken up. Internally, a futex object’s wait queue
is referenced by hashing the futex user space variable’s address. For futexes shared
between different address spaces, Linux uses the physical address of the futex
variable for hashing rather than its virtual, per address-space address.

For an implementation of futexes in statically configured systems, we lift the
requirement that futexes require no prior registration in the kernel. Instead,
all futex-based synchronization objects must be known at system integration
time. Then the futex wait queues can be statically allocated and referenced by
consecutive indices. In a more dynamic scenario, this relates to allocation of all
wait queues during the initialization phase of an application.

Consequently, neither address hashing nor dynamic creation of wait queues
are necessary. Such a static design then easily satisfies the requirements for
predictability of Section 3.2.3, especially RQ2 (robustness), due to the lack of
dynamic allocation at runtime.

Still, there are many degrees of freedom to consider in the design:

¢ Indexing wait queues: We already mentioned that the futex wait queues
can be effectively addressed by their array index. To satisfy RQ6 (inter-
ference by shared namespaces), private futexes should not be shared. This
can be achieved by giving a partition access to specific ranges in the array.
Similarly, sharing of futexes can (and should) be explicitly configured. Note
that when using a shared futex, one side is often only using wait operations,
and the other side performs only wake-up operations. This also allows to
use different namespaces for wait and wake-up operations on shared futexes
or in general.

e Futex types: The type of a synchronization object (e.g. mutex, condition
variable, or generic blocking) can be provided in runtime in the API or
hard-coded at system configuration time. Both the waiting side and the
wake-up side must agree on the futex type.

¢ Queuing discipline: The queuing discipline defines if a wait queue uses
priority or FIFO ordering. The queuing discipline is a property of the
waiting side. It can be set at runtime or at system configuration time.

e Futex value in user space: A futex value in user space and a compare
value in the API of the waiting operation are still needed to handle missed
wake-ups and for RQ1 (correctness). The futex address can be provided at
initialization time in the API or hard-coded at system configuration time.

e Wait queue implementation: In a static system, the maximum number
of waiting threads is known at compile time, so requirements RQ3 (analyz-
ability) and RQ4 (bounded operations on queues) can be easily satisfied. This
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even allows to use linked lists with O(n) time for insertion in priority-ordered
wait queues.

e Timeouts and cancellation of waiting: When timeouts are supported,
waiting operations can be cancelled. Cancelling a waiting operation needs
extra care, as spurious wake-ups become an intended feature.

e Handling of multiple threads: Wake-up and requeue operations on
multiple threads can either process a given number of threads in the API, or
all threads. See Section 4.1.5 for the related argument in the deterministic
futex implementation.

e Requeue operation: The requeue operation can be optimized to ignore
“naked notifies” and to only handle requeuing from condition variables to
mutex transitions, or even be omitted if no condition variables are used?.

e Locking architecture: Dedicated wait queue objects for each futex allows
fine-grained locking at wait queue level. However, often a coarse lock is
sufficient as well, especially if the scope of the threads waiting on the wait
queue is restricted to a subset of the available processors. Also, using a
single lock for all futexes in a partition simplifies the implementation of
requeue operations.

e Non-preemptible operations: A non-preemptible design is much simpler
than a preemptible design. With a known maximum number of waiting
threads, requirement RQJ5 (bounded loops and retries) is satisfied, and the
problems described in RQ7 (preemptive operations), RQS (termination),
and RQ9 (hidden transience) can effectively be prevented.

With this, a system design can carefully consider the trade-offs.

4.2.2 Futex Operations for ARINC 653 in AUTOBEST

In AUTOBEST |ZBL15], the author opts for the following detailed design for
static futexes.

AUTOBEST is a partitioning microkernel that supports both AUTOSAR and
ARINC 653. The kernel supports multi-processor systems, but partitions are
always assigned to a single processor. The kernel provides an efficient implemen-
tation of IPCP in user space.

Only ARINC 653 partitions use futexes. The ARINC 653 standard does
not define condition variables, therefore we do not provide a requeue operation.
The standard also does not mandate a static configuration for synchronization

!Note that a static design allows fine-grained tailoring of all futex operations. We did
not explicitly mention this because the description tries to cover a design that is feature-wise
comparable to a normal futex implementation.
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mechanisms used internally by a partition. Therefore, we keep most of the design
considerations described in Section 4.2.1 flexible and allow to configure futexes at
runtime. The system configurator must provide a sufficient number of futex wait
queues to an ARINC 653 partition.

For the futex operations in the kernel, we settle on a non-preemptible design.
We use linked lists for the wait queue implementation. Recall that ARINC 653
allows both priority- and FIFO-ordered wait queues and the queuing discipline is
configured at runtime.

Our intended use case for futexes covers both partition internal synchronization
and queuing ports. The queuing port use case requires access to a wait queue
from different partitions. Therefore, we consider the operations on a wait queue
as a two-ended directed communication channel: one side waits for the other side
to send a notificating wake-up. This allows us to grant both ends to two different
partitions without knowing where the other end resides.

We then design the futex API accordingly. In the API, futex wait queues
are addressed by partition-specific indirection tables that point to the right wait
queues in the kernel. The indirection tables are generated from the system
configuration. The waiting side then defines the queuing discipline and can only
block with timeout, but never wake up threads. The notificating side can only
wake up one or all threads, but never block. Note that “normal” futexes have
both ends granted at the same time.

4.3 Higher-Level Synchronization Mechanisms
based on Futexes

In this section, we present the design of higher-level synchronization mechanisms
based on futexes. The discussed mechanisms are compatible to the deterministic
futexes presented in Section 4.1 and the static futexes presented in Section 4.2.
The mechanisms are usually implemented in user space and require the futex
interfaces presented in Section 2.2.11 from the operating system kernel. Therefore,
the main focus is on RQ1 (correctness), RQ3 (analyzability), and RQS5 (bounded
loops and retries) of the requirements of Section 3.2.3.

For each presented synchronization mechanism, we briefly summarize the key
aspects of the design and the used futex protocol, i.e. the encoding and rules of the
futex value in user space. We present mutexes (Section 4.3.1), condition variables
(Section 4.3.2), counting semaphores (Section 4.3.3), barriers (Section 4.3.4), and
one-time initializers (Section 4.3.5). We conclude with a design for ARINC 653
queuing ports and an overview of other ARINC 653 synchronization mechanisms
(Section 4.3.6).

The descriptions of the ARINC 653 queuing ports is partly taken from the
author’s paper on AUTOBEST [ZBL15|.
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4.3.1 Blocking Mutexes

Mutexes as described in Section 2.2.2 can be abstracted upon the generic futex
interface or on the specialized futex interface for mutexes, both presented in
Section 2.2.11. Using the generic interface leads to the problem that after waiting
for a mutex once, the user space code does not know if there are still other threads
waiting in the kernel, so an implementation always has to set the WAITERS bit for
correctness (see Section 3.5.2 and [Drell]). Therefore, we use the specialized futex
interface with futex_lock and futex_unlock in the following.

The protocol follows the description of PI mutexes in Linux in Section 3.5.2.

Protocol: For a mutex, both user space and the kernel must understand this
protocol. The futex value comprises two pieces of information: the thread ID
(TID) of the current lock holder or 0 if the mutex is free, and a WAITERS bit if the
mutex has contention.

In the fast path (no contention), both mutex_lock and mutex_unlock try to
atomically change the futex value from 0 to TID and vice versa, without calling
the kernel. On success, both operations must also provide memory barriers with
load-acquire (lock) and store-release (unlock) semantics.

If mutex_lock finds an already locked mutex, the function calls the kernel
to suspend the calling thread on the futex. The futex_lock operation in the
kernel checks the futex value again and tries to either acquire the mutex for the
caller if it is free, or, if not, atomically sets the WAITERS bit in the futex value to
indicate contention, and suspends the calling thread. On successful return from
futex_lock, the calling thread is the new lock owner.

Conversely, if mutex_unlock detects that the WAITERS bit is set, it calls the
kernel to wake up a waiting thread. If no threads are waiting, futex_unlock sets
the futex value to 0, or wakes up the next waiting thread and makes it the new
lock owner by updating TID in the futex value. The kernel also sets the WAITERS
bit again if other threads are still waiting.

Implementation considerations: In a minimal implementation, the mutex
data comprises just the 32-bit futex value. However, the mutexes described in
Section 2.2.2 support different real-time protocols and handle different modes.
This requires additional data that is usually kept in adjacent fields in a mutex
object.

The user space code also needs access to the thread ID of the calling thread.
This information is usually kept in thread local storage (TLS), so a thread can
obtain its TID without a system call.

So far, the protocol follows the description for Linux in Section 3.5.2. To
prevent the problem of unbounded atomic operations identified in Section 3.5.3,
we must additionally limit the number of retries in the kernel. Therefore, we let
the kernel retry the atomic operation a few times before returning to user space
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with an error. The design space would also allow to let the kernel fail immediately
and let user space restart the operation. Similarly. the user space code could limit
the number of lock attempts to bound the overall execution time.

Note that futex_unlock does not need an atomic CAS operation to update
the futex value in user space. A simple store will do.

Summary: The design shows that atomic operations are problematic w.r.t.
WCET analysis. The presented design provides an upper bound for the loops in
the kernel (and solves the problem identified in Section 3.5.3), but the loops in
user space are still unbounded. This violates RQ5 (bounded loops and retries) of
Section 3.2.3.

4.3.2 Condition Variables

The condition variables presented in Section 2.2.3 use a requeue operation when
signaling waiting threads. We define that a requeue operation requires a generic
wait queue as source and a mutex wait queue as destination. For this, the kernel
must remember the futex types internally and check for compatible wait queues.
This removes unnecessary corner cases and limits requeuing to happen only once
(unlike Linux).

A system designer must also decide whether the waiting side or the waking
side specifies the requeue target. Providing the mutex for requeuing in cond_wait
has the benefit that the signaling side does not need to know the support mutex.
This is necessary for “naked notifies” where the caller does not need to have the
support mutex locked when signaling the condition variable. We further assume
this design.

We also assume that the kernel requeues threads preemptively and processes
one thread at a time as described for deterministic futexes in Section 4.1 to satisfy
RQ7 (preemptive operations). In this case, the requeue operation must check
for each thread if the target mutex is currently free, and then potentially lock
the mutex for the processed thread. Otherwise, the kernel must ensure that the
WAITERS flag is set properly

Protocol: In the presented protocol for condition variables, the futex value in
user space represents a counter that is incremented on each wake-up operation.
The kernel does not care about the protocol when suspending threads on a
condition variable, so the generic compare-equal semantics apply for blocking.
For waiting, we follow the basic mechanism of an eventcount described in
Section 3.8. The cond_wait operation reads the condition variable’s counter value,
unlocks the associated mutex, and then calls the kernel to block on the condition
variable with an optional timeout. Here, cond_wait passes the futex address of

109



CHAPTER 4. DESIGN

the mutex to the kernel as well. In turn, futex_wait checks if the current counter
value still matches the previously read value before blocking the caller.

For signaling, both cond_signal and cond_broadcast increment the counter
and call the kernel to requeue either one or all blocked threads from the condition
variable’s wait queue to the mutex’s wait queue. In the kernel, futex_requeue
then preemptively processes one thread at a time and checks the futex value
as described. Additionally to requeuing, futex_requeue must clear any pending
timeouts of requeued threads. The processed threads will effectively wait for the
mutex with an infinite timeout.

After wake-up, cond_wait needs to check the cause of the wake-up: if the caller
was requeued, the condition variable must have been signaled, and the caller
already owns the mutex. Otherwise, if the compare-equal step in the kernel failed
or the timeout expired, the caller was not requeued to the mutex’s futex and the
function needs to lock the mutex again. Note that in the case the comparison of
the futex value failed, the calling thread cannot know if the notification was for it
or for another thread already waiting in the kernel. Inadvertently, cond_signal
wakes up multiple threads in this case. The protocol exposes spurious wake-ups
to prevent missed wake-ups problems.

Implementation considerations: Due to internal mutex acquire operation,
requeue operations require atomic operations on user space values, which must
be bounded for WCET analysis. The strategy described in Section 4.3.1 for the
mutex protocol can be used here as well. If a certain number of atomic operations
failed, the currently processed thread can be woken up with an error. The thread
then must lock the mutex with a new system call. Note that dropping support for
naked notifies could help here, as the kernel then only needs to set the WAITERS bit
and could do this non-atomically, as the futex value of the mutex must contain
the TID of the calling thread.

Another problem are the spurious wake-ups in cond_wait. In this case, the
thread must apply for the mutex again with an additional system call. The alter-
native to directly move the thread to the mutex wait queue when the comparison
of the futex value fails could be considered an option for efficiency, but this does
not solve the correctness problem that the notification might not have been for
the thread. Also, it requires the kernel to handle the full complexity to lock the
mutex again and still requires the fallback in user space if the maximum number
of retries on the atomic operations is reached. Similarly, we could consider to
requeue the thread to the mutex when the timeout expires. This would push the
complexity of requeuing into the kernel’s timer handling.

The presented cond_wait operation exposes a race condition due to an ABA
problem that may result in a missed wake-up. Missed wake-ups are normally
prevented by the kernel comparing the futex value, but if—between the time
cond_wait unlocks the mutex in user space and the time the kernel checks the futex
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FAIL

Figure 4.4: Blocking on semaphore (P operation) in a futex-based semaphore protocol.
The futex value encodes two counters: S is the current semaphore count, and W shows
the number of pending P operations and potentially blocked threads.

value—exactly 232 wake-up operations are performed, the futex value overflows to
exactly the same value and the check would erroneously succeed. However, this
problem is unlikely to appear in practice.

Summary: We have assumed a preemptive design of the requeue operation in
the kernel that satisfies RQ7 (preemptive operations). We can observe that support
for “naked notifies” violates RQ5 (bounded loops and retries). Also, the design
shows race conditions leading to missed wake-ups or spurious wake-ups. The
overflow of the futex value leading to the missed wake-up problem is improbable
for a real-time system, as the system must be heavily overloaded by higher priority
threads consuming all CPU time for a very long time for the race condition to
trigger, therefore we do not consider this to be a problem for RQ1 (correctness).

However, the spurious wake-ups are unpleasant, but acceptable in domains like
POSIX.
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4.3.3 Counting Semaphores

Counting semaphores were discussed in Section 2.2.5. In the following, we consider
that a P operation with a timeout is used, e.g. sem_wait in POSIX, and a
traditional V' operation.

Protocol: A first idea for a futex protocol is to encode the semaphore counter
in the futex value. Threads would then wait in a P operation when the counter is
zero. But a V operation would then never know if there are threads waiting and
always has to call into the kernel to wake a potentially waiting thread. Therefore, a
performing protocol must encode both the current counter value of the semaphore
and information on the number of blocked threads. For this, the obvious idea to
express the number of waiting threads as negative counter value like in Dijkstra’s
T.H.E system |Dij68] does not work correctly due to spurious wake-ups of futexes.

Instead, we define that the futex value comprises two counters. A counter
S encodes the current semaphore count. The second counter W encodes the
number of pending P operations. Now the value of the semaphore counter S
never becomes negative and always represents the number of available resources.
At the same time, the number W of potentially blocked threads is known.

A P operation as shown in Figure 4.4 first evaluates the semaphore counter S.
If non-zero, the operation tries to atomically decrement the semaphore counter
and succeeds. If S is zero, the P operation increments the waiter counter W and
then blocks. After wake-up, the operation decrements the waiters counter W
again and restarts the sequence.

Conversely, a V' operation always increments the semaphore counter S and
wakes a waiting thread when W indicates potentially blocked threads.

Implementation considerations: An implementation of the P operation has
to take care of multiple issues for spurious wake-ups. Firstly, the comparison
in the futex system call can fail when another waiting thread arrives and also
increments the waiting counter W. Secondly, a later P operation can steal a
resource before a signaled thread had the chance to acquire it. The signaled
thread then must wait again.

Note that due to the stealing, the P operation might need to call futex_wait
multiple times. But then it is not longer robust when using relative timeouts, as
the kernel then potentially waits for the relative timeout again. This is not a
problem when the timeout is encoded as an absolute expiry time.

Summary: In a futex-based design of counting semaphores, the kernel parts
do not require any loops or atomic operations on the futex value. Instead, the
protocol exposes unbounded loops and spurious wake-ups, which is bad for RQ3
(analyzability) and RQS5 (bounded loops and retries). Also, relative timeout values
are problematic for RQ1 (correctness).
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Figure 4.5: Futex-based barrier operation. The futex value encodes two counters. W
tracks the number of currently waiting threads. R contains the current waiting round.

4.3.4 Barriers

Barriers were described in Section 2.2.6. A barrier is initialized with a given
number of threads to wait for. Threads reaching the barrier wait until the last
thread arrives. The last thread wakes all threads waiting on the barrier. Waiting
on a barrier uses an infinite timeout.

POSIX allows that more than the given number of threads can call the barrier
concurrently. This could cause a race condition when a thread of the next round
arrives and waits before the last thread of the previous round could wake up the
waiting threads.
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Protocol: The barrier protocol encodes two counters in the 32-bit futex value
to prevent uncertainty on the current waiting round. We further assume both
counters are 16 bit wide. The first counter W tracks the number of already arrived
and waiting threads. This value is incremented atomically each time a thread
reaches the barrier. The second counter R encodes the current waiting round.
This value is incremented by the last thread reaching the barrier. The last thread
also resets the waiting counter W and wakes up all waiting threads. Additionally,
we must keep the given number of threads that must reach the barrier next the
futex value. Figure 4.5 shows a flowchart of the protocol in use.

Implementation considerations: A barrier implementation must handle spu-
rious wake-ups due to the compare-equal condition in the kernel when other
threads arrive and increment the number of waiting threads W in the futex value
at the same time a thread calls futex_wait to block in the kernel. Note that the
number of times this can happen is bounded by the number of threads waiting on
the barrier. The spurious wake-up due to an increment of the round counter R is
intended and effectively prevents missed wake-ups.

Also, the implementation shows an ABA problem when the round counter R
is incremented 2'® times after a thread was woken up, but not scheduled. We
consider that this problem does not happen in reality, however 2!6 increments have
a higher likelihood for failure than the 232 increments in the condition variables
of Section 4.3.2. As mitigation, the number of waiting threads W can be reduced
to free more bits for the round counter R.

Summary: Like the semaphores discussed in Section 4.3.3, we have to manage
two counters consistently and place them into a single futex value, but this causes
failures in the compare-equal check in the kernel due to changes in the futex value
of the part unrelated to the blocking condition. Still, the number of retries is
bounded for RQS5 (bounded loops and retries).

4.3.5 One-time initializers

One-time initializers were presented in Section 2.2.7. The interface comprises a
single function that accepts a callback function as parameter. The callback is
invoked only once on the first invocation of the function. While the callback is
executed, other threads wait on an internal barrier. When the callback returns,
waiting threads are released. In so far, one-time initializers are barriers in reverse.

Protocol: The protocol for one-time initializers can be modeled as a state
machine with three states: not initialized — initialization in progress — initialized.

The first thread reaching the barrier changes the state from not initialized to
initialization in progress and invokes the provided initialization callback. After
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Figure 4.6: Queuing ports in AUTOBEST using static futexes [ZBL15].

the initialization completed, the first thread sets the state to initialized and wakes
all waiting threads. Threads arriving while in state initialization in progress must
wait on the barrier futex. Threads arriving in initialized state simply continue.

Implementation considerations: If the comparison in the futex_wait system
call fails, the initialization must be already completed, so this is not to be
considered a spurious wake-up.

Alternatively, one could model the initialization in progress state as two states
to further distinguish pending waiters, but this would make the protocol more
complex and would require atomic operations by the waiting threads to change
the state.

Summary: The presented protocol using a state machine approach fits well to
the futexes. Spurious wake-ups do not hurt here. All requirements are satisfied.

4.3.6 ARINC 653 Synchronization Mechanisms

The ARINC 653 blocking synchronization mechanisms listed in Section 2.2 com-
prise mutexes, counting semaphores, queuing ports, buffers, blackboards, and
events. Mutexes and semaphores follow the designs described in Sections 4.3.1
and 4.3.3. Events and blackboards use protocols similar to the barrier protocol
described in Section 4.3.4 that encode a waiting round and the current state of
the event or if data is available in the blackboard. We only discuss the designs of
queuing ports and buffers in the following.

Protocol: The design of queuing ports is specific to the static futex design in
AUTOBEST described in Section 4.2.2 and requires that one futex value in user
space controls two wait queues.
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A queuing port comprises a shared memory segment containing a ring buffer
and a 32-bit control word as futex value, and two static futex wait queues with
different directions, as Figure 4.6 shows. The futex variable encodes the position
of read and written buffers as well as two bits for full and empty conditions and
is updated from both sides atomically using atomic CAS instructions.

The first static futex wait queue on the sender’s side is used to wait on a
queue-full condition, while the second static futex wait queue on the receiver’s is
used to wait if the queue is empty. On a send operation, the sending partition
first checks for an available empty slot in the ring buffer, copies the message into
the ring buffer, updates the control word, and wakes the first receiving thread
waiting on the wait queue, if any. If there is no empty slot available in the ring
buffer, the sender waits on its own wait queue for a free entry in the buffer. The
receiver side follows the same protocol to wait for incoming messages.

This protocol works the same for ARINC 653 buffers. However, a normal
futex can be used instead. Since both sending and receiving ends are in the same
partition, and a buffer has threads waiting either on an empty buffer or on a
full buffer, and not on both conditions at the same time, a single wait queue is
sufficient.

Note that the presented protocol does not aim to improve efficiency, as it
always uses a system call to wake up the other side.

Implementation considerations: An implementation must ensure atomicity
of the message transfers for RQ1 (correctness). Otherwise, a low priority thread
could be preempted during a message transfer and subsequent operations on the
queuing port or buffer could observe the unfinished message. If threads of a
partition always share a single processor, like in AUTOBEST, an implementation
could simply raise the calling thread’s scheduling priority above all other threads
during message copy operations. Otherwise, a blocking mutex must be used to
serialize the copy operations.

Spurious wake-ups due to a failed compare-equal check in the kernel can lead
to violations of the message ordering and therefore RQI (correctness). The thread
with the failed compare check can then in turn steal the message intended for
the regularly woken up thread. This problem is similar to stealing described in
Section 4.3.3 for the semaphore protocol, however the timeout problem is not
applicable to ARINC 653 as all timeouts use absolute expiry times.

Summary: The presented design for queuing ports use a feature of static futexes
to decouple the futex value in user space from a wait queue in the kernel. The
design uses a shared ring-buffer with two wait queues. Buffers can use normal
futexes with a similar ring-buffer structure.
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4.4 Non-Preemptive Busy-Waiting Monitors

Recall the analyses in Sections 3.6, 3.7, and 3.8: We suggested to use a spinlock-
protected critical section in user space instead of using an atomic operation
like in futexes and also to manage the wait queue in user space. To prevent
unwanted preemption of spinlock-based critical sections, we suggested to use
a fast IPCP protocol. We further discussed that a thread cannot wait inside
a spinlock-protected critical section, but must wait outside. Similarly, on the
wake-up side, a thread should be able to wake up threads outside the critical
sections as well. Lastly, with wait queues managed in user space, the wake-up
operation should address waiting threads by their thread ID.

We now present a design for light-weight non-preemptive busy-waiting monitors.
Its building blocks comprise a fast IPCP implementation as preemption control
mechanism, which we introduce in Section 4.4.1. We then present a mechanism
for waiting in spin-based fine-grained locking in Section 4.4.2. Lastly, we combine
the different mechanism to become light-weight monitors in Section 4.4.3.

4.4.1 Efficient IPCP Protocols

In this section, we present two protocols for a fast implementation of IPCP in
user space. The two protocols were first introduced in detail in a workshop
paper [ZBK14] and discussed in later conference papers [ZBL15, Zue20| of the
author.

Recall the analysis of preemption control mechanisms in Section 3.7. The
protocol by Edler et al. for Symunix II [ELS88| discussed in Section 3.7.4 uses two
variables shared between kernel and user space to temporarily disable preemption.
The two variables follow the logic of an in-kernel implementation such as Linux
as discussed in Section 3.7.2. Obviously, the Symunix II protocol just disables
preemption and therefore does not integrate well into priority scheduling, but
requires at most one system call in the nested case, regardless of the nesting level.

In contrast, the protocol by Almatary et al. [AAB15] discussed in Section 3.7.5
allows to change the priority in user space by using three shared variables. The
first presented protocol UPRIO|KPRIO is a conceptual extension of the Symunix II
protocol to change the priority instead of just disabling preemption. It just uses
two protocol variables.

The UPRIO|KPRIO supports nested critical sections, but then shows the same
pessimism as Almatary et al.’s protocol w.r.t. system calls in the nested case.
Unlike the Symunix II protocol, these priority-based protocols require one extra
system call for each nesting level in the worst case. The second presented protocol
UPRIO|NPRIO improves on the nested case and requires a system call only when
preemption is needed.

In the listings in the following sections, the protocol variables shared between
user space and kernel are kept in the thread local storage of each thread to satisfy
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concerns about RQ2 (robustness). The macro SELF provides an accessor to the
specific variables of the current thread, as shown in Listing 4.1.

Listing 4.1: Shared variables of the UPRIO|KPRIO protocol

typedef struct {

< o>

prio_t uprio;

prio_t kprio; // Tesp. mnprio

<ol
} thread_t;
#define SELF ((thread_t*)<...>)

The UpPrIO|KPRIO Protocol

The UPRIO|KPRIO protocol uses two variables shared between user space and
kernel. Both variables represent scheduling priorities. The first variable uprio
is set in user space and reflects a thread’s current scheduling priority in user
space. The second variable kprio is the thread’s priority in the kernel and is set
by the kernel. The main idea of the protocol is that user space code temporarily
increases uprio at the beginning of a critical section and reverts the change at
the end of the critical section. Nested requests keep the previous priority on the
caller’s stack. During a scheduling event, when the kernel observes a change in
uprio, it also updates kprio accordingly. If the user space code detects that the
kernel has observed the priority change, the current thread calls into the kernel to
preempt itself.

The user space part of the implementation in Listing 4.2 follows the basic
sequence of the Symunix II protocol:

Listing 4.2: Fast IPCP in UprIO|KPRIO

prio_t prio_raise(prio_t prio)

{
prio_t prev = SELF->uprio;
SELF ->uprio = prio;
return prev;
3
void prio_restore(prio_t prev)
{
SELF ->uprio = prev;
if (SELF->uprio < SELF->kprio) {
sys_preempt ();
b
}
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The kernel part of the implementation in Listing 4.3 follows the steps already
discussed in Section 3.7.5 for Almatary et al.’s protocol.

Listing 4.3: Kernel part of UPRIO|KPRIO

kernel_sched_event (<...> new_thr)

{

prio_t uprio = min(SELF->uprio, max_prio);
SELF ->kprio = uprio;
if (uprio < new_thr->prio) {
// 0K to preempt now
b

}

The kernel first synchronizes its internal scheduling priority kprio on a scheduling
event (lines 4 and 5), and preempts the current thread if necessary (lines 6 and 7).
Here, new_thr refers to another thread becoming ready.

In this protocol, each scheduling event that happens during a critical section
causes a synchronization of kprio, regardless of the priority of the new threads
that become ready. This can lead to a superfluous system call at the end of a
critical section if the new thread has a priority below the original priority of the
thread, but this is required for RQ1 (correctness). And for a nesting level of
critical sections, we might need up to [ system calls in the worst case. This is
the same as in Almatary et al.’s protocol. However, the UPRIO|KPRIO protocol
has a simpler implementation. The presented protocol does not require atomic
operations, just regular loads and stores to the protocol variables. Also note that
the kernel bounds the user space priority to a maximum priority max_prio.

The UPRIO|NPRIO Protocol

Note that the UPRIO|KPRIO protocol presented in Section 4.4.1 is not optimal
w.r.t. efficiency on the required system calls for preemption at the end of a critical
section as the kernel synchronizes the elevated priority unconditionally on a
scheduling event, without considering the priority of threads that became ready.

One technique to improve this is shown by Almatary et al.’s protocol discussed
in Section 3.7.5. In the non-nested case, Almatary et al.’s protocol compares the
base priority of the current thread to the priorities of other threads to decide
whether to preempt the current thread at the end of its critical section. But
this only works in the non-nested case, and not in the nested case when multiple
intermediate priorities exist.

To solve this problem efficiently, we need to export relevant information on
other threads that became ready in the mean time. In the UPRIO|NPRIO protocol,
the second variable kprio is therefore replaced by nprio. In nprio, the kernel
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provides the priority of the second highest priority thread on the ready queue, i.e.
the next thread to be scheduled if the current thread would block. This requires
that the currently executing thread is not kept on the ready queue (recall Benno
scheduling of Section 3.1.2).

The implementations of prio_raise and prio_restore in user space follow
their counterparts of the UPRIO|KPRIO protocol, as Listing 4.4 shows:

Listing 4.4: Fast IPCP in UPRIO|NPRIO

prio_t prio_raise(prio_t prio)

{
prio_t prev = SELF->uprio;
SELF ->uprio = prio;
return prev;
b
void prio_restore(prio_t prev)
{
SELF ->uprio = prev;
if (SELF->uprio < SELF->nprio) {
sys_preempt ();
b
X

The key difference of the protocol is in the kernel part while handling scheduling
events:

Listing 4.5: Kernel part of UPRIO|NPRIO

kernel_sched_event (<...> new_thr)

{
ready_queue_add (new_thr) ;

prio_t nprio = ready_queue_next ()->prio;
SELF ->nprio = nprio;

prio_t uprio = min(SELF->uprio, max_prio);
if (uprio < mnprio) {

// 0K to preempt now
}

}

In Listing 4.5, the kernel puts the new thread new_thr on the ready queue (line 4)
and then updates nprio to the priority of the highest priority thread on the ready
queue (lines 6 and 7). If uprio is less than nprio, the current thread is preempted
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immediately (lines 9 to 12). Otherwise the same check in prio_restore takes care
of preemption later.

The UPRIO|NPRIO protocol improves on the other protocols as it now reduces
the system calls to preempt the current thread to the required minimum to still
satisfy RQ1 (correctness). The steps in the presented protocol relate exactly to
the steps in a baseline implementation and system calls to change the scheduling
priority of a thread, but with the semantic decision whether to preempt the
current thread or not moved to user space. For RQ2 (robustness), the kernel must
additionally bound the user space priority to the maximum priority max_prio.
Note that the protocol does not require atomic operations or any loops that could
cause issues for RQ3 (analyzability).

Lastly, the UPRIO|NPRIO protocol works well with nested priority changes
or when waking up other threads inside the monitor approach discussed in
Section 3.6.

4.4.2 Light-Weight Blocking for IPCP

We now present a light-weight blocking mechanism that provides the aforemen-
tioned properties and interacts properly with the fast IPCP implementation of
Section 4.4.1.

The mechanism was first presented in a conference paper of the author [Zue20).
The description of the mechanism is also mostly taken from this paper [Zue20].

Non-preemptive critical sections: With the fast IPCP implementation pre-
sented in Section 4.4.1, we can now realize non-preemptive critical sections in user
space.

Listing 4.6: Example non-preemptive critical section in user space

spin_t example_lock;

void example_cs (<...>)

{
prio_t old_prio = prio_raise(max_prio);
spin_lock (&example_lock);
< o>

spin_unlock (kexample_lock);
prio_restore(old_prio);

Listing 4.6 shows a simple example of such a non-preemptive critical section.
A thread first raises its user space scheduling priority to max_prio to become
non-preemptive, then acquires a spinlock. The thread’s previous priority is kept
in the local variable old_prio. At the end of the critical section (lines 8 and 9),
the thread unlocks the spinlock and restores its previous scheduling priority. Note
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that this sequence does not need any system calls in the fast path. The system
call to preempt the thread in prio_restore is only needed when in the meantime
another thread with a priority higher than old_prio became ready.

Waiting: We now extend the critical section with a blocking mechanism that
interacts properly with the fast IPCP implementation and the spinlock-protected
critical sections. We also decide to manage the wait queue of blocked threads
in user space. Our goal for efficiency is to reduce the number of system calls.
Additionally, we address the requirements for predictability of Section 3.2.3.

We can make the following considerations for a waiting operation:

e Suspending the current thread needs help by the kernel. This requires a
system call in any case.

e Waiting after the call to prio_restore could trigger unnecessary preemption,
as the calling thread is going to suspend itself anyway. Waiting at max_prio
is advisable.

e Waiting inside the spinlock-protected critical section causes problems, as
other threads would be unable to acquire the spinlock. A system call to
suspend a thread must then unlock the spinlock in user space from the
kernel.

e Waiting outside the spinlock-protected critical section must prevent missed
wake-ups, as the spinlock-protected critical section protects any internal
state w.r.t. blocking.

e A thread’s scheduling priority at wake-up time should reflect its original
priority. When a thread is woken up at max_prio, it would execute only to
the point where it restores its original priority and then causes unnecessary
context switches if other medium priority threads are ready.

e Spurious wake-ups, e.g. timeouts, might require a second critical section
after waiting to remove the current thread from the wait queue again. It is
advisable when the thread is executing at max_prio after wake-up.

With these constraints, we can now design a waiting mechanism.

To prevent missed wake-ups, we use a compare-and-block mechanism in the
kernel, similar to futexes or the wait indicator described in Section 3.8. Inside the
spinlock-protected critical section, a thread evaluates internal state and decides to
block. For this, it prepares a state variable. The state variable encodes a waiting
condition and is changed by a wake-up operation. Then the thread unlocks the
critical section in user space and calls the kernel to suspend. The kernel reads the
state variable again and, if the current value matches the previous value, suspends
the thread.
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An alternative would be to call the kernel from inside the critical section and
let the kernel unlock the critical section before suspending the calling thread. This
would prevent any race conditions and ambiguity with parallel wake-up operations.
However, the kernel would then need to know the exact semantics of the spinlocks
in user space to unlock the spinlock for the caller. Also, this would tightly couple
the user space critical section to a critical section in the kernel due to nested
locking, which we identified as anti-pattern in Section 3.4.2.

We opt to unlock the spinlock in user space instead. This keeps the implemen-
tation in the kernel simple.

To address the problems of the scheduling priority at wake-up time, we
temporarily drop the priority while waiting. While still executing at max_prio
in user space, a thread calls the waiting system call to wait at a lower priority
wait_prio. The kernel then temporarily sets the thread’s priority to wait_prio
while waiting. When the thread is woken up again, it will be enqueued at
wait_prio on the ready queue. And when the thread is eventually scheduled, the
kernel increases the scheduling priority back to max_prio, and then returns from
the waiting system call. The obvious choice for max_prio is to use the thread’s
base priority, old_prio.

Note that we can easily achieve this by using the following trick in a fast IPCP
implementation using the UPRIO|NPRIO protocol of Section 4.4.1. The kernel
lets the thread wait at wait_prio, but leaves uprio unmodified while waiting.
Note that prio_raise sets uprio to max_prio before waiting, so the thread will be
effectively running at max_prio again after waiting.

Then the thread in user space can either lock the spinlock again, or leave the
IPCP-protected critical section and restore its previous scheduling priority. As
most likely no other threads with a higher priority will be ready at that moment,
no system call will be needed.

Wake-up: For a wake-up operation, we can discuss similar considerations as
for waiting:

e Waking up a waiting thread needs a system call to the kernel in any case.

e The wake-up system call must address a blocked thread directly by its
thread ID (because the wait queue is kept in user space).

e Waking a thread up after calling prio_restore could cause unnecessary
delays due to preemption of the current thread. Again, doing the wake-op
operation at max_prio is advisable.

e The wake-up system call could happen inside the spinlock-protected critical
section or be deferred after unlocking the spinlock. In the latter case, a
system call to wake up a thread outside the critical section must prevent
spurious wake-ups.
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e Waking up a thread with a priority higher than oneself causes preemption
when restoring the previous priority.

The wake-up mechanism addresses these constraints as follows.

We opt to wake up a thread outside the spinlock-protected critical section, but
still running at max_prio. To prevent spurious wake-ups, we use same technique
of a state variable as in the waiting operation. User space code passes the address
and expected value of the state variable in user space to the system call, and the
kernel compares the state variable to the expected value and only unblocks the
thread on a match. This constitutes a compare-and-unblock mechanism and solves
the spurious wake-up problems discussed in Section 3.8.

To prevent unnecessary system calls for preemption in prio_restore, we fuse
the system call for wake-up with the system call for preemption. The resulting
system call first wakes up a blocked thread by its thread ID, then unconditionally
restores the calling thread’s original priority old_prio, and eventually preempts
the caller, if necessary.

System calls: We show the prototypes of the system calls:

Listing 4.7: Waiting and wake-up system calls

err_t sys_wait_at_prio(uint32_t #*ustate, uint32_t cmp,
timeout_t timeout, prio_t wait_prio);

err_t sys_wake_set_prio(tid_t tid,
uint32_t *ustate, uint32_t cmp,
prio_t new_prio);

For the waiting mechanism sys_wait_at_prio, we follow the basic idea of the
futex wait operation in Linux, i.e. the kernel suspends the calling thread with
an optional timeout (timeout) if the content of a given state variable in user
space (ustate) matches a compare value (cmp). As wake-up operations directly
reference waiting threads by their thread IDs, the kernel can simply suspend the
thread without using any internal wait queue. Additionally, the kernel temporarily
changes the priority of the thread to wait_prio while waiting. Any variables of
the UPRIO|NPRIO protocol in user space remain unchanged. When the waiting
thread is woken up, it will be enqueued on the ready queue at wait_prio. However,
when the thread is eventually scheduled, the priority of the uprio variable takes
precedence.

The wake-up mechanism references a waiting thread by its thread ID (tid). A
wake-up operation only succeeds if the address of the state variable in user space
(ustate) matches the address for waiting, and if the current content of the state
variable matches the compare value (cmp) of the system call. After performing
the wake-up operation, the thread’s priority is set to new_prio, and is possibly
preempted. This time the protocol variables of the UPRIO|NPRIO protocol are
updated.
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Figure 4.7: Example scenario of waiting and waking up in a critical section (CS)
protected with IPCP. Inside the CS, thread t, decides to wait, and effectively waits at
its original scheduling priority after leaving the CS. Eventually, thread ¢, enters the
CS and wakes up t, when leaving the CS. When ¢, is scheduled again, it’s priority is
immediately raised again. Thread t, then briefly enters the CS again and restores its
original scheduling priority afterwards.

An implementation of the kernel primitives is shown in the paper [Zue20].

Interaction of blocking and wake-up with IPCP: Figure 4.7 shows an
example of the interaction of the waiting and wake-up mechanism with IPCP for
non-preemptive execution. The example comprises two threads t, and t;,. Thread
t, performs a critical section with a wait operation, and thread t, performs the
corresponding wake-up operation.

At time t = 1, the thread ¢, raises its user space scheduling priority (uprio)
from its original scheduling priority to max_prio and then successfully locks the
spinlock of the critical section. While ¢, is inside the critical section, thread t,
becomes ready at time ¢ = 2, but is not immediately scheduled due to the elevated
priority of ¢,. Inside the spinlock-protected critical section, thread ¢, decides to
wait and in turn prepares a state variable for waiting. At time ¢ = 3, thread
t, unlocks the spinlock and calls sys_wait_at_prio with its original scheduling
priority as wait_prio parameter. After successful comparison of the state variable,
the kernel suspends thread t, at wait_prio. As a result, thread ¢, is effectively
waiting at its original scheduling priority. But note that the uprio variable of ¢,
remains unchanged and still contains max_prio.

Because t, suspends at t = 3, ¢, can now run. At time t = 4, thread %, raises
its scheduling priority to max_prio and then successfully locks the spinlock. Inside
the spinlock-protected critical section, the thread signals the waiting thread’s state
variable as a logical wake-up. This prevents a parallel state check by a waiting
operation to succeed. Then, after unlocking the spinlock-protected critical section
at time ¢ = 6, thread ¢, calls sys_wake_set_prio and passes the necessary data
of the waiting thread (¢, in the example) and its original scheduling priority as
parameters. The fused system call first wakes up the target thread t, as described,
and then restores the original scheduling priority of ;. As t, has a lower priority
than t,, thread t, is not preempted and continues until it finishes at t =7,
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The thread ¢, is woken up at t = 6 and finally scheduled at t = 7. Once
the thread is scheduled, its priority is immediately raised again, as the thread’s
uprio is still set to max_prio. Back in user space, t, then locks the spinlock again.
Since the management of waiting queues is performed in user space, a thread
must check for spurious wake-ups (e.g. timeouts) which may require the thread to
remove itself from the wait queue. At time ¢ = 9, thread ¢, releases the spinlock
and restores its original scheduling priority without needing a system call for
preemption.

Summary: The key technique for waiting is to move the wait system call outside
the spinlock-protected critical section and couple the state of the critical section
with a wait indicator. A temporary priority change to the original priority of the
thread without further interfering with the IPCP protocol allows to preserve the
original scheduling order of priority-based scheduling while waiting.

For the wake-up side, the key technique is to fuse the wake-up system call and
the system call to synchronize the user space priority and preempt the current
thread into a single system call. Unlike futexes, the presented mechanism allows
to wake-up only one thread, which must be addressed by its thread ID.

The example shows that the IPCP mechanisms and the presented wait and
wake-up mechanisms can fully mimic the behavior of non-preemptive execution
inside an operating system kernel. The only difference is that user space cannot
disable interrupts. The presented design follows the guidelines identified in the
analysis in Section 3.4.2 and decouples the critical section in user space from any
critical section in the kernel. Also, the techniques to reliably handle waiting and
wake-up in decoupled critical sections follow the discussion in Section 3.8.

Regarding the requirements for predictability of Section 3.2.3, the overall
design approach satisfies RQ3 (analyzability). The technique to check a state
variable in both the wait and wake-up operation helps RQI (correctness) and
RQ2 (robustness). The presented kernel mechanisms do not contain wait queues
or atomic operations on user space variables which could interfere with RQ)/
(bounded operations on queues) and RQ5 (bounded loops and retries). The kernel
does not need to modify any state variables in user space either. The only critical
mechanism is the look-up of a thread by its thread ID in the kernel. When a global
namespace is used, the mechanism could expose problems with RQ6 (interference
by shared namespaces).

4.4.3 Monitor Synthesis

The building blocks discussed in Section 4.4, namely preemption control by IPCP
(Section 4.4.1), spinlocks, wait queues in user space, and the wait and wake-
up primitives (Section 4.4.2), can now be used to construct a non-preemptive
busy-waiting monitor.
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Monitor operations: We say a thread enters a monitor to gain exclusive access
to some internal state protected by the monitor. Within the monitor, a thread
can decide to wait on condition variable or to notify waiting threads. Afterwards,
a thread leaves the monitor again.

Waiting on a condition variable effectively comprises enqueuing the thread
in a wait queue, leaving the monitor, blocking in the kernel, and entering the
monitor again after waiting. When handling spurious wake-ups, e.g. timeouts, the
operation must remove the thread from the wait queue.

For notification of the condition variable, a thread removes a blocked thread
from the condition variable’s wait queue and wakes up the blocked thread when
leaving the monitor. Postponing the wake-up to the point where the current
thread leaves the monitor is acceptable, as the woken up thread cannot re-enter
the monitor before the spinlock is unlocked.

Wait indicator protocol: For waiting and wake-up in the monitor, we need a
state variable for the wait and wake-up mechanisms of Section 4.4.2. The state
variable acts as a wait indicator, similar to synchronization mechanisms inside a
kernel (see Section 2.3). We will use a dedicated state variable (ustate) for each
thread, and not one shared variable as in futexes. We keep the variable in each
thread’s TLS segment. The state variables must only be modified in the critical
section protected by the monitor.

One important aspect is to handle the state variable containing the wait
indicator correctly to prevent both missed wake-ups and spurious wake-ups. For
the protocol, we draw from eventcounts and sequencers |[RK79]. We will use
ustate as a counter that is incremented before a thread suspends or is woken
up. This prevents spurious wake-ups due to ABA-problems when two waiting
operations follow each other back to back as described in Section 3.8.

Like a sequencer, the increments of a thread’s ustate variable in user space
order the particular wait and wake-up operations of the related thread. The
waiting operation in the kernel follows eventcounts. As we use a dedicated per-
thread counter, a wait operation will observe at most one additional increment
from the corresponding wake-up operation. With this, the compare-equal condition
for blocking in the kernel is sufficient to detect missed wake-ups. The increment
before waking up a thread also follows eventcounts. As any further waiting attempt
would increment ustate again, the compare-equal condition for unblocking in the
kernel is sufficient to prevent spurious wake-ups.

Summary: We presented a design of a non-preemptive busy-waiting monitor in
user space with Mesa-style blocking condition variables |BFC95| for systems with
fixed-priority scheduling.

The monitor’s building blocks comprise preemption control by IPCP (Sec-
tion 4.4.1), spinlocks (Section 2.2.1), wait queues in user space, the wait and
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wake-up primitives (Section 4.4.2), and the wait indicator protocol discussed in
this section.

The monitor operations combine sequences of common operations similar to
the low-level building blocks of Section 3.4 to decouple the monitor critical sections
from the system calls.

4.5 Higher-Level Synchronization Mechanisms
based on Monitors

Based on the building blocks of non-preemptive busy-waiting monitors presented
in Section 4.4, we now discuss the design of related higher-level synchronization
mechanisms based on monitors.

We start with a discussion on the general design of monitor-based synchro-
nization mechanisms and their data model in Section 4.5.1. We then present
a design for blocking mutexes in Section 4.5.2 and related condition variables
in Section 4.5.3. We also present low-level blocking primitives with a monitor
interface in Section 4.5.4. The choice depends on the length of the critical sections.
to protect the waiting condition, i.e. mutexes for long critical sections or spinlocks
for short ones.

The description is partly taken from |[Zue20).

4.5.1 Data Model of Monitor-Based Synchronization Mech-
anisms

We define a common data model for all further higher-level synchronization
mechanism based on monitors.

Data model: In general, the internal state of a higher-level synchronization
mechanism comprises: (i) a spinlock to serialize access to internal data, (ii) one or
more wait queues, and (iii) further state information specific to the synchronization
mechanism.

Additional data must be provided for each waiting thread. This data comprises
at least one node element for the wait queues. Note that a thread can only wait on
one wait queue at a time in the blocking synchronization mechanisms discussed
in Section 2.2, therefore space for one wait queue node is sufficient and can be
shared by all instances of the synchronization mechanisms in the designs presented
in this thesis. This data can be kept in an arbitrary data segment specific to a
thread, e.g. on the thread’s stack or in thread-local storage (TLS). In the following
description, we consider that the per-thread data is kept in TLS. This keeps the
design simple.
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As described in Section 4.4.3, we use a dedicated state variable (ustate) for
each thread and also keep the variables in each thread’s TLS segment. The state
variables are also part of the internal state data of a monitor. State variables are
only modified in the critical sections of the related synchronization objects in user
space and only when a thread is waiting on a condition variable.

This comprises the full state data. Except for the spinlocks, atomic operations
are not required, as all state data is protected by a spinlock.

As the wait queue is managed in user space, it must be able to handle an
application-specific number of threads, and not an arbitrary number of threads.
Therefore, an application can use a data structure that suits the application
requirements best, e.g. doubly-linked lists for a smaller number of threads, or
binary search trees for a greater number of threads.

Summary: The presented data model follows the blueprint of typical in-kernel
synchronization mechanisms as discussed in Section 3.4.

When looking at the requirements for predictability of Section 3.2.3, avoiding
atomic operations especially addresses concerns of RQ3 (analyzability) and RQ5
(bounded loops and retries). The responsibility to manage a wait queue in user
space also moves any complexity from the kernel to the user space. Especially RQ2
(robustness) and RQ)J (bounded operations on queues) now depend on application-
specific bounds and behavior. And the protocol for the wait indicator ensures
RQ1 (correctness).

4.5.2 Blocking Mutexes

The presented blocking mutexes follow the described interface in Section 2.2.2.
We use the monitor operations presented in Section 4.4.3 and the data model of
Section 4.5.1 to construct blocking mutexes as higher interface from monitors.

Protocol: The data representing a blocking mutex comprises an internal spin-
lock, the thread ID of the current lock owner, and one priority-ordered wait
queue.

A mutex_lock operation enters the monitor and checks the current owner of
the mutex. If the mutex is currently free, it makes itself the new owner and leaves
the monitor. Otherwise, mutex_lock adds the calling thread to the wait queue
and waits with a given timeout. On wake-up, the thread is either the new mutex
owner or not. If not, mutex_lock removes the thread from the wait queue before
leaving the monitor.

A mutex_unlock operation enters the monitor and checks the wait queue. If the
wait queue is empty, it marks the mutex as free and leaves the monitor. Otherwise,
it removes the first waiting thread from the wait queue, put the new thread’s ID
as mutex owner, and leaves the monitor with an according wake-up operation.
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Note that wake-ups due to failed compare-equal checks of the state variable
always mean that the mutex value was passed to the woken-up thread. In this
case, the design prevented a missed wake-up, and the thread can immediately
continue.

Summary: The presented mutex design shows that blocking mutexes follow
the basic blueprint given in Section 4.4.3 and in Section 4.5.1. An implementation
does not need to handle any unintended wake-ups, nor does it need to handle any
loops critical for WCET analysis.

In the best case, locking and unlocking a mutex takes no system call. On
contention, mutex_lock needs one or two system calls (the second one to handle a
pending preemption request). mutex_unlock always needs one system call.

4.5.3 Condition Variables for Blocking Mutexes

We now discuss condition variables for the mutexes presented in Section 4.5.2.
Condition variables were first discussed in Section 2.2.3.

Condition variables are wait queue objects, so the internal state of a condition
variable synchronization object comprises a wait queue.

However, for internal synchronization, we also require a spinlock to keep the
wait queue consistent. We use the spinlock of the support mutex to protect
the wait queue as well. One possible way to obtain the spinlock of the support
mutex is to change the API of the notification functions so that the support
mutex is always passed as additional parameter. Another possibility is that the
condition variable object includes a reference to the support mutex. The first call
to cond_wait registers the support mutex in the condition variable object. Note
that this requires explicit ordering of memory accesses and memory barriers in
the notification operations to properly detect an uninitialized wait queue.

Protocol: A cond_wait operation enters the monitor of the mutex, enqueues
the calling thread on the wait queue of the condition variable, unlocks the mutex,
wakes up any new mutex owner, and then waits with the given timeout. After
wake-up, a thread can be in three different states:

e The thread is the owner of the mutex. It was successfully signaled and
requeued to the mutex. In this case, cond_wait leaves immediately.

e The thread is still enqueued on the condition variable wait queue. This
happens when the timeout expires. In this case, cond_wait removes the
thread, inserts it on the mutex wait queue, increments the wait indicator,
and then waits on the mutex.

e The thread is already enqueued on the mutex wait queue. This happens
when the timeout expires after the thread was notified. The notification
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operation never tells the kernel to clear the timeout. This can also happen
when the compare-equal check in the kernel fails and the thread is requeued
in parallel. In this case, cond_wait simply waits on the mutex.

To evaluate the difference between the last two states, cond_wait can check if the
wait indicator was incremented. In any case, on return of final waiting, the thread
must be the new mutex owner.

Both cond_signal and cond_broadcast need to know the spinlock of the support
mutex. They enter the monitor and simply requeue the given number of threads
(one or all) from the wait queue of the condition variable to the wait queue of the
mutex. For each requeued thread, they must also increment the user state variable.
To support “naked notifies” where the support mutex is currently unlocked, both
notification functions check the current state of the mutex after requeuing. If the
mutex is free, they make the first waiting thread the mutex owner and wake up
the thread when leaving the monitor.

Summary: The protocol design is complex. However, similar complexity is
required for an implementation in a kernel with fine-grained locking.

The implementation does not require any loops except for cond_broadcast.
The loop is bounded to an application-specific maximum number of waiting
threads for RQ5 (bounded loops and retries). Also, as the loop is non-preemptive
and protected by the spinlock, other threads cannot observe transient states,
therefore this satisfies RQ9 (hidden transience).

The design shows a small imperfection. Unlike futex_requeue, notification
of a condition variable does not require a system call and thus does not clear
any internal timeouts of the thread waiting on the condition variable. The
implementation must handle an unintended wake-up when a timeout expires
and re-apply for the mutex with an extra system call. Note that this does not
change a thread’s position on the mutex wait queue, so this has no impact on
RQ1 (correctness).

In the best case, both cond_signal and cond_broadcast require no system
call. In the worst case, both functions require at most one system call, either for
preemption, or to wake up a new mutex owner.

In contrast, cond_wait requires from one to four system calls: one system call
to wake-up the next mutex owner, one system call to wait on the condition variable
(mandatory), one system call to wait on the mutex after a spurious wake-up, and
one system call for preemption when leaving the monitor.

4.5.4 Low-Level Monitor API

We now present another type of condition variables that interact directly with the
non-preemptive critical sections of the internal spinlocks instead of the blocking
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mutexes presented in Section 4.5.2. Here, the monitor is the higher-level synchro-
nization mechanism and provides mutual exclusion by busy-waiting and blocking
condition variables.

The main difference to the mutex-based condition variables of Section 4.5.3 is
that “naked notifies” are not needed here. We consider this to be an alternative to
semaphores for low-level notification in situations where blocking synchronization
mechanisms cannot be used, for example from user space interrupt handlers.

For the interface, we deviate from the standard condition variable interface
presented in Section 2.2.3. Instead, we use a monitor interface comprising enter,
leave, wait, notify, and notify all operations, as described in Section 4.4.3. Like in
Java, the design uses a single wait queue embedded in the monitor. The design
can be extended to support multiple wait queues.

Protocol: A monitor object comprises an internal spinlock and an internal
wait queue. For efficiency when notifying a thread, we defer the actual wake-up
operation to the point when leaving the critical section. For this, we keep a pointer
to the thread with a pending wake-up in the monitor object.

An enter operation simply locks the internal spinlock. When multiple threads
try to enter the monitor, they are serialized by the internal spinlock of the monitor.
This relates to a FIFO-ordered enter queue.

A leave operation checks for a pending wake-up and wakes up the thread when
leaving the monitor.

A wait operation unlocks the monitor, wakes up any pending thread, and
waits with the given timeout. After wake-up, the operation locks the spinlock
again and evaluates the thread’s wait indicator. The thread can be in two states:

e The wait indicator is unchanged. The wake-up was spurious, e.g. the timeout
expired. In this case, the thread is still enqueued on the wait queue. The
wait operation removes the thread from the wait queue.

e The wait indicator was incremented. The thread was woken up, or the
compare-equal check in the kernel failed before waiting. In both cases, the
thread was properly notified.

The first notify operations registers the thread to wake up for later. This
optimization works well until a second notify operation is needed, or a notify all
operation processes a second thread. In this case, the operations must wake-up
the previously pending thread first, but can keep the next thread to process as
pending for later.

To support more than one wait queue, the wait queues can be moved into
dedicated wait queue data objects. Then the interfaces of the wait and notify
operations must be changed to work on the given wait queue objects.
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Summary: The design is less complex than the mutex-based condition variables
of Section 4.5.3, because requeue operations to the monitor wait queue are not
needed here. This also simplifies the handling of wake-ups by timeouts. For the
rest, a similar discussion as for the mutex-based condition variables applies here.
The implementation does not require loops except for the notify all operation.

The presented design is optimized to perform an uncontended enter — leave
sequence without system calls, and both wait and notify with one system call in
the best case. It requires at most one system call for a enter — leave sequence,
at most two for enter — wait — leave, and exactly one for enter — notify —
leave. Note that more than one thread can be woken up, but this requires one
additional system call for each thread. Also, the additional system calls happen
from within the internal critical section, pulling the pessimism of the system call
into the critical section. The design is optimized for the wake-up of only one
thread.
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Evaluation

This chapter evaluates the designs presented in Chapter 4. For the evaluation, we
discuss two different aspects following the metrics defined in Section 3.2.4. The
first aspect is to evaluate the performance benefits of the presented designs in
benchmarks. This shows that the designs are efficient. The second aspect is to
discuss the impact of the designs on a WCET analysis. This evaluates the designs
analytically and shows predictability.

We evaluate the designs on two different levels, i.e. kernel mechanisms and the
resulting higher-level mechanisms. In both cases, we provide reasonable baselines
to compare to. For the blocking kernel mechanisms presented in Chapter 4, i.e.
deterministic futexes, static futexes, and the low-level wait and wake-up primitives
used by monitors, we provide a comparison to a hash-based futex design similar to
Linux. For the higher-level synchronization mechanisms presented in Section 2.2,
we discuss analytical aspects only for mutexes and condition variables, as they
cover the two main use cases of blocking synchronization mechanisms, mutual
exclusion and event notification. Here, we additionally include a system-call-based
implementation of mutexes and condition variables as baseline. Also, we compare
the presented fast IPCP design to a pure system-call-based approach to change
the scheduling priority.

For the performance evaluation, we use microbenchmarks to evaluate the fast
paths of the approaches. As this would leave open how much real applications
would benefit from futexes and monitors, we evaluate different implementations
of mutexes under various degrees of contention in a research kernel. As a target
hardware for benchmarking, we selected different ARM processors. In particular,
we compare the performance on a Freescale i. MX6() processor with four 32-bit
ARM Cortex A9 cores. Unlike x86 processors by Intel and AMD, the 32-bit
ARM architecture provides simpler designs that target the lower end of the power
usage and performance spectrum. However, due to differences in the hardware
architecture, the system call overhead is not so extreme as compared to Intel
processors as discussed in Section 3.2.2.
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For the analytical evaluation, we cannot compare the exact WCET of the
different mechanisms unless we have a specific application and with known upper
bounds for a specific hardware platform and then feed these results into a WCET
analysis. For this thesis, we want to have a comparison on an abstract level, so
we define a reference architecture for the comparison for which we evaluate all
the different synchronization mechanisms. The reference architecture comprises a
kernel that hides the complexity that is not relevant for comparison, such as a
scheduler implementation or the overheads of system calls and context switches,
as these subsystems and building blocks of the kernel provide the same costs for
all evaluated designs. The reference kernel uses fine-grained locking, however
with a reduced complexity compared to Linux where the additional complexity is
not necessary to compare the mechanisms. We think this is the right level for a
system designer to assess the presented designs, as the particular building blocks
behave similarly and the complexity of the remaining system is not necessarily
relevant for an evaluation or impacted by these results.

We start with the evaluation of the efficiency of the designs. We first validate
our assumptions on the specific costs of elementary synchronization and OS
overheads for a range of ARM processors in Section 5.1. Then we show benchmark
results for a selected set of the mechanisms in Section 5.2. For the evaluation on
the analytical level, we present a worst-case timing model and discuss the costs of
the designs in Section 5.3. We summarize the evaluation results in Section 5.4.

5.1 Validating Assumptions

We start the evaluation with a brief introduction to architectural overheads of
32-bit ARM processors. We first check if the relation of the costs claimed in
Section 3.2.2, namely that ALU operations are much faster than atomic operations,
and that atomic operations are much faster than system calls, still holds for the
ARM architecture.

As testbed, we use a research RTOS named Marron. Marron provides static
partitioning of OS resources with fixed-priority scheduling on each processor
core. Marron further supports multiple address spaces (partitions), threads, and
user-level interrupt handlers. The Marron kernel provides various implementations
of thread synchronization mechanisms for system’s research, but lacks lots of
other useful features. The general architecture of the synchronization mechanisms
follows the composition of Table 3.1 in Section 3.6. However, the kernel is designed
for minimalism and has low overheads (instruction-wise), so an interaction with
the kernel (e.g. a system call) only contains what a typical operating system kernel
implementation needs to do in any case, but not more. Therefore, the results
probably underreport the OS overhead compared to other operating systems.

Marron currently supports only 32-bit ARM platforms, so we evaluated the
approaches on three system-on-a-chip platforms. The BeagleBone Black provides

135



CHAPTER 5. EVALUATION

a single Cortex A8 core running at 550 MHz, the Freescale i. MX6Q SABRE Lite
has four Cortex A9 cores at 792 MHz each, and the BeagleBoard-X15 has two
Cortex A15 cores at 1 GHz. Note that the Cortex A8, A9, and A15 cores have
different microarchitectures, with the A8 being a 13-stage in-order pipeline design,
while the A9 and the A15 are out-of-order designs, with a shorter 8-stage pipeline
on the A8 and a longer 15-stage pipeline on the A15.

In a set of benchmarks, we evaluate microarchitectural overheads, like function
call overheads, memory barriers, and atomic operations, and OS overheads, like
system calls and context switching. The working set of the benchmark is small and
fits into both instruction and data caches. Except for one test, the benchmarks do
not need to access any external DRAM. Also, we only run our benchmarks on a
single processor core to exclude contention and interference by the other processor
cores. For better comparison, we have normalized the results to clock cycles of
each CPU core. Measurements were taken with the internal cycle counter of the
CPU cores. We first take the time, run each benchmark in a loop 1024 times, then
take the time again and divide the result, therefore all results include the loop
overhead. These results shall provide a rough reference point for later discussions
and do not aim to be precise assessment of the architectures. Table 5.1 shows the
results.

The first six tests of group “a” focus on ALU and load/store performance.
Tests al and a2 evaluate the operations of the benchmark loop and show that
the overhead is negligible. Tests a3 and a4 show the overhead of function calls.
Test a3 benchmarks the costs of changes in the control flow. The registers in test
a4 are often saved and restored in function prologues and epilogues. Also, the
system call code comprises such a sequence. Each processor architecture can load

Table 5.1: Best-case overhead measurements of lowest-level building blocks on Marron
for different 32-bit ARM platforms. Results in CPU cycles represent the average of 1024
runs.

Test Cortex A8 Cortex A9 Cortex Al5
13 stages 8 stages 15 stages
in-order out-of-order out-of-order

al empty loop 2 1 1

a2 read time stamp counter 4 4 8

a3 function call 7 9 8

a4 push/pop pair (registers r0 — r12) 15 14 16

ab read thread ID in helper function 8 10 6

a6 cold-cache memory read 158 150 127

bl acquire and release barriers 33 6 20

b2 CAS without barriers 8 22 30

b3 atomic increment/decrement pair 11 43 51

b4 uncontended spin_lock/unlock pair 74 38 108

b5 futex mutex fast path 75 54 102

cl null system call 174 106 205

c2 sys_preempt 426 281 435

c3 sys_yield 507 323 521

¢4 context switch A - B — A 1196 891 1212

¢ wake up thread on other processor core — 449 674
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or store two 32-bit registers in each cycle, according to the manuals and test a4.
Test ab reads the thread ID in a helper function. As the results of tests a3 and ab
on the Cortex A15 show, the tests are not always accurate and may include other
side effects, such as interrupt handling or internal side effects of the pipeline. Test
ab shows the overhead of a cold-cache memory read to a non-dirty cache line.

The next five tests of group “b” evaluate the overhead of atomic operations.
The ARM architecture uses a weakly-ordered memory model and requires explicit
memory barriers to order memory accesses. We find these barriers in low-level
synchronization primitives. Test bl shows the overhead of such a barrier. The
next two tests for CAS (b2) and atomic increment/decrement (b3) comprise
atomic operations based on LL/SC primitives. CAS comprises one sequence. The
increment /decrement pair comprises two. In test b4, the uncontended pair of
spinlock operations uses a fair ticket spinlock implementation and comprises one
atomic operation and two barriers. The last test b5 simulates the futex mutex
fast path and comprises two CAS operations and two barriers.

The Cortex A8 is a single core design. Atomic operations are fast due to the
lack of cache coherency overhead, but the memory ordering barriers are quite
expensive. On the Cortex A9, which is a multicore design, barriers are inexpensive
compared to CAS operations. However, on the faster Cortex A15 design, barriers
are much more expensive than on the Cortex A9 due to the longer pipeline.

The last five tests of group “c” evaluate the kernel overhead. In test cl, a null
system call measures the minimal overhead of a system call. In this benchmark,
no internal lock in the kernel is taken. The other tests increase the interaction
with the kernel. sys_preempt (c2) takes one lock in the kernel. sys_yield (c3)
takes two locks. Test ¢4 shows a round trip of two system calls and two context
switches. The last test ¢5 shows the overhead to wake up a thread on a second
processor core.

All in all, we can see that atomic operations are roughly a magnitude more
expensive than ALU operations. However, this is not true for system calls. The
minimal overhead for system calls is only between two and two-and-a-half more
than atomic operations. But we also see that the overheads for fine-grained locking
in the kernel can quickly add up, as the Cortex A15 shows.

With this, the assumptions of Section 3.2.2 also hold for ARM, and it’s worth
to invest in a fast path that does not use system calls.

Also, the cold-cache memory accesses are two orders of magnitude more
expensive than hot-cache accesses. This underlines the choice to focus on cold-
cache memory accesses as metric in Section 3.2.4.

5.2 Performance Measurements

For the evaluation of the performance benefits of the designs of Chapter 4, we start
with the specifics of deterministic futexes in Section 5.2.1. We then evaluate the
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efficient IPCP protocol in Section 5.2.2. Lastly we compare the benefits of futexes
and monitors compared to a baseline design using system calls in a scenario with
various degrees of contention on a mutex in Section 5.2.3.

5.2.1 Specifics of Deterministic Futexes

We now evaluate the specifics of the deterministic futex design presented in
Sections 4.1. We focus on the specific design choices in the kernel, in particular
the two nested BSTs, which are the shared global or private process-specific
address trees and dedicated per-futex wait queues, and the resulting global lock
for shared futexes.

We evaluate the overhead of using binary search trees on the average-case
execution time (ACET) in a first experiment. As the global address tree is shared
among processes to realize shared futexes, we also evaluate the interference of
concurrent futex operations in another experiment.

We evaluate the design in the context of PikeOS. The implementation in
PikeOS uses AVL trees as BSTs (see Section 4.1.2). The measurements were
performed on a Freescale i. MX6(Q) SABRE Lite board with four Cortex A9 cores
using PikeOS 5.0.2. The particular results are not comparable to results on
Marron, but the processor-specific overheads presented in Section 5.1 still apply.

The presented results are taken from a conference paper by the author [ZK19].

Overhead of Binary Search Trees

To evaluate the overhead of using two nested BSTs in the presented design, we
conduct the following experiment. We measure the execution times of futex_wake
operations to wake one thread each time from a set with a variable number of
blocked threads. We use two different tests:

o Test A: all threads wait on the same futex
o Test B: all threads wait on different futexes

Both tests measure the overhead of the BST for the wait queue and the address
tree in isolation. All futexes are process-private to exclude interference by other
processes.

Figure 5.1 shows the results of tests A and B. Both tests show logarithmically
increasing execution times, as the number of nodes in the specific BSTs increases
linearly during the test. The spikes at multiples of power-of-two numbers of
threads are caused by rebalancing the AVL tree. Outliers are caused by other
system activities, such as interrupt handling.

We can also observe that the timing quickly hits worst-case cache behavior, as
tree nodes are kept at the same offset within page-aligned thread control blocks
(TCBs), effectively causing trashing in the same cache set. Recall from Table 5.1

138



CHAPTER 5. EVALUATION

3500 [ | | | I [ """"""" l """""" | """""" l """"""" ]'—
Test A (wait queue) X : : : % %
Test B (address tree)  + :
3000 b S O SO SOOI SO —
@ : Lt
g X i :
o : i : i+ i : : : :
52500 [ S +++
q_) -
£2000
<
Ke)
31500
o)
x
)
B 1000 JEFE o B T T
c
©
8
le) 500 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -
0 [l [l [l [l [l [l [l [l

0 500 1000 1500 2000 2500 3000 3500 4000
# of nodes in BST (wait queue or address tree)

Figure 5.1: Observed execution times of futex_wake operations to wake one thread
for a variable number of blocked threads on PikeOS on Cortex A9. All threads are either
waiting on the same futex (test A) or on different futexes (test B). Test A shows the
overhead of the BST to manage blocked threads in a wait queue, while test B shows the
overhead of the BST during wait queue look-up.

that a cold-cache memory read takes 150 cycles on this platform. Note that this
problem applies to linked list traversal of similar structures as well, and also
affects other operating systems such as Linux, see Figure 3.6 in Section 3.5.3. The
worst cases of the isolated BST operations need to be added to get the overall
impact on the ACET when both BSTs are fully populated.

In comparison with Linux, where similar operations typically need constant
time when there are no collisions in the hash table, the BST approach shows a
quickly increasing overhead when the number of nodes is small, but the overall
overhead is acceptable (min / max /avg in CPU cycles: test A: 896 /2779 / 1461,
test B: 1108 /2831 / 1800).

Interference of Concurrent Futex Operations

To evaluate the interference of concurrent futex operations, we conduct another
experiment, where a thread in process a performs and benchmarks a futex_requeue
operation to requeue one thread 512 times, while a thread in process [ requeues
512 threads in parallel on another processor each time. First, we let process o run
in isolation (tests A and B), then execute both processes o and [ concurrently
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Figure 5.2: Observed execution times of 512 futex_requeue operations to requeue one
thread on 512 blocked threads on PikeOS on Cortex A9. The four tests show different
combinations of private (A and C) and shared (B and D) futexes. Additionally, in
tests A and B, only process « runs on a single processor core. In tests C' and D, a
second process [ requeues 512 threads in parallel on another processor core and causes
interference.

(tests C' and D). Also, we measure the difference of private (tests A and C') and
shared (tests B and D) futexes.

Figure 5.2 shows the results. We see that shared futexes are more expensive
than private futexes, as the kernel needs to retrieve the physical address of the
underlying futex from the page tables. Also, the measured execution time is
higher when both process o and [ run in parallel. The preemptive design in
the kernel serializes all internal operations on shared futexes with a fair ticket
spinlock. The observed interference in test C' with private futexes is additionally
caused by shared hardware in the memory hierarchy, e.g. the L2 cache and the
memory controller.

Lastly, Figure 5.2 shows arc-shaped execution times for requeue operations
that reach a maximum at 2 - log § when both source and destination BSTs of a
requeue operation are equally populated.
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5.2.2 IPCP Performance

We briefly evaluate the performance benefits of using the UPRIO|NPRIO protocol
for IPCP presented in Section 4.4.1. For the performance evaluation, we compare
the UPRIO|NPRIO protocol to a baseline version using a pair of sys_prio_set
system calls to implement IPCP. Both mechanisms are implemented in the Marron
kernel introduced in Section 5.1. The benchmark comprises a best-case scenario
where the working set fits into the caches and is not interrupted otherwise.

As IPCP is used frequently, the baseline implementation also uses Benno
scheduling (Section 3.1.2) as optimization and operates on in-kernel equivalents of
the protocol variables of the UPRIO|NPRIO protocol of Section 4.4.1.

Listing 5.1: System call to change the scheduling priority of the calling thread

prio_t sys_prio_set(prio_t new_prio)

{
prio_t prev_prio = SELF->prio;
SELF->prio = min(new_prio, max_prio);
if (SELF->prio < CURRENT_CPU->next_prio) {
sched_preempt (SELF) ;
}
return prev_prio;
}

The different steps in the implementation shown in Listing 5.1 comprise validating
the given priority (line 4), updating an in-kernel priority of the current thread
(also line 4), and comparing the priority to the priority of the next thread on the
ready queue (line 5) to decide whether to preempt the current thread (line 6).
Table 5.2 shows the results of a temporary elevation of the scheduling priority of
the current thread, comprising a prio_raise and a prio_restore operation. When
no other thread is woken up in the mean time, the overhead of the UPRIO|NPRIO
protocol is a little bit higher than a pair of function calls with TLS access (see
Table 5.1), as the first test in the upper part of Table 5.2 shows. The second
test enforces a pending preemption request. For this, the test overwrites the
nprio variable with a high value. The prio_restore operation in turn invokes

Table 5.2: Comparision of the UPRIO|NPRIO protocol to a baseline version using
system calls to change the scheduling priority on Marron for different 32-bit ARM
platforms. Results in CPU cycles represent the average of 1024 runs.

Test Cortex A8 Cortex A9 Cortex Al5
UprIio|NPRIO protocol

- sys_prio_raise/sys_prio_restore pair 29 27 14

- sys_prio_raise/sys_prio_restore pair with sys_preempt 466 422 455

- wake-up of medium priority thread in IPCP 1242 932 1295
baseline (two system calls)

- pair of two sys_prio_set system calls 419 276 468

- wake-up of medium priority thread in IPCP 1686 1213 1790
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sys_preempt to let the kernel preempt the current thread. In this case, the
execution time is significantly higher. The system call for preemption is expensive,
as the kernel locks scheduling data internally. However, this is a penalty that is
only to take when a now higher priority thread became ready.

The baseline using two full system calls to change the scheduling priority is
much slower than the UPRIO|NPRIO protocol without preemption. However, we
can observe that the overall execution time of the two system calls is lower than
the fast implementation with preemption. This is a side effect of the test, as we
explain in the following.

Note that in the baseline case, the sys_prio_set system call is quite fast and
has no locking overhead, as the comparison to a null system call (see Table 5.1)
shows. The Marron kernel implements a similar optimization as the UPRIO|NPRIO
protocol to check nprio at kernel level without needing any locks before further
preempting the thread (and then acquiring additional locks). In contrast, the
sys_preempt system call expects only to be invoked when preemption is pending
and acquires internal locks unconditionally. In so far, the comparison is a bit
unfair, as the costs for preemption are missing in the baseline case. Unfortunately,
the test cannot simply overwrite nprio to a higher value in the kernel to enforce a
similar scheduling overhead.

For a fair comparison, we conducted another test that includes preemption.
Here, a first thread temporarily raises its scheduling priority, wakes up a second
thread at a medium priority, and lowers its priority again. In turn, the kernel
preempts the first thread and switches to the second thread. The second thread
immediately waits again, so we observe another context switch back to the
test thread. But also in this scenario, the UPRIO|NPRIO protocol improves the
performance over the baseline scenario. For reference, the overhead of the two
context switches can be taken from Table 5.1.

5.2.3 Comparison for Different Mutex Implementations

We now present a performance evaluation of mutexes based on the different
alternative design approaches for synchronization mechanisms as discussed in
Section 3.6, i.e. a baseline using system calls, futexes, and monitors. For this, we
implemented the synchronization mechanisms in the Marron kernel introduced in
Section 5.1.

At first, we briefly discuss the implementation of the different synchroniza-
tion mechanisms. We then compare the mutex performance with and without
contention. Lastly, we compare the performance of the different designs under
various degrees of contention to evaluate the impact for a real world application.

Parts of the evaluation discussed in this section were already presented in
previous work of the author [Zue20).
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Synchronization Mechanisms in Marron

We now discuss an implementation of the different alternative design approaches
for synchronization mechanisms using similar building blocks in Marron. The
implementation follows the structure of Table 3.1 in Section 3.6 and uses fine-
grained locking.

The baseline approach provides mutexes and condition variables by dedicated
system calls. Here, all wait queues are statically allocated at boot time and
accessed via an index-based design, similar to the concept of static futexes of
Section 4.2. However, the blocking API exposes no compare primitive, but
implements mutex or condition variable semantics directly in the kernel. On
notification, the condition variable implementation internally requeues threads
from the condition variable wait queue to the mutex wait queue. Internal locking
uses a per-process lock.

The futex implementation follows a hash-based wait queue design like in Linux
(Section 3.5.1) with a specialized API for mutexes (futex_lock, futex_unlock) and
a general-purpose API for the rest (futex_wait, futex_wake). The futex_requeue
call supports only requeuing from condition variables to mutexes. Internally,
the kernel implements a single shared wait queue for all futexes, i.e. a hashed
wait queue of size 1, which is sufficient for testing the overhead of the kernel
interface, but would not scale well in a real-world system. Futex wait queues are
process-private and protected by a specific per-process lock.

The monitor approach implements wait queues in user space. The wait queues
are protected by non-preemptive ticket spinlocks following the UPRIO|NPRIO
protocol of Sections 4.4.1 and 5.2.2. The wait and wake-up primitives follow the
description in Section 4.4.2.

Note that in all three cases, wait queues are implemented as priority-ordered
linked lists. However, the focus here is not to stress the wait queue implementation,
but to assess the overhead of the kernel interfaces, therefore the wait queue contains
at most one thread. A more efficient wait queue implementation could use the
plist approach of Linux described in Section 3.5.2, or use a BST. For the same
reason, we also did not implement futexes using the deterministic futex design of
Section 4.1, but used the simplified design presented above.

Comparison of Mutexes Performance

We perform an experiment to evaluate the performance of both the fast path and
the slow path of a pair of mutex_lock and mutex_unlock operations in different
contention scenarios and using different designs based on system calls, futexes,
and monitors. Table 5.3 shows the results of uncontended mutex operations,
contention on the same core, and contention by other cores for the three different
ARM processors introduced in Section 5.1.
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The overhead of the uncontended mutex runs show stable results, as these
tests run in a single-threaded context. The working set of the tests is small and
fits into instruction and data caches.

We determine the results for the contended case on the same processor core
with the help of a second thread. The presented results show two contended
and two uncontended lock /unlock operations, one resume other thread and one
suspend self operation, and four context switches:

thread A: sys_mutex_lock(&m); sys_thread_resume(B); // A preempted
thread B: sys_mutex_lock(&m); // B blocks
thread A: sys_mutex_unlock(&m); // A preempted

thread B: sys_mutex_unlock(&m); sys_thread_suspend(B); // B suspends
thread A:

The contended case on different processor cores determines the overhead of
the operations in user space, e.g. the internal critical sections of the monitor
and the atomic futex operations, on two processor cores in parallel. The test
uses mutex_trylock instead of a blocking system call and effectively spins until
it successfully acquires the mutex. The test releases two cores from a spinning
barrier and measures the time until all cores acquire and release the mutex once,
and reach the barrier again. The baseline variant implements mutex_trylock as
system call, while futexes use atomic operations in user space, and the monitor
approach uses an internal critical section. During testing, the results showed a
great variation in timing between different runs and should be treated as a rough
indicator of what to expect.

We can make the following observations:

Observation 1: In the uncontended case, the futex approach is faster than
the monitor approach, and both are faster than the baseline approach using system
calls. The costs of system calls dominates the overhead of the baseline variant.

Table 5.3: Performance comparison of uncontended and contended mutex scenarios for
implementations based on explicit system calls, futexes, and monitors on Marron for
three different 32-bit ARM platforms. Results in CPU cycles represent the average of
1024 runs.

Test Cortex A8 Cortex A9 Cortex Al5
uncontended mutex lock/unlock pair system call 711 469 756
futex 109 87 149
monitor 218 150 260
contended mutex lock/unlock scenario system call 3463 2461 3471
(same core) futex 3449 2536 3551
monitor 3205 3067 3195
contended mutex trylock/unlock scenario  system call — 1275 1953
(2 cores) futex — 528 743
monitor — 947 1386
contended mutex trylock/unlock scenario  system call — 3393 —
(4 cores) futex — 1186 —
monitor — 6312 —
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Observation 2: The efficient implementation of IPCP does not contribute
much overhead to the fast path. On all three platforms, changing priorities in
user space does not cause much overhead. Compare this to the measurement of
the priority raise/restore pair in Table 5.2.

Observation 3: Atomic operations cause significant overhead. Atomic op-
erations and memory barriers provide more overhead than the efficient IPCP
implementation (compare also to Tables 5.1 and 5.2). When using futexes, a
mutex lock / unlock pair comprises a sequence of CAS — acquire barrier — release
barrier — CAS, and the costs add up correspondingly. Similarly, the monitor
comprises two pairs of spinlock lock / unlock operations of equal complexity than
a futex pair. This explains the more than twice as high overhead of the monitor
in the fast path. Note that the baseline version shows a similar locking overhead
inside the kernel.

Observation 4: In the contended case with blocking, we see mixed results,
depending on the architecture. On the Cortex A9, the baseline using system calls
is faster. But on the other architectures, monitors are faster. Still, the results are
in the same order of magnitude due to the complexity of the test. This underlines
the point that the fast paths in the uncontended case come with extra costs in
the contended case.

Observation 5: On high contention on the internal critical section of the
monitor in the contended test with four cores, the monitor shows worse results
than futexes or the baseline. Here, threads in mutex_trylock repeatedly spin to
lock the internal critical section of the monitor to detect that the mutex is already
taken. Futexes do well here, as they can directly probe the mutex due to the
atomic operations. In the baseline variant, the system call delays the time between
lock attempts and effectively relaxes the contention on the internal spinlock.

Comparison under Varying Degrees of Contention

We conduct another experiment to compare the three discussed approaches
(monitor, futex, and baseline) in a scenario of varying degrees of contention.

For this, we distribute 22 random values following a square distribution to a
shared hash table comprising 64 hash buckets. We run this experiment using four
parallel threads (one for each core) on the Cortex A9. Each thread atomically
draws a unique value from the random pool and locks the resulting hash bucket for
a constant time of 1ps. Statistics counters in the different mutex implementations
account contended and uncontended cases.

Figure 5.3 shows the average execution time per bucket operation in CPU
cycles (including locking overhead) for the varying degrees of contention observed
in the hash buckets. We include the results of a run without any locking and
therefore without contention as reference shown as dotted horizontal lines. Note
that 1 ps relates to 792 CPU cycles on the Freescale . MX6Q platform.
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Figure 5.3: Comparison of different designs for mutexes at of varying degrees of
contention following a square distribution on a shared hash table with 64 hash buckets,
each protected by a mutex. Each thread keeps a hash bucket locked for a constant time
of 1ps. Tests run on Marron on Cortex A9.

The results show that both futexes and monitors result in less overhead in low
contention scenarios compared to the system call approach. Also, futexes show
less overhead compared to the monitor approach.

A second effect is that both futexes and monitors show less contention than
the system call approach. Recall that both approaches comprise two semantic
checks whether to suspend the current thread. The second semantic check in
the kernel provides a second chance to acquire the mutex after a brief delay (the
system call overhead). Again, this effect is stronger in futexes.

5.3 Analysis of Worst-Case Timing Behavior

The evaluation on the analytical level shows that the approaches are predictable.
We first present a reference architecture that defines a worst-case timing model in
Section 5.3.1. Then we analyze the kernel parts providing low-level blocking and
fast IPCP in Section 5.3.2. Based on this, we analyze the higher-level blocking
mechanisms in Section 5.3.3.
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5.3.1 Reference Architecture for Analysis

We now define the reference architecture for the evaluation.

In Section 3.2.4, we discussed our assumption that the WCET is mainly driven
by cold-cache data memory accesses and that our resulting approach is to use an
abstract worst-case time model comprising polynomial terms of accessed cache
lines for n threads and m processors. However, we have to provide specific numbers
for the accessed cache lines to further compare the results. Therefore, we use a
cold-cache memory access as 1 unit of time, i.e. we define that the worst-case
time to access a cache line in the data cache, including the time to evict any
content of a former dirty cache line, takes 1 unit of time. The typical cache line
size of contemporary processors comprises 32 or 64 bytes and provides space for
at least 8 pointer-sized variables. Therefore we assume that all data related to a
synchronization mechanism fits into one cache line. Note that this “rule-of-thumb”
model neglects instruction cache fetches and pipeline delays, as these are not
dominating factors for our analysis.

We provide the worst cases for the kernel mechanisms and building blocks as
presented in Section 2.3 and discussed in Section 3.4.2.

e In general, dereferencing a pointer takes 1 cold-cache memory access or
1 unit of time in the worst case.

e For indirection/look-up of objects, we consider the following simplified
costs. Array- or table-based look-ups need O(1) time and take 1 + 1 cache
line accesses. Hash-based look-ups need O(n) time in the worst case and
take n + 1 cache line accesses. Look-ups in a binary search tree (BST)
need O(logn) time and take 2 - log, n + 1 cache line accesses’. In all cases,
consider the constant 1 as overhead to dereference an additional pointer.

e For queuing, we consider the same bounds as for look-up.

e The time to enable or disable preemption or to test for pending pre-
emption in a preemption point takes O(1) time or 2 cold-cache line accesses
for the protocols discussed in Sections 3.7 and 4.4.1, i.e. to locate the
TLS and access the protocol variables. Some cases of enabling preemption
lead to scheduling, but we do not include this additional overhead here
because it requires application-specific knowledge whether a thread would
be preempted.

e We model the overhead for a successful spinlock operation as O(1) or 1
cache line access, as spinlocks are typically embedded in synchronization
objects. This excludes any blocking time, which comprises unsuccessful
busy-waiting.

LA search in a red-black tree with n nodes requires less than 2-log,(n)+2 comparisons [Sed98|.
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e We model locking-related overhead for a critical section as a small
constant t,, =2+ 14 1+ 2 = 6 that comprises disabling preemption, two
operations to first lock and then unlock a spinlock, and enabling preemption
again. This is also the overhead of a preemption point (but in different
order), hence the subscript pp.

e For a critical section of tog length, a thread may observe blocking by
m — 1 other processors when using spinlocks. We denote the blocking as
thiocking = (m — 1) - tcg. But we also need to account the overhead for
preemption control and spinlock operations. Therefore, the resulting overall
worst-case time of a critical section including all overheads and blocking is
thlocking + tos + tpp, Which simplifies to m - tog + tpp.

e The overhead for a system call takes O(1) or ¢4, time. This includes both
the system call entry and exit code and any overheads of dispatching a
system call function.

e For scheduling operations, we include any costs for timeout handling
when suspending or waking up a thread. We keep these costs abstract as:

— tsched—preempt t0 preempt the current thread,
— tsehed—wait tO let the current thread wait,
— tsched—wake fOr a wake-up operation, and

— tiimeout—clear tO clear any pending timeouts.

e We define that a successful atomic operation, e.g. an operation on the
futex value, takes 1 cache line access. This includes any memory barriers,
but excludes any blocking time. Memory barriers are usually much faster
compared to cold-cache memory accesses, as our assessment for ARM in
Section 5.1 shows?.

e We further assume that loops with atomic operations will eventually
complete. If we can exclude malicious actors that actively try to interfere
with an atomic operation, e.g. writing to the same cache line in a tight loop,
we can then model that concurrent atomic operations by m processors will
complete after at most m retries, i.e. in each attempt one of the processors
succeeds until eventually all m processors complete. The worst-case time
for an atomic operation therefore is m.

With this, we can model the operations of the blocking synchronization
mechanisms of Table 3.1 in Section 3.6 from user space down to the scheduler
level.

2Al Bahra shows comparable numbers for Power 7 (Table 2 in [Al-13]), which uses a weakly-
ordered memory model similar as ARM.

148



CHAPTER 5. EVALUATION

5.3.2 Analysis of Kernel Primitives

We now evaluate the kernel operations of the different designs for their worst-case
timing and compare the results. In each of the following analyses, we determine
the impact of a design’s internal data structures and locking on the blocking time.
From this, we derive a resulting worst-case model for the common operations
handling one or all threads. The resulting worst-case models comprise parts
that are the same for comparable operations, e.g. system call overhead (%),
suspension (¢sehed—wait), Or wake-up of k threads (k - tsehed—wake), and parts that
comprise the design-specific overhead.
We start with a discussions on the worst-case costs of futexes in general.

General Worst-Case Costs of Futex Operations

We start with an analysis of the worst-cases of the particular futex operations
presented in Section 2.2.11 at kernel level. For an implementation, we assume that
the overall structure in the kernel follows our reference architecture in Section 5.3.1.
The following discussion is the same for all futex designs.

To determine the worst-case time of futex operations, we decompose futex
operations into their building blocks. An implementation comprises different wait
queues, and wait queues are protected by locks. We first determine the worst-case
time of an individual operation. We then derive worst-case blocking times, and so
on. Therefore, we start the discussion from the inside out.

In the kernel, we can observe the following operations on wait queues:

e Insertion of a thread into a wait queue.
e Removal of a thread from a wait queue.

e Wake-up of k threads from a wait queue. The locking and preemption
strategies of a design decide if the wait queue remains locked to wake up all
k threads, or if threads are woken up one by one.

e Requeuing of k£ threads comprise both removal and insertion. The locking
strategy of a design decides if both source and target wait queues are locked
at once or consecutively, and the preemption strategy decides if threads are
requeued one by one or all at once.

Due to their complexity, requeue operations are often the worst-case operations
that dominate the worst-case time wait queues are locked. From this, we derive
an individual wait-queue operation’s worst-case time t,,. Next we can derive
the worst-case blocking time tyocring by m — 1 other processors a thread can
observe while trying to lock a wait queue. For a specific operation on the locked
wait queue, e.g. waiting, wake-up, etc., we must also include any locking-related
overheads, so the operation usually takes tyiocking 1 toperation + tpp time.
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We now determine the worst cases of the futex system calls. Note that all
futex operations in the kernel comprise the system call overhead t,,,.

e A futex_wait operation first locates and locks the wait queue, inserts the
calling thread into the wait queue, and then suspends the thread in the
scheduler. The worst-case behavior is when a spurious wake-up happens. In
this case, the futex operation locks the wait queue again to remove a thread:

tfuteasfwait = tsys + twqfinsert + tschedfwait + twqfremove + ...

Note that the parts tsys 4 tsched—wait describe the same overhead in all futex
designs, while the remaining parts depend on the particular futex design.

e A futex_lock operation needs to perform atomic operations on the futex
value additionally to futex_wait. We follow our model of atomic operations
in the reference architecture and assume this needs m additional steps:

tfutex—lock - tfutem—wait + m.

e A futex_wake operation of one thread comprises a wait queue operation to
remove a thread and an operation to wake up the thread:

tfutem—wake—one - tsys + twq—’remove + tsched—wake + ...

e A futex_wake operation on all k relevant threads of a wait queue depends on
the locking and preemption strategies of the particular design. An operation
includes at least the following necessary steps:

tfutew—wake—all - tsys + k- twq—remove + k- tsched—wake + ...

e A futex_unlock operation does not require atomic operations and has similar
characteristics than futex_wake of one thread:

tfutex—unlock: = tfutex—wak:e—one

e A futex_requeue operation on one thread comprises two wait queue opera-
tions. It first removes the thread from one wait queue and then inserts the
thread into another wait queue:

tfute:rfrequeuefone = tsys + twqfremove + twqfinsert + ...

Additionally, a design might optionally clear pending timeouts, as described

in Section 4.3.2. This requires at least:

! —
futex—requeue—one tsys + twq—remove + twq—insert + ttimeout—clear + ...

e A futex_requeue operation on all k relevant threads on a wait queue requires:
tfutex—requeue—all = tsys + k - twq—remove + k - twq—insert v
In a design with clearing of timeouts, the operation takes:

/
futex—requeue—all - tsys + k - twq—remove + k - twq—inse’rt + k- 751&z’meout—clea'r + ...

This general overview provides a blueprint for the following analyses.
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Futexes with Hashed Wait-Queues

We now discuss an analysis of a futex design using hashed wait queues similar
to Linux as described in Section 3.5.2. Note that the actual WCET in Linux
differs from the presented approach, as the assumptions of our simplified reference
architecture do not necessarily hold for the Linux kernel, which has a higher
implementation complexity. Especially, we omit the handling of Linux PI mutexes.

The kernel first hashes the futex address to derive a hash bucket, locks the hash
bucket, and then handles waiting threads in a plist data structure of p priority
levels. Recall from Section 3.5.2 that Linux has 140 internal priority levels. All
operations on the wait queue are non-preemptive.

Therefore, the operations on the hash bucket dominate the execution time of
the internal critical sections t5;,. We assume that a hashed wait queue is shared
and contains n threads, with k threads specific to a futex of interest (k < n). We
now determine the worst contender.

e Insertion takes at most p search steps to locate the right priority level. We
assume this accesses p unique cache lines in the worst case:

tinsert = p-

e Removal changes two adjacent nodes and two linked lists in the plist:

tremove =4

e Wake-up of threads takes at most t..4.cn = n steps to locate a thread
matching the futex value on a wait queue of n threads. Threads to wake
up are first moved to a dedicated wake-up queue in O(1) time. We assume
tinsert—wake—queue = 1 cache line access for this.

In the worst case, a wake-up operation of one thread must search the full
plist, remove the thread from the wait queue, and insert the thread on the
wake-up queue:

twakefone = tsearch + tremove + tinsertfwakefqueue =n+ d.

e An operation that wakes up all k£ threads of the same futex on a shared wait
queue must search the full wait queue of n threads to locate the k relevant
threads, remove the threads from the wait queue, and insert them into the
wake-up queue:
twake—at = N + Sk.

e Requeuing of threads also iterates all n threads on the wait queue. If the
requeue operation targets the same hashed wait queue, the threads are
updated in place after at most n steps. But if the requeue operation targets
a different hashed wait queue, the threads are first removed and then inserted
into the new wait queue. As worst case, we assume that the target wait
queue is fully populated, so requeuing of one thread observes at most:
trequeue—one = 2fsearch + tremove + tinsert =n-+ 4 + b-

151



CHAPTER 5. EVALUATION

e Requeuing k threads takes:
trequeue—all =n+ k - (4 + p)-

The worst-case operation on a wait queue is found in the requeue operation. The
maximum number of blocked threads on a wait queue could be very large. For
simplicity, we assume the system limit of N threads, and replace n and k by N
to derive a worst-case hash bucket (hb) operation of:
tw=N+N-(4+p)=N-(p+5).

Note that a requeue operation locks up to two wait queues. The wait queues
are locked in increasing order to prevent deadlocks. But even in case of nested
locks, there can be only m — 1 other processors performing operations on the first
wait queue, and then m — 1 other processors performing operation on the second
wait queue. Also, we can construct a worst-case scenario where each processor
requeues the same set of threads to the next wait queue over and over. This
results in a worst-case blocking time for a wait queue operation of:
thiocking = 2 (m — 1) ~tpy = 2N - (m — 1) . (p—|— 5)

Note that the blocking time already depends on all variables. For this reason,
a hash bucket lock is implemented as blocking mutex in a Linux real-time kernel.

We now determine the worst cases of the futex system calls. We put design-
specific parts in parenthesis.

e A futex_wait operation comprises two wait queue operations due to a
spurious wake-up:

tl—futem—wait
= tsys + (tblocking + tinsert + tpp) + tsched—wait + (tblocking ~+ tremove + tpp)
- tsys + tsched—wait + 4N - (m - 1) : (p + 5) +p + 16.

e A futex_lock operation needs to perform atomic operations on the futex
value additionally to #;_ fyteq—wait- In Section 3.5.3, we argued that there is
no upper bound on the retries when we have to consider malicious actors:
Li— futex—lock—unbounded = OO-

But to provide a bound, we assume that the atomic operations take m
additional steps:
Li— futez—tock = ti— futex—wait + M.

e A futex_wake operation of one thread takes at most:
tlffuteszakefone = tsys + (tblocking + twakefone + tpp) + tschedfwake
— tsys + tsched—wake + 2N - (m - ]-) ' (p + 5) + N + 11.

Here, we assume N unrelated threads on the wait queue.
e A futex_wake operation on all k relevant threads of a wait queue first moves
the threads to the wake-up queue and then wakes up the threads one by

one preemptively. We model additional overhead to process the wake-up
queue as the cost of a preemption point:

152



CHAPTER 5. EVALUATION

tlffutemfwak:efall = tsys + (tblocking + twakefall + tpp) + k : (tschedfwake + k . tpp)
= tsys + k- tsched—wake + 2N - (m - 1) ' (p+ 5) + N + 11k + 6.

Note that this includes only one locked wait queue operation.
e A futex_unlock is tlffutezfunlock = tlffute:vfwakefone-

e A futex_requeue operation of one thread takes:

tlffutexfrequeuefone = Zfsys + (tblocking + trequeuefone + tpp)
=toys +2N-(m—1)-(p+5)+ N +p+ 10.

Note that requeue operations do not clear timeouts in Linux.

e A futex_requeue operation of all k£ threads takes:

tlffutexfrequeuefall = tsys + (tblocking + trequeuefall + Zfpp)
=tsys +2N-(m—1)-(p+5)+ N+k-(p+4)+6.

In all cases, we can observe that the design-specific overhead in a hash-based
futex design is dominated by the blocking time and that this overhead depends
onm- N -p.

Note that in the overhead, the dependency on N relates to the interference
problems due to blocked threads of other partitions described in Section 3.5.3.

Deterministic Futexes

We now determine the worst case of the deterministic futex design of Section 4.1.

Recall that deterministic futexes use two nested BSTs, but individual operations
are preemptive after processing each thread. One lock protects both BSTs, so we
determine the worst case of an operation.

e Locating, inserting, and removing a wait queue in the address tree requires
at most 2 - log,n + 1 cache line accesses for n wait queues.

e Locating, inserting, and removing a waiting thread in a wait queue requires
at most 2 - log, n + 1 cache line accesses for n waiting threads.

e A number of n threads can wait on the same wait queue or on n different
wait queues, maxing out either the wait queue or the address tree. For wait
and wake operations, the worst case is when both address tree and wait
queue are equally filled with § nodes. In this case, an operation takes at
most 4 - log, § + 2 cache line accesses.

e For requeue operations, the worst case is when the address tree and both
source and target wait queue are equally filled with % nodes. In this case,
an operation takes at most 6 - log, 3 + 3 cache line accesses.
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Like in the hash-based futex design, the requeue operation dominates the worst
case. For shared futexes, we have to assume worst-case interference by other
threads and replace n by N. We then end up with a worst case of:

tyst = 6 - log, % + 3.

We use this for all BST operations in the following.

If we consider the blocking during preemptible operations, we know that one
lock protects both source and target wait queues in a requeue operation and we
get interference by at most m — 1 other processors, so the blocking time is:
tblocking = (m - 1) “ Tpst-

The resulting time for a locked BST operation is:
Lost—tocked = tblocking + tpst + tpp =m - tps + tpp-
We now determine the worst cases of the futex system calls.

e A futex_wait operation with a spurious wake-up takes:

td—fute:v—wait
= tsys + (tblocking + tbst + tpp) + tsched—wait + (tblocking + tbst + tpp)
= toys + Csched—wait + 2m - (6 - log, ¥ + 3) + 12.

e A futex_lock operation performs atomic operations on the futex value from
kernel space. Section 4.3.1 describes the trade-off to bound the number of
atomic retries in the kernel at the cost of retries in user space. Like in the
hash-based futexes, we consider a fixed number of m retries before failing:

td—futex—lock = td—fute:c—wait + m.

e A futex_wake operation of one thread takes:

tdffutemfwakefone = Zfsys + (tblocking + tbst + tpp) + Zfschedfwake
= tsys + tsched—wake + M - (6 ' 10g2 % + 3) + 6.

e A futex_wake operation of k threads is preemptive and takes at most:

td—futea:—wake—all = tsys +k- ((tblocking + tpst + tpp) + tsched—wake + tpp)
= toys + K - toched—wake + k- m - (6 -logy & 4 3) + 12k.

e A futex_unlock operation ty_jutes—uniock has similar characteristics as a
futex_wake operation for one thread.

e A futex_requeue operation also clears any pending timeouts. Requeuing
one thread takes:

td—futea:—v"equeue—ane - tsys + (tblocking + tyst + tpp) + ttimeout—clear
= tsys + ttimeout—clear + M * (6 ’ 10g2 % + 3) +6.

e A futex_requeue operation of all k£ thread takes:

tdffutexfrequeuefall = Zfsys + k - ((tblocking + tbst + tpp) + ttimeoutfclear + tpp)
= toys + k - timeout—ciear + k - m - (6 - logy & + 3) + 12k,

Here, the blocking time again dominates the design-specific overheads of the
worst-case times. The worst-case overhead depends on m - log N for preemptible

154



CHAPTER 5. EVALUATION

operations. This reduces the dependency on threads of other partitions to a

logarithmic bound compared to a hash-based design like in Linux with a linear
bound.

Static Futexes

We determine the worst case for a design based on static futexes as presented in
Section 4.2. We use the following considerations for the system. Wait queues are
allocated in advance and not shared among partitions or processes. A single lock
protects all wait queues of a partition or a process. Operations on wait queues
are non-preemptible. We further assume that linked lists are used to manage wait
queues. Also, the non-preemptive design wakes up waiting threads or clears the
timeout for requeued threads with the wait queue lock held.

These design considerations follow our design decisions for AUTOBEST in
Section 4.2.2 and result in a minimal kernel implementation. In contrast to
hash-based futexes and deterministic futexes, we assume that only a small number
of n threads wait on a wait queue.

We first look at the worst-case operations on wait queues.

e Insertion into a priority-ordered wait queue needs at most:
Linsert = N+ 1.

For removal of one waiting thread, we consider:

tremove = 3.

e Due to the non-preemptive design, operations processing more than one
thread are critical. Waking up k waiting threads takes k - t,¢move Ccache
line accesses to handle the wait queue. However, we must also consider &
wake-up operations at scheduler level:
twake—all = k- tsched—wake T 3k.

e Requeuing of one thread takes t,emove + tinsert + ttimeout—ciear time. For
requeuing of k threads, we need at most:
trequeuefall =k- ttimeoutfclear + kz + 4k.

We see that the operations that process more than one thread are the most
expensive ones, but we do not know which of the kernel operations is costlier. If
we consider the worst case of £ = n threads on a wait queue, we get:
tsqu = max(twakefalla trequeuefall)
= rnax(n : tschedfwake + 3”7 n:- ttimeoutfclear + n2 + 4”)

Considering m — 1 other processors, the worst case blocking time is:
tblocking - (m - 1) : ts—wq-

We now analyze the worst cases of the futex system calls.

e A futex_wait operation with a spurious wake-up takes:

ts—futew—wait

155



CHAPTER 5. EVALUATION

= tsys + (tblocking + tinsert + tpp) + tschedfwait + (tblocking + 2fremove + tpp)
= tsys + tsched—wait + 2- (m — 1) . maX(. . ) +n + 16.

e For futex_lock, the same argument as for deterministic futexes applies, so
the operation adds an overhead m to the worst-case results of futex_wait
to bound the number of atomic operations before it fails with an error:

ts—futex—lock = ts—futex—wait + m.

e A futex_wake operation of one thread takes:

ts—futex—wake—one - tsys + (tblocking + tremove + tsched—wake + tpp)
= toys + Lsched—wake 1 (m — 1) . max(. . ) + 9.

e A futex_wake operation of k = n threads takes:

ts—futex—wake—all = tsys + (tblocking + k- (tremove + tsched—wak‘e) + tpp)
= tsys + n- tsched—wak;e + (m - 1) ‘ maX( . ) + 3” + 6

e A futex_unlock operation ts_ fytes—uniock has similar characteristics as the
futex_wake operation for one thread.

e A futex_requeue operation clears pending timeouts. Requeuing one thread
takes:

ts—futez—requeue—one = tsys + (tblocking + Zfremove + tinsert + ttimeout—clear + tpp)
= tsys + Ltimeout—clear + (m - 1) : max(. . ) +n + 10.

e A futex_requeue operation on all k£ = n thread takes:

tsffutexfrequeuefall = tsys + (tblocking +k- (tremove + tinsert + ttimeoutfclear> + tpp)
= tsys + 1 - Limeout—clear + (m - 1) : maX(- . ) +n?+4n + 6.

Here, the blocking term (m — 1) - max(...) includes kernel operations, in particular
the time it takes to wake up or clear the timeout of all threads, and dominates the
worst-case time for m > 2. Also, there are terms of n? affecting the worst-case
time. This is only acceptable if both m and n are small, therefore static futexes
focus on implementations for single processors. However, there is no interference
by threads of other processes or partitions.

Note that we deliberately opted for such worse design decisions compared to
the other designs to show the impact of tight coupling of wait queue and scheduler
operations without preemption points. Still, alternative designs that reduce the
blocking time are possible. When processing all threads, a design can for example
detach a complete wait queue by swapping the wait queue head with an empty
wait queue in O(1) and then process the blocked threads preemptively. This
would allow to exclude scheduler operations from the blocking time.

Light-Weight Blocking for IPCP
We now evaluate the light-weight blocking mechanisms for IPCP of Section 4.4.2.
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The kernel interface comprises just a wait and a wake-up operation. Both
operations compare a futex-like value in user space. The wake-up operation
references the target thread by a thread ID. For this, we assume a lock-free array-
based look-up mechanism in O(1) time and that the look-up takes t;,o5—up = 2
time. We follow the suggested architecture of Table 3.1 in Section 3.6 and compare
the value in user space under the scheduler lock in constant time of ¢ ompare = 2
cache line accesses. Also, we assume that an update of the uprio and the nprio
protocol variables takes t,pdqte—vars = 2 cache line accesses.

The worst case considerations of the wait and wake-up system calls are:

e The wait_at_prio operation comprises:

twait—at—prio = tsys + tcompare + tsched—wait

= tsys + lsched—wait + 2.

e The wake_set_prio operation comprises:
twake—set—prio = tsys + tlook—up + tcompare + tsched—wak:e + tupdate—vars + tpp
= tsys + Lsched—wake 1 8.
We assume that the preemption point is not taken, similar to the other
wake-up operations. Preemption adds tsched—preempt t0 the term.

Compared to the wait and wake-up one operations of futex-based approaches, we
observe only constant overhead here.

System Calls for Priority Changes and Preemption

When implementing IPCP using system calls in a baseline design, the implementa-
tion would probably provide a prio_set system call, similar to the one presented
in Section 5.2.2, and would also use Benno scheduling (Section 3.1.2) to speed up
internal operations. The implementation updates the in-kernel representation of
the protocol variables and compares the given priority to the priority of the next
thread on the ready queue in O(1) time. We assume two cache line accesses for
each dereferenced pointer, so the resulting worst-case is:
tprio—set = tsys + tupdate—vars + tcheck—for—preemption = tsys +4.

Note that we again excluded the costs of preemption here. With preemption,
the costs are: tpriofsetfwithfpreemption = tsys +4+ tschedfpreempt-

The fast IPCP protocols of Section 4.4.1 use a system call to preempt the
thread when necessary. We can now argue that such a preemption system call
will have similar complexity and similar costs:

tsys—preempt = tpm'o—set and tsys—preempt—with—preemption = tprio—set—with—preemption~

Comparison of Kernel Primitives

We now compare the different approaches and start with the futex-based designs.
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We first discussed the worst case of futexes with hashed wait-queues like in
Linux. The design decouples operations on wait queues from low-level scheduler
operations. Operations on the wait queues are non-preemptive. The worst-case
overhead depends on m - N. This is also the worst-case interference other threads
of unrelated processes or partitions might observe. The analysis is not directly
applicable to a real Linux implementation, as our model is reduced in complexity
and omits many corner cases, but it should show the trends correctly.

Next, we analyzed deterministic futexes. Deterministic futexes also decouple
operations on wait queues from low-level scheduler operations, however, the design
is preemptive after processing each thread. The worst-case interference other
threads might observe is reduced to m - log N compared to a hash-based design.
But the caller might observe this overhead for each processed thread, which affects
the worst-case time of individual operations. This aspect is worse compared to
the overhead of a hash-based design.

We then discussed static futexes. Static futexes are non-preemptive and
include the low-level scheduler operations into the wait queue operations. There-
fore, the worst-case overhead also depends on scheduler operations: m - n -
Max (tsched—wake, timeout—clear)- Lhe design choice to include low-level scheduler
operations into non-preemptive wait queue operations only makes sense for both
a small number of threads n and a small number of processors m.

In all considered designs, a futex_lock operation must bound the number of
retries of the atomic operations to be analyzable, but the operations still fail. Also,
the futex_requeue operation just requeued threads, as we have omitted wake-up
operations for “naked notifies” in the analyses.

In so far, the analyses match the expectations of the selected designs. Especially
the design of deterministic futexes addresses the issues of the Linux design at kernel
level. The static futex design as presented is only usable when all parameters are
known and small, e.g. in a statically configured system.

For the light-weight blocking in [PCP, we can observe that the implementation
provides a thin wrapper with constant overhead around the scheduler services for
suspending and wake-up of threads. The same observation holds for system calls
to change the scheduling priority of a thread and to preempt the current thread.

5.3.3 Analysis of Mutexes and Condition Variables

We now evaluate both mutexes and condition variables of the different design
approaches. We start with a baseline design using system calls, evaluate a futex-
based design, and then consider a monitor-based design. For the futex- and
monitor-based designs, we include the kernel operations of Section 5.3.2 in our
worst-case considerations. Finally, we compare the results and the design-specific
overheads.
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System-Call-Based Synchronization Mechanisms

We first determine the worst case of a baseline implementation of mutexes and
condition variables using system calls. Similar to the design of static futexes
in Section 4.2, we assume that wait queues are allocated upfront. But unlike
the analysis of static futexes in Section 5.3.2, we use design choices focusing on
scalability. Like deterministic futexes in Section 5.3.2, the baseline design uses
a BST as wait queue, and operations on the wait queue are preemptible after
processing each thread. However, each wait queue has its own lock, and mutex
and condition variable operations lock at most one wait queue at a time. Note
that a wake all operation is not needed for mutex or condition variables.

As approach to determine the worst case, we follow the general approach for
the kernel primitives of Section 5.3.2.

We first determine the worst case of operations on a wait queue. Locating,
inserting, and removing of a thread in a wait queue requires at most 2 - log, n + 1
cache line accesses for n waiting threads. This is also our internal worst case t,_qq,
therefore tyocking = (M — 1) - tp_wq When considering m processors.

We now determine the worst cases of the system calls.

e A mutex_lock operation with a spurious wake-up locks the BST twice to
first insert and then remove a thread again. This takes:
Lo—mutex—lock
= tsys + (tblocking + tinsert + tpp) + tsched—wait + (tblocking + tremove + tpp)
= toys + Lsched—wait + 4m - logyn + 2m + 12.

e A mutex_unlock operation takes:

tbfmute:rfunlock = tsys + (tblocking + tremove + tpp) + tschedfwake
= tsys + tsched—wake + 210 - logg n + m + 6.

e A cond_wait operation first locks the condition variable wait queue and adds
the thread to the wait queue. Then it locks the mutex wait queue, unlocks
the mutex, and removes the next mutex owner. It wakes up the next mutex
owner, and then suspends the calling thread. After wake-up, it must handle
a spurious wake-up. For this, the operation removes the thread from the
condition variable wait queue, adds it to the mutex wait queue, and waits
again. Afterwards, it locks the wait queue and checks for consistency (see
Section 4.4.2 for a related reason in the monitor case). This takes:
tb—cond—wait - tsys + (tblocking + tinsert + tpp) + (tblocking + tremove + tpp) +
tsched—wake + Zfsched—wait + (tblocking + tremove + tpp) + (tblock‘ing + tinsert + tpp) +
tschedfwait + (tblocking + tpp)
= tsys +2- tschedfwait + tschedfwake + (1OTTL - 2) ' 10g2 n + 5m + 29.

e A cond_signal operation removes a thread from the condition variable wait
queue and adds the thread to the mutex wait queue. We assume the mutex is
properly locked during this operation. This also clears any pending timeouts:
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tbfcondfsignal
- tsys + (tblockmg + tremove + tpp) + ttimeout—clear + (tblockmg + tinsert + tpp)
= tsys + Limeout—clear + 410 - logg n—+2m + 12.

Support for “naked notifies” additionally needs tsched—wake-

e A cond_broadcast operation follows the blueprint of cond_signal in a loop.
For k threads, it takes:

tb—cond—broadcast

= tsys + k- ((tblocking + tremove + tpp) + ttimeout—clear + (tblocking + tinsert + tpp))
= toys + K+ trimeout—clear + 4k - m - logyn + 2k - m + 12k.

Note that the blocking time always depends on m - logn per internal wait queue
operation. This also dominates the design-specific overheads.

From a worst-case analysis point of view, this presented design is a hybrid of
the other designs. Compared to the futex-based designs analyzed in Section 5.3.2,
the kernel handles all corner cases internally.

Futex-Based Synchronization Mechanisms

We now present an analysis of mutexes and condition variables based on futexes
and following the designs in Sections 4.3.1 and 4.3.2. We combine the user space
results with the results of the analysis of deterministic futexes of Section 5.3.2.

Note that in all cases, an implementation of a synchronization mechanism
in user space is a relatively thin wrapper upon the futex API in the kernel and
mostly comprises constant operations, but we have to consider the time for extra
retries if the comparison of the futex value in the kernel fails. However, unlike
in the analysis of the kernel operations, we can now exclude malicious behavior
and assume that loops with atomic operations in user space and in the kernel will
complete after at most m retries.

e A mutex_lock operation tries to lock the mutex in the fast path at most m
times before calling the futex_lock in the kernel. We assume the kernel
operation succeeds after m steps:
tf—mutex—lock =m+ td—futea:—lock =2m + td—futea:—wait
= toys + tsched—wair + 2m - (6 - logy & 4 3) + 2m + 12.

e A mutex_unlock operation fails the fast path after m times and then calls
futex_unlock:

tffmutexfunlock =m+ tdffuteazfunlock
= tsys + tsched—wake + M - (6 . 10g2 % + 3) 4+ m + 6.

e A cond_wait operation comprises the following steps in the worst case: (i)
read the condition variable’s sequence counter (constant), (ii) unlock the sup-
port mutex (mutex_unlock), (iii) wait on the sequence variable (futex_wait),

160



CHAPTER 5. EVALUATION

(iv) observe a spurious wake-up, and (v) lock the mutex again (mutex_lock).
Thus, the worst case is:

tf—cond—wait =1+ tf—mute:c—unlock + td—futex—wait + tf—mutea:—lock
=3- tsys + 2. tsched—wait + tsched—wake + om - (6 : 10g2 % + 3) + 3m + 30.

e A cond_signal operation increments the sequence counter and then calls
futex_requeue to requeue one thread. As usual, we assume the mutex is
properly locked during this operation. The worst case takes:

tffcondfsignal =m+ tdffutexfrequeuefone
= tsys + ttimeout—clear + M * (6 ’ logQ % + 3) +m+ 0.

e A cond_broadcast operation increments the sequence counter and calls
futex_requeue to requeue all threads. The worst case for k threads takes:

tf—cond—broadcast =m+ td—fute:c—requeue—all
= tsys + k - ttimeout—clear + k-m- (6 : 10g2 % + 3) + 12k + m.

The overheads added by the failed fast paths in user space comprise the extra
operations to handle the atomic operations. The worse-case overhead in the kernel
of m - logN still dominates.

Recall from Section 5.3.2 that for shared futexes, a wait queue operation
includes interference from threads of other partitions/processes, but if we replace
N by n, we get the worst-case for private, non-shared futexes with n threads in a
partition, and then m - logn dominates the overhead.

Monitor-Based Synchronization Mechanisms

We now analyze the monitor-based mutex and condition variables presented in
Section 4.5.2 and Section 4.5.3.

We start with an analysis of the low-level monitor primitives of Section 4.4.3.
We assume that a monitor protects some internal data, and that the related critical
section takes tcg time, so the blocking time comprises tyocking = (M — 1) - tos.
Note that the following primitives do not contain operations on wait queues.

e An enter operation modifies the state of user space variables in a constant
time to disable preemption, then waits the full blocking time of the internal
spinlock before the caller acquires the internal lock. Recall from the reference
architecture in Section 5.3.1 that t,, accounts the overhead for this, i.e.
disabling preemption, two operations to lock and unlock a spinlock, and
enabling preemption again, without taking a system call for preemption.
We use half of the overhead of the enter operation and half of the overhead
for a leave operation:
brn—enter = %tpp + tblocking = (m - 1) “tos + 3.

e Similarly, a leave operation modifies user space variables to unlock the spin-
lock and enable preemption in a constant time and then issues a system call
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for preemption. We leave out the actual time for preemption tsched—preempt,
like in the other considerations:

tin—leave = %tpp + tsys—preempt =3+ (tsys + 4) = tsys +7.

e A notify operation defers the actual wake-up until the caller has unlocked
the internal spinlock and calls the fused system call to both wake up and
preempt. We account this as a leave with wake-up operation:
tmfleavefwithfwakefup = %tpp + twakefsetfprio =3 + (tsys + tschedfwake + 8)
= tsys + tsched—wake + 11.

Note that the additional overhead to wake up a thread is tscheq—wake + 4.

e A wait operation first unlocks the internal spinlock, calls the kernel to wait,
and then locks the internal spinlock again.
tmfwait = %tpp + twaitfatfprio + %tpp + tblocking
= 3+ (Loys + tsched—wait +2) + 34+ (m —1) - teg
- tsys + tsched—wait + (m - ]-) : tCS + 8.

Besides the blocking time in the enter and wait operations, the monitor directives
map to the low-level kernel primitives with a constant overhead.

We now refine the internal data protected by the spinlock and introduce the
wait queue. Like in the system-call-based baseline design, we use a BST for the
wait queue, therefore locating, inserting, and removing of a thread in a wait queue
requires at most ¢,,_,, = 1 + 2 -log, n cache line accesses for n threads. However,
this is yet not sufficient to define tcg. We must analyze each operation first. Note
that the parts comprise tcg are put in parenthesis.

e A contended mutex_lock operation comprises enter, insertion into the wait
queue, wait, a spurious wake-up, the resulting removal from the wait queue,
and leave. This takes:
tm—mutex—lock == tm—enter + (tm—wq) + ZSm—wait + (tm—wq) _I' tm—leave
=2- tsys + toched—wait + 2 tmqu + 2(m — 1) -tocg + 18.

e A contended mutex_unlock operation comprises enter, removal from the wait
queue, and leave with wake-up:

tmfmutexfunlock = tmfenter + (tmf'wq) + tmfleavefwithfwakefup

- tsys + tsched—wake + tm—wq + (m - 1) ' tCS + 14.

e A cond_wait operation comprises enter, insertion into the condition variable
wait queue, removal of the next mutex owner from the mutex wait queue, a
low-level wake operation to wake the next mutex owner, a wait operation
on the condition variable, a spurious wake-up, removal of the caller from
the condition variable wait queue, insertion into the mutex wait queue wait
on the mutex, and a leave operation. This takes:

tmfcondfwait
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= tmfenter + (2 : tmqu) +twakefset7prio +tm7wait + (2 : tmqu) +tm7wait +tmfleave
=4 tsys +2- tsched—wait + tsched—wake ++4- tm—wq + 3(m - 1) : tCS + 34.

e A cond_signal operation comprises enter, removal from the condition vari-
able wait queue, insertion into the mutex wait queue, and leave. As usual,
we assume the mutex is properly locked during this operation. The worst
case takes:
tmfcondfsignal = tmfenter + (2 : tmqu) + tmfleave
=tsys + (M —1) - tes + 2 tywg + 10.

Support for “naked notifies” would change ¢,,,_jeqve 1IN0 T —teqve—with—wake—up
and add another tshed—wake + 4-

Another alternative is to clear the timeout, like in the other implementations
of condition variables. For this, we introduce a leave and clear timeout
operation based on a clear_timeout_set_prio system call, with similar
costs as tm—ieqve—with—wake—up AN tygke—set—prio- Lhis would add another
trimeout—ciear + 4 to the baseline version.

e A non-preemptive cond_broadcast operation is similar to cond_signal, but

handles all k£ threads on the condition variable wait queue. The worse case
takes:
tmfcondfbroadcast = 2fmfenter + (2k : tmqu) + tmflea'ue
= toys + (M —1) - tog + 2k -ty + 10.
As alternative, we can also consider a preemptive variant of cond_broadcast
that unlocks the spinlock, calls the kernel for a preemption point, and then
locks the spinlock again. But then we should make it similar to the other
variants and also include an operation to clear the timeout. We model this
as k times ¢,,—cond—signar Plus the overhead to clear the timeout:

tm—cond—broadcast—tc =k- (tm—cond—signal + ttimeout—clear + 4)
=k- tsys + k - ttimeout—clear + k - (m - ]-) : tC’S + 2k - tm—wq + 14k.

We can now see that the non-preemptive version of cond_broadcast dominates
the worst case of the spinlock-protected critical section. For n threads, this takes
tos = 2n - ty_we- When we now insert tcg in each term, we see that the overhead
depends on m - n - logn because of the missing preemptiveness.

But if we consider the preemptive version of cond_broadcast, then waiting
and signaling dominate the worst case with two BST operations, and we see the
overall overhead only depends on m - logn.

Comparison of Worst Cases

We now compare the different approaches for mutexes and condition variables.
For the comparison, we use the same conditions for all three approaches. This
helps us to see the individual overheads. For deterministic futexes, we consider
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private, non-shared futexes as use case. This removes the interference of other
partitions, as the baseline variant is also non-shared. For the monitor-based design,
we consider the preemptive variant. With this, all three approaches use a BST for
the wait queue and handle threads preemptively. The only remaining difference,
besides the general approach, is the locking strategy for the wait queues. The
baseline variant uses a dedicated lock for each wait queue. Deterministic futexes
use a shared lock for all private wait queues of a process. The monitor-based
approach uses a dedicated lock for each mutex and shares the lock for associated
condition variables.

In all three approaches, we see the following general patterns. The number of
internal wait and wake-up operations is the same in all variants. Mutexes always
operate on one wait queue, while condition variables must handle two wait queues
consistently. In general, all operations show the same complexity in all variants
when considering the preemptive variants of cond_broadcast.

We start the discussion with the baseline design using system calls. We
can observe that all operations (obviously) need exactly one system call. This
version defines the minimum overhead of all three approaches. The overhead, i.e.
the additional operations in each operation’s term, comprises just m - ty_,, for
each wait queue operation including blocking overhead, with #;_,,, being of logn
complexity.

In the operations of the futex-based synchronization mechanisms, we see as first
speciality that cond_wait takes three system calls. This is because the kernel does
neither provide automatic requeuing on timeouts as discussion in Section 4.3.2 nor
a combined wake-up-and-wait primitive. But this is the only unusual overhead we
can observe. The remaining overheads are for wait queue operations including any
blocking with the same complexity of m -logn as in the base line case and for a
constant number of additional atomic operations. Also, the cond_wait operations
in both the baseline and futexes see blocking of the wait queues five times. In the
baseline, this is caused by the distinct locks per wait queue, in futexes due to the
disadvantageous split between the system calls.

Overall, this shows that the deterministic futex design when using private and
non-shared futexes has similar polynomial terms in the worst-case timing model
with the same degree as the baseline variant. However, the actual logarithmic term
is different due to the two nested BSTs. Also, in the case of shared futexes, the
polynomial degree stays the same, but the logarithmic term now has to consider
all N threads in a system.

Note that the discussion has evaded the topic about what happens if a semantic
check in the kernel fails. For mutexes, the semantic checks in the kernel acquires
a mutex for the calling thread or blocks the calling thread, therefore a failure
does not cause retries. Likewise, a failed compare-equal check in the condition
variable protocol means that the condition variable has been signaled, as discussed
in Section 4.3.2. But this is not true for the other futex-based synchronization
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mechanisms of Section 4.3 like semaphores. We leave open how a detailed worst-
case analysis would look like.

The last variant for discussion is the monitor-based synchronization design.
Here we see a noticeable difference: mutex_lock needs two, cond_wait needs four,
and cond_broadcast needs k system calls in the preemptive variant due to the
much lower level of the system calls. Also, we see blocking in cond_wait only three
times and just half of the blocking terms in cond_signal and cond_broadcast,
as the internal lock protects both queues and the operations are not split into
different system calls (a baseline implementation with a single lock protecting
all queues would show a similar behavior). However, the complexity of the wait
queue operations follows the same pattern as in the baseline and in futexes. Any
remaining worst-case overhead comprises constant steps. Therefore, the preemptive
monitor design has comparable worst-case terms with similar polynomial degrees
as the baseline variant.

However, the monitor design is intended to be non-preemptive in the first place
and the clearing of timeouts is also not included. This is on purpose, because
the number of threads to requeue is usually small and a spurious wake-up of a
requeued thread already waiting on the mutex has no impact on the correctness
(the thread’s position on the mutex wait queue remains unchanged) and the
problem that timeouts trigger can be considered rare (a meaningful condition
for a timeout in cond_wait is that the timeout should be much greater than the
blocking time, i.e. timeout > m - tcg). Summarized, this design moves both
pessimism (wait queue handling is non-preemptive) and optimism (the number of
threads n is small and only depends on the current application) into user space.

5.4 Evaluation Summary

We now summarize and discuss the evaluation results.

General Approach

Our results show that both general design approaches for blocking synchronization
mechanisms, namely futexes and monitors, are both efficient and predictable.

Our assessment of the different ARM processors in Section 5.1 has shown that
our design approach to reduce or even get rid of system calls in the fast path
is desirable not only on the x86 processor architecture. Reducing the number
of system calls is a main driver for the performance improvements in the best,
uncontended case, as the benchmarks for the efficient IPCP implementation in
Section 5.2.2 and for futexes and monitors in Sections 5.2.3 and 5.2.3 show.

To evaluate the impact of the designs on the WCET, we presented a worst-
case timing model based on cold-cache data accesses in Section 5.3.1 that shows
differences in the design when an implementation inadvertently triggers worst-case
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allocation patterns in the cache. The benchmark results in Section 5.2.1 show
trashing in the same sets in the caches due to these worst-case memory access
patterns and a second problem that the memory accesses cause contention on
shared resources further down the memory hierarchy.

Main Differences of Futex and Monitor Designs

We will now summarize the differences of the futex and monitor designs from
both a best-case and a worst-case point of view.

In the best case, the overhead in the fast path of both the futex and the
monitor variants is less than a system call, but the monitor shows more overhead
than a futex. A futex fast path typically comprises one atomic operation with
either acquire or release semantics or equivalently a memory barrier. The monitor
fast path requires a non-preemptive critical section (load and store instructions
on the local processor), and one or two atomic operations with both acquire and
release semantics or equivalent memory barriers in the spinlock operations.

For the worst case, we assume that the fast paths are not taken. Then we see
mostly similar costs compared to a baseline using system calls. But the actual
place where these costs and overheads need to be accounted to differs and depends
on the design. For futexes, the kernel needs to look-up a wait queue and then
suspend the calling thread or wake up a waiting thread. This is similar to the
baseline design. In contrast, the monitor design maintains the wait queue in user
space and just suspends or wakes up threads in the kernel. Here, most of the
in-kernel costs are moved to user space. However, the operations at the lowest
layer to suspend the current thread or wake up a waiting thread are the same,
regardless of the futex, monitor, or baseline design.

Deterministic Futexes

Deterministic futexes use two nested BSTs to firstly locate particular wait queues,
and to secondly maintain the individual threads blocked on the wait queues. In
both cases, the number of nodes in the BST grows dynamically depending on the
number of blocked threads. From a performance point of view, the BSTs do not
comprise many nodes on average and traversal is quick. Also, as threads can only
wait at one wait queue at once, we can observe the interesting effect that maxing
out the number of nodes on either BST does not lead to worst-case behavior. The
worst cases is found when BSTs are equally filled.

In comparison to the Linux implementation analyzed by the author in [ZK19]
and shown in Figure 3.6 in Section 3.5.3, the benchmarks of deterministic futexes
in Section 5.2.1 show that using BSTs effectively bound the execution time and
the interference by and to other partitions to logarithmic complexity, as expected.

The worst-case analyses in Section 5.3.2 have shown that deterministic futexes
improve the worst-case interference of m processors and N overall threads in the
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system from m - N (hash-based wait queues, like in Linux) to m - log N. But
the analyses have also shown that the overall execution time of operations that
process more than one thread takes more time when using deterministic futexes
due to the preemptible design.

The analyses of the higher-level synchronization mechanisms built on top of
deterministic futexes of Section 5.3.3 also show a similar complexity as a baseline
implementation using system calls, but a higher worst case and more system calls
due to limitations of the futex API in case of spurious wake-ups compared to
in-kernel implementations of blocking mechanisms.

Also, deterministic futexes address the problem of unbounded loops for atomic
operations on futex values found in the Linux implementation. The presented
design moves the overall problem from the kernel to user space, where we have
argued that bounding the loops is only a problem of the application not behaving
correctly when using mutexes and condition variables. We have left open how
to handle this for other synchronization mechanisms, like the semaphores of
Section 4.3.

Static Futexes

The analysis of static futexes in Section 5.3.2 with similar design decisions as in
AUTOBEST shows that using a non-preemptible futex design due to its simplicity
only pays off if all parameters are small bounded, as the worst-case overheads
depend on m - n - tscheduler—operation and also include scheduler operations.

As the number of threads in statically configured systems is usually small
and the scope of futexes in AUTOBEST is limited to a single processor core, the
resulting worst-case is acceptable if these preconditions are met.

Monitor-Based Synchronization Mechanisms

The second general design approach using monitors moves any wait queue man-
agement into user space and provides minimal kernel mechanisms with constant
overheads to the kernel’s scheduling primitives, as the analyses in Section 5.3.2
show.

The general design approach to keep the number of system calls small when
using monitors is to use a non-preemptive design for wait queue operations, but
this can cause some hiccups, as for example spurious wake-ups after requeuing
are not proactively prevented. However, this does not impact the correctness of
the approach, as the position of a thread in a wait queue is independent of the
waiting state in the kernel.

But due to the use of minimal primitives, we see a huge difference of the
number of system calls between the best case and the worst case, especially if
we compare the results to a baseline implementation of mutexes and condition
variables based on system calls.
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Also, a critical point in a WCET analysis is the non-preemptive critical section
in user space. An in-kernel implementation can simply disable interrupts to achieve
non-preemptiveness, however, this is not possible in user space. Therefore, in the
WCET analysis, extra delays due to interrupt handling have to be accounted for.

The UPRIO|NPRIO Protocol

The UPRIO|NPRIO protocol for efficient IPCP shows the best results from both
performance gains and worst-case point of view. The protocol never needs a
system call to raise the priority, and only one when preemption is really needed.
In the best case, the costs just comprise manipulation of protocol variables in TLS.
In this regard, the protocol is better than any system-call-based implementation
of IPCP or other mechanisms to change the scheduling priority. Also, the analysis
of the underlying mechanisms in Section 5.3.2 shows that only a thin wrapper
with constant overhead around the kernel’s scheduler services is needed.
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Discussion

In this chapter, we will discuss the designs presented in Chapter 4 and the
evaluation results of Chapter 5. We highlight the basic techniques of each design,
and discuss practicality, limitations, challenges, and safety and security concerns.
We discuss the designs in comparison with other state-of-the-art approaches.

Section 6.1 starts with a discussion on the exploration of the design space
as framework for further discussions. This covers the aspects both common
to monitors and futexes. Then we discuss the different aspects of futex-based
designs in Section 6.2. Section 6.3 discusses the monitor-based approach for
synchronization mechanism and the efficient IPCP protocols. Section 6.4 compares
both design approaches. We also discuss the applicability of real-time protocols
to the designs in Section 6.5. Finally, we discuss the contributions of this thesis
in Section 6.6.

6.1 Design Space Exploration

We briefly summarize the design space of fast paths for blocking synchronization
mechanisms in user space.

Fast paths and semantic state: The analysis in Section 3.4 of the building
blocks of blocking synchronization mechanisms in a baseline implementation using
system calls has shown that most thread synchronization mechanisms follow a
similar blueprint in their implementation. At the lowest level, all mechanisms
suspend the calling thread or wake up one or more waiting threads. To generalize
this, we have defined a synchronization-mechanism-specific semantic state that
needs to be checked before the decision to suspend or wake-up is taken. This
semantic state also comprises one or more wait queues. The semantic state and
the wait queue are usually protected by a specific lock.

Fine-grained locking in an operating system kernel often uses a different lock
to protect ready queues. In Section 3.8, we have discussed techniques for coupling
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of consecutive critical sections without nesting them by using wait indicators. We
also discussed different protocols for wait indicators. Alternatives to consecutive
locking comprise using just a single lock for both critical section (global lock,
scalability issues), or hand-over-hand locking (this inflates the WCET of the first
(outer) critical section with the pessimism of the second (inner) critical section).

In this layered stack of operations, we have explored different ways to enable
fast paths in user space. The analysis in Section 3.6 has shown one general
approach to move the semantic state partly or fully into user space. We then
explored different designs to exploit the fast paths in Chapter 4.

Consistency: However, the semantic state needs to be protected against con-
current modifications in user space as well. This requires an additional critical
section in user space and a proper handover of the waiting state to the next
consecutive critical section in the kernel using a wait indicator mechanism.

Futexes actually “compress” the semantic state into single variables and use
atomic operations for consistency (Section 3.5.1). Due to the atomic operation,
only a limited amount of data can be modified. In the futex designs we discussed,
this is just a 32-bit variable, but it could be a larger state. However, futexes use
lock-free algorithms to change the atomic variables. These require loops if the
atomic operation does not succeed, as Section 4.3 shows.

As alternative to atomic operations, in Section 3.6 we discussed to use a
“full” critical section to protect the semantic state in user space. For this, we
intended to use spinlocks to serialize access from multiple processors. And for
real-time applications, we especially wanted fair spinlocks. However, spinlocks are
susceptible to the lock holder preemption problem, and fair spinlocks additionally
to the lock waiter preemption problem. Since we target real-time systems and use
P-FP scheduling, we can use IPCP to effectively disable preemption.

Using system calls to disable preemption would defeat the futex approach of
moving the fast path into user space, therefore we discussed techniques to change
the scheduling priority efficiently without system calls in Section 4.4.1. With this,
we get non-preemptible critical sections in user space. We explored this approach
as an alternative to using atomic operations in the monitor design presented in
Section 4.5.

Wait queues: With the semantic state moved to user space, we then looked
at the next logical layer, wait queue management. In Section 3.6, we discussed
two general approaches to keep the wait queue in the kernel, or move the wait
queue to user space as well. Wait queues in the kernel follow the baseline design.
They require a mechanism to allocate and address related kernel objects. In
contrast, wait queues in user space requires more sophisticated synchronization in
user space to keep the wait queue consistent. They also require a mechanism to
address particular (blocked) threads.
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Wait queues in the kernel have the benefit that the kernel has implicit knowl-
edge of the relation of synchronization objects and blocked threads. This infor-
mation is not available when wait queues are kept in user space. A benefit of
wait queues in user space is that the fast path code gets the implicit information
whether a wait queue has waiting threads or not. Providing this information when
the wait queue is in the kernel requires rigorous accounting in user space or a
back-channel by the kernel.

The next logical layer in the design space below wait queue management is
already the interaction with the scheduler to suspend and wake up threads. We
decided to keep this layer in the kernel and not try to move it into user space, as
this would require to depart from a traditional kernel architecture. It would be
interesting to see if this part of the design space could be further exploited, e.g.
by using user space schedulers like [ABLL92].

Futexes with wait queues in the kernel: Wait queues in the kernel raise
two related questions: how is the related kernel object allocated, and how does
user space address this kernel object.

For futexes in Linux, we see that a kernel object comprises pre-allocated hash
buckets with shared wait queue heads (Section 3.5). In the deterministic futex
design presented in Section 4.1, the wait queue heads are created on demand.
Both designs create wait queues as logical kernel objects on demand without prior
registration. This helps when the fast path in user space observes contention and
requires kernel support for blocking. There is no a priori relation of user space
objects to kernel objects. In contrast, in the static futex design of Section 4.2,
the wait queues heads are created before use, e.g. at compile time. Also, each
synchronization object in user space requires a related kernel object.

To address the wait queues in the kernel, Linux and the deterministic futex
design address the in-kernel wait queue by the futex address in user space. This
address is unique for each futex object in user space and is the key technique
to create logical wait queues on demand. In the static futex design, user space
code addresses the pre-allocated wait queue heads by their index, e.g. the position
in an array. But there are more alternatives possible: our original design for
deterministic futexes [Zuel3| uses the thread ID of the first waiting thread to
locate the in-kernel wait queue, assuming the kernel supports an array-based
look-up of threads by IDs.

Monitors with wait queues in user space: We named the approach that
keeps both the semantic state and the wait queue in user space a monitor. It
does not require a scheme to directly or indirectly address a wait queue in the
kernel, but addresses blocked threads by their thread ID directly. Also, the kernel
operations are reduced to a minimum as described in Section 4.4.2 for the light-
weight waiting and wake-up mechanisms. However, we added some extensions
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to the mechanisms to cooperate with the fast IPCP implementation described in
Section 4.4.1.

Compared to futexes, the monitor design moves the semantics of the blocking
mechanism completely into user space and avoids complexity and related deter-
minism problems in the kernel. This comes at the costs that the kernel does not
need to know anything about the protocols or the semantics of the synchronization
mechanisms. But this also means that the kernel cannot know or do anything.
User space must now handle everything.

Interference due to shared namespaces: Another important aspect that
all designs must handle are interference problems when using shared namespaces.
Both futexes in Linux and deterministic futexes distinguish between process-
private and global-shared futexes. In Linux, both private and global namespaces
share the same hashed wait queues, so one can observe interference by futex
operations of unrelated processes (see Section 3.5.3).

In contrast, the deterministic futex design keeps private futexes specific to
their process. Only global futexes can observe interference. Due to the global
interference, we also opted for a design that is preemptive for operations processing
more than one thread. This effectively bounds the interference in a predictable
way. In the static futex design, any global interference is explicitly configured by
the system configurator when connecting the wait and wake-up ends of the wait
queues (see Section 4.2).

The monitor design similarly requires to have access to the thread IDs of all
participating threads. This is the case for threads in the same process, but usually
not given for threads in other processes. Giving applications global access to all
threads in the system causes interference. Note that the presented design has a
safeguard to prevent unwanted wake-ups by requiring the addresses of the local
state variables in user space to match.

6.2 Futexes

We now discuss the two presented futex designs in detail. We discuss deterministic
futexes in Section 6.2.1 and static futexes in Section 6.2.2. Section 6.2.3 discusses
the practicality of futexes for implementing blocking synchronization mechanisms.

6.2.1 Deterministic Futexes

We discuss the deterministic futex design presented in Section 4.1 and evaluated
in Section 5.2.1.
The discussion is partly taken from the author’s previous work [ZK19].
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Comparison to Futexes in Linux: The deterministic futex design follows
the general design principles and the APIs of futexes in Linux as reference. In
both cases, the kernel provides a general compare-and-block mechanism and a
specialized mechanism for mutexes where the kernel specifies the protocol. The
according higher-level synchronization mechanisms of Section 4.3 also follow the
design of futex-based synchronization mechanisms in Linux.

The analysis of the Linux implementation in Section 3.5 clearly shows that
it was designed for best case scenarios, e.g. only a small number of threads need
to block, and collisions in the futex hash table are rare. This is usually the
case during normal operation of a system. However, if one needs to determine
upper bounds of the WCET, the corner cases in the Linux implementation lead
to potentially unbounded execution time.

The deterministic futex design presented in Section 4.1 improves on the Linux
design w.r.t. predictability, while maintaining a similar feature set. Due to the use
of nested BSTs instead of hashes and linked lists, the deterministic futex design
shows additional overhead with logarithmic complexity in all futex operations, as
the evaluation in Section 5.2.1 shows. Also, the locking approach is restricted to
a single shared lock, which is worse in the average case compared to the Linux
implementation, as Linux uses a dedicated lock for each hash bucket, but at
the same time, the deterministic futex design bounds the worst-case timing by
preemptively processing multiple threads.

The deterministic futex design does not support all futex use cases available in
Linux, as it handles either just one or all threads, and not an arbitrary number
of threads. However, we do not consider this to be a problem, since typical
implementations of POSIX synchronization mechanisms do not require operations
on an arbitrary number of threads. Even if we consider that some mechanisms like
the barriers discussed in Section 4.3.4 could benefit from a wake-up operation with
a flexible number of waiters, preemption at any time and other race conditions
require us to wake up all waiting threads to prevent missed wake-ups. With these
limitations, it is unlikely that the deterministic futex design would be acceptable
for inclusion in Linux.

Lack of support for the priority inheritance protocol (PIP): The deter-
ministic futex design presented in this thesis does not support PIP for mutexes.
Still, it would be possible to provide support for PIP and include any data to
build a resource allocation graph in the wait queue anchor and in the thread’s
TCB. For priority inheritance in non-nested locks, tracking the highest priority
blocked thread as source of the inherited priority is sufficient.

However, the nested and transitive case, where a set of threads block on
a mutex, but the current lock holder is itself waiting on another mutex, is
more complex. The nesting creates a chain of dependencies in the resource
allocation graph, which can become very long (potentially unbounded) and must
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not contain cyclic dependencies (deadlocks). We assume that implementing
support for PIP with nested locks with an arbitrary level of nesting and with
proper deadlock detection would increase the temporal behavior of the futex_lock
and futex_unlock operations beyond a level acceptable for predictability. But
an implementation with a strictly bounded number of nesting levels would be
possible. We consider this for future work.

From the predictability point of view, using the immediate priority ceiling
protocol (IPCP) instead of PIP prevents this complexity, as then any nesting of
critical sections must be handled by user space code. Also using IPCP enables
further optimization, as the techniques discussed in Sections 3.7 and 4.4.1 to
change a thread’s scheduling priority in user space without the need for system
calls show. This allows to prevent any system call overhead for critical sections
without contention, similar to uncontended futex operations. However, this now
burdens the user space programmer or system integrator to set up ceiling priorities
of the mutexes correctly.

Preemptible operation: Implementing operations on multiple threads in a
preemptible way also needs further discussion. In Linux, all operations handling
multiple threads execute uninterruptibly w.r.t. other futex operations targeting
the same futex, but the presented implementation does not. Preemption in these
operations introduces a sneak-in problem, where threads can re-enter a wait queue
while another thread operates on them. This may facilitate denial-of-service
attacks on the kernel, as operations may never terminate. The presented approach
with an explicit open/closed state for wait queues solves this, but it introduces
the additional problem of multiple wait queues in closed state, which is solved
with the drain ticket concept, as described in Section 4.1.5.

The question arises if it is in general acceptable to help out older, but still
unfinished operations, i.e. wait queues with a lower drain ticket number. We can
answer this question by considering the following usage constraint of condition
variables: the caller of cond_signal and cond_broadcast shall have the support
mutex locked as well, so none of the requeued threads will run before the caller
unlocks the support mutex. Therefore, handling threads of a previous waiting
round can only happen when cond_signal and cond_broadcast do not have the
support mutex locked, and in this case, POSIX does no longer guarantee “pre-
dictable scheduling” [IEE17|. This means the answer to this question is yes, in
accordance to RQ9 (hidden transience) of the requirements of Section 3.2.3.

A different use case is a barrier implementation like the one discussed in
Section 4.3.4 where a given number of threads block until all threads have reached
the barrier. Here, the implementation of barrier_wait uses futex_wake to wake
all blocked threads. A preemptive futex_wake operation could get immediately
preempted by a higher priority thread that is woken up as first thread and then the
other threads are kept blocked until the original thread continues draining the wait
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queue. Note that this would not happen in a non-preemptible implementation.
However, POSIX also notes that applications using barriers “may be subject to
priority inversion” [IEE17], so this allows some freedom in the interpretation of the
standard. Alternatively, an implementation can mitigate this issue by temporarily
raising the caller’s scheduling priority to a priority higher than the priorities of all
blocked threads during wake-up. This could be implemented at user space level
in the barrier implementation, or at kernel level in futex_wake.

6.2.2 Static Futexes

We now discuss static futexes, the futex design for statically configured systems
presented in Section 4.2 and evaluated in Section 5.3.2.

Index-based futex design: A first idea of the static futex design is that the
kernel knows all wait queues in advance. The wait queues could be pre-allocated
at compile time, or created at initialization time of the user space synchronization.
In all cases, this leads to an 1:1 relation of user space synchronization objects to
kernel wait queues. The key advantage of this idea is that the kernel can now
look up wait queues in O(1) time, rather than using a wait queue look-up based
on futex user space addresses. This also solves problems of internal locking and
of related interference. An alternative name for this approach is indez-based futex
designs. Such an approach is also used by Spliet et al. [SVBD14] in their work on
futexes in LITMUSRT.

However, the downside of using an index-based design is a different API that
uses an index rather the futex address. For the usual robustness, scalability,
and interference reasons, futex arrays and according indices should be kept in
a local per-process namespace. However, index numbers are problematic for
process-shared synchronization objects placed in a shared memory, as the indexes
can differ between the processes and indices kept in synchronization objects in
user space might be ambiguous about the owning process. This restricts the
flexibility of the design compared to the address-based futex designs that always
have a unique key to identify the wait queue, namely the physical address of the
futex object.

Split wait and wake-up ends: A second idea explored in the static futex
design used in AUTOBEST is to split the waiting and the wake-up end of the
wait queues and provide the ends to different processes or partitions. The original
intention for this split was to provide a mechanism to configure shared futexes.
Another intention for this was robustness: The wake-up side API requires just
the process-local ID of the wait queue to perform a wake-up operation, so the
futex value to manage threads on the waiting side can be kept outside the shared
memory.
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Non-preemptible design and static configuration: The rest of the static
futex design follows the standard blueprint of futexes. The kernel provides a generic
compare-and-block primitive for waiting. The design uses a non-preemptible design,
as only wake all and requeue all operations need to process more than one thread.
This design decision is only acceptable for a small number of blocked threads and
if the overall number of threads is bound and known at compile or analysis time.
The impact from the timing analysis also suggests to use such a non-preemptible
design only for single processor systems, as the analysis in Section 5.3.2 shows.

6.2.3 Practicality of Futexes

We now discuss the practicality of the presented futex designs for the blocking
synchronization mechanisms described in Section 2.2.

Futexes offer two APIs, a generic API that provides compare-equal semantics
for the blocking condition, and a mutex API that implements a specific mutex
protocol in both the blocking and wake-up operations. However, the pure existence
of the mutex API already hints to a problem that the generic API is not well
suited for mutexes. Also, the futex-based designs of the blocking synchronization
mechanisms in Section 4.3 have also shown that the general API does not apply
well in all cases, e.g. when handling spurious wake-ups.

Mutexes: Futexes provide a dedicated API and a specialized protocol only for
mutexes, as Section 4.3.1 shows. The mutex protocol fits well to mutexes, as it
encodes the different states of a mutex efficiently, namely the current lock owner
by the thread ID and contention on the mutex by the WAITERS bit.

Condition variables: The protocol for condition variables presented in Sec-
tion 4.3.2 shows spurious wake-ups when a condition variable is notified before a
thread suspends itself in the kernel. The protocol for condition variables introduced
in glibc 2.25 in Linux shows a solution for this particular problem.

Counting semaphores: The design of the counting semaphores of Section 4.3.3
shows lots of spurious wake-ups. The root cause of this is that the futex value
encodes two independent counters atomically, and only one counter is relevant for
the blocking condition in the kernel. The problems of spurious wake-ups could be
avoided if the kernel would ignore parts of the futex value when evaluating the
blocking condition.

Also, threads observing spurious wake-ups can steal resources from legitimate
threads. This cannot be solved by the kernel, but by a different protocol that
orders blocking threads differently.
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Barriers: The barriers of Section 4.3.4 show similar problems with spurious
wake-ups as the semaphores. This could be solved by a different API where the
kernel only compares a part of the futex value.

One-time initializers: The design presented in Section 4.3.5 fits well to the
generic futex API. One-time initializers are the only user space synchronization
mechanism without any draw-backs.

ARINC 653 queuing ports and buffers: ARINC 653 queuing ports and
buffers show the problem of spurious wake-ups, i.e. when a second waiter arrives
and modifies the futex value while a first waiter is on its way to block in the
kernel, and the problem of stealing as described for the counting semaphores. The
protocol presented in Section 4.3.6 could benefit at least from the idea that the
kernel evaluates only part of the futex value as blocking condition.

ARINC 653 blackboards and events: Both blackboards and events provide
a kind of condition variable with wake-up all semantics if the condition is signaled.
The same problems as for barriers appear here.

AUTOSAR eventmasks: We tried to implement a futex design for eventmasks
in the context of AUTOBEST, however, the generic compare-equal condition often
leads to unwanted spurious wake-ups. Also, the eventmasks require a condition
check in the wake-up operation. For eventmasks, the kernel-based baseline
implementation was the best option.

General Discussion: Summarized, we can observe the following problems when
constructing blocking synchronization mechanisms besides mutexes from futexes:

e The compare-equal semantic check in the kernel is too unspecific for many
futex protocols and causes most of the spurious wake-up problems.

The best option to solve this would be if the user could specify a function to
evaluate the futex value. This would allow the user to define an arbitrary
blocking condition [BFC95,Piz16|. However, calling a user-provided function
in user space requires to cross the user space <+ kernel space boundary again
and stands in stark contrast to the idea of futexes to avoid the costs of
crossing this boundary in the first place. Instead, this requires the kernel to
run user defined code, like in Massalin’s work on Synthesis [Mas92|, or the
user-provided filter programs in the Berkeley Packet Filter (BPF) [MJ93].
An alternative for the presented protocols could be if the compare operation
is restricted to parts of the futex value. This would help the counting
semaphores and barrier implementation to prevent spurious wake-ups.
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e The semantic operation before blocking is a read-only comparison. However,
a feedback mechanism (e.g. modification of the futex value) after successful
evaluation of the blocking condition could be helpful in some protocols,
similar to setting the WAITERS bit in the mutex protocol to indicate waiting
threads. A generic write primitive is hard to specify, and a user-provided
function would be the best option again. But a simple fallback mechanism
like setting a WAITERS bit in the futex value could be already helpful. This
would allow the counting semaphore implementation to detect if threads are
currently blocked in the kernel, for example.

e After waking up a thread, only the kernel knows if the wait queue still
contains other waiting threads. Again, a user-specific function that modifies
the futex value accordingly would be the best option. Alternatively, the
futex operation could clear the WAITERS bit in this case.

e Next to the semantic check for waiting, a semantic check for wake-up could
be handy. This would help in the design of a futex protocol for eventmasks.
A user-provided function to evaluate if a thread really needs to be woken up
would solve this problem. Note this effectively moves the condition check
from the waiting side to wake-up side.

e The problem that any changes to the futex value requires atomic operations
in the kernel, and loops with atomic operation must eventually terminate.

Note that the previously discussed ideas are not new. The missing information
whether there are still threads blocked on a futex is a serious problem for the
design of user space protocols and a source of superfluous system calls in glibc
in Linux. Buhr et al. discuss similar problems for monitors [BFC95]. Pizlo
solves some of these problems in the implementation of fine-grained locking in
the WebKit browser [Piz16] by providing user-specific callbacks to evaluate the
blocking condition and during wake-up.

Also, we have observed the problem of “stealing” an according event in some
protocols like the counting semaphores. A thread frees a resource and wakes up
the next waiting thread, but a third thread acquires the resource in the mean
time before the woken up thread is scheduled. These are side effects similar to
the TOWTTOS problem discussed in Section 3.4.2.

In general, futex protocols should be designed in such a way that TOWTTOS
problems are minimized. The mutex protocol shows a possible solution. A thread
waiting for a mutex could time out, but may become the mutex owner before
eventually being scheduled. This requires a releasing thread to hand over the
resource to the next waiting thread instead of letting acquiring threads compete
for a resource. This increases the robustness of the protocols, but at the same time
limits its scalability. This is a classical trade-off between fairness and scalability a
system implementer must consider.
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6.3 Monitors

We discuss the monitor design presented in this thesis. Section 6.3.1 discusses
efficient IPCP protocols and Section 6.3.2 discusses the monitor approach. In
Section 6.3.3, we discuss the practicality of the presented monitor design for
implementing blocking synchronization mechanisms.

6.3.1 Efficient IPCP Protocols

We discuss the UPRIO|NPRIO protocol for fast IPCP presented in Section 4.4.1.
The discussion is adapted from previous work of the author [ZBK14,Zue20).

General discussion: The UPRIO|NPRIO protocol shows the following behavior:
no system call is needed to raise the priority, but a restore operation might require
a system call. The system call is only necessary when preemption is really needed,
i.e. when a new thread with a priority above the base priority and below or equal
the elevated priority of the thread in using the IPCP protocol became ready.
In practice, this makes the protocol close to optimal in the number of required
system calls for the uses cases IPCP, especially when using nested critical sections
or in our monitor use case when waking up threads.

Note that the protocol requires a kernel that is optimized for frequent priority
changes and does not keep the current thread on ready queues, so nprio is
naturally available from the highest priority thread on the ready queue and also
used internally by the kernel to decide whether to preempt the current thread.

The protocol requires just two protocol variables shared between user space
and the kernel. However, due to this simplicity, the protocol exposes a short race
condition. Recall the implementation of prio_restore in Section 4.4.1:

Listing 6.1: Restore previous scheduling priority

void prio_restore(prio_t prev)

{
SELF ->uprio = prev;
if (SELF->uprio < SELF->nprio) {
sys_preempt ();
}
}

The system call for preemption in line 5 would be superfluous if the thread
is preempted after updating uprio in line 3 but before calling sys_preempt in
line 5. Almatary et al. solve this corner case at the expense of additional protocol
variables [AAB15]. However, the UPRIO|NPRIO protocol shares this behavior with
the preemption control mechanisms in the Linux kernel discussed in Section 3.7.2
and the Symunix IT protocol [ELS88|. In their work on futexes in LITMUSET,
Spliet et al. also observed a similar race condition in the unlock operation of their
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PCP-DU-PF protocol, but provide no solution [SVBD14|. Still, the race condition
does not impact the worst case; one system call is always needed.

The benchmark results in Section 5.2.2 shows that the UPRIO|NPRIO protocol
behaves as expected. The overall performance gains look very promising, and the
protocol needs at most one system call when lowering the priority. However, the
benchmark results of a critical section followed by a sys preempt system call in
Table 5.2 show that the worst-case timing is still in a similar range of the pure
system-call-based approach. We assume this effect has prevented the adoption of
such protocols for general purpose operating system.

At this point, it becomes clear that further benefits of the protocol are difficult
to analyze by using microbenchmarks. We need to run real-world workloads or
require statistical information on the distribution of nested and non-nested locking
and typical preemption patterns to see the overall effect on a long-running system.

Safety and security considerations: From a safety point of view, the follow-
ing aspects are relevant. A thread 7T; can try to exceed its maximum controlled
priority 7/"** by placing a higher priority value into uprio. The kernel must check
this whenever it reads uprio and must bound the value to 7;"**. Additionally, it
is possible to enforce a lower priority bound 77" in an implementation, should
that be a requirement. Lastly, a thread can act as a foul player and not issue a
system call on lowering the priority. This behavior has the same effect as a thread
not leaving the critical section, because it also delays the scheduling of higher
priority threads. This problem is not introduced by the fast priority switching
approach: it would also happen with the baseline approach using system calls.
Threads accessing the same resource must mutually trust each other anyway. We
consider this to be a programming error and not a side effect of the protocol.
From a security point of view, the UPRIO|NPRIO protocol can leak scheduling
information of unrelated processes if processes are not temporally isolated, e.g.
by a TDMA scheme like in ARINC 653. In the used protocol, nprio exposes the
priority of the next eligible thread for scheduling on the ready queue to other
processes. This may hinder its use in security sensitive operation environments.
The other IPCP implementations discussed in Section 3.7 are also problematic, as
threads can observe that they were interrupted and preemption becomes pending.

6.3.2 Light-Weight Monitors

We now discuss the monitor approach presented in Section 4.4.2. The discussions
is taken from the author’s previous work [Zue20].

General discussion: The presented light-weight monitor design of Section 4.4.3
comprises the UPRIO|NPRIO protocol, fair spinlocks, and the low-level wait and
wake-up mechanisms presented in Section 3.8. The waiting primitive interacts
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with the UPRIO|NPRIO protocol by letting a thread suspend on a lower priority,
but do not touch the protocol variables, so the thread is immediately set back
to its previous elevated scheduling priority after wake-up. The key technique for
the wake-up operation is to fuse an additional priority change operation into the
same system call.

In general, the evaluation in Section 5.2.3 shows that the monitor approach
works and saves CPU cycles by avoiding system calls in the uncontended case.
The monitor has similar properties as futexes. Synchronization mechanisms built
on top of monitors do not need initial registration in the kernel, and therefore also
no resources or memory allocations in the kernel. The monitors are better than
futexes w.r.t. predictability, as they often lack the loops futex-based solutions
show (see Section 4.3), but they also come with more overhead due to the IPCP
implementation and spinlocks to protect internal critical sections. But unlike
futexes (including the deterministic futex design), the presented monitor approach
requires a real-time scheduler. In our presented case, we need P-FP scheduling
for the IPCP implementation to work. Alternatively, one could also use DFP
instead of IPCP when using P-EDF scheduling [AAB15], however we have not
yet explored according optimized wait and wake-up mechanisms for this.

Due to direct addressing of threads, the monitor approach is typically limited
to synchronization of threads in the same process, as mentioned in Section 6.1.
However, when a system allows access to threads in other processes, then the
monitor approach can also be used for shared memory communication, like futexes.
In this case, a thread’s waiting state variable (ustate) must be placed in the shared
memory as well. Note that the robustness considerations here are the same as
when using futexes or other synchronization mechanisms, as synchronization over
shared memory requires that applications must trust each other. But typically,
access to threads in other processes is a source of unwanted interference and
therefore not allowed.

We also expect that threads behave correctly and use the protocols appro-
priately, but the impact of misbehavior on other processes is bounded by the
maximum priority of a thread. The safety and security considerations for the
monitor are the same as for the efficient implementation of IPCP.

WCET considerations: From a WCET point of view, the monitor approach
reduces predictability issues compared to futexes. As the monitor building blocks
are similar to a baseline version but just shifted in place, the WCET considerations
are similar for both. The monitor adds additional constant overheads for the extra
system calls for preemption. Also, only the wake-up of one thread is optimized and
interacts nicely with IPCP. Waking up an additional thread needs one additional
system call each. As mitigation, batching techniques could be used for example
to wake up multiple threads. However, we assume that the wake-up of more than
one thread is rare, but this again requires deeper knowledge of the application.
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6.3.3 Practicality of Monitors

We discuss the practicality of the monitor-based designs of Section 4.5 to implement
higher-level synchronization mechanisms of Section 2.2.

Compared to the practicality of futexes as discussed in Section 6.2.3, the
monitor design already solves most of the problems by moving the effective
blocking and wake-up condition into the critical section in user space. For the
kernel, only a simple eventcount-like protocol to prevent both missed wake-ups
and spurious wake-ups remains, as the evaluation in Section 5.3.2 shows.

Note that we have only implemented blocking mutexes and condition variables
using the light-weight monitor design, however, we can still discuss potential
problems for the other synchronization mechanisms.

Mutexes: The presented mutex design of Section 4.5.2 work well with the
monitor. However, the extra critical section after waiting is costly. As optimization,
a fast path could be introduced to check the mutex owner after waiting and then
skip the critical section. However, this would also require a change in the unlock
operation with an according memory barrier to first increment the sequence
in ustate, and then hand over the mutex ownership, as the wake-up side must
complete the increment the sequence for the protocol to work.

Using an API without support for a timeout (just infinite timeouts, no other
spurious wake-ups by the kernel) could also help to simplify the protocol and
remove the second critical section after waiting, as the example in Section 4.4.2
shows.

Condition variables: The condition variables of Section 4.5.3 also require the
extra critical section after waiting. As cond_wait comprises both a mutex_lock
and mutex_unlock operation, the same fast path as discussed for the mutexes
could be implemented here as well.

One specific problem becomes visible: when a thread waits on the condition
variable with a timeout, and the condition variable is notified and moved to the
mutex wait queue, the kernel will still expire the timeout and will cause a spurious
wake-up while waiting on the mutex.

Another problem is that a cond_broadcast requires one system call for each
thread.

Low-level monitor API: The design presented in Section 4.5.4 shows a specific
downside: notification of more than one thread requires a wake-up system call
instde the spinlock-protected critical section. The general problem that one system
call is required to wake up each thread is shared with the other condition variable
design.
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Counting semaphores: We do not expect any problems in an implementation
of counting semaphores. The complexity will be similar to the mutex implementa-
tion.

Barriers: We do not expect any problems here either, however, barriers must
wake up multiple threads at once, so an implementation would be inefficient
compared to a futex-based approach, which can use a single futex_wake system
call.

One-time initializers: The argument is similar to barriers, however, contention
on one-time initializers is expected to be rare. But another problem becomes
visible: higher memory usage as futexes. An internal lock and a wait queue
comprise more memory than the 32-bit futex value.

ARINC 653 queuing ports and buffers: The design should work well for
the produce-consumer-patterns in queuing ports and buffers.

ARINC 653 blackboards and events: Like in barriers, we require multiple
system calls to wake up all waiting threads.

AUTOSAR eventmasks: Animplementation using a monitor would be similar
to a baseline implementation inside an operating system kernel.

General Discussion: We observe the following problems in the monitor design:

e A wake-up operation only processes one thread at a time. This is a natural
problem of keeping the wait queue in user space. As already mentioned in
Section 6.3.2, batching techniques could help here.

e Any previously set timeout remains active in the kernel, and a thread may
observe a spurious wake-up when the timeout expires while already waiting
on a mutex in cond_wait. This is also a problem of keeping the wait queue
in user space. This problem could be solved by providing a specific system
call to clear all pending timeouts, i.e. let an already waiting thread wait
infinitely. Another option to solve this problem is that, when the timeout
expires, the kernel checks if the timeout is still applicable. This, for example,
could be realized by an additional flag in user space that is cleared during
requeue operations, or by checking if ustate was modified since the thread
started waiting. However, this requires a probably costly access to user
space in the kernel’s timer handling code. We leave this to be evaluated in
future work.
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e Another problem is the extra critical section after waiting to clean up the
wait queue in case of spurious wake-ups. This is again a problem of keeping
the wait queue in user space. As mitigation, we could implement some fast
path, however these shortcuts require additional memory barriers to ensure
the correctness of the protocols.

e Deletion of threads is a problem. Consider that a thread is deleted while
waiting on the wait queue. The thread’s memory must not be freed until
the thread was removed from the wait queue, as the wait queue nodes are
kept in memory allocated to the thread. A potential mitigation is to use
cancellation handlers as described in POSIX, i.e. pthread_cleanup_push and
pthread_cleanup_pop, and remove the thread from the wait queue before
deleting the thread.

The presented problems mostly relate to the fact that the wait queue is managed
in user space. This is both advantage and disadvantage of the presented monitor
approach.

6.4 Comparison of Futexes and Monitors

In this thesis, we have explored and discussed two general designs for predictable
and efficient synchronization, namely futexes and light-weight spinning monitors.
However, there are still open problems with the presented designs.

Futex-based blocking synchronization mechanisms use atomic operations on
the futex word to decide whether the fast path operation succeeds or if a thread
needs to take the slow path and must block in the kernel. However, due to
the compare-equal mechanism in the kernel, blocking is prevented if the futex
value changed in the mean time. In this case, the futex operation must be
repeated. With this, futexes behave like lock-free algorithms that must also repeat
an operation if the atomic transaction cannot be completed. But as the loops
to fulfill the blocking condition may be potentially unbounded, futexes are not
wait-free. This problem is mainly caused by the interaction of the compare-equal
condition for blocking (originally designed to prevent missed wake-ups) and the
atomic protocols on the futex variables. Futexes only work well for eventcount-like
protocols that do not encode any other information in the futex word.

Another problem we can observe with futexes is that even when using FIFO-
ordered wait queues, the exact temporal order of waiting threads can get lost
due to spurious wake-ups, as the time of the decision to wait, i.e. when reading
the futex value, does not necessarily correlate with the time a thread eventually
blocks in the kernel and is added to the wait queue.

Related to the previous problem, we have the problem of “stealing” of events
or resources in futex-based protocols due to the delay between wake-up and
scheduling due to the TOWTTOS problem discussed in Section 3.4.2.
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Both effects are caused by the split of a former single semantic operation into
two in the fast path design and the resulting delays between a first semantic
operation in user space and a second semantic operation and wait queue operation
in the kernel.

Another problem is accounting of resources. For example, the ARINC 653
standard requires that a conforming implementation must be able to report the
number of currently waiting threads. However, this is hard to achieve with futexes.
When user space code accounts the resources, e.g. a thread increments a waiters
counter while blocking, the number will no longer be correct when the thread was
woken up by a timeout, but is not yet scheduled again to decrease the counter. The
TOWTTOS problem leads to overreporting in this case. Similarly, the number
of waiting threads in the kernel does not reflect the number of threads that
intended to wait (the threads could be still in user space) and will experience a
spurious wake-up when the futex value changes. This leads to underreporting. For
scalability reasons, system designers should not include APIs with unnecessary
preciseness into the specification [CKZ*13].

Related to this is the missing feedback mechanism on the state of the wait
queue (empty or not empty) in the kernel. The missing information whether there
are still threads blocked on a futex is a serious problem for the design of user
space protocols.

In contrast to the futex-based designs, the light-weight monitor comprises a
different design approach that tries to prevent most of the predictability issues of
the futex protocols. By using a spinlock-protected critical section in user space,
the monitor prevents most of the subtle race conditions in the atomic protocols
of the futex design and at the same time enables a richer semantics. Also, the
building blocks are simpler, i.e. no complex look-up mechanism for wait queues is
needed in the kernel. However, moving the wait queue into user space is not a
panacea, as Section 6.3.3 shows. But it solves the previously mentioned problems
of exact temporal ordering, stealing of events, and underreporting of blocked
threads, as the wait queue is kept consistent in the first semantic operation.

The biggest weakness of the monitor approach is that for resource sharing
between processes, the thread IDs of all participating threads must be accessible
by all the participating processes. Compared to futexes, it seems that we have
simply moved the source of interference to the thread look-up mechanisms now.

But this is not unexpected: any kind of resource sharing that uses a shared
global namespace (for futexes, this is the physical address of a futex value), will
expose this problem. Only the use of local namespaces, e.g. capabilities, can
prevent this problem. However, this also requires a careful application design and
the clear identification of the points of sharing, leading to an anticipatory design,
if we stick to the categorization of Spliet et al. [SVBD14| But there are often use
cases where this is not possible, like in best-effort software that just “has to work”.
In these cases, the deterministic futex approach seems to be a better fit, as it
restricts the shared global namespace just to wait queues and not to all threads.
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6.5 Fast Paths and Real-Time Protocols

We discuss the applicability of the real-time protocols analyzed in Section 3.3 to
the presented designs.

So far, we have only shown how to use NPCS and IPCP in the designs. These
two protocols are necessary building blocks for the monitor design to achieve non-
preemptible critical sections in user space and prevent lock waiter and lock holder
preemption problems. For futexes, the fast IPCP implementation of Section 4.4.1
is a good match because both mechanisms avoid system calls in their fast paths.

We briefly discussed PIP in the context of futexes, as it is a requirement for
POSIX and supported by Linux. PIP as a reactive protocol works well with
futexes, as the Linux design shows. This observation also applies to any form of
PIP on a multiprocessor systems that includes migration of preempted threads.
However, we have not yet developed a PIP design for deterministic futexes. We
leave this to future work.

In the monitor design, PIP is impossible to implement at kernel level, because
the kernel has not enough information to build up a proper resource allocation
graph due to the lack of access to the wait queues and because the kernel does not
know the specific semantics of the blocking mechanism in user space. Supporting
PIP would require a mechanism where user space code tells the kernel about
changes in the resource allocation graph. As any increase of a lock holder’s
inherited priority naturally requires that other threads must block in the kernel,
this information could be provided in the system call to suspend a thread. But
the other way around, e.g. decreasing the inherited priority of the lock holder after
a spurious wake-up of a high-priority blocked thread, does not expose implicit
system calls to hook. We also leave it to future work to investigate this further.

MrsP combines FIFO-spinlocks with IPCP. When a spinning thread detects
that the lock holder is currently preempted, it migrates the lock holder to its
CPU. From an implementation point of view, support for MrsP would require
three mechanisms: (i) detection that a lock holder is preempted, (ii) migration
of a preempted lock holder to the current processor, and (iii) detection that a
lock holder was migrated. The first two mechanisms are needed by the spinning
side to detect and migrate a lock holder to the spinning processor. The third
mechanism is needed by the migrated thread to detect migration and migrate
back to its original processor. The necessary information of the first and the third
mechanism must be available without doing system calls to be exploitable in a
fast path. See also the related discussion on preemption recovery in Section 2.1.3.

DPCP requires upfront migration to a resource’s bound processor. This
protocol does not play well with fast paths, as migration requires a system call.

Lastly, MPCP and FMLP" are remaining candidates that could work well
with a futex fast path, similar to IPCP. We have not further evaluated these
protocols, however, Spliet et al. evaluated a fast path implementation of these
protocols [SVBD14].
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6.6 Discussion of Contributions

For this thesis, our goal was to achieve both efficiency and predictability for thread
synchronization mechanism in the context of mixed-criticality systems.

State-of-the-art mechanisms to construct efficient synchronization mechanisms
in non-real-time systems are futexes for blocking synchronization in Linux, and
techniques for preemption control in user space to prevent lock holder and lock
waiter preemption. These mechanisms are building blocks for efficient higher-level
synchronization mechanisms in best-effort systems, and in both cases the key
technique for good average performance is to avoid expensive system calls.

Our general approach was to (i) analyze existing efficient design approaches
for their key techniques for efficiency and also to identify predictability issues, (ii)
improve existing approaches w.r.t. predictability, (iii) create new approaches that
address both efficiency and predictability, and (iv) evaluate the approaches by
performance measurements and analyzes of their worst-case timing behavior.

Based on these efficient and predictable building blocks, this thesis provides
both efficient and predictable user-facing thread synchronization mechanisms in the
context of POSIX, ARINC 653, and AUTOSAR that are the main programming
interfaces in industrial, avionics, and automotive domains.

We now discuss the five main contributions of this thesis claimed in Sec-
tion 1.3 and also the practicality of the approaches for the synthesis of higher-level
synchronization mechanisms. We show what we have achieved to extend the state-
of-the-art for both efficient and predictable thread synchronization mechanism in
the context of mixed-criticality systems.

Analysis of synchronization mechanisms: The key technique for good aver-
age performance in state-of-the-art synchronization mechanisms in non-real-time
systems is to avoid expensive system calls (Section 3.1), as system calls comprise
an expensive overhead (Section 3.2.2).

As a novel approach towards the construction of efficient synchronization mech-
anisms, we first generalized (Section 3.4.1) and then decomposed (Section 3.4.2)
existing synchronization mechanisms into their low-level building blocks with the
goal to identify potential fast paths.

We also identified that the fast paths in user space have a relationship to
techniques and problems when using fine-grained locking. In particular, we dis-
cussed wait indicator mechanisms for loosely-coupled consecutive critical sections
to transport state information from one critical section to the next one without
nesting of locks. We have also identified a novel effect we named the TOWTTOS
problem (Section 3.4.2) and that it is inherent to all systems using fine-grained
locking and coupling of critical sections in the described way. We are not aware
about any further research on these effects in systems using fine-grained locking,
but the problem itself must been known for a longer time by practitioners, as the
Linux kernel deals with this problem properly.
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We then analyzed the benefits of placing these low-level building blocks at
different places above or below the boundary between user space and kernel space
(Section 3.6). Moving the boundary between user space and kernel space and
redefining the responsibility of user space and the kernel is a usual approach in
systems design, as the vast literature on microkernels, exokernels, virtual machine
monitors, etc. shows. However, this is a novel approach in the context of real-time
systems.

Deterministic futexes: Futexes were conceived to improve the average-case
performance of blocking synchronization mechanisms, but not with real-time
systems and requirements for predictability in mind. Deterministic futexes address
the predictability issues found in futexes in Linux (Section 3.5.3) with an improved
and novel design.

The design of deterministic futexes (Section 4.1) keeps a similar API and
feature-set with only minor modifications that exclude use cases we deemed not
necessary for the synchronization mechanisms we considered. This is a challenging
task due to the flexibility of futexes and the interference channels when futexes
are used in shared memory segments.

The key technique for deterministic futexes to increase the predictability is to
use two self-balancing binary search trees (BSTs), which bound internal operations
to logarithmic complexity, and to use a preemptible design for operations handling
more than one thread.

Regarding efficiency, our deterministic futexes and Linux futexes are compara-
ble, as they use the same fast path mechanisms (Section 5.2.1). From a worst-case
point of view, both logarithmic complexity and the preemptible design especially
bounds any interference when sharing synchronization objects between different
processes or partitions (Section 5.3.2). As down-side, the overall execution time of
long-running operations increases. We deem this to be acceptable for a mechanism
that can be shared between different processes or partitions.

The design shows a huge improvement over Linux w.r.t. predictability. Re-
lated work comprises proposals by Gleixner to pre-allocate futex wait queues in
Linux [Brol6] (this would require changes to the futex API), and the author’s
own previous work |Zuel3|.

As open points for future research, we have identified the missing support
for the priority inheritance protocol (PIP) and the impact of changes to the
compare-equal semantic check of futexes (Section 6.2.1)

Static futexes: Our second futex design, static futexes, relax the property that
the kernel must create wait queues of futexes on demand (Section 4.2). This allows
us to allocate all in-kernel data structures upfront and use a simpler index-based
scheme to address wait queues in the kernel. Still, static futexes keep the overall
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interface characteristics of futexes, allowing to reuse existing user space futex
protocols with minor adaptions.

We originally intended static futexes as a novel way to manage blocking
synchronization in resource-constrained embedded systems where all resources are
known at compile time. Our design restrictions for AUTOBEST [ZK19] focus on
tailoring futexes for ARINC 653 use cases only (Section 4.2.2). We also proposed
a novel technique to split access to wait and wake-up operations as mechanism
for sharing resources between temporally decoupled threads like in systems using
ARINC 653 time partitioning.

Our evaluation of the static futex design uses the design limitations in AUTO-
BEST (Section 5.3.2). This mainly shows the impact of the choice to use a
non-preemptive design in comparison to deterministic futexes. This limitation
re-introduces scalability and predictability issues, but also shows that the approach
is suitable for single-processor environments and systems with few waiting threads
(Section 6.2.2).

Therefore, we consider the static futex design in AUTOBEST just to be a
representative of a stripped-down futex design where the discussed trade-offs
between performance and predictability are acceptable. But static futexes can
provide the full feature-set as Linux futexes or deterministic futexes, and can then
be used in capability-based kernel designs, such as L4-based microkernels [EH13|.

Index-based futex designs were also discussed by Spliet et al. [SVBD14] in
their work on futexes in LITMUSRT, but without a focus on resource-constrained
systems or ARINC 653 in mind.

For the future, we expect more research on index-based futex designs in the
context of virtualization of legacy RTOS APIs, as futexes allow to keep similar
average performance characteristics as when using library operating systems, and
the index-based designs pose the least risks compared to other futex approaches.

Fast priority switching: The automotive standards OSEK OS and AUTO-
SAR OS use the immediate priority ceiling protocol (IPCP) for mutual exclusion
in single processor environments. In other contexts, [IPCP helps to bound lock
waiter and lock holder preemption. As key technique, IPCP temporarily raises
the scheduling priority of the currently executing thread during a critical section.

We presented two novel efficient mechanisms to indicate priority changes in
variables shared between kernel and user space (Section 4.4.1). Both mechanisms
avoid system calls to raise the scheduling priority, and need system calls to restore
the original scheduling priority only in the worst case. The UPRIO|KPRIO protocol
needs a system call only when the kernel has observed an elevated priority. The
UPRIO|NPRIO protocol improves on this and needs a system call only when the
current thread really needs to be preempted.

The performance evaluation shows efficiency gains (Section 5.2.2), and the
mechanisms show minimal constant overhead to manage protocol variables and
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only require one system call in the worst case (Section 5.3.2). Of all the presented
designs, the IPCP mechanism is probably the least disputable one, as it achieves
both the greatest performance gains and has the least impact on worst-case timing
and predictability.

The presented mechanism extends the related work on preemption control
mechanisms (Section 3.7.1), and in particular Edler et al.’s preemption control
mechanism for Symuniz II [ELS88| for fixed-priority scheduling. To the best of
our knowledge, the author’s workshop paper [ZBK14| was the first to address the
problem of efficient priority changes and to present a near optimal solution with
the UPRIO|NPRIO protocol. The related approach by Almatary et al. [AAB15|
uses a different protocol and does not handle nested locking scenarios as well as
the UPRIO|NPRIO protocol.

For future research, an open question remains if such approaches also work
for schedulers using more than one level, as the key technique here is to export
information like in Benno scheduling [BSCT11, BSH12| to user space, which is
tied to priority scheduling.

Non-preemptive busy-waiting monitors: Next to futexes, our second ap-
proach to blocking synchronization mechanism is the presented monitor design.

A novel synthesis of the building blocks takes the ideas of futexes to the
extreme and also moves the wait queue abstraction into user space (Section 3.6).
The resulting monitor design combines different techniques that avoid system
calls for efficiency and effectively moves software layer previously kept at kernel
level into user space. As far as we know, such an approach was not previously
discussed by the research community, neither in the context of best-effort systems
nor real-time systems.

This requires to use critical sections with predictable timing behavior in user
space, which we achieve by our efficient IPCP mechanism for preemption control,
fair spinlocks for mutual exclusion, and minimal wait and wake-up primitives in
the kernel. The necessary system calls for suspension and wake-up interact with
the IPCP mechanism for both efficiency and to emulate the behavior of traditional
blocking synchronization mechanism (Section 4.4.2).

The resulting monitor primitives (Section 4.4.3) are a completely new de-
sign approach that allows to safely compose arbitrary blocking synchronization
mechanisms in user space (Section 4.5).

Our evaluation shows that the monitors, when implementing blocking mutexes,
are twice as slow than futexes in the average case due to two internal critical
sections (Section 5.2.3), but more predictable at both kernel and user space
level (Section 5.3.3). The primitives that are needed in the kernel show constant
overhead on the general scheduler primitives of the kernel (Section 5.3.2).

Compared to futexes, the monitor approach helps to get rid of the complexity
of wait queue handling at kernel level (Section 3.5.3). The monitors also address

190



CHAPTER 6. DISCUSSION

the limitations of futexes that are caused by the use of protocols based on atomic
operations on 32-bit integers in user space and the limited flexibility of the
compare-equal semantic check for blocking in the kernel (Section 6.2.3). With this,
the monitor design effectively solves the consistency problems found in futexes by
moving both the fast-path decision and the wait queue handling into the same
critical section into user space and provides a more robust mechanism to suspend
and wake up threads.

In the context of other monitor designs and implementations [BFC95|, the
presented design is comparable to the canon on efficient monitor implementations
in language runtimes (see e.g. [BKMS98, KP98, Kaw05, Piz16|), but with a strong
focus on real-time use cases.

Overall, the complexity of a synchronization mechanism based on monitors
is similar to the complexity of a baseline mechanism based on system calls. Our
analysis shows this, as the monitor design just moves software layers that exist in
the kernel into user space. However, two differences remain: in the worst case,
the monitor requires multiple system calls where a baseline only needs one system
call; and an in-kernel implementation can simply disable interrupts to achieve
non-preemptiveness and bound the execution time at the expense of interrupt
latency. This is not possible in user space and needs to be accounted in a WCET
analysis.

The monitor design shows open points for further research, especially when
considering the limitations that the low-level kernel mechanisms only process one
waiting thread and the open research points how to extend the monitor approach
with real-time locking protocols for priority inheritance instead of priority ceiling.

Higher-level synchronization mechanisms: Lastly, we must discuss how
the presented approaches and building blocks help to improve the efficiency of
higher-level synchronization mechanisms in the context of POSIX, ARINC 653,
and AUTOSAR.

Based on futexes, we presented blocking mutexes, condition variables, se-
maphores, barriers, and ARINC 653-specific communication port mechanisms
(Section 4.3). This covers the common cases of the specific user-facing syn-
chronization mechanisms for both industrial (POSIX) and avionic (ARINC 653)
applications. Futexes are well known and used in the context of Linux as the only
mechanism for user space synchronization mechanisms. But using futexes is a
novel approach to construct synchronization mechanisms in avionic systems.

Based on monitors, we presented only blocking mutexes, condition variables,
and the low-level monitor primitives (Section 4.5). We argue here that the
higher-level synchronization mechanisms we discussed for futexes can also be
implemented based on monitors, but with much less effort, as an implementation
can use simpler low-level monitor primitives instead of defining protocols on
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atomic variables. With this, the monitors cover the use cases of both industrial
and avionic applications as well.

Both futexes and monitors now allow to improve the average execution time
of uncontended synchronization, as our evaluation on mutex performance shows
(Section 5.2.3). At the same time, we pay for the performance gains in the
uncontended case with overheads in the contended case. Like other optimizations,
e.g. write-back caches, the presented designs pose a trade-off between performance
gains in typical average use case scenarios and performance losses in pathological
and non-typical corner cases. Unfortunately, the designers of real-time systems
must account for the worst case when they cannot exclude the bad cases by other
means.

Note that the thesis leaves the point open to show how much the real perfor-
mance gains for real applications would be, as the actual benefits depend on the
degree of contention (Section 5.2.3). Nevertheless, the performance gains in the
uncontended case underline the practicality and usefulness of the approaches.

For blocking synchronization mechanisms, futexes are the fastest, but not the
most predictable choice. Our presented deterministic futex design improves the
determinism issues at kernel level compared to the Linux implementation, but does
not address the issues of futexes at user space level for conceptual compatibility
to Linux (Section 6.2.1). All futex-based designs show inherent problems and
limitations caused by the temporal decoupling of the atomic operation in user
space and the kernel’s blocking mechanism using a compare-and-block mechanism
(Section 6.2.3). However, the atomicity of the futex protocols becomes handy
for shared memory synchronization when one cannot make assumptions on the
progress of others.

Monitors are a better choice for synchronization mechanisms w.r.t. predictabil-
ity at both user space and kernel level (Section 6.3.2), but effectively limited to
synchronization jobs in the same process (Section 6.3.3). The monitor approach
also shows limitations to process multiple threads and that the kernel cannot
track the blocking dependencies between threads. Time will tell how the monitor
approach will evolve.

Note that the futex-based and the monitor-based designs ultimately focus on
blocking synchronization mechanisms in industrial and avionics use cases, but
not automotive systems. Both OSEK OS and AUTOSAR OS use eventmasks
for blocking synchronization, and the presented futex and monitor designs seem
over-engineered, as they provide more features than actually needed. Therefore,
we did not provide any higher-level blocking synchronization mechanism. However,
the automotive APIs also require the use of IPCP for resource management on
a single processor. And with our efficient IPCP protocol, we also provide an
approach which meets our thesis’ goals.
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Conclusion

The personal motivation for this thesis is the author’s involvement in the design
and implementation of real-time operating systems in the last two decades as
kernel architect of PikeOS at SYSGO GmbH. As use cases evolve and domain-
specific APIs grow, RTOS products must adapt to changes to remain competitive.
Supporting a wide set of domain-specific APIs and requirements in a system such
as PikeOS requires a solution that allows to unify the common parts and to keep
the subtle differences out of the kernel, if possible. The futex concept used in
Linux showed an interesting approach to solve this problem, but also exhibited
predictability concerns that needed be addressed. This sparked the author’s general
interest in the research of fundamentals of blocking synchronization mechanisms.
And so a journey started ...

In this thesis, we have systematically explored the design space of fast paths in
blocking synchronization mechanisms w.r.t. increased efficiency and the necessary
predictability for WCET analysis. Our system model targets mixed-criticality
systems and related operating systems that support both real-time and best-
effort applications well. From the operating system point of view, we focused on
partitioned fixed-priority scheduling, which is the most used scheduling approach
for real-time operating systems in practical industrial, avionics, and automotive
scenarios.

Our key technique is to avoid unnecessary system calls, as system calls have
high costs compared to other processor operations, such as atomic synchroniza-
tion primitives. For this, we have to move some operations of synchronization
mechanisms from the operating system kernel into user space.

We have presented two general design approaches for blocking synchronization
mechanisms, namely futexes and monitors. Futexes implement fast path syn-
chronization based on atomic operations in user space, and the kernel provides a
generic compare-and-block mechanism as fallback. Futexes are the state-of-the-art
mechanism for blocking synchronization in Linux, but with known issues w.r.t.
predictability. With deterministic futexes, we have presented a futex design
that addresses the predictability issues found in the Linux implementation. We
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also presented a second futex design, static futex, which is suitable for resource-
constrained embedded systems. The novel monitor design provides non-preemptive
busy-waiting critical sections in user space and blocking primitives where the wait
queue abstraction is kept in user space as well. A key component of monitors is a
novel mechanism to change the scheduling priority in user space. This also allows
to implement IPCP efficiently.

In our experimental and analytical evaluation, we have shown that the pre-
sented design approaches improve the average performance without sacrificing
WCET. For example, both futexes and monitors provide blocking mutexes that
do not require system calls in the uncontended case. At the same time, all
mechanisms show constant or bounded overheads in a worst-case timing analysis.

Our specific contributions in this thesis claimed in Section 1.3 are a general-
ization of blocking synchronization mechanisms and decomposition into low-level
building blocks to identify fast paths, the two futex designs that improve the
predictability compared to Linux, the efficient mechanism to change the scheduling
priority for IPCP, and the synthesis of the monitor design. We have demonstrated
the claims in the course of this thesis and summarized our contributions to the
state-of-the-art in Section 6.6.

We proved that exploiting fast paths is a worthwhile approach when designing
systems that not only have to fulfill real-time requirements, but also have to hosts
best-effort workloads and have secondary requirements like for example decreased
energy consumption. The trade-off of the performance gain in the average case
versus the increased complexity at the implementation level must be considered
in comparison to these secondary requirements.

The practicality and usefulness to build efficient synchronization mechanisms
from these building blocks is given, as our evaluation and the use of futexes in
Linux show. But this is not only true for industrial APIs like POSIX, but also for
avionics and automotive use cases.

The research results presented in this thesis are ready to be transferred into
real products in the field, as our examples of deterministic futexes in PikeOS and
of static futexes in AUTOBEST show. The monitor approach is currently used in
a research operating system only, but we hope that it will find use in real systems
as well.

With this thesis, we have presented some of the key techniques to achieve both
efficient and predictable blocking synchronization, laid a foundation to properly
discuss the design trade-offs, and gave criteria for evaluation. However, a lot
of open questions and room for improvements in future research remain, as our
discussion in Section 6.6 shows.
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