
Type-safe Programming for the
Semantic Web

by
Martin Gerhard Leinberger

Approved Dissertation thesis for the partial fulfillment of the requirements for a
Doctor of Natural Sciences (Dr. rer. nat.)

Fachbereich 4: Informatik
Universität Koblenz-Landau

Chair of PhD Board: Prof. Dr. Jan Jürjens
Chair of PhD Commission: Prof. Dr. Matthias Gouthier
Examiner and Supervisor: Prof. Dr. Ralf Lämmel, Prof. Dr. Steffen Staab
Further Examiner: Prof. Dr. Ulrike Sattler, Prof. Dr. Viorica Sofronie-Stokkermans

Date of the doctoral viva: 18. December 2020

This thesis will be published in the book series Studies on the Semantic Web∗ at IOS Press.

∗http://www.semantic-web-studies.net/

http://www.semantic-web-studies.net/

Abstract
Graph-based data formats are flexible in representing data. In particular semantic data models, where
the schema is part of the data, gained traction and commercial success in recent years. Semantic data
models are also the basis for the Semantic Web—a Web of data governed by open standards in which
computer programs can freely access the provided data. This thesis is concerned with the correctness
of programs that access semantic data. While the flexibility of semantic data models is one of their
biggest strengths, it can easily lead to programmers accidentally not accounting for unintuitive edge
cases. Often, such exceptions surface during program execution as run-time errors or unintended
side-effects. Depending on the exact condition, a program may run for a long time before the error
occurs and the program crashes.

This thesis defines type systems that can detect and avoid such run-time errors based on schema
languages available for the Semantic Web. In particular, this thesis uses the Web Ontology Language
(OWL) and its theoretic underpinnings, i. e., description logics, as well as the Shapes Constraint Lan-
guage (SHACL) to define type systems that provide type-safe data access to semantic data graphs. Pro-
viding a safe type system is an established methodology for proving the absence of run-time errors in
programs without requiring execution. Both schema languages are based on possible world semantics
but differ in the treatment of incomplete knowledge. While OWL allows for modelling incomplete
knowledge through an open-world semantics, SHACL relies on a fixed domain and closed-world se-
mantics. We provide the formal underpinnings for type systems based on each of the two schema
languages. In particular, we base our notion of types on sets of values which allows us to specify a
subtype relation based on subset semantics. In case of description logics, subsumption is a routine
problem. For the type system based on SHACL, we are able to translate it into a description logic
subsumption problem.

iii

Zusammenfassung
Eine Stärke von graphbasierten Datenformaten ist die Flexibilität bei der Datenmodellierung. Insbe-
sondere semantischen Datenmodellen, bei denen das Schema Teil der Daten ist, wurde in den letzten
Jahren viel Aufmerksamkeit geschenkt. Zu den bekannstensten Anwendungsbeispielen von semanti-
schen Datenmodellen gehören dieWissensgraphen von Google undMicrosoft. Semantische Datenmo-
delle liefern auch die Grundlage für das Semantic Web – ein Web der Daten das mit offenen Standards
gebaut ist und so Wissen für Programme bereitstellt. Diese Arbeit befasst sich mit der Korrektheit
solcher Programme. Während die Flexibilität von solchen semantischen Datenmodellen ihre größ-
te Stärke ist, ist sie auch die größte Fehlerquelle. Ein Programmierer kann leicht einen unintuitiven
Randfall übersehen. Solche unbehandelten Randfälle führen oft zu Laufzeitfehlern oder anderen un-
gewünschten Seiteneffekten. Dabei muss der Fehler nicht sofort auftreten. Je nach Fehler kann ein
Program lange korrekt laufen bis der Fehler schlussendlich zum Absturz des Programs führt.

Das Ziel dieser Arbeit ist es solche Fehler, mithilfe von Typsystemen sowie den in Semantic Web
üblichen Schemasprachen, zu vermeiden. Insbesondere stützt sich diese Arbeit auf die Ontology
Web Language (OWL) und deren theoretische Grundlagen in Form von Beschreibungslogiken so-
wie der Shape Constraint Language (SHACL), um Typsysteme zu definieren, die getypten Datenzu-
griff erlauben und dabei typsicher sind. Solche Typsystems sind eine bewährte Methode um Lauf-
zeitfehler in Programmen zu vermeiden ohne diese auszuführen. Die Semantik beider Schemaspra-
chen basiert auf möglichen Welten, unterscheidet sich aber bei unvollständigem Wissen. Während
OWL es erlaubt unvollständiges Wissen durch eine “open-world assumption” zu modellieren benutzt
SHACL eine “closed-world assumption”. Diese Arbeit stellt Typsysteme für beide Schemasprachen
bereit. Wir interpretieren Typen als Mengen vonWerten und definieren Spezialisierung zwischen sol-
chen Typen als Teilmengenbeziehung. Für Beschreibungslogik ist subsumption zwischen Mengen ein
Standardproblem. Im Fall des auf SHACL basierten Typsystems zeigen wir das subsumption in ein
Beschreibungslogik-Problem überführt werden kann und so gelöst werden kann.

v

Acknowledgments
This dissertation would not have been possible without the help of my family, friends, and colleagues.

First of all, I want to thank my supervisors, Steffen Staab and Ralf Lämmel, for giving me the op-
portunity to obtain a Ph.D., their continued support, scientific guidance, and valuable discussions.
Furthermore, I am grateful for the advice and feedback of Thomas Gottron, Claudia Schon, Tjitze
Rienstra and Matthias Thimm.

I also want to thank my colleagues at WeST for their friendship, feedback, and discussions on all
matters. In particular, I want to thank Alex Baier, Daniel Janke, Korok Sengupta, Lukas Schmelzeisen,
Philipp Seifer, and Raphael Menges for the important discussions and feedback.

Lastly, I want to thank my family—my parents, my wife Azadeh and my son Kian—for their support
and encouragement.

vii

Contents
1. Introduction 1

1.1. Research Questions . 3
1.2. Research Contributions . 5
1.3. Supporting Publications . 6

2. Preliminaries 9
2.1. Type-safe Programming . 9

2.1.1. Syntax and Semantics . 9
2.1.2. Type System . 12
2.1.3. Type Safety . 14

2.2. Semantic Web . 16
2.2.1. Resource Description Framework . 17
2.2.2. SPARQL Conjunctive Queries . 19
2.2.3. Description Logics . 21
2.2.4. Shape Constraint Language . 27

3. A Basic Programming Language (𝜆-calculus) 35
3.1. The Simply Typed 𝜆-calculus with Subtyping . 35

3.1.1. Syntax and Semantics . 35
3.1.2. Type System . 40
3.1.3. Subtyping . 42

3.2. Extensions to the language . 45
3.2.1. Recursion . 46
3.2.2. Records . 48
3.2.3. Lists . 50

4. Type Checking with Description Logics 55
4.1. Key Design Principles and Example Use Case . 55
4.2. Types for Conjunctive Queries . 58
4.3. Core Language . 59
4.4. Typecase . 63

ix

Contents

4.5. Type Safety . 67
4.5.1. Soundness of Query Typing . 67
4.5.2. Soundness of the Type System . 68

4.6. Summary and Discussion . 72

5. Type Checking with SHACL 73
5.1. Design Principles and Example Use Case . 73
5.2. Types for Conjunctive Queries . 76
5.3. Core Language . 77
5.4. Type Elaboration . 81
5.5. Type Safety . 84

5.5.1. Soundness of Query Typing . 84
5.5.2. Soundness of the Type System . 87

5.6. Summary and Discussion . 89

6. Shape Containment 91
6.1. Problem Description . 91
6.2. From SHACL to Description Logic . 93
6.3. Deciding Shape Containment using Standard Entailment 102
6.4. Effects on Algorithmic Type Checking for 𝜆SHACL . 104
6.5. Summary and Discussion . 105

7. Related Work 107
7.1. RDF Schema Languages . 107
7.2. Containment Problems . 108
7.3. Language Integration . 108

8. Conclusion 111

Bibliography 115

A. Soundness of 𝜆Full 123

List of Figures 129

List of Algorithms 131

Curriculum Vitae 132

x

CHAPTER 1
Introduction
Graph-based data models allow for a flexible representation of data that is useful for capturing knowl-
edge. In particular, data based on semantic data models, where conceptualizations and schemata are
stored inside the data as part of the graph, have grown considerably and fuel many different appli-
cations. Most prominently, the knowledge graphs by Google and Microsoft enhance Internet search.
Another example is Wikidata [91], an open-source knowledge graph storing several billion semantic
statements which are, among others, used in Wikipedia. Schema.org1 provides schematic information
for data which is being used both to enhance search as well as in personal assistants such as Google
Now and Cortana. Based on Schema.org, Google stores more than three trillion facts that are extracted
from of the Web [73]. A key factor in the popularity of knowledge graphs is their ability to deal with
a large variety in the captured knowledge that arises, for example, when integrating different data
sources. Figure 1.1 shows an abstracted version of such a knowledge graph.

Koblenz University of Koblenz

David

08.12.79 “David D.”

Charlie

Bob

Alice

Deutsches Eck

Data Inc

lo
ca

te
dI
n

located
In

visited

worksFor

birt
hDa

te hasName

studiesAt

ha
sF

rie
nd

w
or

ks
Fo

r

founded

locatedIn

Figure 1.1.: Stylized depiction of a knowledge graph.

Semantic data is also a foundational component in the idea of the Semantic Web: A Web of data
in which Web sites provide their knowledge in a machine-readable format using open standards2.
1https://schema.org/
2https://www.w3.org/standards/semanticweb/

1

https://schema.org/
https://www.w3.org/standards/semanticweb/

Chapter 1. Introduction

Person

Student

ProfessorsubClassOf

Organization UniversitysubClassOfCompany subClassOf

Monument City

koblenz

type

dataInc

locatedIn

deutschesEck locatedIn

type

“David D.”

“08.12.79”

david

hasName
birthDate

worksFor

type

visited

unikolocatedIn

type

bob

studiesAt

type

charliefounderOf

worksFor

alicehasFriend

Data Graph 1

Data Graph 2

Ontology
subClassOf

typetype type

Figure 1.2.: Example that combines the data graphs of twoWeb sites with an ontology (IRIs abbreviated).

The goal of the Semantic Web is to enable computers to integrate and process knowledge provided
through the Web without human intervention [21]. An example for an open standard used in the
Semantic Web is RDF [37]. RDF is used to represent graphs in the Semantic Web. Nodes and edges
in such graphs are represented by IRIs, essentially allowing for linking graph nodes across different
graphs. Another open standard used in the Semantic Web are OWL ontologies [47] which can act as
schemas for graphs by introducing types called concept expressions. OWL ontologies conceptualize
domains through these types and provide semantics for terms across different Web sites.

As an example, Figure 1.2 depicts a concrete version of Figure 1.1 in which two RDF data graphs
about a city and a university are combined using a common ontology to create a larger dataset.3 The
first data graph contains a node david that represent a Person called “David D” who visited deutschesEck , an
instance of Monument . Furthermore, he works for the Company called dataInc . Both, deutschesEck und dataInc

are located in koblenz , an instance of City . The second data graph contains the node uniko , an instance
of University . charlie , an instance of Professor , works for uniko . bob , an instance of Student , studies at uniko

and is friends with alice , another instance of Student . The two datasets are connected via the relations
locatedIn between uniko and koblenz as well as founderOf and through the ontology. The ontology

provides terms such as Person or Professor that are concepts (or types) for the data. Furthermore, it
defines the relation between them, for example, that Student is subclass of Person .
3In general, we avoid writing full IRIs. In graphs, we instead use single terms to depict graph nodes. Furthermore, concepts

are capitalized whereas instances use camel case.

2

1.1. Research Questions

While the approach used in the Semantic Web makes data easily accessible and machine-readable,
its flexibility incurs costs. Typically, a data graph relies on many different concepts. A programmer
must keep track of them including the complex relations between them. This can lead to potentially
unintuitive edge cases. For example, a programmer may consider david as an exemplary instance of
Person and subsequently write a program that queries for all instances of Person in the data graphs of
Figure 1.2 and then accesses the hasName relation to print the names:

1 for x in (query SELECT ?x WHERE {?x type Person })

2 print x .hasName

The query will return the nodes alice , bob , charlie , and david . However, the hasName relation is
only defined for the node david . In order to cover all edge cases, a programmer must not only specify
what happens if no name is known, but also what happens if multiple names are known. Such a
missed case is typically only surfacing as a run-time error which causes a program to crash. Typically,
programming languages prevent such kind of errors through type systems which prove the absence of
run-time errors. For this, they rely on types that approximate the run-time behavior of the program.
For example, a programmay introduce a variable person that is typed with Person . Subsequently, only
expressions that evaluate to an instance of a subtype of Person can be assigned to this variable—e. g.,
the first result of a query that selects all instances of Student .

1 var person : Person = head (query SELECT ?x WHERE { ?x type Student })

However, programming languages are not aware of this form of types. This means that types already
used in the Semantic Web and their relations are not considered during type checking. In this thesis,
we aim to bridge the gap between types in the Semantic Web and types in the programming language.

1.1. Research Questions

The main goal of the thesis is to investigate type systems based on schematic descriptions for RDF data
graphs. Type systems are an established method in the field of software engineering that allow for
proving the absence of run-time errors without executing the program (c. f. [81]). In essence, they
work by classifying the syntactic elements of the program according to the values they compute.
Using such a classification, a type system that is sound can guarantee the absence of certain run-time
errors. We focus on schematic descriptions based on OWL [47] as well as schematic descriptions based
on the Shape Constraint Language (SHACL) [59]. While both schema languages use possible world
semantics, they serve different purposes.

OWL, rooted in description logics, comprise logical axioms. For example, the axiom description
logic Person ⊑ ∃ hasName.⊤ , built with the two concept expressions Person and ∃ hasName.⊤ , de-
fines that all instances of Person must have a name. However, OWL ontologies also allow for mod-

3

Chapter 1. Introduction

eling incomplete knowledge. Even though alice , bob and charlie have no name, the graph as shown in
Figure 1.2 is still valid with respect to the axiom—their names simply constitute incomplete knowl-
edge. Furthermore, OWL uses an open-world semantics. While bob is known to be an instance of
Student , it is unknown whether he is an instance of Professor ratheh than false. This thesis aims to
use concept expressions like Person and ∃ hasName.⊤ as types representing sets of values. This new
form of types is then used to type terms of a programming language extended to support querying of
graph data.

SHACL shape definitions, on the other hand, provide integrity constraints for RDF graphs. Similar
to XML Schema or JSON Schema, they allow for validating RDF graphs—that is, deciding whether the
RDF graph conforms to the given SHACL shape definitions. For example, a shape definition requiring
every instance of Person to have at least one hasName relation is shown in Figure 1.3. In this case, the

1 :PersonShape a sh :NodeShape;

2 sh : targetClass : Person ;

3 sh : property [

4 sh :path :hasName;

5 sh :minCount 1;

6] .

Figure 1.3.: SHACL shape that enforces that every instance of Person has a hasName relation.

graph shown in Figure 1.2 is not valid with respect to the SHACL shape PersonShape . The thesis aims to
use shape names such as PersonShape as types which represent graph nodes. These types are then used
to type terms of a programming language featuring embedded querying.

Since we use the notion that types of a programming language represent sets of values, our subtype
relation is based on subset semantics. In case of description logics, subsumption of concept expressions
is a basic reasoning task [19]. However, in case of SHACL shapes, the problem of shape containment—
that is, deciding whether two shapes representing sets of graph nodes are in a subset relation—is an
open problem that is addressed in this thesis. Contrary to the integration of other data models, the
complexity of the subtype relation makes a mapping to types in a programming language (c. f. [75] for
SQL) not suitable due to complexity of the subtype relation.

In summary, the following research questions will be addressed:

Research Question 1: How can OWL ontologies be leveraged to achieve a type-safe programming
language for working with RDF graphs?
We propose to use OWL ontologies for type checking program code. We leverage description
logics, the theoretic foundation of OWL ontologies, and use concept expressions as types. We

4

1.2. Research Contributions

then require definitions for typing program expressions and queries. In particular, the type sys-
tem must consider the open-world semantics employed by OWL which allows for modelling
incomplete knowledge.

Research Question 2: How can SHACL be leveraged to achieve a type-safe programming language
for working with RDF graphs?
Theopen-world assumption employed by description logics may be counterintuitive for program-
mers as type systems typically rely on a closed world. We therefore also investigate a type system
based on an abstraction of the Shape Constraint Language (SHACL) in which so called shape ex-
pressions constitute types. Again, this requires definitions for the typing of program expressions
as well as subtyping between shapes.

Research Question 3: How can containment of SHACL shape expressions be decided?
We base our subtyping relation between types on subset semantics. In case of description logics,
subsumption is a basic reasoning task. However, subsumption or containment between SHACL
shapes is not used in the validation of RDF graphs. Therefore, the problem of shape containment
has not been considered so far. In the context of type checking however, it is required for deciding
subtyping. We therefore investigate how shape containment can be decided.

1.2. Research Contributions

To address the research questions described in the previous section, we define two languages 𝜆DL

and 𝜆SHACL and their associated type systems. Both languages allow for defining programs that are
written with respect to an RDF data graph and either an OWL ontology or SHACL shape definitions.
We identify suitable types that represent RDF graph nodes based on the notion that types represent
sets of values. We define operations for working with RDF graphs—in particular, querying as well as
traversing the graph. We then continue to show the type safety of the defined languages.

Chapter 2 recaps the basics of type systems and the Semantic Web, in particular, RDF, SPARQL, de-
scription logics and SHACL. Chapter 3 then introduces the 𝜆-calculus which acts as a basic program-
ming language. Both chapters build upon existing work. In particular, Chapter 3 uses definitions from
Types and Programming Languages [81] whereas Chapter 2 builds upon various sources. The language
𝜆DL is then described in Chapter 4 and addresses the first research question. Using DL concept expres-
sions as types, it defines how concept expressions are derived from queries and how they are assigned
to program expressions. The language 𝜆SHACL, described in Chapter 5, addresses the second research
question. It relies on an abstraction of SHACL shape expressions as types. Lastly, we address the third
research question in Chapter 6. We investigate the correspondence between shape containment and
subsumption in DL concept expressions. In particular, we show that for a subset of the SHACL dialect
used in this thesis, deciding shape containment through a translation into a DL concept subsumption

5

Chapter 1. Introduction

problem is sound and complete. For the complete SHACL dialect as used in this thesis, we show that
our translation into a description logic problem is a sound but incomplete approach.

In short, the research contributions of this thesis are:

Contribution 1: Wedefine a type system based on description logics, the foundation of OWLontologies.
We then show that the type system of the language 𝜆DL is sound (also known as type safety).

Contribution 2: We define a type system based on a logical abstraction of SHACL shape expressions.
We then show that the type system of the resulting language 𝜆SHACL is sound.

Contribution 3: For SHACL shape containment, we provide a transformation from a SHACL shape
containment problem to a concept subsumption problem in description logic. We show that for
a subset of the SHACL definitions used in this thesis, the translation is sound and complete. For
the complete definitions of SHACL as used in this thesis, deciding shape containment through
DL concept subsumption is sound but incomplete.

1.3. Supporting Publications

This thesis is supported by several publications, listed in reverse-chronological order:

(1) Leinberger, M., Seifer, P., Rienstra, T., Lämmel, R., Staab, S.: Deciding SHACL Shape Containment
Through Descriptoin Logics Reasoning. In: Proceedings of the 19th International Semantic Web
Conference (ISWC 2020). LNCS, vol. 12506, pp. 366–383. Springer (2020).

(2) Leinberger, M., Seifer, P., Schon, C., Lämmel, R., Staab, S.: Type Checking Program Code Using
SHACL. In: Proceedings of the 18th International Semantic Web Conference (ISWC 2019). LNCS,
vol. 11778, pp. 399–417. Springer (2019).

(3) Seifer, P., Leinberger, M., Lämmel, R., Staab, S.: Semantic Query Integration With Reason. Pro-
gramming Journal 3(3), 13 (2019).

(4) Hartenfels, C., Leinberger, M., Lämmel, R., Staab, S.: Type-Safe Programming with OWL in Se-
mantics4J. In: Proceedings of the ISWC 2017 Posters & Demonstrations and Industry Tracks, 16th
International Semantic Web Conference (ISWC 2017). CEUR Workshop Proceedings, vol. 1963.

(5) Leinberger, M., Lämmel, R., Staab, S.: The Essence of Functional Programming on Semantic Data.
In: Proceedings of the 26th European Symposium on Programming (ESOP 2017). LNCS, vol. 10201,
pp. 750–776. Springer (2017).

(6) Leinberger, M., Scheglmann, S., Lämmel, R., Staab, S., Thimm, M., Viegas, E.: Semantic Web
Application Development with LITEQ. In: Proceedings of the 13th International Semantic Web
Conference (ISWC 2014). LNCS, vol. 8797, pp. 212–227. Springer (2014).

6

1.3. Supporting Publications

(7) Scheglmann, S., Leinberger, M., Lämmel, R., Staab, S., Thimm, M.: Property-based typing with
LITEQ. In: Proceedings of the 13th International Semantic Web Conference (ISWC 2014), Posters
& Demonstrations Track. CEUR Workshop Proceedings, vol. 1272, pp. 149–152. CEUR-WS.org
(2014)

(8) Scheglmann, S., Lämmel, R., Leinberger, M., Staab, S., Thimm, M., Viegas, E.: IDE Integrated RDF
Exploration, Access and RDF-Based Code Typing with LITEQ. In: The Semantic Web: ESWC 2014
Satellite Events (ESWC 2014). LNCS, vol. 8798, pp. 505–510. Springer (2014).

Publication (5) contains the definitions for 𝜆DL and acts as the foundation for Chapter 4. Publi-
cation (3) describes an implementation of 𝜆DL leveraging compiler extensions in the programming
language Scala. Chapter 4 uses some of the theoretical parts that are part of this publication. An-
other implementation of 𝜆DL based on an extended compiler for the language Java is described in (4).
The language 𝜆SHACL is described in publication (2) which serves as the basis for Chapter 5. Lastly,
Chapter 6 is based on publication (1). Other publications include (6) which describes a mapping-based
approach for programming with RDF graphs and ontologies. The publication influenced this thesis as
the defined type systems solve many of the problems which limited the usefulness of (6). Publications
(7) and (8) describe other mapping-based approaches to programming with RDF.

7

CHAPTER 2
Preliminaries
In order to investigate type-safe programming for RDF data graphs, we recap the basics of type systems
as well as the components of the Semantic Web.

2.1. Type-safe Programming

While modern software engineering and programming language theory knows many formal methods,
type systems are among the most well-known. According to Pierce [81]

A type system is a tractable syntactic method for proving the absence of certain program
behaviors by classifying phrases according to the kind of values they compute.

In this thesis, we rely on type systems to show the absence of run-time errors. That is, errors that
occur during evaluation of a program and cause it to abort execution. While some run-time errors are
obvious, others may only occur after a program ran for a long time. We use type systems that rely
on a static analysis of a program—that is, the syntactic elements of the program are analyzed without
actually evaluating the program—to show that the program will not abort due to a run-time error.
A type system that can guarantee the absence of run-time errors is called type safe. As Milner [70]
puts it, a well-typed program cannot “go wrong”. However, we will highlight what type safety means
through a small programming language named NB that features Booleans and numerical expressions.
The definitions used in this section are mainly taken from the textbook Types and Programming Lan-
guages [81], albeit sometimes slightly altered.

2.1.1. Syntax and Semantics

Syntax Programming languages allow for writing programs—phrases that represent computations.
Following the definitions of Pierce [81], we use the word term (abbreviated as 𝑡) to represent such
computations whereas we use the word expression for all sorts of syntactic constructs. We highlight
expressions when they occur in running text for readability. The language NB which we use as an
example contains only a few terms. Namely, it contains Boolean constants true and false . It also
contains if-then-else expressions of the form if 𝑡1 then 𝑡2 else 𝑡3 , where 𝑡1 constitutes the guard and

9

Chapter 2. Preliminaries

NB (untyped)

Syntax

𝑡 ::= terms:
true constant true
| false constant false
| if 𝑡 then 𝑡 else 𝑡 if-then-else
| 0 constant zero
| succ 𝑡 successor
| pred 𝑡 predecessor
| iszero 𝑡 zero test

𝑣 ::= values:
true true value
| false false value
| 𝑛𝑣 numeric value

𝑛𝑣 ::= numeric values:
0 zero value
| succ 𝑛𝑣 successor value

Evaluation 𝑡 −→ 𝑡 ′

if true then 𝑡2 else 𝑡3 −→ 𝑡2 (e-iftRue)

if false then 𝑡2 else 𝑡3 −→ 𝑡3 (e-iffalse)
𝑡1 −→ 𝑡 ′1

if 𝑡1 then 𝑡2 else 𝑡3 −→ if 𝑡 ′1 then 𝑡2 else 𝑡3
(e-if)

𝑡1 −→ 𝑡 ′1
succ 𝑡1 −→ succ 𝑡 ′1

(e-succ)

pred 0 −→ 0 (e-pRedzeRo)

pred (succ 𝑛𝑣1) −→ 𝑛𝑣1 (e-pRedsucc)
𝑡1 −→ 𝑡 ′1

pred 𝑡1 −→ pred 𝑡 ′1
(e-pRed)

iszero 0 −→ true (e-iszeRozeRo)

iszero (succ 𝑛𝑣1) −→ false (e-iszeRosucc)
𝑡1 −→ 𝑡 ′1

iszero 𝑡1 −→ iszero 𝑡 ′1
(e-iszeRo)

Figure 2.1.: Syntax and evaluation rules for arithmetic expressions (NB).

𝑡2 and 𝑡3 the different branches of the expression. Furthermore, the language contains the numeric
constant 0 , the arithmetic operators succ and pred for successor and predecessor1 as well as a
predicate iszero that evaluates to true when applied to the constant 0 and false when applied to
some other number. Figure 2.1 summarizes the grammar of the language (left-hand column). The
language is untyped, meaning that there are no syntactic elements or rules for types yet. To improve
readability, we sometimes add parentheses to the phrases of the language even though they are not
explicitly mentioned in the grammar.

Any program of the language NB is just a term built from the grammar given in Figure 2.1. As
an example, consider the program iszero (succ 0) . Intuitively, this program represents a computation
that evaluates to false . A subset of terms called values (𝑣) constitute possible final results of the

1To simplify expressions, we sometimes use decimal numbers instead of the actual syntactic representations. For eaxmple,
we use 1 and 2 to represent succ 0 and succ (succ 0) .

10

2.1. Type-safe Programming

evaluation of a term—such as true , false , or numeric values 𝑛𝑣 .

Semantics In terms of semantics of programming languages, we rely on small step operational
semantics. That is, we define the behavior of the language through an evaluation relation, sometimes
also called reduction relation, 𝑡 −→ 𝑡 ′ expressing that a term 𝑡 can be reduced to 𝑡 ′ in one step. The
evaluation relation is defined through a set of inference axioms (right-hand column of Figure 2.1).
Furthermore, we use 𝑡 −→∗ 𝑡 ′ to denote that a term 𝑡 is reduced to 𝑡 ′ by repeated application of the
evaluation rules. In essence, the evaluation relation defines an abstract machine that interprets the
program. The meaning of a term 𝑡 is the final state that the machine reaches [81]. The meaning of
term 𝑡 is therefore the term 𝑡 ′ that is produced by repeatedly applying the evaluation rules 𝑡 −→∗ 𝑡 ′
such that 𝑡 ′ cannot be reduced any further.

Consider the rule e-iftRue. The rule says that if the term is an if-then-else expression where the
guard is the constant true , then the term 𝑡 can be reduced to the then-part of the expression, namely 𝑡2.
Likewise, rule e-if says that if the guard 𝑡1 of the if-then-else expression can take a step and evaluate
to 𝑡 ′1, then the whole expression if 𝑡1 then 𝑡2 else 𝑡3 evaluates to if 𝑡 ′1 then 𝑡2 else 𝑡3 . Consider the
following statement:

if iszero 0 then true else false −→ if true then true else false

The derivability of this statement—that is, it is possible to reduce 𝑡 to 𝑡 ′ by applying the reduction
rules—is shown in the following derivation tree:

e-iszeRozeRo
iszero 0 −→ true

e-if
if iszero 0 then true else false −→ if true then true else false

Likewise, repeated application of the evaluation rules looks as follows:

if iszero 0 then true else false −→∗ true

The term true cannot be evaluated any further since no rules apply anymore. If no evaluation rule
applies to a term anymore, then the term is said to be in normal form. Ultimately, terms are expected
to be reduced to values. In the example above, the term is reduced to the value true . By definition,
values are in normal form. However, some terms cannot be reduced further even though they are not
values. In case of the term iszero true , no evaluation rule applies. The term is in normal form, but
not a value. Such a term is stuck. Intuitively, an abstract machine or interpreter for a language would
not know what to do with such a term. Execution of the program has “gone wrong” and the term is
meaningless. Subsequently, the interpreter will raise an error and abort execution. We use “stuckness”
as a simple notion of a run-time error.

11

Chapter 2. Preliminaries

Definition 1 (Run-time error). A term 𝑡 is in normal form if no evaluation rule applies to it—i. e., there
is no 𝑡 ′ such that 𝑡 −→ 𝑡 ′. If a term 𝑡 is in normal form but not a value, then we say that 𝑡 is stuck. A
stuck term represents a run-time error.

2.1.2. Type System

A term either evaluates to a value or it gets stuck at some point. A stuck term represents a meaningless
program or run-time error. Assigning types to terms allows for proving that a term will definitely not
get stuck without actually evaluating the term. One common view on the semantics of types, which
is also adopted in this thesis, is to see a type 𝑇 as a set of values [31]. A term 𝑡 having a type 𝑇 then
means that it is possible to statically show—that is, without actually evaluating 𝑡—that 𝑡 will evaluate
to a value belonging to 𝑇 .

Types are assigned to terms through a set of inference rules. This set of inference rules define the
typing relation 𝑡 : 𝑇 . Figure 2.2 summarizes the newly introduced syntactic forms (types) and inference
rules. Rules t-tRue and t-false assign the type Bool to the values true and false . Rule t-if assigns
a type 𝑇 to the if-then-else expression depending on the type of its subexpressions. If the guard 𝑡1 is
assigned the type Bool and both 𝑡2 and 𝑡3 are assigned the type 𝑇 , then the complete expression is
assigned to the type 𝑇 . Likewise, the value 0 is of type Nat (rule t-zeRo). For a successor expression
succ 𝑡1 , if 𝑡1 is typed with Nat , then the expression also has type Nat (rule t-succ). Rule t-pRed
works similarly. If 𝑡1 in pred 𝑡1 is of type Nat , then the complete expression is also assigned to the
type Nat . In case of the term iszero 𝑡1 , rule t-iszeRo assigns Bool in case that the subexpression
𝑡1 is typed with Nat . As with the evaluation relation, consider the following statement as a simple
example of the typing relation:

if iszero 0 then true else false : Bool

The following derivation tree shows how the type Bool can be derived for the term:

t-zeRo0 : Nat
t-iszeRo

iszero 0 : Bool t-tRue
true : Bool t-false

false : Bool
t-if

if iszero 0 then true else false : Bool

A term 𝑡 is called well-typed if it is possible to assign a type. Contrary to that, some terms cannot be
assigned a type. For example, for the term iszero true , no rule exists such that a type can be assigned.
The general idea of a type system is that a type is only assigned to a term if it can be shown that the
term will not get stuck. The derivation of the type acts as a proof that the term does not “go wrong”
when evaluated. Subsequently, only programs that are well-typed should be allowed to be interpreted
or “executed” through the evaluation relation.

12

2.1. Type-safe Programming

NB (typed) Extends NB (Figure 2.1)

New syntactic forms

𝑇 ::= types:
Bool type of booleans
| Nat type of natural numbers

Typing rules 𝑡 : 𝑇

true : Bool (t-tRue)

false : Bool (t-false)

𝑡1 : Bool 𝑡2 : 𝑇 𝑡3 : 𝑇
if 𝑡1 then 𝑡2 else 𝑡3 : 𝑇

(t-if)

0 : Nat (t-zeRo)

𝑡1 : Nat
succ 𝑡1 : Nat

(t-succ)

𝑡1 : Nat
pred 𝑡1 : Nat

(t-pRed)

𝑡1 : Nat
iszero 𝑡1 : Bool

(t-iszeRo)

Figure 2.2.: Typing rules for arithmetic expressions (NB).

Proposition 1 (Well-typed). A term 𝑡 is well-typed (also called typeable) if there is some 𝑇 such that
𝑡 : 𝑇 . A well-typed term is not stuck—it is either a value or it can take a step through the evaluation
relation.

To reiterate, the derivation of the type of a well-typed program acts as a proof for the absence of
errors. A type system therefore gives a guarantee of the absence of run-time errors. Compared to
testing a program through evaluation, deriving a type has several advantages. A run-time error may
only occur in very specific path through a program. The derivation of a type always considers all
possible paths through a program. Evaluation of a program may result in some intended side-effects,
such as the modification of data. However, this is undesired when simply testing the program. Lastly,
deriving a type through a static analysis of the program is typically faster than executing the program.

However, it is important to notice that being well-typed is a sufficient but not necessary condition
for not getting stuck. Or, in other words: Not being well-typed does not automatically mean that a
term will get stuck. The term if true then true else 0 is not typeable as the two branches of the if-
then-else expression have different types. Yet, evaluation of the term will never get stuck. Restricting
evaluation to only well-typed terms is a trade-off. One is trading expressiveness (as some programs
that evaluate perfectly fine are forbidden) for safety.

13

Chapter 2. Preliminaries

2.1.3. Type Safety

Themost basic property of any type system is type safety (also called soundness): Awell-typed program
does not get stuck during evaluation. Showing that a type system is sound proceeds in two steps:

Progress: A well-typed term is not stuck—it is either a value or it can be reduced further.

Preservation: If a well-typed term is reduced by one step, then the result is also well-typed.

Intuitively, if both properties hold for a language, it is impossible for a term to be stuck.
The first step to showing these two properties is the so called canonical forms lemma. The lemma

notes the forms of well-typed values that can exist in the language (see [81]).

Lemma 1 (Canonical forms of NB). Let 𝑣 be a well-typed value. Then one of the following must be true:

1. If 𝑣 is a value of type Bool , then either 𝑣 = true or 𝑣 = false .

2. If 𝑣 is a value of type Nat , then 𝑣 is a numerical value 𝑛𝑣 according to the grammar defined in Fig-
ure 2.1.

Given Lemma 1, progress and preservation can now be shown. Progress, saying that a well-typed
term is either a value or it can take a step, is a structural induction over the typing relation 𝑡 : 𝑇 . For
each case, evaluation rules that are applicable are listed.

Theorem 1 (Progress). Let 𝑡 be a well-typed term—that is, 𝑡 : 𝑇 for some 𝑇 . Then either 𝑡 is a value or
there is some 𝑡 ′ with 𝑡 −→ 𝑡 ′ [81].

Proof. By induction on the derivation of 𝑡 : 𝑇 . t-tRue, t-false and t-zeRo are immediate since 𝑡 is a
value. For the remaining cases, the argument is as follows:

T-IF 𝑡 = if 𝑡1 then 𝑡2 else 𝑡3, 𝑡1 : Bool, 𝑡2 : 𝑇 , 𝑡3 : 𝑇 .
By induction hypothesis, either 𝑡1 is a value or it can take a step. If 𝑡1 is a value, then by Lemma 1,
it is either true or false , in which case either e-iftRue or e-iffalse apply. If 𝑡1 is not a value
but can take a step, then rule e-if applies.

T-SUCC 𝑡 = succ 𝑡1, 𝑡1 : Nat.
By induction hypothesis, 𝑡1 is either a value or it can take a step. If it is a value, then by Lemma 1,
it is a numerical value, therefore, the complete term is a numerical value (c. f. Figure 2.1). If 𝑡1 can
take a step, then rule e-succ applies.

T-PRED 𝑡 = pred 𝑡1, 𝑡1 : Nat.
By induction hypothesis, 𝑡1 is either a value or it can take a step. If it is a value, then by Lemma 1,
either rule e-pRedzeRo or rule e-pRedsucc applies. If it can take a step, rule e-pRed applies.

14

2.1. Type-safe Programming

T-ISZERO 𝑡 = iszero 𝑡1, 𝑡1 : Nat.
By induction hypothesis, 𝑡1 is either a value or it can take a step. If it is a value, then by Lemma 1,
it is a numerical value. Therefore, either rule e-iszeRozeRo or rule e-iszeRosucc applies. If it can
take a step, then rule e-iszeRo applies.

□

Preservation is saying that if a well-typed term is reduced by one step, then the type is preserved.
Again, the proof consists of a structural induction over the typing relation 𝑡 : 𝑇 . In each case, possibly
applicable evaluation rules are listed and the resulting 𝑡 ′ then examined with respect to its type.

Theorem 2 (Preservation). Let 𝑡 be a well-typed term—that is, 𝑡 : 𝑇 for some𝑇 . If 𝑡 −→ 𝑡 ′, then 𝑡 ′ : 𝑇 [81].

Proof. By induction on the derivation of 𝑡 : 𝑇 . Again, t-tRue, t-false and t-zeRo are immediate as
they are values. For the remaining cases, the argument is as follows:

T-IF 𝑡 = if 𝑡1 then 𝑡2 else 𝑡3, 𝑡 : 𝑇 , 𝑡1 : Bool, 𝑡2 : 𝑇 , 𝑡3 : 𝑇 .
There are three rules by which 𝑡 ′ can be derived:

E-IFTRUE 𝑡1 = true, 𝑡 ′ = 𝑡2.
If 𝑡 −→ 𝑡 ′ is derived using rule e-iftRue, then 𝑡1 must be true and the resulting term is 𝑡2.
By assumption of the t-if case, as 𝑡2 : 𝑇 , the type is preserved.

E-IFFALSE Analogous to e-iftRue.

E-IF 𝑡1 −→ 𝑡 ′1, 𝑡 ′ = if 𝑡 ′1 then 𝑡2 else 𝑡3.
By induction hypothesis, 𝑡1 −→ 𝑡 ′1 preserves the type. This means that the type for the
whole term is preserved as rule t-if can be applied again, yielding 𝑡 ′ : 𝑇 .

T-SUCC 𝑡 = succ 𝑡1, 𝑡 : Nat, 𝑡1 : Nat.
Only rule e-succ can be used to derive 𝑡 ′, in which 𝑡1 takes a step (𝑡1 −→ 𝑡 ′1). By induction
hypothesis, this preserves the type (𝑡 ′1 : Nat). Rule t-succ can be applied again, yielding 𝑡 ′ : Nat .

T-PRED 𝑡 = pred 𝑡1, 𝑡 : Nat, 𝑡1 : Nat.
There are three rules by which 𝑡 ′ can be derived:

E-PREDZERO 𝑡1 = 0, 𝑡 ′ = 0.
By rule t-zeRo, 𝑡 ′ : Nat . Therefore, the type is preserved.

E-PREDSUCC Similar to e-pRedzeRo.

E-PRED 𝑡1 −→ 𝑡 ′1, 𝑡 ′ = pred 𝑡 ′1.
By induction hypothesis, 𝑡1 −→ 𝑡 ′1 preserves the type (𝑡 ′1 : Nat). Therefore, rule t-pRed
applies again.

15

Chapter 2. Preliminaries

T-ISZERO 𝑡 = iszero 𝑡1, 𝑡 : Bool, 𝑡1 : Nat.
There are three rules by which 𝑡 ′ can be derived:

E-ISZEROZERO 𝑡1 = 0, 𝑡 ′ = true.
By rule t-tRue, the type is preserved since 𝑡 ′ : Bool .

E-ISZEROSUCC Same as rule e-iszeRozeRo.

E-ISZERO 𝑡1 −→ 𝑡 ′1, 𝑡 ′ = iszero 𝑡 ′1.
By induction hypothesis, 𝑡1 −→ 𝑡 ′1 preserves the type. Since 𝑡 ′1 : Nat , rule t-iszeRo applies
again and the type is preserved since 𝑡 ′ : Bool .

□

Given that a well-typed term is either a value or it can be reduced (progress) and that if a well-typed
term is reduced, the result is well-typed again, it follows that the type system is sound. A term cannot
be stuck if the term is well-typed. As we use stuckness as a notion for a run-time error, a well-typed
program does not contain run-time errors.

2.2. Semantic Web

While the modern World Wide Web is huge both in size as well as knowledge stored within it, there
is a fundamental flaw when it comes to using this knowledge within intelligent software agents. Its
representation language HTML is intended for presentation to humans rather than machines. This
makes it difficult for a software agent or application to extract the knowledge. Even more so if knowl-
edge from multiple Web sites must be combined to yield an answer. The goal of the Semantic Web is
to enable computers to integrate and process knowledge provided through the Web without human
intervention [21]. This is achieved through several standards as defined by theW3C of which we use a
subset. For one, the Resource Description Framework or RDF [37] that is used to represent data. Second,
the query language SPARQL that is used to retrieve information from RDF data [83]. Third, ontologies
that establish common terminologies [47], give formally defined meanings to this terminology, and
provide rich conceptual schemas [86, 53]. Last, the Shapes Constraint Language (SHACL) which uses
integrity constraints to validate RDF data [59].

This thesis aims to improve the development of software agents or programs that work with data
from the Semantic Web. That is, programs access RDF data through SPARQL queries and then proceed
to process this data. Ontologies and SHACL provide information about the structure of the data, which
is in turn used for proving the absence of run-time errors in the program. Importantly, this thesis is
technically not limited to the Semantic Web, but is rather concerned with semantic data. That is, data
which is organized such that it can be interpreted without human intervention. However, we base

16

2.2. Semantic Web

this work on the Semantic Web technology stack as this provides formal foundations and well-defined
behavior.

2.2.1. Resource Description Framework

The Resource Description Framework (RDF) [37] is a language for describing entities and their rela-
tions [53]. RDF relies on International Resource Identifiers (IRIs) for the identification of entities (some-
times called objects) as well as relations. First, this allows for avoiding conflicts in names because
IRIs introduce namespaces. Second, it allows for consistently referencing entities or relations that live
outside of the current data set. Consider this example sentence:

Bob has a friend called Alice.

This sentence contains the two entities Bob and Alice as well as the relation hasFriend. In RDF, the
entity for Bob could for example be represented by the IRI http://example.org/bobwhereas the hasFriend
relation could be represented by the IRI http://example.org/hasFriend. In this thesis, we typically avoid
giving full IRIs and just write bob to reference the entity. While some relations such as hasFriend

are defined for a specific domain, other relations such as the type relation2, used to indicate that
something is an instance of a concept or class, are universal. For example, bob may be an instance of
the concept Student .

RDF datasets, also called RDF data graphs, describe labelled directed graphs where entities are the
nodes and relations form the edges of the graph. The example sentence used above can be represented
using the graph bob alicehasFriend . RDF graphs can be represented as sets of triples. Each triplemimics
a basic sentence consisting of a subject, a predicate (or property) as well as an object. In this thesis, we
use the words predicate, property and relation interchangeably. Subject and object represent nodes
such as bob and predicates represent edges such as hasFriend . The example sentence can therefore
also be represented by the triple (bob, hasFriend, alice). Figure 2.3 shows an RDF data graph containing
the knowledge that bob is a Student and a Person who has a friend alice who is also an instance of Person ,
both as a graph as well as a set of triples.

Person Student

alice

type

bob

typetype

hasFriend

𝐺1 = { (bob, type, Student),
(bob, type, Person),
(bob, hasFriend, alice),
(alice, type, Person) }

Figure 2.3.: An example of an RDF graph𝐺1 (left) and its representation as a set of triples (right).

Besides IRIs that identify entities, RDF also features literals and blank nodes. Literals are used to
represent primitive values such as strings, e. g., the name of Bob in the triple bob “Bob B.”hasName .
2The full IRI of type is http://www.w3.org/1999/02/22-rdf-syntax-ns#type.

17

Chapter 2. Preliminaries

Blank nodes may refer to entities or literals but are used to model incomplete information. In that
respect, they behave similarly to existentially quantified variables in first-order logic [53]. For example,
the triple bob 𝑏1studiesAt , where 𝑏1 represents a blank node, models the statement that bob studies
at 𝑏1 . However, we have no further information about 𝑏1 .

Definition 2 (RDF Graph). Let I be the set of all IRIs, L the set of all literals and B the set of all blank
nodes. An RDF graph 𝐺 is a set of triples of the form (subject, predicate, object) ∈ (I ∪ B) × (I) ×
(I ∪ B ∪ L).

We use 𝐺 to denote a single RDF graph whereas G refers to all possible RDF graphs. We use
Nodes(𝐺) = {𝑥 | (𝑥, predicate, object) ∈ 𝐺 ∨ (subject, predicate, 𝑥) ∈ 𝐺} to refer to the set of nodes
of 𝐺 whereas 𝑜 refers to an individual node. For example, Nodes(𝐺1) = { alice , bob , Student , Person }.
We sometimes use the expression object to refer to an graph node. Prop(𝐺) = {𝑥 | (𝑜, 𝑥, 𝑜′) ∈ 𝐺}
denotes the set of properties with 𝑝 denoting an individual property. Lastly, we also use 𝑝(𝐺) =
{(𝑥, 𝑥 ′) | (𝑥, 𝑝, 𝑥 ′) ∈ 𝐺} to denote the set of all pairs (𝑜, 𝑜′) such that there is a connection of 𝑜 to
𝑜′ via 𝑝 in graph 𝐺. Furthermore, we use Concepts(𝐺) = {𝑥 | (𝑜, type, 𝑥) ∈ 𝐺} to denote the set of
concepts, e. g. Concepts(𝐺1) = { Student , Student }, that are used in the RDF graph.

1 :bob

2 rdf : type : Student ;

3 rdf : type :Person ;

4 : hasFriend : al ice .

5
6 : al ice

7 rdf : type :Person .

Figure 2.4.: RDF graph𝐺1 serialized using N3 Notation (namespace definitions are omitted).

When giving examples, we typically either draw the graph or provide the triples of the graph.
However, when many syntactic elements are involved, e. g., when giving examples for SHACL shapes
(see Section 2.2.4), we resort to serialized graphs. Figure 2.4 depicts graph𝐺1 serialized in N3 Notation.
N3 Notation features a normal triple structure where a “.” ends a triple (line 6–7). A shortcut is the
“;” symbol which allows for omitting repeated subjects (line 1–4). To reiterate, RDF graph nodes are
represented through IRIs. We abbreviate IRIs in serialized RDF graphs using namespaces. We use
a namespace without prefix to represent graph nodes coming from our example domian (e. g., :bob).
Relations that include a namespace, such as rdf:type are indicate globally defined relations by theW3C.

18

2.2. Semantic Web

2.2.2. SPARQL Conjunctive Queries

RDF data graphs can be queried via the SPARQL standard [83]. For this, RDF data graphs are typically
stored in special databases, so called triplestores, that provide efficient implementations of the SPARQL
query evaluation rules. However, in this thesis, we abstract away from them and only mention them
in passing whenever appropriate. We instead simply define query evaluation over an RDF graph.

SPARQL, at its heart, is a pattern matching language. We focus on a core fragment of SPARQL called
conjunctive queries (𝐶𝑄𝑠). That is, our queries are conjunctions of triple patterns that use variables
only in place of graph nodes, not in place of properties [24]. This constitutes a widely used subset of
SPARQL queries [80]. Figure 2.5 summarizes syntax and evaluation rules of the query language.

Conjunctive Queries (𝐶𝑄𝑠)

Syntax

𝑞 ::= 𝑥 ← gp query

gp ::= graph pattern:
gp ∧ gp conjunction
| (𝑥 𝑟 𝑜) subject var pattern
| (𝑜 𝑟 𝑥) object var pattern
| (𝑥 𝑟 𝑥) subject object var pattern

𝑟 ::= path expression:
𝑝 (property)
| 𝑟− (inverse path)

Evaluation ⟦𝑞⟧𝐺

⟦𝑥 𝑟 𝑜⟧𝐺 = {𝜇 | (𝜇(𝑥), 𝑜) ∈ 𝑟 (𝐺)}
(q-svaR)

⟦𝑜 𝑟 𝑥⟧𝐺 = {𝜇 | (𝑜, 𝜇(𝑥)) ∈ 𝑟 (𝐺)}
(q-ovaR)

⟦𝑥1 𝑟 𝑥2⟧𝐺 = {𝜇 | (𝜇(𝑥1), 𝜇(𝑥2)) ∈ 𝑟 (𝐺)}
(q-vaRs)

⟦𝑔𝑝1 ∧ 𝑔𝑝2⟧𝐺 = ⟦𝑔𝑝1⟧𝐺 Z ⟦𝑔𝑝2⟧𝐺 (q-conj)
where Ω1 Z Ω2 = {𝜇1 ∪ 𝜇2 | 𝜇1 ∈ Ω1,

𝜇2 ∈ Ω2 are compatible mappings}
⟦𝑥 ← 𝑔𝑝⟧𝐺 = {𝜇 |𝑥 | 𝜇 ∈ ⟦𝑔𝑝⟧𝐺} (q-pRoj)

Figure 2.5.: Syntax and Evaluation rules of conjunctive queries (CQs).

Syntax We use the metavariable 𝑥 to denote a variable and use 𝑥 to denote a sequence of vari-
ables 𝑥1, . . . , 𝑥𝑛. Furthermore, we use 𝑜 to denote an RDF graph node. Syntax is then summarized
in Figure 2.5 (left side). A query 𝑞 = 𝑥 ← gp consists of a head 𝑥 and a body gp which is a graph
pattern. The head of a query represents the answer variables of the query, which are a subset of all
variables occurring in the body of 𝑞. We use Vars(𝑞) to refer to the set of all variables in a query and
Head(𝑞) to refer to the answer variables. The body of a query consists of a graph pattern, which is
either a conjunction of two patterns or a triple pattern where either subject, object or both have been

19

Chapter 2. Preliminaries

replaced by variables. They are connected via a path expression 𝑟 . For simplicity, we restrict ourselves
to path expressions consisting of either standard properties 𝑝 representing an edge between one node
to another or the inverse of a path expression 𝑟−. As an example, consider a query that queries for all
instances of Student that have at least hasFriend relation to an instance of Person . Figure 2.6 depicts this
query as a conjunctive query using abstract syntax (left side) as well as the concrete SPARQL query.

𝑞1 = x←x type Student ∧
x hasFriend y ∧
y type Person

1 SELECT ?x WHERE {

2 ?x rdf : type : Student .

3 ?x : hasFriend ?y .

4 ?y rdf : type :Person .

5 }

Figure 2.6.: SPARQL query in both abstract syntax (left) and standard SPARQL syntax (right).

Semantics Evaluation of queries requires the definition of amapping 𝜇. Amapping 𝜇 is a function
𝜇 : Vars(𝑞) → Nodes(𝐺) mapping variables of the query 𝑞 to nodes of the graph 𝐺. We use Ω to
denote sets of mappings. The domain of 𝜇 is the set of variables that occur in 𝑞. Two mappings 𝜇1

and 𝜇2 are called compatible if for all 𝑥 ∈ Dom(𝜇1) ∩Dom(𝜇2), it is the case that 𝜇1(𝑥) = 𝜇2(𝑥). That
is, if a variable occurs in both mappings, then it must be mapped to the same value. Last, to model
projection of a query answer 𝜇 onto the answer variables 𝑥, we use 𝜇 |𝑥 to denote the restriction of
𝜇 to the domain 𝑥. Evaluation of a query 𝑞 over an RDF graph 𝐺, denoted as ⟦𝑞⟧𝐺 , can then be
defined as follows (see Figure 2.5, right side): In case of a triple pattern, the answer is a mapping 𝜇
that maps variables onto graph nodes such that they occur in the graph (rules q-svaR, q-ovaR and q-
vaRs). We use the notation 𝑟 (𝐺) to denote the evaluation of the path 𝑟—that is, the set of nodes (𝑜, 𝑜′)
for which there is a connection via the path 𝑟 in 𝐺. Conjunction of two graph patterns is evaluated
by evaluating each pattern individually and then joining the results (⟦gp1⟧𝐺 Z ⟦gp2⟧𝐺). Joining two
sets of mappings Ω1 Z Ω2 means taking the union of the individual mappings 𝜇1 ∪ 𝜇2 for 𝜇1 ∈ Ω1

and 𝜇2 ∈ Ω2 provided that 𝜇1 and 𝜇2 are compatible. That is, if variables occurring in both evaluation
results map to the same graph nodes. Projection then only requires the evaluation of the body and
restriction of the resulting functions to the answer variables.

As an example, consider the evaluation of 𝑞1 (see Figure 2.6) over the graph 𝐺1 (see Figure 2.3),
written ⟦𝑞1⟧𝐺1 . First, the body of the query needs to be evaluated and the results will then be joined:

⟦x type Student⟧𝐺1 Z ⟦x hasFriend y⟧𝐺1 Z ⟦y type Person⟧𝐺1

Evaluating each pattern yields sets of functions where variables x and y are mapped to actual graph

20

2.2. Semantic Web

nodes:

{𝜇1 = {(x ↦→ bob)}} Z {𝜇2 = {(x ↦→ bob), (y ↦→ alice)}} Z {𝜇3 = {y ↦→ bob }, 𝜇4 = {y ↦→ alice }}

Of those mappings, only 𝜇1, 𝜇2 and 𝜇4 are compatible because they map the variable x to bob and
the variable y to alice . This leaves 𝜇2 as the remaining mapping:

{𝜇2 = {(x ↦→ bob), (y ↦→ alice)}}

Finally, function restriction 𝜇2 |x is used to restrict 𝜇2 to the answer variable x , leaving a single answer
⟦𝑞1⟧𝐺1 = {(x ↦→ bob)} that maps the variable x to bob .

2.2.3. Description Logics

Ontologies provide rich conceptual schemas for the Semantic Web [53]. In this thesis, we focus on
highly expressive ontology languages which are rooted in a family of knowledge representations for-
malisms known as description logics (DL). Description logics separate the domain knowledge into two
parts: the terminological part (T-Box) which constitutes a schema, as well as the instance data (asser-
tional part or A-Box). The T-Box uses concept descriptions, also called concept expressions, to model
the domain [86], e. g., the fact that a Student is a Person . The terminological knowledge can then be
used to perform various reasoning tasks on the instance data, such as inferring that bob is a Person .
A knowledge base is then a set of logical axioms containing both T-Box and A-Box assertions.

In the context of the Semantic Web, the W3C recommendationWeb Ontology Language (OWL) [47]
provides highly expressive ontology description languages. It is grounded in the description logic
SROIQ [54]. For simplicity, we focus on a subset of the available syntactic constructs. The de-
scription logic used in the thesis is named ALCOIQ where the name is an acronym of its available
constructors: ALC for the most commonly used Attributive Language with Complements extended
with nominals (O), inverse role expressions (I) as well as qualified number restrictions (Q).3

Concept Expressions A description logic knowledge base 𝐾 is comprised of a set of axioms.
Axioms can either be terminological statements, belonging to the T-Box, or assertional statements
belonging to the A-Box. Statements are constructed using a signature Sig (𝐾). The signature defines
atomic elements of the knowledge base, which can then be combined into expressions using a range
of available constructors. A signature of a knowledge base Sig (𝐾) = (𝑁𝐴, 𝑁𝑃, 𝑁𝑂) is a triple con-
sisting of a set of atomic concept names 𝑁𝐴 (e. g., Student), a set of relation or property names 𝑁𝑃
(e. g., hasFriend) and a set of atomic objects 𝑁𝑂 (e. g., bob). Formal semantics of DL is based on

3A major difference between ALCOIQ and SROIQ is the latter allows for using an R-Box in which, for example, role
inclusions or reflexivity of roles can be specified.

21

Chapter 2. Preliminaries

Constructor Name Syntax Semantics

atomic property 𝑝 𝑝𝐼 ⊆ Δ𝐼 × Δ𝐼
inverse role 𝑟− {(𝑜′, 𝑜) | (𝑜, 𝑜′) ∈ 𝑟 𝐼 }

atomic concept 𝐴 𝐴𝐼 ⊆ Δ𝐼

nominal concept {𝑜} {𝑜𝐼 }

top ⊤ Δ𝐼

negation ¬𝐶 Δ𝐼 \ 𝐶 𝐼
conjunction 𝐶 ⊓ 𝐷 𝐶 𝐼 ∩ 𝐷 𝐼
qualified number restriction ≥𝑛 𝑟.𝐶 {𝑜 | |{𝑜′ | (𝑜, 𝑜′) ∈ 𝑟 𝐼 ∧ 𝑜′ ∈ 𝐶 𝐼 }| ≥ 𝑛}

Figure 2.7.: Syntax and Semantics of roles 𝑟 and concept expressions𝐶, 𝐷 in the description logicALCOIQ.

first-order logic [18]. An interpretation 𝐼 is a pair consisting of a non-empty universe Δ𝐼 and an inter-
pretation function ·𝐼 . The universe “can be understood as the entirety of individuals or things which
exist in the world that 𝐼 represents” [84]. The interpretation function ·𝐼 then maps each object 𝑜 ∈ 𝑁𝑂
to an element of the universe 𝑜𝐼 ∈ Δ𝐼 . Furthermore, the interpretation 𝐼 assigns each atomic concept
name 𝐴 ∈ 𝑁𝐴 to a set 𝐴𝐼 ⊆ Δ𝐼 and each atomic property 𝑝 ∈ 𝑁𝑃 to a binary relation 𝑝𝐼 ⊆ Δ𝐼 × Δ𝐼 .

Derived concept expressions

⊥ def
= ¬⊤

𝐶 ⊔ 𝐷 def
= ¬(¬𝐶 ⊓ ¬𝐷)

{𝑜} def
= {𝑜1} ⊔ . . . ⊔ {𝑜𝑛}

≤𝑛 𝑟.𝐶 def
= ¬(≥𝑛 + 1 𝑟.𝐶)

=𝑛 𝑟.𝐶
def
= (≥𝑛 𝑟.𝐶) ⊓ (≤𝑛 𝑟.𝐶)

∀ 𝑟.𝐶 def
= ¬(≤0 𝑟.¬𝐶)

∃ 𝑟.𝐶 def
= ≥1 𝑟.𝐶

Figure 2.8.: Concept expressions derived from concept expressions as defined in Figure 2.7.

More complex expressions can be built from these atomic elements as shown in Figure 2.7. Similar
to path expressions as defined in SPARQL, role expressions, represented by the metavariable 𝑟 , are
either atomic properties 𝑝 or the inverse of role expressions 𝑟−. Concept expressions, represented by
the metavariables 𝐶 and 𝐷, are either atomic concepts (represented by the metavariable 𝐴), nominal
concepts denoted by {𝑜} that are created by enumerating objects or ⊤ to represent the set of all
objects. Concept expressions can also be composed through negation ¬𝐶 , conjunction 𝐶 ⊓ 𝐷 or

22

2.2. Semantic Web

Name Syntax Semantics

concept inclusion 𝐶 ⊑ 𝐷 𝐶 𝐼 ⊆ 𝐷 𝐼
concept equivalence 𝐶 ≡ 𝐷 𝐶 𝐼 = 𝐷 𝐼

concept assertion 𝑜 : 𝐶 𝑜𝐼 ∈ 𝐶 𝐼
role assertion (𝑜, 𝑜′) : 𝑟 (𝑜𝐼 , 𝑜′𝐼) ∈ 𝑟 𝐼
object equivalence 𝑜 ≡ 𝑜′ 𝑜𝐼 = 𝑜′𝐼

Figure 2.9.: Syntax and Semantics of axioms in the description logicALCOIQ.

qualified number restrictions ≥𝑛 𝑟.𝐶 expressing that there must be at least 𝑛 successors via the role
expression 𝑟 that belongs to the concept 𝐶. A number of additional constructors can be derived from
these basic ones (see Figure 2.8) such as existential quantification ∃ 𝑟.𝐶 . For example, the set of
everyone who studies at a university is expressed as ∃ studiesAt.University . Other derived constructs
include the bottom element ⊥ , disjunction 𝐶 ⊔ 𝐷 universal quantification ∀ 𝑟.𝐶 as well as number
restrictions requiring less than 𝑛 successors ≤𝑛 𝑟.𝐶 and exactly 𝑛 successors =𝑛 𝑟.𝐶 .

Semantic statements Using the previously defined concept expressions, terminological and
assertional statements (or axioms) can be defined (see Figure 2.9). A knowledge base 𝐾 is a set of
axioms consisting of terminological and assertional statements. Terminological axioms constitute the
conceptualization of the data while assertional statements are the actual data. It is possible to express
that two concept expressions are either equivalent 𝐶 ≡ 𝐷 or in a subsumptive relationship 𝐶 ⊑ 𝐷 .
In terms of the actual data, objects can be an instance of a concept expression 𝑜 : 𝐶 , can be connected
to another object via a role expression (𝑜, 𝑜′) : 𝑟 or be semantically equivalent even though they may
be syntactically different 𝑜 ≡ 𝑜′ .

As an example, consider the knowledge base 𝐾1 defined in Figure 2.10: Conceptually, instances of
Person have a name (line 2). Likewise, instances of University have a location (line 3). Studying
at a University means that one is a Student (line 4). A Student is a Person and all of his or her
friends are also instances of Student (line 5). Lastly, a Professor works at a University (line 6). In
terms of instance data, uniko is a University (line 8). bob studies at uniko (line 9). bob has a
hasFriend relation pointing to alice (line 10). Lastly, charlie is an instance of Professor (line 11).
Several things are noteworthy in this example. First, the entirety of the information encoded

in the graph 𝐺1 shown in Figure 2.3 is contained in the example. Even though the A-Box state-
ments bob : Student and alice : Person , which are equivalent to the RDF triples bob Studenttype and
alice Persontype , are not explicitly mentioned, they follow logically from the example. Since bob

23

Chapter 2. Preliminaries

1 // Conceptualization / T-Box statements

2 Person ⊑ ∃ hasName.⊤
3 University ⊑ ∃ locatedIn.⊤
4 ∃ studiesAt.University ⊑ Student

5 Student ⊑ Person ⊓ ∀ hasFriend.Student
6 Professor ⊑ ∃worksAt.University
7 // Instance data / A-Box statements

8 uniko : University
9 (bob, uniko) : studiesAt

10 (bob, alice) : hasFriend
11 charlie : Professor

Figure 2.10.: Example knowledge base𝐾1.

studies at uniko which is a University , he must be Student (c. f. line 4). Likewise, since bob is
a Student and students can only be friends with other students, it follows that alice is also an in-
stance of Student (c. f. line 5). As instances of Student are also instances of Person , it follows that
alice is a Person (c. f. line 5). Second, even though charlie is a Professor and professors must
work at a University (c. f. line 6), we do not know where charlie works. This does not constitute an
error, but rather incomplete knowledge. Even though there is no syntactical element representing the
University , we know that charlie works at one. Lastly, it must be pointed out that there is no unique
name assumption in description logics. Unless otherwise specified, it may be that two syntactically
different objects refer to the same object. As an example where this is useful, consider a changed name
due to marriage. Then it may be the case that two syntactically different elements refer semantically
to the same person. For example, by adding bob ≡ charlie to the knowledge base, it is enforced that
bob and charlie are semantically the same object.

Logical consequence Logical consequence (entailment) is defined through interpretations. In
a given interpretation 𝐼 , a statement is either true or false. For a statement stat built according to
the syntax in Figure 2.9, we use the satisfaction relationship |= if its semantics constraint according to
Figure 2.9 is true in a interpretation 𝐼 (written 𝐼 |= stat). An interpretation 𝐼 satisfies a set of axioms
Stat if ∀ stat ∈ Stat : 𝐼 |= stat . An interpretation 𝐼 that satisfies all axioms in both the T-Box and
A-Box of a knowledge base 𝐾 , written 𝐼 |= 𝐾 is called a model of 𝐾 . We use Mod(𝐾) to refer to the
set of all models of 𝐾 . A statement follows logically from a knowledge base 𝐾 if it is true in all models
of the knowledge base 𝐾 .

24

2.2. Semantic Web

Definition 3 (Entailment). Let 𝐾 be a knowledge base, let stat refer to a statement and let I be the set
of all possible interpretations. The statement stat is entailed, written 𝐾 |= stat , if ∀ 𝐼 ∈ I : 𝐼 |= 𝐾 ⇒
𝐼 |= stat .

As an example, consider the knowledge base 𝐾1 and the statement bob : Student again. 𝐾1 states

that bob𝐼 ∈ (∃ studiesAt.University)𝐼 for all models of 𝐾1 due to bob studying at uniko (lines 8–9).

Line 4 defines that (∃ studiesAt. University)𝐼 ⊆ Student𝐼 for all models of 𝐾1. It follows that bob
𝐼 ∈

Student
𝐼 is true in all models. The statement bob : Student is therefore a logical consequence of 𝐾1,

written 𝐾 |= bob : Student .
In general, one of the following three cases must be true for a statement:

1. A statement stat can be true in all models of a knowledge base 𝐾 . It is therefore a logical conse-
quence of 𝐾 , written 𝐾 |= stat .

2. A statement stat may be false in all models of a knowledge base 𝐾 . Therefore, its negation is a
logical consequence of 𝐾 . For example, the statement bob : ¬Student is false in all models of 𝐾1.
Its negation, bob : Student however is true in all models of 𝐾1.

3. A statement stat may be true in some models, but false in other models. For example, the state-
ment bob : Professor is true in some models and false in others. We therefore do not know
whether the statement is true or false.

Several standard reasoning tasks can be identified. For one, it is possible to ask for satisfiability—
that is, whether a knowledge base 𝐾 has at least one model. Closely related is the question of concept
expression satisfiability. That is, asking whether a concept expression 𝐶 is satisfiable with respect
to a knowledge base 𝐾 . This requires finding a model of 𝐾 in which the interpretation of 𝐶 is non-
empty. Entailment of statements can be reduced to satisfiability tasks. For example, checking whether
Student ⊑ Person is equivalent to showing that the concept expression Student ⊓ ¬Person is unsat-
isfiable. Lastly, standard reasoning tasks also include instance retrieval as well as conjunctive query
answering [84].

Relation to RDF and SPARQL In the Semantic Web technology stack, OWL ontologies are
typically represented using RDF. The complete DL knowledge base 𝐾1 as shown in Figure 2.10 can be
mapped into an RDF data graph. In particular for A-Box statements, this translation is straightforward:

Name DL Axiom RDF data graph
concept assertion 𝑜 : 𝑐 o ctype

role assertion (𝑜, 𝑜′) : 𝑟 o o’r

25

Chapter 2. Preliminaries

Objects (e. g., bob) in description logics are simply graph nodes in the RDF data graph
(such as bob). Likewise, atomic concepts (e. g., Student) are represented as graph nodes
(Student). Concept and role assertions then simply indicate relations between graph nodes.
For example, bob : Student is represented as bob Studenttype whereas (bob, alice) : hasFriend
is represented as bob alicehasFriend . Representation of more advanced concept expres-
sions or other T-Box statements require the use of blank nodes. As an example, the
axiom Student ⊑ ∃ studiesAt.University is represented as following (given in N3 notation):

1 : Student rdfs : subClassOf [

2 rdf : type owl : Restriction ;

3 owl : onProperty : studiesAt ;

4 owl :someValuesFrom : University ;

5] .

We avoid going into detail on the representation of terminological knowledge. The full translation can
be found in [84]. Instead, we focus on the effects of terminological knowledge on an RDF data graph.
Consider the small knowledge base 𝐾2 as given in Figure 2.11 (left side). Its T-Box states that everyone
who studies at a University is a Student . Furthermore, it states that a Student is also always a Person .
The A-Box contains the facts that bob studies at uniko and that uniko is a University . We assume

1 // Conceptualization / T-Box

2 ∃ studiesAt.University ⊑ Student

3 Student ⊑ Person

4 // Instance data / A-Box

5 (bob, uniko) : studiesAt
6 uniko : University

PersonStudent University

uniko

type

bob studiesAt

typetype

Figure 2.11.: A small knowledge base𝐾2 (left) and its RDF data graph (implicit knowledge in dashed lines).

that the RDF data graphs for knowledge bases (see Figure 2.11) are closed under logical consequence.
That is, the RDF data graph does not only contain bob unikostudiesAt , but also bob Studenttype and
bob Persontype .
We omit details of querying a knowledge base with SPARQL as introduced in Section 2.2.2. Further

information, including the official W3C entailment regimes for SPARQL can be found in [60, 45]. We
assume that querying a knowledge base 𝐾 with a query 𝑞 means querying its representation as an
RDF data graph that is closed under consequence. Real triplestores that support OWL ontologies, for
example Stardog [11] or RDFox [7], work similarly. Evaluation of SPARQL queries will include im-
plicit statements through a variety of implementation techniques—e. g., the materialization of implicit

26

2.2. Semantic Web

relations such as bob Persontype .
While we use ⟦𝑞⟧𝐺 to indicate the evaluation of a query 𝑞 over an RDF graph 𝐺 , we write ⟦𝑞⟧𝐾

for the evaluation of 𝑞 over the knowledge base 𝐾 . As an example, a query for all instances of Person

over knowledge base 𝐾2 yields bob as an answer:

⟦x← x type Person⟧𝐾2 = {𝜇1 = {(x ↦→ bob)}}

One key difference between querying a knowledge base and an RDF data graph must be mentioned:
Models of a knowledge base may introduce anonymous objects that have no syntactic representation.
Consider the knowledge base and RDF graph given in Figure 2.12. The knowledge base states that
professorsmust have a worksAt relation pointing to an instance of University and that charlie is an
instance of a Professor . To satisfy the knowledge base, interpretations must introduce an anonymous

1 // Conceptualization / T-Box

2 Professor ⊑ ∃worksAt.University
3 // Instance data / A-Box

4 charlie : Professor

UniversityProfessor

type

charlie

type

worksAt

Figure 2.12.: A small knowledge base𝐾3 (left) and its RDF data graph (implicit knowledge in dashed lines).

object that represents the university where charlie works. While it is certain that it exists, it has
no syntactic representation in the RDF data graph. Subsequently, in standard reasoner or triplestore
implementations (e. g., HermiT [72] or Stardog [11]), such a node cannot be returned by the evaluation
of a query.

2.2.4. Shape Constraint Language

The Shapes Constraint Language (SHACL) is a W3C standard for validating RDF graphs [59]—that is,
testing whether the RDF graph conforms to a certain schema. SHACL differentiates between the shape
graph that contains schematic definitions and the data graph that is being validated. A data graph is
any RDF graph that is to be validated with respect to the shape graph. As an example, consider the
data graph shown in Figure 2.13. david is an instance of Person and has a name. bob , an instance of
Student , studies at uniKo , which is an instance of University . The location of uniko is koblenz .
A shape graph consists of shapes that group constraints and provide so called target nodes. Target

nodes specify which nodes of the data graph have to be valid with respect to the constraints. To ex-
emplify this, consider a shape graph consisting of three shapes StudentShape , PersonShape and UniversityShape

(see Figure 2.14). The shape StudentShape (lines 1–8) targets all instances of Student (line 2). Its constraints
(lines 3–8) enforces that all instances of Student have at least one studiesAt relation (lines 4–5) and

27

Chapter 2. Preliminaries

Person Student University

david

type

“David D.” hasName bob

type

unikostudiesAt

type

koblenzlocatedIn

Figure 2.13.: An example of an RDF data graph𝐺2.

1 ex :StudentShape a sh :NodeShape;

2 sh : targetClass ex : Student ;

3 sh : property [

4 sh :path ex : studiesAt ;

5 sh :minCount 1;

6 sh :node ex : UniversityShape

7] ;

8 sh : class ex :Person .

9
10 ex : UniversityShape a sh :NodeShape;

11 sh : property [

12 sh :path ex : locatedIn ;

13 sh :minCount 1] .

14 ex :PersonShape a sh :NodeShape;

15 sh : targetClass ex :Person ;

16 sh : property [

17 sh :path ex :hasName;

18 sh :minCount 1;

19 sh :maxCount 1

20] .

21
22
23
24
25
26

Figure 2.14.: Example of a SHACL shape graph 𝑆1 in N3 Notation.

that everything reachable via the studiesAt relation is valid with respect to the UniversityShape (lines 4
and 6). Furthermore, students must also be instance of Person . The UniversityShape (lines 10–13) has no
concrete targets, but requires nodes to have at least one locatedIn relation (lines 12–13). Lastly, the
PersonShape (lines 15–21) targets all instances of Person and enforces that each instance has exactly one
hasName relation (lines 18–20).
We use the metavariable 𝑆 to denote a schema graph whereas S denotes the set of all possible

schema graphs. A SHACL validator essentially provides a function validate : G × S → {true, false}
that takes a data graph 𝐺 and a schema graph 𝑆 and determines whether the graph conforms to the
schematic descriptions provided by the shape graph. In that, SHACL behaves similarly to validators
for JSON Schema [5, 27] or XML Schema [42]. In case of the concrete example above, validation fails
for 𝐺2 and 𝑆1 (validate(𝐺2, 𝑆1) = false) due to the node bob (see Figure 2.15). Since bob is an instance
of Student , he must also be an instance of Person . In addition, being an instance of Person then requires
him to have a hasName relation for 𝐺2 to be valid with respect to 𝑆1. Alternatively, removing the
fact that bob is an instance of Student would also make 𝐺2 valid with respect to 𝑆1.

28

2.2. Semantic Web

Person Student

bob

typetype

“...” hasName …studiesAt

Figure 2.15.: Validation report highlighting erroneous area in the graph𝐺2 (missing nodes and edges in dashed lines).

As the official SHACL documentation [59] provides no formal semantics for the validation mecha-
nism, in particular with respect to recursion, we leverage the formal semantics defined by Cormen et
al. [35] which uses an abstraction that is based on first-order logic.

Constraints While shape graphs and subsequently constraints are typically given as RDF graphs,
we use a logical abstraction. Constraints 𝜙 are constructed using the grammar as shown in Figure 2.16.
⊤ represents a constraint that is always true, 𝑠 references a shape name, 𝑜 is a graph node, 𝜌 is a
path consisting of either a normal property 𝑝 or an inverse of an path expression 𝜌− and 𝑛 ∈ N+. We
use P to indicate the set of all possible path expressions. As an example, consider a constraint express-
ing that a node must have at least one name. Such a constraint can be formulated as ≥1 hasName.⊤ .
A number of additional syntactic constructs can be defined in terms of the basic constructors. In par-
ticular, disjunction 𝜙 ∨ 𝜙 , less-than ≤𝑛 𝜌.𝜙 and equal-to =𝑛 𝜌.𝜙 constraints as well as universal
quantification ∀ 𝜌.𝜙 can be defined.

Evaluation of constraints may run into recursive cycles. As an example, assume a shape LocalShape

whose constraint 𝜙LocalShape enforces that everything reachable via the knows relation also conforms
to LocalShape . Furthermore, assume an RDF data graph consisting of a single node who knows itself (see
Figure 2.17). Validation of the node 𝑏1 must deal with this recursive cycle. The approach used for
validation defines whether 𝑏1 conforms to LocalShape or not. In an optimistic approach, 𝑏1 is assumed
to conform to the LocalShape unless proven otherwise. Evaluation of the constraint would succeed in this
case as all nodes reachable from 𝑏1 via the knows relation conform to the LocalShape . A pessimistic
approach on the other hand does not assume that 𝑏1 conforms to LocalShape . Subsequently, it is not
the case that everything reachable via the knows relation conforms to LocalShape . Evaluation of the
constraint fails and 𝑏1 would not conform to LocalShape .

We follow the proposal of [35] and introduce assignments to deal with this ambiguity. Similar to
an interpretation in description logics, an assignment describes a possible world which is then used
for evaluation. Subsequently, in case of the example in Figure 2.17 two possible worlds exist. One in
which we assume 𝑏1 to conform to the LocalShape and one in which we do not. Formally, an assignment
𝜎 is a function assigning graph nodes 𝑜 of an RDF data graph to a set of shape names 𝑠. Contrary
to [35], we only consider total assignments that assign shape names to all nodes of the data graph.

29

Chapter 2. Preliminaries

Constraints (𝜙)

Syntax

𝜙 ::= constraint
⊤ always true
| 𝑠 shape reference
| 𝑜 graph node
| 𝜙 ∧ 𝜙 conjunction
| ¬𝜙 negation
| ≥𝑛 𝜌.𝜙 number restriction

𝜌 ::= path expression
| 𝑝 property
| 𝜌− inverse path

New derived forms

𝜙1 ∨ 𝜙2
def
= ¬(¬𝜙1 ∧ ¬𝜙2)

≤𝑛 𝜌.𝜙
def
= ¬(≥𝑛+1 𝜌.𝜙)

=𝑛 𝜌.𝜙
def
= (≤𝑛 𝜌.𝜙) ∧ (≥𝑛 𝜌.𝜙)

∃ 𝜌.𝜙 def
= (≥1 𝜌.𝜙)

∀ 𝜌.𝜙 def
= ¬(≤0 𝜌.¬𝜙)

Constraint Evaluation ⟦𝜙⟧𝑜,𝐺,𝜎

⟦⊤⟧𝑜,𝐺,𝜎 = true

⟦𝑠⟧𝑜,𝐺,𝜎 =


true if 𝑠 ∈ 𝜎(𝑜)
false otherwise

⟦𝑜′⟧𝑜,𝐺,𝜎 =


true if 𝑜 = 𝑜′

false otherwise

⟦𝜙1 ∧ 𝜙2⟧𝑜,𝐺,𝜎 =


true if ⟦𝜙1⟧𝑜,𝐺,𝜎 = true and

⟦𝜙2⟧𝑜,𝐺,𝜎 = true
false otherwise

⟦¬𝜙⟧𝑜,𝐺,𝜎 =


true if ⟦𝜙⟧𝑜,𝐺,𝜎 = false
false otherwise

⟦≥𝑛 𝜌.𝜙⟧𝑜,𝐺,𝜎 =


true if |{𝑜′ | (𝑜, 𝑜′) ∈ 𝜌(𝐺) and

⟦𝜙⟧𝑜′,𝐺,𝜎 = true}| ≥ 𝑛
false otherwise

Figure 2.16.: Syntax and Evaluation rules of SHACL constraints.

Evaluation of whether a graph node conforms to a constraint then takes an assignment as a parameter
and evaluates the constraint with respect to the given assignment.

Definition 4 (Total assignment). Let 𝐺 be an RDF graph with its set of nodes Nodes(𝐺) and 𝑆 a set of
shapes with its set of shape names Names(𝑆). An assignment 𝜎 is a total function 𝜎 : Nodes(𝐺) →
2Names(𝑆) . It maps graph nodes 𝑜 ∈ Nodes(𝐺) to subsets of shape names. If a shape name 𝑠 ∈ 𝜎(𝑜),
then 𝑜 is assigned to the shape name 𝑠. For all 𝑠 ∉ 𝜎(𝑜), the node 𝑜 is not assigned to the shape 𝑠.

Evaluating whether a graph node 𝑜 in a given RDF graph 𝐺 satisfies a constraint 𝜙, written
⟦𝜙⟧𝑜,𝐺,𝜎 , can then be defined as shown in Figure 2.16. Again, we use the notation 𝜌(𝐺) to de-
note the evaluation of the path 𝜌–that is, the set of nodes (𝑜, 𝑜′) for which there is a connectino

30

2.2. Semantic Web

𝜙LocalShape = ∀ knows.LocalShape
𝑏1

knows

Figure 2.17.: An example of a problematic, recursive constraint definition and RDF graph𝐺rec.

via the path 𝜌 in 𝐺 . As an example, if 𝐺rec denotes the graph in Figure 2.17 and 𝜎1 an assign-
ment for which LocalShape ∈ 𝜎1(𝑏1) is true, the constraint ∀ knows.LocalShape evaluates to true
⟦∀ knows.LocalShape⟧𝑏1,𝐺rec ,𝜎1 = true.

Shapes and Validation A shape is modelled as a triple (𝑠, 𝜙, 𝑞). It consists of a shape name
𝑠, a constraint 𝜙 and a query for target nodes 𝑞. Target nodes indicate which nodes must fulfill the
constraint in order for the graph to be valid. SHACL only allows for very specific queries when it
comes to target nodes. Shapes can (1) have no targets at all, (2) explicitly enumerate target nodes,
(3) have class-based targets, which targets all instances of a class, as well as either (4) subject-based
or (5) object-based targets in which either all subjects or objects of a given relation are targeted (see
Figure 2.18). We use 𝑞𝑠 to indicate that 𝑞 is the query for target nodes of shape 𝑠. Furthermore, in

𝑞 ::= target node query
⊥ no target
| {𝑜} node-based target
| 𝑥1 ← 𝑥1 type class class-based target
| 𝑥1 ← 𝑥1 property 𝑥2 subject-based target
| 𝑥1 ← 𝑥2 property 𝑥1 object-based target

Figure 2.18.: General form of target node queries in SHACL.

a slight abuse of notation, we write 𝑜 ∈ ⟦𝑞𝑠⟧𝐺 to indicate that node 𝑜 is a target node for shape 𝑠
in graph 𝐺 . In case of explicitly enumerated target nodes, we expect that all those node occur in 𝐺.
We use 𝑆 to represent a set of shapes. If (𝑠, 𝜙𝑠, 𝑞𝑠) ∈ 𝑆 and there is a 𝑠′ appearing in 𝜙𝑠 , then we
also assume that (𝑠′, 𝜙𝑠′, 𝑞𝑠′) ∈ 𝑆. That is, we do not have references to shapes within a set that are
undefined. To exemplify this, let us revisit the SHACL shape graph as given in Figure 2.14. Since
StudentShape references UniversityShape in its constraints, the set of shapes must also contain the definition

31

Chapter 2. Preliminaries

of UniversityShape . The complete shape graph expressed as a set of shapes looks as follows:

𝑆1 = {(StudentShape, ≥1 studiesAt.⊤∧ ≤0 studiesAt.¬UniversityShape∧ ≥1 type.Person,

x← x type Student),
(PersonShape, =1 hasName.⊤, x← x type Person),
(UniversityShape, ≥1 hasLocation.⊤,⊥) }

Intuitively, when validating an RDF graphwith a set of shapes, only certain assignments are of interest.
For one, if a node is a target node of a shape, then any sensible assignment should assign the shape to
the node. That is, if graph 𝐺2 as defined in Figure 2.13 is to be validated with the shapes defined in 𝑆1,
then only assignments that assign StudentShape to bob should be considered. Second, if an assignment
does assign a shape, then the constraint of that shape should evaluate to true. Such an assignment is
called a faithful assignment.

Definition 5 (Faithful assignment). An assignment 𝜎 for a graph 𝐺 and a set of shapes 𝑆 is faithful, iff
for each (𝑠, 𝜙𝑠, 𝑞𝑠) ∈ 𝑆

• ∀ 𝑜 ∈ Nodes(𝐺) : 𝑠 ∈ 𝜎(𝑜) ⇔ ⟦𝜙𝑠⟧𝑜,𝐺,𝜎 .

• ∀ 𝑜 ∈ ⟦𝑞𝑠⟧𝐺 : 𝑠 ∈ 𝜎(𝑜′).

Validating an RDF graph means finding a faithful assignment. It is akin to satisfiability checking in
Description Logics. It may not necessarily be possible to find a faithful assignment for a graph and a
set of shapes. In particular, it may be that certain shapes prohibit the validation of any RDF graph—
e. g., by using constraints such as ¬⊤ in a shape. However, if a graph can be validated with a set of
shapes, then the graph is said to conform to the set of shapes.

Definition 6 (Conformance). An RDF graph 𝐺 conforms to a set of shapes 𝑆 iff there is at least one
faithful assignment 𝜎 for 𝐺 and 𝑆. We write Faith(𝐺, 𝑆) to denote the set of all faithful assignments for
𝐺 and 𝑆.

As an example, let us consider a version of 𝐺2 in which the errors have been fixed. That is, bob

is now not only a Student , but also a Person and has a name. A faithful assignment 𝜎1 then assigns
StudentShape and PersonShape to bob whereas david is only assigned to PersonShape . Lastly, uniko is assigned
to UniversityShape . Figure 2.19 shows the graph and the faithful assignment 𝜎1.

Conformance and Target Nodes As it becomes imporant in later chapters of this thesis, we
must point out the role of target nodes in the validation of an RDF graph. To exemplify target nodes,
consider a set of SHACL shapes that only consists of PersonShape , but that does not have any target
nodes:

32

2.2. Semantic Web

Person

𝜎1 (Person) = ∅

Student

𝜎1 (Student) = ∅

University

𝜎1 (University) = ∅

david

type

𝜎1 (david) = {PersonShape}

“David D.”

hasName

𝜎1 (“David D.”) = ∅

bob

typetype

𝜎1(bob) = { PersonShape,
StudentShape}

“Bob B.”

hasName

𝜎1 (“Bob B.”) = ∅

unikostudiesAt

type

𝜎1 (uniko) = {UniversityShape}

koblenz

locatedIn

𝜎1 (koblenz) = ∅

Figure 2.19.: RDF graph that is conformant to 𝑆1 shown through the faithful assignment𝜎1.

𝑆2 = { (PersonShape, =1 hasName.⊤, ⊥) }

Any RDF data graph is valid with respect to the set of shapes 𝑆2 even though it may be that there
are no nodes that conform to any shape. This is by design, as the SHACL definition specifically states

Person

david

type

Figure 2.20.: RDF data graph𝐺3 that conforms to the set of shapes 𝑆2 even though no nodes conform to any shapes.

that any graph is valid if no target nodes exist. For example, graph 𝐺3 (see Figure 2.20) is valid with
respect to the set of shapes 𝑆2 because the assignment that assigns no shape to any node is faithful.
Only once we modify 𝑆2 such that PersonShape targets all instances of Person , graph 𝐺3 becomes invalid.

Constraints in shapes in essence define a set of nodes. For example, the constraint =1 hasName.⊤ of
PersonShape in 𝑆2 defines that PersonShape represents the set of nodes that have exactly one hasName re-
lation. Queries for target nodes, such as ⊥ or x← x type Person , define the smallest set of nodes
which must fulfill the constraint in order for the graph to be valid.

33

CHAPTER 3
A Basic Programming Language
(𝝀-calculus)
In order to define type-safe programming for RDF data, we rely on the 𝜆-calculus as a basic program-
ming language. This chapter defines syntax, semantics and typing rules of all necessary constructs.
As common in programming language research, we avoid complexity by using a tiny core calculus
that is extended with necessary features. We chose the 𝜆-calculus over other calculi, e. g., object-
calculi [12, 43], due to its simplicity.

We start with a simply typed 𝜆-calculus with booleans, numerical values and let-bindings. We then
extend it with recursion as well as records and lists as data structures. The resulting language, named
𝜆Full, is relatively small, yet it is Turing-complete and contains everything necessary for later chapters.
It resembles functional programming languages such as OCaml or Haskell. The basic language design
and definitions used in this chapter are taken from Types and Programming Languages [81] with slight
modifications. The proof of soundness for 𝜆Full can be found in the appendix.

3.1. The Simply Typed 𝝀-calculus with Subtyping

The 𝜆-calculus is a formal system for expressing computations that solely relies on function definition
and application. We start with the simply typed variant 𝜆→ which will be extended to a version that
supports suptying named 𝜆<:. The language introduced here is a simple call-by-value 𝜆-calculus—that
is, a 𝜆-calculus that reduces terms to values before applying functions—which is already extended with
booleans, numerical values and let-bindings in order to simplify examples.

3.1.1. Syntax and Semantics

Syntax Syntactically, the most fundamental terms (abbreviated as 𝑡) in 𝜆→ (see Figure 3.1) are
variables 𝑥, 𝜆-abstractions 𝜆 𝑥 :𝑇 . 𝑡 that represent functions, and function applications of the form
𝑡 𝑡 . We use explicitly typed function abstractions that clearly state the type of their argument. That
is, we only allow the syntactic form 𝜆 𝑥 :𝑇 . 𝑡 to define functions. In general, it is also possible to

35

Chapter 3. A Basic Programming Language (𝜆-calculus)

allow for omitting the type, thus using the syntactic form 𝜆 𝑥 . 𝑡 . The type of the argument 𝑥 can be
reconstructed based on the body of the function and how the function is used. We chose explicit type
annotations as this allows us to focus on the actual process of type checking instead of the additional
complexity introduced by reconstructing the type. Other constructs include the syntactic elements
of the language NB as defined in Section 2.1—that is, true , false , if-then-else statements as well
as numerical values and the terms iszero , succ and pred . Lastly, we also include let-statements
which simplifies the formulation of programs as they allow for defining symbols that represent other
terms—e. g., a symbol that represents a function. Values (𝑣) include primitive values (true , false

and numerical values) and 𝜆-abstractions. An important feature of the 𝜆-calculus is that functions
represented by 𝜆-abstractions are values themselves. With regard to types, functions are typed using
the function type constructor 𝑇 → 𝑇 . Additionally, the language also provides the primitive types
Bool and Nat .
As an example, consider a 𝜆-abstraction representing a function that takes a term of type Nat and

then checks whether that term is zero:

𝜆 𝑥 :Nat . iszero x

This term has type Nat→ Bool . A term that applies this 𝜆-abstraction to the term 0 is then a simple
function application (represented through 𝑡1 𝑡2)

(𝜆 𝑥 :Nat . iszero x) 0

Lastly, a let-statement allows for introducing a symbol that represents the 𝜆-abstraction. We can, for
example, represent the 𝜆-abstraction defined above through the symbol f :

let f=𝜆 x :Nat . iszero x in f 0

Defining functions with multiple arguments is possible by nesting 𝜆-abstractions. This is known as
currying. Intuitively, if a function has two arguments, applying the 𝜆-abstraction to the first argument
simply returns another 𝜆-abstraction that is then applied to the second argument. As an example, a
𝜆-abstraction g that takes two arguments, a value of type Bool and a value of type Nat , can be defined
as follows:

let g=𝜆 x :Bool . 𝜆 y :Nat . if x then y else 0 in (g true) 1

Semantics The operational semantics of 𝜆→ is defined in Figure 3.1. Most cases do not differ from
the definitions used inNB (see Figure 2.1). For example, if the guard (𝑡1) in if 𝑡1 then 𝑡2 else 𝑡3 is either
true or false , then the term is reduced to either the then-branch (𝑡2) or else-branch (𝑡3) respectively
(rules e-iftRue and e-iffalse).

36

3.1. The Simply Typed 𝜆-calculus with Subtyping

𝜆→

Syntax

𝑡 ::= terms:
𝑥 variable
| true constant true
| false constant false
| if 𝑡 then 𝑡 else 𝑡 if-then-else
| 0 constant zero
| succ 𝑡 successor
| pred 𝑡 predecessor
| iszero 𝑡 zero test
| let 𝑥 = 𝑡 in 𝑡 let binding
| 𝜆 𝑥 :𝑇 . 𝑡 abstraction
| 𝑡 𝑡 application

𝑣 ::= values:
𝜋 primitive value
| 𝜆𝑥 : 𝑇.𝑡 abstraction value

𝜋 ::= primitive values:
true true value
| false false value
| 𝑛𝑣 numerical value

𝑛𝑣 ::= 0 | succ 𝑛𝑣 numerical value

𝑇 ::= types:
Π types of primitives
| 𝑇 → 𝑇 type of functions

Π ::= primitive types:
Bool type of booleans
| Nat type of natural numbers

Γ ::= context:
∅ empty context
Γ, 𝑥 : 𝑇 term variable binding

Evaluation 𝑡 −→ 𝑡 ′

if true then 𝑡2 else 𝑡3 −→ 𝑡2 (e-iftRue)

if false then 𝑡2 else 𝑡3 −→ 𝑡3 (e-iffalse)

𝑡1 −→ 𝑡 ′1
if 𝑡1 then 𝑡2 else 𝑡3 −→ if 𝑡 ′1 then 𝑡2 else 𝑡3

(e-if)

𝑡1 −→ 𝑡 ′1
succ 𝑡1 −→ succ 𝑡 ′1

(e-succ)

pred 0 −→ 0 (e-pRedzeRo)

pred (succ 𝑛𝑣1) −→ 𝑛𝑣1 (e-pResucc)

𝑡1 −→ 𝑡 ′1
pred 𝑡1 −→ pred 𝑡 ′1

(e-pRed)

iszero 0 −→ true (e-iszeRozeRo)

iszero (succ 𝑛𝑣1) −→ false (e-iszeRosucc)

𝑡1 −→ 𝑡 ′1
iszero 𝑡1 −→ iszero 𝑡 ′1

(e-iszeRo)

let 𝑥 = 𝑣1 in 𝑡2 −→ [𝑥 ↦→ 𝑣1]𝑡2 (e-letv)

𝑡1 −→ 𝑡 ′1
let 𝑥 = 𝑡1 in 𝑡2 −→ let 𝑥 = 𝑡 ′1 in 𝑡2

(e-let)

𝑡1 −→ 𝑡 ′1
𝑡1𝑡2 −→ 𝑡 ′1𝑡2

(e-app1)

𝑡2 −→ 𝑡 ′2
𝑣1𝑡2 −→ 𝑣1𝑡

′
2

(e-app2)

(𝜆 𝑥 :𝑇 . 𝑡1) 𝑣2 −→ [𝑥 ↦→ 𝑣2]𝑡1 (e-appabs)

Figure 3.1.: Simply typed 𝜆-calculus (𝜆→) with booleans, numerical values and let bindings.

37

Chapter 3. A Basic Programming Language (𝜆-calculus)

In case of iszero 𝑡1 , if the term 𝑡1 is a numerical value, then either rule e-iszeRozeRo or rule e-
iszeRosucc applies. Otherwise, if 𝑡1 is not a value and can take a step, then it does (rule e-iszeRo).
Function application 𝑡1 𝑡2 constitutes a new case. The evaluation relation first reduces the term 𝑡1 to a
value (rule e-app1), then continues to reduce term 𝑡2 (rule e-app2). Lastly, the application itself can be
performed (rule e-appabs). Intuitively, application of a 𝜆-abstraction 𝜆 𝑥 :𝑇 . 𝑡1 to a value 𝑣2 means
replacing all occurrences of the variable 𝑥 in the function body 𝑡1 with 𝑣2, denoted by [𝑥 ↦→ 𝑣2]𝑡1.
This is known as substitution. Substitution in general is intricate due to the naming of variables. As
its details have no direct effect on this work, we only discuss the topic superficially and refer to [81]
for a more in-depth discussion on the subject.

Definition 7 (Substitution). Let 𝑥1, 𝑥2 be variables and 𝑡1, 𝑡2, 𝑡3 be terms. A variable 𝑥1 is said
to be bound if it occurs in the body 𝑡1 of a 𝜆-abstraction 𝜆 𝑥1 :𝑇 . 𝑡1 . A variable is free if it is
not bound. Substitution of 𝑥1 by 𝑡2 in 𝑡1, denoted by [𝑥1 ↦→ 𝑡2]𝑡1, is then defined as follows:
[𝑥1 ↦→ 𝑡2]𝑥1 = 𝑡2

[𝑥1 ↦→ 𝑡2]𝑥2 = 𝑥2 if 𝑥2 ≠ 𝑥1

[𝑥1 ↦→ 𝑡2] (𝜆 𝑥2 :𝑇 . 𝑡1) = 𝜆 𝑥2 :𝑇 . [𝑥1 ↦→ 𝑡2]𝑡1 if 𝑥2 ≠ 𝑥1 and
𝑥2 is not a free variable in 𝑡2

[𝑥1 ↦→ 𝑡2]𝑡1 𝑡3 = ([𝑥1 ↦→ 𝑡2]𝑡1) ([𝑥1 ↦→ 𝑡2]𝑡3)
[𝑥1 ↦→ 𝑡2]true = true

[𝑥1 ↦→ 𝑡2]false = false

[𝑥1 ↦→ 𝑡2]if 𝑡1 = if [𝑥1 ↦→ 𝑡2] 𝑡1
then 𝑡3 then [𝑥1 ↦→ 𝑡2] 𝑡3
else 𝑡4 else [𝑥1 ↦→ 𝑡2]𝑡4

[𝑥1 ↦→ 𝑡2]0 = 0

[𝑥1 ↦→ 𝑡2]succ 𝑡1 = succ [𝑥1 ↦→ 𝑡2]𝑡1
[𝑥1 ↦→ 𝑡2]pred 𝑡1 = pred [𝑥1 ↦→ 𝑡2]𝑡1
[𝑥1 ↦→ 𝑡2]iszero 𝑡1 = iszero [𝑥1 ↦→ 𝑡2]𝑡1
[𝑥1 ↦→ 𝑡2]let 𝑥2= 𝑡1 in 𝑡3 = let 𝑥2= [𝑥 ↦→ 𝑡2]𝑡1 in [𝑥1 ↦→ 𝑡2]𝑡3 if 𝑥2 ≠ 𝑥1 and

𝑥2 is not a free variable in 𝑡2

Consider the term 𝜆 x :Bool . y x where 𝜆 x :Bool constitutes the head of the 𝜆-abstraction and x y

its body. Applying the 𝜆-abstraction to a value 𝑣2 (c. f. rule e-appabs) means substituting the variable
x for 𝑣2 in the body of the 𝜆-abstraction, written [x ↦→ 𝑣2] x y . However, the definition used
in Definition 7 only works with terms “up to renaming of bound variables” (also known as alpha
conversion) [81]. That is, we do not deal with cases in which variables would need to be renamed
before substitution in order to preserve the meaning of a term. Reconsider the term 𝜆 x :Bool . y x .
The variable x is of type Bool whereas the free variable y must represent a function. In case y is
substituted for another symbol x , written [y ↦→ x] (𝜆 x :Bool . y x) , the meaning of the term changes

38

3.1. The Simply Typed 𝜆-calculus with Subtyping

as the body of the 𝜆-abstraction now attempts to apply a value of type Bool to the same value. An
approach that considered alpha conversionwould need to rename x in the 𝜆-abstraction 𝜆 x :Bool . y x
to a different name, for example z to preserve the original meaning of the term. Thus, the substitution
becomes [y ↦→ x] (𝜆 z :Bool . y z) . We acknowledge this by adding a side condition to the definition of
substitution on 𝜆-abstractions (see Definition 7), but do not resolve the issue for simplicities sake. We
simply assume that the names of all bound variables are unique. In practice, it is common to rely on
a nameless representation of 𝜆-abstractions known as de Bruijn indices to avoid the issue.

To highlight substitution, let us consider the term (𝜆 x :Nat . iszero x) 0 again. For this term, evalu-
ation rule e-appabs applies, meaning that the symbol x is substituted for the term 0 in the body of
the 𝜆-abstraction:

(𝜆 x :Nat . iszero x) 0 −→ [x ↦→ 0]iszero x = iszero 0

Substitution of x for 0 in iszero x then yields the term iszero 0 which evaluates to true using rule
e-iszeRozeRo. In case of the let-statement which uses the symbol f to represent the 𝜆-abstraction, rule
e-letv applies which substitutes f for the actual 𝜆-abstraction:

let f=𝜆 x :Nat . iszero x in f 0 −→ [f ↦→ (𝜆 x :Nat . iszero x)]f 0 = (𝜆 x :Nat . iszero x) 0

Likewise, evaluation of the 𝜆-abstraction represented by the symbol g which served as an example
for a function with two parameters first substitutes the symbol g for the actual 𝜆-abstractions via
rule e-letv:

let g=𝜆 x :Bool .
𝜆 y :Nat .
if x then y else 0

in ((g true) 1)

−→
((𝜆 x :Bool .
𝜆 y :Nat .
if x then y else 0) true) 1

The 𝜆-abstraction can be applied to the term true (via rules e-app1 and e-appabs), yielding again a
function application:

((𝜆 x :Bool . 𝜆 y :Nat . if x then y else 0) true) 1 −→ (𝜆 y :Nat . if true then y else 0) 1

Again, rule e-appabs applies, substituting the symbol y for the term 1 :

(𝜆 y :Nat . if true then y else 0) 1 −→ if true then 1 else 0

This term then evaluates via rule e-iftRue to the value 1 :

if true then 1 else 0 −→ 1

39

Chapter 3. A Basic Programming Language (𝜆-calculus)

𝜆→ (typed) Extends 𝜆→ (Fig. 3.1)

Typing rules Γ ⊢ 𝑡 : 𝑇
𝑥 : 𝑇 ∈ Γ
Γ ⊢ 𝑥 : 𝑇

(t-vaR)

Γ ⊢ true (t-tRue)

Γ ⊢ false (t-false)

Γ ⊢ 𝑡1 : Bool Γ ⊢ 𝑡2 : 𝑇 Γ ⊢ 𝑡3 : 𝑇
Γ ⊢ if 𝑡1 then 𝑡2 else 𝑡3 : 𝑇

(t-if)

Γ ⊢ 0 : Nat (t-zeRo)

Γ ⊢ 𝑡1 : Nat
Γ ⊢ succ 𝑡1 : Nat

(t-succ)

Γ ⊢ 𝑡1 : Nat
Γ ⊢ pred 𝑡1 : Nat

(t-pRed)

Γ ⊢ 𝑡1 : Nat
Γ ⊢ iszero 𝑡1 : Bool

(t-iszeRo)

Γ ⊢ 𝑡1 : 𝑇1 Γ, 𝑥 : 𝑇1 ⊢ 𝑡2 : 𝑇2
Γ ⊢ let 𝑥= 𝑡1 in 𝑡2 : 𝑇2

(t-let)

Γ ⊢ 𝑡1 : 𝑇1 Γ, 𝑥 : 𝑇1 ⊢ 𝑡2 : 𝑇2
Γ ⊢ 𝜆 𝑥 :𝑇1 . 𝑡2 : 𝑇1 → 𝑇2

(t-abs)

Γ ⊢ 𝑡1 : 𝑇11 → 𝑇12 Γ ⊢ 𝑡2 : 𝑇11
Γ ⊢ 𝑡1 𝑡2 : 𝑇12

(t-app)

Figure 3.2.: Typing rules for the simply typed 𝜆-calculus (𝜆→).

3.1.2. Type System

As with the language NB, a type system can be defined for 𝜆→ that allows for avoiding run-time
errors. The type system (see Figure 3.1) contains the primitive types Bool and Nat that are already
known from NB. The newly added functions are represented by the type constructor 𝑇 → 𝑇 . Again,
a function mapping a Nat to a term of type Bool , e. g., 𝜆 x :Nat . iszero x , is represented through the
type Nat→ Bool . As mentioned before, we use explicitly typed 𝜆-abstractions. In an explicitly typed
𝜆-abstraction 𝜆 𝑥 :𝑇1 . 𝑡1 , the type of the argument 𝑥 is 𝑇1. The return type of the 𝜆-abstraction is
reconstructed from the body 𝑡1 using the fact that the argument 𝑥 has type 𝑇1. This requires a way to
store these type assignments. For this, a typing context or typing environment Γ is used. Subsequently,
the typing relation 𝑡 : 𝑇 becomes Γ ⊢ 𝑡 : 𝑇 where Γ is a set of assumptions about the types of free
variables in 𝑡 [81]. A typing context Γ is a sequence of variables and their types. We use ∅ to denote
the empty context whereas we use Γ, 𝑥 : 𝑇 to denote the context Γ extended with a new binding 𝑥 : 𝑇 .
We use 𝑥 : 𝑇 ∈ Γ to denote that Γ stores the assumption that 𝑥 has type 𝑇 in the context Γ.

The typing rules (see Figure 3.2) can then be defined as follows: Variables are typed by using the
information stored in the context (rule t-vaR). Rules for booleans, if-then-else constructs and natural
numbers are the same as in NB (see Figure 2.1). true and false are assigned to the type Bool (rules
t-tRue and t-false). In case of an if-then-else expression, the guard must be of type Bool whereas
both branches of the expression must have the same type (rule t-if). The term 0 can again be directly
typed (rule t-zeRo). Successors (succ 𝑡1), predecessors (pred 𝑡1) and testing for zeroes (iszero 𝑡1) are

40

3.1. The Simply Typed 𝜆-calculus with Subtyping

typed by checking whether 𝑡1 is a Nat and subsequently assigning either Nat or Bool (rules t-succ,
t-pRed and t-iszeRo). In case of a 𝜆-abstraction 𝜆 𝑥 :𝑇1 . 𝑡2 , the binding 𝑥 : 𝑇1 is added to the context
when typing the body of the function 𝑡2. When the body of the function has type 𝑇2, then the type of
the 𝜆-abstraction is 𝑇1 → 𝑇2 (rule t-abs). Function application (𝑡1 𝑡2) requires 𝑡1 to be a function
type 𝑇11 → 𝑇12 whereas the type of 𝑡2 must be the same (𝑇11) as the domain type of the function
𝑡1 (rule t-app). Lastly, in let-statements (let 𝑥= 𝑡1 in 𝑡2), first 𝑡1 is assigned a type 𝑇1 which is then
assigned to the typing context Γ when assigning a type to 𝑡2 (rule t-let).

As an example, consider the 𝜆-abstraction 𝜆 x :Nat . iszero x again. This term can be typed with
Nat→ Bool . First, rule t-abs is applied which adds the variable binding (x : Nat) to the context. The
body of the 𝜆-abstraction is typed using rules t-iszeRo and t-vaR. This is shown using the following
derivation tree:

(x : Nat) ∈ ∅, (x : Nat)
t-vaR∅, (x : Nat) ⊢ x : Nat

t-iszeRo∅, (x : Nat) ⊢ iszero x : Bool
t-abs∅ ⊢ 𝜆 x :Nat . iszero x : Nat→ Bool

Applying the 𝜆-abstraction to a term belonging to its domain type Nat will result in a term belonging
to its co-domain type Bool . Consider the following derivation tree that shows the 𝜆-abstraction being
applied to the term 0 :

······
∅ ⊢ 𝜆 x :Nat . iszero x : Nat→ Bool

t-zeRo∅ ⊢ 0 : Nat
t-app∅ ⊢ (𝜆 x :Nat . iszero x) 0 : Bool

Lastly, typing the let-statement that introduces a variable f for the 𝜆-abstraction looks as follows:

······
∅ ⊢ 𝜆 x :Nat . iszero x : Nat→ Bool

(f : Nat→ Bool) ∈ ∅, f : Nat→ Bool
t-vaR∅, f : Nat→ Bool ⊢ f : Nat→ Bool

t-zeRo
. . . ⊢ 0 : Nat

t-app∅, f : Nat→ Bool ⊢ f 0 : Bool
t-let∅ ⊢ let f=𝜆 x :Nat . iszero x in f 0 : Bool

Algorithmic Type Checking Algorithmic type checking for the type system of 𝜆→ is straight-
forward as all rules are purely syntax driven. A typical implementation introduces a recursive function
typeof that takes a term 𝑡, a context Γ that is initially empty, and returns a type 𝑇 (see Algorithm 1).
The function introduces one case per rule as described in Figure 3.2. If no rule matches, a type error
is raised.

41

Chapter 3. A Basic Programming Language (𝜆-calculus)

Algorithm 1 Definition of typeof for 𝜆→.
function typeof(𝑡, Γ)

match 𝑡 with
case 𝑥 when (𝑥 : 𝑇) ∈ Γ then 𝑇

case true then Bool

case false then Bool

case if 𝑡1 then 𝑡2 else 𝑡3 when typeof(𝑡1,Γ) is Bool and typeof(𝑡2,Γ) is 𝑇
and typeof(𝑡3,Γ) is 𝑇 then 𝑇

case 0 then Nat

case succ 𝑡1 when typeof(𝑡1,Γ) is Nat then Nat

case pred 𝑡1 when typeof(𝑡1,Γ) is Nat then Nat

case iszero 𝑡1 when typeof(𝑡1,Γ) is Nat then Bool

case let 𝑥 = 𝑡1 in 𝑡2 when typeof(𝑡1,Γ) is 𝑇1 and typeof(𝑡2,(Γ, (𝑥 : 𝑇1))) is 𝑇2 then 𝑇2

case 𝜆 𝑥 :𝑇1 . 𝑡2 when typeof(𝑡2,(Γ, (𝑥 : 𝑇1))) is 𝑇2 then 𝑇1 → 𝑇2

case 𝑡1 𝑡2 when typeof(𝑡1,Γ) is 𝑇11 → 𝑇12 and typeof(𝑡2,Γ) is 𝑇11 then 𝑇12

case _ then fail

3.1.3. Subtyping

The type system as defined so far is relatively strict. In particular, rule t-app enforces that the domain
type of a 𝜆-abstraction and the type of the value to which it is applied are the same:

Γ ⊢ 𝑡1 : 𝑇11 → 𝑇12 Γ ⊢ 𝑡2 : 𝑇11
Γ ⊢ 𝑡1𝑡2 : 𝑇12

(t-app)

Subtyping eases that constraint in the sense that a type must not necessarily be equal, but can also be
more special than the domain type. If a type is a set of values, then the idea is that a type 𝑇 being a
subtype of a type 𝑇 ′ means that the set 𝑇 is a subset of the set 𝑇 ′. Likewise, if 𝑇11 is the domain of
a function, then any 𝑇 which is a subtype of 𝑇11 should also be applicable since it means that 𝑇 is a
subset of 𝑇11 and all values of 𝑇 must therefore also be values of 𝑇11.

The addition of a subtyping relation, usually written <:, to 𝜆→ allows us to formalize this notion,
leading to language called 𝜆<: (see Figure 3.3). Syntactically, we add a type that encompasses all other
types called Top . We also add a new rule to the type system that formalizes the notion as described
before—if a term 𝑡 can be assigned the type 𝑇 and 𝑇 is a subtype of 𝑇 ′, written 𝑇 <: 𝑇 ′, then term 𝑡

must also have type 𝑇 (rule t-sub). The remainder are the rules for subtyping. Every type is a subtype
of itself, written 𝑇 <: 𝑇 (rule s-Refl). If 𝑇 is a subtype of type 𝑇 ′ and 𝑇 ′ is a subtype of type 𝑇 ′′, then 𝑇
must also be a subtype of type 𝑇 ′′ (rule s-tRans). Every type is a subtype of Top (rule s-top). Lastly,

42

3.1. The Simply Typed 𝜆-calculus with Subtyping

𝜆<: Extends 𝜆→ (see. Fig. 3.1 and 3.2)

New syntactic forms

𝑇 ::= … types:
| Top maximum type

New typing rules Γ ⊢ 𝑡 : 𝑇

Γ ⊢ 𝑡 : 𝑇 𝑇 <: 𝑇 ′

Γ ⊢ 𝑡 : 𝑇 ′
(t-sub)

Subtyping rules 𝑇 <: 𝑇 ′

𝑇 <: 𝑇 (s-Refl)

𝑇 <: 𝑇 ′ 𝑇 ′ <: 𝑇 ′′

𝑇 <: 𝑇 ′′
(s-tRans)

𝑇 <: Top (s-top)

𝑇 ′1 <: 𝑇1 𝑇2 <: 𝑇 ′2
𝑇1 −→ 𝑇2 <: 𝑇 ′1 −→ 𝑇 ′2

(s-aRRow)

Figure 3.3.: Simply typed 𝜆-calculus with subtyping (𝜆<:).

function types are in a subtype relation if their domains are in a flipped subtyping relationship (known
as contra-variance) and their co-domains are in a subtyping relationship (known as co-variance).

As an example for subtyping, consider a 𝜆-abstraction 𝜆 x :Top . x with a parameter of type Top

and which simply returns the given term. This 𝜆-abstraction can be applied to a term of type Bool as
rules t-sub and s-top ensure that all terms of type Bool are also of type Top:

······
∅ ⊢ 𝜆 x :Top . x : Top→ Top

t-tRue∅ ⊢ true : Bool s-top
Bool <: Top

t-sub∅ ⊢ true : Top
t-app∅ ⊢ (𝜆 x :Top . x) true

Likewise, the 𝜆-abstraction can be applied to a term of type Nat:

······
∅ ⊢ 𝜆 x :Top . x : Top→ Top

t-zeRo∅ ⊢ 0 : Nat s-top
Bool <: Top

t-sub∅ ⊢ true : Top
t-app∅ ⊢ (𝜆 x :Top . x) 0

However, the type Top represents the most general set possible. 𝜆-abstractions using more spe-
cific types as their domain type cannot be applied to the terms of type Top anymore. For example,
for the term (𝜆 x :Nat . x) ((𝜆 y :Top . y) 0) , no derivation tree can be found. The term first applies a
𝜆-abstraction of type Top→ Top to a term of type Nat . It tries to apply a 𝜆-abstraction of type
Nat→ Nat to the result of the first application. Intuitively, this code contains no errors as both 𝜆-

43

Chapter 3. A Basic Programming Language (𝜆-calculus)

abstractions simply return the term given to them. However, the type system will reject the term as
being ill-typed.

Programming languages typically support down-casting of terms to assign more specific types. This
is an error-prone operation as errors only surface at run-time. Our language does not support down-
casting since it has no effect on the type systems defined in this thesis. Nevertheless, this highlights an
important issue: type systems should assign the principle type to terms. That is, the most specific type
available for a given term. A type system that does not assign the principle type but rather a more
general type will reject more terms as ill-typed. As such, it is stricter without providing any benefits.

Algorithmic Type Checking The addition of rule t-sub introduces several changes to the
function typeof (see Algorithm 2). The cases for function application as well as if-then-else expres-
sions must be revisited. Other cases remain as before. Function application 𝑡1 𝑡2 so far required that
the type of 𝑡2 is exactly the domain type of 𝑡1. Instead, we now introduce a predicate subtype that
determines whether 𝑡2 is a subtype of the domain type of 𝑡1. Furthermore, we introduce a function
lub (discussed in Algorithm 3) that allows for constructing the least upper bound of two types. The

Algorithm 2 Definition of typeof and subtype for 𝜆<:.
function typeof(𝑡, Γ)

match 𝑡 with
case if 𝑡1 then 𝑡2 else 𝑡3 when typeof(𝑡1,Γ) is Bool and typeof(𝑡2,Γ) is 𝑇2

and typeof(𝑡3,Γ) is 𝑇3 then lub(𝑇2,𝑇3)
case 𝑡1 𝑡2 when typeof(𝑡1,Γ) is 𝑇11 → 𝑇12 and typeof(𝑡2,Γ) is 𝑇2

and subtype(𝑇2,𝑇11) is true then 𝑇12

case … then … ⊲ existing cases

case _ then fail

function subtype(𝑇 , 𝑇 ′)
match (𝑇 ,𝑇 ′) with

case (𝑇 ,𝑇) then true

case (𝑇 ,Top) then true

case (𝑇11 → 𝑇12,𝑇
′
11 → 𝑇 ′12) when subtype(𝑇 ′11,𝑇11) and subtype(𝑇12, 𝑇

′
12) then true

case _ then false

subtype predicate is a straightforward translation of the subtyping rules in 𝜆<: (see Figure 3.3). The
function introduces one case each for rules s-Refl, s-top and s-aRRow. At this point, rule s-tRans has
no effect yet. Furthermore, if-then-else expressions originally required both, the then-branch and the

44

3.2. Extensions to the language

else-branch, to be of the same type. Instead, we now introduce a function lub that represents the least
upper bound of two types (see Algorithm 3). In case of if-then-else expressions, the function typeof
can then simply return the least upper bound of both branches. Construction of the least upper bound

Algorithm 3 Definition of lub and glb for 𝜆<:.
function lub(𝑇 , 𝑇 ′)

match (𝑇 ,𝑇 ′) with
case (𝑇 ,𝑇 ′) when subtype(𝑇,𝑇 ′) then 𝑇 ′

case (𝑇11 → 𝑇12,𝑇
′
11 → 𝑇 ′12) then glb(𝑇11,𝑇

′
11)→lub(𝑇12,𝑇

′
12)

case _ then Top

function glb(𝑇 , 𝑇 ′)
match (𝑇 ,𝑇 ′) with

case (𝑇 ,𝑇) then 𝑇
case (𝑇11 → 𝑇12,𝑇

′
11 → 𝑇 ′12) then lub(𝑇11,𝑇

′
11)→glb(𝑇12,𝑇

′
12)

case _ then fail

lub is defined as follows: If one type is a subtype of the other, then the supertype acts as a least up-
per bound. For functions, we require an additional definition for the greatest lower bound glb. The
domain type of the newly constructed function is the greatest lower bound of the domain types of
the input functions. The co-domain of the newly constructed function is the least upper bound of the
co-domain types of the input functions. If no case of lub matches, then the least upper bound must be
the type Top . For the definition of the greatest lower bound glb, it holds again that there is nothing
to compute if the input are two syntactically equal types. For functions, the relation of domain and
co-domain flips—the domain of the newly created function is the least upper bound of the domains of
the input function. The co-domain of the newly created function is the greatest lower bound of the
two input functions. Lastly, the computing the greatest lower bound can fail—if no case matches, then
it is impossible to compute a greatest lower bound.

3.2. Extensions to the language

We now extend the language 𝜆<: with several features that are typically present in real programming
languages. In particular, we extend the language with recursion, records for grouping data, as well as
lists.

45

Chapter 3. A Basic Programming Language (𝜆-calculus)

𝜆Recursion Extends 𝜆<:-calculus (Fig. 3.3)

New syntactic elements

𝑡 ::= … terms:
| fix 𝑡 fixed point of 𝑡

New evaluation rules 𝑡 −→ 𝑡 ′

fix (𝜆 𝑥 :𝑇1 . 𝑡2) −→
[𝑥 ↦→ (fix(𝜆 𝑥 :𝑇1 . 𝑡2))]𝑡2

(e-fix1)

𝑡1 −→ 𝑡 ′1
fix 𝑡1 −→ fix 𝑡 ′1

(e-fix2)

New typing rules Γ ⊢ 𝑡 : 𝑇

Γ ⊢ 𝑡1 : 𝑇1 → 𝑇1
Γ ⊢ fix 𝑡1 : 𝑇1

(t-fix)

New derived forms

letrec 𝑥 : 𝑇1 = 𝑡1 in 𝑡2
def
= let 𝑥= fix(𝜆 𝑥 :𝑇1 . 𝑡1) in 𝑡2

Figure 3.4.: Fixpoint operator for recursion.

3.2.1. Recursion

An important feature in general programming languages is the definition of recursive functions. That
is, functions that call themselves. Importantly, recursion cannot be implemented using a simple let-
statement such as let f= 𝑡1 in 𝑡2 . Intuitively, typing of such a statement must fail as f is used in 𝑡1
although the type of f is not yet known (rule t-let). Instead, recursion requires the introduction of
a fixed point combinator (see Figure 3.4). The term fix 𝑡 constitutes the fixed point combinator that
takes another term 𝑡. This must be a function mapping a value of 𝑇1 onto a value of the same type
(rule e-fix1). If it is possible to reduce the term 𝑡, then the evaluation rules will do so (rule e-fix2).
Otherwise, if the term 𝑡 is a function, the variable 𝑥 is substituted for the fixed point of 𝑡 in the body of
the function. There are no additions to the subtyping rules. The procedure typeof uses an additional
case which is a straightforward implementation of t-fix. As common in typed functional languages,
a letrec-statement is introduced to simplify the usage of the fixed point combinator. As an example,
consider a function iseven that takes a value of type Nat and returns either true if the value is even
or false otherwise:

1 letrec iseven : Nat→ Bool = 𝜆x : Nat .

2 i f iszero x then true

3 else i f iszero (pred x) then false

4 else iseven (pred (pred x))

5 in iseven 2

46

3.2. Extensions to the language

Evaluation of the program first applies rule e-letv:

letrec iseven : Nat→ Bool = 𝜆x : Nat.
if iszero x then true

else if iszero (pred x) then false

else iseven (pred (pred x))

in iseven 2

−→

fix (𝜆 iseven : Nat→ Bool. 𝜆 x : Nat.
if iszero x then true

else if iszero (pred x) then false

else iseven (pred (pred x))) 2

This, in turn, allows us to apply rule e-fix1. The symbol iseven is replaced with the recursive function:

fix (𝜆 iseven : Nat→ Bool. 𝜆 x : Nat.
if iszero x then true

else if iszero (pred x) then false

else iseven (pred (pred x))) 2

−→

(𝜆 x : Nat.
if iszero x then true

else if iszero (pred x) then false

else fix(…)(pred (pred x))) 2

Next, a standard function application via rule e-appabs leads to the following term:

(𝜆 x : Nat.
if iszero x then true

else if iszero (pred x) then false

else fix(…)(pred (pred x))) 2

−→
if iszero 2 then true

else if iszero (pred 2) then false

else fix(…)(pred (pred 2)))

As neither iszero 2 nor iszero (pred 2) evaluate to true, repeated application of the evaluation rules
lead to the following term:

if iszero 2 then true

else if iszero (pred 2) then false

else fix(…)(pred (pred 2)))

−→∗

fix (𝜆 iseven : Nat→ Bool. 𝜆 x : Nat.
if iszero x then true

else if iszero (pred x) then false

else iseven (pred (pred x))) (pred (pred 2))

Again, rule e-fix1 substitutes the symbol iseven for the actual definition of the function. Furthermore,
evaluating the term pred (pred 2) by applying rule e-pResucc two times leads to the following term:

fix (𝜆 iseven : Nat→ Bool. 𝜆 x : Nat.
if iszero x then true

else if iszero (pred x) then false

else iseven (pred (pred x))) (pred (pred 2))

−→∗

(𝜆 x : Nat.
if iszero x then true

else if iszero (pred x) then false

else fix(…)(pred (pred x))) 0

47

Chapter 3. A Basic Programming Language (𝜆-calculus)

Applying the function via rule e-appabs substitutes x for 0 . The guard of the first if-then-else ex-
pression iszero 0 then evaluates to true, leading to the final term true :

(𝜆 x : Nat.
if iszero x then true

else if iszero (pred x) then false

else fix(…)(pred (pred x))) 0

−→∗ true

3.2.2. Records

𝜆Records Extends 𝜆Recursion (Figure 3.4)

New syntactic elements

𝑡 ::= … terms:
| {𝑙𝑖 = 𝑡𝑖 𝑖∈1...𝑛} record
| 𝑡.𝑙 record projection

𝑣 ::= … values:
| {𝑙𝑖 = 𝑣𝑖 𝑖∈1...𝑛} record value

𝑇 ::= … types:
{𝑙𝑖 : 𝑇𝑖 𝑖∈1...𝑛} record type

New evaluation rules 𝑡 −→ 𝑡 ′

{𝑙𝑖 = 𝑣𝑖 𝑖∈1...𝑛}.𝑙 𝑗 −→ 𝑣 𝑗 (e-pRojRcd)

𝑡1 −→ 𝑡 ′1
𝑡1.𝑙 −→ 𝑡 ′1.𝑙

(e-pRoj)

𝑡 𝑗 −→ 𝑡 ′𝑗

{𝑙𝑖 = 𝑣𝑖 𝑖∈1... 𝑗−1, 𝑙 𝑗 = 𝑡 𝑗 , 𝑙𝑘 = 𝑡𝑘 𝑘∈ 𝑗+1...𝑛} −→
{𝑙𝑖 = 𝑣𝑖 𝑖∈1... 𝑗−1, 𝑙 𝑗 = 𝑡 ′𝑗 , 𝑙𝑘 = 𝑡𝑘

𝑘∈ 𝑗+1...𝑛}
(e-Rcd)

New typing rules Γ ⊢ 𝑡 : 𝑇

for each 𝑖 Γ ⊢ 𝑡𝑖 : 𝑇𝑖
Γ ⊢ {𝑙𝑖 = 𝑡𝑖 𝑖∈1...𝑛} : {𝑙𝑖 : 𝑇𝑖 𝑖∈1...𝑛}

(t-Rcd)

Γ ⊢ 𝑡1 : {𝑙𝑖 : 𝑇𝑖 𝑖∈1...𝑛}
Γ ⊢ 𝑡1.𝑙 𝑗 : 𝑇𝑗

(t-pRoj)

New subtyping rules 𝑇 <: 𝑇 ′

{𝑙𝑖 : 𝑇𝑖 𝑖∈1...𝑛+𝑘 } <: {𝑙𝑖 : 𝑇𝑖 𝑖∈1...𝑛} (s-Rcdwidth)

for each 𝑖 𝑇𝑖 <: 𝑇 ′𝑖
{𝑙𝑖 : 𝑇𝑖

𝑖∈1...𝑛} <: {𝑙𝑖 : 𝑇 ′𝑖
𝑖∈1...𝑛} (s-Rcddepth)

{𝑘 𝑗 : 𝑇𝑗
𝑗∈1...𝑛} is a permutation of {𝑙𝑖 : 𝑇 ′𝑖

𝑖∈1...𝑛}
{𝑘 𝑗 : 𝑇𝑗

𝑗∈1...𝑛} <: {𝑙𝑖 : 𝑇 ′𝑖
𝑖∈1...𝑛}

(s-RcdpeRm)

Figure 3.5.: Rules for a 𝜆-calculus enriched with records.

Records are compound data structures for grouping data based on labels. A record {𝑙𝑖 = 𝑡𝑖 𝑖∈1...𝑛}

48

3.2. Extensions to the language

can be understood as a n-ary tuple in which each field 𝑡𝑖 is annotated by a label 𝑙𝑖 [81]. Likewise,
a record type {𝑙𝑖 : 𝑇𝑖 𝑖∈1...𝑛} consists of labels 𝑙𝑖 and types 𝑇𝑖 that represent the types of the terms

in the record {𝑙𝑖 = 𝑡𝑖 1∈1...𝑛} . We generally assume that all labels in a record are unique and that
the order in which label-value pairs are given is irrelevant. As examples, consider the record val-
ues {age = 20} and {matrNr = 211023, enrolled = true} with their respective types {age : Nat} and
{matrNr : Nat, enrolled : Bool} . Terms in records are accessed via a projection operation 𝑡.𝑙 that re-
turns the term that is annotated with the label, for example {matrNr = 211023, enrolled = true}.matrNr

for accessing the matriculation number label of the record. Figure 3.5 summarizes the rules regarding
records.

A record is considered to be a value if all its terms are values. If not, a term of the record that is
not yet a value is evaluated (rule e-Rcd). In case of a projection 𝑡.𝑙 , the term 𝑡 is reduced until it
is a value (rule e-pRoj). If 𝑡 is a record value, then the value annotated with the label 𝑙 is returned
(rule e-pRojRcd). Typing a record essentially means typing each term of the record individually (rule
t-Rcd). Typing a projection 𝑡1.𝑙 requires 𝑡1 be a record type that contains the label 𝑙. If so, then the
type associated to the label 𝑙 can is the type of the term (rule t-pRoj). Lastly, subtyping between record
types is defined through the annotated types. A record type is more specific than another record type
if it contains more labels and the types of all labels occurring in both records are in subtype relations
(rule s-Rcdwidth). For example, the record {a : Nat, b : Bool} is more specific than {a : Nat} and
therefore the former is a subtype of the latter. A record is also more specific than another record if
it contains the same labels and their types are in a subtype relation (rule s-Rcddepth). Lastly, rule
s-RcdpeRm ensures that the order of label-type pairs is irrelevant for the subtype relation.

Multiple subtyping rules can be combined through rule s-tRans. As an example, consider the
derivation of the type {b : Top} for the term {a : 42, b : true} . The term is of type {a : Nat, b : Bool}
is a subtype of {b : Top} :

s-Rcdwidth{a : Nat, b : Bool} <: {b : Bool}

s-top
Bool <: Top

s-Rcddepth{b : Bool} <: {b : Top}
s-tRans{a : Nat, b : Bool} <: {b : Top}

The complete derivation of the statement {a : 42, b : true} : {b : Top} is therefore as follows:

······ t-Rcd
∅ ⊢ {a : 42, b : true} : {a : Nat, b : Bool}

······
{a : Nat, b : Bool} <: {b : Top}

t-sub∅ ⊢ {a : 42, b : true} : {b : Top}

Algorithmic type checking Again, the type checking function typeof as shown in Algo-
rithm 4 introduces one new case per rule of the type system (see Figure 3.5). The implementation

49

Chapter 3. A Basic Programming Language (𝜆-calculus)

diverges from the rules of the type system. Implementations of record subtyping commonly rely on a
subtyping rule that combines the rules s-Rcdwidth, s-Rcddepth and s-RcdpeRm (c. f. [81]). Subtyping
first compares the labels of the record—all labels of the supertype must occur in the subtype. Second,
for each label that occurs in both records, their types must be in a subtype relation:

{𝑙 𝑗 𝑗∈1...𝑚} ⊆ {𝑙𝑖 𝑖∈1...𝑛} 𝑙𝑖 = 𝑙 𝑗 implies 𝑇𝑖 <: 𝑇𝑗
{𝑙𝑖 : 𝑇𝑖

𝑖∈1...𝑛} <: {𝑙 𝑗 : 𝑇𝑖
𝑗∈1...𝑚}

(s-Rcd)

Using this rule, the procedures typeof and subtype can then be implemented as shown inAlgorithm 4.
Records become more specific the more labels they contain. As such, the least upper bound (lub) of

Algorithm 4 Definition of typeof and subtype for 𝜆Records .
function typeof(𝑡, Γ)

match 𝑡 with
case … then … ⊲ existing cases

case {𝑙𝑖 = 𝑡𝑖 𝑖∈1...𝑛} when for all 𝑖 ∈ {1 . . . 𝑛}: typeof(𝑡𝑖 ,Γ) is 𝑇𝑖 then {𝑙𝑖 : 𝑇𝑖 𝑖∈1...𝑛}
case 𝑡1.𝑙 𝑗 when typeof(𝑡1,Γ) is {𝑙𝑖 : 𝑇𝑖 𝑖∈1...𝑛} and 𝑙 𝑗 ∈ {𝑙 𝑖∈1...𝑛𝑖 } then 𝑇𝑗

case _ then fail

function subtype(𝑇 , 𝑇 ′)
match (𝑇 ,𝑇 ′) with

case … then … ⊲ existing cases

case ({𝑡𝑖 : 𝑇𝑖 𝑖∈1...𝑛}, {𝑡 𝑗 : 𝑇𝑗 𝑗∈1...𝑚}) when {𝑙 𝑗 𝑗∈1...𝑚} ⊆ {𝑙𝑖 𝑖∈1...𝑛}
and for all 𝑖 ∈ {1 . . . 𝑛}: there is some 𝑗 ∈ 1, . . . , 𝑚

with 𝑙𝑖 = 𝑙 𝑗 and subtype(𝑇𝑖 ,𝑇𝑗) then
true

case _ then false

two records is the record that only contains labels that occur in both records. Likewise, the greatest
lower bound (glb) must combine labels of both records. Algorithm 5 contains the definitions for both
functions.

3.2.3. Lists

Lastly, we introduce lists as a second compound data structure into the programming language.
The type List 𝑇 represents a finite length lists of values that belong to type 𝑇 . A list is either the
empty list, represented by the term nil[T] , or a pair, represented by the term cons 𝑡1 𝑡2 , which con-
tains a term followed by a list. A list containing the numbers 0 to 2 is represented as follows as

50

3.2. Extensions to the language

Algorithm 5 Definition of lub and glb for 𝜆Records .
function lub(𝑇 , 𝑇 ′)

match (𝑇 ,𝑇 ′) with
case … then … ⊲ existing cases

case ({𝑙𝑖 : 𝑇𝑖 𝑖∈1...𝑛},{𝑙 𝑗 : 𝑇𝑗 𝑗∈1...𝑚}) when for all 𝑙𝑘 ∈ {𝑙𝑖} ∩ {𝑙 𝑗} lub(𝑇𝑖 ,𝑇𝑗) is 𝑇𝑘 then
{𝑙𝑘 : 𝑇𝑘 }

case _ then Top

function glb(𝑇 , 𝑇 ′)
match (𝑇 ,𝑇 ′) with

case … then … ⊲ existing cases

case ({𝑙𝑖 : 𝑇𝑖 𝑖∈1...𝑛},{𝑙 𝑗 : 𝑇𝑗 𝑗∈1...𝑚}) when for all 𝑙𝑘 ∈ {𝑙𝑖} ∪ {𝑙 𝑗} glb(𝑇𝑖 ,𝑇𝑗) is 𝑇𝑘 then
{𝑙𝑘 : 𝑇𝑘 }

case _ then fail

cons 0 (cons 1 (cons 2 nil[Nat])) . Compared to other values, nil is different as it carries a type anno-
tation. As nil occurs in all types of lists, this is required to distinguish empty lists. For example, an
empty list of type Nat is represented as nil[Nat] whereas an empty list of boolean values is nil[Bool] .
Furthermore, several standard constructs for the usage of lists such as head and tail as well as isNil

for checking whether a list is empty are added to the language. Figure 3.6 summarizes the rules regard-
ing lists. Terms are reduced until they are values (rules e-head2, e-tail2 and e-isnil3). Once terms
have been reduced to values, head and tail can be evaluated by taking either the first or second term
associated with the cons term (rules e-head1 and e-tail1). Evaluating isNil to either true or false
is done depending on whether the term is a cons term or nil (rules e-isnil1 and e-isnil2). Typing
rules are straightforward. In case of nil[𝑇1], the type annotation is used to construct the type List 𝑇1

(rule T-NIL). In case of cons , it is checked whether both 𝑡1 and 𝑡2 are of type 𝑇1 (rule t-cons). isNil ,
head and tail all expect lists of type 𝑇1 and return either a value of type Bool (rule t-isnil), a value of
type 𝑇1 (rule t-head) or a list of type 𝑇1 (rule t-tail). In terms of subtyping, a list List 𝑇 is a subtype
of List 𝑇 ′ if 𝑇 is a subtype of 𝑇 ′ since then all values of 𝑇 are also values of 𝑇 ′.

To highlight the language so far, we can define amap function—a higher order function that takes a
function and applies it on all values of a list and returns the resulting list. While we cannot formulate a
generic version ofmap due to the lack of parametric polymorphism, we can define a basic version. For
example, we can define a version of the map-function mapNatBool that can be used for all functions
of the type Nat→ Bool . We can then use the previously defined 𝜆-abstraction iseven to map a list of

51

Chapter 3. A Basic Programming Language (𝜆-calculus)

𝜆Full Extends 𝜆Records (Fig. 3.4)

New syntactic elements

𝑡 ::= … terms:
| nil[𝑇] constant empty list
| cons 𝑡 𝑡 list constructor
| isNil 𝑡 test for empty list
| head 𝑡 head of a list
| tail 𝑡 tail of a list

𝑣 ::= … values:
| nil[𝑇] empty list
| cons 𝑣 𝑣 list value

𝑇 ::= … types:
| List 𝑇 type of lists

New evaluation rules 𝑡 −→ 𝑡 ′

head (cons 𝑣1 𝑣2) −→ 𝑣1 (e-head1)

𝑡1 −→ 𝑡 ′1
head 𝑡1 −→ head 𝑡 ′1

(e-head2)

tail (cons 𝑣1 𝑣2) −→ 𝑣2 (e-tail1)

𝑡1 −→ 𝑡 ′1
tail 𝑡1 −→ tail 𝑡 ′1

(e-tail2)

𝑡1 −→ 𝑡 ′1
cons 𝑡1 𝑡2 −→ cons 𝑡 ′1 𝑡2

(e-cons1)

𝑡2 −→ 𝑡 ′2
cons 𝑣1 𝑡2 −→ cons 𝑣1 𝑡

′
2

(e-cons2)

isNil (nil[𝑇]) −→ true (e-isnil1)

isNil (cons 𝑡1 𝑡2) −→ false (e-isnil2)

𝑡1 −→ 𝑡 ′1
isNil 𝑡1 −→ isNil 𝑡 ′1

(e-isnil3)

New typing rules Γ ⊢ 𝑡 : 𝑇

Γ ⊢ nil[𝑇1] : List 𝑇1 (t-nil)

Γ ⊢ 𝑡1 : 𝑇1 Γ ⊢ 𝑡2 : 𝑇1
Γ ⊢ cons 𝑡1 𝑡2 : List 𝑇1

(t-cons)

Γ ⊢ 𝑡1 : List 𝑇1
Γ ⊢ isNil 𝑡1 : Bool (t-isnil)

Γ ⊢ 𝑡1 : List 𝑇1
Γ ⊢ head 𝑡1 : 𝑇1

(t-head)

Γ ⊢ 𝑡1 : List 𝑇1
Γ ⊢ tail 𝑡1 : List 𝑇1

(t-tail)

New subtyping rules 𝑇 <: 𝑇 ′

𝑇 <: 𝑇 ′

List 𝑇 <: List 𝑇 ′
(s-list)

Figure 3.6.: Rules for lists in the 𝜆-calculus.

52

3.2. Extensions to the language

numerical values to a list containing either true or false depending on whether the numerical value
is even or odd:

1 letrec mapNatBool : (Nat→ Bool)→ (Nat l i s t→ Bool l i s t) =

2 𝜆(f :Nat→ Bool) . 𝜆(l :Nat l i s t) .

3 i f (i sNi l l) then ni l [Bool]

4 else cons (f (head l)) (mapEvenOdd f (ta i l l)) in

5 letrec iseven : Nat→ Bool = 𝜆(x :Nat) . ⊲ as defined in Subsection 3.2.1

6 i f iszero x then true

7 else i f iszero (pred x) then false

8 else iseven (pred (pred x))

9 mapNatBool iseven (cons 0 (cons 1 (cons 2 ni l [Nat])))

A noteworthy limitation that is introduced by the addition of lists is that lists can be the source of
run-time errors that cannot be detected with a type-system as described in this thesis. Consider the
term head nil[Nat] . This term is well-typed:

t-nil∅ ⊢ nil[Nat] : List Nat
t-head∅ ⊢ head nil[Nat] : Nat

However, the term clearly is not a value, but also cannot be reduced any further with the evaluation
rules given in Figure 3.6. Therefore, it is common to formulate type-safety such that a well-typed
term does not get stuck unless the program reaches a point where it tries to compute head nil[𝑇] or
tail nil[𝑇] .

Algorithmic type checking Algorithmic type checking is a straightforward implementation
of the rules in Figure 3.6. Both, typeof and subtype are extended with new cases (see Algorithm 6).
Likewise, construction of the least upper bound (lub) and greatest lower bound (glb) of two lists
List 𝑇 and List 𝑇 ′ simply uses the least upper bound or greatest lower bound of 𝑇 and 𝑇 ′ (see Algo-
rithm 7).

53

Chapter 3. A Basic Programming Language (𝜆-calculus)

Algorithm 6 Definition of typeof and subtype for 𝜆Full .
function typeof(𝑡, Γ)

match 𝑡 with
case … then … ⊲ existing cases

case nil[𝑇] then 𝑇
case cons 𝑡1 𝑡2 when typeof(𝑡1, Γ) is 𝑇1 and typeof(𝑡2, Γ) is List 𝑇2 and

lub(𝑇1, 𝑇2) is List 𝑇lub then 𝑇lub

case isNil 𝑡1 when typeof(𝑡1, Γ) is List 𝑇1 then Bool

case head 𝑡1 when typeof(𝑡1, Γ) is List 𝑇1 then 𝑇1

case tail 𝑡1 when typeof(𝑡1, Γ) is List 𝑇1 then List 𝑇1

case _ then fail

function subtype(𝑇 , 𝑇 ′)
match (𝑇 , 𝑇 ′) with

case … then … ⊲ existing cases

case (List 𝑇 , List 𝑇 ′) when subtype(𝑇 , 𝑇 ′) then true

case _ then false

Algorithm 7 Definition of lub and glb for 𝜆Full .
function lub(𝑇 , 𝑇 ′)

match (𝑇 ,𝑇 ′) with
case … then … ⊲ existing cases

case (List 𝑇 ,List 𝑇 ′) then List lub(𝑇 ,𝑇 ′)
case _ then Top

function glb(𝑇 , 𝑇 ′)
match (𝑇 ,𝑇 ′) with

case … then … ⊲ existing cases

case (List 𝑇 ,List 𝑇 ′) then List glb(𝑇 ,𝑇 ′)
case _ then fail

54

CHAPTER 4
Type Checking with
Description Logics
Developing applications that work on RDF data is error prone since problems, such as accessing prop-
erties which may not exist, only surface at run-time. Ontologies, which are rooted in description
logics, provide some form of schematic description for the data. As such, they can be used for type
checking. We therefore introduce 𝜆DL, a research language that features type-safe programming using
a description logic knowledge base both during type checking as well as during run-time. This chapter
is based on [65].

4.1. Key Design Principles and Example Use Case

Key Design Principles The language 𝜆DL is based on several key design principles:

Programs are defined with respect to a knowledge base. All programs are defined with respect to a
knowledge base that provides both, the data the program works on as well as schematic infor-
mation about the data. Subsequently, queries in the program are evaluated using the knowledge
base. Likewise, type checking of programs is defined using the knowledge base.

Concepts as types. As introduced in Section 2.1.2, types represent sets of values. The integration of se-
mantic data into a programming language therefore requires types that can represent sets of graph
nodes. Concept expressions as introduced in Section 2.2.3 provide highly expressive descriptions
of sets of graph nodes and therefore constitute a new form of type that is to be integrated into
the programming language.

Subtype entailment. Integration of concept expressions as types calls for a subtype relation between
this new form of types. Subtyping between concept expressions cannot be decided purely based
on syntax. Furthermore, there are also infinitely many syntactic variations of any given concept,
making it impossible to precompute all possible subtype relations. Instead of somehow mapping
the concept inclusion rules into rules for a type system and thereby replicating the reasoning

55

Chapter 4. Type Checking with Description Logics

process part of the knowledge base, we rather forward the subtyping decision to the knowledge
base.

Typing of queries. Queries constitute the main form of data access. As such, they must be checked
in two ways: First, unsatisfiable queries—that is queries for which it is impossible to produce a
result—must be rejected. Second, queries must be assigned meaningful types which represent the
graph nodes that the query evaluates to.

Open-world querying. Looking at logical entailment, any statement is either true, false or unknown. A
type system must only consider certain knowledge as true—that is, we only consider statements
to be true which are true in all models of the knowledge base. In all other cases, we consider the
statement to be false. While this is close to a developer’s expectation, it creates an interesting side
effect. Given any concept expression 𝐶, asking whether an arbitrary graph node is an instance
of 𝐶 ⊔ ¬𝐶 will always be true. However, first asking whether a node is an instance of 𝐶 then
separately asking whether it is an instance of ¬𝐶 may be false in both cases.

Example Use Case As an example, consider an application that is defined with respect to the
following knowledge base as shown in Figure 4.1: A Person has a name (line 1) while a University has
a location (line 2). If someone studies at a University , then it must be a Student (line 3). A Student is
a Person and all of his or her friends are also instances of Student (line 4). A Professor is a Person

who works at a University (line 5). In terms of data, there is uniKo which is an instance of University

(line 7). bob studies at uniKo (line 8), making him an instance of Student . Furthermore, his name
is “Bob B.” (line 9) and he is friends with alice (line 10). As bob is a Student and all of a student’s
friends are also Students , it means that alice must also be a Student . The name of alice is “Alice A.”
(line 11). Lastly, charlie is an instance of Professor (line 12).

Our example application should implement three different functions: First, it should query for all
instances of Student . Second, it should define a function that is able to return the name of a given
Person . Third, it should define a function that returns the list of friends for a given Student .
Querying for all instances of Student is straightforward as queries are directly integrated into the

language:

1 query x← x type Student

The expression will evaluate to a list of records where each record has a single label representing the
projection variable x . The type of the record label is a type that is equivalent to the concept expression
Student . A function that returns a name of a Person can be defined as follows:

1 let getName = 𝜆 (p: Person) . p.hasName

56

4.1. Key Design Principles and Example Use Case

1 Person ⊑ ∃ hasName.⊤
2 University ⊑ ∃ location.⊤
3 ∃ studiesAt.University ⊑ Student

4 Student ⊑ Person ⊓ ∀ hasFriend.Student
5 Professor ⊑ Person ⊓ ∃worksAt.University
6
7 uniKo : University
8 (bob, uniKo) : studiesAt
9 (bob, "Bob B.") : hasName

10 (bob, alice) : hasFriend
11 (alice, "Alice A.") : hasName

12 charlie : Professor

Figure 4.1.: Example knowledge base𝐾4.

The input type of the function is the concept expression Person . In the body of the function, a
role projection can be used to traverse the graph from the given graph node to all nodes reach-
able via the hasName relation. The result of the function will be a list of graph nodes belong-
ing to the concept expression ∃ hasName−.Person , essentially expressing that the graph node was
reached by traversing the hasName relation from a Person . Subsequently, the function is of type
getName : Person→ List ∃ hasName−.Person . The function can for example be applied to instances of
the concept expression Student as the Person concept expression subsumes the Student concept
expression. The function can therefore be applied to the query results of the query above. Lastly, a
function that returns all friends of a Student introduces casting. This is because it is only known that
all friends of a Student are Students again—not that a Student actually has a friend. 𝜆DL provides
a type-safe form of casting through the typecase statement that allows to proceed on a case by case
basis:

1 let getFriends = 𝜆 (s : Student) .

2 case s of

3 type ∃ hasFriend.⊤ as y→ y . hasFriend

4 default ni l [Student]

Using the knowledge base, the expression first checks if the given Student is an instance of
∃ hasFriend.⊤ . If this is the case, then it is safe to use a role projection to access the list of friends.
Since it is known that an instance of Student can only have other instances of Student as a friend,
the resulting list is equivalent to List Student . If it is not possible to show that the object is an instance

57

Chapter 4. Type Checking with Description Logics

of ∃ hasFriend.⊤ , the expression resorts to the default case which returns an empty list. The function
is of type getFriends : Student → List Student .

4.2. Types for Conjunctive Queries

To provide a typed integration of conjunctive queries in a programming language, wemust reconstruct
types based on the query. To support the assignment of types in the type system, we first reconstruct
a set of axioms from the query. Queries evaluate to sets of mappings which map variables onto graph
nodes. We represent each variable through an atomic concept and then note all the constraints on this
concept. That is, we assume the possibility to transform each variable 𝑥 of a query into an atomic
concept 𝐴𝑥 which must be unique for the variable as well as the query. Variables which share a name
but occur in different queries should therefore be represented by different concepts. We then examine
each graph pattern (abbreviated as gp) of the query 𝑥 ← gp and impose constraints on these atomic
concepts based on the graph pattern. These constraints are formulated as concept expressions 𝐶. The
result of this process is a set of axioms 𝐾𝑞 that take the form 𝐴𝑥 ⊑ 𝐶 .

Typing rules for SPARQL CQs 𝑞 : 𝐾𝑞

𝑥 type concept : {𝐴𝑥 ⊑ 𝐴concept} (qt-type)

𝑟 ≠ type
𝑥 𝑟 𝑜 : {𝐴𝑥 ⊑ ∃𝑟.{𝑜}}

(qt-Role1)

𝑟 ≠ type
𝑜 𝑟 𝑥 : {𝐴𝑥 ⊑ ∃ 𝑟−.{𝑜}}

(qt-Role2)

𝑟 ≠ type
𝑥1 𝑟 𝑥2 : {𝐴𝑥1 ⊑ ∃ 𝑟.𝐴𝑥2 , 𝐴𝑥2 ⊑ ∃ 𝑟−.𝐴𝑥1}

(qt-Role3)

gp1 : 𝐾𝑞1 gp2 : 𝐾𝑞2

gp1 ∧ gp2 : 𝐾𝑞1 ∪ 𝐾𝑞2
(qt-conj)

gp : 𝐾𝑞
𝑥 ← gp : 𝐾𝑞

(qt-pRoj)

Figure 4.2.: Rules for assigning concepts to variables in queries.

Figure 4.2 summarizes the rules for inferring axioms from queries. In case of graph patterns, we
distinguish between queries that are asking for instances of a specific concept and other graph patterns.
If a query asks for the former, then we simply map the variable onto the concept (rule qt-type). In
other cases, we construct existentially quantified concept expressions using the given role 𝑟 that point
to nominal concepts ∃ 𝑟.{𝑜} or ∃ 𝑟−.{𝑜} (rule qt-Role1 and qt-Role2). If variables occur in both
subject and object position of the graph pattern, we construct existentially quantified concepts that use
the atomic concept names representing the respective variable (rule qt-Role3). Conjunction of graph
patterns (abbreviated as gp) infers a set of axioms 𝐾𝑞1 and 𝐾𝑞2 for gp1 and gp2 individually and then

58

4.3. Core Language

takes the union of the two sets (rule qt-conj). Any interpretation that satisfies the resulting set has
to satisfy each axiom in the set. If both sets contain constraints about the same atomic concept, this
is equivalent to taking the conjunction of the two constraints. For example, if 𝐾𝑞1 = {𝐴x ⊑ Student}
and 𝐾𝑞2 = {𝐴x ⊑ Person} , then 𝐾𝑞1 ∪ 𝐾𝑞2 = {𝐴x ⊑ Student, 𝐴x ⊑ Person} is semantically equivalent
to {𝐴x ⊑ Student ⊓ Person}. Projection does not have any effect on typing (rule qt-pRoj).

As an example consider the query:

𝑞1 = x← x type Student ∧ x studiesAt y

The query contains the two graph patterns gp1 = x type Student and gp2 = x studiesAt y . Both graph
patterns are examined individually (rule qt-conj). In case of gp1 , rule qt-type applies. That is, the
pattern x type Student is assigned the set of axioms {𝐴𝑥 ⊑ Student} where 𝐴𝑥 refers to the atomic
concept representing the variable 𝑥 (rule qt-type). Second, the graph pattern x studiesAt y is assigned
to the set of axioms {𝐴𝑥 ⊑ ∃ studiesAt.𝐴y, 𝐴y ⊑ ∃ studiesAt−.𝐴x} via rule qt-Role3. Rule qt-conj then
takes the union of both sets of axioms, yielding the following set of axioms:

𝑞1 : 𝐾𝑞1 = { 𝐴𝑥 ⊑ Student,

𝐴x ⊑ ∃ studiesAt.𝐴y,

𝐴y ⊑ ∃ studiesAt−.𝐴x}

4.3. Core Language

Syntax and Semantics The language 𝜆DL (see Figure 4.3) is an extension of the standard call-
by-value 𝜆-calculus as presented in Chapter 3. New terms (denoted by 𝑡) include the query keyword
for issuing queries and projection from an object to a set of objects via a role expression 𝑟 . As an
example for a simple projection, consider the term bob.studiesAt essentially meaning a traversal from
the node bob to all nodes reachable via the studiesAt relation. Furthermore, we introduce an operator
for equality between values. Values (denoted by 𝑣) now also include graph nodes 𝑜. A new form of
types (denoted by 𝑇) are concept expressions that are built according to Figure 2.7.

The operational semantics bears no significant differences to the standard ones as defined in Chap-
ter 3. Evaluation is now defined with respect to a knowledge base 𝐾 . However, this has no impact
on the standard reduction rules that are unrelated to newly added constructs. We therefore do not
explicitly repeat them, but rather focus on the new evaluation rules. Evaluation of a projection can
be rewritten into a query (rule e-pRojRole). If the projection term is not yet a value and can take a
step, it will be reduced (rule e-RpRoj). Equality of graph nodes relies on the given knowledge base

59

Chapter 4. Type Checking with Description Logics

𝐾 . Even though they are syntactically different, they may be semantically equivalent1. Therefore,
the knowledge base 𝐾 has to either show that two graph nodes are semantically equivalent (rule e-
eq-node) or they are assumed to be different (rule e-neq-node). That means, we treat not knowing
whether they are semantically equivalent and knowing they are not in the same manner. Equality of
other primitive values works by comparing syntactic equality (rules e-eq-pRim and e-neq-pRim). In
case the two terms of the equality are not yet values, they are evaluated successively (rules e-eq1 and
e-eq2). Querying data via the query-keyword evaluates the query 𝑞 over the knowledge base 𝐾 . This
results in a set of mappings 𝜇. These mappings are then converted into a list of records by taking each
projection variable and turning it into a label of a record. The value referenced by the record label is
then the graph node to which a given 𝜇 maps the variable (rule e-eRy). We chose to convert query
results into a list of records rather than a set even though this creates an implicit ordering. However,
lists are a more basic programming language construct and subsequent processing of query results
introduces an ordering anyways.

Type System and Subtyping The most distinguishing feature of the type system (see Fig-
ure 4.3) is the addition of concept expressions 𝑐 as well as the type reconstruction on queries. Besides
the usual context Γ that is present in type checking, we now also require a knowledge base 𝐾 to make
judgments during the type checking process. For normal constructs unrelated to the knowledge base,
this has little impact. We therefore again omit typing rules that are unrelated to the knowledge base
and focus on the newly introduced syntactic expressions. A projection term 𝑡1.𝑟 can be assigned
to the type List ∃ 𝑟−.𝐶1 if two conditions hold: For one, it must be possible to assign 𝑡1 to the type
concept expression 𝐶1. If this is the case, then it is known that 𝑡1 evaluates to a graph node. For
two, the concept expression 𝐶1 must be subsumed by ∃ 𝑟.⊤ , indicating that a relation 𝑟 exists for the
objects of the concept expression 𝐶1. Typing equality 𝑡1 = 𝑡2 simply requires that both 𝑡1 and 𝑡2 are
either typed with concept expressions (rule t-eq-nom) or primitive types (rule t-eq-pRim). The type
of the complete expression is then a Bool. Lastly, terms should always be typed with their principal
type—that is, the most specific type possible. For a graph nodes 𝑜, we therefore resort to the nominal
concept expressions that only contains this graph node.

In case of queries (rule t-eRy), we use rules given in Figure 4.2 to retrieve the set of axioms
𝐾𝑞 containing the information about the atomic concepts 𝐴𝑥 for each variable used in the query
𝑞. We then proceed to check each variable for satisfiability—in case there is a variable for which
𝐾 ∪ 𝐾𝑞 |= 𝐴𝑥 ⊑ ⊥ , then this variable is not satisfiable. If a query contains an unsatisfiable query
variable, there cannot be any answers to the query. We subsequently do not assign a type and there-
fore reject the query. If all variables are satisfiable, we proceed to construct a record type {𝑙𝑖 : 𝐴𝑙𝑖 }

1This may e.g. occur when combining different data sets—the data sets may use different identifier that semantically refer
to the same object. They can be merged by adding equivalence statements for such identifiers.

60

4.3. Core Language

𝜆DL Extends 𝜆Full (Fig. 3.6)

New syntactic elements

𝑡 ::= … terms:
| query 𝑞 SPARQL CQ
| 𝑡.𝑟 role projection
| 𝑡 = 𝑡 equivalence

𝑣 ::= … values:
| 𝑜 graph node

𝑇 ::= … types:
| 𝐶 concept expression

New evaluation rules 𝑡
𝐾−→ 𝑡 ′

⟦𝑥1 ← 𝑜1 𝑟 𝑥1⟧𝐾 = {𝜇𝑖 𝑖∈1...𝑛}

𝑜1.𝑟
𝐾−→ cons 𝜇1(𝑥1) . . . cons 𝜇𝑛 (𝑥1) nil

(e-pRojRole)

𝑡1
𝐾−→ 𝑡 ′1

𝑡1.𝑟
𝐾−→ 𝑡 ′1.𝑟

(e-RpRoj)

𝐾 |= 𝑜1 ≡ 𝑜2

𝑜1 = 𝑜2
𝐾−→ true

(e-eq-node)

𝐾 ̸ |= 𝑜1 ≡ 𝑜2

𝑜1 = 𝑜2
𝐾−→ false

(e-neq-node)

𝜋1 = 𝜋1
𝐾−→ true (e-eq-pRim)

𝜋1 and 𝜋2 syntactically different

𝜋1 = 𝜋2
𝐾−→ false

(e-neq-pRim)

𝑡1
𝐾−→ 𝑡 ′1

𝑡1 = 𝑡2
𝐾−→ 𝑡 ′1 = 𝑡2

(e-eq1)

𝑡2
𝐾−→ 𝑡 ′2

𝑣1 = 𝑡2
𝐾−→ 𝑣1 = 𝑡 ′2

(e-eq2)

⟦𝑞⟧𝐾 = {𝜇𝑖 𝑖∈1...𝑛} head(𝑞) = {𝑙 𝑗 𝑗∈1...𝑚}

query 𝑞
𝐾−→ cons {𝑙 𝑗 = 𝜇1(𝑙 𝑗) 𝑗∈1...𝑚} . . .

cons{𝑙 𝑗 = 𝜇𝑛 (𝑙 𝑗) 𝑗∈1...𝑚} nil
(e-eRy)

New typing rules Γ, 𝐾 ⊢ 𝑡 : 𝑇

Γ, 𝐾 ⊢ 𝑡1 : 𝐶1 𝐾 |= 𝐶1 ⊑ ∃ 𝑟.⊤
Γ, 𝐾 ⊢ 𝑡1.𝑟 : List (∃ 𝑟−.𝐶1)

(t-RpRoj)

Γ, 𝐾 ⊢ 𝑡1 : 𝐶 Γ, 𝐾 ⊢ 𝑡2 : 𝐷
Γ, 𝐾 ⊢ 𝑡1 = 𝑡2 : Bool

(t-eq-nom)

Γ, 𝐾 ⊢ 𝑡1 : Π1 Γ, 𝐾 ⊢ 𝑡2 : Π1
Γ, 𝐾 ⊢ 𝑡1 = 𝑡2 : Bool (t-eq-pRim)

Γ, 𝐾 ⊢ 𝑜 : {𝑜} (t-nominal)

𝑞 : 𝐾𝑞 head(𝑞) = {𝑙𝑖 𝑖∈1...𝑚}
∀𝑥 ∈ Vars(𝑞) : 𝐾 ∪ 𝐾𝑞 ̸ |= 𝐴𝑥 ⊑ ⊥

Γ, 𝐾 ∪ 𝐾𝑞 ⊢ query 𝑞 : {𝑙𝑖 : 𝐴𝑙𝑖 𝑖∈1...𝑚} list
(t-eRy)

Γ, 𝐾 ∪ {𝐴𝑖 ⊑ 𝐶𝑖 𝑖∈1...𝑛} ⊢ 𝑡 : 𝐴 𝑗1≤ 𝑗≤𝑛

𝐾 ∪ {𝐴𝑖 ⊑ 𝐶𝑖 𝑖∈1...𝑛} |= 𝐴 𝑗 ⊑ 𝐷1≤ 𝑗≤𝑛

Γ, 𝐾 ⊢ 𝑡 : 𝐷
(t-add)

New subtyping rules 𝐾 ⊢ 𝑇 <: 𝑇 ′

𝐾 |= 𝐶 ⊑ 𝐷
𝐾 ⊢ 𝐶 <: 𝐷

(s-concept)

Figure 4.3.: Syntax, Semantics and type system rules for 𝜆DL.

61

Chapter 4. Type Checking with Description Logics

where 𝑙𝑖∈1...𝑚𝑖 represent the projection variables of the query. The final type that is assigned to the
query term using 𝐾 ∪ 𝐾𝑞 is the list of records {𝑙𝑖 : 𝐴𝑖∈1...𝑚𝑙𝑖

} . To reiterate, the names of atomic con-
cepts 𝐴𝑥 representing variables are unique with respect to the variable and the query. They are not
intended to be actually used as syntactic elements in the program. Subsequently, the axioms of 𝐾𝑞 are
not carried through the program. We ensure that they are taken into account if necessary through rule
t-add. The rule behaves similarly to the standard subtyping rule t-sub (see Figure 3.3). It is possible
to assign a concept expression 𝐷 to a term 𝑡 if it is possible to assign 𝑡 : 𝐴𝑥 using a knowledge base
𝐾 ∪ {𝐴𝑖 ⊑ 𝐶𝑖 𝑖∈1...𝑛} and if 𝐾 ∪ {𝐴𝑖 ⊑ 𝐶𝑖 𝑖∈1...𝑛} |= 𝐴𝑥 ⊑ 𝐷 . To exemplify this, consider a knowl-
edge base consisting of two statements. One saying that the concept expression Student is subsumed
by Person and one saying that the concept expression Professor is subsumed by Person :

𝐾5 = {Student ⊑ Person

Professor ⊑ Person}

Furthermore, assume a program that queries for all instances of Student , takes the first result and
then accesses the projection variable x :

1 (head (query x← x type Student)) . x

This term can be assigned to the type Student by extending the knowledge base 𝐾 with 𝐾𝑞 =

{𝐴x ⊑ Student} as is shown in the following derivation tree:
······

∅, 𝐾5 ∪ (𝐾𝑞 = {𝐴x ⊑ Student}) ⊢ (head (query . . .)).x : 𝐴x 𝐾5 ∪ {𝐴x ⊑ Student} |= 𝐴x ⊑ Student
t-add∅, 𝐾5 ⊢ (head (query x← x type Student)).x : Student

Theextension of𝐾 can be justified by completing the left side of the derivation tree above. Successively
applying rules t-pRoj and t-head leads to the rule t-eRy in which the knowledge base 𝐾 is actually
extended with the new axioms:

𝑞 = x← x type Student : 𝐾𝑞 = {𝐴x ⊑ Student} head(𝑞) = {x} 𝐾5 ∪ 𝐾𝑞 ̸ |= 𝐴x ⊑ ⊥ t-eRy∅, 𝐾5 ∪ {𝐴x ⊑ Student} ⊢ (query x← x type Student) : List {x : 𝐴x} t-head∅, 𝐾5 ∪ {𝐴x ⊑ Student} ⊢ head (query x← x type Student) : {x : 𝐴x} t-pRoj∅, 𝐾5 ∪ {𝐴x ⊑ Student} ⊢ (head (query x← x type Student)).x : 𝐴x

As intended, it is impossible to find a derivation tree such that the term is assigned to the concept
expression Professor .

The subtyping relation mostly relies on the standard rules. As there is no interaction between the
newly introduced concept expressions and existing types, it suffices to only define subtyping between
concepts. We rely on standard concept inclusion for this. A concept 𝐶 is a subtype of a concept 𝐷

62

4.4. Typecase

if the knowledge base can show that 𝐶 is subsumed by 𝐷 in all possible models (rule s-concept)
according to the knowledge base 𝐾 . Forwarding this decision to the knowledge base is important as
it ensures that implicit knowledge is considered in the decision. Furthermore, we are only concerned
with certain knowledge. We treat the case in which it is unknown whether 𝐶 is included by 𝐷 as if it
is not. To highlight subtyping for concept expressions, let us revisit knowledge base 𝐾5 and the term
(head (query x← x type Student)).x . Given that the term can be assigned to Student , we can also
find a derivation tree that shows that the term can be assigned to Person using rule s-concept2:

······
∅, 𝐾5 ⊢ (head (query x← x type Student)).x : Student

𝐾5 |= Student ⊑ Person
s-concept

𝐾5 ⊢ Student <: Person
t-sub∅, 𝐾5 ⊢ (head (query x← x type Student)).x : Person

Algorithmic type checking The type system as described here is directly suited for algorith-
mic type checking. That is, rules are completely syntax driven with the exception of rule t-add (see
Algorithm 8). The typeof function relies on a knowledge base implementation 𝐾 that is globally
available. In case of a query term, we implement rule t-add by actually adding the inferred axioms to
𝐾 . The subtype procedure receives the knowledge base 𝐾 as a third parameter. Deciding subtyping
between concept types is then simply forwarding the decision to 𝐾 . Transitivity such as required by
rule s-tRans (see Figure 3.3) is covered by 𝐾 . The functions for the least upper bound lub and greatest
lower bound glb rely on disjunction and conjunction to construct the appropriate concept expressions.
There is no interplay between existing types and the newly introduced types (see Algorithm 9).

Currently, there are two different implementations based on the type system described in this Chap-
ter. For one, there is a Java-based implementation [49] which relies on a extended Java Compiler to
implement the type checking. For two, there is a Scala-based implementation [85] which uses com-
piler extensions. Both implementations use the established OWL reasoner [72] for representing the
knowledge base 𝐾 .

4.4. Typecase

Typecase constructs which allow for controlling program flow based on a type of a term are important
constructs in programming languages [44]. Examples include standard predicates for testing the run-
time type of a value as well as the try-statement in Java. The try-statement allows proceeding on a
case by case basis depending on the type of the exception. It also automatically casts the exception
in the different cases. From a type-system perspective, a typecase construct is a type-safe form of

2The term could also be directly assigned to type Person via rule t-add—we chose rule s-concept for the sake of the
example.

63

Chapter 4. Type Checking with Description Logics

Algorithm 8 Definition of typeof and subtype for 𝜆DL.
global variables

𝐾 , a knowledge base
function typeof(𝑡, Γ)

match 𝑡 with
case … then … ⊲ existing cases

case 𝑡1 𝑡2 when typeof(𝑡1, Γ, 𝐾) is 𝑇1 → 𝑇 ′1 and typeof(𝑡2, Γ) is 𝑇2

and subtype(𝑇2, 𝑇1, 𝐾) is true then 𝑇 ′1
case 𝑡1 = 𝑡2 when typeof(𝑡1, Γ) is Π1 and typeof(𝑡2, Γ) is Π1 then Bool

case 𝑡1 = 𝑡2 when typeof(𝑡1, Γ) is 𝐶 and typeof(𝑡2, Γ) is 𝐷 then Bool

case 𝑡1.𝑟 when typeof(𝑡1, Γ) is 𝐶 then List ∃ 𝑟−.𝐶
case query 𝑞 when allSatisfiable(axioms(𝑞),vaRs(𝑞)) then
𝐾 ← 𝐾 ∪ axioms(𝑞)
{v : 𝐴v

v∈head(𝑞) }
case _ then fail

function subtype(𝑇 , 𝑇 ′, 𝐾)
match (𝑇 , 𝑇 ′) with

case … then … ⊲ existing cases

case (𝐶, 𝐷) when 𝐾 |= 𝐶 ⊑ 𝐷 then true

case _ then false

Algorithm 9 Definition of lub and glb for 𝜆DL.
function lub(𝑇 , 𝑇 ′)

match (𝑇 , 𝑇 ′) with
case … then … ⊲ existing cases

case (𝐶, 𝐷) then 𝐶 ⊔ 𝐷
case _ then fail

function glb(𝑇 , 𝑇 ′)
match (𝑇 , 𝑇 ′) with

case … then … ⊲ existing cases

case (𝐶, 𝐷) then 𝐶 ⊓ 𝐷
case _ then fail

64

4.4. Typecase

casting. We use a typecase for casting graph nodes based on concept expressions. As an example,
consider the knowledge base 𝐾4. The knowledge base states that a Student is a Person for which
a studiesAt relation pointing to a University exists. Likewise, a Professor is a Person for which a

worksAt relation exists that points to a University .

𝐾6 = {Student ⊑ Person ⊓ ∃ studiesAt.University
Professor ⊑ Person ⊓ ∃worksAt.University }

A typecase construct then allows for casting a given Person either Student or Professor and subse-
quently accessing either the studiesAt or the worksAt relation:

1 case (head (query x← x type Person)) of

2 type Student as y→ y . studiesAt

3 type Professor as z→ z .worksAt

4 default ni l [University]

Importantly, knowledge in a knowledge base is not assumed to be complete. That is, even
though only Student and Professor are defined, graph nodes which are instance of Person

but neither of Student nor Professor must also be handled. Even more, it may be even un-
known whether a graph node belongs to Professor or ¬Professor . Assume the knowledge base
𝐾6 plus the additional statement that there is an object 𝑏1 which is an instance of Person .
A typecase expression which then covers the cases Professor and ¬Professor looks as follows:

1 case 𝑏1 of

2 type Professor as x→ x .worksAt

3 type ¬Professor as y→ ni l [University]

4 default ni l [University]

Evaluation proceeds case by case. There is at least one model in which 𝑏1 is not a Professor . There-
fore, the case in line 2 does not match. The case in line 3 however also does not match—there is at
least one model in which 𝑏1 is a Professor . Therefore, evaluation resorts to the default case.

The typecase construct used in this thesis provides branch control only based on concept expressions
(see Figure 4.4). It contains an arbitrary number of cases plus a default case. Branches are evaluated
sequentially. If a branch matches, the object is considered typecast into the matched type. It therefore
acts as a type-safe casting construct. Evaluation proceeds as follows: The term 𝑡0 is first reduced to
an object (rule e-ty). The semantics then tests the object, case by case, until one of them matches
(rules e-ty-succ and e-ty-fail). For each case, the knowledge system decides whether the object is
an instance of the concept expression 𝐾 |= 𝑜1 : 𝐶1 . If a branch matches, evaluation continues with
said branch and other branches are ignored. In case no branch matches, the typecase is reduced to the
default case (rule e-ty-def).

65

Chapter 4. Type Checking with Description Logics

𝜆DL with type case Extends 𝜆DL (Figure 4.3)

New syntactic elements

𝑡 ::= … terms:
| case 𝑡 of typecase

case
default 𝑡

case ::= type 𝐶 as 𝑥→ 𝑡 typecase

New evaluation rules 𝑡
𝐾−→ 𝑡 ′

case 𝑜1 of

default 𝑡1

𝐾−→ 𝑡1 (e-ty-def)

𝐾 |= 𝑜1 : 𝐶1

case 𝑜1 of

type 𝐶1 as 𝑥 → 𝑡1

. . .

𝐾−→ [𝑥 ↦→ 𝑜1]𝑡1

(e-ty-succ)

𝐾 ̸ |= 𝑜1 : 𝐶1

case 𝑜1 of

type 𝐶1 as 𝑥 → 𝑡1

type 𝐶2 as 𝑥 → 𝑡2

. . .

𝐾−→

case 𝑜1 of

type 𝐶2 as 𝑥 → 𝑡2

. . .

(e-ty-fail)

𝑡1
𝐾−→ 𝑡 ′1

case 𝑡1 of

type 𝐶1 as 𝑥 → 𝑡2

. . .

𝐾−→
case 𝑡 ′1 of

type 𝐶1 as 𝑥 → 𝑡2

. . .
(e-ty)

New typing rules Γ, 𝐾 ⊢ 𝑡 : 𝑇

Γ, 𝐾 ⊢ 𝑡0 : 𝐶0
(Γ, 𝑥𝑖 : 𝐶𝑖), 𝐾 ⊢ 𝑡𝑖∈1...𝑛𝑖 : 𝑇

Γ, 𝐾 ⊢ 𝑡𝑛+1 : 𝑇
𝐾 ̸ |= 𝐶0 ⊓ 𝐶𝑖 ⊑ ⊥
𝐾 ̸ |= 𝐶𝑖 ⊑ 𝐶 𝑗 for 𝑖 < 𝑗

Γ, 𝐾 ⊢

case 𝑡0 of

type 𝐶1 as 𝑥1 → 𝑡1

type 𝐶2 as 𝑥2 → 𝑡2

. . .

default 𝑡𝑛+1

: 𝑇

(t-typecase)

Figure 4.4.: Syntax and Evaluation rules of the typecase expression.

66

4.5. Type Safety

The typing rule for the typecase expression is also shown in Figure 4.4. The term 𝑡0 must be of type
𝐶0, i. e., a concept expression. The types for the non-default cases are determined in a context where
the variable 𝑥𝑖 is bound to the type 𝐶𝑖 of the case. The idea is that 𝑡0 is cast to 𝐶𝑖 type-safely and to
be accessed as 𝑥𝑖 within 𝑡𝑖 . The result type of the typecase is the least upper bound of the types of all
cases including the default case. There are additional premises to ensure meaningful cases. That is,
the intersection between all 𝐶𝑖 and 𝐶0 should be satisfiable, as it would then be impossible for a case
to ever match. Also, a case should never subsume a preceding case, as cases are tried sequentially.

4.5. Type Safety

Given the design choices of 𝜆DL, the language is type-safe with the routine exceptions of trying to
access head or tail of empty lists. To reiterate, if a term 𝑡 has a type 𝑇 , then this means that 𝑡 evaluates
to a value belonging to 𝑇 . Likewise for queries. To show type safety, we first show that the axioms
inferred a query are sound. That is, the constraints inferred for each variable are satisfied for all query
results. Using this, we can then proceed to show progress and preservation for 𝜆DL.

4.5.1. Soundness of Query Typing

Typing queries is sound if the constraints inferred for each variable are satisfied for all possible map-
pings of the variable. To reiterate, each variable 𝑥𝑖 of a query 𝑞 is represented through one or several
axioms of the form 𝐴𝑥𝑖 ⊑ 𝐶 . All potential query results for the variable 𝑥𝑖 must be instances of the
concept expression 𝐶. If this is the case, then the atomic concept 𝐴𝑥𝑖 represents a set of graph nodes
that contains all potential query results for the variable 𝑥𝑖 and is therefore an approximation of the
evaluation results for the variable.

Definition 8 (Soundness of axiom inference). Given a knowledge base 𝐾 , a conjunctive query 𝑞 with
its variables Vars(𝑞) and the inferred set of axioms 𝐾𝑞 which contains axioms of the form 𝐴𝑥𝑖 ⊑ 𝐶𝑥𝑖
(see Figure 4.2). The inferred axioms are sound if:

∀𝑥 ∈ Vars(𝑞) ∈ ∀𝜇 : ⟦𝑞⟧𝐾 : 𝐾 ∪ 𝐾𝑞 |= 𝜇(𝑥) : 𝐶𝑥𝑖
𝑖∈1...𝑛

We now show that our typing relation “:” as defined in Figure 4.2 is sound.

Theorem 3. For any knowledge base 𝐾 and conjunctive query 𝑞, the typing relation assigns concept
expressions to variables such that axiom inference is sound.

Proof. We show this by induction on the evaluation rules of ⟦𝑞 = 𝑥 ← gp⟧𝐾 .

67

Chapter 4. Type Checking with Description Logics

Q-SVAR 𝑔𝑝 = 𝑥 𝑟 𝑜′, 𝑔𝑝 : {𝑎𝑥𝑖 ⊑ ∃ 𝑟.{𝑜′}}.
Evaluation of gp returns all 𝑜 for which (𝑜, 𝑜′) ∈ 𝑟 (𝐾). Any model must interpret the concept ex-
pression ∃ 𝑟.{𝑜′} as (∃ 𝑟.{𝑜′})𝐼 = {𝑜 | (𝑜, 𝑜′′) ∈ 𝑟 𝐼 ∧ 𝑜′′ ∈ {𝑜′𝐼 }} (see Figure 2.7). Therefore,
𝑜 ∈ (∃ 𝑟.{𝑜′})𝐼 holds for all models.

Q-OVAR Similar to case q-svaR.

Q-VARS 𝑔𝑝 = 𝑥1 𝑟 𝑥2, 𝑔𝑝 : {𝐴𝑥1 ⊑ ∃ 𝑟.𝐴𝑥2 , 𝐴𝑥2 ⊑ ∃ 𝑟−.𝐴𝑥1}.
Evaluation of gp returns all (𝑜, 𝑜′) ∈ 𝑟 (𝐾). Any such node 𝑜 must be in the interpretation of
∃ 𝑟.𝐴𝑥2 because all 𝑜′ must be in the interpretation of 𝐴𝑥2 . Likewise, for 𝑜′.

Q-CONJ 𝑔𝑝 = 𝑔𝑝1 ∧ 𝑔𝑝2, 𝑔𝑝1 : 𝐾𝑞1 , 𝑔𝑝2 : 𝐾𝑞2 , 𝑔𝑝 : 𝐾𝑞1 ∪ 𝐾
𝑞
2 .

By induction hypothesis, inferred axioms are sound for gp1 and 𝐾𝑞1 as well as gp2 and 𝐾𝑞2 . DL is
monotonous—taking the union 𝐾𝑞1 ∪ 𝐾𝑞2 preserves all inferences.

Q-PROJ Immediate since the inferred concepts are not modified.

□

As a consequence, axiom inference is sound. That is, given a knowledge base 𝐾 and a query 𝑞 as
well as the inferred set of axioms 𝐾𝑞 = {𝐴𝑥𝑖 ⊑ 𝐶

𝑥𝑖 ∈Vars(𝑞)
𝑥𝑖 } , it holds that ∀ 𝑥𝑖 ∈ Vars(𝑞) : ∀ 𝜇 ∈

⟦𝑞⟧𝐾 : 𝐾 ∪ 𝐾𝑞 |= 𝜇(𝑥𝑖) : 𝐶𝑥𝑖 .

4.5.2. Soundness of the Type System

Given the design choices of 𝜆DL, the language is type-safe. A well-typed program does not get stuck.
As discussed in Section 3.2.3, the only exception to this concerns lists. We therefore show that if
a program is well-typed, then the only way it can get stuck is by reaching a point where it tries
to compute head nil[𝑇] or tail nil[𝑇] . As introduced in Section 2.1.3, we proceed in two steps by
showing that a well-typed term is either a value or it can take a step (progress) and by showing that
if that term takes a step, the result is also well-typed (preservation). We start by observing that a
well-typed value of type 𝐶 must always be a graph node:

Lemma 2 (Canonical forms of 𝜆DL). Let 𝑣 be a well-typed value. Then one of the following must be true:

1. If 𝑣 is a value of type Bool , then either 𝑣 = true or 𝑣 = false .

2. If 𝑣 is a value of type Nat , then 𝑣 is a numerical value 𝑛𝑣 according to the grammar defined in
Figure 3.1.

3. If 𝑣 is a value of type 𝐶 , then 𝑣 is a graph node 𝑜 .

68

4.5. Type Safety

4. If 𝑣 is a value of type {𝑙𝑖 : 𝑇𝑖 𝑖∈1...𝑛} then 𝑣 must be a record of the form {𝑙 𝑗 = 𝑡 𝑗 𝑗∈1...𝑚} with
{𝑙𝑖} ⊆ {𝑙 𝑗} and Γ, 𝐾 ⊢ 𝑡𝑖 : 𝑇𝑖 for all cases in which 𝑖 = 𝑗 .

5. If 𝑣 is a value of type List 𝑇 , then 𝑣 is either an empty list nil[𝑇] or of the form cons 𝑣1 . . . nil[𝑇1]
with 𝑇1 <: 𝑇 and Γ, 𝐾 ⊢ 𝑣1 : 𝑇 .

6. If 𝑣 is a value of type 𝑇 → 𝑇 ′ , then 𝑣 is a 𝜆-abstraction 𝜆 𝑥 :𝑇1 . 𝑡2 with 𝑇1 <: 𝑇 and Γ, 𝑥 : 𝑇1, 𝐾 ⊢
𝑡2 : 𝑇 ′.

Given Lemma 2, we can show that a well-typed term is either a value or it can take a step. Given
the design choices of 𝜆DL, this is straightforward. In particular, there may be unknown facts which
are true in some models and false in others. 𝜆DL treats those as false. We also foresee that no case of
typecase fits to the run-time value and thus insist on the default case.

Theorem 4 (Progress in 𝜆DL). Let 𝑡 be a well-typed closed term. If 𝑡 is not a value, then there exists a term

𝑡 ′ such that 𝑡
𝐾−→ 𝑡 ′. If Γ, 𝐾 ⊢ 𝑡 : 𝑇 , then 𝑡 is either a value, a term containing the forms head nil[𝑇] and

tail nil[𝑇] , or there is some 𝑡 ′ with 𝑡
𝐾−→ 𝑡 ′.

Proof. By induction on the derivation ofΓ, 𝐾 ⊢ 𝑡 : 𝑇 . We omit the cases of the proof that are unchanged
compared to the standard 𝜆-calculus and instead focus on the cases that are specific to our language.

T-RPROJ 𝑡 = 𝑡1.𝑟 , Γ, 𝐾 ⊢ 𝑡1 : 𝐶, Γ, 𝐾 ⊢ 𝑡 : List ∃ 𝑟−.𝐶.
By hypothesis, 𝑡1 is either a value or it can take a step. If it can take a step, e-RpRoj applies. If it
is a value, then by Lemma 2, 𝑡1 = 𝑜1 , therefore rule e-pRojRole applies.

T-EQ-NOM 𝑡1 = 𝑡2, Γ, 𝐾 ⊢ 𝑡1 : 𝐶1, Γ, 𝐾 ⊢ 𝑡2 : 𝐶2.
By hypothesis, both 𝑡1 and 𝑡2 are either values or they can take a step. If one of the two can take
a step, then either rule e-eq1 or rule e-eq2 applies. If both are values, then by Lemma 2, they
are both graph nodes (𝑡1 = 𝑜1 and 𝑡2 = 𝑜2). Therefore, either rule e-eq-node or e-neq-node
applies.

T-EQ-PRIM 𝑡1 = 𝑡2, Γ, 𝐾 ⊢ 𝑡1 : Π1, Γ, 𝐾 ⊢ 𝑡2 : Π2.
By hypothesis, both 𝑡1 and 𝑡2 are either values or they can take a step. If one of the two can take a
step, then either rule e-eq1 or rule e-eq2 applies. If both are values, then they must be primitive
values (𝑡1 = 𝜋1 and 𝑡2 = 𝜋2). Therefore, either rule e-eq-pRim or e-neq-pRim applies.

T-NOMINAL 𝑡 = 𝑜1, Γ, 𝐾 ⊢ 𝑜1 : {𝑜1}.
Immediate since 𝑡 = 𝑜1 is a value.

T-QUERY 𝑡 = query 𝑞, Γ, 𝐾 ⊢ 𝑡 : List {𝑙𝑖 : 𝐶𝑖∈1...𝑛𝑖 }.
Immediate since rule e-eRy applies.

69

Chapter 4. Type Checking with Description Logics

T-ADD Results follow from the induction hypothesis since rule t-add requires a term to be well-typed.

T-TYPECASE 𝑡 = case 𝑡0 of

cases
default 𝑡𝑛+1, Γ, 𝐾 ⊢ 𝑡0 : 𝐶0, Γ, 𝐾 ⊢ 𝑡 : 𝑇 .

By hypothesis, 𝑡0 is either a value or it can take a step. If it can take a step, then rule e-ty applies.
If it is a value, then by Lemma 2, 𝑡0 = 𝑜0 . If cases is non-empty, then either rule e-ty-succ or
rule e-ty-fail applies. If it is empty, then rule e-ty-def applies.

□

Substitution in 𝜆DL does not differ from standard approaches, e.g., as described in [81]. Substitution
on terms does preserve the type. We continue to show that if a term takes a step by the evaluation
rules, its type is preserved.

Theorem 5 (Preservation in 𝜆DL). Let 𝑡 be a term and 𝑇 a type. If a type is assigned to 𝑡, written

Γ, 𝐾 ⊢ 𝑡 : 𝑇 and 𝑡
𝐾−→ 𝑡 ′, then Γ, 𝐾 ⊢ 𝑡 ′ : 𝑇 .

Proof. By induction on the derivation of Γ, 𝐾 ⊢ 𝑡 : 𝑇 . Again, we only examine the specific cases
specific to our language. We omit cases that are unchanged compared to the standard 𝜆-calculus.

T-RPROJ 𝑡 = 𝑡1.𝑟 , Γ, 𝐾 ⊢ 𝑡1 : 𝐶1, Γ, 𝐾 ⊢ 𝑡 : List (∃ 𝑟−.𝐶1)
There are 2 different cases by which 𝑡 ′ can be derived:

E-PROJROLE 𝑡 ′ = cons 𝜇1(𝑥1) . . . with 𝐾 |= 𝑜1 : 𝐶1 and ⟦𝑥1 ← 𝑜1 𝑟 𝑥1⟧𝐾 = 𝜇𝑖∈1...𝑛𝑖 .
The concept expression ∃ 𝑟−.𝐶1 is the set of graph nodes with an incoming relation via 𝑟
from a node belonging to 𝐶1. Since 𝐾 |= 𝑜1 : 𝐶1 all 𝑜2 reachable via 𝑟 from 𝑜1 must be
an instance of this concept. Therefore, 𝑡 ′ : List (∃ 𝑟−.𝐶1).

E-RPROJ 𝑡 ′ = 𝑡 ′1.𝑟 .
By hypothesis, 𝑡 𝐾−→ 𝑡 ′ preserves the type. Rule t-RpRoj therefore still applies.

T-EQ-NOM 𝑡 = 𝑡1 = 𝑡2. Γ, 𝐾 ⊢ 𝑡1 : 𝐶1, Γ, 𝐾 ⊢ 𝑡2 : 𝐶2, Γ, 𝐾 ⊢ 𝑡 : Bool.
There are 4 different rules by which 𝑡 ′ can be derived:

E-EQ1 𝑡 ′ = 𝑡 ′1 = 𝑡2.
By hypothesis, 𝑡1

𝐾−→ 𝑡 ′1 preserves the type. Therefore, via rule t-eq-nom, 𝑡 ′ : Bool.

E-EQ2 𝑡 ′ = 𝑣1 = 𝑡 ′2.
By hypothesis, 𝑡2

𝐾−→ 𝑡 ′2 preserves the type. By rule t-eq-nom, Γ, 𝐾 ⊢ 𝑡 ′ : Bool.

E-EQ-NODE 𝑡 ′ = true.
By rule t-tRue, Γ, 𝐾 ⊢ 𝑡 ′ : Bool.

70

4.5. Type Safety

E-NEQ-NODE 𝑡 ′ = false.
By rule t-false, Γ, 𝐾 ⊢ 𝑡 ′ : Bool.

T-EQ-PRIM 𝑡 = 𝑡1 = 𝑡2. Γ, 𝐾 ⊢ 𝑡1 : Π1, Γ, 𝐾 ⊢ 𝑡2 : Π2, Γ, 𝐾 ⊢ 𝑡 : Bool.
There are 4 different rules by which 𝑡 ′ can be derived:

E-EQ1 𝑡 ′ = 𝑡 ′1 = 𝑡2.
By hypothesis, 𝑡1

𝐾−→ 𝑡 ′1 preservers the type. Therefore, via rule t-eq-pRim, Γ, 𝐾 ⊢ 𝑡 ′ : Bool.

E-EQ2 𝑡 ′ = 𝑣1 = 𝑡 ′2.
By hypothesis, 𝑡2

𝐾−→ 𝑡 ′2 preserves the type. By rule t-eq-pRim, Γ, 𝐾 ⊢ 𝑡 ′ : Bool.

E-EQ-PRIM 𝑡 ′ = true.
By rule t-tRue, Γ, 𝐾 ⊢ 𝑡 ′ : Bool.

E-NEQ-PRIM 𝑡 ′ = false.
By rule t-false, Γ, 𝐾 ⊢ 𝑡 ′ : Bool.

T-NOMINAL 𝑡 = 𝑜, Γ, 𝐾 ⊢ 𝑜 : {𝑜}.
Vacuously fulfilled since 𝑜 is a value—therefore, it cannot be that there is a 𝑡 ′ such that 𝑡 𝐾−→ 𝑡 ′.

T-QUERY 𝑡 = query 𝑞, 𝑞 : 𝐾𝑞 , Γ, 𝐾 ∪ 𝐾𝑞 ⊢ 𝑡 : List {𝑙𝑖 : 𝐴1∈1...𝑚
𝑙𝑖

} with {ă𝑙𝑖 1∈1...𝑚} being the head
of 𝑞.
If 𝑡 takes a step, then it can only be through rule e-eRy. By Theorem 3, all graph nodes in the
evaluation results are instances of their respective concepts. Furthermore, by rules t-Rcd and
t-list the result is a list of records. The type is therefore preserved.

T-ADD Results follow from the induction hypothesis since rule t-add requires a term to be well-typed.

T-TYPECASE 𝑡 = case 𝑡0 of

type 𝐶1 as 𝑥1 → 𝑡1

type 𝐶2 as 𝑥2 → 𝑡2

. . .

default 𝑡𝑛+1
Γ, 𝐾 ⊢ 𝑡0 : 𝐶, Γ, 𝐾 ⊢ 𝑡𝑖 : 𝑇 𝑖∈1...𝑛+1.
There are four different rules by which 𝑡 ′ can be derived:

E-TY-DEF 𝑡 ′ = 𝑡𝑛+1. Through rule t-typecase, 𝑡𝑛+1 : 𝑇 , therefore Γ, 𝐾 ⊢ 𝑡 ′ : 𝑇 .

E-TY-SUCC 𝑡 ′ = 𝑡𝑖 with 𝑖 ∈ {1 . . . 𝑛}. Again, rule t-typecase enforces 𝑡𝑖 : 𝑇 , therefore Γ, 𝐾 ⊢ 𝑡 ′ : 𝑇 .

E-TY-FAIL The rule removes one case that did not match. The remaining cases are still of type 𝑇 .
Rule t-typecase is still applicable and Γ, 𝐾 ⊢ 𝑡 ′ : 𝑇 still holds.

71

Chapter 4. Type Checking with Description Logics

E-TY Term 𝑡0 takes a step and becomes 𝑡 ′0. By induction hypothesis, this preserves the type. Rule
t-typecase is still applicable, Γ, 𝐾 ⊢ 𝑡 ′ : 𝑇 therefore holds.

□

As a direct consequence of Theorems 4 and 5, a well-typed, closed term does not get stuck dur-
ing evaluation. The only exception concerns handling of lists which can get stuck if head or tail

is applied to an empty list. To a certain degree, type safety holds even when the knowledge system
is evolving. Additional statements are unproblematic. Description logics are monotonous—additions
do not invalidate existing inferences. Deletion and modification of the actual data (A-Box) is unprob-
lematic unless the program contains statements explicitly referencing the objects under modification.
Of course, type safety cannot be guaranteed if schematic parts (T-Box) of the knowledge system are
altered.

4.6. Summary and Discussion

In this Chapter, we have studied 𝜆DL—a typed 𝜆-calculus for the Semantic Web that is built around
concept expressions as types as well as queries. We have shown that by using conceptualizations as
they are defined in the knowledge system itself, type safety can be achieved. This helps in writing less
error-prone programs, even when facing knowledge systems. However, it is also noteworthy that the
open-world semantics used by description logics can be problematic. While it allows for modeling of
unknown facts, it may also indicate the presence of relations that may not actually be accessible in
the data. A fixed-domain semantics as employed by SHACL that is closer to the behavior of existing
type systems will be explored in Chapter 5.

72

CHAPTER 5
Type Checking with SHACL
While type checking with description logics does provide a certain level of safety, its open-world
semantics is problematic. While it may be conceptually guaranteed that all instances of Student have
a hasName relation, there may be nodes such as bob for which the name is not known. SHACL on
the other hand provides a fixed-domain semantics using integrity constraints. A SHACL shape can
guarantee that relationships are known for all graph nodes that conform to the shape. We therefore
introduce 𝜆SHACL, a research language that features type-safe programming by using SHACL shapes
during the type checking process. This chapter is based on [68].

5.1. Design Principles and Example Use Case

Key Design Principles The language 𝜆SHACL is based on several key design principles:

Type checking is defined with respect to a set of SHACL shapes. Type checking relies on a set of SHACL
shapes that provide schematic information about RDF graphs. Type checking then uses this set of
shapes to show that the program will not abort with a run-time error for all graphs that conform
to the set of shapes.

Programs are defined with respect to a RDF data graph. Evaluation of a program is defined with respect
to an RDF data graph. RDF data graphs that are used during evaluation are expected to conform
to the SHACL shapes used during type checking.

Shape names as types. Again, types represent sets of values (see Section 2.1.2). We rely on shapes
that represent sets of graph nodes. A shape is a triple (𝑠, 𝜙, 𝑞) consisting of a shape name 𝑠, a
constraint 𝜙 and a query for target nodes 𝑞. We use the shape name 𝑠 as a syntactic symbol for
a type which represent the set of graph nodes that conform to that shape.

Shape Containment as subtyping. Integration of shapes as types calls for a subtype relation between
this new form of types. As the subtype relation can be seen as a subset relation between sets of
values, we use shape containment. That is, showing that all nodes conforming to one shape must
also conform to the other shape for all possible data graphs.

73

Chapter 5. Type Checking with SHACL

Typing of queries. Again, queries constitute the main form of data access. As such, they must be as-
signed meaningful types representing the graph nodes that the query evaluates to. In particular,
we infer a set of shapes from the query.

Example Use Case As an example, consider an application that is defined with respect to the
set of shapes as shown in Figure 5.1: StudentShape targets all instances of Student (line 2). The shape
enforces that students are also instance of Person (line 3). It also enforces the presence of at least one
studiesAt relation pointing to a node conforming to UniversityShape (lines 4–8). UniversityShape has no

target nodes, but enforces nodes to be instances of University (line 11) as well as the presence of at least
one hasLocation relation (lines 12–15). Lastly, PersonShape targets all instances of Person (line 17). A
person must have exactly one hasName relation (lines 18–23). In a slight simplification, we constrain
all nodes reachable through the hasName relation such that they conform to a shape named StringShape

(line 22) which represents string values1. The example application is defined with respect to RDF data

1 ex :StudentShape a sh :NodeShape;

2 sh : targetClass ex : Student ;

3 sh : class ex :Person ;

4 sh : property [

5 sh :path ex : studiesAt ;

6 sh :minCount 1;

7 sh :node ex : UniversityShape

8] .

9
10 ex : UniversityShape a sh :NodeShape;

11 sh : class ex : University .

12 sh : property [

13 sh :path ex : hasLocation ;

14 sh :minCount 1

15] ;

16 ex :PersonShape a sh :NodeShape;

17 sh : targetClass ex :Person ;

18 sh : property [

19 sh :path ex :hasName;

20 sh :minCount 1;

21 sh :maxCount 1;

22 sh :node ex : StringShape ;

23] .

24
25
26
27
28
29
30

Figure 5.1.: Example SHACL shape graph.

graphs that conform to the shape graph. One such data graph is the empty graph. Other examples of
graphs that conform to the SHACL shape graphs are graphs 𝐺4, 𝐺5 and 𝐺6 as shown in Figure 5.2.
All of those graphs are potential inputs for the program.
1SHACL allows for constraints on literal values through XSD datatypes and the sh:datatype constraint. As XSD datatypes

can typically be mapped to types in standard programming languages, we abstracted them away for simplicity.

74

5.1. Design Principles and Example Use Case

Person𝐺4 :

david

type

“David D.”

hasName

Person𝐺5 :

david

type

bob

type

“David D.”

hasName

“Bob B.”

hasName

Person𝐺6 : Student University

david

type

bob

typetype

uniko

type

studiesAt

koblenz

locatedIn

“David D.”

hasName

“Bob B.”

hasName

Figure 5.2.: Examples for graphs that conform to the shape graph in Figure 5.2.

Our example application should implement three different functions: First, it should query for all
instances of Student . Second, it should define a function that is able to return the universities where
the student studies. Third, it should define a function that returns the name of a given person.

Querying for all instances of Student is again straightforward as queries are integrated into the lan-
guage:

1 query x← x type Student

The expression will evaluate to a list of records where each record has a single label representing the
projection variable x . The type of the record label is is equivalent to StudentShape . A function that
returns the list of universities where a student studies can be defined as follows:

1 let getUniversities = 𝜆 (student :StudentShape) . student . studiesAt

The domain of the getUniversities function is the shape StudentShape . In the body of the function,
a role projection can be used to traverse the graph from the given node to all nodes reachable
via the studiesAt relation. The SHACL shape graph shown in Figure 5.1 guarantees the pres-
ence of at least one studiesAt relation. However, it does not specify a maximum number of
nodes that can be reached through the relation. For all nodes that can be reached through the
relation, it is known that they conform to UniversityShape . Subsequently, the function is of type
getUniversities : StudentShape→ List UniversityShape . Lastly, a function that returns the name of a
given person can be defined as follows:

1 let getName = 𝜆 (person :PersonShape) . person .hasName

The input type of the function is the shape PersonShape . Again, we use role projection to access the name.
However, for PersonShape , the SHACL shape graph guarantees that there is exactly one successor via the
hasName relation. Subsequently, the type of the function is getName : PersonShape→ StringShape .

Importantly, nodes conforming to StudentShape must also conform to PersonShape . PersonShape targets all
instances of Person whereas the constraints of StudentShape enforce students to be instances of Person .
Subsequently, the function can be applied to results of the query defined above.

75

Chapter 5. Type Checking with SHACL

5.2. Types for Conjunctive Queries

To provide a typed integration for conjunctive queries, we must again reconstruct types based on
the query. As shapes constitute types in 𝜆SHACL, we reconstruct a set of shapes from the query. We
represent each variable through a shape name. For this, we assume the possibility to transform each
variable 𝑥 of a query into a globally unique shape name 𝑠𝑥 . Variables which share a name but occur in
different queries should therefore be represented by different concepts. We then examine each graph
pattern (abbreviated as gp) of the query 𝑥 ← gp and reconstruct constraints 𝜙 for the shape names
based on the graph pattern. The result of this process is a set of shapes 𝑆𝑞 .

Typing rules for SPARQL CQs q : 𝑆𝑞

𝑥 𝑝 𝑜 : {(𝑠𝑥 , ≥1 𝑝.𝑜,⊥)} (qt-Role1)

𝑜 𝑝 𝑥 : {(𝑠𝑥 , ≥1 𝑝
−.𝑜,⊥)} (qt-Role2)

𝑥1 𝑝 𝑥2 : {(𝑠𝑥1 , ≥1 𝑝.𝑠𝑥2 ,⊥),
(𝑠𝑥2 , ≥1 𝑝

−.𝑠𝑥1 ,⊥)}
(qt-Role3)

𝑔𝑝1 : 𝑆1 𝑔𝑝2 : 𝑆2

𝑔𝑝1 ∧ 𝑔𝑝2 : 𝑆1 ∧̂ 𝑆2
(qt-conj)

𝑔𝑝 : 𝑆
𝑥 ← 𝑔𝑝 : 𝑆

(qt-pRoj)

Figure 5.3.: Rules for assigning shapes to variables in queries.

Our typing relation 𝑞 : 𝑆𝑞 (see Figure 5.3 for the conjunctive query 𝑞 constructs the set 𝑆𝑞 in the
following manner: For every subject var pattern 𝑥 𝑝 𝑜 in the body of 𝑞 we assign the constraint
≥1 𝑝.𝑜 (rule qt-Role1). Likewise for object var patterns 𝑜 𝑝 𝑥 , although we use the constraint
≥1 𝑝

−.𝑜 (qt-Role2). In case of variables used in both, subject and object positions 𝑥1 𝑝 𝑥2 , we infer
two shapes 𝑠𝑥1 and 𝑠𝑥2 . We use shape references to express the dependencies and infer the constraints
≥1 𝑝.𝑠𝑥2 and ≥1 𝑝

−.𝑠𝑥1 (rule qt-Role3). We do not use target nodes when constructing the shapes.
As described in Section 2.2.4, constraints define the set of nodes that conform to the shape whereas
target nodes only impact the validity of the graph. We therefore always use⊥ to denote that the shapes
have no target nodes. In case of a conjunction of graph patterns (denoted by 𝑔𝑝1 ∧ 𝑔𝑝2), we infer
the sets of shapes for each query body individually and then combine the results using the operator
∧̂ (rule qt-conj). The relation ∧̂ takes two sets of shapes 𝑆1 and 𝑆2 and combines them into a unique
set performing a full outer join on the shape names. That is, if a shape name occurs in both sets, then
constraint conjunction is used to combine them. Otherwise, the inferred constraint is simply carried

76

5.3. Core Language

along:

𝑆1 ∧̂ 𝑆2 ={(𝑠𝑥 , 𝜙1 ∧ 𝜙2,⊥) | (𝑠𝑥 , 𝜙1,⊥) ∈ 𝑆1 ∧ (𝑠𝑥 , 𝜙2,⊥) ∈ 𝑆2} ∪
{(𝑠𝑥 , 𝜙1,⊥) | (𝑠𝑥 , 𝜙1,⊥) ∈ 𝑆1 ∧ (𝑠𝑥 , 𝜙2,⊥) ∉ 𝑆2} ∪
{(𝑠𝑥 , 𝜙2,⊥) | (𝑠𝑥 , 𝜙1,⊥) ∉ 𝑆1 ∧ (𝑠𝑥 , 𝜙2,⊥) ∈ 𝑆2}

As an example, consider the query

𝑞1 = x← x type Student ∧ x studiesAt y

The query contains the two graph patterns gp1 = x type Student and gp2 = x studiesAt y .
Both patterns are examined individually (rule qt-conj). In case of gp1 , rule qt-
Role1 applies. That is, the pattern x type Student is assigned to the set of shapes
{(XShape, ≥1 type.Student,⊥)} . Second, the graph pattern x studiesAt y is assigned to the set
of shapes {(XShape, ≥1 studiesAt.YShape,⊥), (YShape, ≥1 studiesAt−.XShape,⊥)} . Rule qt-conj then
combines the two sets of shapes using ∧̂, yielding the following set of shapes:

𝑞1 : 𝑆𝑞1 = { (XShape, ≥1 type.Student∧ ≥1 studiesAt.YShape, ⊥),
(YShape, ≥1 studiesAt−.XShape, ⊥) }

5.3. Core Language

Syntax and Semantics The language 𝜆SHACL (see Figure 5.4) is an extension of the standard 𝜆-
calculus as presented in Chapter 3. New terms (denoted by 𝑡) include the query keyword for querying
an RDF graph as well as a projection from a graph node onto a list of graph nodes via a property 𝑝.
Values (denoted by 𝑣) include graph nodes 𝑜 whereas shape names 𝑠 are used as a new form of types
(denoted by 𝑇).

The operational semantics bear no significant difference to the standard ones as used in Chapter 3.
We define evaluation rules 𝑡 𝐺−→ 𝑡 ′ with respect to an RDF graph 𝐺 which has no impact for all
constructs unrelated to RDF graphs. We therefore omit them and focus on the newly added constructs
for querying and role projection. A role projection term 𝑡1.𝑝 first reduces the term 𝑡1 to a value (rule
e-RpRoj). If this value is a graph node 𝑜1 the term 𝑜1.𝑝 can be evaluated via a query using the graph
pattern 𝑜1 𝑝 𝑥1 and the results can be returned as a list (rule e-pRojRole). Querying data via the
query-keyword evaluates the query 𝑞 over the RDF data graph 𝐺 . This results in a set of mappings 𝜇.
These mappings are then converted into a list of records by taking each projection variable and turning
it into a label of a record. The value referenced by the record label is then the graph node to which
a given 𝜇 maps the variable (rule e-eRy). As with 𝜆DL (c. f. Section 4.3), we chose to convert query
results into a list of records rather than a set even though this creates an implicit ordering. Lists are

77

Chapter 5. Type Checking with SHACL

a more basic programming language construct and subsequent processing of query results introduces
an ordering anyways.

𝜆SHACL Extends 𝜆Full (Fig. 3.6)

New syntactic elements

𝑡 ::= … terms:
| query 𝑞 SPARQL query
| 𝑡.𝑝 role projection

𝑣 ::= … values:
| 𝑜 graph node

𝑇 ::= … types:
| 𝑠 shape name

New evaluation rules 𝑡
𝐺−→ 𝑡 ′

⟦𝑥1 ← 𝑜1 𝑝 𝑥1⟧𝐺 = {𝜇𝑖 𝑖∈1...𝑛}

𝑜1.𝑝
𝐺−→ cons 𝜇1(𝑥1) . . . cons 𝜇𝑛 (𝑥1) nil

(e-pRojRole)

𝑡1
𝐺−→ 𝑡 ′1

𝑡1.𝑝
𝐺−→ 𝑡 ′1.𝑝

(e-RpRoj)

⟦𝑞⟧𝐺 = {𝜇𝑖∈1...𝑛𝑖 } 𝑞 = 𝑙 𝑗∈1...𝑚𝑗 ← 𝑔𝑝

query 𝑞
𝐺−→ cons {𝑙 𝑗 = 𝜇1(𝑙 𝑗) 𝑗∈1...𝑚} . . .

cons{𝑙 𝑗 = 𝜇𝑛 (𝑙 𝑗) 𝑗∈1...𝑚} nil
(e-eRy)

New typing rules Γ, 𝑆 ⊢ 𝑡 : 𝑇

Γ, 𝑆 ⊢ 𝑡1 : 𝑠1 genName() = 𝑠′1
𝑆 ∪ {(𝑠tmp, ≥1 𝑝.⊤,⊥)} ⊢ 𝑠1 <: 𝑠′1

Γ, 𝑆 ∪ {𝑠′1, ≥1 𝑝−.𝑠1,⊥)} ⊢ 𝑡1.𝑝 : List 𝑠′1
(t-RpRoj)

𝑞 : 𝑆𝑞 Head(𝑞) = {𝑙𝑖 𝑖∈1...𝑚}
Γ, 𝑆 ∪ 𝑆𝑞 ⊢ query 𝑞 : List {𝑙𝑖 : 𝑠𝑖∈1...𝑚𝑙𝑖

}
(t-eRy)

Γ, 𝑆 ∪ {(𝑠𝑖 , 𝜙𝑖 ,⊥) 𝑖∈1...𝑛} ⊢ 𝑡 : 𝑠
𝑆 ∪ {(𝑠𝑖 , 𝜙𝑖 ,⊥) 𝑖∈1...𝑛} ⊢ 𝑠 <: 𝑠′

Γ, 𝑆 ⊢ 𝑡 : 𝑠′
(t-add)

New subtyping rules 𝑆 ⊢ 𝑇 <: 𝑇 ′

∀𝐺 ∈ G : ∀𝜎 ∈ Faith(𝐺, 𝑆) :
∀𝑜 ∈ Nodes(𝐺) : 𝑠1 ∈ 𝜎(𝑜) ⇒ 𝑠2 ∈ 𝜎(𝑜)

𝑆 ⊢ 𝑠1 <: 𝑠2
(s-shape)

Figure 5.4.: Syntax, Semantics and type system rules for 𝜆SHACL.

TypeSystemandSubtyping Theaddition of shape names 𝑠 as types is themost distinguishing
feature of the type system. Besides the context Γ, we also require a set of shapes 𝑆. As we use only
shape names as types, 𝑆 allows for accessing the full definition of a shape including its constraints.

78

5.3. Core Language

For normal constructs, the addition of 𝑆 has little impact. We omit these rules and focus on the ones
specific to constructs related to RDF graphs. A noteworthy detail is that we do not include any rule for
typing single graph nodes 𝑜. Programs that directly mention graph nodes are therefore not allowed by
the type system. In case of role projections 𝑡1.𝑝 , the term 𝑡1 must evaluate to a graph node—that is, it
must be typedwith a shape name 𝑠1 (rule t-RpRoj). In order to checkwhether the projection is possible,
we test whether 𝑠1 is a subtype of a shape 𝑠tmp that has the constraint ≥1 𝑝.⊤ . We also generate a
fresh shape name 𝑠′1 using a function genShapeName that acts as a name for the constraint ≥1 𝑝

−.𝑠1 .
The result of the operation can then be typed using the type List 𝑠′1 . In case the term query 𝑞 , 𝑞 is
typed using the rules as described in Section 5.2 (rule t-eRy). The record type, representing an
individual mapping, is then build using the shape names 𝑠𝑙𝑖 for each variable 𝑙𝑖 . The resulting type
is then a list of this record type. Any shape name that is generated by typing projections or typing
queries is not intended to be used as syntactic elements of the program. As we did in case of 𝜆DL

(c. f. Section 4.3), we rely on rule t-add to consider them when needed. To exemplify this, reconsider
the set of shapes as defined in Figure 5.1, given in abstract syntax:

𝑆1 = { (StudentShape, ≥1 type.Person∧ ≥1 studiesAt.⊤
∧∀ studiesAt.UniversityShape, x← x type Student),

(PersonShape, =1 hasName.StringShape, x← x type Person),
(UniversityShape, ≥1 locatedIn.⊤, ⊥) }

Furthermore, a query that retrieves all instances of Student is assigned the following set of shapes:

𝑞2 = x← x type Student :𝑆𝑞2 = {(XShape, ≥1 type.Student,⊥)}

Using rule t-add, a term that queries for all instances of Student , takes the head of the resulting list,
and accesses the projection variable x , can be typed with StudentShape :

(head (query x← x type Student)).x : StudentShape

This is witnessed by the following derivation tree:

······
Γ, 𝑆1 ∪ 𝑆𝑞2 ⊢ (head (query . . .)).x : XShape

······
𝑆1 ∪ 𝑆𝑞2 ⊢ XShape <: StudentShape

t-add
Γ, 𝑆1 ⊢ (head (query x← x type Student)).x : StudentShape

Intuitively, all nodes conforming to XShape must be contained in StudentShape . Nodes conforming to
XShape must be instances of Student . Those are the exact target nodes for StudentShape . The extension
of the set of shapes as used by rule t-add in the example is justified as witnessed by the following

79

Chapter 5. Type Checking with SHACL

derivation tree:

x← x type Student : 𝑆𝑞2 Head(x← x type Student) = {x}
t-eRy

Γ, 𝑆1 ∪ 𝑆𝑞2 ⊢ query x← x type Student : List {x : XShape}
t-head

Γ, 𝑆1 ∪ 𝑆𝑞2 ⊢ head (query x← x type Student) : {x : XShape}
t-pRoj

Γ, 𝑆1 ∪ 𝑆𝑞2 ⊢ (head (query x← x type Student)).x : XShape

For subtyping, a single additional case (denoted by rule s-shape) suffices as there is no interaction
between the newly added shape names and existing types. Subtyping between two shapes 𝑠 and 𝑠′ is
intricate as the type systemmust rely on certain knowledge—meaning that for all RDF data graphs that
conform to the set of shapes, it must be true that the nodes conforming to 𝑠 are a subset of the nodes
conforming to 𝑠′. In other words, 𝑠must be contained in 𝑠′. Subtyping between shapes therefore relies
on the infinitely large set of all RDF data graphs G and the set of all faithful assignments Faith(𝐺, 𝑆)
for the individual graphs and the set of shapes 𝑆. For each of those assignments, it must be the case
that conforming to shape 𝑠 implies that the graph nodes also conform to shape 𝑠′.

To exemplify this, consider the relationship between the shapes StudentShape and PersonShape in the set
of shapes 𝑆1. Those two shapes must be in a subtype relation:

∀𝐺 ∈ G : ∀𝜎 ∈ Faith(𝐺, 𝑆) : ∀𝑜 ∈ Nodes(𝐺) : StudentShape ∈ 𝜎(𝑜) ⇒ PersonShape ∈ 𝜎(𝑜)
s-shape

𝑆1 ⊢ StudentShape <: PersonShape

The constraints of StudentShape enforces its nodes to be instances of Person . PersonShape targets all instances
of Person . As a consequence, it is impossible for any faithful assignment to assign StudentShape but not
PersonShape to a graph node.

Algorithmic Type Checking With the exception of rule s-shape, the type system is directly
suited for algorithmic type checking (see Algorithm 10).

As we did for 𝜆DL (c. f. Section 4.3), we use a global state to represent the set of shapes which is
modified during the type checking process. Rules t-RpRoj and t-eRy then simply add new cases to
the typeof function, whereas the reconstruction of shapes from queries is implemented in a function
shapes. The subtype function however is problematic as shape containment is an open issue. To the
best of our knowledge, there are no sound and complete algorithms for deciding shape containment.
A trivial approach that is sound but incomplete is to only allow for conjunction and no negation in
constraints, essentially allowing for constraints to be seen as sets. That is, we define a subset of SHACL
where constraints are built according to the following grammar:

𝜙set ::= 𝜙basic | 𝜙set ∧ 𝜙set

𝜙basic ::=⊤ | 𝑜 | 𝑠 |≥𝑛 𝜌.𝜙basic

80

5.4. Type Elaboration

Algorithm 10 Definition of typeof for 𝜆SHACL.
global variables

𝑆, a set of shapes
function typeof(𝑡, Γ)

match 𝑡 with
case … then … ⊲ existing cases

case 𝑡1.𝑝 when typeof(𝑡1, Γ) is 𝑠1 and 𝑠
′
1 is genShapeName() and

subtype(𝑆 ∪ {(𝑠′1, ≥1 𝑝
−.𝑠,⊥)}, 𝑠1, 𝑠

′
1) then

𝑆 ← 𝑆 ∪ {(𝑠′1, ≥1 𝑝
−.𝑠1,⊥)}

List 𝑠
′
1

case query 𝑞 then
𝑆 ← 𝑆 ∪ shapes(𝑞)
{v : 𝑠vv∈head(𝑞) }

case _ then fail

A shape 𝑠′ is a supertype of shape 𝑠 if the following holds: Constraints for both shapes must be built
according to 𝜙set. Furthermore, all constraints of 𝑠′ must be found in the constraints for 𝑠. Subtyping
in this manner is similar to subtyping for records (c. f. Section 3.2.2). Some minor improvements for
special cases can be introduced. Shape 𝑠 is also a subtype of shape 𝑠′ if a constraint for 𝑠 is a reference
to 𝑠′. Likewise, 𝑠 is a subtype of 𝑠′ if 𝑠 enforces the presence of a type relation which 𝑠′ targets.
Algorithm 11 shows the complete definition. While the algorithm can be used to type small programs
such as used in Section 5.1, the approach in general is extremely limited. In particular, by removing
negation, we are losing the possibility to use disjunction 𝜙1 ∨ 𝜙2 in constraints. The function lub
for computing the least upper bound of two shapes can therefore only resort to checking whether the
two shapes are in a subtype relation. The greatest lower bound on the other hand can use conjunction
to construct a new shape that combines the constraints for both shapes (see Algorithm 12).

5.4. Type Elaboration

A feature that was not discussed so far is the detection of projections for which it is known that only
one successor exists. For example, the shape PersonShape in 𝑆1 explicitly enforces that there is exactly one
hasName relation for each instance of Person . However, using the evaluation rules and type system

as defined in Figure 5.4 a function 𝜆 x :PersonShape . x.hasName always returns a list consisting of a
single graph node. Ideally, the function would not return a list, but a single graph node. Likewise,
the type system needs to assign a single shape type to such projections instead of constructing a

81

Chapter 5. Type Checking with SHACL

Algorithm 11 Definition of subtype for 𝜆SHACL.
function subtype(𝑆, 𝑇 , 𝑇 ′)

match (𝑇 , 𝑇 ′) with
case … then … ⊲ existing cases

case (𝑠, 𝑠′) when (𝑠, 𝜙set, 𝑞) ∈ 𝑆 and (𝑠′, 𝜙′set, 𝑞′) ∈ 𝑆 and 𝜙set is 𝜙basic
1 ∧ . . . ∧ 𝜙basic

𝑛 and
𝜙′set is 𝜙

′
basic

1 ∧ . . . ∧ 𝜙′basic
𝑚 and

{𝜙′basic
1 ∧ . . . ∧ 𝜙′basic

𝑚} ⊆ {𝜙basic
1 ∧ . . . ∧ 𝜙basic

𝑛} then
true

case (𝑠,𝑠′) when (𝑠, 𝜙set, 𝑞) ∈ 𝑆 and 𝜙set = 𝜙basic
1 ∧ . . . ∧ 𝑠′ ∧ 𝜙basic

𝑛 then
true

case (𝑠,𝑠′) when (𝑠, 𝜙set, 𝑞) ∈ 𝑆 and 𝜙set = 𝜙basic
1 ∧ . . . ∧ ≥1 type.class ∧ 𝜙basic

𝑛 and
(𝑠′, 𝜙set, x← x type class) ∈ 𝑆 then

true

case _ then false

Algorithm 12 Definition of lub and glb for 𝜆SHACL.
global variables

𝑆, a set of shapes
function lub(𝑇 , 𝑇 ′)

match (𝑇 , 𝑇 ′) with
case … then … ⊲ existing cases

case (𝑠, 𝑠′) when subtype(𝑆, 𝑠, 𝑠′) then 𝑠′

case (𝑠, 𝑠′) when subtype(𝑆, 𝑠′, 𝑠) then 𝑠
case _ then Top

function glb(𝑇 , 𝑇 ′)
match (𝑇 , 𝑇 ′) with

case … then … ⊲ existing cases

case (𝑠, 𝑠′) when (𝑠, 𝜙, 𝑞) ∈ 𝑆 and (𝑠′, 𝜙′, 𝑞′) ∈ 𝑆 and 𝑠glb is genShapeName() then
𝑆 ← 𝑆 ∪ {(𝑠glb, 𝜙 ∧ 𝜙′,⊥)}
𝑠glb

case _ then fail

82

5.4. Type Elaboration

list type. A possible solution is to rely on an elaboration function that transforms the program. An
elaboration function typically translates a program from an external language containing syntactic
sugar into an internal language in which these expressions are desugared. A programming language
may offer syntactic constructs or simplified syntax for certain constructs that simplify common tasks.
Such constructs are called syntactic sugar. Additional evaluation rules for these constructs can be
avoided by desugaring them—that is, translating them from their extended syntax to constructs for
which evaluation rules exist.

In our case, we use such an elaboration function to add an additional head term that directly accesses
the head of the list, in cases where it is known that the list only contains a single element. As we only
target projections, our elaboration function elaboRate does not modify the given term in most cases
(see Algorithm 13). For example, the elaboration function does not modify a 𝜆-abstraction 𝜆 𝑥 :𝑇 .𝑡1 ,

Algorithm 13 Definition of elaboRate for 𝜆SHACL.
global variables

𝑆, a set of shapes
function elaboRate(𝑡, Γ)

match 𝑡 with
case 𝜆 𝑥 : 𝑇 . 𝑡1 then 𝜆 𝑥 :𝑇 . elaboRate(𝑡1, Γ)
case let 𝑥 = 𝑡1 in 𝑡2 then let 𝑥 = elaboRate(𝑡1, Γ) in elaboRate(𝑡2, Γ)
case head 𝑡1 then head elaboRate(𝑡1, Γ)
case 𝑡1.𝑝 when typeof(Γ, 𝑡1) is 𝑠1 and genshapename() is 𝑠′1 and

subtype(𝑆 ∪ {(𝑠′1, =1 𝑝.⊤,⊥)}, 𝑠1, 𝑠
′
1) then head 𝑡1.𝑝

case 𝑡1.𝑝 when typeof(Γ, 𝑡1) is 𝑠1 and genshapename() is 𝑠′1 and
subtype(𝑆 ∪ {(𝑠′1, ≥1 𝑝.⊤,⊥)}, 𝑠1, 𝑠

′
1) then 𝑡1.𝑟

case query 𝑞 then query 𝑞
case … then … ⊲ remaining cases

but may modify its body 𝑡1. Likewise, a query-expression is not modified. Our elaboration function
particularly targets role projections. If the term is a role projection 𝑡1.𝑝, we type 𝑡1 using the typeof
function. We then check whether the resulting shape type 𝑠1 is either a subtype of a shape having
exactly one successor via 𝑝 (denoted by the constraint =1 𝑝.⊤) at least one successor via 𝑝 (denoted by
≥1 𝑝.⊤) using the subtype function. Depending on the result, we either add an additional head-term
or we leave the role projection 𝑡1.𝑝 unchanged.

As an example, let us reconsider the definitions of PersonShape and the getName function as defined
in Section 5.1:

83

Chapter 5. Type Checking with SHACL

𝑆1 = { …, (PersonShape, =1 hasName.StringShape,

x← x type Person) }

1 let getName = 𝜆 (x :PersonShape) .

2 x .hasName

3 in . . .

Applying the elaboration function on this term adds an head term to the projection term x.hasName

since PersonShape clearly only allows for one successor via the hasName relation:

elaboRate(∅, let getName = 𝜆 x :PersonShape . x.hasName in . . .) =
let getName = 𝜆 x :PersonShape . head x.hasName in . . .

5.5. Type Safety

Given the design choices of 𝜆SHACL, the language is type-safe with the routine exceptions of trying to
access head or tail of empty lists. To show type safety, we first show that assigning types to queries is
sound. Any shape representing a variable of a query must be sound. That is, all nodes that the variable
can potentially be mapped to must conform to the shape. Using this, we can then proceed to show
progress and preservation for 𝜆SHACL.

5.5.1. Soundness of Query Typing

Shape reconstruction for queries is sound if the shape constraints reconstructed for each variable
evaluate to true for all possible mappings of the variable.

Definition 9 (Soundness of shape reconstruction). Given an RDF graph 𝐺 , a query 𝑞 with its variables
𝑥𝑖 ∈ Vars(𝑞) and the set of reconstructed shapes 𝑆𝑞 = {(𝑠𝑥𝑖 , 𝜙𝑥𝑖 , 𝑞𝑠𝑥𝑖)

𝑥𝑖 ∈Vars(𝑞) }, a shape constraint is
sound if there exists a faithful assignment 𝜎 such that

∀𝑥𝑖 ∈ Vars(𝑞) : ∀𝜇 ∈ ⟦𝑞⟧𝐺 : ⟦𝜙𝑥𝑖⟧𝜇 (𝑥𝑖) ,𝐺,𝜎 = true

We show that the faithful assignment 𝜎 can be constructed by assigning all shape names solely
based on target nodes.

Theorem 6. For any data graph 𝐺 , a conjunctive query 𝑞 and the set of shapes 𝑆𝑞 reconstructed from
𝑞, assignment 𝜎 is constructed such that for each shape (𝑠, 𝜙𝑠, 𝑞𝑠) ∈ 𝑆𝑞 and for each graph node 𝑜 ∈
Nodes(𝐺):

1. If 𝑜 ∈ ⟦𝑞𝑠⟧𝐺 , then 𝑠 ∈ 𝜎(𝑜),

84

5.5. Type Safety

2. If 𝑜 ∉ ⟦𝑞𝑠⟧𝐺 , then 𝑠 ∉ 𝜎(𝑜).

Such an assignment 𝜎 is faithful.

Proof. An assignment is faithful if three conditions are met. First, for all (𝑠, 𝜙𝑠, 𝑞𝑠) ∈ 𝑆𝑞 and for all
𝑜 ∈ ⟦𝑞𝑠⟧𝐺 , it must be that 𝑠 ∈ 𝜎(𝑜). This is fulfilled through the construction of 𝜎. Furthermore, it
must be true that for all 𝑜 ∈ Nodes(𝐺):

1. if 𝑠 ∈ 𝜎(𝑜), then ⟦𝜙𝑠⟧𝑜,𝐺,𝜎 = true.

2. if 𝑠 ∉ 𝜎(𝑜), then ⟦𝜙𝑠⟧𝑜,𝐺,𝜎 = false.

We show this by induction on the evaluation of ⟦𝑞 = (𝑥) ← 𝑔𝑝⟧𝐺 .

Q-SVAR For the query gp = 𝑥 𝑝 𝑜′, the reconstructed set of shapes 𝑆𝑞 is {(𝑠𝑥 , ≥1 𝑝.𝑜
′,⊥))}. Evaluation

of the query returns 𝑜 for which (𝑜, 𝑜′) ∈ 𝑟 (𝐺).

1. The constraint requires all 𝑜 assigned to shape 𝑠𝑥 to have at least one successor via the
relation 𝑝 pointing to 𝑜′. This is true for all 𝑜 since they would not be in the query result
otherwise. Therefore, 𝑠𝑥 ∈ 𝜎(𝑜) as required by the construction of 𝜎, does not violate
faithfulness.

2. Any node 𝑜′′ ∈ Nodes(𝐺) for which 𝑠𝑥 ∉ 𝜎(𝑜′′) must violate the constraint. By design of
𝜎, any node 𝑠𝑥 ∉ 𝜎(𝑜′′) cannot be part of the query result. Thismeans that they cannot have
a successor via the relation 𝑝 pointing to 𝑜′. Therefore, those nodes violate the constraint
and 𝜎 is faithful.

Q-OVAR For the query gp = 𝑜 𝑝 𝑥, the reconstructed set of shapes 𝑆𝑞 is {(𝑠𝑥 , ≥1 𝑝
−.𝑜,⊥)}. This case is

similar to case q-svaR.

Q-VARS For the query gp = 𝑥1 𝑝 𝑥2, the reconstructed set of shapes 𝑆𝑞 is {(𝑠𝑥1 , ≥1 𝑝.𝑠𝑥2 ,⊥), (𝑠𝑥2 , ≥1

𝑝−.𝑠𝑥1 ,⊥)}. Evaluation of the query returns all (𝑜, 𝑝, 𝑜′) ∈ 𝐺 whereas construction of 𝜎 assigns
all 𝑜 to shape 𝑠𝑥1 and all 𝑜′ to shape 𝑠𝑥2 .

1. The constraint requires all 𝑜 to have at least one successor 𝑜′ via the relation 𝑝 that is
assigned to the shape 𝑠𝑥2 . This is fulfilled through the construction of 𝜎. Likewise, all 𝑜′

require a predecessor via 𝑝 that is assigned to 𝑠𝑥1 . Again, this must be true through the
construction of 𝜎. Therefore, the constraints evaluates to true for all 𝑜 and 𝑜′ respectively
and the assignment 𝜎 is still faithful.

2. Any node 𝑜′′ ∈ Nodes(𝐺) for which neither 𝑠𝑥1 ∉ 𝜎(𝑜′′) nor 𝑠𝑥2 ∉ 𝜎(𝑜′′) cannot have
a successor or predecessor via the relation 𝑝 as they would otherwise be part of the query
result. Both constraints would therefore evaluate to false and 𝜎 is still faithful.

85

Chapter 5. Type Checking with SHACL

Q-CONJ For the pattern gp = gp1 ∧ gp2 , sets of shapes 𝑆𝑞1 and 𝑆𝑞2 are reconstructed individually for
both gp1 and gp2. These are then combined into 𝑆𝑞 = 𝑆𝑞1 ∧̂ 𝑆𝑞2 . By induction hypothesis, 𝜎 is
faithful for 𝐺 and 𝑆𝑞1 and 𝑆𝑞2 individually. Evaluation of the query returns gp1 Z gp2. That is,
each part is evaluated individually and, for all query results 𝜇1 and 𝜇2, the union is returned in
case they are compatible. 𝜇1 and 𝜇2 are compatible if, for all variables 𝑥 ∈ Dom(𝜇1) ∩Dom(𝜇2),
it holds that 𝜇1(𝑥) = 𝜇2(𝑥). Therefore, for each variable 𝑥𝑖 , there are two cases to consider:

𝑥𝑖 occuring in both bodies: ∧̂ takes the conjunction of the constraints for 𝑥𝑖 in 𝑆𝑞1 and 𝑆𝑞2 .

1. By induction hypothesis, both 𝜙𝑖1 from (𝑠𝑥𝑖 , 𝜙𝑖1 , 𝑞𝑖1) ∈ 𝑆𝑞1 and 𝜙𝑖2 from
(𝑠𝑥𝑖 , 𝜙𝑖2 , 𝑞𝑖2) ∈ 𝑆𝑞2 evaluate to true for all possible mappings of 𝑥𝑖 . As ∧̂ constructs
𝜙𝑖1 ∧ 𝜙𝑖2 and no negation is used in either constraint, the resulting constraint must
also evaluate to true.

2. As no negation occurs in constraints of 𝑆𝑞1 and 𝑆𝑞2 , it is impossible for any nodes
previously violating any constraints to fulfill the conjunction of the constraints.

𝑥𝑖 only occuring in one body: The constraint for the variable is not modified by ∧̂. The assignment
is therefore still faithful.

Q-PROJ For the query 𝑞 = (𝑥) ← gp , shapes are reconstructed for the body gp : 𝑆𝑞 . This set of shapes
is then used as the result for 𝑞 (𝑞 : 𝑆𝑞). Results are immediate since the reconstructed set of
shapes is not modified.

□

The faithful assignment 𝜎 constructed in the manner as explained above is unique. This is expected,
as shape reconstruction does not use negation.

Proposition 2. The assignment 𝜎 constructed as described above is unique.

Proof. Assume that a different faithful assignment 𝜎′ exists. There must be at least one node 𝑜 for
which 𝜎(𝑜) ≠ 𝜎′(𝑜).

1. It is impossible that there is an 𝑠 such that 𝑠 ∈ 𝜎(𝑜) and 𝑠 ∉ 𝜎′(𝑜). 𝜎 assigns shapes based on
target nodes, 𝑜 must be a target node for 𝑠 and 𝜎′ is not faithful.

2. It cannot be that 𝑠 ∉ 𝜎(𝑜) and 𝑠 ∈ 𝜎′(𝑜). 𝑜 must fulfill the constraint 𝜙𝑠 of shape 𝑠, otherwise
𝜎′ would not be faithful. If that is the case, then 𝜎 is not faithful. This contradicts Theorem 6.

□

86

5.5. Type Safety

Given a faithful assignment 𝜎 for a set of shapes 𝑆 and the assignment 𝜎𝑞 for a set of shapes
reconstructed from a query, the two assignments can be combined through an operator ⋓ which, for
each graph node 𝑜, takes the union of 𝜎(𝑜) ∪ 𝜎𝑞 (𝑜).

It is not possible to take the union for arbitrary faithful assignments. As a counter example, consider
a set of shapes consisting of LocalShape , who may only know other locals and SemilocalShape who must
know at least one node who is not a local (see Figure 5.5). Given a data graph consisting of one node
𝑏1 which knows itself, two faithful assignments 𝜎1 and 𝜎2 exist. In assignment 𝜎1, the node 𝑏1 is

𝑆2 = {(LocalShape, ≤0 knows.¬LocalShape,⊥),
(SemilocalShape, ≥1 knows.¬LocalShape,⊥)} 𝑏1

knows

Figure 5.5.: Basic example for multiple faithful assignments.

assigned to the shape LocalShape but not SemilocalShape (𝜎1(𝑏1) = {LocalShape}). Likewise, in assignment
𝜎2, 𝑏1 is only assigned to SemilocalShape but not LocalShape (𝜎2(𝑏1) = {SemilocalShape}). Individually,
both assignments are faithful, but combining them (𝜎1 ⋓ 𝜎2) does not yield a faithful assignment as
neither constraint evaluates to true.

However, in case of 𝜎𝑞 for a set of shape 𝑆𝑞 constructed from a query 𝑞, combining it with another
faithful assignment 𝜎 for a set of shapes 𝑆 will yield a faithful assignment again. This is because shape
names of 𝜎 are unique. 𝑆 cannot contain a shape (𝑠, 𝜙𝑠, 𝑞) for which 𝜙𝑠 mentions a shape name 𝑠𝑥
such that (𝑠𝑥 , 𝜙𝑥 ,⊥) ∈ 𝑆𝑞 . Combining assignments therefore has no effect on constraint evaluation.

Proposition 3. The assignment 𝜎 can be combined with any other assignment 𝜎𝑞 through an operator ⋓
that, for each graph node 𝑜, takes the union of 𝜎𝑞 and 𝜎:

∀𝑜 ∈ Nodes(𝐺) : (𝜎 ⋓ 𝜎𝑞) (𝑜) = 𝜎(𝑜) ∪ 𝜎𝑞 (𝑜)

Proof. Shape names in 𝜎𝑞 are completely disjunct from shape names in 𝜎 and therefore have no effect
on the evaluation of constraints. □

5.5.2. Soundness of the Type System

Given the design choices of 𝜆SHACL, the language is type-safe. A well-typed program does not get
stuck. As discussed in Section 3.2.3, the only exception to this concerns lists. We therefore show that
if a program is well-typed, then the only way it can get stuck is by reaching a point where it tries to
compute head nil or tail nil . As introduced in Section 2.1.3, we proceed in two steps by showing that
a well-typed term is either a value or it can take a step (progress) and by showing that if that term
takes a step, the result is also well-typed (preservation). We start by observing that a well-typed value
of type 𝑠 must be a graph node:

87

Chapter 5. Type Checking with SHACL

Lemma 3. Let 𝑣 be a well-typed value. Then one of the following must be true:

1. If 𝑣 is a value of type Bool , then either 𝑣 = true or 𝑣 = false .

2. If 𝑣 is a value of type Nat , then 𝑣 is a numerical value 𝑛𝑣 according to the grammar defined in
Figure 3.1.

3. If 𝑣 is a value of type 𝑠, then 𝑣 is a graph node 𝑜 .

4. If 𝑣 is a value of type {𝑙𝑖 : 𝑇𝑖 𝑖∈1...𝑛} then 𝑣 must be a record of the form {𝑙 𝑗 : 𝑡 𝑗 𝑗∈1...𝑚} with
{𝑙𝑖} ⊆ {𝑙 𝑗} and Γ, 𝑆 ⊢ 𝑡𝑖 = 𝑇𝑖 for all cases in which 𝑖 = 𝑗 .

5. If 𝑣 is a value of type List 𝑇 , then 𝑣 is either an empty list nil[𝑇] or of the form cons 𝑣1 . . . nil[𝑇1]
with 𝑇1 <: 𝑇 and Γ, 𝑆 ⊢ 𝑣1 : 𝑇 .

6. If 𝑣 is a value of type 𝑇 → 𝑇 ′ , then 𝑣 is a 𝜆-abstraction 𝜆 𝑥 :𝑇1 . 𝑡2 with 𝑇1 <: 𝑇 and Γ, 𝑥 : 𝑇1, 𝑆 ⊢
𝑡2 : 𝑇 ′.

Given Lemma 3, we can show that a well-typed term is either a value or it can take a step.

Theorem 7 (Progress in 𝜆SHACL). Let 𝑡 be a well-typed closed term. If 𝑡 is not a value, then there exists a

term 𝑡 ′ such that 𝑡
𝐺−→ 𝑡 ′. If there is a 𝑇 such that Γ, 𝑆 ⊢ 𝑡 : 𝑇 , then 𝑡 is either a value, a term containing

the forms head nil and tail nil , or there is some 𝑡 ′ with 𝑡
𝐺−→ 𝑡 ′.

Proof. By induction on the derivation of Γ, 𝑆 ⊢ 𝑡 : 𝑇 . Large parts of the proof are standard cases. We
therefore focus on the part specific to our language.

T-QUERY 𝑡 = query 𝑞, 𝑞 : 𝑆𝑞 , Γ, 𝑆 ⊢ 𝑡 : List {𝑙𝑖 : 𝑠𝑖∈1...𝑛𝑙𝑖
}.

Immediate since rule e-eRy applies.

T-RPROJ 𝑡 = 𝑡1.𝑝, Γ, 𝑆 ⊢ 𝑡1 : 𝑠1, Γ, 𝑆 ⊢ 𝑡 : List 𝑠′.
By hypothesis, 𝑡1 is either a value or it can take a step. If it can take a step, e-RpRoj applies. If its
a value, then by Lemma 3, 𝑡1 = 𝑜1, therefore rule e-pRojRole applies.

T-ADD Results follow from the induction hypothesis since rule t-add requires a term to be well-typed.

□

We can now continue to show that if a term takes a step by the evaluation rules, its type is preserved.

Theorem 8 (Preservation in 𝜆SHACL). Let 𝑡 be a term and 𝑇 a type. If there is a 𝑇 such that Γ, 𝑆 ⊢ 𝑡 : 𝑇
and 𝑡

𝐺−→ 𝑡 ′, then Γ, 𝑆 ⊢ 𝑡 ′ : 𝑇 .

Proof. By induction on the derivation of Γ, 𝑆 ⊢ 𝑡 : 𝑇 . Again, we only examine the specific cases.

88

5.6. Summary and Discussion

T-QUERY 𝑡 = query 𝑞, 𝑞 : 𝑆𝑞 , Γ, 𝑆 ⊢ 𝑡 : List {𝑙𝑖 : 𝑠𝑖∈1...𝑚𝑙𝑖
} with 𝑙1∈1...𝑚𝑖 being the head of 𝑞.

If 𝑡 takes a step, then it can only be through rule e-eRy. By Theorem 9, all graph nodes in the
evaluation results are instances of their respective concepts. Furthermore, by rules t-Rcd and
t-list the result is a list of records. The type is therefore preserved.

T-RPROJ 𝑡 = 𝑡1.𝑝, Γ, 𝑆 ⊢ 𝑡1 : 𝑠1, Γ, 𝑆 ⊢ 𝑡 : List 𝑠′ and (𝑠′, ≥1 𝑟.𝑠1,⊥)
There are 2 different cases by which 𝑡 ′ can be derived:

E-PROJROLE 𝑡 ′ = cons 𝜇1(𝑥1) . . . cons 𝜇𝑛 (𝑥1) nil with ⟦𝑥1 ← 𝑜1 𝑝 𝑥1⟧𝐺 = 𝜇𝑖∈1...𝑛𝑖 .
Each node 𝜇𝑖 (𝑥1) must fulfill the constraint ≥1 𝑝

−.𝑠 of shape 𝑠′ as it would otherwise not
be in the query result. There the type is preserved as 𝑡 ′ : List 𝑠′.

E-RPROJ 𝑡 ′ = 𝑡 ′.𝑝

By hypothesis, 𝑡1
𝐺−→ 𝑡 ′1 preserves the type. Therefore rule t-RpRoj applies again.

T-ADD Vacuously satisfied since there is no 𝑡 𝐺−→ 𝑡 ′ in this case.

□

As a direct consequence of Theorems 7 and 8, a well-typed, closed term does not get stuck during
evaluation. The only exception concerns handling of lists which can get stuck if head or tail is applied
to an empty list. This holds when the graph is evolving as long as the graph that results from the
modification again conforms to the SHACL shapes.

5.6. Summary and Discussion

In this chapter, we have studied 𝜆SHACL—a typed 𝜆-calculus for the Semantic Web that is built around
SHACL shapes. We have shown that using SHACL shapes as types lead to a type safe language. Con-
trary to the type system used in Chapter 4, SHACL does not allow for modelling incomplete knowl-
edge. An effect of this is that projection operations on nodes cannot yield empty lists. Likewise, if a
SHACL shape guarantees that there is exactly one successor via a relation, then querying for this one
successor yields exactly one answer. In this manner, projection now behaves similarly to accessing
an attribute of an object or record in object-oriented programming languages.

However, shape containment is an open problem. The definition for subtyping so far only works
in very specific cases and leaves much to be desired. For the type system to be useful, the problem of
shape containment must be revisited. We therefore investigate the problem further in Chapter 6 and
propose a translation of the problem to a description logic knowledge base. This, in turn, allows us to
use optimized reasoner implementations such as [72] in implementations of the type system.

89

CHAPTER 6
Shape Containment
Subtyping in 𝜆SHACL highlighted the problem of shape containment. Given a set of shapes, a shape is
contained in another shape if the set of nodes conforming to the first shape are a subset of the nodes
conforming to the second shape in any RDF data graph that conforms to the set of shapes. While some
preliminary work for other RDF validation languages exists (c. f. [87]), containment in SHACL has not
been considered so far as it is not used in the validation of RDF graphs. We investigate a translation
of the containment problem into a DL concept subsumption problem. For a subset of SHACL that
does not use inverse roles, the result is a sound and complete approach for deciding containment.
For SHACL as defined in this thesis, the translation provides a sound but incomplete approach. This
chapter is based on [67].

6.1. Problem Description

Containment problems are used in a number of different settings such as query optimization [14, 15, 40]
as well as data exchange or graph summaries [87]. We investigate the problem of shape containment:
That is, given a set of shapes 𝑆 and two shapes 𝑠, 𝑠′ ∈ Names(𝑆), is the set of nodes that conform to
𝑠 contained in the set of nodes conforming to 𝑠′. As an example, let us consider the following set of
shapes:

𝑆3 = {(StudentShape, ≥1 studiesAt.⊤ ∧ ∀ studiesAt.UniversityShape
∧ ≥1 type.Person, x← x type Student),

(PersonShape, =1 hasName.⊤, x← x type Person),
(UniversityShape, ≥1 locatedIn.⊤∧ ≥1 type.University,⊥),
(OnlineUniversityShape, ≥1 studiesAt

−.PersonShape∧ ≥1 type.University,⊥)}

The shape StudentShape targets all instances of Student . It enforces the presence of at least one
studiesAt relation and that everything reachable via that relation conforms to the UniversityShape shape.

Furthermore, nodes conforming to StudentShape must be instances of Person . PersonShape targets all in-
stances of Person and enforces the presence of exactly one hasName relation. UniversityShape enforces

91

Chapter 6. Shape Containment

that nodes are an instance of University and that there is a locatedIn relation. However, there are no
target nodes for UniversityShape . Lastly, we added a new shape named OnlineUniversityShape which again has
no target nodes. For the sake of the example, its constraints enforce the presence of an incoming
studiesAt relation from a node conforming to PersonShape as well as being an instance of University .

However, it does not have a locatedIn relation.
The shape StudentShape is, for example, contained in the shape PersonShape . All nodes conforming to

StudentShape are required to be instances of Person and PersonShape targets all instances of Person . Sub-
sequently, all nodes conforming to StudentShape must also conform to PeronShape . On the other hand,
the shape OnlineUniversityShape is not contained in the shape UniversityShape . This can be shown through a
counterexample in the form of an RDF graph and a faithful assignment in which a node is assigned
to OnlineUniversityShape but not to UniversityShape (see Figure 6.1). Formally, a shape 𝑠 being contained in

Person𝜎 (Person) = ∅ University 𝜎 (University) = ∅

𝑏2

type

𝜎 (𝑏2) = {OnlineUniversityShape}𝑏1

type

studiesAt

𝜎 (𝑏2) = {PersonShape}

“...” hasName𝜎 (“...”) = ∅

Figure 6.1.: Counterexample that proves that OnlineUniversityShape is not contained in UniversityShape.

another shape 𝑠′ with respect to a set of shapes 𝑆 means that for all possible faithful assignments over
all possible RDF data graphs, being assigned to 𝑠 implies also being assigned to 𝑠′.

Definition 10 (Shape Containment). Let 𝑆 be a set of shapes. Furthermore, let G be the set of all possible
RDF graphs, let 𝐺 be an individual RDF graph and let Faith(𝐺, 𝑆) be the set of faithful assignments for
𝐺 and 𝑆. The shape 𝑠 is contained in shape 𝑠′ if:

∀𝐺 ∈ G : ∀𝜎 ∈ Faith(𝐺, 𝑆) : ∀𝑜 ∈ Nodes(𝐺) : 𝑠 ∈ 𝜎(𝑜) ⇒ 𝑠′ ∈ 𝜎(𝑜) with 𝑠, 𝑠′ ∈ Names(𝑆)

We use the notation 𝑠 <:𝑆 𝑠′ to indicate that shape 𝑠 is contained in the shape 𝑠′.

Tableau-based approaches constitute the most widely used technique for solving decision prob-
lems in description logics [19]. For subsumption in particular, algorithms try to construct counter-
examples. When trying to prove that a concept expressions Person subsumes a concept expression
Student in a knowledge base 𝐾 , a reasoner attempts to construct a model of 𝐾 in which the concept
expression Student ⊓ ¬Person is satisfiable. This either results in a valid model or in the discovery of
a contradiction that proves that no model can exist. If a model exist, then it acts as a counterexample.
We leverage this approach by mapping a set of SHACL shapes to a description logic knowledge base.
This then allows for the decision of shape containment using description logic reasoners.

92

6.2. From SHACL to Description Logic

We proceed by syntactically mapping sets of shapes into description logic knowledge bases. We
then show the equivalence of faithful assignments for SHACL shapes and finite models for description
logic knowledge bases. We then continue to show that the problem of concept subsumption in this
description logic knowledge base is equivalent to shape containment if SHACL is restricted to a subset
of the available syntactic constructs.

6.2. From SHACL to Description Logic

We start by syntactically mapping sets of shapes into description logic knowledge bases. That is, we
define a function 𝜏shapes that maps a set of shapes 𝑆 to a description logic knowledge base 𝐾𝑆 using
four functions: First, 𝜏name maps shape names, RDF classes as well as properties and graph nodes onto
atomic concept names, atomic property names and object names. Second, 𝜏role maps SHACL path
expressions to DL role expressions. Third, 𝜏constr maps constraints to concept expressions. Fourth,
𝜏target maps queries for target nodes to concept expressions. The functions map the set of shapes such
that 𝑠 <:𝑆 𝑠′ is true if 𝐾𝑆 |= 𝜏name(𝑠) ⊑ 𝜏name(𝑠′) . For this, we show that finite models of 𝐾𝑆 are
equivalent to faithful assignments and vice versa.

Syntactic mapping First, we provide details on the syntactic mapping of sets of shapes 𝑆 onto
a description logic knowledge base 𝐾𝑆 . To reiterate the most important definitions in Section 2.2.4: A
set of shapes 𝑆 consists of triples (𝑠, 𝜙, 𝑞) where 𝑠 ∈ Names(𝑆) and the constraint 𝜙 is built according
the to the following grammar with 𝑟 being either a normal property 𝑝 or the inverse of a path 𝜌−:

𝜙 ::= ⊤ | 𝑠 | 𝑜 | 𝜙 ∧ 𝜙 | ¬𝜙 |≥𝑛 𝜌.𝜙

Furthermore, a query for target nodes 𝑞 takes one the following forms: (1) It can select no nodes
at all (⊥). (2) It can enumerate the target nodes (𝑜). It can define target nodes based on a con-

cept (𝑥1 ← 𝑥1 type concept). (4) It can select nodes based on a property (𝑥1 ← 𝑥1 property 𝑥2 and
𝑥2 ← 𝑥1 property 𝑥2).
Mapping these elements requires a a sufficiently expressive target description logic. In this de-

scription logic, we must be able to express negation and conjunction which requires the DL ALC.
Furthermore, we must be able to use individual graph nodes as concept expressions, which requires
nominals (O), inverse path expressions (I) and qualified number restrictions (Q). The description
logic that corresponds to SHACL as used in this thesis is therefore ALCOIQ. The function 𝜏shapes

maps a set of shapes 𝑆 into a knowledge base 𝐾𝑆 by mapping constraints and target node queries of
each shape using the functions 𝜏role, 𝜏constr and 𝜏target. All those functions rely on 𝜏name which maps
atomic elements used in SHACL to atomic elements of a DL knowledge base.

93

Chapter 6. Shape Containment

Definition 11 (Mapping atomic elements). The function 𝜏name is an injective function mapping shape
names and RDF classes onto atomic concept names, graph nodes onto object names as well as properties
onto atomic property names.

Definition 12 (Mapping path expressions to description logic roles atomic elements). The path map-
ping function 𝜏role : P → R is defined as follows:

𝜏role(𝑝) = 𝜏name(𝑝)
𝜏role(𝜌−) = 𝜏role(𝜌)−

Definition 13 (Mapping constraints to DL concept expressions). The function 𝜏constr : Φ→ C, which
takes a constraint 𝜙 and returns a DL concept expression 𝐶 is then defined as follows:

𝜏constr(⊤) = ⊤
𝜏constr(𝑠) = 𝜏name(𝑠)
𝜏constr(𝑜) = {𝜏name(𝑜)}
𝜏constr(𝜙1 ∧ 𝜙2) = 𝜏constr(𝜙1) ⊓ 𝜏constr(𝜙2)
𝜏constr(¬𝜙) = ¬𝜏constr(𝜙)
𝜏constr(≥𝑛 𝜌.𝜙) = ≥𝑛 𝜏role(𝜌).𝜏constr(𝜙)

Definition 14 (Mapping target node queries to DL concept expressions). Concepts that are used as
target nodes for shapes are represented by atomic concepts 𝐴concept. The function 𝜏target : 𝑄̂ → C, which
takes a query for target nodes 𝑞 and returns a concept expression 𝐶, is defined as follows:

𝜏target(⊥) = ⊥
𝜏target({𝑜}) = {𝜏name(𝑜)}
𝜏target(𝑥1 ← 𝑥1 type concept) = 𝜏name(concept)
𝜏target(𝑥1 ← 𝑥1 property 𝑥2) = ∃ 𝜏name(property).⊤
𝜏target(𝑥2 ← 𝑥1 property 𝑥2) = ∃ 𝜏name(property)−.⊤

The functions are defined such that the translation retains the original meaning of the expressions.
For constraints, this means that graph nodes which evaluate to true for the constraint should be in
the interpretation of the concept expression. The constraint ≥1 studiesAt.⊤ evaluates to true for all
graph nodes that have at least one studiesAt relation. Likewise, the interpretation of its translation
≥1 studiesAt.⊤ contains all graph nodes that have at least one studiesAt relation. For target node
queries, all nodes that are returned by the evaluation of the query should be in the interpretation of the
concept expression. The target node query 𝑥2 ← 𝑥1 studiesAt 𝑥2 returns all graph nodes that have an
incoming studiesAt relation. Likewise, the interpretation of its translation ∃ studiesAt−.⊤ contains
all graph nodes with an incoming studiesAt relation.

Lastly, the function 𝜏shapes takes a set of shapes and translates it into a knowledge base.

Definition 15 (Mapping sets of shapes to DL axioms). The function 𝜏shapes : S → K , which takes a set

94

6.2. From SHACL to Description Logic

of shapes 𝑆 and returns a set of DL axioms 𝐾 , is defined as follows:

𝜏shapes(𝑆) =
∪

(𝑠,𝜙,𝑞̂) ∈𝑆
{𝜏target(𝑞) ⊑ 𝜏name(𝑠), 𝜏name(𝑠) ≡ 𝜏constr(𝜙)}

Again, the function 𝜏shapes is defined such that it preserves the original meaning of faithful assign-
ments. To reiterate, an assignment is faithful if two conditions hold: For one, all target nodes of a shape
must be assigned to the shape. Therefore, the first axiom 𝜏target(𝑞) ⊑ 𝜏name(𝑠) states that the concept
expression representing the query for target nodes is subsumed by the concept representing the shape.
Second, an assignment is only faithful if all nodes for which the constraint evaluates to true are as-
signed to the shape and vice versa. This is expressed through the second axiom 𝜏name(𝑠) ≡ 𝜏constr(𝜙) ,
enforcing equivalence between the set of nodes that are assigned to 𝑠 and the nodes for which the con-
straint evaluates to true. Let us exemplify this translation using the following set of shapes:

𝑆2 = { (StudentShape, ≥1 studiesAt.⊤ ∧ ∀ studiesAt.UniversityShape, 𝑥1 ← 𝑥1 type Student),
(UniversityShape, ≥1 locatedIn.⊤, ⊥) }

The shape StudentShape is translated as follows:

𝜏constr(≥1 studiesAt.⊤ ∧ ∀ studiesAt.UniversityShape) = ≥1studiesAt.⊤⊓
∀ studiesAt.UniversityShape

𝜏target(𝑥1 ← 𝑥1 type Student) = Student

Likewise, the shape UniversityShape is translated as follows:

𝜏constr(≥1 locatedIn.⊤) = ≥1 locatedIn.⊤
𝜏target(⊥) = ⊥

The final translation then looks as follows:

𝜏shapes(𝑆2) = { Student ⊑ StudentShape,

≥1studiesAt.⊤ ⊓ ∀ studiesAt.UniversityShape ≡ StudentShape,

⊥ ⊑ UniversityShape,

≥1 locatedIn.⊤ ≡ UniversityShape }

Equivalence of faithful assignments and models Given our translation, we now show
that the notion of faithful assignments of SHACL and models in description logics coincide. In partic-
ular, this is the case for finite models of the knowledge base 𝐾𝑆 .

Definition 16 (Finite model and finitely satisfiable). Let 𝐾 be a knowledge base and 𝐼 ∈ Mod(𝐾) an
model of 𝐾 . The model 𝐼 is finite, if its universe Δ𝐼 is finite [28]. A concept expression 𝐶 is finitely
satisfiable in 𝐼 if 𝐼 is finite and 𝐶 𝐼 ≠ ∅.

95

Chapter 6. Shape Containment

Given a finite model 𝐼 of a knowledge base 𝐾𝑆 that is constructed from a set of shapes 𝑆, it is possible
to construct an RDF data graph 𝐺 𝐼 and an assignment 𝜎𝐼 such that 𝜎𝐼 is faithful with respect to 𝑆
and 𝐺 𝐼 . As RDF graphs are finite sets of triples, it is impossible to construct an RDF graph from an
infinitely large model of 𝐾𝑆 . Given an RDF data graph 𝐺 and an assignment 𝜎 that is faithful with
respect to some set of shapes 𝑆 and 𝐺 , it is also possible to construct an interpretation 𝐼𝐺,𝜎 that is a
finite model for the knowledge base 𝐾𝑆 .

We start by constructing the interpretation 𝐼𝐺,𝜎 for the knowledge base 𝐾𝑆 .

Definition 17 (Construction of the interpretation 𝐼𝐺,𝜎). Let 𝑆 be a set of shapes, 𝐺 an RDF data graph
and 𝜎 an assignment that is faithful with respect to 𝑆 and 𝐺 . Furthermore, let 𝜏node be the inverse of the
function 𝜏name. The interpretation 𝐼𝐺,𝜎 for a knowledge base 𝜏shapes(𝑆) = 𝐾𝑆 is constructed as follows:

1. All objects are interpreted as themselves: ∀ 𝑜 ∈ 𝑁𝑂 : 𝑜𝐼 = 𝑜.

2. A pair of objects is contained in the interpretation of a relation if the two objects are connected in the
RDF data graph: ∀𝑝 ∈ 𝑁𝑃 : ∀𝑜, 𝑜′ ∈ 𝑁𝑂 : (𝑜𝐼 , 𝑜′𝐼) ∈ 𝑝𝐼 iff (𝜏node(𝑜), 𝑝, 𝜏node(𝑜′)) ∈ 𝐺 .

3. Objects are in the interpretation of a concept if this concept is a class used in the RDF data graph and
the object is an instance of this class according to the graph:
∀𝐴 ∈ 𝑁𝐴 : ∀𝑜 ∈ 𝑁𝑂 : 𝑜𝐼 ∈ 𝐴𝐼 iff (𝜏node(𝑜), type, 𝜏node(𝐴)) ∈ 𝐺 .

4. Objects are in the interpretation of a concept if the concept is a shape name and the assignment 𝜎
assigns the shape to the object: ∀𝐴 ∈ 𝑁𝐴 : ∀𝑜 ∈ 𝑁𝑂 : 𝑜𝐼 ∈ 𝐴𝐼 iff 𝐴 ∈ 𝜎(𝑜).

An interpretation 𝐼𝐺,𝜎 constructed in this manner is then a model of the knowledge base 𝜏shapes(𝑆) =
𝐾𝑆 .

Theorem 9. Let 𝑆 be a set of shapes, 𝐺 an RDF data graph and 𝜎 an assignment that is faithful with
respect to 𝑆 and 𝐺 . Furthermore, let 𝜏shapes(𝑆) = 𝐾𝑆 be a knowledge base. The interpretation 𝐼𝐺,𝜎

constructed as described above is a model of 𝐾𝑆 (𝐼𝐺,𝜎 |= 𝐾𝑆).

Proof. 𝐼𝐺,𝜎 is a model of 𝐾𝑆 iff ∀stat ∈ 𝐾𝑆 : 𝐼𝐺,𝜎 |= stat . For each shape (𝑠, 𝜙, 𝑞) ∈ 𝑆, there are
two axioms in 𝐾𝑆 . First, the axiom 𝜏target𝑞) ⊑ 𝜏name(𝑠) . Second, the axiom 𝜏name(𝑠) ≡ 𝜏constr(𝜙) .
𝐼𝐺,𝜎 must satisfy both axioms. We start by showing that 𝜏target(𝑞) ⊑ 𝜏name(𝑠) is satisfied in 𝐼𝐺,𝜎

by examining each case of 𝜏target individually:

𝜏target(⊥) = ⊥ Vacuously satisfied as ⊥ is a subset of every concept expression.

𝜏target({𝑜}) = {𝜏name(𝑜)} Target nodes consist of an enumeration of nodes. 𝜎 is only faithful if the
shape 𝑠 is assigned to all those nodes. Likewise, {𝜏name(𝑜)} constitutes a concept expression
that is an enumeration of graph nodes. As all nodes that are assigned to 𝑠 in 𝜎 are also in the
interpretation 𝜏name(𝑠)𝐼

𝐺,𝜎 of 𝜏name(𝑠) , the axiom {𝑜} ⊑ 𝜏name(𝑠) must be true in 𝐼𝐺,𝜎 .

96

6.2. From SHACL to Description Logic

𝜏target(𝑥1 ← 𝑥1 type concept) = 𝐴concept The assignment 𝜎 is only faithful if the shape 𝑠 is assigned
to all instances of concept . Due to the construction of 𝐼𝐺,𝜎 , all instances of concept are in the

interpretation 𝜏name(𝑠)𝐼
𝐺,𝜎

of 𝜏name(𝑠) . Subsequently, 𝐴concept ⊑ 𝜏name(𝑠) must be true in
𝐼𝐺,𝜎 .

𝜏target(𝑥1 ← 𝑥1 property 𝑥2) = ∃ 𝜏name(property).⊤ The assignment 𝜎 is faithful if shape 𝑠 is as-
signed to all nodes that have the given property. Since the interpretation 𝐼𝐺,𝜎 is constructed
using 𝜎, all nodes having that property must be in the interpretation 𝜏name(𝑠)𝐼

𝐺,𝜎
of 𝜏name(𝑠) .

Subsequently, ∃ 𝜏name(property).⊤ ⊑ 𝜏name(𝑠) must be true in 𝐼𝐺,𝜎 .

𝜏target(𝑥2 ← 𝑥1 property 𝑥2) = ∃ 𝜏name(property)−.⊤ The assignment 𝜎 is faithful if shape 𝑠 is as-
signed to all nodes that have the given incoming property relation. Due to the construction of
𝐼𝐺,𝜎 (c. f. Definition 17), all nodes that have an incoming relation via the property are in the in-
terpretation of 𝜏name(𝑠) . Subsequently, the axiom ∃ 𝜏name(property)−.⊤ ⊑ 𝜏name(𝑠) must be
satisfied in 𝐼𝐺,𝜎 .

We continue by showing that 𝜏constr(𝜙) ≡ 𝜏name(𝑠) is true in 𝐼𝐺,𝜎 via induction over 𝜏constr:

𝜏constr(⊤) = ⊤ If 𝜙 = ⊤ , then ⟦⊤⟧𝑜,𝐺,𝜎 evaluates to true for all nodes. Therefore the shape 𝑠 is

assigned to all nodes and subsequently the concept 𝜏name(𝑠)𝐼
𝐺,𝜎

contains all nodes due to the
construction of 𝐼𝐺,𝜎 . This is equivalent to the concept ⊤ .

𝜏constr(𝑠′) = 𝜏name(𝑠′) If 𝜙 = 𝑠′ , then ⟦𝑠′⟧𝑜,𝐺,𝜎 evaluates to true if 𝑠′ ∈ 𝜎(𝑜). Due to the construc-

tion of 𝐼𝐺,𝜎 , all nodes for which this is true must also be in the interpretation 𝜏name(𝑠)𝐼
𝐺,𝜎

of
𝜏name(𝑠) . Subsequently, the axiom 𝜏name(𝑠′) ≡ 𝜏name(𝑠) must be true in 𝐼𝐺,𝜎 .

𝜏constr(𝑜) = {𝜏name(𝑜)} If 𝜙 = 𝑜 , then ⟦𝑜⟧𝑜′,𝐺,𝜎 evaluates to true if 𝑜 = 𝑜′. Therefore, the shape
𝑠 is assigned to this node. Due to the construction of 𝐼𝐺,𝜎 , 𝜏name(𝑜) is the only one in the
interpretation of 𝜏name(𝑠)𝐼

𝐺,𝜎
. The axiom {𝜏name(𝑜)} ≡ 𝜏name(𝑠) must therefore be true in

𝐼𝐺,𝜎 .

𝜏constr(𝜙1 ∧ 𝜙2) = 𝜏constr(𝜙1) ⊓ 𝜏constr(𝜙2) Evaluation of the constraint ⟦𝜙1 ∧ 𝜙2⟧𝑜,𝐺,𝜎 evaluates
to true for those nodes for which both 𝜙1 and 𝜙2 evaluate to true. By induction hypothesis,
𝜏constr(𝜙1) = 𝐶 is a concept expression that is equivalent to the set of nodes for which 𝜙1 evalu-
ates to true. Likewise for 𝜏constr(𝜙2) = 𝐷 . The set of nodes for which both 𝜙1 and 𝜙2 evaluate to
true must therefore be the intersection of 𝐶 ⊓ 𝐷 . Due to the construction of 𝐼𝐺,𝜎 , those nodes

must also be in the interpretation 𝜏name(𝑠)𝐼
𝐺,𝜎

of 𝜏name(𝑠) . The axiom must therefore be true.

97

Chapter 6. Shape Containment

𝜏constr(¬𝜙1) = ¬𝜏constr(𝜙1) By hypothesis, 𝜏constr(𝜙1) = 𝐶 is a concept expression that is equivalent

to the set of nodes for which 𝜙1 evaluates to true. Evaluation of the constraint ⟦¬𝜙1⟧𝑜,𝐺,𝜎
evaluates to true for those nodes in which 𝜙1 evaluates to false. Since those nodes are assigned to
𝑠 in 𝜎, the interpretation 𝜏name(𝑠)𝐼

𝐺,𝜎
of 𝜏name(𝑠) must also be those nodes. This is equivalent

to the interpretation of ¬𝐶 . The axiom ¬𝐶 ≡ 𝜏name(𝑠) must therefore be satisfied in 𝐼𝐺,𝜎 .

𝜏constr(≥𝑛 𝜌.𝜙1) =≥𝑛 𝜏role(𝜌).𝜏constr(𝜙1) By hypothesis, 𝜏constr(𝜙1) = 𝐶 is a concept expression

that represents the set of graph nodes for which 𝜙1 evaluates to true. ⟦≥𝑛 𝜌.𝜙1⟧𝑜,𝐺,𝜎 eval-
uates to true for those nodes that have at least 𝑛 successors via 𝜌 and for which 𝜙1 evaluates
to true. Those nodes must also be in the interpretation 𝜏name(𝑠)𝐼

𝐺,𝜎
of 𝜏name(𝑠) . Due to the

construction of 𝐼𝐺,𝜎 , all graph nodes having 𝑛 successor via 𝜌 in 𝐺 must also have 𝑛 successors
in 𝐼𝐺,𝜎 . Subsequently, the axiom ≥𝑛 𝜏role(𝜌).𝜏constr(𝜙1) ≡ 𝜏name(𝑠) must be true in 𝐼𝐺,𝜎 .

□

Furthermore, given a finite model 𝐼 of a knowledge base 𝜏shapes(𝑆) = 𝐾𝑆 built from a set of shapes 𝑆, 𝐼
can be transformed into an RDF graph 𝐺 𝐼 and an assignment 𝜎𝐼 such that 𝜎𝐼 is faithful with respect
to 𝑆 and 𝐺 𝐼 . We construct 𝐺 𝐼 and 𝜎 in the following manner:

Definition 18 (Construction of 𝐺 𝐼 and 𝜎𝐼). Let 𝑆 be a set of shapes and 𝜏shapes(𝑆) = 𝐾𝑆 a knowledge
base constructed from 𝑆 and let 𝜏node be the inverse of the function 𝜏name. Furthermore, let 𝐼 ∈ Mod(𝐾𝑆)
be a finite model of 𝐾𝑆 . The RDF graph 𝐺 𝐼 and the assignment 𝜎𝐼 can then be constructed as follows:

1. The syntactic elements for the objects in the interpretations of all relations are interpreted as relations
between graph nodes in the RDF graph: ∀𝑝 ∈ 𝑁𝑃 : (𝑜𝐼 , 𝑜′𝐼) ∈ 𝑝𝐼 ⇒ (𝜏node(𝑜), 𝑝, 𝜏node(𝑜′)) ∈ 𝐺 𝐼 .

2. The interpretations of all concepts that are not shape names are triples indicating an instance in the
RDF graph: ∀𝐴 ∈ 𝑁𝐴 : (𝑜𝐼 ∈ 𝐴𝐼 ∧ 𝐴 ∉ Names(𝑆)) ⇒ (𝜏node(𝑜), type, 𝜏node(𝐴)) ∈ 𝐺 .

3. The interpretations of all concept names that are shape names are used to construct the assignment
𝜎: ∀𝐴 ∈ 𝑁𝐴 : (𝑜𝐼 ∈ 𝐴𝐼 ∧ 𝐴 ∈ Names(𝑆)) ⇒ 𝜏node(𝐴) ∈ 𝜎𝐼 (𝜏node(𝑜)).

An assignment 𝜎𝐼 constructed in this manner is faithful with respect to the constructed RDF graph
𝐺 𝐼 and the set of shapes 𝑆.

Theorem 10. Let 𝑆 be a set of shapes and 𝜏shapes(𝑆) = 𝐾𝑆 be a knowledge base constructed from 𝑆.
Furthermore, let 𝐼 ∈ Mod(𝐾𝑆) be a finite model for 𝐾𝑆 . The assignment 𝜎𝐼 constructed as described in
Definition 18 is faithful with respect to 𝑆 and 𝐺 𝐼 .

Proof. 𝜎𝐼 is faithful with respect to 𝑆 and 𝐺 𝐼 if two conditions hold:

98

6.2. From SHACL to Description Logic

1. Each shape is assigned to all of its target nodes.

2. If a shape is assigned to a node, then the constraint evaluates to true. Likewise, if the constraint
evaluates to true for a node, then the shape is assigned to the node.

The knowledge base 𝜏shapes(𝑆) = 𝐾𝑆 contains two axioms of the form 𝜏target(𝑞) ⊑ 𝜏name(𝑠) and
𝜏constr(𝜙) ≡ 𝜏name(𝑠) for each (𝑠, 𝜙, 𝑞) which 𝐼 ∈ Mod(𝐾𝑆) satisfies. We proceed by examining
each case of 𝜏target individually:

𝜏target(⊥) = ⊥ Vacuously satisfied as no target nodes exist.

𝜏target({𝑜}) = {𝜏name(𝑜)} The target nodes are a enumeration of nodes {𝑜} . 𝐼 is only a model if

{𝜏name(𝑜)}𝐼 ⊆ 𝜏name(𝑠)𝐼 is true. Due to the construction of 𝐺 𝐼 , all nodes 𝑜 must exist in 𝐺 𝐼 .

Due to the construction of 𝜎𝐼 , the shape 𝑠 is assigned to all nodes in 𝜏name(𝑠)𝐼 . As such, the
shape is assigned to all of its target nodes.

𝜏target(𝑥1 ← 𝑥1 type concept) = 𝐴concept Target nodes are instances of a concept. 𝐼 is only a model
if 𝐴concept

𝐼 ⊆ 𝜏name(𝑠)𝐼 is true. Due to the construction of 𝐺 𝐼 , the concept 𝐴concept and its

instances 𝐴concept
𝐼 must exist in 𝐺 𝐼 . Due to the construction of 𝜎𝐼 , 𝑠 is assigned to all nodes

in 𝐴concept
𝐼 . As such, the shape is assigned to all of its target nodes.

𝜏target(𝑥1 ← 𝑥1 property 𝑥2) = ∃ 𝜏name(property).⊤ Target nodes are all subjects of a property. 𝐼 is
only a model if ∃ 𝜏name(property).⊤𝐼 ⊆ 𝜏name(𝑠)𝐼 is true. Due to the construction of 𝐺 𝐼 , all

nodes in ∃ 𝜏name(property).⊤𝐼 must exist in 𝐺 𝐼 and have the property. Due to the construc-

tion of 𝜎𝐼 , the shape 𝑠 is assigned to all nodes in ∃ 𝜏name(property).⊤𝐼 . As such, the shape is
assigned to all of its target nodes.

𝜏target(𝑥2 ← 𝑥1 property 𝑥2) = ∃ 𝜏name(property)−.⊤ Target nodes are objects of a property. The case
is similar to the previous case.

We continue by examining each case of 𝜏constr individually:

𝜏constr(⊤) = ⊤ The constraint evaluates to true for all nodes. If 𝐼 is a model, then ⊤𝐼 = 𝜏name(𝑠)𝐼 is
true. Due to the construction of 𝜎𝐼 , 𝑠 is assigned to all nodes. As such, the shape is assigned to
all nodes for which the constraint evaluates to true.

𝜏constr(𝑠′) = 𝐴𝑠′ The constraint evaluates to true for all nodes 𝑜 for which 𝑠′ ∈ 𝜎𝐼 (𝑜). Since 𝐼 is a
model, 𝐴𝑠′ 𝐼 ≡ 𝜏name(𝑠)𝐼 must be true. Due to the construction of 𝜎𝐼 , 𝑠 is assigned to all nodes
which are also assigned to 𝑠′. As such, the shape is assigned to all nodes for which the constraint
evaluates to true.

99

Chapter 6. Shape Containment

𝜏constr(𝑜) = {𝜏name(𝑜)} The constraint evaluates only for the node 𝑜 to true. Since 𝐼 is a model,
{𝑜}𝐼 ≡ 𝜏name(𝑠)𝐼 must be true. Due to the construction of 𝜎𝐼 , 𝑠 is only assigned to the node 𝑜.

𝜏constr(𝜙1 ∧ 𝜙2) = 𝜏constr(𝜙1) ⊓ 𝜏constr(𝜙2) The constraint evaluates to true for all nodes for which 𝜙1

and 𝜙2 evaluate to true. By hypothesis, 𝜏constr(𝜙1) = 𝐶 and 𝜏constr(𝜙2) = 𝐷 represent the set of

nodes for which 𝜙1 and 𝜙2 evaluate to true, respectively. Furthermore, (𝐶 ⊓ 𝐷)𝐼 ≡ 𝜏name(𝑠)𝐼

is true if 𝐼 is a model. Due to the construction of 𝜎𝐼 , the shape 𝑠 is assigned to all nodes in
(𝐶 ⊓ 𝐷)𝐼 . The shape is therefore assigned to all nodes for which the constraint evaluates to
true.

𝜏constr(¬𝜙1) = ¬𝜏constr(𝜙1) The constraint evaluates to true for all nodes for which 𝜙1 does not eval-
uate to true. By hypothesis, 𝜏constr(𝜙1) = 𝐶 represent the set of nodes for which 𝜙1 evaluates to

true. Furthermore, since 𝐼 is a model, (¬𝐶)𝐼 = 𝜏name(𝑠)𝐼 must be true. Due to the construction
of 𝜎𝐼 , the shape 𝑠 is assigned to all nodes for which 𝜙1 evaluates to false. The shape is therefore
assigned to all nodes for which the constraint evaluates to true.

𝜏constr(≥𝑛 𝜌.𝜙1) =≥𝑛 𝜏role(𝜌).𝜏constr(𝜙1) The constraint evaluates to true for all nodes that have 𝑛
successors via 𝜌 for which the constraint 𝜙1 evaluates to true. By hypothesis, 𝜏constr(𝜙1) = 𝐶
is the set of nodes for which 𝜙1 evaluates to true. Futhermore, since 𝐼 is a model,
(≥𝑛 𝜏role(𝜌).𝜏constr(𝐶))𝐼 = 𝜏name(𝑠)𝐼 . Due to the construction of 𝜎𝐼 , the shape 𝑠 is assigned to
all nodes that have 𝑛 successors and that are in the interpretation of 𝐶 𝐼 . The shape is therefore
assigned to all nodes for which the constraint evaluates to true.

□

Given the translation rules and semantic equivalence between models of a description logic and
assignments for SHACL shapes, we can leverage description logics for deciding shape containment.
Assume a set of shapes 𝑆 containing definitions for two shapes 𝑠 and 𝑠′. Those shapes are represented
by atomic concepts of the same name in the knowledge base 𝐾𝑆 . Deciding whether the shape 𝑠 is
contained in the shape 𝑠′ is equivalent to deciding concept subsumption between 𝑠 and 𝑠′ in 𝐾𝑆 using
finite model reasoning.

Theorem 11 (Shape containment and concept subsumption). Let 𝑆 be a set of shapes and 𝜏shapes(𝑆) =
𝐾𝑆 a knowledge base constructed from 𝑆. Then it holds that:

𝑠 <:𝑆 𝑠′ with 𝑠, 𝑠′ ∈ Names(𝑆) ⇔ 𝐾𝑆 |=finite 𝜏name(𝑠) ⊑ 𝜏name(𝑠′)

Proof. Intuitively, the two problems are equivalent because any counterexample for one side of the
equivalence relation could always be translated into a counterexample for the other side. We proceed

100

6.2. From SHACL to Description Logic

by showing both directions of the equivalence relation. If 𝐾𝑆 ̸ |=finite 𝜏name(𝑠) ⊑ 𝜏name(𝑠′) , then there
is a finite model of 𝐾𝑆 in which 𝜏name(𝑠) ⊑ 𝜏name(𝑠′) is not true. Instead, there must be a model in
which the concept expression 𝜏name(𝑠) ⊓ ¬𝜏name(𝑠′) is true. Using Definition 18, this model can be
translated into an RDF graph and an assignment (c. f. Theorem 10) that acts as a counterexample for
𝑠 being contained in 𝑠′. If 𝐾𝑆 |=finite 𝜏name(𝑠) ⊑ 𝜏name(𝑠′) , then there is no finite model in which
𝜏name(𝑠) ⊑ 𝜏name(𝑠′) is not true. Subsequently, there cannot be an RDF graph and an assignment
that acts as a counterexample to 𝑠 being contained in 𝑠′, because this could be translated into a finite
model of 𝐾𝑆 using Definition 17 (c. f. Theorem 9) and we know that no such model exists.

□

As an example, let us reconsider the set of shapes 𝑆3 as defined in Section 6.1. The knowledge base
𝜏shapes(𝑆3) = 𝐾𝑆3 is constructed as follows:

𝐾𝑆3 = { Student ⊑ StudentShape,

≥1studiesAt.⊤ ⊓ ∀ studiesAt.UniversityShape ⊓ Person ≡ StudentShape,

Person ⊑ PersonShape,

=1 hasName.⊤ ≡ PersonShape,

⊥ ⊑ UniversityShape,

≥1 locatedIn.⊤ ⊓ University ≡ UniversityShape,

⊥ ⊑ OnlineUniversityShape,

≥1 studiesAt−.Person ⊓ University ≡ OnlineUniversityShape }

Again, it holds that 𝐾𝑆3 ̸ |= OnlineUniversityShape ⊑ UniversityShape as there is a counterexample that
can be constructed from the RDF graph and faithful assignment as shown in Figure 6.1. The inter-
pretation 𝐼1 = (·𝐼 ,Δ𝐼) can be defined as follows: The universe is constructed from the graph nodes
Δ𝐼1 = { 𝑏1 , 𝑏2 , “...” }. Interpretations of concepts and relations are then as follows: Person𝐼1 = { 𝑏1 },
University𝐼1 = { 𝑏2 }, hasName𝐼1 = {(𝑏1 , “...”)} and studiesAt𝐼1 = {(𝑏1 , 𝑏2)}. In this interpretation, it
holds that 𝐼1 |= 𝑏2 : OnlineUniversityShape ⊓ ¬UniversityShape .

For shapes belonging to the SHACL variant used in this thesis, the corresponding description logic
is ALCOIQ, for which finite satisfiability is known to be decidable [61]. Thus, the translation can
be used to decide containment between SHACL shapes.

101

Chapter 6. Shape Containment

6.3. Deciding Shape Containment using Standard
Entailment

While shape containment can be decided usign finite model reasoning, practical usability of the ap-
proach depends on whether existing reasoner implementations can be leveraged. Implementations
that are readily-available rely on standard entailment, which includes infinitely large models. THis
thesis therefore also investigates the soundness and completeness of the approach using the standard
entailment relation.

For certain description logics, there is a guarantee that, if a model exists, it is a finite one. In these
cases, standard entailment and finite model reasoning are the same.

Definition 19 (Finite Model Property). A description logic has the finite model property if every concept
that is satisfiable with respect to an knowledge base has a finite model [19, 84].

If 𝐶 is a concept expression that is satisfiable with respect to some knowledge base 𝐾 that belongs
to a description logic having the finite model property, then there must be a finite model of 𝐾 that
shows the satisfiability of 𝐶.

As mentioned earlier in Section 6.2, a knowledge base 𝐾𝑆 built from a set of shapes 𝑆 belongs to
the description logic ALCOIQ. The finite model property does not hold for the description logic
ALCOIQ. However, it is possible to restrict SHACL such that the corresponding description logic
has the finite model property. In particular, one needs to restrict the use of relations to only allow
for forward-facing relations (denoted by 𝑝). That is, assume a set of SHACL shapes 𝑆non-inv in which
constraints 𝜙 and queries for target nodes 𝑞 are restricted to the grammar

𝜙non-inv ::= ⊤ | 𝑠 | 𝑜 | 𝜙 ∧ 𝜙 |≥𝑛 𝑝.𝜙
𝑞non-inv ::= ⊥ | {𝑜} | 𝑥1 ← 𝑥1 type concept | 𝑥1 ← 𝑥1 property 𝑥2

As we do not need to cover inverse roles I anymore, the corresponding description logic of 𝑆non-inv
is ALCOQ. Figure 6.2 shows syntax and semantics of concept expressions in the description logic
ALCOQ. Syntax and semantics of axioms do not change.

For the description logic ALCOQ, it is known that it has the finite model property. If a concept
𝐶 is satisfiable with respect to a knowledge base 𝐾 written in ALCOQ, then there is a finite model
showing the satisfiability of 𝐶 with respect to 𝐾 .

Proposition 4. The description logic ALCOQ has the finite model property [69].

Subsequently, for the subset of SHACL shapes 𝑆non-inv, the problems of shape containment and
concept subsumption in the knowledge base constructed from 𝑆non-inv are equivalent.

102

6.3. Deciding Shape Containment using Standard Entailment

Constructor Name Syntax Semantics

atomic property 𝑝 𝑝𝐼 ⊆ Δ𝐼 × Δ𝐼

atomic concept 𝐴 𝐴𝐼 ⊆ Δ𝐼

nominal concept {𝑜} {𝑜𝐼 }

top ⊤ Δ𝐼

negation ¬𝐶 Δ𝐼 \ 𝐶 𝐼
conjunction 𝐶 ⊓ 𝐷 𝐶 𝐼 ∩ 𝐷 𝐼
qualified number restriction ≥𝑛 𝑝.𝐶 {𝑜 | |{𝑜′ | (𝑜, 𝑜′) ∈ 𝑝𝐼 ∧ 𝑜′ ∈ 𝐶 𝐼 }| ≥ 𝑛}

Figure 6.2.: Syntax and Semantics of properties 𝑝 and concept expressions𝐶, 𝐷 in the description logicALCOQ.

Theorem 12. Let 𝑆non-inv be a set of shapes constructed using the constraint grammar 𝜙non-inv. The asso-
ciated description logic is ALCOQ. Let 𝜏shapes(𝑆non-inv) = 𝐾𝑆non-inv be the knowledge base constructed
from 𝑆non-inv. Then it holds that

𝑠 <:𝑆 𝑠′ with 𝑠, 𝑠′ ∈ Names(𝑆non-inv) ⇔ 𝐾𝑆non-inv |= 𝜏name(𝑠) ⊑ 𝜏name(𝑠′)

Proof. As described inTheorem 11, if there is an RDF data graph and an assignment that acts as a coun-
terexample for 𝑠 being subsumed by 𝑠′, then it can be translated into a finite model that shows that
𝐾𝑆non-inv ̸ |= 𝜏name(𝑠) ⊑ 𝜏name(𝑠′) . On the other hand, there may be a model that acts as a counterex-

ample showing that 𝐾𝑆non-inv ̸ |= 𝜏name(𝑠) ⊑ 𝜏name(𝑠′) . Since ALCOQ has the finite model property
(c. f. Proposition 4), there must be a finite model that can also be used as a counterexample. Therefore,
a model exists that can be translated into an RDF data graph and an assignment such that 𝑠 is not
subsumed by 𝑠′. □

For the full definitions of SHACL as used in this thesis however, the corresponding description logic
is ALCOIQ. That is, it is possible to use inverse role expressions in constraints. In particular, they
are necessary as Chapter 5 makes use of them in several places, for example when deriving shapes
from queries. The finite model property does not hold for ALCOIQ.

Proposition 5. The finite model property does not hold for the description logicALCOIQ. If a concept
𝐶 is satisfiable with respect to a knowledge base 𝐾 written in ALCOIQ, then it may be that there are
only models with an infinitely large universe.

To highlight Proposition 5, consider the following example adapted from [28]:

𝐾infinite = { Student ⊑ ∃ tutors.Student ⊓ ≤1 tutors−.⊤,
BrilliantStudent ⊑ Student ⊓ ≤0 tutors−.⊤ }

103

Chapter 6. Shape Containment

Each Student tutors some other Student and is tutored by at most one. Furthermore, a
BrilliantStudent is a Student whom no one tutors. The concept BrilliantStudent is satisfiable, but
not finitely satisfiable. An object that is an instance of BrilliantStudent must have a second object
that it can tutor. This second object must be an instance of Student which means that it must tutor
another instance of Student . This leads to an infinite sequence of students.

Subsequently, given Proposition 5, it may be that only models with an infinitely large universe exist
that show the satisfiability of a concept expression. We can distinguish three different possibilities:

Finitely Satisfiable Infinitely Satisfiable Result
𝜏name(𝑠) ⊓ ¬𝜏name(𝑠′) Yes Yes 𝐾𝑆 ̸ |= 𝜏name(𝑠) ⊑ 𝜏name(𝑠′)
𝜏name(𝑠) ⊓ ¬𝜏name(𝑠′) No Yes 𝐾𝑆 ̸ |= 𝜏name(𝑠) ⊑ 𝜏name(𝑠′)
𝜏name(𝑠) ⊓ ¬𝜏name(𝑠′) No No 𝐾𝑆 |= 𝜏name(𝑠) ⊑ 𝜏name(𝑠′)

Two important observations can be made: First, if 𝐾𝑆 |= 𝜏name(𝑠) ⊑ 𝜏name(𝑠′) , then it means that

neither a finitely nor an infinitely large model exists. Second, if 𝐾𝑆 ̸ |= 𝜏name(𝑠) ⊑ 𝜏name(𝑠′) , then
it may be that there is only an infinitely large model which acts as a counterexample. In this case,
shape 𝑠 would be contained in shape 𝑠′ for all possible RDF graphs, since the only counterexample
found by the corresponding knowledge base has no corresponding RDF graph. Therefore, for the DL
ALCOIQ, deciding shape containment is sound but incomplete.

Theorem 13. Let 𝑆 be a set of shapes constructed by using the constraint grammar 𝜙 and the target node
grammar 𝑞. Deciding shape containment is sound but incomplete, as it holds that:

𝑠 <:𝑆 𝑠′ with 𝑠, 𝑠′ ∈ Names(𝑆) ⇐ 𝜏shapes(𝑆) |= 𝜏name(𝑠) ⊑ 𝜏name(𝑠′)

Proof. For the complete SHACL definitions, the corresponding description logic is ALCOIQ for
which the finite model property does not hold. If 𝐾𝑆 |= 𝜏name(𝑠) ⊑ 𝜏name(𝑠′) , then neither finitely
nor infinitely large models exist. The shape 𝑠 must therefore be contained in the shape 𝑠′ as there is
no RDF graph and assignment that acts as a counterexample. □

Subsequently, deciding shape containment in a set of shapes 𝑆 via a translation to a description logic
knowledge base is sound—that is, if a knowledge base infers that 𝐾𝑆 |= 𝜏name(𝑠) ⊑ 𝜏name(𝑠′) , then it

must be that shape 𝑠 is contained in 𝑠′. However, it is also incomplete as 𝐾𝑆 ̸ |= 𝜏name(𝑠) ⊑ 𝜏name(𝑠′)
does not mean that it is possible to find a counterexample for 𝑠 being contained in 𝑠′.

6.4. Effects on Algorithmic Type Checking for 𝝀SHACL
For SHACL constraints that support inverse roles, a translation of the shape containment problem
into a description logics subsumption problem provides a sound but incomplete approach to deciding

104

6.5. Summary and Discussion

shape subsumption. In case of 𝜆SHACL however, it provides a considerable improvement over the sub-
type predicate as shown in Algorithm 12. While 𝜆SHACL is dependent on inverse role expressions for
typing projections and queries, the new approach to shape containment allows for using the complete
constraint grammar. The subtyping predicate therefore simply translates the set of shapes into a de-
scription logics knowledge base using a function tRanslate and then uses established DL reasoners
to decide containment (see Algorithm 14).

Algorithm 14 Improved definition of subtype for 𝜆SHACL.
function subtype(𝑆, 𝑇 , 𝑇 ′)

match (𝑇 , 𝑇 ′) with
case … then … ⊲ existing cases

case (𝑠, 𝑠′) when 𝜏shapes(𝑆) |= 𝜏name(𝑠) ⊑ 𝜏name(𝑠′) then true

case _ then false

Algorithm 15 Improved definition of lub for 𝜆SHACL.
global variables

𝑆, a set of shapes
function lub(𝑇 , 𝑇 ′)

match (𝑇 , 𝑇 ′) with
case … then … ⊲ existing cases

case (𝑠, 𝑠′) when (𝑠, 𝜙, 𝑞) ∈ 𝑆 and (𝑠′, 𝜙′, 𝑞′) ∈ 𝑆 and 𝑠lub is genShapeName() then
𝑆 ← 𝑆 ∪ {(𝑠lub, 𝜙 ∨ 𝜙′,⊥)}
𝑠lub

case _ then Top

Using the complete constraint grammar also allows us to update the least upper bound lub aswe can
now express disjunction between two constraints. The least-upper bound lub simply creates a new
shape that combines the constraints of the two input shapes using disjunction. The greatest-lower
bound glb does not change (see Algorithm 15).

6.5. Summary and Discussion

In this chapter, we have considered shape containment between SHACL shapes via a translation to
description logics. Results show that for the subset of SHACL that does not support inverse roles or
even more advanced property path expressions, the reduction to description logics provides a sound
and complete way of deciding shape containment. In case of more expressive constraints that include

105

Chapter 6. Shape Containment

inverse role expressions or target node queries that query for objects of properties, the reduction to de-
scription logics remains sound but is incomplete. This in turn allows for an improved implementation
of the type system described in Chapter 5.

106

CHAPTER 7
Related Work
This work is related to several areas of research. First, we are related to RDF Schema Languages in
general. Second, we are concerned with providing types for queries that require a subtype relation in
the type system. As the subtype relation indicates a subset relation between sets of values, this brings
us to the field of containment problems. Lastly, our work integrates new types into programming
languages. As such, we are related to the field of Language Integration and the various approaches
used there.

7.1. RDF Schema Languages

Several schema languages exist for RDF. First, there is the W3C recommendation RDF Schema
(RDFS) [6]. However, RDFS is not a schema language in the validation sense (c. f., JSON Schema [5] or
XML Schema [42]) but rather an ontology language that allows inferring implicit facts using a fixed-
point semantics that applies the rules as defined in the ontology until a fixpoint has been reached.
Similarly, the Web Ontology Language (OWL) [47] is an ontology language that is rooted in descrip-
tion logics [18] featuring a possible world semantics. It allows for modeling incomplete knowledge
by interpreting missing relations and nodes as implicit. As shown in Chapter 4, it can be used for
type-checking. The type system ensures that the data is used according to the conventions defined
in the ontology—for example, that only relations are accessed for which it is known that a node has
them. However, a developer must still consider implicit knowledge when writing a program. Even if
a node is an instance of a concept ∃ studiesAt.⊤ , it may be that accessing the studiesAt relation for
the node yields an empty list.

In terms of dedicated constraint mechanisms, several approaches exist. [41] introduces constraints
into RDF that are evaluated via a translation to SPARQL, whereas [16] evaluates constraints using
chasing algorithms as used in database theory. For description logics, several proposals have been
made. Constraints can be introduced as new forms of special constraint axioms [90, 71]. Another
approach is to introduce an epistemic operator into the construction of axioms [38]. Lastly, of certain
predicates can be marked as complete [79]. To the best of our knowledge, Stardog [11] is the only
triplestore that allows for using both, standard DL axioms and constraints axioms. Constraint axioms

107

Chapter 7. Related Work

are evaluated by a translation to SPARQL (similar to [90]) in this case.
In terms of dedicated constraint languages, SPIN [10] allows for expressing rules and constraints as

SPARQL queries. It is officially superseded by SHACL since 2017 [3]. Shex [9] is a constraint language
inspired by XML schema languages. Contrary to the SHACL semantics [35] used in this thesis, ShEx
does not rely on a possible world semantics. While ShEx supports everything required for a type
system as defined in Chapter 5, we chose SHACL due to it being a W3C recommendation.

7.2. Containment Problems

Containment problems are well known in the context of types, such as highlighted by typing for
XML and its schema languages [56, 62, 30]. In the context of RDF, containment has been investigated
for ShEx [87] schemata, which serves the same purpose as SHACL but is inspired by XML schema
languages. The containment problem in ShEx is, e. g., comparable to the containment of regular ex-
pressions.

SHACL without recursion can be evaluated through queries [34]. Subsequently, shapes can be
represented as queries. In this case, containment of shapes is equivalent to query containment. Again,
the containment problem for queries is well known, for highly expressive query languages [26] as well
as containment for queries with constraints imposed by some form of schema [29, 55]. However, the
SHACL subset used in this thesis is too expressive to allow for deciding containment of SHACL shapes
through query containment.

Chapter 6 instead used a translation of the SHACL shape containment problem into a description
logic subsumption problem. Subsumption problems in description logics are a fundamental operation.
Depending on the expressiveness of the description logic, various algorithms for deciding subsumption
exist (e. g. [25, 54]) as well as various optimization techniques [52]. Most approaches are based on
semantic tableaux [19].

7.3. Language Integration

The integration of data models into programming languages is a well-known problem. In general,
we consider four different ways of integrating a data model into a programming language: By using
generic representations, by mappings into the target language, through a preprocessing step before
compilation, or through language extensions and custom languages.

Generic Representations Generic representations offer easy integration into programming
languages and have the advantage that they can represent anything the data can model. They rely on
types on ameta-level such asAxiom (e. g. [51],Node [32], or Statement [2]. In that, they are comparable

108

7.3. Language Integration

to generic representations such as DOM [1] for XML [92]. However, types on ameta-level do not allow
a static type-checker to verify a program with respect to the data. This leaves correctness entirely in
the hands of the programmer.

Mappings Mapping approaches use schematic information of the data model to create types in
the target language. Type checking therefore check the valid use of the derived types in programs.
This approach has been successfully used for SQL [75], XML [92, 63, 17]. [63, 89] describe more
general approaches. Naturally, mappings have been studied in a semantic data context, too. The
focus is on transforming conceptual statements of schema languages into types of the programming
language. Frameworks include ActiveRDF [76], Owl2Java [58], Jastor [4] RDFReactor [8], Àgogo [78]
and LITEQ [66]. An important point is that all these approaches work on ontologies. So far, no
approach exists that makes use of SHACL. The do, however, provide some level of type-checking
that can help in avoiding errors. On the other hand, mapping approaches for ontologies are also
limited. OWL ontologies may mix structural and nominal typing whereas types in programming
languages typically use only one of the two approaches. Ontologies often provide only extremely
general information on domain and range of relation occur frequently. For example, the relation
foaf:made is defined such that the domain is an Agent and the range a Thing . Frameworks often resolve

such situations by assigning these relations to every type they create whereas they usually assign the
most general type as a result type. They then leave it to the developer to cast values to their correct
type. This is an error-prone approach. Lastly, all mapping frameworks have problems with the large
number of potential types in semantic data sources.

Precompilation A separate precompilation step, where the source code is statically analyzed and
then transformed, is another way to solve the problem of integrating data models into programming
languages. Especially queries embedded in programming languages can be verified in this manner.
While this approach can verify a program with respect to the data, interaction between the language
and the newly integrated data model is problematic. Furthermore, complexity arises from the fact that
the transformation needs to preserve all constructs supported by the host language. The approach has
been applied to, for example, SQL queries [93]. Such an approach has also been applied for SPARQL
in a limited manner [46]—however, only for queries that can be typed with primitive types such as
integer. Queries returning graph nodes are typed generically as Resource.

Language extensions and custom languages Themost powerful approaches create new
languages or extend existing ones to accommodate the specific requirements of the data model. While
they are complex, they allow for total control over typing, subtyping and interaction between pro-
gramming language and data model. Examples for such extensions are concerned with relationships
and XML data [23] and easy data access to relational and XML data [22]. Another example concerns

109

Chapter 7. Related Work

the programming language support for the XML data model specifically in terms of regular expression
types, as in the languages CDuce [20] and XDuce [56]. While RDF graphs could be seen as simple XML
documents, the XML-focused approaches do not address challenges that arise from the possible world
semantics used by the schema language as used for RDF data. Similarly, polymorphic record types in
object-oriented database systems [74] are oriented towards structural typing. For data in the Semantic
Web, a mixture between nominal and structural typing is needed. Refinement types, e. g., as provided
by F* [88] are somewhat closer to the types as defined in this thesis. They allow for capturing pre-
and postconditions of functions at the type level and to verify correctness statically. By contrast, DL
expressions are logic formulae over nominal and structural type properties. They define new types
which are subject to DL-based reasoning for type checking leveraging their possible worlds semantics.
Similarly, SHACL shapes cannot be fully encoded in F* due to the possible world semantics. Another
related approach is the idea of functional logic programming [48]. However, this thesis emphasizes
type-checking on data axiomatized in logic over the integration of the logic programming paradigm
into a language.

The typecase construct of 𝜆DL as defined in Chapter 4 is inspired by other forms of typecase such
as those in the context of dynamic typing [13], intensional polymorphism [36], and generic functional
programming [64]. None of these forms are concerned with RDF data or RDF schema languages.

Language extensions and custom approaches have also been implemented for semantic data. Exam-
ples include rule-based programming [57] as well as a transformation and validation language [82].
However, both are untyped. A typed approach to linked data—a specific kind of semantic data—is
provided by [50, 33]. Similarly, Zhi# [77], an extension of the C# language provides an integration for
OWL ontologies, albeit it only considers explicitly given statements. To the best of our knowledge,
only implementations of 𝜆DL [85, 49], as described in Chapter 4, consider implicit statements during
the type checking process.

110

CHAPTER 8
Conclusion
Summary In this thesis, we developed two type-safe languages, 𝜆DL and 𝜆SHACL, for working with
RDF data graphs as used in the Semantic Web. We leveraged two different schema languages for this:
The Ontology Web Language (OWL), or rather is theoretic foundations in the form of description
logics, and the Shape Constraint Language (SHACL). Both languages feature new forms of types and
typed data access.

In case of description logics, we used concept expressions as new forms of types. As they are syn-
tactic symbols that semantically represent sets of objects (or graph nodes), this was a natural choice.
While type-safety was achieved, several noteworthy effects come into play due to the open-world
assumption employed by description logics. First, the typecase construct has the interesting require-
ment of needing a default-case. This is because we require certain knowledge. For a given node, it is
certain that it is an instance of Student ⊔ ¬Student . However, when we first ask whether the node
is an instance of Student and then ask whether the node is an instance of ¬Student , it may be that
the answer is false in both cases. This is because there may be some models that satisfy the data and
schematic restrictions, but which do not agree whether the graph node is an instance of Student . This
is unusual behavior compared to other existing typecase constructs. Second, given an object bob that
is an instance of the concept expression ∃ hasName.⊤ , it may still be that the programming language
term o.hasName yields an empty list. This is because description logics allow for modeling unknown
knowledge. It may be that it is known that a place of study must exist, but is currently not contained
in the data. This behavior is contrary to what a developer typically expects.

This prompted the investigation of a second type system based on a fixed domain. For this, we
leveraged SHACL. While shape names are used as type names, they semantically represent the set
of nodes conforming to the shape. Assuming a node bob conforms to a shape that guarantees the
presence of a hasName relation, the term o.hasName where o represents bob will yield results.
However, SHACL so far does not support implicit knowledge that can be derived using ontologies.
Furthermore, subtyping between shapes requires deciding shape containment—which is an open issue.
Subsequently, subtyping in 𝜆SHACL is limited.

Lastly, we investigated a possible translation of shape containment to concept subsumption in de-
scription logics. In general, shape containment can be decided via counterexamples. A shape 𝑠 must

111

Chapter 8. Conclusion

be contained in a shape 𝑠′ if it is not possible to find a counterexample. Likewise, description logics
decide concept subsumption through counterexamples. Given a set of shapes, it is possible to define
an equivalent knowledge base such that atomic concepts represent shape names. In this case, a finite
model of that knowledge base is equivalent to an RDF graph and a faithful assignment in SHACL. If
a finite model is a counterexample to concept subsumption, then it also acts as a counterexample for
shape containment. This allows implementations of 𝜆SHACL to leverage description logic reasoners for
subtyping.

Future Work The presented approach can be extended in several directions.

Combining 𝜆DL and 𝜆SHACL In practice, a developer probably wants the best of both worlds. The abil-
ity to derive implicit facts from given knowledge using OWL ontologies is just as desirable as
having concrete guarantees about the data as provided by SHACL. Future work should, therefore
investigate a type system that combines both—OWL and SHACL—and allows for using either DL
concept expressions or SHACL shapes as types, depending on the situation. Most importantly,
this requires the ability to use subtyping between shape names and concept expressions.

Enhanced Querying While the query language chosen in this thesis is themost commonly used SPARQL
fragment [80], it only supports a small subset of SPARQL features. Advanced features such as
disjunction, filter expressions or more powerful property path expressions should be considered.
However, this must be done carefully to avoid undecidability in the underlying description logic.

Polymorphism Polymorphism is a standard feature in modern programming languages. In particular
ad-hoc polymorphism and function overloading, meaning that a function defined over several
types can act differently depending on the type, is challenging in case of working with RDF data
graphs. Any graph node belongs to many different types that may not be in a hierarchy. Sub-
sequently, future work should investigate how ad-hoc polymorphism and function overloading
can be defined—in particular, how it can be decided which function should be applied and how
conflicting cases that require the decision of a developer can be identified.

Modification of data Lastly, neither 𝜆DL nor 𝜆SHACL have any way of modifying data. However, ap-
plications often do no not only consume data but also modify existing data or insert new data
points. The type system should also support these kinds of operations and give guarantees about
the changes made by a program—e. g., that inserting new data will not violate existing SHACL
constraints.

Implementations of 𝜆DL and 𝜆SHACL including tooling While we did integrate 𝜆DL into Scala (c. f. [85]) and
do plan to do so for 𝜆SHACL as well, application development is typicallymore than just a program-
ming language. Developers rely on powerful tools in IDEs such as autocompletion. It remains

112

future work to investigate how 𝜆DL and 𝜆SHACL can be integrated into programming languages
such that IDEs and other tools to not break.

A user study of 𝜆DL and 𝜆SHACL While both languages 𝜆DL and 𝜆SHACL are sound from a theoretic point
of view, their impact on practical application development remains to be seen. While static type
systems appear to improve productivity [39], a user study is required to verify that the additional
checks of the type system outweigh the restrictions on the expressiveness in case of programming
with RDF data graphs.

113

Bibliography
[1] Document Object Model (DOM), https://www.w3.org/DOM/

[2] Eclipse rdf4j, http://rdf4j.org/

[3] From SPIN To SHACL, https://spinrdf.org/spin-shacl.html

[4] Jastor: Typesafe, Ontology Driven RDF Access from Java, http://jastor.sourceforge.net/

[5] json-schema.org: The home of JSON Schema, http://json-schema.org/

[6] RDF Schema 1.1, https://www.w3.org/TR/rdf-schema/

[7] RDFox, https://www.cs.ox.ac.uk/isg/tools/RDFox/

[8] Semweb4j: RDF2Go and RDFReactor, https://www.aifb.kit.edu/web/Semweb4j

[9] ShEx: Shape Expressions, https://shex.io/

[10] SPIN: SPARQL Inferencing Notation, https://spinrdf.org/

[11] Stardog: The Enterprise Knowledge Graph Platform, https://www.stardog.com/

[12] Abadi, M., Cardelli, L.: An Imperative Object Calculus. In: Proceedings of TAPSOFT: The-
ory and Practice of Software Development. pp. 471–485. LNCS, Springer (1995). doi: 10.1007/
3-540-59293-8_214

[13] Abadi, M., Cardelli, L., Pierce, B.C., Rémy, D.: Dynamic Typing in Polymorphic Languages. Jour-
nal Functional Programming 5(1), 111–130 (1995). doi: 10.1017/S095679680000126X

[14] Abbas, A., Genevès, P., Roisin, C., Layaïda, N.: Optimising SPARQL Query Evaluation in the
Presence of ShEx Constraints. In: BDA 2017 - 33ème conférence sur la “ Gestion de Données -
Principes, Technologies et Applications ”. pp. 1–12 (Nov 2017)

[15] Abbas, A., Genevès, P., Roisin, C., Layaïda, N.: SPARQL Query Containment with ShEx Con-
straints. In: Proceedings of the Advances in Databases and Information Systems (ADBIS 2017).
LNCS, vol. 10509, pp. 343–356. Springer (2017). doi: 10.1007/978-3-319-66917-5_23

115

https://www.w3.org/DOM/
http://rdf4j.org/
https://spinrdf.org/spin-shacl.html
http://jastor.sourceforge.net/
http://json-schema.org/
https://www.w3.org/TR/rdf-schema/
https://www.cs.ox.ac.uk/isg/tools/RDFox/
https://www.aifb.kit.edu/web/Semweb4j
https://shex.io/
https://spinrdf.org/
https://www.stardog.com/

Bibliography

[16] Akhtar, W., Cortés-Calabuig, A., Paredaens, J.: Constraints in RDF. In: Semantics in Data
and Knowledge Bases - 4th International Workshops (SDKB 2010). LNCS, vol. 6834, pp. 23–39.
Springer (2010). doi: 10.1007/978-3-642-23441-5_2, https://doi.org/10.1007/978-3-642-23441-5_2

[17] Alagic, S., Bernstein, P.A.: Mapping XSD to OO Schemas. In: Object Databases, Second In-
ternational Conference (ICOODB 2009). LNCS, vol. 5936, pp. 149–166. Springer (2009). doi:
10.1007/978-3-642-14681-7_9

[18] Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Descrip-
tion Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press
(2003)

[19] Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description Logic. Cambridge
University Press, 1st edn. (2017)

[20] Benzaken, V., Castagna, G., Frisch, A.: CDuce: An XML-centric General-purpose Language. In:
Proceedings of the 8th International Conference on Functional Programming (ICFP 2003). pp.
51–63. ACM (2003). doi: 10.1145/944705.944711

[21] Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American 284(5), 34–43
(May 2001)

[22] Bierman, G.M., Meijer, E., Schulte, W.: The Essence of Data Access in Comega. In: Proceedings
of the 19th Conference on Object-Oriented Programming (ECOOP 2005). LNCS, vol. 3586, pp.
287–311. Springer (2005). doi: 10.1007/11531142_13

[23] Bierman, G.M., Wren, A.S.: First-Class Relationships in an Object-Oriented Language. In: Pro-
ceedings of the 19th European Conference on Object-Oriented Programming (ECOOP 2005).
LNCS, vol. 3586, pp. 262–286. Springer (2005). doi: 10.1007/11531142_12

[24] Bischof, S., Krötzsch, M., Polleres, A., Rudolph, S.: Schema-AgnosticQuery Rewriting in SPARQL
1.1. In: Proceedings of the 13th International Semantic Web Conference (ISWC). pp. 584–600.
LNCS, Springer (2014). doi: 10.1007/978-3-319-11964-9_37

[25] Borgida, A., Patel-Schneider, P.F.: A Semantics and Complete Algorithm for Subsumption in the
CLASSIC Description Logic. Journal of Artificial Intelligence Research 1, 277–308 (1994). doi:
10.1613/jair.56

[26] Bourhis, P., Krötzsch, M., Rudolph, S.: Reasonable Highly Expressive Query Languages. In: Pro-
ceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI 2015). pp.
2826–2832. AAAI Press (2015)

116

https://doi.org/10.1007/978-3-642-23441-5_2

Bibliography

[27] Bourhis, P., Reutter, J.L., Suárez, F., Vrgoč, D.: JSON: Data Model, Query Languages and Schema
Specification. In: Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Princi-
ples of Database Systems. pp. 123–135. PODS ’17, ACM (2017). doi: 10.1145/3034786.3056120

[28] Calvanese, D.: Finite Model Reasoning in Description Logics. In: Proceedings of the 5th Inter-
national Conference on Principles of Knowledge Representation and Reasoning (KR 1996). pp.
292–303. Morgan Kaufmann (1996)

[29] Calvanese, D., De Giacomo, G., Lenzerini, M.: On the Decidability of Query Containment under
Constraints. In: Proceedings of the 17th Symposium on Principles of Database Systems (PODS
1998). pp. 149–158. ACM Press (1998). doi: 10.1145/275487.275504

[30] Calvanese, D., De Giacomo, G., Lenzerini, M.: Representing and Reasoning on XML Documents:
A Description Logic Approach. Journal of Logic and Computation 9(3), 295–318 (1999). doi: 10.
1093/logcom/9.3.295

[31] Cardelli, L., Wegner, P.: On Understanding Types, Data Abstraction, and Polymorphism. ACM
Computing Surveys 17(4), 471–523 (Dec 1985)

[32] Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.: Jena: im-
plementing the semantic web recommendations. In: Proceedings of the 13th Conference on
World Wide Web - Alternate Track Papers & Posters (WWW 2004). pp. 74–83. ACM (2004). doi:
10.1145/1013367.1013381

[33] Ciobanu, G., Horne, R., Sassone, V.: Minimal type inference for Linked Data consumers. Journal
of Logical and Algebraic Methods in Programming 84(4), 485–504 (2015). doi: 10.1016/j.jlamp.
2014.12.005

[34] Corman, J., Florenzano, F., Reutter, J.L., Savkovic, O.: Validating Shacl Constraints over a Sparql
Endpoint. In: Proceedings of the 18th International Semantic Web Conference (ISWC 2019).
LNCS, vol. 11778, pp. 145–163. Springer (2019). doi: 10.1007/978-3-030-30793-6_9

[35] Corman, J., Reutter, J.L., Savkovic, O.: Semantics and Validation of Recursive SHACL. In: Pro-
ceedings of the 17th International Semantic Web Conference (ISWC). LNCS, vol. 11136, pp. 318–
336. Springer (2018). doi: 10.1007/978-3-030-00671-6_19

[36] Crary, K., Weirich, S., Morrisett, J.G.: Intensional polymorphism in type-erasure semantics. Jour-
nal of Functional Programming 12(6), 567–600 (2002). doi: 10.1017/S0956796801004282

[37] Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1 Concepts and Abstract Syntax. W3C Recommen-
dation (2014), https://www.w3.org/TR/rdf11-concepts/

117

https://www.w3.org/TR/rdf11-concepts/

Bibliography

[38] Donini, F.M., Nardi, D., Rosati, R.: Description Logics of Minimal Knowledge and Negation As
Failure. ACM Transactions on Computational Logic (TOCL) 3(2), 177–225 (Apr 2002). doi: 10.
1145/505372.505373

[39] Endrikat, S., Hanenberg, S., Robbes, R., Stefik, A.: How do API documentation and static typing
affect API usability? In: Proceedings of the 36th International Conference on Software Engineer-
ing (ICSE 2014). pp. 632–642. ACM (2014). doi: 10.1145/2568225.2568299

[40] Fernandez, M.F., Suciu, D.: Optimizing Regular Path Expressions Using Graph Schemas. In: Pro-
ceedings of the 14th International Conference on Data Engineering. pp. 14–23. IEEE Computer
Society (1998). doi: 10.1109/ICDE.1998.655753

[41] Fischer, P.M., Lausen, G., Schätzle, A., Schmidt, M.: RDF Constraint Checking. In: Proceedings of
the Workshops of the EDBT/ICDT 2015 Joint Conference (EDBT/ICDT). CEUR Workshop Pro-
ceedings, vol. 1330, pp. 205–212. CEUR-WS.org (2015), http://ceur-ws.org/Vol-1330/paper-33.pdf

[42] Gao, S.S., Sperberg-McQueen, C.M., Thompson, H.S.: W3C XML Schema Definition Language
(XSD) 1.1 Part 1: Structures.W3CRecommendation (2012), https://www.w3.org/TR/xmlschema11-1/

[43] Gerakios, P., Fourtounis, G., Smaragdakis, Y.: Foo: a minimal modern OO calculus. In: Proceed-
ings of the 17th Workshop on Formal Techniques for Java-like Programs (FTfJP). pp. 3:1–3:4.
ACM (2015). doi: 10.1145/2786536.2786540

[44] Glew, N.: Type Dispatch for Named Hierarchical Types. In: Proceedings of the International
Conference on Functional Programming (ICFP). pp. 172–182. ACM (1999). doi: 10.1145/317636.
317797

[45] Glimm, B., Ogbuji, C.: SPARQL 1.1 Entailment Regimes. W3C Recommendation (2013), https:
//www.w3.org/TR/sparql11-entailment/

[46] Groppe, S., Neumann, J., Linnemann, V.: SWOBE - Embedding the SemanticWeb Languages RDF,
SPARQL and SPARUL into Java for Guaranteeing Type Safety, for Checking the Satisfiability of
Queries and for the Determination of Query Result Types. In: Proceedings of the 2009 ACM
SymposiumonApplied Computing (SAC 2009). pp. 1239–1246. ACM (2009). doi: 10.1145/1529282.
1529561

[47] Group, W.O.W.: OWL 2 Web Ontology Language: Document Overview. W3C Recommendation
(2012), https://www.w3.org/TR/owl2-overview/

[48] Hanus, M.: The Integration of Functions into Logic Programming: From Theory to Practice.
Journal of Logic Programming 19/20, 583–628 (1994). doi: 10.1016/0743-1066(94)90034-5, https:
//doi.org/10.1016/0743-1066(94)90034-5

118

http://ceur-ws.org/Vol-1330/paper-33.pdf
https://www.w3.org/TR/xmlschema11-1/
https://www.w3.org/TR/sparql11-entailment/
https://www.w3.org/TR/sparql11-entailment/
https://www.w3.org/TR/owl2-overview/
https://doi.org/10.1016/0743-1066(94)90034-5
https://doi.org/10.1016/0743-1066(94)90034-5

Bibliography

[49] Hartenfels, C., Leinberger, M., Lämmel, R., Staab, S.: Type-Safe Programming with OWL in Se-
mantics4J. In: Proceedings of the ISWC 2017 Posters &Demonstrations and Industry Tracks, 16th
International Semantic Web Conference (ISWC 2017). CEUR Workshop Proceedings, vol. 1963.
CEUR-WS.org (2017), http://ceur-ws.org/Vol-1963/paper549.pdf

[50] Horne, R., Sassone, V.: A verified algebra for read-write Linked Data. Science of Computer Pro-
gramming 89, 2–22 (2014). doi: 10.1016/j.scico.2013.07.005

[51] Horridge, M., Bechhofer, S.: The OWL API: A Java API for OWL ontologies. Semantic Web 2(1),
11–21 (2011)

[52] Horrocks, I.: Implementation and Optimization Techniques. In: The Description Logic Hand-
book: Theory, Implementation, andApplications, pp. 306–346. Cambridge University Press (2003)

[53] Horrocks, I.: Ontologies and the Semantic Web. Communications of the ACM 51(12), 58–67 (Dec
2008). doi: 10.1145/1409360.1409377

[54] Horrocks, I., Kutz, O., Sattler, U.: The Even More Irresistible SROIQ. In: Proceedings of the 10th
International Conference on Principles of Knowledge Representation and Reasoning (KR). pp.
57–67. AAAI Press (2006)

[55] Horrocks, I., Sattler, U., Tessaris, S., Tobies, S.: How to Decide Query Containment under Con-
straints Using a Description Logic. In: Logic for Programming and Automated Reasoning. pp.
326–343. Springer (2000)

[56] Hosoya, H., Pierce, B.C.: XDuce: A Statically Typed XML Processing Language. ACM Transac-
tions on Internet Technology (TOIT) 3(2), 117–148 (May 2003). doi: 10.1145/767193.767195

[57] Käfer, T., Harth, A.: Rule-based Programming of User Agents for Linked Data. In: Workshop
on Linked Data on the Web. CEUR Workshop Proceedings, vol. 2073. CEUR-WS.org (2018), http:
//ceur-ws.org/Vol-2073/article-05.pdf

[58] Kalyanpur, A., Pastor, D.J., Battle, S., Padget, J.A.: Automatic Mapping of OWL Ontologies into
Java. In: Proceedings of the 16th International Conference on Software Engineering&Knowledge
Engineering (SEKE’2004). pp. 98–103 (2004)

[59] Knublauch, H., et al.: Shapes Constraint Language (SHACL).W3C Recommendation (2017), https:
//www.w3.org/TR/shacl/

[60] Kollia, I., Glimm, B., Horrocks, I.: Query Answering over SROIQ Knowledge Bases with SPARQL.
In: Proceedings of the 24th International Workshop on Description Logics (DL 2011). CEUR
Workshop Proceedings, vol. 745. CEUR-WS.org (2011)

119

http://ceur-ws.org/Vol-1963/paper549.pdf
http://ceur-ws.org/Vol-2073/article-05.pdf
http://ceur-ws.org/Vol-2073/article-05.pdf
https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl/

Bibliography

[61] Kotek, T., Simkus, M., Veith, H., Zuleger, F.: Extending ALCQIO with Trees. In: Proceedings of
the 30th Symposium on Logic in Computer Science (LICS). pp. 511–522. IEEE Computer Society
(2015). doi: 10.1109/LICS.2015.54

[62] Kuper, G.M., Siméon, J.: Subsumption for XML types. In: Proceedings of the 8th International
Conference on Database Theory (ICDT 2001). LNCS, vol. 1973, pp. 331–345. Springer (2001). doi:
10.1007/3-540-44503-X_21

[63] Lämmel, R., Meijer, E.: Revealing the X/O Impedance Mismatch - (Changing Lead into Gold). In:
Datatype-Generic Programming - International Spring School (SSDGP 2006). LNCS, vol. 4719,
pp. 285–367. Springer (2006). doi: 10.1007/978-3-540-76786-2_6

[64] Lämmel, R., Peyton Jones, S.L.: Scrap your boilerplate: a practical design pattern for generic
programming. In: Proceedings the International Workshop on Types in Languages Design and
Implementation (TLDI 2003). pp. 26–37. ACM (2003). doi: 10.1145/604174.604179

[65] Leinberger, M., Lämmel, R., Staab, S.: The Essence of Functional Programming on Semantic Data.
In: Proceedings of the 26th European Symposium on Programming (ESOP 2017). LNCS, vol.
10201, pp. 750–776. Springer (2017). doi: 10.1007/978-3-662-54434-1_28

[66] Leinberger, M., Scheglmann, S., Lämmel, R., Staab, S., Thimm, M., Viegas, E.: Semantic Web
Application Development with LITEQ. In: Proceedings of the 13th International Semantic
Web Conference (ISWC 2014). LNCS, vol. 8797, pp. 212–227. Springer (2014). doi: 10.1007/
978-3-319-11915-1_14

[67] Leinberger, M., Seifer, P., Rienstra, T., Lämmel, R., Staab, S.: Deciding SHACL Shape Con-
tainment Through Description Logics Reasoning. In: Proceedings of the 19th International
Semantic Web Conference (ISWC 2020). LNCS, vol. 12506, pp. 366–383. Springer (2020). doi:
10.1007/978-3-030-62419-4_21

[68] Leinberger, M., Seifer, P., Schon, C., Lämmel, R., Staab, S.: Type Checking Program Code Using
SHACL. In: Proceedings of the 18th International Semantic Web Conference (ISWC 2019). LNCS,
vol. 11778, pp. 399–417. Springer (2019). doi: 10.1007/978-3-030-30793-6_23

[69] Lutz, C., Areces, C., Horrocks, I., Sattler, U.: Keys, nominals, and concrete domains. Journal of
Artificial Intelligence Research 23, 667–726 (2004). doi: 10.1613/jair.1542

[70] Milner, R.: A Theory of Type Polymorphism in Programming. Journal of Computer and System
Sciences 17(3), 348–375 (1978). doi: 10.1016/0022-0000(78)90014-4

[71] Motik, B., Horrocks, I., Sattler, U.: Adding Integrity Constraints to OWL. In: Proceedings 2007
Workshop on OWL (OWLED 2007). CEURWorkshop Proceedings, vol. 258. CEUR-WS.org (2007)

120

Bibliography

[72] Motik, B., Shearer, R., Horrocks, I.: Hypertableau Reasoning for Description Logics. Journal of
Artificial Intelligence Research 36, 165–228 (2009)

[73] Norvig, P.: The Semantic Web and the Semantics of the Web: Where Does Meaning Come From?
In: Proceedings of the 25th International Conference on World Wide Web (WWW 2016). p. 1.
ACM (2016). doi: 10.1145/2872427.2874818

[74] Ohori, A., Buneman, P., Breazu-Tannen, V.: Database Programming in Machiavelli—a Poly-
morphic Language with Static Type Inference. In: Proceedings of the 1989 ACM SIGMOD In-
ternational Conference on Management of Data (SIGMOD 1989). pp. 46–57. ACM (1989). doi:
10.1145/67544.66931

[75] O’Neil, E.J.: Object/relational mapping 2008: hibernate and the entity data model (edm). In: Pro-
ceedings of the International Conference onManagement of Data (SIGMOD 2008). pp. 1351–1356.
ACM (2008). doi: 10.1145/1376616.1376773

[76] Oren, E., Delbru, R., Gerke, S., Haller, A., Decker, S.: ActiveRDF: object-oriented semantic web
programming. In: Proceedings of the 16th International Conference onWorldWideWeb (WWW
2007). pp. 817–824. ACM (2007). doi: 10.1145/1242572.1242682

[77] Paar, A., Vrandecic, D.: Zhi# - OWL Aware Compilation. In: Proceedings of the 8th Extended
Semantic Web Conference (ESWC 2011). LNCS, vol. 6644, pp. 315–329. Springer (2011). doi: 10.
1007/978-3-642-21064-8_22

[78] Parreiras, F.S., Saathoff, C., Walter, T., Franz, T., Staab, S.: à gogo: Automatic Generation of
OntologyAPIs. In: Proceedings of the 3rd IEEE International Conference on Semantic Computing
(ICSC 2009). pp. 342–348. IEEE Computer Society (2009). doi: 10.1109/ICSC.2009.90

[79] Patel-Schneider, P.F., Franconi, E.: Ontology Constraints in Incomplete and Complete Data. In:
Proceedings 11th International SemanticWeb Conference (ISWC 2012). LNCS, vol. 7649, pp. 444–
459. Springer (2012). doi: 10.1007/978-3-642-35176-1_28

[80] Picalausa, F., Luo, Y., Fletcher, G.H.L., Hidders, J., Vansummeren, S.: A Structural Approach
to Indexing Triples. In: Proceedings of the 9th International Conference on The Semantic Web
(ESWC). pp. 406–421. LNCS, Springer (2012). doi: 10.1007/978-3-642-30284-8_34

[81] Pierce, B.C.: Types and Programming Languages. The MIT Press, 1st edn. (2002)

[82] Prud’hommeaux, E., Gayo, J.E.L., Solbrig, H.R.: Shape expressions: an RDF validation and trans-
formation language. In: Proceedings of the 10th International Conference on Semantic Systems
(SEMANTICS 2014). pp. 32–40. ACM (2014). doi: 10.1145/2660517.2660523

121

Bibliography

[83] Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C Recommendation
(2013), https://www.w3.org/TR/rdf-sparql-query/

[84] Rudolph, S.: Foundations of Description Logics, pp. 76–136. Springer (2011). doi: 10.1007/
978-3-642-23032-5_2

[85] Seifer, P., Leinberger, M., Lämmel, R., Staab, S.: Semantic Query Integration With Reason. Pro-
gramming Journal 3(3), 13 (2019). doi: 10.22152/programming-journal.org/2019/3/13

[86] Staab, S., Studer, R.: Handbook on Ontologies. Springer, 2nd edn. (2009)

[87] Staworko, S., Wieczorek, P.: Containment of Shape Expression Schemas for RDF. In: Proceedings
of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS
2019). pp. 303–319. ACM (2019). doi: 10.1145/3294052.3319687

[88] Swamy, N., Chen, J., Fournet, C., Strub, P., Bhargavan, K., Yang, J.: Secure distributed program-
ming with value-dependent types. In: Proceeding of the 16th International Conference on Func-
tional Programming (ICFP 2011). pp. 266–278. ACM (2011). doi: 10.1145/2034773.2034811

[89] Syme, D., Battocchi, K., Takeda, K., Malayeri, D., Petricek, T.: Themes in information-rich
functional programming for internet-scale data sources. In: Proceedings of the Workshop on
Data Driven Functional Programming (DDFP 2013). pp. 1–4. ACM (2013). doi: 10.1145/2429376.
2429378

[90] Tao, J., Sirin, E., Bao, J., McGuinness, D.L.: Integrity Constraints in OWL. In: Proceedings 24th
Conference on Artificial Intelligence (AAAI 2010). AAAI Press (2010)

[91] Vrandecic, D., Krötzsch, M.: Wikidata: a free collaborative knowledge base. Communications of
the ACM 57(10), 78–85 (2014). doi: 10.1145/2629489

[92] Wallace, M., Runciman, C.: Haskell and XML: Generic Combinators or Type-Based Translation?
In: Proceedings of International Conference on Functional Programming (ICFP). pp. 148–159.
ACM (1999)

[93] Wassermann, G., Gould, C., Su, Z., Devanbu, P.T.: Static checking of dynamically generated
queries in database applications. ACM Transactions on Software Engineering and Methodology
(TOSEM) 16(4), 14 (2007). doi: 10.1145/1276933.1276935

122

https://www.w3.org/TR/rdf-sparql-query/

APPENDIX A
Soundness of 𝜆Full
The language 𝜆Full as introduced in Chapter 3 is sound. That is, a well-typed program does not get
stuck unless it reaches a point where it tries to compute head nil[𝑇] or tail nil[𝑇] for any type 𝑇 .
For this, we show progress of preservation. The proof is taken from Types and Programming Lan-
guages [81] with slight modifications. We start by observing the well-typed values that are contained
in the language:

Lemma 4. Let 𝑣 be a well-typed value. Then one of the following must be true:

1. If 𝑣 is a value of type Bool , then either 𝑣 = true or 𝑣 = false .

2. If 𝑣 is a value of type Nat , then 𝑣 is a numerical value 𝑛𝑣 according to the grammar defined in
Figure 2.1.

3. If 𝑣 is a value of type {𝑙𝑖 : 𝑇𝑖 𝑖∈1...𝑛} then 𝑣 must be a record of the form {𝑙 𝑗 : 𝑡 𝑗 𝑗∈1...𝑚} with
{𝑙𝑖} ⊆ {𝑙 𝑗} and Γ ⊢ 𝑡𝑖 : 𝑇𝑖 for all cases in which 𝑖 = 𝑗 .

4. If 𝑣 is a value of type List 𝑇 , then 𝑣 is either an empty list nil[𝑇] or of the form cons 𝑣1 . . . nil[𝑇1]
with 𝑇1 <: 𝑇 and Γ, ⊢ 𝑣1 : 𝑇 .

5. If 𝑣 is a value of type 𝑇 → 𝑇 ′ , then 𝑣 is a 𝜆-abstraction 𝜆 𝑥 :𝑇1 . 𝑡2 with 𝑇1 <: 𝑇 and Γ, 𝑥 : 𝑇1 ⊢
𝑡2 : 𝑇 ′.

Given Lemma 4, we can show that a well-typed term is either a value or it can take a step.

Theorem 14 (Progress). Let 𝑡 be a closed, well-typed term. If 𝑡 is not a value, then there exists a term
𝑡 ′ such that 𝑡 → 𝑡 ′. If Γ ⊢ 𝑡 : 𝑇 , then 𝑡 is either a value, a term containing the forms head nil[𝑇] or

tail nil[𝑇] , or there is some 𝑡 ′ with 𝑡 → 𝑡 ′.

Proof. By induction on the derivation of Γ ⊢ 𝑡 : 𝑇 .

T-VAR Impossible since we are only looking at closed terms.

T-TRUE Immediate, since true is a value.

123

Appendix A. Soundness of 𝜆Full

T-FALSE Immediate, since false is a value.

T-IF 𝑡 = if 𝑡1 then 𝑡2 else 𝑡3, Γ ⊢ 𝑡1 : Bool.
By hypothesis, 𝑡1 is a value or it can take a step. If it can take a step, rule e-if applies. If it is
a value, then by Lemma 4, either 𝑡1 = true or 𝑡1 = false . In this case, either rules e-iftRue or
e-iffalse apply.

T-ZERO Immediate, sicne 0 is a value.

T-SUCC 𝑡 = succ 𝑡1, Γ ⊢ 𝑡1 : Nat.
By hypothesis, 𝑡1 is a value or it can take a step. If it can take a step, rule e-succ applies. If it is a
value, then by Lemma 4, 𝑡1 = nv . The term succ nv is also a value.

T-PRED 𝑡 = pred 𝑡1, Γ ⊢ 𝑡1 : Nat.
By hypothesis, 𝑡1 is a value or it can take a step. If it can take a step, rule e-pRed applies. If it is a
value, then by Lemma 4, 𝑡1 = succ nv or 𝑡1 = 0 . In those cases, rules e-pRedsucc or e-pRedzeRo
apply.

T-ISZERO 𝑡 = iszero 𝑡1, Γ ⊢ 𝑡1 : Nat.
By hypothesis, 𝑡1 is a value or it can take a step. If it can take a step, rule e-iszeRo applies. If it is
a value, then by Lemma 4, 𝑡1 = succ nv or 𝑡1 = 0 . Either rule e-iszeRosucc or rule e-iszeRozeRo
apply.

T-APP 𝑡 = 𝑡1 𝑡2, Γ ⊢ 𝑡1 : 𝑇11 → 𝑇12, Γ ⊢ 𝑡2 : 𝑇11.
By hypothesis, 𝑡1 and 𝑡2 are either values or they can take a step. If they can take a step, rules
e-app1 or e-app2 apply. If both are values, then by the canonical forms lemma (Lemma 4),
𝑡1 = 𝜆 𝑥 :𝑇11 . 𝑡11 and rule e-appabs applies.

T-APP 𝑡 = let 𝑥= 𝑡1 in 𝑡2, Γ ⊢ 𝑡1 : 𝑇1, (Γ, 𝑥 : 𝑇1) ⊢ 𝑡2 : 𝑇2.
By hypothesis, 𝑡1 is either a value or it can make a step. If it can, then rule e-let applies. If it is
a value, then rule e-letv applies.

T-FIX 𝑡 = fix 𝑡1, Γ ⊢ 𝑡 : 𝑇1, Γ ⊢ 𝑡1 : 𝑇1 → 𝑇1.
By induction hypothesis, 𝑡1 is either a value or it can take a step. If it can take a step, rule e-fix
applies. If its a value, by the canonical forms lemma (Lemma 4), 𝑡1 = 𝜆 𝑥 :𝑇1 . 𝑡2 . Therefore, rule
e-fix21 applies.

T-NIL Immediate, since nil[𝑇] is a value.

T-CONS 𝑡 = cons 𝑡1 𝑡2, 𝑆, Γ ⊢ 𝑡1 : 𝑇1, Γ ⊢ 𝑡2 : List 𝑇1.
By hypothesis, 𝑡1 and 𝑡2 are either values or they can take a step. If they can take a step, then
rules e-cons1 or e-cons2 apply. If both 𝑡1 and 𝑡2 are values, then 𝑡 is also a value.

124

T-ABS Immediate, since 𝜆 𝑥 :𝑇 . 𝑡1 is value.

T-ISNIL 𝑡 = isNil 𝑡1, Γ ⊢ 𝑡1 : List 𝑇1.
By hypothesis, 𝑡1 is a value or it can take a step. If it can take a step, then rule e-isnil-3 applies. If
it is a value, then by Lemma 4, 𝑡 = nil[𝑇] or 𝑡 = cons 𝑣1 Then either rule e-isnil1 or e-isnil2
apply.

T-HEAD 𝑡 = head 𝑡1, Γ ⊢ 𝑡1 : List 𝑇1.
By hypothesis, 𝑡1 is either a value or it can take a step. If it can take a step, rule e-head applies.
If it is a value, then by Lemma 4, either 𝑡 = nil[𝑇] or 𝑡 = cons 𝑣1 Then either rule e-head1
applies or the term is in the accepted normal form 𝑡 = head nil[𝑇] .

T-TAIL 𝑡 = tail 𝑡1, Γ ⊢ 𝑡1 : List 𝑇1. By hypothesis, 𝑡1 is either a value or it can take a step. If it can take
a step, then rule E-TAIL applies. If it is a value, then by Lemma 4, either 𝑡 = nil or 𝑡 = cons 𝑣
Then either rule e-tailv applies or the term is in the accepted normal form 𝑡 = tail nil[𝑇] .

T-RCD 𝑡 = {𝑙𝑖 : 𝑇𝑖 𝑖∈1...𝑛}, for each 𝑖 : Γ ⊢ 𝑡𝑖 : 𝑇𝑖 .
By induction hypothesis, each 𝑡𝑖 is either a value or it can take a step. If one can take a step, then
rule e-Rcd applies. If each 𝑡𝑖 is a value, then 𝑡 is also a value.

T-PROJ 𝑡 = 𝑡1.𝑙𝑖 , Γ ⊢ 𝑡1 : {𝑙𝑖 : 𝑇𝑖 𝑖∈1...𝑛}.
By hypothesis, 𝑡1 is either a value or it can take a step. If it can take a step, then rule e-pRoj. If it
is a value, then by Lemma 4, then 𝑡 = {𝑙𝑖 : 𝑣𝑖 𝑖∈1...𝑛} and rule e-pRojRcd applies.

T-SUB Results follow from induction hypothesis.

□

For proving preservation, we require an additional lemma that says that substitution preserves the
type.

Lemma 5 (Substitution). If (Γ, 𝑥 : 𝑇2) ⊢ 𝑡 : 𝑇1 and Γ ⊢ 𝑡2 : 𝑇2, then Γ ⊢ [𝑥 ↦→ 𝑡2]𝑡1 : 𝑇1. Substitution
therefore preserves the type [81].

We can now show that if a term takes a step by the evaluation rules, its type is preserved.

Theorem 15 (Preservation). Let 𝑡 be a term and 𝑇 a type. If Γ ⊢ 𝑡 : 𝑇 and 𝑡 → 𝑡 ′, then Γ ⊢ 𝑡 ′ : 𝑇 .

Proof. By induction of the derivation of Γ ⊢ 𝑡 : 𝑇 .

T-VAR Cannot happen as we are only looking at closed terms.

T-TRUE Vacuously fulfilled, since true is a value.

125

Appendix A. Soundness of 𝜆Full

T-FALSE Vacuously fulfilled, since false is a value.

T-IF 𝑡 = if 𝑡1 then 𝑡2 else 𝑡3, Γ ⊢ 𝑡1 : Bool, Γ ⊢ 𝑡 : 𝑇 .
There are three rules by which 𝑡 ′ can be derived: e-if, e-iftRue and e-iffalse.

1. 𝑡 ′ = if 𝑡 ′1 then 𝑡2 else 𝑡3. By hypothesis, 𝑡1 −→ 𝑡 ′1 preserves the type. Therefore, by rule T-IF,
𝑡 : 𝑇 .

2. 𝑡1 = true, 𝑡 ′ = 𝑡2. By rule t-if, 𝑡2 : 𝑇 .

3. 𝑡1 = false, 𝑡 ′ = 𝑡3. Same as second case.

T-ZERO Vacuously satisfied since 0 is a value.

T-SUCC 𝑡 = succ 𝑡1, Γ ⊢ 𝑡1 : Nat, Γ ⊢ 𝑡 : Nat.
There is only one rule e-succ by which 𝑡 ′ = succ 𝑡 ′1 can be derived. By hypothesis, 𝑡1 −→ 𝑡 ′1
preserves the type. Therefore, rule t-succ applies again and 𝑡 ′ : Nat preserves the type.

T-PRED 𝑡 = pred 𝑡1, Γ ⊢ 𝑡1 : Nat, Γ ⊢ 𝑡 : Nat.
There are two rules by which 𝑡 ′ can be derived: e-pRedzeRo and e-pRedsucc.

1. 𝑡1 = 0, 𝑡 ′ = 0. By rule t-zeRo, 𝑡 ′ : Nat .

2. 𝑡1 = succ nv1, 𝑡 ′ = nv1. By rule t-zeRo or t-succ, it must be that 𝑡 ′ : Nat . The type is
preserved.

T-ISZERO 𝑡 = iszero 𝑡1, Γ ⊢ 𝑡1 : Nat, Γ ⊢ 𝑡 : Bool.
There are three rules by which 𝑡 ′ can be derived: e-iszeRozeRo, e-iszeRosucc and e-iszeRo.

1. 𝑡1 = 0, 𝑡 ′ = true. By rule t-tRue, 𝑡 ′ : Bool . The type is preserved.

2. 𝑡1 = succ nv1, 𝑡 ′ = false. By rule t-false, 𝑡 ′ : Bool .

3. 𝑡 ′ = iszero 𝑡 ′1. By induction hypothesis, 𝑡1 −→ 𝑡 ′1 preserves the type. Therefore, by rule
t-iszeRo, 𝑡 ′ : Bool .

T-ABS Vacuously fulfilled, since 𝜆 𝑥 :𝑇 . 𝑡1 is value.

T-APP 𝑡 = 𝑡1 𝑡2, Γ ⊢ 𝑡1 : 𝑇11 → 𝑇12, Γ ⊢ 𝑡2 : 𝑇11, 𝑆2, Γ ⊢ 𝑡1𝑡2 : 𝑇12.
There are three rules by which 𝑡 ′ can be derived: e-app1, e-app2 and e-appabs.

1. 𝑡 ′ = 𝑡 ′1 𝑡2 By induction hypothesis, 𝑡1 → 𝑡 ′1 preserves the type. Therefore, by rule t-app,
𝑡 ′ : 𝑇12.

2. 𝑡 ′ = 𝑣1 𝑡
′
2. Same as first case.

3. 𝑡 ′ = [𝑥 ↦→ 𝑣2]𝑡12. By Lemma 5, substitution preserves the type. Therefore 𝑡 ′ : 𝑇12.

126

T-LET 𝑡 = let 𝑥= 𝑡1 in 𝑡2, Γ ⊢ 𝑡1 : 𝑇1, (Γ, 𝑥 : 𝑇1) ⊢ 𝑡2 : 𝑇2, Γ ⊢ 𝑡 : 𝑇2.
There are two ways 𝑡 can be reduced: e-let and e-letv.

1. 𝑡 ′ = let 𝑥= 𝑡 ′1 in 𝑡2. By induction hypothesis, 𝑡1 → 𝑡 ′1 preserves the type. Then by rule t-let,
𝑡 ′ : 𝑇2.

2. 𝑡 ′ = [𝑥 ↦→ 𝑣1]𝑡2. By Lemma 5, the type is preserved, therefore 𝑡 ′ : 𝑇2.

T-FIX 𝑡 = fix 𝑡1, Γ ⊢ 𝑡1 : 𝑇1 → 𝑇1, Γ ⊢ 𝑡 : 𝑇1.
There are two rules by which 𝑡 can be reduced: e-fix1 and e-fix2.

1. 𝑡 ′ = [𝑥 ↦→ fix (𝜆 𝑥 :𝑇1 . 𝑡2)]𝑡2. By Lemma 5, the type is preserved, therefore 𝑡 ′ : 𝑇1.

2. 𝑡 ′ = fix 𝑡 ′1. By induction hypothesis, 𝑡1 → 𝑡 ′1 preserves the type. Then, by t-fix, 𝑡 ′ : 𝑇1.

T-RCD 𝑡 = {𝑙𝑖 = 𝑡𝑖 𝑖∈1...𝑛}, for each 𝑖 : Γ ⊢ 𝑡𝑖 : 𝑇𝑖 , Γ ⊢ 𝑡 : {𝑙𝑖 : 𝑇 𝑖∈1...𝑛𝑖 }.
𝑡 ′ can only be derived be rule e-Rcd in which 𝑡𝑖 −→ 𝑡 ′𝑖 . By hypothesis, this preserves the type.

T-RCDPROJ 𝑡 = 𝑡1.𝑙 𝑗 , Γ ⊢ 𝑡1 : {𝑙𝑖 : 𝑇 𝑖∈1...𝑛𝑖 }, Γ ⊢ 𝑡 : 𝑇𝑗 .
There are two rules by which 𝑡 ′ can be derived: e-pRoj and e-pRojRcd.

1. 𝑡 = {𝑙𝑖 = 𝑣𝑖
𝑖∈1...𝑛}, 𝑡 ′ = 𝑣 𝑗 . Due to rule t-Rcd and t-pRojRcd, 𝑣 𝑗 must have type 𝑇𝑗 .

Therefore, 𝑡 ′ : 𝑇𝑗 .

2. 𝑡 ′ = 𝑡 ′1.𝑙 𝑗 . By hypothesis, 𝑡1 −→ 𝑡 ′1 preserves the type. Therefore, 𝑡 ′ : 𝑇𝑗 .

T-NIL Vacuously fulfilled, since nil[𝑇] is a value.

T-CONS 𝑡 = cons 𝑡1 𝑡2, Γ ⊢ 𝑡1 : 𝑇1, Γ ⊢ 𝑡2 : List 𝑇1, Γ ⊢ 𝑡 : List 𝑇1. There are two rules by which 𝑡 ′

can be derived: e-cons1 and e-cons2.

1. 𝑡 ′ = cons 𝑡 ′1𝑡2. By hypothesis, 𝑡1 −→ 𝑡 ′1 preserves the type. Therefore, by rule t-cons,
𝑡 ′ : List 𝑇1 .

2. 𝑡 ′ = cons 𝑣1𝑡
′
2. Same as first case.

T-ISNIL 𝑡 = isNil 𝑡1, Γ ⊢ 𝑡1 : List 𝑇1, Γ ⊢ 𝑡 : Bool.
There are three rules by which 𝑡 ′ can be derived: e-isnil1, e-isnil2 and e-isnil3.

𝑡 ′ = true. By rule t-tRue, 𝑡 ′ : Bool .

𝑡 ′ = false. By rule t-fase, 𝑡 ′ : Bool .

𝑡 ′ = isNil 𝑡 ′1. By hypothesis, 𝑡1 −→ 𝑡 ′1 preserves the type. Therefore, by rule t-isnil, 𝑡 ′ : Bool .

T-HEAD 𝑡 = head 𝑡1, Γ ⊢ 𝑡1 : List 𝑇1. Γ ⊢ 𝑡 : 𝑇1.
There are two rules by which 𝑡 ′ can be derived: e-head and e-headv.

127

Appendix A. Soundness of 𝜆Full

1. 𝑡1 = cons 𝑣1 𝑣2, 𝑡 ′ = 𝑣1. By rule t-cons, 𝑣1 must be of type 𝑇1. Therefore, 𝑡 ′ : 𝑇1.

2. 𝑡 ′ = head 𝑡 ′1. By hypothesis, 𝑡1 −→ 𝑡 ′1 preserves the type. Therefore, by rule t-head, 𝑡 ′ : 𝑇1.

T-TAIL 𝑡 = tail 𝑡1, Γ ⊢ 𝑡1 : List 𝑇1, Γ ⊢ tail 𝑡1 : List 𝑇1.
There are two rules by which 𝑡 ′ can be derived: e-tail and e-tailv.

1. 𝑡1 = cons 𝑣1 𝑣2, 𝑡 ′ = 𝑣2. Due to rules t-cons, 𝑣2 must have type List𝑇1. Therefore, 𝑡 ′ : List 𝑇1 .

2. 𝑡 ′ = tail 𝑡 ′1. By hypothesis, 𝑡1 −→ 𝑡 ′1 preserves the type. Therefore, by rule T-TAIL,
𝑡 ′ : List 𝑇1 .

T-SUB Results follows from induction hypothesis.

□

As a direct consequence of Theorem 14 and Theorem 15, 𝜆Full is sound. A well typed term cannot
get stuck unless it contains the form head nil[𝑇] or tail nil[𝑇] .

128

List of Figures
1.1. Stylized depiction of a knowledge graph. 1
1.2. Example that combines the data graphs of two Web sites with an ontology 2
1.3. SHACL shape that enforces that every instance of Person has a hasName relation. . . . 4

2.1. Syntax and evaluation rules for arithmetic expressions (NB). 10
2.2. Typing rules for arithmetic expressions (NB). 13
2.3. An example of an RDF graph 𝐺1 (left) and its representation as a set of triples (right). . 17
2.4. RDF graph 𝐺1 serialized using N3 Notation (namespace definitions are omitted). 18
2.5. Syntax and Evaluation rules of conjunctive queries (CQs). 19
2.6. SPARQL query in both abstract syntax (left) and standard SPARQL syntax (right). . . . 20
2.7. Syntax and Semantics of roles 𝑟 and concept expressions 𝐶, 𝐷 in the description logic

ALCOIQ. 22
2.8. Concept expressions derived from concept expressions as defined in Figure 2.7. 22
2.9. Syntax and Semantics of axioms in the description logic ALCOIQ. 23
2.10. Example knowledge base 𝐾1. 24
2.11. A small knowledge base 𝐾2 (left) and its RDF data graph (implicit knowledge in dashed

lines). 26
2.12. A small knowledge base 𝐾3 (left) and its RDF data graph (implicit knowledge in dashed

lines). 27
2.13. An example of an RDF data graph 𝐺2. 28
2.14. Example of a SHACL shape graph 𝑆1 in N3 Notation. 28
2.15. Validation report highlighting erroneous area in the graph 𝐺2 (missing nodes and

edges in dashed lines). 29
2.16. Syntax and Evaluation rules of SHACL constraints. 30
2.17. An example of a problematic, recursive constraint definition and RDF graph 𝐺rec. . . . 31
2.18. General form of target node queries in SHACL. 31
2.19. RDF graph that is conformant to 𝑆1 shown through the faithful assignment 𝜎1. 33
2.20. RDF data graph𝐺3 that conforms to the set of shapes 𝑆2 even though no nodes conform

to any shapes. 33

3.1. Simply typed 𝜆-calculus (𝜆→) with booleans, numerical values and let bindings. 37
3.2. Typing rules for the simply typed 𝜆-calculus (𝜆→). 40

129

List of Figures

3.3. Simply typed 𝜆-calculus with subtyping (𝜆<:). 43
3.4. Fixpoint operator for recursion. 46
3.5. Rules for a 𝜆-calculus enriched with records. 48
3.6. Rules for lists in the 𝜆-calculus. 52

4.1. Example knowledge base 𝐾4. 57
4.2. Rules for assigning concepts to variables in queries. 58
4.3. Syntax, Semantics and type system rules for 𝜆DL. 61
4.4. Syntax and Evaluation rules of the typecase expression. 66

5.1. Example SHACL shape graph. 74
5.2. Examples for graphs that conform to the shape graph in Figure 5.2. 75
5.3. Rules for assigning shapes to variables in queries. 76
5.4. Syntax, Semantics and type system rules for 𝜆SHACL. 78
5.5. Basic example for multiple faithful assignments. 87

6.1. Counterexample that proves that OnlineUniversityShape is not contained in Universi-

tyShape. 92
6.2. Syntax and Semantics of properties 𝑝 and concept expressions 𝐶, 𝐷 in the description

logic ALCOQ. 103

130

List of Algorithms

1. Definition of typeof for 𝜆→. 42
2. Definition of typeof and subtype for 𝜆<:. 44
3. Definition of lub and glb for 𝜆<:. 45
4. Definition of typeof and subtype for 𝜆Records . 50
5. Definition of lub and glb for 𝜆Records . 51
6. Definition of typeof and subtype for 𝜆Full . 54
7. Definition of lub and glb for 𝜆Full . 54

8. Definition of typeof and subtype for 𝜆DL. 64
9. Definition of lub and glb for 𝜆DL. 64

10. Definition of typeof for 𝜆SHACL. 81
11. Definition of subtype for 𝜆SHACL. 82
12. Definition of lub and glb for 𝜆SHACL. 82
13. Definition of elaboRate for 𝜆SHACL. 83

14. Improved definition of subtype for 𝜆SHACL. 105
15. Improved definition of lub for 𝜆SHACL. 105

131

MARTIN GERHARD LEINBERGER
Institute for Web Science and Technologies, University of Koblenz-Landau

Universitätsstr. 1, 56073 Koblenz

EDUCATION AND QUALIFICATION

University of Koblenz-Landau, Koblenz 2011 - 2013
Master of Science in Computer Science

Johannes Gutenberg University, Mainz 2007 - 2011
Bachelor of Science in Computer Science

POSITIONS

Scientific Assistant at Institute for Web Science and Technologies Nov 2013 - Present
University of Koblenz-Landau, Koblenz

Intern at IBM Germany, Research and Development GmbH Aug 2009- Oct 2009
Mainz

RESEARCH

My research focus lies on programming with semantic data. In particular, I look into type checking of
programs work- ing with semantic data in order to verify the absence of run-time errors. Additionally, I
investigate the integration of semantic data in programming in general, such as programming language
integrated querying and autocompletion mechanisms.

TEACHING

Algorithms and Data Structures, Lecture 2020 - 2021
Big Data, Lecture 2020
Algorithms and Data Structures, Tutorial 2014 - 2019
Artificial Intelligence, Tutorial 2015 - 2019
Research Practical on AI approaches for real-time strategy games 2018
Proseminar on Graph Algorithms 2015

REVIEWING ACTIVITIES

Int. Symposium on Principles and Practice of Declarative Programming (PPDP) 2019
Int. Conference on Software Language Engineering (SLE) 2018
IEEE Internet Computing 2015

PUBLICATIONS

1. Favre J.-M., Lämmel R., Leinberger M., Schmorleiz T., and Varanovich A (2012). Linking Docu-
mentation and Source Code in a Software Chrestomathy.
In: Working Conference on Reverse Engineering (WCRE). IEEE Computer Society, pp.335–344.

2. Lämmel, R., Leinberger M., Schmorleiz T., and Varanovich A (2014). Comparison of feature im-
plementations across languages, technologies, and styles.
In: Proceedings IEEE Conference on Software Maintenance, Reengineering, and Reverse Engi-
neering. IEEE Computer Society, pp.333–337.

3. Lämmel, R., Varanovich A., Leinberger M., Schmorleiz T., and Favre J.-M. Declarative Software
Development (2014): Distilled Tutorial.
In: Proceedings of the International Symposium on Principles and Practice of Declarative Pro-
gramming (PPDP). ACM, pp.1–6.

4. Leinberger, M., Scheglmann, S., Lämmel, R., Staab, S., Thimm, M., Viegas, E.: Semantic Web
Application Development with LITEQ.
In: Proceedings of the 13th International Semantic Web Conference (ISWC 2014). LNCS, vol. 8797,
pp. 212–227. Springer (2014).

5. Scheglmann, S., Lämmel, R., Leinberger, M., Staab, S., Thimm, M., Viegas, E.: IDE Integrated
RDF Exploration, Access and RDF-Based Code Typing with LITEQ.
In: The Semantic Web: ESWC 2014 Satellite Events (ESWC 2014). LNCS, vol. 8798, pp. 505–
510. Springer (2014).

6. Scheglmann, S., Leinberger, M., Lämmel, R., Staab, S., Thimm, M.: Property-based typing with
LITEQ.
In: Proceedings of the 13th International Semantic Web Conference (ISWC 2014), Posters &
Demonstrations Track. CEUR Workshop Proceedings, vol. 1272, pp. 149–152. CEUR-WS.org
(2014)

7. Staab, S., S. Scheglmann, M. Leinberger, and T. Gottron (2014). Programming the Semantic
Web.
In: Proceedings The Semantic Web: Trends and Challenges - 11th International Conference
(ESWC). Vol. 8465. LNCS. Springer, pp.1–5.

8. Scheglmann, S., M. Leinberger, T. Gottron, S. Staab, and R. Lämmel (2016). SEPAL: Schema
Enhanced Programming for Linked Data.
KI 30(2), 189–192.

9. Hartenfels, C., M. Leinberger, R. Lämmel, S. Staab: Type-Safe Programming with OWL in Se-
mantics4J.
 In: Proceedings of the ISWC 2017 Posters & Demonstrations and Industry Tracks, 16th Inter-
national Semantic Web Conference (ISWC 2017). CEUR Workshop Proceedings, vol. 1963.

10. Leinberger, M., Lämmel, R., Staab, S.: The Essence of Functional Programming on Semantic
Data.
In: Proceedings of the 26th European Symposium on Programming (ESOP 2017). LNCS, vol.
10201, pp. 750–776. Springer (2017).

11. Leinberger, M., P. Seifer, C. Schon, R. Lämmel, S. Staab: Type Checking Program Code Using
SHACL.
In: Proceedings of the 18th International Semantic Web Conference (ISWC 2019). LNCS, vol.
11778, pp. 399–417. Springer (2019).

12. Seifer, P., J. Härtel, M. Leinberger, R. Lämmel, and S. Staab (2019). Empirical study on the
usage of graph query languages in open source Java projects.
In: Proceedings of the International Conference on Software Language Engineering (SLE). ACM,
pp.152–166.

13. Seifer, P., M. Leinberger, R. Lämmel, S. Staab: Semantic Query Integration With Reason.
Programming Journal 3(3), 13 (2019).

14. Leinberger, M., P. Seifer, T. Rienstra, R. Lämmel, S. Staab: Deciding SHACL Shape Containment
Through Description Logics Reasoning.
In: Proceedings of the 19th International Semantic Web Conference (ISWC 2020). LNCS, vol.
12506, pp. 366–383. Springer (2020).

	Introduction
	Research Questions
	Research Contributions
	Supporting Publications

	Preliminaries
	Type-safe Programming
	Syntax and Semantics
	Type System
	Type Safety

	Semantic Web
	Resource Description Framework
	SPARQL Conjunctive Queries
	Description Logics
	Shape Constraint Language

	A Basic Programming Language (λ-calculus)
	The Simply Typed λ-calculus with Subtyping
	Syntax and Semantics
	Type System
	Subtyping

	Extensions to the language
	Recursion
	Records
	Lists

	Type Checking with Description Logics
	Key Design Principles and Example Use Case
	Types for Conjunctive Queries
	Core Language
	Typecase
	Type Safety
	Soundness of Query Typing
	Soundness of the Type System

	Summary and Discussion

	Type Checking with SHACL
	Design Principles and Example Use Case
	Types for Conjunctive Queries
	Core Language
	Type Elaboration
	Type Safety
	Soundness of Query Typing
	Soundness of the Type System

	Summary and Discussion

	Shape Containment
	Problem Description
	From SHACL to Description Logic
	Deciding Shape Containment using Standard Entailment
	Effects on Algorithmic Type Checking for λ_SHACL
	Summary and Discussion

	Related Work
	RDF Schema Languages
	Containment Problems
	Language Integration

	Conclusion
	Bibliography
	Soundness of λ_Full
	List of Figures
	List of Algorithms
	Curriculum Vitae

