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Summary
Habitat loss and fragmentation due to climate and land-use change are among the
biggest threats to biodiversity, as the survival of species relies on suitable habitat
area and the possibility to disperse between different patches of habitat. To predict
and mitigate the effects of habitat loss, a better understanding of species dispersal is
needed. Graph theory provides powerful tools to model metapopulations in chang-
ing landscapes with the help of habitat networks, where nodes represent habitat
patches and links indicate the possible dispersal pathways between patches.

This thesis adapts tools from graph theory and optimisation to study species
dispersal on habitat networks as well as the structure of habitat networks and the
effects of habitat loss. In chapter 1, I will give an introduction to the thesis and the
different topics presented in this thesis. Chapter 2 will then give a brief summary of
tools used in the thesis.

In chapter 3, I present our model on possible range shifts for a generic species.
Based on a graph-based dispersal model for a generic aquatic invertebrate with a
terrestrial life stage, we developed an optimisation model that models dispersal di-
rected to predefined habitat patches and yields a minimum time until these patches
are colonised with respect to the given landscape structure and species dispersal
capabilities. We created a time-expanded network based on the original habitat net-
work and solved a mixed integer program to obtain the minimum colonisation time.
The results provide maximum possible range shifts, and can be used to estimate
how fast newly formed habitat patches can be colonised. Although being specific
for this simulation model, the general idea of deriving a surrogate can in principle
be adapted to other simulation models.

Next, in chapter 4, I present our model to evaluate the robustness of metapop-
ulations. Based on a variety of habitat networks and different generic species char-
acterised by their dispersal traits and habitat demands, we modeled the permanent
loss of habitat patches and subsequent metapopulation dynamics. The results show
that species with short dispersal ranges and high local-extinction risks are particu-
larly vulnerable to the loss of habitat across all types of networks. On this basis, we
then investigated how well different graph-theoretic metrics of habitat networks can
serve as indicators of metapopulation robustness against habitat loss. We identified
the clustering coefficient of a network as the only good proxy for metapopulation
robustness across all types of species, networks, and habitat loss scenarios.

Finally, in chapter 5, I utilise the results obtained in chapter 4 to identify the ar-
eas in a network that should be improved in terms of restoration to maximise the
metapopulation robustness under limited resources. More specifically, we exploit
our findings that a network’s clustering coefficient is a good indicator for metapop-
ulation robustness and develop two heuristics, a Greedy algorithm and a deducted
Lazy Greedy algorithm, that aim at maximising the clustering coefficient of a net-
work. Both algorithms can be applied to any network and are not specific to habitat
networks only.

In chapter 6, I will summarize the main findings of this thesis, discuss their lim-
itations and give an outlook of future research topics.

Overall this thesis develops frameworks to study the behaviour of habitat net-
works and introduces mathematical tools to ecology and thus narrows the gap be-
tween mathematics and ecology. While all models in this thesis were developed
with a focus on aquatic invertebrates, they can easily be adapted to other metapop-
ulations.
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Chapter 1

Introduction

In this thesis I present the research that I undertook during my PhD which was con-
cerned with the degradation of ecosystems that results from climate change. I fo-
cused on metapopulations of aquatic invertebrates. In particular I looked at species
dispersal and investigated this phenomenon using habitat networks. I examined
how these habitat networks were structured, approximated these networks using
graphs and then evaluated their robustness and developed a theoretical method to
increase the robustness by adding new links to these virtual networks.

1.1 Ecology

As we progress into the 21st century, we are finding that some of the greatest chal-
lenges that humanity faces, and will face into the future, are degrading ecosystems,
habitat loss and biodiversity decline. These problems have been caused or have been
exasperated by climate change (Butchart et al., 2010; IPCC, 2019; Reid et al., 2005;
Urban, 2015). Effects of climate change such as changes in species’ abundance, dis-
tribution, and phenology, as well as an increase in extreme weather events are now
visible in all ecosystems (Scheffers et al., 2016; Parmesan and Yohe, 2003; Parmesan,
2006) Furthermore, climate and land-use change have led to habitat degradation
and fragmentation as well as range shifts as species abundance drifts northward or
westward in the northern hemisphere (Alahuhta et al., 2019; Berg et al., 2010; Kuem-
merlen et al., 2015; Scheffers et al., 2016; Parmesan and Yohe, 2003).

The decline of habitat area and connectivity due to the fragmentation of land-
scapes are among the biggest threats to biodiversity, as the survival of species relies
on suitable habitat area as well as the individual’s ability to disperse between dif-
ferent patches of habitat (Bruggeman et al., 2010; Fahrig, 2003; Foley et al., 2005;
Urban, 2015). This dispersal is crucial for species survival, as it facilitates interac-
tions such as the exchange of genes between different populations and thus allows
for the existence of metapopulations – a “population of populations” (Levins, 1969;
Hanski, 1998; Perry and Lee, 2019). To anticipate and mitigate the effects of climate
and land-use change on biodiversity, a better understanding of species dispersal is
thus necessary.

Field, lab, and mesocosm studies are important methods to investigate species
traits and behaviours. However, extensive studies are time consuming and expen-
sive. Simultaneously, methodical limitations complicate the reliable derivation of
species specific data such as parameters governing dispersal processes or popula-
tion growth (Didham et al., 2012; Tonkin et al., 2018). For these reasons, models are
needed to gain a better understanding of species behaviour and to predict the re-
sponse of metapopulations to a changing environment (Clark et al., 2001; Erős et al.,
2012a; Evans et al., 2012; Reid et al., 2005).
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Spatially explicit graph-based analysis has become popular in conservation biol-
ogy and landscape ecology in the last decades (Erős and Lowe, 2019; Galpern et al.,
2011; Urban et al., 2009; Zetterberg et al., 2010) and turned into one of the best ap-
proaches for modelling the dispersal of organisms (DeAngelis and Yurek, 2017; Erős
and Lowe, 2019; Heino et al., 2017; Minor and Urban, 2007).

1.2 Graph theory

Graph theory provides powerful tools to model metapopulations in form of habitat
networks. It combines ideas from a wide variety of fields such as mathematics, com-
puter science, and social sciences to study these networks, which are often also called
graphs (Newman, 2010; Cohen and Havlin, 2010; Barthélemy, 2014). In general,
networks model the relationships within a given system by representing the system
components as nodes (also called vertices) and their relationship as links (edges) that
connect these nodes and allow us to build quantitative descriptions of the complex
relationships that exist in the given system. Examples of networks are transportation
networks such as the metro or airline networks, the world wide web, the electrical
power grid, and social networks that model friendships or co-authorships. Eco-
logical networks include predator-prey networks, food-webs and habitat networks
of metapopulations or metacommunities (Newman et al., 2002; Cohen and Havlin,
2010; Barthélemy, 2014).

A special group of networks are the so-called spatial networks (Barthélemy, 2014).
In contrast to other networks, the nodes of spatial networks are embedded in space
and the probability of two nodes being connected decreases with distance (Gastner
and Newman, 2006; Dale and Fortin, 2010). Naturally, habitat networks are spatial
networks, as real-world habitat patches are located in a three-dimensional space that
can often be approximated by a two-dimensional landscape, with patches at short
distance having a higher probability of being connected than more distant patches.
Food-webs on the other hand are independent of space.

The advantages of networks are numerous. Networks are particularly flexible as
nodes can represent multiple properties, e.g. single individuals, whole populations
or habitat patches (Galpern et al., 2011; Calabrese and Fagan, 2004). Networks al-
low for complex computations while only requiring relatively little data (Erős et al.,
2012b; Rayfield et al., 2011). Simultaneously, spatially explicit data obtained from
geographic information systems (GIS) can be added easily, allowing for a simple
way to combine spatially explicit data with information on species specific disper-
sal characteristics. As networks are analysed in their abstract form, graph-theoretic
tools from all disciplines can be applied to almost any system represented as a net-
work. The resultant variety of existing tools can readily be applied in ecology (Urban
et al., 2009; Newman, 2010) and can easily be used to evaluate different conservation
scenarios or assess the impacts of a changing global environment.

Graph-theoretic tools can be used to analyse a network locally, by evaluating
how central a node is in the network using a variety of centrality measures, or by
identifying how clustered a node’s neighbourhood is with the help of the local clus-
tering coefficient. Other tools are targeted at the network structure and analyse the
network as a whole (Boccaletti et al., 2006). Also, networks are often dynamic, and
nodes and links can appear or disappear perhaps only temporarily. Depending on
the affected region and the network itself, this can greatly affect the overall network
structure, giving rise to an important question of how to determine the robustness
of a network against node failure.
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The robustness of a network quantifies the network’s durability to the loss of
nodes and links (Albert et al., 2001a) and has been subject to many studies in vari-
ous areas such as technology, transportation, and trade (Callaway et al., 2000; Cohen
et al., 2000; Albert et al., 2001a; Cuadra et al., 2015; Gephart et al., 2016). Network
robustness has been analysed on various networks such as transportation networks,
power grids, and food webs (Solé and Montoya, 2001; Rosas-Casals et al., 2007;
Berche et al., 2009). As network robustness depends on a variety of factors and
thus is complex and difficult to evaluate, it is important to find appropriate proxies
for the robustness. Many related studies identified a network’s clustering coefficient
as a good proxy for robustness (Ash and Newth, 2007; Almpanidou et al., 2014; Fox
and Bellwood, 2014; Prima et al., 2019). The clustering coefficient was proposed
by Watts and Strogatz (1998). A node’s clustering coefficient measures the relative
density of links in its neighbourhood and is thus an indication of how close its neigh-
bourhood is to being complete. A network’s clustering coefficient is then defined as
the average clustering coefficient of its nodes.

Another approach to account for the dynamic nature of networks is the use of
time expanded networks. The time expansion of a network consists of one copy of
the original network’s nodes per time layer and directed connections between the
copies of two nodes in consecutive layers, if the original two nodes are connected
(Hamacher and Klamroth, 2006; Skutella, 2009). Time expanded networks can be
used to model movement, such as traffic, the flow of goods or dispersing individ-
uals, on networks over time (Baumann and Skutella, 2009; Ho et al., 2014; Köhler
et al., 2009; Stasko et al., 2016).

Time expanded networks, and graph theory in general, are strongly connected to
optimisation in various disciplines such as finance, logistics, engineering and trans-
portation (Bondy and Murty, 1976; Hamacher and Klamroth, 2006). Optimisation
problems arise in all quantitative disciplines from computer science and engineer-
ing to operations research and economics, and the development of solution methods
has been of interest in mathematics for centuries. In the simplest case, an optimisa-
tion problem consists of maximising or minimising a real function by systematically
choosing input values from within an allowed set and computing the value of the
function.

1.3 Application to ecology

In ecology, graph theoretic techniques were mainly used for studying food webs and
plant-animal mutualistic interactions (Landi et al., 2018; Urban and Keitt, 2001; Alba,
1973; Montoya and Solé, 2002; Erős et al., 2012b). However, they are also gaining
more importance in landscape ecology and the use of habitat networks representing
metapopulations and metacommunities is becoming more and more prevalent (For-
tuna et al., 2006; Dale and Fortin, 2010; Ortiz-Rodríguez et al., 2019). In this context,
landscapes are seen as habitat networks, with habitat patches represented as nodes
and possible dispersal pathways represented as links.

Habitat networks provide a useful framework to study the dispersal of species.
Furthermore, combined with techniques from the field of optimisation, we can ob-
tain dispersal models that determine the fastest way for species to disperse and reach
a specific habitable area. As opposed to common dispersal simulations, where the
dispersal is assumed to be undirected, the optimisation approach models species
dispersal directed to a specific area. The optimisation approach needs less informa-
tion about species specific dispersal such as which habitats are preferably colonised.
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This approach is exceptionally advantageous in ecology, as data is usually scarce
and assumptions are often error-prone. On the other hand, applying optimisation
to dispersal simulations can only provide general bounds to the questions usually
answered by dispersal simulations, such as which patches are preferably colonised
and how much time it takes for a specific patch to become populated. Although net-
works are now common in dispersal simulations and other ecological models, the
potential of optimisation on graphs has not yet been explored in dispersal models
(OBJECTIVE 1).

With the help of habitat networks, the loss of habitat can easily be represented by
removing nodes and by removing links from the network we can simulate reduced
connectivity. Habitat networks can thus be used to investigate the robustness of a
metapopulation, represented by the habitat network, against climate and land-use
change effects such as the loss of habitable area or decreased landscape permeabil-
ity. Previous studies of the robustness of ecological networks have predominantly
focused on food webs and mutualistic networks (Burgos et al., 2007; Evans et al.,
2013). In the context of habitat networks, graph theory has been applied to study the
effect of network connectivity on the dispersal of species (Calabrese and Fagan, 2004;
Estrada and Bodin, 2008; Rayfield et al., 2011; Saunders et al., 2016; Upadhyay et al.,
2017; Grech et al., 2018). These studies have usually modelled different species with
varying traits such as dispersal ranges on a single underlying landscape. Further-
more, most studies have modelled static scenarios and ignored any metapopulation
dynamics. Metapopulations, however, are highly dynamic and constantly adapt to
changed conditions, for example after habitat loss. Therefore, analyses including
the dynamic structure would appear to be more appropriate (Martensen et al., 2017;
Kun et al., 2019; Prima et al., 2019; Shen et al., 2019). Recently, several studies of
metapopulation robustness have utilized such an approach. Shen et al. (2019) sim-
ulated dispersal on regular networks, in which every habitat patch has the same
number of neighbours. They observed that metapopulations become more resistant
with an increasing number of connections.

There are different strategies to protect species from local extinctions due to habi-
tat loss. Naturally, we would like to aim to protect habitable area and therefore slow
down or even avoid the loss of habitat. However, as this is difficult to achieve, we
should also focus on increasing habitat connectivity to soften the effects of habitat
loss (Fahrig and Merriam, 1994; Hanski, 1999). Habitat connectivity can be increased
by increasing the landscape permeability with the help of dispersal corridors. How-
ever, financial resources for designing and implementing conservation measures are
usually limited and a quantitative assessment of habitat connectivity in consider-
ation of future habitat loss is necessary to prioritise conservation efforts (Cowling
et al., 1999) (OBJECTIVE 2)). Furthermore, methods to plan conservation measures
are still scarce and the changing environment should be taken into account when
allocating limited resources to gain the best possible outcome (OBJECTIVE 3).

1.4 Objectives and outline of the thesis

The overall goal of this thesis is to contribute to the emerging field of ecological
modelling and to help building the bridge between ecology and mathematical opti-
misation. The thesis addresses the following objectives:

1. Deriving an optimisation model from a simulation model to answer similar
research questions with less data requirements
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2. Evaluating the metapopulation robustness of habitat networks and finding in-
dicators for this robustness

3. Increasing the metapopulation robustness by adding links to already existing
habitat networks

First, in chapter 2, I summarise definitions and results that build the base of
this thesis and I present the (habitat) networks our research is based on. Then, in
chapter 3, I present an optimisation model that applies tools from optimisation on
graphs to a dispersal simulation model. Based on a dispersal simulation for a generic
aquatic hemimetabolous insect, we develop an optimisation model as a surrogate
for the simulation model. The optimisation model provides the minimum time for
the species to colonise certain habitat patches under the given landscape structure.
These results can be used to evaluate maximum possible range shifts in a given time
frame and to estimate how fast restored or newly formed habitat patches can be
(re-) colonised. Although our model was specifically developed for this simulation
model, the same idea can easily be adapted to derive a surrogate for other simulation
models.

Next, in chapter 4, I present our examination of the consequences of the per-
manent loss of habitat patches located on different types of habitat networks for
metapopulations of different generic species characterised by traits describing their
local-extinction risks and dispersal ranges. These results are compared among and
between standard networks commonly studied in graph theory, such as random,
regular, small-world, and scale-free networks (Boccaletti et al., 2006; Newman, 2010)
on the one hand and spatial networks defined through random, clustered, and con-
tiguous habitat allocation on riverine landscapes (Streib et al., 2020) on the other
hand. On this basis, we investigate how well different graph-theoretic metrics of
habitat networks can serve as indicators of metapopulation robustness against habi-
tat loss.

Finally, in chapter 5, I address the question of where additional links should best
be created within a habitat network to maximise its connectivity, for example in the
context of a restoration measure. We propose an algorithm to identify the missing
link of a network that leads to the biggest increase in network robustness. Here,
we use the clustering coefficient as an indicator for robustness and thus identify the
link that yields the biggest increase in the clustering coefficient. We introduce two
heuristics, a Greedy algorithm (Krumke and Noltemeier, 2009) and a deducted Lazy
Greedy algorithm to identify multiple missing links that increase the robustness the
most when added to the network. Both approaches can be applied to any network,
regardless of which system it represents. We test these heuristics and compare the
results to the optimal solution for different generic networks including a variety
of standard networks independent of space as well as spatially explicit landscape-
based habitat networks.
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Chapter 2

Preliminaries

During my PhD I investigated species dispersal on habitat networks, developed a
simulation to evaluate the robustness of networks – or more precisely of the metapop-
ulations represented by the networks – and developed and tested methods to in-
crease this robustness. All of these calculations were performed on habitat networks
developed to represent metapopulations of a generic hemimetabolous species with
traits closely related to a dragon fly. The networks were created by Streib et al.
(2020) and in this chapter I will briefly summarise their construction. Furthermore, I
will summarise the most relevant tools and definitions in graph theory. Everything
stated in this chapter can be found in Boccaletti et al. (2006), Krumke and Noltemeier
(2009), and Streib et al. (2020).

2.1 Notation and definitions

An (undirected, simple) graph (also called network) is a pair G = (V, E) of a non-
empty set V 6= ∅ of nodes (also called vertices) and a set E ⊆ V × V of links (also
called edges) that determines, which nodes in V are connected with each other. We
call G loopless, if it does not allow for links that join a node to itself. We denote the
link e connecting nodes u and v by e = (u, v) = (v, u). If such link exists, u and v are
said to be adjacent. Let v be a node in G. We call all nodes u ∈ V that are adjacent
to v the neighbours of v and set N(v) := {u ∈ V : (u, v) ∈ E} the set of neighbours.
The neighbourhood of v is the subgraph of G induced by N(v), i.e. the subgraph
(VN , EN) where VN = N(v) and EN = {(u1, u2) ∈ E : u1, u2 ∈ N(v)}. The number
of neighbours of v is called its degree: deg(v) := |N(v)|.

A path is a sequence of distinct nodes that are adjacent to each other: v0, ..., vn−1 ∈
V such that (v0, v1), (v1, v2), ..., (vn−2, vn−1) ∈ E. It is a cycle, if additionally (vn−1, v0) ∈
E. We call a cycle of three nodes a triangle and set T(v) := |{(u, w) ∈ E : u, w ∈
N(v)}| as the number of triangles in G that involve v. Furthermore, with N(u, v) :=
N(u) ∩ N(v) we denote the set of common neighbours of u and v.

The (local) clustering coefficient of a node v ∈ V is defined as

C(v) =

{
2T(v)

deg(v)(deg(v)−1) if deg(v) > 1

0 if deg(v) 6 1
.

It measures how close its neighbourhood is to a complete network in terms of the
relative density of links. If all links between neighbours of v are present, then T(v) =
1
2 dv(dv − 1) and the clustering coefficient takes its maximum value of 1. If no links
between neighbours are present, then T(v) = 0 and thus C(v) = 0.



Chapter 2. Preliminaries 7

The clustering coefficient of a network G with n := |V| nodes is defined as the
average over the clustering coefficient of its nodes:

CG =
1
n ∑

v∈V
C(v)

and can take any value between 0 and 1.

A directed graph D = (V, E) is a graph, in which each link has a traversal direc-
tion. In particular is (u, v) 6= (v, u) for nodes u, v ∈ V. The time expanded network
GTEN = (VTEN, ETEN) of a graph G = (V, E) with time horizon T ∈ N is a directed
graph with one copy vt of each node v ∈ V per time step 0 6 t 6 T. A link (u, v) ∈ E
of the original graph is represented by two direct links (ut, vt+1) and (vt, ut+1). Fur-
thermore, links between two subsequent copies of the same node are introduced:
(vt, vt+1).

A weighted graph is a graph G = (V, E) with a function w : E → R that assigns
a weight to every link e ∈ E. In this thesis we assume weights to be positive, as they
represent the energy an individual spends to travel from one habitat patch (node)
to a neighbouring one, depending on the underlying landscape and the distance
between patches. The shortest path between two nodes s and t – in ecology often
called least-cost path – is a path s = v0, v1, ..., vk = t from s to t with minimal cost,
i.e. it minimises ∑k

i=0 w((vi, vi+1)). For an unweighted graph, we define a weight
function w : E → R, e → 1 and the shortest path between two nodes s and t
counts the number of links that need to be traversed to reach t from s.

2.2 Landscape-based habitat networks

The landscape-based habitat networks are derived from a real-world stream land-
scape (Section 2.1.1. in Streib et al., 2020). For this purpose, we use a 50 km × 50
km area of the stream landscape of Rhineland-Palatinate, Germany. The total stream
landscape is divided into 25 landscape tiles each measuring 10 km× 10 km to obtain
a variety of dense or sparse stream landscapes with differing stream network struc-
tures. The landscapes surrounding the streams are created by randomly assigning
one of the three land-use types ‘open agricultural land’, ‘forestry land’, and ‘urban
area’ to each 25 m × 25 m pixel of the 50 km × 50 km area using the landscape-type
configuration ‘random’ in Streib et al. (2020). We use land-use proportions of 25%
for open agricultural land, 25% for forestry land, and 50% for urban area, to describe
mixed landscapes with relatively large shares of urban area. The stream network is
embedded into these landscapes by assigning a fourth land-use type ‘aquatic area’
to each pixel intersected by a stream. Each of the four land-use types are assigned
dispersal costs to represent the permeability of the landscapes for a generic insect
species inhabiting aquatic areas. We use dispersal costs of 25 for aquatic pixels, of 50
for agricultural pixels, of 75 for forestry pixels, and of 100 for urban pixels. Follow-
ing these assignments, the landscapes are resampled to a new pixel size of 100 m ×
100 m.

On these landscapes, 10% of the aquatic pixels are selected as habitat patches us-
ing one of three different algorithms, giving rise to three types of landscape-based
habitat networks with random, clustered, and contiguous habitat allocation. For ran-
dom habitat allocation, 10% of all aquatic pixels are randomly selected with equal
probability. For clustered habitat allocation, 5% of all aquatic pixels are randomly
selected with equal probability, and 5% of all aquatic pixels are randomly selected
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FIGURE 2.1: Examples of landscape-based habitat networks with (a)
random, (b) clustered, and (c) contiguous habitat allocation. Blue
dots represent habitat patches, light-blue lines depict the underlying
stream landscape, and black lines indicate dispersal pathways. The
width of these lines represents the dispersal costs with thick lines in-

dicating lower costs and thin lines indicating higher costs.

with equal probability and without repetition within a radius of 500 m around the
initially selected ones. For contiguous habitat allocation, we follow the same prin-
ciple as for clustered habitat allocation, except that merely 2.5% of all aquatic pixels
are randomly selected initially, resulting in a more contiguous allocation of the other
habitat patches. Reflecting the different stream structures in the different landscape
tiles, this results in habitat networks with 54 to 111 habitat patches.

To determine the dispersal costs between habitat patches, a least-cost path anal-
ysis is used and a link is introduced to the network, if the dispersal cost between
two patches do not exceed a given maximum. Thus, the maximal dispersal costs di-
rectly affect the number of links in a network. See Fig. 2.1 for example of the habitat
networks presented here.

2.3 Standard networks

We compared the landscape networks introduced above with networks common in
mathematics, such as regular, random, small-world, and scale-free networks.

In a regular network G = (V, E), each node is adjacent to the same number of
nodes. Landscapes can easily be represented as regular networks by dividing the
area in even tiles, such as rectangles or hexagons, and representing the tile as a node
with links between neighbouring tiles.

The algorithm to create random networks was introduced by Erdős and Rényi
(1960). In an Erdős–Rényi graph, two nodes are connected with a given probability.
Given n nodes and a probability p, an Erdős–Rényi graph arises by instantiating n
nodes and going through every possible connection between those nodes and in-
cluding it into the network with probability p. Each pair of nodes thus has equal
probability to be connected and the degree of nodes follow a binomial distribution.

Watts and Strogatz (1998) discovered that many real-world networks have rather
different properties to the networks created using the Erdős–Rényi model and de-
veloped a different model to create so-called small-world networks. In small-world
networks, most nodes are not connected with each other, but almost every node can
be reached from any node in just a few steps. Small-world networks have a sig-
nificantly higher clustering coefficient compared to random networks while at the
same time exhibiting a similarly small shortest path length. These structures are
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found in many real-world networks such as social networks, but also ecological net-
works (Fox and Bellwood, 2014; Prima et al., 2019). The Watts-Strogatz-model cre-
ates small-world networks from a regular network by randomly rewiring the links
with a given probability p. For p = 0, no links are rewired and we obtain a regular
network. For p = 1 every link is rewired and we obtain a random network. The
small-world networks thus interpolate between regular and random networks.

Many real-world networks also exhibit a structure containing of a few, well con-
nected nodes while most of the nodes have a rather small degree. This so-called
scale-free structure cannot be generated using either of above mentioned algorithms.
Barabási and Albert (1999) developed a model to create scale-free networks using
the preferential attachment process. The algorithm successively adds nodes to a net-
work and connects each node with a predefined number of nodes that already exist
in the network with a probability proportional to the degree of the existing node.
See Fig. 2.2 for example of the networks presented here.

FIGURE 2.2: Examples of standard networks with (a) random, (b)
regular, (c) small-world, and (d) scale-free structure. Blue dots rep-
resent habitat patches, light-blue lines depict the underlying stream
landscape, and black lines indicate dispersal pathways. The width of
these lines represents the dispersal costs with thick lines indicating

lower costs and thin lines indicating higher costs.
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Chapter 3

Optimisation model of dispersal
simulations on a dendritic habitat
network

The content of this chapter has already been published in an international reviewed
journal and can be accessed via the following link:

Heer, H., Streib, L., Kattwinkel, M., Schäfer, R. B., & Ruzika, S. (2019). Optimisation
Model of Dispersal Simulations on a Dendritic Habitat Network. Sci Rep 9, 8202
(2019). https://www.nature.com/articles/s41598-019-44716-z

Abstract

To predict and mitigate biodiversity loss, a better understanding of species distri-
bution and reliable dispersal models are required. A promising approach in dis-
persal simulation is the method of spatially explicit graph-based analysis. While
graph theory is strongly connected to the field of optimisation in a variety of disci-
plines, the potential of optimisation has not yet been exploited in dispersal models.
We introduce an optimisation model built on a graph-based dispersal simulation of
an aquatic invertebrate species with a terrestrial life stage. The model simulates a
directed dispersal process and investigates the fastest route to colonise predefined
vacant habitat patches. The optimisation model run-time is in general an order of
magnitude faster than the underlying simulation and provides the minimum time
until the considered habitat patches are colonised under the given landscape struc-
ture. These results can then be used to estimate how fast newly formed habitat
patches can be reached and colonised. Our model can in principle be adapted to
other simulation models and can thus be seen as a pioneer of a new set of models
that may support landscape conservation and restoration.

3.1 Introduction

Climate change effects have now been measured throughout all ecosystems and in-
clude, but are not limited to, changes in species’ phenology, abundance and distribu-
tion (Scheffers et al., 2016; Parmesan and Yohe, 2003; Parmesan, 2006). Widespread
range shifts have been documented with range expansions in warm-adapted species
and range contraction in cold-adapted species as well as a consistent trend of north-
ward or westward range expansion of species in the northern hemisphere (Berg et
al., 2010; Scheffers et al., 2016; Parmesan and Yohe, 2003) However, some species
show little to no net range shifts and range shifts in general remain little understood

https://www.nature.com/articles/s41598-019-44716-z
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(Doak and Morris, 2010; Moritz et al., 2008). Range shifts are complex processes
driven by population dynamics and dispersal, which themselves are determined by
a variety of factors such as changes to the abiotic and biotic environment (Zurell
et al., 2016; Sexton et al., 2009). To understand and mitigate the impacts of climate
change on global biodiversity, reliable models of species dispersal are needed (Zurell
et al., 2016; Bellard et al., 2012).

Spatially explicit dispersal models for freshwater insects are scarce (Heino et al.,
2017). This scarcity is primarily due to the lack of data, as field studies are very costly
and methodical limitations complicate the reliable derivation of dispersal distances
for (freshwater) insects (Tonkin et al., 2018; Didham et al., 2012). A deeper knowl-
edge in the field of species distribution and therefore species dispersal — as one of
its key factors — is required to allow for prediction of the effects of climate change
(Lowe and McPeek, 2014).

The method of spatially explicit graph-based analysis is one of the most promis-
ing approaches to model dispersal of aquatic individuals (Heino et al., 2017; DeAn-
gelis and Yurek, 2017). This was adopted from the field of graph theory and gained
popularity in landscape ecology and conservation biology in recent years (Galpern
et al., 2011; Urban et al., 2009). While spatial graphs have become an important
tool in terrestrial landscape ecology, they are still rarely used in aquatic ecosystem
modelling (Erős et al., 2012b). The advantages of this graph-based structure are
numerous. First, graphs are particularly flexible as vertices can represent multiple
ecologicial properties, e.g. single individuals, whole populations or, as most appro-
priate in dispersal models, habitat patches. Second, vertices are connected by links
which specify the connectivity relationship (Galpern et al., 2011; Urban et al., 2009;
Calabrese and Fagan, 2004). Furthermore, spatially explicit data derived from geo-
graphic information systems (GIS) can be combined with information on dispersal
characteristics of the considered species. At the same time only relatively few data
are required (Erős et al., 2012b; Rayfield et al., 2011).

Although graph-based structures are now commonly used in ecological models
such as dispersal simulations, the potential of optimisation on graphs has — to the
best of our knowledge — not yet been exploited in dispersal models. Mathematical
optimisation and graph theory are strongly connected in various other disciplines as
finance, logistics, engineering and transportation and optimisation is used ubiqui-
tously to solve a variety of problems in various disciplines (Hamacher and Klamroth,
2006; Bondy and Murty, 1976). In general, optimisation approaches are used to iden-
tify the ‘best’ solution for a given problem. In the context of dispersal simulations,
optimisation can be used to find the fastest way for a species to disperse and re-
lated to this the minimum time required to colonise a habitat. Optimisation involves
modelling a directed dispersal in contrast to the undirected dispersal that is usually
simulated. This approach needs less information on dispersal strategies that define
which habitats are preferably colonised and how to divide the dispersing biomass
between all neighbouring habitat patches. This is an exceptional advantage, as col-
lecting data is costly and making assumptions is error-prone. On the other hand, an
optimal solution only determines bounds for a given problem and provides thus a
more general and less specific solution to given research questions such as how long
it takes a species to colonise a habitat or which habitats are colonised first.

This study applies tools from optimisation on graphs to a simulation model for
dispersal. Given a graph-based model to simulate the spread of a generic aquatic
invertebrate with a terrestrial life stage, an optimisation model is derived as a surro-
gate for the former model. It yields lower bounds on the colonisation time of specific
habitats, which provide the minimum time until the considered habitat patches are
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colonised under the given landscape structure. These results can be of great value,
as they identify how far the considered species can disperse within a given time
frame and thus give an indication of maximum possible range shifts. At the same
time, the model can be used to estimate how fast newly formed habitat patches can
be reached and colonised. This information can then be used to modify the under-
lying connectivity to make habitats more accessible or to study the impact of land
use changes. Although being specific for this simulation model, the general idea of
deriving a surrogate can in principle be adapted to other simulation models.

Our optimisation approach differs vastly from the least cost path method (Sawyer
et al., 2011). The least cost path technique indentifies a shortest connection between a
pair of nodes, but does not consider the interaction of multiple source habitats. Our
model also takes the possibility into account, that a habitat patch can be reached by
more than just one neighbouring patch at a time and thus many patches can jointly
colonise a habitat patch. Circuit theory (McRae et al., 2008) on the other hand in-
corporates the possibility of multiple pathways between habitat patches. In contrast
to our model, however, it is largely applied to random walk theory. While it can
be used to obtain an estimate of dispersal time, it is not designed to calculate lower
bounds for these – the main feature of our optimisation model.

The interaction between optimisation and simulation is not a new field of study.
However, note that our approach significantly differs from the topic of “simulation
optimisation” (SO) (Amaran et al., 2016). SO is an umbrella term for techniques
that search for specific settings of the input parameters to optimise stochastic sim-
ulations and often only depend on input - output data from these simulations. In
contrast, our model is based on a deterministic simulation and can be classified as
a traditional mathematical optimisation technique. Furthermore, we modify well-
known mathematical optimisation techniques to develop a model as a surrogate of
an ecological simulation model that answers different, but related questions to the
simulation model.

We first present the graph-based simulation model for the distribution of a generic
aquatic invertebrate with a terrestrial life stage. From this simulation model, we
then derive a mathematical optimisation model in form of a mixed integer program-
ming model (Dantzig, 2016; Schrijver, 1998; Wolsey, 2008). This model modifies
and utilises the concept of dynamic network flows (Ford Jr and Fulkerson, 1958;
Ford Jr and Fulkerson, 2015). Network flows are typically applied in transportation
systems, air traffic control, production systems and financial flows (Skutella, 2009;
Köhler et al., 2009; Kotnyek, 2003) but have not yet been used in ecology. Given
some vacant habitats as targets, the optimisation model finds a route to colonise
those habitats as quickly as possible.

3.2 Methods

3.2.1 Simulation Model

We developed a dynamic, spatially explicit dispersal model for a generic aquatic
invertebrate species with a terrestrial life stage. The simulation model can also be
adapted to vertebrates with both aquatic and terrestrial life stages (Grant et al., 2010;
Searcy et al., 2013). The simulation is based on a habitat network embedded in an
artificial landscape defined by four land cover classes (Tab. 3.1).

Since the overland dispersal of invertebrates during their terrestrial life stage is
influenced by land cover (e.g. preference for specific land cover classes), we as-
signed dispersal-related costs to these land cover classes (Grönroos et al., 2013).
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class name percentage dispersal costs

agriculture 66.6% 50.0
forest 11.1 % 75.0
urban 22.2% 100.0
aquatic - 25.0

TABLE 3.1: Dispersal costs and ratio per land cover class. The per-
centages refer to the underlying Neutral Landscape Model (NLM)
that was used to create the landscape (Suppl. Inf. S1). A real stream
network on a finer scale is added to the landscape and cells intersect-

ing with the river network are declared as ‘aquatic’.

These costs determine the spatial connectivity between habitats. They were cho-
sen to represent landscape permeability with a relatively energy efficient dispersal
through aquatic and open agricultural terrain, whereas forests and urban areas rep-
resent a rather costly dispersal path. Habitats are located along a stream network
that is embedded in the landscape and are assigned with random habitat qualities
which determine the maximum population that can be sustained in a habitat patch,
called carrying capacity. Some of the habitat patches are randomly chosen as ini-
tial source habitats and considered colonised at the start of a simulation. The dis-
persal process from those patches is modeled as a dynamic process using a mod-
ified individual based model (Suppl. Inf. S1). The simulation is based on the
demography-related processes population-growth (depending on habitat quality)
and density-dependent emigration (Corbet, 1963; Córdoba-Aguilar, 2008; Bowler
and Benton, 2005) (Fig. 3.1). Consequently, the amount of dispersing biomass pri-
marily depends on population size and habitat quality as controlling factors of maxi-
mum population size (carrying capacity) (Amarasekare, 2004; Hodgson et al., 2011).
In a colonised habitat patch, the population initially grows exclusively due to im-
migrating biomass from neighbouring source habitats. After a predefined threshold
of biomass is reached, it turns into a source habitat and an additional population
growth as well as emigration is simulated (Fig. 3.1). We assume that habitat patches
that can be reached at low dispersal costs are preferably colonised (Van Nouhuys
and Hanski, 2002) and thus receive a bigger share of biomass, where the dispersal
costs depend on both the distance to a source habitat and the land cover classes
traversed (Suppl. Inf. S1).

The maximum dispersal distance was set to 2500 m through open agricultural
land (Keller et al., 2012; Hepenstrick et al., 2014). Consequently, on a cost raster
with a cell-size of 100 m × 100 m, our model species was assigned a maximum
budget of 1250 cost units (‘agriculture’ 50 cost-units · 25 raster cells) and two habitat
patches were considered connected, if the dispersal costs between them was less
than Cmax = 1250. This results in a graph-based habitat network G = (V, E), where
the set of vertices V subsumes all habitat patches and the edge set E contains all
connections between them (Suppl. Inf. S1). The same habitat network is used as
basis for the optimisation model.

One habitat network was created as basis for all following simulations. 50 sets of
initial source habitats were randomly selected as simulation input (see Initialisation).
As the simulation is deterministic, a single simulation per model input was suffi-
cient. Although the design of a habitat network has a strong influence on species
dispersal, we considered only one habitat network, as its influence was beyond the
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FIGURE 3.1: Flowchart of the simulation model. A detailed descrip-
tion of each subprocess (double rectangles) can be found in supple-
mentary Information S1. (a) creation of habitat network, which is then

used as input for the dispersal simulation depicted in (b)

focus of this study.

3.2.2 Optimisation Model

Process Overview

The simulation model assumes that close habitats are preferably colonised and ap-
plies a colonisation route accordingly (Suppl. Inf. S1). Here, a colonisation route is
a detailed plan of the species’s movement in the network over time, which leads to
a colonisation success. In terms of the time expanded network (see next subsection),
we define a colonisation route as a set of paths connecting the source to the corre-
sponding copies of the destination habitats in the time expanded network combined
with the information about the exact amount of biomass that is traveling along that
path. Since this assumption has a strong impact on the colonisation time of vacant
habitats, we design an optimisation model that identifies a route to colonise specific,
predetermined habitat patches as quickly as possible. Analogously to the simulation
model, a habitat network is created and a predefined share of habitat patches are
randomly selected as initial source habitats. Additionally, a set of habitat patches
is selected as destination habitats. The fully colonised initial source habitats initi-
ate the dispersal process and dispersal is directed towards the selected destination
habitats in contrast to the undirected dispersal in the simulation model. The model
output is a provable lower bound on the colonisation time of the simulation model
and guarantees that the predefined destination habitats will not be colonised earlier
— independent of the dispersal route. Furthermore, the run-time of the optimisation
model is substantially faster than the simulation model. The optimisation model is
instantiated on the same landscape model as the simulation. The graph-based habi-
tat network G = (V, E) created by the simulation model (Suppl. Inf. S1) was used
as a representation of the investigated area. Similar to the simulation model, popu-
lation growth is not taking place before a specific threshold TSH is reached. TSH is
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the minimum viable population — a simplified threshold that specifies the smallest
amount of biomass needed for a species to persist in a habitat patch. However, to
simplify the model, once the threshold is reached, the population will grow to the
habitat specific carrying capacity K(v) (Suppl. Inf. S1) within one time step. Thus,
a habitat with a population size of at least TSH units of biomass is considered to be
fully occupied and a source habitat in the following time step. After a loss of biomass
due to dispersal, the population of a habitat patch is set again to the carrying capac-
ity in the same time step. To sum up, each source habitat v has a constant population
size of K(v) and can release an additional amount of up to SDISK(v) biomass during
the dispersal process.

The model utilises the method of time expanded networks (Ford Jr and Fulker-
son, 1958; Ford Jr and Fulkerson, 2015) and solves a mixed integer program (MIP)
(Wolsey, 2008; Schrijver, 1998; Dantzig, 2016) to compute the desired bounds.

Habitat Network

A time expanded network GTEN = (VTEN, ETEN) (Fig. 3.2) is created to represent the
graph-based habitat network G = (V, E) and to store the population size of each
habitat patch in every time step. A time expanded network is a directed network
(i.e. connections between vertices have a direction and can only be traversed along
this direction) (Hamacher and Klamroth, 2006) with one copy of each habitat patch
of the underlying habitat network per time step (time layer) and connections between
habitat patches in consecutive layers.

Let T be the time horizon, i.e. the maximum number of time steps consid-
ered in the model. For each habitat patch v ∈ V, T + 1 copies v0, . . . , vT are con-
structed which represent the habitat patch v at time steps 0, . . . , T. For each con-
nection (u, v) ∈ E between two habitat patches u and v and each time step t =
0, . . . , T − 1, two directed connections (ut, vt+1) and (vt, ut+1) are introduced in the
time expanded network. To model the possibility of remaining within a vertex
between two consecutive time steps, connections (vt, vt+1) are introduced for all
t = 0, . . . , T − 1 and for all habitat patches v ∈ V. As is typically done in time
expanded networks (Ford Jr and Fulkerson, 1958; Ford Jr and Fulkerson, 2015), a
super source Q is introduced together with connections (Q, q0) to the first copy of
each initial source habitat q .

All habitat patches and connections are equipped with the original data: each
copy of a habitat patch v ∈ V is assigned the same dispersal capacity value as the
original, u(vt) := SDISK(v). Each copy of a connection is assigned the same disper-
sal costs as the original ones, while the artificial connections (connections between
copies of the same habitat patch and all connections from Q) are assigned zero cost
(Fig. 3.2).

Mixed Integer Program

In the following, an optimisation problem is formulated which yields the minimal
colonisation time as described above. To this end, techniques from integer program-
ming are applied and the result is a so-called mixed integer programming problem
(MIP) (Dantzig, 2016; Schrijver, 1998; Wolsey, 2008) which will then be solved by
some integer programming solver.

Binary decision variables x(vt) are introduced for each habitat v ∈ V and each
time step t. If x(vt) = 1, then vt is a source habitat and otherwise it is not. Further-
more, for each connection e ∈ ETEN in the time expanded network, a real variable
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FIGURE 3.2: (a) Habitat network (b) Corresponding time expanded
network with time horizon 3 and source habitat A. Connections in (b)
representing a specific connection in (a) use the same colour. Black
connections in (b) are artificial connections indicating remaining in
the same habitat patch from one time step to the next.Q represents

the super source.

f (e) > 0 specifies the amount of biomass traveling along this connection. Moreover,
binary variables x(t) are introduced for each time layer t ∈ {0, . . . , T} indicating if
all destination habitats in the corresponding time layer are source habitats. In the
following, δ+(v) denotes the set of all connections leaving v and, analogously, δ−(v)
specifies the set of incoming connections into v.

The objective function of the MIP minimises the sum of all time layer decision
variables multiplied by t, over all t.

min
T

∑
t=0

tx(t)

Here, the cost coefficient t with which the decision variable is weighted, corresponds
to the time and thus increases over time. Thus, in view of the minimisation objective,
it is desirable, to send biomass to the destination habitats as quickly as possible. This
objective function was adopted from models for the so-called quickest flow problem
and the earliest arrival flow problem and guarantees that the fastest way to colonise
the specific destination habitats will be found (Jarvis and Ratliff, 1982).

The first set of constraints

TSHx(v) 6 ∑
e∈δ−(v)

f (e) ∀v ∈ VTEN \ {Q} (1)
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ensures that a habitat v at time step t can only become a source habitat, if the incom-
ing amount of biomass at time step t plus the biomass from the previous time step
(represented as f ((vt−1, vt))) are at least TSH.

The second set of constraints

f (vt−1, vt) = ∑
e∈δ−(vt−1)

f (e) ∀v ∈ V, t ∈ {0, . . . , T} (2)

sends all biomass of a habitat patch from the previous time step t− 1 to the current
time step t.

The constraints

∑
e∈δ+(v)

f (e)
1− C(e) 1

Cmax

6 u(v)x(v) + ∑
e∈δ−(v)

f (e) ∀v ∈ VTEN (3)

are the crucial constraints of the model. They ensure that a source habitat does
not emit more than an upper limit of biomass and simultaneously take into account
that only a fraction of the biomass emitted reaches the connected habitats. On the
left hand side of the inequality, the emitted biomass f (e) is reduced by the mortality
rate C(e) 1

Cmax
, where C(e) represents the dispersal cost of a connection e and Cmax is

the maximum dispersal cost (see simulation model). This reduction represents the
mortality of dispersing biomass. The higher the dispersal costs C(e) of a connection
e, the smaller the share of biomass traversing connection e to reach the destination.
The right hand side now ensures that a source habitat v does not emit more than u(v)
units of biomass. If v is no source habitat, then x(v) = 0 and no additional biomass
can be emitted. The additional amount ∑e∈δ−(vt) f (e) is the amount of biomass that
stays in the habitat (constraint 2) and is sent into the next time step.

The constraints

f (Q, q0) = TSH ∀q ∈ HStart (4)

ensure that all initial source habitats q ∈ HStart are fully colonised (according to TSH)
at time step 0, where HStart is the set of all initial source habitats.

The fifth set of constraints

|Hdest|x(t) 6 ∑
s∈Hdest

x(st) ∀t ∈ {0, . . . , T} (5)

ensures that the time layer variable x(t) can only be set to one, if all destination
habitats are colonised in that time layer, where Hdest is the set of destination habitats,
and the constraint

T

∑
t=0

x(t) > 1 (6)

requires that all destination habitats have to become source habitats eventually.
All in all, the following MIP is obtained, which can now be solved with the help

of any MIP solver such as the one provided by Gurobi (Gurobi Optimization, Inc.,
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2016).

min
T

∑
t=0

tx(t)

subject to (1) - (6)
f (e) ∈ R+ ∀e ∈ ETEN

x(v) ∈ {0, 1} ∀v ∈ VTEN

x(t) ∈ {0, 1} ∀t ∈ {0, . . . , T}

Time Horizon

The choice of the time horizon is crucial to the model performance. Since the cal-
culations are executed on a time expanded network, the model input is linear in T
and thus a large time horizon will lead to an exorbitant model run-time, while a
time horizon chosen too small will not return any information as the MIP will turn
out to be infeasible. Thus, a good approximation of the maximum number needed
will vastly improve the model performance. The following procedure was used to
find the appropriate time horizon for a given habitat network and its specific initial
source habitats and destination habitat.

With the help of the Python module ‘Networkx’ (Hagberg et al., 2008b) and tak-
ing the dispersal costs into account, a shortest path was calculated from each initial
source habitat to the destination habitat. Based on these results, the nearest initial
source habitat was identified and the destination habitat was colonised with succes-
sively colonising the habitat patches vi from the nearest initial source habitat along
the shortest path P = (v1, . . . , vk) to the destination habitat, using the colonisation
rules of the optimisation model. This can be calculated with the following formula:

TH1 =
n

∑
i=1
d TSH

K(vi)SDIS(1− C(vi ,vi+1)
Cmax

)
e,

Since this is only one of many feasible possibilities to colonise the specific destination
habitat, the minimum of all possibilities is clearly smaller. To obtain an even closer
bound, the same procedure was performed with the second nearest initial source
habitat, if available, obtaining a second bound TH2 for the time horizon. Although
the cumulative dispersal costs from the second initial source habitat to the destina-
tion habitat is not smaller than from the first one, the second bound can be smaller
than the first one due to rounding to integers in the formula, for instance. Thus, the
minimum of both bounds is taken as the time horizon. In some cases both bounds
TH1 and TH2 turned out to be too big and thus the minimum of both bounds and 30
was selected as time horizon for all model runs:

T = min{TH1, TH2, 30}

If the MIP with this time horizon was infeasible, a new time horizon was set to
be the minimum of TH1, TH2 and 60 and the procedure was repeated with higher
multiples of 30 if necessary. Although this led to a slower performance for model
runs with an outcome bigger than 30 (due to solving a smaller, infeasible model and
repeating the process), this method was used as it yielded a speedup for the majority
of all model runs. Indeed only one percent of all model initialisations needed a time
horizon bigger than 30.
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3.2.3 Initialisation

The habitat network constructed by the simulation model was used for both models.
To compare the optimisation model with the underlying simulation, one habitat net-
work was chosen to represent the underlying landscape structure and both models
were instantiated with the same model parameters (Suppl. Inf. Tab. S2). For each
simulation model run a new set of initial source habitats was chosen. The same set
was taken as optimisation model input for multiple model runs. Additionally a set
of destination habitats was randomly chosen and each of the destination habitats
was combined individually with each set of initial source habitats as input for an
optimisation model run. As dispersal is undirected in the simulation model and the
simulation model is deterministic, one model run per set of initial source habitats
was sufficient to investigate the colonisation time of all possible habitat patches. For
the optimisation model, dispersal is directed and different destination habitats have
to be considered individually.

The considered extent of 50 km × 50 km of the stream network accounts for a
total of 19,490 pixels classified as ‘aquatic’. As described in the simulation model
(Suppl. Inf. S1), a random selection of 10% of these pixels were chosen as habi-
tat patches. Together with the connections created by the least cost path algorithm
(Suppl. Inf. S1), these habitat patches form the habitat network. One habitat net-
work was created and then used for all model runs. For each simulation model run,
10% of those habitat patches were randomly selected as initial source habitats. In
total, 50 distinct sets of initial source habitats were chosen and taken as model input
of the simulation model. Additionally, 50 habitat patches were elected as destination
habitats and each set of initial source habitats combined with each destination habi-
tat individually were taken as model input for the optimisation model. Although the
optimisation model was developed to determine the minimum colonisation time for
a set of (multiple) destination habitats, we focus on a single destination habitat from
here on. This makes it easier to compare outcome and run-time of the two models,
as the combination of different destination habitats has a strong influence on them.
Both models were implemented in Python 2.7. The MIP solver provided by Gurobi
(Gurobi Optimization, Inc., 2016) was used to solve the optimisation problem. Both
models were executed on a server with the Ubuntu release 16.04.3 LTS, Intel Xeon
16 core processor 2.50 GHz with memory of 31.4 GB and timed with the help of the
Python module ‘Timeit’.

3.2.4 Analysis of Models

First, we compare the optimisation model outcome with the model input by exam-
ining the dispersal distance of all initial source habitats from the specific destination
habitat for all optimisation model runs. Second, to compare the outcome of both
models, we investigate the number of time steps to colonise the considered desti-
nation habitats and compare the outcome of each of the 2,500 optimisation model
runs to the time step in which the corresponding destination habitat changed its sta-
tus into a source habitat in the simulation model for the first time (Suppl. Inf. S1).
Third, we compare the run time of both models.
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3.3 Results & Discussion

3.3.1 Analysis of Model Results

We found a positive correlation (r = 0.85) between the distance (in terms of dispersal
costs) from the nearest initial source habitat to the destination habitat and the mini-
mum colonisation time (in terms of time steps) calculated by the optimisation model
(Fig. 3.3).

FIGURE 3.3: Relationship between the time steps found by the op-
timisation model and the cumulative dispersal cost from the nearest
(i.e. most cost efficient) connected initial source habitat to the desti-
nation habitat of the corresponding model run. Each black mark in
the plot corresponds to one of the 2,500 model runs. The grey line is

the linear regression.

By contrast, the average dispersal costs from all initial source habitats (that are
connected to the destination habitat) to the destination habitat is only weakly cor-
related with the optimisation model outcome (r = 0.34). This fact indicates that not
all initial source habitats play an equally important role in the colonisation of the
corresponding destination habitat. In fact, the dispersal costs of close initial source
habitats have a much stronger influence on the optimisation model outcome. To con-
clude, the optimisation model colonises those habitat patches faster, that are more
cost-efficient to reach. This was not implemented in the optimisation model and
conforms to common literature and the assumption made for the simulation model
that close habitat patches are preferably colonised (Van Nouhuys and Hanski, 2002;
Kajzer et al., 2012). Thus, the optimisation model responds in a similar fashion to
the simulation model and observations in common literature, which can be seen as
a partial validation of the optimisation model.

In a second step, the outcome of both models was compared. In less than 2 % of
the model inputs (41 out of 2,500), the destination habitat in the simulation model
was not colonised after 250 time steps. These model instances were omitted in this
analysis, as the simulation model outcome is unknown. However, they also had
a considerable large optimisation model outcome with a mean of 32.4 time steps
(range from 2 to 72, median 29).

The optimisation model colonises a destination habitat on average 6.8 times faster
than the simulation model (Fig. 3.4). Thus, the optimisation model not only gives
lower bounds on the colonisation time of the simulation model, but also gives an
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estimate of the expected outcome of the simulation. However, this estimate is sub-
ject to considerable uncertainty and ranges from 1 to 98-fold for different model
runs. Model runs with the highest deviation from this average have an optimisation

FIGURE 3.4: Correlation between time steps needed for colonisation
of destination habitat of simulation and optimisation. Each black
mark corresponds to a single run of the optimisation model and the
corresponding result from the simulation. The grey line is the linear

regression.

model outcome of 2 time steps (Fig. 3.4). These high deviations happen particu-
larly in dense areas. In the simulation model, the initial source habitats will have
many neighbouring habitat patches and dispersing biomass is distributed among
many neighbours (Suppl. Inf. S1) — leaving only a small share for the designated
destination habitat. The optimisation model on the other hand sends all available
biomass directly towards the designated destination habitat. Accordingly, the desti-
nation habitat will be colonised much faster in the optimisation model compared to
the simulation.

3.3.2 Model Run Times

The mean time of a simulation model run is 318 seconds with a standard deviation
of only 5 seconds. The optimisation model was much faster on average, but also
included some model runs with larger run-times. A run of the optimisation model
takes 17 seconds on average and is thus almost 20 times faster than the correspond-
ing simulation model. However, the performance varies vastly for different settings.
The 90th percentile is 26 seconds and the 50th percentile is 3.5 seconds, while 16
of all 2,500 optimisation model runs (0.64%) were slower than the simulation model.
The computationally most expensive model instances also have a rather large model
outcome. This may be due to the way the time horizon was chosen and the fact that
a higher time horizon was needed. Similar to a single destination habitat, the run
time of the optimisation model with multiple destination habitats varies depending
on the input. However, the run time takes on average 60 seconds and is thus consid-
erably slower than the single destination case. On the other hand, this is still roughly
5 times faster than the simulation model run time. Thus, the run time advantage also
holds for multiple destination habitats.

To conclude, the optimisation model is one order of magnitude faster than the
simulation model. On the other hand, some model instances are hard to solve and
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less than one percent of the instances needed more time than the corresponding
simulation model.

It is important to point out that the two models pursue different goals and are
thus difficult to compare. While the simulation model investigates, inter alia, the
distribution of colonised habitat patches after a given number of time steps, the op-
timisation model examines the minimum number of time steps needed to reach a
specific habitat patch. Thus our model is not a mere surrogate which answers the
same questions with less accuracy, but provides results that cannot be found using
the original model — in contrast to other surrogate models like (Gaussian process)
emulators. Gaussian process emulators are statistical models that approximate un-
known output of a complex and time-consuming simulation. Given some design
data consisting of input - output pairs, the simulation output of further inputs are
approximated by a Gaussian process (Bastos and O’Hagan, 2009). Emulators are
orders of magnitude faster than their original model (Machac et al., 2016a; Machac
et al., 2016b). Thus, considering the performance gains, the optimisation model can
compete with emulators, but would be considered a slow speed-up.

On the other hand, the simulation model run-time strongly depends on the total
number of simulated time steps. The total number of 250 time steps was chosen
such that most habitat patches were reachable within that time frame and such that
the number of time steps was not so high that run-time was needlessly increased. A
better run-time comparison could be achieved by adjusting the fixed number of 250
time steps to an input-dependent number (for example by stopping the simulation
when the destination habitat in focus is colonised). This adaption, however, changes
the focus of the simulation model and is not intended.

3.3.3 Example

In this section we demonstrate how our optimisation model can be applied in land-
scape management. Fig. 3.5 shows an artifical landscape (created as described in the
Methods section) where a species is present in the southern area of the landscape
(initially colonised habitat patches are represented by red circles). Due to climate
change, more patches located in the northern part of the landscape become hab-
itable. To evaluate how to facilitate the spread of our focal species to the newly
formed habitat patches, a central patch is chosen as destination habitat (yellow star)
as model input.

With the current underlying landscape scenario, the destination habitat is only
colonised after 34 years, if the species disperses along the given paths. This result
can then be used by landscape and freshwater managers to facilitate the colonisation
by strengthening the connections as well as the habitat patches along them to allow
for faster and easier traversal.

One should keep in mind, however, that the focus of this model is to determine
a minimum colonisation time rather than identifying suitable areas in the landscape
that yield the largest improvement (in terms of colonising the destination patch as
fast as possible) if enhanced.
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FIGURE 3.5: Application of optimisation model on a habitat network.
The red nodes represent initially colonised habitat patches, the yellow
star is the corresponding (uncolonised) destination habitat. The thick,
purple lines show the dispersal paths displayed by the optimisation

model

3.3.4 Challenges & Outlook

To construct the optimisation model from the simulation, the habitat network was
transformed into a time expanded network. Additional decision variables were in-
troduced to memorize the fully populated habitat patches. The time expansion re-
sults in an exponentially bigger input size, implying a loss of computational effi-
ciency. At the same time, this is a common structure to monitor changes (here: of
population size in habitat patches) over time (Skutella, 2009; Köhler et al., 2009; Kot-
nyek, 2003). Furthermore, this structure can later be exploited to integrate changes
over time, for example in habitat quality, into the model.

Translating the dispersal process and population growth of the simulation model
to linear constraints is the most challenging part in creating the optimisation model.
In particular, integrating a more realistic population growth process into the optimi-
sation model would increase the complexity considerably, as it demands additional
decision variables and constraints. These were omitted in our optimisation model
and the simulation of population growth was simplyfied to ensure a faster and sim-
pler model. On the other hand, if the species in focus has very slow or complicated
population dynamics, this simplification may lead to a huge underestimation of the
colonisation time. Linear constraints are the core of linear programming and the
main challenge in adapting the optimisation model to other simulation models will
be to translate complex processes into linear equations.

Some studies also found inverse density dependent dispersal patterns for dam-
selflies (Rouquette and Thompson, 2007). Inverse density dependent dispersal char-
acterises the pattern that occurs when individuals from sparsely populated habitat
patches gravitate towards more densely populated patches. In the current study, we
focus on dispersal from colonised to empty patches, not between two colonised ones.
Therefore, such inverse densitiy-dependet dispersal is not relevant for our research
question. Furthermore, the survival probability of a small population (i.e. a small
amount of biomass in our study) reaching these patches and dispersing even further
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to uncolonised habitat patches is negligible. Thus, both the simulation and the op-
timisation model focus on dispersal that occurs at the carrying capacity threshold.
However, both models can be adapted to different dispersal patterns.

A detailed analysis of the model outcome can lead to a better understanding of
range shifts. For example, the lower bounds found by the optimisation model can be
used to identify important habitat patches for species dispersal and to evaluate the
strength of the connection between certain habitat patches and their surroundings.
This is especially interesting, as connectivity is a major concern for population sur-
vival and reduction of extinction risk (Saura and Pascual-Hortal, 2007; Fahrig and
Merriam, 1985). The optimisation model allows to make decisions where and how to
conserve habitat patches or landscape sections to secure a better habitat connectivity.
At the same time, the model can be used to identify the optimal case to (re-)colonise
habitat patches that arose or recovered due to climate change or other effects.

The model can readily be adapted to other dispersal simulation models and can
thus be seen as a pioneer of a new set of models with a variety of applications such
as dispersal prediction and habitat conservation and restoration.

Appendix

We prove that the MIP presented in this chapter provides the lower bounds on the
dispersal time.

Theorem 3.3.1. The MIP presented in this chapter finds a lower bound on the time steps
needed by the simulation model to colonise the given destination habitats.

Proof. Let a run of the simulation model that occupies the given destination habitats
in k ∈N time steps be given. We will construct a feasible solution for the MIP, which
also occupies the destination habitats in k time steps.

In a first step set all variables equal to zero: f (e) = 0 for all e ∈ ETEN, f ((st, St)) =
0 for all destination habitats s and time steps t and x(v) = 0 for all v ∈ VTEN.

Now, for each time step t = 0, . . . , T set f ((ut, vt+1)) as the amount of biomass
that are sent from habitat u to v at time step t in the simulation.

Next set f ((Q, q0)) = TSH for all initial source habitats q. Beginning with time
step t = 0, set f ((vt, vt+1)) = ∑e∈δ−(vt) f (e) for all v ∈ V, t = 0, . . . , T − 1. For all
nodes v ∈ VTEN, if ∑e∈δ−(v) f (e) > TSH, set x(v) = 1. Next, set f ((st, St)) = x(st) for
all destination habitats s and time steps t. For all t = 0, . . . , T, if ∑s∈Hdest

f ((st, St)) >
|Hdest|, set x(St) = 1 and f ((St, S)) = x(St).

We show that this is a feasible solution:

(1) TSHx(v) 6 ∑e∈δ−(v) f (e) ∀v ∈ VTEN \ {Q, S1, . . . , ST, S} holds, since

x(v) =

{
1 if TSH 6 ∑e∈δ−(v) f (e)
0 else

∀v ∈ VTEN.

(2) f (vt, vt+1) = ∑e∈δ−(vt) f (e) ∀v ∈ V, t ∈ {0, . . . , T} holds by construction.

(3) Suppose that condition (3), ∑e∈δ+(v)
f (e)

1−c(e)pm
6 u(v)x(v) + ∑e∈δ−(v) f (e) ∀v ∈

VTEN, is violated and there exists a habitat patch v ∈ V and a time step t, such
that ∑e∈δ+(vt)

f (e)
1−c(e)pm

> u(vt)x(vt) + ∑e∈δ−(vt) f (e). Then, since c((vt, vt+1)) =
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0, f ((vt,vt+1))
1−c((vt,vt+1))pm

= f ((vt, vt+1)) = ∑e∈δ−(vt) f (e) and we obtain

∑
e∈δ+(vt),e 6=(vt,vt+1)

f (e)
1− c(e)pm

> u(vt)x(vt)

Now two cases can occur.

a) x(vt) = 0. Then biomass is emitted, although ∑e∈δ−(vt) f (e) < TSH. That
is equivalent to v emitting biomass before becoming a source habitat in
the simulation model:
Consider habitat v at time t in the simulation model. The amount of
biomass in v at time step t is the amount of biomass in v at the previ-
ous time step t− 1 plus the amount of incoming biomass from connected
source habitats plus a simulated population growth minus the outgoing
amount of biomass, if v is a source habitat at time t. In the optimisation
model this is by construction represented as

∑
e∈δ−(vt)

f (e),

where the amount of biomass in v at time step t− 1 is given by f ((vt−1, vt))
and the amount of incoming biomass from connected source habitats is
given by

∑
e∈δ−(vt),e 6=(vt+1,vt)

f (e).

Our assumption was that x(vt) = 0. Thus, by construction ∑e∈δ−(vt) f (e) <
TSH and again by construction this means that the amount of biomass in
v at time t − 1 plus the incoming biomass in the simulation model also
has to be less than TSH. Now, according to the simulation model the pop-
ulation growth does not take part and the overall amount of biomass in
v is less than TSH in the current time step. Thus, in the simulation model
biomass would have been emitted without v being a source habitat, which
cannot happen.

b) x(vt) = 1. In this case more biomass is emittted than possible, which
cannot happen in the simulation model either.

Thus, condition (3) is fulfilled for all nodes at all times.

(4)-(7) hold by definition.

(8) All destination habitats are colonised at time step k 6 T in the simulation.
Thus, ∑e∈δ−(sk)

f (e) > TSH and therefore x(sk) = 1 for all destination habi-
tats s. By construction f ((sk, Sk)) = x(sk) = 1 for all s ∈ End and thus
∑s∈Hdest

f ((sk, Sk)) = |Hdest|, which yields x(Sk) = 1. Again by construction
f ((Sk, S)) = x(Sk) = 1 and therefore ∑T

t=0 f ((St, S)) > 1.
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Highlights

• Analysis of habitat loss coupled with metapopulation dynamics on habitat net-
works

• Different types of species, networks, and habitat loss studied

• Evaluation of 29 graph-theoretic indicators of metapopulation robustness against
habitat loss

• Landscape-based networks respond to habitat loss qualitatively differently than
standard networks

• Clustering coefficient is a good robustness indicator across all types of species,
networks, and habitat loss

Abstract

Habitat loss and fragmentation resulting from changes in climate, land use, and pol-
lution are main drivers of global biodiversity loss, as the survival of metapopula-
tions relies on the ability of individuals to disperse among suitable habitat patches.
To prioritize conservation efforts, methods are needed for evaluating the robustness
of metapopulations against habitat loss. We therefore investigate this robustness
for different degrees of habitat loss, different types of habitat loss (random, periph-
eral, and contagious), different types of habitat networks, and species differing in
their local-extinction risks and dispersal ranges, with the latter two traits influenc-
ing metapopulation dynamics through local extinctions and the subsequent recolo-
nization of patches, respectively. In particular, we analyse several standard network
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types (with random, regular, small-world, or scale-free structure) and compare them
with several alternative network types derived from real-world two-dimensional
habitat landscapes (with random, clustered, or contiguous habitat allocation). To
evaluate the robustness of metapopulations against habitat loss, we study how the
fraction of colonized habitat patches changes with the fraction of lost habitat patches.
Furthermore, we investigate how well 29 different graph-theoretic metrics of habitat
networks can serve as indicators of metapopulation robustness against habitat loss –
as this approach, where feasible, allows replacing complex simulation-based predic-
tions with simple indicator-based predictions. We find that responses of species to
habitat loss on the considered landscape-based habitat networks qualitatively dif-
fer from those on the considered standard habitat networks. This suggests that
results obtained for the latter, albeit widely examined in the literature, can be un-
representative and misleading. As expected, species with high risks of local extinc-
tion and short dispersal ranges are particularly vulnerable to habitat loss, across
all considered types of habitat loss and habitat networks. The graph-theoretic net-
work metric that best explains the robustness of metapopulations against habitat
loss depends on the considered types of species, habitat networks, and habitat loss.
None of the examined metrics give consistently reliable predictions under all cir-
cumstances. For sensitive species, characterized by high local-extinction risks and
short dispersal ranges, a network’s average clique size, redundancy, average degree,
connectance, clustering coefficient, and average closeness centrality are the best in-
dicators of metapopulation robustness. For landscape-based habitat networks, a net-
work’s average clique size, beta coefficient, clustering coefficient, redundancy, and
cyclomatic number work best. For contagious habitat loss, the network type has a
particularly strong impact on the species-specific robustness against habitat loss. In
summary, our study introduces a method for evaluating the robustness of metapop-
ulations against habitat loss and shows that a network’s clustering coefficient, under
a wide range of circumstances, is a particularly reliable indicator of this robustness.

Keywords

Habitat networks · Habitat loss · Network robustness · Metapopulation dynamics ·
Graph theory

4.1 Introduction

Habitat losses resulting from changes in climate and land use are among the main
drivers of the ongoing global biodiversity crisis (Sala et al., 2000; Fahrig, 2003; Foley
et al., 2005; Titeux et al., 2016; Lechner et al., 2017). The survival of metapopulations
relies on suitable habitat and on the ability of individuals to disperse among dif-
ferent habitat patches. Small populations consisting of only few connected patches
suffer from a risk of accidental local extinction through demographic stochasticity,
are threatened by genetic impoverishment, and have lower chances of recovering
from episodes of low abundance (Lande, 1988; Fagan and Holmes, 2006). Habitat
loss tends to decrease habitat connectivity, impeding the movement of individuals
among habitat patches (Turner and Ruscher, 1988; Kindlmann and Burel, 2008). A
way to protect species from local extinctions due to habitat loss is to increase habitat
connectivity by creating dispersal corridors increasing a landscape’s permeability
(Fahrig and Merriam, 1994; Hanski, 1999). As financial resources for designing and
implementing conservation measures are usually limited, a quantitative assessment
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of habitat connectivity in consideration of future habitat loss is necessary to prior-
itize conservation efforts (Cowling et al., 1999). Graph theory provides powerful
tools to represent and analyse habitat connectivity in highly fragmented landscapes
(Urban and Keitt, 2001; Dale and Fortin, 2010; Erős et al., 2012b; DeAngelis and
Yurek, 2017). In this context, landscapes are seen as habitat networks, with habitat
patches represented as nodes and possible dispersal pathways represented as links.
Applying such tools from graph theory has numerous advantages: graph-based net-
works allow for complex computations using well-understood algorithms and can
easily be used to evaluate different conservation scenarios or assess the impacts of
global change. Furthermore, graph theory is being used ubiquitously over a wide
range of disciplines ranging from social sciences, economics, and technology to biol-
ogy. The resultant variety of existing tools can readily be applied in ecology (Urban
et al., 2009; Newman, 2010). In ecology, techniques from graph theory and net-
work analysis have mainly been used for investigating food webs and plant-animal
mutualistic interactions (Landi et al., 2018), but are also common in landscape ecol-
ogy (Fortuna et al., 2006). One of the main differences between habitat networks
of metapopulations and food webs is the habitat networks’ dependence on the un-
derlying spatial landscape. While networks in general (such as food webs) can be
independent of space, habitat networks are typically spatially embedded. Space is
also relevant in many other disciplines and networks, giving rise to a focus across
disciplines on so-called spatial networks. Spatial networks are defined as networks
in which nodes are embedded in space and the probability of two nodes being con-
nected decreases with distance (Gastner and Newman, 2006; Dale and Fortin, 2010;
Barthélemy, 2014). Examples of such networks include the internet, power grids,
transportation networks, and trade relations. Spatial networks tend to exhibit posi-
tive degree correlation, meaning that nodes have a higher probability of being con-
nected with nodes of a similar degree (defined as the number of neighbours), as well
as a high clustering coefficient, indicating that the neighbourhoods of nodes are par-
ticularly well connected (Watts and Strogatz, 1998; Newman, 2003; Boccaletti et al.,
2006; Peyrard et al., 2008; Barthélemy, 2014). Naturally, habitat networks are spatial
networks, as real-world habitat patches are located in a three-dimensional space that
can often be approximated by a two-dimensional landscape, with patches at short
distance having a higher probability of being connected than more distant patches.
The robustness of networks against failure and attacks causing the loss of individual
components (nodes or links) has been subject to many studies in various areas such
as technology, transportation, and trade (Callaway et al., 2000; Cohen et al., 2000;
Albert et al., 2001a; Cuadra et al., 2015; Gephart et al., 2016). A network’s robust-
ness is generally defined as “the ability of a network to avoid malfunctioning when
a fraction of its constituents is damaged” (Boccaletti et al., 2006). Previous studies
of the robustness of ecological networks have predominantly focused on food webs
and mutualistic networks (Burgos et al., 2007; Evans et al., 2013). In the context of
habitat networks, studies have applied graph theory to examine how the connectiv-
ity of networks affects the dispersal of various species (Calabrese and Fagan, 2004;
Estrada and Bodin, 2008; Rayfield et al., 2011; Saunders et al., 2016; Upadhyay et
al., 2017; Grech et al., 2018). While the majority of these studies have used variable
species traits, such as dispersal ranges, to represent different species, each study has
usually focused on only one underlying landscape. Furthermore, most preceding
studies have modelled static scenarios, disregarding any metapopulation dynamics.
Metapopulations, however, are highly dynamic and constantly adapt to changed
conditions, e.g., after habitat loss. Therefore, analyses based on dynamic robustness
would appear to be more appropriate (Martensen et al., 2017; Kun et al., 2019; Prima
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et al., 2019; Shen et al., 2019). Recently, several studies of metapopulation robust-
ness have taken such a perspective. Shen et al. (2019) simulated dispersal on regular
networks, in which every habitat patch is connected to the same number of neigh-
bouring patches, and observed that an increasing number of neighbours promotes
metapopulation persistence. Prima et al. (2019) investigated habitat fragmentation
and allowed for rewiring to account for dynamic robustness, finding that incorporat-
ing rewiring into network-robustness analyses is necessary and a naive application
of graph theory to analyse habitat-network robustness may be inappropriate. Kun
et al. (2019) examined the response of metapopulations to dynamic habitat loss and
fragmentation, through which habitat sites transition from habitable to inhabitable
and vice versa, and used their results to define five qualitatively different phases
of landscape degradation. To examine dynamic robustness after the loss of habitat
patches, our study therefore combines the simulation of metapopulation dynamics
with the simulation of habitat-loss dynamics. We examine the consequences of the
permanent loss of habitat patches located on different types of habitat networks for
metapopulations of different generic species characterized by traits describing their
local-extinction risks and dispersal ranges, by studying the resultant metapopula-
tion dynamics including local extinction and recolonization. To evaluate the robust-
ness of these metapopulations against habitat loss, we study how the fraction of col-
onized habitat patches changes with the fraction of lost habitat patches. These results
are compared among and between standard networks commonly studied in graph
theory, such as random, regular, small-world, and scale-free networks (Boccaletti
et al., 2006; Newman, 2010) on the one hand and spatial networks defined through
random, clustered, and contiguous habitat allocation on riverine landscapes (Streib
et al., 2020) on the other hand. On this basis, we investigate how well different
graph-theoretic metrics of habitat networks can serve as indicators of metapopula-
tion robustness against habitat loss.

4.2 Methods

4.2.1 Structure of analyses

To evaluate metapopulation robustness against habitat loss, we study a model com-
bining habitat loss with metapopulation dynamics. We consider three types of habi-
tat loss – random, peripheral, and contagious – and remove a given fraction of habi-
tat patches from a given habitat network accordingly. In our simulations, each re-
maining habitat patch, or network node, is either colonized or empty. All habitat
patches removed by habitat loss are and stay empty, and all habitat patches remain-
ing after habitat loss are colonized initially. For the latter patches, random local ex-
tinctions are considered, in a way that depends on the local-extinction risk of species
and each patch’s neighbourhood. Empty habitat patches can be recolonized through
dispersal from connected colonized habitat patches, in a way that depends on the
dispersal range of species and each patch’s neighbourhood. These metapopulation
dynamics are continued until a stationary distribution has been reached. From this
we obtain the fraction of colonized habitat patches. We repeat such simulations of
habitat loss and metapopulation dynamics for different degrees of habitat loss, to
obtain a robustness curve describing the fraction of colonized habitat patches in de-
pendence on the fraction of lost habitat patches. Based on this robustness curve,
we use the ‘area under the curve’ (AUC) as a measure to quantify metapopulation
robustness: the higher the fraction of colonized habitat patches across fractions of
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FIGURE 4.1: Schematic overview of the structure of analyses in this
study. We consider species with different traits inhabiting different
habitat networks experiencing different habitat loss (left panels). For
the resultant wide variety of ecological settings, we study metapop-
ulation dynamics involving the local extinction and recolonization of
habitat patches, for different degrees of habitat loss (middle panel).
On this basis, we obtain a measure of metapopulation robustness, as
the ‘area under the curve’ (AUC) of the dependence of the fraction of
colonized habitat patches on the fraction of lost habitat patches (right
panel, top-left part) and examine how well various graph-theoretic
metrics of the investigated habitat networks (right panel, bottom-
right part) can serve as reliable indicators of metapopulation robust-

ness (right panel, central part).

lost habitat patches, the higher the AUC, and thus the estimated metapopulation ro-
bustness. Metapopulation robustness is assessed in this way for different types of
networks, different types of habitat loss, and different types of species. For each
combination, simulations are replicated ten times to average over the sources of
randomness affecting habitat networks, habitat loss, and metapopulation dynamics.
The following subsections provide detailed specifications. Fig. 4.1 gives an overview
of the structure of our analyses.

4.2.2 Habitat networks

We consider a wide range of habitat networks qualitatively differing in their struc-
ture. In particular, we compare three types of landscape-based networks with four
types of standard networks commonly investigated in network theory. Landscape-
based habitat networks are created as described by Streib et al. (2020) for stream
landscapes from South-West Germany considering a generic insect species inhabit-
ing habitat patches situated along the riverine parts of these landscapes. See Fig. 4.9
for a map of these stream landscapes and Appendix Section A.1 for detailed infor-
mation on their specification. We examine three types of landscape-based networks
varying in habitat-patch arrangements ranging from (1) random (with all habitat
patches randomly selected along streams with equal probability), over (2) clustered
(with only some habitat patches randomly selected along streams with equal proba-
bility and the others randomly selected along streams with equal probability within
a given radius around any of the initially selected habitat patches) to (3) contigu-
ous (with a smaller fraction of habitat patches randomly selected along streams with
equal probability and a larger fraction of others randomly selected along streams
with equal probability within a given radius around any of the initially selected
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habitat patches, leading to a more contiguous allocation of the habitat patches com-
pared to the clustered allocation). Dispersal pathways linking these patches are
constructed by a least-cost path analysis of land-use scenarios. See Fig. 4.2a-c for
examples of the resultant landscape-based habitat networks and Appendix Section
A.2 and Streib et al. (2020) for detailed information on their specification. Standard
networks with (1) random, (2) regular, (3) small-world, and (4) scale-free structures
are created using algorithms implemented in the Python package NetworkX version
1.10 (Hagberg et al., 2008a). Parameters are set to create networks that are similar
to the landscape-based networks in terms of the number of habitat patches (nodes)
and corresponding dispersal pathways (links). Every link is assigned random dis-
persal costs with a distribution similar to the landscape-based networks. In random
networks, two nodes are connected with a given probability. The degrees of nodes,
defined as the number of other nodes to which they are connected, thus follow a bi-
nomial distribution, which approaches a normal distribution with narrow variance
as the number of nodes becomes large. These random networks are generated using
the algorithm by (Erdős and Rényi, 1960). Regular networks are networks in which
every node has the same degree (Newman, 2010). For example, triangular, square,
and hexagonal grids define regular networks, with nodes in each grid cell and links
existing wherever grid cells are adjacent. Small-world networks are a mixture of
random and regular networks, capturing the small-world phenomenon well-known
from the social sciences (Watts and Strogatz, 1998; Boccaletti et al., 2006; Newman,
2010). While most nodes are not connected to each other, the neighbours of a node
are connected with a probability that is higher than in random networks. In other
words, small-world networks are highly clustered while at the same time exhibit-
ing low average shortest-path distances between nodes. We use the algorithm by
Newman and Watts (1999) to construct small-world networks. Scale-free networks
consist of a few nodes (so-called hubs) that are connected to many other nodes, while
most nodes have only very few neighbours, with the degrees of nodes following a
power-law distribution (Barabási and Albert, 1999; Barabási and Bonabeau, 2003).
We use the Barabási–Albert preferential attachment model to construct scale-free
networks (Barabási and Albert, 1999). See Fig. 4.2d-g for examples of the resultant
standard habitat networks and Appendix Section A.3 for detailed information on
their specification. In total, we analyse 1750 networks distributed over seven en-
sembles each containing 250 networks for each of the seven network types, with
the number of nodes ranging between 54 and 111 and the number of links ranging
between 39 and 324. See Fig. 4.2 for examples of all network types and Appendix
Sections A.2 and A.3 for detailed information on the specification of the network
ensembles.

4.2.3 Habitat loss

We investigate three types of habitat loss. Random habitat loss removes each habitat
patch with equal probability p. Peripheral habitat loss removes peripheral habitat
patches with higher probability than central habitat patches. For this purpose, we
define the centrality of a patch as its betweenness centrality (Freeman, 1977; Estrada
and Bodin, 2008), which measures how many of the shortest paths between all pairs
of patches pass through a focal patch. When peripheral habitat loss with probability
p is applied to a network with n habitat patches, a total of pn patches are removed,
which are chosen with relative probabilities 1− b(v), where b(v) is the betweenness
centrality of patch v. Contagious habitat loss removes adjacent habitat patches with
higher probability than non-adjacent habitat patches. First, a single habitat patch
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FIGURE 4.2: Examples of the analysed seven types of habitat net-
works. (a-c) Landscape-based networks, with (a) random, (b) clus-
tered, and (c) contiguous habitat allocation Streib et al. (2020). (d-g)
Standard networks with (d) random, (e) regular, (f) small-world, and
(g) scale-free structure. Blue dots represent habitat patches, light-blue
lines depict the underlying stream landscape, and black lines indicate
dispersal pathways. The width of these lines represents the dispersal
costs with thick lines indicating lower costs and thin lines indicating

higher costs.

chosen with equal probability from among all habitat patches is removed. Next,
habitat patches adjacent to a lost patch are removed recursively, from lowest to high-
est dispersal costs using the breadth-first search algorithm, stopping once pn patches
are removed. These two steps are repeated until pn patches are removed.

4.2.4 Metapopulation dynamics

For a given level of habitat loss, local extinctions are simulated on the remaining
habitat network, by considering local extinctions in habitat patches and the recolo-
nization of habitat patches.

As the long-term survival of a population in a habitat patch highly depends on
its potential to exchange individuals with neighbouring patches (Lande, 1988; Fa-
gan and Holmes, 2006), we assume that the risk of local extinction in a focal patch
is positively correlated with the number of patches connected to it within its neigh-
bourhood. We use the size of cliques as a measure of these connections: a clique in a
network is a subset of nodes such that every two nodes in this subset are connected
with each other (Alba, 1973; Newman, 2010). Denoting by c(v) the size of the largest
clique that contains the node v we assume that the population in v goes extinct with
probability

pext(v) = a1−c(v),

where a > 1 is a species-specific parameter governing the local-extinction risk of a
species. We can thus interpret a as the factor by which the local-extinction risk in
v geometrically decreases with every additional node in c(v). For example, when



Chapter 4. Indicators for robustness 33

v has only one clique-level neighbour, c(v) = 2 and pext(v) = a−1, while when
c(v) increases by the increment 1 from 2 to 3, pext(v) drops by the factor a from a−1

to a−2. We investigate values of a ranging from 2 to 9 to account for the different
local-extinction risks of different species. We can think of these risks decreasing
with increasing c(v) more slowly for habitat specialists (small values of a) and more
rapidly for habitat generalists (large values of a).

Empty habitat patches can be recolonised from connected colonised patches. Re-
colonisation is modelled with the help of a Gaussian dispersal kernel (Nathan et al.,
2012; Chapman et al., 2007) and we assume that an empty habitat patch v becomes
recolonised from a colonised patch w with probability

pcol(v, w) =
mvw

∑u∈V muw
,

where mvw = exp(− 1
2 d2

vw/σ2) is the dispersal kernel, V the set of all network nodes,
dvw the distance between habitat patches v and w in terms of dispersal costs, and σ >
0 a species-specific dispersal parameter governing the dispersal range of a species.
We can thus interpret σ as the dispersal cost at which the dispersal probability drops
to 1/

√
e = 60.7% of its maximum. Similar to a, we investigate values of σ ranging

from 2 to 9 to account for the different dispersal capacities of different species. We
can think of these capacities as being low for poor dispersers (small values of σ) and
high for good dispersers (large values for σ).

These local extinctions in and recolonizations of habitat patches are simulated
alternately until a stationary frequency of colonized patches is reached.

4.2.5 Statistical analyses

We describe the structure of the habitat networks using a variety of metrics com-
mon in graph theory, such as the number of nodes and links, the average central-
ity of nodes, a network’s clustering coefficient, and the average clique size. All of
these metrics have been implemented in the Python package NetworkX version 1.10
(Hagberg et al., 2008a). Table 4.1 provides a list of the examined metrics and in-
dicates the corresponding NetworkX algorithms. We use the statistical software R
version 3.5.1 (R Core Team, 2018) in combination with the two R packages lme4 ver-
sion 1.1.19 (Bates et al., 2014) and sjstats version 0.17.2 (Lüdecke, 2018) to perform
a linear mixed-effects analysis of the relationship between a metapopulation’s ro-
bustness, measured by the AUC as described above, and each considered network
metric. For this, we fit linear mixed-effects models (LMMs) with metapopulation
robustness as the response variable and one of the network metrics as the predictor
variable (i.e., fixed effect). We account for the statistical dependence associated with
the grouped structure in our simulation data that arises from using 10 replications
per setup (each defined by a fixed combination of species, networks, and habitat
loss) by treating these replication setups as random effects affecting the LMM inter-
cepts. For details on LMMs, see Faraway (2016). Based on the estimated LMMs,
we standardize the LMM slopes using standardized regression coefficients (denoted
as bstd throughout the present study) to allow for a comparison of the strength of
the relationship across different network metrics (Landis, 2005). These standardized
regression coefficients describe the predicted change in metapopulation robustness
resulting from a unit change in the considered network metric when both quantities
are expressed in standard-deviation units. To identify network metrics that exhibit
an overall strongly positive or negative relationship with metapopulation robustness
irrespective of the considered network types, we average the regression coefficients
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over all network types in the considered set of network types. In case of contradic-
tory relationships (i.e., if one network type exhibits a positive relationship with a
network metric whereas another network type exhibits a negative relationship with
the same metric), we set the mean regression coefficient to 0 to indicate that the rela-
tionship is unreliable. To examine the relative importance of network type, dispersal
range, and local-extinction risk for determining metapopulation robustness, we fit
LMMs with metapopulation robustness as the response variable and network type,
σ, and a as the predictor variables (i.e., fixed effects). As described above, we treat
the replication setups as random effects affecting the LMM intercepts. Based on the
estimated LMMs, we measure effect size as the proportion η2 of the total variance
in metapopulation robustness that can be attributed separately to each of the three
predictor variables.

Metric Specification
NetworkX functions
involved

Betweenness
centrality

Fraction of shortest paths between the
two nodes of all pairs of different nodes
that pass through a focal node

betweenness_centrality

Closeness
centrality

Reciprocal of the sum of the
shortest-path lengths from a focal node
to every other node, averaged over all
other nodes

closeness_centrality

Clique
number Size of largest clique graph_clique_number

Degree Number of neighbours of a focal node degree_centrality

Average
clique size

Size of largest clique a node is part of,
averaged over all nodes

node_clique_number

Average
shortest path
length

Shortest-path length between the two
nodes of all pairs of different nodes,
averaged over all such pairs

average_shortest_path_length

Average
connectivity

Minimum number of nodes that must be
removed to disconnect two non-adjacent
nodes, averaged over all such pairs

average_node_connectivity

Beta
coefficient

Ratio of the number of links to the
number of nodes

number_of_nodes,
number_of_edges

Size of centre
Number of nodes with minimum
eccentricity, with the eccentricity of each
node defined as the maximum of its
shortest-path lengths to all other nodes

center

Average
number of
cliques

Number of cliques a node is part of,
averaged over all nodes

cliques_containing_node

Clustering
coefficient

Ratio of the number of existing triangles
in a node’s neighbourhood to the
number of all possible triangles in this
neighbourhood, averaged over all nodes

average_clustering

Number of
components Number of connected components number_connected_components
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Cyclomatic
number

Maximum number of links that can be
removed without increasing the number
of components

number_of_nodes,
number_of_edges,
number_connected_components

Number of
links Number of links (edges) number_of_edges

Number of
nodes Number of nodes number_of_nodes

Size of
periphery

Number of nodes with maximum
eccentricity, with the eccentricity of each
node defined as the maximum of its
shortest-path lengths to all other nodes

periphery

Periphery-to-
centre
ratio

Ratio of the size of the periphery to the
size of the centre

periphery, center

Connectance Ratio of the number of existing links to
the number of all possible links

number_of_nodes,
number_of_edges

Redundancy

Ratio of the number of existing circuits to
the number of all possible circuits, with
circuits defined as closed paths through
distinct nodes

number_of_nodes,
number_of_edges

Skewness Skewness of degree distribution
degree.values,
scipy.stats.skew

Degree
correlation

Pearson correlation coefficient of the
degree pairs of all adjacent nodes degree_assortativity_coefficient

TABLE 4.1: Graph-theoretic metrics investigated in this study. The
listed quantities are network-level metrics, except for the node-level
metrics of betweenness centrality, closeness centrality, and degree, for
which our analysis considers the network-level metrics given by the
average, minimum, maximum, and range of the node-level metrics.

4.3 Results

4.3.1 Landscape-based habitat networks respond to habitat loss qualita-
tively differently than standard networks

We find that the responses of landscape-based habitat networks to habitat loss qual-
itatively differ from those of standard habitat networks, with smaller differences in
responses occurring within these two groups of network types. First, metapopula-
tions on landscape-based networks are more robust compared to those on standard
networks. Across all types of habitat loss, metapopulation robustness on landscape-
based networks has a mean of 0.61 with a standard deviation of 0.19, whereas on
standard networks it has a mean of only 0.42 with a standard deviation of 0.17
(Fig. 4.3b). Second, several of the tested network metrics can serve as reliable indi-
cators of metapopulation robustness across the three types of landscape-based net-
works (Fig. 4.5), but are not suitable to predict metapopulation robustness across
all network types including the four types of standard networks. These findings
may be explained by the structural differences we find between landscape-based
and standard networks. In line with what is expected for spatial networks in gen-
eral, the landscape-based networks exhibit particularly high clustering coefficients
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FIGURE 4.3: Sensitive species, characterized by low metapopulation
robustness to habitat loss, have short dispersal ranges and high local-
extinction risks. (a) Dependence of metapopulation robustness on the
dispersal ranges (vertical axes, parameter σ varied from 2 to 9 in steps
of 1) and local- extinction risks (horizontal axis, parameter a varied
from 2 to 9 in steps of 1) of species for seven different network types
(columns) and three types of habitat loss (rows). Each cell shows the
metapopulation robustness averaged over 10 replications (see Meth-
ods), with light-red colours indicating high robustness and dark-red
colours indicating low robustness. (b) Corresponding distributions
of metapopulation robustness according to network types (columns)
and types of habitat loss (rows). The central line of each box indi-
cates the median, the lower and upper edges of each box indicate the
interquartile range, and the whiskers indicate the 10% and 90% quan-

tiles.

(mean of 0.65) and high positive degree correlation (mean of 0.7), whereas the stan-
dard networks show almost no clustering and a low negative to low positive degree
correlation with mean clustering coefficients between 0.15 (scale-free networks) and
0.05 (all others) and mean degree correlations between -0.2 (scale-free networks) and
+0.1 (small-world networks). Our results suggest that none of the standard network
types – be they of random, regular, small-world, or scale-free structure – are suit-
able representatives of real-world habitat networks, despite their widespread use in
a broad range of studies and disciplines. Overlooking this fundamental limitation
when evaluating conservation measures in response to habitat loss is risky at best
and misleading at worst.

4.3.2 Species with short dispersal ranges and high local-extinction risks
are particularly vulnerable to habitat loss

Across all types of networks and habitat loss, species with short dispersal ranges or
high local-extinction risks are especially vulnerable to habitat loss (Fig. 4.3a). Such
species, which may be called sensitive, occupy an L-shaped parameter region in
which either dispersal ranges are short or local extinctions are likely (Fig. 4.3a). As
expected, increasing the dispersal range or decreasing the local extinction risk of
a species results in increasing metapopulation robustness, again across all types of
networks and habitat loss (Fig. 4.3a). Contagious habitat loss, which might be con-
sidered to describe best what is happening to real-world habitat networks, brings
out particularly clearly the qualitative differences described in Section 3.1 between
landscape-based and standard networks (Fig. 4.3b).
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FIGURE 4.4: When considering all types of species, networks, and
habitat loss simultaneously, only the clustering coefficient can serve
as a reliable indicator of metapopulation robustness. A total of 29
network metrics are shown in the rows, and the three types of habi-
tat loss are shown in the panels. The colour of each cell indicates
the strength of the relationship between metapopulation robustness
and the considered network metric, measured as the standardized
regression coefficient, averaged over all network types (this average
strength of the relationship is set to 0 when the sign of the strength
of the relationship is not consistent across network types). Within
each row of each panel, the species-specific parameters governing
local-extinction risks and dispersal ranges, respectively, are changing
across the columns in steps of 1 between 2 and 9 first for a and then

for σ. The last column shows averages over all cells of a row.

4.3.3 The power of network metrics to predict robustness depends on the
types of species, networks, and habitat loss

We find that the clustering coefficient is the only reliable indicator of metapopulation
robustness across all considered setups in terms of species, networks, and habitat
loss (Fig. 4.4), with a mean standardised regression coefficient of bstd = 0.37. At the
same time, if we focus on certain subsets of setups, additional reliable indicators of
metapopulation robustness can be identified (Figs. 4.5- 4.7).

Sensitive species

When focusing on species with short dispersal ranges (i.e., σ=2) or high local-extinction
risks (i.e., a=2), several specific network metrics emerge as reliable indicators of
metapopulation robustness (Fig. 4.5). The best indicators are the average clique size
(bstd = 0.65), the redundancy (bstd = 0.56), the average degree (bstd = 0.48), the
connectance (bstd = 0.48), the clustering coefficient (bstd = 0.45), and the average
closeness centrality (bstd = 0.44). For interpreting the strong result for the average
clique size, we ought to keep in mind that in our model of metapopulation dynamics
the size of the largest clique a node is part of plays a direct role in determining the
local-extinction probability in a habitat patch.

Landscape-based habitat networks

When focusing on landscape-based networks, we find a variety of network metrics
that are reliable indicators of metapopulation robustness for all types of species and
habitat loss (Fig. 4.6). The best indicators are the average clique size (bstd = 0.61),
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FIGURE 4.5: When considering sensitive species, the average clique
size, the redundancy, the average degree, the connectance, the cluster-
ing coefficient, and the average closeness centrality are the best indi-
cators of metapopulation robustness. All figure elements as in Fig. 4.

the ratio of links to nodes, also called the beta coefficient (bstd = 0.58), the clustering
coefficient (bstd = 0.54), the redundancy (bstd = 0.52), and the cyclomatic number
(bstd = 0.48). Similar to the results above, the relationships between metapopulation
robustness and the different network metrics are often stronger for sensitive species,
i.e., for species that are weak dispersers or habitat specialists.

Contagious habitat loss

When focusing on contagious habitat loss (Fig. 4.7), the best indicator of metapop-
ulation robustness is the clustering coefficient (bstd = 0.42). For sensitive species,
the average clique size (bstd = 0.27), the redundancy (bstd = 0.15), the connectance
(bstd = 0.11), and the average degree (bstd = 0.11) are good indicators as well.
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redundancy, and the cyclomatic number are the best indicators of

metapopulation robustness. All figure elements as in Fig. 4.4.
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ing coefficient is the best indicator of metapopulation robustness. For
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All figure elements as in Fig. 4.4.

For contagious habitat loss, the network type, dispersal range, and local-extinction
risk jointly account for 90% of the variance in metapopulation robustness (Fig. 4.8).
Within these 90%, the network type has a particularly large impact on metapopu-
lation robustness, accounting for 58% of the variance alone. For random and pe-
ripheral habitat loss, about 85% of the variance in metapopulation robustness are
explained by network type, dispersal range, and local-extinction risk together. In
contrast to contagious habitat loss, the network type here accounts for less than 20%
of the variance, while the local-extinction risk accounts for about 50% of the vari-
ance.

4.4 Discussion

Our results have shown high metapopulation robustness against habitat loss for
species with strong dispersal capacities and low local-extinction risks across all types
of networks and habitat loss. We have found that none of the analysed network
metrics are reliable indicators of metapopulation robustness across all considered
types of species, networks, and habitat loss. At the same time, when focusing our
analysis on sensitive species (characterized by short dispersal ranges and high local-
extinction risks) or landscape-based networks (characterized by high clustering and
degree correlations), we could identify a variety of reliable indicators of metapopula-
tion robustness. This indicates that the structure of habitat networks has a higher im-
pact on the metapopulation robustness of particularly vulnerable species inhabiting
real-world habitat landscapes. Thus, the increase in the predictability of metapopu-
lation robustness by network metrics occurs precisely where the practical needs for
such predictability are highest. We have identified a network’s clustering coefficient,
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its average clique size, and its beta coefficient as reliable indicators of metapopula-
tion robustness on landscape-based habitat networks. These findings are in agree-
ment with other studies suggesting the small-world characteristics of networks as
a sign of robustness, because small-world networks are characterized by clustering
coefficients that are higher than expected for random networks in conjunction with
average shortest path lengths that are similar to or shorter than expected for ran-
dom networks (Almpanidou et al., 2014; Fox and Bellwood, 2014; Prima et al., 2019).
However, the small-world characteristic is not a quantitative metric and the clus-
tering coefficient is, thus, a more informative and precise measure. According to
our results, the average shortest path length, in contrast to the clustering coefficient,
does not exhibit a reliable relationship with metapopulation robustness across the
different network types examined in our study, even though it is sometimes also
considered as being characteristic of small-world networks. In agreement with our
findings, Ash and Newth (2007) developed networks that are particularly robust
against cascading failures and noticed their high clustering coefficient. In general,
scale-free networks are seen as being particularly robust against random node fail-
ure, since the probability of a random network node having a high degree – and
its failure thus causing the loss of many network links – is especially low for net-
works of this type (Albert et al., 2001a; Barabási and Bonabeau, 2003). Our analysis,
however, does not support the notion that metapopulations on scale-free networks
or small-world networks are particularly robust to habitat loss. Instead, we find
that metapopulations on landscape-based networks are most robust to habitat loss.
This indicates that the embedding of a network’s structure in two-dimensional land-
scapes (which also leads to higher clustering) may play a crucial role in determin-
ing its robustness. The seeming discrepancy between the surmised robustness of
small-world networks and scale-free networks on the one hand and our results on
the other could partially originate also from subtly different notions of robustness:
while many studies and verbal accounts of network stability consider what prevents
networks from fragmenting into disconnected subnetworks, such large-scale consid-
erations are not necessarily very relevant for a metapopulation’s response to habitat
loss, provided the resultant fragments each remain large enough to support viable
metapopulations. Studies of networks describing food webs have identified con-
nectance (i.e., the ratio of existing links in a network to all possible links) as a good
indicator of robustness against species invasion (Romanuk et al., 2017). Although
connectance shows a strong relationship with the metapopulation robustness in our
analysis of landscape-based networks, we have found it to be a rather poor indica-
tor when considering all network types. Yet, when focusing on peripheral habitat
loss alone, connectance showed, together with the average patch degree, the best
results. We hope that our results will prove useful for evaluating and prioritizing
species, metapopulations, and geographic areas that are particularly vulnerable to
habitat loss. Once habitat networks are mapped out, practitioners can use the spe-
cific network metrics highlighted by our study to identify those networks that are
least robust against habitat loss and thus need most protection or remedial action.
Furthermore, conservation efforts can be improved by assessing which areas of a
larger landscape need to be modified, and how, so as to raise a focal network metric
positively related with metapopulation robustness, since this can be expected, based
on our results, to improve the robustness of metapopulations inhabiting the whole
landscape. As we have found the clustering coefficient to display a reliably strong
relationship with metapopulation robustness throughout the majority of settings we
have investigated and since it has been identified as a good proxy of network robust-
ness also in other studies (Ash and Newth, 2007; Almpanidou et al., 2014; Fox and
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Bellwood, 2014; Prima et al., 2019), we particularly recommend using the clustering
coefficient in practical applications. If and when more information about a specific
metapopulation is known – such as the applicable species traits, network type, or
habitat-loss type –, our results can guide the selection of another network metric
that is even better suited than the clustering coefficient for the scenario at hand. One
of the main findings of our study is that standard networks, which lack a spatial ref-
erence to an underlying landscape, respond qualitatively differently to habitat loss
compared to landscape-based habitat networks. We suggest that this fundamental
limitation renders standard networks, despite their widespread use in many areas
of network science, unsuitable for studying the impacts of habitat loss on metapop-
ulations. When this fundamental limitation is not recognized, resultant assessments
of conservation measures are likely to be seriously flawed, potentially leading to the
avoidable sacrifice of biodiversity and/or loss of resources. Future studies could
strive to investigate a broader range of spatial networks, as well as of habitat net-
works derived from real-world landscapes, to evaluate the wider generalizability of
our results.

4.5 Conclusions

The following list provides a summary of our main conclusions:

• Responses of species to habitat loss on the considered landscape-based habi-
tat networks are qualitatively different from those on the considered standard
habitat networks.

• Species with high risks of local extinction and short dispersal ranges are par-
ticularly vulnerable to habitat loss, across all considered types of habitat loss
and habitat networks.

• The graph-theoretic network metric that best explains the robustness of metapop-
ulations against habitat loss depends on the considered types of species, habi-
tat networks, and habitat loss.

• For sensitive species, characterized by high local-extinction risks and short dis-
persal ranges, a network’s average clique size, redundancy, average degree,
connectance, clustering coefficient, and average closeness centrality are the
best indicators of metapopulation robustness.

• For landscape-based habitat networks, a network’s average clique size, beta
coefficient, clustering coefficient, redundancy, and cyclomatic number work
best.

• For contagious habitat loss, the network type has a particularly strong impact
on the species-specific robustness against habitat loss.

• Conservation biologists and landscape managers can benefit from this study
as it helps evaluate conservation measures for protecting habitat networks and
identifying species, metapopulations, and geographic areas that are in need of
the most protection.
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Appendix: Specification of Habitat Networks

In this appendix, we provide detailed information on the specification of the anal-
ysed seven types of habitat networks. For the landscape-based networks investi-
gated in the present study, we use the habitat networks developed by Streib et al.
(2020) with two modifications: First, we consider only one set of proportions of
land-use types (as detailed below) and only one proportion of habitat patches (as
detailed below). Second, we reduce the maximal dispersal costs, to obtain networks
with fewer links (as detailed below). We briefly summarize how we have followed
Streib et al. (2020), to make it easier for readers to understand and reproduce the
analysed habitat landscapes (Section A.1) and landscape-based networks (Section
A.2). We then specify the analysed standard networks (Section A.3). All network
types are specified based on (1) habitat patches, (2) links between patches, and (3)
dispersal costs along links. The landscape-based networks are defined by first spec-
ifying the habitat patches and dispersal costs between patches, with the links then
jointly determined by these. The standard networks are defined by first specifying
the habitat patches and links between patches, with the dispersal costs then assigned
to the links. Tables 4.2- 4.4 show the distribution of the number of nodes, links,
and dispersal costs for each of the seven network types. All analysed networks, as
well as the Python code for all analyses in the present study, are available online at
https://github.com/hheer/HabitatRobustness_Indicators.

A.1. Habitat landscapes

The landscape-based habitat networks are derived from a real-world stream land-
scape (Section 2.1.1 in Streib et al., 2020). For this purpose, we use a 50 km × 50 km
area of the stream landscape of Rhineland-Palatinate, Germany, as this landscape is
of local interest and associated data is readily available (Fig. 4.9). The total stream
landscape is divided into 25 landscape tiles each measuring 10 km × 10 km to ob-
tain a variety of dense or sparse stream landscapes with differing stream network
structures (Fig. 4.9). These two-dimensional stream landscapes provide necessary,
although not sufficient, information for specifying the analysed landscape-based
habitat networks, which means that the real-world stream landscapes endow the
analysed landscape-based habitat networks with important real-world properties.
The landscapes surrounding the streams are created by randomly assigning one of
the three land-use types ‘open agricultural land’, ‘forestry land’, and ‘urban area’ to
each 25 m × 25 m pixel of the 50 km × 50 km area without spatial auto-correlation;
this corresponds to the landscape-type configuration ‘random’ in Streib et al. (2020).
We use land-use proportions of 25% for open agricultural land, 25% for forestry land,
and 50% for urban area, to describe mixed landscapes with relatively large shares of
urban area. The stream network is embedded into these landscapes by assigning a
fourth land-use type ‘aquatic area’ to each pixel intersected by a stream. Each of the
four land-use types are assigned dispersal costs to represent the permeability of the
landscapes for a generic insect species inhabiting aquatic areas. We use dispersal
costs of 25 for aquatic pixels, of 50 for agricultural pixels, of 75 for forestry pixels,

https://github.com/hheer/HabitatRobustness_Indicators
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and of 100 for urban pixels (Section 2.1.1 in Streib et al., 2020). Following these as-
signments, the landscapes are resampled to a new pixel size of 100 m × 100 m by
taking the proportions of land-use types and the averages of dispersal costs over all
4 × 4 = 16 involved smaller pixels to obtain a broad variety of mixed land-use types
and associated dispersal costs (Section 2.1.1 in Streib et al., 2020).

FIGURE 4.9: Stream landscape in the German federal state of
Rhineland-Palatinate used for deriving the landscape-based habitat
networks analysed in the present study. Streams locations, indicated
in light-blue, are obtained from the database ‘Gewässernetz (gesamt)’
(Rhineland-Palatinate Ministry of the Interior and for Sports, 2020a).
The background shows a satellite image obtained from the web map
service ‘Luftbild RP Basisdienst’ (Rhineland-Palatinate Ministry of
the Interior and for Sports, 2020b). The grid lines indicate the divi-
sion of the total 50 km× 50 km landscape into 25 landscape tiles each
measuring 10 km × 10 km. The map uses the coordinate reference
system ‘ETRS89 / UTM zone 32N’ with EPSG code 25832. Longitudi-
nal positions are shown horizontally along the top edge and latitudi-
nal positions are shown vertically along the left edge, both measured
in metres. The overview map in the top right shows the location of the
stream landscape (light-blue rectangle) within the state of Rhineland-
Palatinate (satellite image) within Germany. The tile surrounded in

red corresponds to the maps shown in Fig. 4.2a-c.

A.2. Landscape-based habitat networks

Habitat patches

For each of the 25 10 km × 10 km landscape tiles with embedded stream structures
and pixels of size 100 m × 100 m, 10% of the aquatic pixels are selected as habitat
patches (Section 2.1.2 in Streib et al., 2020). Reflecting the different stream structures
in the different landscape tiles, this results in habitat networks with 54 to 111 habitat
patches. The particular aquatic pixels selected as habitat patches are identified us-
ing one of three different algorithms, giving rise to three types of landscape-based
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habitat networks with random, clustered, and contiguous habitat allocation. For ran-
dom habitat allocation, 10% of all aquatic pixels are randomly selected with equal
probability. For clustered habitat allocation, 5% of all aquatic pixels are randomly
selected with equal probability, and 5% of all aquatic pixels are randomly selected
with equal probability and without repetitions within a radius of 500 m around the
initially selected ones. For contiguous habitat allocation, we follow the same prin-
ciple as for clustered habitat allocation, except that merely 2.5% of all aquatic pixels
are randomly selected initially, resulting in a more contiguous allocation of the other
habitat patches.

Dispersal costs

For each of the 25 landscape tiles, a least-cost path analysis is used to determine the
dispersal costs within all pairs of habitat patches, resulting in the minimal dispersal
cost between two habitat patches being assigned to the link connecting them (Section
2.1.3 in Streib et al., 2020).

Habitat links

For each of the 25 landscape tiles, links are removed from the habitat network if
the assigned dispersal costs exceed a given maximum. Thus, the maximal dispersal
costs directly affect the number of links in a network. Differing from (Streib et al.,
2020), we assume maximal dispersal costs of 900 for random, 650 for clustered, and
400 for contiguous habitat allocation to ensure that all network types have similar
distributions of the number of links.

A.3. Standard habitat networks

Habitat patches

The number of habitat patches for each standard habitat network is chosen ran-
domly between 54 and 111, with uniform probabilities so as to ensure that all net-
work types have similar distributions of the number of nodes (Table 4.2 and Fig. 4.10).

Habitat links

Parameters to create the standard habitat networks are set so as to ensure that the
distributions of the number of links for these networks are similar to those of the
landscape-based networks (Table 4.3). Habitat patches in random networks are con-
nected with probability p = 0.04 (networks are created using the NetworkX func-
tion nx.erdos_renyi_graph). Regular networks are set to have a degree of d=4 (net-
works are created using the NetworkX function nx.random_regular_graph). Habitat
patches in small-world networks are set to have k = 2 neighbours to start with, and
the probability of adding a new link for each link is p = 0.6 (networks are created us-
ing the NetworkX function nx.newman_watts_strogatz_graph). The scale-free net-
works are defined based on degree sequences: these sequences follow a power law,
and the fraction P(k) of habitat patches connected to kneighbours is proportional to
k(− 2) (networks are created using the NetworkX functions nx.configuration_model,
nx.utils.create_degree_sequence, and powerlaw_sequence).
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Dispersal costs

Each link in a standard habitat network is randomly assigned a dispersal cost so as
to ensure that the distributions of dispersal costs for these networks are similar to
the averaged distribution for landscape-based networks (Table 4.4). Therefore, the
links are assigned dispersal costs randomly chosen between 46 and 400 for a first
third of links, between 46 and 650 for a second third, and between 46 and 900 for the
last third, in each case using a uniform probability density function.

Network type Mean Standard deviation Minimum Maximum

Random allocation 78 12.2 54 111
Clustered allocation 78 12.2 54 111
Contiguous allocation 78 12.2 54 111
Random 78 12.2 54 111
Regular 78 12.2 54 111
Small-world 78 12.2 54 111
Scale-free 78 12.2 54 111
Mean 78 12.2 54 111

TABLE 4.2: Distribution of the number of nodes for each network
type.

Network type Mean Standard deviation Minimum Maximum

Random allocation 139.2 36.6 53 271
Clustered allocation 129.5 30.9 63 233
Contiguous allocation 139.0 27.9 82 261
Random 123.2 39.9 39 254
Regular 141.0 32.3 81 222
Small-world 116.8 18.7 76 176
Scale-free 225.1 36.7 153 324
Mean 144.8 31.9 78.1 248.7

TABLE 4.3: Distribution of the number of links for each network type.

Network type Mean Standard deviation Minimum Maximum

Random allocation 543.1 236.6 50 900
Clustered allocation 345.7 166.7 50 650
Contiguous allocation 228.9 98.5 50 400
Random 348.8 210.8 50 900
Regular 347.8 210.7 50 900
Small-world 348.0 209.5 50 900
Scale-free 346.8 209.3 50 900
Mean 358.4 191.7 50 792.8

TABLE 4.4: Distribution of the dispersal costs for each network type.
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FIGURE 4.10: Full distribution of the number of nodes for the differ-
ent network types. Only one distribution is shown for the three types
of landscape-based habitat networks as the number of nodes in these
networks does not depend on the types of habitat allocation, but only
on the underlying stream landscapes: the distributions of the num-
ber of nodes are thus identical for all three types of landscape-based
habitat networks. The standard networks are created using the same

node distribution.
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Chapter 5

Maximising the clustering
coefficient of networks and the
effects on habitat network
robustness

The content of this chapter has already been published in an international reviewed
journal and can be accessed via the following link:

Heer, H., Streib, L. Schäfer, R. B., & Ruzika, S. (2020). Maximising the clustering
coefficient of networks and the effects on habitat network robustness. PLoS ONE
15(10): e0240940. https://doi.org/10.1371/journal.pone.0240940

Abstract

The robustness of networks against node failure has been of interest in various dis-
ciplines and the response of networks to node removal has been studied extensively
for networks such as transportation networks, power grids, and food webs. In many
cases, a network’s clustering coefficient was identified as a good indicator for net-
work robustness. In ecology, habitat networks constitute a powerful tool to represent
metapopulations or -communities, where nodes represent habitat patches and links
indicate how these are connected. Current climate and land-use changes result in
decline of habitat area and its connectivity and are thus the main drivers for the on-
going biodiversity loss. Conservation efforts are therefore needed to improve the
connectivity and mitigate effects of habitat loss. Habitat loss can easily be modelled
with the help of habitat networks and the question arises how to modify networks
to obtain a higher robustness against habitat loss. Here, we develop tools to identify
which links should be added to a network to increase the robustness. We introduce
two different heuristics, a Greedy and Lazy Greedy algorithm, to maximize the clus-
tering coefficient if multiple links can be added. We test these approaches and com-
pare the results to the optimal solution for different generic networks including a
variety of standard networks independent of space as well as spatially explicit land-
scape based habitat networks. In a last step, we simulate the robustness of habitat
networks before and after adding multiple links and investigate the increase in ro-
bustness depending on both the number of added links and the used heuristic. We
found that applying our heuristics to add links to particularly sparse networks such
as habitat networks has a much larger impact on the clustering coefficient compared
to randomly adding links. The Greedy algorithm delivered optimal results in almost

https://doi.org/10.1371/journal.pone.0240940
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all cases when adding two links to the network. Furthermore, the robustness of net-
works increased with the number of additional link when links were added using
the Greedy or Lazy Greedy algorithm.

Keywords

Clustering coefficient ·Network robustness ·Habitat networks ·Habitat loss ·Graph
theory

5.1 Introduction

Habitat loss and fragmentation due to changes in climate and land use are one of the
main drivers of the ongoing global biodiversity crisis (Sala et al., 2000; Fahrig, 2003;
Foley et al., 2005; Titeux et al., 2016; Lechner et al., 2017). The loss and fragmentation
of habitat lead to a decrease in habitat connectivity, impeding the movement of in-
dividuals between patches (Turner and Ruscher, 1988; Kindlmann and Burel, 2008).
This dispersal is crucial for species survival, as it facilitates interaction such as the
exchange of genes between different populations and thus allows for the existence of
metapopulations – a “population of populations” (Levins, 1969; Hanski, 1998; Perry
and Lee, 2019). As a consequence of the constantly intensifying climate and land-use
change, it is important for species conservation that we particularly try to preserve
and improve habitat connectivity by creating dispersal corridors increasing a land-
scape’s permeability Fahrig and Merriam, 1994; Hanski, 1999; Urban, 2015; Petsas
et al., 2020.

Graph theory provides powerful tools to represent and analyse habitat connec-
tivity in highly fragmented landscapes (Urban and Keitt, 2001; Dale and Fortin,
2010; Erős et al., 2012b; DeAngelis and Yurek, 2017). Here, metapopulations are
represented by habitat networks where nodes represent habitat patches and links
indicate how these are connected (Urban et al., 2009; Dale and Fortin, 2010; Galpern
et al., 2011). With the help of habitat networks, the loss of habitat can easily be rep-
resented by removing nodes and reduced connectivity by removing links from the
network (Martensen et al., 2017; Kun et al., 2019; Prima et al., 2019). Accordingly,
many studies apply graph-theoretic tools to evaluate the effect of climate and land-
use change and to find solutions for these effects in landscape planning (Mazaris
et al., 2013; Dilts et al., 2016; Pietsch, 2018).

The resilience of networks against node and link removal, also called network
robustness, has been studied in a variety of networks, such as transportation net-
works, power grids, and food webs (Albert et al., 2001b; Solé and Montoya, 2001;
Rosas-Casals et al., 2007; Berche et al., 2009; Cuadra et al., 2015). A network’s clus-
tering coefficient was identified as a good proxy for robustness in a variety of net-
works such as habitat networks of herbivores and brown bears (Ash and Newth,
2007; Almpanidou et al., 2014; Fox and Bellwood, 2014). The clustering coefficient
of a network was proposed by Watts and Strogatz Watts and Strogatz, 1998 and is
defined as the average of the local clustering coefficient of its nodes. A node’s clus-
tering coefficient measures how close its neighbourhood is to a complete network
in terms of the relative density of links in its neighbourhood. We exploit the rela-
tionship between the clustering coefficient and network robustness and improve a
network’s robustness by maximising the network’s clustering coefficient.

The question we pose in this work is: Where should additional links best be cre-
ated within a habitat network to maximise its clustering coefficient? We propose
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an algorithm to identify the missing link of a network that leads to the biggest in-
crease in network robustness when added to the network, by using the clustering
coefficient as an indicator. We introduce two different heuristics, a Greedy algo-
rithm (Krumke and Noltemeier, 2009) and a deducted Lazy Greedy algorithm, to
maximize the clustering coefficient if multiple links can be added. To speed up the
two algorithms, we developed a method to update the clustering coefficient of a
network after adding one link as opposed to calculating it without any prior knowl-
edge. Both approaches can be applied to any network, regardless of whether or not
it is based on a spatial component. We test these approaches and compare the results
to the optimal solution for different generic networks including a variety of standard
networks independent of space as well as spatially explicit landscape based habitat
networks.

In a last step, we simulate the robustness of habitat networks against habitat loss
as proposed by Heer et al. (2020) before and after adding multiple links and inves-
tigate the increase in robustness depending on both the number of added links and
the used heuristic. The robustness simulation combines the simulation of habitat
loss by randomly removing habitat patches from the network with the simulations
of metapopulation dynamics to evaluate the metapopulation’s robustness. Our pro-
posed methods thus provide tools to facilitate landscape restoration by identifying
which location leads to the largest improvement when additional links are added in
these places.

5.2 Methods

Outline of analysis

We present the algorithm to update the clustering coefficient after one link is added
and the Greedy and Lazy Greedy algorithms to add more than one link. We evalu-
ated the effect of adding links using the proposed algorithms on the clustering co-
efficient and therefore on the habitat network’s robustness. To evaluate the effect of
the proposed algorithms on the clustering coefficient, we added two links to a vari-
ety of networks using (1) the Greedy algorithm, (2) the Lazy Greedy algorithm, and
(3) a purely random approach. The clustering coefficients of the resulting networks
were then compared to the clustering coefficient of the original network as well as
the optimal solution, which was found by complete enumeration, i.e. iterating over
all pairs of potential links. We tested our algorithms on different network types,
including sparse standard networks (random, small-world, and regular) (Newman,
2010), dense standard networks, and habitat networks based on artificial landscapes
and a generic insect species with both terrestrial and aquatic life stages created by
Streib et al. (Streib et al., 2020).

Finally, we evaluated the effect of modified habitat networks on metapopulation
robustness. To this end, we simulated and evaluated the metapopulation robustness
as presented by Heer et al. (2020) and studied the increase in robustness after adding
links using the Greedy algorithm, the Lazy Greedy algorithm, and a random inser-
tion approach. For these simulations, only the landscape-based habitat networks
were taken into account as the standard networks are in general poor representa-
tives of habitat networks.
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Notation

We use the following notation throughout the manuscript. Let G = (V, E) be a
simple, undirected, loopless network with node set V and link set E ⊂ V ×V.

Let (u, v) ∈ V×V \ E be a pair of unconnected nodes in G. To be able to compare
the network G with the extended network that arises from G by adding the link (u, v)
to G, we use the following notation and set G′ := (V, E ∪ {(u, v)}). If we want to
emphasize the link (u, v), we will write G + uv := G′.

For a node w ∈ V, we set N(w) := {v ∈ V : (w, v) ∈ E} as the set of neighbours
of w, dw := |N(w)| as the degree, i.e. the number of neighbours, of w in G and d′w
the degree of w in G′. A triangle in a network G is a clique of three nodes {u, v, w},
i.e. all three nodes are connected with each other by links: (u, v), (u, w), (v, w) ∈ E.
We set T(w) := |{(u, v) ∈ E : u, v ∈ N(w)}| as the number of triangles in G that
involve w and T′(w) as the number of triangles in G′. Furthermore, with N(u, v) :=
N(u) ∩ N(v) we denote the set of common neighbours of u and v and k := |N(u, v)|
the number of common neighbours (Fig 5.1).

The clustering coefficient of a node v ∈ V is defined as

C(v) =

{
2T(v)

dv(dv−1) if dv > 1

0 if dv 6 1
.

It measures how close its neighbourhood is to a complete network in terms of the
relative density of links in its neighbourhood. If all links between neighbours of v are
present, then T(v) = 1

2 dv(dv − 1) and the clustering coefficient takes its maximum
value of 1. If no links between neighbours are present, then T(v) = 0 and thus
C(v) = 0.

The clustering coefficient of a network G with n := |V| nodes is defined as the
average over the clustering coefficient of its nodes:

CG =
1
n ∑

v∈V
C(v)

and can take any value between 0 and 1. Computing the clustering coefficient of
a network with n := |V| nodes has an O(nω) complexity with ω 6 2.376 (Green
and Bader, 2013). The most complex part of computing the clustering coefficient
is finding triangles in a network, which can be done in O(nω) using the adjacency
matrix and fast matrix multiplication. Let m ∈N be the number of links we want to
add to the network and E ⊆ V ×V \ E a set of missing links to choose these m links
from. Fig 5.1 gives an example for each variable introduced here.

Our aim is to improve a network’s robustness by adding links to the network.
As the clustering coefficient is a good proxy for robustness (Ash and Newth, 2007;
Almpanidou et al., 2014; Fox and Bellwood, 2014; Prima et al., 2019), we want to
identify those links that should be added to the network to maximize the clustering
coefficient. Mathematically, we want to solve the following problem:

Problem 5.2.1. Let G = (V, E) be a network as above, E ⊆ V × V \ E, and m > 1 be
given. Find a subset {e1, . . . , em} ⊆ E such that G′ := (V, E∪{e1, . . . , em}) has maximum
clustering coefficient. In other words, find a solution to

max CG′

s.t. G′ = (V, E ∪ {e1, . . . , em})
{e1, . . . , em} ⊆ E .
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FIGURE 5.1: Example network to illustrate notation. G = (V, E)
with n = 8 nodes, 10 links, V = {a, b, c, d, e, u, v, w}, and E =
{(a, b), (a, w), (a, c), (b, u), (b, w), (u, e), (w, c), (w, d), (e, v), (d, v)}. We
choose m = 1 link from the set E = V × V \ E of all links not in-
cluded in G. G′ is the network G after link (u, v) (represented as
dashed line) was added: G′ := G + uv. Then N(w) = {a, b, c, d},
dw = d′w = 4, T(w) = T′(w) = 2 (the triangles abw and acw) and
C(w) = 2·2

4(4−1) = 1
3 . For u we obtain du = 2 and d′u = 3 and sim-

ilarly T(u) = 0 and T′(u) = 1 (the triangle uev). N(u, v) = {e}
and k = |N(u, v)| = 1. The clustering coefficient of G equals
CG = 1

8 · (
1
3 + 0 + 0 + 1

3 +
2
3 + 1 + 0 + 0) = 1

8 ·
7
3 = 7

24 and the cluster-
ing coefficient of the extended network is CG′ =

1
8 · (

1
3 + 1

3 + 1
3 + 1

3 +
2
3 + 1 + 0 + 1) = 1

8 · 4 = 1
2 .

Example 5.2.2. Consider the network G = (V, E) from Fig 5.1. We set E = V×V \ E and
m = 1, i.e. we allow all unconnected pairs of nodes to be connected and the task is to identify
m = 1 pair that maximizes the clustering coefficient when connecting the pair and adding
the link to G. Problem 5.2.1 has two solutions, the pair (u, v) as well as the pair (d, e), which
both increase the clustering coefficient to 0.5. If we set m = 2 in the same problem, we obtain
the unique solution (b, e) and (d, e) with a new clustering coefficient of 0.625.

In some cases, we want to add any link to the network in order to maximize
the clustering coefficient and it makes sense to find those potential links {e1, . . . , em}
within all pairs of unconnected nodes. In this case we set E := V × V \ E. How-
ever, especially when considering habitat networks, we may want to restrict this set
to only some pairs of unconnected nodes. For habitat networks, for example, we
may want to restrict the set to those pairs of unconnected nodes that are within a
certain (Euclidean) distance from each other. This represents the assumption, that
the species in focus has a limited dispersal distance independent on the underlying
land-use class (Keller et al., 2012).

Update clustering coefficient

We first aim to solve Problem 5.2.1 for m = 1, i.e., we want to find the pair of nodes
(u, v) ∈ E , such that the network G′ = G + uv has maximum clustering coefficient.

A naïve approach to find the relevant nodes u and v is to iterate over all uncon-
nected pairs of nodes, connect those, and calculate the clustering coefficient of the
extended network from scratch. This has a run time of O(|E |nω), as we iterate over
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|E | pairs and calculate the clustering coefficient each time from scratch. To speed up
the process, however, we can exploit the fact that adding the link does not affect the
clustering coefficient in most nodes. To see this, consider the degree of each node
in G as well as the number of triangles it is part of. The degrees of the nodes in G′

equal the degrees of the nodes in G, except for the two nodes u and v, as adding
(u, v) to G increases the degrees of u and v by exactly one. The number of triangles
in u and v each increases by the number of common neighbours of u and v, as each
common neighbour w ∈ N(u, v) introduces the triangle uvw and every triangle that
does not use the link (u, v) also exists in G. Similarly, the number of triangles for
each common neighbour of u and v increases by exactly one. The number of trian-
gles does not change for every other node that is not u, v or a common neighbor of
u and v. Accordingly, we can calculate the clustering coefficient of G′ by adding the
difference caused by u, v and every common neighbour w of u and v to the original
clustering coefficient CG:

CG′ = CG +
1
n

(
∆C(u) + ∆C(v) + ∑

w∈N(u,v)

2
dw(dw − 1)

)
(5.1)

with

∆C(u) =

{
2k(du−1)−4T(u)

du(d2
u−1) if du > 1

1 if du = 1
.

See Appendix for the proof of Eq 5.1.
It follows from Eq 5.1 and Fig 5.2, that adding a link to a network may also result

in a smaller clustering coefficient compared to the original network. If u and v have
no common neighbours, the sum over all common neighbours in Eq 5.1 is empty
(and thus equals 0) and

∆C(u) =
2 · 0 · (du − 1)− 4T(u)

du(d2
u − 1)

=
−4T(u)

du(d2
u − 1)

6 0.

Similarly, ∆C(v) 6 0 and

C′G = CG +
1
n
(∆C(u) + ∆C(v) + 0) 6 CG.

e1

e2

A

B

C

FIGURE 5.2: Varying effects of adding a link to a network on the
clustering coefficient. (a) Original network with clustering coefficient
CG = 0.38̄. (b) Network after connecting two nodes with no common
neighbours, CG+e1 = 0.27̄. (c) Network after connecting two nodes

with a common neighbour, CG+e2 = 0.7̄.

Using Eq 5.1, we can update the clustering coefficient after adding a new link
(u, v) to a network G = (V, E) with known clustering coefficient C.
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Algorithm 1 Update clustering coefficient

1: procedure UPDATECLUSTERING(G = (V, E), CG, (u, v))
2: Cmax ← 0
3: T ←Triangles(G)
4: CN ← CommonNeighbours(u, v)
5: k = |CN|
6: if du > 1 then
7: Cmax ← Cmax +

2k(du−1)−4T(u)
du(d2

u−1)
8: else Cmax ← Cmax + 1
9: if dv > 1 then

10: Cmax ← Cmax +
2k(dv−1)−4T(v)

dv(d2
v−1)

11: else Cmax ← Cmax + 1
12: for w ∈ CN do
13: Cmax ← Cmax +

2
dw(dw−1)

14: Cmax ← Cmax
|V|

15: Cmax ← Cmax + CG
16: return Cmax

Algorithm 1 takes a network G = (V, E), its clustering coefficient C, and a pair of
unconnected nodes u and v as input and returns the clustering coefficient of the ex-
tended network G + uv using Eq 5.1. It finds the set of common neighbours of u and
v, calculates ∆C(u) and ∆C(v), and then iterates over the set of common neighbours
of u and v and increases the sum of ∆C(u) and ∆C(v) by 2

dw(dw−1) for each common
neighbour w. The result is then averaged over the number of nodes in G and added
to the original clustering coefficient. Eq 5.1 proves the correctness of this algorithm.

We use Algorithm 1 to develop a faster algorithm than the naïve one to find a
solution of Problem 5.2.1 for m = 1. It iterates over the set E of all possible pairs
of nodes and calculates the new clustering coefficient by updating the clustering
coefficient of the original network.

Algorithm 2 Maximize clustering coefficient

1: procedure MAXIMIZECLUSTERING(G = (V, E), E )
2: CG ← Clustering(G)
3: T ← Triangles(G)
4: Cmax ← CG
5: for (u, v) ∈ E do
6: C =UpdateClustering(G, CG, (u, v))
7: if C > Cmax then
8: Cmax ← C
9: emax ← (u, v)

10: return Cmax, emax

Algorithm 2 iterates over all potential links, uses Algorithm 1 to update the clus-
tering coefficient and returns a link that yields the maximum clustering coefficient.
As Algorithm 1 with input (u, v) returns the clustering coefficient of the extended
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network G + uv, and Algorithm 2 iterates over all potential links, it returns an op-
timal solution of Problem 5.2.1 for m = 1 in O(nω + |E |dmax), where dmax is the
maximum degree of the nodes in V.

The algorithm solves Problem 5.2.1 reasonably fast for m = 1. When adding
multiple links, however, every combination of potential links needs to be checked,
slowing the procedure substantially down even for only two links: There are (|E |m )
combinations of potential links and executing Algorithm 2 for each combination has
a complexity ofO(nω + (|E |m )|E |dmax). We thus introduce two heuristics, Greedy and
Lazy Greedy, that identify the maximum clustering coefficient of a network when
multiple links can be added.

Greedy

The Greedy algorithm successively adds one link that maximizes the clustering coef-
ficient of the current network. Starting with a network G, the algorithm iterates over
the set E of all possible pairs of nodes and connects the pair u, v with the biggest
increase in the clustering coefficient (see Algorithm 2). It then iterates again over
all possible pairs of nodes in G′ to find the second link and continues, until m links
were found.

Algorithm 3 Greedy

1: procedure GREEDY(G = (V, E), E , m)
2: for i ∈ [1, m] do
3: C, ei = MaximizeClustering(G = (V, E), E )
4: G = G + e
5: return e1, . . . , em

We can calculate the clustering coefficient and the number of triangles once and
then update these numbers. In that case, the Greedy algorithm calculates the solu-
tion in O(nω + |E |dmaxm), as it executes Algorithm 2 exactly m times. However, the
solution found by the Greedy algorithm 3 is not necessarily optimal: Consider the
network depicted in Fig 5.3a and assume we can add two links. The Greedy algo-
rithm will add the links shown in Fig. 5.3b, while the links shown in Fig. 5.3c lead to
a higher clustering coefficient.

Lazy Greedy

For even faster calcuations – at the cost of optimality – we introduce a second heuris-
tic, that iterates over all potential links once and then picks the m links that have the
highest increase in the clustering coefficient if they were to be added individually.

The Lazy Greedy algorithm executes Algorithm 2 once and sorts the results af-
terwards. Using quick sort, sorting can be done in O(|E | log(|E |)) and we obtain
a run time of O(nω + |E |dmax + |E | log(|E |) (Ottmann and Widmayer, 2017; Hoare,
1962). Similar to the Greedy algorithm, the Lazy Greedy algorithm does not neces-
sarily find the optimal solution to Problem 5.2.1. Fig 5.3 also serves as example of a
non-optimal solution, as the Lazy Greedy algorithm will select the same links as the
Greedy algorithm.



Chapter 5. Maximising the clustering coefficient of networks 56

0.2̄7

0.27̄ 0.25
0.25

A

B

C

FIGURE 5.3: Example of non-optimal behaviour of the Greedy Algo-
rithm. (a) Original network with clustering coefficient C = 0. (b)
Network with two links selected using the Greedy algorithm and
clustering coefficient C = 0.5̄. (c) Optimal solution with clustering
coefficient C = 0.605̄. The value corresponding to the dashed lines
show the increase of clustering coefficient by adding the correspond-
ing link to the network in (a). After adding one of the links depicted
as dashed lines to the network in (c), the contribution of the other link
increases to 0.35̄, as the two nodes incident to that link now have one

common neighbour more (see Eq 5.1).

Algorithm 4 Lazy Greedy

1: procedure LAZYGREEDY(G = (V, E), E , m)
2: CG ← Clustering(G)
3: T ← Triangles(G)
4: results← new Array
5: for (u, v) ∈ E do
6: C =UpdateClustering(G, CG, (u, v))
7: append (u, v, C) to results
8: results← sort results by C
9: return results[1], results[m]

Random approach

We compared the described heuristics to the results of a random approach, where
links were added uniformly at random to a network.

Networks

We tested the described heuristics on a variety of network types, namely landscape-
based habitat networks created by Streib et al. (Streib et al., 2020) with random,
clustered, and contiguous allocation of habitat patches / nodes as well as networks
common in mathematics (random, regular, and small-world networks) (Newman,
2010). The random, regular, and small-world networks represent a variety of net-
work structures and are widely used in many disciplines, such as engineering, social
sciences, finance, biology, and also ecology (Wasserman and Faust, 1994; Watts and
Strogatz, 1998; Barabasi and Oltvai, 2004; Holland and Hastings, 2008; Newman,
2010; Thompson et al., 2015). Fig 5.4 shows examples of the networks.

Landscape-based habitat networks

The landscape-based habitat networks were set up by Streib et al. (Streib et al., 2020)
based on a generic insect species with aquatic and terrestrial life stages, landscapes
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consisting of different landscape types associated with varying dispersal cost, and
a 50 km × 50 km section of a real stream network from southwest Germany. The
stream network section was divided into 25 tiles of 10 km × 10 km areas and in-
tersected with an artificial landscape consisting of open agricultural land, forestry
land, and urban area with associated dispersal costs. A subset containing 10% of
the pixels in the real stream network were chosen as habitat patches. We consid-
ered 3 types of habitat patch arrangements leading to 3 types of landscape-based
habitat networks, namely (1) random (with all habitat patches randomly selected
along streams with equal probability), (2) clustered (with only some habitat patches
randomly selected along streams with equal probability and the others randomly
selected along streams with equal probability within a given radius around any of
the initially selected habitat patches), and (3) contiguous (with a smaller fraction of
habitat patches randomly selected along streams with equal probability and a larger
fraction of others randomly selected along streams with equal probability within a
given radius around any of the initially selected habitat patches, leading to a more
contiguous arrangement of the habitat patches compared to the clustered alloca-
tion). Reflecting the different stream structures in the different landscape tiles, this
results in habitat networks with 54 to 111 habitat patches. Habitat patches were
connected with the help of a least-cost path analysis based on the dispersal cost in
the underlying landscape. If the cummulative dispersal cost between two habitat
patches was less than the maximum dispersal cost, the two patches were considered
to be connected and a corresponding link was added to the network. Differing from
Streib et al. (Streib et al., 2020), we assumed shorter dispersal ranges of about 1300m
through open agricultural land to simulate particular sensitive species. These dis-
persal ranges translated to maximum dispersal costs of 650 (as we assumed a cost
of 50 to traverse a 25m × 25m area of open agricultural land, see Streib et al., 2020
for further information). To ensure that all network types have similar distributions
of the number of links, we finally adjusted the maximial dispersal costs to 900 for
random, 650 for clustered, and 400 for contiguous habitat allocation. In total we
analysed 250 networks per network type random, clustered, and contiguous. See
Fig 5.4(a)-(d) for examples of the networks.

Standard networks

We created standard networks (random, regular, and small-world) using algorithms
from the Python package NetworkX (Hagberg et al., 2008a). In random networks,
two nodes are connected purely at random with uniform distribution and nodes
usually have very similar degrees. They were generated using the algorithm pro-
posed by Erdős and Rényi, 1960. Regular networks are networks, where every node
has the same degree (Newman, 2010). Small-world networks are a mixture of regular
and random networks and represent the small-world phenomenon from the social
sciences (Boccaletti et al., 2006; Newman, 2010). While most nodes are not connected
to each other, neighbours of a node are connected with particularly high probabil-
ity. In other terms, small-world networks are highly clustered and at the same time
also exhibit particularly low average shortest path distances. We used the algorithm
proposed by Newman and Watts, 1999 to construct small-world networks.

We created two sets of these standard networks varying in their number of links
per network. For sparse standard networks, all parameters were set to create net-
works with a number of nodes and corresponding links similar to the landscape-
based networks. This led to very sparse networks with only 4% of links present.
Dense standard networks were also created with a number of nodes similar to the
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landscape-based networks, however the parameters were chosen such that about
75% of the potential links were present. Table S3.1 shows the parameters and algo-
rithms used to create the standard networks and Fig 5.4(e)-(f) show examples of the
networks.

In total, we analysed 250 networks per network type with the number of nodes
between 50 and 111.

FIGURE 5.4: Networks examined. (a) - (c): Landscape-based net-
works. Dark-blue dots indicate nodes (habitat patches), black lines
indicate links (dispersal pathways). The light-blue lines indicate the
underlying stream network structure. (a) random allocation of habi-
tat patches, (b) clustered allocation, (c) linear allocation. (d)-(f): Stan-
dard networks. (d) regular network, (e) small-world network, (f) ran-

dom network

Effect of used algorithms on the clustering coefficient

We evaluated the effect of the two proposed algorithms on the clustering coeffi-
cient and compared the results to randomly adding links. To this end m = 2 links
were added to each of the created networks using (1) the Greedy algorithm, (2) the
Lazy Greedy algorithm, and (3) a purely random approach. We compared these re-
sults with the clustering coefficient of the original network and the optimal solution,
which was found by iterating over all pairs of potential links.

In this analysis, we considered both standard and landscape-based networks, as
the heuristics to maximize the clustering coefficient can be applied to any network.
We defined the set of potential links to be the set of all unconnected pairs of nodes
E = V ×V \ E.

Effect of used algorithms on robustness of habitat networks

In a last step, we evaluated how much the added links improved the robustness of
landscape-based habitat networks against habitat loss. We applied the simulations
introduced by Heer et al. (2020) to simulate habitat loss and evaluate the habitat net-
work’s robustness. For the simulations, a random habitat loss scenario was assumed
where habitat patches (i.e., nodes) and corresponding links get lost permanently
purely at random. On the remaining networks, random local extinctions were simu-
lated, in a way that depends on the local-extinction risk of species and each patch’s
neighbourhood. Empty habitat patches could then be recolonised through dispersal
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from connected colonised habitat patches, in a way that depends on the dispersal
range of species and each patch’s neighbourhood. These extinction and recoloniza-
tion processes were continued until a stationary distribution was reached. From
this we obtain the fraction of colonised habitat patches. These simulations of habi-
tat loss and subsequent extinction and recolonization processes were repeated for
different degrees of habitat loss to obtain a robustness curve describing the fraction
of colonised habitat patches in dependence on the fraction of lost habitat patches.
Based on this robustness curve, we used the ‘area under the curve’ (AUC) as a mea-
sure to quantify metapopulation robustness. See Appendix and (Heer et al., 2020)
for more details on the robustness simulation.

We compared the heuristics Greedy and Lazy Greedy with randomly adding
links to the network and added 5 to 30 links in increments of 5. Baseline of these
simulations was the robustness of the original habitat networks and we compared
the increase of robustness originating from adding links using the different algo-
rithms.

As the robustness simulations were specifically designed to evaluate the robust-
ness of metapopulations on habitat networks, we considered the landscape-based
habitat networks in this section only. We restrict the set of potential links E to those
unconnected pairs of patches that are at most 2500 m apart from each other:

E := {(u, v) ∈ V ×V \ E | distEucl(u, v) < 2500 m}.

This represents the real world assumption, previously used in Streib et al., 2020, that
our generic species can traverse at maximum 2500 m of open agricultural land with
the dispersal distance reducing for areas with lower permeability such as urban area
and forestry.

5.3 Results & Discussion

Effect of used algorithms on the clustering coefficient

To compare the different algorithms, we added two links to the networks using each
of the algorithms and calculated the difference in the clustering coefficient between
the extended network and the original one. The optimal solution of adding two
links to the landscape-based networks increases the clustering coefficient by 0.05 on
average. For the sparse networks, the optimal solution resulted in a mean increase
between 0.02 (regular networks) to 0.04 (small-world networks). All three dense
network types showed no increase in the clustering coefficient after two links were
added (Fig 5.5).

Our proposed algorithms Lazy Greedy and Greedy return results close to the
optimal solution with Lazy Greedy being slightly worse. For both the Greedy and
optimal solution the mean increase in the clustering coefficient was 0.030 over all
network types and for the Lazy Greedy solution the mean increase was 0.029.

Adding two links randomly decreases the clustering coefficient for almost all
landscape-based networks with a mean decrease of 0.15. The clustering coefficient
for standard networks (both sparse and dense) remains unchanged by adding two
links randomly.

For sparse networks, this implies that applying our heuristics to identify new
links has a much larger impact on the clustering coefficient compared to the random
approach. The same holds for habitat networks, which are usually sparse, leading
to the conclusion that both the Greedy and Lazy Greedy heuristic are preferable to
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FIGURE 5.5: Greedy and Lazy Greedy algorithm applied to
landscape-based and sparse networks lead to a higher increase in
the clustering coefficient compared to randomly adding links. The
horizontal axis shows the different network types, the vertical axis
shows the change in clustering compared to the original network. The

colour coding of the box-plots indicates the different algorithms.

randomly adding links to a habitat network. For dense networks, however, adding
two links has almost no impact on the clustering coefficient, independent from the
considered method. As the majority of nodes in dense networks has a particularly
high degree, the impact of an additional link decreases (see Eq 5.1), which explains
the different results for dense networks. Furthermore, the clustering coefficient of
dense networks is already rather high, leading to a smaller potential increase as well.

To quantify, how close the Greedy and Lazy Greedy algorithms approximate the
optimal solution, we compared the clustering coefficient of the optimal solution with
that produced by the Greedy and Lazy Greedy algorithm. The Greedy algorithm
returned the optimal solution in 97.6% of the 2250 networks and the discrepancy
between the clustering coefficient of the optimal solution and that produced by the
Greedy algorithm was at most 3.8%. The Lazy Greedy algorithm, on the other hand,
returned the optimal solution in only 76.0% of all networks and the discrepancy
went up to 63.6%, increasing the clustering coefficient to 0.03 instead of 0.05 in that
particular case (Fig 5.6).

Effect of used algorithms on robustness of habitat networks

The robustness of networks increased with the number of additional links, when the
links were added with the help of the Greedy or Lazy Greedy algorithm. The cor-
relation between the mean increase in robustness and number of additional links is
r = 0.8 for the Greedy algorithm and r = 0.76 in case of the Lazy Greedy algorithm.
If the links are added randomly, the increase in robustness is much smaller and the
correlation between robustness and number of additional links drops to r = 0.54
(Fig 5.7).

These results strongly suggest that using the presented algorithms to identify the
links that should be added to a habitat network results in a much higher increase in
robustness compared to randomly adding links.
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FIGURE 5.6: The Greedy algorithm returns an optimal solution in al-
most all cases. The vertical axis shows the quotient between optimal
solution and solution of the heuristic. Only non optimal results are

shown.

FIGURE 5.7: The robustness of networks increases with the number of
additional links added using the Greedy or Lazy Greedy algorithm.
The horizontal axis shows the number of links added to the network,
the vertical axis the change in robustness. Colours indicate the algo-
rithm used and each box shows the results over all landscape-based

habitat networks.

Conclusion

We introduced two heuristics to maximise the clustering coefficient of a network by
adding links. These methods work particularly well for sparse networks and yield a
much higher increase in habitat network robustness compared to randomly adding
links. Both the Greedy and Lazy Greedy heuristic return results close to the optimal
solution for adding m = 2 links. While the Lazy Greedy algorithm is faster for
large m, the Greedy algorithm returns results closer to the optimal solution and we
suggest to apply the Greedy algorithm if possible.

Habitat connectivity is crucial for species survival and habitat restoration efforts
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need to consider the robustness of habitat networks against habitat loss to increase
connectivity and mitigate effects of future habitat loss. Our study shows that the lo-
cation of links — and not only the number of links — has a large impact on metapop-
ulation robustness and presents a fast way to determine the best location for further
links. It is the first study that maximises the clustering coefficient of networks by
adding links.

The heuristics presented here can be used to plan restoration efforts and increase
habitat connectivity, as they provide locations in the habitat network that lead to the
largest increase of metapopulation robustness if they were connected. Simultane-
ously, our study shows that the location of links has a large impact on metapopula-
tion robustness and thus emphasizes the importance of further mathematical models
to improve habitat restoration strategies.

In summary, we presented two heuristics that identify which parts of a network
need to be connected to obtain a higher network robustness. These heuristics work
particularly well for habitat networks and increase metapopulation robustness with
increasing number of links added.

Appendix

A.1. Update clustering coefficient

We prove equation (5.1):

Lemma 5.3.1. Let G = (V, E) be a network as above, (u, v) ∈ (V × V) \ E and G′ =
(V, E ∪ {(u, v)}) be the network resulting from G by inserting (u, v). Then the following
holds:

1. d′u = du + 1 and d′v = dv + 1

2. T′(w) = T(w) + 1 for all common neighbours w ∈ N(u, v) of u and v

3. T′(u) = T(u) + |N(u, v)| and T′(v) = T(v) + |N(u, v)|

4. T′(w) = T(w) ∀w ∈ V \ N(u, v), w 6= u, v

5. d′w = dw for all w 6= u, v

Proof. Let G, e, G′ as above.

1. Consider node u in G′. Then, v becomes a neighbour of u after (u, v) was
inserted, i.e. v is a neighbour of u in G′, but not in G. All other neighbours do
not change. Thus d′u = du + 1.

2. Consider w ∈ N(u, v). Then uvw is a triangle in G′, but not in G. It is the only
triangle involving both w and (u, v). All other triangles involving w do not
involve (u, v) and are therefore also in G and thus T′(w) = T(w) + 1.

3. Consider node u ∈ V. Triangles involving u in G′ that are not in G also have
to involve v. The missing node in a triangle thus has to be connected to both u
and v. Thus exactly the neighbours of both u and v are involved in triangles in
G′ that do not exist in G.

4. Let u, v 6= w ∈ V \ N(u, v). Triangles in G′ that are not in G have to involve
(u, v). Since w is not a neighbour of both u and v, no triangle uvw exists and
thus T′(w) = T(w).
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We use Lemma 5.3.1 to calculate the clustering coefficient CG′ of G′ with help of
CG.

Lemma 5.3.2. Let G = (V, E) be a network as above with n nodes, (u, v) ∈ E and G′ =
(V, E ∪ {(u, v)}). Let k := |N(u, v)| > 1 be the number of common neighbours of u and
v. Then the difference in clustering is as follows:

∆C = CG′ − CG =
1
n

(
∆C(u) + ∆C(v) + ∑

w∈N(u,v)

2
dw(dw − 1)

)
(5.2)

with

∆C(u) =

{
2k(du−1)−4T(u)

du(d2
u−1) if du > 1

1 if du = 1.

Proof. Let u, v ∈ V with du, dv > 1 and set k := |N(u, v)| as the number of common
neighbours. Then, it holds

CG′ =
1
n

(
CG′(u) + CG′(v) + ∑

w∈N(u,v)
CG′(w) + ∑

w/∈N(u,v),w 6=u,v
CG′(w)

)

=
1
n

(
2T′(u)

d′u(d′u − 1)
+

2T′(v)
d′v(d′v − 1)

+ ∑
w∈N(u,v)

2T′(w)

d′w(d′w − 1)
+ ∑

w/∈N(u,v),w 6=u,v
CG′(w)

)

=
1
n

(
2(T(u) + k)
(du + 1)du

+
2(T(v) + k)
(dv + 1)dv

+ ∑
w∈N(u,v)

2(T(w) + 1)
dw(dw − 1)

+ ∑
w/∈N(u,v),w 6=u,v

CG(w)

)
.

The difference in clustering by inserting e = (u, v) can be calculated as

n∆C =CG′ − CG

=
2(T(u) + k)
(du + 1)du

− 2T(u)
du(du − 1)

+
2(T(v) + k)
(dv + 1)dv

− 2T(v)
dv(dv − 1)

+ ∑
w∈N(u,v)

(
2(T(w) + 1)
dw(dw − 1)

− 2T(w)

dw(dw − 1)

)
+ ∑

w/∈N(u,v),w 6=u,v

(
2T(w)

dw(dw − 1)
− 2T(w)

dw(dw − 1)

)
=

2k(du − 1)− 4T(u)
du(d2

u − 1)
+

2k(dv − 1)− 4T(v)
dv(d2

v − 1)
+ ∑

w∈N(u,v)

2
dw(dw − 1)

.
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Now, consider u, v ∈ V with degree 1 and a common neighbour w. Then the
difference in clustering is:

n∆C = CG′ − CG

=
2(T(u) + k)

2
− CG(u) +

2(T(v) + k)
2

− CG(v) + ∑
w∈N(u,v)

2
dw(dw − 1)

= 1− 0 + 1− 0 +
2

dw(dw − 1)

= 2 +
2

dw(dw − 1)
.

This equation holds, because du = dv = 1 and thus T(u), T(v), C(u), and C(v)
all equal zero and k = 1, as they have a common neighbour.

A.2. Robustness simulation

We simulated habitat loss and subsequent metapopulation dynamics as proposed
by Heer et al. (under review) on the landscape-based habitat networks to evaluate
the increase of metapopulation robustness on those networks. Here, we briefly sum-
marize how the simulation was modelled to make it easier for readers to follow our
findings.

Simulation overview

To evaluate the robustness of a habitat network against habitat loss, we first sim-
ulated the habitat loss by randomly removing habitat patches from the network.
Habitat patches on the remaining network were assumed to be fully colonised. Then,
metapopulation dynamics consisting of local extinctions and subsequent recolonisa-
tion from neighbouring patches were simulated until a stationary distribution was
reached. This process of simulated habitat loss and subsequent metapopulation dy-
namics was then repeated for different degrees of habitat loss to obtain a robustness
curve describing the fraction of colonised habitat patches in dependence on the frac-
tion of lost habitat patches. Based on this robustness curve, we used the ‘area under
the curve’ (AUC) as a measure to quantify metapopulation robustness: the higher
the fraction of colonised habitat patches across fractions of lost habitat patches, the
higher the AUC, and thus the estimated metapopulation robustness. For each net-
work, simulations were replicated ten times to average over the sources of random-
ness affecting habitat loss and metapopulation dynamics.

Habitat loss

We assumed a random habitat loss scenario, which removed each habitat patch with
equal probability p.

Metapopulation dynamics

For a given level of habitat loss, metapopulation dynamics were simulated on the
remaining habitat network, by considering local extinctions in habitat patches and
the recolonization of habitat patches. We used the size of cliques to measure, how
well a patch is connected within its neighbourhood, as the survival of a population in
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a habitat patch depends on its potential to exchange individuals with neighbouring
patches. Denoting by c(v) the size of the largest clique that contains the node v we
assumed that the population in v goes extinct with probability

pext(v) = a1−c(v),

where a > 1 is a species-specific parameter governing the local-extinction risk of a
species. We can think of these risks decreasing with increasing c(v) more slowly for
habitat specialists (small values of a) and more rapidly for habitat generalists (large
values of a). We investigated species with three different levels of local-extinction
risks - low (a = 2), medium (a = 5), and high (a = 9).

Empty habitat patches can be recolonised from connected colonised patches. Re-
colonisation was modelled with the help of a Gaussian dispersal kernel and we as-
sumed that an empty habitat patch v becomes recolonised from a colonised patch w
with probability

pcol(v, w) =
mvw

∑u∈V muw
,

where mvw = exp(− 1
2 d2

vw/σ2) is the dispersal kernel, V the set of all network nodes,
dvw the distance between habitat patches v and w in terms of dispersal costs and σ >
0 a species-specific dispersal parameter governing the dispersal range of a species.
We can think of these dispersal ranges as being low for poor dispersers (small values
of σ) and high for good dispersers (large values for σ). Similar to a, we investigate
values of σ ∈ [2, 5, 9] to account for the different dispersal capacities of different
species.

These local extinctions in and recolonizations of habitat patches were simulated
alternately until a stationary frequency of colonized patches was reached.
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A.3. Networks

Network NetworkX algorithm Parameter sparse Parameter dense
Regular nx.random_regular_graph d = 4 d = 58
Random nx.erdos_renyi_graph p = 0.04 p = 0.75
Small-world nx.newman_watts_strogatz_graph k = 2, p = 0.6 k = 39, p = 0.5

TABLE 5.1: Parameters to create standard networks. d is the degree of
each node, p denotes the percentage of links present in the network
and k is the degree of each node in the small-world network before

rewiring.
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Chapter 6

Discussion

In this section, the results of the publications are discussed, followed by the limita-
tions and outlook.

In chapter 3, I presented an optimisation model we developed built on a disper-
sal simulation of a generic hemimetabolous species. It calculates the minimum time
needed for the species in focus to disperse to and colonise predefined empty habitat
patches. We found that the outcome of the optimisation model highly depends on
the distances of those initial source habitats that are closest to the destination habitat.
In other words, habitat patches that are particularly cost-efficiently connected to the
initial source habitats, get colonised the fastest under the optimisation model. This
is in line with common literature as close habitat patches are preferably colonised
(Van Nouhuys and Hanski, 2002; Kajzer et al., 2012). Furthermore, the optimisa-
tion model outcome can be viewed as an estimate of the expected simulation model
outcome, as the colonisation time calculated by the optimisation model is on aver-
age seven times faster compared to the colonisation time obtained by the simulation
model. However, the optimisation model should not be viewed as a mere substi-
tute for the simulation model, as it answers questions that are different, yet closely
related, to the simulation model.

In chapter 4, I presented the results of our work analysing the robustness of habi-
tat networks. We found that species with short dispersal ranges and high local-
extinction risks were particularly vulnerable to the loss of habitat across all types of
networks and habitat loss. We identified the clustering coefficient to be a reliable in-
dicator for robustness across all kinds of networks, habitat loss scenarios and species.
As small-world networks are characterized by particular high clustering coefficients
with simultaneously short average shortest path lengths, this is in agreement with
other studies suggesting the small-world characteristics of networks as sign of ro-
bustness (Almpanidou et al., 2014; Fox and Bellwood, 2014; Prima et al., 2019).
Furthermore, species with weak dispersal capacities and high local-extinction risks
generally showed a higher strength of the relationship between network metrics and
metapopulation robustness, indicating that the structure of habitat networks has a
higher impact on the metapopulation robustness of particularly vunerable species.
Thus, the predictability of metapopulation robustness by network metrics is partic-
ularly high for species that need most protection.

The landscape-based habitat networks responded differently to habitat loss than
standard networks and generally displayed a slightly higher metapopulation ro-
bustness. This suggests that the standard networks, which lack a spatial reference to
an underlying landscape, may not be suitable representatives of real-world habitat
networks, despite their widespread use in a broad range of studies and disciplines.

In chapter 5, I presented the results of our work on maximising the robustness
of habtitat networks by adding new links using the clustering coefficient as a proxy.
We introduced two heuristics, the Greedy and a deducted Lazy Greedy algorithm to
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select links that should be added to a network to create a network with the maximum
increase in the clustering coefficient and in turn the robustness. Both algorithms
return networks with a much higher clustering coefficient compared to randomly
adding links to the network. Furthermore, the number of added links chosen by
either algorithm has a high correlation to the resultant change in metapopulation
robustness. This is — to the best of our knowledge — the first study that investigates
how the clustering coefficient of a network changes in response to additional links
in the network.

6.1 Limitations & Outlook

The concept of a time expanded network to model a network over time as presented
in chapter 3 is a common concept in graph theory (Skutella, 2009; Köhler et al., 2009;
Kotnyek, 2003). With the help of time expanded networks, dynamic procedures on
a network can be modeled as static problems, which often reduces the complexity
of the problem drastically. As the dispersal of species is similar to a network flow,
it seemed natural to exploit the structure of time expanded networks often used
for network flows for our model. This structure can also be exploited to integrate
changes to the network, such as changes in habitat quality or the (temporarily) ap-
pearing and disappearing of further habitat patches or links between them. One has
to be very careful with the application of time expanded networks, however, as time
expanded networks increase the size of the network considerably. A careful consid-
eration between the gains achieved due to the reduced complexity of the problem at
the cost of the increase of the input size is thus inevitable.

When constructing the optimisation model, the main challenge was to translate
the simulated processes such as the dispersal and the population growth to linear
constraints. While the optimisation model requires the constraints to be linear, re-
ducing the simulation to linear processes may oversimplify the modelled system. On
the other hand, integrating a more realistic population growth process, for example,
will require additional decision variables as well as more complex and more numer-
ous constraints which, in turn, lead to an increase in the model complexity. The most
challenging part of adapting the optimisation model to other dispersal simulations
will thus remain to be the translation of complex processes into linear equations and
finding the balance between modelling complex processes and keeping the optimi-
sation model simple. When considering species with particularly complicated pop-
ulation processes an oversimplification may lead to an underestimated colonisation
time, rendering the optimisation model unsuitable for these species.

Future use of the optimisation model thus has to carefully find a balance between
the usability and adaptability of the model due to the time expanded structure and
the loss of computational efficiency.

Further models and a more thorough and detailed analysis of the optimisation
model and its outcome can help us to understand the phenomenon of range shifts
more thoroughly. With the lower bounds given by the optimisation model, we can
identify habitat patches that are important stepping stones for species dispersal,
for example. Furthermore, the strength of the connection between different habi-
tat patches could be evaluated with the help of lower bounds obtained from the
optimisation model.

One of the main findings of chapter 4 is that standard networks respond qual-
itatively differently to habitat loss compared to landscape-based networks. These
differences are very likely due to the lack of a spatial reference to an underlying
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landscape for standard networks and we suggest that this fundamental limitation
renders standard networks unsuitable for studying the impact of habitat loss on
metapopulations. Future studies should thus investigate a broader range of spatial
networks and consider habitat networks derived from real-world landscapes to eval-
uate the wider generalizability of our results. As standard networks are commonly
used to represent habitat networks due to their ubiquity in graph theory (Kun et al.,
2009; Shen et al., 2019), we strongly suggest to consider the spatial aspect of habitat
networks for future studies.

The heuristics presented in chapter 5 deliver reliable ways to select links that
should be added to a network to increase its robustness. However, the performance
of both heuristics remains unknown and no estimate could be found to qualify the
quality of the approximation of the optimal solution for multiple edges. Further-
more, the algorithms are not yet applicable to real-world problems and further re-
search is needed to make our algorithms more applicable for conservation purposes.
For example, the goal of a real-world habitat conservation scenario is not the addi-
tion of a single link. Instead, further habitat patches may be created by increasing the
habitat quality of landscapes. Additionally, corridors might be created to facilitate
movement between patches. However, these corridors will most likely correspond
to multiple new links in the same area. More mathematical models are needed to
identify where new habitat patches should be created as well as to study the effect
of adding bundles of links to a network.

The goal of this thesis was to gain a better understanding of the structure of
habitat networks and predict their behaviour in future scenarios. We introduced an
optimisation model to identify bounds on possible range shifts over time and de-
veloped models to evaluate and increase the robustness of metapopulations against
habitat loss considering a variety of habitat loss scenarios as well as different species
characteristics and network structures. Overall this thesis contributed in narrow-
ing the gap between mathematics and ecology by introducing mathematical tools
to ecology and developing frameworks to study the behaviour of habitat networks.
While all models in this thesis were developed with aquatic invertebrates in mind,
they can easily be adapted to other metapopulations.
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