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Abstract

This thesis focuses on approximate inference in assumption-based argumentation
frameworks. Argumentation provides a significant idea in the computerization of
theoretical and practical reasoning in AI. And it has a close connection with AI, en-
gaging in arguments to perform scientific reasoning. The fundamental approach in
this field is abstract argumentation frameworks developed by Dung. Assumption-
based argumentation can be regarded as an instance of abstract argumentation with
structured arguments. When facing a large scale of data, a challenge of reasoning
in assumption-based argumentation is how to construct arguments and resolve at-
tacks over a given claim with minimal cost of computation and acceptable accuracy
at the same time. This thesis proposes and investigates approximate methods that
randomly select and construct samples of frameworks based on graphical dispute
derivations to solve this problem. The presented approach aims to improve reason-
ing performance and get an acceptable trade-off between computational time and
accuracy. The evaluation shows that for reasoning in assumption-based argumenta-
tion, in general, the running time is reduced with the cost of slightly low accuracy by
randomly sampling and constructing inference rules for potential arguments over a
query.
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1. Introduction

Over the last ten years, argumentation has come to be increasingly central as a core
study within Artificial Intelligence (AI). Argumentation informally is concerned
with how claims are proposed, discussed, and resolved in issues upon diverging
opinions. Our aims in this introduction are, firstly, to present the motivation in the
context of approximate reasoning in argumentation and, subsequently, to discuss
two research questions that we address in this thesis and, finally, to give an overview
structure of this thesis.

1.1. Motivation

Formal argumentation aims to reason with conflicting or defeasible information and
derive a meaningful conclusion from it. One of the most prominent argumenta-
tion formalisms is abstract argumentation (AA) [1], which treats arguments as ab-
stract entities. Assumption-based argumentation (ABA) was developed as a com-
putational framework to solve reasoning problems. It was inspired by AA, and
preferred extension semantics for logic programming [2]. The central innovation
of ABA is that arguments and attacks are notions derived from primitive ideas of
rules in a deductive system based on assumptions and contraries. ABA semantics
provides a way to identify sets of arguments "surviving the conflict together" with
the interpretation of an argumentation framework. Thus we can build a reasoner
to answer a query or decide whether to accept sets of arguments under specific se-
mantics. Although ABA is equipped with a number of computational mechanisms
to determine whether a claim/conclusion can be supported by a "winning" set of
arguments, many reasoning problems in this formalism usually have high compu-
tational complexity [3].

As reasoning in ABA usually has high computational complexity, when it comes
to implementation issues, solving reasoning problems for large scale of data in an
adequate time needs to be considered. It is becoming an important research topic of
formal argumentation systems in AI to overcome this obstacle. For instance, the re-
search [3] has shown that the problem of determining whether a set of assumptions
is admissible is NP-complete for logic programming. It means that the process of
computing is very time-demanding. From a practical perspective, this problem can
be solved by sacrificing accuracy slightly to improve the performance by sample se-
lections to construct approximately relevant arguments. With the price of accuracy,
we can reduce the time of computing. This thesis aims to improve the reasoning
process’s performance in ABA, decreasing the running time with the price of lower
accuracy using approximate inference.

Dung[1] proposed the concept of abstract argumentation framework and the ac-
ceptability of the sets of arguments for nonmonotonic reasoning as fundamental
argumentation formalisms in AI. Assumption-based argumentation [2] inspired by
AA is one of the structured argumentation formalisms. In contrast to AA, the inter-
nal structure of an argument is made explicit through derivations. Constructing a
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reasoner to answer acceptability queries over ABA frameworks efficiently is becom-
ing a challenge in this field. Lehtonen et al. [4] have proved that counting the num-
ber of arguments satisfying a minimality condition in their support is #P-complete.
Dvorak et al. [5] presented computational complexity analysis for reasoning prob-
lems under different formal argumentation formalisms, and most of them turn out
to be of high complexity. Craven and Toni [6] introduced rule-minimal arguments
and arguments graphs to solve conceptual redundancy and inefficiency in ABA.
Several algorithms for determining the acceptability of sentences in ABA have been
proposed, from dispute derivations presented by Dung et al. [7][8] to a generalized
framework presented by Toni [9].

1.2. Research Questions

To guide our research, we design two main questions in this thesis:

Question 1 How to perform approximate reasoning in assumption-based argumentation
frameworks?

In general, the reasoning process in assumption-based argumentation is to answer
some queries from a knowledge base. The existing computational mechanisms are
dispute derivations [7]. They have been defined in ABA for computing admissi-
ble, grounded, and ideal supports for conclusions/claims [8][9]. Usually, the query
is whether the conclusion/claim is supported by a set of arguments accepted under
specific semantics by a reasoning agent. In this kind of method, each step generates a
dispute containing information about supporting and counter-attacking arguments
by the proponent and opponent. The idea of approximate reasoning in this context
is adding randomness by randomly selecting and constructing inference rules from
an ABA framework in different stages of dispute derivations. There are many dif-
ferent variants of these computational mechanisms. Graphical dispute derivation
[10] is a good way to answer the query under admissible/grounded semantics by
avoiding flabbyness and circularity, which might add redundancy in arguments. It
uses a graph to guarantee termination and completeness, and it checks whether
the graph is cyclic after some operations. We implement the approximate reasoning
based on the graphical dispute derivation under the grounded semantics by taking
samples of inference rules on the proponent, opponent, and both sides in the process
of derivations.

Question 2 Whether approximate methods can reduce runtime with acceptable accuracy?
And to what extent?

We use experiments to evaluate approximate methods compared with the standard
graphical dispute derivation as the baseline. And we design experiments to give sta-
tistical results of running time and accuracy by testing many different frameworks.
To reach this goal, we use a random generator with different settings of parameters
to generate the data of ABA frameworks. In the experiments, we use different scales
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of datasets to test the performance of these methods. Furthermore, the results show
that one random sampling method can reduce the runtime still with an accuracy of
about 98% in the best situation.

1.3. Outline

The rest of this thesis is organized as follows. Chapter 2 firstly summarizes rele-
vant definitions and semantics of abstract argumentation. Moreover, this chapter
introduces assumptions-based frameworks with their arguments and attacks. Sub-
sequently, this chapter presents argument graphs that are useful for understanding
methods in the next chapter. We mention complexity classes at the end of this chap-
ter. Chapter 3 describes a general reasoning process in the assumption-based frame-
work and more concrete methods in dispute derivations. This chapter also provides
upper bounds of computational complexity for reasoning problems in assumption-
based argumentation. Chapter 4 describes approximate inference methods in two
categories: framework-based sampling and dispute-based sampling. Moreover, this
chapter represents all of the approximate methods in algorithms and explains them
with examples. Chapter 5 presents the evaluation of approximate methods com-
pared with the baseline. The experiments show that some approximate methods can
reduce runtime with the price of slightly lower accuracy. Chapter 6 puts forward the
aspects of future work and concludes the whole research.
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2. Foundations

This chapter introduces some definitions and notions of abstract argumentation and
assumption-based argumentation as a fundamental part of this thesis. Moreover,
this chapter provides some computational complexity classes, which are helpful
to present the computational complexity of reasoning in assumption-based argu-
mentation under different semantics. Section 2.1 introduces abstract argumentation
(AA) and semantics in argumentation. Section 2.2 offers many definitions concern-
ing assumption-based argumentation (ABA). Section 2.3 presents argument graphs
that are useful to understand graphical dispute derivations. Section 2.4 gives basic
classes of complexity as a foundation of complexity analysis in the next chapter.

2.1. Abstract Argumentation

Let us see an example about food. Marry likes pizza, but John likes pasta. Moreover,
there are two restaurants: Pizza House and Pasta Home. One day they meet, and
they have a conversation as follows.

Mary: "Hi, John, how are you?"
John: "Hello, Mary, where are you going?"
Mary: "I am going to eat lunch, would you like to join me?"
John: "Of course, where?"
Mary: "Pizza House, do you like pizza?"
John: "I have an allergic to pizza, I like pasta. Would you like to go to Pasta Home."
By summarizing this conversation, we can get some statements about which restau-

rant they will go to if they eat together.
Statement 1: Mary likes pizza, and she suggests Pizza House.
Statement 2: John likes pasta, and he suggests Pasta Home.
If we abstract these two statements as arguments α and β, we could find a conflict

about choosing the restaurant between them. The arguments and their relations are
shown in Figure 1 to make them more intuitive. The circles represent arguments α
and β. Because Mary wants to go to Pizza House, but John does not. He prefers
Pasta Home. The two arguments attack each other. So one directed edge is from α
to β, another directed edge is from β to α.

Figure 1: Two abstract arguments α, β and their relations

Abstract argumentation frameworks coined by Dung [1] abstracts from the con-
crete content of arguments and only considers the relation between them. We regard
different semantics in argumentation as selecting the subsets of arguments satisfy-
ing specific criteria.
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2.1.1. Formal Framework

Argumentation is a multi-faceted word with a variety of informal as well as for-
mal meanings. The abstraction process detaches the word from some of its mean-
ings and properties, keeping only those required by the desired abstraction level.
Arguments and their relations are two components for an abstract argumentation
framework. An argument is an abstract entity whose role is determined by its rela-
tions to other arguments. A general abstract framework centered on conflicts has a
wide range of potential applications. We use the following steps to generate argu-
mentation frameworks for different applications. Firstly, we identify an interesting
application domain where conflict management plays a key role. Then we define a
suitable formalization of problem instances in the selected domain. Finally, we de-
scribe the notions of arguments and attacks in formalization to construct an abstract
framework. The formal definition of an abstract argumentation framework is from
Dung [1] as follows.

Definition 2.1.1 (Abstract Argumentation Framework) An abstract argumentation
framework (F) is a pair (Args,R) where

• Args is a set of arguments

• R ⊆ Args × Args is a binary relation

For two arguments a, b ∈ Args, if (a, b) ∈ R, we say that a attacks b. A set S ⊆
Args defends an argument a ∈ Args, if, for each b ∈ Args such that (b, a) ∈ R, there
exists a c ∈ S, such that (c, b) ∈ R.

To illustrate this definition, we give an example as follows.

Example 2.1 An abstract argumentation framework is F = (Args,R) with Args =
{a, b, c, d, e} R = {(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)}.

We focus on Example 2.1 and use Figure 2 to represent the framework in this ex-
ample. In this figure, nodes represent arguments, and edges represent attacks. There
are five nodes and six edges in this graph corresponding to Args and R. Argument
c is defended by the set of arguments S, where S = {a, c}. Although c is attacked by
d, c can defend itself by attacking d.

Figure 2: A representation for the framework in Example 2.1
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2.1.2. Semantics

Semantics in argumentation is a pre-defined criterion to determine the sets of argu-
ments that can be accepted and plays a vital role in reasoning. Because of attacks
between arguments, we are interested in the justification state of arguments. An ar-
gument is justified if it has some ways to survive in attacks it receives. The process of
determining the state of justification is called argument evaluation. Argumentation
semantics is the formal definition of a method that rules the argument evaluation
process. There are two main styles of argumentation semantics [11]: extension-based
and labelling-based. Both approaches are virtually equivalent, and we can equiva-
lently express any extension-based semantics in a labelling-based formulation. An
extension is simply a set of arguments. We define extension-based semantics as a
function that assigns a set of extensions to each argumentation framework F .

Definition 2.1.2 (Extension-based semantics) An extension-based semantics S associates
with each argumentation framework F = (Args, R) a subset of 2Args, denoted as εS(F ).

In labelling-based semantics, let F = (Args,R) be an argument framework and
Λ a set of labels. A Λ-labelling is a total function Lab: Args → Λ. The set of all
labelings of F is denoted as ς(Λ, F ). A labelling-based semantics prescribes a set of
labelings. Generally, if Λ = {in, out, undec}, labelling is a three-valued function that
assigns one of the labels in, out, and undec to each argument. An argument is labeled
with: in if it is accepted, for example, it is defended by the in labeled arguments;
out if it is rejected, for instance, it is attacked by an accepted argument; undec if
the argument is neither accepted nor attacked by accepted arguments. We denote
labelling functions L by triples(Lin, Lout, Lundec), where Lin is the set of arguments
labeled by in, Lout is the set of arguments labeled by out, and Lundec is the set of
arguments labeled by undec.

Definition 2.1.3 (Labelling-based semantics) For a set of labels Λ, a labelling-based se-
mantics S associates with each argumentation framework F a subset of ς(Λ, F ), denoted as
LS(F).

In general, when we compute several extensions under a given semantic S, there
are two types of inference from an argumentation system for an agent. Credulous
inference: an argument is accepted if it belongs to at least one of the S extensions.
Skeptical inference: an argument is accepted if it belongs to every S extension. The
definition of two types is as follows [12].

Definition 2.1.4 Given a semantics S and an argumentation framework F , an argument a
is :

• skeptically accepted if and only if ∀E ∈ εS(F ), a ∈ E;

• credulously accepted if and only if ∃E ∈ εS(F ), a ∈ E.
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We define different semantics in the extension-based style by describing basic
conflict-free semantics and five main semantics in the following contents. These def-
initions are summarized from Baroni et al. [12] and we show the relations between
different semantics [13] in Figure 3.

Figure 3: Relations between argumentation semantics: An arrow from a semantics
x1 to another semantics x2 denotes that each x1-extension is also a x2-
extension.

The essential requirement for any extension E corresponds to the idea that E is a
set of arguments that "can stay together and not attack each other". This requirement
is the principle of conflict-freeness. We present the definition of the conflict-free ex-
tension as follows.

Definition 2.1.5 (Conflict-free Extension) Given an argumentation framework F = (
Args, R), a set S ⊆ Args is a conflict-free extension of F if for each a, b ∈ S, (a, b) /∈ R.
We denote εcf (F ) by the set of conflict-free extensions of F .

If a set of arguments S ⊆ Args defends an argument a, we also say that argument
a is acceptable with respect to S. And the definition is as follows.

Definition 2.1.6 Given an argumentation framework F = (Args,R), an argument a ∈
Args is acceptable w.r.t. a set S ⊆ Args if for every argument b such that b attacks a, there
exits some argument c ∈ S such that c attacks b.

A further requirement corresponds to the idea that an extensionE is a set of argu-
ments that "can survive and defend itself". It is the property of admissibility. Based
on admissible extensions, other extensions can be easily defined.

Definition 2.1.7 (Admissible Extension) Given an argumentation frameworkF = (Ar-
gs,R), a set S ⊆ Args is an admissible extension of F iff S is conflict-free and for all a ∈ S,
a is acceptable w.r.t S. We denote by εadm(F ) the set of admissible extensions.
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We regard complete semantics as a strengthening of the basic requirement of ad-
missible semantics. Complete extensions are based on admissible extensions with
the limitation of containing all arguments it can defend. This extension defends ar-
guments in this extension, and every argument that this extension can defend is also
in it.

Definition 2.1.8 Let F = (Args, R) be an argumentation framework. The functionF : 2Args

→ 2Args such thatF(Ar) = {a|Ar defends a, a ∈ Args} is called the characteristic function
of this framework.

Definition 2.1.9 (Complete extension) Given an argumentation framework F = (Args,
R), a set S ⊆ Args is a complete extension of F iff S is admissible and S = F(S). We denote
by εcom(F ) the set of complete extensions.

The idea of grounded semantics is to accept only arguments that one cannot
avoid to accept, to reject only the arguments that one cannot avoid to reject. A
grounded extension is a minimal complete extension. The grounded extension is
always unique.

Definition 2.1.10 (Grounded extension) Given an argumentation frameworkF = (Arg-
s , R), a set S ⊆ Args is a grounded extension of F iff S is a minimal (w.r.t. ⊆) complete
extension of F . We denote by εgrd(F ) the set of the grounded extension.

When we consider the alternative view oriented at accepting as many arguments as
reasonably possible, the idea of preferred semantics is to maximize accepted argu-
ments.

Definition 2.1.11 (Preferred Extension) Given an argumentation framework F=(Args,
R), a set S ⊆ Args is a preferred extension of F iff S is a maximal (w.r.t. ⊆) admissible
extension of F . We denote by εprf (F ) the set of preferred extensions.

Before defining a stable extension, we define the notion of Ar+. In an argumenta-
tion framework F = (Args,R), for Ar ⊆ Args then we write Ar+ for {b| ∃a ∈ Ar :
(a, b) ∈ R, b ∈ Args}. Ar+ represents the set of arguments that an argument a in Ar
attacks. Stable semantics gives a view of "not bad is good". A set of arguments is a
stable extension if it is conflict-free and attacks any argument outside the set. One
argument is either in this extension and it is not attacked by other arguments in this
extension or not in this extension and it is attacked by this extension.

Definition 2.1.12 (Stable extension) Given an argumentation framework F = (Args,
R), a set S ⊆ Args is a stable extension of F iff S is conflict-free and S ∪ S+ = Args.
We denote by εsta(F ) the set of stable extensions.

Not every argumentation framework has a stable extension, so extensions are not
guaranteed to exist under stable semantics.
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Now we consider Example 2.1. The number of possible extensions is 25 because
there are five arguments in F . One particular situation is an empty set which is
a conflict-free extension because it always satisfies the requirement that no argu-
ments attack each other. For extensions with one argument, except for argument e
attacking itself, extensions containing other single arguments are conflict-free. Then
we get conflict-free extensions as follows:

• ∅, {a}, {b}, {c}, {d}

When we consider extensions with two arguments, argument a and b, c and b, c
and d, d and e can’t stay together, because (a,b) ∈R, (c,b) ∈R, (c,d) ∈R, (d,c) ∈R and
(d,e) ∈ R. And extensions with two arguments can’t contain argument e. Then we
get conflict-free extensions as follows:

• {a, c}, {a, d}, {b, d}

According to conflict-free extensions containing two arguments, we create the set
with three arguments. For the set {a, c}, we can’t add any arguments because adding
one of the arguments b, d, ewill result in conflicts. For the same reason, we can’t add
any arguments to sets {a, d} and {b, d}. So we don’t find any conflict-free extensions
with three arguments. Further, there is no need to expand the number of the argu-
ments to four and five. We get the conflict-free extensions of F as follows:

♦ εcf (F ) = {{a, c}, {a, d}, {b, d}, {a}, {b}, {c}, {d}, ∅}

Based on the conflict-free extensions, we can construct admissible extensions by
judging every argument in each conflict-free extension whether the corresponding
extension can defend them. For the set {a, c}, argument a is not attacked by any
arguments. Although argument c is attacked by argument d, it defends itself by
counter-attacking d. The set {a, c} defends argument c. It is an admissible exten-
sion of the given argumentation framework. We construct each extension with the
similar procedure, and finally the admissible extensions of F are:

♦ εadm(F ) = {{a, c}, {a, d}, {a}, {c}, {d}, ∅}

Complete extensions are based on admissible extensions. The set {a, c} defends
argument c. And this extension contains c, so it is a complete extension. The set
{a, d} defends argument d, and it is also a complete extension. The complete exten-
sions of F are:

♦ εcom(F ) = {{a, c}, {a, d}, {a}}

The grounded extension is unique. According to the definition, the grounded ex-
tension of F is the minimal complete extension as follows:

♦ εgrd(F ) = {{a}}

9



The definition of a preferred extension is the maximal admissible extension. We
construct the preferred extensions of F as follows:

♦ εprf (F ) = {{a, c}, {a, d}}

We obtain stable extensions from conflict-free extensions with the limitation of
the arguments that are not in the stable extension are attacked by the arguments
that are in the stable extension. {a, c}+ is the set {b, d} and {a, c}+ ∪ {a, c} 6= Args. If
we continue to visit other conflict-free extensions of F , then we have the following
stable extension of F :

♦ εstb(F ) = {{a, d}}

This section began by introducing a scenario where two persons chose a restau-
rant. They could not reach an agreement because they had a conflict about their
favorite food. We abstracted their statements as arguments and identified their con-
flicts as attacks. Then this section defined abstract arguments and frameworks. Any
entity was an abstract argument, and the abstract frameworks were a pair of ab-
stract arguments and their relations. Afterwards, this section presented different se-
mantics in abstract argumentation frameworks, including conflict-free, admissible,
complete, preferred, grounded, and stable in the extension-based style rather than
in the labelling-based style. In the end, this section gave sets of arguments under
different semantics with an example of the abstract argumentation framework.
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2.2. Assumption-based Argumentation

Because of abstract argumentation abstracting away from the structure and mean-
ing of arguments and attacks, it can hardly be adapted to model formalisms directly
used by different applications. There is a wide gap between the practical problem
and its representation as an abstract argument system. ABA was developed as a
computational framework with its dialectical interpretation of different semantics to
determine whether the given claim can be supported by a set of arguments. We de-
rive arguments and attacks from a deductive system, assumptions, and contraries.
Assumption-based argumentation is seen as an instance of AA with lower abstrac-
tion, and all the notions of semantics in AA can also be applied in ABA.

2.2.1. Deductive Systems in ABA

We describe a deductive system by a collection of judgments and a collection of
steps, which has a list of judgments as hypotheses and a single judgment as a con-
clusion. The step is usually generated using inference rules, which is a schematic
way of describing collections of steps, generally involving metavariables. It is a
formal setup of reasoning. For a given language, a deductive system consists of a
set of formulas in the language L and a set of binary relations R on subsets of the
language. Each relation is called a rule of inference. The language is not limited
to propositional atoms. It can be represented in different formalisms with propo-
sitional language, first-order language, etc. Each σ ∈ L is called a sentence in the
language. The definition of deductive systems is as follows [7] [8].

Definition 2.2.1 (Deductive system) A deductive system is a pair (L,R) where

• L is a formal language consisting of countably many sentences, and

• R is a countable set of inference rules of the form

σ1, ..., σn
σ

σ ∈ L is called the conclusion of the inference rule, σ1, ..., σn ∈ L are called the
premises of the inference rule and n ≥ 0.

When n = 0, then the inference rule represents an axiom. Assumption-based ar-
gumentation frameworks are based on deductive systems, for convenience, we as-
sume that the inference rules in R have the syntax σ ← σ1, ...σn (for n ≥ 0) where
σ, σi ∈ L and refer to σ as the head of the rule and σ1, ...σn as the body of the rule
instead of using σ1,...,σn

σ .
The deduction is a reasoning model. According to some premises, it can identify

whether we can reach a logical conclusion. The process of a deduction describes
how to obtain a decision from a set of beliefs. If we construct a path to get the de-
sired conclusion from the forward perspective, then the deduction [7] is defined as
follows:
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Definition 2.2.2 (Forward deduction) Given a deductive system (L,R), a forward de-
duction of a conclusion α based on (or supported by) a set of premises P is a sequence of of
sets β1, ..., βm of sentences in L, where m > 0 and βm = {α}, and for every 1 ≤ i < m,

• βi ∈ P or

• there exists βi ← α1, ..., αn ∈ R such that α1, ...αn ∈ {β1, ..., βi−1}.

If there is a deduction of a conclusion α based on a set of premises P , we write as
P ` α. The forward deduction can contain the application of inference rules that are
not relevant to the derivation of the conclusion, and it may contain premises that are
not relevant to the rest of the deduction. For instance, if P ` α, for any P ⊆ P ′ then
P ′ ` α. When we change the perspective and view in a backward style, it might
avoid some premises not relevant to the conclusion.

When we review the deduction in a backward style. The deduction can be seen as
proof trees: the conclusion of the deduction is the root, and the leaves are labelled by
the premises supporting the conclusion. Non-leave nodes matching the conclusion
of an inference rule as a parent are connected to the children nodes of corresponding
premises of the inference rule. Considering the fact that a proof tree can be labelled
by the same sentence, multi-sets are used to describe several occurrences of a sen-
tence precisely. To generate this kind of tree, we need to identify which node to
expand next. We use a selection function f to formalize the selection strategy. The
function f takes a sequence of multi-sets Si as the input and returns a sentence oc-
currence in Si as the output. Each Si is a step in the deduction. The definition of
backward deductions is as follows [7] [8].

Definition 2.2.3 (Backward deduction) Given a deductive system (L,R) and a selection
function f , a backward deduction of a conclusion σ based on (or supported by) a set of
premises P is a sequence of multi-sets S1, ..., Sm of sentences in L, where m > 0 and
S1 = {σ}, Sm = P , and for every 1 ≤ i < m, where α = f (Si):

• If α is not in P then Si+1 = Si − {α} ∪ S for some inference rule of the form
α← S ∈ R.

• If α is in P then Si+1 = Si

Definition 2.2.4 Given a deductive system (L,R), a proof for σ ∈ L supported by S ⊆ L
is a (finite) tree with nodes labelled by sentences in L or by τ (an empty set of premises),
such that

• the root is labelled by σ

• for every node N

– if N is a leaf then N is labelled either by an assumption or by τ ;
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– if N is not a leaf and lN is the label of N, then there is an inference rule lN ←
b1, ..., bm(m ≥ 0) and
either m = 0 and the child of N is τ
or m > 0 and N has m children, labelled by b1, ..., bm (respectively)

• S is the set of all assumptions labelling the leaves.

The above definitions are forward deductions, backward deductions, and proof.
They refer to a similar process in a sense. Forward deductions and backward de-
ductions can generate the same form of a conclusion supported by a set of premises.
For example, P ` α, the forward deduction is from left to right, and the backward
deduction is from right to left to construct the internal process. In many literatures,
the backward deduction is the common one. In the rest of the thesis, deductions
refer to backward deductions. The proof describes the same inference processes as
deductions. However, the proof is defined in a tree-based way as the core idea of
arguments in the following subsection and gives a more intuitive structure for each
node. Based on the definition of the proof, we define arguments and make them
easier to understand.

2.2.2. Arguments and Attacks

In ABA, arguments are deductions of claims supported by sets of assumptions. As-
sumptions are sentences in the language that are open to challenge. And attacks are
directed at the assumptions in the support of arguments [2][14]. An argument for a
sentence σ ∈ L supported by a set of assumptions A is a defeasible proof of σ from
A, obtained by applying backward the rules inR until only assumptions are left [9].
Arguments can be represented as trees, which indicate the structural relationship
between claims and assumptions justified by rules. By searching the space and ap-
plications of inference rules, namely a proof procedure, we generate arguments. The
formal definition is as follows.

Definition 2.2.5 (Arguments in ABA) An argument a for σ ∈ L supported by s set of
assumptions A ⊆ L is a proof for σ supported by A. We denote the argument a as A ` σ,
the claim for the argument is σ =claim(a), the supporting for the argument isA= support(a).

The notion of A ` σ ignores the internal structure of the argument. However,
it encapsulates the essence of the argument, the set of assumptions supporting the
argument, and the conclusion of the argument. Given a deductive system (L,R),
where L = {p, q, r, s, a, b}, R = {p ← q, r , q ←, r ← a , s ← b} and the set of
assumptions {a, b}, we can construct an argument for p such as: {a} ` p. In the
tree of this argument, the root is p and it has two children q and r according to the
inference rule p ← q, r. Then q is expanded to an empty set because of the rule q
←. The premise for r is a according to the rule r← a. Then the argument {a} ` p is
generated. Other arguments can be generated by the similar process until leaves are
empty or assumptions.
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We define the notion of attacks between arguments in ABA in terms of the con-
trary of assumptions. Contrary is a total mapping from a set of assumptions into a
language denoted as ¯. The contrary of an assumption indicates a challenge against
the assumption and an open debate about the assumption. For example, if one of the
assumptions is "it will be rainy at 1:00 pm tomorrow", the contrary of this assump-
tion might be "it will be sunny at 1:00 pm tomorrow". The contrary of an assumption
"X is true" might be "there is evidence against X". Contrary is different from nega-
tions. Contrary requires the sentences occur in L, but negation may not. Contrary is
only given for assumptions, but negation may apply to any sentence. Contrary can
be simplified to negation in propositional logic when a contrary for an assumption is
unique. The only way to attack an argument is to attack one of its assumptions sup-
porting the argument’s conclusion. We can understand the contrary of an assump-
tion as a sentence in the language representing a challenge against the assumption.
ā refers to the contrary of the assumption a. The attacks between arguments depend
on attacking assumptions. The definition of attacks is as follows [2].

Definition 2.2.6 (Attacks in ABA) Given a notion of contrary of assumptions,

• an argument A1 ` σ1 attacks an argument A2 ` σ2 if and only if the conclusion σ1

of the first argument is the contrary of one of the assumptions in the support A2 of the
second argument;

• a set of arguments Arg1 attacks a set of arguments Arg2 if an argument in Arg1

attacks an argument in Arg2.

Moreover, Toni [14] also introduces the attacks between sets of assumptions to
which attacks between corresponding arguments in ABA. It describes an argument
supported by a subset of A attacks an argument supported by a subset of A′. From
this, in general:

• if an argument arg attacks another argument arg′ then the set of assumptions
supporting arg attacks the set of assumptions supporting arg′

• if a set of assumptions A attacks another set of assumptions A′ then some
argument supported by s subset of A attacks some argument supported by a
subset of A′

Definition 2.2.7 A set of assumptions A attacks a set of assumptions A′ iff there exists an
argument A1 ` σ̄ such that A1 ⊆ A and σ ∈ A′

Until now, we have attacks between arguments, sets of arguments, and assump-
tions, respectively. From a hybrid view, attacks can also happen between arguments
and a set of assumptions.

• an argument arg attacks a set of assumptions A iff arg attacks some argument
arg′ supported by A′ ⊆ A
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Figure 4: Attacks between arguments and assumptions. (The first level is between
arguments. The second level is between sets of assumptions. The third
level is between corresponding arguments and assumptions.)

• a set of assumptions A attacks an argument arg iff there is an argument sup-
ported by A′ ⊆ A that attacks arg

These attacks discussed above are depicted in Figure 4.

2.2.3. ABA Frameworks

To make arguments and attacks complete, we introduce ABA frameworks. An ABA
framework is a general-purpose argumentation framework with well-understood
theoretical foundations and computational mechanisms compared to abstract ar-
gumentation. Arguments are deductions of claims supported by sets of assump-
tions, and attacks are directed at the assumptions supporting arguments. An ABA
framework is based on a deductive system with assumptions and contraries of the
assumptions. It consists of four parts: a language, rules, assumptions, and con-
traries. The rules in the context of ABA frameworks could be domain-independent
or domain-dependent based on knowledge bases in the form of p ← q, a. They can
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also be written in the form of schemata, e.g. p(X) ← q(X), a(X). It can be instan-
tiated over an implicit vocabulary by using variables. The rules can be chained to
derive a conclusion in the process of proof for the conclusion. Assumptions is a sub-
set of the language L and provides some potential points to debate. Assumptions
may be hypothesis to construct arguments. The definition of ABA frameworks is as
follows [14].

Definition 2.2.8 (ABA framework) An ABA framework is a tuple ( L,R, A,¯) where

• ( L,R ) is a deductive system, with a language L and a set of inference rulesR,

• A ⊆ L is a (non-empty) set, whose elements are referred to as assumptions,

• ¯is a total mapping from A into L, where ᾱ is the contrary of α .

We can derive arguments and attacks from ABA frameworks and we show an
example of the ABA framework as follows.

Example 2.2 An ABA framework is (L,R, A,¯) where:
L = {p, q, r, s, a, b}

R = {p← q, r, q ←, r ← a, s← b}

A = {a, b}

ā = s, b̄ = p

From Example 2.2, we can obtain several arguments as follows.

• Argument 1: {a} ` p

• Argument 2: {} ` q

• Argument 3: {a} ` r

• Argument 4: {b} ` s

The first argument is for p with the supporting set {a}. p is expanded to q and r
by the rule q ← q, r. The rules q ← and r ← a are used to continue the inference.
The second argument is for q supported by an empty set. The rule q ← is used to
inference with the head of q, so the end of this path is empty. The third argument is
for r supported by a because the rule r ← a. The fourth argument is for s supported
by b using the rule s← b.

Then we identify their relations as follows:

• Attack 1: (Argument 1, Argument 4)

• Attack 2: (Argument 4, Argument 1)
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• Attack 3: (Argument 4, Argument 3)

Argument 1 attacks Argument 4 because the conclusion p in Argument 1 is the
contrary of the assumption b in Argument 4. Because the contrary of the assump-
tion a is s, Argument 4 attacks Argument 1 and Argument 3 that both use a as the
support.

2.2.4. Property and Semantics

Argumentation semantics offer a way to determine the survived set of arguments
from a dialectical viewpoint. ABA is also equipped with different semantics for de-
termining the acceptable set of arguments. Along the lines of semantics in AA con-
cerning arguments and attacks between arguments, the set of arguments A is

• admissible iff it does not attack itself and it attacks all arguments that attack it

• preferred iff it is maximally admissible, where there is no set of arguments
A′ ⊃ A is admissible.

• complete iff it is admissible and contains all arguments it defends, where A
defends α iff A attacks all arguments that attacks α

• grounded iff it is minimally complete, where there is no set of arguments A′ ⊂
A is complete

• stable iff it is conflict-free and it attacks all arguments it does not contain.

Assumption-level view:

Definition 2.2.9 (Admissible assumptions) A set of assumptions A is admissible, iff

• A attacks every set of assumptions that attacks A, and

• A does not attack itself.

A set of assumptions A is

• preferred iff it is maximally (w.r.t. ⊆) admissible;

• complete iff it is admissible and contains all assumption it defends, where A
defends a iff A attacks all sets of assumptions that attacks a;

• grounded iff it is minimally (w.r.t. ⊆)complete

• stable iff it is conflict-free and it attacks all assumptions it does not contain.

In ABA, a rational agent can determine whether a given claim would to be ac-
cepted or justified. So the agent needs to find an argument for the claim that can be
defended against attacks from other arguments. A sentence s ∈ L is admissible/-
grounded iff
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• there is an argument a with the claim(a) = s such that a ∈ E (for some admis-
sible/grounded extension E).

When we consider Example 2.2, arguments and their relations are depicted in
Figure 5 (the directional line indicating an attack from one argument to another). The
upper case letter represents the argument for the corresponding lower case letter
shown as follows:

• P: {a} ` p

• Q: {} ` q

• R: {a} ` r

• S: {b} ` s

• A: {a} ` a

• B: {b} ` b

Figure 5: The attacks between arguments in Example 2.2

Index Complete Extensions
1 {Q}
2 {S,B,Q}
3 {P,Q,R,A}

Table 1: The complete extensions in Example 2.2

If the query is "q is grounded or not," after finding arguments and their relation-
ships in Example 2.2, we aim to find the grounded extension. Because the grounded
extension is the minimal complete extension, we construct the complete extensions
shown in Table 1. The minimal complete extension is the set {Q}.

Now backing to the query "whether q is grounded or not," the answer is "true."
Because there is an argument Q with claim(Q) =q satisfying Q in the grounded ex-
tension shown in Table 2, we can answer that q is grounded.
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Index Grounded Extension
1 {Q}

Table 2: The grounded extension in Example 2.2

This section focused on notions and definitions of ABA frameworks. Firstly, we
started with a deductive system as the foundation of the ABA framework. The sys-
tem contained the deductions for conclusions chained by inference rules. Then, we
gave the definition of arguments and attacks in ABA based on a deductive sys-
tem. Arguments were the deductions for claims and attacks were between two ar-
guments if the first argument’s claim was the contrary of the assumption which was
in the support set for the second argument. Subsequently, to make the arguments
and attacks complete, we formally presented ABA frameworks, which contained
four components language, rules, assumptions and contraries. Finally, we applied
the argumentation semantics to ABA in the same way as in abstract argumentation
and gave an example to illustrate the application of arguments and semantics.
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2.3. Argument Graph

We use argument graphs to show a complete inference process for an argument with
rules. By doing so, we get an intuitive impression of the internal structure of argu-
ments. For example, if we are answering a query for making a decision based on
conflicting information. The instantiated argument graphs generated from a knowl-
edge base can easily reflect the attacking relationship between arguments according
to the contrary of assumptions. Each argument can be seen as a tree-based struc-
ture. An argument graph may represent not only one argument. There is a relation
between the argument graph and the original notion of tree-based arguments in
ABA, and we will explain it in the following definition.

In the definition of an argument graph from Craven and Toni [10], G is a directed
graph, and v(G) denotes the vertices of the directed graph, and e(G) denotes the
edges of the directed graph. The sinks(G) is the set of vertices without outgoing
edges. The vertices in the argument graph is a single sentence in the language. It
gives a more concrete internal structure compared with the form of standard argu-
ments.

Definition 2.3.1 (Argument graph) Given an ABA framework (L,R,A,̄ ), an argument
graph G is a directed, acyclic graph where v(G) ⊆ L and for all s ∈ v(G):

• if s ∈ A , then s ∈ sinks(G)

• if s /∈ A, then there is a rule (s← s1, ..., sm) ∈ R such that there is an edge (s, s′) in
e(G) iff s′ ∈ {s1, ..., sm}

G is an argument graph, the support of G denoted as support(G) is v(G) ∩ A

Figure 6: The argument graphs and their relationships in example2.2

If we use argument graphs to represent arguments in Example 2.2, these argument
graphs and their attack relationships are depicted in Figure 6. We use rectangles to
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represent arguments. The argument for a is supported by assumption a and the ar-
gument for b is supported by assumption b. The argument graphs show the internal
structure of arguments in a more detailed way. In this figure, an empty circle repre-
sents the direction from head to body in a rule. With the information of the contrary
of assumptions ā = s and b̄ = p, we find attacks from the argument for s to the ar-
gument whose set of assumptions contains a; from argument for p to the argument
whose set of assumptions contains b.

Arguments defined in the previous section (see Definition 2.2.4) are tree-based
arguments. When a is an argument, we use nodes(a) representing the set of nodes
of a. When n ∈ nodes(a), label(n) is the sentence or τ (the empty premise in rules)
which, labels n. And children(n) is the set of children of n. This kind of argument
can be represented in a formal argument graph. To illustrate relations between tree-
based arguments and argument graphs, the definition is as follows [10].

Definition 2.3.2 Let G be an argument graph, and a be a tree-based argument. a is repre-
sented in G if there is a function f : (nodes(a) \ {n | n ∈ nodes(a) ∧ label(n) = τ} )→
v(G) mapping nodes of a not labelled by τ to nodes of G such that where n ∈ (nodes(a)/
{n | n ∈ nodes(a) ∧ label(n) = τ}):

• f(n) = label(n);

• if f(n) = s, then labels ({n′ | n′ ∈ children(n)})\{τ} = {s′ | s′(s, s′) ∈ e(G)}

Based on this relation, one argument graph can include more than one tree-based
argument in some situations. An argument graph can represent a combination of
several tree-based arguments. If there is a set of rules:

R = {p← b, r ← b}

Figure 7: The left: two arguments and the right is an argument graph

In this set, there are two rules with the same body support different heads. If b
is in the assumptions, we can construct two arguments with the same leaves node
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labeled by b. When we use an argument graph to represent, this argument graph
can avoid showing the part b twice shown in Figure 7.

An argument in ABA may contain some repeated information, causing redun-
dancy when constructing arguments and their relations. The research [10] captures
two types of problem namely circularity and flabbyiness in arguments defined as fol-
lows.

Definition 2.3.3 An argument a is circular if it contains a directed path from a node n
labelled by some s ∈ L to another node n′ labelled by s.

Definition 2.3.4 An argument a is flabby if it is non-circular and there are different nodes
n, n′ labelled by s ∈ L such that the children of n are labelled by different members of L ∪
{τ} from the children of n′.

Figure 8: The left argument is circular and the right argument is flabby

To make these definitions more intuitive, if there is such a set of rules:

R = {p← q, r, p← b, q ← p, q ← b, r ← a, r ← b}

and a set of assumptions A = {a, b}. We could construct two different arguments,
both for p supported by {a, b}. These two arguments have different inference pro-
cesses using different rules shown in Figure 8. The left argument is circular because,
in one path, p appears again after the first appearance at root. The right argument is
flabby because it is non-circular, and two different nodes labelled by r have differ-
ent children. One node labelled by r has a child b by the rules r ← b. Another node
labelled by r has a child a by the rule r← a.

Argument graphs can be seen as to represent tree-based arguments without the
undesirable properties circularity and flabbyiness indentified in Definition 2.3.3 and
2.3.4. Let G be an argument graph. Craven and Toni [10] has proved that for each
s ∈ v(G), there is an argument a such that claim(a) = s, support(a) ⊆ support(G)
and a is represented in G; a is neither circular nor flabby.
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After showing the representation of argument graphs, we consider the conversion
from tree-based arguments to argument graphs. Argument graphs can represent a
set of arguments and have the advantage of retaining the claims of arguments in the
set as nodes and pruning some parts of arguments to remove circularity and flabbi-
ness. So we need a mapping from tree-based arguments to argument graphs repre-
senting non-flabby and non-circular arguments in argument graphs. A source vertex
is a vertex with no incoming edges in an argument graph. And a focused argument
graph is an argument graph iff it has a unique source represented as claim(G). The
following is the definition of argument graphs graphical conversion to arguments
[10].

Definition 2.3.5 Let a be a tree-based argument. A focused argument graph G is a graphi-
cal conversion of a if:

• claim(a) = claim(G);

• if (s, s′) ∈ G, then there are n, n′ ∈ nodes(a) such that n′ ∈ children(n), label(n) = s,
and label(n′) = s′

The different rules with the same head may cause redundancies in arguments. An
argument is rule-minimal iff it is neither circular nor flabby [10].

Definition 2.3.6 An argument a is rule-minimal iff for any two nodes n, n′ in a labelled
by the same s ∈ L the children of n and n′ are labelled by the same elements of L ∪ {τ}.

Figure 9: Two argument graphs for p

If we apply the minimality idea to argument graphs, then we have the definition
as follows [10].

Definition 2.3.7 A focused argument graph G is support-minimal iff there is no focused
argument graph G′ with claim(G) = claim(G′) such that support(G′) ⊂ support(G).
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If there is s set of rules as follows:
R = {p← q, r, p← b, q ← p, q ← b, r ← a}

and a set of assumptions A = {a, b}, then we get two argument graphs presented
in Figure 9. The left argument graph is supported by {a, b}. The right argument
graph is supported by {b}. The support of the left argument graph is non-minimal
because there exists the right argument graph supported by {b}. In some situations,
the support minimality can not guarantee the rule minimality. In other words, the
support minimality does not mean non-circular and non-flabby.

This section summarized the argument graphs, which showed the arguments’ in-
ternal structures in a more intuitive way and the relations with the original notion of
tree-based arguments. The argument graph was the basic concept in the graphical
dispute method, and we will discuss it in Chapter 3. In the view of the direction from
argument graphs to tree-based arguments, an argument represented in an argument
graph was neither circular and flabby. We defined the graphical conversion to inves-
tigate the conversion from tree-based arguments to argument graphs. A graphical
conversion of an argument was a focused argument graph. Moreover, a focused ar-
gument graph had the advantages of reducing redundancy by pruning arguments
to remove circularity and flabbiness. In the end, we discussed the relations between
rule minimal of arguments and support minimal of argument graphs.
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2.4. Complexity Class

Assumption-based argumentation was proposed with computational mechanisms
for determining "a set of arguments can survive together " under specific semantics.
Different methods have been developed but they have high complexity. As a foun-
dation for the analysis of complexity, we will introduce some classes from compu-
tational complexity theory. The complexity classes are from the references [15][16].
In this context, we deal with a decision problem that can be posed as a "yes" or "no"
question, i.e., problems that admit a boolean answer. Decision problems are signif-
icant in computational complexity because they are convenient to reason, and we
can transform many other types of problems into them.

For decision problems, the P class is the set of problems that a Turing machine
can answer in polynomial time. The NP class is the set of problems that a non-
deterministic Turing machine can solve in polynomial time. The class of problems
whose answer is always the complement of those in NP is denoted as co-NP. A
particular type of computation is called computation with oracles. Oracles are intu-
itively subroutines without cost. Given a class of decision problems C, the class PC

(NPC ) is the class of decision problems that can be solved in polynomial time by a
deterministic (non-deterministic) machine that uses an oracle for the problems in C.
For decision problems

• The class P is the set of problems that can be answered by a Turing machine in
polynomial time.

• The class NP is the set of problems that can be answered by a non-deterministic
Turing machine in polynomial time.

• The class co-NP is the set of problems whose answer is always the complement
of those in NP

• The class NP-hard is the set of problems that if an algorithm for solving them
can be translated into those for solving any NP problem. This set of problems
is at least as hard as any NP problem.

• The class NP-complete is both NP and NP-hard. NP-complete problems can
be verified in polynomial time and that any NP problem can be reduced to this
problem in polynomial time.

In computational complexity theory, directly solving the NP problem is very dif-
ficult. It can be transformed into a verification problem. NP is the class of situation
where, given a potential solution, we can check if it is a real solution in polynomial-
time. It is evident that P ⊆ NP. However, it is unknown whether P⊂ NP. The most
well-known problem is deciding whether P = NP. If P 6= NP is true, some issues exist
in NP that are more challenging to solve than problems in P. The complement of a
decision problem is to reverse the answer "yes" or "no" to the original question.

25



An oracle machine is a black box capable of solving any instance of a given com-
putational problem. Oracles are intuitively subroutines without cost. When we add
oracle to the class of problem, the class P is the class of decision problem that can
be solved in polynomial time by a deterministic machine that uses an oracle for the
problem. The definition of polynomial hierarchy is as follows.

Definition 2.4.1 (Polynomial Hierarchy) The classes Σp
k , Πp

k , ∆p
k are defined by Σp

0 =
Πp

0 = ∆p
0 = P , and for all k ≥ 0,

Σp
k+1 = NPΣp

k Πp
k+1 = co− Σp

k+1 ∆p
k+1 = PΣp

k

It is believed that problems belonging to higher levels of the polynomial hierarchy
are harder to solve than those in the lower level. Notice that

Σp
1 = NP Πp

1 = co−NP ∆p
1 = P

This section mainly presented different complexity classes in order to build the
foundation of the analysis of computational complexity in reasoning processes. We
mentioned several basic complexity classes such as P, NP, and co-NP. At the end of
this section, we defined the polynomial hierarchy to represent more complex classes.
We will use these classes to describe the computational complexity of different rea-
soning problems in ABA in Chapter 3.
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3. Reasoning and Computational Mechanisms in ABA

Assumption-based argumentation (ABA) is equipped with viable computational
mechanisms in dispute derivations to answer queries under a specific semantic.
This section provides an overview of argumentation inference and variants of dis-
pute derivation methods to illustrate how to answer a query by a rational agent.
Section 3.1 presents the general process related to answering a question. Section
3.2 briefly introduces the dispute tree. Section 3.3 introduces the process of dispute
derivations and takes GB-dispute derivations as an example. Section 3.4 discusses
graphical dispute derivations under the grounded semantics in detail. This compu-
tational mechanism is the baseline for evaluating approximate methods in the next
section. Section 3.5 shows the complexity of reasoning problems under different se-
mantics in ABA.

3.1. Reasoning Process

Argumentation provides a formalism to apply scientific reasoning in the study of
how to get acceptable conclusions through arguments and their relationships. Se-
mantics in argumentation provides a way to evaluate arguments resulting in the
validity of a claim. Whether a claim is accepted under specific semantics depends
on the relationships between supporting arguments and possible counterarguments
of this claim. Argumentation for inference is divided into three steps [12] shown in
Figure 10. The first step is to use a knowledge base to generate an argumentation
framework. In the second step, the result from the first step is the input to deter-
mine the sets of arguments accepted according to argumentation semantics. The
third step is to identify accepted conclusions based on the sets of arguments in the
second step. The previous section defined semantics in argumentation and gave ex-
amples. However, this section focuses on describing computational mechanisms to
realize the third step’s target from an argumentation framework.

Figure 10: Argumentation inference
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Given an ABA framework, the reasoning process is to answer whether the claim
c is accepted under admissible/grounded semantics. To answer this question, we
need to construct arguments supporting the claim c, arguments attacking these ar-
guments, and arguments attacking the attackers until supporters or attackers cannot
attack each other. Then we identify the relations between them. If an admissible/-
grounded extension includes an argument supporting the claim c, then the claim
is accepted under admissible/grounded. In this scenario, the query is whether the
reasoner accepts a claim representing by a sentence. After the reasoning procedure
under specific semantics such as admissible or grounded, the answer is "true" or
"false," meaning that the claim is admissible or grounded or not. Figure 11 shows a
flowchart to describe this process.

Figure 11: The general reasoning process to answer a query in ABA

The above Figure 11 describes a general process to answer a query. Moreover, if
we have a query, generate arguments, and determine the "acceptability" of the gen-
erated arguments, these two tasks are called a proof procedure. To construct a proof
procedure for a claim, dispute trees and dispute derivations were proposed by Dung
[7]. The proof procedure’s underlying idea is that there are two sides: proponent and
opponent over a claim; they alternatively attack each other until one side wins. We
regard it as a game between two fictional players.

This section summarized the general reasoning process to answer a query whether
a claim/conclusion can be accepted under specific semantics in ABA. The rest parts
of Chapter 3 will explain how to answer queries by some already existing computa-
tional mechanisms.
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3.2. Dispute Tree

Dispute trees [7] can determine the acceptability of arguments that are already con-
structed. Literally, there are two types of dispute trees: abstract trees and concrete
trees. In abstract trees, every node is labelled by arguments and is assigned the sta-
tus of the proponent node or the opponent node. An abstract dispute tree shows
an abstraction of a winning strategy for a given and desired conclusion. However,
it does not show the construction of arguments and counter-arguments. It contains
all possible attacks by the opponent but contains only one successful counter-attack
by the proponent. The root of the tree is the starting point of the dispute and is put
forward by the proponent.

A finite branch represents a winning dispute that ends with an argument by the
proponent that the opponent is unable to attack.The abstract dispute trees can be
expanded to concrete dispute trees by incorporate the incremental construction of
arguments. We focus on the concrete tree in this section out of the practical reason.
In concrete dispute trees, individual nodes are labelled by steps of potential argu-
ments. Every branch of a concrete dispute tree represents a sequence of alternating
attacks by the opponent and counter-attacks by the proponent. In the process of
constructing a concrete dispute tree, we use a selection function. The selection func-
tion takes input as a multi-sets and returns a sentence occurrence in the multi-sets as
output. The role of the selection function for the proponent and opponent is also dif-
ferent. For both of them, the selection function chooses a non-assumption sentence
to expand the potential argument constructed into a complete argument. When the
selection function selects an assumption in the proponent, it determines an order in
which attacks against the proponent’s argument are considered. However, when the
selection function selects an opponent’s assumption, the assumption becomes a po-
tential culprit for the proponent’s counter-attack. Formally, the definition of dispute
trees and admissible is directly referencing [7] shown as follows.

Definition 3.2.1 Given a selection function, a concrete dispute tree for a sentence α is a
(possibly infinite) tree T such that

1. Every node of T is labelled by a multi-set of sentences(representing a potential argu-
ment) and is assigned the status of proponent node or opponent node, but not both.

2. The root of T is a proponent node labelled by {α}.

3. Let N be a proponent node labelled by P . If P is empty, then N is a terminal node.
Otherwise, P is not empty, and there exists some selected occurrence of a sentence σ
in P .

a) If σ is an assumption, then there exists one child of N, which is an opponent
node labelled by {σ̄} and a second child of N that is a proponent node labelled by
P − {σ} (to consider all attacks against P).
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b) If σ is not an assumption, then there exists some inference rule σ ← S ∈ R
and there exists exactly one child of N, which is a proponent node labelled by
P − {σ} ∪ S.

4. Let N be an opponent node labelled by O. Then O is not empty, and there exists some
selected occurrence of a sentence σ in O.

a) If σ is an assumption, then

i. either σ is ignored and there exists exactly one child of N, which is an oppo-
nent node labelled by O − {σ},

ii. or σ is a culprit, and there exists exactly one child of N, which is a proponent
node labelled by {σ̄}

b) If σ is not an assumption and there exists no inference rule σ ← S ∈ R, then N
is a terminal node (and the potential attackO fails of its own accord). Otherwise,
for every σ ← S ∈ R, there exists a child of N, which is an opponent node
labelled by the multi-set of sentences O − {σ} ∪ S.

5. There is no infinite sequence of consecutive nodes all of which are proponent nodes.

6. There are no other nodes in T except those given by 1− 4 above.

The set of all assumptions belonging to the proponent nodes in T is called the
defence set of T

Definition 3.2.2 A concrete dispute tree T for a sentence α is admissible if and only if no
culprit at an opponent node belongs to the defence set of T .

Based on the following corollary [7], we can construct a dispute tree to evaluate
whether an argument for a conclusion is accepted under admissible semantics.

Corollary 3.1 The corollary is about concrete dispute trees

1. If T is an admissible concrete dispute tree and A is the defence set of T , then A is an
admissible set of assumptions.

2. If there is an argument for a conclusion α supported by a set of assumptionsA0 andA
is an admissible set of assumptions such thatA0 ⊆A, then for every selection function
there exists an admissible concrete dispute tree for α with defence set A′ and A0 ⊆ A′
⊆ A and A′ is admissible.

The following example illustrates these definitions.

Example 3.1 Given an ABA framework (L,R, A,¯) where
L = {q, r, s, u, t, w, x, y}
R = {t← q, w ← r, s, w ← u, v, x←, y ←}
A = {q, r, s, u}
s̄ = t, q̄ = w, r̄ = x, ū = y
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.

Figure 12: The concrete dispute tree for example 3.1

We give a concrete dispute tree for t in Figure 12. If the task is to judge whether
t can be accepted under admissible semantics, then we need to construct an admis-
sible dispute tree. Firstly, we take t as the root of the tree. Then the proponent finds
an inference rule t ← q to support this claim. Next, the opponent puts forward w
as the contrary of the assumption q to attack the proponent. The sentence w can be
expanded in two different directions with the same head according to w← r, s and
w← u, v. In the left branch, we ignore s, and find the contrary of r in the proponent.
Finally, we end with an empty set. In the right branch, we find the contrary of as-
sumption u. The leaves of the tree are empty labelled by the proponent. It means the
proponent wins in the end, and t is accepted under admissible semantics.

This section introduced the terminology of dispute trees as a part of a proof proce-
dure for ABA frameworks. Dispute trees presented a tree structure for determining
the acceptability of a conclusion/claim under specific semantics. This kind of tree
showed a winning strategy for the reasoning process over a sentence, which pro-
vided a foundation and brought us closer to dispute derivations in the following
section.
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3.3. Dispute Derivations

Dispute derivations are computational mechanisms to compute top-down dispute
trees and figure out how to construct a winning strategy over a conclusion/claim.
These kinds of mechanisms allow us to determine whether the claim which is put
forward by the proponent and is supported by a set of arguments can be deemed
to be acceptable under different semantics. As discussed in dispute trees, dispute
derivation can be understood as a game between two players − a proponent and an
opponent with rules as follows [9]:

• the claim (the root of a dispute tree) is a starting point, and the two players
alternatively attack each other

• the proponent’s task is to support the claim by constructing arguments and
defend itself by counter-attacking the opponent

• the opponent’s task is to attack the proponent by attacking arguments con-
structed by the proponent and defend itself by counter-attacking the propo-
nent.

If the proponent cannot defend itself to support the claim, the proponent would
fail. Otherwise, the proponent would have a successful outcome and return an ac-
ceptable set of assumptions supporting and protecting the given claim under cor-
responding semantics. Dispute derivations have different variants out of different
argumentation semantics.

A generalized framework for dispute derivations in assumption-based argumen-
tation was proposed by Toni[9]. It bases on the several existing computational mech-
anisms such as GB-, AB- and IB- dispute derivations[7] [8] under the grounded,
admissible and ideal semantics, respectively, and give a general notion of exist-
ing mechanisms with different parameters. This generalized framework for dispute
derivation in ABA has been proved soundness and completeness results w.r.t. the
grounded, admissible and ideal semantics. So these computational mechanisms are
helpful to compute reasoning problems. We give one kind of dispute derivations in
the following, namely GB-dispute derivations. Based on the following theorem[8],
GB-dispute derivations determine the acceptability for a sentence under the ground-
ed semantics.

Theorem 3.3.1 Given a GB-dispute derivation of a defence set A for a sentence α:

• A is admissible and it is contained in the grounded set of assumptions;

• there exists A′ ⊆ A and an argument A′ ` α.

To make a clear statement of the process of derivations, the definition of GB-
dispute derivations is from Toni [9].
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GB-dispute derivation The frontier of a dispute tree is a set of proponent and
opponent nodes labeled by multi-sets of sentences, which means steps of potential
arguments. A dispute derivation represents the current state of this frontier, together
with the set of defence assumptionsDi and culprits Ci generated so far as a quadru-
ple: 〈 Pi , Oi , Di , Ci 〉. The initial step of a dispute derivation is to represent the root
of the dispute tree. There is a selection of a node in the dispute tree’s frontier for
every step, and we replace the node with its children. We use the set Ci to filter the
potential defense arguments and the set of defense assumptionsDi to filter potential
culprits. So the final defense assumption set constructed does not attack itself.

Definition 3.3.1 Let 〈 L , R , A ,¯〉 be an ABA framework. Given a selection function, a
GB-dispute derivation of a defence set ∆ for a sentence α is a finite sequence of quadruples
〈 P0 , O0 , D0 , C0 〉,...,〈 Pi , Oi , Di , Ci 〉,...,〈 Pn , On , Dn , Cn 〉

where

P0 = {α} D0 = A ∩ {α} O0 = C0 = {}
Pn = On = {} ∆ = Dn

and for every 0 ≤ i < n, only one σ in Pi or one S in Oi is selected, and:

1. If σ ∈ Pi is selected then

a) if σ is an assumption, then

Pi+1 = Pi − {σ} Di+1 = Di Ci+1 = Ci Oi+1 = Oi ∪ {{σ̄}}
b) if σ is not an assumption, then there exists some inference rule σ ← R ∈ R such

that Ci ∩R = {} (filtering of potential defence arguments by culprits) and

Pi+1 = Pi − {σ} ∪R Di+1 = Di ∩ (A ∩R)
Ci+1 = Ci Oi+1 = Oi

2. If S is selected in Oi and σ is selected in S then

a) if σ is an assumption, then

i. either σ is ignored, i.e.

Pi+1 = Pi Di+1 = Di

Ci+1 = Ci Oi+1 = Oi − {S} ∪ {S − {σ}}
ii. or σ /∈ Ai (filtering of culprits by defence assumptions) and

Pi+1 = Pi ∪ {σ̄} Di+1 = Di

Ci+1 = Ci Oi+1 = Oi − {S} ∪ {S − {σ}}
b) if σ is not an assumption, then

Pi+1 = Pi Di+1 = Di

Ci+1 = Ci Oi+1 = Oi − {S} ∪
{
S − {σ} ∪R|σ ← R ∈ R

}
To illustrate GB- dispute derivations, we consider the following example.

33



Example 3.2 Given an assumption-based framework (L,R, A,¯) where

L = { q, r, s, t, u, v, w, x, y }

R = { t← q, w ← r, s, w ← u, v, x←, y ← }

A = { q, r, s, u }

q̄ = w, r̄ = x, ū = y, s̄ = t

According to Definition 3.3.1, when we construct a dispute derivation for the sen-
tence t of the defence set {q}, we can obtain a sequence of quadruples (Pi,Oi,Di, Ci)
for Example 3.2 as follows:

1. ({t}, {}, {}, {}),

2. ({q}, {}, {q}, {} ),

3. ( {},
{
{w}

}
, {q}, {}),

4. ({},
{
{r, s}, {u, v}

}
, {q}, {}),

5. ({x},
{
{u, v}

}
, {q}, {r}),

6. ({},
{
{u, v}

}
, {q},{r}),

7. ({y}, {}, {q}, {r, u}),

8. ({}, {}, {q}, {r, u}).

The underline represents the output of the selection function in each step. The
first step is to put the sentence t into P0. Because t is not an assumption, the other
three sets are empty. If t is selected in P0 in the first step, then we replace t with q
and add q into D according to the condition of 1(ii) in Definition 3.3.1. In the second
step, q is selected as the only one sentence. Moreover, q is an assumption, according
to the condition of 1(i) in Definition 3.3.1, we remove q and update O with q̄ that is
w, resulting in the third step. Then, according to the condition of 2(ii) in Definition
3.3.1, we expand w to set {r, s} and {u, v} because two rules with the same head of
w. In the fourth step, r is selected as an assumption and is not in Di,according to
the condition of 2(i)(b) in Definition 3.3.1, we add x into Pi and add r into culprits
set Ci. In the next step x is selected, we expand x by the rule x ← with an empty
premise. So in the sixth step, we remove x and look at the set in Oi, then we select
u. By doing the similar process in Definition 3.3.1, finally, we end with Pi and Oi
are empty and Di is the defence set of sentence t. For every finite dispute tree for a
sentence α with defence set D, there exists a dispute derivation for α of a defence
set A′ ⊆ A. This theorem is proved[7], which makes dispute derivations as useful
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computational mechanisms.

This section introduced the computational mechanisms for ABA, namely dispute
derivations. There existed several different variants GB-, AB-, and IB-dispute deriva-
tions working for different semantics. We presented the GB-dispute derivation and
an example of how to apply it in this section. Dispute derivation was an important
method for the reasoning process of answering a query. This section also gave an
overview of the process of dispute derivations. The underlying idea was similar to
the graphical dispute derivation that we will introduce in the following section.
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3.4. Graphical Dispute Derivations

In this section, we will introduce a computational mechanism of graphical dispute
derivations. They can be used to determine whether a given claim is accepted under
admissible or grounded semantics for ABA. They have the same spirit as the dis-
pute derivations mentioned in the previous section. However, this computational
mechanism represents arguments by argument graphs to avoid the problem of flab-
biness and circularity proposed by Craven and Toni [10]. Moreover, this computa-
tional mechanism consists of five parts Pi, Oi, Gi, Di, Ci in each dispute sequence.
For simplicity, we only consider the grounded cases. According to the theorems for
soundness and completeness as follows[10], we can determine the acceptability of a
sentence under the grounded semantics by constructing a grounded graphical dis-
pute derivation.

Theorem 3.4.1 (Soundness) For any grounded graphical dispute derivation with result-
ing argument graph G, there is some grounded argument graph G′ such that G′ ⊆ G.

Theorem 3.4.2 (Completeness) Let L be finite. If G is a grounded argument graph such
that s0 ∈ v(G), then there is a grounded graphical dispute derivation for s0 with resulting
argument graph some G′ such that G′ ⊆ G.

The definition of the grounded graphical dispute sequence is from Craven and
Toni [10] as follows. Pi is a proponent potential argument graph, andOi is an oppo-
nent argument graphs set. Gi represents a graph, Di and Ci are sets of assumptions.
A grounded graphical dispute derivation is a grounded graphical dispute sequence
with the requirement that there is no unmarked node in Pi and no unmarked graph
in Oi.

Definition 3.4.1 Let s0 ∈ L. Let n be such that 0 ≤ n ≤ w. A grounded graphical dispute
sequence for s0 of length n is a sequence ((Pi, Oi, Gi, Di, Ci))

n
i=0, where:

P0 = newgraph(s0) D0 = A ∩ {s0} O0 = {}
Gn=({s0}, ∅) C0= {}

and for every I such that 0 ≤ i < n, only one s ∈ u(Pi) or one G ∈ u(Oi) is selected and

1. if s ∈ u(Pi) is selected, then

a) if s ∈ A, then

Pi+1 = Pi ∪m {s}

Oi+1 =

{
Oi if∃G ∈ Oisuchthats̄ = claim(G)
Oi ∪u {newgraph(s̄)} Otherwise

Gi+1 = Gi ∪g {(s̄, s)}
and acyclic(Gi+1)

b) if s /∈ A, then there is some (s← R) ∈ R such that R ∩ Ci = ∅, and
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Pi+1 = updgraph(Pi, s← R, ∅)
Gi+1 = Gi ∪g {(s′, s)|s′ ∈ R}
Di+1 = Di ∪ (R ∩ A)

and acyclic(Pi+1),acyclic(Gi+1)

2. if G ∈ u(Oi) and s ∈ u(G) are selected, then

a) if s ∈ A, then:

i. either s is ignored, i.e.:
Oi+1 = (Oi \ {G} ) ∪u {G ∪m {s}}

ii. or s /∈ Di and s ∈ Ci, and:
Oi+1 = (Oi \ {G} ) ∪m {G ∪m {s}}
Gi+1 = Gi ∪g {(s̄, claim(G))}
and acyclic(Gi+1);

iii. or s /∈ Di and s /∈ Ci, and:

Pi+1 =

{
Pi if s̄ ∈ v(Pi)
Pi ∪u {s̄} Otherwise

Oi+1 = (Oi \ {G} ) ∪m {G ∪m {s}}
Gi+1 = Gi ∪g {(s̄, claim(G))}
Di+1 = Di ∪ ({s̄} ∩ A)
Ci+1 = Ci ∪ {s}
and acyclic(Gi+1);

3. if s /∈ A, let:
Rc = ∅
R6c = {R|(s← R) ∈ R, acyclic(updgraph(G, s← R, ∅)), R /∈ Rc},then:
Oi+1 = ((Oi \ {G})∪m {updgraph(G, s← R,Ci)|R ∈ Rc})∪u {updgraph(G, s←
R, ∅)|R ∈ R6c}.

Notion Operation
newgraph(s) create a G, where v(G) = u(G) = {s}, e(G) = ∅
G ∪u S generate a G′, where v(G′) = v(G) ∪ S, e(G′) = e(G) and u(G′) = u(G) ∪ S
G ∪m S generate a G′, where v(G′) = v(G) ∪ S, e(G′) = e(G) and u(G′) = u(G)\S
O ∪u X get a O′, where contains just the argument graph in O and X , u(O′) = u(O) ∪X
O ∪m X get a O′, where contains just the argument graph in O and X , u(O′) = u(O)\X
O\X get a O′, where O′ contains just the argument graph in O but not in X, u(O′) = u(O)\X

updgraph(G, s← s1, ..., sn, S)
get a G′, where v(G′) = v(G) ∪ {s1, ..., sn}
e(G′) = e(G) ∪ {(s, s′)|s′ ∈ {s1, ..., sn}}

u(G′) = (u(G) ∪ {s′ ∈ {s1, ...sn}|s′ /∈ m(G)}) \ ({s} ∪ S)

G ∪g E
get a G′, where e(G′) = e(G) ∪ E

v(G′) = G ∪ {x|(s, s′) ∈ E, (x = s ∨ x = s′)}

Table 3: The operations in the graphical dispute derivation

We perform a lot of operations in the process of the graphical dispute derivation.
And these operations are described in detail shown in Table 3. G and G′ represent
potential argument graphs and s ∈ L, S ⊂ L. O and O′ are sets of argument graphs;
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Step Case Pi u(Oi) Gi Di Ci
0 - ({a}, ∅) ∅ ({a}, ∅) {a} ∅
1 1(i) ({a}, ∅) {({p}, ∅)} ({a, p}, {(p, a)}) {a} ∅
2 2(ii) ({a}, ∅) {({p, b}, {(p, b)})} ({a, p}, {(p, a)}) {a} ∅
3 2(i)(c) ({q, a}, ∅) ∅ ({a, p, q}, {(p, a), (q, p)}) {a} {b}
4 1(ii) ({q, a}, ∅) ∅ ({a, p, q}, {(p, a), (q, p)}) {a} {b}

Table 4: The dispute sequence for a in example 3.3

and X is a set of potential argument graphs. e(G) represents the set of edges in G,
and v(G) represents the set of vertices in G; u(G) is the set of unmarked vertices in
G; u(O) is the set of unmarked graph inO. A grounded graphical dispute derivation
for s0 is a grounded dispute sequence for s0: (Pi, Oi, Gi, Di, Ci) and no unmarked
node and unmarked graph in the last P and O, respectively. The description of the
above definition is not easy to understand. We consider the following example that
employs this definition as an illustration.

Example 3.3 Given an ABA framework(L,R, A, )̄, where
L = {p, q, a, b}
R = {p← b, q← }
A = {a, b}
ā = p, b̄ = q

The grounded graphical dispute sequence for a of length 4 is shown in Table 4.
We represent unmarked nodes in each graph in the bold style. In step 0, we initialize
P0 as the graph with a single node a, which is unmarked, and D0 as the set with an
assumption a. The other parts of the sequence are empty. Then the unmarked node
a is selected. a is an assumption, so we add a new graph with a single unmarked
node p (the contrary of assumption a) toOi in step 1. Then p is expanded by the rule
p← b and b is an unmarked node. In step 3, q is added into Pi as an unmarked node,
and b is put into Ci according to case 2(i)(c) in the above definition. Moreover, the
graph in Oi is marked. In the last step, select the only unmarked node q and update
the sequence by the rule q← according to case 1(ii).

This section introduced the graphical dispute derivation, which was the essen-
tial part of the approximate methods described in Chapter 4. This computational
mechanism was complicated. Afterwards, we presented an example to illustrate the
process of the graphical dispute derivation. We will take this method as the base-
line to compare with approximate methods in experiments. And we will present
the computational complexity for reasoning in ABA frameworks in the following
section.
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3.5. Computational Complexity and Upper Bonds

Reasoning problems mentioned in the previous section for ABA are complicated,
which results in a high computational complexity. This section will provide com-
plexity results for reasoning under admissible/preferred/stable semantics. And all
of these results are from Dimopoulos et al. [3].

Given a theory T ⊆ L and a formula α ∈ L, Th(T ) = {α ∈ L|T ` α} is the de-
ductive closure of T . "a set of assumption is sanctioned by the semantics" means that the
set of assumptions is admissible/stable/preferred, respectively. Then the reasoning
problem can be divided in two categories :

• the credulous reasoning problem, i.e. the problem of deciding for any given
sentence ψ ∈ Lwhether ψ ∈ Th(T ∪∆) for some assumption set ∆ sanctioned
by the semantics

• the sceptical reasoning problem, i.e. the problem of deciding for any given
sentence ψ ∈ L whether ψ ∈ Th(T ∪∆) for all assumption sets ∆ sanctioned
by the semantics

We often consider the complementary of sceptical reasoning problem for complexity
analysis, as follows

• the co-sceptical reasoning problem, i.e. the problem of deciding for any given
sentence ψ ∈ Lwhether ψ /∈ Th(T ∪∆) for some assumption set ∆ sanctioned
by the semantics

Semantics Verification Credulous Reasoning. Sceptical Reasoning

Admissible co-NPC NPNP
C

co-NPNP
C

Preferred co-NPNP
C

NPNP
C

co-NPNP
NPC

Stable PC NPC co-NPC

Table 5: Upper bound complexity results for general ABA frameworks [3]

All these problems have the sub-problem: the assumption set verification problem,
which means deciding whether a given set of assumptions ∆ is sanctioned by the
semantics. And they are located at the lower end of the polynomial hierarchy.

Recall that an ABA framework is based on a deductive system. Thus its complex-
ity depends on the complexity of the derivability problem in the system.

• derivability: Given an ABA framework (L,R,A,¯) ,a set of sentences A ⊆ L
and a sentence α ∈ L, does there exist a deduction of the form A `R α
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We identify upper bounds for the credulous and skeptical reasoning problems by
exploiting sub-problem. For any DL like propositional monotonic rule system S, the
problem of checking whether S ` ϕ is NP-complete. Assuming that the derivability
problem belongs to a problem class C, for a general ABA framework, upper bounds
for these problems are shown in Table 5.

Semantics Verification Credulous Reasoning. Sceptical Reasoning

Admissible PC NPC C

Preferred co-NPC NPC co-NPNP
C

Stable PC NPC co-NPC

Table 6: Upper bound complexity results for general ABA frameworks [3]

The flat ABA framework has restrictions on the general framework. Thus upper
bonds are different, and we show them in Table 6. The complexity results show that
skeptical reasoning under admissibility and preferability semantics is trivial and
highly complex, respectively. In general, the results indicate that reasoning under
different semantics is hard. The exact complexity and concrete analysis of using dif-
ferent underlying logic frameworks can be found from Dimopoulos et al. [3].

This section briefly presented computational complexity results for credulous and
skeptical reasoning under the admissible/ preferred/stable semantics in ABA frame-
works. These results theoretically indicated that reasoning under most semantics
is hard in ABA frameworks. So we need to consider approximate reasoning ap-
proaches in Chapter 4.
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4. Approximate Reasoning in ABA

From the previous sections, the reasoning procedure under specific semantics in
ABA has a high computational complexity. Because the reasoning process is time-
consuming, this research aims to reduce the runtime with the cost of slightly lower
accuracy. The underlying idea of approximate reasoning in ABA is inspired by the
approximate reasoning in ASPIC+ proposed to reason with structured argumenta-
tion by sampling arguments in ASPIC+ [17]. Approximate methods can give the
correct answer with a certain probability. If the probability is high enough, we view
approximate methods as valuable methods to overcome high complexity. In this
chapter, we will introduce two categories of approximate approaches: framework-
based sampling and dispute-based sampling. The framework-based method sam-
ples ABA frameworks to construct new frameworks before the actual reasoning
process. The dispute-based method samples inference rules in different stages of
derivations during the actual reasoning process. The reasoning procedures in ABA
for constructing argument extensions are different under different semantics. The
requirement for grounded extensions has more limitations than admissible exten-
sions. For simplicity, the reasoning procedure in this chapter is under the grounded
semantics. This section focuses on approximate methods based on graphical dis-
pute derivations. Section 4.1 presents the framework-based sampling method as a
way to get the sample from the framework. Section 4.2 offers three algorithms of
dispute-based sampling methods. They are different because we apply the random
selection function on three distinct stages: proponent, opponent, and both of them.
We illustrate all of them with examples in this chapter.

4.1. Framework-based Sampling

In this section, we will introduce the framework-based sampling (FS) method. This
method is simple to sample assumptions and inference rules of ABA frameworks
before the actual dispute derivations. As we already mentioned in Definition 2.2.8,
an ABA framework consists of four components: a language, rules, assumptions,
and contraries. When we sample assumptions, we also sample the corresponding
contraries to keep the mapping relations. Not all rules and assumptions are used
in the reasoning procedure to answer one query. Thus, we implement this approx-
imate method by sampling some rules, assumptions, and contraries with proba-
bilities. And the sample probabilities of assumptions and contraries are the same.
The FS method does not employ the information in queries because it directly sam-
ples frameworks before starting the reasoning process of dispute derivations. It ran-
domly obtains part of the framework. If we use sampled frameworks, we hypothe-
size that the running time of reasoning would be shorter than using original frame-
works. Then the new framework is used for the reasoning process of the graphical
dispute derivation. This method provides an easy way to reduce the computing time
for derivations, and we describe the algorithm in Algorithm 1. Moreover, Figure 13
shows an example of an original ABA framework on the left, and a sampled frame-
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Original ABA framework :
•

A18 <- A10, A5, A16
A19 <- A7, A17
A19 <- A12
A3 <- true
A11 <- true
A13 <- true
A18 <- A4, A16, A19
A17 <- A6, A7, A8
A11 <- A15, A16
A18 <- A19
{A10,A5,A15,A6,A16,A8}
not A15 = A1
not A16 = A11
not A6 = A9
not A5 = A11
not A10 = A2
not A8 = A4

Sampled ABA framework :

•
A18 <- A10, A5, A16
A19 <- A7, A17
A19 <- A12
A11 <- true
A18 <- A4, A16, A19
A13 <- true
A18 <- A19
{A5,A6,A15,A8}
not A15 = A1
not A6 = A9
not A5 = A11
not A8 = A4

Figure 13: Comparison between original framework and sampled framework

work under the two parameters 0.7 and 0.7 on the right. The size of the sampled
framework is smaller than the original framework.

Algorithm 1: Framework-based Sampling
Data: Abaf:(originalAssum, originalNegation, originalRules),

pAssums, pRules
Result: nAbaf:(newAssum, newNegation, newRules)

1 initilization nAbaf;
2 int numAssum = pAssums * size(originalAssum);
3 while size(newAssum) <numAssum do
4 newA← randomSelection(originalAssum);
5 newAssum← newAssum ∪ newA;
6 newANega← getNegation(originalNegation, newA);
7 newNegation← newNegation ∪ newANega;
8 end
9 int numRule = pRules * size(originalRules);

10 while size(newRules) <numRule do
11 int i = rand(size(originalRules));
12 newR← get(i, originalRules);
13 newRules← newRules ∪ newR;
14 end
15 nAbaf← newAssum, newNegation, newRules
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Algorithm 1 for the framework-based sampling method takes an ABA frame-
work, a probability for sampling the assumptions as well as contraries, and a prob-
ability for sampling the inference rules as inputs, represented by Abaf, pAssums,
pRules, respectively. The result is a new ABA framework, denoted by nAbaf.

Function Name Input Output illustration
size a set a number get the number of

elements in one
set

randomSelection a set an element in a set randomly choose
an element in a set

getNegation a set negations, an
assumption

the negation of an
assumption

get the nega-
tion for the
corresponding
assumption

get index number, a
set

the element at the
index number

convert the input
set into a list and
get the element of
the input index
from the list

Table 7: Functions in Algorithm 1

The ABA framework includes a set of assumptions originalAssum, a set of
corresponding negations 1 originalNegation for assumptions, and a set of rules
orignalRules. The initialization is to initialize an empty ABA framework consist-
ing of assumptions newAssum, corresponding negations newNegation, and rules
newRules. The function size() is to get the number of elements for a set. First, this
algorithm calculates the number numAssum of assumptions in a new constructed
ABA framework by multiplying the probability for sampling assumptions and the
size of assumptions in the original ABA framework. Then this algorithm randomly
chooses an assumption from the original set of assumptions and adds it into a new
set of assumptions. After that, to keep the relationship between assumptions and
contraries, this algorithm finds a corresponding negation newANega for the chosen
assumption and adds it to a new set of negations. The function getNegation() is
to get the negation for the given assumption. The functionrandomSelection() is to
select an assumption randomly from the set of assumptions. A similar operation is
applied to construct the new set of inference rules. Finally, this algorithm adds all
these new sets into the new ABA framework. This algorithm is a straightforward
way to construct a sample ABA framework from the original ABA framework. Af-
ter this process, the new ABA framework may lose some parts of information before
starting the derivation. It would help reduce the running time for dispute deriva-

1The negations refer to contraries here and in the rest of methods
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tions because of simplifying the whole knowledge base. Thus, we would not expect
to obtain the answer to a query with a high accuracy. The functions used in this al-
gorithm are summarized in Table 7.

This section proposed a framework-based sampling (FS) method implemented
by sampling assumptions, contraries, and rules with a certain probability on ABA
frameworks to construct a new ABA framework, which can be seen as a pre-process
before actual dispute derivations. This method is not directly related to the query
we answer after reasoning, so we do not expect an excellent accuracy. This section
showed an example of the result and the algorithm of this approach. We will eval-
uate this method in experiments by comparing it with other approximate methods,
which we will introduce in the next section.
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4.2. Dispute-based Sampling

The dispute-based sampling approaches are implemented by randomly sampling
inference rules from frameworks based on different stages of the graphical dispute
derivation (see Definition 3.4.1 in Section 3). Because the rules mainly decide the
expansion of dispute trees for finding a winning strategy. These approximate ap-
proaches are different from the framework-based sampling concerning the query
and dispute derivations. These methods directly connect to the query and actual
reasoning processes by randomly sampling rules during derivations. We consider
the process with two players: proponent and opponent over a claim q as follows:

1. proponent: find a inferences rule q ← s to support the claim q

2. opponent: find a possible way to attack the premise s in previous, for example
there exists not s← m

3. proponent: according to the already existing information, find a possible way
to counterattack the opponent

4. opponent: find a possible way to attack the proponent

5. repeat this alternating process until one side can not attack the other side

The proponent and the opponent both attack each other in turn until one side
cannot attack the other side. Furthermore, after several turns, if the final turn is on
the proponent’s side, we say that the proponent wins the game. The reasoner will
accept the claim q. In other words, the answer for the query q is yes. However, if
the final turn is on the opponent’s side, the opponent wins the game. The reasoner
will not accept the claim q. The answer for this query q is no. We can not predict
the result if we do not compute step by step. We consider a structure over a dispute
shown in Figure 14:

claim: a

proponent: u , w

opponent: (1)

......

opponent: (2)

......

proponent: k, h

opponent: (3)

....

opponent:(4)

......

Figure 14: The structure over a dispute in the first situation

In the first situation, the claim is supported by two different rules: a← u,w and
a ← k, h. The proponent with u,w could be attacked by the opponent (1) (2). The
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proponent with k, h could be attacked by the opponent (3) (4). If all paths contain
a winning strategy in this structure, we can still get a correct answer when we ran-
domly sample the proponent rules. If only the path including proponent with u,w
results in a winning result, when we randomly sample the rule with k, h, we can
never get the correct answer. This sampling will affect the generation of the latter
branches of the opponent and the proponent, respectively. However, this random
sampling is still relevant to construct arguments supporting the proponent, and we
expect a higher accuracy than the framework-based sampling. When we consider
another structure in Figure 15, and we apply a similar idea to the opponent. The

claim: a

proponent: ....

.......

opponent: a1

premise: q , r

......

premise: m , r

......

premise: s

opponent: ......

...... ......

Figure 15: The structure over a dispute in the second situation

structure in the second situation contains a winning strategy for the claim a. After
the stages supported by the proponent, the opponent finds a1 attacks proponent. If
a1 is not an assumption, then the opponent needs to construct a new set of argument
graphs to support the sentence a1 by expanding to different premises with the same
head of a1, and there are three different rules to support it as follows:R = { a1←q, r,
a1 ←m, r, a1 ←s }. If m and s are assumptions, m can be ignored to get a winning
strategy, and s is in a set of culprits. When we look at the opponent in detail, we need
to consider all these three sub-branches after the opponent. If all of them can lead to
a successful state, we can still get the right answer when we randomly cut two sub-
branches. The random selection is based on Definition 3.4.1 2(ii) when we expand
the potential argument graphs to attack the proponent. If we construct some graphs,
we can get a correct answer with a lower probability than constructing all graphs. In
this situation, we randomly sample and construct inference rules to support the op-
ponent. The expected accuracy may be similar to the proponent one and still higher
than the framework-based sampling. Moreover, if we combine both perspectives of
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Figure 16: A sample strategy on the proponent side

the proponent and the opponent, this kind of sampling may dramatically reduce the
running time for answering a query. However, it may not get an excellent accuracy.
Dispute-based sampling approaches randomly select some parts of inference rules
which are relevant to a query. We used three strategies to add the random selection:
proponent, opponent, both of them. We will present each of the algorithms in the
following subsection.

4.2.1. Sampling on the Proponent

The dispute-based sampling on the proponent (DSP) method is performed based
on the graphical dispute derivations (see Definition 3.4.1). Figure 16 intuitively de-
scribes the process of reasoning for a claim and sampling on the proponent. In
this figure, P and O represent the proponent and the opponent, respectively, in
the process of derivations. They attack each other to defend themselves. We ap-
ply random sampling to get the approximate inference rules on the proponent. The
method is described by Algorithm 2 in detail. Moreover, the algorithm presents the
main function Derive(). In the function Derive(), we use a random selection func-
tion findRandomRules(). The data of the algorithm consists of an ABA framework
Abaf, a query Query and a probability probability. The Query is in the form
of a sentence s ∈ L. The initialization is to create a dispute sequence with the query
and frameworks as (P0,O0,G0,D0,C0) (see Definition 3.4.1). P0 is a potential argu-
ment graph and O0 is an empty set. G0 is a graph with a single node Query: s. If s is
an assumption, then D0 is the set of the node s. Otherwise, D0 is an empty set. And
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C0 is empty. After that, we use the function Derive() to get a state which decides the
final answer.

Algorithm 2: Dispute-based Sampling on the Proponent
Data: Abaf, Query, probability
Result: Answer

1 Initialization disputeSequence: P0, O0, G0, D0, C0 by Query and Abaf;
2 state← Derive(disputeSequence, Abaf,probability);
3 if state = successful then
4 Answer← yes;
5 else
6 Answer← no;
7 end
8 Function Derive(disputeSequence, Abaf, probability):
9 if getUnNode(Pi) =∅ and getUnGraph(Oi) = ∅ then

10 state← succesful;
11 end
12 while getUnNode(Pi) 6=∅ or getUnGraph(Oi) 6=∅ do
13 side← selectPorO(Pi, Oi) ;
14 if side="P" then
15 node← selectNode(getUnNode(Pi));
16 if node ∈ Assums then
17 state← Case1i(disputeSequence, Abaf, node);
18 else
19 Rules← findRandomRules(node,probability);
20 state← Case1ii(disputeSequence, Abaf, node, Rules,

probability)
21 end
22 else
23 //opponent part;
24 graph← selectGraph(getUnGraph(Oi));
25 node← selectNode(getUnNode(graph) ) ;
26 if node ∈ Assums then
27 state←Case2i(disputeSequence, Abaf, node, graph,

probability);
28 else
29 Rules←findRules(node);
30 Case2ii(disputeSequence, Abaf, node,graph,Rules)
31 end
32 end
33 end
34 return state;
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The function Derive() takes a dispute sequence and an ABA framework as in-
puts, and it returns a successful or failed state. Firstly, the function tests whether
there are unmarked nodes and unmarked graphs in Pi or Oi by judging whether the
returns of functions getUnNode() and getUnGraph() are empty or not. If not, the
function returns a successful state. Otherwise, the function chooses an unmarked
node from the proponent or the opponent. For the opponent part, the function se-
lect an unmarked graph to choose unmarked nodes. According to whether the se-
lected node is an assumption or not, we use the different functions of Case-X (1i,
1ii, 2i, 2ii). To sample and construct the approximate rules for a node, we use the
function findRandomRules() when we select the node from Pi and the node is not
an assumption. The standard algorithm can be recovered by changing the line 19
in Algorithm 2 with the function findRules() so that Rules will contain all rules
for the given node. The function findRandomRules() is to get approximate rules
for the given head of rules by selecting and constructing approximate rules with
a certain probability based on the original rules. It is the core function to imple-
ment the approximate reasoning and we describe it in Algorithm 3. The function
findRandomRules() takes node and probability as inputs, and returns a set of
approximate rules randRules.

Algorithm 3: findRandomRules

1 Function findRandomRules(node, probability):
2 ruleList← findRules(node) ;
3 numOfRules← size(ruleList) * probability ;
4 initial(randRules );
5 while size(randRules) < numOfRules do
6 randNum← randInteger(0, size(ruleList));
7 rule← get(ruleList, randNum);
8 premises← getPremise(rule);
9 initial(randPremises );

10 for i = 0; i < size(premises); i = i+ 1 do
11 randNum2← randDouble (0, 1);
12 if randNum2 > probability then
13 continue;
14 else
15 randPremises← addPremise(randPremises

,get(premises, i));
16 end
17 end
18 nRule← construct(randPremises,node);
19 randRules← addRule(randRules, nRule );
20 end
21 return randRules;
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Firstly, Algorithm 3 uses the function findRules() to find all rules whose head
is labelled by the given node. Then, it randomly samples on rules with the num-
ber of numOfRules from the set of rules. The numOfRules is calculated by the
size of all rules multiplying with the probability. The function size() is to get
the size of the input set. Next, it initializes an empty set of rules by the function
initial(). The functions randInteger() and randDouble() are to generate a random
number of the int and double type respectively. For each sampled rule rule, Al-
gorithm 3 constructs corresponding approximate rule by adding every sentence in
premise to randPremises if the random number randNum2 is less than the vari-
able probability. The function construct() is used to construct a rule according
to the given premises randPremise as the body, and the label of node as the head.
Finally, this algorithm constructs a set of approximate rules for the given node and
probability.

Function Name Input Output illustration
getUnNode a graph a set of unmarked

node
get the set of un-
marked nodes

getUnGraph a set of graphs a set of unmarked
graphs

get the set of un-
marked graphs

selectPorO a graph, a set of
graphs

"P" / "O" select p or o ac-
cording to the in-
put.

selectNode a set of nodes node randomly get a
node from the
input set

selectGraph a set of graphs graph randomly get a
graph from the
input set

findRules node set of rules get all the rules
whose head is the
label of the input
node

get an ordered collec-
tion, an index

an element get the element at
the input index
position from the
input collection

addPremise a set of premises, a
premise

a set of premises add a premise to
the set of premises

addRule a set of rules, a
rule

a set of rules add a rule to the
set of rules

Table 8: Functions used in Algorithm 2 and 3

In Algorithm 2, we use four complicated functions Case1i(), Case1ii, Case2i(),
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Step Case Pi Oi Gi Di Ci
0 Initilization ({p}, ∅) ∅ ({p}, ∅) ∅ ∅
1 Case1ii ({p, b}, {(p, b)}) ∅ ({p, b}, {(p, b)}) {b} ∅
2 Case1i ({p, b}, {(p, b)}) {({y}, ∅)} ({p, b, y}, {(p, b), (y, b)}) {b} ∅
3 Case2ii ({p, b}, {(p, b)}) ∅ ({p, b, y}, {(p, b), (y, b)}) {b} ∅

Table 9: A dispute sequence in example 4.1 using DSP

and Case2ii(), which are described in the appendix of algorithm functions. And we
explain other functions that we use in Algorithm 2 and Algorithm 3 in Table 8. To
illustrate these algorithms, we give an example 4.1 as follows.

Example 4.1 Given an ABA framework (L,R, A,¯) where
L = { a, b, c, p, s, t, x, y, z }
A = { a, b, c }
R = { p← b, p← s, t, s←a, t←c }
ā = x, b̄ = y, c̄ = z

If we use the DSP method to answer the query "p". In the step 0, we initialize
the dispute sequence as P0 = ({p}, ∅), G0 = ({p}, ∅). Furhermore, O0, D0, and C0

are empty. In each step, the dispute sequence is changed shown in Table 9. The un-
marked node is shown in the bold style. And Oi only shows the unmarked graph
in the table. Then we select the unmarked node p in the proponent, and expand it
to construct the potential arguments supporting the claim p. By randomly selecting
and constructing the inference rules p← b, we can finally get a successful dispute se-
quence. However, if we randomly select the rule p← s, t and construct it as the rule
p← s, the dispute sequence would be different shown in Table 10. In this situation,
the DSP method gets the correct answer for both choices.

Step Case Pi Oi Gi Di Ci
0 Initilization ({p}, ∅) ∅ ({p}, ∅) ∅ ∅
1∗ Case1ii ({p, s}, {(p, s)}) ∅ ({p, s}, {(p, s)}) ∅ ∅
2 Case1ii ({p, s}, {(p, s)}) ∅ ({p, s, a}, {(s, p), (a, s)}) {a} ∅

Table 10: An alternative dispute sequence in example 4.1 using DSP

Step Case Pi Oi Gi Di Ci
0 Initilization ({p}, ∅) ∅ ({p}, ∅) ∅ ∅
1∗ Case1ii ({p,x}, {(p, x)}) ∅ ({p, x}, {(x, p)}) ∅ ∅
2 Failure - - - - -

Table 11: A failed dispute sequence in example 4.1 using DSP

51



When we consider Example 4.1, if R = { p← b, p← s, t, s←a, t← c, p← x }, the
query is still p. The initialization is the same as in the Table 10. However, if the rule p
← x is randomly sampled in the step 1, p is expanded to x by this rule. The dispute
sequence is shown in Table 11. Because x is not an assumption and there is no rules
starting with the head of x, the sequence can never reach a successful state and we
can not get the correct answer.

4.2.2. Sampling on the Opponent

Along the lines of the method mentioned in the previous subsection, the dispute-
based sampling on the opponent (DSO) method is also based on graphical dispute
derivations, but it randomly samples and constructs inference rules on the oppo-
nent side. From the procedure of graphical dispute derivations, the opponent needs
to consider all possible inference rules when constructing argument graphs to at-
tack the proponent. Moreover, there are many rules to expand an unmarked node
in the set of argument graphs. We apply the random sampling on the opponent
to construct an approximate set of argument graphs by randomly selecting and
constructing inference rules. Figure 17 gives a more intuitive presentation for this
method over a claim. In this figure, P and O represent the proponent and the op-
ponent, respectively. They attack each other in turn until one side cannot attack the
other side. This kind of random sampling may lose some inference information dur-
ing the reasoning. It can be seen as a random pruning way to reduce the searching
space. However, it can not guarantee the answer is always right.

Figure 17: A sample strategy on the opponent side

Algorithm 4 describes the method DSO in detail. Most of the variables used in this
algorithm are the same as those appearing in the previous method. This algorithm
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Algorithm 4: Dispute-based Sampling on the Opponent
Data: Abaf, Query, probability
Result: Answer

1 initialization disputeSequence: P0, O0, G0, D0, C0 with Abaf and Query ;
2 state← Derive(disputeSequence, Abaf);
3 if state = successful then
4 Answer← yes;
5 else
6 Answer← no;
7 end
8 Function Derive(disputeSequence, Abaf, probability):
9 if getUnNode(Pi) =∅ and getUnGraph(Oi) = ∅ then

10 state← succesful;
11 end
12 while getUnNode(Pi) 6=∅ or getUnGraph(Oi) 6=∅ do
13 side← selectPorO(Pi, Oi) ;
14 if side=P then
15 node = selectNode(getUnNode(Pi) ) ;
16 if node ∈ Assums then
17 state← Case1i(disputeSequence, Abaf, node);
18 else
19 Rules← findRules(node);
20 state← Case1ii(disputeSequence, Abaf, node, Rules,

probability)
21 end
22 else
23 //opponent part;
24 graph← selectGraph(getUnGraph(Oi));
25 node← selectNode(getUnNode(graph) ) ;
26 if node ∈ Assums then
27 state← Case2i(disputeSequence, Abaf, node, graph,

probability);
28 else
29 Rules← findRandomRules(node,probability);
30 Case2ii(disputeSequence, Abaf, node, graph, Rules)
31 end
32 end
33 end
34 return state;
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mainly uses the function Derive(), and takes a data structure of dispute sequence
consisting of five components Pi, Oi, Gi, Di, Ci, an ABA framework Abaf and a prob-
ability probability as inputs. Moreover, it returns a statewith successful or not.
This function ends with the condition if there is no unmarked node in the graph Pi
and no unmarked graph in the set of graphs Oi. If not, we select an unmarked node
from Pi or an unmarked graph in Oi. If the former one is chosen, the operations are
based on definition 3.4.1- condition 1. If the label of the node is an assumption, we
apply function Case1i(), otherwise, apply function findRules() and Case1ii() so as
to get the state. If the latter one is chosen, the operations are based on definition
3.4.1- condition 2 and we still need to judge whether the node’s label is in the set
of assumptions Assums. Before judging, the program selects an unmarked graph
graph, then selects an unmarked node from the graph by function selectGraph()
and selectNode(). If the label of the selected node is an assumption, we apply func-
tionCase2i(), otherwise perform functions findRandomRules() andCase2ii(). The
standard method can also be recovered by replacing line 29 with findRules() so that
Rules contains all rules for the given node. These functions are the same as those
in the previous method.

Let us see an example for using the DSO method.

Example 4.2 Given an ABA framework (L,R, A, )̄ where
L = { a, b, p, q, s, t }
R = {p← b, t, p← b, s , q← }
A = { a, b}
ā = p, b̄ = q

If the query is "a", the dispute sequence generated by the DSO method is shown
in Table 12. In the step 2, the function findRandomRules() returns p ← b, t rather
than all rules with the head of p in standard graphical dispute derivations. Finally,
the function Derive() returns a successful state, and we get the correct answer by
this sampling on rules compared to the standard method.

Step Case Pi Oi Gi Di Ci
0 Initilization ({a}, ∅) ∅ ({a}, ∅) {a} ∅
1 Case1i ({a}, ∅) {({p}, ∅)} ({a, p}, {(p, a)}) {a} ∅
2 Case2ii ({a}, ∅) {({p, b, t}, {(p, b), (p, t)}) } ({a, p}, {(p, a)}) {a} ∅
3 Case2i ({a, q}, ∅) ∅ ({a, p, q}, {(p, a), (q, p)}) {a} {b}
4 Case1ii ({a, q}, ∅) ∅ ({a, p, q}, {(p, a), (q, p)}) {a} {b}

Table 12: A dispute sequence in example 4.2 using DSO

In the step 2, if the rule p ← b, s is randomly selected and constructed, the cor-
responding dispute sequence is shown in Table 13. In this situation, we can get a
successful dispute sequence and then still get the correct answer for this example.

We continue to consider Example 4.2, if R = {p ← b, t, p ← b, s , q ←, p ← c },
and c is an assumption with its contrary m. In the step 2, we randomly select and
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Step Case Pi Oi Gi Di Ci
0 Initilization ({a}, ∅) ∅ ({a}, ∅) {a} ∅
1 Case1i ({a}, ∅) {({p}, ∅)} ({a, p}, {(p, a)}) {a} ∅
2∗ Case2ii ({a}, ∅) {({p, b, s}, {(p, b), (p, s)}) } ({a, p}, {(p, a)}) {a} ∅
3 Case2i ({a, q}, ∅) ∅ ({a, p, q}, {(p, a), (q, p)}) {a} {b}
4 Case1ii ({a, q}, ∅) ∅ ({a, p, q}, {(p, a), (q, p)}) {a} {b}

Table 13: An alternative dispute sequence in example 4.2 using DSO

construct the rule p ← c. Table 14 represents the sequence for this situation. The
standard dispute derivation doesn’t finish with a successful dispute sequence, but
if we use the DSO method and get a dispute sequence shown in Table 14, we can
not get a correct answer in this situation.

Step Case Pi Oi Gi Di Ci
0 Initilization ({a}, ∅) ∅ ({a}, ∅) {a} ∅
1 Case1i ({a}, ∅) {({p}, ∅)} ({a, p}, {(p, a)}) {a} ∅
2* Case2ii ({a}, ∅) {({p, c}, {(p, c)})} ({a, p}, {(p, a)}) {a} ∅
3 Case2i ({a,m}, ∅) ∅ ({a, p,m}, {(p, a), (m, p)}) {a} {c}
4 Failure - - - - -

Table 14: A failed dispute sequence in example 4.2 using DSO

Figure 18: A sample strategy on the proponent and opponent sides

4.2.3. Sampling on Both Sides

We implement the dispute-based sampling on both sides (DSB) method by sam-
pling inference rules on the proponent and the opponent based on graphical dispute
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derivations (see Definition 3.4.1). It can be seen as a combination of two methods
DSP and DSO mentioned in the previous subsections. Moreover, the process for this
method is depicted in Figure 18. The claim represents a query of whether the claim
is accepted under the grounded semantics. "P" and "O" represent the proponent and
opponent, respectively. Random sampling is applied on both sides to construct ap-
proximate reasoning. This process combines the sample operation on both sides so
that the running time might be shorter than the DSP or the DSO.

The algorithm for the DSB method is similar to the previous methods DSP and
DSO. Besides, it uses function findRandomRules() on both of the proponent and
opponent sides. The random sampling on the proponent would influence the gen-
eration of unmarked nodes on the opponent. And the random sampling on the op-
ponent would affect the generation of unmarked nodes on the proponent. The DSB
method may lead to a lower accuracy than the DSP and the DSO. Algorithm 5 de-
scribes this method as follows. The initialization is to create a dispute sequence by
initializing P0, G0, O0, D, C0 with the Query and Abaf based on Definition 3.4.1. P0

is a graph with the single node labelled by the Query and the single node is un-
marked. O0 is an empty set. G0 is a graph with single node labelled by the Query.
If the query is an assumption in Abaf, then D0 is the set of the single node labelled
by the Query, otherwise D0 is an empty set. C0 is an empty set. Then the algorithm

Algorithm 5: Dispute-based Sampling on Both
Data: Abaf, Query, probability
Result: Answer

1 Initialization disputeSequence: P0, O0, G0, D0, C0 with Abaf and Query ;
2 state← Derive(disputeSequence, Abaf, probability);
3 if state = successful then
4 Answer← yes;
5 else
6 Answer← no;
7 end

performs the function Derive(). According to the return of the function Derive()
whether the state is successful or not, we can obtain the answer to the query.

Note that the function Derive() is slightly different from the function described
in previous, although it has the same name and same parameters. In this Derive()
function, the findRandomRules() is used in both the "P" and "O" sides so that the
Rules contains the set of approximate rules for the given head compared to the
standard method. The set of approximate rules is obtained by randomly sampling
inference rules for a given node. For each sampled rule, we reconstruct the body of
the rule by randomly choosing premises with a probability from the original set
of premises. Other functions used in Algorithm 5 are the same as those in the DSP
and the DSO.
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8 Function Derive(disputeSequence, Abaf,probability):
9 if getUnNode(Pi) =∅ and getUnGraph(Oi) = ∅ then

10 state← succesful;
11 end
12 while getUnNode(Pi) 6=∅ or getUnGraph(Oi) 6=∅ do
13 side← selectPorO(Pi, Oi) ;
14 if side="P" then
15 node← selectNode(getUnNode(Pi));
16 if node ∈ Assums then
17 state← Case1i(disputeSequence, Abaf, node);
18 else
19 Rules← findRandomRules(node,probability);
20 state← Case1ii(disputeSequence, Abaf, node, Rules,

probability)
21 end
22 else
23 //opponent part;
24 graph← selectGraph(getUnGraph(Oi));
25 node← selectNode(getUnNode(graph) ) ;
26 if node ∈ Assums then
27 state←Case2i(disputeSequence, Abaf, node, graph,

probability);
28 else
29 Rules←findRandomRules(node, probability);
30 Case2ii(disputeSequence, Abaf, node,graph,Rules)
31 end
32 end
33 end
34 return state;

To illustrate this method, we consider the following example.

Example 4.3 Given an ABA framework (L,R,A, )̄ where
L = {p, q, s, t, a, b, c }
R = { p← a, p← b, t← c, t← , q← , s← }
A = {a, b, c}
ā = t, b̄ = q, c̄ = s

For the above example, if we use the DSB method to determine whether the claim
p is accepted under the grounded semantics, the query is "p." Then we get the dis-
pute sequence shown in Table 15. In the step 1, this method randomly samples and
constructs the rule p← a on the proponent side. And in the step 3, it randomly sam-
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ples and constructs the rule t← c on the opponent side. From the Table 15, we can
get a successful dispute sequence in the step 5 and the answer for this query is "yes".
The actual answer should be "no" in the standard method, but the DSO method can
not get the correct answer in this situation.

Step Case Pi Oi Gi Di Ci
0 Initialization ({p}, ∅) ∅ ({p}, ∅) ∅ ∅
1 Case1ii ({p,a}, {(p, a)}) ∅ ({p, a}, {(a, p)}) {a} ∅
2 Case1i ({p, a}, {(p, a)}) {({t}, ∅)} ({p, a, t}, {(a, p), (t, a)} ) {a} ∅
3 Case2ii ({p, a}, {(p, a)}) {({t, c}, {(t, c)})} ({p, a, t}, {(a, p), (t, a)} ) {a} ∅
4. Case2i ({p, a, q}, {(p, a)}) ∅ ({p, a, t, q}, {(a, p), (t, a), (q, t)} ) {a} ∅
5. Case1ii ({p, a, q}, {(p, a)}) ∅ ({p, a, t, s}, {(a, p), (t, a), (s, t)} ) {a} ∅

Table 15: A dispute sequence in example 4.3 using DSB

We continue to Example 4.3, for the same query, if in the step 1, this method ran-
domly samples and constructs the rule p← b to update the graph Pi. According to b̄
= q, a new unmarked graph with a single unmarked node q is added intoOi. Finally,
we can get the dispute sequence which indicates a successful state shown in Table
16. Thus this method does not give the correct answer.

Step Case Pi Oi Gi Di Ci
0 Initialization ({p}, ∅) ∅ ({p}, ∅) ∅ ∅
1* Case1ii ({p, b}, {(p, b)}) ∅ ({p, b}, {(b, p)}) {b} ∅
2 Case1i ({p, b}, {(p, b)}) {({q}, ∅)} ({p, b, q}, {(a, p), (q, b)} ) {b} ∅
3 Case2ii ({p, b}, {(p, b)}) {({q}, ∅)} ({p, a, t}, {(a, p), (t, a)} ) {b} ∅

Table 16: An alternative dispute sequence in example 4.3 using DSB

However, if in the step 3 of Table 15, the DSO method gets the rule t← rather than
the rule t ← c by the random selection function, the following process is different.
We shoe the new dispute sequence for this situation in Table 17. And this leads to a
failed state so that the DSO method provides a correct answer in this situation.

Step Case Pi Oi Gi Di Ci
0 Initialization ({p}, ∅) ∅ ({p}, ∅) ∅ ∅
1 Case1ii ({p,a}, {(p, a)}) ∅ ({p, a}, {(a, p)}) {a} ∅
2 Case1i ({p, a}, {(p, a)}) {({t}, ∅)} ({p, a, t}, {(a, p), (t, a)} ) {a} ∅
3∗ Case2ii ({p, a}, {(p, a)}) {({t}, ∅)} ({p, a, t}, {(a, p), (t, a)} ) {a} ∅

Table 17: A failed dispute sequence in example 4.3 using DSB

This section proposed three different dispute-based sampling methods. The three
methods DSP, DSO, and DSB, randomly sampled and constructed inference rules
in the process of graphical dispute derivations. Based on the different operations in
different stages of derivations, we used the random selection function findRandom-
Rules() on the proponent, the opponent, and both of them for the DSO, the DSP, and
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the DSB method, respectively. We presented these methods in different algorithms
with some same functions. Algorithm 2, 4, and 5 were similar, except for the posi-
tion where we used the random selection function. The expected results were that
the DSP, DSO, and DSO would have a better accuracy than the FS method men-
tioned in the previous section, and the FS method would use less time than other
methods. The proponent was more active than the opponent because it put forward
arguments to support a claim, which drove the opponent to attack. Moreover, each
of the rules supporting the proponent would lead to a possible way to get a success-
ful branch. Nevertheless, all the rules together supporting the opponent decided to
continue a branch. Random sampling on both sides might lead to a lower accuracy
and less time than on only one side because the proponent and the opponent af-
fected each other in every step, which resulted in a smaller searching space. We will
evaluate all of these methods compared with the baseline in the next chapter.
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5. Evaluation

This section aims to evaluate the approximate methods described in Section 4 by
experiments. All the methods are implemented in Java. These experiments are de-
signed to test the performance of different methods. We take the standard graphical
dispute derivation method as the baseline. The experiments are performed by run-
ning different methods to answer the same query and comparing each method’s
performance according to the statistic result. Section 5.1 describes the data gener-
ated for the experiment and evaluation metrics for different methods. Section 5.2
shows the statistical results by comparing the baseline and approximate methods.
Moreover, it summarizes the experiment and discusses the results. The results indi-
cate that, in general, the approximate methods can reduce running time and get a
slightly lower accuracy.

5.1. Experiment

5.1.1. Data

We used an ABA theory generator with different parameters to generate the data
that would be used in the following experiments. The generator is also implemented
in Java. This program can generate different ABA frameworks with various set-
tings of parameters. Furthermore, each parameter has its influence on the gener-
ated frameworks. One of the components of an ABA framework is the language. nS
is a parameter to control the number of elements in the language. nA is the num-
ber of assumptions in the language, and it can not be greater than the number of
sentences. The number of inference rules are affected by nDH , minR, and maxR.
And the number of sentences in the body of inference rules is affected by minB and
maxB. The parameter minA and maxA decide the number of assumptions in the
body of rules. They are all described in Table 18.

Name of parameter Meaning
nS the number of sentences
nA the number of assumptions
nDH the number of distinct head
minR minimum number of rules per head
maxR maximum number of rules per head
minB minimum number of sentences in the body for one rule
maxB maximum number of sentences in the body for one rule
minA minimum number of assumptions in the body for one rule
maxA maximum number of assumptions in the body for one rule

Table 18: parameters in random generate ABA frameworks

The following Algorithm 6 illustrates the process of the generation of an ABA
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framework. In this algorithm, firstly, the program generates a set of sentences to rep-
resent languages according to the parameter nS, and each sentence is in the form of
Ai, i ∈ {0...n}. Then it randomly generates a subset with the size nA of the set of sen-
tences as assumptions. Moreover, the program randomly generates corresponding
negation for each assumption from the subtraction between the set of sentences and
assumptions. Finally, it constructs the set of inference rules. In this process, firstly,
it creates heads and bodies for rules from sentences. The head is only in the set of
subtraction between the set of all sentences and assumptions. Moreover, the premise
in each body is an assumption or a non-assumption. It depends on the number of
assumptions in the body.

Algorithm 6: Random ABA Theory Generator
Data: nS, nA, nDH , minR,maxR,minB,maxB,minA,maxA
Result: Abaf

1 for int i=0; i<nS; i++ do
2 generate a sentence s;
3 L← L ∪ s;
4 end
5 for int i=0;i<nA;i++ do
6 random choose a sentence a ∈ L;
7 A← A ∪ a;
8 random choose a sentence n ∈ L-A;
9 N← N ∪ {not a=n};

10 end
11 for int i=0;i<nDH;i++ do
12 random choose a sentence h ∈ L-A;
13 generate numOfRulesin [minR,maxR];
14 for int j=0;j<numOfRules;j++ do
15 generate numOfBodys in [minB,maxB];
16 generate numOfAssums in [minA,maxA];
17 for int t=0;t<numOfAssums;t++ do
18 random choose a sentence a1 ∈ A;
19 rbody ← rbody ∪ a1

20 end
21 for int k=0; k<numOfBodys-numOfAssums; k++ do
22 random choose a sentence l1;
23 rbody ← rbody ∪ l1;
24 end
25 construct the r : h← rbody;
26 rules← rules ∪ r
27 end
28 end
29 return Abaf( L, A, N, rules);
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•
A11 <- A14
A17 <- A1, A2
A18 <- A10, A5, A16
A19 <- A7, A17
A19 <- A12
A3 <- true
A11 <- true
A13 <- true
A18 <- A4, A16, A19
A17 <- A6, A7, A8
A11 <- A15, A16
A18 <- A19
{A10,A5,A15,A6,A16,A8}
not A15 = A1
not A16 = A11
not A6 = A9
not A5 = A11
not A10 = A2
not A8 = A4

Figure 19: An ABA framework generated from the generator

By applying this generator several times, we generate different ABA frameworks.
One example of the results is shown in Figure 19. This framework consists of three
parts. First part is the set of inference rules in the form of Ai ← Aj , Ak.....Az . Ai is
the head of the rule. And Aj , Ak.....Az is the body of the rule. The body consists of
literals or "true", which means this rule is strict enough not to be attacked by oth-
ers. Then, the collection in a curly bracket is the set of assumptions. The last part
is the set of negations and their corresponding assumptions. The negation is repre-
sented by adding a "not" before an assumption. For instance, the "not A15 = A1",
we say the negation of the assumption A15 is A1. In order to test the performance of
these methods, we design three datasets with a small, medium, and large number
of instances, respectively. Moreover, each instance in different datasets is set with
different parameters. The parameters for generating ABA frameworks are not inde-
pendent. The sentences are all the elements in the language for ABA frameworks.
The number of assumptions and the number of distinct heads can not be greater
than sentences. If the number of distinct heads is higher, the number of rules would
be higher. These different datasets are used to test the performance for the baseline
and approximate methods.

DataSet1 The first dataset that we used has 80 ABA frameworks. Furthermore,
the number of sentences is in the range [20,90]. We have done some informal ex-
periments to test the generator. The informal experiments show that if parameters
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Parameters Values
nS {20, 30, 40, 50, 60, 70, 80, 90}
nA 10
nDH 20
minR 1
maxR 3
minB 0
maxB 3
minA 0
maxA 3

Table 19: Parameters used to generate DataSet1

are smaller and the framework is simple. Parameters in this dataset are set to be
small. The smallest number of sentences is 20. The number of assumptions and dis-
tinct heads can not be greater than this number. Parameters are shown in Table 19
in detail.

DataSet2 The second dataset we used has 900 ABA frameworks, and parameters
are shown in Table 20. This dataset’s parameters are set to be larger than the first
dataset to make the instance in this dataset more complex than the first dataset. The
number of sentences is one thousand for each instance. The number of assumptions
is 150. We have done some informal experiments to test the running time for dif-
ferent methods. The informal experiments show that if the maximum number of
inference rules is in the range [1400, 2200], the running time is significantly large.
According to the minR and maxR shown in Table 20, the number of distinct head
per rule is in the range [350,550].

Parameters Values
nS 1000
nA 150
nDH [350, 550]
minR 1
maxR 4
minB 0
maxB 4
minA 0
maxA 4

Table 20: Parameters used to generate DataSet1
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DataSet3 The third dataset that we used has 4000 ABA frameworks, and in each
framework, the number of sentences is randomly generated within the maximum
number of 100. This dataset is larger than the first dataset in the number of frame-
works. If the parameters are small, the result of the running time would be short. It
is not enough to illustrate that the approximate methods reduce the running time
dramatically. The number of assumptions and rules are also randomly generated by
a probability of sentences. The parameters are shown in Table 21. These parameters
are more flexible, and the range of some values is wider than the first and second
datasets.

Parameters Values
nS [1, 100]
nA {0.1, 0.2, 0.3, 0.4}
nDH {0.1, 0.2, 0.3, 0.4}
minR 1
maxR 10
minB 0
maxB 10
minA 0
maxA 10

Table 21: Parameters used to generate DataSet2

5.1.2. Experiment Design

To evaluate the performance of the FS, DSP, DSO, and DSB methods, we design
experiments based on three different scales of datasets. We use the DataSet1, Dat-
Set2, and DataSet3. The experiments are performed by answering a randomly cho-
sen query in different datasets using different methods. The first dataset represents a
small and simple dataset. The second dataset describes the situations that thousands
of inference rules in each instance. The third data set has 4000 frameworks randomly
generated with a maximum number of 100 sentences. The maximum number of lit-
erals in the body is 10. The generator with these parameters could generate differ-
ent frameworks, including simple and complex frameworks. We randomly select a
query from the set of sentences for each framework. We design to run experiments
using the baseline, FS, DSP, DSO, and DSB methods for answering the same query.
The two parameters in the FS method are both 0.8, and the parameter of the prob-
ability in the DSP, DSO, DSB are all 0.8. Simultaneously, we record the computing
time and answers. If the running time is more than five minutes, this query would
be seen as an unsolved one. We compare the answers in the approximate methods
with the baseline. In the end, we compute the statistical results and record them into
tables.
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Environment All the experiments mentioned above, including the data genera-
tion, were performed on a Mac OS equipped with the 2.9GHz Intel Core i7 processor
and 16GB memory. The codes were implemented in Java and run on Eclipse with
jdk-15.0.1.

Metrics We used two principal metrics to evaluate the performance of the reason-
ing process. The time slot computes the running time from starting the reasoning
process until it ends. The accuracy is calculated by the number of answers that are
the same as the baseline divided by the number of all tests. After that, we compared
the average running time and accuracy for different methods. The statistical data
provides a basis for analyzing approximate methods’ performance and solving the
second research question.

This section presented the design of experiments and the data for investigations.
We used a random generator to generate the datasets with different parameters.
The experiments were designed to compare the performance of the baseline and
different approximate methods (FS, DSP, DSO, DSB) by two principal metrics. We
will show the results of these experiments in the next section.
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5.2. Results

Experiments designed in the previous section were performed, and results for each
dataset are presented in this section. The results are shown in the form of tables.
By doing so, we can get an intuitive impression of different methods’ performance
from different datasets. In the end, we summarize these experiments and results.

Table 22 shows the running time and accuracy for different methods in DataSet1.
The FS, DSP, DSO, and DSB methods show lower values of time than the baseline.
In this dataset, the running time is too short, so this does not actively demonstrates
that approximate methods can reduce the running time. The FS shows the lowest ac-
curacy of around 60% than other approximate methods. The DSP offers the highest
accuracy of around 98%.

Time Accuracy Solved
Baseline 3.2750 1.0000 1.0

FS 0.3000 0.6625 1.0
DSP 1.1000 0.9875 1.0
DSO 0.7875 0.9500 1.0
DSB 0.3250 0.8000 1.0

Table 22: The result for DataSet1 (The time is the average running time in millisec-
onds for answering different queries. The accuracy is calculated by the per-
centage of the correct answer. The solved is the percentage of the answer
obtained in 5 minutes.)

Time Accuracy Solved
Baseline 1150.564651 1.000000 0.905556

FS 315.083037 0.838285 0.908889
DSP 894.775458 0.983865 0.896667
DSO 1471.525697 0.905720 0.966667
DSB 352.970258 0.870617 0.930000

Table 23: The result for Dataset2 (The time is the average running time in millisec-
onds for answering different queries. The accuracy is calculated by the per-
centage of the correct answer. The solved is the percentage of the answer
obtained in 5 minutes.)

The result for DataSet2 is shown in Table 23. This dataset has 800 ABA frame-
works, and each of the frameworks has thousands of inference rules. It is more com-
plicated than the first dataset according to the solved rate, which is consistent with
the datasets’ setting. The DSO method shows the longest running time than other
methods. The particular reason for this circumstance is that the sample rules on the
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opponent side may lead to more sentences to expand and paths to search in dispute
trees. The FS shows the shortest time from this result than other approximate meth-
ods, but the accuracy is the lowest. The reason for the circumstances is that the FS
method without employing the query information may lose some rules that are cru-
cial for constructing supporting arguments and attacking arguments over a query.
The DSP shows a higher accuracy around 98% than other approximate methods.
The FS and DSB show an accuracy of around 80%, and the DSO shows an accuracy
of around 90%.

The result for DataSet3 is shown in Table 24. This dataset has 4000 frameworks,
and each framework has hundreds of rules. For the third dataset, the parameter is
more flexible than other datasets. It shows that the FS, DSO, DSB, and DSP approx-
imate methods have a shorter running time than the baseline. It is consistent with
our expectations, but it is not consistent with the result in DataSet2. The particu-
lar reason for this situation might be that the number of rules in DataSet2 is larger
than in DataSet3 and the more complex paths are selected by the random selection
function in the DSO method for DataSet2. The FS and DSB methods show a signifi-
cant decrease in the running time. The DSP method has a higher accuracy of about
98% than other approximate methods. The FS has the lowest accuracy of about 80%,
which is consistent with DataSet2 due to the same reason.

Time Accuracy Solved
Baseline 221.145475 1.000000 0.988515

FS 23.745933 0.808872 0.989274
DSP 120.759371 0.984274 0.988931
DSO 199.813362 0.957797 0.993495
DSB 22.988376 0.917809 0.994338

Table 24: The result for DataSet3. (The time is the average running time in millisec-
onds for answering different queries. The accuracy is calculated by the per-
centage of the correct answer. The solved is the percentage of the answer
obtained in 5 minutes.)

To sum up every result that has been stated so far, the DSP method had better
accuracy than other approximate methods to reduce the running time. The DSO
method did not perform better than the DSP, although they used the same function
in different positions. In some situations, the DSO showed a longer runtime time
than the baseline. It might be thought an explanation for this fact that the random
function that was used on the opponent in the graphical dispute derivation resulted
in the more complex searching paths. Moreover, for the IS method, it significantly
reduced the running time but had a lower accuracy than most directed random
sample methods. The FS used the random sample function before starting the actual
reasoning process. The running time in the DSB was similar to it in the FS. However,
the DSB showed a higher accuracy than the FS. Randomly sampling on both sides

67



might cut more inference rules than the DSP or the DSO, but it still kept relevant
to the query. The DSB increased the likelihood to reserve the crucial information for
answering a query than the FS.
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6. Future Work and Conclusion

6.1. Future Work

The evaluation indicates that the approximate methods based on graphical dispute
derivations can reduce the running time with a lower accuracy. Although there are
many different variants for the dispute derivations method, they all use the same
underlying idea of simulating two players over a dispute. Therefore, one main as-
pect of future work is to investigate how a claim/conclusion can be determined to
be accepted under other different semantics than the grounded semantics in ABA
frameworks. One possible way is to directly construct the specific extensions ac-
cording to the definition of different semantics. From the foundation in Chapter 2,
the semantics in argumentation can also be represented in the labelling-based style.
Therefore, another possible way is to construct labels for arguments under different
semantics. Once different reasoning methods have been proposed, another aspect of
future work would be to construct approximate methods based on these reasoning
methods. Apart from randomly sampling a knowledge base to implement the ap-
proximate reasoning, we could do pre-computing for each inference rule and give
each of them a weight value according to specific criteria. And then, we could use
the rules that have a higher value with priority in reasoning.

As for the dataset, one interesting aspect of future work would be to investi-
gate some practical applications for assumption-based argumentation. We can get
knowledge bases from these applications as the data source to test whether approx-
imate methods can work well on the real datasets.

6.2. Conclusion

In this thesis, we focused on reasoning problems in the formalism of assumption-
based argumentation (ABA). Along the lines of semantics in abstract argumentation,
ABA has many different semantics, including admissible, complete, grounded, etc.
These different semantics provide a basis for reasoning problems. ABA is equipped
with different computational mechanisms under different semantics for reasoning
problems. Therefore, we mainly solved the research questions of how to perform ap-
proximate inference under the grounded semantics and whether approximate meth-
ods can improve the performance in ABA.

We proposed approximate methods based on the graphical dispute derivation un-
der the grounded semantics in assumption-based argumentation to answer these re-
search questions. In this context, the reasoning problem is to determine a claim/con-
clusion whether it can be accepted under specific semantics. Concretely, the query
is a sentence in the language as a component of an ABA framework. For the ex-
act purpose of improving the performance for answering a query, we presented the
framework-based sampling (FS) method by randomly sampling frameworks to con-
struct new frameworks and the dispute-based sampling methods (DSP, DSO, DSB)
by randomly sampling in the process of the dispute derivation. We implemented the
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DSP, DSO, and DSB methods (see Chapter 4) using the random selection function
in different stages of the derivation. The FS method is different from others because
it resizes ABA frameworks without employing the query’s information before the
actual reasoning process. The DSP, DSO, and DSB use a random selection function
on the proponent, the opponent, and both, respectively, to get a set of approximate
inference rules with the given head.

The evaluation for approximate methods has revealed that adding randomness
in the process of constructing arguments to answer a query can reduce the com-
puting time with the cost of a lower accuracy. However, when we used the ran-
dom selection function in different stages, the result was different. The DSP method
had a better accuracy than other approximate methods. The DSO method reduced
potential argument graphs that we used to counterattack the proponent in the dis-
pute sequence, resulting in a lower accuracy than the DSP method. In the standard
graphical dispute derivations, the opponent needs to find all possible counterat-
tacks. However, randomly sampling and constructing rules that support opponents
reduces the chance to get the correct answer. From the experiment’s results, the DSP
method showed a shorter running time than the baseline and an accuracy of around
98% in the best situation. It indicated that the approximate method could reduce the
running time with an acceptable accuracy. The FS method can reduce the running
time but with a lower accuracy than other approximate methods. We can sample
parts of rules in ABA frameworks in the process of the graphical dispute deriva-
tions to perform the approximate inference in ABA. If the reasoning problems are
time emergency and do not require a high accuracy, we would consider the DSO
method. For the reasoning problems that require high accuracy, we recommend the
DSP method.
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A. Algorithm Functions

Algorithm 7: Case1i

1 Function Case1i(disputeSequence, Abaf, node):
2 v(Pi+1)← v(Pi) ∪ node;
3 add node in unmarked set in Pi+1;
4 negationNode← findNegation(node);
5 if negationNode = claim(graph), graph∈ Oi then
6 Oi+1← Oi
7 else
8 Oi+1← Oi ∪ newgraph(negationNode)
9 end

10 v(Gi+1)← v(Gi) ∪ negationNode ∪ node ;
11 e(Gi+1)← e(Gi) ∪ (negationNode,node) ;
12 if Gi+1 is cyclic then
13 state← failed;
14 else
15 state← successful;
16 end
17 return state;

——————————————
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Algorithm 8: Case1i i

1 Function Case1ii(disputeSequence, Abaf, node, Rules,
probability):

2 for R in Rules do
3 if R ∩ Ci = ∅ then
4 v(Pi+1)← v(Pi) ∪ R;
5 e(Pi+1)← e(Pi) ∪ (node, r), r ∈ R;
6 remove node from the unmarked set;
7 v(Gi+1)← v(Gi+1) ∪ node ∪ r, r ∈ R;
8 Di+1← Di+1 ∪ (R ∩ Assums);
9 if Pi+1 or Gi+1 is cyclic then

10 state← failed ;
11 return state

12 end
13 state← Derive(disputeSequence, Abaf, probability);
14 end
15 end
16 return state;

——————————————
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Algorithm 9: Case2i

1 Function Case2i(disputeSequence, Abaf, node, graph,
probability):

2 for int i=0;i<2;i++ do
3 if i=0 then
4 Operations(disputeSequence, Abaf, node, graph);
5 set graph unmarked;
6 state← Derive(disputeSequence, Abaf, probability);
7 if state is successful then
8 return state;
9 end

10 end
11 if i=1 then
12 if node /∈ Di and node ∈ Ci then
13 Operation2(disputeSequence, Abaf, node, graph);
14 if Gi+1 is cyclic then
15 state← failed;
16 return state;
17 end
18 else if node /∈ Di and node /∈ Ci then
19 Operation2(disputeSequence, Abaf, node, graph);
20 if negationNode /∈ Pi then
21 v(Pi+1)← v(Pi) ∪ negationNode;
22 end
23 Di+1← Di ∪ (negationNode ∩ Assums);
24 Ci+1← Ci ∪ node;
25 if Gi+1 is cyclic then
26 state← failed;
27 return state;
28 end
29 else
30 Operation1(disputeSequence, Abaf, node, graph);
31 set graph unmarked;
32 end
33 state← Derive(disputeSequence, Abaf, probability);
34 end
35 end
36 return state;
37 Function Operation1(disputeSequence, Abaf, node, graph):
38 remove graph from Oi;
39 v(graph)← v(graph) ∪ node;
40 add node in marked set in graph;
41 Oi+1← Oi ∪ graph;
42 Function Operation2(disputeSequence, Abaf, node, graph):
43 Operation1(disputeSequence, Abaf, node, graph);
44 set graph marked;
45 negationNode← findNegation(node);
46 v(Gi+1)← v(Gi) ∪ negationNode ∪ claim(node) ;
47 e(Gi+1)← e(Gi) ∪ (negationNode,claim(node)) ;
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Algorithm 10: Case2ii

1 Function Case2ii(disputeSequence, Abaf, node):
2 remove graph from Oi;
3 for R in Rules do
4 if R is true then
5 add node in marked set in graph;
6 add Ci in marked set in graph;
7 Oi+1← Oi ∪ graph;
8 set graph marked;
9 end

10 v(graph)← v(graph) ∪ R;
11 e(graph)← e(graph) ∪ (node, r), r ∈ R;
12 add node in marked set in graph;
13 if graph is not cyclic then
14 Oi+1← Oi ∪ graph;
15 set graph unmarked;
16 end
17 end
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