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Abstract

Scientific and public interest in epidemiology and mathematical modelling of disease spread
has increased significantly due to the current COVID–19 pandemic. Political action is
influenced by forecasts and evaluations of such models and the whole society is affected by
the corresponding countermeasures for containment. But how are these models structured?
Which methods can be used to apply them to the respective regions, based on real data
sets? These questions are certainly not new. Mathematical modelling in epidemiology
using differential equations has been researched for quite some time now and can be carried
out mainly by means of numerical computer simulations. These models are constantly
being refined and adapted to corresponding diseases. However, it should be noted that
the more complex a model is, the more unknown parameters are included. A meaningful
data adaptation thus becomes very difficult.

The goal of this thesis is to design applicable models using the examples of COVID–19
and dengue, to adapt them adequately to real data sets and thus to perform numerical
simulations.

For this purpose, first the mathematical foundations are presented and a theoretical
outline of ordinary differential equations and optimization is provided. The parameter
estimations shall be performed by means of adjoint functions. This procedure represents a
combination of static and dynamical optimization. The objective function corresponds to
a least squares method with L2 norm which depends on the searched parameters. This ob-
jective function is coupled to constraints in the form of ordinary differential equations and
numerically minimized, using Pontryagin’s maximum (minimum) principle and optimal
control theory.

In the case of dengue, due to the transmission path via mosquitoes, a model reduction of
an SIRUV model to an SIR model with time–dependent transmission rate is performed
by means of time–scale separation. The SIRUV model includes uninfected (U) and in-
fected (V ) mosquito compartments in addition to the susceptible (S), infected (I) and
recovered (R) human compartments, known from the SIR model. The unknwon param-
eters of the reduced SIR model are estimated using data sets from Colombo (Sri Lanka)
and Jakarta (Indonesia). Based on this parameter estimation the predictive power of the
model is checked and evaluated. In the case of Jakarta, the model is additionally provided
with a mobility component between the individual city districts, based on commuter data.
The transmission rates of the SIR models are also dependent on meteorological data as
correlations between these and dengue outbreaks have been demonstrated in previous data
analyses.

For the modelling of COVID–19 we use several SEIRD models which in comparison to
the SIR model also take into account the latency period and the number of deaths via
exposed (E) and deaths (D) compartments. Based on these models a parameter estimation
with adjoint functions is performed for the location Germany. This is possible because
since the beginning of the pandemic, the cumulative number of infected persons and deaths
are published daily by Johns Hopkins University and the Robert–Koch–Institute. Here, a
SEIRD model with a time delay regarding the deaths proves to be particularly suitable.
In the next step, this model is used to compare the parameter estimation via adjoint
functions with a Metropolis algorithm. Analytical effort, accuracy and calculation speed
are taken into account.

In all data fittings, one parameter each is determined to assess the estimated number
of unreported cases.
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Zusammenfassung

Das wissenschaftliche und öffentliche Interesse an der Epidemiologie und der mathema-
tischen Modellierung von Krankheitsausbreitungen hat aufgrund der aktuellen COVID–
19 Pandemie erheblich zugenommen. Das politische Handeln wird von Prognosen und
Bewertungen solcher Modelle beeinflusst, und die entsprechenden Gegenmaßnahmen zur
Eindämmung sind für die gesamte Gesellschaft spürbar. Doch wie sind diese Modelle auf-
gebaut? Mittels welcher Methoden lassen sie sich, basierend auf realen Datensätzen, auf
die jeweiligen Regionen anwenden? Diese Fragen sind sicher nicht neu, wird die mathe-
matische Modellierung in der Epidemiologie mit Hilfe von Differentialgleichungen schon
seit längerem erforscht und kann vor allem in Form von numerischen Computersimulatio-
nen durchgeführt werden. Diese Modelle werden ständig verfeinert und an entsprechende
Krankheiten angepasst. Hier bleibt jedoch zu beachten, dass je aufwendiger ein Modell ist,
umso mehr unbekannte Parameter sind enthalten. Eine sinnvolle Datenanpassung wird
somit sehr schwierig.

Das Ziel der vorliegenden Arbeit ist am Beispiel von COVID–19 und Dengue anwendbare
Modelle aufzustellen, diese adäquat an reale Datensätze anzupassen und damit numerische
Simulationen durchzuführen.

Hierzu werden zunächst die mathematischen Grundlagen geschaffen und ein theore-
tischer Abriss zu gewöhnlichen Differentialgleichungen und zur Optimierung dargestellt.
Die Parameterschätzung soll mittels adjungierter Funktionen durchgeführt werden. Dieses
Verfahren stellt eine Kombination aus statischer und dynamischer Optimierung dar. Die
Zielfunktion entspricht einer Kleinste–Quadrate–Methode mit L2–Norm, welche von den
gesuchten Parametern abhängt. Diese Zielfunktion wird gekoppelt an Nebenbedingungen
in Form von gewöhnlichen Differentialgleichungen und, unter Verwendung von Pontryagins
Maximum– (Minimum–)Prinzip und optimaler Steuerung, numerisch minimiert.

Im Falle von Dengue wird, aufgrund des Übertragungsweges über Mosquitos, eine Mo-
dellreduktion eines SIRUV –Modells auf ein SIR–Modell mit zeitabhängiger Übertra-
gungsrate mittels Zeitskalen–Separation durchgeführt. Das SIRUV Modell enthält un-
infected (U) und infected (V ) compartments der Mosquitos, zusätzlich zu den aus dem
SIR Modell bekannten susceptible (S), infected (I) und recovered (R) compartments der
Menschen. Die unbekannten Parameter des reduzierten SIR–Modells werden unter Ver-
wendung von Datensätzen aus Colombo (Sri Lanka) und Jakarta (Indonesien) geschätzt.
Auf Grundlage dieser Parameterschätzung wird dann die Vorhersagekraft des Modells
überprüft und bewertet. Im Fall von Jakarta wird das Modell zusätzlich mit einer Mobi-
litätskomponente zwischen den einzelnen Stadtbezirken, auf der Basis von Pendlerdaten,
versehen. Die Übertragungsraten der SIR–Modelle sind außerdem abhängig von meteoro-
logischen Daten, da in den vorherigen Datenanalysen Korrelationen zwischen diesen und
den Dengueausbrüchen nachgewiesen werden.

Zur Modellierung von COVID–19 verwenden wir mehrere SEIRD–Modelle, welche im
Vergleich zum SIR–Modell auch die Latenzzeit und die Anzahl der Todesfälle mittels ex-
posed (E) und deaths (D) compartments berücksichtigen. Basierend auf diesen Modellen
wird für den Standort Deutschland eine Parameterschätzung mit adjungierten Funktio-
nen durchgeführt. Dies ist möglich, da seit Pandemiebeginn täglich sowohl die kumulierte
Anzahl der Infizierten als auch der Todesfälle von der Johns Hopkins Universität und dem
Robert–Koch–Institut veröffentlicht werden. Hier erweist sich ein SEIRD–Modell mit
Zeitverzögerung bezüglich der Todesfälle als besonders geeignet. Dieses wird im nächsten
Schritt dazu verwendet die Parameterschätzung via adjungierter Funktionen mit einem
Metropolis–Algorithmus zu vergleichen. Hierbei werden analytischer Aufwand, Genauig-

v



keit und Rechengeschwindigkeit berücksichtigt.
In sämtlichen Datenanpassungen wird jeweils ein Parameter zur Schätzung der Dunkel-

ziffer ermittelt.
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1 General Introduction

Due to the outbreak of the COVID–19 pandemic starting at the end of the year 2019 the
term (infectious disease) epidemiology is currently present in all media. The epidemiolo-
gists refer to mathematical models which are used to analyze current developments and
future prognoses of disease spread and to simulate the effect of possible control measures.
However, this presupposes that basic parameter values of these mathematical models can
be derived from existing data. At this point we are thematically in the center of this
thesis, in which, exemplarily for the diseases COVID–19 and dengue, mathematical mod-
els are developed, adapted to real data sets and analyzed to perform several numerical
simulations.

First, however, we dedicate ourselves to the concept of epidemiology and give a brief
overview of the objects and technical terms behind this science based on the findings in
[1, 19, 22, 28].

1.1 Epidemiology

The science of epidemiology is concerned with the causes and associated spread of diseases.
At this point, a more differentiated distinction could be made between infectious, commu-
nicable and transmittable diseases, whereby we will use these categories synonymously in
the following.

Basically, the spread of a disease is called epidemic as long as the number of new cases
increases. As soon as this number is decreasing, a so–called regression is present. If a
communicable disease is permanent, relatively constant and present only in a limited ter-
ritory, it is called endemic. On the other hand, if an infectious disease is supra–regional,
i.e. even crosses countries or continents, it is called a pandemic. For example, the World
Health Organization (WHO) classifies dengue as endemic in certain subtropical and tropi-
cal areas, whereby the disease is subject to seasonal fluctuations. The currently circulating
COVID–19 epidemic is classified as a pandemic as every inhabited continent is affected
without exception [37].

Table 1.1: Exemplary assignment of different diseases to their pathogens.

Pathogen type Caused diseases

Bacteria Tuberculosis, Pneumonia
Viral HIV, Influenza, Dengue, COVID–19
Fungal Dermatomycoses
Parasitic Protozoan infection, Helminthiasis
Prion Creutzfeldt–Jakob

Since infectious diseases require a pathogen, a further distinction is made here between
bacterial, viral, fungal, parasite or prion. An exemplary assignment of different pathogens
to corresponding diseases is shown in Table 1.1. The reservoirs for such pathogens can be

1



1 General Introduction

found in humans, animals or the environment. However, it is possible that the reservoir
may be changed by the pathogen across species, e.g. transmission from animals to humans
or vice versa is called zoonosis.

The mode of disease transmission is a central issue in epidemiology. Table 1.2 lists
the different types of transmission routes with some examples. Infectious diseases can
be caused by direct contact or also indirect, e.g. if surfaces are contaminated with the
corresponding pathogen and this is absorbed into the body.

Table 1.2: List of transmission paths.

Transmission path Example diseases

Person–to–person HIV, Syphilis, Influenza, COVID–19
Airbourne transmission Influenza, COVID–19, Chickenpox, Measles
Vector–borne diseases ZIKA, Dengue, Malaria
Food– and waterborne diseases Cholera, Salmonella
Vertical transmitted diseases HIV, Syphilis

The example of COVID–19 shows that an infection can occur as indirect person–to–
person transmission, as well as via airbourne transmission by inhalation of infectious
droplets or aerosols. Thereby the responsible pathogen SARS–CoV–2 is transmitted from
person to person [29]. In vector–borne diseases the so–called vectors play the central
role. For example, these can be mosquitoes, fleas and lice but also foxes or raccoons.
In the case of dengue, the dengue virus (DENV) is taken up by a mosquito by blood
meal at an infected person and transmitted to another person again by blood meal [35].
Environmentally transmitted diseases such as cholera or salmonella result from the uptake
of the corresponding pathogen via water or food. Vertical disease transmission occurs via
the placenta of a mother on her child before or during birth, as for example with HIV or
syphilis.

In order to be able to quantify outbreaks of diseases, epidemiology uses certain quan-
tities. For example, the number of newly infected individuals in a given period is called
incidence and the number of infected individuals at a given time prevalence. If diseases
can also lead to death, the case fatality rate (CFR) also plays an important role. This is
calculated with

CFR =
Number of deaths due to the disease

Cumulated total number of infected
.

However, since it is unclear during an ongoing epidemic which current infections can
lead to death, the CFR can only be determined exactly after an epidemic has ended
[29]. Regarding such quantities it is problematic that not all cases have to be registered,
because there may be asymptomatic cases or cases with mild symptoms that are not
recognized as such. Another important term in epidemilogy is the so–called incubation
period. This refers to the period of time from when the pathogen enters the body and the
first symptoms appear. In contrast, the latency period is the time span until the individual
becomes infectious. It should be noted that incubation and latency period do not have to
be congruent because the disease can also be transmitted before the onset of symptoms
as the current COVID–19 pandemic shows [29].

Central questions now arise for epidemiologists which one would like to answer with
mathematical models, e.g.

2



1.2 Thesis Structure

� How does the incidence and prevalence of the epidemic behave in a given time
interval?

� Which parameters play a role and how can they be identified and influenced?

� How high is the number of unregistered cases?

� How will the pandemic develop in the future?

� Which control methods, e.g. vaccination, isolation or vector control, can be sensibly
applied and how can their use be optimally planned?

The motivation for the present thesis is therefore to develop accurate and at the same
time practicable models for the diseases COVID–19 and dengue. Furthermore, a suitable
method for adapting them to real data sets is examined to be able to provide useful answers
to the questions posed in the future by numerical simulations.

1.2 Thesis Structure

Part I: The first part provides a theoretical overview as a basis for the understanding of the
presented contributions in Part II. This includes the fundamental definitions, theorems and
examples of ordinary differential equations and the corresponding solution theory including
common numerical methods in Chapter 2. Following this, the basics of mathematical
modelling in epidemiology are presented in Chapter 3. An overview is given and especially
SIR models for the simulation of human–to–human transmission and SIRUV models
for vector–borne diseases are investigated. Chapter 4 thematizes static and dynamical
optimization, in which basic approaches are presented theoretically and numerically. Based
on this we derive a parameter estimation via adjoint functions, which is used and evaluated
in the following contributions.

Part II: In five research papers, three of which have already been published, the research
results are presented. The first three are about modelling dengue, based on real data sets
from Colombo and Jakarta. In Chapter 5 a model reduction via time–scale separation
from an SIRUV model to an SIR model with time–dependent transmission rate is ap-
plied. Previous data analysis of the dengue and associated rain data shows that these are
cross–correlated. Accordingly, the transmission rate is designed to take into account the
seasonal effects of the rainy seasons. The model presented in this way is adapted to the
data sets with the help of adjoint functions. A more detailed description of this procedure
is presented in Chapter 6. In detail, the analysis for the determination of the adjoint equa-
tions and the numerical solution using a least squares objective function is pre–calculated.
A parameter estimation follows which is now used to investigate the predictive power of
the model in the following period. This is done using the already known data sets from
Colombo and Jakarta. The latter location is in the focus of Chapter 7 as we have received
much more differentiated data on the individual districts in Jakarta and additional data
on commuter movements between these districts. This data is analyzed and a reduced
SIR model is developed, including mobility and again a time–dependent transmission
rate which processes meteorological data. Based on this, the parameter estimation with
adjoint functions is performed and the predictive power of the model is checked and eval-
uated in all districts. In the last two contributions an SEIRD model is developed to
describe the COVID–19 outbreak in Germany. In Chapter 8 the available data sets on
the cumulative number of infected persons and deaths are presented. The sensitivity of
individual parameters is reviewed and three different variants of the model are tested. The

3



1 General Introduction

data adaptation is again done by means of adjoint functions. These results are taken up
in the last contribution in Chapter 9 and an SEIRD model with time delay regarding the
death cases is used to simulate the disease spread. A parameter estimation with a more
recent data set is performed. The focus is on the numerical comparison of the parameter
fitting with adjoint functions compared to the so–called Metropolis algorithm. Both are
analyzed in detail and also runtimes and accuracy are checked. The bibliographies can be
found at the end of the respective contributions.

Part III: In the last part the results of the research contributions are summarized and
an outlook on possible future research is given in Chapter 10. The thesis concludes with
the bibliography for the entire work, except Part II.

4



Part I

Mathematical Foundations
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2 Basic Definitions, Theorems and Examples

In the following the necessary basic terms for the present thesis are summarized. It is
assumed that the reader is familiar with the basic mathematical terms in calculus, (linear)
algebra, topology, measurement and integral theory, probability theory and statistics. At
this point we refer to the corresponding basic literature [5, 6, 8–10, 13, 26].

Let N denote the set of the natural numbers and R the real numbers. Vector spaces are
definded over R, if not stated otherwise. The following contents are based on [9, 11, 17, 34].

Definition 2.0.1. (Banach space)
A normed vector space (X, ‖ · ‖X) with corresponding norm ‖ · ‖X and metric dX(x, y) :=
‖x− y‖X for x, y ∈ X is called complete, if each cauchy sequence (xn)n∈N with xn ∈ X for
all n ∈ N converges within this space. A complete and normed vector space is also called
Banach space.

Examples of Banach spaces are

� Rn with n ∈ N as euclidean space with euclidean norm ‖x‖2 :=
(∑n

i=1 |xi|
2
)1/2

� C(D) := {f : R ⊃ D −→ R | f is continuous} with the norm ‖f‖∞ := supt∈D |f(t)|

� Ck(D) := {f : R ⊃ D −→ R | f is k–times continuously differentiable} with the norm
‖f‖Ck(D) :=

∑k
i=0 ‖f (i)‖∞

� Let the function f be (Ω,A)−(R,B(R)) measurable and |f | be p–times µ–integratable
on measure space (Ω,A,µ). The Banach space Lp(µ) with 1 ≤ p < ∞ denotes the
space of equivalence classes [f ] with

f ∼ g :⇔ f = g µ–almost everywhere

and Lp–norm ‖[f ]‖Lp :=
(∫

Ω |f |
p dµ

)1/p
.

Definition 2.0.2. (Operator and functional)
Let (X, ‖ · ‖X) , (Y, ‖ · ‖Y ) be normed vector spaces and D ⊂ X. A mapping T : D −→ Y
is called operator. If additional Y = R, we call T functional. An operator T is called

� linear, if D is a subspace of X and T (ax1 + bx2) = aT (x1) + bT (x2) for all a, b ∈
R, x1, x2 ∈ D

� bounded, if there exists C > 0 with ‖T (x)‖Y ≤ C‖x‖X for all x ∈ D.

Furthermore, we need the following definitions for our later investigations:

Definition 2.0.3. (Gâteaux derivative)
Let (X, ‖ · ‖X) , (Y, ‖ · ‖Y ) be normed vector spaces, D ⊂ X open and f : D −→ Y . The
function f is called Gâteaux differentiable at x0 ∈ D to the direction h ∈ X, if the following
limit exists

δf(x0, h) := lim
ε→0

f(x0 + εh)− f(x0)

ε
=
df(x0 + εh)

dε

∣∣∣∣
ε=0

.

The function f is called Gâteaux differentiable at x0, if this holds for all directions h ∈ X
and δf(x0, ·) : X −→ Y , h −→ δf(x0, h) is called Gâteaux derivative of f at x0.
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2 Basic Definitions, Theorems and Examples

Definition 2.0.4. (Fréchet derivative)
Let (X, ‖ · ‖X) , (Y, ‖ · ‖Y ) be normed vector spaces, D ⊂ X open and f : D −→ Y . The
function f is called Fréchet differentiable at x0 ∈ D, if there exists a bounded linear
operator T : X −→ Y with

lim
‖h‖X→0

‖f(x0 + h)− f(x0)− T (h)‖Y
‖h‖X

= 0 .

Furthermore, T : X −→ Y is called Fréchet derivative of f at x0.

Remark 2.0.5. It should be noted that Gâteaux differentiable functions generally do not
need to be Fréchet differentiable, but the backward direction does apply. If a function f
is Fréchet (and consequently also Gâteaux) differentiable at x0, the derivatives agree and
T (h) = δf(x0, h) holds true.

If we set X := Y := R with D ⊂ R open, δf(x0, 1) corresponds to the first derivative
of a differentiable function f : D −→ R at x0 ∈ D

df

dx

∣∣∣∣
x=x0

= lim
ε→0

f(x0 + ε)− f(x0)

ε
,

with linear operator T (h) := δf(x0, h) = h · dfdt
∣∣
x=x0

. We also use f ′ instead of df
dt and

f ′′, f ′′′, ..., f (n) for the nth derivation of an n–fold (continuously) differentiable function.

In the multidimensional case f : D −→ R with D ⊂ Rn open, δf(x0, h) denotes the
directional derivative in direction h ∈ Rn at x0 ∈ D. If the operator T (h) := δf(x0, h) is
bounded and linear, this derivative can be expressed with the gradient of f

∇f =


∂f
∂x1
...
∂f
∂xn

 ,

by δf(x0, h) = ∇f(x0)Th = ∂f(x0)
∂x1

h1 + ... + ∂f(x0)
∂xn

hn. So the gradient is the representing
matrix for the first derivative and in case of the second derivative the Hessian matrix of f

∇2f =


∂2f
∂x21

. . . ∂2f
∂x1∂xn

...
. . .

...
∂2f

∂xn∂x1
. . . ∂2f

∂x2n

 =

(
∂2f

∂xi∂xj

)
i,j=1,...,n

.

If f : D −→ Rm, the Jacobian matrix of f

Jf =


∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...
∂fm
∂x1

. . . ∂fm
∂xn

 =

(
∂fi
∂xj

)
i=1,...,m
j=1,...,n

is used to express the linear operator T (h) := δf(x0, h) = Jf (x0) · h.

Cases in which the set X corresponds to infinite–dimensional function spaces are still
being investigated in Chapter 4–9.
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2.1 Ordinary differential equations

2.1 Ordinary differential equations

In the following we consider basic research results on ordinary differential equations. This
includes an outline of the solution theory as well as numerical methods based on [2, 9, 15,
16, 33].

Definition 2.1.1. (Dynamical system)
Let D be a set of discrete time points or a continuous time span, X a non-empty set and
let a function be defined by Φ : D ×X −→ X. The tupel (D, X,Φ) is called a dynamical
system, if the following properties are fulfilled for all x ∈ X and 0, t1, t2, t1 + t2 ∈ D:

(i) Φ (0, x) = x,

(ii) Φ (t2,Φ (t1, x)) = Φ (t1 + t2, x).

Remark 2.1.2. The mapping Φx : D −→ X with Φx(t) := Φ (t, x) is called flow, and x
is named initial state. Furthermore, the set X is designated by phase space and the set
Ox := {Φx(t) | t ∈ D} is called orbit or trajectory regarding x.

Autonomous ordinary differential equations represent special cases of such dynamical
systems.

Definition 2.1.3. (Ordinary differential equation (ODE))
Let Ω ⊂ R × (Rm)n be an open set and g : Ω −→ Rm a (continuous) function, then an
ordinary differential equation of order n in explicit notation is given by the equation

x(n)(t) = g
(
t, x(t), x′(t), x′′(t), ..., x(n−1)(t)

)
. (2.1)

An n–times (continuously) differentiable function x : D −→ Rm is called solution of the
ordinary differential equation, if it satisfies equation (2.1) and(

t, x(t), x′(t), x′′(t), ..., x(n−1)(t)
)
∈ Ω

for all t ∈ D.
If an ODE is of the form

x(n)(t) = g
(
x(t), x′(t), x′′(t), ..., x(n−1)(t)

)
, (2.2)

one speaks also of an autonomous ODE.

Remark 2.1.4. In case of an autonomous ODE the function g does not explicitly depend
on the variable t, but only indirectly through the function x.

An ODE can also be specified in implicit form for Ω ⊂ R× (Rm)n+1 by the equation

g
(
t, x(t), x′(t), x′′(t), ..., xn(t)

)
= 0 .

Since the functions x and g in the case of m ≥ 2 represent vector–valued mappings, we
also speak of ODE systems with m equations in these cases.

An ODE is called linear, if it is given by

an(t)x(n)(t) + an−1(t)x(n−1)(t) + · · ·+ a1(t)x′(t) + a0(t)x(t) + b(t) = 0 ,

whereby the m × m–matrix coefficients ai : D −→ L (Rm) with L (Rm) := {A |A :
Rm −→ Rm continuous and linear} are functions depending on t. These can also be con-
stant for all i = 0, ..., n, so that we call the equation linear with constant coefficents. If
b(x) = 0, the ODE is called homogeneous, otherwise inhomogeneous.
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2 Basic Definitions, Theorems and Examples

Furthermore, we will deal exclusively with first–order ODE systems

dx

dt
= g(t, x(t)) , (2.3)

since higher–order ODE systems can be traced back to them.

Definition 2.1.5. (Initial value problem (IVP))
Let there be an ODE system as in equation (2.3). It is called initial value problem, if
additionally an initial value satisfying

x(t0) = x0 (2.4)

is given for (t0, x0) ∈ Ω. This is also called initial condition.

Example 2.1.6. (Autonomous ODE)
An example of an autonomous IVP is

dx

dt
= βx , x(0) = x0 > 0 .

Note, that one can write x instead of x(t) as shorthand in such equations. The function
x : R −→ R satifying x(t) = x0e

βt is the solution of this problem, since

dx

dt
= β

(
x0e

βt
)

= βx .

In terms of Definition 2.1.1 we can set

Φx0(t) := x0e
βt .

This flow meets the conditions of a dynamical system, because

Φ(0, x0) = x0e
0 = x0

and
Φ(t2,Φ(t1, x0)) =

(
x0e

βt1
)
eβt2 = x0e

β(t1+t2) = Φ(t1 + t2, x0)

for all x0 > 0 and t1, t2 ∈ R. Figure 2.1 shows the graphs of different example flows,
depending on the starting value for x0.
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Figure 2.1: Graphs defined by the sets G (Φx0) = {(t,Φx0(t)) | t ∈ D} of several examples
for Φx0(t) = x0e

βt with β = 0.3 and x0 ∈ {0.2, 1, 1.8, 3}.
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2.1 Ordinary differential equations

An epidemiological example for such an exponential growth would be the initial phase
of a disease outbreak, where x(t) indicates the number of infected persons at the time t,
the parameter β stands for the so–called transmission rate and x0 for the initial number
of infected individuals at time point t0.

Example 2.1.7. (Non–autonomous ODE)
If we now assume that the spread of the disease is periodic due to external conditions,
such as the weather conditions which influence the immune system, the instantaneous rate
of change could be described by, e.g.

dx

dt
= β cos(t)x , x(0) = x0 > 0 .

Obviously this IVP explicitly depends on the variable t. The solution of this equation is
given by x : R −→ R satifying x(t) = x0e

β sin(t), because

dx

dt
= β cos(t)

(
x0e

β sin(t)
)

= β cos(t)x .

If we now define a flow by Φx0(t) = x0e
β sin(t), this does not meet the requirements of

Definition 2.1.1, since

Φ(t2,Φ(t1, x0)) =
(
x0e

β sin(t1)
)
eβ sin(t2) = x0e

β(sin(t1)+sin(t2))

which generally does not correspond to

Φ(t1 + t2, x0) = x0e
β sin(t1+t2)

for all t1, t2 ∈ R.
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(t) = 1.8e0.3sin(t)

3
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Figure 2.2: Graphs for the examples Φx0(t) = x0e
β sin(t) with β = 0.3 and x0 ∈

{0.2, 1, 1.8, 3}.

The solution theory regarding ODEs has been extensively researched. For the purpose of
this thesis the most important requirements and theorems are quoted here. Elementary to
study the solvability of ordinary differential equations is the concept of Lipschitz continuity.

Definition 2.1.8. (Lipschitz continuity)
Let be Ω ⊂ R×Rm, then we call the function g : Ω→ Rm with (t, x) −→ g(t, x) Lipschitz
continuous in x, if a constant value L ≥ 0 exists, so that

‖g(t, x)− g(t, y)‖2 ≤ L‖x− y‖2 (2.5)
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for all (t, x), (t, y) ∈ Ω applies. The function g is called locally Lipschitz continuous, if for
each (t0, x0) ∈ Ω there exists a neighbourhood Ω̂ ⊂ Ω of (t0, x0), on which g is Lipschitz
continuous.

Lipschitz continuity implies locally Lipschitz continuity. A useful tool to examine for
the property is the following theorem:

Theorem 2.1.9. Let Ω ⊂ R × Rm be an open set and the function g : Ω −→ Rm,
(t, x) −→ g(t, x) be continuous. If the partial derivatives ∂gi

∂xj
for all i, j = 1, ...,m exist

and are continuous on Ω, then g is locally Lipschitz continuous.

The Lipschitz continuity leads to a central theorem within the solution theory of ordinary
differential equations:

Theorem 2.1.10. (Picard–Lindelöf)
Let Ω ⊂ R × Rm be an open set and the function g : Ω −→ Rm, (t, x) −→ g(t, x) be
continuous in t and locally Lipschitz continuous in x. Then for all (t0, x0) ∈ Ω with given
IVP

dx

dt
= g(t, x(t)) , x(t0) = x0 , (2.6)

there exists

(i) an open interval D̂ with t0 ∈ D̂ and unique solution x : D̂ −→ Rm for (2.6),

(ii) a unique maximal solution x : D −→ Rm with t0 ∈ D solving (2.6).

Remark 2.1.11. A solution x : D −→ Rm of an IVP is called maximal, if for all (local)
solutions x̂ : D̂ −→ Rm we have D̂ ⊂ D and x(t) = x̂(t) for all t ∈ D̂.

Various formulations of the theorem can be found in the literature, which is proven with
the help of the Banach fixpoint theorem.

It can also be shown that, if Ω is a simply connected domain and g is continuous in t
and Lipschitz continuous in x, then a unique solution exists and can be extended up to
the boundary of Ω.

Besides the Picard-Lindelöf theorem, with the strong property of Lipschitz continuity,
the Peano theorem plays an important role. Here, on the basis of weaker assumptions,
the existence of a solution is confirmed, but without the unity. The proof is based on the
theorem of Arzelà-Ascoli and the Schauder fixpoint theorem.

Theorem 2.1.12. (Peano)
Let Ω ⊂ R × Rm be an open set and the function g : Ω −→ Rm be continuous. Then for
all (t0, x0) ∈ Ω with given IVP

dx

dt
= g(t, x(t)) , x(t0) = x0 , (2.7)

there exists an open interval D with x0 ∈ D and solution x : D −→ Rm for (2.7).

Example 2.1.13. We consider again the IVP

dx

dt
= β cos(t)x , x(0) = x0 > 0 ,

and investigate it concerning Lipschitz continuity

‖g(t, x)− g(t, y)‖2 = ‖β cos(t) (x− y) ‖2 = |β| | cos(t)|︸ ︷︷ ︸
≤1

‖x− y‖2 ≤ |β|︸︷︷︸
=L

‖x− y‖2 .
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2.2 Solution methods

Alternatively, one could check
∂g

∂x
= β cos(t) ,

which is continuous. Thus the ODE fulfills the Lipschitz property and can be uniquely
solved, as already seen.

Example 2.1.14. In the following example, a function of the form

β(t) =

{
β0 , t < c

β1 , t ≥ c

with constants β0, β1, c > 0 is integrated in the IVP by

dx

dt
= β(t)x , x(0) = x0 > 0 .

Obviously the function g(t, x) = β(t)x is discontinuous in the variable t, but a Lipschitz
constant L = max {β0, β1} exists. This problem can be solved by

xα(t) =

{
x0e

β0t , t < c

αeβ1(t−c) , t ≥ c

for all α ∈ R. Accordingly there are infinitely many solutions as long as there is no
additional initial condition for t ≥ c. To generate a continuous, but at c not differentiable,
solution one can choose α = x0e

β0c, see Figure 2.3.
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Figure 2.3: Graphs of xα(t) for x0 = 2, β0 = 0.5, β1 = 0.1, c = 3 and α ∈
{

2e0.5·3, 4, 8, 12
}

.

To put the example with continuous solution into epidemiological context, let x(t) be
the number of infected indiviuals at time t at the beginning of a disease outbreak. The
jump within the function β(t) then represents the reduction of the initial transmission
rate β0 to a lower β1 at time c. This could be caused by, e.g. contact restrictions.

2.2 Solution methods

In the following section elementary and numerically solution methods for ordinary differ-
ential equations are presented which are necessary for the present thesis.
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2.2.1 Elementary solution methods

Theorem 2.2.1.1. (Separation of the variables)
Let D1,D2 ⊂ R be open intervals and the functions q : D1 −→ R and h : D2 −→ R be
continuous with given IVP

dx

dt
= q(t)h(x(t)) , x(t0) = x0 , (2.8)

for t0 ∈ D1 and x0 ∈ D2.

(i) If h(x0) = 0 holds true, the constant function x : D1 −→ R satisfying x(t) = x0 is a
solution.

(ii) If h(x0) 6= 0 holds true, there exists an open interval D with t0 ∈ D and a solution
x : D −→ R which can be achieved by solving the equation∫ x

x0

1

h(τ)
dτ =

∫ t

t0

q(ξ) dξ . (2.9)

Example 2.2.1.2. Consider the problem

dx

dt
= βx(N − x) , x(t0) = x0 > 0 , (2.10)

with N > x0. This problem can be solved by separation of the variables choosing q(t) := β
and h(x) := x(N − x) which leads to a logistic function

x(t) =
N

e−Nβ(t−t0)
(
N
x0
− 1
)

+ 1
. (2.11)

Again, in epidemiological context of the spread of a disease, the solution x(t) describes
the number of infected persons at time t. In this example, the growth is limited by
multiplication with the term N − x(t). This means that as soon as x(t) approaches the
upper limit N , the growth strives towards 0. In this example, N − x(t) would represent
the number of individuals still susceptible to the disease at time t, if the population size
is named by N and consists only of susceptible and infected individuals. Figure 2.4 shows
the sigmoid course of such a solution.
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Figure 2.4: Graphs of the logistic solution x(t) for t0 = 0, N = 10, x0 = 2 and β ∈
{0.5, 0.2, 0.1, 0.05}.
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Theorem 2.2.1.3. Let D ⊂ R be an open interval and the functions a, b : D −→ R be
continuous with given linear IVP

dx

dt
= a(t)x(t) + b(t) , x(t0) = x0 , (2.12)

for t0 ∈ D and x0 ∈ R. Then there exists a unique solution x : D −→ R with

x(t) = eA(t)

(
x0 +

∫ t

t0

e−A(τ)b(τ) dτ

)
, (2.13)

whereby A(t) =
∫ t
t0
a(ξ) dξ.

Example 2.2.1.4. In the following we consider the linear IVP with constant coefficients
a, b ∈ R

dx

dt
= ax+ b , x(t0) = x0 . (2.14)

The above theorem leads to the solution

x(t) =

(
x0 +

b

a

)
ea(t−t0) − b

a
, (2.15)

also shown in Figure 2.5 with some examples.
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Figure 2.5: Graphs of x(t) for t0 = 0, x0 = 2 and some combinations for a, b ∈ {1, 2, 3}.

Theorem 2.2.1.5. (Homogeneous linear ODE system with constant coefficient)
Let A ∈ Rm×m be a constant and diagonalizable m ×m–matrix with linear independent
eigenvectors v(1), ..., v(m) and corresponding eigenvalues z1, ..., zm with given IVP

dx

dt
= Ax , x(t0) = x0 . (2.16)

Then the function Ψ : R −→ Rm×m with

Ψ(t) :=

e
z1(t−t0)v

(1)
1 ez2(t−t0)v

(2)
1 . . . ezm(t−t0)v

(m)
1

...
...

. . .
...

ez1(t−t0)v
(1)
m ez2(t−t0)v

(2)
m . . . ezm(t−t0)v

(m)
m


is a fundamental matrix of (2.16).
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Remark 2.2.1.6. A fundamental matrix contains basis vectors of the solution space of a
linear ODE system. In Theorem 2.2.1.5 it holds that Ψ(t0) is nonsingular. It can be shown
that Ψ(t) is then also nonsingular for all t ∈ R.

The solution has the form x(t) = Ψ(t) · k with k ∈ Rm. This vector k can be uniquely
determined by solving the equation x0 = Ψ(t0) · k.

In the present theorem the diagonalizability of the matrix A is provided. For the solution
of systems with not diagonalizable matrices, please refer to [16, 33].

2.2.2 Numerical solution methods

Since only a fraction of ODEs can be solved analytically, numerical methods are required.
A first approach provides the approximation of the differential equation with a sufficiently
small value for h > 0 at t using the difference quotient

dx

dt
≈ x(t+ h)− x(t)

h

which leads from

dx

dt
= g(t, x(t))

to the approximation

x(t+ h)− x(t)

h
≈ g(t, x(t))

and finally

x(t+ h) ≈ x(t) + hg(t, x(t)) .

If we now set

ti = t, ti+1 = t+ h,
xi = x(t), xi+1 = x(t+ h),

we get the iteration rule of the so–called explicit Euler procedure

xi+1 = xi + hg(ti, xi) (2.17)

or as implicit Euler
xi+1 = xi + hg(ti+1, xi+1) . (2.18)

The initial condition x(t0) = x0 of an IVP thus provides the start value of the algorithm.
In every iteration step an error occurs. This error depends directly on the selected step
size h. A much more precise method is therefore, e.g. the explicit classical Runge-Kutta
method with

k1 = g(ti, xi) ,

k2 = g

(
ti +

h

2
, xi +

h

2
k1

)
,

k3 = g

(
ti +

h

2
, xi +

h

2
k2

)
,

k4 = g(ti + h, xi + hk3) ,
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leading to

xi+1 = xi +
h

6
(k1 + 2k2 + 2k3 + k4) .

For detailed informations regarding the errors of this procedures, please refer to [15].
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3 Epidemic Models

In the following sections basic models of mathematical epidemiology are presented. Using
the example of the SIR model for human–to–human transmitted diseases, basic disciplines
of analysis are demonstrated. In addition, the SIRUV model for modelling vector–borne
diseases is introduced. The explanations in this chapter are based on the research in
[1, 19, 21, 22, 31].

3.1 Basics in epidemiological modelling

In the present examples the following compartments are classified which indicate the num-
ber of corresponding persons at time t:

� Susceptibles S(t): individuals who are susceptible to the disease and can be infected
by infectious persons

� Exposed E(t): persons who have already been infected but are not yet infectious,
e.g. because they are still in the latent period

� Infected I(t): infectious individuals who can transmit the disease on contact

� Recovered R(t): people who have recovered from the disease and/or are immune

� Total Population N(t): total number of affected individuals.

A selection of basic models including these compartments is shown in the Tables 3.1
and 3.2 on the pages 20 and 21. The differential equations are based on the respective
instantaneous rates of change. The core of all models is the so–called incidence term β

N SI
which indicates the number of individuals per time step that pass from the susceptibles S to
the exposed E or directly to the infected I due to an infection. The so–called transmission
rate β consists of the product of the per capita contact rate c with the probability p that a
contact with an infectious individual leads to an infection, thus β = cp . This is multiplied
by the current number of susceptible persons S and the probability I

N , that a contact
person is infectious.

In the model with exposed E they enter the infected compartment I at a rate of κ. The
I compartment is left with a recovery rate γ either to the recovered R or directly to the
susceptibles S. If there is a transition in the models from the recovered R back to the S
compartment, this is done at the rate α. All the rates mentioned are positive and have the
unit [time unit]−1, e.g. [days]−1, [years]−1 etc. so that on both sides of the ODE systems
we have the unit [number of individuals] · [time unit]−1.

A challenge in modelling with these ODE systems is the choice of the parameters. It can
be shown that an infected individual spends on average 1

γ time units in the I compartment.

The same applies to 1
κ in E and 1

α in R. This insight enables us to determine these
variables, if statistical data are available. For example, one can choose for a disease with
a latent period of three days κ = 1

3 , a recovery period of 14 days γ = 1
14 and a loss of

immunity after six months α = 1
180 .

19



3 Epidemic Models

Table 3.1: Basic examples of epidemiological models with flow chart and ODE system.

Model Structure ODE System

SI S I

β

N
SI

dS

dt
= − β

N
SI

dI

dt
=

β

N
SI

SIS S I

β

N
SI

γI

dS

dt
= − β

N
SI + γI

dI

dt
=

β

N
SI − γI

SEI S E I

β

N
SI

κE

dS

dt
= − β

N
SI

dE

dt
=

β

N
SI − κE

dI

dt
= κE

SEIS S E I

β

N
SI

κE

γI

dS

dt
= − β

N
SI + γI

dE

dt
=

β

N
SI − κE

dI

dt
= κE − γI
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3.1 Basics in epidemiological modelling

Table 3.2: Basic examples of epidemiological models with flow chart and ODE system.

Model Structure ODE System

SIR S I R

β

N
SI γI

dS

dt
= − β

N
SI

dI

dt
=

β

N
SI − γI

dR

dt
= γI

SIRS S I R

β

N
SI γI

αR

dS

dt
= − β

N
SI + αR

dI

dt
=

β

N
SI − γI

dR

dt
= γI − αR

SEIR S E I R

β

N
SI

κE γI

dS

dt
= − β

N
SI

dE

dt
=

β

N
SI − κE

dI

dt
= κE − γI

dR

dt
= γI

SEIRS S E I R

β

N
SI

κE γI

αR

dS

dt
= − β

N
SI + αR

dE

dt
=

β

N
SI − κE

dI

dt
= κE − γI

dR

dt
= γI − αR
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3 Epidemic Models

All rates in this examples are set according to the time unit [days]−1. The transmission
rate on the other hand cannot generally be derived in this way, which requires a parameter
estimation.

By applying Theorem 2.1.9 and 2.1.10 it can be concluded that these systems can be
solved uniquely on compact intervals [t0, t1] ⊂ [0,+∞) with (continuously) differentiable
functions S,E, I,R : [t0, t1] −→ R. The initial conditions are given by S(t0) = S0 ≥ 0,
I(t0) = I0 ≥ 0 etc..

In these models we assume that the total population N at time t consists of the sum of
the given compartments, e.g. in the case of the SEIR or SEIRS model

N(t) = S(t) + E(t) + I(t) +R(t).

It applies that

dN

dt
=
dS

dt
+
dE

dt
+
dI

dt
+
dR

dt
= 0

and thus that N is constant for all t with N = S0 + E0 + I0 +R0.

Of these basic models, only the SI and SIS can be solved analytically using the sub-
stitution S = N − I. In case of the SIS model this leads to the equation

dI

dt
=

β

N
(N − I)I − γI =

β

N

(
N

(
1− γ

β

)
− I
)
I , I0 ≥ 0

which can be solved by using the separation of the variables, see 2.2.1.1 and 2.2.1.2. All
other systems, despite possible substitutions, need to be solved with numerical methods.

3.2 The SIR model including demography

In the case of disease courses that extend over longer periods of time, it can also make sense
to take demographic developments within the population into account. These demographic
elements can be integrated into the systems in the Tables 3.1 and 3.2. We consider this
using the example of the SIR model, see Figure 3.1.

S I R

β

N
SI γIµBN

µDS µDI µDR

Figure 3.1: Flow chart of the SIR model with demography (3.1).

If we assume, for example, that the population has a birth rate of µB and a natural death
rate of µD and that all newborns are born susceptible, the S compartment increases by
µBN newborns and decreases by µDS naturally deceased in each time step. Analogously,
the other compartments decrease by the respective number of deceased µDE,µDI etc.
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3.2 The SIR model including demography

which leads to the ODE system

dS

dt
= µBN − µDS −

β

N
SI , S0 ≥ 0 , (3.1a)

dI

dt
=

β

N
SI − (γ + µD)I , I0 ≥ 0 , (3.1b)

dR

dt
= γI − µDR , R0 ≥ 0 . (3.1c)

The derivation of the death rate also corresponds to those for γ, κ etc.. For example, if
one assumes an average life expectancy of 70 years, one can choose µD = 1

70·360 . The birth
rate can usually be read from statistics. For the total population N at time t we assume
that N(t) = S(t) + I(t) +R(t) holds true. This leads to

dN

dt
=
dS

dt
+
dI

dt
+
dR

dt
= (µB − µD)N ,

which means that for N an ODE has to be solved with initial value N0 := S0 + I0 + R0.
In this case, this can be done by N(t) = N0e

(µB−µD)(t−t0).
For simplicity, however, we assume that birth and death rates are the same and can

therefore be replaced by µ := µB = µD. Thus, we receive

dS

dt
= µ(N − S)− β

N
SI , S0 ≥ 0 , (3.2a)

dI

dt
=

β

N
SI − (γ + µ)I , I0 ≥ 0 , (3.2b)

dR

dt
= γI − µR , R0 ≥ 0 . (3.2c)

Since in (3.2) we have dN
dt = 0, it follows that N is constant with N = S0 + I0 +R0. If we

substitute R = N − S − I the system is reduced to a two-dimensional system

dS

dt
= µ(N − S)− β

N
SI , S0 ≥ 0 ,

dI

dt
=

β

N
SI − (γ + µ)I , I0 ≥ 0 ,

which must be solved numerically. However, a further analysis allows to extract more
precise properties of this system. For this purpose we rescale both sides of the equations
and divide them by N and obtain for x̂1 := S

N and x̂2 := I
N

dx̂1

dt
= µ(1− x̂1)− βx̂1x̂2 , x̂10 = x̂1(t0) ≥ 0 ,

dx̂2

dt
= (βx̂1 − (γ + µ)) x̂2 , x̂20 = x̂2(t0) ≥ 0 .

It should be noted that the new variables x̂1 and x̂2 no longer have units. The next step
is to do the same for the time variable by introducing τ := (γ + µ)t. This variable has no

unit and leads to, e.g. x1(τ) := x̂1

(
τ

γ+µ

)
= x̂1(t) with dx̂1

dτ = 1
γ+µ

dx̂1
dt and finally to the

dimensionless ODE system

dx1

dτ
= ρ(1− x1)−R0x1x2 , x10 = x1(τ0) ≥ 0 , (3.3a)

dx2

dτ
= (R0x1 − 1)x2 , x20 = x2(τ0) ≥ 0 , (3.3b)

including the substitutions ρ := µ
γ+µ and R0 := β

γ+µ .
For further analysis we need the following definition:
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3 Epidemic Models

Definition 3.2.1. (Equilibrium points)
Consider a given autonomous IVP with continuous g : Rm −→ Rm

dx

dt
= g(x(t)) , x(t0) = x0 . (3.4)

Then a constant solution x∗ : [t0,+∞) −→ Rm of (3.4) satisfying

g(x∗) = 0

is called equilibrium or singular point. An equilibrium x∗ is called locally asymptotically
stable, if a neighbourhood X ⊂ Rm of x∗ exists such that

lim
t→+∞

x(t) = x∗

holds true for all solutions x : [t0,+∞) −→ Rm of (3.4) with x(t0) ∈ X .

So in our case we have to solve the equations

0 = ρ(1− x∗1)−R0x
∗
1x
∗
2 ,

0 = (R0x
∗
1 − 1)x∗2

and find the so–called disease-free equilibrium x∗DE = (1, 0) and the endemic equilibrium

x∗EE =
(

1
R0
, ρ
(

1− 1
R0

))
. The former occurs when the entire population is susceptible and

no infected persons are present. In the second case, a fixed proportion of the population
is always infected with the disease, i.e. endemic.
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Figure 3.2: Direction fields of the dimensionless ODE system (3.3) with ρ := 0.5 and

initial conditions x
(1)
0 := (0.1, 0.7) (blue/solid), x

(2)
0 := (0.9, 0.7) (red/dashed)

and x
(3)
0 := (0, 0.1) (magenta/dotted). On the left we have R0 = 1.3 and on

the right R0 = 0.8.

The direction field in Figure 3.2 shows that the trajectories of the system with R0 > 1
tend towards the endemic equilibrium x∗EE . On the other hand, in the case R0 < 1 the
solutions tend to the disease free equilibrium x∗DE . These observations are no coincidence.
The following theorem helps to investigate the stability of the present equilibria in more
detail.
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3.2 The SIR model including demography

Theorem 3.2.2. (Local stability of equilibria)
Consider a given autonomous IVP with continuous g : Rm −→ Rm

dx

dt
= g(x(t)) , x(t0) = x0 ,

and equilibrium point x∗. If the eigenvalues of the Jacobian matrix

Jg(x∗) =

(
∂gi (x∗)

∂xj

)
i,j=1,...,m

have only negative real parts, then the equilibrium point x∗ is locally asymptotically stable.

The explanation for this theorem is based on linearizing the ODE system for solutions
sufficiently close to the equilibrium.

In our example the following applies to the Jacobian matrix

Jg(x) =

(
−ρ−R0x2 −R0x1

R0x2 R0x1 − 1

)
.

Inserting the disease-free equilibrium (1, 0) into Jg leads to

Jg(x∗) =

(
−ρ −R0

0 R0 − 1

)
.

In this case the eigenvalues can be read directly from the diagonal and we get

z1 = −ρ < 0 ,

z2 = R0 − 1 < 0 , if and only if R0 < 1 . (3.5)

Analogously, the local stability of the endemic equilibrium is examined and the following
result is obtained:

� If R0 < 1, there exists a unique disease-free equilibrium x∗DE = (1, 0) which is locally
asymptotically stable.

� If R0 > 1, there exist a disease-free equilibrium x∗DE = (1, 0) which is unstable, and

an endemic equilibrium x∗EE =
(

1
R0
, ρ
(

1− 1
R0

))
which is locally asymptotically

stable.

It can even be shown that

� If R0 < 1, the disease-free equilibrium x∗DE = (1, 0) is globally stable.

� If R0 > 1 and x20 > 0, the endemic equilibrium x∗EE =
(

1
R0
, ρ
(

1− 1
R0

))
is globally

stable.

Global stability here means that the initial values do not have to be chosen near the
equilibrium, but only have to meet certain conditions, e.g. x20 > 0 in the second case.

Mathematically, the meaning of

R0 =
β

γ + µ
(3.6)
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3 Epidemic Models

becomes clear at this point since this value represents a threshold for the stability of the
two equilibria. Biologically, this value corresponds to the so–called Basic Reproduction
Number. This is the average number of new infections that an infected individual causes
during the course of its disease in an otherwise susceptible population. It therefore seems
logical that the disease ”dies out” if an individual infects less than one other person with
the disease. In our derivation, we have already used a method to determine this Basic
Reproduction Number using the Jacobian matrix, also called the Jacobian approach. This
is done by inserting the disease–free equilibrium in Jg and checking for which threshold
this equilibrium becomes stable, see equation (3.5). Since this approach does not always
work, there are also alternative ways, such as the Next–Generation approach.

3.3 Modelling vector–borne diseases

So far we have looked at diseases caused by human–to–human transmission. However,
many diseases are transmitted to humans by so–called vectors, such as dengue or malaria.
The carrier animals for vector–borne diseases can be, e.g. mosquitoes, fleas, flies or also
foxes and primates which have received the pathogen from a human or another animal
before or carry it in themselves.

In the following we focus on diseases such as dengue which are transmitted from
mosquitoes to humans. For this, the female mosquito must already have bitten an in-
fected person in order to absorb the pathogen before it can transmit the disease via a
second bite to another human. The modelling includes the already known groups within
the human compartments susceptibles S, infected I and recovered R. Additionally, the
mosquito population with uninfected U and infected V vectors is now also considered
which leads to an SIRUV model.

dS

dt
= µ(N − S)− β

M
SV , S0 ≥ 0 , (3.7a)

dI

dt
=

β

M
SV − (γ + µ)I , I0 ≥ 0 , (3.7b)

dR

dt
= γI − µR , R0 ≥ 0 , (3.7c)

dU

dt
= ψ(t)− ϑ

N
UI − νU , U0 ≥ 0 , (3.7d)

dV

dt
=

ϑ

N
UI − νV , V0 ≥ 0 . (3.7e)

For the total human population we assume that N(t) = S(t)+ I(t)+R(t). It follows that

dN

dt
=
dS

dt
+
dI

dt
+
dR

dt
= 0 ,

which in (3.7) leads to a constant N = S0 + I0 + R0. The rates γ and µ again stand for
the human recovery and birth/death rate.

Concerning the mosquito population M at time t, we have M(t) = U(t) + V (t) and
receive

dM

dt
=
dU

dt
+
dV

dt
= ψ(t)− νM ,

whereby ν indicates the death rate of the vectors. Usually, such a population is subject to
seasonal fluctuations, as the reproduction depends directly on meteorological conditions.
In order to provide a first easy access, we assume for the following consideration that
ψ(t) = νM and thus dM

dt = 0. The parameter ν corresponds, as already known in human
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3.3 Modelling vector–borne diseases

S I R

U V

β

M
SV γIµN

µS µI µR

ψ(t)

νU νV

ϑ

N
UI

Figure 3.3: Flow chart of the SIRUV model with demography (3.7).

dynamics, to the reciprocal value of the average life expectancy of the corresponding
vector, e.g. at 10 days we have ν = 1

10 [days]−1.

The incidence term β
M SV is derived similar to the SIR model. The transmission rate

β is the product of the per capita contact rate between a human and vectors and the
probability that contact with an infected vector will lead to infection of the human. This
is multiplied by the current number of susceptible humans S and the probability V

M , that

a vector is infected. The second incidence term ϑ
NUI is derived analogously from the point

of view of the vectors. It should be noted that the transmission rates β and ϑ generally
do not have the same values. The difficulty in modelling is, that both parameters must
be derived from data. However, in Chapter 5–7 techniques are presented to solve this
problem in a practicable way. Using the substitutions R = N − S − I and U = M − V
leads to a three–dimensional system

dS

dt
= µ(N − S)− β

M
SV , S0 ≥ 0 ,

dI

dt
=

β

M
SV − (γ + µ)I , I0 ≥ 0 ,

dV

dt
=

ϑ

N
(M − V ) I − νV , V0 ≥ 0 ,

which can be transformed to

dx̂1

dt
= µ(1− x̂1)− βx̂1x̂3 , x̂10 ≥ 0 ,

dx̂2

dt
= βx̂1x̂3 − (γ + µ)x̂2 , x̂20 ≥ 0 ,

dx̂3

dt
= ϑ (1− x̂3) x̂2 − νx̂3 , x̂30 ≥ 0 ,

with x̂1 := S
N , x̂2 := I

N and x̂3 := V
M . Again, we define τ := (γ+µ)t and receive analogous
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3 Epidemic Models

to (3.2)

dx1

dτ
= ρH(1− x1)−RHx1x3 , x10 ≥ 0 , (3.8a)

dx2

dτ
= RHx1x3 − x2 , x20 ≥ 0 , (3.8b)

dx3

dτ
= ρV (RV (1− x3)x2 − x3) , x30 ≥ 0 , (3.8c)

including the values ρH := µ
γ+µ , ρV := ν

γ+µ , RH := β
γ+µ and RV := ϑ

ν . Applying the
Jacobian approach leads to the Basic Reproduction Number

R0 = RHRV =
βϑ

(γ + µ)ν

and by computation one can find the disease-free equilibrium x∗DE = (1, 0, 0) and the
endemic equilibrium

x∗EE =

(
RV ρH + 1

RV (ρH +RH)
,
ρH (RHRV − 1)

RV (ρH +RH)
,
ρH (RHRV − 1)

RH (RV ρH + 1)

)
.

The vector dynamics can also be coupled to other models as required, resulting in SISUV ,
SEIRUV etc..

The basic models presented here can be modified to simulate even more complex pro-
cesses. In the case of dengue, for example, a so–called multistrain model can be set up to
incorporate the different serotypes of the virus in the infection process. Models in which
the different age groups are taken into account with the help of partial differential equa-
tions (PDE) are also conceivable. PDEs can also be used to simulate the spatial spreading
of a diseases. Introductory examples can be found in [19, 22].

In the presented models of human–to–human transmitted diseases and vector–borne
diseases, it can be seen that the transmission rates β and ϑ play a prominent role in the
transmission dynamics. Control methods can therefore aim to reduce contact rates and
transmission probabilities, e.g. through contact restrictions, wearing masks and hygiene
measures in the case of COVID–19 or long–sleeved clothing, mosquito nets, and sprays in
the case of dengue. These measures have a direct influence on the corresponding trans-
mission paths. In addition, vaccinations can be used for COVID–19 [27]. In the case of
dengue, the control of the vector itself, e.g. by pesticides, plays a decisive role [36]. The
optimal use of such means is therefore of great interest.
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4 Optimization

In this chapter a parameter estimation via adjoint functions is derived. Prerequisite for
this are methods of static and dynamical optimization, based on the research in [4, 7, 11,
12, 14, 15, 17, 18, 20, 23–25, 30, 32].

4.1 Static optimization

In the following our goal is to find a minimum u∗ ∈ U ⊂ Rm of a twice continuously
differentiable function J : Rm −→ R. The set U is also called feasible set and the function
J objective function. A common notation for such a minimization problem is

min
u∈U

J(u) (4.1a)

with

U = {u ∈ Rm |hi(u) = 0 and kj(u) ≤ 0 for all i = 1, ..., l1, j = 1, ..., l2} . (4.1b)

Alternatively, the problem can be formulated as

min
u

J(u) (4.2a)

subject to (s.t.)

hi(u) = 0 , i = 1, ..., l1 , (4.2b)

kj(u) ≤ 0 , j = 1, ..., l2 . (4.2c)

The equality (4.2b) and inequality (4.2c) constraints including twice continuously differ-
entiable functions hi, kj : Rm −→ R must therefore be fulfilled at the minimum point u∗.
The searched solution can also be expressed with the following notation

u∗ = arg min
u∈U

J(u) , (4.3)

where ”arg” stands for argument. Within optimization, a distinction is made between
different types of minima.

Definition 4.1.1. (Minimum)
Consider an optimization problem as given in (4.1). A feasible solution u∗ ∈ U is called

(i) local minimum, if J(u∗) ≤ J(u) for all u in a neighbourhood Û ⊂ U of u∗,

(ii) strict local minimum, if J(u∗) < J(u) for all u in a neighbourhood Û ⊂ U of u∗,

(iii) global minimum, if J(u∗) ≤ J(u) for all u ∈ U ,

(iv) unique global minimum, if J(u∗) < J(u) for all u ∈ U .
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4 Optimization

In optimization one distinguishes between so–called necessary and sufficient conditions
for a minimum. In a first step, we assume an optimization problem without constraints
(U = Rm) which is also called unconstrained minimization problem.

Theorem 4.1.2. (Necessary optimality conditions)
Consider an unconstrained minimization problem

min
u∈Rm

J(u) .

The objective function J : Rm −→ R is assumed to be twice continuously differentiable
with local minimum u∗ ∈ Rm. Then the Necessary Optimality Conditions of First and
Second Order hold true

(i) ∇J(u∗) = 0,

(ii) ∇2J(u∗) is positive semi–definit.

Theorem 4.1.3. (Sufficient optimality conditions)
Consider an unconstrained minimization problem

min
u∈Rm

J(u) .

The objective function J : Rm −→ R is assumed to be twice continuously differentiable. If
there exists u∗ ∈ Rm so that the Sufficient Optimality Conditions

(i) ∇J(u∗) = 0,

(ii) ∇2J(u∗) is positive definit

are satisfied, then u∗ is a strict local minimum for J .

Example 4.1.4. As example we solve the unconstrained minimization problem

u∗ = arg min
u∈R2

J(u) ,

J(u) = u2
1 + (u2 − 3)2 .

As gradient we receive

∇J(u) =

(
2u1

2u2 − 6

)
,

with

u∗ = (0, 3) ,

since ∇J(u∗) = 0. The respective Hessian matrix reads as

∇2J(u∗) =

(
2 0
0 2

)
which is obviously positive definit. Consequently, u∗ is a strict local minimum, in this case
even a unique global minimum, since J is a strict convex objective function.
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4.1 Static optimization

With the addition of constraints Lagrange multipliers are used to solve the minimization
problem. Here, we only turn to the procedure for equality constraints as in (4.2b), of the
type hi(u) = 0. With the addition of inequality constraints, the so–called Karush–Kuhn–
Tucker conditions have to be checked.

Definition 4.1.5. (Lagrange function and multipliers)
Consider a constrained minimization problem

min
u∈U

J(u) (4.4a)

with

U = {u ∈ Rm |hi(u) = 0 for all i = 1, ..., l} (4.4b)

and J, hi : Rm −→ R twice continuously differentiable for all i = 1, ..., l.

A twice continuously differentiable function definded by

L(u, λ) := J(u) +
l∑

i=1

λihi(u) (4.5)

is called Lagrange function, whereby λ := (λ1, ..., λl)
T ∈ Rl are called Lagrange multipliers.

Note, that L(u, λ) = J(u) for u ∈ U . One uses the minimization problem

min
(u,λ)∈Rm×Rl

L(u, λ) (4.6)

to receive the solutions of the original problem (4.4). Thus, the Lagrange function is ex-
amined for the necessary and sufficient conditions in (4.1.2) and (4.1.3) instead. However,
the requirements for the sufficient conditions can be weakened to the following theorem:

Theorem 4.1.6. (Sufficient optimality conditions for constrained minimization)
Consider a constrained minimization problem with Lagrange function L as given in (4.4)–
(4.5). If there exists (u∗, λ∗) ∈ Rm × Rl so that the gradients ∇hi(u∗) are linearly inde-
pendent for all i = 1, ..., l (LICQ) and the Sufficient Optimality Conditions

(i) ∇L(u∗, λ∗) = 0,

(ii) sT∇2
uuL(u∗, λ∗)s > 0,

for all s ∈ Rm satisfying ∇hi(u∗)T s = 0 for all i = 1, ..., l and s 6= 0

are satisfied, then u∗ ∈ U is a strict local minimum for J in (4.4).

The expression

∇2
uuL :=


∂2L
∂u21

· · · ∂2L
∂u1∂um

...
. . .

...
∂2L

∂um∂u1
· · · ∂2L

∂u2m


means the Hessian matrix of L with respect to the directions of u.

Note, that (ii) is met, if ∇2
uuL is positive definit.
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4 Optimization

Example 4.1.7. Consider the constrained minimization problem

u∗ = arg min
u∈U

J(u) ,

J(u) = u2
1 + (u2 − 3)2

with

U = {u ∈ R2 |u1 + u2 − 1 = 0} .

Now we have h(u) = u1 + u2 − 1 and obtain the Lagrange function

L(u, λ) = u2
1 + (u2 − 3)2 + λ(u1 + u2 − 1)

which leads to the gradient of L

∇L(u, λ) =

 2u1 + λ
2u2 − 6 + λ
u1 + u2 − 1

 .

Solving the equation ∇L = 0 we receive

(u∗, λ∗) = (−1, 2, 2)

and the respective Hessian matrix is given by

∇2
uuL(u∗, λ∗) =

(
2 0
0 2

)
which is positive definite at the point u∗ = (−1, 2). Consequently, u∗ ∈ U is a strict local
minimum of J .

4.1.8 Numerical methods

To derive iterative methods for determining local minima, one expands the objective func-
tion J around a value u ∈ U ⊂ Rm for s ∈ Rm and δ > 0 sufficiently small as Taylor
series

J(u+ δs) = J(u) +∇J(u)T δs+
1

2
δsT∇2J(u)δs+O(‖δs‖32) . (4.7)

So in case of minimization one wants to receive J(u+ δs) ≤ J(u), which leads to

∇J(u)T s ≤ 0 (4.8)

for sufficiently small δ > 0. Condition (4.8) must therefore be fulfilled by a possible
direction of descent s. Based on these findings, an iteration of the form

u(i+1) = u(i) + δ(i)s(i) (4.9)

is used. The value δ(i) > 0 is called step size. The most intuitive direction of descent
would simply be the negative gradient

s(i) = −∇J(u(i)) , (4.10)
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4.2 Dynamical optimization: Optimal control theory

since ∇J(u(i))T
(
−∇J(u(i))

)
= −‖∇J(u(i))‖ ≤ 0. This is geometrically seen even the

steepest descent direction at point u(i) and called Gradient method. But since this proce-
dure often approaches the minimum in a kind of zigzag motion with many iterations, one
usually uses other search directions. Another example is the Conjugated Gradient method

s(0) = −∇J(u(0)) , (4.11a)

s(i) = −∇J(u(i)) + ξ(i)s(i−1) , (4.11b)

whereby ξ(i) can be defined in different ways, e.g. according to Fletcher–Reeves

ξ(i) :=
∇J(u(i))T∇J(u(i))

∇J(u(i−1))T∇J(u(i−1))
.

Another well–known application is the Newton method with the search direction

s(i) = −
[
∇2J(u(i))

]−1
∇J(u(i)) . (4.12)

This is based on the idea that the Hessian matrix should be positive definite in the case
of minimization. The problem here is that the Hessian matrix and its inverse must be
determined at the corresponding point which can be very elaborate. From this approach,
so–called Quasi-Newton methods have developed, e.g. from Broyden, Fletcher, Goldfarb
and Shanno (BFGS), to approximate the inverse of the Hessian matrix by

B(i) =

[
I − ∆u(i)(∆y(i))T

(∆y(i))T∆u(i)

]
B(i−1)

[
I − ∆y(i)(∆u(i))T

(∆y(i))T∆u(i)

]
+

∆u(i)(∆u(i))T

(∆y(i))T∆u(i)
, (4.13)

with ∆u(i) = u(i) − u(i−1) and ∆y(i) = ∇J(u(i)) − ∇J(u(i−1)). As starting value for B
one can choose simply B(0) = I, which stands for the m×m identity matrix. Finally, we
receive the search direction

s(i) = −B(i)∇J(u(i)) . (4.14)

With regard to the exact derivations and the different convergence rates of the procedures,
please refer to [23].

Regarding the step size, the following minimization problem must be solved in each
iteration step

δ(i) = arg min
τ>0

ψ(τ) with ψ(τ) := J(u(i) + τs(i)) . (4.15)

Generally, this cannot be done analytically which means the so–called linesearch has to
be solved iteratively in the best possible way. This problem is addressed in Chapter 6 and
9.

4.2 Dynamical optimization: Optimal control theory

At the beginning of this section we provide a central tool for the following investigations:

Theorem 4.2.1. (Fundamental lemma of calculus of variations)
Let be f : [t0, t1] −→ R a continuous function. If for all continuous differentiable functions
h : [t0, t1] −→ R with h(t0) = h(t1) = 0 the following is given∫ t1

t0

f(t)h(t) dt = 0 ,

then f(t) = 0 for all t ∈ [t0, t1] holds true.
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It should be noted that there are different versions of this lemma but for the purpose of
this thesis this simple form is sufficient. In the previous section we have dealt with static
optimization. In the following, however, we will deal with how to find entire optimal
functions, based on Pontryagin’s maximum (minimum) principle. An initial example is
given by

min
u

∫ t1

t0

ω1x(t)2 + ω2u(t)2 dt (4.16a)

subject to (s.t.)

dx

dt
= βx(t)− αu(t) , x(t0) = x0 and x(t1) free. (4.16b)

We want to find a continuously differentiable function u : [t0, t1] −→ R, so that the ODE
with the continuously differentiable solution x : [t0, t1] −→ R is fulfilled and the objective
functional

J(u) :=

∫ t1

t0

ω1x(t)2 + ω2u(t)2 dt

is minimized with respect to u. The functional J now depends on the control variable u.
It should be noted that the solution of the ODE for the state variable x depends directly
on u, which can also be expressed symbolically by x(t, u(t)).

If we relate to Example 2.1.6, where the ODE simulates the exponential growth of
newly infected people at the beginning of a disease outbreak, then in this new situation
the incidence would be influenced at each time step by the use of u control units with an
efficiency α ≥ 0. For example, this can be done with vaccinations. At the same time, the
overall number of control measures and infections should be kept as low as possible. A
weighting between these can be done using ω1, ω2 > 0. Generally speaking, such a problem
can be defined as follows

min
u

∫ t1

t0

f(t, x(t), u(t)) dt (4.17a)

subject to (s.t.)

dx

dt
= g(t, x(t), u(t)) , x(t0) = x0 and x(t1) free , (4.17b)

including the continuously differentiable functions f, g : R3 −→ R which are chained with
(t, x(t), u(t)) for t ∈ [t0, t1]. In the following we also briefly write f(t, x, u) and g(t, x, u),
instead of f(t, x(t), u(t)) and g(t, x(t), u(t)).

Similar to the approach with Lagrange multipliers in static optimization, a continuously
differentiable adjoint function λ : [t0, t1] −→ R is introduced, resulting in the following
Lagrange function

L(x, u, λ) :=

∫ t1

t0

f(t, x, u) dt+

∫ t1

t0

λ(t)

(
g(t, x, u)− dx

dt

)
dt . (4.18)

The latter term can be transformed using partial integration into∫ t1

t0

λ(t)g(t, x, u) dt−
∫ t1

t0

λ(t)
dx

dt
dt

=

∫ t1

t0

λ(t)g(t, x, u) dt+

∫ t1

t0

dλ

dt
x(t) dt+ λ(t0)x(t0)− λ(t1)x(t1)
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which leads to

L(x, u, λ) =

∫ t1

t0

f(t, x, u) + λ(t)g(t, x, u) +
dλ

dt
x(t) dt

+ λ(t0)x(t0)− λ(t1)x(t1) .

Similar to the approach in the previous section, we look at how the directional derivatives
of the Lagrange function L should behave at a minimum (x∗, u∗, λ∗). For this we introduce
an arbitrary continuously differentiable function h : [t0, t1] −→ R with h(t0) = 0 and define
in the sense of the Gâteaux derivative in Definition 2.0.3, e.g.

∂L
∂x

:= lim
ε→0

L(x+ εh, u, λ)− L(x, u, λ)

ε
=
dL(x+ εh, u, λ)

dε

∣∣∣∣
ε=0

. (4.19)

This has to take the value 0 at a minimum, which also applies to analogously defined ∂L
∂u

and ∂L
∂λ . Furthermore, e.g. we obtain

d(x+ εh)

dε
= h . (4.20)

Using the majorized convergence by Lebesque and chain rule delivers

dL(x+ εh, u, λ)

dε

∣∣∣∣
ε=0

=

∫ t1

t0

df(t, x+ εh, u)

dε

∣∣∣∣
ε=0

+ λ(t)
dg(t, x+ εh, u)

dε

∣∣∣∣
ε=0

+
dλ

dt

d(x+ εh)

dε

∣∣∣∣
ε=0

dt

− λ(t1)
d(x(t1) + εh(t1))

dε

∣∣∣∣
ε=0

=

∫ t1

t0

h(t)

(
∂f(t, x, u)

∂x
+ λ(t)

∂g(t, x, u)

∂x
+
dλ

dt

)
dt− λ(t1)h(t1)

and finally at (x∗, u∗, λ∗) we obtain

0 =

∫ t1

t0

h(t)

(
∂f

∂x
+ λ(t)

∂g

∂x
+
dλ

dt

)
dt− λ(t1)h(t1) . (4.21)

Since this equation applies to any h and especially to all with h(t0) = h(t1) = 0, the
fundamental lemma of calculus of variations 4.2.1 now returns

0 =
∂f

∂x
+ λ(t)

∂g

∂x
+
dλ

dt
(4.22)

at (x∗, u∗, λ∗) and thus one receives the adjoint equation

dλ

dt
= −

(
∂f

∂x
+ λ(t)

∂g

∂x

)
. (4.23)

In addition, (4.21) leads for any h with h(t1) 6= 0 in combination with (4.22) to the
so–called transversality condition

λ(t1) = 0 . (4.24)

Regarding ∂L
∂u we get with analogous approach

dL(x, u+ εh, λ)

dε

∣∣∣∣
ε=0

=

∫ t1

t0

df(t, x, u+ εh)

dε

∣∣∣∣
ε=0

+ λ(t)
dg(t, x, u+ εh)

dε

∣∣∣∣
ε=0

dt

=

∫ t1

t0

h(t)

(
∂f(t, x, u)

∂u
+ λ(t)

∂g(t, x, u)

∂u

)
dt
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and recognize that at a minimum (x∗, u∗, λ∗) the optimality condition applies

0 =
∂f

∂u
+ λ(t)

∂g

∂u
. (4.25)

The same procedure regarding ∂L
∂λ provides at (x∗, u∗, λ∗) the ODE constraint

dx

dt
= g(t, x, u) , (4.26)

since

dL(x, u, λ+ εh)

dε

∣∣∣∣
ε=0

=

∫ t1

t0

d(λ+ εh)

dε

∣∣∣∣
ε=0

(
g(t, x, u)− dx

dt

)
dt

=

∫ t1

t0

h(t)

(
g(t, x, u)− dx

dt

)
dt

and finally

0 = g(t, x, u)− dx

dt
.

This leads to the following definitions and theorems:

Definition 4.2.2. (Hamiltonian)
Consider an optimal control problem as given in (4.17), then

H(t, x, u, λ) := f(t, x, u) + λ(t)g(t, x, u) (4.27)

is called Hamiltonian.

Theorem 4.2.3. (Pontryagin’s maximum (minimum) principle)
Consider an optimal control problem as given in (4.17) with corresponding Hamiltonian

H(t, x, u, λ) = f(t, x, u) + λ(t)g(t, x, u) .

If u∗ with corresponding x∗ is a minimum for (4.17), then there exists an adjoint function
λ∗ such that

(i) 0 = ∂H
∂u ,

(ii) dλ
dt = −∂H

∂x , λ(t1) = 0,

(iii) dx
dt = g(t, x, u), x(t0) = x0

is satisfied for all t ∈ [t0, t1] at (x∗, u∗, λ∗). Furthermore, we have

H(t, x∗, u∗, λ∗) ≤ H(t, x∗, u, λ∗)

for all controls u at t ∈ [t0, t1].

Remark 4.2.4. It should be noted that we have made strong assumptions about u and λ
by assuming that they are continuously differentiable. However, this method can also be
used with much weaker properties such as u and h piecewise continuous and λ piecewise
differentiable.

Furthermore, one can check with
∂2H

∂u2
> 0

at (x∗, u∗, λ∗), if the problem is a minimization problem for H.
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4.2 Dynamical optimization: Optimal control theory

Example 4.2.5. We consider the example

min
u

∫ 1

0
ω1x(t)2 + ω2u(t)2 dt

s.t.
dx

dt
= βx(t)− αu(t) , x(0) = 5 and x(1) free ,

with ω1, ω2, β, α > 0. Defining f(t, x, u) := ω1x
2 + ω2u

2 and g(t, x, u) := βx− αu delivers
the Hamiltonian

H(t, x, u, λ) := ω1x
2 + ω2u

2 + λ (βx− αu) ,

with

∂H

∂u
= 2ω2u− αλ ,

∂2H

∂u2
= 2ω2 > 0 ,

∂H

∂x
= 2ω1x+ βλ .

The necessary conditions lead to

u =
α

2ω2
λ , (4.28)

dλ

dt
= −2ω1x− βλ , λ(1) = 0 ,

dx

dt
= βx− αu = βx− α2

2ω2
λ , x(0) = 5 .

One obtains the vector–valued linear ODE with constant coefficients

d

dt

(
x
λ

)
=

(
β − α2

2ω2

−2ω1 −β

)(
x
λ

)
, x(0) = 5 , λ(1) = 0 .

The determination of the eigenvalues provides

0 = det

(
β − z − α2

2ω2

−2ω1 −β − z

)
= −(β − z)(β + z)− ω1

ω2
α2 = z2 − β2 − ω1

ω2
α2

which leads to two real–valued eigenvalues

z1,2 = ±
√
β2 +

ω1

ω2
α2 .

Thus, applying 2.2.1.5 the solution has the form(
x
λ

)
(t) = c1e

z1tv1 + c2e
z2tv2 ,

whereby v1, v2 stand for respective eigenvectors for z1 and z2. We obtain the coefficients
c1 and c2 using the initial and end conditions for x and λ respectively. In our example we
now set ω1, ω2 := 1

2 and β, α := 1. Consequently we get

u∗ = λ∗
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and

z1 =
√

2 , v1 =

(
1

1−
√

2

1

)
,

z2 = −
√

2 , v2 =

(
1

1+
√

2

1

)
,

and solving the equation system for x(0) = 5 and λ(1) = 0

5 = c1
1

1−
√

2
+ c2

1

1 +
√

2
,

0 = c1e
√

2 + c2e
−
√

2 ,

delivers

c1 =
5e−2

√
2

1−
√

2− (1 +
√

2)e−2
√

2
and c2 =

−5

1−
√

2− (1 +
√

2)e−2
√

2
.
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Figure 4.1: Optimal solution for Example 4.2.5. In the left graphs one can see the sig-
nificant difference between controlled and uncontrolled state variable. On the
right hand side the optimal control strategy is mapped, with initially high
values which decrease monotonically. In this example u corresponds to the
adjoint function λ.

Remark 4.2.6. The available results of the optimal control theory can now be extended
further. There are applications in which a so–called pay–off term ϕ(x(t1)) is integrated in
the objective function

J(u) := ϕ(x(t1)) +

∫ t1

t0

f(t, x(t), u(t)) dt .

In applications this can mean that the state variable should have a value as low as possible
at the end time. In the medical field, this would be the case with optimal medication u to
reduce disease triggers x at the end of the treatment. In this case, the analytical procedure
is analogous which only leads to a change in the transversality condition

λ(t1) =
dϕ

dx

∣∣∣∣
x=x(t1)

. (4.29)
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4.2 Dynamical optimization: Optimal control theory

Furthermore, the control variable u can be provided with upper and lower limits l1, l2 ∈ R
so that l1 ≤ u(t) ≤ l2 for all t ∈ [t0, t1]. These results can be transferred analogously to
the multidimensional case, so that entire ODE systems can be examined.

Unfortunately, optimal control problems can generally not be solved analytically, so that
again a numerical method must be applied. One such algorithm is the forward–backward
sweep method. At the beginning the necessary condition 0 = ∂H

∂u has be solved by hand
as in Example 4.2.5 in equation (4.28). If this is not possible, suitable numerical methods
like the Newton’s method or secant method are necessary. We denote the solution of the
necessary condition by û in Algorithm 1.

Algorithm 1 Pseudocode Forward–Backward Sweep Method

1: u← startvalue, e.g. u ≡ 0
2: repeat
3: uold ← u
4: x← compute state variable depending on u and x0

5: λ← compute adjoint function depending on x, u and λ(t1)
6: u← update depending on uold, x and by hand/numerically computed û
7: until ‖uold − u‖ < TOL

The functions are discretized. Choosing the start value u ≡ 0 means that the system is
solved first without control variable. The corresponding state variable is solved forward on
time scale because of its start condition, whereas the adjoint function is solved backward
on time scale due to its end condition. Possible numerical solution methods have already
been presented in Section 2.2.2. It should be noted that for the backward solutions of an
ODE, e.g. the explicit Euler changes to

xi−1 = xi − hg(ti, xi, ui) ,

with h := ti − ti−1.

The update of the new u depends on the previous uold, x, λ and the calculated û. Since
x as well as λ cannot yet be assumed to be optimal, it is advisable to move only a part of
uold towards û. This can be done by using a convex combination between these two

u := (1− ι)uold + ιû

with ι ∈ (0, 1). Regarding the choice of a norm for the termination condition there are
also several possibilities. In case of a fixed end value for the state variable x(t1) := xend
the transversality condition is omitted in the presented procedure and λ(t1) is unknown.
In this case, numerical shooting methods can be used to solve the corresponding optimal
control problem. Another special case occurs when both f(t, x, u) and g(t, x, u) depend
linearly on u in (4.17). In this case, a so–called bang–bang control can be applied.

4.2.7 Optimal control including constant time delays

In the next step we investigate optimal control problems where one constant time delay
τ > 0 in the state variable plays a role. For this we consider for example

min
u

∫ t1

t0

ω1x(t)2 + ω2u(t)2 dt (4.30a)

39



4 Optimization

subject to (s.t.)

dx

dt
= βx(t)− αu(t)x(t− τ) , (4.30b)

x(s) = ψ(s) for s ∈ [t0 − τ, t0] , (4.30c)

x(t1) free . (4.30d)

In this case one needs a continuously differentiable (initial) history function ψ : [t0 −
τ, t0] −→ R because of the time delay τ which describes the course of the state variable x
before the time t0. In this example the quantitative reduction αu depends proportionally
on the state of x at time t− τ . Such a system could be written more generally as follows

min
u

∫ t1

t0

f(t, x, xτ , u) dt (4.31a)

subject to (s.t.)

dx

dt
= g(t, x, xτ , u) , (4.31b)

x(s) = ψ(s) for s ∈ [t0 − τ, t0] , (4.31c)

x(t1) free , (4.31d)

including xτ (t) := x(t − τ). The continuously differentiable functions f, g : R4 −→ R are
now chained with (t, x(t), xτ (t), u(t)) for t ∈ [t0, t1]. The respective Lagrange function
reads as

L(x, xτ , u, λ) :=

∫ t1

t0

f(t, x, xτ , u) dt

+

∫ t1

t0

λ(t)

(
g(t, x, xτ , u)− dx

dt

)
dt .

Slightly modified regarding the previous derivation, we introduce an arbitrary continuously
differentiable function h : [t0 − τ, t1] −→ R with h(t0) = 0 and set hτ (t) := h(t− τ). The
look at the Gâteaux derivation with respect to x delivers

∂L
∂x

:= lim
ε→0

L(x+ εh, xτ + εhτ , u)− L(x, xτ , u)

ε

=
dL(x+ εh, xτ + εhτ , u)

dε

∣∣∣∣
ε=0

.

Consequently, at a minimum (x∗, xτ∗, u∗, λ∗) one finds

0 =
dL(x+ εh, xτ + εhτ , u)

dε

∣∣∣∣
ε=0

(4.32a)

=

∫ t1

t0

h(t)

(
∂f(t, x, xτ , u)

∂x
+ λ(t)

∂g(t, x, xτ , u)

∂x
+
dλ

dt

)
dt (4.32b)

+

∫ t1

t0

h(t− τ)

(
∂f(t, x, xτ , u)

∂xτ
+ λ(t)

∂g(t, x, xτ , u)

∂xτ

)
dt (4.32c)

− λ(t1)h(t1) . (4.32d)

The second integral (4.32c) can be transformed using the substitution t̂ := t− τ into∫ t1−τ

t0−τ
h(t)

(
∂f(t+ τ, x, xτ , u)

∂xτ
+ λ(t+ τ)

∂g(t+ τ, x, xτ , u)

∂xτ

)
dt . (4.33)
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Note that in (4.33) all functions in f and g depend on t+τ and that we have xτ (t+τ) = x(t).

Let us now assume an arbitrary continuously differentiable h with h ≡ 0 for all t /∈
(t1 − τ, t1), then we obtain with the fundamental lemma of calculus of variations

0 =
∂f

∂x
+ λ(t)

∂g

∂x
+
dλ

dt
(4.34)

and finally the adjoint equation for t ∈ (t1 − τ, t1)

dλ

dt
= −

(
∂f

∂x
+ λ(t)

∂g

∂x

)
. (4.35)

The same procedure with h ≡ 0 for t /∈ (t0, t1 − τ) returns

0 =
∂f

∂x
+ λ(t)

∂g

∂x
+
dλ

dt
+

∂f

∂xτ

∣∣∣∣
t=t+τ

+ λ(t+ τ)
∂g

∂xτ

∣∣∣∣
t=t+τ

(4.36)

and for the adjoint function on (t0, t1 − τ)

dλ

dt
= −

(
∂f

∂x
+ λ(t)

∂g

∂x

)
−
(
∂f

∂xτ

∣∣∣∣
t=t+τ

+ λ(t+ τ)
∂g

∂xτ

∣∣∣∣
t=t+τ

)
. (4.37)

In summary, this results for the adjoint equation over the entire interval [t0, t1] in the
expression

dλ

dt
= −

(
∂f

∂x
+ λ(t)

∂g

∂x

)
−
(
∂f

∂xτ

∣∣∣∣
t=t+τ

+ λ(t+ τ)
∂g

∂xτ

∣∣∣∣
t=t+τ

)
χ[t0,t1−τ ](t) . (4.38)

Here, χ[a,b] : R −→ {0, 1} stands for the so–called characteristic function

χ[a,b](t) :=

{
1 , t ∈ [a, b]

0 , t /∈ [a, b] .

If we use an arbitrary continuously differentiable h with h ≡ 0 for t /∈ (t0 − τ, t0), we
obtain

0 =
∂f

∂xτ

∣∣∣∣
t=t+τ

+ λ(t+ τ)
∂g

∂xτ

∣∣∣∣
t=t+τ

on (t0−τ, t0). Analogous to the procedure without time delay, we receive the transversality
condition λ(t1) = 0 for the adjoint equation (4.38).

If we define, based on the previous investigations, a Hamiltonian such as

H(t, x, xτ , u, λ) := f(t, x, xτ , u) + λ(t)g(t, x, xτ , u) , (4.39)

the adjoint equation at a minimum (x∗, xτ∗, u∗, λ∗) reads as

dλ

dt
= −∂H

∂x
− ∂H

∂xτ

∣∣∣∣
t=t+τ

χ[t0,t1−τ ](t), λ(t1) = 0 . (4.40)

It should be noted that in our approach we assumed exactly one constant time delay τ
for the state variable. This derivation can be done in a similar way for the control variable
u and with different constant time delays 0 < τ1 < τ2 < ... < τk.
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Example 4.2.8. Consider the input example

min
u

∫ 1

0
ω1x(t)2 + ω2u(t)2 dt

s.t.

dx

dt
= βx(t)− αu(t)x(t− τ) ,

x(s) ≡ 5 for s ∈ [−τ, 0] and x(1) free ,

with J(u) :=
∫ 1

0 ω1x(t)2 + ω2u(t)2 dt and ω1, ω2, β, α, τ > 0. The Hamiltonian reads as

H(t, x, xτ , u, λ) := ω1x
2 + ω2u

2 + λ (βx− αuxτ ) .
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Figure 4.2: Graphical results for Example 4.2.8 with ω1, ω2 := 1
2 , β := 1 and α, τ := 0.2.

In the upper left corner the influence of the control variable u on the state
variable x is clearly visible. To the right of it one can see the control variable u
and the corresponding adjoint λ. In comparison to Example 4.2.5 the deviation
of u from λ can be seen. This begins at the time t̂ := 0.2 which corresponds
exactly to the time delay τ and demonstrates its influence. The lower graphs
show on the left side the development of the objective function J and on the
right side the error ‖uold − u‖∞ depending on the respective iteration. As
initial value u ≡ 0 is chosen and Algorithm 1 stops, when ‖uold − u‖∞ < 10−3

holds true.
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4.3 Parameter estimation via adjoint functions

Further we receive

0 =
∂H

∂u
= 2ω2u− λαx(t− τ) ,

leading to

u∗ =
α

2ω2
λx(t− τ)

and
∂2H

∂u2
= 2ω2 > 0 .

Concerning the adjoint equation we find

dλ

dt
= −∂H

∂x
− ∂H

∂xτ

∣∣∣∣
t=t+τ

χ[0,1−τ ](t)

= −2ω1x− λβ + αλ(t+ τ)u(t+ τ)χ[0,1−τ ](t) ,

with transversality condition λ(1) = 0. Due to the included time delay, one can see that
in this example a numerical method is necessary.

4.3 Parameter estimation via adjoint functions

In the following section it is now a matter of combining the presented techniques for static
and dynamical optimization in order to derive unknown model parameters by data fitting.
For this we suppose that a discrete data set (ti, di) is present in which t0 < t1 < ... < tn
represent measurement time points and di the corresponding data. The data points are
interpolated so that we receive a continuous function xdata : [t0, tn] −→ R with xdata(ti) =
di. This function xdata is to be approximated by a model, e.g.

dx

dt
= βx(1− x) , x(t0) = x0 . (4.41)

We assume that the model parameters β and x0 are unknown. A first approach would be
a kind of least squares method by solving the minimization problem

min
u∈Rk

∫ tn

t0

(
x(t)− xdata(t)

)2
dt , (4.42)

with constraint (4.41). The target variable u ∈ Rk contains the unknown parameters, e.g.
β and x0. The objective function

J(u) :=

∫ tn

t0

(
x(t)− xdata(t)

)2
dt

becomes minimal, if the model best represents the data function xdata. Generally we
formulate this problem by

min
u∈Rk

∫ tn

t0

f(t, x, u) dt+ ψ(u) (4.43a)

subject to (s.t.)
dx

dt
= g(t, x, u) , x(t0) = x0 , (4.43b)

43



4 Optimization

with twice continuously differentiable functions x : [t0, tn] −→ R and f, g : Rk+2 −→ R
chained with (t, x, u) for all t ∈ [t0, tn]. Note, that x depends on t. The objective function
J : Rk −→ R

J(u) :=

∫ tn

t0

f(t, x, u) dt+ ψ(u) (4.44)

contains an additional twice differentiable regularization term ψ : Rk −→ [0,+∞). The
regularization term is presumed to be convex and radially unbounded, which means that
ψ(u) −→ +∞ for ‖u‖2 −→ +∞. We form the Lagrange function

L(x, u, λ) :=

∫ tn

t0

f(t, x, u) dt+ ψ(u) +

∫ tn

t0

λ(t)

(
g(t, x, u)− dx

dt

)
dt (4.45a)

=

∫ tn

t0

f(t, x, u) + λ(t)g(t, x, u) +
dλ

dt
x(t) dt (4.45b)

+ λ(t0)x0 − λ(tn)x(tn) + ψ(u) (4.45c)

and the Hamiltonian

H(t, x, u, λ) := f(t, x, u) + λ(t)g(t, x, u) . (4.46)

Based on analogous investigations to the previous sections, we receive necessary optimality
conditions at a minimum (x∗, u∗, λ∗) by

(i) 0 = ∂L
∂uj

, j = 1, ..., k,

(ii) dλ
dt = −∂H

∂x , λ(tn) = 0,

(iii) dx
dt = g(t, x, u), x(t0) = x0.

Example 4.3.1. In this example, we want to test the presented method using an artificially
generated data set (ti, di). For this purpose we consider a model of the form

dx

dt
= βx(1− x) , x(0) = x0 , (4.47)

and solve the ODE for β := 0.3 and x0 := 0.1 on the intervall [0, 20]. This leads with
Example 2.2.1.2 to the logistic function

x̃(t) :=
1

1 + e−0.3t
(

1
0.1 − 1

) .
Furthermore, we produce equidistant time points

0 =: t0 < t1 < ... < t200 := 20

with corresponding data points

di := max (x̃(ti) + 0.1n̂i , 0)

which include standard normally distributed noise n̂i ∼ N (0, 1). The resulting data set
(ti, di) is shown in Figure 4.3 on page 46. The corresponding data function xdata is
generated by spline interpolation with xdata(ti) = di.
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4.3 Parameter estimation via adjoint functions

To test the adjoint approach, we now assume the model in (4.47) is to be fitted to xdata

with unknown parameters β and x0, so u := (β, x0). The objective function reads as

J(u) := ω1

∫ 20

0

(
x(t)− xdata(t)

)2
dt+ ω2‖u‖22 ,

with corresponding minimization problem

min
u∈R2

ω1

∫ 20

0

(
x(t)− xdata(t)

)2
dt+ ω2‖u‖22 .

In this example weights ω1 and ω2 are used. We set

ω1 :=
1∫ 20

0 xdata(t)2 dt
,

to normalize the least squares term concerning the data function. To let the regularization
term ψ(u) = ω2‖u‖22 = ω2(β2 + x2

0) have as little influence as possible on the numerical
solution we choose, e.g. ω2 := 10−9. The effects of this weight ω2 will be discussed in
more detail in Chapter 9, e.g. also in the case ω2 = 0.

In the first step we form the gradient of the Lagrange function

L(x, u, λ) := ω1

∫ 20

0

(
x(t)− xdata(t)

)2
dt+ ω2(β2 + x2

0)

+

∫ 20

0
λ(t)

(
βx(t) (1− x(t))− dx

dt

)
dt

with respect to u

∇uL =

(
2ω2β +

∫ 20
0 λ(t)x(t) (1− x(t)) dt
2ω2x0 + λ(t0)

)
.

The Hamiltonian reads as

H(t, x, u, λ) := ω1

(
x− xdata

)2
+ λ(t)βx (1− x)

which leads to the adjoint equation

dλ

dt
= −2ω1

(
x− xdata

)
+ (2x− 1)βλ , λ(20) = 0 .

The evaluation of the Hessian matrix of the Lagrange function with respect to u delivers

∇2
uuL =

(
2ω2 0
0 2ω2

)
= 2ω2

(
1 0
0 1

)
and shows the direct influence of the regularization term on its positive definiteness.

In our example, we choose s := ∇uL as search direction and thus apply the gradient
method. Furthermore, we choose u(0) := (0.5, 0.5) as start value. The pseudo code shows
that we now use the already known numerical optimization methods with respect to u,
paired with the forward–backward sweep method, because in each iteration the ODEs of
the state and adjoint variable must be solved with the current u(i).
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Figure 4.3: Solution for Example 4.3.1. Algorithm 2 returns u = (0.28, 0.13) as numerical
solution. It stops after 32 iterations at an accuracy of |J − Jold| < 10−9 with
J = 0.0167. The artificial data set (ti, di) was created with ũ := (0.3, 0.1).

Algorithm 2 Pseudocode for the adjoint approach.

1: u, xdata ← load initial values for u and data (ti, di)
2: x, λ← solve ODE for state variable and adjoint function
3: J, ∇uL ← compute objective function and gradient regarding u
4: s← compute search direction
5: repeat
6: Jold ← J
7: ϑ← argminϑ>0 ψ(ϑ) with ψ(ϑ) := J (u+ ϑs)
8: u← u+ ϑs
9: x, λ, J, ∇uL, s← update depending on u

10: until |J − Jold| < TOL
11: u∗, x∗, λ∗, J∗ ← u, x, λ, J

In our example, we choose as linesearch algorithm in step 7 a backtracking algorithm
with Armijo step size rule, see [3] and Section 6.B.

The adjoint approach is examined in more detail in the research papers, see Chapter
5–9. Due to the complexity of the diseases COVID–19 and dengue, extensions of the
necessary conditions to ODE systems with and without time delay are necessary.
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5 Research Paper I: Modelling Dengue with
the SIR–Model

Peter Heidrich Thomas Götz

The paper Modelling Dengue with the SIR–Model was written by Peter Heidrich and
Thomas Götz. The theoretical elaboration, formulation and calculations were done by
Peter Heidrich. Thomas Götz advised him on this and took over the linguistic revision of
the article. The layout of the paper is adapted to the present thesis.

The contribution is based on a lecture held on 19 June 2018 at the ECMI 2018 Con-
ference in Budapest (18–22 June 2018) and was published as proceeding in Faragó I.;
Izsák F.; Simon P.: Progress in Industrial Mathematics at ECMI 2018. Mathematics in
Industry, Vol. 30, Springer, pp 175–182, 2019
(https://doi.org/10.1007/978-3-030-27550-1_22).

5.1 Abstract

Severe dengue outbreaks and their consequences point out the need for prognosis and con-
trol methods which can be derived by epidemiological mathematical models. In this article
we develop a model to describe observed data on hospitalized dengue cases in Colombo (Sri
Lanka) and Jakarta (Indonesia). Usually, the disease is epidemiologically modelled with
the SIRUV model consisting of the susceptible (S), infected (I) and recovered humans (R)
and the uninfected (U) and infected (V ) female mosquitos. Because we do not have any
information about the mosquito population we reduce the model to a SIR model which
depends on a time–dependent transmission rate β(t) and fit it to the received data sets.
To solve this, optimal control theory constructed on Pontryagin’s maximum (minimum)
principle is applied in order to reach the solution with numerical optimization methods.
The results serve as a basis for different simulations.

Keywords: Dengue, Modelling, SIR model, Epidemiology, Numerical simulation, Pa-
rameter fit

5.2 Introduction

Severe dengue outbreaks and their consequences point out the need for prognosis and
control methods which can be derived by epidemiological mathematical models. Dengue is
classified as a fast emerging viral disease which occurs in over 100 tropical and subtropical
endemic countries every year – especially in South East Asia, Latin America and the
Western Pacific. The dengue virus is categorized in four distinct serotypes (DEN 1 – 4).
Once infected with the virus a severe flu–like infection or in some cases a severe dengue
(dengue haemorrhagic fever) may occur. In severe course of the disease dengue fever can
lead to death. The disease is a mosquito–borne viral infection which is transmitted by
vectors like the Aedes aegypti. The female mosquito absorbs the virus while feeding on the
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blood of an infected human. When the infected mosquito bites an uninfected human the
virus can be transmitted. Thus, the human functions as a carrier and multiplier of the
virus. A transmission is followed by an incubation time of 4–10 days. Once infected, the
virus is located 2–7 days in the blood. Meanwhile the patient shows the symptoms and
can transmit the virus in a period of maximum 12 days to an uninfected mosquito. The
recovery from the infection caused by one serotype of the virus provides lifelong immunity
against this specific serotype. However, a subsequent infection with another serotype
increases the risk of a severe dengue. The transmission of the disease depends on the living
conditions for the vectors which are influenced by regional rainfall, temperature, humidity
and the degree of urbanization. The World Health Organisation (WHO) hypothesizes that
approximately 50–100 million infections occur every year whereby latest estimates are at
390 million infected humans of which only approximately one fourth is hospitalized or
registered [6].

By private communication we received data sets of dengue cases in Colombo (Sri Lanka)
and Jakarta (Indonesia) from the local Departments of Mathematics [2, 4]. Usually, the
disease is modelled with the SIRUV model consisting of the susceptible (S), infected (I)
and recovered (R) humans and the uninfected (U) and infected (V) female mosquitos.
Because we do not have any information about the mosquito population we reduce the
model to a SIR model applying the findings of Rocha et al. [1]

dS

dt
= µ (N − S)− β(t)

N
SI ,

dI

dt
=

β(t)

N
SI − (α+ µ) I ,

dR

dt
= αI − µR .

The system is reduced from five to three ordinary differential equations (ODEs) and de-
pends on a time dependent transmission rate β(t). In order to fit the parameters of the
model to the received data sets we implement an objective function

J(u) =

∫ T

0

(
I(t)− Id(t)

)2
dt+

‖u‖2

N2

which shall be minimized with respect to u. The results serve as a basis for two numerical
simulations concerning the behaviour of the dengue outbreaks.

5.3 Data analysis

The available data consists of the weekly hospitalized dengue cases in the Colombo City
District and the Special Capital Region of Jakarta. To reduce the noise in the data we
smoothen it with a moving average. Each data point di is replaced by di = 1

4

∑3
k=0 di−k

for all i ≥ 3. In both cases a periodical behaviour with varying intensities concerning
the peaks can be recognized. In Colombo we observe half–yearly repeating outbreaks in
the midyear and at the turn of the year, the dengue outbreaks in Jakarta appear yearly
in the first quarter. The results of the fast Fourier transform (FFT) underpin these
observations since significant high values at two frequencies per year in Colombo and one
frequency per year in Jakarta can be noticed. It is assumed that this behaviour relates to
the weather conditions especially the precipitation, because the vectors of the disease need
small amounts of standing water to lay their eggs in. We apply the FFT on the appropriate
rainfall data sets and recognize that their periodical behaviour fit to the dengue data.
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Figure 5.1: Dengue raw data, moving average and FFT for Colombo and Jakarta.
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Figure 5.2: Rain data and their FFT analysis for Colombo and Jakarta.
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To substantiate the relation between rainfall and dengue data we use a cross–correlation
and finally receive significant high values at time lags between 6 to 10 weeks. Consequently,
this means that after an intensive rain period it takes approximately two months until the
dengue cases significantly rise in the cases of Colombo and Jakarta.

The clusters between precipiation and dengue data additionally show that if the average
daily rainfall is stronger than approximately 15mm to 20mm a day, less dengue data points
appear. Thus, we assume that in periods of very strong rainfall the eggs of the mosquitos
are destroyed or washed away so that the reproduction of the vectors is restricted. In the
following this border will be called cut–off.
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Figure 5.3: Cross–correlation and cluster between dengue and rain data in Colombo and
Jakarta.

5.4 The SIR model

The present SIR Model includes the three usual groups of susceptible (S), infected (I) and
recovered (R) individuals:

dS

dt
= µ (N − S)− β(t)

N
SI , S(t0) = S0 ≥ 0 , (5.1a)

dI

dt
=
β(t)

N
SI − (α+ µ) I , I(t0) = I0 ≥ 0 , (5.1b)

dR

dt
= αI − µR , R(t0) = R0 ≥ 0 , (5.1c)

N = S0 + I0 +R0 . (5.1d)

The total population N is assumed to be constant because of the short time period. Con-
sequently, the birth and death rate are equal and named with µ. The transition from
infected to recoverd individuals depends on the recovery rate α. We omit the explicit
mosquito dynamics of uninfected (U) and infected (V) vectors and use a time–dependent
transmission rate β(t) instead, see Table 5.1.

Here β0 stands for the average transmission rate and β1 for the degree of periodical
variation. In simulation 2 a phase–shift ϕ is additionally included and β1 is multiplicated
with an integral of the precipitation function pc. It is defined by

pc(ξ) =

{
p(ξ) , p(ξ) < c
0 , p(ξ) ≥ c . (5.2)
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5.4 The SIR model

Table 5.1: Examined transmission rates β(t) for Simulation 1 and 2.

Simulation 1 Simulation 2

β(t) = β0 + β1 cos(ωt) β(t) = β0 + β1

∫ t−τ1/52
t−τ2/52 pc(ξ)dξ · sin

(
ω
(
t+ ϕ

52

))

The continuously differentiable function p(ξ) includes the rainfall data points pi and c
represents the cut–off. The interval [t − τ2

52 , t −
τ1
52 ] is set around the time lag between

precipitation and dengue data. In the case of Colombo the time lag is 10 weeks, therefore
[t− 12

52 , t−
8
52 ] is a possible choice.

To fit the model to the dengue data we solve the optimization problem

min
u

J(u) = min
u

∫ T

0

(
γI(t)− Id(t)

)2
dt+

‖u‖2

N2
(5.3)

subject to (5.1). Because it is assumed that only a fraction of infected individuals are
hospitalized we establish γ as hospitalization rate. The continuous function Id(t) includes
the dengue data points di and u consists of the parameters that shall be fitted.

Table 5.2: Fitted and fixed parameters in Simulation 1 and 2.

Fitted Parameters Fixed Parameters

Simulation 1 u = (β0, β1, S0, I0, R0)′ N,µ, α, ω, γ
Simulation 2 u = (β0, β1, c, τ2, ϕ, γ, S0, I0, R0)′ N,µ, α, ω, τ1

The integral in J(u) is based on a L2 norm so that its minimization corresponds to a least

squares method. Additionally we add a regularization term ‖u‖2
N2 . Its size is much smaller

than the size of the integral therefore
∫ T

0

(
γI(t)− Id(t)

)2
dt dominates the minimization

algorithm which is decisive for the biological context. The addition with this convex and
radially unbounded regularization term has an analytical background because otherwise
some parameters would disappear in the gradient and consequently the corresponding
columns and rows in the Hessian matrix would be equal to zero. Thus, it would be
difficult to calculate and categorize critical points. In a way this corresponds to a Tikhonov
regularization [5]. The division by the size of the total population N is caused by the fact
that the transmission rate β(t) is divided by N in the SIR model and the investigation
of the initial conditions S0, I0 and R0 in relation to N is useful.

In order to optimize (5.3) with Pontryagin’s maximum (minimum) principle we intro-
duce a Lagrange function

L (u, x, λ) =

∫ T

0

(
γI(t)− Id(t)

)2
dt+

‖u‖2

N2
+

∫ T

0

〈
λ(t), g(u, x(t), t)− dx(t)

dt

〉
dt ,

where λ = (λS , λI , λR)′ includes the adjoint functions, x = (S, I,R)′ consists of the state
variables, g = (gS , gI , gR)′ symbolizes the right terms of the ODEs in (5.1) and 〈·, ·〉 stands
for the scalar product. The necessary optimality condition for a minimum (u∗, x∗, λ∗) is
fullfilled if ∇L (u∗, x∗, λ∗) = 0 holds.
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Solving ∂L
∂xi

= 0 via Gâteaux derivative delivers the adjoint ODEs

dλS
dt

=

(
µ+

β(t)

N
I

)
λS −

β(t)

N
IλI ,

dλI
dt

=
β(t)

N
SλS +

(
(α+ µ)− β(t)

N
S

)
λI − αλR − 2γ

(
γI − Id

)
,

dλR
dt

= µλR ,

0 = λS(T ), λI(T ), λR(T ) ,

and ∂L
∂λi

= 0 leads to the ODEs in (5.1). In Simulation 2 the gradient of L respect to u is
given by

∂L
∂ui

= ui
2

N2
+

1

N

∫ T

0

∂β(t)

∂ui
(λI(t)− λS(t))S(t)I(t)dt , i ∈ {1, ..., 5} ,

∂L
∂u6

= γ
2

N2
+ 2

∫ T

0
I(t)

(
γI(t)− Id(t)

)
dt ,

∂L
∂u7

= S0
4

N2
+R0

2

N2
− 2

N
+ λS(0)− λI(0) ,

∂L
∂u9

= R0
4

N2
+ S0

2

N2
− 2

N
+ λR(0)− λI(0) .

u8 is calculated by the substitution I0 = N − S0 − R0. The conjugate gradient method
combined with the forward–backward sweep method is applied to solve the optimization
problem numerically until ‖J(ui+1)− J(ui)‖ < 10−9 holds [3].

5.5 Results

In both simulations a time–scale t in years is applied, see Table 5.3. The values of the
fixed parameters N,µ and α are extracted from statistics of the WHO [6].

The timing of the peaks fits to the behaviour in the data sets especially in Simulation 2
because of the phase shift ϕ. In Jakarta the model maps the relation between the yearly
peaks whereby the inclusion of the rain data allows a more accurate dynamical behaviour.
In Colombo the half–yearly varying oscillation proves more difficult to be reproduced
though, the adding of the precipitation again improves the dynamics of the model. Com-
paring the absolute values of the fitted parameters in both locations we determine that
similar results are achieved.
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Table 5.3: Numerical and graphical results for Simulation 1 and 2 in Colombo and Jakarta.

Jakarta β0 β1 c τ2 γ ϕ S0 I0 R0

Sim. 1 38, 6 6, 0 / / 1 / 6, 6 · 106 6, 0 · 102 3, 4 · 106

Sim. 2 51, 6 14, 7 17, 0 9, 0 0, 45 9, 2 4, 8 · 106 1, 2 · 103 5, 2 · 106

N µ α τ1 ω

Sim. 1 107 1/69 26 / 2π
Sim. 2 107 1/69 26 4 2π
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Colombo β0 β1 c τ2 γ ϕ S0 I0

Sim. 1 26, 7 4, 6 / / 1 / 1, 3 · 106 5, 0 · 101

Sim. 2 37, 2 −10, 0 15, 0 14, 00 0, 44 −4, 0 9, 1 · 105 2, 1 · 102

R0 N µ α τ1 ω

Sim. 1 1, 5 · 104 1, 3 · 106 1/75 26 / 4π
Sim. 2 3, 9 · 105 1, 3 · 106 1/75 26 8 4π
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6 Research Paper II: Simulation and
Prediction of Dengue Outbreaks Based on
an SIR Model with Time–Dependent
Transmission Rate Including
Meteorological Data. An Example for
Colombo and Jakarta

Peter Heidrich Thomas Götz

The paper Simulation and Prediction of Dengue Outbreaks Based on an SIR Model
with Time–Dependent Transmission Rate Including Meteorological Data. An Example
for Colombo and Jakarta was accepted for publication on 31 january 2021 by Interna-
tional Journal of Biomathematics, World Scientific. It is a theoretical deepening of the
proceeding presented in Chapter 5 and reviews the usability of the model for prediction.
The layout of the paper is adapted to the present thesis.

The theoretical elaboration, calculations and writing were carried out by Peter Heidrich.
Thomas Götz provided the ideas for the article and took over the linguistic revision of the
text.

6.1 Abstract

Vector–borne diseases can usually be examined with a vector–host model like the SIRUV
model. This, however, depends on parameters that contain detailed information about the
mosquito population that we usually do not know. For this reason, in this article we reduce
the SIRUV model to an SIR model with a time–dependent and periodic transmission rate
β(t). Since the living conditions of the mosquitos depend on the local weather conditions,
meteorological data sets flow into the model in order to achieve a more realistic behaviour.
The developed SIR model is adapted to existing data sets of hospitalized dengue cases
in Jakarta (Indonesia) and Colombo (Sri Lanka) using numerical optimization based on
Pontryagin’s maximum principle. A previous data analysis shows that the results of this
parameter fit are within a realistic range and thus allow further investigations. Based on
this, various simulations are carried out and the prediction quality of the model is exam-
ined.

Keywords: Dengue, Modelling, SIR model, Epidemiology, Numerical simulation, Pa-
rameter fit
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6.2 Introduction

In 2017 a severe dengue outbreak was reported in Sri Lanka. According to the World Health
Organisation (WHO) approximately 81.000 dengue fever cases are registered between 1
January and 30 June – more than 4 times the numbers compared to the same time period
of the previous seven years [31].

Dengue is a mosquito–borne disease and a risk to approximately half the world’s popula-
tion and we face between 100 to 400 million cases every year in more than 100 tropical and
subtropical countries. First species of Aedes mosquitoes have been found to overwinter
even in Central Europe [7]. The four serotypes of the dengue virus (DEN–1 to DEN–4)
cause mostly just mild symptoms, however some cases progress to a severe dengue case
(haemorragic fever) and may have lethal complications. Mosquitoes like the Aedes aegypti
act as vectors for the disease. Female mosquitoes feed on human blood and may transfer
the virus to a prior virus–free human or vice–versa. Once the virus enters into a human
organism, it can be located in the blood for a period of up to one week. The incubation
period ranges between 4 to 10 days [30]. During this period the patients develop first
symptoms and the virus can be re–transmitted to other mosquitoes that feed on the blood
of the infected human. Life long immunity against a single serotype is acquired, but cross–
infections with another serotypes can increase the risk of a severe dengue progression.

The life–cycle of the vector mosquitoes depends on climatic conditions since spawning
requires the availability of stagnant water or small puddles of water. Thus, regional
rainfall, temperature and humidity are important factors. The progressing urbanization
enhances the increase of impervious surfaces and hence dengue transmission on a larger
scale. In our investigations we focus on the impact of meteorological factors for the
two model regions Colombo (Sri Lanka) and Jakarta (Indonesia). Thanks to private
communication with local colleagues, we received data sets on recorded dengue cases in
the local hospitals [1, 17]. Unfortunately, these data do not provide information on whether
these cases are mild or severe, nor on the percentage of these hospitalized cases compared
to unregistered cases. In order to take this fact into account, a hospitalization rate γ will
be introduced in the following studies. The data sets are used to develop a mathematical
model concerning dengue fever in order to use the results for prognosis or to integrate
control variables such as vaccination.

Usually, vector–borne diseases are epidemiologically investigated with a vector–host
model like the SIRUV model

dS

dt
= µ (N − S)− β̂

M
SV ,

dI

dt
=

β̂

M
SV − (α+ µ) I ,

dR

dt
= αI − µR ,

dU

dt
= ψ − νU − ϑ

N
UI ,

dV

dt
=

ϑ

N
UI − νV ,

consisting of the susceptible (S), infected (I) and recovered humans (R) and the uninfected
(U) and infected (V) female mosquitos [15, 23, 24]. Since in our case there is no detailed
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information about the mosquito population we reduce the model to an SIR model

dS

dt
= µ (N − S)− β(t)

N
SI ,

dI

dt
=

β(t)

N
SI − (α+ µ) I ,

dR

dt
= αI − µR .

The system is reduced from five to three ordinary differential equations (ODEs) via time–
scale separation and includes a time–dependent transmission rate β(t). In order to fit the
parameters of the model to the received data sets, we implement an objective function

J(u) =

∫ t1

t0

(
γI(t)− Id(t)

)2
dt+

‖u‖2

N2
,

which shall be minimized. This optimization problem depends on u ∈ Rl – which includes
the parameters that shall be fitted – and on the ODEs of the SIR model. To solve this
optimal control theory constructed on Pontryagin’s maximum principle is applied [14, 19]
in order to reach the solution with numerical optimization methods. The results serve as
a basis for different simulations concerning the behaviour of the denuge outbreaks. The
parameter fit is also used to test the prediction quality of the model.

Also conceivable would be the addition of exposed (E) and deaths (D) compartments to
the reduced SIR model. The latter would be particularly useful, if death records were
available to fit a lethality rate within the model, see the example of COVID–19 in [11].
Especially in connection with a multistrain model, this would be profitable. A multistrain
model takes into account the infections with the different virus strains and thus also the
more severe course of the disease with repeated infections [29].

However, the aim of this paper is to simplify this process by using a reduced SIR model
based on the SIRUV model to investigate the methods presented as a first step.

6.3 Data analysis

The available data consists of the weekly hospitalized dengue cases in Colombo (2009 −
2016) and the Special Capital Region of Jakarta (2009− 2017) [1, 17].

According to the data sets in Jakarta, a total population NJ = 10154584 is assumed.
With regard to the Colombo data, there is no information available whether the dengue
cases refer only to the city or to the entire district. Therefore, we assume NC = 1538671 as
the mean value [3]. To reduce the noise in the data we smoothen it with a moving average.
Each data point di is replaced by di = 1

4

∑3
k=0 di−k for all i ≥ 3. In both cases a periodical

behaviour with varying intensities concerning the peaks can be recognized. In Colombo
we observe half–yearly repeating outbreaks in the midyear and at the turn of the year.
The intensities of the peaks at midyear double from 2009 to 2011. In the time period
between 2012 and 2014 we notice a similar behaviour. Compared to the middle of the
year the peaks at the turn of the year irregularly vary. The dengue outbreaks in Jakarta
appear yearly in the first quarter. The intensities of the peaks halve from 2009 to 2012,
approximately remain on that level until 2015 and finally quadruple in 2016. The results
of the fast Fourier transform (FFT) underpin the observed periodicities since significant
high values at two frequencies per year in Colombo and one frequency per year in Jakarta
can be noticed.
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Figure 6.1: Dengue data from Colombo and Jakarta and results of the fast Fourier trans-
form [20, 21]. The data sets are displayed per 100,000 inhabitants.

Figure 6.2: Annual weather data from Colombo and Jakarta [28, 33].
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It is assumed that the periodical behaviour in the dengue data relates to the weather
conditions especially to precipitation [10, 12]. The reproduction of the vectors depends
on it since the mosquitos need small amounts of standing water to lay their eggs in.
The annual weather data show similar periodicities for rainfall and humidity whereas the
temperature is relative constant. In addition to the dengue data we received rainfall data
sets pi from Colombo and Jakarta in the appropriate time spans which are also smoothed
using a moving average pi = 1

4

∑3
k=0 pi−k. Likewise, here the FFT shows significant high

values at two frequencies per year in Colombo and one frequency per year in Jakarta.

To substantiate the relation between rainfall and dengue data we use a cross–correlation
and determine time lags around 6 weeks in Jakarta and 10 weeks in Colombo. Conse-
quently, this means that after an intensive rain period it takes approximately two months
until the dengue cases significantly rise. The clusters between precipitation and dengue
data additionally show that if the average daily rainfall is stronger than approximately
10mm to 20mm a day, less dengue data points appear. Thus, we assume that in periods
of very strong rainfall the eggs of the mosquitos are destroyed or washed away so that the
reproduction of the vectors is restricted. In the following this border will be called cut–off.
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Figure 6.3: Rain data from Colombo and Jakarta and results of the fast Fourier transform.
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Figure 6.4: Cross–correlation and cluster between rain and dengue data.

6.4 The SIR model

The focus of this paper is an SIR model consisting of susceptible (S), infected (I) and
recovered (R) humans

dS

dt
= µ (N − S)− β(t)

N
SI , S(t0) = S0 ≥ 0 , (6.1a)

dI

dt
=
β(t)

N
SI − (α+ µ) I , I(t0) = I0 ≥ 0 , (6.1b)

dR

dt
= αI − µR , R(t0) = R0 ≥ 0 , (6.1c)

N = S + I +R . (6.1d)

It applies that S, I,R ∈ C1(D,R) with Cn(X,Y ) = {f : X → Y | f is n times continuously
differentiable in X} for X,Y ⊂ R. In the following we set D = [t0, t1] and all investigations
are performed for t in years. Since the birth and death rate µ are assumed to be equal and
dN
dt = 0 applies, the total human poplation N is constant. The transition from infected to

recovered individuals depends on the recovery rate α. The incidence term β(t)
N SI describes

the number of new infections at time t depending on a time–dependent transmission rate
β ∈ C1(D,R). It is evident that explicit mosquito dynamics are not included although a
vector–borne disease is modelled. A time–scale separation – as shown in Rocha et al. [23]
– serves as theoretical principle, which shall be illustrated in the following section.
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6.4.1 Time–scale separation

As approach we choose the present SIRUV model

dS

dt
= µ (N − S)− β̂

M0
SV , S(t0) = S0 ≥ 0 , (6.2a)

dI

dt
=

β̂

M0
SV − (α+ µ) I , I(t0) = I0 ≥ 0 , (6.2b)

dR

dt
= αI − µR , R(t0) = R0 ≥ 0 , (6.2c)

dU

dt
= ψ(t)− νU − ϑ

N
UI , U(t0) = U0 ≥ 0 , (6.2d)

dV

dt
=

ϑ

N
UI − νV , V (t0) = V0 ≥ 0 , (6.2e)

N = S + I +R . (6.2f)

In addition to human dynamics this ODE includes uninfected (U) and infected (V) mosquitos
with U, V, ψ ∈ C1(D,R). Here, the function

ψ(t) = νM(t) + χ cos (ω (t− tM ))M(t)

describes the seasonal growth of the vector population whereby M ∈ C1(D,R) stands for
the size of the mosquito population at time t. In addition, the equation M(t) = U(t)+V (t)
provides

dM

dt
= χ cos (ω (t− tM ))M , (6.3)

since dM(t)
dt = dU(t)

dt + dV (t)
dt = νM(t) + χ cos (ω (t− tM ))M(t)− νU(t)− νV (t).

The ODE (6.3) can explicitly be solved by

M(t) = M0e
χ
ω

sin(ω(t−tM )) , (6.4)

whereby M0 = M(tM ) ≥ 0 stands for the initial condition. Furthermore, M0 is related to
the average size of the mosquito population given by

M = M0 ·
1

ω

∫ ω

0
e
χ
ω

sin(τ)dτ . (6.5)

Due to the periodicity, equation (6.5) is valid if time periods are considered over whole
years. By adding (6.3) and using the substitutions R(t) = N − S(t) − I(t) and U(t) =
M(t)− V (t) in (6.2) we receive an SIVM model

dS

dt
= µ (N − S)− β̂

M0
SV , (6.6a)

dI

dt
=

β̂

M0
SV − (α+ µ) I , (6.6b)

dV

dt
=

ϑ

N
(M − V ) I − νV , (6.6c)

dM

dt
= χ cos (ω (t− tM ))M . (6.6d)
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Table 6.1: Assumed parameters of the SIVM model with t in years. For the constants ck
a magnitude of 100 is assumed, e.g. ck = 2 for k = 1, 2.

Parameter Meaning

µ = 1
70 Human death and birth rate (average life expenctancy ≈ 70 years)

α = 26 Human recovery rate (≈ 2 weeks)

β̂ = c1α Transmission rate between infected vector and human (unknown)
ν = 26 Mosquito death and birth rate (average life expectancy ≈ 2 weeks)
ϑ = c2ν Transmission rate between infected human and uninfected vector

(unknown)
N = 106 Human population size (depends on investigated region)
M0 = 10N Average mosquito population size (unknown)
ω ∈ {2π, 4π} Periodical frequency of vector population
χ < ln(2)ω Intensity of periodical variation within mosquito population

(< 100%)

The magnitude of χ is assumed to be smaller than ln(2)ω since

max
t∈R

e
χ
ω

sin(ω(t−tM )) = e
χ
ω

holds true and χ = ln(2)ω solves the equation

2M0 = M0e
χ
ω .

Table 6.1 describes the parameters adopted for our research which are derived from statis-
tics [4, 30]. In order to perform the time–scale separation we convert the SIVM model
(6.6) into an IVM model

dI

dt
=

β̂

M0
(N − I)V − (α+ µ) I , (6.7a)

dV

dt
=

ϑ

N
(M − V ) I − νV , (6.7b)

dM

dt
= χ cos (ω (t− tM ))M . (6.7c)

This is based on the functionality of an SISUV model in which the class of recovered indi-
viduals R is missing. Instead infected individuals I go directly into the class of susceptible
individuals S. The recovery rate α now describes a much longer time period compared
to the SIRUV model. Consequently, α changes in its order of magnitude and with it the
transmission rate β̂. At this point it should be noted that the investigation of a time–scale
separation based on an SISUV model is presented here only for simplification and has
the character of a toy problem. The much more complicated procedure with an SIRUV
model, which is necessary for our approach, can be read in [26]. In our new system (6.7)
a possible value for the recovery rate would be α = 1

10 [23]. After this adjustment the
parameters of the human dynamics are now in a similar magnitude of 10−1 and the vector
dynamics of 101. Because of this the vector dynamic V acts much faster on the time–scale
t compared to the human dynamics I. We consider the size ratio between the parameters
of human and mosquito dynamics which can be expressed e.g. by

ε =
µ

ν
=

1

70 · 26
= 5.5 · 10−4 .
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In addition, we define ν = ν
ε and ϑ = ϑ

ε which delivers ϑ = ϑε = ϑνν and provides

dI

dt
=

β̂

M0
(N − I)V − (α+ µ) I , (6.8a)

dV

dt
=

1

ε

(
ϑ

N
(M − V ) I − νV

)
, (6.8b)

dM

dt
= χ cos(ω (t− tM ))M . (6.8c)

This system depends not only on the time t, but also on the parameters and in particular
ε. Consequently, the behavior of the solutions I(t, ε) and V (t, ε) must be investigated in
dependence on very small ε. Therefore, we develop a power series around ε = 0 similar to
the structure of a Taylor series with I(t, 0) = I(0) and V (t, 0) = V (0) as follows

I(t, ε) = I(0) + I(1)ε+ I(2)ε2 +O(ε3) ,

V (t, ε) = V (0) + V (1)ε+ V (2)ε2 +O(ε3) .

The derivations with respect to t deliver

dI(t, ε)

dt
=

dI(0)

dt
+
dI(1)

dt
ε+O(ε2) ,

dV (t, ε)

dt
=

dV (0)

dt
+
dV (1)

dt
ε+O(ε2) ,

and we receive

dI(t, ε)

dt
=

β̂

M0

(
N − I(0)

)
V (0) − (α+ µ) I(0) +O(ε1) , (6.9a)

dV (t, ε)

dt
=

1

ε

(
ϑ

N

(
M − V (0)

)
I(0) − νV (0)

)
+O(ε0) , (6.9b)

dM

dt
= χ cos(ω (t− tM ))M . (6.9c)

Furthermore, we define a fast (mosquito) time–scale by t̃ = t
ε and calculate the derivations

with respect to t̃

dI(t, ε)

dt̃
= ε

dI(t, ε)

dt
= ε

(
β̂

M0

(
N − I(0)

)
V (0) − (α+ µ) I(0)

)
︸ ︷︷ ︸

dI(0)

dt̃

+O(ε2) , (6.10a)

dV (t, ε)

dt̃
= ε

dV (t, ε)

dt
=

(
ϑ

N

(
M − V (0)

)
I(0) − νV (0)

)
︸ ︷︷ ︸

dV (0)

dt̃

+O(ε1) , (6.10b)

dM

dt̃
= εχ cos(ω (t− tM ))M . (6.10c)

Comparing equal orders of ε in (6.10) in leading order O(ε0) delivers

dI(0)

dt̃
= 0 ,

dV (0)

dt̃
=

ϑ

N

(
M − V (0)

)
I(0) − νV (0) ,

dM

dt̃
= 0 .
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We conclude that I(0) ≡ I(0)(t̃0) and M ≡ M(t̃0) are approximately constant for very
small values of ε on the fast time–scale t̃. From this we get the inhomogeneous ODE

dV (0)

dt̃
= −

(
ϑ

N
I(0)(t̃0) + ν

)
︸ ︷︷ ︸

a

V (0) +
ϑ

N
M(t̃0)I(0)(t̃0)︸ ︷︷ ︸

b

,

which can explicitly be solved with V0 = V (t̃0) by

V (t) = exp

(
−at− t0

ε

)
·
(
V0 −

b

a

)
+
b

a
,

where t̃ is replaced by t
ε again. For t → ∞ the solution achieves exponentially fast its

equilibrium V ∗ because a
ε � 1

V ∗ =
ϑ
NM(t̃0)I(0)(t̃0)

ϑ
N I

(0)(t̃0) + ν
.

On the slow time–scale t we use I(0)(t0) = I(0)(t̃0), M(t0) = M(t̃0) and V (0)(t0) = V ∗ as
initial conditions. In equation (6.9b) the comparison of equal orders of ε in leading order
O(ε−1) provides

0 =
ϑ

N

(
M − V (0)

)
I(0) − νV (0)

and finally

V (0) =
ϑ
NMI(0)

ϑ
N I

(0) + ν
. (6.11)

Consequently, in the human dynamics the expression V (0) can be substituted by (6.11)
for small values of ε and we obtain

dI(0)

dt
=

β̂

M0

(
N − I(0)

) ϑ
NMI(0)

ϑ
N I

(0) + ν
− (α+ µ) I(0) .

Since I(0) � N and ϑ � 1 the expression ϑ
N I

(0) can be neglected in the denominator
which means that

ϑ
NMI(0)

ϑ
N I

(0) + ν
≈

ϑ
NMI(0)

ν
.

We define a time–dependent transmission rate

β(t) = β̂
ϑ

M0ν
M(t) =

β̂ϑ

ν
e
χ
ω

sin(ω(t−tM ))

and finally obtain
dI(0)

dt
=
β(t)

N

(
N − I(0)

)
I(0) − (α+ µ) I(0) . (6.12)

Using the substitutions β0 = β̂ϑ
ν and β1 = χ

ω delivers

β(t) = β0e
β1sin(ω(t−tM )) ≈ β0 (1 + β1 sin (ω (t− tM ))) . (6.13)

The procedure shown illustrates the idea of the incidence term in our SIR model in (6.1).
It should be noted that we reduced the number of the four unknown parameters M0, β̂, χ
and ϑ to β0 and β1.
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6.4.2 Alternative derivation of β(t)

In the following, an alternative derivation of the incidence term is outlined based on
considerations using probabilities [15]. Again we assume that the size of the mosquito
population at time t can be approximated with M(t) = M0e

χ
ω

sin(ω(t−tM )). Let κ be the
per capita contact rate per unit of time between a human individual and mosquitos. If
we assume that the number of contacts until time t behaves proportional to the size of
the mosquito population, then κ

∫ t
t0
M(τ)dτ describes the number of contacts a human

individual had with vectors until time t and d
dtκ
∫ t
t0
M(τ)dτ = κM(t) the number of

contacts per unit of time. For example with a constant vector population M0 the number
of contacts until time t is described by κM0(t − t0) and the number of contacts per unit
of time by κM0. If we use the probabilities in Table 6.2 as a basis the incidence term of

Table 6.2: Probabilities to transmit the disease when a human comes into contact with a
mosquito.

Value Meaning

ρ1 Probability that a vector had a blood meal from a human
I
N Probability that the blood meal was from an infected human
ρ2 Probability that the disease was transmitted to the vector
ρ3 Probability that a contact with an infected vector leads to

a transmission

ρ = ρ1
I
N ρ2ρ3 Probability of disease transmission in contact with a vector

new infections per unit of time with S susceptible individuals can be expressed by

κM(t) · ρ · S =
κM(t)ρ1ρ2ρ3

N
SI .

Here, κM(t)ρ stands for the expected number of transmissions at κM(t) contacts per unit
of time for one human individual.

The time–dependent transmission rate is described by

β(t) = κM(t)ρ1ρ2ρ3 = κM0ρ1ρ2ρ3e
χ
ω

sin(ω(t−tM )) ,

which complies with

β(t) = β0e
β1 sin(ω(t−tM )) ≈ β0 (1 + β1 sin (ω (t− tM ))) , (6.14)

using the substitutions β0 = κM0ρ1ρ2ρ3 and β1 = χ
ω . Again we receive an approach for

the incidence term of our SIR model in (6.1).

6.5 Data fit analysis

Let be IC, IJ ∈ C1(D,R) whereby IC includes the smoothed dataset from Colombo and
IJ from Jakarta. In order to fit the number of infected individuals I to the dengue data
set Id ∈ {IC, IJ}, we analyze an objective function J ∈ C1(Rl,R) and the minimization
problem

min
u

J(u) = min
u

∫ t1

t0

(
γI(t)− Id(t)

)2
dt+

‖u‖2

N2
(6.15a)
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subject to

dS

dt
= µ (N − S)− β(t)

N
SI , S(t0) = S0 ≥ 0 , (6.15b)

dI

dt
=
β(t)

N
SI − (α+ µ) I , I(t0) = I0 ≥ 0 , (6.15c)

dR

dt
= αI − µR , R(t0) = R0 ≥ 0 , (6.15d)

N = S + I +R . (6.15e)

It is assumed that only a fraction of infected individuals is registered or hospitalized,
therefore we implement γ as hospitalization rate [30]. Although γ is independent of units,

in the following we refer to this as a rate. The term
∫ t1
t0

(
γI(t) − Id(t)

)2
dt ≥ 0 becomes

small, if γI is fitted to Id.
In (6.15) we consider a least squares method, based on a L2 norm. The convex and

radially unbounded control term ‖u‖2/N2 has direct influence on the definiteness of the
Hessian matrix and represents a kind of Tikhonov regularization [27]. Due to the weight-
ing with 1/N2 its influence on the minimzation is negligible compared to the integral∫ t1
t0

(
γI(t)− Id(t)

)2
dt.

The vector u ∈ Rl includes the initial conditions of the ODE S0 and R0 the hospital-
ization rate γ and the unknown parameters of the transmission rates β(t), see Table 6.3.

Table 6.3: Utilized transmission rates β(t) and corresponding parameters in Simulation 1
and 2.

Simulation 1 Simulation 2

β(t) = β0 + β1 sin (ω (t+ ϕ/52)) β(t) = β0 + β1

∫ t−η1/52
t−η2/52 pc (τ) dτ · sin (ω (t+ ϕ/52))

u = (β0, β1, ϕ, γ, S0, R0)T u = (β0, β1, c, η2, ϕ, γ, S0, R0)T

Here β0 stands for the average transmission rate and β1

∫ t−η1/52
t−η2/52 pc (τ) dτ in Simulation 2,

respectively β1 in Simulation 1, for the degree of periodical variation. A phase–shift ϕ in
weeks is included which corresponds to −tM in (6.4). The precipitation function pc(τ) is
defined by

pc(τ) =

{
p(τ), p(τ) < c
0, p(τ) ≥ c . (6.16)

Here, p(τ) ∈ C1(D,R) includes the smoothed rainfall data points pi and c represents the
cut–off. As described in Section 6.3, it is assumed that extremely heavy rainfall destroys
the mosquito eggs and disrupts population growth. For this reason, pc is set to zero in
this case, so that β(t) = β0 applies at this time point. The interval [t − η2/52, t − η1/52]
is set around the time lag between precipitation and dengue data. Thus, in Colombo
[t− 11/52, t− 9/52] is a possible choice, due to the corresponding time lag of 10 weeks.

The transmission rate β(t) directly influences the so–called Basic Reproduction Number

R0(t) =
β(t)

α+ µ
, (6.17)

70



6.5 Data fit analysis

which indicates how many new infections an infected person causes on average during his
illness in an otherwise susceptible population. It should be noted that in our case this is
time–dependent due to the transmission rate.

To solve the optimization problem with a Lagrange function L : Rl × C1(D,R6) → R
we implement adjoint functions λS , λI , λR ∈ C1(D,R) as Lagrange multipliers. In order
to simplify the notation we define the functions x, λ ∈ C1

(
D,R3

)
with x = (S, I,R)T ,

λ = (λS , λI , λR)T and g : D × C1
(
D,R3

)
× Rl → R with g = (gS , gI , gR)T whereby gS , gI

and gR symbolize the right sides of the ODEs in (6.15). Finally, the Lagrange function is
defined by

L (u, x, λ) =

∫ t1

t0

(
γI(t)− Id(t)

)2
dt+

‖u‖2

N2
+

∫ t1

t0

λ(t)T
(
g(t, x(t), u)− dx(t)

dt

)
dt . (6.18)

The necessary optimality condition for a critical point (u∗, x∗, λ∗) is fullfilled if

∇L (u∗, x∗, λ∗) = 0 . (6.19)

Here, x∗ and λ∗ represent the state and adjoint functions which belong to u∗.
In the following, the results refer to β(t) in Simulation 2, see Table 6.3. The analysis in

this regard can be found in the Appendix 6.A. From there we get the gradient

∇uL(u, x, λ) = ∇J(u)

of the Lagrange function with respect to the directions of u

∂L(u, x, λ)

∂ui
= ui

2

N2
+

1

N

∫ t1

t0

∂β(t)

∂ui

(
λI(t)− qλS(t)

)
S(t)I(t) dt ,

i = 1, ..., 5 ,

∂L(u, x, λ)

∂u6
= γ

2

N2
+ 2

∫ t1

t0

I(t)
(
γI(t)− Id(t)

)
dt ,

∂L(u, x, λ)

∂u7
= S0

2

N2
+ λS(t0)− λI(t0) ,

∂L(u, x, λ)

∂u8
= R0

2

N2
+ λR(t0)− λI(t0) .

The partial derivatives of β(t) = β0 + β1

∫ t−η1/52
t−η2/52 pc (τ) dτ sin (ω (t+ ϕ/52)) are given by

∂β(t)

∂β0
= 1 ,

∂β(t)

∂β1
=

∫ t−η1/52

t−η2/52
pc (τ) dτ sin (ω (t+ ϕ/52)) ,

∂β(t)

∂c
=

 0 , if p(τ) < c or p(τ) ≥ c for all τ ∈ [t− η2/52, t− η1/52]

c

(∑n
i=0

1
dp(bi)

dτ

−
∑m

i=0
1

dp(ai)

dτ

)
β1 sin (ω (t+ ϕ/52)) , else ,

ai < bi < ai+1 < bi+1 with ai, bi ∈ p−1(c) ,

∂β(t)

∂η2
=

pc (t− η2/52)

52
β1 sin (ω (t+ ϕ/52)) ,

∂β(t)

∂ϕ
=

ω cos (ω (t+ ϕ/52))

52
β1

∫ t−η1/52

t−η2/52
pc (τ) dτ .
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Equation (6.19) is solved respect to the directions of x using Gâteaux derivatives [8]. This
leads to the ODEs of the adjoint functions

dλS
dt

=

(
µ+

β(t)

N
I

)
λS −

β(t)

N
IλI , (6.20a)

dλI
dt

=
β(t)

N
SλS +

(
(α+ µ)− β(t)

N
S

)
λI − αλR − 2γ

(
γI − Id

)
, (6.20b)

dλR
dt

= µλR . (6.20c)

Additionally, we receive the so–called transversality conditions, known from Pontryagin’s
maximum principle [19]

λS(t1) = 0 ,

λI(t1) = 0 ,

λR(t1) = 0 .

Since the optimization problem depends on the adjoint functions these ODEs need to be
calculated. In the case of λR(t) this can be done analytically by

λR(t) = λR(t0)eµt .

As λR(t1) = 0 it follows that

0 = λR(t1) = λR(t0)eµt1

and thus λR(t0) = 0 because eµt1 6= 0. Consequently we obtain

λR(t) ≡ 0 .

Solving (6.19) respect to the directions of λ via Gâteaux derivatives delivers the state
variable ODEs

dS

dt
= µ (N − S)− β(t)

N
SI , (6.21a)

dI

dt
=

β(t)

N
SI − (α+ µ) I , (6.21b)

dR

dt
= αI − µR . (6.21c)

If (u∗, x∗, λ∗) is a minimum of L(u, x, λ), it follows that

J(u∗) = L(u∗, x∗, λ∗) ≤ L(u, x, λ) = J(u)

for all admissible solutions (u, x, λ) which preoccupy the state variable ODEs in (6.21).
Examining whether the sufficient condition is satisfied in (u∗, x∗, λ∗) is extensive because
the Hessian matrix of L(u, x, λ) needs to be investigated. However, at this point it is
noted that for (u∗, x∗, λ∗) a maximum of the objective function is excluded since J(u) is
bounded from below and unbounded from above.
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6.6 Results

The optimization can be solved numerically using the forward–backward sweep method
combined with a Quasi–Newton (BFGS) or (Conjugate) Gradient algorithm. The step
size determination is performed with a backtracking method using the Armijo rule [2, 5,
6, 9, 14, 16, 18, 25]. The procedure stops when ‖Jn+1 − Jn‖2 < TOL is fulfilled. The
detailed procedures of the algorithm used are shown in the pseudocode in Appendix 6.B.
Compared to (6.15), a slightly modified objective function J is used in the program

J(u) =
1

maxt∈D Id

∫ t1

t0

(
γI(t)− Id(t)

)2
dt+

‖u‖2

N2
.

Fixed parameters like the recovery rate, average human life expectancy and total poplu-
ation sizes in the respective regions are derived from statistics and the received data sets
[1, 3, 17, 30, 32].

6.6.1 Numerical results of the parameter fit

In the following section the data fit without direct influence of rain data is called Sim-
ulation 1 and Simulation 2 includes the rain data. The results of the parameter fit are
presented in Tables 6.6 and 6.7.

First we compare the results of the simulations in the respective locations. All param-
eters except β1 can be compared directly. In both cases the order of magnitude of the
fitted parameters is the same, i.e. the addition of the weather data in Simulation 2 does
not fundamentally change the results. In Jakarta and Colombo this addition causes an
optimization of the objective function J by about 11–13%. Due to the adjustment of the
phase shift ϕ the timing of the extrema and turning points in γI fits in most cases to the
corresponding peaks in the data sets Id. For example, this can be seen in Jakarta 2012
and 2017 and in Colombo 2013–14. The addition of the rain data causes an increase of the
dynamics within the model whereby detailed fluctuations are reflected within the respec-
tive seasons, e.g. in Jakarta in 2009 and 2013 or Colombo in 2012 and 2014. Especially
in Jakarta, the ratio of the peaks to each other is well reflected. Concerning Colombo,
this only applies to certain years. The reason for this could be that due to the very large
fluctuations, a shorter period of time would be more effective for the parameter fit.

In the following we compare the results between Jakarta and Colombo. In Simulation 1
the fitted parameters hardly differ from each other in both locations. In Simulation 2
the values are also in a similar order of magnitude but slightly larger deviations can be
detected. This is caused by the different weather conditions which influence the develop-
ment of the local mosquito populations and thus the spread of the disease. The size of
the cut–off parameter c is in a realistic range with about 16mm in Jakarta and 10mm in
Colombo. The same applies to the adjustment of the integration limit depending on η2

whose values with 7 weeks in Jakarta and 10 weeks in Colombo match the corresponding
timelags between rain and dengue dates, see Figure 6.4. The hospitalization rate γ is also
in a realistic range with about 30% in both regions. To compare the degree of periodical
variation we examine the size of the term

β1

∫ t− η1
52

t− η2
52

pc(τ)dτ < β1 ·
η2 − η1

52
· c =: β̃1 . (6.22)

We get β̃1 = 24.91 for Jakarta and β̃1 = 14.49 for Colombo.
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Table 6.4: Relation between the degree of periodical variation and average transmission
rate in Simulation 1 and 2.

Jakarta Colombo

Simulation 1: β1/β0 0.16 0.22
Simulation 2: β̃1/β0 0.46 0.44

Table 6.4 shows that the relationship between periodical variation and the average trans-
mission rate leads to similar results in Jakarta and Colombo. These also allow conclusions
about the behavior of the mosquito population. Provided the size of the vector population
can be modeled by M(t) = M0e

χ
ω

sin(ω(t+ϕ/52)), the term

e
χ
ω

sin(ω(t+ ϕ
52)) ≈ 1 +

χ

ω
sin
(
ω
(
t+

ϕ

52

))
describes the seasonal variation of the mosquito population. As shown in Section 6.4 in
Simulation 1 the fraction β1

β0
approximately corresponds to the size of the expression χ

ω .

Since
∣∣χ
ω sin (ω (t+ ϕ/52))

∣∣ ≤ 0.22 applies for χ
ω = β1

β0
, we can conclude that the size of the

mosquito population varies by a maximum of approximately 25%. In Simulation 2 the
term

β1

β0

∫ t− η1
52

t− η2
52

pc(τ)dτ <
β̃1

β0

corresponds to a time–dependent expression χ(t)
ω with χ : D → R+

0 . Using the result from

Table 6.4 we get
∣∣∣χ(t)
ω sin (ω (t+ ϕ/52))

∣∣∣ < 0.46 and consequently a variation of at most

about 50%.
The transmission rate graphs show the periodicity associated with the dynamics within

disease transmission, see Tables 6.6–6.7. The influence of the cut–off parameter c is clearly
visible. Using the values for β0 and β1 respectively β̃1 , restricting intervals for the Basic
Reproduction Number R0(t) can now be determined from equation (6.17), see Table 6.5.

Table 6.5: Limiting intervals to the order of magnitude of the Basic Reproduction Number
R0(t) = β(t)/α+µ in Jakarta and Colombo.

Jakarta Colombo

Simulation 1 [1.5, 2.1] [1.4, 2.2]
Simulation 2 [1.1, 3.0] [0.7, 1.8]

It can be seen that in Simulation 1 very similar limits exist for both locations. However,
there are larger differences in the second simulation. It is also noticeable here that in
Colombo the value can temporarily fall below the barrier R0 = 1 with maximum fluctua-
tions.
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Table 6.6: Results of Simulation 1 and 2 based on the data sets from Jakarta. The total
population size is assumed to be N = 10154584. The following parameters are
fixed: α, µ, ω, η1.

Parameters β0 β1 c η2 ϕ γ α µ ω η1

Simulation1 46.71 7.47 / / 10.41 0.26 26 1/69 2π /
Simulation2 54.01 84.69 15.77 6.97 9.12 0.34 26 1/69 2π 6
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Table 6.7: Results of Simulation 1 and 2 based on the data sets from Colombo. The total
population size is assumed to be N = 1538671. The following parameters are
fixed: α, µ, ω, η1.

Parameters β0 β1 c η2 ϕ γ α µ ω η1

Simulation1 47.71 10.39 / / 10.60 0.37 26 1/75 4π /
Simulation2 32.54 99.64 9.45 9.80 9.35 0.33 26 1/75 4π 9
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6.6.2 Prediction quality of the model

With regard to the intention to use control methods to reduce the spread of disease,
the predictive quality of the model plays a major role. In the following, the parameters
included in u = (β0, β1, c, η2, ϕ, γ, S0, R0)T are fitted up to a time t̂ ∈ D. The model sub-
sequently uses these parameters and makes a prediction to the end time t1. In Simulation
3 we use the available rain data and in Simulation 4 the average rainfall data of previous
years within the prognosis interval, see Tables 6.9 and 6.10. To give more weight to current
than to past data we introduce a weight function H : D → R+ with

H(t) = w · exp

(
−
(
t− t̂

)2
2σ2

)
+ z .

The parameters w = 50, σ = 4
52 and z = 1 are selected so that the period of the last four

weeks before t̂ is weighted considerably more strongly. Hence, we solve the minimization
problem

min
u
J(u) = min

u

1

maxt∈D Id

∫ t̂

t0

H(t)
(
γI(t)− Id(t)

)2
dt+

(
‖u‖
N

)2

.

In the following simulations the end time t̂ of the parameter fit is chosen so that in the
previous 4–8 weeks the number of dengue cases increased significantly. In practice, this
optimization should be constantly updated. Additionally we calculate based on the L1

norm

E1 =

∫ t̂+1

t̂

∣∣γI(t)− Id(t)
∣∣

maxt∈[t̂,t̂+1] I
d(t)

dt and E2 =
1

t1 − t̂

∫ t1

t̂

∣∣γI(t)− Id(t)
∣∣

maxt∈[t̂,t1] I
d(t)

dt

and additionally in Colombo

E3 = 2

∫ t̂+1/2

t̂

∣∣γI(t)− Id(t)
∣∣

maxt∈[t̂,t̂+1/2] I
d(t)

dt .

These values are used to determine the deviation of the model in relation to the corre-
sponding maximum value within the data. Although the forecast for the coming season is
in the foreground, the model also reveals tendencies in the following years.

In Jakarta, the respective forecasts for the following year apply well to both simulations.
The relation of the predicted peak to the previous one is accurately reflected. The course
of the following years is also determined by the model. In some years the forecasts for
the coming season are slightly better with the average rain data of the previous years in
Simulation 4 than with the actual ones. However, the long–term predictions clearly show
better results with the real rain data, see Tables 6.8 and 6.9. In comparison, the simulations
in Colombo show greater difficulties in making accurate forecasts. It is noticeable that the
model in the shortened time periods

[
t0, t̂

]
of the parameter fit can be better adapted to

the dengue data than over the full time scale D, e.g. for t̂ = 2013 − 1week. Due to the
half–yearly frequency of the peaks and their strongly fluctuating intensities, the forecasts
for the coming half–year are much better than for the entire following year or even the
following years. The half–yearly short–term predictions provide useful values which reflect
the correct relation to the previous dengue eruptions. Beyond this period, the model
becomes inaccurate, e.g. for t̂ = 2012 − 1week. In terms of short–term forecasting, the
actual rainfall data in Simulation 3 delivers better results. In contrast, the long–term
prediction is better with the averaged rain data in Simulation 4, see Tables 6.8 and 6.10.
The t–test concerning the residuals r = γI − Id shows in Jakarta as well as in Colombo
that r is not normally distributed N (0, σ2) in most cases [22].
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Table 6.8: Medians of the numerical deviations between model and dengue data.

Simulation 3 Simulation 4
Jakarta Colombo Jakarta Colombo

Ẽ1 0.22 0.26 0.22 0.19

Ẽ2 0.24 0.27 0.63 0.23

Ẽ3 / 0.23 / 0.24

6.7 Conclusions

The present paper shows that an SIR model with a time–dependent transmission rate
represents a practicable alternative to the usual SIRUV model. Especially with regard to
the adaptation of unknown parameters based on real data sets, the strength of this reduced
system is evident, since missing information on the corresponding mosquito population is
no longer an obstacle. However, the results obtained do allow conclusions to be drawn
about the periodic fluctuations within the vector populations. The parameter fit depends
strongly on the quality of the collected data sets. The addition of weather data shows that
the local precipitation has a considerable influence on the periodic outbreaks of dengue. It
has also been shown that the SIR model is particularly suitable for short–term forecasts,
in the case of Jakarta even for longer periods. A useful application is when the system
is constantly updated with data to adjust the parameters perpetually. In return, the
fitting period should not be too long, as the spread of the disease can only be simulated
meaningfully over short periods of time with such a model. The prediction of the intensity
of the next dengue outbreak offers the possibility to apply possible control methods like
vector control or information campaigns for prevention. To optimize the degree of control
Pontryagin’s maximum principle can be used with the optimal control theory. Here it was
shown that this can also be used to adapt the model parameters to the real data. Due to
similar structures with regard to the transmission pathways of the disease, an application
of the model to other vector–borne diseases such as Malaria or ZIKA is also conceivable.
With regard to dengue, the development of a much more complex SIR multistrain model
with a time–dependent transmission rate is desirable in order to represent the dynamics
of the disease even more realistically. Furthermore, the addition of exposed (E) or deaths
(D) compartments is also preferable, provided that appropriate data sets are available for
the latter.
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Table 6.9: Simulation 3 and 4 for Jakarta. Simulation 3 is based on the actual rainfall
data whereas Simulation 4 is run with the average rainfall data of the previous
years. The parameter fit is executed in the interval

[
t0, t̂

]
(red). The prediction

follows for
[
t̂, t1

]
(blue).
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Table 6.10: Simulation 3 and 4 for Colombo. Simulation 3 is based on the actual rainfall
data whereas Simulation 4 is run with the average rainfall data of the previous
years. The parameter fit is executed in the interval

[
t0, t̂

]
(red). The prediction

follows for
[
t̂, t1

]
(blue).
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Appendix

6.A Appendix A: Analytical derivation of the parameter fit

We consider the Lagrange function

L (u, x, λ) =

∫ t1

t0

(
γI(t)− Id(t)

)2
dt+

‖u‖2

N2
+

∫ t1

t0

λ(t)T
(
g(t, x(t), u)− dx(t)

dt

)
dt . (6.23)

The last summand in (6.23) corresponds to∫ t1

t0

λ(t)T
(
g(t, x(t), u)− dx(t)

dt

)
dt =

∫ t1

t0

λS(t)

(
gS(t, x(t), u)− dS(t)

dt

)
dt ,

+

∫ t1

t0

λI(t)

(
gI(t, x(t), u)− dI(t)

dt

)
dt ,

+

∫ t1

t0

λR(t)

(
gR(t, x(t), u)− dR(t)

dt

)
dt .

We exemplarily examine∫ t1

t0

λI(t)

(
gI(t, x(t), u)− dI(t)

dt

)
dt =

∫ t1

t0

λI(t)gI(t, x(t), u) dt−
∫ t1

t0

λI(t)
dI(t)

dt
dt ,

which leads to∫ t1

t0

λI(t)gI(t, x(t), u) dt+

∫ t1

t0

dλI(t)

dt
I(t) dt+ λI(t0)I0 − λI(t1)I(t1) ,

by applying partial integration. Furthermore, by substituting I0 = N − S0 −R0 and
gI(t, x(t), u) we obtain∫ t1

t0

λI(t)

(
gI(t, x(t), u)− dI(t)

dt

)
dt =

∫ t1

t0

λI(t)

(
β(t)

N
S(t)I(t)− (α+ µ) I(t)

)
dt

+

∫ t1

t0

dλI(t)

dt
I(t) dt

+λI(t0)(N − S0 −R0)− λI(t1)I(t1) .

Analogously, we receive for the other summands∫ t1

t0

λS(t)

(
gS(t, x(t), u)− dS(t)

dt

)
dt =

∫ t1

t0

λS(t)

(
µ (N − S(t))− β(t)

N
S(t)I(t)

)
dt

+

∫ t1

t0

dλS(t)

dt
S(t) dt

+λS(t0)S0 − λS(t1)S(t1)
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and ∫ t1

t0

λR(t)

(
gR(t, x(t), u)− dR(t)

dt

)
dt =

∫ t1

t0

λR(t)
(
αI(t)− µR(t)

)
dt

+

∫ t1

t0

dλR(t)

dt
R(t) dt

+λR(t0)R0 − λR(t1)R(t1) .

The necessary optimality condition for a critical point (u∗, x∗, λ∗) is fullfilled if

∇L (u∗, x∗, λ∗) = 0 .

We compute the partial derivatives of L (u, x, λ) with respect to ui for i = 1, ..., 5

∂L(u, x, λ)

∂ui
=

∂

∂ui

‖u‖2

N2
+

∂

∂ui

∫ t1

t0

λS(t)

(
µ (N − S(t))− β(t)

N
S(t)I(t)

)
dt

+
∂

∂ui

∫ t1

t0

λI(t)

(
β(t)

N
S(t)I(t)− (α+ µ) I(t)

)
dt

and obtain

∂L(u, x, λ)

∂ui
= ui

2

N2
+

1

N

∫ t1

t0

∂β(t)

∂ui

(
λI(t)− λS(t)

)
S(t)I(t) dt .

The partial derivative with respect to γ = u6 is calculated with the chain rule

∂L(u, x, λ)

∂u6
=

∂

∂γ

‖u‖2

N2
+

∂

∂γ

∫ t1

t0

(
γI(t)− Id(t)

)2
dt

= γ
2

N2
+ 2

∫ t1

t0

I(t)
(
γI(t)− Id(t)

)
dt .

In addition, we exemplarily compute the partial derivative with respect to S0 = u7

∂L(u, x, λ)

∂u7
=

∂

∂S0

‖u‖2

N2
+

∂

∂S0
λS(t0)S0 +

∂

∂S0
λI(t0)(N − S0 −R0)

= S0
2

N2
+ λS(t0)− λI(t0) ,

which can be done analogously for R0 = u8. In summary, we receive the gradient

∇uL(u, x, λ) = ∇J(u)

of the Lagrange function with respect to the directions of u

∂L(u, x, λ)

∂ui
= ui

2

N2
+

1

N

∫ t1

t0

∂β(t)

∂ui

(
λI(t)− λS(t)

)
S(t)I(t) dt ,

i = 1, ..., 5 ,

∂L(u, x, λ)

∂u6
= γ

2

N2
+ 2

∫ t1

t0

I(t)
(
γI(t)− Id(t)

)
dt ,

∂L(u, x, λ)

∂u7
= S0

2

N2
+ λS(t0)− λI(t0) ,

∂L(u, x, λ)

∂u8
= R0

2

N2
+ λR(t0)− λI(t0) .
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The partial derivatives of β(t) = β0 + β1

∫ t−η1/52
t−η2/52 pc (τ) dτ sin (ω (t+ ϕ/52)) are given by

∂β(t)

∂β0
= 1 ,

∂β(t)

∂β1
=

∫ t−η1/52

t−η2/52
pc (τ) dτ sin (ω (t+ ϕ/52)) ,

∂β(t)

∂c
=

 0 , if p(τ) < c or p(τ) ≥ c for all τ ∈ [t− η2/52, t− η1/52]

c

(∑n
i=0

1
dp(bi)

dτ

−
∑m

i=0
1

dp(ai)

dτ

)
β1 sin (ω (t+ ϕ/52)) , else ,

ai < bi < ai+1 < bi+1 with ai, bi ∈ p−1(c) ,

∂β(t)

∂η2
=

pc (t− η2/52)

52
β1 sin (ω (t+ ϕ/52)) ,

∂β(t)

∂ϕ
=

ω cos (ω (t+ ϕ/52))

52
β1

∫ t−η1/52

t−η2/52
pc (τ) dτ .

In the cases of c and η2 we have to take a closer look at the function G : R2 → R with
G(c, η2) =

∫ b
a pc(τ)dτ whereby in our application [a, b] = [t− η2/52, t− η1/52] holds true.

Since p(τ) is a continuous function p−1 ((−∞, c)) = {τ ∈ R : p(τ) < c} is a open set. If
we define Dc = {τ ∈ R : p(τ) < c} ∩ [a, b] four cases can occur.

1. Dc = (a1, b1) ∪ (a2, b2) ∪ ... ∪ (an−1, bn−1) , if p(a), p(b) ≥ c ,

2. Dc = [a, b0) ∪ (a1, b1) ∪ ... ∪ (an−1, bn−1) , if p(a) < c, p(b),≥ c ,

3. Dc = (a1, b1) ∪ (a2, b2) ∪ ... ∪ (an−1, bn−1) ∪ (an, b] , if p(a) ≥ c, p(b) < c ,

4. Dc = [a, b0) ∪ (a1, b1) ∪ ... ∪ (an−1, bn−1) ∪ (an, b] , if p(a), p(b) < c ,

with a < b0 < a1 < b1 < ... < an−1 < bn−1 < an < b. In the following we will investigate
case 4, the other cases can be calculated analogously. Since p(τ) is continuous we obtain

G(c, η2) =

∫ b

a
pc(τ)dτ =

∫
Dc

p(τ)dτ

=

∫ b0

a
p(τ)dτ +

n−1∑
i=1

∫ bi

ai

p(τ)dτ +

∫ b

an

p(τ)dτ

= F (b0)− F (a) +

n−1∑
i=1

(
F (bi)− F (ai)

)
+ F (b)− F (an) , (6.24)

whereby p(ai) = c = p(bi) without change of sign in dp(τ)
dτ and dF (τ)

dτ = p(τ). Provided

that the derivation of the inverse function can locally be formed by dp−1(c)
dc = 1

dp(τ)
dτ

and by

using the chain rule we receive

∂G

∂c
= c

(
1

dp(b0)
dτ

+

n−1∑
i=1

(
1

dp(bi)
dτ

− 1
dp(ai)
dτ

)
− 1

dp(an)
dτ

)
.
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Additionally, we receive ∂G
∂c = 0 in the cases of

G(c, η2) =

{ ∫ b
a p(τ)dτ , p(τ) < c for all τ ∈ [a, b]

0 , p(τ) ≥ c for all τ ∈ [a, b] .

The substitution a = t− η2/52 in (6.24) delivers ∂G
∂η2

= pc(t−η2/52)
52 since

∂G

∂η2
=

{
p(t−η2/52)

52 , p (t− η2/52) < c
0 , p (t− η2/52) ≥ c .

In order to compute the Gâteaux derivatives of L(u, x, λ) respect to x an arbitrary function
h ∈ C1(D,R) satisfying h(t0) = 0 is implemented. We define Iε : D → R with Iε(t) =
I(t) + εh(t). It follows that Iε(t0) = I(t0) for all ε ∈ R. Furthermore, let xε : D → R3 be
defined by xε = (S, Iε, R)T . It is valid that Iε(t) → I(t) and xε(t) → x(t) for ε → 0 and
all t ∈ D. We receive

dIε(t)

dε

∣∣∣∣
ε=0

= h(t)

and
∂L(u, x, λ)

∂I
= lim

ε→0

L(u, xε, λ)− L(u, x, λ)

ε
=
dL(u, xε, λ)

dε

∣∣∣∣
ε=0

.

At a critical point (u∗, x∗, λ∗) we have

0 =
∂L(u, x, λ)

∂I
=
dL(u, xε, λ)

dε

∣∣∣∣
ε=0

=

∫ t1

t0

d

dε

(
γIε(t)− Id(t)

)2
∣∣∣∣
ε=0

dt

+

∫ t1

t0

λS(t)
d

dε

(
µ(N − S(t))− β(t)

N
S(t)Iε(t)

) ∣∣∣∣
ε=0

dt

+

∫ t1

t0

λI(t)
d

dε

(
β(t)

N
S(t)Iε(t)− (α+ µ) Iε(t)

) ∣∣∣∣
ε=0

dt

+

∫ t1

t0

dλI(t)

dt
· dIε(t)

dε

∣∣∣∣
ε=0

dt− λI(t1)
dIε(t1)

dε

∣∣∣∣
ε=0

+

∫ t1

t0

λR(t)
d

dε

(
αIε(t)− µR(t)

)∣∣∣∣
ε=0

dt

=

∫ t1

t0

2γh(t)
(
γI(t)− Id(t)

)
dt+

∫ t1

t0

λS(t)

(
−β(t)

N
S(t)h(t)

)
dt

+

∫ t1

t0

λI(t)

(
β(t)

N
S(t)h(t)− (α+ µ)h(t)

)
dt+

∫ t1

t0

dλI(t)

dt
h(t) dt

−λI(t1)h(t1) +

∫ t1

t0

λR(t)αh(t)dt .

Summing up the integrals and excluding h(t) delivers

0 =

∫ t1

t0

h(t)f(t)dt− λI(t1)h(t1) , (6.25)

whereby f ∈ C1 (D,R) is defined by

f(t) = 2γ
(
γI(t)−Id(t)

)
− β(t)

N
S(t)λS(t)+

(
β(t)

N
S(t)− (α+ µ)

)
λI(t)+

dλI(t)

dt
+αλR(t) .
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Since equation (6.25) has to be fullfilled for arbitrary h(t) it is particularly satisfied for all
h(t) with h(t0) = h(t1) = 0. Thus, the fundamental lemma of calculus of variations deliv-
ers that f(t) = 0 on D, see [13]. Furthermore, if we chose an arbitrary h(t) with h(t1) 6= 0
we conclude that λI(t1) = 0 because f(t) = 0. Applying this procedure concerning 0 = ∂L

∂S

and 0 = ∂L
∂R delivers ODEs for the adjoint functions

dλS
dt

=

(
µ+

β(t)

N
I

)
λS −

β(t)

N
IλI ,

dλI
dt

=
β(t)

N
SλS +

(
(α+ µ)− β(t)

N
S

)
λI − αλR − 2γ

(
γI − Id

)
,

dλR
dt

= µλR ,

and the transversality conditions

λS(t1) = 0 ,

λI(t1) = 0 ,

λR(t1) = 0 .

The partial derivatives of L(u, x, λ) respect to the directions of λ are computed again with
Gâteaux derivatives which delivers in (u∗, x∗, λ∗)

0 =
∂L(u, x, λ)

∂λS
= µ (N − S(t))− β(t)

N
S(t)I(t)− dS(t)

dt
,

0 =
∂L(u, x, λ)

∂λI
=
β(t)

N
S(t)I(t)− (α+ µ) I(t)− dI(t)

dt
,

0 =
∂L(u, x, λ)

∂λR
= αI(t)− µR(t)− dR(t)

dt
,

and consequently we reobtain the state variable ODEs

dS

dt
= µ (N − S)− β(t)

N
SI ,

dI

dt
=

β(t)

N
SI − (α+ µ) I ,

dR

dt
= αI − µR .
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6.B Appendix B: Algorithm pseudocode

Algorithm 3 Pseudocode for parameter adjustment using adjoint functions.

1: u, Idata, ρ, ι ← load initial values for u, respective dengue and rain data and ρ, ι ∈
(0, 1)

2: x, λ ← solve ODE for state variable (forward) and adjoint function (backward) on
[t0, t1]

3: J, ∇J ← compute objective function and gradient regarding u
4: s← compute search direction
5: repeat
6: Jold ← J
7: ϑ← 1
8: repeat
9: ϑ← ρϑ

10: x← update depending on u+ ϑs
11: until J(u+ ϑs) ≤ J + ιϑsT∇J (Armijo Rule)
12: u← u+ ϑs
13: x, λ, J, ∇J, s← update depending on u
14: until ‖J − Jold‖2 < TOL
15: u∗, x∗, λ∗, J∗ ← u, x, λ, J
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[10] Götz, T.; Altmeier, N.; Bock, W.; Rockenfeller, R.; Wijaya, K. P.: Modeling dengue
data from Semarang, Indonesia. Ecological Complexity, Vol. 30, pp 57–62, 2016
https://doi.org/10.1016/j.ecocom.2016.12.010
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7 Research Paper III: Prediction of Dengue
Cases Based on Human Mobility and
Seasonality. An Example for the City of
Jakarta

Peter Heidrich Yashika Jayathunga Wolfgang Bock Thomas Götz

The paper Prediction of Dengue Cases Based on Human Mobility and Seasonality. An
Example for the City of Jakarta by Peter Heidrich, Yashika Jayathunga, Wolfgang Bock
and Thomas Götz is currently being reviewed by the journal Mathematical Methods in the
Applied Sciences, Wiley Online Library. The layout of the paper is adapted to the present
thesis.

Peter Heidrich contributed the section to Data analysis, parts of Model analysis the Data
fit analysis and the programming and presentation of the Results. Yashika Jayathunga
supplemented the above sections and contributed significantly to the analysis of mobility
in the Model analysis section. Wolfgang Bock wrote the Introduction and took over the
complete revision and organization of this paper. Thomas Götz worked with him on the
idea for the article and provided advice.

7.1 Abstract

In this article we combine a multipatch SIRUV model with seasonal mosquito breeding
rate in order to develop a seasonal SIR model via a time–scale separation. The model is
applied to commuting and dengue incident data in Jakarta to forecast dengue outbreaks.
Qualitatively the analysis is in good agreement with the actual outbreaks.

Keywords: Dengue model, Seasonality models, Multipatch models, Prediction model,
Time–scale separation, Numerical optimization

7.2 Introduction

Dengue is a very old disease, described for the first time in Chinese history books from
the 10th century. Already in that time, the disease was spread via ships to the neigh-
bouring areas. However before 1970 just 9 countries worldwide experienced severe dengue
cases [49]. Due to urbanization, globalization and the accessability to long distance flights,
the disease nowadays is spread over the whole subtropics and tropics causing around 12,000
deaths per year, threatening half of the human population [18, 40]. The infection cycle of
dengue makes use of mosquitos of the type Aedes [1, 5, 20, 23] as carrier of the disease. For
dengue disease, there exist four strains of the virus DENV–1 to DENV–4 [11, 19, 41, 42].
Recently there is a intensive on–going discussion about the existence of a fifth strain,
which is however not confirmed yet up to the authors knowledge, see e.g. [33, 43, 46].
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The modelling of the disease hence goes from simple SIR (suscpetible–infected–recovered)
to complex multistrain models and models incorporating partial differential equations for
the human mobility. There are too many approaches to give a comprehensive overview,
hence we refer to the publications [2–4, 8, 9, 13–17, 24, 38, 39] and the monograph [27]
and the references therein. The modelling of human mobility itself is already a challenging
task. An interesting model has been proposed by Brockmann et.al. [7] which is based on
the Dollar bill tracking in USA resulting in a power law distribution for a fractional partial
differential equation. In general for particular examples, it is not possible to predict the
trajectory of a single particle. It is more reasonable to consider commuting data of certain
districts. In that case instead of using a partial differential equation one considers a sys-
tem of ordinary differential equations, matching to the commuting data. Such multipatch
models have recently become a useful tool to describe the mobility between certain hospi-
tal areas, see e.g. [6]. Although humans and their mobility are one core ingedient of the
disease spread, in the case of dengue, one has to consider also the mosquito population.
It is reasonable to consider the mosquito populations between patches as non–moving due
to their small action radius. But since mosquitos breed in standing water see [48], it
is important to consider seasons of rainfall. The seasonality of rainfall can be directly
correlated to the seasonality in dengue outbreaks, see e.g. [13, 22].

In this paper we use a metapopulation multipatch SIRUV model combined with a
seasonality in the number of mosquitos to predict dengue outbreaks in the city of Jakarta.
For this we derive a residence budgeting time matrix from the commuting data for the
five districts of Jakarta. Based on a fast Fourier transform we study the seasonality of
the dengue cases for the region. We derive a multipatch SIR model from the multipatch
SIRUV model studied in [6] via a time–scale separation as in [37]. Via an optimal control
approach based on Pontryagin’s maximum principle we fit the data to the multipatch
model in Section 7.4. Based on this we both simulate the seasonal mutipatch model
with the obtained parameters and give a prediction analysis based on that model. The
outbreaks seen in the real data are qualitatively in good agreement and are quantitatively
sound. We want to point out that here the combination of human mobility data and
seasonal rainfall and dengue data lead to a good prediction of dengue cases.

Remark 7.2.1. Note that it is clear, that in order to obtain a quantitative accurate predic-
tion also multi–strain effects have to be taken into account. Especially in describing severe
dengue cases the secondary infections play a crucial role. On the other hand, data of the
distribution of the strains was not available in our data sets. We thank the anonymous
referee very much for pointing this out. A multi–strain consideration will be subject of
our further studies.

7.3 Data analysis

The available data consists of the weekly hospitalized dengue cases in the five administra-
tive cities of the Special Capital Region of Jakarta (2009 − 2017). We received this data
through private communication with the Department of Mathematics of the University of
Indonesia. To reduce the noise the data was processed using a moving average. In each
patch the data point dι is replaced by dι = 1

4

∑3
k=0 dι−k for all ι ≥ 3.

In all regions a similar behavior can be observed since the periodical behavior is almost
identical. In most cases the dengue outbreaks appear in the first quarter of each year. The
intensities of the outbreak peaks decrease from 2009 to 2012 up to 50%, approximately
remain on that level until 2015 and finally drastically increase in 2016 (see Figure 7.1).
The results of the fast Fourier transform (FFT) underpin the observed periodicities since
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significant high values at one frequency per year can be noticed in all patches (see Figure
7.2).
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Figure 7.1: Raw data and moving average for the dengue cases in the five domains South,
East, Central, West and North Jakarta.

It is assumed that the periodical behavior in the dengue data relates to the weather
conditions especially to precipitation. This is due to the fact, that mosquitos breed in
standing water, see e.g. [48]. The annual weather data show similar periodicities for
rainfall and humidity whereas the temperature remains relatively constant. In addition to
the dengue data we received rainfall data sets from Jakarta in the appropriate timespans
which are also smoothened with the moving average pι = 1

4

∑3
k=0 pι−k for all ι ≥ 3. The

FFT shows significant high values at one frequency per year (see Figure 7.2 and 7.3).
To manifest the relation between rainfall and dengue data we use a cross–correlation and
determine time lags around 6 − 8 weeks in all regions except South Jakarta with 4 − 6
weeks. Consequently, this means that after an intensive rain period it takes approximately
two months until the dengue cases significantly rise. The clusters between precipitation
and dengue data additionally show that if the average daily rainfall is stronger than
approximately 15mm to 20mm a day, less dengue data points appear (see Figure 7.4).
Thus, we assume that in periods of very strong rainfall the eggs of mosquitos are destroyed
or washed away and thus the reproduction of the vectors is reduced, see e.g. [13].
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Figure 7.2: Fast Fourier transform (FFT) of the dengue and rain data from Jakarta [35].
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Figure 7.3: Annual weather data, raw data and moving average of the weekly rain data
[47, 51].

7.4 Model analysis

Usually vector–borne diseases like dengue are studied with vector–host models such as
the SIRUV model. This can be converted to a SIR model with the help of a time–scale
separation. In the following section, for sake of simplicity, we first introduce an SIR
model with mobility. We show that indeed it can be obtained from an SIRUV model with
mobility, including the residence budgeting time matrix P . This is presented subsequently
and more detailed in the Appendix 7.A.

Remark 7.4.1. For the sake of simplicity we chose an SIRUV or SIR model rather than
an SEIRUV or SEIR model. The latter would take also exposed humans. By this
choice we neglect the influence of intrinsic and extrisic incubation periods. Comparing to
[27, 37, 38] however for dengue, SIR and SIRUV models give a reasonable qualitative
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dynamical behaviour.
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Figure 7.4: Cross–correlation and cluster between rain and dengue data in the respective
districts [34].

7.4.2 SIR model with mobility

The following SIR model includes the three usual groups of susceptible (Si), infected (Ii)
and recovered (Ri) human individuals of the patches i = 1, ..., n

dSi
dt

= µ (Ni − Si)− Si
n∑
j=1

(
pij
βj(t)

Nj

n∑
k=1

pkjIk

)
, Si(t0) = Si0 ≥ 0 , (7.1a)

dIi
dt

= Si

n∑
j=1

(
pij
βj(t)

Nj

n∑
k=1

pkjIk

)
− (α+ µ) Ii , Ii(t0) = Ii0 ≥ 0 , (7.1b)

dRi
dt

= αIi − µRi , Ri(t0) = Ri0 ≥ 0 , (7.1c)

Ni = Si + Ii +Ri . (7.1d)

Let be Si, Ii, Ri ∈ C1(D,R) with Cn(X,Y ) = {f : X → Y | f is n times continuously
differentiable in X} for X,Y ⊂ R. In the following we set D = [t0; t1]. The birth and death
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rate µ are assumed to be equal and the transition from infected to recovered is given by
the recovery rate α. We assume that birth, death and recovery rate is the same over all
patches. This is reasonable for the concrete application, which is considering data from
different city districts of Jakarta, Indonesia. The incidence term

Si

n∑
j=1

(
pij
βj(t)

Nj

n∑
k=1

pkjIk

)
(7.2)

describes the number of new infections in patch i at time t depending on time–dependent
transmission rates βj ∈ C1(D,R). The residence budgeting time matrix P = (pij)i,j=1,...,n

includes the commuting rates between the patches i and j. If i = j applies, then the
fraction of the individuals is meant that remains in its patch and does not commute.
Consequently, the sum

∑n
k=1 pkjIk stands for the number of infected individuals in patch

j at time t. The population size of patch i is described by Ni. From

dNi

dt
=
dSi
dt

+
dIi
dt

+
dRi
dt

= 0

it follows that these are constant. This is due to the fact that we investigate a commuter
model in which some of the individuals leave their patch to work and then return. The
changes in the size of the individual patches caused by long–term movements within the
total population are therefore not taken into account. In addition, the following applies

0 =
dNi

dt
= −

n∑
j=1

pij︸ ︷︷ ︸
1

Ni +
n∑
j=1

pjiNj + µ
(
Ni −Ni

)︸ ︷︷ ︸
0

,

from which we receive

Ni =

n∑
j=1

pjiNj . (7.3)

The total population is then given by N =
∑n

i=1Ni.

7.4.3 SIRUV with mobility

A multi–patch vector–host mathematical model is defined in this section to describe the
human and mosquito interactions which will cause disease spread. In addition to human
dynamics as in equation (7.1) this system of ODEs includes uninfected (Ui) and infected
(Vi) mosquitoes with Ui, Vi,∈ C1(D,R). Dengue fever is assumed to be transmitted by
two means of interactions between host and vector: susceptible mosquitoes (Ui) may
interact with infected human (Ii) individuals at a rate of ϑi

Ni
and infected mosquitoes (Vi)

may interact with susceptible humans (Si) at a rate of β̂i
Mi0

. The incidence rates at which

humans and mosquitoes get infected are β̂i
Mi0

SiVi and ϑi
Ni
UiIi, respectively. Here we assume

that vectors do not move between the patches [28, 29, 48] and the movements between
the patches are coupled by a residence budgeting time matrix P = (pij)i,j=1,...,n for [25].
The complete system of nonlinear ordinary differential equations for the n patches reads
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as follows:

dSi
dt

= µ
(
Ni − Si

)
− Si

n∑
j=1

pij
β̂j
Mj0

Vj , Si(t0) = Si0 ≥ 0 , (7.4a)

dIi
dt

= Si

n∑
j=1

pij
β̂j
Mj0

Vj −
(
α+ µ

)
Ii , Ii(t0) = Ii0 ≥ 0 , (7.4b)

dRi
dt

= αIi − µRi , Ri(t0) = Ri0 ≥ 0 , (7.4c)

dUi
dt

= ψi(t)− νUi −
ϑi
Ni
Ui

n∑
j=1

pjiIj , Ui(t0) = Ui0 ≥ 0 , (7.4d)

dVi
dt

=
ϑi
Ni
Ui

n∑
j=1

pjiIj − νVi , Vi(t0) = Vi0 ≥ 0 , (7.4e)

Ni = Si + Ii +Ri . (7.4f)

Here, the functions ψi ∈ C1(D,R) with ψi(t) = νMi(t) + χicos
(
ω
(
t − tM

))
Mi(t) describe

the seasonal growth of the vector populations in the patches i, where Mi ∈ C1(D,R)
stands for the size of the mosquito population at time t. Furthermore, the equation
Mi(t) = Ui(t) + Vi(t) provides

dMi

dt
= χicos

(
ω
(
t− tM

))
Mi , (7.5)

since

dMi(t)

dt
=
dUi(t)

dt
+
dVi(t)

dt
= νMi(t) + χicos

(
ω
(
t− tM

))
Mi(t)− νUi(t)− νVi(t) .

The ODE (7.5) has the explicit solution

Mi(t) = Mi0e
χi
ω

sin
(
ω
(
t−tM

))
, (7.6)

where Mi0 = Mi(tM ) ≥ 0 stands for the initial condition of (7.5) at the time tM . Addition-
ally Mi0 represents the amplitude in (7.6) and is directly related to the average population
size of the mosquitos since

M i = Mi0 ·
1

ω

∫ ω

0
e
χi
ω

sin(τ)dτ .

Figure (7.5) shows the seasonal growth of the vector populations in the patches i = 1, ..., 5
for a time period of 10 years. We use the substitutions Ri(t) = Ni − Si(t) − Ii(t) and
Ui(t) = Mi(t)− Vi(t) to reduce (7.4) to

dSi
dt

= µ
(
Ni − Si

)
− Si

n∑
j=1

pij
β̂j
Mj0

Vj , Si0 ≥ 0 , (7.7a)

dIi
dt

= Si

n∑
j=1

pij
β̂j
Mj0

Vj −
(
α+ µ

)
Ii , Ii0 ≥ 0 , (7.7b)

dVi
dt

=
ϑi
Ni

(
Mi − Vi

) n∑
j=1

pjiIj − νVi , Vi0 ≥ 0 . (7.7c)
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Figure 7.5: Seasonal growth of the vector populations. The initial conditions of the five
patches are given asMi0 = 10Ni . The respective initial conditions for the hosts
are N = [2185711, 2843816, 914182, 2463560, 1747315], tM = 0 and ω = 2π.

The model (7.7) is simulated for an example with five patches. Note that a highly
populated area will have a higher risk of infection see e.g. [21, 36, 45]. Here, the residence
budgeting time matrix P is created using annual commuting data collected from five
administrative districts of Jakarta, Indonesia (South, East, Central, West and North).
Data is gained from the private communications of the authors with Dipo Aldila and Edy
Soewono. The rates of annual travel data within the five areas of Jakarta are given by the
Table 7.1.

Table 7.1: Rates of annual travel data within areas. The entries of the matrix are given
per every 100 individuals.

from \ to South East Central West North

South 0 4.68 9.51 3.79 1.98
East 10.82 0 9.45 3.29 6.77
Central 3.7 1.74 0 3.46 2.44
West 5.38 0.92 9.41 0 8.49
North 1.75 2.33 6.42 3.68 0

The entries of the residence budgeting time matrix P were computed from the data in
Table 7.1 under the assumption that a host will stay in the patch where it is residing for
16hours and will perform short–time movements to the other patches for the remaining
one third of the day. The corresponding residence budgeting time matrix based on the
travel rates are computed as in Table 7.2.

Comparing the dynamics of the infected host compartment the maximum of infected
hosts can be found in East Jakarta, while the minimum occurs in Central Jakarta. A
higher host movement hence results in more infected hosts in the respective areas. Also,
with the seasonal parameters used in simulating the model a seasonal pattern of the disease
outbreak can be seen, see Figure 7.6.
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Table 7.2: Residence budgeting time matrix P in %.

from \ to South East Central West North

South 93.35 1.56 3.17 1.26 0.66
East 3.61 89.89 3.15 1.10 2.26
Central 1.23 0.58 96.22 1.15 0.81
West 1.79 0.31 3.14 91.93 2.83
North 0.58 0.78 2.14 1.23 95.27

Figure 7.6: Plots in the left–hand side illustrate the dynamics of the infected host popu-
lation of the five administrative districts for 10 years. Plots in the right–hand
side illustrate the dynamics of the infected vector population of the five ad-
ministrative districts for 10 years. The parameters used in the simulations
are given by Table 7.3, where c1 = 2, c2 = 2, and c4 = 1. In addition,
N = [2185711, 2843816, 914182, 2463560, 1747315].

7.4.4 Reduction of the SIRUV to a SIR model

The SIRUV model given by equation (7.4) serves as basis for the development of the
reduced SIR model. The procedure is based on the research on time–scale separation by
Rocha et al. [37]. We present the detailed calculation in the Appendix 7.A.

Remark 7.4.5. The parameters chosen throughout our study are those from [37]. Since
our model is based on the model in this paper, to have a comparable setting it is in
our opinion reasonable to use the same parameter set. Compare for other parameters as
e.g. life expectancy also [10, 50].

For χi it is assumed to be less than 5 to generate a maximally doubling of the mosquito
population sizes since

maxt∈Re
χi
ω

sin
(
ω
(
t−tM

))
= e

χi
ω

and χi = ln(2)ω = 4.36 solves the equation

2Mi0 = Mi0e
χi
ω .
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Table 7.3: Assumed parameter sizes of the SIRUV model with t in years. The expressions
ck are expected to be constant in the time–scale separation [10, 50].

Parameter Meaning

µ = 1
69 Human death and birth rate (average life expenctancy ≈ 69 years)

α = 26 Human recovery rate (≈ two weeks)

β̂i = c1α Transmission rate between infected vector and human (unknown)
ν = 26 Mosquito death and birth rate (average life expectancy ≈ 2 weeks)
ϑi = c2ν Transmission rate between infected human and uninfected vector

(unknown)
Ni0 = c3106 Human population size (depends on investigated region)
Mi0 = c4Ni0 Average mosquito population size (unknown)
ω = 2π Periodical frequency of vector population size
χi < 5 Intensity of periodical variation within the mosquito population

(< 100%)

To be able to perform time–scale separation the model (7.7) is simplified by an IVM model
with adapted parameters.

dIi
dt

=
(
Ni − Ii

) n∑
j=1

pij
β̂j
Mj0

Vj −
(
α+ µ

)
Ii , Ii0 ≥ 0 , (7.8a)

dVi
dt

=
ϑi
Ni

(
Mi − Vi

) n∑
j=1

pjiIj − νVi , Vi0 ≥ 0 , (7.8b)

dMi

dt
= χicos(ω

(
t− tM

)
)Mi , Mi0 ≥ 0 . (7.8c)

The vector dynamics Vi act much faster on the time–scale t compared to the human
dynamics Ii. The size ratio between the parameters in the human and vector dynamics is
exploited as follows

ε =
µ

ν
=

1

69 · 26
= 5.6 · 10−4 .

We define ν = ν
ε and ϑi = ϑi

ε which delivers ϑi = ϑiε = ϑi
ν
ν and develop (7.8) into a power

series similar to the structure of a Taylor series

Ii(t, ε) = I
(0)
i + εI

(1)
i +O(ε2) , (7.9)

Vi(t, ε) = V
(0)
i + εV

(1)
i +O(ε2) ,

with Ii(t, 0) = I
(0)
i and Vi(t, 0) = V

(0)
i . The derivatives of (7.9) with respect to t provide

dIi(t, ε)

dt
=

(
Ni − I(0)

i

) n∑
j=1

pij
β̂j
Mj0

V
(0)
j − (α+ µ) I

(0)
i +O(ε1) , (7.10a)

dVi(t, ε)

dt
=

1

ε

 ϑi
Ni

(
Mi − V (0)

i

) n∑
j=1

pjiI
(0)
j − νV

(0)
i

+O(ε0) , (7.10b)

dMi

dt
= χicos(ω (t− tM ))Mi . (7.10c)
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In addition, we define a fast (mosquito) time–scale by t̃ = t
ε and compute the derivatives

of the ODE system with respect to t̃. Indeed we get in leading order O(ε0)

dI
(0)
i

dt̃
= 0 ,

dV
(0)
i

dt̃
=

ϑi
Ni

(
Mi − V (0)

i

) n∑
j=1

pjiI
(0)
j − νV

(0)
i ,

dMi

dt̃
= 0 .

Hence, I
(0)
i and Mi are independent of t̃ and for V

(0)
i we get an inhomogeneous ODE

dV
(0)
i

dt̃
= −

 ϑi
Ni

n∑
j=1

pjiI
(0)
j (t̃0) + ν


︸ ︷︷ ︸

=ai

V
(0)
i (t) +

ϑi
Ni
Mi(t̃0)

n∑
j=1

pjiI
(0)
j (t̃0)︸ ︷︷ ︸

=bi

which can explicitly be solved for Vi0 = V
(0)
i (t̃0) by

V
(0)
i (t) = exp

(
−ai

t− t0
ε

)
·
(
Vi0 −

bi
ai

)
+
bi
ai
,

where we replaced t̃ again by t
ε . For t → ∞ the function V

(0)
i (t) achieves exponentially

fast its equilibrium V ∗i since ai
ε � 1

V ∗i =
bi
ai

=

ϑi
Ni
Mi(t̃0)

∑n
j=1 pjiI

(0)
j (t̃0)

ϑi
Ni

∑n
j=1 pjiI

(0)
j (t̃0) + ν

.

On the slow time–scale t we use I
(0)
i (t0) = I

(0)
i (t̃0) and V

(0)
i (t0) = V ∗i as initial conditions

and equation (7.10b) in leading order O(ε−1) provides

V
(0)
i (t) =

ϑi
Ni
Mi(t)

∑n
j=1 pjiI

(0)
j (t)

ϑi
Ni

∑n
j=1 pjiI

(0)
j (t) + ν

.

By using this expression for V
(0)
i in (7.10a) we obtain again in leading order O(ε0)

dI
(0)
i

dt
=

(
Ni − I(0)

i

) n∑
j=1

pij β̂j
Mj0

ϑj
Nj
Mj(t)

ϑj
Nj

∑n
k=1 pkjI

(0)
k (t) + ν

n∑
k=1

pkjI
(0)
k (t)


− (α+ µ) I

(0)
i .

We define time–dependent transmission rates by

βj(t) =
β̂jϑj
ν
· Mj(t)

Mj0
=
β̂jϑj
ν

e
χj
ω

sin(ω(t−tM ))

and finally obtain

dI
(0)
i

dt
=
(
Ni − I(0)

i

) n∑
j=1

(
pij
βj(t)

Nj

n∑
k=1

pkjI
(0)
k (t)

)
− (α+ µ) I

(0)
i .
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This result provides the approach to the incidence term of our SIR model in (7.1). Using

the substitutions βj0 =
β̂jϑj
ν and βj1 =

χj
ω delivers

βj(t) = βj0 e
βj1 sin(ω(t−tM )) ≈ βj0 (1 + βj1sin (ω (t− tM ))) . (7.11)

It should be noted that we reduced the number of the 4n unknown parameters β̂j , ϑj ,
χj and Mj0 to the 2n parameters βj0 and βj1. Additionally, we forego explicit mosquito
dynamics.

Remark 7.4.6. The time scale separation results in a Holling–type II functional response
for V (I) as a function of the infected humans. This can be reduced further to a linear
relation in human SIR models on which the following analysis of data is based. The
last reduction, i.e. V (I) → I however holds just in reasonable paramater regions in the
SIRUV model. Indeed it holds when the endemic stationary state is in order of the small
parameter µ. In an SISUV model, where the stationary state is of order one this is not
the case.

7.5 Data fit analysis

In this section we will determine the seasonality and the hospitalization rate according to
the underlying data set. The seasonality will be encoded in the transmission function β(t)
as a frequency and a phase shift in a sine–function. All the selected and fixed parameters
we use throughout this section are given in Table 7.3.

In order to add seasonality and hospitalization rate in the patches, we formulate an
optimal control problem and solve it using a conjugate gradient method combined with
a forward–backward sweep method. Details of this procedure are presented in Appendix
7.B. For the computational reasons we add a quadratic penalization term which ensures
the convexity of the cost functional and hence the existence of a minimizer. Statistically
we hence use a form of weighted least squares to fit the data. Of course other statistical
methods could be used, however, since we want to obtain a functional dependence of the
infection rate on time, methods from optimal control are directly available and straight-
forward. The numerical simulations for the predictions show that the results are in good
agreement with the underlying data. A sensitivity analysis will be part of a forthcoming
publication.

In order to fit Ii(t) with t in years to the dengue data from Jakarta we analyze an
objective function J ∈ C1(Rl,R) and the corresponding minimization problem

min
u

J(u) = min
u

n∑
i=1

∫ t1

t0

(
γiIi(t)− Idi (t)

)2
maxt∈DI

d
i (t)

dt+

(
‖u‖
N

)2

(7.12a)

subject to

dSi
dt

= µ (Ni − Si)− Si
n∑
j=1

(
pij
βj(t)

Nj

n∑
k=1

pkjIk

)
, Si0 ≥ 0 , (7.12b)

dIi
dt

= Si

n∑
j=1

(
pij
βj(t)

Nj

n∑
k=1

pkjIk

)
− (α+ µ) Ii , Ii0 ≥ 0 , (7.12c)

dRi
dt

= αIi − µRi , Ri0 ≥ 0 , (7.12d)

Ni = Si + Ii +Ri . (7.12e)
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It is assumed that only a fraction of infected individuals is registered or hospitalized, there-
fore γi is implemented as hospitalization rate in patch i [48]. Let Idi ∈ C1(D,R) be the cubic

spline interpolation through the moving average points dι. Then
∫ t1
t0

(
γiIi(t)− Idi (t)

)2
dt ≥

0 becomes small, if γiIi is fitted to Idi . The particular integral is divided by maxt∈DI
d
i (t)

to exclude imbalances between the fitting of the patches, since they have different sizes
of populations. The integrals in J(u) are based on a L2 norm so that its minimization
corresponds to a least squares method.

Additionally, we add the convex and radially unbounded regularization term (‖u‖/N)2,
which is similar to a Tikhonov regularization [44]. We use as a weight for the penalization
term 1/N2, where N =

∑n
i=1Ni. Thus, its influence on the result of the minimization is

vanishingly small, however, it directly affects the convexity of the minimization problem.

The vector u ∈ Rl includes the initial conditions of the ODE Si0 and Ri0 the hospital-
ization rates γi and the unknown parameters of the transmission rates βj(t), see Table
7.4. The initial values of the infected individuals Ii are calculated using the substitution
Ii0 = Ni − Si0 − Ri0. In the following simulations we assume the same transmission and
hospitalization rate β(t) and γ in all patches.

Table 7.4: Simulations with the corresponding transmission rates β(t) and parameters in
u. On the basis of statistics, we assume that the average human lifespan is 69
years, so that µ = 1

69 , see [50]. The recovery rate is estimated at two weeks,
leading to α = 26, see [48].

Simulation β(t), u

1 β(t) = β0 + β1sin (ω (t+ ϕ/52))

u = (β0, β1, ϕ, γ, S10, ..., Sn0, R10, ..., Rn0)T

2 β(t) = β0 + β1

∫ t−η1/52
t−η2/52 pc (τ) dτsin (ω (t+ ϕ/52))

u = (β0, β1, c, η2, ϕ, γ, S10, ..., Sn0, R10, ..., Rn0)T

We have that the parameter β0 stands for the average transmission rate and β1 respec-

tively β1

∫ t−η1/52
t−η2/52 pc (τ) dτ for the degree of periodical variation. A phase–shift ϕ in weeks is

additionally included and β1 is multiplicated with an integral of the precipitation function
pc(τ) in Simulation 2. It is defined by

pc(τ) =

{
p(τ), p(τ) < c
0, p(τ) ≥ c . (7.13)

The function p(τ) ∈ C1(D,R) includes the smoothened rainfall data points pι and c repre-
sents the cut–off. The cut–off is due to the fact that for large rainfalls eggs are destroyed
or washed away [13]. As described already in Section 7.3, this can also be seen from the
clusters in precipitation and dengue data. Here one sees a drastical decrease of dengue
cases in the average rainfall is higher than around 15mm per day. One could also use
a more mollified function for the cut–off of pc. It is however not to expect that this
would change the result remarkably. The interval [t− η2/52; t− η1/52] is set around the lag
between precipitation and dengue data.
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Table 7.5: Numerical results of the parameter fit in Simulation 1 and 2. All other param-
eters are according to Table 7.3.

Parameters β0 β1 c η2 ϕ γ α µ ω η1

Simulation 1 47.31 7.53 / / 10.48 0.24 26 1
69 2π /

Simulation 2 57.43 45.50 16 7.80 9.00 0.25 26 1
69 2π 6

7.6 Results

7.6.1 Numerical simulations of the SIR model

In the following section the data fit without direct influence of rain data is called Simu-
lation 1 and Simulation 2 includes the rain data. The numerical and graphical results of
these simulations are represented in Table 7.5 and 7.7. The magnitude of the parameters
β0, γ and ϕ is the same whereby Simulation 2 shows a higher average transmission rate
for β0. To compare the degree of periodic variation we examine the size of the term

β1

∫ t− η1
52

t− η2
52

pc(τ)dτ < β1 ·
η2 − η1

52
· c = 45.50 · 1.8

52
· 16 = 25.20 . (7.14)

In Simulation 2 this term fluctuates between 0 and 25.20 whereas in Simulation 1 we
obtain β1 = 7.53. The cut–off c and the interval limits [t− η2/52; t− η1/52] fit to the
assumptions in Section 7.3 since 15mm ≤ c ≤ 20mm and η2 = 7.80 are sensible values
in terms of the cluster and cross–correlation between the moving average of rainfall and
dengue data. The hospitalization rate γ is in the expected range of 25%. Due to the
optimization of the phase shift ϕ, the timing of the model fits well to the dengue peaks in
the data set. When comparing the respective graphs, it is noticeable that a more realistic
dynamic can be recognized by adding the rain data. This is particularly noticeable because
certain fluctuations during the individual periods are reflected, such as in 2009. It is also
striking that between 2015 and 2016 Simulation 2 does not reproduce the very low values
in contrast to Simulation 1. The rain data indicate that the longest period with very low
precipitation was before 2015 which is reflected in the dengue data but not in the model.
On the one hand side SIR models are only suitable for short periods of time and the start
time of the data fit should be set later. But this would be also true for Simulation 1. A
possible explanation is that 2016 was an El Nino year which could lead to outliers since
then the functional form for the seasonality could be wrong. Further deviations can be
found in various patches in 2010, 2013 and 2014 because in these cases the timing of the
peaks differs from other years. Overall, it should be noted that the different intensities
of the dengue peaks and their relation to each other are well represented by the SIR
model. The results also allow conclusions about the behavior of the mosquito population.
Provided the size of the vector population can be modeled by Mi(t) = Mi0e

χ
ω

sin(ω(t+ϕ/52)),
the term

e
χ
ω

sin(ω(t+ ϕ
52)) ≈ 1 +

χ

ω
sin
(
ω
(
t+

ϕ

52

))
describes the seasonal variation of the mosquito population. As shown in Section 7.4 in
Simulation 1 the fraction β1

β0
approximately corresponds to the size of the expression χ

ω .

Since
∣∣χ
ω sin (ω (t+ ϕ/52))

∣∣ ≤ 0.16 applies for χ
ω = β1

β0
we can conclude that the size of the

mosquito population varies by a maximum of approximately 20%. In Simulation 2 the
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term β1
β0

∫ t−η1/52
t−η2/52 pc(τ)dτ corresponds to a time–dependent expression χ(t)

ω with χ : D→ R+
0 .

Using the result from (7.14) we get
∣∣∣χ(t)
ω sin (ω (t+ ϕ/52))

∣∣∣ ≤ 0.44 and consequently a

variation of at most about 50%. The graph of the transmission rate β(t) in the second
simulation reflects the dynamic processes within the model. For example, the effects of
the cut–off are visible in the years 2014–2015, when β(t) assumes the value β0 over longer
periods of time. In contrast, the very dry time at the end of 2015 is clearly shown in β(t)
in the same way.

Table 7.6: Results of the parameter fit and β(t) in Simulation 1 and 2.

Parameters β0 β1 c η2 ϕ γ α µ ω η1

Simulation 1 47.31 7.53 / / 10.48 0.24 26 1
69 2π /

2009 2010 2011 2012 2013 2014 2015 2016 2017
40

45
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55

(t
)

Transmission Rate

β(t) = β0 + β1sin (ω (t+ ϕ/52)) β(t) ∈ [39.74; 54.84]

Parameters β0 β1 c η2 ϕ γ α µ ω η1

Simulation 2 57.43 45.50 16 7.80 9.00 0.25 26 1
69 2π 6

2009 2010 2011 2012 2013 2014 2015 2016 2017
40

50

60

70

80

(t
)

Transmission Rate

β(t) = β0 + β1

∫ t−η1/52
t−η2/52 pc (τ) dτsin (ω (t+ ϕ/52)) β(t) ∈ [43.83; 75.28]

7.6.2 Prediction quality of the SIR model

The prediction quality of the model is the basis for further application with regard to
various control methods. For this reason, we test the presented model using the available
data sets. In the following, the parameters in u = (β0, β1, c, η2, ϕ, γ, S0, R0)T are fitted up
to a time t̂ ∈ [t0; t1]. Then the model continues with these findings and makes a prediction
to the end time 2017. In Simulation 3 we use the available rain data and in Simulation 4
the average rainfall data of previous years within the prognosis interval (see Tables 7.10
and 7.11). To give more weight to current than to past data we introduce a weight function
H : D→ R+ with

H(t) = w · exp

(
−
(
t− t̂

)2
2σ2

)
+ z .

The parameters w = 50, σ = 4
52 and z = 1 are selected so that the period of the last

four weeks before t̂ is weighted considerably more strongly. Consequently, we obtain the
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Table 7.7: Results of the parameter fit in Simulation 1 and 2.

Simulation 1 Simulation 2

Si0 Ii0 Ri0 Ni Si0 Ii0 Ri0 Ni
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minimization problem

min
u

J(u) = min
u

n∑
i=1

∫ t̂

t0

H(t)

(
γIi(t)− Idi (t)

)2
maxt∈DI

d
i (t)

dt+

(
‖u‖
N

)2

.

In practice, the optimization up to t̂ should be constantly updated. In our simulations
we have optimized in most cases until eight weeks after the turn of the year. The reason
for this is that in Jakarta the number of dengue cases increases significantly every year
during this period and the model is to be tested for its prediction quality for the following
season. Additionally we calculate based on the L1 norm
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E1 =

∫ t̂+1

t̂

∣∣γIi(t)− Idi (t)
∣∣

maxt∈[t̂;t̂+1]I
d
i (t)

dt and E2 =
1

t1 − t̂

∫ t1

t̂

∣∣γIi(t)− Idi (t)
∣∣

maxt∈[t̂;t1]I
d
i (t)

dt .

These values are used to determine the deviation of the model in relation to the corre-
sponding maximum value within the data. Although the forecast for the coming season is
in the foreground, the model also reveals tendencies in the following years. For example,
the relatively high increase of registered cases in 2016 is indicated not only in the direct
forecast of the corresponding year, but also in the long–term forecasts. In most cases, the
model provides information about the expected size of dengue cases in the coming season.
It is noticeable that in most cases the relation of the forthcoming peak to the previous
peaks is quite realistic. With regard to the short–term forecast, it makes no significant
difference whether the model continues to calculate with the actual or average rain data.
Large deviations between Simulation 3 and 4 arise only with the long–term forecast until
2017.

Remark 7.6.3. Note that, although the model is very homogeneous among the regions,
due to the same hospitality rate and the same ratio of mosquito to humans and other
parameters, the fitting results for the model are in good agreement with the data. This
is also an effect of the mobility matrix, which introduces a spatial–inhomogeneity into
the system. In a forthcoming study this particular role of the mobility matrix will be
considered.

Table 7.8: Quantitative comparision of the prediction error for South Jakarta.
Simulation 3: The parameter fit is executed in the interval

[
2009; t̂

]
. The

forecast based on this is carried out with the actual rain data for the period[
t̂; 2017

]
.

Simulation 4: The forecast in
[
t̂; 2017

]
is done with the average rain data from

the period
[
2009; t̂

]
.

t̂ = 2016 + 8weeks t̂ = 2015 + 8weeks t̂ = 2014 + 8weeks

E1 E2 E1 E2 E1 E2

Simulation 3 0.12 0.12 0.21 0.12 0.3 0.41
Simulation 4 0.26 0.26 0.17 0.15 0.39 0.67

t̂ = 2013 + 8weeks t̂ = 2012 + 8weeks t̂ = 2015 + 24weeks

E1 E2 E1 E2 E1 E2

Simulation 3 0.22 0.18 0.33 0.36 0.17 0.13
Simulation 4 0.19 0.68 0.30 0.56 0.14 0.17

From Table 7.8, and the numerical findings in Appendix 7.C we see that the Simulation 3
has always smaller prediction errors. Of course this is to expect, since more detailed
information about the rainfall in the forecasted period is incorporated. Although the
error is slightly higher, it is remarkable, that peaks of the prediction of Simulation 4 are in
a very good agreement with the peaks in the dengue data, although just average rainfall
data from the past timeset was taken. It is clear that the errors are the higher the more
time has to be predicted or vice versa the less information is used for a prediction.

Remark 7.6.4. Of course for an exact prediction in practice one has to update the data
sets during the time. The model used here is due to several reductions just in a good
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agreement for a short time horizon. Moreover as one can see e.g. in the prediction of
the years 2015 and 2016 in Table 7.7 the peaks of the outbreak can not be seen clearly.
Another reason here could be an uncertainty in the climatic input.

7.7 Conclusions

Modelling dengue using a multi–patch SIR model with a time–dependent transmission
rate has proven to be practical for predicting the intensity of future outbreaks using re-
alistic data sets. Compared to the SIRUV model, this model does not require explicit
mosquito dynamics and is therefore subject to only a few unknown variables. The param-
eters to be adjusted allow conclusions about the periodic behavior of the vector population
size and the associated influence of precipitation on the number of dengue cases. In addi-
tion, we obtain information on realistic estimates of the number of unreported cases and
the influence of precipitation on the reproduction of mosquitoes. Obviously, this applica-
tion is strongly dependent on the quality of the available disease, weather and commuting
data sets. This underlines the importance of a complete and accurate collection of valid
data in order to make accurate forecasts. It should also be noted that the application of
a SIR model is only suitable for short–term applications, which is why in practice the
data should always be updated and the model continuously adapted for a short previous
period of time. Due to the similarities to other vector–borne diseases, an application of
the model to Malaria or ZIKA is conceivable. Pontryagin’s maximum principle proved to
be quite suitable to fit the parameters of the model to the data. In further research, this
optimal control methods should be used to derive optimal vector control or information
campaigns within the population to contain future dengue outbreaks. In this context,
the multi–patch SIR model provides the basis for optimizing these control methods in
the individual districts. Especially the commuter movements between the patches can be
investigated regarding their influence on control methods and the spread of the disease
with the aim to plan and implement feasible and affordable control campaigns.
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Appendix

7.A Appendix A: Reduction of the SIRUV to a SIR model

The SIRUV model given by equation (7.4) serves as basis for the development of the
reduced SIR model. The following procedure is based on the research on time–scale
separation by Rocha et al. [37].

Table 7.9: Assumed parameter sizes of the SIRUV model with t in years. The expressions
ck are expected to be constant in the time–scale separation [10, 50].

Parameter Meaning

µ = 1
69 Human death and birth rate (average life expenctancy ≈ 69 years)

α = 26 Human recovery rate (≈ two weeks)

β̂i = c1α Transmission rate between infected vector and human (unknown)
ν = 26 Mosquito death and birth rate (average life expectancy ≈ 2 weeks)
ϑi = c2ν Transmission rate between infected human and uninfected vector

(unknown)
Ni0 = c3106 Human population size (depends on investigated region)
Mi0 = c4Ni0 Average mosquito population size (unknown)
ω = 2π Periodical frequency of vector population size
χi < 5 Intensity of periodical variation within the mosquito population

(< 100%)

Remark 7.A.1. The parameters chosen throughout our study are those from [37]. Since
our model is based on the model in this paper, to have a comparable setting it is in
our opinion reasonable to use the same parameter set. Compare for other parameters as
e.g. life expectancy also [10, 50].

For χi it is assumed to be less than 5 to generate a maximally doubling of the mosquito
population sizes since

maxt∈Re
χi
ω

sin(ω(t−tM )) = e
χi
ω

and χi = ln(2)ω = 4.36 solves the equation

2Mi0 = Mi0e
χi
ω .

To be able to perform time–scale separation the model (7.7) is simplified by an IVM model
with adapted parameters.

dIi
dt

= (Ni − Ii)
n∑
j=1

pij
β̂j
Mj0

Vj − (α+ µ) Ii , Ii0 ≥ 0 , (7.15a)

dVi
dt

=
ϑi
Ni

(Mi − Vi)
n∑
j=1

pjiIj − νVi , Vi0 ≥ 0 , (7.15b)

dMi

dt
= χicos(ω (t− tM ))Mi , Mi0 ≥ 0 . (7.15c)

111



7 Appendix

In this new system, the assumed recovery rate lies in the range of years, e.g. α = 1
10 .

Supposing that the parameters of the human dynamics are now in a similar magnitude of
10−1 and the vector dynamics of 101, we conclude that the vector dynamics Vi act much
faster on the time–scale t compared to the human dynamics Ii. The size ratio between
the parameters in the human and vector dynamics is exploited as follows

ε =
µ

ν
=

1

69 · 26
= 5.6 · 10−4 .

We define ν = ν
ε and ϑi = ϑi

ε which delivers ϑi = ϑiε = ϑi
ν
ν . Consequently, equation

(7.15) can be expressed using

dIi
dt

= (Ni − Ii)
n∑
j=1

pij
β̂j
Mj0

Vj − (α+ µ) Ii , (7.16a)

dVi
dt

=
1

ε

 ϑi
Ni

(Mi − Vi)
n∑
j=1

pjiIj − νVi

 , (7.16b)

dMi

dt
= χicos(ω (t− tM ))Mi . (7.16c)

The solutions Ii(t) and Vi(t) depend not only on the time variable t but also on the
parameters and explicitly on ε. Thus the behavior of Ii(t, ε) and Vi(t, ε) for small ε has to
be examined around ε = 0. We develop a power series similar to the structure of a Taylor
series

Ii(t, ε) = I
(0)
i + εI

(1)
i +O(ε2) , (7.17a)

Vi(t, ε) = V
(0)
i + εV

(1)
i +O(ε2) , (7.17b)

with Ii(t, 0) = I
(0)
i and Vi(t, 0) = V

(0)
i . The derivatives of (7.17) with respect to t provide

dIi(t, ε)

dt
=

dI
(0)
i

dt
+ ε

dI
(1)
i

dt
+O(ε2) , (7.18a)

dVi(t, ε)

dt
=

dV
(0)
i

dt
+ ε

dV
(1)
i

dt
+O(ε2) , (7.18b)

and by combining equations (7.16), (7.17) and (7.18) we get with [37]

dIi(t, ε)

dt
=

(
Ni − I(0)

i

) n∑
j=1

pij
β̂j
Mj0

V
(0)
j − (α+ µ) I

(0)
i +O(ε1) , (7.19a)

dVi(t, ε)

dt
=

1

ε

 ϑi
Ni

(
Mi − V (0)

i

) n∑
j=1

pjiI
(0)
j − νV

(0)
i

+O(ε0) , (7.19b)

dMi

dt
= χicos(ω (t− tM ))Mi . (7.19c)

In addition, we define a fast (mosquito) time–scale by t̃ = t
ε and calculate the derivations
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with respect to t̃

dIi(t, ε)

dt̃
= ε

dIi(t, ε)

dt

= ε

(Ni − I(0)
i

) n∑
j=1

pij
β̂j
Mj0

V
(0)
j − (α+ µ) I

(0)
i

+O(ε2) , (7.20a)

dVi(t, ε)

dt̃
= ε

dVi(t, ε)

dt
=
ϑi
Ni

(
Mi − V (0)

i

) n∑
j=1

pjiI
(0)
j − νV

(0)
i +O(ε1) , (7.20b)

dMi

dt̃
= ε

dMi

dt
= εχicos(ω (t− tM ))M(t) . (7.20c)

Comparing equal orders of ε in (7.20) we get in leading order O(ε0)

dI
(0)
i

dt̃
= 0 ,

dV
(0)
i

dt̃
=

ϑi
Ni

(
Mi − V (0)

i

) n∑
j=1

pjiI
(0)
j − νV

(0)
i ,

dMi

dt̃
= 0 .

Hence, I
(0)
i and Mi are independent of t̃ and for V

(0)
i we get an inhomogeneous ODE

dV
(0)
i

dt̃
= −

 ϑi
Ni

n∑
j=1

pjiI
(0)
j (t̃0) + ν


︸ ︷︷ ︸

=ai

V
(0)
i (t) +

ϑi
Ni
Mi(t̃0)

n∑
j=1

pjiI
(0)
j (t̃0)︸ ︷︷ ︸

=bi

which can explicitly be solved for Vi0 = V
(0)
i (t̃0) by

V
(0)
i (t) = exp

(
−ai

t− t0
ε

)
·
(
Vi0 −

bi
ai

)
+
bi
ai
,

where we replaced t̃ again by t
ε . For t → ∞ the function V

(0)
i (t) achieves exponentially

fast its equilibrium V ∗i since ai
ε � 1

V ∗i =
bi
ai

=

ϑi
Ni
Mi(t̃0)

∑n
j=1 pjiI

(0)
j (t̃0)

ϑi
Ni

∑n
j=1 pjiI

(0)
j (t̃0) + ν

.

On the slow time–scale t we use I
(0)
i (t0) = I

(0)
i (t̃0) and V

(0)
i (t0) = V ∗i as initial conditions

and equation (7.19b) in leading order O(ε−1) provides

0 =
ϑi
Ni

(
Mi − V (0)

i

) n∑
j=1

pjiI
(0)
j − νV

(0)
i

and hence

V
(0)
i (t) =

ϑi
Ni
Mi(t)

∑n
j=1 pjiI

(0)
j (t)

ϑi
Ni

∑n
j=1 pjiI

(0)
j (t) + ν

.
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By using this expression for V
(0)
i in (7.19a) we obtain again in leading order O(ε0)

dI
(0)
i

dt
=

(
Ni − I(0)

i

) n∑
j=1

pij β̂j
Mj0

ϑj
Nj
Mj(t)

ϑj
Nj

∑n
k=1 pkjI

(0)
k (t) + ν

n∑
k=1

pkjI
(0)
k (t)


− (α+ µ) I

(0)
i .

Since
∑n

k=1 pkjI
(0)
k (t)� Nj and ϑj � 1 the expression

ϑj
Nj

∑n
k=1 pkjI

(0)
k (t) can be neglected

in the denominator which means that

β̂j
Mj0

ϑj
Nj
Mj(t)

ϑj
Nj

∑n
k=1 pkjI

(0)
k (t) + ν

≈
β̂j
Mj0

ϑj
Nj
Mj(t)

ν
=

1

Nj
· β̂jϑj

ν
· Mj(t)

Mj0
.

We define time–dependent transmission rates by

βj(t) =
β̂jϑj
ν
· Mj(t)

Mj0
=
β̂jϑj
ν

e
χj
ω

sin(ω(t−tM ))

and finally obtain

dI
(0)
i

dt
=
(
Ni − I(0)

i

) n∑
j=1

(
pij
βj(t)

Nj

n∑
k=1

pkjI
(0)
k (t)

)
− (α+ µ) I

(0)
i .

This result provides the approach to the incidence term of our SIR model in (7.1). Using

the substitutions βj0 =
β̂jϑj
ν and βj1 =

χj
ω delivers

βj(t) = βj0 e
βj1 sin(ω(t−tM )) ≈ βj0 (1 + βj1sin (ω (t− tM ))) . (7.21)

It should be noted that we reduced the number of the 4n unknown parameters β̂j , ϑj ,
χj and Mj0 to the 2n parameters βj0 and βj1. Additionally, we forego explicit mosquito
dynamics.

Remark 7.A.2. The time scale separation results in a Holling–type II functional response
for V (I) as a function of the infected humans. This can be reduced further to a linear
relation in human SIR models on which the following analysis of data is based. The
last reduction, i.e. V (I) → I however holds just in reasonable paramater regions in the
SIRUV model. Indeed it holds when the endemic stationary state is in order of the small
parameter µ. In an SISUV model, where the stationary state is of order one this is not
the case.

7.B Appendix B: Detailed description of solving the optimal
control problem in Section 7.5

To solve the optimization problem with a Lagrange function L : Rl × C1(D,R6n)→ R we
implement adjoint functions λSi , λIi , λRi ∈ C1(D,R) as Lagrange multipliers. In order to
simplify the notation we define the functions x, λ ∈ C1

(
D,R3n

)
and g : D× C1(D,R3n)×

Rl → R3n with

x = (S1, ..., Sn, I1, ..., In, R1, ..., Rn)T ,

λ = (λS1 , ..., λSn , λI1 , ..., λIn , λR1 , ..., λRn)T ,

g = (gS1 , ..., gSn , gI1 , ..., gIn , gR1 , ..., gRn)T ,
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whereby gSi , gIi and gRi symbolize the right sides of the ODEs in (7.12). Finally, the
Lagrange function is defined by

L (u, x, λ) =
n∑
i=1

∫ t1

t0

(
γIi(t)− Idi (t)

)2
maxt∈DI

d
i (t)

dt+

(
‖u‖
N

)2

+

∫ t1

t0

λ(t)T
(
g(t, x(t), u)− dx(t)

dt

)
dt . (7.22)

The first order necessary optimality condition for a minimum (u∗, x∗, λ∗) is fullfilled if

∇L (u∗, x∗, λ∗) = 0

holds true. Solving ∂L
∂xν

= 0 via Gâteaux derivative delivers the adjoint ODEs

dλSi
dt

= µλSi +

 n∑
j=1

(
pij
β(t)

Nj

n∑
k=1

pkjIk

)λSi −

 n∑
j=1

(
pij
β(t)

Nj

n∑
k=1

pkjIk

)λIi ,

dλIi
dt

=

n∑
j=1

(
pij
β(t)

Nj

n∑
k=1

pkjSkλSk

)
−

n∑
j=1

(
pij
β(t)

Nj

n∑
k=1

pkjSkλIk

)

+ (α+ µ)λIi − αλRi −
2γ
(
γIi − Idi

)
maxt∈[t0,t1]I

d
i (t)

,

dλRi
dt

= µλRi ,

0 = λSi(t1), λIi(t1), λRi(t1) , (7.23)

and through the optimal conditions based on Pontryagin’s maximum principle we obtain
the transversality conditions in (7.23), see [26, 32]. Furthermore, ∂L

∂λν
= 0 leads to the

ODEs in (7.12). The gradient of L respect to u is given by

∂L
∂uι

= uι
2

N2
+

∫ t1

t0

∂β(t)

∂uι

n∑
i=1

(λIi(t)− λSi(t))Si(t)

 n∑
j=1

pij
Nj

n∑
k=1

pkjIk(t)

 dt

for ι = 1, ..., 5 ,

∂L
∂γ

= γ
2

N2
+

n∑
i=1

∫ t1

t0

2Ii
(
γIi − Idi

)
maxt∈DI

d
i (t)

dt ,

∂L
∂Si0

= Si0
2

N2
+ λSi(t0)− λIi(t0) ,

∂L
∂Ri0

= Ri0
2

N2
+ λRi(t0)− λIi(t0) for i = 1, ..., n .

The conjugate gradient method combined with the forward–backward sweep method is
applied to solve the optimization problem numerically until

‖J(ui+1)− J(ui)‖ < TOL

holds true, see e.g. [12, 26, 30, 31].
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7.C Appendix C: Numerical findings and predictions with the
two models

Table 7.10: Results of Simulation 3. The parameter fit (red) is executed in the interval[
2009; t̂

]
. The forecast (blue) based on this is carried out with the actual rain

data for the period
[
t̂; 2017

]
.
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t̂ = 2014 + 8weeks t̂ = 2013 + 8weeks
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t̂ = 2012 + 8weeks t̂ = 2015 + 24weeks
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Table 7.11: Results of Simulation 4. The forecast (blue) in
[
t̂; 2017

]
is done with the

average rain data from the period
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]
in which the parameter fit (red) is

also carried out.
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t̂ = 2014 + 8weeks t̂ = 2013 + 8weeks
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t̂ = 2012 + 8weeks t̂ = 2015 + 24weeks
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8 Research Paper IV: Early Stage
COVID–19 Disease Dynamics in Germany:
Models and Parameter Identification

Thomas Götz Peter Heidrich

The paper Early Stage COVID–19 Disease Dynamics in Germany: Models and Parameter
Identification by Thomas Götz and Peter Heidrich was first published as a preprint on
medRxiv (https://doi.org/10.1101/2020.04.23.20076992). The peer–reviewed ver-
sion is published on Journal of Mathematics in Industry, Vol. 10, Springer Open, 2020
(https://doi.org/10.1186/s13362-020-00088-y). The layout of the paper is adapted
to the present thesis.

Idea and organization were initiated by Thomas Götz. He contributed the sections
Introduction, Mathematical model and A few analytical considerations. Peter Heidrich
did the numerical programming with the calculations and the presentation of these in
the sections Adjoint equations and optimization and Simulation results. The two authors
complemented each other in the respective sections.

8.1 Abstract

Since the end of 2019 an outbreak of a new strain of coronavirus, called SARS–CoV–2, is
reported from China and later other parts of the world. Since January 21, World Health
Organization (WHO) reports daily data on confirmed cases and deaths from both China
and other countries [17]. The Johns Hopkins University [3] collects those data from vari-
ous sources worldwide on a daily basis. For Germany, the Robert–Koch–Institute (RKI)
also issues daily reports on the current number of infections and infection related fatal
cases [12]. However, due to delays in the data collection, the data from RKI always lags
behind those reported by Johns Hopkins. In this work we present an extended SEIRD–
model to describe the disease dynamics in Germany. The parameter values are identified
by matching the model output to the officially reported cases. An additional parameter
to capture the influence of unidentified cases is also included in the model.

Keywords: COVID–19, Epidemiology, Disease dynamics, SEIRD–model

8.2 Introduction

In December 2019, first cases of a novel pneumonia of unknown cause were reported from
Wuhan, the seventh–largest city in China. In the meantime, these cases have been identi-
fied as infections with a novel strain of coronavirus, called SARS–CoV–2 and the disease
it causes is called coronavirus disease 2019 (COVID–19). At the beginning of January
2020, the virus spread over mainland China and reached other provinces. Increased travel
activities due to the Chinese new year festivities supported the expansion of the infection.
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Since 21 January, WHO’s daily situation reports contain the latest figures on confirmed
cases and deaths, see [17]. The first COVID–19 case in Germany was reported in late Jan-
uary 2020 in a company close to Munich, Bavaria. Later cases were imported by travelers
from China, Iran or Italy as well as tourists returning from ski holidays in the Austria and
Italy. By 1 March 2020 more than 100 cases were reported in Germany and since than the
number of cases began to rise exponentially. The first deaths were reported on 9 March
2020 [12, 16]. By 16 March 2020 the federal government introduced first measures to
reduce the spread of the disease: Schools, kindergartens and universities were closed. On
22 March these measures were tightened by implementing a national curfew and contact
ban. People are advised to stay at home, leaving only for work related activities, necessary
shopping, medical treatment or sports. All this should not be done in groups of more than
two persons if they do not belong to the same household [1].

Our work is based on the data reported by Johns Hopkins University [3]. We refrain
from using the official data from the Robert–Koch–Institute [12], since they suffer from a
delay by several days due to the more complicate way of aggregating those data. For a
detailed explanation of the difference between the data reported by Johns Hopkins and the
Robert–Koch Institute we refer to the information given on the webpage of the Robert–
Koch–Institute, see [13]. Johns Hopkins University continuously collects the data from
internet queries at various sources (local health authorities, newspapers, etc.) whereas the
Robert–Koch–Institutes collects the data that are reported for the local health authorities
to the district level, then state level and finally aggregates them to the federal statistics.
Hence these data lag several days behind the ones collected by Johns Hopkins University.

The paper is organized as follows: In Section 8.3 we describe the model and the pa-
rameter identification problem. Our models consists of three variants of a five compart-
ment SEIRD–system without demographic terms, where the transmission rate is either
fixed (8.1) or time–dependent (8.3) and (8.4). The fatalities are either described by an
ODE, see models (8.1) and (8.3), or via a delay term in model (8.4). In the parameter
estimation problem, we determine the transmission rate, detection rate and lethality to-
gether with the initial values for the exposed and infected compartment. In Section 8.4 we
discuss the sensitivity of our model with respect to detection rate. Section 8.5 is devoted
to the adjoint equations used for solving the optimization problem. The simulation results
are presented in Section 8.6. Here we do compare the results obtained from the three
models presented in Section 8.3.

8.3 Mathematical model

To model the dynamics of the spread of COVID–19 incidences, we propose a hierarchy of
SEIRD models. For details regarding the original SIR– and SEIR–model we refer to
classical works on mathematical epidemiology, e.g [7]. For our basic SEIRD–model, the
total population of Germany with N ∼ 83.000.000 individuals is subdivided in to suscep-
tibles S, exposed E, infected I, recovered R and deaths D. The susceptibles constitute the
reservoir of persons that are not yet infected with SARS–CoV–2. After infection suscepti-
ble become exposed meaning that they already carry the virus but are not yet infectious.
With a rate ϑ exposed individuals become infectious and transmit the virus with rate β
to susceptibles. An infected individual loses infectivity with γ and has a probability µ
of dying due to the disease [18]. Figure 8.2 shows the transmission structure. By C we
denote all infected cases, independent of their current status. This artificial compartment
is later on used to compare with the total number of registered cases reported by Johns
Hopkins or RKI.
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Figure 8.1: Case numbers in Germany from 1 March until 7 April 2020, as reported by
Johns Hopkins University [3]. The initial time point is chosen as 1 March,
since then the number of registered infections exceeds 100 cases.
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Figure 8.2: Transmission diagram for the basic SEIRD–model (8.1). The artificial com-
partment C contains all infected cases, i.e. current active infections, recovered
and deaths.
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The resulting system of ordinary differential equations (ODE) for the above described
SEIRD–model reads as

dS

dt
= − β

N
SI , S(t0) = S0 := N − E0 − I0 , (8.1a)

dE

dt
=

β

N
SI − ϑE , E(t0) = E0 , (8.1b)

dI

dt
= ϑE − γI , I(t0) = I0 , (8.1c)

dR

dt
= (1− µ) · γI , R(t0) = 0 , (8.1d)

dD

dt
= µ · γI , D(t0) = 0 . (8.1e)

The starting time t0 is chosen as 1 March and the initial conditions for the recovered and
dead compartment are assumed to be zero, since in Germany the first COVID–19 related
death was recorded on 9 March. Also we may assume that the number of recovered
individuals by 1 March is negligible. In the sequel, we will also consider two refined
versions of the above basic model. At the onset of the disease, the numbers of exposed,
infected, recovered and dead are still small and the number of susceptibles is approximately
equal to the entire population N . In this setting, the EI–part of the model reduces to(

E
I

)′
=

(
−ϑ β
ϑ −γ

)
·
(
E
I

)
.

The maximal eigenvalue λ of this linear system determines the initial growth rate and is
given by

λ =
1

2

(
−(ϑ+ γ) +

√
(ϑ− γ)2 + 4ϑβ

)
and the doubling time T2 equals

T2 =
ln 2

λ
.

Figure 8.3 depicts the dependence of the doubling time on the transmission rate β. As of
mid April, the doubling time in Germany is approximately 14 days compared to 2.5 days
by mid March.

In the basic model (8.1), the transmission rate β is assumed to be fixed. The German
state and federal governments introduced several measures to slow down the spread of the
disease. Similar measures are nowadays taken in almost every country worldwide. As of
16 March schools, kindergartens and universities were closed and on 22 March a general
contact ban was enforced in Germany. Both measures aim at reducing the transmission
rate β. To include this into the basic model (8.1), we also consider an alternative model
for the transmission rate β: We assume β as a piecewise constant function on the time
intervals prior to any measures, (until 15 March), after school closings (between 16 and
22 March) and after the contact ban (after March 22)

β(t) =


β0 : t < 16 March

β1 : 16 March ≤ t ≤ 22 March

β2 : t > 22 March .

(8.2)
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Figure 8.3: Plot of the doubling time T2 in days versus the transmission rate β for fixed
values ϑ = 1/2 and γ = 1/10. A reduction of the transmission rate from
β = 0.8 to β = 0.2 accounts for a slow down of the infection from doubling
time 2 days to 10 days.

The resulting time–dependent SEIRD–model reads as

dS

dt
= −β(t)

N
SI , S(t0) = S0 := N − E0 − I0 , (8.3a)

dE

dt
=
β(t)

N
SI − ϑE , E(t0) = E0 , (8.3b)

dI

dt
= ϑE − γI , I(t0) = I0 , (8.3c)

dR

dt
= (1− µ) · γI , R(t0) = 0 , (8.3d)

dD

dt
= µ · γI , D(t0) = 0 . (8.3e)

Setting β := β0 = β1 = β2, the time–dependent model reduces to the basic one.

In order to validate our models and to identify the parameters involved therein, both the
registered number of infections and the registered number of COVID–19 related deaths
are important indications. The number of registered deaths is probably considerably
more reliable, since the number of registered infections depends on the number of tests
conducted and the dark figure of undetected, mostly asymptomatic cases, is assumed to be
remarkably large [6]. We will discuss this point later in more detail. In the previous basic
or time–dependent SEIRD–model, the actual increase of the disease related deaths dD

dt is
assumed to be proportional to the current number of infected persons. The Robert–Koch–
Institute specifies an average of 10 days between the onset of symptoms and admission to
the intensive care unit [11]. Therefore, we assume τ = 14 for the time between the onset
of infectiousness and death. In order to include this time lag into our model, we introduce
a delay–term into the time–dependent model and obtain the final delayed time–dependent
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model:

dS

dt
= −β(t)

N
SI , S(t0) = S0 := N − E0 − I0 , (8.4a)

dE

dt
=
β(t)

N
SI − ϑE , E(t0) = E0 , (8.4b)

dI

dt
= ϑE − γ [(1− µ)I + µI(t− τ)] , I(s) = I0(s) for s ≤ t0 , (8.4c)

dR

dt
= (1− µ) · γI , R(t0) = 0 , (8.4d)

dD

dt
= µ · γI(t− τ) , D(t0) = 0 . (8.4e)

Note, that for solving this delay differential equation (DDE) we need an initial history of
the infected compartment, i.e. values I0(s) for t0 − τ ≤ s ≤ t0. In all the three models,
the parameters ϑ = 1/2 [days−1], γ = 1/10 [days−1] are assume to be fixed and resemble
a latency period of 2 days and a recovery period of 10 days, see [12, Situation report 31
March 2020]. The parameters in the transmission rate, i.e. β, or β0, β1, β2 the lethality
µ and the initial values E0, I0 resp. the initial history I0(s) for the exposed and infected
compartment are yet unknown to us. We will identify them together with the detection
rate δ by matching the model output to the given data. The detection rate δ corresponds
to the fraction of infected individuals which are positively tested for SARS–CoV–2 and
hence appear in the official recordings. Various sources speculate that this detection rate
is in the order of magnitude of 10–20% meaning that the true number of infected 5 – 10
times larger than the number published in the official statistics, see [6].

To match the model output and the reported data we use a least squares approach. Let
u = (β, δ, µ,E0, I0) resp. u = (β0, β1, β2, δ, µ,E0, I0) denote the unknown model parameters
to be determined. Furthermore, let Y (t) and Z(t) denote the data for the cumulated
infected and dead cases at time t reported by Johns Hopkins University. The deviation
between the model and the data is measured by the cost functional

J(u) :=
‖δ(I +R) +D − Y ‖2L2

‖Y ‖2L2

+ c1
‖D − Z‖2L2

‖Z‖2L2

+ c2 ‖u‖2

=
1

‖Y ‖2L2

(
‖δ(I +R) +D − Y ‖2L2 + ω1 ‖D − Z‖2L2 + ω2 ‖u‖2

)
, (8.5)

where ‖f‖2L2 :=
∫ TFit

t0
f(t)2 dt denotes the square of the L2–norm of the function f on the

interval [t0, TFit] and ω1 = c1
‖Y ‖2

L2

‖Z‖2
L2

as well as ω2 = c2 ‖Y ‖2L2 . For the given data we have

‖Y ‖2L2 ' 1.2 · 1011 and ‖Z‖2L2 ' 6.5 · 108, hence ω1 ' c1 · 185. The cumulated infected
Y , i.e. total positive tests, are to be matched in the SEIRD–model to those individuals
who had been infected until time t, i.e. the sum of the infected I, recovered R and deaths
D. To account for the uncertainty in the true number of infected and recovered cases, we
multiply both compartments by the detection rate δ, which is itself part of the parameters
to be identified. For the deaths we assume no undetected cases. By TFit we denote the
time horizon used for the comparison between the model and the data. The regularization
term ω2 ‖u‖2 is included to ensure the convexity of the cost–functional. The weighting
parameters c1, c2 and hence ω1, ω2 > 0 allow to balance the contributions from the least
squares error in the fatalities and from the size of the parameter values themselves to
the least squares error in the infected cases. The weight c1 for the fatal cases allows to
compensate the different order of magnitude between the infected cases and the fatal cases,
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typically c1 ' 2–3 leading to ω1 ' 500 . The weight c2 is chosen small, such that the
overall cost functional is still dominated by the least square fit between the model output
and the given data.

The parameters u∗ themselves are obtained from minimization problem

min
u
J(u) subject to one of the ODE–systems (8.1),(8.3) or (8.4) , (8.6a)

u∗ = argminu J(u) . (8.6b)

8.4 A few analytical considerations

Due to the absence of demographic terms, our basic model (8.1) does not allow other
equilibria besides the trivial disease free equilibrium X0 = (N, 0, 0, 0, 0). Since we focus
only on the short–time behavior of the epidemics, demographic terms are excluded and
equilibria do not play any important role.

An important issue is the question of wether we can identify the detection rate and
lethality during the take–off period of the epidemics? The only data available for parameter
identification are the total number of registered cases C = I + R + D and the deaths D.
The total registered cases heavily depend on the number of tests conducted. If a person is
infected, but not tested, this person will not appear in the official statistics. Hence, there is
a presumably large dark figure in the officially recorded data. Our model parameter δ takes
this into account. The other, maybe more reliable, available data are the recorded deaths.
Here we may assume that all COVID–19 related deaths are diagnosed and hence there is
no dark figure in the D–compartment. A recent analysis by the Federal Statistical Office
on the excess mortality in Germany for March and April 2020 confirms this assumption,
see [2]. For other countries this assumption might be questionable, since they suffered
from major COVID–19 outbreaks in care homes that did not enter the official statistics,
e.g. in the UK, see [14]. However, one scenario could be possible. A large dark figure in
the entire cases, i.e. a small detection rate δ and a very small lethality could result in the
same or at least similar observed data as a moderate or even small dark figure and hence
large detection rate δ combined with a higher lethality rate. In that setting a simultaneous
identification of both, the detection rate δ and the lethality µ could be difficult due to
their counteracting effects.

In order to investigate this scenario, we consider the simultaneous effect of the detection
rate δ scaling both the initial values of the E and I compartment to account for undetected
cases together with a lethality δµ. Removing the S–compartment by setting S = N −E−
I −R−D, the basic SEIRD–system (8.1) reads as

dE

dt
=

β

N
(N − E − I −R−D)I − ϑE , E(t0) = E0/δ ,

dI

dt
= ϑE − γI , I(t0) = I0/δ ,

dR

dt
= (1− δµ) · γI , R(t0) = 0 ,

dD

dt
= δµ · γI , D(t0) = 0 .

The sensitivities ΣE := ∂δE and ΣI ,ΣR,ΣD of the solution with respect to the detection
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rate satisfy the system

Σ′E =
β

N
(N − E − 2I −R−D)ΣI − ϑΣE −

β

N
I(ΣE + ΣR + ΣD) ,

ΣE(t0) = −E0/δ
2 , (8.7a)

Σ′I = ϑΣE − γΣI , ΣI(t0) = −I0/δ
2 , (8.7b)

Σ′R = (1− δµ)γΣI − µγI , ΣR(t0) = 0 , (8.7c)

Σ′D = δµγΣI + µγI , ΣD(t0) = 0 . (8.7d)

In Figure 8.4 we show the relative sensitivities ΣC/C and ΣD/D for detection rates δ =
0.1, 0.2 and 0.33.

The chosen initial values are E0 = 150 and I0 = 100 (detected) cases at day 0. All
other parameters resemble the assumed values for Germany. Note, that at the onset
of the epidemics, i.e. in case of δ = 0.1 for t . 30 and for δ = 0.2, 0.33 even for t .
40, the sensitivities are very small and hence the solution of the SEIR–model is almost
independent of the particular value of the detection rate δ. Hence δ cannot be identified
from the observed data in a reliable manner. To illustrate these findings, we consider
a linearization of a simplified SIR–model during the initial phase of the epidemics. We
neglect the exposed compartment and assume that at the initial phase, the number of
susceptibles is approximately equal to the entire population. Hence we get the linear
system

Î ′ = (β − γ)Î , Î(0) =
1

δ
I0 ,

D̂′ = δµγÎ , D̂(0) = 0 ,

with the solution

D̂(t; δ) =
µγ

β − γ

(
e(β−γ)t − 1

)
I0 .

In this linearized setting, the approximation D̂ for the dead compartment is independent
of the detection rate δ. From the graphs in Figure 8.4 one can conclude, the a significant
dependence of the detected or dead compartment C resp. D is given only after the initial
take–off period of the epidemic. In the setting of Germany, this implies, that during the
month of March a reliable identification to the detection rate might not be possible.

8.5 Adjoint equations and optimization

In order to solve the minimization problem (8.6), we use the adjoint equations, for details
see [4, 15]. We introduce the Lagrangian

L(t, x, u, z) = J(u) +

∫ TFit

t0

z(t)T
(
g(t, x, u)− dx

dt

)
dt .

Here z = (zS , zE , zI , zR, zD) denotes the adjoint functions to the state variable x =
(S,E, I,R,D) and g(t, x, u) denotes the right hand side of the ODE resp. DDE system.
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Figure 8.4: Relative sensitivities of C (left) and D (right) with respect to the detection
rate δ for δ = 0.1 (blue solid), δ = 0.2 (red dashed) and δ = 0.33 (green dash–
dotted). At the onset of the epidemics, the sensitivities are extremely small,
hence no reliable identification of δ is possible.

The gradient of L with respect to the unknown parameters u is given by

∂L
∂βi

= 2c2βi +
1

N

∫ TFit

t0

∂β(t)

∂βi
SI (zE − zS) dt , i = 0, 1, 2 ,

∂L
∂δ

= 2c2δ +
2

‖Y ‖2L2

∫ TFit

t0

(I +R) [δ(I +R) +D − Y ] dt ,

∂L
∂µ

= 2c2µ+

∫ TFit

t0

γI (zD − zI) dt ,

∂L
∂E0

= 2c2E0 + zE(t0)− zS(t0) ,

∂L
∂I0

= 2c2I0 + zI(t0)− zS(t0) .

Note, that in the case β = β0 = β1 = β2 we have ∂β(t)
∂β = 1. By adding the time delay, we

obtain

∂L
∂µ

= 2c2µ+

∫ TFit

t0

γI (zI − zR) + γI (t− τ) (zD − zI) dt .

The adjoint system reads as

dzS
dt

=
β(t)

N
I (zS − zE) ,

dzE
dt

= ϑ (zE − zI) ,

dzI
dt

=
β(t)

N
S (zS − zE) + γ [zI − zR + µ (zR − zD)]− 2δ

‖Y ‖2L2

[δ(I +R) +D − Y ] ,

dzR
dt

= − 2δ

‖Y ‖2L2

[δ(I +R) +D − Y ] ,

dzD
dt

= − 2

‖Y ‖2L2

[δ(I +R) +D − Y ]− 2c1

‖Z‖2L2

(D − Z) ,
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supplemented by the terminal condition (zS , zE , zI , zR, zD)(TFit) = 0. In the case of the
time delay we receive

dzI
dt

=
β(t)

N
S (zS − zE) + (1− µ) γ (zI − zR)− 2δ

‖Y ‖2L2

[δ(I +R) +D − Y ]

+ µγ [zI(t+ τ)− zD(t+ τ)] · χ[t0,TFit−τ ](t) .

Here χ[a,b](t) denotes the characteristic function of the interval [a, b], i.e. we define χ[a,b](t) =
1 for t ∈ [a, b] and = 0 otherwise.

To solve the optimization problem (8.6) numerically, we apply the Forward–Backward
Sweep method [4] combined with a Quasi–Newton method (BFGS) [9].

In each iteration step the ODEs and DDEs of the state variables and adjoint equations
are solved with Runge–Kutta methods before the corresponding gradient and direction
of descent can be determined. The algorithm stops as soon as the termination condition
‖J(uk+1)− J(uk)‖ < TOL is fulfilled.

As initial values we use β = β0 = β1 = β2 = 0.3 for the transmission rate. This is
justified by the fact that an average Basic Reproduction Number of about R0 = 3 is
assumed and in our basic model we have

R0 =
β

γ
.

Epidemiologically, R0 indicates the number of new infections an infected individual causes
during the infectious period in an otherwise susceptible population. For the sake of sim-
plicity, we assume the same starting value for I0 and E0. This corresponds to the value
at the first data point of our measurement, i.e. 130 registered infected persons on 1st
March. As already mentioned, we assume that for the recovered and deaths at this time
R0 = D0 = 0 holds. The possible problems with the optimization of δ and µ were already
mentioned in the previous section. To increase the probability of generating a global min-
imum, we use n = 1000 normally distributed start values for both parameters fulfilling
δ ∼ N (0.25, 0.252) and µ ∼ N (0.03, 0.032) with δ, µ > 0. The algorithm selects the best
result of these n data fits. The reason for this is the assumption that the proportion of
detected cases is between 1 − 50% and the lethality below 6%. For the case fatality rate
µ we have

Z

Y
≤ µ ≤ Z

Rreported/δ + Z
, (8.8)

where Rreported stands for the reported recovered at time TFit. The approach for this
estimation can be found in [11]. The smaller the detection rate δ, the lower the upper
bound for the case fatality gets.

In case of the time delay we choose as initial history for s ∈ [t0 − τ, t0]

I(s) = I0 exp

(
− ln(0.1)

τ
(s− t0)

)
.

This is justified by the fact that the number of registered cases has increased tenfold during
this period and we assume an exponential growth in this time span.

8.6 Simulation results

To estimate the unknown parameters u, we match the data reported on a daily basis by
Johns Hopkins [3] to our simulation results for a time period starting on 1 March.
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Figure 8.5: Fit of the basic model (8.1) to the data for the period 1 March to 16 March,
i.e. before the onset of containment measures.

The first results in Figure 8.5 show a parameter estimation using the basic model (8.1)
and the time period before the onset of any containment measures, i.e. before the closing
of schools on 16 March. We fitted the parameters β, δ and µ along with the initial values
E0 and I0 over the time period 1 March to 16 March. The initial values E0 and I0 are
also subject to fitting, since the official data does not provide information about the active
infections at a given day. The weight ω2 = 1 to keep the cost functional dominated by
the two least square errors. The other weight is chosen as ω1 = 500 to compensate the
significantly smaller value of the least square error in the fatal cases.

For the given time period of the fit, the model prediction and the observed data are in
good accordance. The estimated parameter values are given in Table 8.1. The detection
rate was estimated as δ = 0.37 implying that the true number of infections exceeds the
registered cases by a factor 3. The transmission rate β = 0.57 accounts for a doubling
time of 2.6 days at the initial, uncontrolled phase of the epidemic in Germany.

In Figure 8.6 we show the results obtained with the time–dependent model (8.3). In
this case, the fitting period equals to the entire simulation period starting from 1 March
to 7 April. The weights ω1, ω2 are identical to the previous simulation. The obtained
transmission rate and according doubling times change from β0 = 0.5232 and T2(β0) = 2.8
days at the initial uncontrolled phase to β2 = 0.18 and t2(β2) = 11.4 days after the contact
ban has been introduced. The effect of the contact ban effectively reduces the transmission
rate by a factor of about 3 and significantly slows down the speed of the epidemics by
increasing the doubling time by a factor 4.

In Figure 8.7 we show the result obtained with the delay model (8.4). For the delay
model, we assume a delay of 14 days between entering the class of infected and death.
Again, we show the simulation results compared to the reported cases for the infections and
deaths. Quite good agreement is found between the model and the simulation for both,
infections and deaths. Compared to the time–dependent model, shown in Figure 8.6,
the delay model agrees better in particular for the fatal cases. In Table 8.1 we have
listed the estimated parameter values in for the three models. We have also included the
normalized L2–difference between the simulation outcome and the given data, i.e. the first
two summands from the cost fuctional (8.5). A t–test revealed that the deviations of the
simulation to the reported data is not normal distributed at a significance level of 5%.

In the simulations the detection rate is found to be 20 − 40%, indicating that the true
number of SARS–CoV–2 infections might be 3−5 times higher that the officially recorded
data suggest. The lethality rate is found to be rather small, taking into account the large
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Figure 8.6: Fit of the time–dependent model (8.3) to the data for the period 1 March to
7 April.
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Figure 8.7: Fit of the delay model (8.4) to the data for the period 1 March to 7 April.

Table 8.1: Optimal parameter values for the three models (8.1), (8.3) and (8.4) obtained
from the minimization problem (8.6).

Parameter β0 δ µ E0 + I0 β1 β2 L2–diff
Fit until Model

16.03.20 basic 0.566 0.372 0.0034 418 — — 0.3771
07.04.20 time–dep 0.523 0.308 0.0087 659 0.3561 0.1788 0.2721
07.04.20 delay 0.553 0.202 0.0389 930 0.3578 0.1415 0.2242
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number of true cases.
Comparing the obtained values for the lethality, the value for the delay–model seems to

be most realistic, since in this model we compare the fatal cases today to the infections
that occurred two weeks ago. The two other models related the fatal cases of today to the
infected cases today, hence to a significantly larger number. Therefore in these to models,
the lethality rate seems to be smaller.

8.7 Conclusions and outlook

We present three SIR–based models for describing the outbreak of the SARS–CoV–2 out-
break in Germany. Besides a standard SEIR–model, we consider an extension taking into
account the effect of social distancing by a time–dependent reduction of the transmission
rate. The third model introduces a delay–term to accurately describe the deaths depend-
ing on infected cases that occurred several days in the past. Comparing the simulation
results to the data published by Johns Hopkins University allows an estimation of the
unknown model parameters. Best results are obtained using the delay equation model. In
this setting, we find a detection rate of about 20% and a lethality of about 4%. The social
distancing measures were leading to an effective reduction of the transmission rate by a
factor 4. That is, after the introduction of the measures roughly just 25% of the social
contact compared to the initial period were leading to infections.
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9 Research Paper V: The COVID–19
Outbreak in Germany — Models and
Parameter Estimation

Peter Heidrich Moritz Schäfer Mostafa Nikouei Thomas Götz

The paper The COVID–19 Outbreak in Germany — Models and Parameter Estimation
by Peter Heidrich, Moritz Schäfer, Mostafa Nikouei and Thomas Götz is published in
the journal Communication in Biomathematical Sciences, Vol. 3, No. 1, 2020 (https:
//dx.doi.org/10.5614%2Fcbms.2020.3.1.5). The layout of the paper is adapted to the
present thesis.

The sections on the Adjoint based approach with its theoretical elaboration, calculation
and evaluation are by Peter Heidrich. Moritz Schäfer delivered the corresponding sections
on the Metropolis algorithm. Thomas Götz provided the idea for the article and took over
the organization and the sections Introduction and Model. The authors complemented each
other in corresponding sections. Mostafa Nikouei was involved in numerous consultative
sessions and provided alternative programming methods via PYTHON, while the results
of the present paper are calculated with MATLAB.

9.1 Abstract

Since the end of 2019 an outbreak of a new strain of coronavirus, called SARS–CoV–2,
is reported from China and later also from other parts of the world. Since 21 January
2020, World Health Organization (WHO) reports daily data on confirmed cases and deaths
from both China and other countries [21]. The Johns Hopkins University [8] collects those
data from various sources worldwide on a daily basis. For Germany, the Robert–Koch–
Institute (RKI) also issues daily reports on the current number of infections and infection
related fatal cases and also provides estimates of several disease–related parameters [16].
In this work we present an extended SEIRD–model to describe these disease dynamics
in Germany. The model takes into account the susceptible, exposed, infected, recovered
and deceased fractions of the population. Epidemiological parameters like the transmis-
sion rate, lethality or the detection rate of infected individuals are estimated by fitting
the model output to available data. For the parameter estimation itself we compare two
methods: an adjoint based approach and a Monte–Carlo based Metropolis algorithm.

Keywords: COVID–19, Epidemiology, Disease dynamics, SEIRD–model, Parameter
estimation, Adjoint equations, Metropolis algorithm.

9.2 Introduction

In December 2019, first cases of a pneumonia of unknown cause were reported from Wuhan,
China. In the meantime, these cases were identified as infections with a novel strain of
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coronavirus, called SARS–CoV–2, and the disease it causes was called Coronavirus Disease
2019 (COVID–19). At the beginning of January 2020, the virus spread over mainland
China and reached other provinces. From 21 January onwards, WHO’s daily situation
reports [21] or Johns Hopkins University [8] (JHU) contain the latest figures on confirmed
cases and deaths for almost all countries. In this work we rely on the data published by
the JHU due to their rapid updates and easy accessibility.

The first COVID–19 case in Germany was reported on 27 January 2020 in Bavaria. Later
cases were imported by travelers from China, Iran or Italy as well as tourists returning from
ski holidays in Austria and Italy. By 1 March 2020, more than 100 cases were reported
in Germany; since then, the number of cases began to rise exponentially. The first deaths
were reported on 9 March [16]. By 16 March, the federal government introduced first
measures to reduce the spread of the disease: schools, kindergartens and universities were
closed. On 22 March, these measures were tightened by implementing a national curfew
and contact ban. People are advised to stay at home, leaving only for work related
activities, necessary shopping, medical treatment or sports [4]. By mid of April, these
mitigation measures showed some success with the number of new infections declining
from its peak of 6,294 on 28 March to less than 1,000 from 2 May onwards. On 6 May,
a relaxation of the imposed restrictions to social and economic life was announced. Since
then, the federal states are progressing at an individual pace to ”normality”.

Asking the population to remain cautious and not to cause a second wave, local gov-
ernments of cities or districts are in charge to reinforce restrictions in case the number
of new infections surpasses the limit of 50 per 100,000 inhabitants within 7 days as of 6
May [2, 3]. Already four days later five districts exceeded this limit; with no measures
reported to alleviate it.

The pandemic continues to spread worldwide (as of June 2020) and the actual possibility
of a second wave demands for models to predict epidemic scenarios for the near and mid
future. The quality of those models heavily relies on the parameters used. In this study
we present SEIRD–models which are some sort of quasi standard in epidemiological
simulations and estimate their parameters by using the available data from the JHU. The
estimation itself is based on a least squares fit between the model output and the reported
data. Here, both the reported infections and the reported fatalities are taken into account.

9.3 Model

Following the classical SIR–models introduced by McKendrick [9] and its every–growing
number of variants (cf. [11] for an overview), we chose an SEIRD–model to describe
the COVID–19 outbreak in Germany. The entire population N is subdivided into five
compartments: susceptibles S, exposed E, infected I, recovered R, and deceased D. The
virus is transmitted from infected persons to susceptible persons at a time–dependent rate
β(t) and after an incubation phase of duration κ−1 exposed individuals get infectious.
Loss of infectivity is gained after γ−1 days and with a probability µ, a patient dies from
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the disease. This leads us to the following five–dimensional ODE system:

S′ = −β(t)

N
SI , S(t0) = S0 = N − E0 − I0 −R0 −D0 > 0 , (9.1a)

E′ =
β(t)

N
SI − κE , E(t0) = E0 ≥ 0 , (9.1b)

I ′ = κE − γI , I(t0) = I0 > 0 , (9.1c)

R′ = (1− µ) γI , R(t0) = R0 ≥ 0 , (9.1d)

D′ = µγI , D(t0) = D0 ≥ 0 . (9.1e)

The starting point t0 is chosen as 1 March as on that date number of reported cases
exceeded 100 cases for the first time, see Figure 9.1.

It is immediate to see that the model (9.1) has non–negative solutions, provided the
initial values are all non–negative. Due to the absence of demographic terms, there is just
the trivial disease–free equilibrium S = N and E = I = R = D = 0. Since the intention
of our model is to provide short– and mid–term simulations, we are not interested in its
long–term behavior and hence possible endemic equilibria are of no concern.

As a variant of the above basic model, we also consider a delayed differential equation
(DDE) version where we introduce a time lag τ between the infected and the deceased
state so that the fraction of people who recover or die from the disease is not attained
from the amount of infectives on the same day, but from the infectives data τ days earlier.
The previous ODE model can thus be seen as a special case of the DDE model with τ = 0.

S′ = −β(t)

N
SI , S(t0) = S0 > 0 , (9.2a)

E′ =
β(t)

N
SI − κE , E(t0) = E0 ≥ 0 , (9.2b)

I ′ = κE − γ
(
(1− µ)I + µI(t− τ)

)
, I(t) = ϕ(t) > 0 , (9.2c)

R′ = (1− µ) γI , R(t0) = R0 ≥ 0 , (9.2d)

D′ = µγI(t− τ) , D(t0) = D0 ≥ 0 . (9.2e)

Here, ϕ : [t0 − τ, t0] → R+ denotes the initial history of the infected required for the
well–posedness of the above delay differential equation. Since the initial value I0 of the
infected at the starting date 1 March is later on subject of the estimation procedure, we
assume the initial history to show some exponential behavior

ϕ(t) := I0 exp

(
− ln(0.1)

τ
(t− t0)

)
for t0 − τ ≤ t ≤ t0.

The transmission rate β(t) can be related to the Basic Reproduction Number R0 via

R0(t) =
β(t)

γ
.

At the onset of the epidemic, the Basic Reproduction Number R0 in Germany was esti-
mated to be R0 ' 2.4–4.1, see [14]. To take the different levels of restriction imposed on
the social and economic life, we assume β(t) as a step function in time:

β(t) :=


β0, t < 16 March

β1, 16 March ≤ t < 22 March

β2, 22 March ≤ t < 20 April

β3, 20 April ≤ t .

(9.3)
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Before the first restrictions were imposed on 16 March, the disease was allowed to spread
almost uncontrolled. After kindergarden, school and university closings on 16 March,
the measures were tightened on 22 March by introducing a contact ban and closing of a
large number of shops and businesses. On 20 April, first relaxations were announced and
public life began to re–increase, but along with compulsory wearing of masks which has
been introduced in late April. For each of these stages we assume an specific contact rate
between individuals and hence different transmission rates βi. The values for the fixed
model parameters are given in Table 9.1.

Table 9.1: Used parameter values.

Parameter Value Unit Reference

N 83,019,213 – [20]
κ 1/3 d−1 [17]
γ 1/10 d−1 [17]
τ > 7 d [17]
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Figure 9.1: Graphs of cumulative infections in Germany according to Johns Hopkins Uni-
versity from March 1st to May 3rd. On the left side with normal scaling and
on the right side in a semi–logarithmic scale.
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Figure 9.2: Graphs of cumulative death cases in Germany according to Johns Hopkins
University from March 1st to May 3rd. The scaling is chosen as in Figure 9.1.
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9.4 Parameter estimation

9.4 Parameter estimation

The unknown model parameter set u is estimated from a least squares fit of the model
output to the given data. Let Y and Z denote the accumulated registered COVID–19
cases or the accumulated COVID–19 deaths in Germany as reported by Johns Hopkins
University, see [8]. The reported cases Y consist of the currently infected cases, the
recovered and the deceased cases. Since by the very nature of the matter, not all infections
are detected, we introduce a detection rate δ. For the currently infected and the recovered
ones, we assume that only this proportion δ is tested and detected and hence appears in
the statistics; however, we assume no undetected deceased cases. Hence we compare the
data Y to δ · (I+R)+D from the model output. To put special emphasis on the fatalities,
we add a term which just compared the reported and the simulated deaths to the cost
functional. As a third contribution we add a regularization term proportional to the norm
of the estimated parameters to attain a convex function and prevent unrealistic outliers.
With this in mind we arrive at the following cost functional:

J(u) :=
‖δ(I +R) +D − Y ‖2L2

‖Y ‖2L2

+
‖D − Z‖2L2

‖Z‖2L2

+ ω ‖u‖22 , (9.4)

where ω > 0 denotes some small weight allowing us to adjust the contribution between
the normalized least squares terms and the regularization term and ‖f(t)‖2L2 =

∫ T
t0
f(t)2dt

denotes the square of the L2–norm of a function f resp. ‖u‖22 =
∑

i u
2
i for the square of

the Euclidean norm of a vector u.
The parameters to be estimated in model (9.1) are the transmission rate, the detection

rate, lethality and the numbers of exposed on 1 March 2020, i.e.

u = (β0, β1, β2, β3, δ, µ,E0) ∈ R7

which is the same parameter set as in model (9.2) with added but fixed time lag τ . For
the model with free and to–be–optimized time lag τ , we have the parameter set

u = (β0, β1, β2, β3, δ, µ, τ, E0, I0) ∈ R9 .

Here, we also estimate the initial number of infected on 1 March to allow for more flex-
ibility of the model. The optimal parameters u∗ are determined by solving the following
minimization problem:

min
u
J(u) subject to ODE (9.1) resp. (9.2) , (9.5a)

u∗ = argminu J(u) . (9.5b)

Table 9.2 shows the planned simulations including constraints for the optimized parameters
in u.

Previous investigations in [7] already give us orders of magnitude for the initial values
of the optimization for βi and δ. For the lethality rate µ we assume the upper limit

µ ≤ Z(T )

R(T )/δ + Z(T )
,

whereby Z(T ) denotes for the death cases and R(T ) denotes the registered recovered
individuals at end time T [15]. This upper limit becomes smaller the fewer COVID cases
are registered, since δ becomes smaller. For our data set we find

µ ≤ 6866

130600 + 6866
≈ 0.05 (9.6)
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Table 9.2: Simulations with the respective constraints of the fitted parameters. In Sim-
ulation 1 no time lag τ is included in the model. The starting values for I0

and R0 are only updated in the first two simulations by division with δ in each
iteration. In Simulation 2 the time lag τ = 11.5 is fixed as a mean value within
the assumed interval. The parameter τ is also fitted in Simulation 3, just like
I0. All other unknown parameters in this table are adjusted in each simulation.

Sim. Model βi δ µ τ E0 I0 R0

1 1 > 0.05 0.05− 0.5 ≤ 0.05 0 > 0 114/δ 16/δ
2 2 > 0.05 0.05− 0.5 ≤ 0.05 11.5 > 0 114/δ 16/δ
3 2 > 0.05 0.05− 0.5 ≤ 0.05 > 7 > 0 > 0 16/δ

based on the registered cases, i.e. this upper limit would match, if δ = 1. Building on the
assumption that less than 50% of cases are detected, we also assume a starting value for
the lethality rate that is less than half of the calculated upper limit of 5%. The order of
magnitude of the time interval between the onset of infectiousness and death is derived
from the investigations in [17]. From the timelines available there we derive τ ∈ (7, 17).
In individual cases this period can be considerably longer, so that τ only represents an
average value in the model. The starting values for I0 and R0 can be taken from the
statistics. Depending on the value of the detection rate, the actual number is calculated
by dividing the measured values for the infected and recovered cases by δ. Regarding
an estimate of the exposed individuals E0 at time t0, we use a derivation using the Basic
Reproduction NumberR0, which indicates how many new infections an infected individual
causes on average during its illness in an otherwise susceptible population. In our model,
the infected persons I0 are at different time stages during their infectiousness. As a mean
value we assume the middle of this time interval. Thus, up to this point in time they could
infect about I0R0/2 persons on average. Depending on the assumed Basic Reproduction
Number, this results in different starting values for E0. The model adaptations are carried
out in the simulations with the values R0 ∈ {3, 4, 5} and it is checked if significant effects
on the other parameters can be found. The selected start values can be seen in Table 9.3.

Table 9.3: Orders of magnitude of the initial values for adapting the model to the available
data.

Param. β0 β1 β2, β3 δ µ τ E0 I0 R0

Init. val. 0.6 0.4 0.1 0.25 0.02 11.5 I0R0/2 114/δ 16/δ

9.4.1 Adjoint based approach

To solve the minimization problem using adjoint functions we introduce the Lagrangian
function

L(u, x, z) = J(u) +

∫ T

t0

z(t) ·
(
g(t, x, u)− dx

dt

)
dt ,

whereby z = (zS , zE , zI , zR, zD) denotes the adjoint function regarding the state variable
x = (S,E, I,R,D) and g(t, x, u) denotes the right side of the ODE resp. DDE system.
It should be noted that within the integral, a scalar product of vectors is calculated. A
critical point (u∗, x∗, z∗) needs to fulfill the necessary optimality condition

∇L (u∗, x∗, z∗) = 0 .
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For precise details of the following procedure, please refer to [10]. Thus we find the gradient
∇uL regarding the parameters in u

∂L
∂βi

= 2ωβi +
1

N

∫ T

t0

∂β(t)

∂βi
SI (zE − zS) dt , i = 0, 1, 2, 3 , (9.7a)

∂L
∂δ

= 2ωδ + 2

∫ T

t0

(I +R)
(
δ(I +R) +D − Y

)
dt , (9.7b)

∂L
∂µ

= 2ωµ+ γ

∫ T

t0

I (zD − zI) dt , (9.7c)

∂L
∂E0

= 2ωE0 + zE(t0)− zS(t0) , (9.7d)

∂L
∂I0

= 2ωI0 + zI(t0)− zS(t0) , (9.7e)

resp. in model (9.2) we obtain, due to the time delay τ ,

∂L
∂µ

= 2ωµ+ γ

∫ T

t0

I (zI − zR) + I (t− τ) (zD − zI) dt , (9.7f)

∂L
∂τ

= 2ωτ + γµ

∫ T

t0

(zI − zD)
dI

dt

∣∣∣∣
t=t−τ

dt . (9.7g)

The adjoint system is given by the equations

dzS
dt

=
β(t)

N
I (zS − zE) , (9.8a)

dzE
dt

= κ (zE − zI) , (9.8b)

dzI
dt

=
β(t)

N
S (zS − zE) + γ (zI − zR + µ (zR − zD))− 2δ (δ(I +R) +D − Y )

‖Y ‖2L2

, (9.8c)

dzR
dt

= − 2δ

‖Y ‖2L2

(
δ(I +R) +D − Y

)
, (9.8d)

dzD
dt

= − 2

‖Y ‖2L2

(
δ(I +R) +D − Y

)
− 2

‖Z‖2L2

(D − Z) , (9.8e)

with the terminal condition (zS , zE , zI , zR, zD)(T ) = 0. By adding the time delay in model
(9.2) we receive

dzI
dt

=
β(t)

N
S (zS − zE) + (1− µ) γ (zI − zR)− 2δ

‖Y ‖2L2

(
δ(I +R) +D − Y

)
+ µγ

(
zI(t+ τ)− zD(t+ τ)

)
· χ[t0,T−τ ](t) . (9.8f)

Here χ denotes the characteristic function

χ[t0,T−τ ](t) =

{
1, t ∈ [t0, T − τ ]

0, else .
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Algorithm 4 Pseudocode for the approach including adjoint functions.

1: u, Y, Z ← load initial values for u and data
2: x, z ← solve ODE resp. DDE for state variable and adjoint function
3: J, ∇J ← compute objective function and gradient regarding u
4: s← compute search direction
5: repeat
6: Jold ← J
7: ϑ← argminϑ>0 ψ(ϑ) with ψ(ϑ) := J (u+ ϑs)
8: u← u+ ϑs
9: x, z, J, ∇J, s← update depending on u

10: until ‖J − Jold‖2 < TOL
11: u∗, x∗, z∗, J∗ ← u, x, z, J

Algorithm 4 represents the basic framework of the iterative optimization via adjoint
functions. To find a preferably global minimum, n multivariate normally distributed start
values for u can be created before step 1. These are then tested one after the other
with the presented procedure and the best result is chosen. The mean values of this
distribution are then the values in Table 9.3, and the variances can be selected according
to the restrictions in Table 9.2. In step 2 the ODE or DDE are solved using Runge–Kutta
methods. Since the state variable is solved forward and the adjoint function backward
regarding the time scale due to the initial and end values, this is also called the forward–
backward sweep method [10]. In MATLAB the ode45 and dde23 solvers are suitable for
this purpose. The search direction s in steps 4 and 9 is selected as Quasi–Newton method
(BFGS). Useful alternative search directions are (conjugated) gradient methods [13]. The
line search procedure in step 7 cannot be solved analytically in our case. A common
method for an appropriate step size ϑ∗ would be a backtracking procedure considering the
Armijo rule [1]. In the present simulation the procedure in Algorithm 5 is applied. It is
based on a Taylor series of ψ(ϑ) := J (u+ ϑs) developed around ϑ0

ψ(ϑ0 + h) = ψ(ϑ0) + ψ′(ϑ0)h+
1

2
ψ′′(ϑ0)h2 + ...

where ψ′, ψ′′, ... stand for the respective derivatives of ψ regarding ϑ. Based on this, we
assume that ψ for ϑ0 = 0 and sufficiently small values for h = ϑ can be approximated by
a parabola with

ψ(ϑ) ' aϑ2 + bϑ+ c , (9.9)

ψ′(ϑ) ' 2aϑ+ b .

Using the information ψ(0) = J(u) and ψ′(0) = ∇J(u) · s associated with a calculated
value ψ(ϑ1) = J (u+ ϑ1s) for small and fixed ϑ1 allows to derive the parameters

c = ψ(0) ,

b = ψ′(0) ,

a =
(
ψ(ϑ1)− ψ′(0)ϑ1 − ψ(0)

)
/ϑ2

1 ,

and, by using the necessary condition ψ′ (ϑ∗) = 0, find the optimum of the parabola in
(9.9)

ϑ∗ = −b/(2a) = −0.5ψ′(0)ϑ2
1/
(
ψ(ϑ1)− ψ′(0)ϑ1 − ψ(0)

)
.
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9.4 Parameter estimation

Figure 9.3: Graphical example to approximate the optimal value for ϑ∗ with parabola
linesearch. The left figure shows that the Armijo rule ψ(ϑ) ≤ ψ(0) + αϑψ′(0)
is not fulfilled for ϑ1 and the new step size is determined using the parabola
minimum ϑ∗. To make sure that the possible minimum of the parabola is
below that line, one chooses a small value for α ∈ (0, 0.5), e.g. α = 1e−4. In
the right figure the Armijo rule is already fulfilled with the fixed increment
ϑ1 which can be adopted. There can also be a parabola maximum, so that
ϑ∗ takes a negative value. However, this is circumvented because in this case,
there is no optimization of the step size.

Algorithm 5 Pseudocode for line search in step 7 of Algorithm 4.

1: u, J(u), ∇J(u), s← input
2: ϑ← 1
3: ψ(0)← J(u)
4: x← compute state variable depending on u+ ϑs
5: ψ (ϑ)← J (u+ ϑs)
6: ψ′(0)← ∇J(u) · s
7: α← value in (0, 0.5)
8: if ψ (ϑ) > ψ(0) + αϑψ′(0) then
9: repeat

10: ϑ← −0.5ψ′(0)ϑ2/
(
ψ (ϑ)− ψ′(0)ϑ− ψ(0)

)
11: x← update depending on u+ ϑs
12: ψ (ϑ)← J (u+ ϑs)
13: until ψ (ϑ) ≤ ψ(0) + αϑψ′(0) (Armijo rule)
14: end if
15: ϑ∗ = ϑ
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The effect of the weight ω can be seen on the diagonal of the Hessian matrix in model
(9.1)

∇2
uL = 2 diag

(
ω, ω, ω, ω, ω +

∫ T

t0

(I +R)2 dt, ω, ω, ω

)
,

whereby all other entries in ∇2
uL are 0. The value of ω directly influences the definiteness

of the Hessian matrix and thus the convexity of the objective function. For this reason,
different values for ω are tested in the simulations.

9.4.2 Metropolis algorithm

According to the procedure described in [19], a Metropolis algorithm (cf. [5, 6, 12]) for
model (9.2) can be set up using the initial history and initial values for the to–be–estimated
parameter set u. Using the parameter set u0 as of Table 9.3 as starting conditions, we
assign random draws unew from a normally distributed (and thus symmetric) proposal
function q, i.e. unew ∼ q(unew|ui−1), in every iteration i.

Using the previously defined J(u) as the target distribution, we calculate the approxi-
mative distribution by

π(u) = c · exp

(
−J(u)2

2σ2

)
, (9.10)

whereby c is an arbitrary value in R. For the acceptance probability, it follows

α(unew|ui−1) = min

{
1,
π(unew) · q(ui−1|ui)
π(ui) · q(ui|ui−1))

}
= min

{
1,
π(unew)

π(ui)

}
. (9.11)

In Eq.(9.11) we can see that the value of c is redundant as it cancels out in the division.

If the sample is accepted with the probability α, we set ui = unew; with the probability
1− α, the sample is declined, meaning u = ui−1 [18, 19].

Algorithm 6 Pseudocode for the Metropolis algorithm.

1: u, Y, Z ← load initial values for u and data
2: x, z ← solve ODE resp. DDE for state variable
3: J ← compute objective function regarding u
4: σ ← standard distribution of the solution, i.e. I +R+D over time
5: s← set step size (standard deviation) for the algorithm, e.g. s := u/100
6: repeat
7: uold ← u from previous draw
8: ûnew ← u ∼ N (uold, s)
9: x, z, J(ûnew)← update depending on u

10: α← min
{

1, exp
(
J(uold)

2 − J(unew)2/2σ2
)}

11: unew ← ûnew with probability α and unew := u with probability 1− α
12: until maximum value of draws is reached
13: u∗, x∗, J∗ ← means of all u, x, J

Algorithm 6 represents the basic framework of the iterative optimization via the Metropo-
lis algorithm. In step 1, the mean values of this distribution as of Table 9.3 are loaded as
well as the variances according to the restrictions in Table 9.2. In step 2 the ODE or DDE
are again solved using Runge–Kutta methods via MATLAB’s ode45 and dde23 solvers.
The step size s in step 5 is selected as a fraction of the initial guess for the parameter
set u so that the parameters are allowed move with an individual ”speed” through the
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search space. In steps 6 to 12, the process is repeated for all draws, the number of draws
in our case is set to 2e + 4. Alternatively, you can think about termination conditions,
but we avoided this due to the random nature of the system. Firstly, the update of the
parameter set u is done by taking a random value out of the normal distribution with
mean u and standard deviation s. After solving the system in step 9, the cost functional
J(u) is compared to the previous cost functional with the function α in step 10 and the
new parameter set is accepted or rejected according to 9.11 in step 11. The estimation
parameter set can then be computed out of the mean value of the draws in step 13. Al-
ternatively, in case of non–convergence, you can compute the best fitting u of the set and
use this as initial value as of step 1 again, to attain better results. Choosing the weights
ω for the target function J(u) was done under two purposes. The first purpose was to
create a convex target function so that the algorithm does not converge to local minima
(see also the previous subsection for this). The Metropolis algorithm allows steps into
parameter sets having a ”worse” target distribution with a certain probability, but it is
still possible that it runs into local but not global minima after a final amount of steps
which justifies the usage of the term ω ||u||2. The other purpose is to not have a too large
ω so that the model–related terms still have a major impact on the outcome of J(u). For
these two regards, we found that a range for ω between ω := 10−9 and ω := 10−7 is decent,
but we will also present the results if we neglect the term with ω, i.e. ω = 0. For values
ω ∈ (0, 10−9) no significant changes in the outcomes to ω = 0 were detected, while for
ω > 10−7 the model–related terms are negligible and the results are quite unrealistic.

9.5 Numerical results and comparison of the algorithms

Table 9.4: Numerical results.

Algorithm Adjoint Metropolis
Simulation 1 2 3 1 2 3

β0 0.60 0.64 0.62 0.55 0.70 0.64
β1 0.50 0.48 0.51 0.49 0.40 0.64
β2 0.101 0.082 0.092 0.113 0.085 0.086
β3 0.099 0.050 0.058 0.054 0.055 0.055
δ 0.31 0.27 0.18 0.29 0.20 0.19
µ 0.015 0.018 0.011 0.013 0.013 0.011
τ 0 11.5 9.0 0 11.5 7.3
E0 + I0 +R0 831 1,105 1,512 1,255 854 1,090

(J(u)− ω ‖u‖22) · 103 23.0 9.1 6.1 18.1 8.2 3.2
Iterations 23 22 31 20000 20000 20000

Table 9.4 shows the respectively best numerical results of the two algorithms. The values
for the transmission parameters βi are of similar magnitudes in almost all simulations and
algorithms. In isolated cases there are more significant deviations, such as β1 = 0.64 in
Simulation 3 of the Metropolis approach or the value β3 = 0.099 in Simulation 1 of the
adjoint approach. The values show that the dynamics of the model at the beginning of
the measurement period with β0 ' 0.6 suggest a much higher R0 than assumed. The
first measures lead to a small to moderate reduction of the transmission rate to β1 ' 0.5,
whereas the following lockdown causes a significant decrease of the transmission rate to
β2 ' 0.1. This also fits with the estimates of the RKI that the Basic Reproduction Number
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is said to have dropped to a value of around R0 ' 1 due to the extensive restrictions [16].
In the last phase of the data adaptation the transfer rate drops to β3 ' 0.06. Here, due
to the loosening of the measurements, one would expect an increase of the transmission
rate. However, these were introduced very slowly and under very strict hygiene measures,
combined with a mask requirement in public spaces, which apparently has decreased the β
value. Regarding the detection rate δ we find values of around 20− 30% in all cases. This
means that according to the simulations, the actual number of infected people is 3–5 times
higher than the official reports. The computed lethality is between 1–2% and is therefore
roughly a third of 5% which was calculated in (9.6) regarding the registered cases at the
end time point T . The average time interval τ between the onset of infectivity and death in
Simulation 3 is between 7 and 10 days. The influence of τ is also evident with regard to the
normalized least squares terms J(u)− ω ‖u‖22. By adding a fixed time lag in Simulation 2
and then adjusting it in the third simulation, a significant improvement is shown in all
algorithms as J(u) is considerably smaller. Regarding the magnitudes of the least squares
terms, the algorithms show similar values in comparison to each other and lead to useful
adjustments with minor deviations of the model from the available data sets. This is also
illustrated by the graphical results which are shown in Appendices 9.A and 9.B. The sum
of the initial values E0 +I0 +R0 lies within a realistic range at ' 1000. Thus, the unknown
initial value for the exposed individuals E0 is approximately in the order of magnitude of
the infected I0 with an upward tendency, as expected. The variation regarding the initial
value for E0 = I0R0/2 in the optimization does not lead to significant differences in the
results when R0 ∈ {3, 4, 5} is changed. For this reason, the results are presented here only
for initial estimations of R0 = 3. In the case of the Metropolis algorithm, the number of
iterations is much higher than in the adjoint approach. This is due to the fact that the
Metropolis approach relies on random draws and thus a large amount of draws is needed to
obtain convergence and to diminish the effect of outliers. This seemingly disadvantageous
property of the Metropolis algorithm is partly counter–balanced when using n multivariate
normally distributed values for u as starting guesses for the adjoint–based optimization.
This also increases the iteration number by a factor n. On the other hand, this would
have the consequence that the probability of reaching a global minimum for J(u) would
increase significantly. This aspect is already been cared for in the Metropolis algorithm
so no additional computations are required unless the chain statistics (as to be seen in
the following sections). The value for J(u), especially in Simulation 3 are slightly more
accurate using the Metropolis algorithm. The comparison of the runtimes in Simulation
3 on an Intel Core i5–6400 with 2.7 GHz and 16 MB–RAM also reflects this. Due to the
higher number of iterations, the Metropolis algorithm also has a longer runtime, see Table
9.5.

Table 9.5: Average required runtime of the algorithms on an Intel i5–6400 with 2.7 GHz
and 16 MB–RAM.

Algorithm Average runtime [s]

Adjoint approach 10
Metropolis 140

Additionally, the influence of the weight ω on the optimization is tested. Table 9.6
shows the results of the least squares term J(u) − ω ‖u‖22 for Simulation 3 with the two
algorithms and different weights.
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9.5 Numerical results and comparison of the algorithms

Table 9.6: Values for the normalized least squares terms (J(u) − ω ‖u‖22) · 103 for the
optimization with different weights ω regarding the algorithms in Simulation 3.

Algorithm ω = 0 ω = 10−9 ω = 10−8 ω = 10−7

Adjoint approach 8.9 8.8 6.1 12.0
Metropolis 3.8 3.2 3.4 4.1

The results show that an appropriate weight value is ω ' 10−8 resp. 10−9, depending
on the chosen algorithm. If the weight is too large, the value of the least squares term also
deteriorates. This makes sense since the disturbance caused by ω ‖u‖22 on the objective
function becomes too large. On the other hand, however, a sufficiently small value for ω
leads to better optimization performance, since a weight of ω = 0 on the other hand gives
a worse result.

9.5.1 Specific results for the adjoint approach

As shown in Table 9.4, the approach with adjoint functions leads to similar numerical
results as the other tested routine. The graphical results of Simulation 3 are shown in
Figure 9.4.
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Figure 9.4: Plots for τ := free, E0 = free, I0 = free, R0 = 3 and ω = 10−8.

The necessary number of iterations until the convergence of the algorithm shows that
the algorithm moves quickly to the corresponding minima, see Figure 9.5. The process
clarifies that the algorithm is very close to the optimal objective function value already
after 15 iterations and needs the remaining calculation steps to reach the given tolerance
limit TOL = 10−12. However, the prerequisite for rapid convergence is a good starting
value for u.

In addition to the presented simulations with restrictions, the algorithm was performed
without limitations for the searched parameters, see Table 9.7 and Figure 9.6.

Table 9.7: Numerical results of Simulation 3 without restrictions concerning the estimated
parameters.

β0 β1 β2 β3 δ µ τ E0 + I0 +R0 J(u)− ‖u‖22
0.77 0.46 0.27 0.41 0.002 0.0001 7 65046 7 · 10−4
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Figure 9.5: Development of the objective function J depending on the corresponding iter-
ation step.

The results show that the normalized least squares term J(u) − ‖u‖22 can be reduced
significantly compared to the restricted variants. It is noticeable, however, that the fit-
ted value for the detection rate δ is very small at about 0.02%. This would mean that
only every 500th infected person would be registered. This seems unrealistic, even if the
dark figure is unknown. The values for transmission rate, lethality and actual number of
exposed, infected and recovered at the beginning of the measurement period are changed
accordingly. Due to the very low detection rate in this simulation, the spread of the disease
would have been much more intense than expected.
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Figure 9.6: Graphical results of Simulation 3 without restrictions concerning the estimated
parameters.

9.5.2 Specific results for the Metropolis algorithm approach

We now consider the value for

J(u)− ω ‖u‖22 =
‖δ(I +R) +D − Y ‖2L2

‖Y ‖2L2

+
‖D − Z‖2L2

‖Z‖2L2

,

i.e. the cost functional J(u) without the last term including the weight ω. This way we
can compare the simulations with different weights ω in terms of J(u) because the last
term trivially raises along with ω.
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9.5 Numerical results and comparison of the algorithms

Table 9.8: (J(u)− ω ‖u‖22) · 103 for the different weights ω.

Simulation ω = 0 ω = 10−9 ω = 10−8 ω = 10−7

1 18.6 18.1 18.6 21.7
2 8.7 8.2 9.2 9.6
3 3.8 3.3 3.4 4.1

Table 9.8 shows that the weight ω = 10−9 always yields the best, i.e. smallest values for
the given cost functional J(u) . Moreover, what you can also see in Tables 9.10, 9.12 and
9.14 in Appendix 9.B, the value J(u) for the weight ω = 10−9 is larger than the value J(u)
with the weight ω = 0, even when the term 10−9 · ‖u‖22 is not subtracted, which means
that interestingly, the simulation with ω = 10−9 provides a better result for a different
cost functional.

The plots for the infected and dead cases in Simulation 3 with ω = 1e−9, thus the best
simulation, are shown in Figure 9.7.
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Figure 9.7: Plots for τ = free, E0 = free, I0 = free, R0 := 3 and ω = 10−9.

The chain statistics done with the optimal results in Simulation 3 for ω = 10−9 as of
Figure 9.8 show that for most parameters a normal distribution is visible and thus the
Metropolis algorithm appears to have converged. The parameter τ does not appear to
be normally distributed, but still remains in the range from 7–8 days. This also affects
some smaller side peaks regarding the other parameters. As the infection data has the
step size of 1 day, we assume that no further optimization within that range is possible,
so an estimation of τ ≈ 7–8 days is decent enough.
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Figure 9.8: Parameter statistics for Simulation 2 and ω = 10−9, using the best approx-
imation with respect to J(u) − ω ‖u‖22 as starting value and a step size of
u0/1000. Except of τ , most histograms appear roughly normally distributed
around their mean values.

A detailed numerical analysis as well as figures for all relevant plots can be found in
Appendix 9.B. In the figures it is also visible that with fixed values τ = 0 or τ = 11.5 the
estimated death cases run after resp. run ahead of the data.

9.6 Conclusion

In the present work, two SEIRD–models for modelling the COVID–19 outbreak in Ger-
many were adapted to existing data from 1st of March to 3rd of May. Two different
approaches for the estimation of parameters and approximation of the infection data were
used and their results and performance were compared. Regarding the graphical and nu-
merical results, all routines have provided similar meaningful results. Each approach has
advantages and disadvantages and should be selected depending on the application needs,
time, possible analytical and programming effort. The Corona outbreak results show
that the restrictions taken by the authorities have had a major impact on the dynamics
of spread. The Basic Reproduction Number could be reduced from a presumably much
higher value than the assumed R0 ' 3 to the epidemiologically important limit R0 ' 1.
Adding a time lag τ between the onset of infectiousness and death significantly increases
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9.6 Conclusion

the accuracy of the tested model. This time delay is estimated by the data adjustment to
an average of 8 days, although in reality there may be very different values depending on
how long life–support measures are maintained in intensive care units. The adjustment
regarding the detection rate and lethality showed that, according to the model, the ac-
tual number of infected people is approximately 3–5 times higher than registered and at
µ ≈ 1–2%, the lethality is lower than assumed.

Conceivable extensions of the present work would be the application to other countries,
the integration of travel or commuting after the relaxation of exit restrictions or the
integration of control variables to mathematically derive the optimal time intervals for
future lockdowns. With respect to the latter, in order to detect a new increase in infections
early on – before it returns to exponential growth – a measure within the model of the
possible increase in transmission rate is required.

159



9 Research Paper V

160



Appendix

9.A Appendix A: Plots for the adjoint approach

Mar 01 Mar 15 Mar 29 Apr 12 Apr 26 May 10

Date 2020   

10
2

10
3

10
4

10
5

10
6

C
u

m
u

la
te

d
 C

a
s
e

s

(I(t)+R(t))+D(t) Model

Registered COVID-19 Cases

Mar 01 Mar 15 Mar 29 Apr 12 Apr 26 May 10

Date 2020   

10
-10

10
-5

10
0

C
u

m
u

la
te

d
 D

e
a

th
 C

a
s
e

s

D(t) Model

Registered Death Cases

Figure 9.9: Plots for τ = 0, E0 = free, I0 = 114/δ, R0 = 3 and ω = 10−8.
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Figure 9.10: Plots for τ = 11.5, E0 = free, I0 = 114/δ, R0 = 3 and ω = 10−8.
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Figure 9.11: Plots for τ = free, E0 = free, I0 = free, R0 = 3 and ω = 0.
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Figure 9.12: Plots for τ = free, E0 = free, I0 = free, R0 = 3 and ω = 10−9.
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Figure 9.13: Plots for τ := free, E0 = free, I0 = free, R0 = 3 and ω = 10−8.
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Figure 9.14: Plots for τ = free, E0 = free, I0 = free, R0 = 3 and ω = 10−7.

9.B Appendix B: Results and plots for Metropolis algorithm

Simulation 1 – No delay and fixed initial infectives

Table 9.9: Estimates for τ = 0, E0 = free, I0 = 114/δ, R0 = 16/δ, R0 = 3 after r = 20000
draws and using a step size of s = u0/100.

Parameter ω = 0 ω = 10−9 ω = 10−8 ω = 10−7

mean std. mean std. mean std. mean std.

β1 .5822 .0353 .5525 .0439 .5935 .0177 .6381 .0227
β2 .5378 .0169 .4936 .0350 .4828 .0160 .4645 .0348
β3 .1140 .0111 .1130 .0067 .10940 .0048 .1014 .0130
β4 .0671 .0032 .0538 .0033 .0502 .0027 .0510 .0056
δ .2307 .0089 .2933 .0116 .2137 .0104 .3142 .0309
µ .0105 .0010 .0131 .0016 .0095 .0007 .0137 .0011
E0 540.7 22.5 811.4 41.5 819.8 52.9 440.8 16.1

Table 9.10: J(u) · 1000 for the different weights in Simulation 1. The column represents
the weight that is used for J(u) in the Metropolis algorithm and the row shows
the value of J(u) for all four ω.

w.r.t. ω
weight ω

0 10−9 10−8 10−7

0 18.6 18.1 18.6 21.7
10−9 19.2 18.9 19.5 22.1
10−8 24.0 26.2 28.1 25.0
10−7 72.3 99.1 114.2 54.3
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Figure 9.15: Plots for τ = 0, E0 = free, I0 = 114
δ , R0 = 3 and ω = 0.
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Figure 9.16: Plots for τ = 0, E0 = free, I0 = 114
δ , R0 = 3 and ω = 0.
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Figure 9.17: Plots for τ = 0, E0 = free, I0 = 114
δ , R0 = 3 and ω = 0.
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Figure 9.18: Plots for τ = 0, E0 = free, I0 = 114
δ , R0 = 3 and ω = 0.

Simulation 2 – Fixed delay and initial infectives

Table 9.11: Estimates for τ = 11.5, E0 = free, I0 = 114/δ, R0 = 16/δ, R0 = 3 after
r = 20000 draws and using a step size of s = u0/100.

Parameter ω = 0 ω = 10−9 ω = 10−8 ω = 10−7

mean std. mean std. mean std. mean std.

β1 .6735 .0538 .7045 .0600 .6391 .0411 .6678 .0508
β2 .4414 .0250 .3951 .0336 .4823 .0323 .5011 .0323
β3 .0810 .0073 .0846 .0075 .0820 .0059 .0790 .0090
β4 .0672 .0042 .0552 .0073 .0520 .0027 .0605 .0091
δ .2055 .0228 .2050 .0161 .2761 .0217 .2871 .0214
µ .0132 .0009 .0131 .0013 .0178 .0011 .0179 .0013
E0 737.0 62.8 661.2 31.3 620.6 70.5 409.2 18.7

Table 9.12: J(u) · 1000 for the different weights in Simulation 2. The column represents
the weight that is used for J(u) in the Metropolis algorithm and the row shows
the value of J(u) for all four ω.

w.r.t. ω
weight ω

0 10−9 10−8 10−7

0 8.7 8.2 9.2 9.6
10−9 9.6 9.0 9.7 9.9
10−8 17.2 15.7 14.7 12.8
10−7 93.8 82.9 64.8 42.1
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Figure 9.19: Plots for τ = 11.5, E0 = free, I0 = 114/δ, R0 = 3 and ω = 0.
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Figure 9.20: Plots for τ = 11.5, E0 = free, I0 = 114/δ, R0 = 3 and ω = 10−9.
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Figure 9.21: Plots for τ = 11.5, E0 = free, I0 = 114/δ, R0 := 3 and ω := 10−8.
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Figure 9.22: Plots for τ = 11.5, E0 = free, I0 = 114/δ, R0 = 3 and ω = 10−7

.

Simulation 3 – Free delay and initial infectives

Table 9.13: Estimates for τ = free, E0 = free, I0 = free, R0 = 16/δ, R0 = 3 after
r = 20000 draws and using a step size of s = u0/100.

Algorithm ω = 0 ω = 10−9 ω = 10−8 ω = 10−7

mean std. mean std. mean std. mean std.

β1 .5859 .0530 .6442 .0357 .6737 .0300 .7370 .0548
β2 .4785 .0359 .6403 .0250 .5197 .0396 .4587 .0183
β3 .0926 .0097 .0862 .0039 .0920 .0037 .0949 .0034
β4 .0556 .0025 .0554 .0038 .0502 .0019 .0576 .0025
δ .2768 .0295 .1911 .0115 .2063 .0135 .2237 .0155
µ .0154 .0008 .0107 .0006 .0117 .0006 .0128 .0005
E0 790.0 46.7 690.0 52.5 500.8 206.4 351.2 14.9
I0 493.1 40.1 316.1 30.2 439.0 140.7 350.7 115.7
τ 7.3 .6 7.3 .4 7.4 .3 7.2 .6

Table 9.14: J(u) · 1000 for the different weights in Simulation 3. The column represents
the weight that is used for J(u) in the Metropolis algorithm and the row shows
the value of J(u) for all four ω.

w.r.t. ω
weight ω

0 10−9 10−8 10−7

0 3.8 3.3 3.4 4.1
10−9 4.7 3.8 3.8 4.3
10−8 12.5 9.0 7.8 6.5
10−7 90.5 60.9 47.7 28.7
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Figure 9.23: Plots for τ := free, E0 = free, I0 = free, R0 = 3 and ω := 0
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Figure 9.24: Plots for τ = free, E0 = free, I0 = free, R0 = 3 and ω := 10−9.
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Figure 9.25: Plots for τ = free, E0 = free, I0 = free, R0 = 3 and ω := 10−8.
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Figure 9.26: Plots for τ = free, E0 = free, I0 = free, R0 = 3 and ω = 10−7.
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10 Conclusions and Outlook

10.1 Summary

In the present thesis, the author’s motivation for researching the epidemiological topic
treated was revealed at the beginning. Subsequently, the fundamental theory for the
investigation and solution of ordinary differential equations, the use of these for epidemi-
ological mathematical modelling and fundamentals for static and dynamical optimization
were presented. The combination of static and dynamical optimization to solve a L2

norm based least squares problem for parameter fitting of models to real data sets was
introduced and performed using adjoint functions.

In the case of dengue, a model reduction of an SIRUV to an SIR model with time–
dependent transmission rate via time–scale separation was initially necessary in order to
work practically with real data sets from Colombo and Jakarta. This enabled us to perform
a useful and realistic parameter estimation with the adjoint approach. Furthermore, this
could be used to study the direct impact of seasonal meteorological conditions on the
disease. In addition, the data was used to test the extent to which the dengue model can
be utilized to predict future peaks and their intensity and duration. The results show
that both short and long–term forecasts are possible with a certain quality of the data
sets. Especially in the case of Jakarta this could be shown impressively which was also
examined via multipatch model with daily commuter movements. In this case, realistic
and useful results could be obtained regarding the parameter fitting and also regarding
the predictive power of this model, forecasts matching the real data sets could be made.

Regarding the spread of the neurogenic Coronavirus with the disease COVID–19 a
SEIRD model with and without time delay was used. This model was applied to the
initial spread in Germany. The results show that the model with time delay and the
presented parameter estimation provided very realistic values, especially with respect to
the detection rate and lethality rate which were hardly valid at that time. Subsequently,
the time delay SEIRD model was applied to a more advanced data set in Germany and
this time the adjoint approach was compared with a Metropolis algorithm regarding the
parameter estimation. It became clear that the former requires a higher analytical effort
but converges much faster with suitable initial values and is therefore less computationally
demanding. This refers only to local minima since the Metropolis algorithm has proven
to be more effective on a global level.

10.2 Outlook

Based on this research, a versatile application for parameter estimation using adjoint
functions is now conceivable, both with regard to other epidemiological contexts and in
other areas of mathematical modelling including ordinary or partial differential equations.
In principle, of course this requires numerous, usable data sets in order to further test and
apply the method. As already demonstrated here in relation to Metropolis algorithm, this
kind of parameter fitting should be compared with other common methods by means of
practical examples.
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10 Conclusions and Outlook

Regarding vector–borne diseases, it is worth using the reduced SIR system applied in
the present thesis to simulate other diseases of this type and make possible predictions.
Especially in the case of dengue, a refinement of the approach to a multistrain model
should be considered. Also a differentiated modelling with regard to external influences
like the entire meteorology is desirable.

Regarding the COVID–19 models, we are currently still in a learning process as the
disease itself still needs further research. Accordingly, the models can be adapted and
refined in future, of course as practical as possible. So far, our research has been limited
mainly to Germany. Here it is desirable to use the presented models also for data sets
of different countries and regions. Similar to the dengue model, the mobility component
should also be included in this study and its significance for the dynamics of disease should
be better investigated with the models.

In principle, the mathematical models should be examined with regard to their pre-
dictive power and, in the case of a positive evaluation, with the help of optimal control
theory, the use of possible control variables should be optimized for disease containment.
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