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Abstract

Human action recognition from a video has received growing attention in computer vision and
has made significant progress in recent years. Action recognition is described as a requirement
to decide which human actions appear in videos. The difficulties involved in distinguishing
human actions are due to the high complexity of human behaviors as well as appearance varia-
tion, motion pattern variation, occlusions, etc. Many applications use human action recognition
on captured video from cameras, resulting in video surveillance systems, health monitoring,
human-computer interaction, and robotics.
Action recognition based on RGB-D data has increasingly drawn more attention to it in recent
years. RGB-D data contain color (Red, Green, and Blue (RGB)) and depth data that represent
the distance from the sensor to every pixel in the object (object point).
The main problem that this thesis deals with is how to automate the classification of specific
human activities/actions through RGB-D data. The classification process of these activities uti-
lizes a spatial and temporal structure of actions. Therefore, the goal of this work is to develop
algorithms that can distinguish these activities by recognizing low-level and high-level activities
of interest from one another. These algorithms are developed by introducing new features and
methods using RGB-D data to enhance the detection and recognition of human activities.
In this thesis, the most popular state-of-the-art techniques are reviewed, presented, and evalu-
ated. From the literature review, these techniques are categorized into hand-crafted features and
deep learning-based approaches. The proposed new action recognition framework is based on
these two categories that are approved in this work by embedding novel methods for human
action recognition. These methods are based on features extracted from RGB-D data that are
evaluated using machine learning techniques.
The presented work of this thesis improves human action recognition in two distinct parts. The
first part focuses on improving current successful hand-crafted approaches. It contributes into
two significant areas of state-of-the-art: Execute the existing feature detectors, and classify the
human action in the 3D spatio-temporal domains by testing a new combination of different
feature representations. The contributions of this part are tested based on machine learning
techniques that include unsupervised and supervised learning to evaluate this suitability for the
task of human action recognition. A k-means clustering represents the unsupervised learning
technique, while the supervised learning technique is represented by: Support Vector Machine,
Random Forest, K-Nearest Neighbor, Naive Bayes, and Artificial Neural Networks classifiers.
The second part focuses on studying the current deep-learning-based approach and how to use
it with RGB-D data for the human action recognition task.
As the first step of each contribution, an input video is analyzed as a sequence of frames. Then,
pre-processing steps are applied to the video frames, like filtering and smoothing methods to
remove the noisy data from each frame. Afterward, different motion detection and feature rep-
resentation methods are used to extract features presented in each frame. The extracted features
are represented by local features, global features, and feature combination besides deep learning
methods, e.g., Convolutional Neural Networks.
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The feature combination achieves an excellent accuracy performance that outperforms other
methods on the same RGB-D datasets. All the results from the proposed methods in this
thesis are evaluated based on publicly available datasets, which illustrate that using spatio-
temporal features can improve the recognition accuracy. The competitive experimental results
are achieved overall. In particular, the proposed methods can be better applied to the test set
compared to the state-of-the-art methods using the RGB-D datasets.

Kurzfassung
Die Erkennen menschlicher Handlungen anhand eines Videos hat in den letzten Jahren im
Rechnersehen zunehmende Aufmerksamkeit erhalten und erhebliche Fortschritte gemacht. Ak-
tionserkennung wird als eine Voraussetzung definiert, um festzustellen, welche menschlichen
Handlungen in Videos vorkommen. Die Schwierigkeiten, die bei der Unterscheidung mensch-
licher Handlungen auftreten, sind auf die hohe Komplexität menschlicher Verhaltensweisen so-
wie auf Variationen des Aussehens, der Bewegungsmuster, Verdeckungen usw. zurückzuführen.
Viele Anwendungen nutzen die Erkennung menschlicher Handlungen auf von Kameras aufge-
zeichneten Videos, wie z.B. Videoüberwachungssysteme, Gesundheitsüberwachung, Mensch-
Computer-Interaktion und Robotik.
Die auf RGB-D-Daten basierende Aktionserkennung hat in den letzten Jahren zunehmend mehr
Aufmerksamkeit gewonnen. RGB-D-Daten enthalten Farb- (Rot, Grün und Blau (RGB)) und
Tiefendaten, die den Abstand vom Sensor zu jedem Pixel im Objekt (Objektpunkt) darstellen.
Das Hauptproblem, mit dem sich diese Arbeit beschäftigt, ist die Frage, wie die Klassifizie-
rung bestimmter menschlicher Aktivitäten/Handlungen durch RGB-D-Daten automatisiert wer-
den kann. Der Klassifizierungsprozess dieser Aktivitäten macht sich die räumliche und zeitliche
Struktur von Handlungen zunutze. Ziel dieser Arbeit ist es daher, Algorithmen zu entwickeln,
die diese Aktivitäten unterscheiden können, indem sie niedrig- und hochrangige Aktivitäten von
Interesse voneinander unterscheiden. Diese Algorithmen werden durch die Einführung neuer
Merkmale und Methoden unter Verwendung von RGB-D-Daten entwickelt, um die Erfassung
und Erkennung menschlicher Aktivitäten zu verbessern.
In dieser Dissertation wird der Stand der Technik überprüft, vorgestellt und bewertet. In der
Literaturübersicht werden die populärsten Methoden aus dem Stand der Technik in handgefer-
tigte Merkmale und tiefe lernbasierte Ansätze kategorisiert. Der in dieser Arbeit vorgeschlagene
neue Framework zur Handlungserkennung basiert auf diese beiden Kategorien, welche durch
neue eingebettete Methoden zur menschlichen Handelungserkennung angewendet werden. Die-
se Methoden basieren auf Merkmalen, die aus RGB-D-Daten extrahiert und ausgewertet werden
unter Verwendung von Techniken des maschinellen Lernens.
Die vorgestellte Arbeit dieser Dissertation verbessert die Erkennung menschlicher Handlungen
in zwei verschiedenen Teilen. Der erste Teil konzentriert sich auf die Verbesserung derzeit er-
folgreicher handwerklicher Ansätze. Er leistet einen Beitrag zu zwei wichtigen Bereichen des
Standes der Technik: Ausführung der vorhandenen Merkmalsdetektoren und Klassifizierung
der menschlichen Handlung in den räumlich-zeitlichen 3D-Domänen durch Testen einer neu-
en Kombination verschiedener Merkmalsdarstellungen. Die Beiträge dieses Teils werden auf
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der Grundlage von Techniken des maschinellen Lernens getestet, welche unüberwachtes und
überwachtes Lernen umfassen, um dessen Eignung für die Aufgabe der Erkennung menschli-
cher Handlungen zu bewerten. Das k-means Clustering stellt die Technik des unüberwachten
Lernens dar, während das überwachte Lernen durch folgende Techniken dargestellt wird: Sup-
port Vector Machine, Random Forest, K-Nearest Neighbor, Artificial Neural Networks und Naive
Bayes Classifier, und Klassifikatoren für künstliche neuronale Netze. Der zweite Teil konzen-
triert sich auf die Untersuchung des aktuellen, auf tiefem Lernen basierenden Ansatzes und wie
man ihn mit RGB-D-Daten für die menschliche Aktionserkennungsaufgabe anwenden kann.
Als erster Schritt jedes Beitrags wird ein Eingabevideo als eine Folge von Einzelbildern ana-
lysiert. Dann werden Vorverarbeitungsschritte auf die Videobilder angewendet, wie Filter- und
Glättungsverfahren, um die Rauschdaten aus jedem Bild zu entfernen. Anschließend werden
verschiedene Methoden der Bewegungserkennung und Merkmalsdarstellung verwendet, um die
in jedem Einzelbild dargestellten Merkmale zu extrahieren. Die extrahierten Merkmale werden
durch lokale Merkmale, globale Merkmale und Merkmalskombinationen sowie durch Methoden
des tiefen Lernens wie z.B. Convolutional Neural Networks dargestellt.
Durch die Kombination der Funktionen wird eine ausgezeichnete Genauigkeit erzielt, die ande-
re Methoden bei denselben RGB-D-Datensätzen übertrifft. Alle Ergebnisse der in dieser Arbeit
vorgeschlagenen Methoden werden auf der Grundlage öffentlich zugänglicher Datensätze be-
wertet, die zeigen, dass die Verwendung raum-zeitlicher Merkmale die Erkennungsgenauigkeit
verbessern können. Die konkurrierenden experimentellen Ergebnisse werden insgesamt erreicht.
Insbesondere lassen sich die vorgeschlagenen Methoden besser auf den Test Datensatz anwen-
den als die modernen Methoden mit den RGB-D-Datensätzen.
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Chapter 1

Introduction

This chapter introduces and motivates the topic of this thesis. In Section 1.1, action
recognition in videos is introduced. In Section 1.2, the problem statement is presented.
In Section 1.3, the motivation for enhancing action recognition and its applications are
presented. In Section 1.4, the objective and significant contributions to the proposed
work are presented. Finally, the structure of this thesis is explained in Section 1.5.

1.1 Human Action Recognition in Videos

Human action and activity recognition from videos is a challenging field in real-world
applications and has drawn an increasing amount of attention in recent years. Due to
significant variations within a high dimension of video data, clutter background, partial
occlusion, and varying motion speed, explicit action detection and recognition remain
a big challenge. Efficient solutions to this challenging and difficult problem can en-
able several useful applications such as monitoring, visual surveillance, human-robot
cooperation, and medical monitoring systems [JBCS13].

There are several types of human activities relevant to the topic of action recognition.
These activities are categorized into four different levels depending on their complexity
[AR11]: Gestures, actions, interactions, and group activities. Gestures are basic move-
ments of a person’s body part and are the atomic components that characterize a person’s
meaningful movement. An example of such a gesture is represented by ‘raising hands’
and ‘extending an arm’. Actions are single-person activities or individual activities that
can consist of several gestures organized in time, e.g., ‘walking’ and ‘bowling’, ‘brush-
ing teeth’ and ‘cleaning a sofa’. Interactions are human activities in which two or more
persons or objects are involved. For example, ‘two-persons shaking-hand’ is an inter-
action between two objects. Finally, group activities are defined as activities produced
by conceptual groups composed of multiple persons such as ‘two groups fighting’and ‘a
group having a meeting’.

13



14 CHAPTER 1. INTRODUCTION

In this thesis research, the main focus is to improve the performance and recognition
accuracy of single person action and activities from real-time video sequences such as
in Figure 1.1. These images in the figure are extracted from the original video sequence
of the public datasets that will be used later in this thesis’s experimentations.

Jumping upBrushing teeth

Walking Bowling

Figure 1.1: Action and activities video samples, such as: Walking [WLWY12], Bowling
[BMA12], Brushing teeth [SPSS11], and Jumping up [SNGW16].

A video is a continuous sequence of images, with targeted semantics and a source of
rich information. A video has two fundamental advantages over still images, such as the
ability to maintain a consistently different set of perspectives on a scene and the ability
to capture the temporal (i.e., dynamic) evolution of the event. The latest developments
in distance sensors have had an undeniable influence on research and applications of
machine and computer vision fields. Sensor devices provide depth information about
the scene view and objects that help solve problems looking for RGB images or videos
[HSXS13].

RGB-D images [LS13] are digital images that built up by pixels, i.e., a small picture
element arranged in two-dimensional space. Pixels are represented by numerical values.
The RGB pixels include three numerical values representing the intensity of the Red
(R), Green (G), and Blue (B) colors, respectively. These values are often 8-bit numbers
ranging from 0−−255, where higher numbers correspond to higher intensities. These
RGB pixels, comprised of 8-bit values can represent 2563 ≈ 16.7 · 106 different colors.
Figure 1.2 shows an example of RGB images.
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Figure 1.2: RGB images example, compare to [YLY15].

Depth (D) information is necessary for humans to recognize objects from an image,
since the objects may consist of many color blocks and various texture that must occupy
a continuous region in space. The depth image gives an alternative to find humans in the
scene. The depth images can be recorded by using a camera, such as Microsoft Kinect
[HSXS13] (see Chapter 2, Section 2.2), which is a sensory motion input device that
allows users to control it and interact with it via a natural user interface that uses gestures
and voice (spoken) commands. This camera uses an infrared laser projector coupled
with a monochrome camera to generate the depth-map that functions under any ambient
light conditions. The depth-map is in standard Video Graphics Array (VGA) resolution,
i.e., which allows for resolutions higher than 640 × 480 pixels, such as 800 × 600 or
1024×768. Each pixel contains a value that represents the distance between the camera
and the object in millimeters. Some depth samples are shown in Figure 1.3.

Figure 1.3: Depth images example, compare to [YLY15].

Classical action and activity recognition tasks mainly depend on hand-crafted fea-
tures, which can be categorized into local, global, and motion representation approaches.
The local feature extraction methods consist of two steps: Detection and description,
such as the Spatio-Temporal Interest Points (STIP) [Lap05] detector, and Histogram
of Oriented Gradients (HOG), Histogram of Optical Flow (HOF) [LMSR08], and Im-
proved Dense Trajectories (IDT) [WS13] descriptors. These methods are widely used
as a local feature for the human action recognition task. Local feature extraction ap-
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proaches are much more efficient and robust in real scene applications. While the
global feature extraction [BD00, LMB+05] approaches represent the video sequence
as a whole by capturing the general appearance from each frame and motion informa-
tion from the differentiation between two concussive frames in video sequences, i.e., the
global descriptor is used to represent the state of motion in the whole frame at a single
moment in time. Even though the global approaches are very sensitive to occlusion,
cluttering, and shift, they are still used commonly for human action recognition tasks
[SLY16].

Regrettably, the hand-crafted features-based encoding methods, such as Bag-of-
Words (BoW) [VVV16, CDF+04] and Fisher vector [PD07], are represented as uni-
versal visual that does not consider much about temporal information for video-based
action recognition [YCXL17]. Some methods combine different types of features and
action representations to improve action recognition performance.

Additionally, in recent years, the use of neural networks and deep learning methods
are showing significant progress in several fundamental problems in computer vision,
including action and activity recognition. One of the deep learning methods is Convolu-
tional Neural Networks (CNN). The CNN is utilized to solve different image processing
tasks such as object and action recognition, and also, the classification is done from not
only static images but also from a dynamic sequence of images. Moreover, the recent
development of depth sensors has enabled the capture of useful 3D structures of scenes
and objects [HSXS13]. This capture helps the vision move from 2D to 3D, such as 3D
object recognition, 3D scene understanding, and 3D action recognition.

1.2 Problem Statement

This thesis focuses on the human action recognition problem in RGB and depth im-
ages/videos, recorded under various environmental conditions varying from a constant,
clean background to complex, cluttered, and moving backgrounds. In the work of this
thesis, a variety of different human actions have been considered from single-person
activities such as ‘walking’, ‘running’, etc., to human activities comprising complex
interaction such as ‘fighting’, ‘hand shaking’, etc.

This thesis work aims to address the action recognition issues by introducing new
methods for feature extraction, representation, and classification to improve human ac-
tion recognition performance and accuracy.

The work in this thesis motivates to address the action recognition problem from
the fact that the foreground region carries more robust information about the action.
This helps to eliminate background interference and makes the method more robust to
background fluctuation. The remaining chapters have explained the methods that will
be used in detail.
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1.3 Motivation

The development of computer vision has encouraged the appearance of different novel
recognition methods in both 2D images and 3D videos. Although it is still difficult and
challenging to recognize a specific object from a dataset of images due to changes in
viewpoint, illumination, partial occlusions, and intra-class difference. Many successful
methods have been proposed, including those that are successfully extended from the
image domain into video analysis and action recognition. However, current methods
still need improvement, especially for real-world videos and movies, which have wide
variations in people’s posture and clothes, dynamic background, and partial occlusions.
To conquer these deficiencies, many researchers focus on part-based approaches for
which only the ‘interesting’ parts of the video are analyzed, rather than the whole video.
These ‘parts’ can be trajectories or flow vectors of corners and spatio-temporal interest
points. Although part-based approaches are promising, they still suffer from inaccurate
detection and tracking of interesting parts due to background clutter and motion which
prevents a clear and informative representation. These approaches will be discussed in
Chapter 2, Section 2.4.

The ability to detect, track, recognize, and analyze human motion is helpful for a
wide range of high-level applications that rely on representations extracted from visual
input. During the past few years, many approaches have been proposed to address these
problems [Pop10, AR11, ZS16]. Some examples of applications that could benefit from
reliable and efficient recognition of human action include but are not limited to the
following:

Intelligent Video Surveillance (IVS): Video surveillance is a monitoring process of
persons and objects of interest with the help of video cameras. In recent years, video
surveillance has attracted much attention due to the increasing demand for a security
system. Security and surveillance systems are usually dependent on a network of video
cameras that are controlled or monitored by a human operator who must be aware of
the activity in the camera’s field of vision [TZEH15]. Additionally, the surveillance
system used to monitor the overall public places, such as airport terminals, government
buildings, and banks.

Health Monitoring (HM): Health monitoring and preventative care system for pa-
tients have applications to accurately identify and track people in their environments
and understand and analyze the activities of the patients. For example, implement a
supervision system capable of monitoring a person’s activity in their own home without
violating intimacy. The main idea is to collect information from various sensors placed
in the house and on mobile devices and infer the most probable sequence of activities
performed by the supervised person [SSH16]. Usually, health monitoring systems de-
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tect the continuous movement of elderly people, automatically detect their activities,
and recognize any abnormality as it happens. Therefore, recognition of human action is
becoming increasingly critical and is widely used in medicine, particularly in the areas
of health surveillance of the elderly.

Human-Object Interactions (HOI): Human-object interaction poses various chal-
lenges to the recognition of human activities. Dealing with the interactions between
humans and objects is a challenging task, which consists of various reasons such as the
size, position, shape, and color of an object [SC16].

Human-Computer Interaction (HCI): Is a way to study how people interact with
computers. Today, video cameras are not only used for video surveillance, laptops
and mobile phones, but they are also utilized for human-computer interaction between
humans and computers and allow a natural way of human communication with a device.
Thus, one of the critical requirements for the sides of this sensor is the detection of
gestures and short actions recognition [LK99].

Human-Robot Interaction (HRI): Human-robot interaction is also an important ap-
plication of vision-based activity recognition. HRI gives a robot the ability to detect
human activities that is very important for HRI. One of the HRI applications is pre-
sented by Xia et al. [XGAR15], recognizes interaction activities from a robot-centered
viewpoint area. Their procedure helps the robot realize the following environment tasks
in order to detect the intention of the people around them.

This thesis has used several challenges that are implemented and applied on publicly
available datasets designed for human action recognition, which are still very challeng-
ing in this field and highlight the large ongoing scope for improvement.

1.4 Contributions
One of the biggest problems with action recognition (AR) is performing a similar action
in several different ways by another person or even the same person. So, the key concern
is how to find a discriminative representation of actions between different RGB-D video
sequences? In other words, finding a way to separate different actions and classify
together videos with similar actions performed by different people in pose and motion.

Action recognition remains a challenging problem due to differences in visual and
moving images of people and actions, camera perspective, noise, occlusions, and sig-
nificant video data.

This thesis research improves feature extraction methods related to scalable action
recognition by using different algorithms and provides an extensive experimental evalu-
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ation of comprehensive empirical evaluation, often outperforming state-of-the-art tech-
niques. An overview of the main objective of this thesis are listed below:

• The first objective is to display and compare the existing local and global feature-
based methods to determine which local or global feature extraction method and
what is the video representation technique give good results. Also, obtain a feature
representation for the CNN model from RGB-D input data.

• The second objective is to review and combine the existing local and global fea-
ture extraction methods to obtain the best feature values that work with the algo-
rithms of the video representations and provide the best results in addition to the
deep neural network.

• The third objective is to study and understand the limits of existing methods and
to suggest new methods for human action recognition in videos to go further than
the state-of-the-art limitations.

This thesis aims to tackle human action recognition challenges by using hand-crafted
features (as in Chapters 4 to 7) and deep learning-based approaches (as in Chapter 8).
Figure 1.4 shows the general structure of the proposed action recognition approaches.
In the hand-crafted features, complementary pattern recognition pipeline levels are im-
plemented, mainly input data, feature extraction, and classification. The deep-learning
approach can evaluate the input data by seamlessly integrating these three pipelines
parts, or it can be used as a feature extractor that is finally evaluated using classification
methods. The main contributions of this thesis can be summarized as follows:

• It introduces a great deal of challenging research by representing the spatial and
temporal structure of actions from color and depth data (RGB-D) based on differ-
ent spatio-temporal feature extraction methods.

• It provides insights into new features for the detection rates of actions in RGB-D
video sequences. These features are computed using the hand-crafted feature
extraction methods.

• It classifies video sequences on which people perform actions into predefined
action types. The classification is done based on machine learning techniques.

• It provides a contribution to the question of how RGB-D videos can be processed
with deep neural networks, especially CNN.
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Input RGB-D 

Feature Extraction + Machine Learning

Images/Videos

1- Hand-Crafted Feature Extraction Process

Deep Neural Network Algorithm

2- Deep Learning and Feature Extraction Process

Input RGB-D 

Images/Videos (Feature Extraction)

Figure 1.4: The general structure of the proposed action recognition approach. 1- Feature
extraction based on hand-crafted features and machine learning process (in Chapters 4, 5, 6, and
7). 2- Deep learning and feature extraction process (in Chapter 8).

To achieve these contributions, this thesis proposes new approaches of different fea-
ture extraction and combination methods to improve robust and efficient representations
for human action recognition from RGB and depth videos. The following is a summary
of the significant contributions:

1. Multi-Feature Extraction for Human Action Recognition (Chapter 4):

This chapter proposes a novel system to analyze human body motions for rec-
ognizing human actions by using 3D videos (RGB and depth data). As a first,
given a set of input RGB-D videos. The Bag-of-Features (BoFs) technique is
used for recognizing human actions by extracting spatio-temporal features from
all video sequences. In this work, the multi-features are computed using different
feature extraction techniques. The local features are computed in two steps: The
first step consists of detecting all interest keypoints from RGB video frames by
using Speed-Up Robust Features (SURF) [BETV08] detector; then the motion
points are filtered by using Motion History Image (MHI) [RTKI11] and Optical
Flow (OF) [TCL15]. Furthermore, these important motion points are aligned to
the depth frame sequences. In the second step, the feature vectors are computed
by using a Histogram of Orientated Gradient descriptor [DTS06], this descriptor
is applied around these motion points from both RGB and depth channels, then
the feature vector values are combined in one RGB-D feature vector.



1.4. CONTRIBUTIONS 21

In addition to the local features computed first, another type of feature is computed
and combined with local features. Seven Hu-moment shape features are extracted
from the MHI. The Hu-moments shape invariant introduced by [Hu62] are used
for global features and illustrated in two steps: Firstly, representing the spatial
and temporal information about action using MHI, where the pixel density is a
function of the redundancy of action. Secondly, the Hu-moments are used as
descriptors of the MHIs.

This system performance is evaluated by using the BoW pipeline and classifica-
tion methods. This system is invariant to scale, rotation, and illumination. All
tested results are computed from datasets available to the public and often used in
the community. This new feature combination method helps to reach recognition
rates superior to other publications on the same dataset.

This work was presented at the International Conference on Machine Vision (ICMV)
and published as a journal article in the International Journal of Machine Learn-
ing and Computing (IJMLC) because it is a novel work [AAP18c]. The second
part of this work was published at the International Journal of Advanced Com-
puter Science and Applications (IJACSA) [AaP17].

2. Feature Extraction from 3D Trajectory and Global Descriptor (Chapter 5):
This chapter contribution aims to address the problem of recognizing human be-
havior by using a novel method based on combining 3D Trajectory shape fea-
tures from RGB-D video frames [XZYT14], Motion Boundary Histogram (MBH)
[WKSL13] descriptor and global GIST feature descriptor [WLJ14] from depth
data.

In this system, the combination of the local and global descriptors is proposed.
The local descriptors are represented by 3D Trajectory and MBH. These descrip-
tors represent a video as features extracted from a collection of patches. The
global descriptor is represented by global GIST [WS07, WM10]. The main rea-
sons for using the global GIST descriptor is illustrated in three steps [WLJ15]:
First, the GIST feature descriptor caught global structural information through
filtering an image with different scales and orientations. In realistic scenarios, it
can be extracted more accurately than the silhouettes feature. Second, the com-
putational time of the global GIST feature descriptor is less than the optical flow
features. Third, the GIST feature can be represented as the concatenation of sev-
eral local grids with implicit location information.

The BoW model and classification pipeline are used for the evaluation of the
method in this system. This new method represented by combining local and
global features from several video actions improves performance on actions even
with low movement rate. Furthermore, it outperforms the competing state-of-the-
art feature-based human action recognition methods.
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This work was presented at the International Conference on Pattern Recognition
Applications and Methods (ICPRAM) and published by SCITEPRESS – Science
and Technology Publications [AaP18b].

3. Motion Saliency Detection for Effective Human Action Recognition (Chap-
ter 6): A novel approach applies in this chapter to show the advantages of using
a Retina model [BCDH10] for saliency motion detection. With the help of this
model, an efficient and fast bio-inspired module is developed for low-level image
and video processing. On the Retina level, spatio-temporal filtering ensures cor-
rect structuring of the video data, i.e., removal of noise and illumination variation,
static and dynamic contour enhancement, and motion event detection. This ap-
proach adopts the ideas of spatio-temporal analysis and global features extraction
for effective action recognition from RGB-D video actions. Global features have
been used to characterize the texture information from body motions on both RGB
videos and depth data using Local Binary Pattern (LBP) descriptor [OPH96]. The
LBP features are computed from the salient motion area of the Retina model, and
feature vectors are finally collected as a histogram of LBP.

For improving the performance of this implementation, the k-means clustering
and Random Forest (RF) for classification are used to recognize the different ac-
tions from videos. This chapter approach is demonstrated that the proposed sys-
tem achieves superior performance compared to the state-of-the-art methods, and
all experimental results are tested on three public RGB-D datasets.

This work was presented and published at the Conference on Computer Graphics,
Visualization, and Computer Vision (WSCG) [AaAdP18].

4. Activity Recognition based on Dense 3D Optical Flow Co-occurrence Ma-
trices (Chapter 7): In the contribution of this chapter, two important goals are
presented. The first one aims to extract the motion and texture features from 3D
sequences, by extending the method in [CCS16] to extract feature vector values
from RGB-D video actions instead of RGB video. This method based on the
Gray-Level Co-occurrence Matrix (GLCM) of the dense optical flow [BFB94]
pattern and the well-known Haralick features [HSD73]. Haralick features are ex-
tracted from these matrices by measuring meaningful properties such as Energy,
Contrast, Homogeneity, Entropy, Sum Average, and Correlation to capture local
spatial and temporal characteristics of the motion through the neighboring optical
flow field. The second goal is represented by a performance comparison of five
different classifiers such as Artificial Neural Network (ANN), Naive Bayes classi-
fier (NB), Random Forest (RF), K-Nearest Neighbors (KNN), and Support Vector
Machine (SVM). These classifiers results are computed from BoW vectors.

This work was presented and published in two events, the first part of this work
was presented and published in the International Workshop on Sensor-based Ac-



1.5. THESIS OUTLINE 23

tivity Recognition and Interaction (iWOAR) [AAP18a], and the second part was
presented and published in the International Conference on Machine Vision (ICMV)
[AAP19].

5. 3D Convolution Neural Networks for Human Action Recognition (Chapter
8): This chapter proposes a novel 3D Convolutional Neural Network (3D-CNN)
system that implicitly captures motion information between adjacent frames, and
it is represented in two main steps. First, the optical flow is utilized to extract
motion information from temporal domains of the various RGB-D video actions.
This information is utilized to calculate the features vector values from a deep
3D-CNN model. Second, use the feature vectors to train and evaluate a 3D-CNN
from three channels of the input video actions, i.e., RGB, depth, and combine
information from both channels (RGB-D), to obtain a feature representation for a
3D-CNN model.

This 3D-CNN model generates multiple information channels from adjacent video
images and performs convolution in each channel separately. The final results
of feature representation are achieved by the combination of information from
all channels. For evaluating the accuracy results, a 3D-CNN based on different
data channels is trained. Additionally, the possibilities of feature extraction from
3D-CNN and classification by using an SVM classifier are proposed to improve
and recognize human actions. This system is demonstrated that the evaluation of
results from RGB-D channels is better than each channel results that are trained
separately by 3D-CNN network and also outperformed the state-of-the-art on the
same public datasets.

This work was presented and published at the Conference on Computer Graphics,
Visualization, and Computer Vision (WSCG) [AaPG18].

1.5 Thesis Outline
This thesis consists of 9 chapters, including the current introductory chapter of the
thesis. Chapters 2 and 3 introduce the overview and theoretical background of the
field of articulated human feature representation and recognition. Moreover, the evo-
lution of human action recognition is presented to provide an introduction to different
approaches, different features extraction, representation, and classification techniques
used by researchers over the last few years. In addition, it includes a comprehensive
review of popular, challenging datasets. From the presented material in these chapters,
a basis for the methods used in this thesis is developed.

Chapters 4 to 8 describe proposed methods for improving human action and activity
recognition based on motion detection, different feature extraction and representation
methods, and how to improve the performance of these methods based on different
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classification algorithms, in addition to the use of deep neural networks. All thesis
results are presented and already published in international journals and conferences.
Each chapter will start with a brief introduction explaining the context of the chapter
and its contribution and the experimental results.

Chapter 9 summarizes and concludes the thesis and presents the realization of each
objective. Moreover, it also presents directions for future work.

After the main part of the thesis, there are the appendices. The back matter consists
of a definition of all abbreviations and symbols, the bibliography, and references to
internet-resources.



Chapter 2

Related Work in Human Action
Recognition

This chapter presents a review of the state-of-the-art techniques for human action recog-
nition based on hand-crafted features, machine learning, and deep neural network-based
approaches. Furthermore, well-known public RGB-D datasets available for experiments
will be presented to provide further insight into this field.

This chapter starts with an introduction in Section 2.1. Section 2.2 illustrates the
categorization of RGB-D Kinect data. Action representation is illustrated in Section 2.3.
Categorization of feature representation schemes is covered in Section 2.4. Sections 2.5,
2.6, and 2.7 define machine learning techniques, deep neural network-based approaches,
and the human activity datasets.

2.1 Introduction
Human action and activity recognition is a relevant field of research for pattern recog-
nition and computer vision applications such as robotics, human-computer interaction,
monitoring, etc. The goal of the human action recognition system is to automatically
analyze the actions of a person or a group of persons from a video, i.e., a sequence
of images. In a simple case, where the video is split to contain only one execution of
human action, the system’s objective is to classify the video into its action category
correctly.

Human action recognition-based systems are widely used in many real-world ap-
plications due to the progress in sensor and visual technology. Precisely, the increase
of small size sensors has enabled smart devices to recognize daily human activities,
actions, and interactions [YLM14]. Sensors translate a variety of parameters, such as
displacement, location, movement, camera images, and color, from the real-world into
data for the digital domain.

25
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Action recognition is still a challenging task with videos even for the same type
of action, due to complicated significant variations which make robust information ex-
traction difficult. These difficulties include: First, the subject under observation distin-
guishes in appearance, position, and size. Second, the moving background, unstable
camera, occlusion, and complex environment obstruct the observation. A wide-ranging
study of different aspects and problems in the field of human action recognition from
RGB videos has been included in several recent research papers [NJ14, WLJ15, CCS16,
AEV17, UL19]. A variety of existing action recognition methods, such as low-level
feature extraction and high-level feature representations, use algorithms which were
initially designed for text and image domains and expand them over a video domain.

Effective human action recognition systems have balanced between the recognition
reliability and feature extraction efficiency from the computational cost viewpoint. To
achieve this objective, most researchers try to find a robust and reliable method to extract
features and efficient classification algorithms.

In this thesis, the human action detection and recognition will be improved in 3D
sensor data. These data are recorded using an RGB-D sensor.

2.2 RGB-D Kinect Data
In recent decades, there were many types of computer vision researches focused on
RGB images [CCFC13, MA16]. However, RGB images typically provide the objects
in the scene with only appearance information. With this restriction in the information
provided by RGB images, some problems such as splitting the background and fore-
ground with similar colors or textures are difficult to overcome. Furthermore, the object
represented by RGB images does not appear robust against common differences such
as illumination changes, which makes the use of RGB image processing algorithms
ineffective in practical situations. However, most researchers struggle to design more
sophisticated algorithms; the other parts of the researches emphasize a new type of rep-
resentation that can perceive the scene [CHLS17].

Yet, RGB-D images/videos are emerging data representations that can help solve
fundamental problems due to their complementary nature of depth information and
visual RGB information. Concurrently the combination of RGB and depth informa-
tion can dramatically improve the classification accuracy for high-level tasks, i.e., im-
age/video classification [TJYL13, TCLY15]. The core of the RGB-D images/videos is
the depth image, which is usually generated by a distance sensor. Compared to a 2D
intensity image, a distance image is robust to the variations in color, lighting, rotation
angle, and scale. When this technology was established, sensors were expensive and
hard to be obtained by researchers, which led to limited researches covering this topic
at that time. However, with the release of the affordable Microsoft Kinect 3D sensor
in November 2010, the purchase of RGB-D data became cheaper and more accessible.
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Not surprisingly, research into computer vision algorithms based on RGB-D data has
attracted much attention in recent years [CLV12, CZG+13, NVSH16, LAM17, SHJ18].

Kinect, as a 3D digital capturing device, can quickly collect the RGB and depth data
of human activities. The Kinect device has a color camera, an Infrared Emitter (IR),
and a depth sensor. This camera is capable of capturing colored images and depth in-
formation of each pixel in the scene. These capturing data contain visual and geometric
information of the scene, which can improve activity recognition in accuracy and ro-
bustness. Examples of Kinect device and RGB-D images are shown in Figure 2.1.

LED

Figure 2.1: Illustration of 3D camera and RGB-D images: a) Microsoft Kinect Device, com-
pare to [TDL15]; b) Some examples of RGB-D images is captured by Kinect, compare to: (1)
[WLWY12], (2) [BMA12], (3) [SPSS11], (4) [YLY15].

The color images that are captured by the Kinect are available in various resolutions
and formats. The resolution of the images affects the data amount per frame. The format
of the images determines the data type of the image’s color, whether it is encoded as
RGB or gray.

The depth information of the images calculates the distance to the closest object in
millimeters at that precise spatial coordinates in the depth sensor’s field of view. The
depth image is captured in three different spatial resolutions: 640× 480, 320× 240, and



28 CHAPTER 2. RELATED WORK IN HUMAN ACTION RECOGNITION

800× 600 depending on the specified image format. This data can be used to track the
movement of a person and background segmentation.

The infrared emitter (IR) beams an invisible infrared light, which is generated by a
depth sensor determining objects’ depth distance from the sensor. The key objectives
of this IR stream are to improve external camera calibration [SJP13, Kar15] using a test
pattern from both the RGB and IR camera. It is also used for calculating precise coor-
dinates from one camera space to others and also capturing the IR image in darkness.

With the availability of the required tools to easily produce RGB-D images/videos,
a wide range of applications can be served, e.g., computer vision, robotics, and medi-
cal imaging [HSXS13]. As several algorithms are proposed to solve the technical chal-
lenges in these fields, the other components generated to verify the algorithms have been
compiled by an increasing number of RGB-D datasets. The use of publicly available
RGB-D datasets can save researchers time and resources and allow a fair comparison
of various algorithms. Therefore, the chosen of RGB-D datasets becomes important for
the evaluation of different algorithms. RGB and depth data combine the characteris-
tics of the color images that provide visual appearance information of an object in the
image and 3D shape information. The depth image is insusceptible to the variations in
color, rotation angle, scale, and illumination. With the low costs of 3D visual capturing
systems, more and more researchers have been concentrating on a possible solution to
recognizing human behavior by using 3D data [BMM12, NVSH16, MH17, SHJ18].

Although the Kinect sensor does neither provide accurate distance values nor has a
high image quality, it is used in many research teams as it is common and quite afford-
able. More expensive sensors exist, such as Photonic Mixing Device (PMD) [LKH07],
and Time-of-Flight (ToF) camera [FAT11], which provide better quality. The general
principle is similar, though.

2.3 Human Action Representation

The human action recognition system becomes an essential part of many computer vi-
sion applications. It can be classified based on human action representation methods,
see Figure 2.2, such as feature representation methods [Pop10, VNK15, ZWN+17], ac-
tion classification using the traditional machine learning techniques [ROD01, Kot07],
and deep neural networks-based method [YCBL14, Lat17].

Concerning feature representation, the human action recognition system categorized
into three classes depending on the method of representing or extracting the features
from video data: local features [Low04, DTS06, KMS08, NY10, ZS16], global features
[MAQM05, PSL09, SCMP14], and combination of the features, i.e., a combination of
local and global features [QMXW10, ZLYC12, WLJ15]. These representations will be
defined below in Section 2.4.
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Figure 2.2: Human action representation.

The action classification is important in recognizing human behavior because the ex-
tracted features must be classified accordingly. The increasing number of video actions
will lead to more challenges due to the higher overlap between classes. The classifica-
tion based on traditional machine learning algorithms has two stages:

• Training stage: In this stage, a machine learning algorithm trains using a dataset
comprised of the images/videos. The classification problem in this stage has two
main steps: Firstly, feature extraction from input images/videos to get new feature
vectors. Secondly, training the feature vectors by using the machine learning
algorithm.

• Testing (predicting) stage: In this stage, the trained model utilizes to predict labels
of unseen images/videos.

In addition to traditional machine learning, the recent deep learning-based approaches
use large amounts of available training data. They are the recently developed approaches
that can automatically learn features from the raw data in order to achieve human action
recognition.

The difference between machine learning and deep neural network algorithms is
in feature extraction. In machine learning algorithms, the hand-crafted features are
needed to compute expert-designed feature detectors and descriptors [SAH17, UL19].
By contrast, in deep neural network algorithms, feature extraction is done automatically
by the algorithm.
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In the following sections, the categorization of feature representation techniques,
machine learning, and deep neural networks will be explained briefly.

2.4 Categorization of Feature Representation
Different types of features can be represented from video data based on the characteris-
tics of the feature representation. Each video data could be represented as:

f(x, y, t) ∈ V, V : R3 → Rnv (2.1)

where, nv represents the type of the video data, and it can be:
nv = 1 refers to a gray-level image.
nv = 3 refers to (R,G,B), i.e., color image.
nv = 4 represents (R,G,B,D), where D refers to depth or distance.

In this work, video data can be regarded as a function f :

(R,G,B,D) = f(x, y, z) (2.2)

Figure 2.3 shows an example of video sequence representation from RGB and depth
sequence.
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RGB Sequence Depth Sequence

Figure 2.3: RGB and depth video sequence representation. x indicates the horizontal direction,
y indicates the vertical direction, t indicates the time direction.

As mentioned previously in Section 2.3, the feature representation methods are clas-
sified into local and global features in addition to feature combinations (see Figure 2.4).
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Figure 2.4: Categorization of feature representation.

Global feature approaches generally extract the whole human body information.
Then a global body structure and dynamics are utilized to represent human actions.
In many cases, global approaches employ silhouette information or shape masks that
are extracted from background subtraction or difference between images to represent
actions, for instance, silhouette-based feature [DTGÇ06] and Motion History Images
(MHIs) [BD01]. Formally, global features could be represented as GF :

GF : f → v (2.3)

where v is a vector of real numbers, i.e., a feature vector.
Local feature approaches are represented by extracting local sub-regions or interest

points from image/video sequences. Local features can also be edges or small image
patches. In many cases, some measurements are usually taken from an area centered
on a local feature and converted into descriptors. These descriptors are used to describe
the local property, such as Scale-Invariant Feature Transform (SIFT) [Low99], Speeded
up Robust Features (SURF) [BETV08], Trajectory [RS99], Histogram of Oriented Gra-
dients (HOG), Histogram of Optical Flow (HOF), and Motion Boundary Histogram
(MBH) [UDSS15].

In other words, the local features (LF ) select a region of the range R of f . Formally,
a set of s local features extracted from an image or video could be represented as LF :

LF = {vi}si=1, vi ∈ Rnd (2.4)

where, nd is the number of dimensions. Typically, the local features can be represented
as:

• A spatial region [Low04].

• A temporal region (time span) [JDX+12].
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• A projection of the vector space V to a selection of the dimension [LPB11].

• A combination of all these regions [CZG+13].

In addition to the combination of the local regions, the other combination may be
happened between local and global features for improving the new feature representa-
tion method [LMB+05, NJ14, WLJ15]. The representation of features will be reviewed
in the next following sections.

2.4.1 Feature Representation: Local Features
Local representation, also defined as local methods, encodes a video sequence as a set
of local spatio-temporal features, i.e., local descriptors. These descriptors are extracted
from spatio-temporal interest points (STIPs) that can be sparsely detected from video
sequences by using detectors [DRB05, Lap05, BETV08].

Local features extracted from local areas in an image/video sequence are used to
represent the local structure of a sample. Local areas have usually described the neigh-
borhoods of points, which are determined by using an interest point detector or by a
dense sampling of the image plane or video volume. Next, a feature vector is computed
for each local area by describing its properties.

To encode video data as a local feature, interest points are first detected in a video
frame and then describe them adequately to capture video information without needing
to separate the objects from the background. Recent work has concentrated on mak-
ing these new local features invariant to image transformation to be used in different
applications such as a representation of objects, motion tracking, image alignment, 3D
reconstruction, object recognition, and robotics. There are four characteristics when
local features are used in these applications [JC13]:

• The areas around the point of interest must be localized in position and scale.
Generally, points of interest in a scale-space search will be placed at local peaks
and then filtered. The kept points are likely to remain stable against transforma-
tion.

• A description of these areas should be built. In an ideal condition, the description
should be distinctive (reasonably differentiating an area around a point of interest)
and robust to transformations caused by camera pose and lighting changes.

• To eliminate irrelevant and redundant local features, the feature space should be
optimized to simplify the architecture of the classification system and enhance
predictive performance as well as computational efficiency.

• A representation model should be built in a way that can describe the objects based
on appropriate components and explicitly differentiate the objects from others.
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Furthermore, the representation of local features characterizes the observation as a
combination of local descriptors or patches. Spatial and temporal interest point detec-
tors are used to detect the local patches first. Then, the local patches are combined to
construct the sequence using the Bag-of-Features approach, which will be covered in
more detail in Chapter 3, Section 3.4, for representing video actions. The advantages of
local features representation are [Low99]:

• Locality: The features are represented as local, so they are robust to clutter and
occlusion (no prior segmentation).

• Distinctiveness: Individual features can be compared and differentiated with an
extensive database of objects.

• Quantity: Many features can also be created for small objects, i.e., there are
hundreds or thousands of features in a single image.

• Efficiency: The computed features are close to real-time performance.

• Extensibility: Can easily be extended to exploit a wide range of different types
of features in different situations, with each adding robustness.

Over the last years, feature detectors and descriptors computed from static and dy-
namic scenes of images are an active area of research, making them a popular topic in
computer vision applications. The feature detectors and descriptors methods are part of
the covered research area in this thesis.

Feature Detectors

Features of images typically refer to the exciting part with meaningful information for
the task of computer vision. They can generally be classified as low-level features and
high-level features that come into being with the appearance of more computational
problems and time constraints. In low-level feature representation methods, the essential
step to the feature extraction from a video is to detect interest points. These points are
regarded as more informative than others and are described using feature descriptors.
To achieve this, various algorithms for identifying points of interest regions in the video
have been developed by researchers, for instance:

Noguchi et al. [NY10] extracted visual and motion features by selecting candidate
points using the SURF detector (see Chapter 3, Section 3.3.1). Afterward, the motion
features at each point are subdivided with local temporal units to take into account the
sequence of the movements and propose a spatio-temporal feature. When the local
spatio-temporal features from training video data are extracted, k-means clustering (see
Section 2.5.2) is applied to generate a codebook from the extracted features. Then
for each training video, a BoW vector is generated based on the codebook. Finally,
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they classified human action by train an SVM with the generated BoW vectors. The
experiment results were evaluated using RGB videos.

Yang et al. [YTYC12] proposed the SURF-MHI method to extract spatial and tem-
poral information separately from RGB videos. They followed the method proposed
by Tian et al. [TCLZ12]. The SURF detector is first applied to extract visually dis-
tinctive points in the spatial domain. Then, The extracted SURF points are filtered by
temporal (motion) constraints from the MHI (see Chapter 3, Section 3.3.2) that is gen-
erated by differencing adjacent frames. To characterize shape and motion information,
HOG features (see Section 3.3.1) were computed for each interest point from images
and MHI channels. HOG descriptor can be well used to characterize local shape infor-
mation from the image channel and local motion information from the MHI channel by
calculating local gradients’ distributions. Then, BoW vectors were generated based on
the codebook computed by k-means clustering. Finally, a linear SVM was applied for
evaluation.

Benoit et al. [BCDH10] showed efficient modeling of the processing of the Retina
model along with illustrating the advantages of using such modeling for a low-level
image. The Retina model will be discussed in detail in Chapter 3, Section 3.2.3. At the
Retina model, double spatio-temporal filtering occurs and ensures the proper structure
of video data, i.e., static and dynamic contour enhancement, noise, and illumination
variation removal. The Retina model is designed for use in all contexts where contours
and contrasts represent important information. As it can be used on either a standard
camera or any other type of image, e.g., infrared, Xray images, given that luminance
information is considered the input data. As an illustration from this research, the Retina
model can be used as a generic pre-processing step to improve the input data, and it can
be a very suitable solution for any application that requires the extraction of low-level
features to enhance the detection potential.

Sabin et al. [SBL14] used a Retina model for extraction BoW to introduce the video
pre-processing strategies, see Figure 2.5. This Retina model is also used to detect the
salient areas from video frames and to construct spatio-temporal descriptors. This pre-
processing strategy helps to increase the robustness of local features such as noise and
lighting variations. The results of the Retina model in this work were experimented us-
ing an RGB dataset. These with state-of-the-art local features, such as SIFT, SURF, and
FREAK. Finally, the KNN classifier was applied due to it is appropriate for comparing
different video descriptors.

Feature Descriptors

So-called ’descriptors’ are used to describe the physical aspects of image details, such
as shape, size, coloration, a direction of change in color or intensity, and amount of
motion. The role of the descriptor is to characterize the local image details around the
location, i.e., in a local neighborhood surrounding interest points, identified by a feature
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a) Input at start b) Parvo at start c) Magno at start d) Mask at start

a) Input at end b) Parvo at end c) Magno at end d) Mask at end

Figure 2.5: Effects of Parvo and Magno preprocessing and segmented “blobs” of low-level
spatio-temporal saliency at the beginning and end of a 20-frame temporal window around the
keyframe [SBL14].

detector. The feature detector locates spatio-temporal interest points in the image or
video sequence; such interest points contribute the maximum to the context of image or
video. Spatio-temporal interest points detector is operated on a stack of images denoted
by I(x, y, t), where I is an input image that mapped either RGB or depth [JS10]. To cap-
ture more information and features from detected interest points, a description around
these interest points is needed to represent and encode the video sequence. Therefore,
these local descriptors proposed to describe local interest points, each of which is calcu-
lated at the location (x, y, t). Afterward, a local patch, which is described to represent
the actions, is considered around each detected interest point. Different descriptors used
in human action recognition applications will be introduced in this section.

Many proposed approaches are implemented to extract and describe robust infor-
mation from video by using feature descriptors that are adapted successfully from the
image domain into the video domain toward enhancing the accuracy of human action
recognition.

Dalal et al. [DTS06] proposed a detector that combines gradient-based appearance
descriptors, which is represented by HOG with the differential optical flow (OF) (de-
tails of OF will be explained in Chapter 3, Section 3.2.2) based motion descriptors in
a framework of linear SVM classifier. Both motion and appearance channels use his-
togram orientated voting to obtain a robust descriptor. The HOG descriptor is used to
capture edge distributions in images or video frames that allow dense sampling of dif-
ferent scales and locations in the spatio-temporal representation. The calculation of the
interest points descriptor based on Lowe [Low04]. The interest points are generated by
calculating the image gradient magnitudes and orientations in an area (region) around
the interest point locations at each image sample points. Image magnitudes are sampled
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around the interest point locations by using the scale of the interest points to select the
level of Gaussian blur for the image, i.e., removes high-frequency components from the
image (low-pass filter) using Gaussian filter. To achieve an orientation invariance, the
descriptor coordinates and the gradient orientations rotate relative to the interest points
orientation. The Gaussian window, which is indicated by an overlapping circle, weighs
these points. Then the output samples are combined into orientation histograms that
summarize the content over subareas.

Uijlings et al. [UDSS15] addressed the problem of computational efficiency by im-
proving video classification in three steps. Firstly, they proposed several speed-ups for
densely sampled based on local feature descriptors such as a Histogram of Oriented Gra-
dients (HOG), a Histogram of Optical Flow (HOF) and Motion Boundary Histograms
(MBH) descriptors, these descriptors will be discussed later in Chapter 3, Section 3.3.1.
Secondly, they explore the trade-off between efficiency and computational performance
of descriptors in terms of frame sampling rate and the nature of the optical flow (OF)
method. Finally, they explore the trade-off between efficiency and computational per-
formance for the video representation based on comparison of the vector quantization
methods such as k-means clustering, hierarchical k-means based visual vocabulary, i.e.,
partition the dataset recursively into a tree of the cluster with k branches at each node
and RF-based vocabulary.

Kellokumpu et al. [KZP08] described the human action recognition by utilizing the
dynamic texture feature descriptors. These features are used for human detection to ex-
tract Local Binary Pattern from Three Orthogonal Planes (LBP-TOP) features from the
spatio-temporal domains of the input images. Moreover, these features are also used to
detect volumes of human boundaries and to characterize human movements. The detec-
tion method can find human regions in spatio-temporal data. The activity classification
experiments are performed on the RGB images using Hidden Markov Models (HMMs).

Xia et al. [XA13] presented a filtering method to extract STIPs from depth videos
(DSTIP) as shown in Figure 2.6, which effectively reduces the noisy measurements.
Additionally, the researcher built a local depth cuboid similarity feature (DCSF) to rep-
resent the 3D depth cuboid throughout the DSTIPs with an adaptable supporting size.
A cuboid codebook is built by clustering the DCSF using the k-means algorithm with
Euclidean distance. The center of the clusters defines the spatio-temporal codewords,
and each feature vector is assigned to a codeword using Euclidean distance. Thus, each
depth sequence can be represented as a bag-of-codewords from the codebook. Finally,
the SVM classifier is used for computing the performance of the action recognition
system from depth data.

Local descriptors can also be obtained from Trajectories. Feature Trajectories are
one of the effective representation methods for video data. Therefore, Trajectory ap-
proaches indicate that it is appropriate to identify human actions by tracking joint po-
sitions and explicate an activity as a set of space-time Trajectories [MS02, JDX+12].
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Figure 2.6: Example of extracted DSTIPs that are projected on to (x, y) coordinate with one
depth frame from the video. Action type arranged from left to right, up to down: Drinking-
sitting, eating, drinking-standing, call cellphone, playing guitar, sitting down, standing up, toss-
ing, walking and laying-down, compare to [XA13].

One of the main advantages of using Trajectory is being discriminative [Joh75]. Many
approaches were proposed for action recognition based on the Trajectories, as in the
following:

Wang et al. [WKSL11] proposed a shape descriptor that was used to encode a local
motion pattern and shape characteristics of the extracted Dense Trajectories (DT). A se-
quence of displacement vectors describes the shape of the Trajectory that is normalized
by the sum of displacement vector size. To describe video sequence, The DT is extracted
by sample dense points and track these points depend on the displacement information
of a dense optical flow field. This descriptor extended the motion coding scheme based
on MBH [WKSL13] that developed in the field of human detection. For detecting the
motion and structure data, HOG, HOF, and MBH are obtained from a space-time vol-
ume which aligned with the Trajectory. HOG and HOF feature descriptors are standard
methods that have led to excellent results in many datasets [LMSR08]. The MBH rep-
resents the gradient of the optical flow that was proposed initially for human detection
[DTS06]. For embedding more structure information, the volume subdivided a spatio-
temporal grid of size (bσ× bσ× bτ ), as shown in Figure 2.7. Suppose b bins are used for
HOG and MBH, and b+1 (1 for static) bins for HOF, then a (bσ×bσ×bτ×b) vector was
computed for HOG, (bσ×bσ×bτ × (b+1)) for HOF and (bσ×bσ×bτ ×b×2) for MBH
(2 is corresponding to the horizontal and vertical flow components). For evaluating the
performance of Dense Trajectories, a standard BoFs approach was used by constructing
a codebook firstly for each descriptor, Trajectory, HOG, HOF, MBH, separately. To
obtain the codebook, k-means clustering was applied, and the resulting histograms of
visual word occurrences were used as video descriptors. For classification, a multi-class
classification SVM was used.

Koperski et al. [KBB14] proposed two video descriptors for action recognition.
First descriptors investigated the DT to extract 3D Trajectory from RGB-D videos by
combining motion and depth information. The researchers were also used relative Tra-
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Figure 2.7: Illustration of Dense Trajectory description, compare to [WKSL11].

jectories to encode spatial information of features. The second descriptor improved the
performance of actions with low movement rate, i.e., reading, writing. For this imple-
mentation, the SURF detector was used to catch appearance features even when there
are no Trajectories points detected. Afterward, the SURF descriptor for each detected
point was computed based on RGB appearance. BoW was obtained by using the k-
means algorithm, then a codebook for each descriptor was constructed. A non-linear
SVM was used as a classifier.

Xiao et al. [XZYT14] developed action recognition of human in RGB-D sequences
by extending the DT feature of RGB sequences [WS13] to the 3D Trajectory in RGB-D
sequences. The 2D positions of the DT of RGB sequences were mapped to the equiv-
alent positions in the depth image. To characterize the 3D Trajectories, they applied
MBH on the depth channel to proposed 3D Trajectory shape descriptors. For obtain-
ing the feature representation of RGB-D videos. Finally, a linear SVM was used for
classification.

A summary of some approaches that were presented before and used the local fea-
tures for human action recognition tasks will be illustrated in Table 2.1.
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Authors Summary Modality
Noguchi et al. [NY10] Used SURF detector. k-means clustering was utilized for a

codebook generation. A BoW vector is generated based on the
codebook. Trained an SVM with the generated BoW vectors.

RGB

Yang et al. [YTYC12] Proposed the SURF-MHI-HOG method to extract spatial and
temporal information separately from RGB videos. Then,
BoW vectors are generated and finally evaluated using a lin-
ear SVM classifier.

RGB

Benoit et al. [BCDH10] Used Retina model for a low-level image processing and to en-
hance the detection potential. Double spatio-temporal filtering
occurs and ensures a proper structuring of video data.

RGB

Sabin et al. [SBL14] Used a Retina model to detect the salient areas from video
frames and to construct spatio-temporal descriptors for ex-
tracting BoW from local features such as: SIFT, SURF, and
FREAK. The KNN was used for classification.

RGB

Dalal et al. [DTS06] Proposed HOG detectors from combined appearance and mo-
tion in a linear SVM framework.

RGB

Uijlings et al. [UDSS15] Used a BoW pipeline with HOG, HOF, and MBH descriptors
to compute trade-off for video classification. Hierarchical k-
means based visual vocabulary and RF-based vocabulary were
used to explore the trade-off between efficiency.

RGB

Kellokumpu et al. [KZP08] Extracted features from LBP-TOP descriptors. The HMM was
performed to improve the classification activity.

RGB

Xia et al. [XA13] Extracted DSTIPs and built a local DCSF to describe the 3D
depth cuboid around the DSTIPs. PCA, k-means clustering,
and SVM classifier were applied on the computed descriptors.

Depth

Wang et al. [WKSL11] Proposed the Trajectory shape descriptor. HOG, HOF, and
MBH are obtained for detecting the motion and structure data.
BoFs, k-means clustering and multi-class SVM classifier were
applied to evaluate the performance of the descriptor.

RGB

Koperski et al. [KBB14] Combined motion and depth information to extract 3D Trajec-
tory. Improved performance on actions with low movement
rate based on SURF. BoW is obtained by using the k-means
algorithm. A non-linear SVM is used as classifier.

RGB-D

Xiao et al. [XZYT14] Proposed 3D Trajectory shape descriptors. Applied MBH on
the depth channel. A linear SVM classifier was obtained for
video feature representation.

RGB-D

Table 2.1: Summary of the previous approaches used local features for action recognition.

From the previous approaches, when facing the decision, which local feature de-
scriptor should be used? The works of [YTYC12, BCDH10, WKSL11, XZYT14] have
been selected to be used and improved by using the RGB-D videos. Therefore, in this
thesis, the local feature detectors and descriptors will be also adopted, i.e, SURF de-
tector, Retina model, HOG, HOF, LBP, DT, and MBH descriptors. These detection
and description methods will be explained later in detail in Chapter 3, Section 3.3.1.
These types of feature representation methods will be applied on RGB-D videos for
computing the feature vectors. By means of classification methods, these vectors will
be trained either directly or after combining them with global features representation
methods (Section 2.4.2).
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2.4.2 Feature Representation: Global Features

Methods based on global feature representations, also known as holistic methods, treat a
video sequence as a whole instead of applying sparse sampling by utilizing STIP detec-
tors or extracting trajectories. The global feature representation allows learning directly
from raw images in video sequences and describes the overall properties of objects, such
as objects silhouettes or contours. Global features representations have recently drawn
increasing attention in several kinds of research [CRHV09, SCH09, MH17] because
they can describe and encode more visual information from the whole images or video
by protecting spatial and temporal structures of actions that occur in a video sequence.
However, global feature descriptors are critical to partial occlusions and background
changes, and they often require pre-processing steps such as segmentation, background
subtraction, and tracking. In this thesis, the global feature extraction will be obtained
by using different global descriptors (see Chapter 3, Section 3.3.2) to improve human
action recognition using RGB-D videos.

Most of action recognition methods used global feature representations because of
their excellent ability to protect the structural information of actions. In the following,
researches regarding global features’ calculation and implementation strategy will be
reviewed.

Carletti et al. [CFP+13] proposed a method for recognizing human actions in depth
images, which are recorded by a Kinect sensor. In this work, the depth images were
represented by the combination of three sets of well-known features, including Hu-
moments, depth variations, and the < transform (an enhanced version of the Radon
transform). Finally, a GMM classifier was applied to the extracted features.

AlAzzo et al. [AATM17] extracted human action features from RGB videos by uti-
lizing seven Hu-moment invariants method (see Chapter 3, Section 3.3.2). Hu-moment
is applied to solve surveillance camera recording issues under various conditions such
as side, position, illumination variations, and direction. For the classification process, a
convenient Euclidean distance classifier (EDC) was performed to improve their action
recognition method.

Wang et al. [WLJ14] proposed a compact representation using a global GIST fea-
ture descriptor and Two-Dimensional Principal Component Analysis-Two-Dimensional
Linear Discriminant Analysis (2DPCA-2DLDA) algorithms. In this work, global grid-
based GIST features are firstly obtained from video sequences and then described as
GIST matrices. These matrices are reflected in the global structure to distribute the lo-
cal grids and simultaneously represent the local grids. Finally, the extracted features
were incorporated into a low-dimensional compact of the global descriptor, and the ac-
tions were recognized with an SVM classifier.

Douze et al. [DJS+09] evaluated the accuracy and complexity of the global GIST
feature descriptor from RGB images. They proposed several perceptual dimensions,
e.g., naturalness, ruggedness, roughness, expansion, and openness, to present the dom-
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inant spatial structure of a scene. Then, these dimensions are approximated by using
spectral and coarse localized information. In this work, the global GIST feature is used
to develop a low dimensional representation of the scene that does not require any form
of segmentation. The results obtained with GIST had high efficiency and small memory
usage, which allows the researchers to extend the datasets’ size. For evaluation, k-means
clustering was used to map the computed feature vectors into BoW for forming a visual
vocabulary.

In addition to the previous researches that computed features by using the global fea-
tures descriptors, several approaches using shape masks and silhouette information to
represent the human body and its dynamics play an active role in human action recogni-
tion. Shape analysis approaches aim to describe and localize the changes in the human
body shape by converting video frames into static shape patterns and comparing the
patterns with already stored patterns in the recognition stage. One of the shape analysis
approaches that will be used in this thesis is Motion History Images (MHI), and it will
be explained later in Chapter 3, Section 3.3.2.

Bobick et al. [BD01] used shape masks from different images to present tempo-
ral templates by projecting frames onto a single image using MHI and Motion Energy
Image (MEI) as action representation. In their work, MEI represented a binary mask
that indicated motion regions. In contrast, MHI indicated how motion happened by
weighting motion regions according to the point occurrence. To construct a recognition
performance, the researchers performed a matching algorithm for the temporal template;
matching was done using seven Hu-moments.

Blank et al. [BGS+05] presented human actions in RGB video sequences. In this
work, the actions are viewed as silhouettes of moving body parts, which are based on
the observation that human motion creates a space-time shape in the space-time volume.
The space-time shapes contain both spatial information about the pose of the human and
dynamic information. The extracted features’ performance was shown by the relatively
simple classification scheme using K-nearest neighbor classification and euclidean dis-
tance.

Tsai et al. [TCL15] proposed a global spatio-temporal representation from com-
bined an OF and an MHI to represent the space-time action changes in the video se-
quence. This combination was represented local movements of body parts in the global
temporal model, as shown in Figure 2.8. In their work, the OF-MHI provided a better
distinctiveness power to describe local movements in a global time-space. Finally, an
SVM classifier was used to train and test video actions.

The global feature is also represented as a texture feature descriptor. The texture has
an important characteristic that is used to identify objects or areas/regions of interest
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Figure 2.8: Global spatio-temporal representations from the MHI and the OF-MHI, compare to
[TCL15].

in an image, as it includes valuable information about the structural arrangement of
surfaces and uses for image classification tasks [HSD73], for instance:

Caetano et al. [CCS16] developed a spatio-temporal feature descriptor called Op-
tical Flow Co-occurrence Matrices (OFCM). In their method, they extracted a robust
set of texture features known as Haralick features (see Chapter 3, Section 3.3.2), these
features are used to describe the flow patterns through calculating meaningful proper-
ties of co-occurrence matrices in order to capture local space-time characteristics of the
motion over the neighboring OF orientation and magnitude. The OFCM was applied to
RGB video for performing the action recognition task.

Muchtar et al. [MYJ+17] improved the moving object detection system from RGB
videos. The researchers proposed this system by combining bit-planes representation
with the Gray-Level Co-occurrence Matrix (GLCM). This combination allowed the sys-
tem to achieve the motion history and remove the shadow. The results of this approach
were efficient and robust for detecting moving objects in real-time.

Lloyd et al. [LMMR16] proposed a method to detect events and to minimize vi-
olence automatically from RGB videos. Abnormal crowd detection was applied by
utilizing computer vision techniques, as Haralick features were selected with GLCM
texture feature analysis, which was implemented for crowd density estimation. A tem-
poral coding was used to describe the crowd dynamics, and the parameter values were
selected with an in depth evaluation. The method was highly effective at discriminating
normal and abnormal behavior and could operate in real-time. A Random Forest (RF)
classifier was used to evaluate the computed features.
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A summary of the presented global feature methods will be listed in Table 2.2.

Authors Summary Modality
Carletti et al. [CFP+13] Extracted features from combined global features, including of

Hu-moments, depth variations, and the < transform. A GMM
classifier is finally adopted.

Depth

AlAzzo et al. [AATM17] Used seven Hu-moment invariants to extract global features
on videos. A convenient Euclidean distance classifier (EDC)
is performed as a classifier.

RGB

Wang et al. [WLJ14] Proposed a compact representation using a global GIST feature
and 2DPCA-2DLDA algorithm. The actions are recognized
with SVM classifier.

RGB

Douze et al. [DJS+09] Used global GIST to develop a low dimensional representa-
tion of the scene without required a segmentation. k-means
clustering is used for learning a feature vector and to map the
descriptors into BoW for forming a visual vocabulary.

RGB

Bobick et al. [BD01] Used MHI and MEI as the action representation. Seven Hu-
moments was used as a matching algorithm for the temporal
template to construct a recognition system.

RGB

Blank et al. [BGS+05] Viewed action as silhouettes of a moving body. The classifi-
cation scheme was evaluated by using K-nearest neighbor and
euclidean distance.

RGB

Tsai et al. [TCL15] Combining an OF and a MHI to represent local movements of
body parts in the global temporal model. An SVM classifier is
used to train and test action models.

RGB

Caetano et al. [CCS16] Developed a spatio-temporal feature descriptor called OFCM.
Also, they extracts a set of features known as Haralick features
to describe and capture local space-time features of the motion
over the neighboring of OF. An SVM classifier was applied to
evaluate the OFCM method.

RGB

Muchtar et al. [MYJ+17] Improved moving object detection by combining bit-planes
representation with the GLCM.

RGB

Lloyd et al. [LMMR16] Proposed a method to detect the events based on GLCM tex-
ture feature analysis and Haralick features. A RF classifier is
used for training.

RGB

Table 2.2: Summary of the previous approaches used global features for action recognition.

From the previous approaches, when facing the decision, which global feature de-
scriptor should be used? The work of [CCS16] is recommended to be used and im-
proved by extending their 2D method to use with RGB-D videos (see Chapter 7).

Also, in this thesis, the global feature extraction will be obtained by using differ-
ent global descriptors, such as seven Hu-moment invariants [AATM17], a global GIST
feature, and Haralick texture features from the GLCM. For more details, these feature
extraction methods will be explained later in Chapter 3, Section 3.3.2. These types
of features will be applied to RGB-D videos to compute the feature vectors. Finally,
extracted feature vectors will be trained either directly or combined with other local
feature representation methods (Chapter 3, Section 3.3.1).
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2.4.3 Feature Representation: Features Combination

Developing new methods by combining different feature representations has become an
important issue in the action recognition field. Recently, several successful approaches
have been proposed to address the issues of action recognition. A combination of fea-
tures can be categorized into two strategies: Combination of local and global features
[IcS10, NJ14, WLJ15] which are computed from RGB-D images, or combination of
feature vector values which are computed from different image channels, i.e., RGB and
depth information [ZLYC12, SL15, MAL18].

Combining features can take advantage of individual features and can represent a
trade-off between performance and effectiveness. Feature combination is still a chal-
lenging task to improve human action recognition. Several approaches are based on
combining the local and global features to improve human action recognition, for in-
stance:

Qian et al. [QMXW10] combined global and local features in order to classify and
recognize human actions. The global feature was depended on a binary MEI. The global
feature was represented by contour coding of the motion energy image. As local fea-
tures, an object’s bounding box of human blobs in each frame was used. The computed
features were classified using multi-class SVM and binary tree architecture.

Solmaz et al. [SAS13] proposed a GIST3D feature descriptor combined with HOG
and HOF descriptors for proving the classification of RGB video actions. The GIST
descriptor is based on a 3D filter bank to calculate the 3D spatio-temporal features. The
recognition performance is achieved only in combination with local STIPs features.
This work is comprising the low/medium level approaches to human action recognition.
For classification, the researchers have trained their method by using a multi-class SVM
with the linear kernel and histogram intersection kernel for STIPs.

Wang et al. [WLJ15] proposed a human action representation method by combining
a global GIST feature with a local patch coding by used the BoW framework. The high-
dimensional global features have been translated through patch segmentation and local
coding into ordered form and compact concatenated visual words. Then, the computed
BoW features were finally tested with an SVM classifier.

On the other approaches, the researchers proposed several feature combination meth-
ods from RGB-D information to recover low-level features and develop image descrip-
tors, for instance:

Letouzey et al. [LPB11] projected the scene flow in the image domain to connect
3D motion with image flow through a projective matrix. They estimated a 3D motion
field by combining geometric information from depth maps with intensity variations in
RGB images to handle both arbitrary large motions and sub-pixel displacements.

Zhao et al. [ZLYC12] studied the representation of scenes through the computation
of interest points in appearance and depth information, individually, i.e., they extracted
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interest points separately from RGB channels and then combined with depth map, as
shown in Figure 2.9. In their research, the HOG and HOF were used to extract the fea-
tures from RGB video, while a Local Depth Pattern (LDP) was used to represent depth
features. The k-means clustering was applied to the computed set of both descriptors
for obtaining the codebooks. Finally, a multi-class SVM classifier is used to classify
human activities.

Figure 2.9: Combing RGB and Depth map features framework, compare to [ZLYC12].

Fanello et al. [FGMO13] combined motion and appearance features (see Figure 2.10)
to develop one-shot real-time learning, i.e., 3D Histograms of Scene Flow (3DHOFs)
and Global Histograms of Oriented Gradient (GHOGs). The combination method was
used to improve action recognition from RGB-D video. The researchers have proposed
a simultaneous online video segmentation and a linear SVM for recognition.

A summary of the presented features combination methods are illustrated in Table
2.3.
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Figure 2.10: Overview of the recognition system, compare to [FGMO13].

Authors Summary Modality
Qian et al. [QMXW10] Combined global feature represented by binary MEI and local

features represented by the object’s bounding box of human
blobs. The combined features was classified using multi-class
SVM and binary tree architecture.

RGB

Solmaz et al. [SAS13] Proposed a spatio-temporal GIST3D feature descriptor that
combined with HOG and HOF descriptors for proving the clas-
sification task. A multi-class SVM was trained.

RGB

Wang et al. [WLJ15] Combined global GIST feature and local patch coding. BoW
technique was used to represent the human actions. The recog-
nition performances were tested with SVM classifier.

RGB

Zhao et al. [ZLYC12] Extracted HOG and HOF from RGB, then combined with LDP
from Depth. k-means clustering and SVM classifier were ap-
plied for computing the performance of the method.

RGB-D

Fanello et al. [FGMO13] Combined motion and appearance features that are represented
by 3DHOFs and GHOGs. Then proposed a simultaneous on-
line video segmentation and action recognition by using linear
SVMs.

RGB-D

Table 2.3: Summary of the previous approaches used features combination methods for action
recognition.

The previous approaches illustrated different ways of the feature combination, such
as combining a global with local features computed separately from input images/videos
[WLJ15], or computing features from input RGB and depth data individually and then
combine them to form the BoFs [ZLYC12]. Therefore, this thesis work is depended on
the idea of the previous feature combination way. The combination of features will be
applied to enhance the accuracy and benefit of feature representations. The calculation
of feature vectors will obtain by two strategies: Firstly, features will be extracted from
RGB-D channels based on the combination of different local and global descriptors.
Secondly, features will be extracted from RGB and depth channels independently and
then combine to represent the video action, or the computed depth features are depen-
dent on the RGB features. Finally, the computed BoFs vectors will be trained by using
the classification methods.
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2.5 Machine Learning
Machine learning (ML) is a study of algorithms and statistical models, and it is a subset
of artificial intelligence. Computer systems used ML to perform tasks without spe-
cific instructions instead of depending on patterns and inference. Thus, ML applies to
computer vision, pattern recognition, and software engineering. ML is performed with
minimal support from software programmers, which uses data to make decisions and
allows it to be used interestingly in a variety of industries. ML algorithms are grouped
into a taxonomy based on the wanted output of the algorithm. Standard algorithm types
can be classified as supervised learning [Kot07] and unsupervised learning [JMF99],
(see Figure 2.11). The ML algorithms are applied to the training datasets. When a new
data instance comes in the play for prediction of the class label, the ML algorithm acts
on the new instance and predicts its class based on previous experiences and records
[Ayo10]. Many ML algorithms have been developed, designed, and adapted to study
action and activity learning. The types of ML models that have been utilized for action
and activity learning differ almost as widely as the types of sensors from which data is
obtained.

Machine Learning

Supervised 
Learning

Figure 2.11: Machine learning techniques include both supervised and unsupervised learning.

2.5.1 Supervised Learning
Supervised learning algorithms are machine learning algorithms that are learned to map
input data into a target attribute of the data (a class label). Typically, the algorithm
learns a relation between the input data’s attributes (features) and the target attribute
by reducing a loss function defined on the pairs of input data and the corresponding
destination attribute. The discovered relation is represented in a structure identified as a
model. Models describe the hidden relations between the input data and target attributes
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and can be used to predict the objective attribute (label), provided the values of the input
data [CK15]. In a supervised learning algorithm, it is necessary to follow specific steps
to solve a given problem [Vap95]:

• Define the kind of training examples.

• Collect and organize a training set.

• Determine the representation of input feature of a learned function.

• Determine the learning function structure and the related learning algorithm.

• Complete the design and execute the learning algorithm on the collecting set of
data.

• Evaluate the performance of the learned function.

There are two main kinds of supervised learning algorithms [CK15]: Classification
and regression. The distinction within these kinds depends on the nature of the destina-
tion attribute. In classification, the destination attribute takes on categorical values such
as class labels. Regression models, on the other hand, map the input data into a real
value of destination attribute.

Many challenges in human behavioral modeling are formulated as supervised learn-
ing problems, for instance mapping sensors to action labels, detecting the devices that
are used at home based on the current energy consumption trend and modeling the health
of an older adult from sensor data.

Supervised learning aims to build a model of class labels’ distribution in terms of
input features. The obtained classifier then assigns class labels to the test instances,
where the input feature is known, but the class label value is unknown. Due to the
nature of this thesis tasks, the primary focus will be based on classification algorithms
to know which actions could be recognized.

Classification

Classification is a way of predicting the class of given data. Sometimes, classes are
called targets or labels. Classification is categorized as supervised learning, where the
targets are also provided with the input datasets. The datasets have various actions, and
the goal is to detect and recognize these actions in videos.

The process to classify data includes two stages: Firstly, the learning phase, the
objective of learning is building a classifier by analyzing the labeled data; secondly,
predicting phase that is based on the well-established model for predicting. This model
has enough generalization ability, which means that the model has excellent classifi-
cation accuracy on the training data and has a high classification performance for the
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future data, which supposedly have the same statistical allocation as the training data
[YLY+13].

Classification algorithms are divided into two types: Binary and multi-class. Binary
classification classifies instances into one of two classes. In comparison, multi-class
classifies instances into one of three or more distinct classes, i.e., a multi-class classifier
is a classifier that ables to distinguish more than two classes, and it will be used in this
thesis.

Multi-Class Classification In multi-class classification, it is assumed that there are a
number of classes Ncl, and each sample is assigned to only one label. The aim of multi-
class pattern recognition is to accurately map an input feature space Ω that consisting of
Ncl classes with Ncl > 2, where ∪Ncl

i=1Ωi = Ω and Ωi ∩ Ωj = φ for i 6= j.
However, many classifiers work better for two-class classification problems (Ncl =

2). Thus, the Ncl-class pattern classification problem is broken down into Ncl two-
class problems [OMI12]. Several popular binarization approaches for classes have been
introduced to address the problems of multi-class pattern classification problems. One
of the multi-class classification methods is the One-vs-All (OvA) [Ana95]. The OvA
strategy is involved in training a single classifier per class and based on a reduction of
the multi-class problem into Ncl binary problems. Ncl binary classifiers are designed
for a problem with λ classes. For each class Ωλ, a classifier fλ is defined to distinguish
features v belonging to Ωλ from all other classes Ω− Ωλ. This yields Ncl classification
problems. A pattern is classified in the class whose relevant classifier has the highest
activation power. The mathematical definition of the decision function, δf , is computed
as follows [OMI12]:

λ∗ = δf(v) = arg max
λ∈{1,...,Ncl}

fλ(v) (2.5)

where δf is the activation output of a list of classifiers fλ for λ ∈ {1, ..., Ncl}, v ∈ Rn

is a vector of input features and λ∗ is the resulting class label. The other method is
One-vs-One (OvO) [HT98]. OvO discriminates each class from every other class by
building a classifier for each pair of classes. This thesis explores supervised learning
based on OvA multi-class classification approach to learn from training data and apply
it to unseen data for predictions. In addition to unsupervised algorithms that can draw
inferences from datasets with no labels to perform clustering (see Section 2.5.2).

This thesis presents several popular classification algorithms that will be used later
due to a large number of machine learning algorithms. The classification algorithms are
well defined by [Bis06, KZP06, MRS08]. The main classification algorithms will be
represented in the following:

Support Vector Machine (SVM) [Vap95, BB98, CL11]: In these papers, the re-
searchers maximize the distance between a hyperplane that distinguishes two types of
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data from instances on either side of it. They can perform linear and non-linear sepa-
ration with a kernel function. Furthermore, the global minimum is reached, and a local
minimum is prevented, which can occur in other search algorithms, including neural
networks. Finally, they usually delivered decent results.

K-Nearest-Neighbors (KNN) [CH06, MRS08]: It identifies the closest K-nearest in-
stances to the query instance and decides its label by choosing the single most common
label of nearest instances. The critical drawback of this classifier is that it requires the
storage of all the instances, and it is sensitive comparing instances to the choice of the
similarity function. Besides, it is widely accepted that it is subject to irrelevant features.

Random Forest classifier (RF) [Bre01, GPT08]: It uses several decision trees and
gives the class label on the basis of votes from each decision tree. In addition, a random
set of features is used to separate each node. The RF can overcome the restriction of
decision trees because the training data are always over-fit.

Naive Bayes Classifier (NB) [CC08]: It is the simplest Bayesian classifier based on
the principle of Bayes’ theory that all variables contribute to the classification and are
mutually associated.

Artificial Neural Networks (ANNs) [KL90, Zha00]: It is a computational model
where its functions and methods are based on the structure of the brain [KZP06]. ANNs
consist of several connected units (neurons) grouped in a connection pattern. Units in
a network are usually made up of three-layer types: An input layer with input units
that obtain processed data, an output layer with output units that provide the result of
the algorithm, and hidden layers with hidden units that process data. ANN learns the
weights of the neurons’ connections to determine how to map an input to an output.
There are many types of ANNs: Single-layer perceptron, Radial Basis Function (RBF)
network, Deep Neural Network (DNN), Convolutional Neural Network (CNN). A single
layer perceptron is the most straightforward neural network that depends on a linear
combination of weights and the feature vector. A DNN is a neural network that has at
least one hidden layer of units between the input and output layers. An RBF is a three-
layer feedback network. Each hidden unit performs a radial activation function, and a
weighted sum of hidden unit outputs applies from each output unit. A CNN is another
kind of neural network which can be added directly to the raw data, which automates
the process of feature construction.

Several approaches applied the classification methods to improve human action
recognition from the video [UDFS14, MSM15, MAaMV15]. In this thesis, the pre-
vious classification algorithms will be applied as a multi-class classifier for the recogni-
tion approach of human action, and they will be explained in detail in Chapter 3, Section
3.5.
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2.5.2 Unsupervised Learning
Unsupervised learning represents a class of problems involving a model to extract or
describe connections between data. Unlike supervised learning, unsupervised learn-
ing only operates on input data without outputs or target variables. In some pattern
recognition difficulties, the training data consists of sets of input vectors v without cor-
responding target variables; these are named unsupervised learning problems.

The goal of using unsupervised learning is to discover the inherent groupings within
the data, called clustering. Furthermore, it is used to estimate the data distribution
within the input space, called density estimation. Moreover, it is used for visualization
purposes by projecting data from a high-dimensional space into two or three dimensions
[Bis06].

In unsupervised learning, labels or constraints between data are not known before,
and it is up to the algorithm to cluster the videos according to their features. This
clustering can have a set target of a number of clusters, or the number can be random,
which makes it a challenge to find out how many clusters to choose. An example of a
clustering algorithm that will be used in this thesis is k-means clustering.

k-Means Clustering

Clustering is a technique designed to separate the data into groups (clusters) where each
group is built from similar data. The clustering aims to separate groups with similar
types and allocate them into clusters [JMF99]. The k-means clustering is one of the
unsupervised learning methods [YLY+13], that is used with unlabeled data, i.e., data
without defined categories or groups because it has high efficiency on the data partition,
especially in the large dataset. The goal of the k-means clustering is to define groups in
the given data, where the number of groups indicated by the (k) variable. This clustering
method is working iteratively to assign each data point to one of the (k) groups based
on the provided features. The data points are clustered based on feature similarity. The
k-means clustering algorithm’s output results are: Centroids of the (k) clusters that can
be used to label a new data, each centroid defines one of the clusters, which means each
data point is allocated to its nearest centroid. Also, labels for the training data mean that
each data point is allocated to a single cluster. k-means clustering divides v points into
k clusters in which each cluster refers to a mean value of the cluster. Formally, this is
described as reducing the sum of squares within each cluster.

argmin
Z

k∑
j=1

∑
vi∈Zj

‖vi − µj‖2 , (2.6)

where, vi is data points and µj is the mean of feature vectors belonging to the cluster
Zj . The standard k-means clustering shown in Algorithm 1:
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Algorithm 1 k-Means Clustering Algorithm
input : Data points vi ∈ V , cluster count k
output: Set of partitions Zj ∈ Z
Q← {µ1,µ2, ...,µk|µi randomly chosen points from V }

Z ← {Z1, Z2, ..., Zk|Zj = φ}
repeat{

Zj ← {vi ∈ V | ‖vi − µj‖2 ≤ ‖vi − µm‖2 j ∈ N, 1 ≤ j ≤ k}
µj ← 1

‖Zj‖
∑
vi∈Zj vi

until Zj = Zj−1;

The steps of the k-means algorithm are described as follows:

1. Initialization: The algorithm is typically initialized by allocating all means to a
random value, i.e., the initial cluster center is k random dots, but some heuristics
can select starting means depending on the data.

2. Assignment step: In this step, each point is allocated to the nearest mean by
depending on the distance between the point and the means:
Zj = {vi ∈ V | ‖vi − µj‖2 ≤ ‖vi − µm‖2 j ∈ N, 1 ≤ j ≤ k}
This distance is commonly the Euclidean distance but can be used the other dis-
tance measure. If each point has been allocated to one mean, the result is tempo-
rary clusters of k.

3. Update step: In each cluster, a new mean is calculated as the center of all cluster
points, i.e., the average of the cluster point coordinates.

µj ←
1

‖Zj‖
∑
vi∈Zj

vi

4. Repeat steps 2 and 3 until convergence.

The algorithm is efficient and straightforward, but it also has a number of drawbacks,
including its high reliance on the initial conditions and the fact that large datasets are
not likely to scale well. Almost all the solution found is a local minimum. Choosing the
best from several rounds with varying initializations is a way to improve the solution,
but there is no assured global minimum.

In the k-means algorithm, the initial center’s selection is the key to getting an accu-
rate result. If choosing the correct initial centroids will get a good result, but if it is not,
the outcome will be worse. It can be formed as a large and low-density cluster divided
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into pieces or combine two similar or close clusters into a single group. Therefore, the
initial centroids are usually randomly selected or used prior knowledge to label some of
them to get a good result.

In this thesis, the k-means clustering algorithm will be performed for generating the
dictionary with varied sizes to represent a video sequence using the Bag-of-Features
(BoFs) approach (see Chapter 3, Section 3.4). In the training stage, after the extraction
of features from training videos, the k-means algorithm is used to learn the visual word.
Then, each feature is assigned to a specific visual codebook through the clustering pro-
cess, and the histogram of visual codebooks can represent the video. The histograms
represent training videos are used as input vectors for one classification method to con-
struct a classifier. In the testing stage, the features are computed from a new input video;
then, these features are mapped into a histogram vector by utilizing the descriptor cod-
ing method that uses the pre-trained visual words (dictionary/codebook). Finally, the
histogram vector values are fed into the classifier to obtain the recognition accuracy
results.

2.6 Deep Neural Network-Based Approaches

In recent years, there has been significant growth in the amount of research in the com-
puter vision field to understand human actions in images and video sequences. There has
been a focus on actions, where the action can be considered a stochastically predictable
series of states. Stochastic methods build statistical models to represent a human action
as a model contains a set of states. The models are trained statistically on feature vec-
tors in order to create a general statistical model for the classification of action. In other
words, the statistical model is designed to generate a sequence with a specified probabil-
ity. Researchers have developed and utilized a wide range of stochastic techniques, such
as a hidden Markov model (HMMs) [Bis06], but recently, the research direction goes to-
ward deep learning methods [YCBL14, Lat17, DBPC19, ZA19] to demonstrate human
action recognition. In this thesis, a deep learning technique will be used to recognize
human actions in videos.

2.6.1 Deep Learning

Deep learning is a subfield of machine learning that aims to learn multiple representa-
tions and abstraction levels to make sense of data like speech, text, and images.

Deep learning approaches can treat the images or videos in their raw forms and
automatically extract, represent, and classify features from them. These approaches
utilize trainable feature extractors and computational models with multiple processing
layers to represent and recognize actions.
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As with other machine learning methods, deep learning approaches can be classified
into two major categories, supervised and unsupervised methods [GLCL19]. Super-
vised methods identify an error function that depends on a task, which must be solved,
and model parameters changed according to that error function. The error function
compares to training data with a known outcome. These methods could provide an
end-to-end learning structure, which ensures that a model learns to execute a task on
the raw data. Unsupervised methods ordinarily describe an error function that can be
minimized based on the model’s reconstruction capacity. Both categories with the re-
construction error depended on the deep learning technique. An auxiliary error function
may be specified, which requires some characteristics to the learned representation. For
instance, sparse auto-encoders aim to make the learned representation sparse, improving
the overall learning procedure, and giving a more discriminative representation.

Deep learning architectures have recently been proposed for solving human action
recognition tasks. Differently from the standard human action recognition pipeline,
deep architectures incorporate the feature extraction and classification in a single ap-
proach. Their features are rapidly learned from data being more distinctive. Further-
more, they solve some problems concerning the computation and adaptability of hand-
crafted features. Researchers have also used deep learning architecture for detecting and
recognizing complex events in video sequences. The main two examples of deep learn-
ing techniques used for action recognition are convolutional neural networks (CNNs)
[CS17, RGF+18, SHJ18], and Recurrent Neural Network (RNN) [MP17, ZZZ+19].
This thesis focuses on using CNN to represent human action recognition from RGB and
depth video data (see Chapter 8).

Although research today focuses on deep learning in various computer vision appli-
cations, conventional pattern recognition pipelines, such as the BoFs approach, can still
be used in many applications. Mainly for applications with small training data or forced
computational resources. The BoFs approach is still an area of interest, especially with
action recognition tasks. Videos add a more temporal dimension, whereas CNNs was
originally designed to model static images and the encoding of motion dynamics in
CNN is not clear. Most authors thus use CNNs learned on still images to model static
images in action recognition. So, this thesis proposes different ways – how to model
motion in RGB-D videos?

However, CNN also has two drawbacks in many practical applications: Firstly, be-
cause of the large number of examples, it also needs a large number of labeled samples,
or at least a large number of synthetic testing samples are needed. Secondly, they are
computer-consuming and require graphics processing units (GPUs) to be effectively
trained and evaluated.
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Convolution Neural Network

Convolution Neural Network (CNN) [LBBH98] is a deep model that preserves compli-
cated hierarchical features through convolution operations alternating with sub-sampling
operations on raw data. It is confirmed that CNN can achieve a visual target recogni-
tion performance by making appropriate adjustments during training. Also, CNN has
invariance for a particular pose, lighting, and disordered environmental changes. Deep
learning using a Convolutional Neural Network (CNN) was introduced by LeCun et
al. [LKF10] in computer vision applications. The researchers have defined the con-
volutional networks as trainable multistage architectures composed of multiple phases.
Each phase input and the output are sets of arrays named feature maps. For instance,
if the input is a color image, each feature map will be represented a 2D array with a
color channel of the input image, and a 3D array for an input video. At the output level,
each feature map describes a specific feature extracted at all locations on the input (see
Figure 2.12).
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Figure 2.12: A typical CNN architecture with two feature stages [LKF10].

CNN has several advantages over deep neural networks [ZA19] includes: It like the
human visual processing system, its structure is highly optimized for processing 2D and
3D images, and it is useful in learning and extracting abstractions of 2D features. Figure
2.13 shows the general structure of CNN consists of two main parts: Feature extraction
and classification. In feature extractor layers, each layer of the network receives the
output as input from the previous layer and transfers it to the next layer as input.

The architecture of CNN is composed of a combination of three types of layers:
Convolution layer, max-pooling layer, and a classification layer. In the low and middle-
level of the network, There are two kinds of layers: Convolutional layers and max-
pooling layers. The max-pooling layer is effective in occupying shape changes. Fur-
thermore, consisting of sparse connections with attached weights, CNN has significantly
fewer parameters than a fully connected network of comparable size. Above all, CNN is
trained with the gradient-based learning algorithm and suffers less from the decreasing
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Figure 2.13: General structure of the CNN, includes an input layer, multiple alternating convo-
lution and max-pooling layers, one fully-connected layer and one classification layer [ZA19].

gradient problem. Since the gradient-based algorithm trains the entire network in a way
that directly minimizes an error criterion, CNN can provide highly optimized weights.
The layers with even-numbered are for convolutions, and with odd-numbered are for
max-pooling operations. The output nodes of convolution and max-pooling layers are
gathered into a 2D plane described feature mapping. Typically, each plane of a layer
is obtained from the concatenation of one or more levels of planes of previous layers.
The nodes of plans are connected to a small area of each correlated plane of the previ-
ous layer. An individual node of the convolution layer extracts features by convolution
operations on the input nodes from the input images [ZA19]. CNN uses a kernel, also
known as a filter, to extract features from input images. A kernel is a matrix of values,
called weights, which are trained to extract certain features. Depending on the kernel
size for convolution and max-pooling operations, the dimensions of the features are re-
duced. Nevertheless, the number of feature maps typically increased to provide a more
precise classification of the extracted feature from input images. The output of the last
CNN layer acts as an input to a fully connected network, known as the classification
layer.

In the classification layer, feed-forward neural networks have been used as the clas-
sification layer. In the classification layer, feed-forward neural networks have been used
as the classification layer. The extracted feature in this layer is taken as inputs regard-
ing the weight matrix dimension of the final neural network. Nevertheless, the network
or learning parameters of fully connected layers are costly. The evaluation of the re-
spective classes is computed in the top classification layer. The classifier gives output
for the corresponding classes based on the highest evaluation. Mathematical details on
different CNN layers will be discussed in Chapter 3, Section 3.6.

CNN is an efficient model class for understanding image content, providing state-
of-the-art results on image segmentation, detection, recognition [CGGS12, GDDM13,
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FCNL13]. For instance, Razavian et al. [RASC14] improved the possibilities of feature
extraction from CNN using the OverFeat network. They extracted feature vectors from
the OverFeat network as generic image representation, and then they were used an SVM
for the classification task. Their method proved that pre-trained deep CNN was suitable
for generic feature extraction from RGB images. Athiwaratkun et al. [AK15] also im-
proved the possibilities of utilizing a pre-trained network for extracting features from
RGB images. Based on the extracted features, they evaluated the quality and perfor-
mance of the feature values gained from different network layers. These feature values
were used to be trained by SVM and RF classifiers.

Motivated by this CNN’s success in image processing applications, researchers are
working deeply to improve CNN for video processing. The first effort to use CNN in
human action recognition was presented by Taylor et al. [TFLB10]. They proposed
a model that learns feature map representations of RGB image sequences from pairs
of consecutive images. Other researchers have found that motion-based features, such
as optical flow, have a rich indication that could be directly fed as a network input.
Accurate and efficient methods are available to calculate these kinds of features, some
of which utilize GPU capabilities [FBK15]. The use of optical flow was demonstrated
to increase the efficiency of CNNs on action recognition tasks.

Simonyan et al. [SZ14] Simonyan et al. [SZ14] proposed a two-stream CNN archi-
tecture from RGB video sequences. They used multiple optical flow images calculated
from the sequences as an input to their CNN model. They introduced a structure depen-
dent on spatial and temporal streams. The spatial stream performed action recognition
from video sequences. Simultaneously, the temporal stream of CNN trained on dense
optical flow volumes and saving the horizontal and vertical displacement vectors from
successive action frames, i.e., recognizing action from motion using dense optical flow.
Finally, a temporal CNN and a spatial CNN were combined to include individual scene
and object features, as shown in Figure 2.14.

Figure 2.14: Overview of the two-stream CNN system [SZ14].
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Karpathy et al. [KTS+14] studied the performance of CNNs in large-scale video
classification. They proposed to use of a multi-resolution CNN architecture and time
information fusion. The multi-resolution CNN was improved by extending a CNN con-
nectivity in the time domain to gain local spatio-temporal information. This method is
used for human action recognition on raw RGB videos.

The early work of Ji et al. [JXYY13] introduced the innovation of inducing temporal
information from raw RGB data directly. They were performed 3D convolutions (3D-
CNN) on stacks of multiple adjacent video frames. Since then, many authors attempted
to improve this kind of models, for instance:

Carreira et al. [CZ17] introduced a Two-Stream Inflated 3D ConvNet from the
spatial and temporal domains. A temporal domain is treated by using an optical flow
method. While a spatial domain is tested on the RGB image sequences. In their work,
spatio-temporal feature extractors and pre-trained weights are provided to improve the
human action recognition system.

Baccouche et al. [BMW+11] proposed a neural-based deep model in order to clas-
sify sequences of human actions from RGB videos. They aimed to capture the charac-
teristics of video data based on 3D-CNN. The network was trained to allocate a vector
of spatio-temporal features to a small number of successive frames, as in Figure 2.15.

Figure 2.15: Architecture of 3D-CNN for spatio-temporal features extraction [BMW+11].

Latah et al. [Lat17] used deep CNNs and SVM approaches to employ a human ac-
tion recognition task from RGB video actions. A 3D-CNN approach was utilized to
extract spatio-temporal features from adjacent frames. Then, an SVM classifier was
used for classifying each instance based on previously extracted features. Additionally,
they reduced the number of CNN layers and input frame resolution to satisfy memory
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limitations.

Recently due to the development of the depth sensor, different works use RGB-D
images/videos as input to CNN. Some of these work are presented in the following:

Song et al. [SHJ18] improved scene recognition using RGB-D dataset. They used
pre-trained CNN models and a fine-tuning method that was implemented for RGB to be
used with the RGB-D dataset. For scene recognition, they integrated RGB and depth
features by projecting them in a shared space and learning more from a multilayer clas-
sifier configured in an end-to-end network.

Wang et al. [WLG+16] applied a 3D-CNN on depth map sequences to propose
human action recognition. They extracted the body shape and motion information at
several temporal scales by generated weighted depth motion maps (DMM), called Hier-
archical Depth Motion Maps (HDMM). The HDMM was used to store temporal motion
information from various views: Top, side, and front views. The three views have been
configured to be used as an input to the CNN.

Wang et al. [WZC14] demonstrated a 3D activity recognition model using RGB-D
sequences. They developed a network that consists of 3D convolutions and max-pooling
operators using the video segments. They also implemented the latent variables in each
convolutional layer and manipulated neuron activation. This model structure could be
modified dynamically, taking into account the temporal variations of human activities.
Figure 2.16 shows an example of the 3D convolution over spatial and temporal domains,
where the 3D kernel value is 3 in the temporal dimension. Finally, a feature map was
obtained across three adjacent frames by performing 3D-CNNs.

Temporal

Figure 2.16: Illustration of the 3D-CNN over spatial and temporal domains. [WZC14].
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Asadi et al. [AABR+17] proposed a Multi-Modal Dense Trajectory (MMDT) by
using scene flow to describe RGB-D videos. A framework of this work is presented to
explore the results of hand-crafted and learning-based features alongside deep learning.
The researchers extended 2D-CNN to MM2DCNN by including more scene flow as
input and merging the output of all models to improve human action recognition.

Liu et al. [LAM17] proposed viewpoint invariant approach using RGB-D data to
improve human action recognition, as shown in Figure 2.17. The view-invariant fea-
tures are obtained from the DT of the RGB videos using a nonlinear learning trans-
fer model and simultaneously extracted view-invariant human pose features based on a
CNN model from the depth data. Then, Fourier Temporal Pyramid (FTP) was calcu-
lated over them. This method processed RGB and depth information separately to take
advantage of using the RGB and depth modalities individually and computing spatio-
temporal features from these modalities.

Figure 2.17: Viewpoint invariant RGB-D human action recognition [LAM17].

Table 2.4 summarized the presented state-of-the-art methods that used deep learning
in their implementations, especially CNN, in image and video processing.
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Authors Summary Modality
Razavian et al. [RASC14] Proved the possibilities of feature extraction from CNN using

the OverFeat network from images. SVM was used for classify
the extracted features.

RGB

Athiwaratkun et al. [AK15] Improved the possibilities of using features extracted from a
pre-trained network. SVM and RF classifiers were used to train
feature vectors.

RGB

Taylor et al. [TFLB10] Used a CNN model to learn feature map representations of im-
age sequences.

RGB

Simonyan et al. [SZ14] Proposed two-stream CNN architecture form multiple optical
flow images.

RGB

Karpathy et al. [KTS+14] Improved CNN from large-scale video by extending the con-
nectivity of a CNN in the time domain to gain local spatio-
temporal information.

RGB

Carreira et al. [CZ17] introduced a Two-Stream Inflated 3D ConvNet from the spatial
and temporal domains.

RGB

Baccouche et al. [BMW+11] Proposed the 3D-CNN to capture the nature of video data. The
network is trained to allocate a vector of spatio-temporal fea-
tures to a small number of successive frames and used the fea-
ture vectors to classify the entire sequences.

RGB

Latah et al. [Lat17] Used a 3D-CNN approach to extract spatio-temporal features
from adjacent video frames. SVM classifier was used for clas-
sifying each instance based on the extracted features.

RGB

Song et al. [SHJ18] Improved RGB-D scene recognition by extended the existing
RGB model of scene recognition, i.e., pre-trained RGB-CNN
models and fine-tuning, to the target of the RGB-D data.

RGB-D

Wang et al. [WLG+16] Applied a 3D-CNN on depth map sequences to propose human
action recognition. They extracted the body shape and motion
information at several temporal scales by generated weighted
DMM. These motion information were configured to be input
to CNN.

Depth

Wang et al. [WZC14] Built the network over the video segments, which was con-
sisted of 3D convolutions and max-pooling operators. The fea-
ture map can obtain via performing 3D-CNN to demonstrate
the model of 3D activity recognition.

Depth

Asadi et al. [AABR+17] Proposed a MMDT based on scene flow to describe video se-
quences for improving human action recognition. This work
combined hand-crafted and learning-based features based on
2D-CNN.

RGB-D

Liu et al. [LAM17] Improved action recognition based on viewpoint invariant fea-
tures obtained from the DT of the RGB videos and simultane-
ously extracted view-invariant human pose features based on a
CNN model from the depth data.

RGB-D

Table 2.4: Summary of the previous approaches based on Convolution Neural Networks (CNNs)
for human action recognition.

In this thesis, a deep structured 3D model from RGB-D video can be viewed as an
extension of these existing approaches, especially the method of [SZ14]. This method
utilizes the optical flow representation of RGB video as an input to CNN. In Chapter 8,
this CNN method is extended to be used with RGB and depth sequences.

Compared to images, the video size is often much large, making it challenging to
feed a full video into deep learning architectures that are often very demanding in mem-
ory. For several iterations, CNN training requires considerable computing resources.
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Researchers are also attempting to learn CNNs on sampled frames or very short video
clips. However, video label information at the frame/clip level may be incomplete or
even missing. This missing information contributes to the issue of the assigning of the
false label. The CNN methods will be explained in detail in Chapter 3, Section 3.6.

2.7 Human Activity Datasets
The essential requirement to develop a human action recognition system using machine
learning is to use appropriate human action datasets. These datasets should be suffi-
ciently rich in a variety of human actions. Furthermore, the creation of such a dataset
should be corresponding to real-world scenarios. This section presents five popular
state-of-the-art action recognition datasets, such as MSR Daily Activity 3D (MSR3D)
[WLWY12], Online RGBD (ORGBD) [YLY15], Gaming 3D (G3D) [BMA12], Cornell
Activity (CAD-60) [SPSS12], and NTU RGB+D [SNGW16] datasets. The presented
datasets are used throughout this thesis work to evaluate the proposed approaches. These
datasets have been released for public use and address for these issues. More description
of each dataset will be presented in the following sections.

2.7.1 MSR Daily Activity 3D Dataset
The MSR Daily Activity 3D (MSR3D) dataset [19] [WLWY12] was collected by Mi-
crosoft and the Northwestern University in 2012. MSR3D dataset was recorded by a
Kinect device and focused on daily activities in the living room. In this dataset, there
is a sofa in the scene, as well as the camera has been fixed in front of it. This dataset
includes 16 actions and ten subjects. Each subject does each activity in two different
poses. These activities including: “Drinking, eating, read a book, call cell phone, writ-
ing on a paper, using a laptop, using a vacuum cleaner, cheer up, sitting, still, tossing
paper, playing a game, laying down on the sofa, walking, playing guitar, stand up, and
sit down”, can be used for supervised learning. The total number of activity videos is
320 samples. Some examples of activities are shown in Figure 2.18.

These datasets have (320× 3 = 960) files in total, where (16× 10× 2 = 320) files
for each channel. The RGB channel and depth channel are recorded separately, so they
are not accurately synchronized.

2.7.2 Online RGBD Dataset
The Online RGBD (ORGBD) action dataset [16] [YLY15] targets for human action
recognition based on RGB-D video data. ORGBD dataset was recorded by the Kinect
device and focused on human-object interaction. Each action was performed two times
by 16 subjects.
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Drinking

Sitting Down

Figure 2.18: Sample frames of MSR Daily Activity 3D dataset, such as Drinking, Sitting down,
compare to [19] [WLWY12].

ORGBD dataset consists of ’seven’ types of actions captured in the living room,
such as: “Drinking, eating, using a laptop, picking up a phone, reading phone (sending
SMS), reading a book, and using a remote”. The sample frames of the ORGBD dataset
are shown in Figure 2.19.

2.7.3 Gaming 3D Dataset

Gaming 3D (G3D) dataset [1] [BMA12] was collected by Kingston University in 2012.
G3D dataset was captured by Microsoft Kinect and focused on real-time action recog-
nition in a gaming scenario. This dataset contains ten subjects performing 20 gaming
actions, such as: “Punch right, punch left, kick right, kick left, golf swing, tennis swing
forehand, tennis swing backhand, tennis serves, defend, throw a bowling ball, aim and
fire a gun, jump, run, walk, crouch, climb, wave, flap and clap, and steer a car”. Figure
2.20 shows some image examples of G3D actions.

2.7.4 Cornell Activity Dataset

The Cornell Activity (CAD-60) dataset [17] [SPSS11] was captured by Cornell Uni-
versity in 2011 and included the RGB-D video sequences. It is motivated by the fact
that true daily activities rarely happen in structured environments. Therefor, the ac-
tions were carried out in the uncontrolled background. CAD-60 dataset was captured
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Drinking

Eating

Figure 2.19: Sample frames of Online RGBD action dataset, such as: Eating and Drinking,
compare to [16] [YLY15].

Golfing

Bowling

Figure 2.20: Color and depth samples from different gaming actions, such as: Bowling, Golfing,
compare to [1] [BMA12].

by Microsoft Kinect, which included distinctive activities that were performed within
five indoor environments: Office, kitchen, bedroom, bathroom, and living room.

In CAD-60 dataset, four subjects performed 12 different activities, such as: “Rinsing
a mouth, brushing teeth, wearing contact lens, talking on the phone, drinking water,
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opening pill container, chopping, stirring, talking on the couch, relaxing on the couch,
writing on white-board, and working on a computer”. Some samples from this dataset
are shown in Figure 2.21.

Brushing Teeth

Cooking

Figure 2.21: Sample frames selected from CAD-60 dataset from different actions. Such as:
Brushing teeth, Cooking (Chopping), compare to [17] [SPSS11]

2.7.5 NTU RGB+D Dataset

The NTU RGB+D dataset [18] [SNGW16] was collected by Nanyang Technological
University is in 2016. It is one of the largest scale benchmark dataset used for 3D
action recognition tasks. It produced 56, 880 RGB-D video samples of 60 separate ac-
tions. The 60 action classes in NTU RGB+D dataset were listed as: “Drinking, eating,
brushing teeth, brushing hair, dropping, picking up, throwing, sitting down, standing
up, clapping, reading, writing, tearing up paper, wearing a jacket, taking off a jacket,
wearing a shoe, taking off a shoe, wearing on glasses, taking off glasses, putting on a
hat/cap, taking off a hat/cap, cheering up, hand waving, kicking something, reaching
into a self pocket, hopping, jumping up, making/answering a phone call, playing with
a phone, typing, pointing to something, taking a selfie, checking time on watch, rub-
bing two hands together, bowing, shaking head, wiping face, saluting, putting palms to-
gether, crossing hands in front, sneezing/coughing, staggering, falling down, headache,
touching chest, touching back, touching neck, vomiting, fanning self, punching/slapping
other person, kicking other person, pushing other person, patting other’s back, pointing
to the other person, hugging, giving something to other person, touching other person’s
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pocket, handshaking, walking towards each other, and walking apart from each other”.
Figure 2.22 shows two sampled from this dataset.

Drinking

Sitting

Figure 2.22: RGB-D dataset images example from NTU RGB+D. On the right side, the depth
image contrasts are adjusted to show the captured depth in a better format in the printed version,
compare to [18] [SNGW16].

In this thesis, the NTU RGB+D dataset will be used due to the list of suitable
datasets implemented for a CNN framework. CNN requires large datasets for train-
ing and testing purposes of providing reliable results. On the NTU RGB+D, 60 actions
were collected from 40 human subjects in 80 different camera views. Each class con-
tains 948 samples; single class features contain more samples than other action datasets.
The dataset can be divided into three parts: “Daily actions, health-related actions, and
mutual actions”. Different camera views subjects and setups provide better variance
between samples of the same class and less artificial scenes.

Table 2.5 illustrates a summary of the presented public RGB-D datasets that will be
used to evaluate the proposed contributions of this thesis:

Datasets Samples Classes Subjects View Sensor Modality
MSR Daily Activity 3D (MSR3D) [WLWY12] 320 16 10 1 Kinect 360 RGB-Depth + Joints

Online RGBD Action (ORGBD) [YLY15] 336 7 16 1 Kinect 360 RGB-Depth + Joints
Gaming 3D (G3D) [BMA12] 1467 20 10 - Kinect 360 RGB-Depth + Joints

Cornell Activity (CAD-60) [SPSS11] 60 12 4 - Kinect 360 RGB-Depth + Joints
NTU RGB+D [SNGW16] 56880 60 40 80 Kinect v.2 RGB+Depth + Joints +IR

Table 2.5: Summary of human activity RGB-D datasets.
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For more details and sample images of different video action from five types of RGB
and depth datasets could be found in Appendix A.





Chapter 3

Background Theory

After explaining related work used for action recognition in the previous chapter, this
chapter introduces a theoretical background that is followed throughout this thesis work
to improve human action recognition algorithms. The most popular state-of-the-art tech-
niques will be reviewed for each step of the typical action recognition. This chapter is
organized as follows: An introduction is presented in Section 3.1. Section 3.2 presents
the motion detection methods. The features extraction methods are declared in Section
3.3. The video action representation is explained in Section 3.4. The video action recog-
nition methods are presented in Section 3.5. Finally, Section 3.6 explains convolutional
neural networks.

3.1 Introduction

Vision-based human action recognition is typically represented in two steps: Feature
extraction and action classification. Given a series of video sequences of actions that
the prototype will possibly be able to recognize. From each video, the significant fea-
tures are extracted by using video processing techniques. In recent years, various action
recognition techniques [WL11, NVBR12, BCK13] have been proposed. Most of them
refer to the group of features extraction-based methods, as explained in Chapter 2, Sec-
tion 2.4.

After the feature extraction step, the next step of human action recognition is the
classification of action that has been described by appropriate feature sets [H́D11, SBL14,
Tub17] extracted from images or videos. In this step, classification algorithms give a
final result of the activity label. Classification algorithms keep evolving with machine
learning methods. In recent years, the deep neural networks approaches, e.g., convo-
lutional neural networks, are used for the classification tasks from images and videos
[RGF+18, LCX+19].

69
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3.2 Motion Detection
Motion detection from videos is a method to identify activity in a scene by observing the
variations in the image sequence. Usually, this is achieved by matching pixels or frame
references. Any changes between frames are considered as a detection. The resultant in-
formation forms the basis for high-level operations that involve well-segmented results,
such as object classification and video action/activity recognition.

However, motion detection suffers from difficulties due to complex backgrounds,
illumination variations within the scene, and moving objects. Various methods were
suggested to solve these issues by utilizing only the moving object of interest. These
methods are classified into three categories: Background subtraction, optical flow, and
Retina model.

3.2.1 Background Subtraction

To detect a moving object from video sequences, a background subtraction method (ob-
ject detection) is used. It is one of the popular methods for motion detection in video se-
quences [MR14]. The background subtraction concentrates on two steps: Firstly, build
a statistical representation of the background, which is more representative, robust to
noise, and sensible to new objects. Secondly, construct another statistical model called
foreground representing the changes that occur on scene [TK12, MR14]. By applying
the Background subtraction approach to each frame on video, the moving object can be
tracked effectively.

Background subtraction creates a foreground mask for every frame in the video by
subtracting the background image from the current frame. Furthermore, if the back-
ground view excluding the foreground objects is available, the foreground objects can
be acquired by differentiating the background image from the current frame.

Background modeling consists of two significant steps: Background initialization
and background updating. In the first step, an initial background model is determined,
and in the second step, the model is updated to adapt potential changes in the scene.
The purpose of using background subtraction is to initialize the background image and
update it. The efficacy of the two will impact the accuracy of the test results. Regarding
the initialization step, the background is estimated to be the previous frame. By using
frame differencing, the background subtraction equation then becomes:

|I(x, y, t)− I(x, y, t− 1)| > Th, (3.1)

where, the previous frame, also known as the background frame, is represented as
I(x, y, t− 1) and deducted from the current frame, I(x, y, t). The threshold (Th) value
is then utilized to the complete difference in order to receive the foreground mask. The
main parameter in the thresholding method is the preferred threshold value. This value
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can be selected to be either automatic or manual. The reason for using the background
subtraction method is to detect the foreground or objects in motion from the compres-
sion between the background frame and input video frame.

In real-time, the background needs to be updated so that the moving object is accu-
rately extracted and the background model adapted better to light changes. Thus, the
Mixture of Gaussian (MoG) algorithm is chosen to be updated every frame. The MoG
algorithm description could be found in [Ziv04].

The background subtraction method [8] will be used later in Chapter 5 for extract-
ing the moving object from the input video sequences. The moving object could be
extracted from the background as in Equation (3.2), in this form, if the pixel difference
is greater than the set threshold, it then locates that the pixels appear in the moving
object, otherwise, as the background pixels. Then, the moving object can be observed
after threshold process.

B(x, y, t) =

{
1, |I(x, y, t)− I(x, y, t− 1)| > Th

0, otherwise
, (3.2)

where, B(x, y, t) represent the binary images. If B(x, y, t) = 1, this means that the
pixel belongs to the foreground, and otherwise, the pixel belongs to the background.

3.2.2 Optical Flow

The optical flow (OF) method is used for detecting motion in a visual scene caused by
the action of objects within a scene. The OF is estimated by calculating each pixel’s
motion velocity and direction between two successive video frames or images caused
by an object or camera movement. OF is widely used in video detection due to its robust
ability to describe motions in the video [YB98, WLG+16].

Optical flow defines both the orientation as well as the velocity of motion. Using
color intensity values, approximate the displacement of each image pixel over time in a
video volume. Several methods measure the field of optical flow (u, v) based on opti-
mization techniques such as differential-based, region-based, phase-based, and energy-
based techniques [BFB94]. The most common and widely used methods in the literature
are represented by Lucas et al. [LK81] and Farnebäck [Far03].

As an example, given a video sequence of images I , the optical flow’s goal is to
measure the pixel displacement (δx, δy) of spatial coordinates (x, y) in the interval
[t, t+ δt], so the following constraint of brightness is approached.

I tx,y = I∆t+t
∆x+x,∆y+y (3.3)

In the case of subtle motion, the Equation (3.3) can be reformulated as:
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I∆t+t
∆x+x,∆y+y ≈ I tx,y +

∂I

∂x
∆x+

∂I

∂y
∆y +

∂I

∂t
∆t. (3.4)

By using Equation (3.3) and Equation (3.4), it follows that:

∂I

∂x
∆x+

∂I

∂y
∆y +

∂I

∂t
∆t = 0, (3.5)

or, by dividing with ∆t, obtaining the following:

∂I

∂x

∆x

∆t
+
∂I

∂y

∆y

∆t
+
∂I

∂t

∆t

∆t
= 0, (3.6)

which is expressed as:
∂I

∂x
u+

∂I

∂y
v +

∂I

∂t
= 0, (3.7)

where (u, v) are components of optical flow or velocity of I tx,y and ( ∂I
∂x
, ∂I
∂y
, ∂I
∂t

) are the
partial image derivatives in the (x, y, t) position. Since only one equation is given with
two unknown variables, u and v, additional restrictions are necessary, and neighboring
pixels are usually provided.

In this thesis, the optical flow represented by Lucas-Kanade differential technique
[LK81] and Farnebäck method [Far03] will be applied as a motion feature detector.
These two methods represent the most popular methods used for optical flow computa-
tion efficiency.

Lucas-Kanade Method The optical flow representation defines the velocity of each
pixel point individually in the image. However, it typically only defines the motion of
two successive image frames and cannot adequately represent the entire duration of the
action. The above equations are called the optical flow equation. In it, ∂x and ∂y can be
computed as image gradients. Similarly, ∂t is the gradient along time. However, (u, v)
is unknown, so, Lucas-Kanade is used to solve the problem of unknown variables. The
mathematical computation of the Lucas-Kanade optical flow method could be found in
[LK81].

The Lucas-Kanade differential method is one of the most commonly utilized meth-
ods due to its calculative effectiveness. It is called a sparse optical flow because it tracks
only a specific number of points in the image. The Lucas-Kanade differential method
is a spatial local least square approximation based on a constant-brightness premise in
a local pixel neighborhood. This method will be used later in Chapter 4 as a motion de-
tector to extract local features from RGB-D videos. The sparse optical flow is calculated
using the Lucas-Kanade optical flow algorithm [11, 12] in the OpenCV library.
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Farnebäck Method The Farnebäck method computes a dense optical flow based on
the Gunnar Farnebäck algorithm. Farnebäck algorithm creates flow information for each
pixel in the video source frame. The dense optical flow measured in a video between two
consecutive frames. However, such computation may be slower than the Lucas-Kanade
method, but it gives accurate results. These denser results are suitable for applications
such as learning structure from motion and video segmentation [RF16]. The mathemat-
ical computation of the Farnebäck optical flow method could be found in [LK81]. This
dense optical flow method will be used later in Chapters 5, 7, and 8 as a motion detector
from RGB-D videos. The optical flow is calculated using the Farnebäck optical flow
algorithm [11, 12] in the OpenCV library.

3.2.3 Retina Model
The Retina model is a bio-inspired booster system used to address the difficulties of the
unsupervised segmentation of video moving objects. A large number of image process-
ing modules influenced by human visual systems’ biological models have been investi-
gated [BCDH10]. The ultimate purpose is to copy the human visual system’s potential
for recognition. The human Retina in image processing allows for the reduction of noise
and illumination differences as well as the enhancement of static and dynamic contours.
This technique may also be used for the normalization of illumination and motion detec-
tion. The global architecture of the implemented Retina model [MCCRAC16] is shown
in Figure 3.1 as a fusion of low-level processing modules. In essence, it is a layered
model with:

• Photoreceptors can adjust the sensitivity of their neighborhood luminance, where
the local contrast is improved.

• Outer plexiform layer (OPL) eliminates spatio-temporal noise and increases the
high-frequency ratio of spatial contours while reducing and removing mean lumi-
nance.

• Inner plexiform layer (IPL) in which different channels of information can be
identified. This thesis will be focused on two well-known channels: The Parvo-
cellular (Parvo) channel, dedicated to spatial analysis that increases the contrast
between static contours, and the Magnocellular (Magno) channel that strengthens
moving contours and eliminates static ones.

In the human Retina, the fovea level (central vision) is described by the Parvo chan-
nel. In contrast, the Magno channel was significant outside of the fovea level (peripheral
vision) due to specialized cells’ relative variations. Taking into consideration both chan-
nels of information in the same area of the image can be exciting for computer vision
because detail and motion data are accessible as parallel information in the same area.
The OPL and IPL [BCDH10] are illustrated in the following.
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Figure 3.1: The Retina model [MCCRAC16].

OPL: Spatio-Temporal Filtering and Contour Enhancement

The OPL layer cellular cooperations can be modeled using a non-separable spatio-
temporal filter whose transmission function for an electrical signal. The Retina-inspired
is developed to be used in images and video processing, which is applied to each frame
of a video stream, I(x, y, t). So, the OPL filter (ROPL(fx, fy, ft)) [Her96] has a transfer
function of the form:

ROPL(fx, fy, ft) = Rph(fx, fy, ft)[1−Rh(fx, fy, ft)]

with
Rph(fx, fy, ft) = 1

1+βph+2αph(3−cos 2π(fx+fy
√

3)−cos 2π(fx−fy
√

3)−cos 2πfx)+j2πTphft

Rh(fx, fy, ft) = 1
1+βh+2αh(3−cos 2π(3fx+fy

√
3)−cos2π(3fx−fy

√
3)−cos2πfy

√
3)+j2πThft

,

(3.8)

where fx, fy and ft represent spatial and temporal frequencies, these frequencies values
are computed using the Fourier transform function [Lev46]. The ROPL filter can be
used as a difference between two low-pass spatial and temporal filters that model the
network of photoreceptor (Rph) and the horizontal cell network (Rh) of the Retina.
The output of the horizontal cell network (Rh) is a very low spatial frequency. It can
also be translated as the local luminance required in the local adaptation stage of the
photoreceptors [BAHLC09]. In addition, the Rh filter’s temporal low pass influence
enables local luminance estimation to be permanently smoothed. Finally, the global
ROPL filter typically has a spatio-temporal high-pass effect on low frequencies, which
contributes to a spectral whitening of the input. Its high-frequency low-pass effect tends
to eliminate structural noise.

The ROPL spatio-temporal filter involves several parameters: βph is the gain of Rph

filter. Setting βph to 0 helps in canceling luminance information, and a higher value
requires partial processing of the luminance; βph is usually set to 0.7, which allows for a
strong overall impact. βh is the gain of the Rh filter. By setting this parameter to 0, only
the contour information is extracted. On the other hand, increasing it allows the low-
frequency information to be less reduced, i.e., the luminance would not be canceled.
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Tph and Th are temporal filtering constants created by the cellular membranes’ effects,
allowing the temporal noise to be minimized. The spatial filtering constants (αph and
αh) are setting the spatial filtering capacities: Where αph and αh sets the high and the
low cut frequency, respectively. The OPL filter can eliminate spatio-temporal noise and
increase contours. These two properties are often opposite since noise creates distract-
ing contours, which often relate the enhancement of contours with the enhancement of
noise. More details about the Retina model could be found in [Her96].

IPL: Contours Enhancement and Motion Dedicated Filtering

Contours enhancement: Parvo channel IPL Parvo is the next processing step of
the OPL and applies to part of the Retina IPL, and it provides high contour sensitivity
in foveal vision. The Parvo channel ganglion cells receive contour information from
the OPL outputs. On this basis, they serve as a local enhancer that boosts the contour
details. Parvo channel is also modeled similar to the photoreceptor by logarithmic law
[BCDH10].

The Parvo channel processes colors and spatial information. It has a high resolu-
tion in the middle of the visual field and forms the foveal vision. It normalizes colors,
increases local contrast, responds well to temporally sustainable signals, and fluidized
rapid temporal variations. The parvo channel enhances the image in many ways. It
improves the contours of medium spatial frequencies, which reflect spatial information
and leave high-frequency components correlated with noise and compression. It also
smooths movement, removes high temporal frequencies that can be easily affected by
noise and video compression. An additional advantage is the local luminance change,
which also increases details in very dark areas of the scene without amplifying the image
noise [SBLC12].

Motion dedicated filtering: Magno channel On the Magno channel of the IPL, let’s
an input image is represented by I = (x, y, t), on its output image, a temporal effect
is introduced. This effect is modeled by a first-order high-pass temporal filter [Cha11].
This filter improves areas in which spatio-temporal changes occur. The high pass tem-
poral filter of the IPL Magno channel provides the output signal with a temporal effect,
clearly noticeable as a trace left by the moving objects.

The magnitude of the IPL Magno output signal depends on the velocity of the mov-
ing regions, i.e., high reactions in fast-moving regions and no reaction in static regions.
The filter reaction is also more robust for moving contours perpendicular to the direc-
tion of motion. The tuning of the time constant allows the reaction to temporal changes
in the scene to be modified. A low value only allows for accelerated changes, while
a higher value allows slower changes to be improved. It affects not only the response
to contours of moving objects but also parasite background movement. The response
decays over time that contributes to fuzzy contours. The IPL Magno facilitates robust
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extraction of motion information with the benefit of using locally adapted contour ex-
traction, even in dark or noisy environments.

The Parvo and Magno channels will be used in this thesis (Chapter 6) as spatio-
temporal filtering to segment the motion from input videos. It is possible to apply the
Retina filter to single pictures, video files, or live video captures [BCDH10]. The soft-
ware of the Retina model is based on OpenCV [13], which offers a simple and compact
library for image processing. In the thesis work, the Retina filtering is performed with
C++ programming, and the display allows the processing result to be displayed in real-
time.

3.3 Feature Extraction Methods
Low-level features play an essential role in feature representations of human actions.
In the last decades, many spatio-temporal feature detection and description methods
have been proposed and shown to be useful for action recognition. CNNs, in contrast,
ca learn feature extractors automatically. This will also discussed later. Hand-crafted
features, however, still play an important role in action recognition for state-of-the-art
systems. This section focuses on the hand-crafted feature extraction methods that will
be used later in this thesis.

3.3.1 Local Spatio-Temporal Features
This section describes local spatio-temporal feature detectors and descriptors. A de-
tector is an algorithm that selects points from an image depending on some criterion.
These points are called interest points (keypoints or salient points). A descriptor de-
scribes an image patch around the interesting points and represents it as a vector of
values, these values could be as simple as the raw pixel, or it could be further compli-
cated, such as a histogram of gradient orientations. Together interesting points and its
descriptor are commonly called a local feature. A local feature is used for many com-
puter vision tasks, such as object detection, object recognition, and image registration
[KG13, GGDH17, LK81].

Spatio-Temporal Feature Detector

Interest points in videos are spatio-temporal interest points (STIP) within a video that
can be used to build complex video processing systems such as action recognition and
video retrieval systems [NVY+14]. For computing the STIP points, the detector is
usually used to select spatio-temporal locations and scale them in a video by maximizing
specific saliency functions, such as Speeded-Up Robust Features (SURF) [BETV08].
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SURF is a very fast detector and extracts features by tracking interest points. Feature
detectors usually differ in the type and the sparsity of selected points [HAD14]. In this
thesis, a SURF feature detector will be used to extract interest points from videos.

Speeded-Up Robust Features: The SURF detector was firstly proposed by Bay et
al. [BETV08]. SURF provides a robust local feature detector and descriptor, which
can be used in computer vision tasks such as object recognition, camera calibration,
3D reconstruction, and image registration [RTKI11, SBLC12, HAD14, JKAM18]. The
SURF detector is an algorithm that extracts some unique interest points, i.e., keypoints,
from an image or video sequence. These interest points are chosen as corners and
blobs at distinctive locations in an image. It uses an intermediate image representation
called Integral image [VJ01] to reduce the computation time. The Integral image is
calculated from the input image. It is used in any rectangular area to speed up the
calculations. The value of the Integral image is calculated by summing up the pixel
values of the (x, y) coordinates from the source to the end of the image, which helps to
make the computation time-invariant to adjust the size and is especially helpful when
encountering large images. An Integral image (I∑(x)) at a position ((x) = (x, y)>)
refers to the sum of all pixels in an input image (I) within a rectangular area of the
origin and (x) as shown in Equation (3.9) [BETV08].

I∑(x) =

i≤x∑
i=0

j≤y∑
j=0

I(i, j) (3.9)

The SURF feature detector is based on a determinant of the Hessian matrix [Lin91]
for both scale and location due to its excellent performance of accuracy, it is used for
deciding whether a point in an image can be chosen as an interesting point or not. The
SURF detector uses to detect the interest points later in the next chapter.

Spatio-Temporal Feature Descriptors

A spatio-temporal feature descriptor represents an image or an image patch that sim-
plifies the image by extracting essential and important information and throwing out
extraneous information. A feature descriptor typically transforms an image of size
(w × h × NCh) to a feature vector of size (s). Where (w and h) represent the width
and height of the image. NCh refers to the number of image channels. In thesis work,
these channels are represented by RGB and depth channels, which means that there are
four channels or gray and depth channels, i.e., two channels.

In this thesis, different feature descriptors are used to extract feature vector values
from RGB-D videos, as explained in details below.
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Histogram of Oriented Gradients (HOG) The HOG is a feature descriptor that is
used in image processing and computer vision for detecting objects. The HOG descrip-
tor technique counts orientation and gradients occurrences in localized parts, i.e., the
complete image is broken into smaller regions. The gradients and orientation are then
calculated for each region of an image detection area or Region of Interest (ROI) to
extract the dense features from the images. Dense means that it extracts features for an
ROI in the image or all locations in the image.

The HOG descriptor is introduced by Dalal et al. [DT05] for RGB images. It is
currently regarded as one of the most important and widely used methods for visual
human detection and recognition [SEE18, KGDE19]. HOG descriptor is experimentally
proved to outperform other features for encoding human figures in human recognition.
Simultaneously, the edges and interesting regions can be effectively used to encode
object shapes and areas that are widely used for action representation.

To establish structure information in a descriptor [LMSR08], gradient magnitude
responses have to be computed horizontally and vertically. It results in a 2D vector field
per frame. In practice, the image is divided into small connected regions, called cells,
the local neighborhood around a local feature is divided into a spatio-temporal grid. For
each cell of the grid, compiled a histogram of edge orientations or gradient directions for
the pixels within the cell. The histograms are then normalized using L2-normalization
and concatenated the b-bins histograms over B-blocks to represent the final descriptor
vector. Afterward, these responses need to be aggregated over blocks of pixels within
both spatial and temporal directions. Then, the following step is to concatenate the
responses of many adjacent pixel blocks. Finally, descriptors need to be normalized
to reduce dimensionality, which leads to computational benefits or improved accuracy.
This descriptor is used for the extraction of the features in video frames.

Dependent on the idea of HOG, Histograms of Oriented using depth data have been
computed by [SA11], by following the same procedure of HOG descriptor on RGB im-
ages. It analyses a subdivision of a fixed region into cells, estimates descriptors per cell,
and collects the oriented depth gradients into histograms. The histograms normalize
with respect to depth noise to achieve a high level of robustness. The assumption is that
a number of local depth variations will robustly describe local 3D shape and appearance.

Histogram of Optical Flow (HOF) The HOF is the most common local feature de-
scriptors used for video processing introduced by Laptev et al. [LMSR08]. The optical
flow displacement vectors are initially calculated horizontally and vertically. OF has
been commonly used in video detection, as explained previously, due to its robust abil-
ity to describe motions in the video [YB98, WLG+16]. OF is estimated by calculating
each pixel’s motion velocity and direction of two successive video frames induced by
object or camera movement. To embed structured information in the HOF descriptor,
follow the same idea as in the HOG descriptor, the local neighborhood surrounding a



3.3. FEATURE EXTRACTION METHODS 79

local feature is divided into a spatial and temporal grid. A histogram descriptor is com-
puted from each pixel in the interest region for each cell of the grid. The histograms are
then normalized and concatenated into the final descriptor.
For representing local motion features, HOF descriptor is frequently used to describe
the local neighborhoods of the detected interest points. The HOF features are calculated
from each pixel in the region of interest. The optical flow magnitude of each pixel in
the region of interest is determined into b-bins by their optical flow directions to achieve
bins histogram represented as a HOF features. The HOF and HOG descriptors will be
used later in the next chapters.

Motion Boundary Histogram (MBH) The MBH is a motion descriptor used for
video classification task [UDSS15]. MBH descriptor is proposed by Dalal et al. [DTS06],
who demonstrated its effectiveness to background and camera motion. The main idea
of MBH is to describe the oriented gradients determined across the vertical and the hor-
izontal optical flow components, i.e., separates the optical flow (OF) field into its (x and
y) components. The benefit is that locally continuous motion movements of the camera
tend to be avoided, and the description relies on optical flow variations between frames
(motions boundaries). Spatial derivatives for the horizontal and vertical components of
the optical flow are determined separately, and orientation information is quantized into
histograms similar to the HOG descriptor. In addition, the MBH descriptor is based on
the spatio-temporal grid concept by creating histograms of Bag-of-Features (BoFs). The
MBH in thesis work is not only used for its aptitude of decreasing the camera move-
ment but also as a motion descriptor for its action recognition, i.e., MBH employs as
motion descriptor for Dense Trajectory. The MBH descriptor will be used in Chapter 5
to extract motion information from depth data.

Dense Trajectory (DT) DT was proposed by Wang et al. [WKSL11] for RGB data,
i.e., 2D Dense Trajectory (2DTr). In this thesis, DT will be expanded to be used on
RGB-D data by considering the depth information and motion features from RGB-D
videos.

Wang et al. [WKSL11] proposed the efficient dense trajectories to describe videos
motivated by the current success of dense sampling in image classification. Feature
points for each frame in videos are sampled on a grid spaced by w pixels and tracked
separately in each scale. According to video resolution, each frame is set to eight spatial
scales by a factor 1

√
2 videos. The dense field of optical flow between frame t and the

next frame t + 1 is Ot = (ut, vt), where ut and vt represent the vertical and horizontal
components. For the feature pointX t = (xt, yt) at frame t, it can be tracked toX t+1 =
(xt+1, yt+1) at the next frame t+ 1 by by means of median filtering in the dense optical
flow field Ot , and the position ofX t+1 is represented as in Equation (3.10):

X t+1 = (xt+1, yt+1) = (xt, yt) + (M ∗ Ot)|(xt,yt), (3.10)
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where M is the 3 × 3 kernel of median filtering. Points of subsequent frames are con-
catenated to form a trajectory: (X t,X t+1,X t+2, ...). However, in tracking, there is a
very common problem like drifting. To prevent this circumstance, the trajectory length
is limited to Ls. If the tracking point is not located in a w × w neighborhood of each
frame, a feature needs to re-sample and adds it to the tracking process.

DT provides a video representation depend on the densely sampled trajectories us-
ing dense optical flow and a set of feature descriptors such as HOG to represent the
spatial appearance, HOF to extract the information of first-order motion, and MBH to
extract the information of second-order motion. The dense sampling method is used for
capturing local information from both the foreground and its surrounding objects, i.e.,
this method takes into consideration both motion appearance features.

DT algorithm computes DT over multi-scale images. A first step calculates dense
sampling of feature points across the first frame to assure that feature points include all
spatial positions and scales. A second step tracks points depend on the displacement
information from a dense optical flow field to describe video frames. The DT descrip-
tor extended the scheme of motion coding based on MBH which is developed in the
human detection field and overcame camera motion problem and overlay the motion
information in videos.

The Trajectory shape descriptor [WKSL11] is used to encode a local motion pat-
tern and shape characteristics of the extracted DT. So, it describes the shape of a Tra-
jectory by a series of displacement vectors normalized by the sum of vector mag-
nitudes displacement. Mathematically, the Trajectory shape (Tr) can be described
by length Ls and a sequence of displacement vectors (∆Xt, · · ··,∆Xt+Ls−1) where
∆Xt = (Xt+1 −Xt) = (xt+1 − xt, yt+1 − yt). Then, normalizing the resulting vector
by the sum of displacement vector magnitudes:

Tr =
(∆Xt, · · ··,∆Xt+Ls−1)∑t+Ls−1

j=t ‖ ∆Xj ‖
(3.11)

The output vector Tr represents the trajectory descriptor. This descriptor is evalu-
ated to represent Trajectories at multiple temporal scales for recognizing actions. Later
in Chapter 5, the extraction of the feature Trajectory from the RGB-D image is cal-
culated by extending the 2D to 3D Trajectory by adding depth information to each
Trajectory point.

Local Binary Pattern (LBP) The LBP is a type of visual descriptor for texture clas-
sification introduced by Ojala et al. [OPH96, OPM02]. The LBP is an image operator
that converts an image into an array or image of integer labels that describe the image’s
small-scale appearance. These labels or their statistics, usually the histogram, are then
utilized for additional image analysis.
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The LBP has been widely utilized for segmentation and texture classification be-
cause it is simple to use and efficient in defining the local spatial structures in an image.
Additionally, it has been used in various computer vision applications, including image
analysis, environment modeling, image retrieval, motion analysis, and outdoor scene
analysis [WZC14, VHS15]. In recent years, LBP is used for human action recognition
[ATKI14, CZL17] that also will be applied later in this thesis for computing the feature
vectors. LBP operator identifies the image pixels with decimal numbers that encode
the local structure around each pixel. LBP can be computed by taking a threshold of
neighboring pixels with the gray value of their center pixel and the neighborhood in a
(3 × 3) grid, Figure 3.2 shown an example of this computation, wherein a binary case,
the original (3 × 3) neighborhood is thresholded by a value of the center pixel. The
pixel values in the threshold neighborhood are multiplied by the weights given to the
corresponding pixels. Finally, the 8-pixel values are then summed to get the number
(149) of this texture unit.

 

thresholding weighting

Original 3x3 neighborhood Pattern = 10101001
LBP = 1+4+16+128 = 149

Figure 3.2: Illustration of the original LBP

The LBP method is invariant against a grayscale transformation. It can be conve-
niently combined with a simple contrast calculation by calculating the difference be-
tween the average gray level in each neighborhood of those pixels with the value (1)
and those who have the value (0). Each pixel in the frame is compared with its eight
neighbors. The resulting 8 values are then treated as an 8-bit binary number. A bi-
nary number is obtained by combining all these binary codes from the top-left pixel in
a clockwise direction and using their corresponding decimal value for labeling. The
obtained binary numbers are referred to a LBP codes. The original LBP at the position
(xc, yc) can be defined in Equation (3.12) [KZP08]:

LBPxc,yc =
P−1∑
s=0

B(gs − gc)2s, B(d) =

{
1, d > 0

0, d < 0
(3.12)
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where gc is the gray value of the center pixel (xc, yc) and gs (s = 1, 2, ...P ) are the gray
values at the P sampling points. And B is the binary value assigned to the neighboring
pixel.

The LBP descriptor will be used in Chapter 6 to compute feature vectors form a
salient area of the Retina model.

3.3.2 Global Spatio-Temporal Feature

The global features analysis approach has been applied in many document image anal-
ysis and recognition researches. Global representations encode extracted features as a
whole and are obtained in a top-down manner [SG13]. Therefore, global descriptors
are usually less time consuming to calculate and easy to implement compared to local
methods; they give robust results in less challenging scenarios such as those with a static
background.

Moreover, shape information-based feature is one of the first characteristics utilized
to demonstrate human body structure and its dynamics for action recognition in videos,
such as Motion History Images (MHI). MHI and different feature descriptors are used
in this thesis to extract global feature vector values from RGB-D videos, as will be
explained in the following:

Motion History Images (MHIs) MHIs proposed by Bobick et al. [BD01], are a real-
time motion template which temporally layers successive image differences into a static
image template. The motion history function is represented by pixel intensity at that
location, where lighter values correspond to a more recent movement. The directional
motion information can be directly calculated from the intensity gradients in the MHI.
The gradients in the MHI are more practical to calculate relative to the optical flow. It
is also reliable because the motion information in MHI is mostly along the contours
of moving objects. Unwanted motion is thereby ignored in the inner regions of object
contours. So, the reason for using the MHI is simplicity and low computation compared
to the optical flow method. MHI has utilized motion shape information for recognizing
actions from a video.

In a video sequence, the MHI translates 3D space-time information to a single 2D
intensity image. In this process, the background in each image of the video sequence
is subtracted to segment the foreground region. Each foreground pixel is then allocated
a significant fixed intensity value that specifies the duration of action. Over time, it is
minimized by a small constant value when the pixel becomes a background point. At
each pixel location, the intensity value in the MHI thus records the history of temporal
changes [HHLH11]. The pixel intensity in MHI MHτ is a function of the temporal
history of the movement at that point. The MHI is formally defined as in Equation (3.13)
[BD01]:
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MHτ (x, y, t) =

{
τ , if B(x, y, t) = 1

max(0,MHτ (x, y, t− 1)− 1) otherwise
, (3.13)

whereB(x, y, t) is a binary image of differences between frames that indicates the pres-
ence of moving objects at time frame t. The duration τ determines the temporal ex-
tent of the movement (e.g., in terms of frames). All detected foreground points, i.e.,
B(x, y, t) = 1, observed in the MHI representation have the same intensity value τ ,
irrespective of movement durations and moving speeds at individual pixels. Therefore,
it is extremely susceptible to background noise and cannot characterize the local move-
ments of a target object. The MHI will be used in the next chapter as a local filtered
motion from the detected interest points (using SURF) and as input image to compute
the moment-based features (using seven Hu-moments).

Hu-Moments Invariant Features Moments invariant are a shape descriptor that can
be used over an image to characterize and describe the shape of an object. Hu Ming-
Kuei [Hu62] has suggested the utilize of invariant moments for binary shape represen-
tation. The moments are invariant terms of rotation, scales, and translations, known as
Hu-moments invariants. Hus’ method had seven invariant moments, and they are com-
puted to describe the shape feature dependent on the normalized central moments of the
edge image.

Seven Hu-moment shape features are computed as follows: For two-dimensional
(M ×N ) images of a density distribution function I(x, y); where, x = 0, 1, ....,M − 1
and y = 0, 1, ...., N − 1, the geometric moment mpq of I(x, y) is computed as follows
[RYS+06]:

mpq =
x=M−1∑
x=0

y=N−1∑
y=0

(x)p.(y)qI(x, y), (3.14)

for p, q = 0, 1, 2, 3, 4, . . . .., where p, q are positive integers and (p + q)th is called the
order of the moment of a density distribution function I(x, y).

The moments of I(x, y) translated by a quantity (a, b), are computed as:

µpq =
∑
x

∑
y

(x+ a)p.(y + b)qI(x, y), (3.15)

Then, to make these moments invariant to translation, the central moment µpq can
be defined from Equation (3.16) as follows, by substituting the values a = −x̄, and
b = −ȳ:

µpq =
∑
x

∑
y

(x+ x̄)p.(y + ȳ)qI(x, y), (3.16)
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where,

x̄ = m10
m00

, ȳ = m01
m00

Moreover, the scaling invariance of the central moment can be computed from nor-
malizing moments of the scaled image by scaled energy of the original image to become
invariant to scale change. Mathematically, it can be defined as follows:

ηpq =
µpq
µγ00

, γ =
p+ q

2
+ 1 (3.17)

where γ is the value of the normalization factor.
The value of ηpq represents a set of nonlinear functions that are calculated by nor-

malizing central moments, which are invariant to object rotation, translation, posi-
tion, and scale change. The seven Hu-moments are derived as in Equation (3.18)
[RYS+06, KL90]:

HM1 = η20 + η02,

HM2 = (η20 − η02)2 + 4η2
11,

HM3 = (η30 − 3η12)2 + (3η21 − η03)2,

HM4 = (η30 + η12)2 + (η21 + η03)2,

HM5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)2 − 3(η21 + η03)2]

+(3η21 − η03)(η21 + η03)[(η30 + η12)2 + (η21 + η03)2],

HM6 = (η20 − η02)[(η30 + η12)2 − (η21 + η03)2]+

4µ11(η30 + η12)(η21 + η03),

HM7 = (3η21 − η03)(η30 + η12)[(η30 + η12)2 − 3(η21 + η03)]+

(η30 − 3η12)(η21 + η03)[3(η30 + η12)2 − (η21 − η2
03]

(3.18)

where the numerical values of HM1 to HM6 are very small. To prevent precision prob-
lems, the logarithms of the absolute values of these six functions, i.e., log |HMi|; where,
i = 1, .., 6, are chosen as the action features among video frames. In this calculation,
the first six moments have been proved to be invariant to translation, scale, and rotation,
while the seventh-moment sign changes for image reflection. The seven Hu-moments
feature will be applied in Chapter 4 for computing feature vectors from the MHIs, i.e.,
a vector of seven Hu-moments is calculated for each frame (MHI) in the video.

GIST Descriptor The GIST is a global image feature descriptor that helps to charac-
terize various important statistics of a scene. The GIST of a scene is influenced by the
ability of human to recognize different image information in a few milliseconds or in a
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single glance [OT01]. For instance, even when an image is blurred, image characteris-
tics such as openness, expansion, naturalness and robustness can be easily recognized
without knowing objects or scene details. A so-called GIST global image descriptor has
been proposed to model those abilities of the human brain.

The first GIST descriptor was proposed by Olive et al. [OT01] and used it in scene
classification. The GIST has been shown that general image properties can be computed
based on spectral information that is coarsely located within the image. Discriminant
spectral models were introduced, which represent various types of structures in the im-
age. These templates have been shown to describe the properties of a scene. The scene
description based on these scene properties is called the spatial envelope. The concept of
spatial envelope mentioned in the study is a low-dimensional representation of a scene
showing the correlation between the framework of the surface and the properties of the
objects in it [OT01]. Moreover, the GIST has also been proven to be effective in object
recognition [TMFR03]. Inspired by these works, the GIST feature is adopted into the
video domain for human action recognition [WLJ13, WLJL15].

GIST descriptor extracts structural information through filtering an image with dif-
ferent scales and orientations. According to Equations (3.19) and (3.20) [WLJL15],
Gabor filter transfer functions are adopted for filtering an image with various orienta-
tions and spatial resolution. The image is broken down into grids. The average filter
effect is taken from each grid. All the averages are finally connected into a vector to
represent the feature description of the whole image [WLJ15].

Gaborl̂θi(x, y) = exp

(−(x2
θi

+ y2
θi

)

2σ2(l̂−1)

)
cos(2π(x0xθi + y0yθi)), (3.19)

and

{
xθi = x cos θi + y sin θi

yθi = −x sin θi + y cos θi,
(3.20)

where x0 and y0 are the frequency of the sinusoidal component plane wave at an angle
θi with the x–axis and y–axis. θi represents the number of orientations, and l̂ is the
number of scales. σ is the standard deviation of Gaussian function, θi is orientations of
the scale l̂, θi = π(i− 1)/θi, i = 1, 2, ..., θl̂.

The GIST feature extraction steps are illustrated as follows:

1. Divide an image I(x, y) with h×w size into g × g grids of the same size, so that
h́× ẃ is the size of each grid, in which h́ = h

g
and ẃ = w

g
.

2. Each grid is convolved by gc-channel filters using Gabor filter, and the results are
cascaded to form grid features.
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3. The GIST features of the grids are obtained by averaging the eigenvalue computed
from each grid.

4. Cascade the gc average eigenvalues computed from each grid to get the whole
GIST features of the image.

In this thesis implementation, the GIST descriptor is computed from depth videos,
and namely 3DGIST because it is applied to the spatio-temporal domain of the video
sequence (see Chapter 5, Section 5.2.3). 3DGIST features are computed to perform hu-
man action recognition from input depth images. This descriptor captures the structural
action information and also describes the location relationship of local grids.

Gray Level Co-occurrence Matrix (GLCM) GLCM was presented by Haralick et
al. [HSD73] to be used to describe textural features analysis. It measures the second-
order statistics associated with image attributes by taking into account the spatial rela-
tionship between pixels. GLCM describes how different gray levels combinations occur
in the images. GLCM is one of the most popular techniques using a statistical approach
in order to obtain a global feature. It consists of a square matrix, which assigns values
to describe the image’s distribution of occurrence. The number of rows and columns
is equal to the number of grayscales in the image that can detect specific properties
through the spatial distribution of grayscales in the image structure. The GLCM val-
ues represent the number of occurrences with grayscale value and connect by specific
relationships.

The GLCM is evaluated by observing the frequency of the gray level pixel intensity
value (p) that appear in the specified spatial pixel relationship with the (q) value. The
spatial relationship can be measured in various ways. The default setting is between a
pixel and its relative right neighbor. The relationship can be established with different
offsets and angles. This means that GLCM values have relative frequencies with two
adjacent pixels separated by a distance (d), and gray-level values, i.e., image intensity
values, (p) and (q). The mathematical calculation of a GLCM (G) can be specified over
an (M ×N) of an image (I), which parametrized by an offset d = (∆x,∆y), as shown
in Equation (3.21).

G∆x,∆y(p, q) =
M∑
i=1

N∑
j=1


1, if I(i, j) = p and

I = (i+ ∆x, j + ∆y) = q

0, otherwise
(3.21)

where (p) and (q) are the pixel with gray level intensity values separated by a d distance,
i and j are the spatial locations in the image (I) and the offset (∆x,∆y), (M) and (N)
are the dimensions of the image, and (d) is the co-occurrence matrix’s directional offset.
The distance value (d) ranges between (1) and image application of large d, i.e., (d > 2),
values to a smooth texture does not provide details of textural information.
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In the proposed method of this thesis, the GLCM with d = 1 is used to avoid loss
of information. Therefore, more likely pixel be correlated with a closely located pixel
than with one located far away. So, the result will be presented by using d = 1 only.

Figure 3.3 shows the GLCM calculation by displaying an image and the associated
co-occurrence matrix by using the given pixel spatial relationship (offset = +1 in the x-
direction). For pairs (2, 1) (pixel 2 followed by pixel 1), it is found twice in the image;
then the GLCM image will have (2) as a value in the location corresponding to (Ip = 1)
and (Iq = 2). The GLCM is a (256× 256) matrix; Ip and Iq are the intensity values for
an 8-bit image.
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Figure 3.3: Description of the Gray Level Co-occurrence Matrix.

In Chapter 7, the GLCM will be computed from the optical flow fields of input 3D
data. Note that in the proposed method, the GLCM matrices will be computed using
the binarized magnitudes (MN) and orientations (Θ) fields extracted from the RGB
and depth channels, which will be discussed later in Chapter 7, Section 7.2.2, i.e., the
matrices will not be computed from the image intensity values p and q. Then, the output
of co-occurrence matrices will be used as the input to the Haralick texture descriptor for
extracting feature vectors from videos.

Haralick Texture Features Haralick’s texture features [HSD73] is one of the texture
descriptor methods used to represent the correlation between the intensity of pixels in
space.

The texture is defined as a repeated information pattern or a structure arrangement
with regular intervals. Texture features generally refer to the surface properties and
appearance of an object provided by the shape, size, arrangement, density, and propor-
tion of its elemental components. An essential stage in collecting such features through
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texture analysis is the extraction of texture features. The texture is one of the most
important characteristics that define an image.

A Haralick introduced fourteen measurements of texture features extracted from the
co-occurrence matrix, which is known as a statistical technique for texture features. In
this thesis implementation, only “six” Haralick features will be used in order to reduce
the computational complexity of the proposed system. The basis for computing Haralick
features is the Gray-Level Co-occurrence Matrix, i.e., G in Equation (3.21). These
feature vector values are computed from the following Equations (see Equations (3.22)
to (3.31)), whereG(i, j) is the (i, j)-th entry of the normalized GLCM.

• Energy: Also known as Angular Second Moment (ASM), which calculates the
homogeneity of an image. When pixels are very close, energy is high.

HF1 =

√∑
i

∑
j

Gr(i, j)2 (3.22)

• Contrast: Is a measure of the intensity or gray-level variations between the ref-
erence pixel and its neighboring. The visual perception describes an appearance
difference between two or more parts of a field that are seen simultaneously or
consecutively.

HF2 =
∑
i

∑
j

(i− j)2Gr(i, j) (3.23)

• Homogeneity: Calculates how similar the GLCM element distribution is to the
GLCM diagonal.

HF3 =

∑
i

∑
j

Gr(i− j)

1 + (i− j)2
(3.24)

• Entropy: Shows an amount of image information required for image compression.
The high entropy image has a great contrast of one pixel to its neighbor and is not
compressed with low contrast as a low-entropy image (many pixels have the same
or similar value).

HF4 = −
∑
i

∑
j

G(i, j)[lnGr(i, j)] (3.25)

• Sum Average [2]:

HF5 =

2(Ng−1)∑
i=0

iGx+y(i), (3.26)
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where Ng equal to 256 level, x and y represent the row and column coordinates
of an entry in the co-occurrence matrix and Gx+y(i) is the probability of the co-
occurrence matrix coordinates summing to x+ y.

• Correlation: Computes a linear dependency of the gray-level values in the co-
occurrence matrix. It shows how a reference pixel is connected to its neighbor.

HF6 =

∑
i

∑
i(i, j)Gi, j − µxµy

σxσy
(3.27)

where µx;µy are the means, and σx;σy are the standard deviations, which are ex-
pressed as:

µx =
∑
i

∑
j

iG(i, j) (3.28)

µy =
∑
i

∑
j

jG(i, j) (3.29)

σx =

√∑
i

∑
j

(i− µx)2G(i, j) (3.30)

σy =

√∑
i

∑
j

(j − µy)2G(i, j) (3.31)

This feature extraction method will be applied in Chapter 7 for extracting the feature
vectors for improving human action recognition from RGB-D videos.

3.4 Video-Action Representation

This section describes a video-action representation model that will be selected to use in
this thesis for representing the extracted features based on their use in the literature and
the results produced by several researchers [H́D11, WRLD13, ATK+15, GPF17]. The
selected technique is Bag-of-Features (BoFs). The BoFs approach is one of the most
popular techniques for encoding local features. In recent years, it has shown impressive
performance levels with local spatio-temporal features of videos. In a video sequence,
the BoFs construct a histogram of feature occurrences.
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3.4.1 Bag-of-Features

The Bag-of-features (BoFs) were widely used for video action recognition, represent-
ing images or videos as an orderless collection of features. The BoFs originate from the
Bag-of-Words (BoW) representation used in document classification and textual infor-
mation retrieval [H́D11].

The Bag-of-Words (BoW) is a prevalent representation utilized in natural language
processing, information retrieval, and computer vision [Bil14]. It works on extracted
local features, so a video is described as a bag of its local features, i.e., BoFs, which
ignore their order but keep multiplicity. In a video sequence, the BoW representation
encodes global statistics of local features, estimates a histogram of feature occurrences.
The BoW model is widely used in action recognition, where the frequency of the local
feature is measured and used for training a classifier. The first step of the BoW model
is to construct a visual word, known as a dictionary or codebook. The dictionary is
generated using local features derived from the training videos. Local features extracted
from the testing videos are not used during dictionary construction.

Usually, the k-means algorithm is used for the dictionary generation (Chapter 2,
Section 2.5.2). The k-means algorithm is an unsupervised learning algorithm that parti-
tions specific set of Nf feature vectors (v1,v2, ...,vNf ) into k clusters (k ≤ Nf ), where
each vector feature of the cluster is fixed in the cluster with the closest mean. The k-
means clustering algorithm is designed to reduce the sum of the squares of the distances
between the features and their nearest cluster centers.

A significant element of the k-means clustering algorithm is to choose the proper
distance between a feature vector and the center of a cluster. Euclidean distance mea-
surement is chosen to be used in this thesis due to the best results achieved by state-
of-the-art. The Euclidean distance formula is represented in Equation (2.6), Chapter
2.

The BoW model can describe every video after generating the visual vocabulary
(dictionary). The BoW model is a video sequence that assigns its features to the closest
elements of the created visual vocabulary, i.e., the nearest cluster center. Consequently,
given a set of local features extracted from a video sequence (v1,v2, ...,vNf ), each
feature vector will be assigned to the nearest cluster center using the nearest neighbor
algorithm. The same distance will be used between a feature vector and the center of a
cluster used to generate the dictionary. Local features of the j-th cluster are shown as:

Zj = {vk|j = argmin
i
‖vk − µi‖2}, (3.32)

where µi is the center of the i-th cluster Zi.
The BoW model describes a video sequence as a histogram (H) of occurrences of lo-

cal feature, and more specifically, as a k-elements feature vector H = {H1, H2, ..., Hk}
of quantized local features, where k is the number of dictionary elements. Each H
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element of the feature vector defines the number of features allocated to the respective
cluster (Hi = |Zj|). Typically, the BoW representation is used as an input to the classifi-
cation methods, later in thesis work, for improving the accuracy performance of human
action recognition.

The motivation for applying the BoW to the action recognition approach is to deal
with the local descriptors for different videos. These kinds of descriptors contain the
variable number of produced interest points. Certainly, the global feature does not have
an interesting point related problem, but the problem is that it is sensitive to varying
duration time of action. The BoW adds the statistical temporal details of a video occur-
rence and can therefore deal with long-term or multiple-cycle action videos. Given a
video sequence V = Fi (1 6 i 6 NF ), where F is a single frame (or its MHI), global
features are determined on each frame or its variant frame, for instance, MHI (see Sec-
tion 3.3.2), giving a sequence of feature vectors Fv = GF i (1 6 i 6 NF ), where GF i is
the global feature, e.g., GIST, Hu-moment, or Haralick features, which forms the input
to the BoW.

3.5 Video-Action Recognition
After representing features by computing BoW histograms, the next step in human ac-
tion recognition is building a classification model to classify video actions and improve
the performance of an action recognition system. Various classification approaches, ac-
cording to classical machine learning aspects, are used. This section focuses on the
existing classification algorithms that are used in this thesis experiments for improving
the system approach in human action recognition tasks:

3.5.1 Support Vector Machine
A Support Vector Machine (SVM) is a supervised classifier [Vap95, BB98]. It is a
good classifier for analyzing and classifying data because it is easy to learn and has a
fast learning speed, even in large datasets. In binary classification, SVM is typically
used to classify data with a similar feature value. It separates feature vectors using a
hyperplane. It can minimize the overfitting problem that occurs in the training data. So,
SVM uses hyperplanes in high dimensional space to split the training data with the most
significant points’ margin. It is a powerful and frequently used in the classification of
extracted features [UDSS15]. The reason for finding the maximum margin hyperplanes
is to offer the best generalization ability that allows the best classification accuracy. In
other words, it has a good performance on the training data leaving many areas for the
correct classification of feature data [WKRQ+08].

An SVM takes a collection of training data and marks it as part of a group, then
predicts whether the test data is a part of an existing class. The model of SVM represents
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the data as a point in space separated by a hyperplane [PS15]. The optimal hyperplane
search function is computed in Equations (3.33) and (3.34) [MRS08]:

1

2
wTw + C

∑
i

ξi (3.33)

{(vti, λi)}, λi(wTvti + b) ≥ 1− ξi (3.34)

where, w is the weight vector. The C parameter represents a regularization term that
provides a way to control over-fitting. When the value of C is significant, it is unattrac-
tive that data should not be observed at the expense of decreasing geometric margins, but
it is simple to consider certain data points using slack variables and use a bold margin to
model most of the data. C

∑
iξi is a loss function, where ξi is a slack variable/misclas-

sification vector vt and ξ ≥ 0. vti is the train vector of i, and λi is a class train vector
(class label) of i. b defines the bias value (represent an intercept term). The scoring
function that used to find the test class in SVM is defined as in Equation (3.35):

f(vs) = sign(wTvs + b) (3.35)

where f(vs) presents the score function, and vs is a test vector.
In this thesis, the SVM with Radial Basis Function (RBF) kernel is used for classi-

fication [CL11]. The kernel function is a measure of the similarity between two groups
(or sets) of features. RBF is a Gaussian distribution and maps data into an infinite-
dimensional Hilbert space. The RBF is calculated as in Equation (3.36) [MSM15]:

RBF (vt,vs) = exp(
‖vt − vs‖2

2

2γ2
) (3.36)

where, RBF (vt,vs) is kernel function. ‖ ‖2
2 is the squared Euclidean distance be-

tween the two feature vectors vt and vs.

Multi-class SVM SVM is a binary classifier. The binary classifier aims to determine
whether the input data, expressed by real vectors, belongs to one of two classes. The
multi-class SVM is an extension of the two-class SVM [CS11], which can allocate
labels to data where the number of labels (classes or, in this thesis, daily activities)
is more than two. The most popular way to transact with this situation is to split the
multi-class problem into several binary class problems.

Two common techniques for multi-class classification are used: One-vs-One (OvO)
and One-vs-All (OvA), as explained previously in Chapter 2, Section 2.5.1. Let the
number of classes to recognize be denoted as Ncl. Formally, the OvA trains a classifier
for each possible pair of classes, i.e., Ncl(Ncl−1)

2
classifiers. All binary classifiers are

evaluated for each new test sample, and the test sample is allocated to the class selected
by the majority of classifiers. The last technique, i.e., OvA, trains Ncl binary classifiers,
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each to separate the samples from samples of the remaining classes within in single
class. All binary classifiers are tested for each new test sample. The test sample will be
allocated to the class where classifier output is the largest value, i.e., most positive.

In this thesis, the OvA multi-class SVM will be applied later in the next chapters for
computing the action recognition accuracy performance of the proposed action recog-
nition system rather than just a class label. The OvO strategy is not realistic for a
large-scale linear classification because of the large storage space needed for classifier
models. While OvA is as reliable as any other method, it is believed that the underlying
binary classifier is frequently customized classifications such as SVM.

3.5.2 K-Nearest Neighbors
K-Nearest Neighbor (KNN) classifier is the simplest method used for classification
[CH06, MRS08]. KNN obtains a class membership by training feature descriptors for
certain testing feature descriptors based on its nearest neighbor. KNN is used to clas-
sify unlabeled observations by assigning them to the class number of the most similar
label, i.e., the testing feature is classified by a majority vote of its K nearest neighbors.
Features of the observations are collected for both the training and testing data sets. K
is an integer value and typically small and varied by the amount of the test class. If
K = 1, the object is directly assigned to the class of its nearest neighbor [SJ10]. While
if K > 1, the labels of the K closest classes will be checked, and the most common
label is assigned.

In the KNN, three parameters should be represented. The first parameter, K, is as-
signed to the number of voting members. The second parameter is distance metric form,
which is measured using Euclidean Distance (will be used in thesis experimentation),
cosine metrics, absolute difference, and so on. The third parameter represents the rule of
choosing an estimated class for the testing sample, and it is set to the nearest neighbor.
The KNN classifier is computed from the distances between the testing video and each
training sample, as defined by Equation (3.37) [MAaMV15].

dist(vs,vtj) = arg min j{dist(vs,vtj)} (3.37)

where dist represents the distance metric, and vs is a testing vector sample, vt is the
training vector sample, where j = [1, 2, ..., T r], and Tr is the number of training class.
The distance dist represents the minimum distance (nearest neighbor) between vs and
each training class. The action class with minimum distance will be identified as the
class to which the testing class membership.

Multi-class KNN In a typical KNN setting, each test object is allocated to a certain
class dependant on the majority of its K nearest neighbors, as explained previously.
Though, this method can be computationally costly for datasets that contain millions
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of test classes. Some previous researches [MAaMV15, PS15] have shown that KNN
classifiers can greatly improve the quality of classification trained with the use of pre-
labeled classes. Since a typical KNN strategy is introduced by [KS15], it can be highly
challenging in performance. The multi-class concept is to compute a center for classes
of feature vectors of the same class and apply the similarity metric individually on these
centroids instead of each feature vector. In this thesis, the multi-class KNN classifier is
used to obtain the class membership of the extracted testing feature based on its nearest
(closest) neighbor from the extracted training feature.

3.5.3 Random Forest

Random Forest (RF) is an ensemble learning method introduced by Breiman [Bre01]. It
is a supervised machine learning technique used for classification and regression tasks.
In this thesis work, it will be used for classification. As the name suggests, the RF algo-
rithm creates a forest with numerous decision trees and averages predictions over many
individual trees. It was built to work rapidly over large datasets and, more importantly,
be varied using random samples to construct each tree in the forest. Variety is gained
by randomly picking attributes at each tree node and then using the attribute that gives
the highest learning level. RF classifier uses bagging [Bre96] and random subspace
method in building each tree to create an uncorrelated forest of trees. The final decision
or prediction is based on the majority of votes from each of the decision tree nodes. RF
uses bootstrap aggregating or bagging to reduce the risk of over-fitting and the required
training time.

A decision tree is a tree consists of a collection of nodes and edges that are arranged
in a tree-like structure. Each node in a tree is a feature (attribute), each connection is
a decision (rule), and every leaf is an outcome (categorical or continuous value). In
internal nodes, splits occur when class labels are stored in the terminal nodes identified
as leaves.

Multi-class RF RF is a multi-way classifier, and it performs as follows: A ”forest” is
composed of a T randomized decision tree collection. Bootstrapped samples of training
data are used to create each tree. In comparison to the traditional classification trees,
where the best division for a tree is picked from all predictors, RF trees are grown by
selecting the best split predictor from a random set of predictors Pd. Each classification
tree’s leaf nodes contain the posterior distribution of the classes [RM05].

An RF classification model consists of several trees. Expanding the number of trees
is helped in increasing the classification accuracy up to a certain number of trees.

In RF algorithm, given a training set Tr of a feature vector (training samples) and
their corresponding labels, trees are created to optimize a particular function by select-
ing parameters that divide the data at an internal node. Splits occur on inner nodes,



3.5. VIDEO-ACTION RECOGNITION 95

while class labels are saved in the terminal nodes known as leaves. The measures of
the degree of a split are called information gain. The information gain (G) is usually
used for multi-class classification problems, and it is defined as the difference between
the uncertainty of the start node and the weighted impurity of the two sub-nodes (child
nodes). Information gain [CSK11] determines which feature is to be used to split the
data and can be defined as:

Gn̂ = S(Trn̂)−
∑
i∈L̂,R̂

|Trin̂|
|Tr|

S(Trin̂) (3.38)

where, Gn̂ is the set of training points at node n̂, TrL̂n̂ and TrR̂n̂ are the sets of points
at the right and left child respectively of the parent node n̂ after the split, and S(Trn̂)
represents the Shannon Entropy at node n̂ before the split, where the Shannon Entropy
is defined mathematically as:

S(Tr) = −
∑
λ∈Ncl

p̂(λ) log(p̂(λ)), p̂(λ) (3.39)

where p̂(λ) denotes the probability of a sample being class λ.
For classification, the feature vector of the image is extracted and passed through

each tree. Trained a new action from an input feature vector is classified by placing it
down each of the trees in the forest. Each tree makes a classification decision by voting
for that class. The forest selects the classification with the most votes (over all trees in
the forest) [MDDB15].

RF is widely used in action recognition tasks due to some preferable characteristics
[Bre01]:

• Robust to noise and outliers.

• Efficient and give higher prediction accuracy.

• Efficient with large datasets.

• Ability to accommodate multiple input features without deleting the feature.

• Reduction in over-fitting and RF classifier is more accurate than decision trees in
most cases.

• Prediction based on input features important for classification.

The RF classifier will be used in Chapter 5 and Chapter 7 for improving the accuracy
performance of the proposed action recognition systems.
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3.5.4 Naive Bayes Classifier

Naive Bayes (NB) is a classification method based on the application of Bayes theorem
[CC08]. It describes the probability (likelihood) of an event and depends on the priority
knowledge of the conditions related to the event. Decisions on the Bayes theorem are
related to the probabilities of inference that collect previous events’ knowledge by pre-
dicting events using the rules base. The NB classifier has independent input variables,
which assume that the existence of a particular feature of the class is unrelated to the
presence of other features. NB classifier is an accurate, fast, and reliable algorithm with
high accuracy and speed on large datasets. The NB algorithm relies on the conditional
probabilities of activity perform for each given set of features, which is supposed that
all features are statistically distinct from each other. The algorithm starts with counting
and labeling all available features and the activity to be recognized, i.e., activity belongs
to which classes.

Multi-class NB To demonstrate the concept of activity recognition using the NB clas-
sifier, let vi denotes the feature vector observed at a time. The size of vi depends on the
number of the feature components selected from the extracted features. Given a set of
class activities Ωλ, the posterior probability of a certain activity can be computed using
Bayes rule [Mar61] as shown in the Equation (3.40):

P (Ωλ | vi) =
P (vi | Ωλ)P (Ωλ)

P (vi)
, (3.40)

where, P (Ωλ | vi) is the likelihood of observing a set of feature values for a
given activity label. Ωλ represents the notation values of class λ, λ ∈ {1, 2, 3..., Ncl},
where Ncl specifies the number of classes, and vi is the feature vector of sample i,
i ∈ {1, 2, 3, ..., Nf}, where Nf denotes the number of features. P (Ωλ) is the class value
of the prior probability distribution, and P (vi) is the evidence specific feature vector in
the dataset or the probability of observation. Computing the probability term requires
estimating the parameter combination. The number of combinations increases exponen-
tially with the feature vector’s increasing dimension, rendering this estimate impractical.
The NB classifier solves these issues by putting the conditional independence assump-
tion on the features while modeling P (Ωλ | vi) irrespective of the underlying activity.
Significantly, each of the features is considered conditionally independent of the other,
provided the activity label. The likelihood can be estimated as a consequence of the
probability estimates for each particular feature value in the vector, as formulated in
Equation (3.42).

P (vi | Ωλ) =

Nf∏
i=1

P (vi | Ωλ) (3.41)
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The primary goal for an NB classifier is to estimate this conditional probability
distribution, P (vi | Ωλ) , for each of the class activities. In the training stage, the NB
classifier evaluates the probabilities P (Ω) from the training set, i.e., for all classes and
all features values.

P (Ωλ | vi) ∝ P (Ωλ)

Nf∏
i=1

P (vi | Ωλ) (3.42)

To make a prediction of activity in the test stage, a test example will be predicted
with label Ω if Ω contributes to the greatest value of all the class labels, as defined in the
following:

Ωnb = argmax
Ωλ

P (Ωλ)

Nf∏
i=1

P (vi | Ωλ) (3.43)

The NB classifier offers a simple approach, with accurate semantics, to represent
and learn probabilistic knowledge, as known from machine learning. The approach is
intended for use in supervised induction tasks. The performance objective is to predict
the class of test example correctly and in which the class knowledge is used in the
training samples. The NB will be applied in Chapter 7 for computing the recognition
performance from the computed feature vectors.

3.5.5 Artificial Neural Networks
An artificial neural network (ANN) [KL90, Zha00] is a mathematical model or compu-
tational model dependent on biological neural networks. It consists of an interconnected
artificial neurons group and processes information using a connection computation ap-
proach [SW17]. An ANN comprises several simple parallel processing elements whose
function is determined by the network structure, connectivity strengths, and processing
of elements or nodes. ANN consists of many neurons, which are organized in various
layers and interconnected with each other. Each neuron is measured by mathemati-
cal computations to collect data, process them, and send information. The mathemat-
ical model of an ANN is depicted in Figure 3.4, given an input vectors represented as
x̂1, ..., x̂j each value xi is multiplied by the respective weight ωi and then summed up.
Moreover, an additional bias ω0 is added. The outputs of the ANN ŷ is obtained by
applying an activation function. The ANN’s objective is to calculate a set of weights ω
between the input, hidden, and output nodes, which will reduce the total sum of squared
errors. During training, these weights ωi will be modified by a learning parameter until
the outputs are compatible with production.

The challenge of using artificial neural networks is to find parameters taught to learn
from training without overfitting. If there are too many hidden nodes, the system can
overfit the current data, and if there are too few, the system can keep the input values
from being correctly fitting. The stop criterion must also be selected. This may involve
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Figure 3.4: A mathematical model of an artificial neural network neuron, compare to [HKM06].

stopping when the cumulative error of the network falls below a predetermined error
level or when there are a certain number of epochs (iterations).

In a neural network model, simple nodes (called neurons) are linked to form a net-
work of nodes hence the term neural network. Neural networks consist of nodes or units
connected by directed links. Each link has a numerical weight for which the strength
and sign of the connection are calculated. Typically, ANN is organized in the form of
layers, such as the input layer which includes a set of input nodes, one or more hidden
layers, and an output layer. The number of hidden neurons affects the effectiveness of
classification.

Neural networks with one or more hidden layers are called Multi-Layer Neural Net-
works (MLNN) or Multi-Layer Perceptron (MLP). This neural network type is referred
to as a supervised learning network since the optimal output is needed. MLP is widely
applied in recognition processes [TM17, MWA19], including human activity recogni-
tion. MLP will be used later in this thesis and trained with the back-propagation algo-
rithm [RB93, LBOM12] to maximize the relative entropy criterion.

Multi-Layer Perceptron (MLP) is a supervised learning algorithm; it is a feed-
forward net that consists of multiple layers with neurons (nodes) that interact using
weighted connections. Each layer is fully connected to the next one with a certain
weight ŵij (i.e., each node in a layer is connected to all nodes in the next layer). There
is one hidden layer or more between the input and output layers [RRK+90, KL90] [10].
Training is equal to find a proper weight for all connections to produce the desired out-
put for a corresponding input. As the model is trained, the weight of individual neurons
is locally modified based on their effect on an arbitrary error function.

All neurons at MLP are similar. Each of them has multiple input connections (it
takes the output values from multiple neurons in the previous layer as input) and mul-
tiple outputs connections (it passes the response to multiple neurons in the next layer).
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The values obtained from the previous layer are summed up by those individual weights
for each neuron, plus the bias term. The sum is converted using the activation function
f(x̂), which can also be different for each neuron.

So, when the input features vector is transferred through the multiple layers down-
stream, a non-linear transformation is rendered and becomes linearly separable [RB93].
For an arbitrary output x̂ of a layer n̂, the output for n̂ + 1 layer is the sum of the in-
dividual weights of each neuron and a bias function [LBOM12], Mathematically, given
the outputs x̂j of the layer n̂, and the outputs ŷi of the layer n̂+ 1 are determined, as in
Equation (3.44):

ŷi =

Nd∑
j=1

(ωn̂+1
ij x̂j) + ωn̂+1

ij + f(ûj), i = 1, ...,Ml (3.44)

where, Nd is a dimensional vector for linear combination of Ml layers, ωn̂+1
ij represents

the weight of the individual neuron and f(ûj) defines the bias function.
In the training phase of this thesis work, the extracted feature vectors are passed

through MLP. This network has four layers, input layer, two hidden layers, and output
layer, as in Figure 3.5, where the classifier is based on its characteristics to map the
input feature vector into each of the possible action class. The activation function used
in this neural network is asymmetrical sigmoid activation function [RB93], as defined
in Equation (3.45).

f(x̂) = β(1− e−αx̂)/(1 + e−αx̂) (3.45)

where, β = 1 and α = 1 represents the standard sigmoid and the default choice for
MLP.

The back-propagation algorithm is used to train the MLP, where training is equiv-
alent to find appropriate weights for all the connections such that the desired output is
generated for a corresponding input.

3.6 Convolutional Neural Networks
A neural network is a system of connected artificial ’neurons’ that transfer messages
between each other. The connections have numerical weights tuned during the training
process, ensuring that a properly trained network respond appropriately when an image
or pattern is presented to recognize. The neural network consists of several layers of
feature detecting ’neurons’. Every layer has several neurons that respond to various
input combinations from the previous layers. A convolutional neural network (CNN) is
a special case of the neural network.

The convolutional neural network (CNN) is essentially equivalent to a fully con-
nected multi-layer perception (MLP). Both are networks of neurons with weights and
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Figure 3.5: Multi-Layer perceptron neural network.

biases, and the core functionality is a dot product between input and neuron weights.
Nevertheless, the key distinction from the MLP is that the CNN layer has a 3D net-
work structure. In comparison to a completely connected MLP structure, neurons are
connected locally to a small input data region in the grid.

CNN consists of one or more convolutional layers, activation function, and pooling/-
subsampling layers. Each layer will usually have a different number of convolutional
kernels as a non-linear activation function and may be a pooling mechanism to reduce
the dimension of the output data. An example of such a layer is shown in Figure 3.6.

Typically, CNN architecture comprises several types of different layers, including
the input layer, hidden layers, and the output layer. Each hidden layer can be either
a convolution layer, a pooling/subsampling layer and followed by one or more fully
connected layers, as represented in Chapter 2, Section 2.6.

The CNN networks have a wide application area, including robotics, video surveil-
lance, and widely used today in computer vision for image classification [FCNL13,
ZZG+15, LZWG18], object tracking [CAS+17], segmentation [CGGS12], object de-
tection [GDDM13], and visual saliency detection [WMC16].

This recent performance of the CNNs highly depends on the improved computing
capacity of modern GPUs and the availability of large-scale and complex datasets that
make training models possible with millions of trainable parameters. Another important
feature of CNNs is the reduction and facilitation of the associations and parameters used
in the artificial neural model.

One of the significant disadvantages of deep convolutional neural networks is that
they tend to overfit the data. They also suffer from disappearing and crashing gradients.
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Figure 3.6: Basic of the CNN block. A single layer applies a kernel on an input filter followed
by an activation function and a max pooling operation [GLCL19].

The solution to these problems has inspired many studies in different directions. In fact,
various CNN components are studied and recommended, for example, activation or
normalization layers, training methods, and network design. Most analysis focuses on
recognizing images as a proven benchmark since large annotated datasets [RDS+15] are
accessible. Various other methods such as video and RGB-D images [SNGW16] have
been extended and adapted to appeal to 3D data. In CNN, the convolutional layers are
utilized for feature extraction, and the fully connected layer is utilized for classification,
as explained in Chapter 2, see Figure 2.13.

In the classical model of pattern recognition, hand-crafted feature extraction from
the input data collects specific information and removes unnecessary variabilities. The
feature extractor is followed by a trainable classifier, while a standard neural network
classified the feature vectors into classes. Convolution layers perform the task of the fea-
ture extractor in CNN. Convolution filter kernel weights are updated during the training
process. Convolutional layers can extract the local features because they limit the vi-
sion fields of the hidden layers to be local. A typical CNN is composed of operations of
different layers that are illustrated below:

Convolution Layers The convolution layer applies a set of adaptive filters to the input
images or videos. The use of more than one convolution layer allows features to be
extracted at different levels. Each convolution layer extracts a higher level of features
than the previous layer. As an example, the first convolution layer extracts low-level
features such as edges while the next levels extract high-level features such as circles,
lines, and other shapes.
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In convolution layers, feature maps from previous layers are convolved with learn-
able kernels. In order to generate the output features maps, the kernels’ output is sep-
arated into a linear or non-linear activation function, like sigmoid, softmax function,
identity functions, and rectified linear [ZA19].

Pooling Layers The pooling layer, also called the subsampling layer, could reduce the
resolution of the features. This layer enhances the features against noise and distortion.
Pooling can be achieved in two ways: Max-pooling and average pooling. In both states,
the input is split into non-overlapping two-dimensional spaces [ZA19].

In this thesis, the max-pooling will be used. Max-pooling [AD16] takes the range
kr×kr and outputs a single value, which is the maximum. For an input layer ofNl×Nl,
the output of the max-pooling layer is Nl

kr
× Nl

kr
, as shown in Figure 3.7.

  12 21   12 21

Figure 3.7: Max pooling process. The kernel size is 2× 2.

Non-linear Layers In particular, CNN relies on a non-linear ’trigger’ function to sig-
nal separate recognition of the probable features on each hidden layer. CNN can use
a set of specific functions, like rectified linear units (ReLUs) and continuous trigger
functions to efficiently enforce this non-linear trigger [ZA19].

A ReLU increases the non-linear characteristics of the decision function and the
overall network without impacting the convolution layer’s receptive fields. The benefit
of using a ReLU is making the network trains faster in comparison to other non-linear
functions used in CNN, e.g., absolute of hyperbolic tangent, hyperbolic tangent, and
sigmoid.

Fully Connected Layer Fully connected layers on CNN are usually used as the final
layers. Mathematically, fully connected layers sum a weighting of the previous layer
and display the exact mix of ’ingredients’ in order to calculate a particular performance
result. In a fully connected layer case, all feature elements from the previous layer are
used for calculating each element of the output feature [ZA19].

In this section, the relevant concepts of convolutional neural networks are introduced
and followed in the thesis:
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3.6.1 2D Convolutional Neural Networks
In 2D-CNNs, the convolutions are applied at the convolution layers to compute features
from the local neighborhood (spatial domains) on feature maps in the previous layers.
The input data in 2D-CNNs are convolved with 2D kernels. The convolution is done
by calculating the sum of the dot product between input data and kernel. The kernel
is striding over the input data to cover the full spatial dimension. Then, the additive
bias is applied, and the convolved features are passed through the activation function to
introduce the nonlinearity in the model [ORK+15].

Formally, the output of the 2D convolution at position (x, y) on the Fm-th feature
map in the `-th layer is calculated in the following Equation (3.46) [JXYY13]:

x̂xy`Fm = b`Fm +
∑
J

Kh−1∑
e=0

Kw−1∑
n=0

ωen`FmJ x̂
(x+e)(y+n)
(`−1)J (3.46)

where b`Fm is the bias parameter for the Fm-th feature map of the `-th layer. J indexes
over the set of feature maps in the previous layer (` − 1)-th, which is connected to
the current Fm-th feature map. Kh and Kw are the height and width of the kernel,
respectively. ωen`FmJ is the value at the position (e, n) of the kernel connected to the J-th
feature map. Figure 3.8 shows the 2D convolutional neural network representation.

2D Convolution

Figure 3.8: 2D convolutional neural network, compare to [JXYY13].

After calculating the convolution, nonlinearity is applied to calculate ŷ`Fm , a Rec-
tified Linear Unit (ReLU) activation function is used as the activation function in all
layers for transforming the output codes to the probability values of class labels, ReLU
is defined as:

ŷ`Fm(x̂xy`Fm) = max(0, x̂xy`Fm), i.e.,

{
x̂xy`Fm if x̂xy`Fm > 0

0 otherwise
(3.47)

In general, each convolution layer will be followed by a sub-sampling layer (pool-
ing). In the sub-sampling layers, the resolution of the feature maps is reduced by pool-
ing over local neighborhoods on the feature maps of the previous layer, increasing the



104 CHAPTER 3. BACKGROUND THEORY

invariance to distortions on the inputs. CNN architecture can be built by stacking mul-
tiple layers of convolution and sub-sampling alternately. The CNN parameters, such as
the bias b`Fm and the kernel weight ωen`FmJ , are typically trained with either supervised
or unsupervised approaches [LBBH98, RHBL07]. Pooling is an important concept in
CNNs that is used for down-sampling the input image nonlinearly. A pooling layer can
apply max-pooling.

After a set of pairs of convolution and pooling layers, high-level reasoning is per-
formed by one or more fully connected layers. Fully connected layers are an integral
part of convolutional Neural Networks (CNNs), which have proven very successful in
the recognition and classification of images.

3.6.2 3D Convolutional Neural Networks
In 2D-CNNs, 2D convolutions are used at the convolutional layers for extracting fea-
tures from a local region on feature maps of the previous layer, i.e., extract features from
the spatial dimensions only. When using CNN for video analysis problems, it is advis-
able to capture the motion information encoded in multiple adjacent frames. In order
to do this, 3D-CNN was suggested to be performed in the convolution stages of CNNs
for computing features from spatial and temporal domains of an input video, i.e., cap-
turing the appearance and motion information encoded in multiple consecutive frames
[JXYY13]. This model creates multiple channels of information from the input video
sequences; the final representation of the feature is then gained by integrating informa-
tion from all input channels. The 3D convolution is accomplished by transforming a 3D
kernel into a cube created by stacking several consecutive frames together. This struc-
ture links the feature maps in the convolution layer to many consecutive frames in the
previous layer and thus collect motion information [ORK+15].

In 3D networks, given an input of form (w×h×NCh×NF ), in whichw, h,NCh, NF

are width, height, number of channels, and number of frames (video length ), when
using a 3D convolution filter with depth of ld where ld < NF , the outcome will be a
3D volume with 3D temporal features. The implementation of 3D max-pooling and 3D
convolutional filters thus preserves temporal information at subsequent layers. Figure
3.9 illustrates the process of 3D convolution used in CNN.

Formally, the values of feature maps in 3D convolutional layer x̂`Fm at the posi-
tion (x, y, z) on the `-th layer and Fm-th feature map are obtained by Equation (3.48)
[JXYY13].

x̂xyz`Fm
= b`Fm +

∑
J

Kh−1∑
e=0

Kw−1∑
n=0

Ks−1∑
r=0

ωenr`FmJ x̂
(x+e)(y+n)(z+r)
(`−1)J (3.48)

where, Ks is a temporal dimension 3D kernel size. ωenr`FmJ
is the (e, n, r)-th kernel

connected value to the Fm-th feature map on the previous layer.
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Figure 3.9: Representation of 3D convolution layer process, compare to [ORK+15].

Figure 3.10 shows the 3D convolutions where the convolution kernel size is 3 in the
temporal dimension, and the connections sets are color-coded, which means that the
same color refers to shared weights. In 3D-CNN, the same 3D kernel is used to overlap
3D cubes to extract motion features of the input video.

A 3D convolution kernel can only extract one form of feature from the frame cube
and then reproduce the kernel weights in the whole cube. The general construction
principle of CNN is to increase the number of feature maps in late layers by creating
multiple types of features from the same set of lower-level maps. As in 2D convolution,
several 3D convolutions with different kernels can be accomplished at the same position
in the previous layer. A comparison between 2D and 3D convolutions are shown in
Figure 3.11.

The 3D CNN architecture is similar to the 2D version, but as mentioned, the con-
volution kernels will be extended. The input of the model should also be updated to a
successive frame stack.

Such as other types of neural networks, CNN training involves two phases: Feed-
forward and updating. The feed-forward refers to the process of applying the training
samples and receives the results. This process involves applying convolutions to the
input image, applying an activation function to these convolutions, sub-sampling the
results, and passing them on to subsequent layers. The update process refers to the
changing of the weights to reduce error in the output. In this phase, the loss error on
the output layer is calculated using a loss function, such as softmax function [WZC14].
Based on the errors, the weights of the network are changed according to a learning
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Figure 3.10: 3D convolutional neural network, compare to [JXYY13].

algorithm. The softmax function (ς) takes an Nd-dimensional of real numbers vector
and transforms it into a vector of real number within (0, 1) range, and the sum of all
output node values equals to 1, softmax function ς : RNd → RNd is calculated by
Equation (3.49) [KVJ11]:

ς(vi) =
exp (vi)∑Nd
j=1 exp (vj)

, for i = 1, ..., Nd and

v = (v1, ...,vNd
) ∈ RNd

(3.49)

where the standard exponential function is implemented to each element vi of the input
vector v, and these values are normalized by dividing by the sum of all these exponential
to ensures that the summation of the components of the output vector ς(vi) is equal to
1.

The softmax loss functions can be obtained in order to train a CNN with the desired
representation; this is one of the contributions of Chapter 8 in this thesis. Traditionally,
CNN has been heavily used in the domain of multi-class classification. The task here is
to predict one out of λ classes for a given action. Usually, this is achieved by computing
the softmax.
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Figure 3.11: Operations of 2D and 3D convolutions. (a) Applying 2D convolution on an image
output an image, (b) Applying 2D convolution on multiple images as multiple channels also
outputs an image. (c) Applying 3D convolution on a video volume, or (d) 3D convolution on
multiple channels of video volume output another volume, compare to [LCX+19].

For checking the recognition rate of the 3D-CNN, the CallBack function [15] will
be used on testing data, training time, and progress for each epoch (one pass over the
full training set) or mini-batch (only take a subset of all data during one iteration) while
training. In this thesis work, the CallBack is used to validate the accuracy of the training
data (for more details, see Appendix B).

The other contribution of using 3D-CNN in Chapter 8 is to extract features from
the input video. The convolution and pooling layers perform feature extraction that are
finally classified by using the classical machine learning techniques, e.g., SVM in this
thesis will be used. This 3D-CNN will be implemented in this thesis for improving
human action recognition from RGB-D video sequences.





Chapter 4

Multi-Feature Extraction for Human
Action Recognition

This chapter presents a novel system to analyze human body motions from RGB-D
videos to improve the action recognition task. This system is based on using two feature
representation methods, including: Local spatial-temporal features and global features.

The work of this chapter includes two new methods to improve human action recog-
nition. The first method was presented at the 10th International Conference on Machine
Vision (ICMV 2017), Vienna, Austria. Moreover, because it is a novel work, the re-
viewer recommended this work to be published in the International Journal of Machine
Learning and Computing (IJMLC) [AAP18c]. The second method of this work was
published at the International Journal of Advanced Computer Science and Applications
(IJACSA) [AaP17].

The work flow of this chapter starts with an introduction in Section 4.1. Section
4.2 presents a proposed method and explains in detail the system analysis of action
recognition. The results of this evaluation is presented in Section 4.3.

4.1 Introduction
Human action recognition using cameras is very active research, and it has been widely
used in pattern recognition and computer vision studies to characterize people’s behav-
ior. The ability to build a system that can intelligently communicate with a human
environment is essential for recognizing human actions from various video frames with
different actions. In the last decade, the research on human activity recognition con-
centrated on recognizing human activities from videos captured by conventional visible
light cameras (RGB camera) [YT14]. Recently, the action recognition studies have
entered a new phase by technological advances and the emergence of low-cost depth
sensor like Microsoft Kinect (see Chapter 2, Section 2.2).

109



110 CHAPTER 4. MULTI-FEATURE EXTRACTION FOR HUMAN ACTION

This chapter categorizes the body motions on RGB-D videos instead of using only
RGB video. Furthermore, it could answer the question:
How to represent the spatial and temporal structure of actions from color and depth
data together?
The system of this work is invariant to scale, rotation, translation, and illumination. All
experiments are conducted on datasets that are available to the public and often used in
the community.

To address the action recognition problem in the proposed work, Bag-of-Features
(BoFs) pipeline will be used, focusing on the feature extraction step for performance
improvement. The proposed method includes a new combination of RGB and depth
data and the combination of local and global features. This new combination provides
sufficient complementary information. Using this new feature combination method im-
proves performance on actions with low and high movements and reaches recognition
rates superior to other publications that used similar datasets.

Experiments on these two combination methods will be performed on standard ac-
tion datasets such as MSR3D daily activity dataset and Online RGBD action dataset,
which showed that the proposed method outperforms the state-of-the-art features for
action recognition. More specifically, the main contributions of this chapter are illus-
trated below:

• The input data are represented by RGB-D video actions.

• Each video frame consists of many interest points making their descriptions ex-
pensive to compute. However, not all the interest points are equally important.

• The important interest points will be filtered to estimate the importance of motion
interest points and only keep those interest points in the motion area for action
recognition.

• Proposing a novel combination of the local spatio-temporal from both RGB and
depth channels into one feature vector of each video action. This combination
demonstrates its usefulness for human action recognition.

• Computing global features for extracting human action features from RGB-D
videos.

• Developing a novel combination of local and global features descriptors that out-
perform existing descriptors in action recognition with challenging real-world
videos.
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4.2 The Proposed System Architecture
This section presents the proposed system methods for improving human action recogni-
tion from multi-features combinations. Multi-features methods will be extracted based
on the feature representation methods explained previously in Chapters 2 and 3. These
methods are: Firstly, local spatio-temporal features are represented by applying the
detector and descriptor methods. Secondly, global features are represented by shape
features.

As demonstrated in Figure 4.1, system architecture includes three main components:
(1) pre-processing to the input video data, (2) Bag-of-Feature extraction, (3) action clas-
sification.

RGB Video

Sequence

Depth Data

Figure 4.1: System analysis schematics of action recognition using RGB and depth data. Pre-
processing to the input data; feature extraction; and classification.

Regarding a Bag-of-Feature extraction, local spatio-temporal features represented
by local appearance and motion features will be computed. For local appearance and
motion features, the method by [YTYC12] is improved to categorize the body motions
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on RGB-D videos instead of using only RGB video. So, this work is represented the
spatial and temporal structure of actions from color and depth data, as well as combines
motion features extracted from both channels in one feature vector for each video action
as local features.

On the other hand, the Hu-moments shape invariant (see Chapter 3, Section 3.3.2)
is used for global spatial-temporal features that are finally combined with local features
to form the multi-features from RGB-D videos.

Then, the Bag-of-Words (BoW) pipeline (see Chapter 3, Section 3.4.1) is used to
represent the computed features from input videos. At last, the BoW will be fed to
the classifier for computing the system performance. Each step in Figure 4.1 will be
illustrated in the following:

4.2.1 Pre-Processing Input Data

The input videos (color and depth) are analyzed as a frame sequence to extract features
presented in each frame. In this work, a low resolution of (320× 240) is used to reduce
the system’s computational complexity. The depth information captured by the Kinect
camera is often noisy due to imperfections related to the Kinect infrared light reflections.
To reduce depth noise and to eliminate the unmatched edges from the depth images, the
joint-bilateral filter [CS12] is used to smooth depth images. Moreover, it is used to
obtain consistent depth values in neighbor pixels and to reduce the errors at the object
boundaries of the depth map. The joint-bilateral filter implementation of this work is
based on the OpenCV library [4]. Formally, the joint-bilateral filter could be represented
in Equation (4.1):

D(x) =
1

ν(x)

∑
y∈ζx

D(y)f(x, y)Gg(‖ Dm(x)−Dm(y) ‖)Gh(‖ ID(x)− ID(y) ‖), (4.1)

where D(x) is the depth value of pixel at the position x, ν(x) is a normalization factor, ζx
represents the set of the spatial neighborhood of position x, f(x, y) is a 2D smoothing
kernel also known as domain term for measuring the closeness of the pixels, x and y.
While Gg(‖ Dm(x) − Dm(y) ‖) denotes a depth range term that computes the pixel
similarity of modeled depth map (Dm). Gh(‖ ID(x)− ID(y) ‖) represents an intensity
term to measure the intensity similarity in the intensity domain. ID(x) and ID(y) are
the depth images intensity of xth and yth pixels, respectively. The functions f,Gg, and
Gh are modeled as Gaussian. In this work, filter size = 15 ∗ 15 is used. Additionally,
for computing Gaussian function, σ for f(x, y) = 3.5, Gg() = 15 (pixel values between
[0 - 255]), and Gh() = 15 are chosen.
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4.2.2 Bag-of-Features Extraction
For feature extraction, the Bag-of-Features (BoFs) method is utilized because it is the
most popular feature representation technique for videos to learn and recognize the dif-
ferent human actions. In this work, the Bag-of-Features consist of two feature repre-
sentations: The local features have been computed from the spatial-temporal domain by
implementing the feature detector and descriptor methods on 3D data. The procedure
for extracting feature vectors includes four steps: Interest keypoints detection, filter mo-
tion keypoints, align interest keypoints to depth, and finally, feature vector extraction.
The global features have been computed from 3D motion data using a moment invariant
feature descriptor method.

Local Feature Extraction

A local spatio-temporal feature usually includes two stages: Detection and description.
In the detection stage, a feature detector localizes interest points in a spatio-temporal
space. While in the description stage, a feature descriptor computes representations of
detected points. The local feature extraction steps shown in Figure 4.2 will be explained
in the following:

Motion Keypoints

Detection

Feature Vector Extraction

Input RGB-D Video
Sequence

Alignment Color 

Points to Depth

Interest Keypoints

Detection HOG Features

Figure 4.2: Local feature extraction.

1. Interest keypoints detection using SURF To compute motion interest keypoints
from RGB frame sequence, Speed-Up Robust Features (SURF) detector (see
Chapter 3, Section 3.3.1) is applied as a first step to extract visually distinctive
keypoints from the spatial domain. SURF detector is employed to localize inter-
est points spatially, and it can generate additional scale information and maintain
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computational efficiency. In this work, to provide essential evidence for action
recognition, the dominant orientations of interest points are discarded as motion
directions. Then, these SURF points are filtered to compute motion interest key-
points as will be declared in the next step.

2. Filter motion keypoints using MHI-OF After computing the SURF points, those
points are filtered by the temporal (motion) of the Motion History Image (MHI)
generated by the differences between adjacent frames (see Chapter 3, Section
3.3.2). The points with greater intensities in MHI reflect moving objects with
more recent motion. The brighter pixels on MHI lead to the most recent mo-
tion. The gradients of MHI also represent the directional details of human action.
Then, MHI has been utilized as a motion mask to eliminate interest points from
the static background, i.e., as points of interest are picked only SURF points with
the most recent motions or high MHI. The motion interest points from the MHI
are then exploited to compute gradient-based optical flow. The motion vectors at
each interest motion point from the MHI are calculated using the Lucas-Kanade
optical flow detector (see Chapter 3, Section 3.2.2). The motion vector points are
finally used to compute spatio-temporal features from moving objects.

SURF/MHI-OF detects points of interest with spatially distinctive shapes and
temporally appropriate motions. These detectors, therefore, provide complemen-
tary interest points.

In this thesis work, to compute the MHI, the number of consecutive frames (NF )
are considered at a time (t) to obtain the MHI. In MHI Hτ (see Equation (3.13)
in Chapter 3), the pixel intensity represents a function of the temporal motion
history at that interest points, where brighter values correspond to more recent
motion. In this work, τ is set to 20. For pixels with more recent motions, the MHI
image is scaled to a grayscale image with a maximum intensity value, i.e., 255.
Furthermore, the directional motion information can be explicitly calculated from
the intensity gradients in the MHI.

3. Align interest keypoints to depth images After detecting the motion points
P (x, y, t) from RGB, these motion points are then aligned to the related depth
images points Pd(x, y, z, t), where (x, y, t) denote the coordinates and time of in-
terest point on RGB images and (x, y, z, t) refer to the 3D coordinate and time of
interest point on depth images.

To do the alignment between the depth points with the corresponding color im-
age points: Firstly, the motion feature points from RGB are matched with the
corresponding depth interest points from SURF using the matched feature, then
calculate a Homography matrix transforming [3]. The Homography is a trans-
formation (3 × 3 ) matrix that maps the points in one image to the other image’s
corresponding points.
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In the proposed method, to compute the motion point in depth dependently on the
corresponding color, the alignment is done because the color and the depth camera
in the experimented datasets recorded by the Kinect camera are not synchronized,
and capture the scenes at slightly different time instances. Then, feature vectors
will be computed from RGB and depth descriptors by depending on this detected
motion points. Finally, the feature vectors from each channel are combined to
form the feature vector from the RGB-D sequence.

4. Feature vectors extraction using HOG descriptor Feature extraction based on
HOG descriptor (see Chapter 3, Section 3.3.1) is applied to describe the detected
interest points in both spatial and temporal domains of RGB and depth channels.
The HOG features are computed from the video images (appearance), MHI-OF
channels. Then, these features are represented in one feature vector for each video
action. Figure 4.3 shows the representation of the local features extraction steps.

t

RGB Video SURF Keypoints

Filter Motion Points HOG Descriptor

t

t t

Figure 4.3: Local motion and appearance features representation. The first row shows the
original RGB video and the all interested keypoints in the image. The second row shows the
filtered motion points from the SURF points to be described by HOG feature descriptor.

In the proposed method, the local appearance and motion features from image chan-
nels are characterized by computing distributions of local gradients HOG in the neigh-
borhood with (3 × 3) grid of patches at each interest keypoint in the intensity image
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and MHI, respectively. Normalized histograms of all patches are combined to repre-
sent feature vectors extracted using descriptors, i.e., HOG (in terms of the appearance
features in the intensity image) and HOG-MHI-OF (in terms of the motion features in
the MHI-OF). These vectors are then used as the input to the classifier for performing
action recognition.

Global Feature Extraction

A global feature is usually represented by shape invariant features, such as the Hu-
moments feature descriptor used in this work.

Hu-moments invariant feature descriptor: The global feature based on moment in-
variant will be computed into two steps:

1. Represent the spatial and temporal information about an action in RGB and depth
video sequence. In order to do that, MHI is used to express the motion flow or
sequence using the temporal density of each pixel, where the pixel intensity is a
function of the recency of action.

2. Hu-moments are used as descriptors of the motion history image. Hu-moments
introduce seven nonlinear functions that are invariants under the object’s transla-
tion, scale, and rotation. The set of seven moments are given by Equation (3.14)
to Equation (3.18) to get each seven Hu-moments values from the motion history
images (for more details about Hu-moments invariant features, see Chapter 3,
Section 3.3.2). Figure 4.4 shows an example of the Hu-moments output. The set
of seven moments (HM ) are treated as seven feature vectors from each channel
of RGB and depth. These features are extracted from the MHI of all images in the
video. After that, the extracted features are combined into a vector to represent
action in the RGB-D video as one feature vector.

Feature Vector Extraction

In order to represent the local appearance and motion information as well as global
shape information, two different descriptors are used: HOG features descriptor and
Seven Hu-moments shape features.

HOG features descriptor is applied on both RGB and depth video frames and com-
bined feature vector values to generate the bag of local features. For vector generation,
the HOG descriptor is implemented around each keypoints in video frames of RGB-D
images and motion points computed by MHI-OF. The HOG can also be well adapted to
characterize local shape information from the image channel and local motion informa-
tion from the MHI channel by computing distributions of local gradients.
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MHI at frame t=1 MHI at frame t+1 MHI at frame t+10

- - - -  -

- - - -  -

Figure 4.4: Seven Hu-moments of the MHI from video sequence.

Seven Hu-moments shape features are extracted from the MHI of the RGB-D se-
quence as in Figure 4.4. Then, the geometric moments feature vectors are computed
from the combination of the Hu-moments seven values from the motion area in each
RGB and depth frames.

Features combination After computing the separated two kinds of feature vectors
representing by local and global features. These two feature vectors are finally com-
bined to represent the action information from each RGB-D video. The two feature
vectors are combined most simply. A first vector represents the local features. The vec-
tors extracted from it are built by concatenating RGB and depth feature vectors into a
higher dimensional vector, whereas each vector has two feature vectors. In other words,
the spatial and temporal information computed from HOG and MHI-HOG is integrated
into one feature vector. A second vector represents a combination of local and global
feature vectors. It is also concatenated easily, i.e., the high-dimensional vector from lo-
cal features combine with the global feature vectors from different RGB-D video actions
to form the high-dimensional vector.

4.2.3 Action Classification

Classification is an essential step in any recognition task. Many classifiers are presented
and used according to the type of action recognition task (see Chapter 3, Section 3.5).
Firstly, the Bag-of-Words (BoW) vectors for all video sequences are computed in the
training stage, and labels are appended according to the class. Then, these BoW vectors
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are fed into the multi-class classifier in order to train the model that is further used in
the testing stage for human action recognition.

Figure 4.5 shows the action classification pipeline of the proposed approach, which
starts from the training and testing feature vector sets until the classification step im-
proves the performance of the action recognition task. A dictionary is generated using
k-means clustering (see Chapter 2, Section 2.5.2), then the BoW vectors are generated
using a cluster model that is finally fed into classifiers for classification. The action

Figure 4.5: Pipeline of the action classification of the proposed approach including: Dictionary
generation; Bag-of-Words vectors generation; and finally, classifiers used for classified action.

classification pipeline explains in the following:

Dictionary Generation

After extracting features information from all RGB-D videos depending on the detector
and descriptor strategy. A dictionary is generated from these feature vectors. The dictio-
nary generation is an important step in the BoFs method, and the size of the dictionary
is crucial for the recognition process. If the dictionary size is set too small, then the
BoFs model cannot express all the keypoints. While if it is set too high, then it might
lead to over-fitting and increasing the system’s complexity. The dictionary is created by
clustering using the k-means algorithm. The k-means clustering is applied on all BoFs
from training videos; the k represents the dictionary size. The centroids of each cluster
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are combined to make a dictionary. Dictionary is generated to be used for making BoW
vector.

Bag-of-Words Vector

In order to generate the Bag-of-Words (BoW) vector, each feature description of the
video frame is compared with each centroid of the cluster in the dictionary using the
Euclidean Distance Measure (EDM) (see Equation (2.6), Chapter 2). In this generation,
each video is treated as a collection of features. Then, these features are quantized into
the nearest visual words in terms of the EDM.

Then, check the difference of EDM; if the difference is small or the feature values
are close to a particular cluster, the count of that index is increased. Similarly, all feature
descriptors of video sequences are compared, and the number of indexes is increased
for those whose feature description values come closest to the cluster values. Finally,
the BoW vector is generated from a video sequence with a size (Fv×k), where Fv is the
feature vector dimension of each video frame, and k is the dictionary size. The BoW
vectors are computed for all videos of the actions.

Action Recognition

In this work, the BoW vectors are computed from all videos in the training and testing
stages. These BoW vectors are fed into the multi-class classifier for predicting the
computed features. In the proposed method, two different feature vectors are computed,
i.e., the spatio-temporal local features and global features.

For the local features, a multi-class SVM classifier (see Chapter 3, Section 3.5.1) is
used for predicting the features with RBF kernel. An RBF is maps data into an infinite-
dimensional Hilbert space. The RBF is a Gaussian distribution, and it is calculated using
Equation (3.36).
For the combined local and global features, a multi-class KNN (see Chapter 3, Section
3.5.2) for the combined features is used.

These two classification methods are applied to train the BoW vectors extracted from
the training videos. It is further used in the testing stage for computing the accuracy of
the human action recognition system.

Accuracy: Is a fraction of predictions that a classification model got right. In multi-
class classification, accuracy is defined as follows:

Accuracy =
Number of correct predictions

Total number of classes
× 100% (4.2)
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4.3 Experimentations and Results
This section discusses the experimental setup, training process and experimental results
for the proposed technique. The proposed technique is tested on two well-known RGB-
D action datasets: MSR Daily Activity 3D (MSR3D) and Online RGB-D (ORGBD)
datasets. The description of these datasets presented in Chapter 2, Section 2.7, and
comparative analysis are presented in the subsequent sections.

4.3.1 Dataset Split
In this thesis, the datasets are split based on the hold-out method [YS16]. The hold-out
method is the most straightforward form of cross-validation. In this method, the dataset
is divided into two independent sets:

• Training set contains examples used for learning and trains the system using the
training dataset.

• Test/Validation set (hold-out set) contains examples used to assess the perfor-
mance of a trained classifier.

The advantage of the hold-out method is usually preferable to a residual method and
takes no longer to compute. However, its evaluation can have a high variance. The
evaluation can be primarily based on which data points end in the training set and end
in the test set. The evaluation can also vary significantly depending on how the division
is performed.

In this experiment, the two datasets used for experimentation are divided into a 70%
training dataset and 30% test dataset for MSR3D. Furthermore, for the ORGBD dataset,
the same environment test setting is used, where half of the subjects are used as training
data, and the rest of the subjects are used as testing data.

4.3.2 Parameters Setup for Local and Global Features
The local appearance from image and motion features are characterized by grids of the
histogram of orientated gradient (HOG) (with 3× 3 patches) around the motion interest
points. Normalized histograms of all the patches are associated with the appearance
features in the intensity image using HOG, and motion features using HOG-MHI-OF
as descriptor vectors, which are finally fed in classifier to represent a human action
recognition.

In this implementation, there is an (NF ) in each video action, the motion area or
interesting points in each video images are dividing into (3 × 3) cells. One of the
important reason to use a HOG feature descriptor is to describe a patch of an image
which provides a compact representation. A (3× 3) image patch for (4) image channels
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contains (3× 3× 4 = 36) pixel values, and the gradient of this patch contains (2) values
for magnitude and orientation per pixel which adds up to (3 × 3 × 2 = 18) numbers.
These gradient numbers are represented using a 6-bin for HOG and 8-bin histogram for
HOG-MHI-OF. These selected values have been used on RGB and depth channels.

Each region with an interesting point on MHI channels is divided into (3× 3) grids.
MHI gradients are sampled into (8) orientation bins. So each SURF/MHI-HOG point
generates a feature vector of (2× 3× 3× 8 = 144) dimensions. For each interest point,
HOG (54 dimensions) and HOG-MHI-OF (72 dimensions) descriptors can represent
local appearance and motion properties that are finally concatenated into one feature
vector for action classification.

In this thesis, dictionaries are constructed with k-means clustering. Two different k
values are used as a dictionary size. For computing the local features, the best result
with a value of k = 100, while combining the local and global features, the best result
with a value of k = 400 as a dictionary size.

The classification test parameters are set at the following: For SVM classifier with
RBF kernel, C parameter is 10, γ is set to 20, and the degree is 3. For the KNN classi-
fier, the K value is set to 16. The One-vs-All approach for multi-class classification is
followed in this thesis experimentations.

4.3.3 Results and Discussion

The action recognition framework depends on the extraction of two different feature
representations, i.e., local and global features, and combining these features.

The local features extracted as follows: The SURF detector is used on spatial do-
mains of RGB videos and then filtering these points by MHI and OF on temporal do-
mains to extract the motion points from all video frames. Then these points are aligned
to the depth sequence to get the RGB-D interest motion points as in Figure 4.6, which
shows the position of interesting motion points in the RGB-D video frames.

The global features extracted as follows: The Hu-moment features are computed
from the MHI channel on both RGB and depth video frames to compute the seven in-
variant features from each video frame. When using MHI, many conditions should be
considered, such as the various side, positions, illumination, including person shadow,
to guarantee the performance.

The last step in computing the feature vectors is combining the local and global
Hu-moment features to represent the feature vector.
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Motion Direction of  Walking Action

Motion Direction of  Sitting Action

Figure 4.6: Motion points in RGB and depth frames of different action represented by green
points on RGB frame and white points on depth frames.

Evaluation on Datasets The action recognition system of this chapter is evaluated in
two different public datasets, as mention previously. All testing results of the experi-
ment are described using classifiers such as SVM and KNN. The SVM classifier uses
local features represented by HOG, and HOG-MHI-OF. For the combined local and
global Hu-moments features, the KNN classifier is used to test accuracy results. In both
methods, the performance accuracy results outperform other state-of-the-art recognition
rates that used different techniques with the same datasets.

Two different combinations are done in this evaluation, the first combination repre-
sented by the concatenation of RGB with depth modalities. Table 4.1 shows the local
features comparison results between using the RGB only and the combination between
RGB and depth data.

The results in the table were illustrated that the combination of two modalities gave
a better classification performance than using only RGB. This means that the features
obtained from the depth information help to increase the recognition performance in ad-
dition to RGB features. Whereas the depth sensor has many advantages over the RGB
camera, it can work in total darkness, which makes it possible to explore the funda-
mental solution for traditional problems in human action classification. Furthermore,
it provides 3D structural information as well as color image sequences in real-time.
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Datasets Modalities Accuracy
MSR3D RGB 57.65%

RGB+Depth 91.11%
ORGBD RGB 49.04%

RGB+Depth 92.86%

Table 4.1: Experimental results of the extracted local features from RGB and RGB-D of the
MSR3D and ORGBD datasets.

However, the depth camera also has a limitation, which can be partially enhanced by
incorporating of RGB and depth. However, all the advantages make it interesting to use
the RGB-D cameras in more challenging environments.

In this work, there are two reasons to combine depth information to the correspond-
ing RGB frame: Firstly, the RGB data can be strictly impacted by the variation of
lighting conditions, alongside the variety of subject’s clothing and viewing angle. Both
perspectives can influence the recognition results. In comparison to depth data, this
data contains essential information for action representation. Secondly, because of both
physical bodies and movements are presented as four dimensions, (x, y, z, t), in the real
world. Human activities include not only spatio-temporal axes but also the depth axis,
which represents the limitations of 3D scenes and activities that can be directly trans-
lated into image/video content. Therefore, this work has to rely on depth maps and color
images for human action recognition.

The second feature combination is represented by the concatenation of local fea-
tures and global Hu-moments descriptor. Table 4.2 shows the results of the combination
of two different feature descriptor methods. The local features encode information re-
garding the RGB and depth modalities in addition to the invariant moment of the global
features. The combination of different features shows the best result because the Hu-
moments descriptor is invariant to rotation, translation, and scaling. In this work, Hu-
moments are computed to represent the video as a global feature from the motion area
of the sequence. This feature combination method gave a better accuracy performance
than using only local features.

Datasets Method Classifier Accuracy
MSR3D Local Features SVM 91.11%

Local+Hu-moments KNN 100%
ORGBD Local Features SVM 92.86%

Local+Hu-moments KNN 96.42%

Table 4.2: Comparison results on RGB-D datasets of two feature representation methods, local
features and combination with global moments features.
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Comparison of MSR3D dataset against state-of-the-art The proposed approach re-
sults in this chapter are compared with existing approaches on MSR3D dataset, as shown
in Table 4.3.

Methods Accuracy
CHAR [ZZSS16] 54.7%
Discriminative Orderlet [YLY15] 60.1%
Feature Covariance [PTDZ16] 65.00%
Moving Pose [ZLS13] 73.80%

S+MDMMs [AFCYN19] 89.14%
Proposed Method

Local Features-SVM 91.11%
Local+Hu-moment-KNN 100%

Table 4.3: Comparison of recognition accuracy with other methods using MSR3D dataset.

The state-of-the-art methods in the table that are compared with are contained differ-
ent feature calculation and classification methods, in addition to the different modalities
of input videos. For instance, Zhu et al. [ZZSS16] proposed the continuous human
action recognition (CHAR) algorithm based on skeletal data extracted from RGB-D im-
ages. Yu et al. [YLY15] used the skeleton and depth modalities as input data. They
proposed a discriminative orderlet. An orderlet captures a specific spatial relationship
among skeleton joints and defines a comparative relation of the shape information be-
tween a subregions group of depth data. Zanfir et al. [ZLS13] proposed a moving pose
descriptor framework that used skeleton pose and kinematic information encoded as dif-
ferential 3D quantities. The S+MDMMs method proposed by [AFCYN19] computed
multiple motion information from the depth and transfer learning used to extract spatial
information from RGB and depth data.

In this thesis, the proposed system is invariant to scale, rotation, and illumination.
Furthermore, the new RGB and depth feature combination method could reach the
recognition rates superior to other publications on this dataset. The combined local
and global features can also improve performance and reach an excellent recognition
rate besides the ability to improve performance on actions with low movement such as
drinking, using a laptop.

Comparison of ORGBD dataset against state-of-the-art As the previous dataset,
the same feature extraction and classification methods are applied to this dataset. Ta-
ble 4.4 shows the comparative accuracy performance with the state-of-the-art methods
that are used the same dataset in their experimentation and different feature extraction
methods.
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Methods Accuracy
HOSM [DLCZ16] 49.5%
Orderlet+SVM [YLY15] 68.7%
Orderlet+ boosting [YLY15] 71.4%
Human-Object Interaction [MDDB15] 75.8%

Proposed Method
Local Features-SVM 92.86%
Local+Hu-moment-KNN 96.42%

Table 4.4: Comparison of recognition accuracy with other methods using ORGBD dataset.

The state-of-the-art methods in the table are contained different feature extraction
methods and the different modalities of input videos. A Hierarchical Self-Organizing
Map (HSOM) was proposed by [DLCZ16] for the segmentation, classification, and es-
timation of ongoing human behaviors that take 3D skeletal joint positions as input ob-
tained from depth data. Yu et al. [YLY15] used depth and skeleton data to present a
visual representation, known as orderlet, for improving real-time human action recog-
nition. An orderlet is an intermediate level feature, which captures the ordinary pattern
between a set of low-level features. For a skeleton, a spatial relation between a set of
joints is captured by an orderlet. For depth data, an orderlet describes a comparative
relation of the shape information between a subregions group. Meng et al. [MDDB15]
proposed specific features that defined human-object interaction in humans’ sequences
recorded from the depth sensor. Moreover, a human is defined by the collection of joints
located in the skeleton, distances between inter-joints and distances between objects-
joints is often used to define relations between human and object, i.e., the human-object
interaction.

From the comparison with the other action recognition methods, the proposed meth-
ods could improve the new feature combination methods. It gives excellent performance
on actions even with low movement and could reach recognition rates superior to other
publications of the same RGB-D datasets. The final results show that the proposed
method on RGB-D datasets could demonstrate the action recognition approach and sig-
nificantly outperform the existing state-of-the-art methods. The best performance is
achieved in computing local features because interest points are extracted solely from
the RGB channel and aligned to the depth. Then combined the RGB and depth based
descriptors values depending on these detected motion points. Moreover, the global fea-
ture represented by the Hu-moment invariants descriptor is used. This invariant feature
descriptor is utilized to solve surveillance camera recording problems, such as differ-
ent side, position, direction, and illumination, which are commonly utilized in object
recognition due to their discriminations strength and robustness.





Chapter 5

Feature Extraction from 3D Trajectory
and Global Descriptor

This chapter proposes a novel combination of local and global features approach by
using three different feature descriptors to demonstrate the human action recognition
task.

The method in this chapter was presented at the 7th International Conference on
Pattern Recognition Applications and Methods (ICPRAM 2018), Funchal, Madeira-
Portugal. This work was published by SCITEPRESS – Science and Technology Publi-
cations [AaP18b].

The outline of this chapter starts from an introduction in Section 5.1. Section 5.2
presents a proposed system architecture of action recognition. The action classification
method is explained in Section 5.3. The results of the proposed system are presented in
Section 5.4.

5.1 Introduction
The approaches presented in Chapter 4 that recognize human action from RGB-D videos
can be classified into two main categories: A combination of local features from RGB
and depth sequence and a combination of local and global features. The essential steps
of the local feature approach represented by extracting interest points from video se-
quences. Next, the local descriptor was utilized to describe the local properties from
RGB and depth sequence. These local feature vector descriptors were then translated
into the form of words using the BoW pipeline, and the combined words described hu-
man actions from the input RGB-D sequences. Finally, the last features were fed to the
classifier to perform action recognition. The global descriptors usually extract the com-
plete human body information, such as MHI. Then, the global feature descriptor was
applied to compute the features from the motion regions. The performance may influ-

127



128 CHAPTER 5. FEATURE EXTRACTION FROM 3D DESCRIPTORS

ence partial occlusion and background clutter. Despite encouraging results of RGB-D
activity recognition in the previous chapter, activity recognition using RGB-D videos is
still a challenging problem due to the camera motion and viewpoint changes, cluttered
and dynamic background, illumination changes, etc. Moreover, the system has to cope
with a high intraclass variability: Such as the actions performed by people wearing dif-
ferent clothes also having different postures and sizes.

In this chapter, human action recognition will be presented by combining local and
global descriptors, i.e., 3D Dense Trajectory (3DTr) and MBH descriptors as local fea-
tures and 3DGIST descriptor as a global feature. The Dense Trajectories descriptor is
one of the most successful action recognition approaches, and it is suitable for situa-
tions, including a significant amount of motion. However, many generated trajectories
are unrelated to the actual human behavior and can reduce efficiency due to noise and
unstable background.

In the 2DTr framework, feature points are densely sampled in each frame and tracked
using optical flow. Then, multiple descriptors, including the MBH, HOF, HOG, and Tra-
jectory shape, can be obtained along the trajectories to describe motion, appearance, and
shape. In this chapter, the 2DTr is extended to 3DTr by extracting motion information
from depth data using the MBH descriptor. On the other hand, to effectively recognize
human activities in RGB-D videos, the structural information is extracted from depth
sequence using a global GIST feature descriptor. Finally, the new combined approach of
local and global descriptors forms a new descriptor, namely 3DTrMBGG, i.e., combined
3DTr, MBH, and global 3DGIST feature descriptors.

Furthermore, to compute feature vectors and accuracy performance, the method of
Chapter 4 is employed. This method includes the computation of BoW vectors that will
be finally fed to the classifier for computing the performance of the action recognition
task. The new descriptor outperforms the state-of-the-art descriptors that are used on
RGB-D videos. More specifically, the major contributions of the proposed method are:

• Extract local 3D Trajectories (3DTr) by developing a 2DTrs for activity recogni-
tion from RGB-D videos.

• Propose a new approach to combine motion and depth information, i.e., MBH and
Trajectory shape descriptors along the depth direction where the newly proposed
descriptors characterize activity motion information in RGB-D videos.

• Propose 3DGIST by the extraction of global GIST from depth sequence.

• Combine local and global feature descriptors to form a new descriptor called
3DTrMBGG.

• Outperform state-of-the-art methods performance used the same public RGB-D
action datasets that are used for testing in this work.
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5.2 Action Recognition System Architecture
This section describes the proposed system architecture of the action recognition ap-
proach. Figure 5.1 illustrates the general steps of the action recognition progress of this
chapter.

RGB

Depth

SVM Classifier 

Recognition Accuracy  

Figure 5.1: General structure of the proposed system.

At the beginning of this system, the input data are represented by the RGB-D video.
Each video is pre-processed by resizing the images and removing noise based on the
same strategy used in Chapter 4, Section 4.2.1. These system architecture steps are
illustrated in the following:

5.2.1 3D Trajectory
Trajectory is a model for a motion path of a moving object. In real-world, object acts
essentially in 3D space. Intuitively, gaining complete 3D motion information leads to
a more distinctive and robust activity presentation. Dense Trajectories produce encour-
aging results on the 2D image plane. However, motion information along the depth
direction is missing in the 2D plane. The 2DTr was proposed by [WKSL11] [14] and it
was explained in detail in Chapter 3, Section 3.3.1.

In this chapter, the 2DTr descriptor is extended to 3DTr by adding the corresponding
depth value to each detected 2D Trajectory point, i.e., mapping the 2D locations of the
Dense Trajectories from RGB video frames to the corresponding locations in the depth
video frames. That can restore the 3DTr of the tracked interest points that capture
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important motion information along the depth direction. In 3DTr, the essential step is
the estimation of the motion in the depth directions.

Depth Motion Estimation

At the beginning of depth motion estimation, the dense optical flow is computed from
each RGB frame using the Farnebäck method (see Chapter 3, Section 3.2.2). This
method makes a good compromise between accuracy and speed. The 3D motion es-
timation is a fundamental and challenging problem, but it could be solved using scene
flow [LPB11, XZYT14].

To estimate the depth motion, suppose x and y are the coordinates of a point at a
frame of the collected RGB video, z is the depth value of that point in the depth video,
then the z point could be located with (xt, yt, zt) coordinate in the RGB-D space. In this
way, each point in the RGB-D data is treated as a 3D point.

The depth motion estimation is computed as follows: Suppose for point (Xt) in the
2D RGB image plane, and xt = (xt, yt) be its location at frame t is tracked to frame
(t + 1) at the point (Xt+1) by using the Farnebäck optical flow method. The depth
motion of point (Xt) between two consecutive frames can be estimated by mapping
xt = (xt, yt) to the depth frame Izt , as in Equation (5.1):

∆Xz
t = Izt (xt+1, yt+1)− Izt (xt, yt) (5.1)

where ∆Xz
t can be approximately considered as the depth flow vz. The depth flow field

is computed by applying the extraction approach of (vz) to all points in the depth frame.
vz values are combined with the corresponding optical flow (vx,vy), then the scene
flow of (X) can be obtained as:

ft = (vx,vy,vz) (5.2)

The 3DTr included 3D motion information obtained after computing the scene flow
of all existing RGB Trajectory points. An example of 3DTr is shown in Figure 5.2.

5.2.2 Local Feature Extraction
Such 2DTrs, various appearance and motion features can be extracted along the 3Trs
[XZYT14]. However, the MBH descriptor in the directions ofMBHx andMBHy gave
a good performance in RGB channels, as proposed by [WKSL13]. While in this work,
i.e., by using RGB-D data, the MBH is extracted from the depth direction (MBHz)
besides these two MBH descriptors extracted from x and y directions, i.e., MBHx

and MBHy. One of the significant advantages of MBHz is robustness to camera mo-
tion along the depth direction. The model of MBHx and MBHy implemented by
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Figure 5.2: Example of the 3D Trajectories: The blue, red, and green lines represent 3D Trajec-
tories. Trajectories sampled are tracked along with L frames.

[WKSL13, XZYT14] is also followed to extract MBHz, where MBH descriptor splits
the optical flow into horizontal and vertical components, and quantizes the derivatives
of each component (see Chapter 3, Section 3.3.1). Finally, the concatenation ofMBHx,
MBHy, and MBHz is done in an early fusion way to form the 3D activity description
robust to camera motion as in Equation (5.3):

MBHxyz =
[
MBHxMBHyMBHz

]
(5.3)

That is, for the depth flow vz, the orientation information is quantized into 8-bin
histograms and the magnitude is employed for weighting. 2 × 2 × 3 spatio-temporal
grids are employed, which results in a 2× 2× 3× 8 = 96 dimension for MBHz.

Additionally, the Trajectory shape descriptor, along with RGB-D frames, is com-
puted using Equation (3.11) in Chapter 3. By means, the Trajectory shape descriptor is
computed in horizontal, vertical, and depth directions (Trx,Try, and Trz) to form the
3D Trajectory shape descriptor as in Equation (5.4):

Trxyz =
[
TrxTryTrz

]
(5.4)
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The 3D Trajectories and local feature extraction process [XZYT14] is illustrated by
Algorithm 2.

Algorithm 2 3D Trajectories and Local Feature Extraction
input : 2D Dense Trajectories
Extend 2D Dense Trajectories to 3D Trajectories

foreach 2D Trajectory Tri2D do
foreach 2D Trajectory point Xj

2D do
• Map Xj

2D to the depth frame Izt

• Evaluate the scene flow ft of Xj
2D

end
Extend Tri2D to 3D Trajectory Tri3D through availability check
If Tri3D is available, then extract activity features along it

end
output: 3D Trajectories and RGB-D action features

Additionally, appearance descriptors, such as HOG, and first-order motion, such as
HOF, are also extracted from RGB. The appearance variations and motion are significant
in training and testing samples and help to improve the performance.

Then, the 3D activity descriptors values are finally tested using the clustering and
classification strategy to get the performance accuracy of the human action recognition
system. Figure 5.3 shows the pipeline steps of human action recognition of 3D Trajec-
tory.

5.2.3 Global Feature Extraction

The global-based descriptors encode more spatial and temporal information within video
sequences in addition to the local feature descriptors. This descriptor method usually
needs the human body’s localization throughout background subtraction, alignment, or
tracking, and it directly extracts and describes the entire characteristics of human sil-
houettes or contours. In this work, an action region is computed using background
subtraction. Then, the 3DGIST feature descriptor is used to extract the global features
from the action region of depth sequences.

Action Region

The background subtraction method (see Chapter 3, Section 3.2.1) is used to extract the
shape of the human silhouette, which plays a very important role in recognizing human
actions. Background subtraction is a popular algorithm for isolating a scene’s moving
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Figure 5.3: Pipeline of RGB-D action recognition with the 3D Trajectory.

parts by segmenting it into the background and foreground. Only the area where humans
are located is extracted from each frame of a video.

Let’s given a video with NF frames; the human region in each frame is separated
from the background, which is called Action-Region (AR). i.e., extraction to the fore-
ground from all frame sequences (moving object).

GIST Feature Computation from Depth

GIST feature is a kind of filter bank feature, as well it has global properties. In this
work, the GIST descriptor (see Chapter 3, Section 3.3.2) is accumulated by the filter
responses of the grids of AR. The AR is divided into g × g grids. The average filter
response is computed from each grid. A computed vector is called a 3DGIST vector.
The dimension of a 3DGIST vector is l̂ × θ. Finally, the whole region can be described
by (g× g) 3DGIST vectors. These vectors capture the action structure. In this work, the
3DGIST feature is adopted into the video domain for the action recognition task. The
3DGIST feature is computed in the following steps:

• Compute 3DGIST descriptor by using a cluster of Gabor filters, as in Equations
(3.19) and (3.20) that are discussed in Chapter 3, which the AR Convolve with
(32) Gabor filters at (4) scales and (8) orientations, resulting in (32) feature maps.
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• Divide each feature map into (16) regions by 4 × 4 grids and then average the
feature values within each region.

• Concatenate the (16) averaged values of all (32) feature maps, resulting in (16 ×
32 = 512) 3DGIST descriptor dimensions. Therefore, the extracted features from
eachAR are concatenated and resulting in 512-dimension 3DGIST feature vectors
for each frame.

The overall features are then computed by the concatenation of all 3DGIST descrip-
tors of AR from the input video sequence that finally forms a global feature vector of
action.

After computing the global 3DGIST feature vectors from all video sequences, the
clustering and classification algorithms are applied to compute the accuracy of this fea-
ture extraction method when using only depth data. Figure 5.4 shows the structure
pipeline of human action recognition from depth data based on the 3DGIST descriptor.

k-means ClusteringMulti-Class SVM

Input Depth Forground from 

Background Subtraction

Global Gist
Descriptor Matrix

Figure 5.4: Pipeline of depth activity recognition with the global 3DGIST descriptor.

5.2.4 Features Combination for Robust Action Recognition
This section has described the combination of local (i.e., 3DTrMB) and global feature
(3DGIST) descriptors of video sequences. First, the 3D Trajectory features descriptor
is used for feature extraction based on the same parameters used in 2DTr from RGB.
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These parameters will be discussed in Section 5.4. Then, the motion information from
depth images (MBHz) is added to get finally 628 features for each frame. Second,
the 3DGIST descriptor is used for feature extraction based on the scale and orientation
by convolving it with Gabor filters from only depth images resulting in 512 features
for each frame. Features of 3DTrMB and 3DGIST are normalized before concatenating
them to form the overall feature vector of size 1140 feature’s dimension. The normaliza-
tion is required to ensure that individual feature vector values do not overshadow other
values. Then, 3DTrMB and 3DGIST features of each frame are combined together to
form an overall feature vector named 3DTrMBGG, as in Equation (5.5).

3DTrMBGG =
[
3DTrMB 3DGIST

]
(5.5)

Combining feature values has resulted in a better performance of the classifier since
it utilizes the combined information from the local 3D Trajectory, MBH, and Global
3DGIST features analysis.

5.3 Action Recognition
After computing the features from video sequences, a multi-class SVM classifier (see
Chapter 3, Section 3.5.1) has been used to classify the actions. This classifier is com-
puted from the local feature, global features, and the combined features, i.e., local and
global features.

The multi-class SVM classifier based on the One-vs-All approach (see Chapter 2,
Section 2.5.1) with RBF kernel (Equation (3.36)) is used to compute the performance of
the proposed method. Moreover, to estimate the best parameters for the SVM classifier,
a grid search was conducted to know the best value for parameters C and γ. Here,
γ represents the width of the RBF kernel, and C represents the weight of the error
penalty. The proper set of (C, γ) helps in improving the overall accuracy of the SVM
classifier. In this work, theC parameter equals 10, and gamma is set to 20. In clustering,
The k-means clustering algorithm (see Chapter 2, Section 2.5.2) is used to generate the
dictionary of visual words. Different k values are used in the experimentation, 400, 100,
and 600 for 3DTrMB, 3DGIST, and 3DTrMBGG, respectively.

5.4 Experimental Results
In experiments, the proposed RGB-D activity recognition method is tested on two types
of the public dataset, MSR Daily Activity 3D (MSR3D) and Online RGB-D (ORGBD)
datasets (see Chapter 2, Section 2.7). In the experimentation, these datasets are split to
train and test sets by following the method in Chapter 4, Section 4.3.1. The MSR3D
dataset is divided into 70% for training and 30% for testing. While for the ORGBD
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dataset, the same environment test setting is used, where half of the subjects are used as
training data, and the rest of the subjects are used as testing data.

In this work, extensive experiments are performed to study the effectiveness of the
proposed method and improve the accuracy performance of human action recognition
from RGB-D datasets.

5.4.1 Experimental Setup
The Trajectory shape descriptor parameters are the same as used by [WKSL13], where
Trajectories sampled are tracked along with Ls = 15 frames (see Chapter 2, Figure 2.7),
which is shown a graphical representation of the Trajectory procedure). In this proce-
dure, firstly, feature points are densely sampled over the multi-scale pyramid. Then,
Trajectories are constructed using dense optical flow. Finally, descriptors are computed
around the Trajectory.

For the standard HOG descriptor, orientation is quantized into 8 bins. The magni-
tude is used for weighting. Therefore, the concatenation of the descriptor for each cell
yields a final descriptor size of 96 for HOG. For HOF, 9 bins are chosen for those pixels
whose optical flow value is within a threshold; therefore, in this case, the final descriptor
size is 108.

The concatenation of two descriptors, i.e., MBHx and MBHy for RGB, has re-
cently represented the MBH descriptor; both descriptors are constructed in the same
way as the HOG descriptor, both of them has a total of 8 orientation bins. Hence, the
MBHx,y descriptor’s final size is 96 × 2 = 192. The HOG descriptor encodes spa-
tial appearance while HOF captures first-order motion information. On the other hand,
MBHx and MBHy refer to the x and y components of the optical flow. Therefore, the
second-order motion information it encodes is the relative pixel movement, highlighting
the image areas where the optical flow varies, i.e., the motion boundaries. In addition
to the calculated MBHx and MBHy from the RGB frame, the MBHz from the depth
frame is also computed in this work with the size 96, then the final size of theMBHx,y,z

descriptor from the RGB-D frame is 288.

In this chapter, three different models are proposed and experimented with, as in the
following:

• The first model is implemented by using the local descriptor, Section 5.2.1. This
descriptor is represented by combining the Trajectory shape descriptor with MBH
from depth images to form the 3DTrMB. The feature descriptor dimensions from
3DTrMB are (628) for each frame in the video.

• The second model is implemented by using a global descriptor, Section 5.2.3.
In this model, the feature vectors are extracted using the GIST descriptor from
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depth information (3DGIST). The feature descriptor dimensions from 3DGIST
are (512) for each frame.

• The third model is represented by the combination of local and global descrip-
tors, Section 5.2.4. The feature vectors are extracted by combining 3DTrMB and
3DGIST feature values in one vector to form 3DTrMBGG for each video action
on RGB-D videos. The feature vector dimensions from 3DTrMBGG are (1140)
for each frame in the video.

5.4.2 Results and Discussions
This section is demonstrated the evaluation performance of the proposed method using
two different action datasets:

Evaluation using MSR3D Activity Dataset

The accuracy results of MSR3D are presented in Table 5.1. k-means clustering per-
formed to the feature descriptors values at the training stage to label each action class,
which yields a dictionary with size k. In these experiments, the k value of k-means is
set to 400, 100, and 600 for 3DTrMB, 3DGIST, and 3DTrMBGG, respectively. Finally,
the multi-class SVM classifier is applied to compute the proposed method’s accuracy
values. The computation of accuracy is computed using the same way in Chapter 4,
Equation (4.2).

Dataset Methods Modality Accuracy
Re-implemented 2DTr [WKSL11] RGB 63.13%

MSR3D 3DTrMB RGB-D 92.0%
3DGIST Depth 93.33%
3DTrMBGG RGB-D 95.62%

Table 5.1: Experimental results on MSR3D dataset using different modalities.

These results summarize with the following conclusions:

• 3DTrMB from RGB-D outperforms 2DTr descriptor using only RGB. The 2DTr
is re-implemented from the literature [WKSL11].

• 3DGIST descriptor from input depth only outperforms 2DTr and 3DTrMB de-
scriptors, but the improvement against 3DTrMBGG is much smaller than the
2DTr descriptor.

• The new descriptor 3DTrMBGG outperforms the other three previous descriptors.
The reason is due to the computation of motion, and structural information helps
in increasing accuracy performance.
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Comparison with state-of-the-art methods using the MSR3D dataset Table 5.2
summarizes the results, and it provides a comparison against the state-of-the-art that
used the same datasets and different feature extraction methods.

Methods Accuracy
Skeletal Shape Trajectories [ASS16] 70.0%
Relative Trajectories 3D [KBB14] 72.0%
MMDT [AABR+17] 78.13%
3D Localized Trajectories [Pap20] 76.3%
Local Features-SVM (Chapter 4) 91.11%

Proposed Method
3DTrMB 92.0%
3DGIST 93.33%
3DTrMBGG 95.62%

Table 5.2: Comparison of recognition accuracy with the state-of-the-art methods using MSR3D
dataset.

The proposed method achieved a recognition rate of 92.0% from 3DTrMB, 93.33%
from 3DGIST, and 95.62% from 3DTrMBGG methods. The results confirm that the
proposed method outperforms the state-of-the-art methods recorded in Table 5.2. It is
important to mention here that the depth information helped in increasing the perfor-
mance of the proposed methods. Due to the proposed method, the computation of mo-
tion information, i.e., MBH, and structural information, i.e., GIST descriptor, could add
more action information that helped in giving the correct class label. Thus a combination
of descriptors leads to the performance gain. It is worth pointing out that combination
works. The reason why it works is that HOG encodes appearance information, while
other descriptors encode motion information; thus, the combination leads to the perfor-
mance gain. In comparison with the other methods, some researchers depended on the
skeleton data from depth. Depth information improves skeleton detection. Therefore
many authors, as mentioned in Table 5.2 [ASS16] and [Pap20], focused on analyzing
pose for action recognition. Nevertheless, skeleton detection still not robust and fail in
more challenging scenarios, where the sensor is placed outside of the optimal working
range, and serious occlusions occur. Another reason for the low recognition accuracies
when there is no enough motion information computed from the input video, due to
either characteristic of action or occlusions [KBB14, AABR+17].

Evaluation using ORGBD Dataset

The accuracy results of ORGBD are presented in Table 5.3. Also, the k-means clus-
tering is performed to the feature descriptors values at the training stage to label each
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action class. The same values of k in the previous datasets are used. Finally, the multi-
class SVM classifier is applied for the computation of the proposed method’s accuracy
performance.

Dataset Methods Modality Accuracy
Re-implemented 2DTr [WKSL11] RGB 61.18%

ORGBD 3DTrMB RGB-D 81.52%
3DGIST Depth 83.81%
3DTrMBGG RGB-D 97.62%

Table 5.3: Experimental results on ORGBD dataset using different modalities.

These results summarize with the following conclusions:

• 3DTrMB from RGB-D outperforms 2DTr descriptor using only RGB.

• 3DGIST descriptor from input depth only outperforms 2DTr and 3DTr descrip-
tors, but the improvement against 3DTrMB is much smaller than in the 2DTr
descriptor.

• The new descriptor 3DTrMBGG outperforms the other three previous descriptors,
and the improvement against 3DTrMB and 3DGIST is much higher than the 2DTr.
The computation of motion and structural information could help in increasing
accuracy performance. Additionally, the ORGBD dataset does not incorporate
actions involving a significant amount of radial motion.

Comparison with state-of-the-art methods using the ORGBD dataset Table 5.4
compares the proposed method results with the existing state-of-the-art using the same
dataset with different action recognition methods.

The proposed method achieved a recognition rate of 81.52% from 3DTrMB, 83.81%
from 3DGIST, and 97.62% from 3DTrMBGG methods. The results confirm that the pro-
posed method outperforms the state-of-the-art methods recorded in Table 5.4. About the
comparison with other methods used ORGBD dataset, there are no more researches used
it. Compared with the others’ accuracy, one thesis used this dataset on the Trajectory
method but depended on the skeleton joints [Pap20].

Some other researchers used this dataset on other different methods to improve hu-
man action recognition, as mentioned in Table 5.4. Ding et al. [DLCZ16] proposed the
HSOM from 3D skeletal joint locations as input from depth maps. Yu et al. [YLY15]
used the depth and skeleton joint as input to their system. Meng et al. [MDDB15] pro-
posed the human-object interaction system using a set of joints located in the skeleton.
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Methods Accuracy
HOSM [DLCZ16] 49.5%
Orderlet+SVM [YLY15] 68.7%
Orderlet+ boosting [YLY15] 71.4%
Human-Object Interaction [MDDB15] 75.8%
3D Localized Trajectories [Pap20] 64.5%
2D Localized Trajectories [Pap20] 67.4%
Local Features-SVM (Chapter 4) 92.86%

Proposed Method
3DTrMB 81.52%
3DGIST 83.81%
3DTrMBGG 97.62%

Table 5.4: Comparison of recognition accuracy with the state-of-the-art methods using ORGBD
dataset.

As a summary, from the previous comparison with the other action recognition
methods, the proposed method results outperform other previous methods on the same
public datasets. These new feature extraction methods show the ability to recognize
human action in high and low object movements and finally improved the human action
recognition task. Moreover, the proposed method could improve the benefit of combin-
ing a set of local feature vectors with a global feature vector in a suitable manner. The
advantage is that not only the main global attribute of human action is kept, but also the
impact of occlusion and noise is reduced.



Chapter 6

Motion Saliency Detection for Effective
Human Action Recognition

This chapter adopts the ideas of spatio-temporal analysis and global feature extraction.
The global feature has been used to characterize texture information from body mo-
tions on RGB-D videos. The main contribution relies on pre-processing input videos to
improve the feature extraction step and to have accurate results for recognizing human
action.

The method in this chapter was presented and published at the 26th International
Conferences in Central Europe on Computer Graphics, Visualization, and Computer
Vision (WSCG 2018), Pilsen, Czech Republic [AaAdP18].

The outline of this chapter structures as follows. Section 6.1 presents an introduc-
tion. Section 6.2 describes an overview of the proposed system architecture method.
Finally, the experimental and results are presented in Section 6.3.

6.1 Introduction

The proposed approaches presented in the previous two chapters, which recognize hu-
man action from RGB-D videos, use the new combinations of different local and global
feature descriptors.

In this chapter, the improvement of action recognition will be achieved by using a
different strategy. The method of spatio-temporal interest points has been successfully
applied in human action recognition tasks. However, it often contains many interest
points that are not relevant to human actions and affect the final recognition accuracy,
such as the interest points lying in the complex background. Therefore, it is very im-
portant to filter the interest points before feature extraction, and the motion saliency
analysis is an effective and standard method.

141



142 CHAPTER 6. MOTION SALIENCY DETECTION

Several methods are used to detect the moving object and extract important infor-
mation from videos, such as optical flow and background subtraction. In the previous
chapters, these methods are used to segment a moving object from the video frame’s
background and track it, i.e., detect the area of interest (motion area) through the video
frames. For human action recognition, the focus is to recognize the action of the sub-
ject in the video. Existing feature descriptor-based methods tend to be affected by the
background of the video frames.

This chapter presents a novel system for human action recognition based on saliency
object detection and extracts features using a global descriptor. The proposed system
firstly detects salient objects in RGB-D video frames and then extracts features on such
objects, i.e., feature extraction from the salient area. This system proposes a simple
technique to detect and process only those video frames containing salient objects. Pro-
cessing salient objects instead of all the frames makes the algorithm more efficient and
suppresses the background pixels’ interference on the detection process.

In this chapter, the human Retina model is applied for saliency detection from the
motion area in videos. The resulting saliency object detection is used to compute the
features from the spatio-temporal domains of the video. The extracted features are
finally used along with the Random Forest classifier for improving human action recog-
nition. Experiments are conducted on the three public action datasets that are shown
the newly proposed method outperforms the state-of-the-art competing spatio-temporal
feature-based human action recognition methods. More specifically, the significant con-
tributions of the proposed method are illustrated below:

• Noise filtering: A high frequency spatial and temporal noise is filtered out.

• Detect saliency motion by using the spatial and temporal output from the Retina
model.

• Extract features using the Local Binary Pattern descriptor as a global descriptor
from the salient area, i.e., motion area.

• Take a powerful of a commonly used Bag-of-Words (BoW) pipeline and focus on
the feature extraction step to address the action recognition problem.

• Show that the proposed method of using the LBP as a global descriptor could be
accessed to a good action recognition performance.

The essential steps for the action recognition system utilized in this chapter will be
explained in the next sections.
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6.2 Overview of the Proposed System Architecture
This section describes the steps of the proposed action recognition system. The gen-
eral steps of the proposed system are illustrated in Figure 6.1. This system contains the
following three main steps: In the first step, the Retina model (see Chapter 3, Section
3.2.3) is used for pre-processing the input video. After that, saliency motion detection is
computed from the video sequences. The second step represents the feature extraction
step using the LBP descriptor (see Chapter 3, Section 3.3.1). Then, to address the ac-
tion recognition problem, Bag-of-Words (BoW) pipeline is used, and finally, the feature
vectors from all video sequences are generated. In the training step, including feature
clustering and dictionary generation, features extracted from the training set are clus-
tered to generate visual words. Histograms based on occurrences of visual words in the
training set are used as features to train a classifier. Finally, a multi-class RF classifier
is used to achieve action recognition. The following sections explain each step in detail.

Motion 

Retina Model Feature Extraction

Action Classification

Saliency

Detection

Figure 6.1: General structure steps of the system approach for human action recognition us-
ing RGB and depth video. Pre-Processing to the input video data, Motion detection, Feature
Extraction, and Classification.

6.2.1 Pre-Processing Input Data
The first step in this system is pre-processed to the input data. When the input data is
used as videos, it should be converted into frames (sequence of images) of size (100 ×
100) for reducing the computational complexity of the system. In this work, the input
data is represented by RGB and depth sequences. These data contain object appearance,
shape, and motion characteristics. Because the depth images have noise, the spatial-
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temporal bilateral filtering is used to eliminate the unmatched edges from the depth
images as in Equation (4.1), Chapter 4.

Then, before input RGB and depth sequence to the Retina model, these RGB and
depth sequences are resized with INTER_AREA interpolation [7]. The interpolation
method is used to shrink an image based on the re-sampling image using pixel area
relation. This method is used for image decimation. A scaling factor value with value
(2) is used along the horizontal and vertical axis for decimating the images.

6.2.2 Retina Model
The Retina model is a non-separable spatio-temporal filter model that can be used to pre-
process the input video stream before applying the feature extraction. It also generates
data channels for spatial and motion details analysis. The Retina model is explained in
detail in Chapter 3, Section 3.2.3.

This model allows spatio-temporal processing of video sequences. It can whiten the
image spectrum and remove the high-frequency spatial and temporal noise from the im-
ages, thus providing enhanced signals for the following processing stages. Additionally,
this model can be primarily used for spatio-temporal video effects for a texture analy-
sis by enhancing signal-to-noise ratio and enhancing information robust versus input
images luminance ranges and motion analysis from both Retina channels, i.e., Parvo-
cellular (Parvo) and Magnocellular (Magno).

Noise Filtering

At the Retina level, spatio-temporal filtering happens and guarantees an efficient struc-
turing of video data [BCDH10], i.e., static and dynamic contour, noise removal, and
illumination variation enhancement. Regarding the noise filtering:

• Noise reduction results from the non-separable spatio-temporal filtering. So, high
frequency spatial and temporal noise is filtered out, and both outputs, Parvo and
Magno channels, gain from this.

• At Parvo output, static textures are optimized, and noise is filtered, while on
videos, temporal noise is eliminated. However, as human behaviors, moving tex-
tures are smoothed out. Then, moving object details can only be optimized if the
Retina tracks and keeps them unchanged from its point of view.

• At Magno output, it allows for a cleaner motion detection with optimized noise
errors even under difficult illumination conditions. As a compromise, the Magno
output is a low spatial frequency signal that enables the blobs of events to be
efficiently extracted.
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This pre-processing increases the robustness of the feature extractor to disturbances
such as noise and lighting variations. In addition, the Retina model can probably detect
salient areas and compose spatio-temporal descriptors.

Motion Saliency Detection

The human Retina is used to create saliency maps to detect interest areas, i.e., moving
objects in each video sequence. The human Retina model is available in OpenCV [13],
and it is applied to the input video data. The Retina model de-correlation of details in-
formation of spatial and temporal by providing two output video channels, as illustrated
below:

• The Parvo channel is the first channel of the Retina model. It is mainly active in
the foveal Retina area and provides a perfect color vision for visual details with
reduced spatio-temporal high-frequency noise. The Parvo channel processes the
spatial details and colors. It enhances colors concerning the color temperature.
It adapts to local luminance, thus enhancing local details in light and dark ar-
eas. From a temporal filtering point of view, it responds well to sustained signals
while smoothing out fast temporal variations such as noise and fast motion. Fur-
thermore, objects moving on the Retina projection are blurred. The Parvo Retina
output is represented in Figure 6.2.

Parvocellular Output

Figure 6.2: The Retina Parvocellular channel (Parvo), left: RGB image and right: Depth image.

• The Magnocellular channel (Magno) is fundamentally active in the Retina en-
vironmental vision and sends signals related to change events (motion, moving
events). It also improves the visual scene context and object classification from
local contrast and noise removal benefits. The Magno channel does not distin-
guish between colors. However, it is sensitive to spatio-temporal events, giving
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strong responses to transient signals (quick spatio-temporal changes of light inten-
sity, motion) and weak responses to slow-varying signals. This channel responds
well to spatial boundaries during the first few tens of images after the Retina’s ini-
tialization. Afterward, it only responds to motion and other transient events. The
Magno Retina output is represented in Figure 6.3. A low-level spatio-temporal
saliency detector can illuminate areas of possibly more interesting information
dependent on the Magno channel.

Magnocellular Output

Figure 6.3: The Retina Magnocellular channel (Magno), left: RGB image and right: Depth
image.

In this work, the Magno channel is implemented as a sequence of the gray-level
image. This channel is used as a low-level spatio-temporal region of interest detector
during a visual scene observation.

The output from the spatio-temporal Retina model, i.e., Parvo and Magno channels,
represents the saliency motion area from spatial and temporal domains. From this area,
the feature vectors are computed using the LBP descriptor.

6.2.3 Feature Extraction

The Bag-of-Features (BoFs) is the most popular feature representation technique in
video action for recognizing the different human actions. The global feature vectors
are computed from the spatio-temporal domain by depending on saliency motion de-
tection and texture descriptor methods. The feature vectors are computed in two steps:
Detect motion saliency from spatial and temporal images using the Retina model, as ex-
plained in Section 6.2.2, as well as extract features from the motion saliency area using
the LBP descriptor.
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Local Binary Pattern

After detecting the salient motion area from the input video, the texture LBP descriptor
is used as a global descriptor to summarize the local structures from the motion area
of the video sequences. In this work, the idea of spatio-temporal analysis and global
feature extraction is adopted to characterize textures’ information from body motions
on RGB-D videos. Mathematical representation of the LBP operator is illustrated in
Equation (3.12), Chapter 3.

Histogram Combination and Feature Vector Generation

Image texture can be described with its intensity histogram. So, the histogram of LBP
images is used for representing an action. The feature vectors are only calculated for
the active region in the images to make it invariant to the translational effect. Retina
channels are used in this work to determine the action regions (motion area) in video
sequences.

The histogram of the encoded motion area is obtained by applying the LBP operator
and then used as a texture descriptor for that area in the images. These LBP histograms
are combined to represent the spatio-temporal feature vectors from all images in a video,
as in Figure 6.4.

Depth

RGB

...

...

Input Salient Area LBP

Histogram Concatenation

Figure 6.4: Feature vector generation.

The LBP histogram values are calculated in the following steps:
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• Divide each input image into (4 × 4) blocks. After that, the examined area is
divided into cells, i.e., 3× 3 pixels for each cell, centered at the given pixel.

• Compare each pixel in a cell to each of its (8) neighbors, i.e., left-top, left-middle,
left-bottom, right-top. Then, follow the pixels along a circle, i.e., clockwise or
counter-clockwise. The considered neighbors can be adjusted by changing a cir-
cular radius around a pixel and by quantizing the angular space.

• If the value of the center pixel is greater than the value of the neighbor, compose
“0”. Otherwise, compose “1”, which outputs an 8-digit binary number. Usually,
this number converted to a decimal value for simplicity.

• Calculate the histogram of the frequency of each number that occurs over the cell,
i.e., which pixels are extremely small, and which are larger than the center of each
integration. This histogram can be described as a 256-dimensional feature vector.

• Normalize the histograms of all cells then concatenated them. This concatenation
gives a feature vector for the entire area.

After computing the histogram from the motion area of video images, these values
are combined to form the feature vector values representing the action in videos, such
as walking, cleaning, etc. Then, the feature vector can be processed using the classifier
method to recognize human action.

The LBP feature vector captures the global description of a saliency detected area
due to local histograms’ concatenation. The histogram’s concatenation is up to the user,
but it should be the same across all images.

6.2.4 Action Classification
For recognizing human actions, the classifier is needed after computing the feature vec-
tors from the LBP descriptor. As a first, to represent the computed feature vectors, a
BoW is used to encode the videos. The k-means clustering algorithm is used to gener-
ate the visual dictionary. The feature vectors are mapped to the nearest (closest) visual
words, and then a video is represented as the frequency histogram through the visual
words. After that, these BoW feature values are fed to the classifier for improving the
action recognition performance.

In this work, Random Forest (RF) classifier (see Chapter 3, section 3.5.3) is used
because it can handle thousands of input variables and large datasets. Moreover, the RF
gives a good performance when it is used for action recognition tasks. In this work, the
One-vs-All multi-class approach (Chapter 2, Section 2.5.1) is used. The best results are
achieved with the RF classifier when the number of random trees is 10 and the maximum
depth is 3.
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6.3 Experiments and Results

Extensive experiments are performed using three different types of public action datasets
to study the proposed method’s effectiveness and the human action recognition system.
These datasets included MSR Daily Activity 3D (MSR3D), Online RGBD (ORGBD),
and Gaming 3D (G3D) datasets.

These input datasets are split into training and testing sets, as in Chapter 4, Section
4.3.1. These three datasets are split as follows: The MSR3D dataset is divided into
’seven’ subjects for training and the rest of ’three’ subjects for testing level, i.e.,70% for
training and 30% for testing. For the ORGBD dataset, the same environment test setting
is used, and it is split as half of the subjects are used as training data, and the rest of the
subjects are used as testing data. Furthermore, the G3D dataset is divided by subjects,
where the first ’seven’ subjects (person) will be used for training (70% for training), and
the remaining ’three’ subjects are used for testing (30%).

6.3.1 Experimental Setup

In this experimentation, three necessary steps are done to compute the feature vector
values: Motion detection using a spatio-temporal Retina model. The texture feature
descriptor LBP is applied to the Retina output from both RGB and depth channels.
Finally, the histogram from LBP is computed and combined with all histogram values to
form the Bag-of-Words (BoW). The feature vector size is computed as 28×2×(NF−1)
from the gray-level images of RGB and depth channels, and NF represents the number
of video frames.

The recognition accuracy from the proposed system is computed from all feature
vector values of different actions. The k-means clustering with different values of k is
used as a dictionary size, where k = 400 for MSR3D and ORGBD datasets and k = 800
for the G3D dataset. Finally, the RF classifier is used for this experimentation to test
the accuracy rates on three different types of datasets. The computation accuracy of the
proposed method is based on Equation (4.2), Chapter 4.

6.3.2 Results and Discussions

The idea of the proposed method is computing a texture feature using the LBP descriptor
from the spatio-temporal domains of the Retina motion detection model. Therefore,
the Retinal strategy collects texture features in opposing color space from the Parvo
and Magno pre-processed image frame instead of the original image. So, this method
aims to take advantage of the “cleaner” Retina output channels to collect higher quality
features than the baseline. The Retina channels are potentially used to detect salient
areas and to compose features descriptor from spatio-temporal domains.
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In the experimentation of this chapter, firstly extracted features from a single frame,
i.e., keyframe, of the video scene. After that, three strategies of Retina used for texture
features collection form the video sequences, as are described in the following:

• Retina Parvocellular (Parvo) extends the Retina strategy by obtaining texture fea-
tures from a temporal domain of video frames centered on the keyframe. Addi-
tionally, the low-level saliency detector is applied for selecting more important
features. Through the transient phase of the detector, large spatial features are
selected, giving information about the scene’s general composition. In contrast,
the contribution of moving features is applied during the stationary state.

• Retina Magnocellular (Magno) extracts texture features from the same positions
and time as Retina masking Parvo but uses grayscale attributes from the Magno
channel instead of color features from the Parvo channel. These Magno features
represent low-resolution data about the image’s general appearance in the tran-
sient phase of the Retina. While these features give a rough description of con-
tours perpendicular to the course of motion in the stable state.

• The last strategy is multichannel masking, which also extracts features at the same
positions and time as the previous two approaches. However, it employs compos-
ite local features by concatenating the LBP feature of the image patch from the
Parvo channel with the LBP (grayscale) feature at the same location but from the
Magno channel. Through the stable state of the Retina, the feature from the Parvo
channel embeds spatial appearance, while the feature from the Magno channel
embeds the motion direction; this makes the combined spatio-temporal texture
features.

Figure 6.5 shows an example of different Retina channels images and moving areas,
where the original input is RGB and depth images are captured from the video sequence.
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Figure 6.5: Effects of Parvocellular and Mgnocellular preprocessing and moving area from
RGB and depth.

The experimental accuracy results are done on different Retina channels, as shown
in Table 6.1, using three different datasets, i.e., MSR3D, ORGBD, and G3D datasets.

Retina Channels MSR3D ORGBD G3D
Parvo+LBP 83.37% 93.13% 89.48%
Magno+LBP 90.21% 96.86% 100%
Parvo+Magno+LBP 81.11% 92.86% 71.43%

Table 6.1: Comparison of recognition accuracy using different Retina channels on three activity
datasets.

The experiment results in the table illustrated that the best recognition accuracy is
from the LBP features on the Magno Retina filter (motion detection) channel compared
with other LBP on Parvo and Combination of Parvo-Magno Retinal channels. The
reason behind that is the Magno channel gives intense energy in the detected area, while
the Parvo channel is blurred there because there is a transient event.

Comparison with the state-of-the-art approaches The proposed approach has shown
competitive performance compared to the state-of-the-art approaches.

In the MSR3D dataset, the Retina Magno and LBP accuracy results achieved the
best performance that is reached 90.21%, and outperformed other approaches shown
in Table 6.2. While the accuracy result from Parvo and LBP is reached 83.37%. The
extracted LBP features from the combination of Parvo and Magno is reached 81.11%.
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These two approaches are better than [ZZSS16, YLY15, PTDZ16, Pap20]. Another ap-
proach by [AFCYN19] is a little better because they used only skeleton data in their
method, i.e., the author used a little information than in the proposed method that is
dependent on the RGB and depth videos.

Methods Accuracy
CHAR [ZZSS16] 54.7%
Discriminative Orderlet [YLY15] 60.1%
Feature covariance [PTDZ16] 65.00%
3D Localized Trajectories [Pap20] 76.3%
S+MDMMs [AFCYN19] 89.14%

Proposed Method
Parvo+LBP 83.37%
Magno+LBP 90.21%
Parvo+Magno+LBP 81.11%

Table 6.2: Comparison results with other methods on MSR3D dataset.

In the ORGBD dataset, the accuracy results from all tested models achieved the
best performance in the same-environment setting, as shown in Table 6.3. The achieved
accuracy result from Magno-LBP is 90.21%, Parvo-LBP reached 93.13%, and the com-
bination of Parvo-Magno and the extracted features from LBP are reached 92.86%.

Methods Accuracy
HOSM [DLCZ16] 49.5%
3D Localized Trajectories [Pap20] 64.5%
Orderlet+SVM [YLY15] 68.7%
Orderlet+boosting [YLY15] 71.4%
Human-Object Interaction[MDDB15] 75.8%

Proposed Method
Parvo+LBP 93.13%
Magno+LBP 96.86%
Parvo+Magno+LBP 92.86%

Table 6.3: Comparison results with other methods on ORGBD dataset.

In the G3D dataset, the Retina Magno and LBP accuracy results achieved the best
performance that is reached to 100%, as shown in Table 6.2. While the accuracy result
from Parvo and LBP is reached 89.48%. The combination of Parvo with Magno and the
extracted features from LBP is reached 71.43%. The Parvo-LBP approach is better than
other approaches that used the same datasets with different feature extraction methods
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[BMA12, NWJ17, NJ14, Pap20], and the combination is not achieved better than the
other researches. The result from Zhao et al. [ZXSJ19] approach looks better than the
Parvo-LBP and Parvo-Magno-LBP approach because the authors in their research are
used little information than in the proposed approach. Additionally, the testing results
of this chapter depended on the same data processing for all datasets.

Methods Accuracy
Bloom et al. [BMA12] 72.44 %
RBM [NWJ17] 84.0 %
RBM + HMM [NJ14] 86.40 %
2D Localized Trajectories [Pap20] 87.8%
HDM [ZXSJ19] 92.0%

Proposed Method
Parvo+LBP 89.48%
Magno+LBP 100%
Parvo+Magno+LBP 71.43%

Table 6.4: Comparison results with other methods on G3D dataset.

As a summary, the proposed method represented by the feature extraction from
saliency detection could be improved the human action recognition from RGB-D video.
The overall system outperforms the state-of-the-art methods in terms of recognition ac-
curacy for challenging action datasets. The proposed method can be useful for analyzing
videos, especially for those with rich texture information.





Chapter 7

Activity Recognition Based on Dense
3D Optical Flow Co-occurrence
Matrices

This chapter introduces a new human activity recognition system from RGB and depth
video sequences. This system is investigated two different goals, including feature rep-
resentation method and evaluation using different classification methods. These classi-
fiers are applied to study the ability to learn and assess the system performance from 3D
sensor data.

The method in this chapter was presented and published in two different events.
The feature representation method was presented in the 5th international Workshop on
Sensor-based Activity Recognition and Interaction (iWOAR 2018), Berlin, Germany,
and it was published by ACM [AAP18a]. The rest of the experimentation results are
included comparison results using different classifiers, which were presented at the 11th
International Conference on Machine Vision (ICMV 2018), Munich, Germany, and it
was published by SPIE [AAP19].

The outline of this chapter structures as follows. An introduction is presented in
Section 7.1. Section 7.2 describes in detail the proposed system overview of human
activity recognition. Section 7.3 explains how to reach the activity recognition rate
based on classification methods. Finally, the experimental and results are discussed in
Section 7.4.

7.1 Introduction
In the previous chapters, many kinds of action recognition researches have been de-
signed using different models to recognize the human activities of daily living. These
models have significantly contributed to prove the efficient machine learning algorithm
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for action recognition tasks. Due to the significant challenges in action recognition in-
clude the reliability of prediction of each classifier as they differ according to the type
of feature extraction methods.

In this chapter, three different challenges are implemented. Firstly, feature vectors
are extracted from the motion area of RGB-D sequences. Secondly, despite the tremen-
dous and varied work in the existing classification methods, the essential problem is that
a single classifier cannot always lead to good recognition results. Sometimes, a classifier
can outperform other classifiers on a particular problem, and that is the essential aim of
the proposed work, i.e., find the proper classifier for the proposed method. Thirdly, the
accuracy performance of the proposed method is computed to check the improvement
of this method for the human activity recognition task.

The essential steps to improve human action recognition are motion estimation and
feature extraction from videos. Typically, the most popular types of motion estimation
from videos in the computer vision are dense optical flow and scene flow. Dense optical
flow is apparent motion (translation) in the plane of an image, and scene flow is a 3D
translation. These two types are usually evaluated as vector fields on the pixel grid.

In this chapter, the dense optical flow algorithm is applied for motion estimation,
which calculates the displacement of brightness patterns between two successive frames.
The intensity values of the neighboring pixels are used for this calculation. The algo-
rithm that calculates the displacement for all image pixels is called the dense optical flow
algorithm. Regarding the feature extraction, the Haralick feature is used for computing
feature vectors from the estimated motion. These vectors finally fed to the classifier to
assign an action label to the correct class. The main contributions of this chapter are
illustrated below:

• Explore the local relations contained in the optical flow fields of RGB and depth
sequences.

• Propose a new spatio-temporal feature descriptor, called 3D Optical Flow Gray
Level Co-occurrence Matrices (3DOFGLCM). This descriptor is based on the
GLCM that is computed over the optical flow field.

• GLCM expresses the orientation and magnitude components’ distribution at a
given offset over the optical flow from RGB and depth sequences.

• A set of measures well-known Haralick textural features is used to describe the
flow patterns.

• Explore the different classifiers that show the effectiveness of the computed fea-
ture in the activity recognition performance.
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7.2 Proposed System Overview
The human activity recognition overview of the proposed system is described in Fig-
ure 7.1. This proposed system has two main processes: Firstly, explore the local rela-
tions contained in the 3D optical flow field by proposing a novel spatio-temporal fea-
ture descriptor based on the gray level co-occurrence matrices (GLCM). The GLCM is
computed over the optical flow field of the input RGB-D video to form a new descrip-
tor, called 3DOFGLCM. Secondly, the Haralick texture features are extracted from the
3DOFGLCM matrices to compute the feature vectors from all input video sequences.

Input RGB and 

Depth video

Preprocessing

Optical Flow

GLCMs Haralick Features

BoW

Recognition Accuracy

RGB Depth RGB Depth

Classification

Orientation and Magnitude

Extraction

Figure 7.1: Overview of the proposed activity recognition system representing by preprocessing
to the input RGB-D images, dense optical flow, feature extraction, classification and action
recognition.

In addition to the feature computation, this work has also proposed a comparison of
different classifiers to improve how they affect the ability to learn and estimate system
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accuracy performance from the computed features. Each step of the proposed system is
illustrated in the following sections:

7.2.1 Pre-processing Input Data

Data pre-processing is an important step towards feature extraction and proper training
of machine learning techniques. In this work, the input dataset consists of RGB and
depth sequences. As the first step in this work, the input 3D sensor data should be
processed. A low resolution of image size 320×240 is used to reduce the computational
complexity of the proposed system. In this work, the RGB sequences are converted from
color to grayscale levels. The depth map information captured by the Kinect camera is
often noisy. Thus, spatial-temporal bilateral filtering is used (Equation (4.1), Chapter 4)
to smooth and remove noise from depth information. The depth inpainting approach [5]
is also applied to paint the missing areas of particular kinds, such as occlusions, holes
caused by object-removal, or missing caused by sensor defects.

7.2.2 3D Dense Optical Flow

Optical flow is a displacement data generated to capture the temporal 3D motion of
points from RGB-D sequences and to extract the important feature vector from these
motion information.

Each video sequence, i.e., RGB and depth, is divided into pairs of consecutive
grayscale frames. The dense optical flow is then used to calculate the motion between
each pair of consecutive frames, taken at times t and (t+ ∆t). This means that the opti-
cal flow evaluates a translation in the image plane, for each pixel location x = (x, y) in
the domain of the RGB image I and pixel location x = (x, y) in the domain of the depth
image D are assigned a motion vector u = (u, v) and u = (u, v) for RGB and depth
image in the image plane, respectively, where u, v, u, and v are measured in pixels.
In this work, the dense optical flow will be computed in the orientation and magnitude
fields of 3D data. Then, the co-occurrence of the optical flow is considered from RGB
and depth data. Finally, the Haralick features will be computed from the co-occurrence
matrices.

Optical flow orientation-magnitude fields The orientation field of optical flow cap-
tures the displacement information. In contrast, the magnitude field aims to extract
motion information from the optical flow, which is the magnitude of the optical flow in-
dicating the movement’s velocity from a video sequence. The optical flow is computed
using the Farnebäck method (see Chapter 3, Section 3.2.2). So, the spatial relationship
of magnitude and orientation in local neighborhoods captures not only displacement by
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using orientation but also magnitude, which provides information about the movement’s
velocity.

To build co-occurrence matrices (GLCM) for each frame in RGB and depth se-
quences, two maps are built for each flow field computed on the frame based on the
magnitudes and orientations of the flow field, i.e., these maps will be used as an input
to the GLCM. In this way, for each video sequence that has (NF ) frames, there are
(NF − 1) magnitude maps, i.e., MRGB maps are computed from RGB frames, and MD

maps are computed from depth frames, and (NF −1) orientation maps, i.e., ΘRGB maps
are computed from RGB frames, and ΘD maps are computed from depth frames as in
Equation (7.1):

MRGB
i,j =

√
u2
i,j + v2

i,j

MD
i,j =

√
u2
i,j + v2

i,j

ΘRGB
i,j = tan−1

(
vi,j
ui,j

)
ΘD
i,j = tan−1

(
vi,j
ui,j

)
(7.1)

where u, v, u, and v represent the horizontal and vertical motion components of each
flow vector contained in the flow field of row and column, respectively.

Since the pixels values in MRGB
i,j and MD

i,j do not occupy all the range of the
grayscale images [0, 255] for 8-bit grayscale images. Therefore, for a better result,
the magnitude maps are normalized, as in the following Equation (7.2):

(MN
i,j)

RGB =
MRGB

i,j −minrgb
maxrgb −minrgb

×Maxrgb

(MN
i,j)

D =
MD

i,j −minD
maxD −minD

×MaxD,

(7.2)

where, (MN
i,j)

RGB and (MN
i,j)

D are the optical flow magnitude value at pixel posi-
tion (i, j) from the grayscale of RGB images and depth images, respectively. minrgb,
maxrgb, minD, and maxD are the minimum and maximum values in the magnitude
maps computed from RGB and depth. Finally, (MN

i,j)
RGB and (MN

i,j)
D are the nor-

malized optical flow at pixel position (i, j), and Maxrgb and MaxD are the maximum
possible pixel value (255 for 8-bit grayscale images).

Moving object area detection The normalized optical flow fields contain noise, i.e.,
detect false movement. This problem can be eliminated by using a threshold-based seg-
mentation method, such as Otsu’s method [Ots79]. In this method, the grayscale image
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histogram is computed, and the optimal threshold value is determined based on the his-
togram peaks. The value of the threshold is chosen as an amount between two peaks of
the image histogram. Thus, the values of pixels above the threshold are set to one, and
the values below the threshold are set to zero [MPC19]. Otsu’s implementation of this
work is based on the OpenCV library [6]. Otsu’s threshold method is applied to create
a binary image representing the areas of more substantial optical flow (moving object
area). The areas of higher optical flow are preserved, and the areas of lower optical
flow are eliminated by applying Otsu’s threshold method. The binarized images of the
normalized optical flow fields are used to compute gray level co-occurrence matrices.

7.2.3 Gray Level Co-occurrence Matrices

GLCM is a matrix that describes the relative frequencies of a pair of gray-levels present
at a certain distance (∆x,∆y) apart and a particular angle α. Distance (∆x,∆y) ranges
from 1 to the input image size while α ranges in four directions, i.e., 0◦, 45◦, 90◦, and
135◦. GLCM created from various pairs of angles and distances gives quite various
feature values. The extraction of textural information from images containing highly
directional characteristics is essentially dependent on selecting the correct angle α.

Usually, all four directions are taken, and the mean of features calculated from all the
four GLCMs. However, in such a process of taking the mean, the directional information
of textured images is lost, and thus classifications do not achieve reasonable accuracy.
The texture characteristics calculated along the relevant direction are quite different
from those calculated along with the other three directions. Therefore, in this work,
each co-occurrence matrices is considered with a distance of (∆x,∆y) = 1 and α =
0◦. The distance value (equal 1) is chosen to avoid loss of information. The values
45◦, 90◦, and 135◦ are not added through the feature’s computation due to increased
computational load, and the classifications will not improved an accuracy due to the loss
of directional information. In this work, the GLCM is computed from the magnitude and
orientation fields using Equation (3.21), in Chapter 3. Note that in the proposed method,
the input values to the Equation (3.21) are used the binarized images of the magnitude
and orientation maps using Otsu’s method instead of using the image intensity values to
compute the matrices in the standard formula.

7.2.4 Haralick Features Extraction

Feature extraction is an important task to capture information from the motion area to
represent all motions and textures values in a video sequence. The six textural features
are chosen to be extracted from the GLCM. These features are included: Energy, Con-
trast, Homogeneity, Entropy, Sum Average, and Correlation, and they are defined in
Chapter 3, Equations (3.22) to (3.31).
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In this work, optical flow, GLCM matrices, and Haralick features are computed
from both RGB and the corresponding depth. For each co-occurrence matrix, a feature
vector is generated with Ll dimensions per matrix, where Ll is the number of extracted
Haralick features. In this computation, six Haralick features are extracted from RGB,
and the same type of six features are computed from depth.

After generating feature vectors from RGB and depth sequences, all feature vectors
are concatenated for providing final feature vectors with a length of 4×(α×Ll)×NF−1,
where 4 represented the number of feature maps that were used to compute GLCM from
RGB-D sequences. Then, the computed feature vectors are represented by using the
BoW pipeline.

7.2.5 Bag-of-Words

The Bag-of-Words (BoW) is applied (see Chapter 3, Section 3.4.1) to represent the
features extracted from the RGB-D sequences. For each video sequence, the BoW
feature vector is computed. First, spatio-temporal features are quantized into visual
words, and then a video is represented as the frequency histogram over the visual words.
k-means clustering with Euclidean distance (see Equation (2.6), Chapter 2) is applied
as the distance metric between the features and the closest visual word.

In this work, the BoW vectors are computed from all videos in the training and
testing stages, as mentioned in Chapter 4, Section 4.2.3. These BoW vectors are fed into
the one-against-all classifier to predict the computed features and evaluate the proposed
method.

7.3 Activity Recognition

After computing the BoW from action samples, these BoW vectors are fed into a
classification pipeline. In this work, to test the feature representation approach more
thoroughly, five classification methods employed, such as Artificial Neural Networks
(ANNs), Naive Bayes classifier (NB), Random Forest (RF), K-Nearest Neighbors (KNN),
and Support Vector Machine (SVM), these classifiers are explained in detail in Chapter
3, Section 3.5.

In this work, the datasets are split into training and testing sets. The BoW feature
vectors are computed from all training set in the training stage, and labels are appended
according to the class. These vectors are fed into the multi-class classifier (see Chapter
2, Section 2.5.1) to train the model that is further used in the testing stage for computing
the performance of the proposed activity recognition system. The datasets are split
using the hold-out method (see Chapter 4, Section 4.3.1). The accuracy of the proposed
method is computed by using Equation (4.2).
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For aiming at a fair comparison in this work, the same evaluation pipeline is applied
for every classifier. The evaluation pipeline is included in two phases, i.e., training
and testing phases. In the training phase, spatio-temporal feature vectors are densely
extracted from training videos. Dense sampling extracts video motion information in
space and time. The local features are encoded to be used for the classification task.
In this work, the dictionary from these feature vectors is generated using the k-means
clustering algorithm. In the testing phase, test video sequences are classified by applying
the trained classifier obtained during the training phase. Therefore, for the testing video
sequences, spatio-temporal feature vectors are extracted from the detected motion area.
Then, the BoW feature vectors are generated using the dictionary previously created.
Finally, the generated feature vectors are given as input to the trained classifier to predict
the class label of the test video sequences.

7.4 Experimental and Results

This section describes the experimental results obtained from the 3D dense optical flow,
GLCM, and Haralick features (3DOFGLCM) from different video action of the 3D
sensor datasets. The main focus of this experimentation is to find an accurate classi-
fier that tests on the computed feature descriptor. Five different classifiers are used to
compute the accuracy of the human activity recognition task. Additionally, the best
classifier results will be compared with the accuracy results to other feature descrip-
tors from the literature. The classifiers used in this work are included Artificial Neural
Networks (ANNs), Naive Bayes (NB) classifier, Support Vector Machine (SVM), K-
Nearest Neighbor (KNN), and Random Forest (RF).

The feature vectors obtained from the proposed descriptor 3DOFGLCM are ex-
tracted from sequences of RGB and depth video actions. The video actions used in this
experimentation are included four types of public datasets: G3D, CAD-60, MSR3D,
and ORGBD datasets. These datasets are explained in detail in Chapter 2, Section 2.7.

As mentioned previously, the datasets are divided into two sets by using a hold-out
method. The datasets are split into training and testing sets according to the number of
persons (subjects) doing the same action. So, these four datasets are split as follows:
The G3D dataset is divided by subjects where the first ’seven’ subjects (person) will be
used for training, and the remaining ’three’ subjects are used for testing. The CAD-
60 dataset has 4 subjects, and it is split as the first ’two’ subjects for training and the
remaining ’two’ subjects for testing. The MSR3D dataset is divided into ’seven’ subjects
for training and the rest ’three’ subjects for testing level, i.e.,70% for training and 30%
for testing. For the ORGBD dataset, the same environment test setting is used, and it is
split as half of the subjects are used as training data, and the rest of the subjects are used
as testing data.
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7.4.1 Parameters Setting
This section has presented the experimentation parameters that are used for feature
vector extraction and the classification methods. Regarding the parameter setting for
the 3DOFGLCM method, the offset distance (∆x,∆y) = 1 is used to create the co-
occurrence matrix, also the extracted Haralick textural features Ll = 6 for each input
map, i.e., RGB and depth. These parameter values will be followed in all experimented
datasets.

Regarding the classifiers (see Chapter 3, Section 3.5), the parameters set for each
classifier are different. For Artificial Neural Networks (ANN): It has four layers, i.e.,
the input layer size is equal to the number of features (column), two hidden layers, and
one output layer. For Support Vector Machines (SVM), the multi-class SVM with RBF
(radial basis function) kernel is used. The C parameter is 10, γ is set to 20, and the
degree is 3. Naive Bayes classifier is a probabilistic machine learning model used for
a classification task (see Chapter 3, section 3.5.4). For Random Forest, a multi-class
RF implementation and a few parameters need to be chosen. The number of random
trees is set to 100, and the maximum depth is 25. For K-Nearest Neighbor (KNN), a K
parameter is defined as the default value, and it is calculated using the OpenCV library
[9].

For all classifiers, the One-vs-All approach for multi-class classification is followed
in this thesis experimentation.

7.4.2 Experimental Results
Table 7.1 and Figure 7.2 are showed different activity classification rates using the four
activity recognition datasets and five machine learning classifier methods. The split data
and accuracy values are computed based on the methods in Chapter 4, Section 4.3.1, and
Equation (4.2) for the accuracy computations.

Datasets ANN NB SVM KNN RF
G3D 68.30% 65.42% 77.08% 82.41% 88.40%
CAD-60 69.23% 76.92% 81.82% 90.19% 95.45%
MSR3D 56.16% 63.17% 79.51% 70.74% 80.67%
ORGBD 59.51% 67.88% 80.96% 71.56% 83.01%

Table 7.1: Comparison of recognition rates from different classifier on four different RGB-D
datasets.

The comparison of accuracy results in Table 7.1 shows that the best accuracy recog-
nition value when using the RF classifier compared with other classifiers. RF classifier
contained a bunch of combined decision trees that can handle categorical features very
well. Also, it can work with high dimensional spaces and a large number of training
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Figure 7.2: Accuracy rates comparison using four different RGB-D datasets.

examples. Regarding the 3DOFGLCM feature extracted method, the CAD-60 dataset
gave the best results than other datasets in all classifier method. In this dataset, in most
cases, people are standing in front of a camera, and there are no occlusions. In other
tested datasets, there is an object in the scene, such as a sofa, or the same action some-
times performs twice, e.g., in the MSR3D dataset, a subject walking in front of a sofa
and walking behind it.

Comparison against the state-of-the-art approaches The 3DOFGLCM proposed
approach compares with several classic local spatio-temporal features from the litera-
ture. These comparisons are made with the same datasets and different feature extrac-
tion methods.

According to Table 7.2, a considerable improvement was obtained with 3DOFGLCM-
RF reached to 88.40% of accuracy on the G3D datasets. The proposed approach has
shown better performance compared to the state-of-the-art approaches. Nevertheless,
the proposed method in Chapter 6 is still better. The saliency detection using Retina
motion detection is better than motion detection using the OF.

For the experiments using the CAD-60 dataset, the 3DOFGLCM-RF achieved the
best results, reaching 95.45 % accuracy. More motion information could be computed
in this dataset because people are standing in front of a camera, and only four subjects
perform 12 actions. Additionally, the proposed method is based on the feature extracted
from RGB and depth images, while the other researchers have depended on the skeleton
information in their feature computation.

For the experiments on the MSR3D daily activity dataset, Table 7.4 shows the ex-
perimental comparison with other methods. For this dataset, the 3DOFGLCM-RF also
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Methods Accuracy
Bloom et al. [BMA12] 72.44 %
RBM + HMM [NJ14] 86.40 %
LRBM [NWJ17] 87.94 %
Magno+LBP (Chapter 6) 100%
3DOFGLCM-RF 88.40 %

Proposed Method

Table 7.2: Comparison of recognition performance with the different method used G3D dataset.

Methods Accuracy
Object Offordences [KGS12] 71.4 %
Actionlet [WLWY14] 74.7 %
Pose Kinetic Energy [SA14] 91.9 %
CHAR [ZZSS16] 92.0 %
Joint Orientations [Mag20] 95.0%

Proposed Method
3DOFGLCM-RF 95.45 %

Table 7.3: Comparison of recognition performance with the different method used CAD-60
dataset.

achieved the best result and reached 80.76 % accuracy than the other literature methods.
The reason for achieving the best results is that the extracted features from RGB and
corresponding depth cause this good result. At the same time, the other methods from
literature depend on the RGB and skeleton information. This information is affected by
occlusion and camera motion. The proposed method based on the saliency detection in
the previous chapter is still better than the motion detection by OF and reached 90.21%

Methods Accuracy
CHAR [ZZSS16] 54.7%
Discriminative Orderlet [YLY15] 60.1%
Feature covariance [PTDZ16] 65.00%
3D Localized Trajectories [Pap20] 76.3%
Moving Pose [ZLS13] 73.80%
Magno+LBP (Chapter 6) 90.21%

Proposed Method
3DOFGLCM-RF 80.76 %

Table 7.4: Comparison of recognition performance with the different method used MSR3D
dataset.
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For the ORGBD dataset, Table 7.5 shows the proposed approach comparison re-
sults with several local spatial and temporal features from the literature. According
to the table results, considerable improvement is obtained with the proposed method
(3DOFGLCM-RF) that is reached 83.01% of accuracy. The saliency motion detec-
tion implemented in Chapter 6 is still better than the OF motion detection method and
reached 96.86% in this dataset. Compared with other literature methods, the proposed
method represented by 3DOFGLCM-RF could achieve the best results due to the com-
putation of motion information and extracted features from RGB and depth together,
i.e., it does not depend on only depth or only skeleton information.

Methods Accuracy
HOSM [DLCZ16] 49.5%
3D Localized Trajectories [Pap20] 64.5%
2D Localized Trajectories [Pap20] 67.4%
Orderlet+SVM [YLY15] 68.7%
Orderlet+ boosting [YLY15] 71.4%
Human-Object Interaction[MDDB15] 75.8%
Magno+LBP (Chapter 6) 96.86%

Proposed Method
3DOFGLCM-RF 83.01%

Table 7.5: Comparison of recognition performance with the different method used ORGBD
dataset.

As a summary, all tested results were done by using RGB and depth datasets for
human activity recognition and could achieve a good recognition performance com-
pared to the literature methods. The same computation to a proposed feature descriptor
obtained from the GLCM of 3D dense optical flow and Haralick features is compared
using different machine learning classifiers. This comparison was made to improve the
activity recognition performance and find the best classifier method that could be used
with the proposed feature vectors extraction method computed from different activities.

A good performance was achieved from this features computation method because
the feature captures important temporal motion information from 3D data, i.e., RGB
and depth channels since orientations and magnitudes from RGB-D images give more
information than one channel of the input images.



Chapter 8

3D Convolution Neural Networks for
Human Action Recognition

In recent years, the use of neural networks in computer science has gained more and
more interest. Significant hardware improvements, such as multi-core processors, effi-
cient and affordable computation on GPUs, have boosted its popularity. Convolutional
Neural Networks (CNNs) are utilized to solve image processing tasks, e.g., object recog-
nition and classification. However, their application spectrum is not limited to static
images. In this chapter, 3D-CNN will be used for human action recognition from video
data. The task of action recognition involves tracking the temporal movement informa-
tion and extracting features using the 3D-CNN.

The method in this chapter was presented and published at the 26th International
Conferences in Central Europe on Computer Graphics, Visualization, and Computer
Vision (WSCG 2018), Pilsen, Czech Republic [AaPG18].

The rest of this chapter is structured as follows. An introduction is presented in
Section 8.1. Section 8.2 introduces the proposed approach to the system model. Finally,
the experimental and results are provided in Section 8.3.

8.1 Introduction
In the previous chapters, human action recognition systems are represented using hand-
crafted features and machine learning methods. The experimentation results of the de-
veloped feature extraction methods gave good results and outperformed the state-of-the-
art methods. In this chapter, a different way of feature extraction and training method
will be implemented.

In this work, one of the deep learning methods, i.e., Convolution Neural Network
(CNN), is used to improve human action recognition from 3D data. The CNN is a
deep model that has complex hierarchical features through a convolutional operation
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that alternates with a sub-sampling process on the raw input images. Thus, CNN can
automatically learn features from training videos. Moreover, CNN has invariance for
a particular pose, illumination, and disorderly environmental change. However, CNN
models can handle 2D input and reach good results in image classification. In this
chapter, a new 3D-CNN models for action recognition are developed by proposed two
new 3D-CNN models from RGB and depth video. These models are implemented and
trained using the Tiny-Dnn framework [15] (for more details, see Appendix B). These
models extract features from the temporal domains by implementing 3D convolutions
that can capture motion information into multiple adjacent frames using optical flow
(OF). The developed model produces multiple channels of information from the input
frames, and the final feature representation integrates information from all channels.

Thus, in this chapter, human action recognition is improved from the temporal do-
main of RGB and depth videos of the big public RGB-D datasets. More specifically, the
main contributions of this chapter are represented as follows:

• Propose a 3D Convolutional Neural Network (3D-CNN) model based on optical
flow information for recognizing the action from video sequences.

• Use the 3D-CNN model for learning high-level descriptors from low-level motion
features (optical flow) by using two input video channels, i.e., RGB and depth.
These channels are represented as OF-RGB-CNN and OF-Depth-CNN models.

• Train temporal information, see Figure 8.1 (a), i.e., uses the optical flow from
RGB and depth sequence as the input to 3D-CNN.

• Improve the possibility of extracted features from 3D-CNN of temporal informa-
tion from RGB-D, see Figure 8.1 (b), which leads to two feature vectors because
the RGB and depth are processed independently. These feature vectors are classi-
fied with a multi-class Support Vector Machine (SVM).

• Develop the 3D-CNN to be used with depth data instead of using only RGB se-
quences. This development could improve better performance with depth data
than the RGB sequence.
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Figure 8.1: Structure of the proposed two CNN models for improving human action recognition
form RGB and depth sequences. Tow models are processed: a) Training 3D-CNN directly from
the optical flow. b) 3D-CNN as a features extractor from the temporal domain.

8.2 Proposed Action Recognition System
In order to train the task of action recognition and because it is difficult to find a pre-
trained CNN that is publicly available, two models of 3D-CNN are implemented, as
shown in Figure 8.1. The first 3D-CNN model is trained and evaluated directly inside
CNN. In the second model, the 3D-CNN is used as a feature extractor. The extracted
features are trained and evaluated using a traditional machine learning classifier. The
technical details of the proposed methodology system are shown in Figure 8.2. The
process steps of this system will be explained in details in the following sections:

8.2.1 Pre-processing Input Data
The input dataset of this method is RGB and depth data channels. Each channel is
pre-processed separately as explain below:

RGB Video Pre-processing

The original RGB dataset comes in sets of (.avi) videos format and has a resolution
of (1920 × 1080) pixels. As a first step before the OF computation, the input video
is converted to a sequence of frames. Then, each frame is cut to quadratic size since
the subjects appear mostly around the image center. Later, each frame is resized to
(360 × 360) pixels, and for lower computation complexity, each frame is converted to
a grayscale image as required for the OF computation. Each video sequence is divided
into (11) consecutive grayscale frames (F ) with equal distance. The dense optical flow
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Figure 8.2: General convolutional neural networks system for human action recognition form
RGB and depth sequences.
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is then computed between each pair of consecutive frames (F, F + 1), resulting in (10)
dense optical flow images. The output is a singed float, two channels image storing
the horizontal dx and vertical dy displacement of each pixel location. Maximum and
Minimum values over all frames are used for image normalization. Figure 8.3 shows a
sample of the OF volume and it is corresponding RGB frames.

Figure 8.3: Sample OF volume and corresponding RGB frames. From top: Optical flow dis-
placement dx, dy, original grayscale frame.

The two-channel images are further resized to (64 × 64) pixels and then split into
vertical and horizontal components. These components are then stored in a sequence
of image vectors and saved in two separate files. Each line corresponds to the (10)
optical flow frames extracted from a single action video is resulting in a vector of length
(40, 960), respectively, i.e., two vectors for horizontal and vertical components. The
final input to the 3D-CNN is a (20) frames OF-volume, consisting of horizontal and
vertical OF images computed from an RGB video.

Depth Data Pre-processing

The original masked depth dataset comes as the sets of individual frames in a (.png)
format with the resolution of (512× 424) pixels. The individual image values are given
in millimeters. The masked depth data is already pre-processed and extract foreground
data from it. However, masked depth data still involves challenges. Robust noise can
be found in a ground area in all samples, and it can not be easily removed because of
occlusion with feet and legs. Lighting conditions or camera parameters could cause
this noise. Some actions, such as falling, have significant movement in this area, so the
lower image part cannot be simply cropped. Another issue, especially in the context of
3D-CNN, is the straight cut lines in the noise area since the network weights could adapt
to these features. Other samples show depth values from objects and surroundings are
not necessary but missed in the masking process, as shown in Figure 8.4. Due to time
constraints, these issues are not concerned.
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Figure 8.4: Sample frame of action from depth data. Left: Sample frame of action walking apart
with noise and unnecessary object, right: Sample of action falling with overlapping of noise and
body parts as well as straight cut lines in the noise area.

Each sample comes in a folder associated with sample number, action ID, camera
setup, etc. To keep track of the sample order, a shell script is used to sort the samples by
their action ID. The number of frames per sample is reduced to (10) frames with equal
distance over the whole image sequence. The frames are first cut to resolution (400 ×
400) to reduce unnecessary image space. Also, the quadratic shape can be beneficial
for matrix and convolution operations in 3D-CNN training. The image values are then
converted from millimeters to the range [0, 255]. Additionally, histogram spreading is
applied for better visualization. The images are finally resized to (64×64) pixels in order
to reduce memory consumption and training time. See Figure 8.5 for the processing
stages of a sample.

Figure 8.5: Sample frames of action drinking, from left to right: Original depth map, depth map
rescaled to range [0, 255], rescaled depth map after histogram spreading, final depth map resized
to 64× 64 pixels.

All (10) frames of a single action sample are then stored in row-wise order in a
vector of size (40, 960).
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For storage, a text file and comma-separated value format are used. Each line cor-
responds to one action sample. Finally, the cross-subject split for training and test data,
as well as further splitting into (4) training batches, are applied. The cross-view split is
not tested with depth data.

8.2.2 Dense Optical Flow

As mentioned in Chapter 5, 7, the optical flow (OF) is used to capture the temporal
motion information from RGB and depth videos. However, in these chapters, the OF
was used to extract the hand-crafted features. While in this work, the OF displacement
data is also generated to capture temporal motion information from RGB and depth data
and then use it to train a 3D-CNN.

Each input video sequence is divided into pairs of consecutive grayscale frames.
Then, the dense OF is computed between each pair of consecutive frames (F ) and (F +
1). For the OF computation, the Farnebäck optical flow method is applied (see Chapter
3, Section 3.2.2). The output is two channels image storing the horizontal dx and vertical
dy displacement of each pixel location (x, y). Figure 8.6 shows a sample OF volume
and corresponding RGB frames.

The OF from depth is similar to the OF from RGB. Only the input channel size is
reduced to 10 (one channel per frame), and the number of output feature maps for each
layer is reduced to one-half.

In this work, RGB and depth maps are processed independently. The two-channel
images are further resized to (64×64) pixels and then divided into vertical and horizontal
components leading to two feature vectors of 40960 dimensions, indicated as OF-RGB
and OF-Depth, respectively. These components are then stored in a sequence of image
vectors and finally used as input to the 3D-CNN.

8.2.3 3D Convolutional Neural Networks

A standard CNN consists of two essential components: A feature extractor and a clas-
sifier. The feature extractor is used to filter input images into feature maps representing
a set of features from the images. These features are represented as a low-dimensional
vector and include corners, lines, edges, etc., which are relatively invariant to position
shifting or distortions. The output features are then fed into the classifier, which is
usually based on traditional artificial neural networks.

In this work, the 3D-CNN task involves tracking the temporal movement informa-
tion and extracting features from the movement area. Feature extraction from 3D-CNN
describes the process of utilizing the network weights and architecture to fit a new prob-
lem. For this purpose, data similarity and data size have to be taken into account. This
3D-CNN system can be trained directly from motion prediction in terms of OF for the
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Eating

Drinking

Figure 8.6: Dense optical flow example. From top: Optical flow displacement dx, dy, original
grayscale frame, these frames are extracted in the middle of optical flow volume and correspond-
ing RGB frames.

human action recognition task. The OF-CNN model from the RGB sequence is repre-
sented in Figure 8.7, which consists of (4) convolution layers, each followed by a max-
pooling layer and Rectified Linear Units (ReLU) activation. Two fully-connected layers
and softmax activation generated the prediction output. These layers and 3D-CNN are
explained in detail in Chapter 3, Section 3.6.

In this work, 3D-CNNs’ inputs take the OF vectors of a single OF image volume.
It treats the individual frames as image channels, resulting in 20 channels as input from
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Figure 8.7: Proposed 3D-CNN architecture, transformation of input volume, convolutional,
pooling and ReLU layer, and softmax output.

each video sequence; the image width and height is reduced to 64 pixels. The size of
convolution filters is adjusted from 5 to 3.

This 3D-CNN system can be trained in two different folds, either evaluating OF-
CNN directly from RGB and depth channels or by depending on the feature extracted
from OF-CNN of both channels that are finally evaluated by using a multi-class SVM
classifier (see Chapter 3, Section 3.5.1).

8.2.4 Feature Extraction from 3D-CNN
In this work, feature extraction using 3D-CNN is achieved from the output of layer 9
(convolutional), 10 (max pooling), and 12 (fully connected) with a feature vector length
of 16384, 4096, and 2048 for each sample. Based on the findings of the extracted feature
vectors of the OF-RGB-CNN model, the output from the first convolutional layer of the
OF-CNN-Depth model is extracted. Then, the multi-class SVM classifier is used for
training and evaluation of each model separately.

To explore another common method, which can yield further accuracy improvement,
the multi-class SVM is trained by combining feature vectors extracted from the OF-
RGB-CNN and OF-Depth-CNN models. The larger feature vectors are expected to
deliver improved performance. Thus, the feature vectors are joined by concatenation to
form a single feature vector of dimension 3072.

8.3 Experiments and Results
To test the proposed method and because 3D-CNN requires large datasets for training
and testing purposes, the NTU RGB+D dataset (see Chapter 2, Section 2.7.5) is used in
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order to provide reliable results and the accuracy of the system. In this work, only RGB
video data (136 GB) and masked depth maps (83 GB) are considered.

Two different train-test splits for the NTU RGB+D dataset are proposed. A cross-
subject split divides the dataset into two groups, each containing 20 distinct subjects
with 40, 320 training and 16, 560 test samples, respectively 71% and 29%. The cross-
view split utilizes the different camera views for each action. The training set contains
37, 920 samples with front and side views of the action, and the test set hold 18, 960
samples with a (45) degree view. Due to time constraints, the OF-RGB-CNN is trained
and evaluated for both dataset splits, i.e., cross-view and cross-subject split, while the
OF-Depth-CNN and SVM classification is only considered for the cross-subject split.

8.3.1 Implementation Parameters

To determine the network parameters, a random train-test dataset split was trained on
multiple parameter configurations. The cross-entropy-multi-class loss function and op-
timization function [BZK18] showed the best accuracy and speed; therefore, they are
used for training. The convolutional layers are added gradually while the accuracy is
evaluated. The number of feature maps for the convolutional layers was also increased
in an iterative way until the test network reached reasonable accuracy.

The 3D-CNN model, as shown in Figure 8.7, consists of 4 convolution layers, each
followed by a max-pooling layer and ReLU activation. Two fully-connected layers
and softmax activation generate the prediction output. The image width and height are
reduced to 64 pixels, and the size of convolution filters is adjusted from 5 to 3.

8.3.2 Implementation details using RGB and Depth

This section shows different details of experimentation using RGB and depth data sep-
arately.

Experimentation with RGB

The networks are trained to classify all (60) classes of the NTU RGB+D dataset. Since a
single OF image volume consists of 81920 float values and a CPU based CNN architec-
ture is used, an additional split into (8) training batches and (4) test batches are applied
to lower memory consumption. For each batch, a mini-batch of (10) is used. Then, all
(8) batches sum up to a single epoch. On an Intel Pentium G4600 at 3.6GHz and 8GB
RAM training, a single batch of the NTU-60 class model takes the 1650s on average,
respectively 44 hours (without data loading). For each epoch training and testing, ac-
curacy is computed to observe the learning process and identify potential over-fitting.
However, the network weights start to explode (drop to zero) between epochs (8 and
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9), and the training is stopped. This error is caused by a division by zero when the
cross-entropy-loss is computed in the Tiny-Dnn library.

Cross-View Evaluation NTU-60 The held-out test data is also split into (4) batches
to lower memory consumption. Since the evaluation process per batch takes as much
time as the training process, a full evaluation is only done for the epoch (1, 5, and 9).
The overall accuracy is computed by averaging per batch accuracy. Figure 8.10 shows
that the test accuracy starts to stagnate around the epoch (5), while train accuracy rises
further. The best average train accuracy of 40.07% is found at the epoch (9). However,
individual classes performed differently. The best class accuracy is reached for class 59
and class 60 (walking towards and apart from each other) with 97% and 95%. Another
pair of different actions with dependable accuracy (68%, 66%) is class 15 and 16 (wear
and take off the jacket). The lowest accuracy of 8% is reached for class 12 (writing).
The top 10 classes can be seen in Table 8.1.

97% walking towards 70% hugging other person
95% walking apart 69% shake head
76% hopping (one foot jumping) 68% wear jacket
75% pushing other person 67% drop
73% jump up 67% cheer up

75.7% top 10 average

Table 8.1: Top 10 accuracy classes NTU-60 cross-view evaluation.

Cross-Subject Evaluation NTU-10 The NTU-10 with the RGB-CNN model was ini-
tially used to determine parameters and the model to train the NTU-60. The NTU-10
uses only its first ten classes. The training for the NTU-10 model was stopped after (16)
epochs since the evaluated accuracy showed no further improvement, see Figure 8.8.

The best accuracy of 62.97% is found at epoch (13) and about 22% higher than the
NTU-60 model. The confusion matrix (see Figure 8.9) shows the misclassification for
similar classes (1 to 4), i.e., drinking water, eating meals/snacks, brushing teeth, and
brushing hair. However, it also shows its capability to distinguish different classes (8
and 9), i.e., sitting down, standing up, with mutual misclassification of 3% and 1%,
respectively, and the ability to model temporal information.

Cross-Subject Evaluation NTU-60 The cross-subject RGB-CNN was trained over
(12) epochs, i.e., (3) epochs more compared to the cross-evaluation. However, the best
average accuracy of 40.67% is only slightly better, and it was also found at epoch (9)
(see Figure 8.10).
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Figure 8.8: Test and train accuracy of NTU-10 model over 16 epochs.

Figure 8.9: Confusion matrix of test data evaluation for NTU-10 cross-subject, Accuracy:
Light gray = 0%, bright yellow = 50% and bright red = 100%.

Similarly, class 59 and class 60 showed the best class accuracy of 91%. The lowest
accuracy of 7% was reached for class 10 (clapping). The top 10 classes have only
changed a bit, as shown in Table 8.2.

Experimentation with Depth

For the training process, the same parameters for the OF from RGB training are used.
Data is loaded and converted to float values in the range [−1, 1] as input for a 3D-CNN
using the Tiny-Dnn framework. The training process is done over (12) epochs and takes
about 6.7 hours per epoch, i.e., 80 hours for all epochs in total. Surprisingly, the Depth-
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Figure 8.10: Test and train accuracy of NTU-60 CNN for Epoch 1, 5 and 9.

91% walking towards 77% pushing other person
91% walking apart 69% wear jacket
81% hopping (one foot jumping) 68% falling
80% hugging other person 66% drop
77% jump up 63% giving something to other person

76.3% top 10 average

Table 8.2: Top 10 accuracy classes NTU-60 cross-subject evaluation.

CNN training takes nearly twice as much time as the RGB-CNN despite input size and
parameter reduction. The training was stopped after (12) epochs since the test accuracy
remained static, while the distance to training accuracy further increased.

Cross-Subject Evaluation NTU-60 The evaluation of the NTU-60 cross-subject split
with the Depth-CNN model was shown a slightly improved average accuracy of 46.9%
indifference to 40% of the RGB-CNN model. Especially classes 50 to 60, which involve
two subjects, could profit from the depth data representation. Their average accuracy
increased by 13% to 72%. In addition, the average top 10 accuracy improves by about
7%, as shown in Table 8.3. Results for other classes remained similar, while classes that
achieved decent accuracy in the RGB-CNN model could further improve.

8.3.3 Train-Test using SVM Classifier

This section shows the experimental results when the 3D-CNN is used as a feature
extractor. The extracted features are tested with NTU10 from the RGB dataset, i.e.,
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98% walking towards 80% sitting down
92% stand up 79% take off jacket
92% walking apart 74% wear jacket
87% hugging other person 74% nod head/bow
84% jump up 74% shake head

83.4% top 10 average

Table 8.3: Top 10 accuracy classes NTU-60 cross-subject evaluation.

ten classes from RGB dataset, and also are tested with NTU60 from RGB and depth
datasets, as shown below:

SVM Classification of 3D-CNN Feature from NTU10

A multi-class SVM with RBF Kernel (see Chapter 3, Section 3.5.1) is used as a classifier
to the extracted features. The NTU10 from the RGB-CNN model is used to explore its
possibilities as a fixed feature extractor to review classification improvements. For this
purpose, feature vectors are extracted from the output of convolutional, max pooling,
and fully connected layers with a feature vector length of 16384, 4096, and 2048 for
each sample.

The parameters are found using grid search and cross-evaluation. The SVM cross-
subject test and train split are used for training and evaluation. Figure 8.11 shows that
the SVM classification accuracy rises with layer depth and slightly outperforms the
NTU-10 RGB-CNN with 66.27% accuracy, while earlier layers perform even worse.

Figure 8.11: SVM classification accuracy for feature vectors extracted from different layers of
the NTU10 CNN, convolutional (9), max pooling (10) and fully connected (12) layer.
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SVM classification of 3D-CNN Features from OF-RGB and OF-Depth

Since SVM classification with feature vectors extracted from the NTU-10 model showed
a small accuracy improvement, and the same method is applied to the NTU-60 of both
models, i.e., OF-RGB-CNN and OF-Depth-CNN. Based on the extracted feature vec-
tors of the NTU-10 model, the output from the first convolutional layer of the NTU-60
is extracted. An SVM is constructed by using a grid search to find the best parameters.
This construction is done using the OpenCV library. For OF-RGB-CNN-SVM, feature
vectors of length 2048 of the training set are used for training, while the testing set is
used for evaluation. Again, accuracy could be slightly improved by 4% to 44% average
accuracy.

The same process is applied to the OF-Depth-CNN-SVM model. Due to the input
vector size reduction, the output feature vector size of the first fully connected layer
is reduced to length 1024 compared to the OF-RGB-CNN model. Similar to previous
observations on the OF-RGB-CNN, the accuracy could be increased from 46.9% to
50.2% compared to the OF-Depth-CNN only.

2-Model-SVM with Feature Fusion

In order to explore another common method that can yield further accuracy improve-
ment, a 2-Model-SVM with feature fusion is trained to combine feature vectors ex-
tracted from the RGB and depth of the 3D-CNN model. The more significant feature
vectors are expected to deliver improved performance. For this purpose, the feature vec-
tors are concatenated to form a single feature vector of dimension 3072. Feature vectors
are not further processed, i.e., normalized, rescaled, etc. SVM setup for training and
testing procedures, as well as parameters search, are kept the same.

The results of the 2-Model-SVM show a significant accuracy increase, with a 65%
average accuracy over the OF-Depth-CNN-SVM and OF-RGB-CNN-SVM models (as
shown later in Table 8.5). Classes that already reached decent accuracy in previous
attempts could slightly profit from the feature combination, while other low accuracy
classes benefited even more. Class 1 reached 31% and 32% accuracy in the CNN ap-
proaches and doubled to 60% accuracy for the 2-Model-SVM as an example. The top
10 accuracy classes remained mostly the same, and their average accuracy increased to
94.9%, see Table 8.4.

The lowest accuracy of 34% was reached for classes writing and touch the neck. The
highest misclassification of 29% is found for the action clapping, which is confused with
the action rub hands. Higher misclassification can also be found for different actions
such as wear and take off a shoe.
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99% standing up 96% wear jacket
99% walking towards 93% jump up
98% falling 92% sitting down
98% hugging other person 98% hoping (one foot jumping)
97% walking apart 88% take off jacket

94.9% top 10 average

Table 8.4: Top 10 accuracy classes NTU-60 cross-subject evaluation.

8.3.4 Illustration and Comparison Results of the 3D-CNN System

The experimental of the 3D-CNN system is illustrated in the following three case study
steps:

• Optical flow is computed from RGB video data by reducing a single video se-
quence to (10) OF images (OF-volume), this resulting in (20) channel as input
from each video sequence from vertical and horizontal components (dx, dy), the
image width and height is reduced to 64 pixels. These OF volumes hold temporal
motion information fed to the CNN model for feature extraction and training.

• Optical flow is computed by using depth data. In contrast to the OF-RGB-CNN
approach, a depth data volume utilizes (10) frames with an equal distance ex-
tracted from the full sequence of depth images. Further, the OF-Depth-CNN is
trained and evaluated similarly to the previous RGB-CNN.

• Both 3D-CNN models (OF-RGB-Depth-CNN) are used to explore the possibil-
ities of feature extraction combined with the SVM classifier. For this purpose,
each CNN serves as a fixed feature extractor. The evaluation of this classification
method is then done separately for each CNN as well as for a combined model
combining feature vectors of both CNN. The multi-class SVM with RBF Kernel
is used, and the setup parameters search for training and test procedure is C to 10
and γ to 1e−05.

The comparison results are presented in Table 8.5, which is shown the comparison
results of the previous experimental steps based on three different models from different
input channels (RGB, depth, RGB-D). These results demonstrated that a 3D-CNN with
low prediction accuracy could give feature values that yield better classification results
with SVM.

Comparison against state-of-the-are Table 8.6 shows the comparison results with
the other state-of-the-art methods using the same datasets. This comparison showed
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Model Modality Accuracy
OF-RGB-CNN RGB 40.6%
OF-RGB-CNN-SVM RGB 44%
OF-Depth-CNN Depth 46.9%
OF-Depth-CNN-SVM Depth 50.2%
OF-RGB-Depth-CNN-SVM RGB+Depth 65%

Table 8.5: Accuracy comparison results of 3D-CNN model and SVM classifier of the extracted
3D-CNN features using RGB, depth, and RGB-D sequences.

Methods Modality Accuracy
HOG2 [SNGW16] Depth 32.24%
Super Normal Vector [SNGW16] Depth 31.82%
HON4D [SNGW16] Depth 30.56%
DM3DCNN (feature-based) [DKBK20] Depth 44.47%
DM3DCNN (fine tuning) [DKBK20] Depth 54.37%
LSTM Encoder-Decoder [LPH+17] RGB 56%

Proposed Method
OF-RGB-Depth-CNN- SVM RGB+Depth 65%

Table 8.6: Comparison with the state-of-the-art methods on NTU-RGBD cross-subject split
dataset.

that RGB and depth data outperform the accuracy results compared to other methods
used RGB and depth data separately.

As a summary, the 3D-CNN from OF has proven that it can model temporal in-
formation for opposite class pairs, e.g., walk towards and apart from each other, with
over 90% classification accuracy for both data splits. The same result can be seen for
the depth based CNN. Also, similar actions such as jump up and hopping can be found
in the top 10 performing classes. The NTU10 CNN was trained only in 10 classes,
confirms this capability.

The reason for these misclassifications is probably caused by the small image size
(64x64) and also due to dense optical flow. The blurred optical representation for two
samples of class drinking and eating can be seen in Figure 8.6. The horizontal displace-
ment (first image row) is also affected by the transition from the ground to a wall and
causes noise in this area. Disturbing noise can also be found in the bottom area of the
depth images, as well as objects, e.g., chairs, which are not associated with the action.





Chapter 9

Conclusion and Future Work

This thesis has presented and evaluated several novel methods for human action recogni-
tion in real video data. It also has demonstrated that the proposed methods outperform
the state-of-the-art on various and challenging datasets. The thesis aims to develop
methods for detecting persons in the scene and recognizing the actions/activities of the
persons. These methods have been studied from four perspectives: RGB, grayscale,
depth, and RGB-D images/videos.

To conclude the thesis work, the key contributions and results are summarized from
all novel research work experiments in Section 9.1. The summary of the evaluated
results is presented in 9.2. The interesting directions for future research in this field are
indicated in Section 9.3.

9.1 Key Contributions
The major components of an automatic action/activity recognition system include data
sources, feature extraction, feature representation, and classification in different RGB-D
videos for action recognition. In this thesis, two different main approaches were pro-
posed to improve human action recognition: Hand-crafted and deep neural network
approaches.

• Hand-crated approaches were represented by the local and global feature repre-
sentation methods, in addition to a combination of these feature representation
methods. These features were aggregated using a Bag-of-Word (BoW) pipeline.
Then, machine learning algorithms represented by classification methods were
used to demonstrate BoW robustness and reliability for the action recognition
task.

• Deep neural network approaches have become state-of-the-art for action recog-
nition. In this thesis, the 3D-CNN approach was used to show how 3D-CNN
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can model the temporal information in videos and perform better when using the
RGB-D sequences. However, the 3D-CNN could be challenged with longer and
semantically richer complex videos, requiring more and more data and computa-
tional time to perform better than the hand-crafted feature methods.

The proposed methods of this thesis are concluded from two different parts of ap-
proaches that are used to improve human action recognition. The first part of contri-
butions depends on the hand-crafted features and is concluded as follows:

In Chapter 4, a new system of human action recognition on 3D sensor data was pro-
posed. This system started from processing, removing the noise from the input depth
data, and aligning the RGB with the depth frames. Extraction of local and global feature
vectors was proposed. The local feature vectors were represented by extracting these
features from 3D sensor data using Speeded-Up Robust Features (SURF), Motion His-
tory Image (MHI), and optical flow (OF) for detecting motion interest points. The HOG
descriptor was applied to images and MHI-OF from RGB and depth video channels to
represent the appearance and motion features of all actions. The global features were
extracted using a global Hu-moments shape descriptor from MHI. Finally, local and
global vectors were combined into one vector for each RGB-D video action. These fea-
ture vector values were tested depending on the BoW pipeline using k-means clustering
and One-vs-All multi-class classifiers. The presented approach is highly efficient and
invariant to cluttered backgrounds, illumination changes, rotation, translation, and scale.
The experiment results showed that the proposed system could productively recognize
different actions even when they look similar, such as sitting down and standing up.
To test the proposed features extracted from these different actions and to compute the
performance accuracy of the system, two machine learning classifiers were used, SVM
and KNN.

• The SVM classifier was applied to local features extracted from the HOG de-
scriptor on different spatio-temporal image channels (RGB and RGB-D). The
recognition accuracy reached 57.65% on the MSR3D dataset and 49.04% on the
ORGBD dataset when testing with the RGB channel only. While the accuracy
reached 91.11% on the MSR3D dataset and 92.86% on the ORGBD dataset when
using RGB and depth channels, this means that the depth channel added more
information to the RGB channel that helped to increase the recognition perfor-
mance.

• The KNN classifier was calculated from the combined vectors of local and global
features that are computed from both RGB and depth video channels. The testing
results from this combination were 100% on the MSR3D dataset and 85.71% on
the ORGBD dataset.
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The experimental results on the RGB-D dataset demonstrated that the proposed ap-
proach significantly outperforms the existing state-of-the-art methods that used the same
datasets and different feature extraction methods.

In Chapter 5, a novel action recognition method was proposed. This method was rep-
resented by combining the 3D Trajectory (3DTr), Motion Boundary Histogram (MBH),
and global GIST feature (3DTrMBGG) using the BoW pipeline. This work also im-
proved the benefit of combining a set of local feature vectors with a single global feature
vector in a suitable manner. The benefits of combining the features are to keep the main
global attributes of human action and to reduce the impact of occlusion and noise.
The proposed approach included three steps listed as follows:

1. Starting from the extraction of local features by extending the 2D dense Trajectory
method on RGB videos to 3D Trajectory on RGB-D videos.

2. Computed global features from depth frames into two steps: First, by applying
background subtraction to find the important motion information, called Action-
Region (AR) in this work, and then computed global GIST feature vectors from
each AR in the sequence.

3. Combined the extracted local and global features to encode video information.

In the training step, features extracted from the training set were clustered using k-means
to generate BoW, and the histograms based on occurrences of bag words in the training
set were used as features to train classifiers. After the feature vectors were created, a
multi-class SVM classifier was applied to achieve action recognition.
The evaluations using two challenging realistic scenario action datasets, such as MSR3D,
and ORGBD datasets, demonstrated that the proposed method could recognize various
actions in a large variety of RGB-D videos. The experiments and results were computed
from these datasets in three different proposed models: The first model, local descriptor
(3DTrMB), was extracted from RGB-D. The results achieved in this model are 92.0%
and 81.52% from both datasets. The second model was a global descriptor (3DGIST).
In this model, the feature vectors were extracted from depth data, and the results reached
93.33% and 83.81%, respectively. The third model is the local and global feature de-
scriptors combination. The feature vectors were extracted by combining 3DTrMB with
the 3DGIST feature values in one vector to form (3DTrMBGG) for each video action
of RGB-D data. The accuracy results were 95.62% and 97.62% on the tested datasets,
respectively.
The experimental results illustrated that the comparison between these three model re-
sults showed that local and global combinations gave the best accuracy value than the
results from using local or global descriptors separately. These results also showed that
the proposed system could effectively recognize the different activities with high move-
ment rates like walking, cleaning, etc., and improves performance on actions with low
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movement rates like reading, using a laptop, etc.

In Chapter 6, a new method for human action recognition was represented based
on the Retina model and Local Binary Pattern (LBP) descriptor. The main idea of
this work is to capture spatio-temporal relation of moving objects by depending on the
spatio-temporal filtering Retina model for detecting saliency map (region of interest).
Then, Local Binary Pattern (LBP) was applied as the texture feature extractor on the
moving object from different Retinal channels to compute a bag of important feature
information. The Retina channels were represented by Parvocellular (Parvo), Magno-
cellular (Magno), and the combination of both channels, Parvo-Magno, from both RGB
and depth images. The histogram from LBP was computed from the saliency area of
the videos sequence, and then all computed histogram values were combined into BoW
vectors. The BoW algorithm encodes all the descriptors derived from each video into a
single code. These feature values were tested using the Random Forest (RF) classifica-
tion method. The proposed system was tested on three different public RGB-D datasets
and achieved superior performance compared with state-of-the-art approaches. These
datasets are MSR3D, and ORGBD, and G3D datasets.
Different accuracy values were achieved when tested the various channels of Retina
models and LBP features. The classification accuracy results from the Parvo channel
on these three datasets reached to 83.37%, 93.13%, and 89.48%, respectively. While
from the Magno channel, the recognition accuracy reached to 90.21%, 96.86%, and
96.86%. However, when these two channels were combined, the results seem to be less
performance than the only Magno channel, and it was achieved to 81.11%, 92.86%, and
71.43% by using the same datasets. The reason behind that, because the Magno channel
gives intense energy in the detected area (motion area), and the Parvo channel is cer-
tainly blurred there since there is a transient event. Then, the temporal domain results
were better than the spatio-temporal domains.

In Chapter 7, human activity recognition was proposed on 3D video by formulated
a body activity recognition problem as a classification problem. In the proposed work,
two goals were presented to improve human activity recognition:

1. A novel spatial-temporal feature descriptor technique was proposed from the
RGB-D image sequence, called 3D Optical Flow Gray Level Co-occurrence Ma-
trices (3DOFGLCM). Furthermore, the Haralick features were extracted from the
co-occurrence matrices of optical flow fields. These features are responsible for
measuring statistical properties such as energy, contrast, homogeneity, entropy,
sum average, and correlation.

2. This technique presented a detailed comparison of the five popular classifiers al-
gorithm to prove the performance of the proposed system in case of activity recog-



9.1. KEY CONTRIBUTIONS 189

nition from the texture feature vector extracted from RGB-D images. These clas-
sifiers were represented by Artificial Neural Network (ANN), Naive Bayes (NB),
Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and Random For-
est (RF).

The experimental results of the proposed technique demonstrated that the RF classifier
gave good accuracy results and outperformed other classifier models used on the same
feature values. This system was tested on four different public activity datasets, G3D,
CAD-60, MSR3D, and ORGBD datasets. The accuracy performance from RF reached
88.40%, 95.45%, 80.67%, and 83.01%, respectively, because this classifier contained a
bunch of combined decision trees that can handle certain features very well and can also
work with the high dimensional spaces and a large number of training examples. The
accuracy results from other classifiers were represented as ANN classifier gave 68.30%,
69.23%, 56.16%, NB results were 65.42%, 76.92%, 63.17%, and 67.88%, SVM was
achieved 77.08%, 81.82%, 79.51%, and 80.96%, and from KNN classifier got 82.41%,
90.19%, 70.74%, and 71.56% on the same previous four datasets, respectively.

It is important to emphasize in the previous contributions of four chapters that the
proposed feature descriptor is only changed in the pipeline. Since the proposed action
recognition systems’ main goal is to compare the real contribution of the proposed fea-
ture descriptor, i.e., for each experiment, the recognition pipeline is the same, and the
feature detector and descriptor are switched. Also, the classifier type is changed, some-
times based on one classifier, and in another time depended on two or more classifiers
for the accuracy improvements.

The second part of the contributions is represented by using one of the deep neural
network methods, i.e., Convolution Neural Network (CNN), in order to improve human
action recognition from 3D sensor data.

In Chapter 8, a deep 3D Convolution Neural Network model was presented to clas-
sify and recognize human actions based on RGB-D data. This model extract features
from temporal dimensions by performing 3D-CNN. A 3D-CNN utilizing optical flow
volumes was trained for the task of action recognition on the NTU RGB+D dataset.
Further, it was evaluated for two different tests and trains data splits. For comparison,
a 3D-CNN based on depth data was trained and evaluated. The 3D-CNN additionally
served as a fixed feature extractor. The extracted features from different layers were
used for classification using an SVM. Finally, feature vectors of both 3D-CNN models
were combined for a 2-Model-SVM classification.
The experimental results on NTU RGB+D datasets demonstrated that the combination
of different modalities could give better performance than using each modality indi-
vidually. The incorporation of RGB and depth modalities to compute 3D-CNN feature
vectors and supervised learning for the evaluation yields better prediction accuracy than
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the original 3D-CNN. In this work, an SVM classifier was used, and the accuracy re-
sults values outperform the results from baseline CNN in the individual modalities. The
depth based 3D-CNN model showed slightly improved accuracy than used only RGB.
The 2-Model-SVM based on feature combination benefits from both feature represen-
tations and achieves decent performance.
The 3D-CNN approaches from RGB and depth provided good classification results for
specific classes, e.g., 76.3% and 83.4% average accuracy for the top 10 classes of the
cross-subject split dataset.
The OF-RGB-CNN had also proven that it is capable of modeling temporal information
for opposite class pairs, e.g., walk towards and apart from each other, with over 90%
classification accuracy for both data splits, the same result can be seen for the depth
based 3D-CNN. Similar actions such as jumping up and hopping can also be found
in the top (10) performing classes. The NTU10-CNN, which was trained only on (10)
classes, confirms this capability.
Using the NTU10 model as a fixed feature extractor for SVM classification has also
shown a small accuracy improvement of 3.3% for the output extracted from the first
fully connected layer, compared to the baseline 3D-CNN. However, the feature vectors
obtained from earlier layers performed worse, considering the small feature vector size
of 2048 and fast SVM implementation, using a grid search to find optimal parameters.
This method proved to be an option to improve 3D-CNN accuracy. The accuracy of both
3D-CNN models could be increased by about 4% using an SVM for feature vector clas-
sification, without additional processing. The combined 2-model SVM, i.e., OF-RGB
and OF-Depth, showed a 15% improved accuracy, requiring little additional work.
The Tiny-Dnn is a good starting point to neural networks and suitable for small CNN.
Switching the deep learning framework to a GPU based library could bring significant
improvements. The factor time is a considerable limitation not only for final training but
also to evaluate the effects of different parameters, parameter numbers, and additional
layers. It is also common to train multiple models for the same dataset to choose the
best performing model.
By using another CNN model to extract special image features, e.g., objects such as a
toothbrush or food, and combining the OF-CNN features from depth and RGB could
be eliminated the weakness of distinguishing similar classes, such as brushing teeth and
eating. With better hardware and GPU computation, the image size could also be in-
creased to deliver more robust results.
Adding dropout layers can also help in increasing accuracy and limit the chance of over-
fitting, as described in [HSK+12]. Finally, data augmentation techniques, such as zoom,
rotation, and translation, can help to reduce overfitting while the dataset is synthetically
enlarged [PDKS15].
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9.2 Summary
In summary, the deep neural network using videos is still an open area of research. The
deep neural network methods outperformed the hand-crafted feature extraction methods
in the case of images and text recognition systems but not in the cases of video process-
ing tasks. Many computer vision problems are not studied using deep neural networks,
such as robotic, 3D modeling, motion estimation, motion capture, and video process-
ing, which cannot be easily implemented in a differentiable manner with the deep neural
networks or deep learning. Therefore, these problems need to be solved using other tra-
ditional computer vision techniques, i.e., hand-crafted features and traditional machine
learning techniques.

To solve these problems and to find efficient learning of spatio-temporal features
in video action recognition yet, hybrid approaches combine traditional computer vision
and deep learning that could offer the advantages traits of both methodologies [UL19,
VMS+19, BP20].

This thesis concludes that deep learning has not replaced traditional computer vision
techniques and hence why deep learning should still be studied and taught. The works of
this thesis illustrated that action recognition tasks still need hand-crafted features despite
the development of the deep learning domain. The problem with deep learning methods,
such as CNN, required many labeled videos for training, while most available datasets
are relatively small or contain unlabeled videos. Meanwhile, most of the current action
recognition approaches focused on deep learning mostly ignore the intrinsic difference
between the temporal and spatial domains and consider the temporal components as
feature channels when applying CNN architectures to model the video. Recently, CNN
has been proposed to be used with RGB and depth images or videos, but it is not yet as
successful as in the other area. Furthermore, the research using spatial and temporal 2D
or 3D data is not advanced, and it remains an area of further research to use CNN with
temporal and RGB-D sensor data.

On the other hand, the hand-crafted feature descriptors do not need extensive train-
ing datasets. It is also more straightforward and less ambiguous to understand the actual
model with hand-crafted features.

Moreover, the thesis proposed methods show further improvement when used RGB
and depth videos, as well as the combination of local and global feature representation
methods. Better results than the current state-of-the-art were achieved on the public
datasets for action recognition.

9.3 Future Works
This section introduces some of the future research directions which will follow in the
future.
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Saliency Detection for Local and Global Features In the previous work of Chapter
6, the Retina filter model was used to detect the salient motion area. As a future di-
rection work, the Boolean Map-based Saliency (BMS) model [ZS13, KAD17] will be
applied on RGB and depth image channel for extracting the orientation and motion from
these images. BMS calculates saliency maps to detect a motion area by analyzing the
topological structure of Boolean maps. After that, the salient motion area will be fed
to the deep neural network, such as Convolution Neural Network (CNN) or Recurrent
Neural Network (RNN), to learn the spatial and temporal behavior of different daily
actions for improving human action recognition task.

3D Skeleton Joints for Human Action Recognition based on Convolution Neural
Networks In the previous work of Chapter 8, human action recognition was proved
based on RGB-D video actions. In future work, invariant characteristics of humans will
be extracted from the 3D skeleton joints that are recorded by RGB-D sensors. Since
skeleton joints usually have similar skeleton points, these configurations are suitable
for different types of actions. This work will analyze a highly informative number
of skeleton joints for action recognition using Shannon’s entropy mechanism [Sha48]
because some joint points are irrelevant and not moving, which appear as noise; this
problem could reduce the performance of the action recognition system.







Appendix A

RGB-D Action/Activity Datasets

A.1 Examples of Datasets
In this thesis, five types of public datasets were used to test the proposed methods imple-
mented in each chapter. Image examples of all activities of each dataset are reviewing
in the following.

A.1.1 MSR Daily Activity 3D Dataset
The MSR3D dataset [19] [WLWY12] was collected by Microsoft and Northwestern
University in 2012 and focused on daily activities. The motivation was to capture the
activities of human-daily in the living room.

MSR3D dataset was collected in an indoor environment with sixteen actions and
(10) subjects (persons) as shown in Figure A.1, where each person performs each action
twice, one is in sitting and the other in standing up position. The camera was fixed in
front of the sofa. In addition to RGB and depth data, skeleton data are also recorded. The
skeleton data’s joint positions extracted by a tracker are very noisy due to the subjects
being either sitting on or standing close to the sofa.
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Drinking Eating

Walking Cheer Up

Lie Down Cleaning

Sit Down Stand Up

Phone Call

Play Gitar

Play Game

Toss Paper 

Reading Writing

Using Laptop Still

Figure A.1: Sample frames of MSR Daily Activity 3D dataset, compare to [19].
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A.1.2 Online RGBD Dataset

The targets of the Online RGBD (ORGBD) action dataset [16] [YLY15] is for human
action recognition (human-object interaction) based on RGB-D video data. ORGBD
dataset was captured by the Kinect device (RGBD sensor) and designed for three envi-
ronments tasks: Same-environments, cross-environments, and continuous action recog-
nition. There are seven categories of human actions performed by (16) subjects. Fig-
ure A.2 shows different sample frames of these seven actions [AaP18b]. In this thesis,
the comparison results are done with the state-of-the-art methods on the same environ-
ment test setting, where half of the subjects are used for training data, and the rest of the
subjects are used for testing data.

Drinking Eating

Using Laptop Reading

Phone Call Using Remote

Using Phone

Figure A.2: Sample frames of Online RGBD Action Dataset, compare to [16].
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A.1.3 Gaming 3D Dataset
Gaming 3D (G3D) dataset [1] [BAM16, BMA12] was captured by Kingston Univer-
sity in 2012, and it is focusing on real-time action recognition in the gaming scenario.
G3D is publicly available for researchers to develop new action recognition algorithms
for video games and benchmark their performance. G3D is used for real-time action
recognition in gaming, containing synchronized video, depth, and skeleton data that
has been captured. The three streams were recorded at 30fps in a mirrored view. The
(.png) image format was selected for storing both the depth and color images as it is
a lossless format. The resolution used to store both the depth and color images were
(640× 480). The raw depth information contains the depth of each pixel in millimeters
and was stored in 16-bit grayscale and the raw color in 24-bit RGB (see Figure A.3).
The 16-bits of depth data contains 13 bits for depth data and 3 bits to identify the player.
The depth information was also mapped to the color coordinate space and stored in a
16-bit grayscale. Combining the color image with the mapped depth data allows the
user to be segmented in the color image.

A.1.4 Cornell Activity Dataset
The CAD-60 dataset [17] [SPSS11] was captured by Cornell University in 2011, mo-
tivated by the fact that actual daily activities rarely occur in structured environments.
Hence, the actions were performed within the uncontrolled background and comprised
of RGB and depth video sequences of humans performing activities that are recorded
using the Microsoft Kinect sensor. CAD-60 datasets are containing:

• Four subjects (two male, two female) that perform different actions.

• Five different environments (office, bedroom, bathroom, kitchen, and living room).

• Sixty RGB-D videos and twelve different activities.

CAD-60 dataset also contained the skeleton data, but only RGB-D data was used in this
thesis research. RGB-D data has a resolution of (240 × 320). RGB is saved as a three-
channel 8-bit (.png) file. Also, depth is saved as a single-channel 16-bit (.png) file. Due
to the alignment of depth and RGB data, some pixels on the edges will have a value of
0.
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Bowling Golfing

Driving Fighting

Running Jumbing

Climbing Crouching

Figure A.3: Color and depth samples from different gaming actions (G3D), compare to [1].
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Brushing Teeth Cooking (Chopping)

Writing on White-Board Working on Computer

Wearing Contact Lens Talking on the Phone

Opening Pill Container Cooking (Stirring)

Relaxing on CouchRinsing Mouth with Water

Talking on Couch Drinking Water

Figure A.4: Sample frames selected from CAD-60 dataset of different actions, compare to [17].
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A.1.5 NTU RGB+D Dataset
NTU RGB+D dataset is used for human action and activity recognition, especially with
the deep learning methods because it is a very large-scale dataset. The author of this
dataset suggested two different evaluation criteria, including cross-subject and cross-
view. Four major data modalities were recorded by Microsoft Kinect v2 sensors: RGB
frames, depth maps, 3D joint information, and IR sequences. This dataset was captured
by three cameras and contains (56880) sequences (with 4 million frames) of (60) classes
performed by (40) subjects.

RGB videos are recorded in the resolution of (1920 × 1080), while the depth map
is sequences of two-dimensional depth values in millimeters. For maintaining all the
information, the authors Shahroudy et al. [SNGW16] were applied lossless compression
for each frame. The resolution of the depth frames is (512× 424) for each image. Joint
information (skeleton) consists of 3-dimensional positions of (25) major body joints for
detected and tracked human bodies in the scene. Additionally, the Infrared sequences
are collected and stored frame by frame in resolution (512× 424).

In this thesis, RGB and masked depth map data were used, the main purpose of
providing masked depth map, as mention by [18] [SNGW16], was to have a smaller
sized version of the original depth maps, and the position of the body skeletons was
used to find regions of interest in the depth maps. The depth values were copied for
the regions of interest (from the original depth maps) and set the other regions’ depth to
zero; this helped to achieve a much more efficient frame-wise compression rate.
Figure A.5 shows only eight samples from the RGB-D dataset because it is huge data
that has (60) classes. The original masked depth data map looks like a black image.
Therefore, they were inverted to be clear, as in Equation A.1:

I1 = 255− I (A.1)

where, I is the original black image, and I1 is the inverted image.
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Drinking Brushing Teeth

Eating  Wearing Jacket

 Jumping Up Sitting Down

Hand Shaking Pushing

Figure A.5: NTU RGB-D dataset images example, compare to [18].
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Tiny-Dnn Framework

B.1 General

Tiny-Dnn is a deep learning framework available at Github [15]. It is dependency-
free and uses the C++14 standard. The network computations are mainly done on
the CPU, making Tiny-Dnn suitable for embedded devices. For running Tiny-Dnn,
a C++14 Compiler is needed, and the header file tiny_dnn.h has to be included.
The framework supports sequential and graph models and features various layer types
(fully connected, convolution, average and max pooling, dropout, etc.) and activation
functions such as tanh, softmax, sigmoid, and ReLU. Also, standard loss functions and
optimization algorithms are implemented.

B.2 CNN Construction

A network is constructed by defining its type and name, in this case <sequential>
(see sample below).

network<sequential> net;

net << convolutional_layer(64,64,3,20,96,padding::same)
<< max_pooling_layer(64,64,96,2)
<< relu_layer()
<< convolutional_layer(32,32,3,96,128,padding::same)
...
<< fully_connected_layer(2048,10)
<< softmax_layer(10);
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The type <graph> allows networks with multiple input layers (branches) and the
possibility to merge layers at the determined position. The << operator is then used to
add individual layers to the network.

The top convolutional_layer(64,64,3,20,96,padding::same) si-
multaneously serves as the input layer. First, parameters define the input image size
(64x64), followed by the size of the convolutional filter (3x3) and the number of
image channels (20), and output feature maps (96). The padding::same is padding
the input concerning a stride and filter size of the convolution operation to preserve the
same size for the output volume. The output is then fed to the next layer. Pooling layers
require the input volume size and the down-sampling factor for the output as a parame-
ter. While the activation function has no parameter, fully connected and softmax layers
only require the input respectively output size.

B.3 CNN Training

For training the constructed network, one of the optimization algorithms has to be cho-
sen: Such as stochastic gradient descent, momentum and Nesterov momentum, adagrad,
rmsprop, adam, adamax.

optimzer adamax;

Training and testing data is stored in a vector<vec_t> of type double. The image
values are converted to the range [−1.0, 1.0] and stored in row-wise order. A single
vector holds all image channels consecutively. It is important to shuffle the order of
training data; otherwise, the network performs poorly. This network can be done using
the C++ function random_shuffle() using the same seed value to shuffle images
and labels.

vector<vec_t> train_images;
// corresponding labels, integers [0-9] for 10 class IDs
vector<label_t> train_labels;

The net<loss function>.train(..) statement defines the loss function and
initiates the training process. Parameter minibatch is used to split the training data
further into batches used for calculation and parameter update. The small batch size can
be beneficial to lower memory consumption.
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net.train<cross_entropy_multiclass>(optimizer,
train_images, train_labels, minibatch,
epochs, on_enumerate_minibatch,
on_enumerate_epoch);

Callbacks on_enumerate_epoch can be used to execute code for each epoch or
mini-batch, e.g., to validate accuracy, save the model or update the learning rate, etc.

// create callback for each epoch
auto on_enumerate_epoch = [&]() {

// check accuracy of training data
result res = net.test(train_images, train_labels);
// print result

res.print_summary(cout);
// save model
net.save(filepath);

}

The framework also offers methods to visualize the activations of a specific sample and
layer. Further, the network weights can be visualized using its image class.

// visualize weights of layer 0
image<> img
= net.at<convolutional_layer>(0).weight_to_image();
img.write(filepath);

// visualize activations of last processed sample
img = net[0]->output_to_image();
img.write(filepath);

B.4 Using a Pre-Trained CNN
A saved model stores the trained weights as well as the model architecture, respectively,
its layers. The load() function loads the model into a new network and can then be
used for further training, evaluation, or weight extraction. Individual layers can be ac-
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cessed using the [ ] operator, e.g., to get layer information or weight vectors.

net.load(filepath);
//extract weights
vector<vec_t*> extractedWeights = net[0]->weights();
// copy weights to new_net
network<sequential> new_net;
for (int w = 0; w < extractedWeights.at(0)->size(); w++) {

new_net[0]->weights().at(0)->at(w) =
extractedWeights.at(0)->at(w);

}
// freeze weights from layer 0
new_net[0]->set_trainable(false);
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