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Abstract

This thesis addresses the reduced basis methods for parametrized quasilinear elliptic and parabolic partial

differential equations with strongly monotone differential operator. It presents all of the ingredients of the

reduced basis method: basis generation for reduced basis approximation, certification of the approxima-

tion error by suitable a-posteriori error control and an Offline-Online decomposition. The methodology

is further applied to the magnetostatic and magnetoquasistatic approximations of Maxwell’s equations

and its validity is confirmed by numerical examples.
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Zusammenfassung

Diese Arbeit befasst sich mit den reduzierten Basismethoden für parametrisierte quasilineare elliptis-

che und parabolische partielle Differentialgleichungen mit stark monotonem Differentialoperator. Es

werden alle Bestandteile der Methode mit reduzierter Basis vorgestellt: Basisgenerierung für reduzierte

Approximation, Zertifizierung des Approximationsfehlers durch geeignete a-posteriori Fehlerkontrolle

und Offline-Online-Zerlegung. Die Methodik wird ferner auf die magnetostatischen und magnetoqua-

sistatischen Näherungen der Maxwellschen Gleichungen angewendet und ihre Gültigkeit wird durch

numerische Beispiele bestätigt.
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Publications

Some of the results of this thesis have already been published or submitted.

• The reduced basis method for linear parabolic problems in section 3.3 in Chapter 3 is the improved

version of author’s master thesis [36] with the title “Reduced basis concepts for linear parabolic

equations". We note that this master thesis was not published before and it contains unique results,

obtained by the author and his scientific supervisor Prof. Dr. Michael Hinze and presented now in

this thesis. Compared to [36], we corrected errors and improved the overall style.

• Chapter 4 is an extended version of

[27] Michael Hinze, Denis Korolev: Reduced basis methods for quasilinear elliptic PDEs with

applications to permanent magnet synchronous motors. arXiv:2002.04288 (2020), which has been

accepted for publication in International Series of Numerical Mathematics book, Springer.

For this thesis, we changed notation and organisation of the text in [27] to improve the overall style

and added more details to section 4.2.1 on the computational procedure and figures (see e.g. figure

4.3(e) and figure 4.3 (f)) to section 4.3, compared to [27].

• Chapter 5 is an extended version of

[26] Michael Hinze and Denis Korolev. “A space-time certified reduced basis method for quasi-

linear parabolic partial differential equations”. In:Advances in Computational mathematics 47.3

(2021).

In particular, we added more details to section 5.2.2 on the computational procedure, compared to

[26].

These collaborations are an essential part of the research that led to this thesis.
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NOMENCLATURE 1

Nomenclature

|v| Euclidean norm of a vector v ∈ Rd - p. 8⊕
direct sum operation - p. 25

χΩ characteristic function of a set Ω, i.e., χΩ(x) =

1, x ∈ Ω,

0, x < Ω.
- p. 17

δi j Kronecker delta symbol, i.e., δi j =

1, i = j,

0, i , j.
- p. 30

det A determinant of a matrix A - p. 39

u̇ (generalized) time derivative of u. We use u̇, ∂u
∂t ,

du
dt interchangeably - p. 12

∅ empty set - p. 8

〈·, ·〉H inner product in some Hilbert space H - p. 12

〈·, ·〉V′V duality pairing between V and V ′ in some Banach space V - p. 12

‖·‖V norm on some Banach space V - p. 12

R field of real numbers - p. 12

Rn n-dimensional real space - p. 8

R+
0 non-negative real numbers - p. 10

O(·) Landau “big-O" asymptotic notation - p. 25

Pk(I,V) space of polynomials p : I → V of degree k - p. 32

∇ gradient, ∇v = grad v = { ∂v
∂xi
}di=1, for v : Rd → R - p. 9

∇· divergence operator, ∇ · v = div v =
∑d

i=1
∂vi
∂xi

, for v : Rd → Rd - p. 7

∇× curl operator, ∇ × v = curl v =


∂v3
∂x2
−

∂v2
∂x3

∂v1
∂x3
−

∂v1
∂x1

∂v2
∂x1
−

∂v1
∂x2

, for v : R3 → R3 - p. 7

ν1 nonlinear reluctivity function - p. 10

⊗ tensor product - p. 30
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2 NOMENCLATURE

∂Ω boundary of a set Ω - p. 8

f |A restriction of a function f to a set A - p. 38

a.e. almost everywhere - p. 13

diam (Ω) diameter of a set Ω - p. 9

span{v1, ..., vn} span of a set of vectors {v1, ..., vn} - p. 25

supp f support of a function f : Ω→ R, i.e. {x ∈ Ω : f (x) , 0} - p. 13

A × B Cartesian product of two sets A and B - p. 8

AT transpose of a matrix A - p. 39

Ck(Ω) space of k-times continuously differentiable functions on Ω. - p. 10

C∞c (Ω) space of smooth functions with compact support on Ω - p. 13

fBH B − H curve - p. 10

o(·) Landau “small-o" asymptotic notation - p. 21

v · w dot product in Rd between two vectors v and w - p. 8

V ′ dual space of some Banach space V - p. 12

v × w cross product in R3 between two vectors v and w - p. 8
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Chapter 1

Introduction

1.1 Motivation

A crucial task in the design of electric motors is the creation of proper magnetic circuits [30]. In per-

manent magnet electric motors, the latter is created by electromagnets and permanent magnets. The cor-

responding mathematical model is governed by a quasilinear elliptic partial differential equation (PDE),

i.e. the so-called magnetostatic approximation of Maxwell equations, which describes the magnetic field

generated by the sources in the electrical machine. The mathematical modelling and design of electri-

cal machines, governed by the magnetostatic equation is the subject of broad research (see, e.g. [2, 7,

33, 37, 16, 15, 14, 39]). One of the engineering design goals consists in improving the performance of

the motor through modifying the size and/or location of the permanent magnets. This problem can be

viewed as a parameter optimization problem [2, 7, 33, 37], where the parameters determine the geometry

of the computational domain. The underlying optimization problem then requires repeated solutions of

the nonlinear elliptic problem on the parametrized domain. Therefore, there is an increasing demand for

the fast and reliable reduced models as surrogates in the optimization problem. To achieve this goal, in

this thesis we develop the reduced basis method for quasilinear elliptic PDEs with strongly monotone

differential operator and apply it to the nonlinear magnetostatics problem in the modelling framework of

the permanent magnet synchronous machine.

The second motivation of this thesis is the development of reduced basis models for the magnetoqua-

sistatic approximation of Maxwell’s equations, which is also known as the eddy-current equation. This

equation finds its place in important applications, such as the computation of magnetic fields in the pres-

ence of eddy currents in electrical machines [46, 32]. The development of fast and accurate simulation

methods for such problems is of great importance in the optimization and design of electrical machines

and other devices [7, 44]. Therefore there is a demand for reduced order models of this quasilinear PDE,

which can be further used as surrogates in the optimization procedure. To achieve this goal, in this thesis

we develop the reduced basis method for quasilinear parabolic PDEs with strongly monotone differential

operator and apply it to the 2-D nonlinear eddy current equation.

1.2 State of the art and novelty of this work

The certified reduced basis method is known as an efficient method for model order reduction (MOR)

of parametrized PDEs [21, 43, 25]. The efficiency comes from the use of the Greedy search algorithm

in the basis construction for the numerical approximation of the problem and a-posteriori control of the

3



4 CHAPTER 1. INTRODUCTION

approximation error. The later serves not only for rigorous certification of the method, but also as the

selection criterion in the Greedy selection process. This process provides incrementally better bases for

the approximation and further significant speed-up in multi-query numerical simulations - relevant, for

example, in the design, optimization and control contexts, through the use of RB surrogate models.

The extension of reduced basis techniques to nonlinear problems is a non-trivial task and the crucial

ingredients of the method then highly depend on the underlying problem. Efficient implementation of the

Greedy procedure requires a-posteriori error bounds or estimates, which, to the best of our knowledge,

are not yet available for the nonlinear magnetostatics and magnetoquasistatics problems we consider. In

[1] the reduced-basis method is applied to approximate the micro-problems in a homogenization proce-

dure for quasilinear elliptic PDEs with non-monotone nonlinearity. However, we note that this is different

from the approach in this thesis, where we use the reduced basis method for the approximation of the so-

lution of a quasilinear PDE. In our case, the monotonicity of the problem allows the a-posteriori control

of the global reduced-basis approximation error. We provide the corresponding error bound for quasilin-

ear elliptic equations, which is based on a monotonicity argument and can be viewed as a generalisation

of the classical error bound for linear elliptic problems [45], where the coercivity constant is now sub-

stituted by the monotonicity constant of the spatial differential operator. The computational efficiency

of our reduced-basis method is based on the so-called offline-online decomposition. The offline phase

corresponds to the construction of the surrogate model and depends on high-dimensional simulations,

and thus is expensive. The online phase, where the surrogate model is operated, is usually decoupled

from high-dimensional simulations and thus in general is inexpensive. This splitting is feasible if all the

quantities in the problem are parameter separable and hence the problem admits an affine decomposition,

which essentially means that all parameter dependencies can be separated from the spatial variables. The

recovery of the affine decomposition in the presence of nonlinearities represents an additional challenge

and it is usually treated with the Empirical Interpolation method (EIM)[5, 20, 38].

The reduced basis method was also successfully applied to linear [19, 48, 49] and nonlinear parabolic

problems with polynomial [53, 52] and non-polynomial nonlinearities [18]. In general, there are two ap-

proaches for the reduced basis methods applied to unsteady problems: (1) first discretize, then estimate

and reduce, (2) first estimate, then discretize and reduce. The approach (1) [19, 22, 18] is based on a

time-marching problem in the offline phase and the error bounds or indicators are then stem from the

structure of the discrete problem. The POD-Greedy procedure [22] is commonly used to construct the

reduced-basis spaces and the EIM is used to treat non-affine and nonlinear problems [18]. In particular,

the approach (1) is applied in [18] to semilinear parabolic problems with monotone non-polynomial non-

linearities. However, we note that the error bound, proposed in [18], is not applicable to our quasilinear

problem. The approach (2) starts from a weak space-time variational formulation (see, e.g. [48, 49, 53,

52]). The error bounds are then derived in the appropriate Bochner spaces with respect to the natural

space-time norms. In this approach, time is treated as a variable and thus it resembles the reduced-basis

setting for elliptic problems [45]. The reduced-basis space is consequently constructed in the offline

phase out of the space-time snapshots, obtained, for example, with the related Petrov-Galerkin discrete

scheme. However, the appropriate choice of the discrete spaces in the Petrov-Galerkin scheme results in a

time-marching interpretation (see, e.g. [49, 53]) of the discrete problem. In this way, the time-marching

procedure allows to use the standard POD-Greedy approximation and to treat time as the parameter,

which leads to the reduced-basis time-marching problem, but the error certification is accomplished with

the natural space-time norm error bound. We refer to [17] for the detailed overview and comparison of

4



1.3. OUTLINE OF THE THESIS 5

these two approaches in the context of linear parabolic equations.

In this thesis we treat quasilinear parabolic problems with the approach (2). We propose an L2(0,T ; V)

a-posteriori error estimate, based on the space-time variational formulation of quasilinear parabolic PDEs

with strongly monotone differential operators. We introduce a Petrov-Galerkin projection to approxi-

mate the continuous variational problem and provide its reduced-basis counterpart. The Petrov-Galerkin

problem with its solution uδ serves as our reference in a-posteriori error control. For computational pur-

poses, we approximate the solution uδ by the solution of the Crank-Nicolson time-marching scheme and

consequently use the POD-Greedy procedure to construct the reduced-basis spaces of small dimension.

The right-hand side in our error estimate is approximated with a computable bound, which is used in

the computational procedure. The time-marching Crank-Nicolson approximation of the Petrov-Galerkin

problem also allows to treat the nonlinearity with the EIM in order to have offline-online decomposition

for our problem available. Moreover, the parameter separability in time, achieved with the EIM, leads to

a significant speed-up factor in the computational procedure. For the efficient numerical solution of both

the quasilinear elliptic and parabolic reduced-basis problems with Newton’s method we extend the com-

putational machinery, proposed in [20, 18] for semilinear PDEs. It leads to a reduced numerical scheme

with full affine decomposition and thus to a considerable acceleration in the online phase, compared to

the original finite element simulations.

The MOR methods for the magnetoquastatic problem, to the best of our knowledge, are only de-

veloped in the Proper Orthogonal Decomposition (POD) setting [51], see e.g. [35, 23, 40], and the

analogues of the proposed reduced basis methodology are not yet available in the literature for the class

of problems we consider. We mention the recent work [29], where the a-posteriori error estimates for

quasilinear parabolic PDEs in the presense of non-monotone nonlinearities were obtained. However, we

think that the strong monotonicity assumption on the differential operator allows to better capture the

structure of the magnetoquasistatic problem in our a-posteriori error estimate, compared to [29].

1.3 Outline of the thesis

This thesis is organized as follows:

• In Chapter 2 we introduce the physical model, derived as a 3-D magnetoquasistatic approximation

of Maxwell’s equations. We further impose additional assumptions on the domain of the problem

and formulate its simplified 2-D version as the problem of our interest. We describe the nonlinear

behaviour of ferromagnetic materials by introducing the B − H curves and their main properties.

We then outline a theoretical background, which is required for weak formulations of our PDEs

and then we proceed with a detailed discussion on existence and uniqueness of weak solutions.

Finally, we introduce the Newton operator, which will be further used in the numerical schemes

for our problems.

• In Chapter 3 we introduce the main ingredients of the reduced basis method for parametrized ellip-

tic and parabolic problems with linear, coercive differential operator. In particular, we address the

questions of constructing good approximating spaces with the Greedy algorithms, the parameter-

separability assumption and the corresponding affine decomposition of the problem, as well as

the question of quantifying the error of the reduced basis approximation and derivations of the

corresponding error bounds.

5



6 CHAPTER 1. INTRODUCTION

• In Chapter 4 we propose the certified reduced basis method for quasilinear elliptic problems to-

gether with its application to nonlinear magnetostatics equation, where the later models the perma-

nent magnet synchronous motor. The parametrization enters through the geometry of the domain

and combined with the nonlinearity, drives our reduction problem. We provide the corresponding

reduced basis approximation of our problem. Next we prove the residual-based a-posteriori error

bound and present the numerical results.

• In Chapter 5 we propose the cerified reduced basis method for quasilinear parabolic problems with

strongly monotone spatial differential operator. We prove the residual-based a-posteriori error es-

timate for a space-time formulation and the provide a corresponding efficiently computable bound

for the certification of the method. We introduce a Petrov-Galerkin finite element discretization

of the continuous space-time problem and use it as our reference in a-posteriori error control.

The Petrov-Galerkin discretization is further approximated by the Crank-Nicolson time-marching

problem. Then we present the POD-Greedy approach to construct the reduced-basis spaces of

small dimensions and apply the EIM to guarantee the efficient offline-online computational proce-

dure. Finally, we apply our method to the 1-D and the 2-D nonlinear magnetoquasistatic problems

and present the corresponding numerical results.

6
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Chapter 2

Magnetoquasistatic approximation of
Maxwell’s equations

2.1 Physical model

In this section the 3-D magnetoquasistatic approximation of Maxwell’s equations is derived together

with its 2-D approximation. We also discuss the modelling of material relations in our computational

problems.

2.1.1 Model problem

The laws of electromagnetism are given by a set of coupled partial differential equations, known as

Maxwell’s equations, which describe the relation between electric and magnetic fields [34]:

−
∂B
∂t

= ∇ × E Faraday’s law, (2.1a)

∂D
∂t

+ J = ∇ ×H Maxwell - Ampere’s law, (2.1b)

∇ · B = 0 Gauss’ magnetic law, (2.1c)

∇ · D = ρ Gauss’ electric law. (2.1d)

Quantities, involved in the equations, together with their units, are defined as follows:

B − magnetic flux (or magnetic induction) [tesla]

H − magnetic field [ampere/meter]

D − electric flux density [coulomb/meter2]

E − electric field [volt/meter]

J − current density [ampere/meter2]

ρ − electric charge density [coulomb/meter2]

7



8 CHAPTER 2. MAGNETOQUASISTATIC APPROXIMATION OF MAXWELL’S EQUATIONS

All the quantities depend on position in space x = (x1, x2, x3) and on time t. Additionally, the following

constitutive laws (material relations) between fields will be considered [32]:

B = µH + M, D = εE + P, J = σE + Js, (2.2)

where M denotes the permanent magnet magnetization, P denotes an electric polarization and Js an im-

pressed current density. Furthermore, µ denotes the magnetic permeability, ε the electric permittivity and

σ denotes the electric conductivity, which is strictly positive in conductors, but vanishes in dielectrics. In

general, these material coefficients are tensors of rank 2, but in this thesis we assume that materials are

isotropic, therefore they become scalar quantities. We also neglect the hysteresis effect in ferromagnetics,

which makes the modelling of the materials complicated. We introduce the reciprocal of the magnetic

permeability, the magnetic reluctivity ν, with the relation

H = ν(B −M). (2.3)

Here we note that Hpm = νmagM, where −Hpm is called the magnetic field such that the magnetic flux

density B vanishes and νmag denotes the constant magnetic reluctivity for the permanent magnet [24]. In

our applications we will consider ferromagnetic materials, where the magnetic reluctivity is a nonlinear

function of the magnitude of the magnetic flux density ν(|B|). We provide more details on the magnetic

reluctivity function in the next section.

The quasistatic approximation is obtained from Maxwell’s equations by neglecting the displacement

current ∂D
∂t . Gauss’ law, i.e. divergence-free nature of B, implies that there exists a magnetic vector

potential A, which is unique up to a gradient field, such that

B = ∇ × A. (2.4)

The material laws (2.2), the quasistatic approximation to Maxwell-Ampere’s law and (2.4) result in the

magnetoquasistatic approximation of Maxwell’s equations:

σ
∂A
∂t

+ ∇ × (ν (|∇ × A|)∇ × A) = Js + ∇ ×Hpm. (2.5)

In some contexts, the eddy-current term σ∂A
∂t can be neglected and the equation turns into the magneto-

static approximation.

For computational purposes, we define a time interval I = (0,T ] with T > 0 and restrict the equation

to a bounded domain D ⊂ R3 with a sufficiently smooth boundary Γ := ∂D, such that Γ = Γ̄B ∪ Γ̄H and

ΓB ∩ ΓH = ∅, and let ~η(x) = ~η(x1, x2, x3) be the outer normal vector to Γ. On ΓB we impose the normal

component of B to vanish and on ΓH we impose the tangential component of H to vanish. It can be

shown [4] that it translates into the following boundary conditions in terms of A:

H × ~η = 0 ⇔ A × ~η = 0, on ΓH × I, (2.6a)

B · ~η = 0 ⇔ [ν(|∇ × A|)∇ × A] × ~η = 0, on ΓB × I. (2.6b)

8



2.1. PHYSICAL BACKGROUND 9

We consider the initial-boundary value problem:

σ
∂A
∂t

+ ∇ × (ν (|∇ × A|)∇ × A) = Js + ∇ ×Hpm, in D × I, (2.7a)

A × ~η = 0, on ΓH × I, (2.7b)

[ν(|∇ × A|)∇ × A] × ~η = 0, on ΓB × I, (2.7c)

A = Ao, on D × {0}, (2.7d)

where Ao denotes the initial condition. The use of Coulomb gauging condition ∇ · A = 0 imposes the

selection of solenoidal solutions to the problem and guarantees the existence of a unique solution in a

weak sense [4].

Certain assumptions on the geometry of the computational domain D, that is,

• D = Ω × (−εD, εD) and εD > 0 is small,

• D = Ω × (−l, l), l � diam (Ω) with a symmetric behaviour of the solution,

allow to reduce 3-D problem to 2-D problem, defined on the cross-section of D (see, e.g. [42]) . There-

fore, let Ω ⊂ R2 be a bounded domain with a sufficiently smooth boundary Γ := ∂Ω, such that Γ = Γ̄B∪Γ̄H

and ΓB ∩ ΓH = ∅, and let ~η = ~η(x1, x2) denote the outer normal vector to Γ. We assume that geometrical

and physical properties are translation-invariant in the x3-direction, hence vector fields in the model do

not depend on x3. The magnetic fields H, Hpm lie in the x1 − x2 plane and we require that the current

density Js is perpendicular to the cross-section. Hence, for the fixed time t > 0 the vector fields are

represented as follows:

H =


H1(x1, x2, t)

H2(x1, x2, t)

0

 , Hpm =


Hpm,1(x1, x2, t)

Hpm,2(x1, x2, t)

0

 , Js =


0

0

J3(x1, x2, t)

 . (2.8)

We also have

B =


B1(x1, x2, t)

B2(x1, x2, t)

0

 , A =


0

0

A3(x1, x2, t)

 , (2.9)

where the form of B follows from the material relation (2.3) and the ansatz for A is chosen to satisfy

(2.4). We introduce notation u := A3 with u : Ω→ R. Then it follows that

∇ × A =


∂u
∂x2

− ∂u
∂x1

0

 , ∇ ×Hpm =


0

0

−
∂Hpm,1
∂x2

+
∂Hpm,2
∂x1

 , (2.10)

and we have |∇ × A| = |∇u| and ∇ · A = 0. The following expression is then obtained:

[∇ × (ν (|∇ × A|)∇ × A)]3 = −
∂

∂x1

(
ν(|∇u|)

∂u
∂x1

)
−

∂

∂x2

(
ν(|∇u|)

∂u
∂x2

)
(2.11)

= −∇ · (ν(|∇u|)∇u).

Set f := J3 −
∂Hpm,1
∂x2

+
∂Hpm,2
∂x1

with f : Ω→ R. After transforming our boundary conditions, we obtain the

9



10 CHAPTER 2. MAGNETOQUASISTATIC APPROXIMATION OF MAXWELL’S EQUATIONS

2-D magnetoquasistatics equation:

σ
∂u
∂t
− ∇ · (ν(|∇u|)∇u) = f in Ω × I (2.12)

u = 0 in ΓB × I,

[ν(|∇u|)∇u] · ~η = 0 on ΓH × I,

u = uo on Ω × {0}.

In the next sections we discuss a weak formulation of (2.12) and the question of unique solvability.

2.1.2 The B-H curve and its properties

According to (2.1), there exists a magnetic field H around any conductor of electric current. The magnetic

field H is also called the magnetizing force, because materials, placed near such a force may acquire the

magnetic properties. The amount of magnetism induced in a body is then described by a magnetic flux

density B. The magnitude of the magnetic flux B := |B| depends on the magnitude of the magnetizing

force H := |H| and on the material properties. The relation between B and H is linear in a variety of

materials, i.e. we have B = µH, where µ is a constant magnetic permeability. Materials with a strong

response to the magnetic field are called ferromagnetics. The B − H relation in ferromagnetic materials

is described by a nonlinear B − H curve:

fBH : R+
0 → R+

0 : H 7→ B = fBH(H). (2.13)

The magnetic permeability µ1 and the magnetic reluctivity ν1 in ferromagnetics are then defined as

µ1(s) :=
fBH(s)

s
, and ν1(s) :=

f −1
BH(s)

s
, (2.14)

such that we have

B = µ1(|H|)H, and H = ν1(|B|)B. (2.15)

A physical nature of the function fBH imposes the following natural assumptions on it (see, e.g. [42,

24]):

Assumption 1. Let fBH : R+
0 → R+

0 be a B − H curve. Then the following holds:

1. fBH ∈ C1(R+
0 ),

2. fBH(0) = 0,

3. f ′BH(s) ≥ µ0 > 0, ∀s ≥ 0,

4. lim
s→∞

f ′BH(s) = µ0,

where µ0 = 4π × 10−7 denotes the permeability of vacuum.

The following properties of the function ν1 easily follow from Assumption 1:

Corollary 2.1.1. Let Assumption 1 hold. Let ν0 := 1/µ0 be the reluctivity of vacuum. Then the reluctivity

function for ferromagnetic materials ν1 satisfies the following conditions:

10



2.1. PHYSICAL BACKGROUND 11

0 0.5 1 1.5 2 2.5

0

1

2

3

4

5

6

7

8
10

5

Figure 2.1: An example of fHB used in our simulations (the measurements are denoted by dots).

1. ν1 ∈ C1(R+
0 ) and is bounded, that is, there exists νLB > 0 such that, for all s ∈ R+

0 it satisfies

νLB ≤ ν1(s) ≤ ν0 (2.16)

together with

lim
s→∞

ν1(s) = ν0, and lim
s→∞

ν′1(s) = 0.

2. The mapping s 7→ ν1(s)s = f −1
BH(s), s ∈ R+

0 satisfies

νLB ≤ (ν1(s)s)′ ≤ ν0, (2.17)

is strongly monotone with monotonicity constant νLB and Lipschitz continuous with Lipschitz con-

stant ν0, that is, for all s, t ∈ R+
0 it satisfies

(ν1(s)s − ν1(t)t)(s − t) ≥ νLB (s − t)2, (2.18a)

|ν1(s)s − ν1(t)t| ≤ ν0 |s − t|. (2.18b)

Proof. See [42]. �

In practice, the analytical form of B − H curves is generally not known. Instead, the inverse of the

B − H curve fHB(s) := f −1
BH(s) is reconstructed from a finite number of discrete points

(Hk, Bk), k = 1, ...,K ∈ N, (2.19)

which are obtained from the real life measurements. For monotone data, as we have in our case, i.e., Hi ≤

H j for i < j, the monotonicity-preserving cubic spline interpolation technique, proposed in [13], can be

used for reconstruction (see Fig.2.1). Precisely, on each interval [Bi, Bi+1] of length 4Bi = Bi+1 − Bi, fHB

11



12 CHAPTER 2. MAGNETOQUASISTATIC APPROXIMATION OF MAXWELL’S EQUATIONS

is represented as a cubic polynomial

fHB(B) = Hih1(B) + Hi+1h2(B) + dih3(B) + dih4(B), (2.20)

where d j := f ′HB(B j), j = i, i + 1 and hp(B), p = 1, .., 4 are the usual Hermite basis functions on the

interval [Bi, Bi+1]: h1(B) = z((Bi+1 − B)/4Bi), h2(B) = z((B− Bi)/4Bi), h3(B) = −4Bis((Bi+1 − B)/4Bi),

h4(B) = 4Bis((B− Bi)/4Bi), where z(t) = 3t2 − 2t3 and s(t) = t3 − t2. We note that suitable extrapolation

techniques can be employed for the points beyond the data range (2.19) (see, e.g. [24]). The nonlinear

reluctivity ν1 is then obtained according to (2.14).

2.2 Analytical background

In this section we define notation and important notions from functional analysis, required for weak

formulations of our magnetostatics and magnetoquasistatics PDEs. Afterwards, we prove that the corre-

sponding weak problems are well-posed.

2.2.1 Some facts from functional analysis

We consider a real Banach space V with the norm ‖·‖V : V → R+
0 . The space V is called separable, if

there exists a countable dense subset K := {ui ∈ V, i ∈ N} ⊂ V such that

∀u ∈ V ∀ε > 0 ∃y ∈ K : ‖u − y‖V < ε.

Let Y be a Banach space with the norm ‖·‖Y . A linear operator T : V → Y is called bounded if

∃C > 0 : ‖Tu‖Y ≤ C‖u‖V ∀u ∈ V.

The space of linear bounded operators from V to Y is denoted by L(V,Y) and equipped with the norm

‖T‖L(V,Y) := sup
‖u‖V =1

‖Tu‖Y .

We recall that L(V,Y) is Banach if Y is a Banach space. We also note that bounded linear operators be-

tween Banach spaces are continuous, therefore for them we use the notion of continuity and boundedness

interchangeably.

Besides, we define a continuous embedding of V into the space Y as a continuous, linear, injective

mapping i : V → Y . If such an i exists, we say that V is continuously embedded in Y and write V ↪→ Y .

Definition 2 (Linear functionals, duals spaces).

• Let V be a Banach space. A bounded linear operator f : V → R, i.e., f ∈ L(V,R) is called a

bounded linear functional on V .

• The space V ′ := L(V,R) is called the dual space of V and is a Banach space with the operator

norm

‖ f ‖V′ := sup
‖u‖V =1

| f (u)|.

12



2.2. ANALYTICAL BACKGROUND 13

• We use the notation

〈 f , u〉V′V := f (u).

〈·, ·〉V′V is called the duality pairing of V and V ′.

Let H be a real Hilbert space with the inner product 〈·, ·〉H : H × H → R+
0 and the induced norm

‖·‖H := 〈·, ·〉1/2H . We need the following

Theorem 3 (Riesz representation theorem). Let H be a Hilbert space. For any f ∈ H′ there exists a

unique v f ∈ H such that

〈 f , u〉H′H = 〈v f , u〉H ∀u ∈ H, (2.21)

and the mapping f 7→ v f is isometric, i.e., ‖ f ‖H′ = ‖v f ‖H . We say that v f is the Riesz representer of f .

We denote by V ′′ = (V ′)′ = L(V ′,R) the bidual space of V . We define the evaluation functional

evu : V ′ → R as

evu( f ) := 〈 f , u〉V′V ∀ f ∈ V ′. (2.22)

If all functionals in V ′′ are of the form (2.22), i.e., the mapping

V 3 u 7→ evu ∈ V ′′

is surjective, then we say that V is reflexive. In that case V ′′ is isometrically isomorphic to V and one can

identify V with V ′′.

We commonly define Lp(Ω) as the space of equivalence classes of a.e. identical Lebesque measurable

functions on Ω ⊂ Rd, equipped with the norm

‖u‖Lp(Ω) :=


(∫

Ω
|u(x)|p dx

)1/p
for 1 ≤ p < ∞,

ess sup
x∈Ω

|u(x)| for p = ∞.
(2.23)

We also define the Lebesque space L1
loc(Ω) of locally integrable functions on Ω, i.e.,

L1
loc(Ω) := { f : Ω→ R, f |K ∈ L1(K), ∀K ⊂ Ω,K compact}.

Let Ω ⊂ Rd be open and let u ∈ L1
loc(Ω). Consider the space of smooth functions C∞c (Ω) with compact

support supp f , f ∈ C∞c (Ω). If there exists a function w ∈ L1
loc(Ω) such that∫

Ω

wφ dx = (−1)|a|
∫

Ω

uDaφ dx, ∀φ ∈ C∞c (Ω), (2.24)

then Dau := w is called the a-th weak partial derivative of u. We then commonly introduce Sobolev

spaces Wk,p(Ω) as subspaces of functions u ∈ Lp(Ω), for which the weak derivatives Dau, |a| ≤ k, are in

13



14 CHAPTER 2. MAGNETOQUASISTATIC APPROXIMATION OF MAXWELL’S EQUATIONS

Lp(Ω). The norm on Wk,p(Ω) is given by

‖u‖Wk,p(Ω) :=


(∑
|a|≤k‖Dau‖pLp(Ω)

)1/p
for 1 ≤ p < ∞,∑

|a|≤k‖Dau‖L∞(Ω) for p = ∞.
(2.25)

We note that for p = 2 we have a Hilbert space Hk(Ω) := Wk,p(Ω). We refer the reader to [8] for more

details on functional analysis and Sobolev spaces.

2.2.2 Brief on Bochner spaces

In this subsection we briefly introduce the necessary functional analytic tools to study abstract parabolic

equations and their weak solutions. Solutions to parabolic PDEs are functions of time and space, there-

fore the regularity in space and time may be different. We introduce some important spaces, called

Bochner spaces (see, e.g. [54, 11]), which formalize the later regularity issues of weak solutions to

parabolic PDEs and are suitable for our problems.

Following [54], we first introduce the concept of a function with values in a Banach space, or a

vector-valued function. Let [0,T ] ⊂ R and V be a Banach space and consider a vector-valued function

u : [0,T ] → V , that is, for any fixed t ∈ [0,T ], the function x 7→ u(x, t) belongs to V . For a Banach

space V and 1 ≤ p ≤ ∞, the linear space Lp(0,T ; V) consists of all measurable vector-valued functions

u : [0,T ]→ V , such that

‖u‖Lp(0,T ;V) :=


(∫ T

0 ‖u(t)‖pV dt
)1/p

< ∞ for 1 ≤ p < ∞,

ess sup
t∈[0,T ]

‖u(t)‖V < ∞ for p = ∞.
(2.26)

We also denote by C(0,T ; V) a space of vector-valued functions with values in V , which are continuous

on [0,T ], with the norm

‖u‖C(0,T ;V) := max
t∈[0,T ]

‖u(t)‖V . (2.27)

It is known (see, e.g. [11]) that this choice of norms makes the corresponding spaces complete. Moreover,

if H is a Hilbert space, then L2(0,T ; H) is also a Hilbert space with the inner product

〈u, v〉L2(0,T ;H) :=
∫ T

0
〈u(t), v(t)〉Hdt, u, v ∈ L2(0,T ; H). (2.28)

Furthermore, let V be a reflexive Banach space, 1 ≤ p < ∞ and 1/p+1/q = 1. We have the identification

[Lp(0,T ; V)]′ = Lq(0,T ; V ′).

The duality pairing of the spaces Lq(0,T ; V ′) and Lp(0,T ; V) is given by

〈u(t), v(t)〉Lq(0,T ;V′) Lp(0,T ;V) :=
∫ T

0
〈u(t), v(t)〉V′Vdt, u ∈ Lq(0,T ; V ′), v ∈ Lp(0,T ; V).

The treatment of parabolic equations requires the simultaneous use of two appropriately coupled spaces

H and V . This coupling is formalized with the notion of a Gelfand triple.

14



2.2. ANALYTICAL BACKGROUND 15

Definition 4 (Gelfand triple, see [54]). The chain of embeddings V ↪→ H ↪→ V ′ is called a Gelfand

triple if

• V - real separable reflexive Banach space;

• H - real separable Hilbert space;

• V is dense in H and embedding V ↪→ H is continuous, that is,

∃C > 0 : ‖v‖H ≤ C‖v‖V ∀v ∈ V.

In the Gelfand triple, we identify H with its dual space H′ via the following linear, continuous, injective

mapping

H 3 h 7→ 〈h, ·〉H ∈ H′, (2.29)

which is also surjective, according to the Riesz representation theorem. Then the embedding H′ ↪→ V ′ is

simply the restriction of 〈h, ·〉H ∈ H′ to V , which means that for h ∈ H, v ∈ V it holds 〈h, v〉V′V = 〈h, v〉H .

We define a weak (or generalized) derivative of a vector-valued function: for u ∈ L1(0,T ; V), a

function y ∈ L1(0,T ; V) satisfying∫ T

0
u(t)φ′(t)dt = −

∫ T

0
y(t)φ(t)dt, ∀φ ∈ C∞c ((0,T )), (2.30)

is called the weak derivative of u on (0,T ) and one writes u̇ := y.

Consider a Gelfand triple V ↪→ H ↪→ V ′ and let u ∈ Lp(0,T ; V). If there exists w ∈ Lq(0,T ; V ′),

such that ∫ T

0
〈u(t), v〉Hφ′(t)dt = −

∫ T

0
〈w(t), v〉V′Vφ(t)dt ∀v ∈ V, ∀φ ∈ C∞c ((0,T )), (2.31)

then u̇ := w is the generalized derivative of u and

d
dt
〈u(t), v〉H = 〈u̇(t), v〉V′V ∀v a.e. t ∈ (0,T ). (2.32)

We define the space, which is going to be the solution (or trial) space for weak parabolic PDEs

W(0,T ) := {u ∈ L2(0,T ; V), u̇ ∈ L2(0,T ; V ′)}, (2.33)

and state some of its important properties.

Proposition 2.2.1. Let V ↪→ H ↪→ V ′ be a Gelfand triple. Then the following hold:

• The space W(0,T ) is a Hilbert space with the inner product

〈u, v〉W(0,T ) :=
∫ T

0
[〈u(t), v(t)〉V + 〈u̇(t), v̇(t)〉V′] dt, u, v ∈ W(0,T ), (2.34)

where 〈u, v〉V′ := 〈Ju,Jv〉V , andJ : V ′ → V is the duality mapping from the Riesz representation

theorem.

15



16 CHAPTER 2. MAGNETOQUASISTATIC APPROXIMATION OF MAXWELL’S EQUATIONS

• There is a continuous embedding

W(0,T ) ↪→ C(0,T ; H). (2.35)

More precisely, for u ∈ W(0,T ) there exists a unique continuous function ū : [0,T ] → H, such

that ū = u a.e. in [0,T ] and we have

∃C > 0 : max
t∈[0,T ]

‖u(t)‖H ≤ C‖u‖W(0,T ). (2.36)

• For u, v ∈ W(0,T ) and t1, t2 ∈ [0,T ], t1 ≤ t2, the generalized integration by parts formula holds:

〈u(t2), v(t2)〉H − 〈u(t1), v(t1)〉H =

∫ t2

t1
[〈u̇(s), v(s)〉V′V + 〈v̇(s), u(s)〉V′V ] ds. (2.37)

Proof. See [54]. �

2.2.3 Existence and uniqueness of weak solutions

In this subsection we present the mathematical analysis of magnetostatic and magnetoquasistatic prob-

lems. In the following definition we list some important properties of an operator, which will be essential

in this analysis.

Definition 5 (see [55]). Let V be a Banach space and A : V → V ′ be an operator. Then

• A is called monotone iff

〈A(u) − A(v), u − v〉V′V ≥ 0, ∀u, v ∈ V;

• A is called strongly monotone iff ∃C > 0 such that:

〈A(u) − A(v), u − v〉V′V ≥ C‖u − v‖2V , ∀u, v ∈ V;

• A is called coercive iff

〈A(u), u〉V′V
‖u‖V

→ ∞, as ‖u‖V → ∞;

• A is called Lipschitz continuous iff ∃C > 0 such that:

〈A(u) − A(w), v〉V′V ≤ L‖u − w‖V‖v‖V , ∀u,w, v ∈ V;

• A is called hemicontinuous iff the mapping

s 7→ 〈A(u + sw), v〉V′V

is continuous on [0, 1], ∀u, v,w ∈ V.

Firstly, we discuss a domain structure and a structure of the nonlinearity, which is common for both

stationary and non-stationary problems. We recall that Ω ⊂ R2 is a bounded domain with a sufficiently

16



2.2. ANALYTICAL BACKGROUND 17

smooth boundary Γ =: ∂Ω, such that Γ = Γ̄B ∪ Γ̄H and ΓB ∩ ΓH = ∅, and ~η = ~η(x1, x2) denotes the

outer normal vector to Γ. Let Ω f denote the subdomain, which consists of ferromagnetic material. Let

Ωair = Ω \ Ω̄ f be the subdomain, which consists of all other materials, i.e. the magnet areas Ωmag,

the coil areas Ωc and the air gap regions Ωg. We assume that the interface lines between the materials

are piecewise C2 and Lipschitz continuous. We now define the magnetic reluctivity function for our

problem:

ν(x, |∇u|) =


ν1(|∇u|), for x ∈ Ω f ,

ν0, for x ∈ Ωair \Ωmag,

νmag, for x ∈ Ωmag,

(2.38)

where ν1 is a nonlinear function that is defined via B − H curve (2.14), ν0 = 4π × 107 is the reluctivity

of vacuum (which is also a feasible value for the reluctivity of air) and νmag is the reluctivity of the

permanent magnet material. For simplicity of presentation, we set νmag = ν0 and use the value νmag =

ν0/1.086 for numerical examples in this thesis. Then we have

ν(x, |∇u|) = χΩ f (x)ν1(|∇u|) + χΩair (x)ν0. (2.39)

The magnetic reluctivity ν : Ω × R+
0 → R+

0 satisfies the Carathéodory condition [12]; i.e., for every

s ∈ R+
0 the function ν(·, s) is measurable, and ν is continuous in s for almost every x ∈ Ω. Furthermore,

due to (2.16), we have that

νLB ≤ |ν(x, s)| ≤ ν0 < ∞ a.e. in Ω, ∀s ∈ R+
0 , (2.40)

which implies that ν(·, |∇u(·)|) ∈ L∞(Ω) for each u ∈ H1(Ω).

Remark 6. We note that ν(x, s) satisfies (2.18a) and (2.18b) for all x ∈ Ω. It follows from the Corollary

2.1.1 that the mapping R+
0 3 s 7→ ν(x, s)s ∈ R+

0 is strongly monotone with monotonicity constant νLB and

Lipschitz continuous with Lipschitz constant ν0.

We consider a two-dimensional nonlinear magnetostatic field problem, that is, a stationary case of

problem (2.12):

−∇ · (ν(|∇u|)∇u) = f in Ω

u = 0 in ΓB (2.41)

[ν(|∇u|)∇u] · ~η = 0 on ΓH

We proceed with an abstract formulation of problem (2.41). Let ΓB be a Dirichlet boundary with

meas(ΓB) > 0. The function space V is such that

V := {v : v ∈ H1(Ω), v|ΓB = 0}. (2.42)

The inner product on V is defined by 〈w, v〉V =
∫
Ω
∇w · ∇v dx and the induced norm is given by ‖v‖V =

〈v, v〉1/2V , which is indeed a norm due to Poincare-Friedrichs inequality [11]. We introduce the nonlinear

operator A : V → V ′, which stems from the integration by parts of the left-hand side of equation (2.41),

17



18 CHAPTER 2. MAGNETOQUASISTATIC APPROXIMATION OF MAXWELL’S EQUATIONS

defined by

〈A(u), v〉V′V := a[u](u, v) =

∫
Ω

ν(x, |∇u|)∇u · ∇v dx, ∀u, v ∈ V, (2.43)

where a[u](u, v) is the induced quasilinear form. The weak form of the right-hand side of equation (2.41)

reads:

〈 f , v〉V′V =

∫
Ω

(Jev − Hpm,2
∂v
∂x1

+ Hpm,1
∂v
∂x2

)dx, (2.44)

where Je ∈ L2(Ω) represents the current density and Hpm,1,Hpm,2 ∈ L2(Ω) are the components of the

permanent magnet magnetic field. We note that the integrals, appearing in (2.43) and (2.44), are well-

defined. Then the abstract formulation of problem (2.41) reads as follows: find u ∈ V such that

〈A(u), v〉V′V = 〈 f , v〉V′V , ∀v ∈ V. (2.45)

The governing weak PDE (2.45) is then of a quasilinear elliptic type. For existence and uniqueness of

solutions of problem (2.45), we use a theorem, provided by Zarantonello.

Theorem 7. ([55, Theorem 25.B]) Let V be a Hilbert space, f ∈ V ′ and A : V → V ′ an operator,

which is strongly monotone and Lipschitz continuous. Then the operator equation A(u) = f has a unique

solution u ∈ V.

Proof. See [55]. �

In order to apply Theorem 7 to our problem (2.45), we need the following Lemma 8. Due to its

overall importance not only for the current analysis, but also for the upcoming error bounds in the next

sections, we provide the proof of this lemma.

Lemma 8 (see [24]). If ν(x, ·)· : R+
0 → R+

0 is strongly monotone with monotonicity constant νLB and

Lipschitz continuous with Lipschitz constant ν0. Then the nonlinear operator A is strongly monotone

with monotonicity constant ma := νLB and Lipschitz continuous with Lipschitz constant La := 2νLB + ν0.

Proof. First we show that the mapping ν(x, | · |)· : R2 → R2 is strongly monotone with monotonicity

constant vLB. By assumption, it holds that

(
ν(x, |p|)|p| − ν(x, |q|)|q|

)(
|p| − |q|

)
≥ νLB

(
|p| − |q|

)2,

which implies that

ν(x, |p|)|p|2 ≥ νLB
(
|p| − |q|

)2
+

(
ν(x, |p|) + ν(x, |q|)

)
|p||q| − ν(x, |q|)|q|2.

It follows from the above inequality that

(
ν(x, |p|)p − ν(x, |q|)q

)(
p − q

)
= ν(x, |p|)|p|2 + ν(x, |q|)|q|2 −

(
ν(x, |p|) + ν(x, |q|)

)
p · q

≥ νLB
(
|p| − |q|

)2
+

(
ν(x, |p|) + ν(x, |q|)

)(
|p||q| − p · q

)
≥ νLB

(
|p| − |q|

)2
+ 2νLB

(
|p||q| − p · q

)
= νLB|p − q|2.

18
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We now set p = ∇u,q = ∇v and apply the estimate above to establish the strong monotonicity of A:

〈A(u) − A(v), u − v〉V′V = a[u](u, u − v) − a[v](v, u − v)

=

∫
Ω

(ν(x, |∇u|)∇u − ν(x, |∇v|)∇v) · (∇u − ∇v)dx

≥ νLB

∫
Ω

|∇u − ∇v|2dx = ma‖u − v‖2V .

We now prove Lipschitz continuity of the mapping ν(x, | · |)·. We have the following estimate∣∣∣ν(x, |p|)p − ν(x, |q|)q
∣∣∣ =

∣∣∣ν(x, |p|)(p − q) +
(
ν(x, |p|) − ν(x, |q|)

)
q
∣∣∣

≤ ν(x, |p|)|p − q| +
∣∣∣(ν(x, |p|) − ν(x, |q|)

)
|q|

∣∣∣
= ν(x, |p|)|p − q| +

∣∣∣ν(x, |p|)(|p| − |q|) + ν(x, |p|)|p| − ν(x, |q|)|q|
∣∣∣

≤ 2ν(x, |p|)|p − q| +
∣∣∣ν(x, |p|)|p| − ν(x, |q|)|q|

∣∣∣
By the assumption on Lipschitz continuity of ν(x, ·)·, it holds that∣∣∣ν(x, |p|)p − ν(x, |q|)q

∣∣∣ ≤ (2ν(x, |p|) + νUB)|p − q| ≤ (2νLB + ν0)|p − q| = La|p − q|.

We now apply the estimate above to establish the Lipschitz continuity of A:

〈A(u) − A(v),w〉V′V = a[u](u,w) − a[v](v,w)

=

∫
Ω

∣∣∣[ν(x, |∇u|)∇u − ν(x, |∇v|)∇v] · ∇w
∣∣∣dx

≤

∫
Ω

∣∣∣ν(x, |∇u|)∇u − ν(x, |∇v|)∇v
∣∣∣|∇w|dx

≤ La

∫
Ω

|∇u − ∇v||∇w|dx ≤ La‖u − v‖V‖w‖V .

�

All together, the well-posedness of problem (2.45) follows, so that (2.45) admits a unique solution u ∈ V .

Further we present the analysis of magnetoquasistatic problem (2.12). We set V as in (2.42) and

H := L2(Ω) and consider a corresponding Gelfand triple V ↪→ H ↪→ V ′. We multiply equation (2.12) by

an arbitrary function v ∈ V and integrate over the domain Ω to obtain the following weak formulation of

problem: find u ∈ W(0,T ) such that

σ〈u̇(t), v〉V′V + 〈A(u(t)), v〉V′V = 〈 f (t), v〉V′V a.e. t ∈ (0,T ) (2.46)

u(0) = uo ∈ H.

Here the operator A : V → V ′ is given by and f ∈ L2(0,T ; V ′). Derivative u̇ is understood in the

generalized sense, specified in (2.32). Moreover, the initial condition is well-defined in H due to the

continuous embedding W(0,T ) ↪→ C(0,T ; H) (see Proposition 2.2.1).

We can write a weak formulation of (2.12) in a way, which would let us treat the space and time

variable similarly. Precisely, we multiply equation by an arbitrary function v ∈ L2(0,T ; V) and integrate

over both the domain Ω and the time interval (0,T ). In addition, we incorporate an initial condition in a

19



20 CHAPTER 2. MAGNETOQUASISTATIC APPROXIMATION OF MAXWELL’S EQUATIONS

weak manner. Then a space-time variational formulation reads: find u ∈ W(0,T ) such that

B[u](u, v) = F(v), ∀ v := (v(1), v(2)) ∈ L2(0,T ; V) × H, (2.47)

where

B[u](u, v) :=
∫

I
σ〈u̇, v(1)〉V′V + a[u](u, v(1))dt + 〈u(0), v(2)〉H , and (2.48)

F(v) :=
∫

I
〈 f , v(1)〉V′Vdt + 〈uo, v(2)〉H . (2.49)

We note that the space-time variational formulation (2.47) is equivalent to the weak formulation (2.46)

(see, e.g. [28]). For existence and uniqueness of solutions to problem (2.47), we need the following

theorem.

Theorem 9. ([55, Theorem 30.A]) Let V ↪→ H ↪→ V ′ be a Gelfand triple and let uo ∈ H and f ∈

L2(0,T ; V ′). If

1. operator A : V → V ′ is monotone, hemicontinuous, coercive and bounded;

2. the mapping t 7→ 〈A(u(t), v〉V′V is measurable on (0,T ), ∀u, v ∈ V,

then the problem has a unique solution u ∈ W(0,T ).

Proof. See, e.g. [55] �

The strong monotonicity of the operator A implies its monotonicity. Lipschitz continuity of A implies its

hemicontinuity and boundedness. We are left to show that the operator A is coercive: it easily follows

from the fact that ν is bounded from below by νLB. Therefore, the first point of the Theorem 9 is

satisfied. The magnetic reluctivity ν satisfies the Carathéodory condition, therefore the second point of

the Theorem 9 is satisfied. All together, it implies that problem (2.47) admits a unique solution.

Remark 10. We note that hemicontinuity easily follows from the continuity of ν on R+
0 and (2.40) easily

implies boundedness of A.

2.2.4 The Newton operator

Application of Newton’s method requires knowledge of the Frechét derivative A′(u) : V → V ′ of the

operator A. In the context of our problem, we have the following definitions of various derivatives in

Banach space.

Definition 11 (see [28]). Let V be a Banach space and A : U ⊂ V → V ′ be an operator, U , ∅ open.

Then

• A is called directionally differentiable at u ∈ U if the limit

dA(u, h) = lim
ε→0

A(u + εh) − A(u)
ε

=
d
dε

∣∣∣∣∣∣
ε=0

A(u + εh) ∈ V ′

exists for all h ∈ V. In this case, dA(u, h) is called directional derivative of A in the direction h.
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2.2. ANALYTICAL BACKGROUND 21

• A is called Gateaux differentiable (or G-differentiable) at u ∈ U if A is directionally differentiable

at u and the directional derivative A′(u) : V 3 h 7→ dA(u, h) ∈ V ′ is bounded and linear, i.e.,

A′(u) ∈ L(V,V ′).

• A is called Fréchet differentiable (or F-differentiable) at u ∈ U if A is Gateaux differentiable at u

and the following condition holds:∣∣∣〈A(u + εh) − A(u) − A′(u)(εh), v〉V′V
∣∣∣ ≤ o(ε)‖h‖V‖v‖V ,

where o(·) denotes the Landau “small o” notation.

We split the operator A into two parts, which correspond to ferromagnetic and linear materials

〈A(u), v〉V′V =

∫
Ω f

ν1(|∇u|)∇u · ∇vdx +

∫
Ωair

ν0∇u · ∇vdx. (2.50)

For ∇u , 0, we form the directional derivative dA(u, h) and test it with an arbitrary v ∈ V to obtain

〈dA(u, h), v〉V′V =
d
dε

∣∣∣∣∣∣
ε=0

[ ∫
Ω f

ν1(|∇(u + εh)|)∇(u + εh) · ∇vdx +

∫
Ωair

ν0∇(u + εh) · ∇vdx
]

(2.51)

=

∫
Ω f

ν′1(|∇u|)
|∇u|

(∇u · ∇h)(∇u · ∇v) + ν1(|∇u|)∇h · ∇dx +

∫
Ωair

ν0∇h · ∇vdx.

In general, for p = 0 the mapping R2 3 p 7→ ν1(|p|) is not differentiable, but the mapping R2 3 p 7→

ν1(|p|)p is. Indeed, let p ∈ R2, |p| > 0, then

lim
ε→0

ν1(|εp|)εp − ν1(0)0
ε − 0

= lim
ε→0

ν1(|εp|)p = ν1(0)p. (2.52)

Therefore, for ∇u = 0 we have

〈dA(u, h), v〉V′V =
d
dε

∣∣∣∣∣∣
ε=0

[ ∫
Ω f

ν1(|ε∇h|)ε∇h · ∇vdx +

∫
Ωair

ν0∇(u + εh) · ∇vdx
]

(2.53)

=

∫
Ω f

ν1(0)∇h · ∇vdx +

∫
Ωair

ν0∇h · ∇vdx.

Linearity of the mapping h 7→ dA(u, h) is obvious, therefore we write dA(u, h) = A′(u)h. We define the

differential reluctivity tensor ν̂df : R2 → R2×2:

ν̂df(q) =

ν1(|q|)I +
ν′1(|q|)
|q| qqT , for q , 0,

ν1(|q|)I, for q = 0,
(2.54)

where I ∈ R2×2 denotes the identity matrix. Moreover, for a fixed R2 3 q , 0, we can compute the

eigenvalues and eigenvectors of ν̂df(q) (see, e.g. [42]):

λ1(q) = q⊥ = ν1(|q|),

λ2(q) = q = ν1(|q|) + ν′1(|q|)|q|,

v1 = (−q2, q1)T ,

v2 = (q1, q2)T .
(2.55)
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22 CHAPTER 2. MAGNETOQUASISTATIC APPROXIMATION OF MAXWELL’S EQUATIONS

Then we introduce the general differential reluctivity tensor νdf : Ω × R2 → R2×2, given by

νdf(x, q) := χΩ f (x)ν̂df(q) + χΩair (x)ν0q. (2.56)

Then the derivative of the operator A can be written as

〈A′(u)w, v〉V′V =

∫
Ω

νdf(x,∇u)∇w · ∇vdx. (2.57)

We now prove the following lemma.

Lemma 12. Let u ∈ V, and define the bilinear form 〈A′(u)w, v〉V′V := da[u](w, v). Then da[u](·, ·) is

coercive and continuous, i.e.,

da[u](v, v) ≥ νLB‖v‖2V , ∀v ∈ V,

da[u](w, v) ≤ ν0‖w‖V‖v‖V , ∀v,w ∈ V.

Proof. We use the computed eigenvalues (2.55) and bound (2.18a) to prove coercivity

da[u](w,w) ≥
∫

Ω

min{λ1(∇u), λ2(∇u)}∇w · ∇wdx ≥ νLB‖w‖2V ,

and similarly with bound (2.17) we prove continuity

da[u](w, v) ≤
∫

Ω

max{λ1(∇u), λ2(∇u)}∇w · ∇vdx ≤ ν0‖w‖V‖v‖V .

�

From Lemma 12, we conclude that A′(u) ∈ L(V,V ′) and hence the operator A is G-differentiable. More-

over, for p, q ∈ R2, p , 0, it holds

ν1(|p + εq|)(p + εq) − ν1(|p|)p = εν1(|p|)q + ε
ν′1(|p|)
|p|

(p · q)p + o(ε|q|), (2.58)

and implies that

∣∣∣〈A(u + εh) − A(u) − A′(u)(εh), v〉V′V
∣∣∣ ≤ ∫

Ω

o(ε|∇h|)|∇v|dx ≤ o(ε)‖h‖V‖v‖V . (2.59)

Therefore, we established that the operator A is F-differentiable with continuously invertible F-derivative

A′(u), which will be subsequently used to solve arising nonlinear equations with Newton’s method.
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Chapter 3

The Reduced Basis Method

3.1 Overview

Consider an exact solution map Φ : D → V for some parametric partial differential equation, where

D ⊂ Rp is a compact parameter set, V is an appropriate Hilbert space and Φ(µ) ∈ V is the certain

solution of our PDE. Its image induces the solution manifold

M := Φ(D) = {u(µ) ∈ V : µ ∈ D} ⊂ V. (3.1)

The main idea of the reduced basis method is the realization that, in many instances, the solution man-

ifold (3.1) can be approximated sufficiently well by its projection on a low-dimensional linear subspace

VN , spanned by appropriately chosen snapshots Φ(µ̄1), ...,Φ(µ̄N), µ̄1 ∈ D, ..., µ̄N ∈ D. The good approx-

imation space VN attempts to minimize the Kolmogorov N-widths

dN(M; VN) := inf
VN⊂V

dim(VN )=N

δ(M; VN), (3.2)

where by

δ(M; VN) := sup
µ∈D

inf
vN∈VN

‖u(µ) − vN‖V (3.3)

we denote the deviation of VN from M. The optimization problem (3.2) is difficult to solve, therefore

the heuristic Greedy procedure, based on the linear search in the parameter set D, was proposed [50].

The Greedy algorithm iteratively picks up the snapshots fromM and constructs the approximation space

VN . Convergence results for the Greedy procedure are achieved by applying the convergence rates of the

Kolmogorov N-widths, see e.g. [9] and [6] for respective exponential and algebraic convergence rates.

In actual practice, we do not have an access to the exact solution of the problem and thus to the so-

lution manifoldM, therefore we replace Φ with its truth approximation Φh, obtained, e.g. by a Galerkin

projection on a suitable finite element approximation space Vh ⊂ V of very large dimension N . We

assume that the inducedMh can be made as close toM as desired by choosing an appropriate discretiza-

tion.

The efficient implementation of the Greedy procedure requires a-posteriori error estimates or bounds

and also certain structural assumptions on the problems of interest, such as the parameter-separability,

which leads to the offline-online decomposition. In this chapter we sketch the main ingredients of the
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24 CHAPTER 3. THE REDUCED BASIS METHOD

reduced basis modelling for linear elliptic and parabolic PDEs. We refer the reader to [21, 43, 25] for the

comprehensive introduction into reduced-basis methods and to [41] for the brief overview of the field.

3.2 Reduced basis method for linear elliptic PDEs

In this section we briefly outline the reduced basis method for linear elliptic problems with coercive

differential operator (see e.g. [22] for the detailed treatment).

3.2.1 Abstract formulation

Let Ω ⊂ Rd be the spatial domain and µ ∈ D ⊂ Rp, whereD is a compact parameter set. Let V ⊆ H1(Ω)

be a separable Hilbert space. We denote by 〈·, ·〉V and ‖·‖V the inner product and induced norm on V . For

given µ ∈ D we consider a linear, bounded, coercive differential operator A(µ) : V → V ′ with induced

bilinear form a(·, ·; µ) : V × V → R:

a(u, v; µ) := 〈A(µ)u, v〉V′V . (3.4)

For given f (·; µ) ∈ V ′, we consider the weak form of parametrized elliptic PDE or truth problem: given

µ ∈ D, find u(µ) ∈ V such that

a(u(µ), v; µ) = f (v, µ), ∀v ∈ V. (3.5)

We assume that bilinear forms (3.4) are coercive on V with coercivity constants α(µ) > 0, i.e.

a(v, v; µ) ≥ α(µ)‖v‖2V ∀v ∈ V, (3.6)

and continuous on V with continuity constants γ(µ) > 0, i.e.

|a(w, v; µ)| ≤ γ(µ)‖w‖V‖v‖V ∀w, v ∈ V. (3.7)

In addition, we assume that these conditions hold uniformly:

α := inf
µ∈D

α(µ) > 0, γ := sup
µ∈D

γ(µ) < ∞. (3.8)

Lax-Milgram lemma [54] implies that problem (3.5) admits a unique solution u(µ) ∈ V .

Besides, we assume that problem is parameter separable or affinely decomposed, i.e., there are con-

tinuous mappings θa,q, θ f ,q : D → R and continuous forms aq : V × V → R (1 ≤ q ≤ Qa), fq : V → R

(1 ≤ q ≤ Q f ) such that

a(w, v; µ) =

Qa∑
q=1

θa,q(µ)aq(w, v), f (v, µ) =

Q f∑
q=1

θ f ,q(µ) fq(v). (3.9)

3.2.2 Finite Element Truth Approximation

We introduce a high dimensional finite element discretization (or truth approximation) of problem (3.5)

in the space VN = span{φ1, ..., φN } ⊂ V of piecewise linear and continuous finite element functions.
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The finite element approximation of problem (3.5) is obtained by a standard Galerkin projection: given

µ ∈ D, find uN (µ) ∈ VN such that

a(uN (µ), vN ; µ) = f (vN , µ), ∀vN ∈ VN . (3.10)

Given the ansatz uN (µ) =
∑N

j=1 uN j(µ)φ j for the discrete solution and testing against the basis elements

in VN leads to the system

AN (µ)uN (µ) = FN (µ), (3.11)

of linear algebraic equations, where FN (µ) := { f (φ j; µ)}Nj=1 ∈ RN and AN (µ) := {a(φ j, φi; µ)}Ni, j=1 ∈

RN×N . We assume that a single solution of (3.11) requires O(N2) operations, resulting from N steps of

an iterative solver at cost O(N) for each matrix-vector multiplication.

3.2.3 Reduced basis approximation with the Greedy method

To perform the reduced basis approximation, we first introduce a subset Dtrain ⊂ D from which a

sample DN = {µ̄1 ∈ D, ..., µ̄N ∈ D} with associated reduced-basis space VN = span{ζn := uN (µ̄n), 1 ≤

n ≤ N} of dimension N, which is built with the help of a weak greedy algorithm. This algorithm

constructs iteratively nested spaces Vn, 1 ≤ n ≤ N using an a-posteriori error estimator 4(Y; µ), which

predicts the expected approximation error for a given parameter µ in the space Vn = Y . We want the

expected approximation error to be less than the prescribed tolerance εRB. We initiate the algorithm

with an arbitrary chosen parameter µ̄1 with the corresponding snapshot uN (µ̄1) for the basis enrichment.

Next we proceed as stated in the following Algorithm 1. We note that the basis functions ζn are also

Algorithm 1: RB-Greedy algorithm

1 Input: Tolerance εRB, max. number of iterations Nmax, V1 = span{uN (µ̄1)}, parameter set
Dtrain ⊂ D

2 Output: RB spaces {Vn}
N
n=1

1: while n ≤ Nmax and εn := max
µ∈Dtrain

4 (Vn, µ) > εRB do

2: µ̄n ← arg max
µ∈Dtrain

4 (Vn−1, µ)

3: Dn ← Dn−1 ∪ {µ̄n}

4: Vn ← Vn−1
⊕

span{ζn ≡ uN (µ̄n)}
5: n← n + 1
6: end while

orthonormalized relative to the 〈·, ·〉V inner product with a Gram-Schmidt procedure to generate a well-

conditioned system of equations.

Remark 13. We note that the error sequence {εn}
N
n=1 is only a training error in statistical learning

terminology. The quality of the reduced basis model is then typically tested on Dtest ⊂ D to prevent

overfitting, i.e. max
µ∈Dtest

4 (VN ; µ) >> εRB, whereDtest is chosen such thatDtest ∩Dtrain = ∅.

The reduced basis approximation of problem (3.10) is then obtained by a Galerkin projection: given

µ ∈ D, find uN(µ) ∈ Vh such that

a(uN(µ), vN ; µ) = f (vN , µ), ∀vN ∈ VN . (3.12)
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Given the ansatz uN(µ) =
∑N

j=1 uN j(µ)ζ j for the discrete solution and testing against the basis elements

in VN leads to the system

AN(µ)uN(µ) = FN(µ), (3.13)

of linear algebraic equations, where FN(µ) := { f (ζ j; µ)}Nj=1 ∈ RN and AN(µ) := {a(ζ j, ζi; µ)}Ni, j=1 ∈ RN×N .

Remark 14. We note that the RB stiffness matrix AN(µ) is small, but dense, compared to AN (µ), which

is typically large, but sparse. We assume that a single solution of (3.13) requires O(N3) operations,

resulting from N steps of an iterative solver, where we perform dense matrix-vector multiplications or

direct inversions at cost O(N2). We also note that the Gramm-Schmidt orthonormalization procedure

guarantees that the condition number of AN(µ) is upper bounded by γ(µ)
α(µ) .

It follows from the affine decomposition (3.9) of problem (3.5) that

AN(µ) =

Qa∑
q=1

θa,q(µ)AN,q, FN(µ) =

Q f∑
q=1

θ f ,q(µ)FN,q(v), (3.14)

where FN,q := { fq(ζ j)}Nj=1 ∈ RN (1 ≤ q ≤ Q f ), and AN,q := {aq(ζ j, ζi)}Ni, j=1 ∈ RN×N (1 ≤ q ≤ Qa). It

implies the so-called offline-online decomposition: the computations in the offline phase depend on the

dimension N of the finite element space and are expensive, but should be performed only once. The

computations in the online phase are usually independent of N and thus are inexpensive. Precisely, we

assemble the matrix AN(µ) and the right-hand side FN(µ) at cost O(QaN2) and O(Q f N) respectively, and

then we invert AN(µ) at cost O(N3).

3.2.4 Error estimation

An important ingredient of the reduced basis methodology is the verification of the error (certification

of the reduced basis method). It is based on an a-posteriori error bound, which allows quick evaluation

and only requires the knowledge of reduced-basis solution. We denote by r(·; µ) ∈ V ′
N

the residual of the

problem, defined naturally as:

r(vN ; µ) = f (vN ; µ) − a(uN , vN ; µ), vN ∈ VN . (3.15)

The residual-error relation r(vN ; µ) = a(uN − uN , vN ; µ) yields together with the coercivity condition:

‖uN (µ) − uN(µ)‖V ≤
‖r(·; µ)‖V′

N

α(µ)
=: 4(µ). (3.16)

If α(µ) is not avaiable analytically, the SCM (successive constraint method) approximation can be applied

to obtain αLB(µ) with αLB(µ) ≤ α(µ) [31]. We choose 4(M; VN) := sup
µ∈D
4 (µ) to measure the deviation

δ(M; VN) in (3.3), where δ(M; VN) ≤ 4(M; VN).

The computation of ‖r(·; µ)‖V′
N

requires the knowledge of its Riesz representer vr(µ) ∈ VN . Thanks

to the Riesz representation theorem, it can be obtained from the equation

(vr(µ), vN )V = r(vN ; µ) ∀vN ∈ VN . (3.17)
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The parameter separability structure of the residual

r(vN ; µ) =

Qr∑
q=1

θr,q(µ)rq(vN )

is transferred by the linearity of the Riesz isomorphism to the parameter separability of its Riesz repre-

senter vr(µ) together with the parameter dependent functions θr,q : D → R. Therefore, for 1 ≤ q ≤ Qr

we have

vr(µ) =

Qr∑
q=1

θr,q(µ)vr,q with (vr,q, vN )V = rq(vN ) ∀vN ∈ VN . (3.18)

Since the dual norm of the residual is equal to the norm of its Riesz representer, we have

‖r(·; µ)‖V′
N

= ‖vr(µ)‖V = (Φr(µ)T GrΦ
r(µ))1/2, (3.19)

where Φr(µ) = {Φr
q(µ)}Qr

q=1 ∈ RQr and Gr ∈ RQr×Qr with (Gr)q,q′ = (vr q, vr q′)V and the dual norm is then

computed at cost O(Q2
r ).

3.3 Reduced basis method for linear parabolic PDEs

In this section we consider a space-time variational formulation of linear parabolic partial differential

equations, which we denote as the exact problem. The corresponding discrete Petrov-Galerkin approx-

imation is called the truth problem, as it is common in the RB setting. We assume that the solution to

the exact problem can be approximated arbitrarily well by the discrete solution of the truth problem. We

then neglect the corresponding approximation error. This section and the proposed concept is based on

the author’s master thesis [36].

3.3.1 Space-Time formulation

Let Ω ⊂ Rd be the spatial domain and µ ∈ D ⊂ Rp, whereD is a compact parameter set. Let V ⊂ H1(Ω)

be a separable Hilbert space and H := L2(Ω). We denote by 〈·, ·〉V , 〈·, ·〉H and ‖·‖V , ‖·‖H corresponding

inner products and induced norms, respectively. To V and H we associate the Gelfand triple V ↪→ H ↪→

V ′ with duality pairing 〈·, ·〉V′V . The norm of l ∈ V ′ is defined by ‖l‖V′ := sup
ψ∈V,‖ψ‖V,0

〈l, ψ〉V′V/‖ψ‖V . For

given µ ∈ D we consider a linear, bounded differential operator A(µ) : V → V ′ with induced bilinear

form

〈A(µ)u, v〉V′V := a(u, v; µ). (3.20)

We assume that the forms (3.20) are coercive on V with coercivity constants α(µ) > 0, i.e.

a(v, v; µ) ≥ α(µ)‖v‖2V ∀v ∈ V, (3.21)

and continuous on V with continuity constants γ(µ) > 0, i.e.

|a(w, v; µ)| ≤ γ(µ)‖w‖V‖v‖V ∀w, v ∈ V. (3.22)
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In addition, we assume that these conditions hold uniformly:

α := inf
µ∈D

α(µ) > 0, γ := sup
µ∈D

γ(µ) < ∞. (3.23)

For given (g(·; µ), uo) ∈ L2(I; V ′)×H we consider the linear parabolic initial value problem of finding

u(t) := u(t; µ) ∈ V, t ∈ I a.e. on the time interval I = (0,T ], such that

u̇(t) + A(µ)u(t) = g(t) in V ′, u(0) = uo in H, (3.24)

where u̇ := ∂u
∂t is understood in the generalized sense. We now define a space-time variational formulation

of (3.24). We use the trial space

X := W(0,T ) = L2(I; V) ∩ H1(I; V ′) = {v ∈ L2(I; V) : v, v̇ ∈ L2(I; V ′)}

with the norm ‖w‖2
X

:= ‖ẇ‖2
L2(I;V′) + ‖w‖2

L2(I;V), and the test space Y := L2(I; V) × H with the norm

‖v‖2
Y

:= ‖v(1)‖2
L2(I;V) + ‖v(2)‖2H for v := (v(1), v(2)). The weak formulation of problem (3.24) reads: find

u := u(µ) ∈ X such that

B(u, v; µ) = F(v; µ), ∀ v ∈ Y, (3.25)

where

B(u, v; µ) :=
∫

I
〈u̇, v(1)〉V′V + a(u, v(1); µ)dt + 〈u(0), v(2)〉H , and (3.26)

F(v; µ) :=
∫

I
〈g(µ), v(1)〉V′Vdt + 〈uo, v(2)〉H . (3.27)

Since X ↪→ C(I; H), the initial value u(0) is well-defined in H (see Proposition 2.2.1). The well-

posedness of problem (3.25) follows from (3.23), so that (3.25) admits a unique solution u(µ) ∈ X

for all µ ∈ D, see e.g. [54, Proposition 23.30].

3.3.2 Petrov-Galerkin Truth Approximation

From here onwards we omit the dependence on µwherever appropriate. For the temporal discretization of

(3.25) we use the time grid 0 = t0 < t1 < ... < tK = T and set Ik = (tk−1, tk] for k = 1, ...,K. We set 4tk =

tk − tk−1 and define 4t := max1≤k≤K 4tk. For the spatial discretization we set Vh = span{φ1, ..., φNh} ⊂ V

as our finite-element space, where dim Vh = Nh and h denotes the spatial discretization parameter. With

δ := (4t, h) we introduce the discrete trial space

Xδ := {uδ ∈ C0(I; V), uδ|Ik ∈ P1(Ik,Vh), k = 1, ...,K} ⊂ X

and the discrete test space

Yδ := {vδ ∈ L2(I; V), vδ|Ik ∈ P0(Ik,Vh), k = 1, ...,K} × Vh ⊂ Y.
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With these choices of spaces the fully discrete truth approximation problem reads: find uδ := uδ(µ) ∈ Xδ,

such that u0
δ := uδ(0) = Ph

Huo and

B(uδ, vδ; µ) = F(vδ; µ) ∀vδ ∈ Yδ, (3.28)

where Ph
H : H → Vh denotes the H-orthogonal projection onto Vh. It follows as for (3.25) that problem

(3.28) admits a unique solution uδ ∈ Xδ.

The Petrov-Galerkin space-time discrete formulation (3.28) can be interpreted as the Crank-Nicolson

time-stepping scheme. Indeed, since the test spaceYδ consists of piecewise constant polynomials in time,

the problem can be solved via the following procedure for k = 1, ...,K:∫
Ik
〈u̇δ, vh〉V′V + a(uδ, vh; µ)dt =

∫
Ik
〈g(µ), vh〉V′Vdt ∀vh ∈ Vh. (3.29)

Since the trial space Xδ consists of piecewise linear and continuous polynomials in time with the values

uk
δ := uδ(tk) and uk−1

δ := uδ(tk−1), we can represent uδ on Ik as the linear function

uδ(t) =
1
M tk {(t

k − t)uk−1
δ + (t − tk−1)uk

δ}, t ∈ Ik. (3.30)

We use the representation (3.30) in (3.29), test (3.29) against the basis functions φi ∈ Vh (i = 1, ...,Nh)

and use the trapezoidal quadrature rule for the approximation of the appearing integrals. We introduce

the following notation

gk−1/2(v; µ) :=
1
2
〈g(tk; µ) + g(tk−1; µ), v〉V′V .

From now on, time index k − 1/2 means the average of the quantitiy at time k and k − 1. In this way we

obtain the Crank-Nicolson time-stepping scheme, which for k = 1, ...,K reads

(uk
δ − uk−1

δ , φi)H+ M tka(uk−1/2
δ , φi; µ) =M tkgk−1/2(φi; µ), 1 ≤ i ≤ Nh. (3.31)

Here we recall that the initial condition u0
δ is obtained as an H-orthogonal projection of uo onto Vh. Given

the ansatz uk
δ =

∑Nh
i=1 uk

i φi and defining uk
δ := {uk

i }
Nh
i=1 ∈ RNh , the resulting linear algebraic equations are

then given by

1
M tk Mh(uk

δ − uk−1
δ ) + Ah(µ)uk−1/2

δ = gk−1/2
h (µ) (3.32)

where Mh := {(φi, φ j)H}
Nh
i, j=1,Ah(µ) := {a(φi, φ j; µ)}Nh

i, j=1 ∈ RNh×Nh and the right-hand side gk−1/2
h (µ) :=

{gk−1/2(φi; µ)}Nh
i=1 ∈ RNh . The initial condition for the time-stepping scheme (3.32) is given by u0

δ :=

{(uo, φi)H}
Nh
i=1 ∈ RNh .

Remark 15. The space-time variational problem (3.25) can be discretized using finite-dimensional dis-

crete trial and test spaces Xδ ⊂ X and Yδ ⊂ Y build up from finite-dimensional temporal subspaces of

the form

S p
4t := {v4t ∈ L2(I), v4t|Ik ∈ Pp(Ik), k = 1, ...,K}
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and spatial subspaces Vh ⊂ V. Then we have the space-time tensor product representation

Xδ := S p
4t ⊗ Vh, Yδ := (S q

4t ⊗ Vh) × Vh.

Let p = 1 and q = 0, i.e., S 1
4t := span{σ1, ..., σK} ⊂ H1(I) and S 0

4t := span{τ1, ..., τK} ⊂ L2(I) are

piecewise linear and piecewise constant finite element spaces in time. Discretizing the bilinear form

B(·, ·; µ) using the bases for the corresponding tensor product spaces leads to the following matrix with

Kronecker product structure

Bδ(µ) :=

NMt ⊗Mh + MMt ⊗ Ah(µ)

Mh

 ,
where MMt = {(σk, τl)L2(I)}

K
k,l=1, NMt = {(σ̇k, τl)L2(I)}

K
k,l=1 are temporal finite-element matrices. This choice

of bases and additional approximation of the right-hand side by the trapezoidal quadrature rule leads to

the Crank-Nicolson interpretation [49]. However, in the space-time discretization setting we can obtain

the discrete solution by solving a single linear system without appealing to time-marching schemes (see,

e.g. [3]). We refer the reader to [49, 17] for details on the space-time reduced-basis method for linear

parabolic problems.

3.3.3 Proper Orthogonal Decomposition (POD)

The aim of the POD method is to describe the solution trajectiory space V = span{u(t), t ∈ [0,T ]}

by means of few orthonormal functions {ψi}
`
i=1 ⊂ V , with ` ≤ d := dimV, such that the error of the

trajectory projection onto the POD subspace V` = span{ψ1, ..., ψ`} ⊂ V is minimized in the following

sense:

min
ψ1,...,ψ`∈V

∫ T

0

∥∥∥∥∥∥∥u(t) −
∑̀
i=1

〈u(t), ψi〉Vψi

∥∥∥∥∥∥∥
2

V

dt (3.33)

s.t. 〈ψi, ψ j〉V = δi j, for 1 ≤ i, j ≤ `,

where δi j denotes the Kronecker symbol. The problem (3.33) is known as the continuous version of the

POD method [51]. In practice, we do not have the PDE solution u : [0,T ] → V , but rather a discrete set

of snapshots, stored in the snapshot matrix

U :=

 u0
δ u1

δ . . . uK
δ

 ∈ RNh×(K+1), (3.34)

which is obtained, e.g., by the Crank-Nicolson scheme. The integral in (3.33) is approximated by the

quadrature rule, where the quadrature points are chosen according to the specified time grid {tk}Kk=0 in

our PDE discretization. Given the ansats ψi =
∑Nh

j=1 ψ
i
jφi and the isomorphic correspondence ψi 7→ Ψi :=

{ψi
j}
Nh
j=1 ∈ RNh , the fully discrete counterpart of problem (3.33) reads:

min
Ψ1,...,Ψ`∈RNh

K∑
k=0

βk

∥∥∥∥∥∥∥uk
δ −

∑̀
i=1

〈uk
δ,Ψi〉WΨi

∥∥∥∥∥∥∥
2

W

(3.35)

s.t. 〈Ψi,Ψ j〉W = δi j, for 1 ≤ i, j ≤ `,
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where W = {〈φi, φ j〉V }
Nh
i, j=1 ∈ RNh×Nh is a symmetric positive definite inner product matrix with 〈u, v〉W =

uT Wv and {βk}
K
k=0 are non-negative quadrature weights for

∫ T
0 ·dt. For the chosen trapezoidal quadrature

rule we have

β0 =
M t1

2
, βk =

M tk+ M tk+1

2
for k = 1, ...,K − 1 and βK =

M tK

2
. (3.36)

The problem (3.35) admits a unique solution {Ψ1, ...,Ψ`}, which corresponds to the first ` eigenvec-

tors, corresponding to ` largest eigenvalues of the self-adjoint, non-negative, linear and bounded operator

R : RNh → RNh , i.e., RΨi = λiΨi, where R is defined as follows

RΨ =

K∑
k=0

βk〈uk
δ,Ψ〉W uk

δ, Ψ ∈ RNh . (3.37)

The POD projection error then satisfies

K∑
k=0

βk

∥∥∥∥∥∥∥uk
δ −

∑̀
i=1

〈uk
δ,Ψi〉WΨi

∥∥∥∥∥∥∥
2

W

=

K+1∑
i=`+1

λi. (3.38)

Hence, the fast decay of eigenvalues {λi}
K+1
i=1 is important for an application of the POD method.

The eigenvalue problem (3.37) can be transformed to a generalized eigenvalue problem in a matrix

form. Let D ∈ R(K+1)×(K+1) be a diagonal matrix with quadrature weights (3.36) on the diagonal. Set

Ψ̃i = W−1/2Ψi, hence 〈Ψi,Ψ j〉RNh = 〈ψi, ψ j〉V = δi j and consider

W1/2UDUT W1/2Ψ̃i = λiΨ̃i, 1 ≤ i ≤ K + 1, (3.39)

s.t. 〈Ψ̃i, Ψ̃ j〉RNh = δi j (3.40)

Set Ũ = W1/2UD1/2 and consider the symmetric eigenvalue problem

ŨT ŨΨ̃i = λiΨ̃i, 1 ≤ i ≤ K + 1 (3.41)

After finding the eigenvalues and eigenvectors of problem (3.41), we set

Ψi =
1
√
λi

W−1/2UD1/2Ψ̃i (3.42)

to obtain the POD modes of interest. We note that (3.42) represents a linear combinations of columns of

(3.34), i.e., a linear combination of our time snapshots.

For notation purposes, we use POD`({uk
δ}

K
k=0) to denote the extraction of ` dominant modes. For

example, we have POD1({uk
δ}

K
k=0) = {ψ1 =

∑Nh
j=1 ψ

1
jφ j}, where Ψ1 := {ψ1

j}
Nh
j=1 is computed as in (3.42).

We refer the reader to [51] for more details on the POD method.

3.3.4 Reduced basis approximation with the POD-Greedy method

The idea of the reduced-basis approximation consists in replacing the “truth" (high-dimensional) space

Vh in the definition of Xδ and Yδ by a low-dimensional subspace VN ⊂ Vh. With VN available we
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introduce the corresponding reduced trial space

X4t,N := {uN ∈ C0(I; V), uN |Ik ∈ P1(Ik,VN), k = 1, ...,K}

and the reduced test space

Y4t,N := {vN ∈ L2(I; V), vN |Ik ∈ P0(Ik,VN), k = 1, ...,K} × VN .

We construct VN := span{ξ1, ..., ξN} ⊂ Vh by the POD-Greedy procedure in Algorithm 2, compare e.g.

[22]. In our setting, the POD-Greedy alogorithm constructs iteratively nested spaces Vn, 1 ≤ n ≤ N using

an a-posteriori error estimator 4(Y; µ) (see the next section for details on a-posteriori error analysis),

which predicts the expected approximation error for a given parameter µ ∈ Dtrain in the space Y := Y4t,n.

We want the expected approximation error to be less than the prescribed tolerance εRB > 0. We initiate

the algorithm with the choice of the initial basis vector ξ1 := u0
δ/‖u

0
δ‖V ; this choice is motivated by the

assumption in Proposition 3.3.1. The snapshots uδ(µ) for the procedure are provided by the parametrized

“truth" approximation (3.28). Next we proceed as stated in the Algorithm 2. In Algorithm 2, PV : Vh →

Algorithm 2: : POD-Greedy algorithm

1 Input: Tolerance εRB, max. number of iterations Nmax, V1 = span{ξ1}, parameter setDtrain.
2 Output: RB spatial spaces {Vn}

N
n=1, RB trial spaces {X4t,n}

N
n=1, RB test spaces {Y4t,n}

N
n=1.

1: while 2 ≤ n ≤ Nmax and εn := max
µ∈Dtrain

4 (Y4t,n, µ) > εRB do

2: [εn, µn]← arg max
µ∈Dtrain

4 (Y4t,n−1, µ)

3: ek
n := uk

δ(µn) − PVuk
δ(µn), k = 1, ...,K

4: ξn := POD1({ek
n}

K
k=1)

5: Vn := Vn−1
⊕

span{ξn}

6: X4t,n ← X4t,n−1, Y4t,n ← Y4t,n−1
7: n← n + 1
8: end while

Vn denotes the V-orthogonal projection, and the operation POD1({ek
n}

K
k=1) denotes the extraction of the

dominant mode of the Proper Orthogonal Decomposition (see section 3.3.3). We also note that more

modes can be extracted in every step of the algorithm: it reduces the offline computational time, but

there is no guarantee that the produced basis will be of the smallest possible dimension.

The reduced-basis approximation of problem (3.28) reads: find uN := uN(µ) ∈ X4t,N , such that

u0
N := uN(0) = PN

Huo and

B(uN , vN ; µ) = F̃(vN ; µ) ∀vN ∈ Y4t,N , (3.43)

where

B(uN , vN ; µ) =

∫
I
〈u̇N , v

(1)
N 〉V′V + a(uN , v

(1)
N ; µ)dt + 〈PN

Huo, v
(2)
N 〉H ,

F̃(vN ; µ) : =

∫
I
〈g(µ), v(1)

N 〉V′Vdt + 〈u0
δ, v

(2)
N 〉H ,

and PN
H : Vh → VN denotes the H-orthogonal projection onto VN . It follows as for (3.25) that the problem
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(3.43) admits a unique solution uN(µ) ∈ X4t,N for all µ ∈ D.

The problem (3.43) can be interpreted as the reduced-basis approximation of the Crank-Nicolson

time-marching scheme, i.e.

〈uk
N − uk−1

N , v(1)
N 〉H+ M tka(uk−1/2

N , v(1)
N ; µ) =M tkgk−1/2(v(1)

N ; µ), (3.44)

where the initial condition u0
N is obtained as an H-projection of u0

δ onto VN . Given the ansatz uk
N =∑N

i=1 uk
i,N ξi and defining uk

N := {uk
i,N}

N
i=1 ∈ RN , the resulting linear algebraic equations are then given by

1
M tk MN(uk

N − uk−1
N ) + AN(µ)uk−1/2

N = gk−1/2
N (µ), (3.45)

where MN := {〈ξi, ξ j〉H}
N
i, j=1,AN(µ) := {a(ξi, ξ j; µ)}Ni, j=1 ∈ RN×N and gk−1/2

N (µ) := {gk−1/2(ξi; µ)}Ni=1 ∈ RN .

The initial condition is given by u0
N := {〈u0

δ, ξi〉H}
N
i=1 ∈ RN .

We assume the affine decomposition of problem (3.44):

a(w, v; µ) =

Qa∑
q=1

θa,q(µ)aq(w, v), gk−1/2(v; µ) =

Qg∑
q=1

θk−1/2
g,q (µ)gq(v). (3.46)

It transfers to the parameter separability of the stiffness matrix and the load vector

AN(µ) =

Qa∑
q=1

θa,q(µ)AN,q, gk−1/2
N (µ) =

Qg∑
q=1

θk−1/2
g,q (µ)gN,q(v), (3.47)

where gN,q := {gq(ξ j)}Nj=1 ∈ RN , 1 ≤ q ≤ Qg, and AN,q := {aq(ξ j, ξi)}Ni, j=1 ∈ RN×N , 1 ≤ q ≤ Qa. The pro-

posed reduced numerical scheme contains parameter separable quantities and thus allows offline-online

decomposition. The offline phase depends on expensive high-dimensional finite element simulations and

thus on N , but should be performed only once. However, the assembling of all the high-dimensional

parameter-dependent quantities is computationally simplified due to the affine dependence on the param-

eters (3.46). In the online phase the computational complexity scales polynomially in N, independently

of N and thus is inexpensive. We assemble the matrix AN(µ) at cost O(QaN2) and the right-hand side

gk−1/2
N (µ) at cost O(QgKN). The operation count for the reduced Crank-Nicolson scheme (3.45) depends

on the number of time steps K and the corresponding inversions of dense reduced-basis matrices at cost

O(N3), thus it scales as O(KN3).

3.3.5 Error estimation

An important ingredient of the reduced basis methodology is the verification of the error (certification

of the reduced basis method). In the present work we provide an a-posteriori error bound, based on the

residual, which allows quick evaluation. We denote by R(·; µ) ∈ Y′δ the residual of the problem, defined

naturally as:

R(vδ; µ) := F̃(vδ; µ) − B(uN , vδ; µ) =

∫
I
〈r(t; µ), vδ〉V′Vdt ∀vδ ∈ Yδ. (3.48)

We have the following

Proposition 3.3.1 (A-posteriori Error Bound). Let α(µ) > 0 be a coercivity constant from (3.21) and
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assume that u0
δ ∈ VN . Then the error e(µ) = uδ(µ)−uN(µ) of the reduced basis approximation is bounded

by

‖e(µ)‖Y ≤
1

α(µ)
‖R(·; µ)‖Y′δ =: 4N(µ). (3.49)

Proof. Since in the case e = 0 there is nothing to show, we assume that e , 0. We have u0
δ ∈ VN

and PN
H

∣∣∣
VN

= Id, therefore u0
N := PN

Hu0
δ = u0

δ. It implies that ‖e(0)‖H = 0, ‖e‖Y = ‖e‖L2(I;V) and

‖R(·; µ)‖Y′δ = ‖R(·; µ)‖L2(I;V′h). We then use the identity∫
I
〈ė, e〉V′Vdt =

1
2
‖e(T )‖2H−

1
2
‖e(0)‖2H (3.50)

together with the coercivity condition (3.21) to derive the bound:

α(µ)‖e‖2
Y
≤

∫
I
a(e, e; µ)dt +

1
2
‖e(T )‖2H =

∫
I
〈ė, e〉V′Vdt +

∫
I
a(e, e; µ)dt +

1
2
‖e(0)‖2H ≤ ‖R(·; µ)‖Y′δ‖e‖Y.

Dividing both sides by ‖e‖Y yields the result. �

Remark 16. We note that the assumption u0
δ ∈ VN implies that ‖e(0)‖H = 0. We can guarantee this by

choosing ξ1 := u0
δ/‖u

0
δ‖V as the initial basis for VN in the POD-Greedy procedure.

The error bound in can be improved by a factor
√
α(µ) with the choice of a different norm on L2(I; V).

We assume that a(·, ·; µ) is symmetric and define

〈v,w〉µ := a(v,w; µ). (3.51)

The form is positive definite by coercivity of a(·, ·; µ), hence defines an inner product on V and induces

parameter-dependent energy norm

‖v‖µ := 〈v,w〉1/2µ . (3.52)

By continuity and coercivity of a(·, ·; µ) one can easily see that the energy norm is equivalent to the norm

‖·‖V on V , i.e, we have √
α(µ)‖v‖V ≤ ‖v‖µ ≤

√
γ(µ)‖v‖V , v ∈ V. (3.53)

We proceed by defining the space-time energy norm on L2(I; V) as follows

‖u‖L2(I;Vµ) :=
(∫

I
‖u(t)‖2µdt

)1/2

. (3.54)

Similarly, one can show that the space-time energy norm is equivalent to the norm ‖·‖L2(I;V) on L2(I; V),

i.e, we have √
α(µ)‖v‖L2(I;V) ≤ ‖v‖L2(I;Vµ) ≤

√
γ(µ)‖v‖L2(I;V), v ∈ L2(I; V). (3.55)

Proposition 3.3.2 (A-posteriori L2(I; Vµ) Error Bound). Let α(µ) > 0 be a coercivity constant from

(3.21) and assume that u0
δ ∈ VN . Then the error e(µ) = uδ(µ)− uN(µ) of the reduced basis approximation
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is bounded by

‖e(µ)‖L2(I;Vµ) ≤
1√
α(µ)
‖R(·; µ)‖Y′δ =: 4en

N (µ). (3.56)

Proof. Since in the case e = 0 there is nothing to show, we assume that e , 0. Then we proceed similarly

to the proof to show that ‖e(0)‖H = 0, hence ‖e‖L2(I;Vµ)×H = ‖e‖L2(I;Vµ). Then we use the identity and the

coercivity condition (3.21) to derive the bound:

‖e‖2L2(I;Vµ) ≤

∫
I
a(e, e; µ)dt +

1
2
‖e(T )‖2H =

∫
I
〈ė, e〉V′Vdt +

∫
I
a(e, e; µ)dt +

1
2
‖e(0)‖2H

≤ ‖R(·; µ)‖Y′δ‖e‖Y ≤
1√
α(µ)
‖R(·; µ)‖Y′δ‖e‖L2(I;Vµ).

Dividing both sides by ‖e‖L2(I;Vµ) yields the result. �

The computation of ‖R(·; µ)‖Y′δ requires the knowledge of its Riesz representer vδ,R(µ) ∈ Yδ. Thanks

to the Riesz representation theorem, it can be obtained from the equation

(vδ,R(µ), vδ)Y = R(vδ; µ) ∀vδ ∈ Yδ. (3.57)

Since the test space Yδ consists of piecewise constant polynomials in time, the problem (3.57) can be

solved via the time-marching procedure for k = 1, ...,K as follows:∫
Ik
〈vδ,R(t; µ), vh〉Vdt =

∫
Ik
〈r(t; µ), vh〉V′Vdt ∀vh ∈ Vh. (3.58)

We note that vk
R(µ) := vδ,R(µ)

∣∣∣
Ik is constant in time, hence the integration on the left-hand side of (3.58)

is exact. For the right-hand side of (3.58) we represent uN(µ) ∈ X4t,N as the linear function (3.30) on

Ik and use it as an input for the residual (3.48). We then apply the trapezoidal quadrature rule for the

approximate evaluation of the integral. The quadrature rule is chosen such that the quadrature error is of

the size of the error of the truth Crank-Nicolson solution. We thus need to solve the following problems:

〈vk
R(µ), vh〉V = Rk(vh; µ) ∀vh ∈ Vh (k = 1, ...,K), (3.59)

where the right-hand side is given by

Rk(vh; µ) =
1
2

[〈g(tk; µ) + g(tk−1; µ), vh〉V′V − ã[uk
N](uk

N , vh; µ) (3.60)

−ã[uk−1
N ](uk−1

N , vh; µ)] −
1
4tk 〈u

k
N − uk−1

N , vh〉H .

Therefore the computation of the Riesz representer leads to a sequence of K uncoupled spatial problems

in Vh. The parameter separability structure of the residual

Rk(vh; µ) =

QR∑
q=1

θk
R,q(µ)Rq(vh)

is transferred by the linearity of the Riesz isomorphism to the parameter separability of its Riesz repre-

senter vk
R(µ) together with the parameter dependent functions θk

R,q : D → R. Therefore, for 1 ≤ q ≤ QR
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we have

vk
R(µ) =

QR∑
q=1

θk
R,q(µ)vR,q with (vR,q, vh)V = Rq(vh) ∀vh ∈ Vh. (3.61)

Finally, we state the formulas for the residual norm as well as the spatio-temporal norm of uN . Since

vδ,R(µ)
∣∣∣
Ik is constant in time, the integration on Ik is exact and we can compute the spatio-temporal norm

of vδ,R(µ) as follows:

‖vδ,R(µ)‖2
Y

=

K∑
k=1

4tk‖vk
R(µ)‖2V =

K∑
k=1

4tkΘk
R(µ)T GRΘk

R(µ),

where GR := {〈vR,q, vR,q′〉}
QR
q,q′=1 ∈ RQR×QR and Θk

R(µ) := {θk
R,q(µ)}QR

q=1 ∈ RQR . The isometry of the

Riesz isomorphism implies that ‖R(·; µ)‖Y′δ = ‖vδ,R(µ)‖Y. Since uN(µ)|Ik is a linear function in time,

the trapezoidal quadrature rule on Ik is exact. We then can compute the spatio-temporal norm ‖uN‖Y of

uN ∈ X4t,N according to

‖uN‖
2
Y

=

K∑
k=1

M tk

2
(‖uk

N‖
2
V + ‖uk−1

N ‖
2
V ) + ‖u0

N‖
2
H

=

K∑
k=1

M tk

2
[uk T

N KNuk
N + uk−1 T

N KNuk−1
N ] + u0 T

N MNu0
N ,

where KN := {〈ξi, ξ j〉V }
N
i, j=1 ∈ RN×N . Since in our case the reduced basis is orthonormal in V , KN is

the identity matrix. The operation count in the online phase, associated with computation of the residual

norm and the spatio-temporal norm on Y is correspondingly O(Q2
RK) and O(NK + N2).
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Chapter 4

Reduced basis method for quasilinear
elliptic PDEs and applications to
magnetostatics equation

In this chapter, we propose a certified reduced basis (RB) method for quasilinear elliptic problems

together with its application to nonlinear magnetostatics equations, where the later model permanent

magnet synchronous motors (PMSM). The parametrization enters through the geometry of the domain

and thus, combined with the nonlinearity, drives our reduction problem. We provide a residual-based

a-posteriori error bound which, together with the Greedy approach, allows to construct reduced-basis

spaces of small dimensions. We use the empirical interpolation method (EIM) to guarantee the efficient

offline-online computational procedure. The reduced-basis solution is then obtained with the surrogate

of the Newton’s method. The numerical results indicate that the proposed reduced-basis method provides

a significant computational gain, compared to a finite element method.

4.1 The quasilinear parametric elliptic PDE

In this section we introduce our parametrised nonlinear magnetostatics equation of quasilinear elliptic

type and its corresponding variational formulation together with our finite-element discretization.

4.1.1 Abstract formulation

We start by introducing the model for a permanent magnet synchronous machine. We consider a three-

phase 6-pole permanent magnet synchronous machine (PMSM) with one buried permanent magnet per

pole. We parametrize the problem through the size of the magnet by introducing a three dimensional

parameter p = (p1, p2, p3) which characterizes magnet’s width p1, magnet’s height p2 and the perpen-

dicular distance from the magnet to the rotor p3 in mm. In Fig. 4.1 the geometry of the problem is shown.

PMSM then can be described with sufficient accuracy by the magnetostatic approximation of Maxwell’s

equations

−∇ · (ν(x, |∇u(p)|)∇u(p)) = Je −
∂

∂x2
Hpm,1(p) +

∂

∂x1
Hpm,2(p) in Ω(p) (4.1)
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with boundary conditions

u|BC = u|DA = 0 and u|AB = − u|CD .

Here AB, BC,CD,DA represent parts of the boundary ∂Ω and marked in Fig. 4.1. We assume that

Ω(µ) represents the cross-section of the electric motor which is located in the x1 − x2 plane of R3 and the

solution u is the x3-component of the magnetic vector potential. The x3-component of the current density

is represented by Je, and Hpm,1(p) and Hpm,2(p) are components of the permanent magnet magnetic field.

The nonlinear magnetic reluctivity function

ν(x, s) =

ν1(s), for x ∈ Ω1(p)

ν2(x), for x ∈ Ω2(p),
(4.2)

represents ferromagnetic properties of the material. Here we split the domain Ω(p) into two non-

overlapping subdomains Ω1(p) (ferromagnetic steel) and Ω2(p) (air, magnet, coils) such that ν1 ∈

C1(Ω1(p)) and ν2 is piecewise constant on Ω2(p) (i.e. constant for each material). In practice, we

reconstruct ν1 from the real B − H measurements of PMSM by using cubic spline interpolation, see

section 2.1.2. We use physical constants for ν2. Then the reluctivity function satisfies

0 < νLB ≤ ν(x, s) ≤ ν0, ∀x ∈ Ω(p), s ∈ R+
0 , (4.3)

where νLB and ν0 can be chosen independently of the parameter p (see section 4.3 for details).

We continue with an abstract formulation of a two-dimensional nonlinear magnetostatic field problem

with geometric parametrisation, where the parameter set is given byD ⊂ R3 and describes the geometry

of the permanent magnet. The regular, bounded and p-dependent domain Ω(p) ⊂ R2 gives rise to

a p-dependent real and separable Hilbert space V(p) := V(Ω(p)) and the corresponding dual space

V ′(p) := V ′(Ω(p)). The function space V(p) is such that

V(p) := {v| v ∈ L2(p),∇v ∈ (L2(p))2, u|BC = u|DA = 0, u|AB = − u|CD}

with H1
0(p) ⊂ V(p) ⊂ H1(p), where H1(p) := {v| v ∈ L2(p),∇v ∈ (L2(p))2}, H1

0(p) := {v| v ∈

H1(p), v|∂Ω = 0}. The inner product on V(p) is defined by 〈w, v〉V(p) =
∫
Ω(p) ∇w · ∇v dx and the induced

norm is given by ‖v‖V(p) = 〈v, v〉1/2V(p), which is indeed a norm due to Poincare-Friedrichs inequality. Then

the abstract problem reads as follows: given p ∈ D, find u(p) ∈ V(p) such that

a[u(p)](u(p), v; p) = f (v, p), ∀v ∈ V(p), (4.4)

where we have

a[u](w, v; p) =

∫
Ω(p)

ν(x, |∇u|)∇w · ∇v dx, (4.5)

f (v; p) =

∫
Ω(p)

(Jev − Hpm,2
∂v
∂x1

+ Hpm,1
∂v
∂x2

)dx. (4.6)
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4.1. THE QUASILINEAR PARAMETRIC ELLIPTIC PDE 39

Figure 4.1: The cross-section of one pole of the machine with the magnet depicted in gray and the
region of the geometric parametrisation indicated by the dashed box. The dashed lines indicate the
triangulation into L triangles. Figure is adapted from [7].

The quasilinear form a[·](·, ·; p) is strongly monotone on V(p) with monotonicity constant νLB > 0, i.e.

a[v](v, v − w; p) − a[w](w, v − w; p) ≥ νLB‖v − w‖2V(p) ∀ v,w ∈ V(p), (4.7)

and Lipschitz continuous on V(p) with Lipschitz constant La := 2νLB + ν0 > 0, i.e.

|a[u](u, v; p) − a[w](w, v; p)| ≤ La‖u − w‖V(p)‖v‖V(p) ∀ u,w, v ∈ V(p). (4.8)

The conditions (4.7), (4.8) are established in Lemma 8. Then problem (4.4) admits a unique solution,

see section 2.2.3, Theorem 7. Moreover, those properties will be needed for the error estimates.

In order to avoid domain re-meshing caused by the change of the parameters, we transfer the domain

Ω(p) to a fixed domain Ω̂ := Ω( p̂), where p̂ is the reference parameter with x̂ := x( p̂) as a spatial

coordinate on Ω̂ (see e.g. [45]). Further we assume that Ω̂ = Ω̂1 ∪ Ω̂2 and this can be decomposed into

L = L1 + L2 (in our case L = 12) non-overlapping triangles (see Fig.4.1) so that Ω̂ = ∪L
d=1Ω̂d and in

particular Ω̂1 = ∪
L1
d=1Ω̂1

d and Ω̂2 = ∪
L2
d=1Ω̂2

d. The transformation T (p) on each triangle is affine, whereas

piecewise-affine and continuous over the whole domain according to:

T (p)|Ω̂d
: Ω̂d → Ω(p) (4.9)

x̂ 7→ Cd(p)x̂ + zd(p),

for d = 1, ..., L, where Cd(p) ∈ R2×2 and zd(p) ∈ R2. According to (4.9), the Jacobian matrix JT (p) of

the transformation T (p) is constant and non-singular on each region of the given parametrisation, i.e. we

have JT (p)|Ω̂d
= Cd(p) with det Cd(p) , 0.

Now we state the problem (4.4) on the reference domain Ω̂ with the corresponding Hilbert space

V̂ := V( p̂) equipped with the inner product 〈ŵ, v̂〉V̂ =
∫
Ω̂
∇ŵ ·∇v̂dx̂ and the induced norm ‖v̂‖X̂ = 〈v̂, v̂〉1/2

V̂
.

It reads as follows: for p ∈ D, find û(p) ∈ V̂ so that

a[û(p)](û(p), v̂; p) = f (v̂; p), ∀v̂ ∈ V̂ , (4.10)

39



40 CHAPTER 4. REDUCED BASIS METHOD FOR QUASILINEAR ELLIPTIC PDES

where the quasilinear form in (4.5) is now transformed with the change of variables formula into

a[û](ŵ, v̂; p) =

∫
Ω̂

ν(x̂, |J−T
T

(p)∇û|)[J−T
T

(p)∇ŵ] · [J−T
T

(p)∇v̂]|det JT (p)| dx̂. (4.11)

Similarly, the linear form in (4.5) is transformed into

f (v̂; p) =

∫
Ω̂

[ f ◦ T (p)]v̂|det JT (p)| dx̂. (4.12)

Since Ω̂ = Ω̂1 ∪ Ω̂2, we have the decomposition

a[ŵ](ŵ, v̂; p) := aν1[ŵ](ŵ, v̂; p) + aν2(ŵ, v̂; p), (4.13)

where aν1 is the restriction of (4.11) to Ω̂1 with nonlinear reluctivity function ν1, and aν2 is the restriction

of (4.11) to Ω̂1 with piecewise constant reluctivity function ν2. Application of Newton’s method requires

the computation of the derivative of aν1 , which is given by

da[u](w, v; p) =

∫
Ω1(p)

ν′1(|∇u|)
|∇u|

(∇u · ∇w)(∇u · ∇v)dx + aν1(w, v; p) (4.14)

and transformed as in (4.11) to the reference domain Ω̂1 with the change of variables formula, thus we

have

daν1[û](ŵ, v̂; p) =

∫
Ω̂1

ν′1(|J−T
T

(p)∇û|)

|J−T
T

(p)∇û|
(J−T
T

(p)∇û · J−T
T

(p)∇ŵ)(J−T
T

(p)∇û · J−T
T

(p)∇v̂)|det JT (p)|dx̂.

To solve (4.10), we apply Newton’s method: starting with û(0)(p) ∈ V̂ , for z = 0, 1, .. solve the problem

da[û(z)](δû(z), v̂; p) = R[û(z)](v̂; p), R[û(z)](v̂; p) := f (v̂; p) − a[û(z)](û(z), v̂; p) (4.15)

to obtain δû(z)(p) ∈ V̂ , and then update the solution û(z+1)(p) := û(z)(p) + δû(z)(p). To prove that problem

(4.15) is well-posed, we need the following lemma

Lemma 17. Let T (p) : Ω̂ → Ω(p) be the geometric transformation from (4.9). Then we have the

following equivalence

C1(p)‖v̂‖2
V̂
≤ ‖v‖2V(p) ≤ C2(p)‖v̂‖2

V̂
, (4.16)

with the positive geometric constants

C1(p) : = min
1≤d≤L

{λmin(Cd(p)−1Cd(p)−T )| det Cd(p)|}, (4.17a)

C2(p) : = max
1≤d≤L

{λmax(Cd(p)−1Cd(p)−T )| det Cd(p)|}. (4.17b)
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Proof. We inspect the geometric dependence to prove the lower bound

‖v‖2V(p) =

L∑
d=1

2∑
i, j=1

[Cd(p)−1Cd(p)−T ]i j| det Cd(p)|
∫

Ω̂d

∂v̂
∂x̂i

∂v̂
∂x̂ j

dx̂

> min
1≤d≤L

{λmin(Cd(p)−1Cd(p)−T )| det Cd(p)|} ‖v̂‖2
V̂

= C1(p)‖v̂‖2
V̂
.

Similarly we prove the upper bound

‖v‖2V(p) ≤ max
1≤d≤L

{λmax(Cd(p)−1Cd(p)−T )| det Cd(p)|} ‖v̂‖2
V̂

= C2(p)‖v̂‖2
V̂
.

�

Lemma 12 and Lemma 17 implies that for û ∈ V̂ the bilinear form da[û](·, ·; p) : V̂ × V̂ → R is coercive

and continuous for all p ∈ D, i.e., we have

da[û](v̂, v̂; p) ≥ νLBC1(p)‖v̂‖2
V̂
, ∀v̂ ∈ V̂ , (4.18a)

da[û](ŵ, v̂; p) ≤ ν0C2(p)‖ŵ‖V̂‖v̂‖V̂ , ∀v̂, ŵ ∈ V̂ . (4.18b)

Thus, the well-posedness of problem (4.15) follows from the lemma of Lax-Milgram (see, e.g. [54]):

given a current iterate û(z)(p) ∈ V̂ , there exists a unique solution δû(z)(p) ∈ V̂ of problem (4.20).

4.1.2 Finite Element Truth Approximation

We introduce a high dimensional finite element discretization (truth approximation) of our problem in the

space V̂N = span{φ1, ..., φN } ⊂ V̂ of piecewise linear and continuous finite element functions. The finite

element approximation is obtained by a standard Galerkin projection: given p ∈ D, find uN (p) ∈ V̂N
such that

a[ûN (p)](ûN (p), v̂N ; p) = f (v̂N , p), ∀v̂N ∈ V̂N . (4.19)

Given the ansatz ûN (p) =
∑N

j=1 ûN j(p)φ j for the discrete solution and testing against the basis elements

in V̂N leads to the system of nonlinear algebraic equations

AN (ûN ; p)ûN (p) = FN (p), (4.20)

where FN (p) ∈ RN ,FN j(p) = f (φ j; p) and AN (ûN ; p) ∈ RN×N , AN (ûN ; p)i j = a[ûN (p)](φ j, φi; p), 1 ≤

i, j ≤ N . To solve (4.20), we apply a Newton’s iterative scheme: starting with û(0)
N

(p), for z = 0, 1, ..

solve the linear system

JN (û(z)
N

; p)δû(z)
N

(p) = RN (û(z)
N

; p) (4.21)

to obtain δû(z)
N

(p), and then update the solution û(z+1)
N

(p) := û(z)
N

(p) + δû(z)
N

(p). The residual RN (p) ∈ RN

for the Newton’s scheme must be calculated at every Newton iteration according to

RN i(ûN ; p) = FN i(p) −
N∑
j=1

AN (ûN ; p)i jûN j(p), 1 ≤ i ≤ N . (4.22)
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The Jacobian matrix JN (ûN ; p) ∈ RN×N in (4.21) is given by JN (ûN ; p)i j = da[ûN ](φ j, φi; p) and its

invertibility for all p ∈ D follows from the coercivity property (4.18a).

4.2 Reduced basis approximation

4.2.1 An EIM-RB method

To perform the reduced basis approximation, we first introduce a subsetDtrain ⊂ D from which a sample

Du
N = { p̄1 ∈ D, ..., p̄N ∈ D} with associated reduced-basis space Ŵu

N = span{ζn := ûN ( p̄n), 1 ≤

n ≤ N} of dimension N, which is built with the help of a weak greedy algorithm. This algorithm

constructs iteratively nested spaces Ŵu
n , 1 ≤ n ≤ N using an a-posteriori error estimator 4u(Y; p), which

predicts the expected approximation error for a given parameter p in the space Ŵu
n = Y . We want the

expected approximation error to be less than the prescribed tolerance εRB. We initiate the algorithm

with an arbitrary chosen parameter p̄1 with the corresponding snapshot û( p̄1) for the basis enrichment.

Next we proceed as stated in the following Algorithm 3. We note that the basis functions ζn are also

Algorithm 3: RB-Greedy algorithm

1 Input: Tolerance εRB, max. number of iterations Nmax, Ŵu
1 = span{û( p̄1)}, parameter set

Dtrain ⊂ D

2 Output: RB spaces {Ŵu
n }

N
n=2

1: while 2 ≤ n ≤ Nmax and εn := max
p∈Dtrain

4u (Ŵu
n , p) > εRB do

2: p̄n ← arg max
p∈Dtrain

4u (Ŵu
n−1, p)

3: Du
n ← D

u
n−1 ∪ { p̄n}

4: Ŵu
n ← Ŵu

n−1

⊕
span{ζn ≡ ûN ( p̄n)}

5: n← n + 1
6: end while

orthonormalized relative to the 〈·, ·〉V̂ inner product with a Gram-Schmidt procedure to generate a well-

conditioned system of equations.

The Empirical Interpolation Method (EIM) [5] is used to ensure the availability of offline/online

decomposition in the presence of the nonlinearity

ν1(ûN (x̂; p); p) := ν1(|J−T
T

(x̂, p)∇ûN (x̂, p)|). (4.23)

Given an EIM tolerance εEIM > 0 and a fine sample DEIM
train ⊂ D of size nEIM

train, we construct with the

Algorithm 4 the nested sample sets Dν
M ⊂ D

EIM
train, where Dν

M = {pν1 ∈ D, ..., pνM ∈ D} and associated

approximation spaces Wν
M = span{ξm := ν1(ûN (x̂; pνm); pνm), 1 ≤ m ≤ M} = span{q1, ..., qM} together with

a set of interpolation points TM = {x̂M
1 , ..., x̂

M
M}. Then we build an affine approximation νM

1 (ûN (x̂; p); p)

of ν1(ûN (x̂; p); p) as

νM
1 (ûN (x̂; p); p) : = νM

1 (|J−T
T

(x̂, p)∇ûN (x̂, p)|) =

M∑
m=1

ϕm(p)qm(x̂) (4.24)

=

M∑
m=1

(B−1
M νp)mqm(x̂) = ν1(ûN (x̂; p); p) + εM(x̂; p),
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where εM(·; p) is the EIM approximation error: it holds δM(p) := ‖εM(·; p)‖L∞(Ω̂) < εEIM for all p ∈

DEIM
train. In (4.24) we also have νp := {ν1(ûN (x̂M

m ; p); p)}Mm=1 ∈ RM and BM ∈ RM×M with (BM)i j = q j(x̂M
i )

is the lower triangular interpolation matrix by construction.

Algorithm 4: EIM algorithm

1 Input: Tolerance εEIM, max. number of iterations Mmax, parameter setDEIM
train ⊂ D

2 Output: Approximation spaces {Wν
m}

M
m=1, interpolation points {Tm}

M
m=1

1: pν1 := arg max
p∈DEIM

train

‖ν1(ûN (·; p); p)‖L∞(Ω̂)

2: Dν
1 = {pν1}

3: r1(x̂) := ν1(ûN (x̂; pν1); pν1)
4: xM

1 := arg max
x̂∈Ω

|r1(x̂)|, q1 := r1/r1(x̂M
1 )

5: T1 := {x̂M
1 }, Q1 := {q1}, Wν

1 := span(Q1)
6: while 2 ≤ m ≤ Mmax and δmax

m > εEIM do
7: δmax

m = max
p∈DEIM

train

‖ν1(ûN (·; p); p) − νm
1 (ûN (·; p); p)‖L∞(Ω̂)

8: pνm = arg max
p∈DEIM

train

‖ν1(ûN (·; p); p) − νm
1 (ûN (·; p); p)‖L∞(Ω̂)

9: Dν
m = Dν

m−1 ∪ {p
ν
m}

10: rm(x̂) = ν1(ûN (x̂; pνm); pνm) − νm
1 (ûN (x̂; pνm); pνm)

11: x̂M
m = arg max

x̂∈Ω̂
|rm(x̂)|, qm = rm/rm(x̂M

m )

12: Tm := Tm−1 ∪ {x̂M
m }, Qm := Qm−1 ∪ {qm}, Wν

m := span(Qm)
13: m← m + 1
14: end while

Remark 18. We note that for any ν1(·; p), the interpolation error satisfies

δM(p) ≤ (1 + ΛM) inf
z∈Wν

M

‖ν1(ûN (·; p); p) − z‖L∞(Ω̂), ∀p ∈ D,

where ΛM := sup
x̂∈Ω̂

∑M
m=1 |χ

M
m (x̂)| is the Lebesque interpolation constant and χM

m ∈ Wν
M are the character-

istic functions of Wν
M with χM

m (x̂M
n ) = δmn. The Lebesque constant can be upper bounded ΛM ≤ 2M − 1,

but in practice the actual behaviour of ΛM is much lower. In fact, ΛM depends on the set of interpolation

points TM; the interpolation points are selected in the Greedy fashion to minimize the supremum norm of

the residual. The optimality with respect to the supremum norm also characterizes the Chebyshev points.

In this way the points TM “magically" coincide with the Chebyshev points on the interval [−1, 1] and

sometimes called as “magic points". Therefore the EIM algorithm generalizes the selection of optimal

interpolation points to arbitrary-shaped geometries [38].

The EIM approximation of ν1 results in the EIM-approximation aM[·](·, ·; p) of the quasilinear form

a[·](·, ·; p) and then the reduced basis approximation is obtained by a standard Galerkin projection: given

p ∈ D, find ûN,M(p) ∈ Ŵu
N such that

aM[ûN,M(p)](ûN,M(p), v̂N ; p) = f (v̂N ; p), ∀v̂N ∈ Ŵu
N (4.25)
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holds. Since Ω̂ = Ω̂1 ∪ Ω̂2, we have the decomposition

aM[ŵ](ŵ, v̂; p) := aν1
M[ŵ](ŵ, v̂; p) + aν2(ŵ, v̂; p), (4.26)

where aν1
M[·](·, ·; p) is the EIM-approximation of aν1[·](·, ·; p) with nonlinear reluctivity ν1(·; p) replaced

by its EIM counterpart νM
1 (·; p).

We define VN(p) := {vN | vN = v̂N ◦ T −1, v̂N ∈ V̂N } as a push-forward finite-element space over

the parametrised domain Ω(p). For mathematical convenience, we assume that the EIM approximation

aM[·](·, ·; p) is sufficiently accurate in the sense that the form aM[·](·, ·; p) is strongly monotone on VN (p)

with monotonicity constant ν̃LB := νLB ± εa > 0, i.e., for all vN ,wN ∈ VN (p) it holds

aM[vN ](vN , vN − wN ; p) − aM[wN ](wN , vN − wN ; p) ≥ ν̃LB‖vN − wN‖2V(p), (4.27)

and Lipschitz continuous on VN (p) with Lipschitz constants L̃a := La ± εa > 0, i.e., for all uN ,wN , vN ∈

VN (p) it holds

|aM[uN ](uN , vN ; p) − aM[wN ](wN , vN ; p)| ≤ L̃a‖uN − wN‖V(p)‖vN‖V(p), (4.28)

where εa ∈ R+ is small enough and is related to the EIM approximation error. Then problem (4.25)

admits a unique solution. However, in the EIM practice we can guarantee that conditions (4.27) and

(4.28) hold uniformly together with εa < εEIM only on DEIM
train. It is difficult to check these properties a-

priori for p ∈ D \ DEIM
train, so that arguing the well-posedness of (4.25) and the upcoming discrete system

(4.43) in general is not possible.

Finally, we achieve an affine decomposition of the quasilinear form

aν1
M[ûN,M(p)](ŵ, v̂; p) =

M∑
m=1

L1∑
d=1

2∑
i, j=1

ϕm(p)Φi, j
d,L1

(p)ai, j
m,d(ŵ, v̂), (4.29)

aν2(ŵ, v̂; p) =

L2∑
d=1

2∑
i, j=1

Φ
i, j
d,L2

(p)ai, j
d (ŵ, v̂),

such that Φ
i, j
d,L1

: D → R for d = 1, ..., L1, i, j = 1, 2 and Φ
i, j
d,L2

: D → R for d = 1, ..., L2, i, j = 1, 2 are

functions depending on p and the parameter independent forms

ai, j
m,d(ŵ, v̂) =

∫
Ω̂1

d

qm
∂ŵ
∂x̂i

∂v̂
∂x̂ j

dx̂, 1 ≤ d ≤ L1, 1 ≤ i, j ≤ 2,

ai, j
d (ŵ, v̂) =

∫
Ω̂2

d

∂ŵ
∂x̂i

∂v̂
∂x̂ j

dx̂, 1 ≤ d ≤ L2, 1 ≤ i, j ≤ 2.

For notational convenience, we set

cm(ŵ, v̂; p) :=
L1∑

d=1

2∑
i, j=1

Φ
i, j
d,L1

(p)ai, j
m,d(ŵ, v̂), (4.30)
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so that

aν1
M[ûN,M(p)](ŵ, v̂; p) =

M∑
m=1

ϕm(p)cm(ŵ, v̂; p).

Similarly, the affine decomposition of f has the form

f (v̂; p) =

∫
Ω̂

Jev̂ dx̂ −
L∑

d=1

2∑
i=1

| det Cd(p)|Cd(p)−T
1 i

∫
Ω̂d

Hpm,1
∂v̂
∂x̂i

dx̂ (4.31)

+

L∑
d=1

2∑
i=1

| det Cd(p)|Cd(p)−T
2 i

∫
Ω̂d

Hpm,2
∂v̂
∂x̂i

dx̂ =

Q f∑
q=1

Φ
f
q(p) fq(v̂),

where Φ
f
q : D → R for q = 1, ...,Q f are parameter dependent functions and parameter independent

forms fq(v̂).

4.2.2 Error estimation

We define Wu
N(p) := {wN | wN = ŵN ◦ T

−1, ŵN ∈ Ŵu
N} as a push-forward reduced-basis space over

the parametrised domain Ω(p) for error estimation purposes, where T −1 is the inverse of the geometric

transformation (4.9). First we study the convergence of ûN,M(p)→ ûN (p).

Proposition 4.2.1 (A-priori Error Bound). Assume that the EIM-approximation error of the nonlinearity

satisfies supp∈D‖ν1(p) − νM
1 (p)‖L∞ ≤ εEIM. Assume further that a[·](·, ·; p) is Lipschitz continuous on

V(p) with Lipschitz constant La = 2νLB + ν0 > 0 (4.8) and that the EIM-approximation aM[·](·, ·; p) of

a[·](·, ·; p) is strongly monotone with monotonicity constant ν̃LB := νLB ± εa > 0 (4.27). Then we have

‖ûN (p) − ûN,M(p)‖V̂ ≤

√
C2(p)
C1(p)

inf
ŵN∈Ŵu

N

{

(
1 +

La

ν̃LB

)
‖ûN (p) − ŵN‖V̂ +

εEIM

ν̃LB
‖ŵN‖V̂ }

with the geometric constants

Proof. Set uN := uN (p) ∈ V(p), uN,M := uN,M(p) ∈ Wu
N(p) and let wN ∈ Wu

N(p) be arbitrary. Set

σN,M := uN,M − wN . First we note that

aM[uN,M](uN,M,wN) − a[uN ](uN ,wN) = 0, ∀wN ∈ Wu
N(p) ⊂ VN (p). (4.32)

Then we use (4.32), the strong monotonicity condition and Lipschitz continuity to obtain the bound

ν̃LB‖σN,M‖
2
X(p) ≤ aM[uN,M](uN,M, σN,M) − aM[wN](wN , σN,M)

= a[uN ](uN , σN,M) − a[wN](wN , σN,M)

+ a[wN](wN , σN,M) − aM[wN](wN , σN,M)

≤ La‖uN − wN‖V(p)‖σN,M‖V(p)

+ sup
p∈D
‖ν1(p) − νM

1 (p)‖L∞‖wN‖V(p)‖σN,M‖V(p).
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46 CHAPTER 4. REDUCED BASIS METHOD FOR QUASILINEAR ELLIPTIC PDES

Dividing both sides by ν̃LB‖σN,M‖V(p) and using the triangle inequality

‖uN − uN,M‖V(p) ≤ ‖uN − wN‖V(p) + ‖σN,M‖V(p),

we obtain the estimate

‖uN (p) − uN,M(p)‖V(p) ≤

(
1 +

La

ν̃LB

)
‖uN (p) − wN‖V(p) +

εEIM

ν̃LB
‖wN‖V(p). (4.33)

The desired result follows from the Lemma 17 after a short calculation. �

For efficient implementation of the reduced basis methodology and the verification of the error, it is

necessary to provide an a-posteriori error bound, which can be quickly evaluated. For this we establish

an error bound based on the residual. We denote by rM(·; p) ∈ V̂ ′
N

the residual (formed on the reference

domain) of the problem, defined naturally as

rM(v̂N ; p) = f (v̂N ; p) − aM[ûN,M](ûN,M, v̂N ; p) ∀v̂N ∈ V̂N . (4.34)

We have the following

Proposition 4.2.2 (A-posteriori Error Bound). Let νLB > 0 be the lower bound of the monotonicity

constant. Then, the RB-EIM error êN,M(p) := ûN (p) − ûN,M(p) can be bounded by

‖êN,M(p)‖V̂ ≤
‖rM(·; p)‖V̂′

N

νLB C1(p)
+

C2(p)δM(p)
νLBC1(p)

‖ûN,M(p)‖V̂ := 4N,M(p) (4.35)

with the geometric constants (4.17a), (4.17b) and the EIM approximation error

δM(p) = sup
x̂∈Ω̂
|ν1(|J−T

T
(x̂, p)∇ûN,M(x̂; p)|) − νM

1 (|J−T
T

(x̂, p)∇ûN,M(x̂; p)|)| (4.36)

of the nonlinearity

Proof. Since in the case eN,M = 0 there is nothing to show, we assume that eN,M , 0. We then use strong

monotonicity condition (4.7) and the definition of the residual (4.34) to estimate

νLB‖eN,M‖
2
X(p) ≤ a[uN ](uN , eN,M) − a[uN,M](uN,M, eN,M)

= f (eN,M) − aM[uN,M](uN,M, eN,M)

+aM[uN,M](uN,M, eN,M) − a[uN,M](uN,M, eN,M)

:= rM(eN,M) + aM[uN,M](uN,M, eN,M) − a[uN,M](uN,M, eN,M)

= rM(êN,M) + aM[uN,M](uN,M, eN,M) − a[uN,M](uN,M, eN,M)

≤ ‖rM‖V̂′
N
‖êN,M‖V̂ + δM(p)‖uN,M‖X(p)‖eN,M‖V(p)

Now the final result follows from the Lemma 17, applied to ‖eN,M‖
2
V(p) and the right-hand side of the

inequality, correspondingly. �

We address the computational realization of the estimator (4.35) in the next section. Next we denote
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by r(·; p) ∈ V̂ ′
N

the residual of the original problem (without EIM reduction), defined as

r(v̂N ; p) = f (v̂N ; p) − a[ûN](ûN , v̂N ; p) (4.37)

and let êN(p) := ûN (p) − ûN(p) be the error of the reduced-basis approximation. Along the lines of

proposition 3.2 one can prove the error bound

‖êN(p)‖V̂ ≤
‖r(·; p)‖V̂′

N

νLB C1(p)
:= 4N(p). (4.38)

We use (4.38) to investigate the factor of overestimation in the reduced-basis approximation.

Proposition 4.2.3 (Effectivity bound for RB-approximation). Let ηN(p) =
4N (p)
‖êN‖V̂

. Then

ηN(p) ≤
La

νLB

√
C1(p)C2(p) (4.39)

Proof. Let v̂r ∈ V̂N denote the Riesz-representative of r(·; p). Then we have

〈v̂r, v̂N 〉V̂ = r(v̂; p), v̂N ∈ V̂N , ‖v̂r‖V̂ = ‖r(·; p)‖V̂′
N
.

Now let vr := v̂r ◦ T
−1 ∈ VN (p). Then, using Lipshitz continuity of (4.8), we have

‖vr‖
2
V(p) = 〈vr, vr〉V(p) = r(vr; µ) = a[uN ](uN , vr; p) − a[uN](uN , vr; p)

≤ La‖eN‖V(p)‖vr‖V(p).

With the Lemma 17, we obtain

‖v̂r‖V̂

‖êN‖V̂
≤ La

√
C2(p)
C1(p)

.

With (4.38) we then conclude

ηN(p) =
4N(p)
‖êN‖V̂

=
‖v̂r‖V̂

νLB C1(p)‖êN‖V̂
≤

La

νLB

√
C1(p)C2(p).

and obtain the effectivity bound. �

This bound is further used to explain the gap between the true error and the estimator.

4.2.3 Computational procedure

The computational process in the reduced basis modelling can be split into the offline and the online

phase. The computations in the offline phase depend on the dimensionN of the finite element space and

are expensive, but should be performed only once. The computations in the online phase are independent

of N , with computational complexity which depends only on the the dimension N of the reduced-basis

approximation space and the dimension M of the EIM approximation space. The key concept utilized

here is parameter-separability (or affine decomposition) of all the forms involved in the problem. We

now give the details of the numerical scheme for the nonlinear part, defined on the domain Ω̂1. The
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48 CHAPTER 4. REDUCED BASIS METHOD FOR QUASILINEAR ELLIPTIC PDES

second term in (4.29) is linear and can be treated similarly. We expand our reduced basis solution as

ûN,M(p) =
∑N

j=1 ûN,M jζ j and test against the basis elements in Ŵu
N to obtain the algebraic equations

N∑
j=1

M∑
m=1

ϕm(p)C j(N,M)
i m (ûN,M; p)ûN,M j(p) = FN i(p), 1 ≤ i ≤ N, (4.40)

where C j(N,M)(ûN,M; p) ∈ RN×M,C j(N,M)
i m (ûN,M; p) = cm(ζ j, ζi; p), 1 ≤ i, j ≤ N, 1 ≤ m ≤ M, and FN i(p) =

f (ζi; p). Let ϕM(p) = {ϕM k(p)}Mk=1 ∈ RM, then

M∑
k=1

BM
m kϕM k(p) = ν1(ûN,M(x̂M

m ; p); p), 1 ≤ m ≤ M (4.41)

= ν1(
N∑

n=1

ûN,M n(p)ζn(x̂M
m ); p), 1 ≤ m ≤ M.

We then insert (4.41) into (4.40) to get the following nonlinear algebraic equation system

N∑
j=1

M∑
m=1

D j(N,M)
i m (ûN,M; p)ν1(

N∑
n=1

ûN,M n(p)ζn(x̂M
m ); p) ûN,M j(p) = FN i(p), (4.42)

where 1 ≤ i ≤ N and D j(N,M)(ûN,M; p) = C j(N,M)(ûN,M; p)(BM)−1 ∈ RN×M.

To solve (4.42) for ûN,M(p), we apply a Newton’s iterative scheme: starting with û(0)
N,M(p), for z =

0, 1, .. solve the linear system

JN,M(û(z)
N,M; p)δû(z)

N,M(p) = RN,M(û(z)
N,M; p) (4.43)

to obtain δû(z)
N,M(p), and then update the solution û(z+1)

N,M (p) := û(z)
N,M(p) + δû(z)

N,M(p). The residual RN(p) ∈

RN for the Newton’s scheme must be calculated at every Newton iteration according to

RN,M i(ûN,M; p) = FN i(p) −
N∑

j=1

M∑
m=1

D j(N,M)
i m (ûN,M; p)ν1(ûN,M(x̂M

m ; p); p)ûN,M j(p). (4.44)

Taking the derivative of (4.42) with respect to the components uN,M j(p), 1 ≤ j ≤ N , we derive the

formula for the Jacobian matrix

JN,M(ûN,M; p) := AN,M(ûN,M; p) + EN,M(ûN,M; p), (4.45)

where AN,M(ûN,M; p) ∈ RN×N , (AN,M(ûN,M; p))i j = aν1
M[ûN,M(p)](ζ j, ζi; p) and EN,M(ûN,M; p) ∈ RN×N

with

(EN,M(ûN,M; p))i j =

N∑
s=1

ûN,M s(p)
M∑

m=1

Ds(N,M)
i m (ûN,M; p)

∂

∂uN,M j
ν1(ûN,M(x̂M

m ; p); p), (4.46)
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where 1 ≤ i, j ≤ N and

∂

∂uN,M j
ν1(ûN,M(x̂M

m ; p); p) =
g j

m(p)ν′1(ûN,M(x̂M
m ; p); p)

|J−T
T

(x̂M
m , p)∇ ˆ̄uN,M(x̂M

m ; p)|
, (4.47)

g j
m(p) = [J−T

T
(x̂M

m , p)∇ûN,M(x̂M
m ; p)] · [J−T

T
(x̂M

m , p)∇ζ j(x̂M
m )],

for 1 ≤ m ≤ M.

The parameter separability of reduced nonlinear stiffness matrix AN,M(ûN,M; p) and reduced load

vector FN(p) follows from (4.29) and (4.31), correspondingly

AN,M(û(z)
N,M; p) =

M∑
m=1

L1∑
d=1

2∑
i, j=1

ϕ(z)
m (p)Φi, j

d,L1
(p)Ai, j

N,m,d, FN(p) =

Q f∑
q=1

Φ
f
q(p)FN,q, (4.48)

where ϕ(z)
m (p), 1 ≤ m ≤ M represent EIM coefficients of z-th Newton iteration and

Ai, j
N,m,d = VT

NAi, j
N ,m,dVN , FN,q = VT

NFN ,q, (4.49)

where (Ai, j
N ,m,d)s1 s2 = ai, j

m,d(φs2 , φs1), 1 ≤ s1, s2 ≤ N , FN ,q = fq(φi), 1 ≤ i ≤ N and VN ∈ RN×N denotes

the projection matrix, whose columns contain the coefficients of the RB basis functions ξn, 1 ≤ n ≤ N,

that is (VN)in = ûN i( p̄n). Based on (4.30), we also have the following parameter separable matrices

CN,m(ûN,M; p) :=
L1∑

d=1

2∑
i, j=1

Φ
i, j
d,L1

(p)Ai, j
N,m,d, 1 ≤ m ≤ M. (4.50)

We construct C j(N,M)(ûN,M; p) out of the rows of (4.50) , hence C j(N,M)(ûN,M; p) is parameter separable.

Although (4.46) looks quite involved, it possesses an affine decomposition and allows efficient assem-

bling in the online phase. Indeed, the matrix D j(N,M)(ûN,M; p) is parameter separable, since the matrix

C j(N,M)(ûN,M; p) is parameter separable and the evaluation of g j ∈ RM in (4.47) requires the evaluation

of the reduced-basis functions only on the set of interpolation points TM. Therefore, these quantities can

be computed and stored in the offline phase and can be assembled in the online phase independently of

N and we have

JN,M(ûN,M; p) =

QJ∑
q=1

θJ
q(p)Jq

N,M, RN,M(ûN,M; p) =

QR∑
q=1

θR
q (p)Rq

N,M, (4.51)

where θJ
q(p) : D → R and θR

q (p) : D → R are parameter-dependent functions, Jq
N,M ∈ RN×N and Rq

N,M ∈

RN are parameter-independent matrices and vectors. We summarize the offline-online decomposition of

Newton’s method in the Algorithm 5. The operation count associated with each Newton’s update is then

as follows: the assembling of the residual RN(p) in (4.44) is achieved at cost O(4ML1N2 + N2 + Q f N) ∼

O(MN2) together with the EIM system solve at cost O(M2). The Jacobian JN,M(ûN,M; p) in (4.45) is

assembled at cost O(MN3), i.e. it is the cost for the assembling of EN,M(ûN,M; p). It is then inverted at

cost O(N3). The operation count in the online phase is thus O(MN3) per Newton iteration. However,

we observe in our numerical experiment that it is sufficient to use AN,M(ûN,M; p) and drop EN,M(ûN,M; p)

term in (4.45) to perform well, which results in O(MN2 + N3) operations per Newton iteration.

Next we address the computation of the a-posteriori error bound (4.35). It requires the computation
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Algorithm 5: RB Newton’s method: Offline-Online decomposition

1 Offline phase:
Input: finite element mesh, projection matrix VN , interpolation space Wν

M.
Output: All parameter-independent quantities, saved in S torage.

1: Assemble Ai, j
N ,m,d for m = 1, ...,M, d = 1, ..., L1, i, j = 1, 2.

2: Assemble FN ,q for q = 1, ...,Q f .

3: Compute Ai, j
N,m,d for m = 1, ...,M, d = 1, ..., L1, i, j = 1, 2 and save to S torage.

4: Compute FN,q for q = 1, ...,Q f and save to S torage.
2 Online phase:
Input: S torage, tolerance εNM

tol > 0, interpolation matrix BM, interpolation points TM, initial
value û(0)

N,M, parameter p ∈ D.
Output: Reduced-basis solution ûN,M(p).
1: Compute EIM coefficients ϕ(0)

M (p) = {ϕ(0)
M k(p)}Mk=1

2: Assemble Jacobian JN,M(û(0)
N,M; p) and residual RN,M(û(0)

N,M; p)

3: Compute δNM := ‖RN,M(û(0)
N,M; p)‖

4: while δNM > εNM
tol do

5: Solve the linear system JN,M(û(z)
N,M; p)δû(z)

N,M(p) = RN,M(û(z)
N,M; p)

6: Update û(z+1)
N,M (p) := û(z)

N,M(p) + δû(z)
N,M(p)

7: Update EIM coefficients ϕ(z+1)
M (p) = {ϕ(z+1)

M k (p)}Mk=1
8: Update Jacobian JN,M(û(z+1)

N,M ; p) and residual R(z+1)
N,M (p)

9: Compute δNM := ‖RN,M(û(z+1)
N,M ; p)‖

10: z := z + 1
11: end while
12: ûN,M(p) := û(z)

N,M(p)
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of the dual norm of the residual (4.34). Since the right-hand side f (·; p) and aM[·](·, ·; p) are parameter-

separable, the residual rM(·; p) is also parameter-separable and admits an affine decomposition together

with its Riesz-representative v̂r(p) ∈ V̂N according to

rM(v̂N ; p) =

Qr∑
q=1

Φr
q(p)rM q(v̂N ), v̂r(p) =

Qr∑
q=1

Φr
q(µ)v̂r q, (4.52)

where rM(v̂; p) = (v̂r(p), v̂N )V̂ for all v̂N ∈ V̂N and Qr = Q f + N(M + 4ML1 + 4L2). Since the dual norm

of the residual is equal to the norm of its Riesz representer, we have

‖rM(·; p)‖V̂′
N

= ‖v̂r(p)‖V̂ = (Φr(p)T GrΦ
r(p))1/2, (4.53)

where Φr(p) = {Φr
q(p)}Qr

q=1 ∈ RQr and Gr ∈ RQr×Qr with (Gr)i j = (v̂r i, v̂r j)V̂ and the dual norm (4.53)

is then computed at cost O(Q2
r ). The evaluation of the norm ‖ûN,M(p)‖V̂ is at cost O(N2). Once νLB is

available, the constants C1(p) and C2(p) in (4.35) are computed directly.

The EIM approximation error (4.36) is computed on the discretized domain Ω̂h ⊂ Ω̂: the nonlinearity

depends on the gradient and it is evaluated on the triangle barycenters x̂b j , 1 ≤ j ≤ NT , where NT is

the total number of triangles in the iron material region for a given finite-element triangulation. The

EIM procedure results in the set of triangle barycenter points TM = {x̂M
b1
, ..., x̂M

bM
}, where M << NT .

In the offline phase we evaluate the gradients {∇ζn}
N
n=1 for each basis element {ζn}

N
n=1 of the reduced-

basis space Ŵu
N on the interpolation barycenters TM. We thus store offline {∇ζn|TM

(x̂M
b j

)}Mj=1 ∈ RM×2

for 1 ≤ n ≤ N and then efficiently evaluate the nonlinearity on TM with the ansatz ∇ûN,M(p)
∣∣∣
TM

=∑N
j=1 ûN,M j(p) ∇ζ j

∣∣∣
TM

online. The operation count for the EIM approximation νM
1 (ûN,M(x̂; p); p) is then

O(M2 + NT M), and the evaluation of ν1 at M points. We note that (4.36) requires the knowledge of

ν1(ûN,M(x̂; p); p) and thus one full evaluation of the nonlinearity.

Remark 19. Given an approximation νM
1 (·; p), for M ≤ Mmax − 1 we define

δ̂M(p) = |ν1(|J−T
T

(x̂M
M+1, p)∇ûN,M(x̂M

M+1; p)|) − νM
1 (|J−T

T
(x̂M

M+1, p)∇ûN,M(x̂M
M+1; p)|)|.

If ν1(·; p) < Wν
M+1, we only have that δM(p) ≥ δ̂M(p) for p ∈ D. However, if the effectivity δ̂M(p)

δM(p) tends

to 1 quickly with growing M, then δ̂M(p) can be used as a cheap one-point estimator for δM(p), which

requires only one additional evaluation of ν1(·; p) at the (M + 1)-th magic point [20]. In our case the

nonlinearity is of the exponential type and the effectivity of the bound is of the order 102 in practice.

However, we can think of using δ̂M(p) in other contexts, such as an adaptive optimization with surrogate

models (see, e.g. [2]), where only the local parametric complexity of the nonlinearity around the certain

parameter value p̄ matters.

4.3 Numerical results

First we introduce a parameter set D = [18, 19] × [4, 5] × [7, 8]. The nonlinear reluctivity function

ν1(p) is reconstructed from the real B − H measurements using cubic spline interpolation, see section

2.1.2. Finite element simulations are based on a mesh composed of 121012 triangles and 60285 nodes

(excluding Dirichlet boundary nodes). Piecewise linear, continuous finite element functions are chosen

for the finite element approximation. We solve the finite element problem with Newton’s method. We

51



52 CHAPTER 4. REDUCED BASIS METHOD FOR QUASILINEAR ELLIPTIC PDES

iterate unless the norm of the residual is less than the tolerance level, which we set to 10−4. The tolerance

level εNM
tol = 10−5 is used for the RB Newton’s method.

We generate the RB-EIM model as follows: we start fromDEIM(1)
train ⊂ D (a regular 6× 6× 6 grid over

D of size 216) and compute finite element solutions for each parameter in DEIM(1)
train to approximate the

nonlinearity with the EIM within the prescribed tolerance εEIM = 5 · 10−1. Since the norm ‖ûN,M(p)‖V̂ is

of the order 10−2, we hope to further balance the contributions of the reduced-basis and EI nonlinearity

approximation in the estimator on the test set. Next we run the RB-Greedy procedure with the prescribed

tolerance εRB = 10−2 for the estimator (4.35) on Dtrain ⊂ D, where Dtrain is a regular 10 × 10 × 10 grid

overD of size 1000. We set νLB = 110, since

νLB ≤ min
x̂∈Ω̂

ν1(|J−T
T

(x̂, p)∇ûN,M(x̂; p)|) ' 110 (4.54)

for all p ∈ Dtrain in our setting. This is a robust heuristic procedure, since for small N, the reduced-

basis solution ûN,M(x̂; p) is a good approximation to û(x̂; p) in the regions with low magnetic flux density

|∇û(·; p)|. The size of the magnet (change in the parameter p) influences only the high values of the

magnetic flux density |∇ûN,M(·; p)| in the magnetic circuit and does not have an impact on the minimum

of the reluctivity function. We note that the evaluation of δM(p) (4.36) requires one full evaluation of the

nonlinearity, thus it is available for the computation in (4.54) for the a-posteriori error estimation.

Once the reduced-basis model is constructed (Nmax = 12,Mmax = 50), we use it to improve the

quality of the nonlinearity approximation: we generate the reduced-basis solutions over DEIM(2)
train :=

Dtrain and use them to construct the improved EIM approximation space Wν
M of dimension Mmax = 50.

With the new approximation of the nonlinearity, we run the RB-Greedy procedure over Dtrain again

with the prescribed tolerance εRB = 10−2, which results in the reduced-basis space Ŵu
N of dimension

Nmax = 10.

Next we introduce a parameter test sample Dtest ⊂ D of size 343 (7 × 7 × 7 grid with uniformly

random sampling on each interval) and verify the convergence with N of max4N,M = max
p∈Dtest

4N,M (p) for

different values of M (see Fig.4.2(a)). We see that with N = 8 and M = 50 the estimator is below the

prescribed tolerance εRB = 10−2 on the test set. One observes that there is an increase in the estimator

for N ≥ 8 and for M < 50 due to the poor quality of the EIM approximation. Moreover, we can naturally

split the estimator into two parts: the reduced-basis and the nonlinearity approximation error estimation

contributions

4RB
N,M(p) :=

‖rM(·; p)‖V̂′
N

νLB C1(p)
, 4EI

N,M(p) :=
C2(p)δM(p)
νLB C1(p)

‖ûN,M(p)‖V̂ . (4.55)

We then set

4RB
N,M := max

p∈Dtest
4RB

N,M (p), 4EI
N,M := max

p∈Dtest
4EI

N,M (p). (4.56)

The strategy is to balance two contributions in (4.56) for the specified tolerance level εRB, e.g. by

choosing N = 8 and M = 50, see Fig.4.2(b). In Fig. 4.2(b) we can also see the improvement from the

described above additional EIM step.

52



4.3. NUMERICAL RESULTS 53

N M max4N,M 4̄N,M(p) η̄N,M max ηN,M

4 30 1.24 E-01 4.74 E-02 7.41 E02 1.46 E03
6 40 4.59 E-02 2.37 E-02 3.98 E02 7.18 E02
8 45 9.30 E-03 5.10 E-03 2.46 E02 6.24 E02
8 50 8.90 E-03 5.51 E-03 2.49 E02 6.32 E02
10 50 8.90 E-03 5.30 E-03 8.48 E02 4.65 E03

Table 4.1: Performance of RB-EIM model on the test set

(a) (b)

Figure 4.2: Convergence with N of max4N,M for different values of M on the test set (a). Convergence
with N of 4RB

N,M and 4EI
N,M contributions for M = 50 on the test set. The number in the label bracket

indicates the EIM step (b).

In Table 4.1 we present, as a function of N and M, the maximum error bound max
p∈Dtest

4N,M (p) as

well as the mean η̄N,M and max ηN,M of the effectivity ηN,M(p) := 4N,M(p)
‖êN,M‖V̂

. The effectivities require the

knowledge of “truth" solution, therefore we compute the finite element solutions for all the parameters

in the test set. We observe that the values of η̄N,M and max ηN,M are quite large, which partially can

be explained by the estimate (4.39) for the effectivity ηN(p) of the reduced-basis approximation. In our

example we have

max
x̂∈Ω̂

ν1(|J−T
T

(x̂, p)∇ûN,M(x̂; p)|) ≤ ν0

onDtest, where ν0 ≈ 7.95 × 105 is the reluctivity of air. Therefore the upper-bound constant for ηN(p) is

of order 103 in practice.

In Fig. 4.3 we plot the reduced-basis solutions, i.e. the magnetic equipotential lines for several

parameters in Fig. 4.3(a) and Fig. 4.3(b) and the corresponding reluctivity functions, evaluated fully

with splines and with EIM in Fig 4.3(c) and Fig. 4.3(d). In Fig. 4.3(e) and Fig. 4.3(f) we zoom the

reluctivity functions at some parts to see the inaccuracies of our EIM approximation. Next we compare

the average CPU time required for both the finite element method, which takes ≈ 150 sec to obtain the
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solution, and the RB method (Nmax = 10,Mmax = 50), which takes ≈ 0.27/0.95 sec without/with the

error bound evaluation and results in the speedup factors of 555 and 158, respectively 1. The compu-

tation of the error bound significantly increases the total CPU time, since the complexity of the error

bound evaluation scales quadratically with Qr, where Qr is large and requires one full evaluation of the

nonlinearity. The offline phase requires the knowledge of the “truth" finite-element solutions for the first

EIM approximation step. Since 216 finite-element solutions were generated in the consecutive order, it

takes ≈ 9 hours, but it can be done in parallel to reduced the computational time. The Greedy algorithm

execution takes ≈ 4 hours and since we run it twice, it takes ≈ 8 hours for our implementation. We note

that our implementation may not be optimal, therefore the offline time is only a rough estimate.

Remark 20. We note that in the presented numerical example the relatively small parameter domainD

was chosen. In the authors opinion, it is possible to enlarge the parameter domain with the increasing

cost of the nonlinearity approximation by combining few additional EIM steps as described above and

exploiting divide-and-conquer principles and hp-adaptivity in the Greedy procedure (see, e.g. [10, 47]).

1All the computations are performed in MATLAB on Intel Xeon(R) CPU E5-1650 v3, 3.5 GHz x 12 cores, 64 GB RAM
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Figure 4.3: Magnetic equipotential lines, computed with reduced basis method (10 RB functions, 50
EIM basis functions) for parameter value (a) p = (18, 4, 7), (b) p = (19, 5, 8). Reluctivity function
ν1(p), computed with full spline approximation and its EIM counterpart νM

1 (p) for parameter value (c)
p = (18, 4, 7), (d) p = (19, 5, 8). Zoom of reluctivity functions at some parts for the parameter (e)
p = (18, 4, 7), (f) p = (19, 5, 8).
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Chapter 5

Reduced basis method for quasilinear
parabolic PDEs and applications to
magnetoquasistatics equation

In this chapter, we propose a certified reduced basis (RB) method for quasilinear parabolic problems.

The method is based on a space-time variational formulation. We provide a residual-based a-posteriori

error bound for a space-time formulation and the corresponding efficiently computable estimator for the

certification of the method. We use the Empirical Interpolation method (EIM) to guarantee the efficient

offline-online computational procedure. The error of the EIM method is then rigorously incorporated into

the certification procedure. The Petrov-Galerkin finite element discretization allows to benefit from the

Crank-Nicolson interpretation of the discrete problem and to use a POD-Greedy approach to construct

the reduced-basis spaces of small dimensions. It computes the reduced basis solution in a time-marching

framework while the RB approximation error in a space-time norm is controlled by the estimator. There-

fore we combine a POD-Greedy approximation with a space-time Galerkin method.

5.1 Space-Time Truth Solution

In this section we consider a space-time variational formulation of quasilinear parabolic partial differ-

ential equations, which we denote as the exact problem. The corresponding discrete Petrov-Galerkin

approximation is called the truth problem, as it is common in the RB setting. We assume that the so-

lution to the exact problem can be approximated arbitrarily well by the discrete solution of the truth

problem. We then neglect the corresponding approximation error.

5.1.1 Space-Time formulation

Let Ω ⊂ Rd be the spatial domain and µ ∈ D ⊂ Rp, whereD is a compact parameter set. Let V ⊂ H1(Ω)

be a separable Hilbert space and H := L2(Ω). We denote by 〈·, ·〉V , 〈·, ·〉H and ‖·‖V , ‖·‖H corresponding

inner products and induced norms, respectively. To V and H we associate the Gelfand triple V ↪→ H ↪→

V ′ with duality pairing 〈·, ·〉V′V . The norm of l ∈ V ′ is defined by ‖l‖V′ := sup
ψ∈V,‖ψ‖V,0

〈l, ψ〉V′V/‖ψ‖V .

We consider a parametrized quasilinear, bounded differential operator A : V × D → V ′ with induced
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quasilinear form

〈A(u, µ), v〉V′V := a[u](u, v; µ) =

∫
Ω

ν(u(x); µ)∇u · ∇v dx, (5.1)

where the nonlinearity satisfies ν(·; µ) ∈ C1(R). We assume that the forms (5.1) are strongly monotone

on V with monotonicity constants ma(µ) > 0, i.e.

a[v](v, v − w; µ) − a[w](w, v − w; µ) ≥ ma(µ)‖v − w‖2V ∀ v,w ∈ V, (5.2)

and Lipschitz continuous on V with Lipschitz constants La(µ) > 0, i.e.

|a[u](u, v; µ) − a[w](w, v; µ)| ≤ La(µ)‖u − w‖V‖v‖V ∀ u,w, v ∈ V. (5.3)

In addition, we assume that these conditions hold uniformly:

ma := inf
µ∈D

ma(µ) > 0, La := sup
µ∈D

La(µ) < ∞. (5.4)

For given (g(·; µ), uo) ∈ L2(I; V ′) × H we consider the quasilinear parabolic initial value problem of

finding u(t) := u(t; µ) ∈ V, t ∈ I a.e. on the time interval I = (0,T ], such that

u̇(t) + A(u(t), µ) = g(t) in V ′, u(0) = uo in H, (5.5)

where u̇ := ∂u
∂t is understood in the generalized sense. We now define a space-time variational formulation

of (5.5). We use the trial space

X := W(0,T ) = L2(I; V) ∩ H1(I; V ′) = {v ∈ L2(I; V) : v, v̇ ∈ L2(I; V ′)}

with the norm ‖w‖2
X

:= ‖ẇ‖2
L2(I;V′) + ‖w‖2

L2(I;V), and the test space Y := L2(I; V) × H with the norm

‖v‖2
Y

:= ‖v(1)‖2
L2(I;V) + ‖v(2)‖2H for v := (v(1), v(2)). The weak formulation of problem (5.5) reads: find

u := u(µ) ∈ X such that

B[u](u, v; µ) = F(v; µ), ∀ v ∈ Y, (5.6)

where

B[u](u, v; µ) :=
∫

I
〈u̇, v(1)〉V′V + a[u](u, v(1); µ)dt + 〈u(0), v(2)〉H , and (5.7)

F(v; µ) :=
∫

I
〈g(µ), v(1)〉V′Vdt + 〈uo, v(2)〉H . (5.8)

Since X ↪→ C(I; H), the initial value u(0) is well-defined in H (see Proposition 2.2.1). We note that (5.2)

implies coercivity of the quasilinear form a[·](·, ·; µ) and (5.3) implies hemicontinuity, i.e. the continuity

of the mapping s→ 〈A(u+ sw, µ), v〉V′V for s ∈ [0, 1] and all u,w, v ∈ V . All together, the well-posedness

of problem (5.6) follows, so that (5.6) admits a unique solution u ∈ X, see Theorem 9.
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5.1.2 Petrov-Galerkin Truth Approximation

From here onwards we omit the dependence on µ wherever appropriate. For the temporal discretization

of (5.6) we use the time grid 0 = t0 < t1 < ... < tK = T and set Ik = (tk−1, tk] for k = 1, ...,K. We set 4tk =

tk − tk−1 and define 4t := max1≤k≤K 4tk. For the spatial discretization we set Vh = span{φ1, ..., φNh} ⊂ V ,

where dim Vh = Nh and h denotes the spatial discretization parameter. The functions φi will be defined

in the numerical examples. With δ := (4t, h) we introduce the discrete trial space

Xδ := {uδ ∈ C0(I; V), uδ|Ik ∈ P1(Ik,Vh), k = 1, ...,K} ⊂ X

and the discrete test space

Yδ := {vδ ∈ L2(I; V), vδ|Ik ∈ P0(Ik,Vh), k = 1, ...,K} × Vh ⊂ Y.

With these choices of spaces the truth approximation problem reads: find uδ := uδ(µ) ∈ Xδ, such that

u0
δ := uδ(0) = Ph

Huo and

B[uδ](uδ, vδ; µ) = F(vδ; µ) ∀vδ ∈ Yδ, (5.9)

where Ph
H : H → Vh denotes the H-orthogonal projection onto Vh. It follows as for (5.6) that problem

(5.9) admits a unique solution uδ ∈ Xδ.

The Petrov-Galerkin space-time discrete formulation (5.9) is approximated by the Crank-Nicolson

time-stepping scheme. Indeed, since the test space Yδ consists of piecewise constant polynomials in

time, the problem can be solved via the following procedure for k = 1, ...,K:∫
Ik
〈u̇δ, vh〉V′V + a[uδ](uδ, vh; µ)dt =

∫
Ik
〈g(µ), vh〉V′Vdt ∀vh ∈ Vh. (5.10)

Since the trial space Xδ consists of piecewise linear and continuous polynomials in time with the values

ûk
δ := uδ(tk) and ûk−1

δ := uδ(tk−1), we can represent uδ on Ik as the linear function

uδ(t) =
1
M tk {(t

k − t)ûk−1
δ + (t − tk−1)ûk

δ}, t ∈ Ik. (5.11)

We use the representation (5.11) in (5.10), test (5.10) against the basis functions φi ∈ Vh (i = 1, ...,Nh)

and use the trapezoidal quadrature rule for the approximation of the appearing integrals. In this way we

obtain the Crank-Nicolson time-stepping scheme, which for k = 1, ...,K reads

〈uk
δ − uk−1

δ , φi〉H +
M tk

2
{a[uk

δ](u
k
δ, φi; µ) + a[uk−1

δ ](uk−1
δ , φi; µ)} = (5.12)

=
M tk

2
{〈g(tk; µ), φi〉V′V + 〈g(tk−1; µ), φi〉V′V }, 1 ≤ i ≤ Nh,

where we consider uk
δ as our approximation of ûk

δ. Here we recall that the initial condition u0
δ is obtained

as an H-orthogonal projection of uo onto Vh. Given the ansatz uk
δ =

∑Nh
i=1 uk

i φi and defining uk
δ := {uk

i }
Nh
i=1 ∈

RNh , the resulting nonlinear algebraic equations are then solved by applying Newton’s method for finding
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the root uk
δ of

Gh(uk
δ; µ) : =

1
M tk Mh(uk

δ − uk−1
δ ) −

1
2

[gk
h(µ) + gk−1

h (µ)] (5.13)

+
1
2

[Ah(uk
δ; µ)uk

δ + Ah(uk−1
δ ; µ)uk−1

δ ],

where Mh := {〈φi, φ j〉H}
Nh
i, j=1,Ah(uk

δ; µ) := {a[uk
δ](φi, φ j; µ)}Nh

i, j=1 ∈ RNh×Nh and gk
h(µ) := {〈g(tk; µ), φi〉V′V }

Nh
i=1 ∈

RNh . The initial condition for (5.13) is given by u0
δ := {〈uo, φi〉H}

Nh
i=1 ∈ RNh . The strong monotonicity of

the quasilinear form (5.2) guarantees that the equation (5.13) admits a unique root uk
δ for every parameter

µ ∈ D.

The Newton’s iteration for finding a root of (5.13) reads: starting with uk,(0)
δ , for z = 0, 1, ... solve the

linear system

Jh(uk,(z)
δ ; µ)δuk,(z)

δ = −Gh(uk,(z)
δ ; µ) (5.14)

to obtain δuk,(z)
δ , and then update the solution uk,(z+1)

δ := uk,(z)
δ + δuk,(z)

δ . The system Jacobian matrix is

given by

Jh(uk
δ; µ) =

1
M tk Mh +

1
2

A′h(uk
δ; µ), (5.15)

where A′h(uk
δ; µ) := {da[uk

δ](φi, φ j; µ)}Nh
i, j=1 ∈ RNh×Nh . Here we assume the existence of the Fréchet

derivative A′(u; µ) : V × D → V ′ of the nonlinear operator A(u; µ) for every parameter µ ∈ D, which

induces the corresponding bilinear form 〈A′(u; µ)v,w〉V′V = da[u](v,w; µ). We will specify it later for

our examples. We note that A′h(uk
δ; µ) is positive definite, since da[u](·, ·; µ) is coercive due to the strong

monotonicity of A; therefore, the system (5.14) admits a unique solution.

5.2 The Reduced Basis method

In this section we introduce the reduced basis model and its numerical realization. Then we introduce

our a-posteriori error estimate and discuss its efficient evaluation.

5.2.1 Empirical interpolation of the nonlinearity

We use the Empirical Interpolation Method (EIM) [5] to ensure the availability of an affine decomposition

for the quasilinear form a[uk
δ](·, ·; µ) for every parameter µ ∈ D. We then need to find a parameter-

separable (affine) counterpart νM(·; µ) of the nonlinear non-affine function ν(·; µ). For EIM nonlinearity

approximation, we treat time as an additional parameter in the problem, thus we set I := {1, ...,K} as

our discrete time set. Given an EIM tolerance εEIM > 0 and a fine sample DEIM
train ⊂ D of size nEIM

train,

we construct with the Algorithm 6 the nested sample sets S ν
M ⊂ D

EIM
train and IνM ⊂ I, where S ν

M :=

{µν1 ∈ D
EIM
train, ..., µ

ν
M ∈ D

EIM
train} and IνM := {kM

1 ∈ I, ..., kM
M ∈ I}, and associated approximation spaces

Wν
M := span{ν(ukM

m
δ (·; µνm); µνm), 1 ≤ m ≤ M} = span{q1, ..., qM}. Algorithm 6 also provides the nested sets

of interpolation points TM = {xM
1 , ..., x

M
M}, 1 ≤ M ≤ Mmax. We build an affine approximation νM(uk

δ(x); µ)
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of ν(uk
δ(x); µ) for our time-marching scheme according to

νM(uk
δ(x); µ) :=

M∑
m=1

ϕk
m(µ)qm(x) (5.16)

=

M∑
m=1

(B−1
M νk

µ)mqm(x̂) = ν(uk
δ(x); µ) + εk

M(x; µ),

where εk
M(·; µ) is the EIM approximation error: it holds δM(µ) := ‖εk

M(·; µ)‖L∞(Ω) < εEIM for all k ∈ I, µ ∈

DEIM
train. In (5.16) we also have νk

µ := {ν(uk
δ(xM

m ); µ)}Mm=1 ∈ RM and BM ∈ RM×M is the lower triangular

interpolation matrix (BM)i j = q j(xi) with (BM)ii = 1 (i = 1, ...,M) by construction.

Algorithm 6: : EIM algorithm

1 Input: Tolerance εEIM, max. number of iterations Mmax, parameter setDEIM
train.

2 Output: Nested approximation spaces {Wν
m}

M
m=1, nested interpolation points {Tm}

M
m=1.

1: (µν1, k
M
1 ) := arg max

(µ,k)∈DEIM
train×I

‖ν(uk
δ(·); µ)‖L∞(Ω)

2: S ν
1 × Iν1 := {µν1} × {k

M
1 }

3: r1(x) := ν(ukM
m
δ (x; µνm); µνm)

4: xM
1 := arg max

x∈Ω
|r1(x)|, q1 := r1/r1(xM

1 )

5: T1 := {xM
1 }, Q1 := {q1}, Wν

1 := span(Q1)
6: while 2 ≤ m ≤ Mmax and δmax

m > εEIM do
7: (µνm, k

M
m ) := arg max

(µ,k)∈DEIM
train×I

‖ν(uk
δ(·); µ) − νm(uk

δ(·); µ)‖L∞(Ω)

8: δmax
m := max

(µ,k)∈DEIM
train×I

‖ν(uk
δ(·); µ) − νm(uk

δ(·); µ)‖L∞(Ω)

9: S ν
m := S ν

m−1 ∪ {µ
ν
m}, Iνm := Iνm−1 ∪ {k

M
m }

10: rm(x) := ν(ukM
m
δ (x; µνm); µνm) − νm(ukM

m
δ (x; µνm); µνm)

11: xM
m := arg max

x∈Ω
|rm(x)|, qm := rm/rm(xM

m )

12: Tm := Tm−1 ∪ {xM
m }, Qm := Qm−1 ∪ {qm}, Wν

m := span(Qm)
13: m← m + 1
14: end while

We then have the EIM approximation ã[·](·, ·; µ) of the quasilinear form a[·](·, ·; µ), which admits the

affine decomposition

ã[uk
δ](u

k
δ, v; µ) =

M∑
m=1

ϕk
m(µ)ãm(uk

δ, v), ãm(uk
δ, v) =

∫
Ω

qm∇uk
δ · ∇v dx. (5.17)

For mathematical convenience, we assume that the EIM approximation ã[·](·, ·; µ) is sufficiently accurate

in the sense that the form ã[·](·, ·; µ) is strongly monotone on Vh with monotonicity constant m̃a(µ) :=

ma(µ) ± εa > 0, i.e., for all vh,wh ∈ Vh it holds

ã[vh](vh, vh − wh; µ) − ã[wh](wh, vh − wh; µ) ≥ m̃a(µ)‖vh − wh‖
2
V , (5.18)

and Lipschitz continuous on Vh with Lipschitz constants L̃a(µ) := La(µ) ± εa > 0, i.e., for all uh,wh, vh ∈
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Vh it holds

|ã[uh](uh, vh; µ) − ã[wh](wh, vh; µ)| ≤ L̃a(µ)‖uh − wh‖V‖vh‖V , (5.19)

where εa ∈ R+ is small enough and is related to the EIM approximation error. However, in the EIM

practice we can guarantee that conditions (5.18) and (5.19) hold uniformly together with εa < εEIM

only on DEIM
train. It is difficult to check these properties a-priori for µ ∈ D \ DEIM

train, so that arguing the

well-posedness of the upcoming discrete systems (5.23) and (5.24) in general is not possible.

We also assume the affine decomposition

〈g(tk; µ), v〉V′V =

Qg∑
q=1

θk
g,q(µ)〈gq, v〉V′V (5.20)

for the right-hand side, where θk
g,q : D → R are parameter-dependent functions and parameter-independent

forms gq : V → R, k = 1, ...,K, q = 1, ...,Qg. If (5.20) is not available, the EIM procedure can be simi-

larly applied.

5.2.2 Reduced basis approximation with the POD-Greedy method

The idea of the reduced-basis approximation consists in replacing the “truth" (high-dimensional) space

Vh in the definition of Xδ and Yδ by a low-dimensional subspace VN ⊂ Vh. With VN available we

introduce the corresponding reduced trial space

X4t,N := {uN ∈ C0(I; V), uN |Ik ∈ P1(Ik,VN), k = 1, ...,K}

and the reduced test space

Y4t,N := {vN ∈ L2(I; V), vN |Ik ∈ P0(Ik,VN), k = 1, ...,K} × VN .

We construct VN := span{ξ1, ..., ξN} ⊂ Vh by the POD-Greedy procedure in Algorithm 3, compare e.g.

[22]. We denote by Dtrain ⊂ D a fine sample of size ntrain. In our setting, the POD-Greedy alogorithm

constructs iteratively nested spaces Vn, 1 ≤ n ≤ N using an a-posteriori error estimator 4(Y; µ) (see the

next section for details on a-posteriori error analysis), which predicts the expected approximation error

for a given parameter µ ∈ Dtrain in the space Y := Y4t,n. We want the expected approximation error to be

less than the prescribed tolerance εRB > 0. We initiate the algorithm with the choice of the initial basis

vector ξ1 := u0
δ/‖u

0
δ‖V ; this choice is motivated by the assumption in Proposition 5.2.1. The snapshots

uk
δ(µ) for the procedure are provided by the Crank-Nicolson scheme (5.12).

The reduced-basis approximation of problem (5.9) reads: find uN := uN(µ) ∈ X4t,N , such that u0
N :=

uN(0) = PN
Huo and

B̃[uN](uN , vN ; µ) = F̃(vN ; µ) ∀vN ∈ Y4t,N , (5.21)
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where

B̃[uN](uN , vN ; µ) =

∫
I
〈u̇N , v

(1)
N 〉V′V + ã[uN](uN , v

(1)
N ; µ)dt + 〈PN

Huo, v
(2)
N 〉H ,

F̃(vN ; µ) : =

∫
I
〈g(µ), v(1)

N 〉V′Vdt + 〈u0
δ, v

(2)
N 〉H ,

and PN
H : Vh → VN denotes the H-orthogonal projection onto VN . It follows as for (5.6) from our

assumptions (5.18) and (5.19) that the problem (5.21) admits a unique solution uN(µ) ∈ X4t,N for all

µ ∈ D.

The problem (5.21) is approximated by the reduced-basis Crank-Nicolson time-marching scheme

with the EIM approximation of the nonlinearity, i.e.

〈uk
N − uk−1

N , v(1)
N 〉H +

M tk

2
{ã[uk

N](uk
N , v

(1)
N ; µ) + ã[uk−1

N ](uk−1
N , v(1)

N ; µ)} (5.22)

=
M tk

2
{〈g(tk; µ), v(1)

N 〉V′V + 〈g(tk−1; µ), v(1)
N 〉V′V },

where the initial condition u0
N is obtained as an H-projection of u0

δ onto VN . Given the ansatz uk
N =∑N

i=1 uk
N,iξi and defining uk

N := {uk
N,i}

N
i=1 ∈ RN , the resulting nonlinear algebraic equations are then solved

with the RB counterpart of Newton’s method by finding the root of

GN,M(uk
N ; µ) =

1
M tk MN(uk

N − uk−1
N ) −

1
2

[gk
N(µ) + gk−1

N (µ)] (5.23)

+
1
2

[AN,M(uk
N ; µ)uk

N + AN,M(uk−1
N ; µ)uk−1

N ],

where MN := {〈ξi, ξ j〉H}
N
i, j=1,AN,M(uk

N ; µ) := {ã[uk
N](ξi, ξ j; µ)}Ni, j=1 ∈ RN×N and gk

N(µ) := {〈g(tk; µ), ξi〉V′V }
N
i=1 ∈

RN . The initial condition is given by u0
N := {〈u0

δ, ξi〉H}
N
i=1 ∈ RN . The strong monotonicity (5.18) of the

quasilinear form (5.17) guarantees that the equation (5.23) admits a unique root uk
N for every parameter

µ ∈ D. We remind that the strong monotonicity property (5.18) is based on the assumption about the

accuracy of EIM.

The Newton’s iteration for finding a root of (5.23) reads: starting with uk,(0)
N , for z = 0, 1, ... solve the

linear system

JN,M(uk,(z)
N ; µ)δuk,(z)

N = −GN,M(uk,(z)
N ; µ) (5.24)

to obtain δuk,(z)
N , and then update the solution uk,(z+1)

N := uk,(z)
N + δuk,(z)

N . The system Jacobian matrix is

given by

JN,M(uk
N ; µ) =

1
M tk MN +

1
2

A′N,M(uk
N ; µ). (5.25)

If the mapping µ 7→ A′N,M(·; µ) is bounded in µ ∈ D, then for M tk ≤ C(D), where C(D) > 0 is some

constant, the Jacobian matrix (5.25) is invertible. We will comment on the computation of the reduced

basis counterpart A′N,M(uk
N ; µ) := {dã[uk

N](ξi, ξ j; µ)}Ni, j=1 ∈ RN×N of A′h(uk
δ; µ) in (5.25). We have

ã[uk
N](uN , ξi; µ) =

N∑
j=1

M∑
m=1

ϕk
m(µ)ãm(ξ j, ξi)uk

N, j, 1 ≤ i ≤ N. (5.26)
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With the EIM approximation of the nonlinearity it follows that

M∑
s=1

(BM)m,sϕ
k
s(µ) = ν(uk

N(xM
m ; µ); µ), 1 ≤ m ≤ M (5.27)

= ν(
N∑

n=1

uk
N,nξn(xM

m ); µ), 1 ≤ m ≤ M.

Plugging (5.27) into (5.26) results in

ã[uk
N](uN , ξi; µ) =

N∑
j=1

M∑
m=1

DN,M
i,m (uk

N ; µ)ν(
N∑

n=1

uk
N,nξn(xM

m ); µ)uk
N, j (5.28)

with DN,M(uk
N ; µ) = AN,M(uk

N ; µ)(BM)−1 ∈ RN×M. Taking the derivative of (5.28) with respect to the

components uk
N, j(µ), 1 ≤ j ≤ N , we derive the formula for A′N,M(uk

N ; µ) = AN,M(uk
N ; µ) + EN,M(uk

N ; µ),

where

(EN,M(uk
N ; µ))i j =

N∑
s=1

uk
N,s

M∑
m=1

DN,M
i,m (µ)

∂

∂uk
N, j

ν(uk
N(xM

m ); µ) (5.29)

We will give the exact form of ∂
∂uk

N, j
ν(uk

N(xM
m ); µ) in the upcoming examples. We note that a more com-

plicated formula for (5.29) can be obtained in the presence of geometry parametrisation, see section

4.2.3.

The parameter separability of reduced nonlinear stiffness matrix AN,M(uk
N ; µ) and reduced load vector

gk
N(µ) follows from (5.17) and (5.20), correspondingly

AN,M(uk,(z)
N ; µ) =

M∑
m=1

ϕk,(z)
m (µ)Am

N,M, gk
N(µ) =

Qg∑
q=1

θk
g,q(µ)gq

N . (5.30)

where ϕk,(z)
m (µ), 1 ≤ m ≤ M represent EIM coefficients of z-th Newton iteration and

Am
N,M = VT

NAm
h VN , gq

N = VT
Ngq

h, (5.31)

where Am
h := {ãm(φ j, φi)}

Nh
i, j=1 ∈ RNh×Nh , gq

h := {〈gq, φi〉V′V }
Nh
i=1 ∈ RNh and VN ∈ RNh×N denotes the projec-

tion matrix, whose columns contain the coefficients {ξn
i }
Nh
i=1 of the RB basis functions ξn =

∑Nh
i=1 ξ

n
i φi, 1 ≤

n ≤ N, that is (VN)in = ξn
i . The formula (5.29) possesses an affine decomposition and allows efficient

assembling in the online phase: indeed, the matrix DN,M(µ) is parameter separable, since AN,M(uk
N ; µ) is

parameter separable and the evaluation of nonlinearity in (5.29) requires the evaluation of the reduced-

basis functions only on the set of interpolation points TM. Therefore, these quantities can be computed

and stored in the offline phase and can be assembled in the online phase independently of Nh and we

have

JN,M(uN ; µ) =

QJ∑
q=1

θJ
q(µ)Jq

N,M, GN,M(uN ; µ) =

QG∑
q=1

θG
q (µ)Gq

N,M, (5.32)

where θJ
q(µ) : D → R and θG

q (µ) : D → R are parameter-dependent functions, Jq
N,M ∈ RN×N and

Gq
N,M ∈ RN are parameter-independent matrices and vectors. The proposed reduced numerical scheme
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(see also Algorithm 7) contains parameter separable matrices and thus allows offline-online decompo-

sition. The offline phase (model construction) depends on expensive high-dimensional finite element

simulations and thus onN , but should be performed only once. However, the assembling of all the high-

dimensional parameter-dependent quantities is computationally simplified due to the affine dependence

on the parameters (5.30). In the online phase (RB model simulation) the computational complexity scales

polynomially in N and M, independently of Nh and thus is inexpensive. The operation count associated

Algorithm 7: Reduced-basis Crank-Nicolson scheme for nonlinear problem: Offline-Online
decomposition

1 Offline phase:
Input: finite element mesh, projection matrix VN , interpolation space Wν

M.
Output: All parameter-independent quantities, saved in S torage.

1: Assemble Am
h for m = 1, ...,M.

2: Assemble gq
h for q = 1, ...,Qg.

3: Compute Am
N,M for m = 1, ...,M and save to S torage.

4: Compute gq
N for q = 1, ...,Qg and save to S torage.

2 Online phase:
Input: S torage, tolerance εNM

tol > 0, interpolation matrix BM, interpolation points TM, initial
value u0

N , parameter µ ∈ D.
Output: Reduced-basis solution ûN,M(p).
1: Set k = 1
2: while k ≤ K do
3: Choose uk,(0)

N = uk−1
N .

4: Compute EIM coefficients ϕk,(0)
M (µ) = {ϕk,(0)

m (µ)}Mm=1.
5: Assemble Jacobian JN,M(uk,(0)

N ; µ) and residual GN,M(uk,(0)
N ; µ).

6: Compute δNM := ‖GN,M(uk,(0)
N ; µ)‖

7: while δNM > εNM
tol do

8: Solve the linear system JN,M(uk,(z)
N ; µ)δuk,(z)

N = −GN,M(uk,(z)
N ; µ)

9: Update uk,(z+1)
N := uk,(z)

N + δuk,(z)
N

10: Update EIM coefficients ϕk,(z+1)
M (µ) = {ϕk,(z+1)

m (µ)}Mm=1.
11: Update Jacobian JN,M(uk,(z+1)

N ; µ) and residual GN,M(uk,(z+1)
N ; µ).

12: Compute δNM := ‖GN,M(uk,(z+1)
N ; µ)‖

13: z := z + 1
14: end while
15: uk

N := uk,(z)
N

16: end while

with each Newton update of the residual GN,M(uk,(z)
N ) in the online phase is O(N2M + N2 + M2 + NQ fo)

and the Jacobian JN,M(uk,(z)
N,M; µ) is assembled at cost O(MN3) with the dominant cost of assembling

EN,M(uk
N ; µ), and then inverted at cost O(N3).

5.2.3 Reduced basis certification

An important ingredient of the reduced basis methodology is the verification of the error (certification of

the reduced basis method). In the present work we provide a residual-based a-posteriori error estimate.
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We denote by R(·; µ) ∈ Y′δ the residual of the problem, defined naturally as:

R(vδ; µ) := F(vδ; µ) − B̃[uN](uN , vδ; µ) =

∫
I
〈r(t; µ), vδ〉V′Vdt ∀vδ ∈ Yδ. (5.33)

We have the following

Proposition 5.2.1 (A-posteriori Error Estimate). Let ma(µ) > 0 be a monotonicity constant from (5.2)

and assume that u0
δ ∈ VN . Then the error e(µ) = uδ(µ) − uN(µ) of the reduced basis approximation is

bounded by

‖e(µ)‖Y ≤
1

ma(µ)
(‖R(·; µ)‖Y′δ + δM(µ)‖uN(µ)‖L2(I;V)) =: 4c

N,M(µ), (5.34)

where

δM(µ) = sup
t∈I

sup
x∈Ω
|νM(uN(x, t); µ) − ν(uN(x, t); µ)| (5.35)

denotes the approximation error of the nonlinearity.

Proof. Since in the case e = 0 there is nothing to show, we assume that e , 0. We have u0
δ ∈ VN and

PN
H

∣∣∣
VN

= Id, therefore u0
N := PN

Hu0
δ = u0

δ. It implies that ‖e(0)‖H = 0, ‖e‖Y = ‖e‖L2(I;V) and ‖R(·; µ)‖Y′δ =

‖R(·; µ)‖L2(I;V′h). First we obtain the following estimate by applying Cauchy-Schwartz inequality:

ã[uN](uN , e; µ) − a[uN](uN , e; µ) =

∫
Ω

[νM(uN ; µ) − ν(uN ; µ)]∇uN · ∇e dx (5.36)

≤ sup
x∈Ω
|νM(uN(x, ·); µ) − ν(uN(x, ·); µ)| ‖uN‖V‖e‖V .

Integrating (5.36) in t and applying the Cauchy-Schwartz inequality to the corresponding integral we get:∫
I
ã[uN](uN , e; µ) − a[uN](uN , e; µ)dt ≤ δM(µ)‖uN‖L2(I;V)‖e‖Y.

We then use the identity ∫
I
〈ė, e〉V′Vdt =

1
2
‖e(T )‖2H−

1
2
‖e(0)‖2H (5.37)

together with the strong monotonicity condition (5.2) and the estimate above to derive the bound:

ma(µ)‖e‖2
Y
≤

∫
I
a[uδ](uδ, e; µ) − a[uN](uN , e; µ)dt +

1
2
‖e(T )‖2H

=

∫
I
〈ė, e〉V′Vdt+

∫
I
a[uδ](uδ, e; µ) − a[uN](uN , e; µ)dt +

1
2
‖e(0)‖2H

=

∫
I
〈ė, e〉V′Vdt+

∫
I
a[uδ](uδ, e; µ) − ã[uN](uN , e; µ)dt + ‖e(0)‖2H

+

∫
I
ã[uN](uN , e; µ) − a[uN](uN , e; µ)dt

≤ ‖R(·; µ)‖Y′δ‖e‖Y + δM(µ)‖uN‖L2(I;V)‖e‖Y,

where we added and subtracted ã[uN](uN , e; µ) to get the definition of the residual (5.33). Dividing both

sides by ‖e‖Y yields the result. �
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The computation of ‖R(·; µ)‖Y′δ requires the knowledge of its Riesz representer vδ,R(µ) ∈ Yδ. Thanks

to the Riesz representation theorem, it can be obtained from the equation

(vδ,R(µ), vδ)Y = R(vδ; µ) ∀vδ ∈ Yδ. (5.38)

Since the test space Yδ consists of piecewise constant polynomials in time, the problem (5.38) can be

solved via the time-marching procedure for k = 1, ...,K as follows:∫
Ik
〈vδ,R(t; µ), vh〉Vdt =

∫
Ik
〈r(t; µ), vh〉V′Vdt ∀vh ∈ Vh. (5.39)

We note that v̂k
R(µ) := vδ,R(µ)

∣∣∣
Ik is constant in time, hence the integration on the left-hand side of (5.39)

is exact. For the right-hand side of (5.39) we represent uN(µ) ∈ X4t,N as the linear function (5.11) on

Ik and use it as an input for the residual (5.33). We then apply the trapezoidal quadrature rule for the

approximate evaluation of the integral. The quadrature rule is chosen such that the quadrature error is of

the size of the error of the truth Crank-Nicolson solution. We thus need to solve the following problems:

〈vk
R(µ), vh〉V = Rk(vh; µ) ∀vh ∈ Vh (k = 1, ...,K), (5.40)

where vk
R(µ) is our approximation of v̂k

R(µ) and the right-hand side is given by

Rk(vh; µ) =
1
2

[〈g(tk; µ) + g(tk−1; µ), vh〉V′V − ã[uk
N](uk

N , vh; µ) (5.41)

−ã[uk−1
N ](uk−1

N , vh; µ)] −
1
4tk 〈u

k
N − uk−1

N , vh〉H .

Therefore the computation of the Riesz representer leads to a sequence of K uncoupled spatial problems

in Vh. The parameter separability structure of the residual

Rk(vh; µ) =

QR∑
q=1

θk
R,q(µ)Rq(vh)

is transferred by the linearity of the Riesz isomorphism to the parameter separability of its Riesz repre-

senter vk
R(µ) together with the parameter dependent functions θk

R,q : D → R. Therefore, for 1 ≤ q ≤ QR

we have

vk
R(µ) =

QR∑
q=1

θk
R,q(µ)vR,q with (vR,q, vh)V = Rq(vh) ∀vh ∈ Vh. (5.42)

Finally, we state the formulas for the residual norm as well as the spatio-temporal norm of uN . Since

vδ,R(µ)
∣∣∣
Ik is constant in time, the integration on Ik is exact and we can compute the spatio-temporal norm

of vδ,R(µ) as follows:

‖vδ,R(µ)‖2
Y

=

K∑
k=1

4tk‖v̂k
R(µ)‖2V ≈

K∑
k=1

4tkΘk
R(µ)T GRΘk

R(µ),

where GR := {〈vR,q, vR,q′〉}
QR
q,q′=1 ∈ RQR×QR and Θk

R(µ) := {θk
R,q(µ)}QR

q=1 ∈ RQR . The isometry of the

Riesz isomorphism implies that ‖R(·; µ)‖Y′δ = ‖vδ,R(µ)‖Y. Since uN(µ)|Ik is a linear function in time,
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the trapezoidal quadrature rule on Ik is exact. We then can compute the spatio-temporal norm ‖uN‖Y of

uN ∈ X4t,N according to

‖uN‖
2
Y
≈

K∑
k=1

M tk

2
(‖uk

N‖
2
V + ‖uk−1

N ‖
2
V ) + ‖u0

N‖
2
H (5.43)

=

K∑
k=1

M tk

2
[uk T

N KNuk
N + uk−1 T

N KNuk−1
N ] + u0 T

N MNu0
N ,

where KN := {〈ξi, ξ j〉V }
N
i, j=1 ∈ RN×N . Since in our case the reduced basis is orthonormal in V , KN is

the identity matrix. Despite of our quadrature rule exactness, the right-hand side of (5.43) serves as

our approximation of ‖uN‖
2
Y

, since we use the solution of problem (5.22) in computing the norm of the

reduced-basis problem (5.21). The operation count in the online phase, associated with computation of

the residual norm and the spatio-temporal norm on Y is correspondingly O(Q2
RK) and O(NK + N2).

We note that our a-posteriori error estimate takes into account the error of the nonlinearity approxi-

mation (5.35). In our discrete time setting, it is approximated by a computable quantity

δM(µ) ≈ max
k∈K

max
x∈Ω
|νM(uk

N(x); µ) − ν(uk
N(x); µ)|. (5.44)

Since the EIM approximation νM(·; µ) is constructed out of truth solutions, we assume that N is chosen in

such a way that νM(uk
N(x); µ) ≈ νM(uk

δ(x); µ). We note that (5.44) requires the knowledge of ν(uk
N(µ); x; µ)

and thus one full evaluation of the nonlinearity for all K time steps on our finite-element mesh. Therefore

the certification procedure is not fully mesh-independent in the online phase and requires our mesh

storage.

We note that we performed the series of numerical approximations in order to provide a computable

bound for the right-hand side of (5.34). In particular, the residual (5.33) coincides with the residual (5.41)

for the Crank-Nicolson time-marching scheme (5.12) after application of the trapezoidal quadrature rule.

However, in order to invoke the definition of the residual (5.33), uδ must be the solution to our reference

problem (5.9). We also replace δM(µ) by its computable surrogate (5.44). This finally gives

4N,M(µ) ≈ 4c
N,M(µ), (5.45)

where 4N,M(µ) is the computable. However, the bound in general is not rigorous, since we can not

guarantee that 4c
N,M(µ) ≤ 4N,M(µ) holds.

Remark 21. In [18] authors follow the approach “First discretize, then estimate and reduce" to treat

nonlinear parabolic problems. They consider the semi-discrete (the Implicit Euler) in time weak form of

the nonlinear parabolic PDE

〈uk(µ) − uk−1(µ), v〉H + 4ta(uk(µ), v) + 4

∫
Ω

g(uk(µ); x; µ)vdx = 4t〈 f (tk), v〉V′V , ∀v ∈ V, (5.46)

where k ∈ I, a(w, v) =
∫
Ω
∇w · ∇vdx and initial condition is given by u0 = uo. Here g(w; x; µ) :

R × Ω × D → R is a nonlinear, non-affine function, continuous in its arguments, increasing it its first

argument and satisfies sg(s; x; µ) ≥ 0 ∀s ∈ R,∀x ∈ Ω,∀µ ∈ D. The error bound for the semi-discrete
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scheme (5.46) is then proposed with respect to the “spatio-temporal" energy norm

|||vk|||2 := 〈vk, vk〉H +

k∑
k′=1

a(vk, vk)4t, ∀k ∈ I.

In this approach time is treated as the parameter and it allows to prove the proper error bound for

problem (5.46). However, problem (5.46) has a different structure of the nonlinearity and we think that

the techniques of [18] are not directly applicable to the class of problems we consider. In our problem

setting we use the approach “First estimate, then discretize and reduce", where the corresponding error

estimate 4c
N,M(µ) is proved with respect to the natural Bochner norm ‖·‖Y and requires relatively mild

assumptions for its computable counterpart 4N,M(µ).

5.3 Examples and numerical results

In this section we consider examples of quasilinear parabolic PDEs with strongly monotone differential

operators and apply the proposed reduced-basis techniques to these problems.

5.3.1 1-D magnetoquasistatic problem: analysis

For the first numerical example we choose a 1-D magnetoquasistatic approximation of Maxwell’s equa-

tions (see, e.g. [4, 46]). Let d = 1, Ω = (0, 1) and V := H1
0(Ω) ↪→ L2(Ω) =: H. The norm on V is

‖u‖2V := 〈u′, u′〉L2 , which is indeed a norm due to Poincare-Friedrichs inequality. We use the time interval

I = (0, 0.2] and the parameter set D := [1, 5.5] ⊂ R. For a parameter µ ∈ D, we want to find u := u(µ)

which solves
u̇ − (ν(|u′|; µ)u′)′ = g

u(t, x) = 0

uo(x) = 0

on I ×Ω,

∀ (t, x) ∈ I × ∂Ω,

∀ x ∈ Ω.

(5.47)

We here used g(x, t) := 12 sin(2πx) sin(2πt) and define ν(s; µ) = exp (µs2) + 1 as the reluctivity function.

We consider the quasilinear form for the weak formulation (5.6), which here is given by

a[u](u, v; µ) =

∫
Ω

ν(|u′|; µ)u′v′dx. (5.48)

If the function ν(·; µ)· : R+
0 → R+

0 is strongly monotone, i.e. if

(ν(s2; µ)s2 − ν(s1; µ)s1)(s2 − s1) ≥ ma(µ)(s2 − s1), ∀s2, s1 ∈ R+
0 (5.49)

holds, then (5.48) satisfies the strong monotonicity condition (5.2). Indeed, we set s1 = w′, s2 = v′ and

integrating we get

a[v](v, v − w) − a[w](w, v − w) =

∫
Ω

(ν(v′; µ)v′ − ν(w′; µ)v′)(v′ − w′)dx

≥ ma(µ)
∫

Ω

(v′ − w′)2dx = ma(µ)‖v − w‖2V .

It is clear that the reluctivity function ν(s; µ) in our example satisfies (5.49). Furthermore, the mono-

tonicity constant can be taken as ma = inf
µ∈D

inf
s∈R+

ν(s; µ), hence we have ma = 2 for our problem and
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the constant is parameter-independent. We also note that continuity of ν(·; µ) implies hemicontinuity of

(5.48) for every parameter µ ∈ D. Thus the weak formulation (5.6) of the PDE (5.47) admits a unique

solution.

We specify the bilinear form 〈A′(u; µ)v,w〉V′V = da[u](v,w; µ) induced by the Fréchet derivative

A′(u; µ) : V × D → V ′ of the nonlinear operator A(u; µ). It is then used to compute the Jacobian matrix

(5.15) for Newton method. In the present example we have

da[u](v,w; µ) =

∫
Ω

(
2µ ν′(|u′|; µ)u′ + ν(|u′|; µ)

)
v′w′ dx.

The derivative for the reduced-basis scheme in the formula (5.29), thanks to the chain rule, is given by

∂

∂uk
N, j

ν(|u′kN (xM
m )|; µ) = 2µν′(|u′kN (xM

m )|; µ)u′kN (xM
m )ξ′j(xM

m ),

where all the indices are according to (5.29). In our numerical experiments we drop the term EN,M(uk
N ; µ)

in A′N,M(uk
N ; µ). This then corresponds to an inexact Newton-like method, which we use in our numerical

experiments and which performed well.

5.3.2 1-D magnetoquasistatic problem: numerical results

The truth approximation is performed by the Petrov-Galerkin scheme, which is introduced in section 5.1,

where Vh is the finite element space, composed of piecewise linear and continuous functions, defined on

the partition of Ω̄ into 100 equal subintervals and Nh = 98 nodes (excluding Dirichlet boundary nodes).

For the time discretization we divide the interval I into K = 200 subintervals of length 4t = 10−3. We

solve the problem with the Crank-Nicolson scheme (5.12), while applying Newton’s method, described

in section 5.1.2 on each time step for the numerical computation of the time snapshots. We iterate the

Newton’s method unless the norm of the residual (5.13) is less than the tolerance level, which we set to

10−8.

We generate the RB-EIM model as follows: we start from DEIM
train ⊂ D (a uniform grid of size 200)

and compute truth solutions for each parameter in DEIM
train to approximate the nonlinearity ν with its EIM

counterpart νM. We set Mmax = 8 as the maximal dimension of the EIM approximation space. Next

we run the POD-Greedy procedure with M = Mmax and obtain Nmax = 5 for εRB = 10−5, where Dtrain

is a uniform grid over D of size 400. For the POD-Greedy procedure and method certification we use

the computable bound 4N,M (5.45) for our error estimate 4c
N,M (5.34). We solve the problem with the

reduced Crank-Nicolson scheme (5.22), while applying RB Newton’s method, described in section 5.2.2

on each time step for the numerical computation of the time snapshots. We iterate the Newton’s method

unless the norm of the residual (5.23) is less than the tolerance level, which we set to 10−8.

Next we introduce a test sample Dtest ⊂ D of size 200 (uniformly random sample from D) and the

maximum of the estimator max4N,M := max
µ∈Dtest

4N,M (µ). We also introduce the following approximation

of the “truth norm" error

εtrue
N,M(µ) :=

 K∑
k=1

M tk

2
(‖uk

δ(µ) − uk
N(µ)‖2V + ‖uk−1

δ (µ) − uk−1
N (µ)‖2V )


1/2

, (5.50)

and its maximum over the test sample max εtrue
N,M := max

µ∈Dtest
εtrue

N,M(µ), where we use the Crank-Nicolson

70



5.3. EXAMPLES AND NUMERICAL RESULTS 71

(a) (b)

Figure 5.1: (a): Convergence with N of max εtrue
N,M for different values of M on the test set, 1-D example.

(b): Convergence with N of max4N,M for different values of M on the test set, 1-D example.

solutions uk
δ(µ) and uk

N(µ) to compute (5.50). Hence εtrue
N,M(µ) is only an estimate for ‖e(µ)‖Y in (5.34),

where the solution uδ(µ) of (5.9) and uN(µ) of (5.21) enters. Once the reduced-basis model is constructed

(Nmax = 7,Mmax = 8), we verify the convergence with N of max4N,M and max εtrue
N,M on a test sample

Dtest and plot in Fig.5.1 the N-M convergence curves for different values of M. We can see that the

estimator in Fig.5.1(b) reaches the desired tolerance level εRB = 10−5 for (Nmax,Mmax) = (5, 8).

Next we investigate the influence of the EIM approximation error in the estimation process. We

can split the bound (5.45) into two parts: the reduced-basis and the nonlinearity approximation error

estimation contributions

4RB
N,M(µ) ≈

1
ma
‖R(·; µ)‖Y′δ and 4EI

N,M (µ) ≈
δM(µ)

ma
‖uN(µ)‖Y. (5.51)

We compute these contributions as described in section 5.1.2 and note that they serve only as computable

surrogates for the respective contributions in our error estimate (5.34). We then set

4RB
N,M := max

µ∈Dtest
4RB

N,M (µ), 4EI
N,M := max

µ∈Dtest
4EI

N,M (µ). (5.52)

In Fig.5.2(a) we plot 4RB
N,M and 4EI

N,M for 1 ≤ N ≤ 5 and M = 4, M = 8: we can see that M has nearly

no influence on 4RB
N,M, but we observe the “plateau" in 4EI

N,M, which limits the convergence of the bound

(5.45) with increasing N. The separation points, or “knees", of the N-M-convergence curves then reflect

a (close-to) balanced contribution of both error terms.

In Table 5.1 we present, as a function of N and M, the values of max4N,M, 4RB
N,M, 4EI

N,M, εtrue
N,M and

mean effectivities η̄N,M := 1
|Dtest |

∑
µ∈Dtest ηN,M(µ), where ηN,M(µ) := 4N,M(µ)/‖uδ(µ) − uN(µ)‖Y. We note

that the tabulated (N,M) values correspond roughly to the “knees" of the N-M-convergence curves. We

can see that the effectivities are lower bounded by 1 and are of moderate size, thus the bound (5.45) is

reliable and there is no significant overestimation of our approximation of the “truth norm" error (5.50).

We then plot (see Fig. 5.2(b)) the reluctivity function ν(|u′kN |; µ) and its EI approximation νM(|u′kN |; µ)

for the parameter µ = 5.5 at t = 0.2; we can see that there is no visible difference between the origi-
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Figure 5.2: (a): The dependence of 4RB
N,M and 4EI

N,M contributions with N for fixed values of M. (b): The
reluctivity function ν(|u′kN |; µ) and its EI-approximation (M = 8) νM(|u′kN |; µ) for the parameter µ = 5.5
at t = 0.2 (b).

N M max4N,M 4RB
N,M 4EI

N,M max εtrue
N,M η̄N,M

2 2 6.10 E-03 5.60 E-03 7.60 E-04 1.60 E-03 4.00
3 4 5.62 E-04 5.05 E-04 1.12 E-04 1.32 E-04 5.82
5 8 6.25 E-06 4.47 E-06 1.81 E-06 1.79 E-06 4.58

Table 5.1: Performance of the 1D RB-EIM magnetoquasistatic approximation of Maxwell’s equations
on the test set

nal function and its EIM counterpart. Although the problem at hand is merely chosen to illustrate the

methodology, we report on the average CPU time for comparison. The finite element method takes

≈ 0.47 sec to obtain the solution, and the RB method (Nmax,Mmax), which takes ≈ 0.08/0.10 sec without

and with the a-posteriori certification and results in the speed-up factor of 5.87/4.701. We note that our

implementation in the offline phase needs a large number of high-fidelity finite element solutions for

the EIM approximation and the Riesz representers in (5.42). This implies large offline computational

costs. However, these computations can be done in parallel to significantly reduce the time needed for

the offline phase.

5.3.3 2-D magnetoquasistatic problem: analysis

As second example we consider a 2-D magnetoquasistatic problem for modelling of eddy currents in a

steel pipe2. Let Ω̄ = Ω̄1
⋃

Ω̄2 be a circular cross-section of the steel pipe with radius r2, where Ω1 is

the conducting domain (iron) and Ω2 is the non-conducting domain of radius r1. The wire is represented

by the part with the radius r0 and the complementary part is the air gap (see Fig.5.3(a)). We assume

that the magnetic reluctivity function and the electric conductivity function have different structure on

1All the computations are performed in MATLAB on Intel Xeon(R) CPU E5-1650 v3, 3.5 GHz x 12 cores, 64 GB RAM
2http://www.femm.info/wiki/TubeExample
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conducting and non-conducting domains, respectively, i.e.

ν(x, s) =

ν1(s), for x ∈ Ω1,

ν2, for x ∈ Ω2

and σ(x) =

σ1 > 0, for x ∈ Ω1,

ε > 0, for x ∈ Ω2,

where ν2, σ1 > 0 denote constants. We assume that the reluctivity function satisfies

0 < νLB ≤ ν(x, s) ≤ νUB, ∀x ∈ Ω, s ∈ R+
0 , (5.53)

where νLB and νUB are accessible constants. We note that the air-gap and the coils in the steel pipe are

electrically non-conductive, i.e. σ(x) = 0 for x ∈ Ω2. However, we introduce a regularization parameter

ε = 10−8 as a value of σ for the non-conducting domain. This allows us to consider a pure parabolic

problem instead of a parabolic-elliptic system with differential-algebraic structure (see, e.g. [35]). We

set µ := σ1 and define the parameter set D = [5 · 106, 107] and the time interval I = (0, 0.02]. We thus

have a parametrized quasilinear parabolic equation

σ(x; µ)u̇ − ∇ · (ν(x, |∇u|)∇u) = g

u(t, x) = 0

uo(x) = 0

on I ×Ω,

∀ (t, x) ∈ I × ∂Ω,

∀ x ∈ Ω.

(5.54)

The right-hand side is the electric-flux density

g(x, t) =


Ie(t)
2πr0

, for x ∈ Ω1,

0, for x ∈ Ω2,

where Ie(t) = 100 · sin(100πt) is the electric current. We consider the quasilinear form for the weak

formulation (5.6), which here is given by

a[u](u, v; µ) =

∫
Ω

ν(x, |∇u|; µ)∇u · ∇v dx. (5.55)

The nonlinear reluctivity function (see Fig 5.3(b)) in our case is reconstructed from B − H curves, see

section 2.1.2. The form (5.55) then is strongly monotone with the monotonicity constant νLB and Lip-

schitz continuous with the Lipschitz constant 3νUB (see [24] for the corresponding proofs). Hence the

weak formulation (5.6) of the PDE (5.54) admits a unique solution.

We specify the bilinear form 〈A′(u; µ)v,w〉V′V = da[u](v,w; µ) induced by the Fréchet derivative

A′(u; µ) : V × D → V ′ of the nonlinear operator A(u; µ). It is then used to compute the Jacobian matrix

(5.15) for Newton method. With

n[u] =


∇u
|∇u| , for ∇u , 0,

0, for ∇u = 0,

we have

da[u](v,w; µ) =

∫
Ω

ν′(x, |∇u|; µ)(n[u] · ∇w)(∇u · ∇v) + ν(x, |∇u|; µ)∇v · ∇w dx,

and the derivative for the reduced-basis scheme in the formula (5.29), thanks to the chain rule, is given
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Figure 5.3: (a): Geometry of the computational domain: the wire (dark grey), the air gap (white), the
iron (bright grey). (b): An example of magnetic reluctivity function ν1(|B|) of ferromagnetic material
used in our simulations.

by

∂

∂uk
N, j

ν(x; |∇uk
N(xM

m )|; µ) := ν′(x; |∇uk
N(xM

m )|; µ)n[uk
N](xM

m ) · ∇ξ j(xM
m ),

where all the indices are according to (5.29).

In this example, the monotonicity constant ma(µ) is not available analytically. As it was mentioned

earlier in the discussion on |B|-|H| curves, we can choose νLB > 0 as our monotonicity constant. However,

since for each parameter µ ∈ D there holds

ma(µ) := min
k∈K

min
x∈Ω

ν1(|∇uk
N(x)|; µ) ≥ νLB, (5.56)

and the computation of (5.56) only requires one full evaluation of the nonlinearity, which already has

been performed to evaluate (5.44), we here use ma(µ) as our constant for the estimation.

5.3.4 2-D magnetoquasistatic problem: numerical results

The truth approximation is performed by the Petrov-Galerkin scheme, which is introduced in section 5.1,

where Vh is the finite element space, composed of piecewise linear and continuous functions, defined on

a triangle mesh containing 4374 triangles and Nh = 2107 nodes (excluding Dirichlet boundary nodes).

For the time discretization we divide the interval I into K = 200 subintervals of length 4t = 10−4. The

nonlinear reluctivity function ν1 is reconstructed from the real B−H measurements using monotonicity-

preserving cubic spline interpolation and ν2 value is chosen as the reluctivity of air. We then solve the

problem with the Crank-Nicolson scheme (5.12), while applying Newton’s method, described in section

5.1.2, on each time step for the numerical computation of the time snapshots. We iterate the Newton’s

method unless the norm of the residual (5.13) is less than the tolerance level, which we set to 10−8.

We generate the RB-EIM model as follows: we start from DEIM
train ⊂ D (a uniform grid of size 200)

and compute truth solutions for each parameter inDEIM
train to approximate the nonlinearity ν1 with the EIM
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(a) (b)

Figure 5.4: (a): Convergence with N of max εtrue
N,M for different values of M on the test set, 2-D example.

(b): Convergence with N of max4N,M for different values of M on the test set, 2-D example.

counterpart νM
1 . We set Mmax = 44 as the maximal dimension of the EIM approximation space. Next we

run the POD-Greedy procedure with M = Mmax and obtain Nmax = 14 for εRB = 10−4, where Dtrain is

a uniform grid over D of size 400. For the POD-Greedy procedure and method certification we use the

computable bound 4N,M (5.45) for our error estimate 4c
N,M (5.34). The monotonicity constant is evaluated

as in (5.56). We solve the problem with the reduced Crank-Nicolson scheme (5.22), while applying RB

Newton’s method, described in section 5.2.2, on each time step for the numerical computation of the

time snapshots. We iterate the Newton’s method unless the norm of the residual (5.23) is less than the

tolerance level, which we set to 10−8.

Then we verify the convergence with N of max εtrue
N,M (Fig. 5.4(a)) and max4N,M (Fig. 5.4(b)) on a

test sample Dtest (a uniformly random sample of size 200) for different values of M. We can see that

the estimator in Fig.5.3(b) reaches the desired tolerance level εRB = 10−4 for (Nmax,Mmax) = (14, 44).

We note that the convergence is not monotone at some points due to the EIM interpolation of the non-

polynomial nonlinearity behind the problem. We can also see from Fig.5.4(a) that increasing M above

20 has nearly no impact on the convergence of the approximation of the “truth norm" error (5.50), but the

bound (5.45) in Fig.5.4(b) still shows a considerable decrease with increasing M. Indeed, in Fig.5.5(a)

we plot 4RB
N,M and 4EI

N,M as defined in (5.52) for 1 ≤ N ≤ 14 and M = 20, M = 44: we can see that M has

nearly no influence on 4RB
N,M, but we can observe the “plateau" in 4EI

N,M, which limits the convergence of

the bound (5.45) with increasing N. We also plot the values of 4N,M(µ) and εtrue
N,M(µ) and the error (5.50)

for (Nmax,Mmax) for every parameter µ ∈ Dtest in Fig.5.5(b).

In Table 5.2 we present, as a function of N and M, the values of max4N,M, 4RB
N,M, 4EI

N,M, max εtrue
N,M and

the mean effectivities η̄N,M. We note that the tabulated (N,M) values correspond roughly to the “knees"

of the N-M-convergence curves (see example 1 for the terminology and definitions). We can see that the

effectivities are lower bounded by 1, but the values are relatively large. Based on our estimate (4.39) for

the nonlinear magnetostatics problem, we conject that this is related to the structure of the nonlinearity

and the effectivities are proportional to C · νUB/νLB, where C is some constant.

In Fig.5.6 we show the truth finite element magnetic flux density |∇uk
δ(x, µ)| and the corresponding

reduced magnetic flux density |∇uk
N(x, µ)| for µ = 107 and t = 0.01 and t = 0.02. We observe that flux
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(a) (b)

Figure 5.5: (a): The dependence of 4RB
N,M and 4EI

N,M contributions with N for fixed values of M. (b):
Values of εtrue

N,M and max MN,M for (Nmax,Mmax) = (14, 44) on the test set.

(a) (b)

(c) (d)

Figure 5.6: The truth magnetic flux density |∇uk
δ| for µ = 107 at (a) t = 0.01, (b) t = 0.02. The reduced-

basis magnetic flux density |∇uk
N | for µ = 107 at (c) t = 0.01, (d) t = 0.02.
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N M max4N,M 4RB
N,M 4EI

N,M max εtrue
N,M η̄N,M

6 16 1.60 E-03 6.68 E-04 1.40 E-03 2.15 E-05 98.06
9 20 4.34 E-04 1.94 E-04 3.67 E-04 5.40 E-06 89.84
11 36 1.76 E-04 1.38 E-04 1.04 E-04 4.68 E-06 64.28
14 44 6.97 E-05 4.63 E-05 5.81 E-05 1.93 E-06 48.27

Table 5.2: Performance of 2-D RB-EIM model on the test set

densities look very similar. Next we compare the average CPU time required for both the finite element

method, which takes ≈ 70 sec to obtain the solution, and the RB method with (Nmax,Mmax) = (14, 44),

which takes ≈ 1.80/2.42 without and with the a-posteriori certification and results in the speed-up factors

(rounded) of 39 and 29, respectively. The offline phase requires the knowledge of the truth finite-element

solutions for the EIM approximation step. Since 200 truth solutions were generated in the consecutive

order, it takes ≈ 4 hours. The generation of these truth solutions could be performed in parallel, which

would reduce the offline time. The POD-Greedy sampling takes ≈ 40 minutes for our implementation.

We note that our implementation in the offline phase needs a large number of high-fidelity finite element

solutions for the EIM approximation and the Riesz representers in (5.42). This implies large offline

computational costs. However, these computations can be done in parallel to significantly reduce the

time needed for the offline phase.
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Chapter 6

Conclusion

In this thesis the reduced basis methods for quasilinear elliptic and parabolic PDEs with strongly mono-

tone differential operator have been addressed and applied to the parametrized nonlinear magnetostatic

and magnetoquasistatic approximations of Maxwell’s equations.

The reduced basis method for quasilinear elliptic PDEs is applied to the magnetostatic problem in

the context of the permanent magnet synchronous motor. The parameter dependence enters through the

geometric parametrisation of the permanent magnet in the rotor part of the machine. The complex indus-

trial setting with the geometric parametrisation, multi-physics and strong non-polynomial nonlinearity

makes our reduction problem for magnetostatic equation challenging. We present the a-posteriori error

bound, which appeals to the monotonicity of the differential operator and use the EIM to guarantee the

offline-online decomposition of the problem. The Greedy algorithm is used to produce the reduced basis

space of small dimension and the reduced basis approximation is introduced as the Galerkin projection

on the reduced basis space. Then we present the reduced counterpart of Newton’s method to efficiently

solve the nonlinear equation for the reduced basis coefficients in the online phase. Our numerical results

confirm a significant speed-up factor, compared to our finite element method, which supports the validity

of the approach.

We also introduce the space-time reduced basis method for quasilinear parabolic PDEs. We think

that our space-time formulation combined with the chosen Petrov-Galerkin discretization provides an

elegant approach to treat these kind of problems. We present the new a-posteriori error estimate, which

appeals to the strong monotonicity of the spatial differential operator, and further discretize it to obtain

the computable bound. We note that our reduced basis approximation is based on the time-marching

approximation of the Petrov-Galerkin problem and the reduced basis space is obtained by the POD-

Greedy procedure. We also used the EIM to obtain the affine decomposition of the problem and to

guarantee the Offline-Online decomposition. The developed methodology is applied to the 1-D and the

2-D magnetoquasistatic approximations of Maxwell’s equations and the numerical results confirm a good

speed-up factor, which supports the validity of this approach.

We believe that the reduced basis methods developed in this thesis can be extended to treat more com-

plicated industrial problems. It will further have a significant impact on the PASIROM project1, where

the surrogate reduced-basis models are planned to be used in the optimization of electrical machines.

1http://www.pasirom.de/
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